kprobes.c revision f984ba4eb575e4a27ed28a76d4126d2aa9233c32
1/*
2 *  Kernel Probes (KProbes)
3 *  kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation (includes suggestions from
23 *		Rusty Russell).
24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 *		hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 *		interface to access function arguments.
28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 *		exceptions notifier to be first on the priority list.
30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 *		<prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/module.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm-generic/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81	spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86	return &(kretprobe_table_locks[hash].lock);
87}
88
89/*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96static struct kprobe_blackpoint kprobe_blacklist[] = {
97	{"preempt_schedule",},
98	{"native_get_debugreg",},
99	{"irq_entries_start",},
100	{"common_interrupt",},
101	{"mcount",},	/* mcount can be called from everywhere */
102	{NULL}    /* Terminator */
103};
104
105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106/*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112struct kprobe_insn_page {
113	struct list_head list;
114	kprobe_opcode_t *insns;		/* Page of instruction slots */
115	int nused;
116	int ngarbage;
117	char slot_used[];
118};
119
120#define KPROBE_INSN_PAGE_SIZE(slots)			\
121	(offsetof(struct kprobe_insn_page, slot_used) +	\
122	 (sizeof(char) * (slots)))
123
124struct kprobe_insn_cache {
125	struct list_head pages;	/* list of kprobe_insn_page */
126	size_t insn_size;	/* size of instruction slot */
127	int nr_garbage;
128};
129
130static int slots_per_page(struct kprobe_insn_cache *c)
131{
132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133}
134
135enum kprobe_slot_state {
136	SLOT_CLEAN = 0,
137	SLOT_DIRTY = 1,
138	SLOT_USED = 2,
139};
140
141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142static struct kprobe_insn_cache kprobe_insn_slots = {
143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144	.insn_size = MAX_INSN_SIZE,
145	.nr_garbage = 0,
146};
147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149/**
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
152 */
153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154{
155	struct kprobe_insn_page *kip;
156
157 retry:
158	list_for_each_entry(kip, &c->pages, list) {
159		if (kip->nused < slots_per_page(c)) {
160			int i;
161			for (i = 0; i < slots_per_page(c); i++) {
162				if (kip->slot_used[i] == SLOT_CLEAN) {
163					kip->slot_used[i] = SLOT_USED;
164					kip->nused++;
165					return kip->insns + (i * c->insn_size);
166				}
167			}
168			/* kip->nused is broken. Fix it. */
169			kip->nused = slots_per_page(c);
170			WARN_ON(1);
171		}
172	}
173
174	/* If there are any garbage slots, collect it and try again. */
175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176		goto retry;
177
178	/* All out of space.  Need to allocate a new page. */
179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180	if (!kip)
181		return NULL;
182
183	/*
184	 * Use module_alloc so this page is within +/- 2GB of where the
185	 * kernel image and loaded module images reside. This is required
186	 * so x86_64 can correctly handle the %rip-relative fixups.
187	 */
188	kip->insns = module_alloc(PAGE_SIZE);
189	if (!kip->insns) {
190		kfree(kip);
191		return NULL;
192	}
193	INIT_LIST_HEAD(&kip->list);
194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195	kip->slot_used[0] = SLOT_USED;
196	kip->nused = 1;
197	kip->ngarbage = 0;
198	list_add(&kip->list, &c->pages);
199	return kip->insns;
200}
201
202
203kprobe_opcode_t __kprobes *get_insn_slot(void)
204{
205	kprobe_opcode_t *ret = NULL;
206
207	mutex_lock(&kprobe_insn_mutex);
208	ret = __get_insn_slot(&kprobe_insn_slots);
209	mutex_unlock(&kprobe_insn_mutex);
210
211	return ret;
212}
213
214/* Return 1 if all garbages are collected, otherwise 0. */
215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216{
217	kip->slot_used[idx] = SLOT_CLEAN;
218	kip->nused--;
219	if (kip->nused == 0) {
220		/*
221		 * Page is no longer in use.  Free it unless
222		 * it's the last one.  We keep the last one
223		 * so as not to have to set it up again the
224		 * next time somebody inserts a probe.
225		 */
226		if (!list_is_singular(&kip->list)) {
227			list_del(&kip->list);
228			module_free(NULL, kip->insns);
229			kfree(kip);
230		}
231		return 1;
232	}
233	return 0;
234}
235
236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237{
238	struct kprobe_insn_page *kip, *next;
239
240	/* Ensure no-one is interrupted on the garbages */
241	synchronize_sched();
242
243	list_for_each_entry_safe(kip, next, &c->pages, list) {
244		int i;
245		if (kip->ngarbage == 0)
246			continue;
247		kip->ngarbage = 0;	/* we will collect all garbages */
248		for (i = 0; i < slots_per_page(c); i++) {
249			if (kip->slot_used[i] == SLOT_DIRTY &&
250			    collect_one_slot(kip, i))
251				break;
252		}
253	}
254	c->nr_garbage = 0;
255	return 0;
256}
257
258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259				       kprobe_opcode_t *slot, int dirty)
260{
261	struct kprobe_insn_page *kip;
262
263	list_for_each_entry(kip, &c->pages, list) {
264		long idx = ((long)slot - (long)kip->insns) /
265				(c->insn_size * sizeof(kprobe_opcode_t));
266		if (idx >= 0 && idx < slots_per_page(c)) {
267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268			if (dirty) {
269				kip->slot_used[idx] = SLOT_DIRTY;
270				kip->ngarbage++;
271				if (++c->nr_garbage > slots_per_page(c))
272					collect_garbage_slots(c);
273			} else
274				collect_one_slot(kip, idx);
275			return;
276		}
277	}
278	/* Could not free this slot. */
279	WARN_ON(1);
280}
281
282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283{
284	mutex_lock(&kprobe_insn_mutex);
285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286	mutex_unlock(&kprobe_insn_mutex);
287}
288#ifdef CONFIG_OPTPROBES
289/* For optimized_kprobe buffer */
290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291static struct kprobe_insn_cache kprobe_optinsn_slots = {
292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293	/* .insn_size is initialized later */
294	.nr_garbage = 0,
295};
296/* Get a slot for optimized_kprobe buffer */
297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298{
299	kprobe_opcode_t *ret = NULL;
300
301	mutex_lock(&kprobe_optinsn_mutex);
302	ret = __get_insn_slot(&kprobe_optinsn_slots);
303	mutex_unlock(&kprobe_optinsn_mutex);
304
305	return ret;
306}
307
308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309{
310	mutex_lock(&kprobe_optinsn_mutex);
311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312	mutex_unlock(&kprobe_optinsn_mutex);
313}
314#endif
315#endif
316
317/* We have preemption disabled.. so it is safe to use __ versions */
318static inline void set_kprobe_instance(struct kprobe *kp)
319{
320	__get_cpu_var(kprobe_instance) = kp;
321}
322
323static inline void reset_kprobe_instance(void)
324{
325	__get_cpu_var(kprobe_instance) = NULL;
326}
327
328/*
329 * This routine is called either:
330 * 	- under the kprobe_mutex - during kprobe_[un]register()
331 * 				OR
332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333 */
334struct kprobe __kprobes *get_kprobe(void *addr)
335{
336	struct hlist_head *head;
337	struct hlist_node *node;
338	struct kprobe *p;
339
340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341	hlist_for_each_entry_rcu(p, node, head, hlist) {
342		if (p->addr == addr)
343			return p;
344	}
345
346	return NULL;
347}
348
349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351/* Return true if the kprobe is an aggregator */
352static inline int kprobe_aggrprobe(struct kprobe *p)
353{
354	return p->pre_handler == aggr_pre_handler;
355}
356
357/* Return true(!0) if the kprobe is unused */
358static inline int kprobe_unused(struct kprobe *p)
359{
360	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361	       list_empty(&p->list);
362}
363
364/*
365 * Keep all fields in the kprobe consistent
366 */
367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368{
369	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371}
372
373#ifdef CONFIG_OPTPROBES
374/* NOTE: change this value only with kprobe_mutex held */
375static bool kprobes_allow_optimization;
376
377/*
378 * Call all pre_handler on the list, but ignores its return value.
379 * This must be called from arch-dep optimized caller.
380 */
381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382{
383	struct kprobe *kp;
384
385	list_for_each_entry_rcu(kp, &p->list, list) {
386		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387			set_kprobe_instance(kp);
388			kp->pre_handler(kp, regs);
389		}
390		reset_kprobe_instance();
391	}
392}
393
394/* Free optimized instructions and optimized_kprobe */
395static __kprobes void free_aggr_kprobe(struct kprobe *p)
396{
397	struct optimized_kprobe *op;
398
399	op = container_of(p, struct optimized_kprobe, kp);
400	arch_remove_optimized_kprobe(op);
401	arch_remove_kprobe(p);
402	kfree(op);
403}
404
405/* Return true(!0) if the kprobe is ready for optimization. */
406static inline int kprobe_optready(struct kprobe *p)
407{
408	struct optimized_kprobe *op;
409
410	if (kprobe_aggrprobe(p)) {
411		op = container_of(p, struct optimized_kprobe, kp);
412		return arch_prepared_optinsn(&op->optinsn);
413	}
414
415	return 0;
416}
417
418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419static inline int kprobe_disarmed(struct kprobe *p)
420{
421	struct optimized_kprobe *op;
422
423	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424	if (!kprobe_aggrprobe(p))
425		return kprobe_disabled(p);
426
427	op = container_of(p, struct optimized_kprobe, kp);
428
429	return kprobe_disabled(p) && list_empty(&op->list);
430}
431
432/* Return true(!0) if the probe is queued on (un)optimizing lists */
433static int __kprobes kprobe_queued(struct kprobe *p)
434{
435	struct optimized_kprobe *op;
436
437	if (kprobe_aggrprobe(p)) {
438		op = container_of(p, struct optimized_kprobe, kp);
439		if (!list_empty(&op->list))
440			return 1;
441	}
442	return 0;
443}
444
445/*
446 * Return an optimized kprobe whose optimizing code replaces
447 * instructions including addr (exclude breakpoint).
448 */
449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450{
451	int i;
452	struct kprobe *p = NULL;
453	struct optimized_kprobe *op;
454
455	/* Don't check i == 0, since that is a breakpoint case. */
456	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457		p = get_kprobe((void *)(addr - i));
458
459	if (p && kprobe_optready(p)) {
460		op = container_of(p, struct optimized_kprobe, kp);
461		if (arch_within_optimized_kprobe(op, addr))
462			return p;
463	}
464
465	return NULL;
466}
467
468/* Optimization staging list, protected by kprobe_mutex */
469static LIST_HEAD(optimizing_list);
470static LIST_HEAD(unoptimizing_list);
471
472static void kprobe_optimizer(struct work_struct *work);
473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474static DECLARE_COMPLETION(optimizer_comp);
475#define OPTIMIZE_DELAY 5
476
477/*
478 * Optimize (replace a breakpoint with a jump) kprobes listed on
479 * optimizing_list.
480 */
481static __kprobes void do_optimize_kprobes(void)
482{
483	/* Optimization never be done when disarmed */
484	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485	    list_empty(&optimizing_list))
486		return;
487
488	/*
489	 * The optimization/unoptimization refers online_cpus via
490	 * stop_machine() and cpu-hotplug modifies online_cpus.
491	 * And same time, text_mutex will be held in cpu-hotplug and here.
492	 * This combination can cause a deadlock (cpu-hotplug try to lock
493	 * text_mutex but stop_machine can not be done because online_cpus
494	 * has been changed)
495	 * To avoid this deadlock, we need to call get_online_cpus()
496	 * for preventing cpu-hotplug outside of text_mutex locking.
497	 */
498	get_online_cpus();
499	mutex_lock(&text_mutex);
500	arch_optimize_kprobes(&optimizing_list);
501	mutex_unlock(&text_mutex);
502	put_online_cpus();
503}
504
505/*
506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507 * if need) kprobes listed on unoptimizing_list.
508 */
509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510{
511	struct optimized_kprobe *op, *tmp;
512
513	/* Unoptimization must be done anytime */
514	if (list_empty(&unoptimizing_list))
515		return;
516
517	/* Ditto to do_optimize_kprobes */
518	get_online_cpus();
519	mutex_lock(&text_mutex);
520	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521	/* Loop free_list for disarming */
522	list_for_each_entry_safe(op, tmp, free_list, list) {
523		/* Disarm probes if marked disabled */
524		if (kprobe_disabled(&op->kp))
525			arch_disarm_kprobe(&op->kp);
526		if (kprobe_unused(&op->kp)) {
527			/*
528			 * Remove unused probes from hash list. After waiting
529			 * for synchronization, these probes are reclaimed.
530			 * (reclaiming is done by do_free_cleaned_kprobes.)
531			 */
532			hlist_del_rcu(&op->kp.hlist);
533		} else
534			list_del_init(&op->list);
535	}
536	mutex_unlock(&text_mutex);
537	put_online_cpus();
538}
539
540/* Reclaim all kprobes on the free_list */
541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542{
543	struct optimized_kprobe *op, *tmp;
544
545	list_for_each_entry_safe(op, tmp, free_list, list) {
546		BUG_ON(!kprobe_unused(&op->kp));
547		list_del_init(&op->list);
548		free_aggr_kprobe(&op->kp);
549	}
550}
551
552/* Start optimizer after OPTIMIZE_DELAY passed */
553static __kprobes void kick_kprobe_optimizer(void)
554{
555	if (!delayed_work_pending(&optimizing_work))
556		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557}
558
559/* Kprobe jump optimizer */
560static __kprobes void kprobe_optimizer(struct work_struct *work)
561{
562	LIST_HEAD(free_list);
563
564	/* Lock modules while optimizing kprobes */
565	mutex_lock(&module_mutex);
566	mutex_lock(&kprobe_mutex);
567
568	/*
569	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570	 * kprobes before waiting for quiesence period.
571	 */
572	do_unoptimize_kprobes(&free_list);
573
574	/*
575	 * Step 2: Wait for quiesence period to ensure all running interrupts
576	 * are done. Because optprobe may modify multiple instructions
577	 * there is a chance that Nth instruction is interrupted. In that
578	 * case, running interrupt can return to 2nd-Nth byte of jump
579	 * instruction. This wait is for avoiding it.
580	 */
581	synchronize_sched();
582
583	/* Step 3: Optimize kprobes after quiesence period */
584	do_optimize_kprobes();
585
586	/* Step 4: Free cleaned kprobes after quiesence period */
587	do_free_cleaned_kprobes(&free_list);
588
589	mutex_unlock(&kprobe_mutex);
590	mutex_unlock(&module_mutex);
591
592	/* Step 5: Kick optimizer again if needed */
593	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594		kick_kprobe_optimizer();
595	else
596		/* Wake up all waiters */
597		complete_all(&optimizer_comp);
598}
599
600/* Wait for completing optimization and unoptimization */
601static __kprobes void wait_for_kprobe_optimizer(void)
602{
603	if (delayed_work_pending(&optimizing_work))
604		wait_for_completion(&optimizer_comp);
605}
606
607/* Optimize kprobe if p is ready to be optimized */
608static __kprobes void optimize_kprobe(struct kprobe *p)
609{
610	struct optimized_kprobe *op;
611
612	/* Check if the kprobe is disabled or not ready for optimization. */
613	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614	    (kprobe_disabled(p) || kprobes_all_disarmed))
615		return;
616
617	/* Both of break_handler and post_handler are not supported. */
618	if (p->break_handler || p->post_handler)
619		return;
620
621	op = container_of(p, struct optimized_kprobe, kp);
622
623	/* Check there is no other kprobes at the optimized instructions */
624	if (arch_check_optimized_kprobe(op) < 0)
625		return;
626
627	/* Check if it is already optimized. */
628	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629		return;
630	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631
632	if (!list_empty(&op->list))
633		/* This is under unoptimizing. Just dequeue the probe */
634		list_del_init(&op->list);
635	else {
636		list_add(&op->list, &optimizing_list);
637		kick_kprobe_optimizer();
638	}
639}
640
641/* Short cut to direct unoptimizing */
642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643{
644	get_online_cpus();
645	arch_unoptimize_kprobe(op);
646	put_online_cpus();
647	if (kprobe_disabled(&op->kp))
648		arch_disarm_kprobe(&op->kp);
649}
650
651/* Unoptimize a kprobe if p is optimized */
652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653{
654	struct optimized_kprobe *op;
655
656	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657		return; /* This is not an optprobe nor optimized */
658
659	op = container_of(p, struct optimized_kprobe, kp);
660	if (!kprobe_optimized(p)) {
661		/* Unoptimized or unoptimizing case */
662		if (force && !list_empty(&op->list)) {
663			/*
664			 * Only if this is unoptimizing kprobe and forced,
665			 * forcibly unoptimize it. (No need to unoptimize
666			 * unoptimized kprobe again :)
667			 */
668			list_del_init(&op->list);
669			force_unoptimize_kprobe(op);
670		}
671		return;
672	}
673
674	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675	if (!list_empty(&op->list)) {
676		/* Dequeue from the optimization queue */
677		list_del_init(&op->list);
678		return;
679	}
680	/* Optimized kprobe case */
681	if (force)
682		/* Forcibly update the code: this is a special case */
683		force_unoptimize_kprobe(op);
684	else {
685		list_add(&op->list, &unoptimizing_list);
686		kick_kprobe_optimizer();
687	}
688}
689
690/* Cancel unoptimizing for reusing */
691static void reuse_unused_kprobe(struct kprobe *ap)
692{
693	struct optimized_kprobe *op;
694
695	BUG_ON(!kprobe_unused(ap));
696	/*
697	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
698	 * there is still a relative jump) and disabled.
699	 */
700	op = container_of(ap, struct optimized_kprobe, kp);
701	if (unlikely(list_empty(&op->list)))
702		printk(KERN_WARNING "Warning: found a stray unused "
703			"aggrprobe@%p\n", ap->addr);
704	/* Enable the probe again */
705	ap->flags &= ~KPROBE_FLAG_DISABLED;
706	/* Optimize it again (remove from op->list) */
707	BUG_ON(!kprobe_optready(ap));
708	optimize_kprobe(ap);
709}
710
711/* Remove optimized instructions */
712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713{
714	struct optimized_kprobe *op;
715
716	op = container_of(p, struct optimized_kprobe, kp);
717	if (!list_empty(&op->list))
718		/* Dequeue from the (un)optimization queue */
719		list_del_init(&op->list);
720
721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722	/* Don't touch the code, because it is already freed. */
723	arch_remove_optimized_kprobe(op);
724}
725
726/* Try to prepare optimized instructions */
727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728{
729	struct optimized_kprobe *op;
730
731	op = container_of(p, struct optimized_kprobe, kp);
732	arch_prepare_optimized_kprobe(op);
733}
734
735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737{
738	struct optimized_kprobe *op;
739
740	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741	if (!op)
742		return NULL;
743
744	INIT_LIST_HEAD(&op->list);
745	op->kp.addr = p->addr;
746	arch_prepare_optimized_kprobe(op);
747
748	return &op->kp;
749}
750
751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752
753/*
754 * Prepare an optimized_kprobe and optimize it
755 * NOTE: p must be a normal registered kprobe
756 */
757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758{
759	struct kprobe *ap;
760	struct optimized_kprobe *op;
761
762	ap = alloc_aggr_kprobe(p);
763	if (!ap)
764		return;
765
766	op = container_of(ap, struct optimized_kprobe, kp);
767	if (!arch_prepared_optinsn(&op->optinsn)) {
768		/* If failed to setup optimizing, fallback to kprobe */
769		arch_remove_optimized_kprobe(op);
770		kfree(op);
771		return;
772	}
773
774	init_aggr_kprobe(ap, p);
775	optimize_kprobe(ap);
776}
777
778#ifdef CONFIG_SYSCTL
779/* This should be called with kprobe_mutex locked */
780static void __kprobes optimize_all_kprobes(void)
781{
782	struct hlist_head *head;
783	struct hlist_node *node;
784	struct kprobe *p;
785	unsigned int i;
786
787	/* If optimization is already allowed, just return */
788	if (kprobes_allow_optimization)
789		return;
790
791	kprobes_allow_optimization = true;
792	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
793		head = &kprobe_table[i];
794		hlist_for_each_entry_rcu(p, node, head, hlist)
795			if (!kprobe_disabled(p))
796				optimize_kprobe(p);
797	}
798	printk(KERN_INFO "Kprobes globally optimized\n");
799}
800
801/* This should be called with kprobe_mutex locked */
802static void __kprobes unoptimize_all_kprobes(void)
803{
804	struct hlist_head *head;
805	struct hlist_node *node;
806	struct kprobe *p;
807	unsigned int i;
808
809	/* If optimization is already prohibited, just return */
810	if (!kprobes_allow_optimization)
811		return;
812
813	kprobes_allow_optimization = false;
814	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815		head = &kprobe_table[i];
816		hlist_for_each_entry_rcu(p, node, head, hlist) {
817			if (!kprobe_disabled(p))
818				unoptimize_kprobe(p, false);
819		}
820	}
821	/* Wait for unoptimizing completion */
822	wait_for_kprobe_optimizer();
823	printk(KERN_INFO "Kprobes globally unoptimized\n");
824}
825
826int sysctl_kprobes_optimization;
827int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
828				      void __user *buffer, size_t *length,
829				      loff_t *ppos)
830{
831	int ret;
832
833	mutex_lock(&kprobe_mutex);
834	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
835	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
836
837	if (sysctl_kprobes_optimization)
838		optimize_all_kprobes();
839	else
840		unoptimize_all_kprobes();
841	mutex_unlock(&kprobe_mutex);
842
843	return ret;
844}
845#endif /* CONFIG_SYSCTL */
846
847/* Put a breakpoint for a probe. Must be called with text_mutex locked */
848static void __kprobes __arm_kprobe(struct kprobe *p)
849{
850	struct kprobe *_p;
851
852	/* Check collision with other optimized kprobes */
853	_p = get_optimized_kprobe((unsigned long)p->addr);
854	if (unlikely(_p))
855		/* Fallback to unoptimized kprobe */
856		unoptimize_kprobe(_p, true);
857
858	arch_arm_kprobe(p);
859	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
860}
861
862/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
863static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
864{
865	struct kprobe *_p;
866
867	unoptimize_kprobe(p, false);	/* Try to unoptimize */
868
869	if (!kprobe_queued(p)) {
870		arch_disarm_kprobe(p);
871		/* If another kprobe was blocked, optimize it. */
872		_p = get_optimized_kprobe((unsigned long)p->addr);
873		if (unlikely(_p) && reopt)
874			optimize_kprobe(_p);
875	}
876	/* TODO: reoptimize others after unoptimized this probe */
877}
878
879#else /* !CONFIG_OPTPROBES */
880
881#define optimize_kprobe(p)			do {} while (0)
882#define unoptimize_kprobe(p, f)			do {} while (0)
883#define kill_optimized_kprobe(p)		do {} while (0)
884#define prepare_optimized_kprobe(p)		do {} while (0)
885#define try_to_optimize_kprobe(p)		do {} while (0)
886#define __arm_kprobe(p)				arch_arm_kprobe(p)
887#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
888#define kprobe_disarmed(p)			kprobe_disabled(p)
889#define wait_for_kprobe_optimizer()		do {} while (0)
890
891/* There should be no unused kprobes can be reused without optimization */
892static void reuse_unused_kprobe(struct kprobe *ap)
893{
894	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
895	BUG_ON(kprobe_unused(ap));
896}
897
898static __kprobes void free_aggr_kprobe(struct kprobe *p)
899{
900	arch_remove_kprobe(p);
901	kfree(p);
902}
903
904static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
905{
906	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
907}
908#endif /* CONFIG_OPTPROBES */
909
910/* Arm a kprobe with text_mutex */
911static void __kprobes arm_kprobe(struct kprobe *kp)
912{
913	/*
914	 * Here, since __arm_kprobe() doesn't use stop_machine(),
915	 * this doesn't cause deadlock on text_mutex. So, we don't
916	 * need get_online_cpus().
917	 */
918	mutex_lock(&text_mutex);
919	__arm_kprobe(kp);
920	mutex_unlock(&text_mutex);
921}
922
923/* Disarm a kprobe with text_mutex */
924static void __kprobes disarm_kprobe(struct kprobe *kp)
925{
926	/* Ditto */
927	mutex_lock(&text_mutex);
928	__disarm_kprobe(kp, true);
929	mutex_unlock(&text_mutex);
930}
931
932/*
933 * Aggregate handlers for multiple kprobes support - these handlers
934 * take care of invoking the individual kprobe handlers on p->list
935 */
936static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
937{
938	struct kprobe *kp;
939
940	list_for_each_entry_rcu(kp, &p->list, list) {
941		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
942			set_kprobe_instance(kp);
943			if (kp->pre_handler(kp, regs))
944				return 1;
945		}
946		reset_kprobe_instance();
947	}
948	return 0;
949}
950
951static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
952					unsigned long flags)
953{
954	struct kprobe *kp;
955
956	list_for_each_entry_rcu(kp, &p->list, list) {
957		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
958			set_kprobe_instance(kp);
959			kp->post_handler(kp, regs, flags);
960			reset_kprobe_instance();
961		}
962	}
963}
964
965static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
966					int trapnr)
967{
968	struct kprobe *cur = __get_cpu_var(kprobe_instance);
969
970	/*
971	 * if we faulted "during" the execution of a user specified
972	 * probe handler, invoke just that probe's fault handler
973	 */
974	if (cur && cur->fault_handler) {
975		if (cur->fault_handler(cur, regs, trapnr))
976			return 1;
977	}
978	return 0;
979}
980
981static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
982{
983	struct kprobe *cur = __get_cpu_var(kprobe_instance);
984	int ret = 0;
985
986	if (cur && cur->break_handler) {
987		if (cur->break_handler(cur, regs))
988			ret = 1;
989	}
990	reset_kprobe_instance();
991	return ret;
992}
993
994/* Walks the list and increments nmissed count for multiprobe case */
995void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
996{
997	struct kprobe *kp;
998	if (!kprobe_aggrprobe(p)) {
999		p->nmissed++;
1000	} else {
1001		list_for_each_entry_rcu(kp, &p->list, list)
1002			kp->nmissed++;
1003	}
1004	return;
1005}
1006
1007void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008				struct hlist_head *head)
1009{
1010	struct kretprobe *rp = ri->rp;
1011
1012	/* remove rp inst off the rprobe_inst_table */
1013	hlist_del(&ri->hlist);
1014	INIT_HLIST_NODE(&ri->hlist);
1015	if (likely(rp)) {
1016		spin_lock(&rp->lock);
1017		hlist_add_head(&ri->hlist, &rp->free_instances);
1018		spin_unlock(&rp->lock);
1019	} else
1020		/* Unregistering */
1021		hlist_add_head(&ri->hlist, head);
1022}
1023
1024void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025			 struct hlist_head **head, unsigned long *flags)
1026__acquires(hlist_lock)
1027{
1028	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029	spinlock_t *hlist_lock;
1030
1031	*head = &kretprobe_inst_table[hash];
1032	hlist_lock = kretprobe_table_lock_ptr(hash);
1033	spin_lock_irqsave(hlist_lock, *flags);
1034}
1035
1036static void __kprobes kretprobe_table_lock(unsigned long hash,
1037	unsigned long *flags)
1038__acquires(hlist_lock)
1039{
1040	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041	spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045	unsigned long *flags)
1046__releases(hlist_lock)
1047{
1048	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049	spinlock_t *hlist_lock;
1050
1051	hlist_lock = kretprobe_table_lock_ptr(hash);
1052	spin_unlock_irqrestore(hlist_lock, *flags);
1053}
1054
1055static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056       unsigned long *flags)
1057__releases(hlist_lock)
1058{
1059	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060	spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063/*
1064 * This function is called from finish_task_switch when task tk becomes dead,
1065 * so that we can recycle any function-return probe instances associated
1066 * with this task. These left over instances represent probed functions
1067 * that have been called but will never return.
1068 */
1069void __kprobes kprobe_flush_task(struct task_struct *tk)
1070{
1071	struct kretprobe_instance *ri;
1072	struct hlist_head *head, empty_rp;
1073	struct hlist_node *node, *tmp;
1074	unsigned long hash, flags = 0;
1075
1076	if (unlikely(!kprobes_initialized))
1077		/* Early boot.  kretprobe_table_locks not yet initialized. */
1078		return;
1079
1080	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1081	head = &kretprobe_inst_table[hash];
1082	kretprobe_table_lock(hash, &flags);
1083	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1084		if (ri->task == tk)
1085			recycle_rp_inst(ri, &empty_rp);
1086	}
1087	kretprobe_table_unlock(hash, &flags);
1088	INIT_HLIST_HEAD(&empty_rp);
1089	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090		hlist_del(&ri->hlist);
1091		kfree(ri);
1092	}
1093}
1094
1095static inline void free_rp_inst(struct kretprobe *rp)
1096{
1097	struct kretprobe_instance *ri;
1098	struct hlist_node *pos, *next;
1099
1100	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101		hlist_del(&ri->hlist);
1102		kfree(ri);
1103	}
1104}
1105
1106static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107{
1108	unsigned long flags, hash;
1109	struct kretprobe_instance *ri;
1110	struct hlist_node *pos, *next;
1111	struct hlist_head *head;
1112
1113	/* No race here */
1114	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115		kretprobe_table_lock(hash, &flags);
1116		head = &kretprobe_inst_table[hash];
1117		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118			if (ri->rp == rp)
1119				ri->rp = NULL;
1120		}
1121		kretprobe_table_unlock(hash, &flags);
1122	}
1123	free_rp_inst(rp);
1124}
1125
1126/*
1127* Add the new probe to ap->list. Fail if this is the
1128* second jprobe at the address - two jprobes can't coexist
1129*/
1130static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131{
1132	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134	if (p->break_handler || p->post_handler)
1135		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1136
1137	if (p->break_handler) {
1138		if (ap->break_handler)
1139			return -EEXIST;
1140		list_add_tail_rcu(&p->list, &ap->list);
1141		ap->break_handler = aggr_break_handler;
1142	} else
1143		list_add_rcu(&p->list, &ap->list);
1144	if (p->post_handler && !ap->post_handler)
1145		ap->post_handler = aggr_post_handler;
1146
1147	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148		ap->flags &= ~KPROBE_FLAG_DISABLED;
1149		if (!kprobes_all_disarmed)
1150			/* Arm the breakpoint again. */
1151			__arm_kprobe(ap);
1152	}
1153	return 0;
1154}
1155
1156/*
1157 * Fill in the required fields of the "manager kprobe". Replace the
1158 * earlier kprobe in the hlist with the manager kprobe
1159 */
1160static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161{
1162	/* Copy p's insn slot to ap */
1163	copy_kprobe(p, ap);
1164	flush_insn_slot(ap);
1165	ap->addr = p->addr;
1166	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167	ap->pre_handler = aggr_pre_handler;
1168	ap->fault_handler = aggr_fault_handler;
1169	/* We don't care the kprobe which has gone. */
1170	if (p->post_handler && !kprobe_gone(p))
1171		ap->post_handler = aggr_post_handler;
1172	if (p->break_handler && !kprobe_gone(p))
1173		ap->break_handler = aggr_break_handler;
1174
1175	INIT_LIST_HEAD(&ap->list);
1176	INIT_HLIST_NODE(&ap->hlist);
1177
1178	list_add_rcu(&p->list, &ap->list);
1179	hlist_replace_rcu(&p->hlist, &ap->hlist);
1180}
1181
1182/*
1183 * This is the second or subsequent kprobe at the address - handle
1184 * the intricacies
1185 */
1186static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187					  struct kprobe *p)
1188{
1189	int ret = 0;
1190	struct kprobe *ap = orig_p;
1191
1192	if (!kprobe_aggrprobe(orig_p)) {
1193		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194		ap = alloc_aggr_kprobe(orig_p);
1195		if (!ap)
1196			return -ENOMEM;
1197		init_aggr_kprobe(ap, orig_p);
1198	} else if (kprobe_unused(ap))
1199		/* This probe is going to die. Rescue it */
1200		reuse_unused_kprobe(ap);
1201
1202	if (kprobe_gone(ap)) {
1203		/*
1204		 * Attempting to insert new probe at the same location that
1205		 * had a probe in the module vaddr area which already
1206		 * freed. So, the instruction slot has already been
1207		 * released. We need a new slot for the new probe.
1208		 */
1209		ret = arch_prepare_kprobe(ap);
1210		if (ret)
1211			/*
1212			 * Even if fail to allocate new slot, don't need to
1213			 * free aggr_probe. It will be used next time, or
1214			 * freed by unregister_kprobe.
1215			 */
1216			return ret;
1217
1218		/* Prepare optimized instructions if possible. */
1219		prepare_optimized_kprobe(ap);
1220
1221		/*
1222		 * Clear gone flag to prevent allocating new slot again, and
1223		 * set disabled flag because it is not armed yet.
1224		 */
1225		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226			    | KPROBE_FLAG_DISABLED;
1227	}
1228
1229	/* Copy ap's insn slot to p */
1230	copy_kprobe(ap, p);
1231	return add_new_kprobe(ap, p);
1232}
1233
1234static int __kprobes in_kprobes_functions(unsigned long addr)
1235{
1236	struct kprobe_blackpoint *kb;
1237
1238	if (addr >= (unsigned long)__kprobes_text_start &&
1239	    addr < (unsigned long)__kprobes_text_end)
1240		return -EINVAL;
1241	/*
1242	 * If there exists a kprobe_blacklist, verify and
1243	 * fail any probe registration in the prohibited area
1244	 */
1245	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246		if (kb->start_addr) {
1247			if (addr >= kb->start_addr &&
1248			    addr < (kb->start_addr + kb->range))
1249				return -EINVAL;
1250		}
1251	}
1252	return 0;
1253}
1254
1255/*
1256 * If we have a symbol_name argument, look it up and add the offset field
1257 * to it. This way, we can specify a relative address to a symbol.
1258 */
1259static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1260{
1261	kprobe_opcode_t *addr = p->addr;
1262	if (p->symbol_name) {
1263		if (addr)
1264			return NULL;
1265		kprobe_lookup_name(p->symbol_name, addr);
1266	}
1267
1268	if (!addr)
1269		return NULL;
1270	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1271}
1272
1273/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1274static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1275{
1276	struct kprobe *ap, *list_p;
1277
1278	ap = get_kprobe(p->addr);
1279	if (unlikely(!ap))
1280		return NULL;
1281
1282	if (p != ap) {
1283		list_for_each_entry_rcu(list_p, &ap->list, list)
1284			if (list_p == p)
1285			/* kprobe p is a valid probe */
1286				goto valid;
1287		return NULL;
1288	}
1289valid:
1290	return ap;
1291}
1292
1293/* Return error if the kprobe is being re-registered */
1294static inline int check_kprobe_rereg(struct kprobe *p)
1295{
1296	int ret = 0;
1297
1298	mutex_lock(&kprobe_mutex);
1299	if (__get_valid_kprobe(p))
1300		ret = -EINVAL;
1301	mutex_unlock(&kprobe_mutex);
1302
1303	return ret;
1304}
1305
1306int __kprobes register_kprobe(struct kprobe *p)
1307{
1308	int ret = 0;
1309	struct kprobe *old_p;
1310	struct module *probed_mod;
1311	kprobe_opcode_t *addr;
1312
1313	addr = kprobe_addr(p);
1314	if (!addr)
1315		return -EINVAL;
1316	p->addr = addr;
1317
1318	ret = check_kprobe_rereg(p);
1319	if (ret)
1320		return ret;
1321
1322	jump_label_lock();
1323	preempt_disable();
1324	if (!kernel_text_address((unsigned long) p->addr) ||
1325	    in_kprobes_functions((unsigned long) p->addr) ||
1326	    ftrace_text_reserved(p->addr, p->addr) ||
1327	    jump_label_text_reserved(p->addr, p->addr))
1328		goto fail_with_jump_label;
1329
1330	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1331	p->flags &= KPROBE_FLAG_DISABLED;
1332
1333	/*
1334	 * Check if are we probing a module.
1335	 */
1336	probed_mod = __module_text_address((unsigned long) p->addr);
1337	if (probed_mod) {
1338		/*
1339		 * We must hold a refcount of the probed module while updating
1340		 * its code to prohibit unexpected unloading.
1341		 */
1342		if (unlikely(!try_module_get(probed_mod)))
1343			goto fail_with_jump_label;
1344
1345		/*
1346		 * If the module freed .init.text, we couldn't insert
1347		 * kprobes in there.
1348		 */
1349		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1350		    probed_mod->state != MODULE_STATE_COMING) {
1351			module_put(probed_mod);
1352			goto fail_with_jump_label;
1353		}
1354	}
1355	preempt_enable();
1356	jump_label_unlock();
1357
1358	p->nmissed = 0;
1359	INIT_LIST_HEAD(&p->list);
1360	mutex_lock(&kprobe_mutex);
1361
1362	jump_label_lock(); /* needed to call jump_label_text_reserved() */
1363
1364	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1365	mutex_lock(&text_mutex);
1366
1367	old_p = get_kprobe(p->addr);
1368	if (old_p) {
1369		/* Since this may unoptimize old_p, locking text_mutex. */
1370		ret = register_aggr_kprobe(old_p, p);
1371		goto out;
1372	}
1373
1374	ret = arch_prepare_kprobe(p);
1375	if (ret)
1376		goto out;
1377
1378	INIT_HLIST_NODE(&p->hlist);
1379	hlist_add_head_rcu(&p->hlist,
1380		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1381
1382	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1383		__arm_kprobe(p);
1384
1385	/* Try to optimize kprobe */
1386	try_to_optimize_kprobe(p);
1387
1388out:
1389	mutex_unlock(&text_mutex);
1390	put_online_cpus();
1391	jump_label_unlock();
1392	mutex_unlock(&kprobe_mutex);
1393
1394	if (probed_mod)
1395		module_put(probed_mod);
1396
1397	return ret;
1398
1399fail_with_jump_label:
1400	preempt_enable();
1401	jump_label_unlock();
1402	return -EINVAL;
1403}
1404EXPORT_SYMBOL_GPL(register_kprobe);
1405
1406/* Check if all probes on the aggrprobe are disabled */
1407static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1408{
1409	struct kprobe *kp;
1410
1411	list_for_each_entry_rcu(kp, &ap->list, list)
1412		if (!kprobe_disabled(kp))
1413			/*
1414			 * There is an active probe on the list.
1415			 * We can't disable this ap.
1416			 */
1417			return 0;
1418
1419	return 1;
1420}
1421
1422/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1423static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1424{
1425	struct kprobe *orig_p;
1426
1427	/* Get an original kprobe for return */
1428	orig_p = __get_valid_kprobe(p);
1429	if (unlikely(orig_p == NULL))
1430		return NULL;
1431
1432	if (!kprobe_disabled(p)) {
1433		/* Disable probe if it is a child probe */
1434		if (p != orig_p)
1435			p->flags |= KPROBE_FLAG_DISABLED;
1436
1437		/* Try to disarm and disable this/parent probe */
1438		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1439			disarm_kprobe(orig_p);
1440			orig_p->flags |= KPROBE_FLAG_DISABLED;
1441		}
1442	}
1443
1444	return orig_p;
1445}
1446
1447/*
1448 * Unregister a kprobe without a scheduler synchronization.
1449 */
1450static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1451{
1452	struct kprobe *ap, *list_p;
1453
1454	/* Disable kprobe. This will disarm it if needed. */
1455	ap = __disable_kprobe(p);
1456	if (ap == NULL)
1457		return -EINVAL;
1458
1459	if (ap == p)
1460		/*
1461		 * This probe is an independent(and non-optimized) kprobe
1462		 * (not an aggrprobe). Remove from the hash list.
1463		 */
1464		goto disarmed;
1465
1466	/* Following process expects this probe is an aggrprobe */
1467	WARN_ON(!kprobe_aggrprobe(ap));
1468
1469	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1470		/*
1471		 * !disarmed could be happen if the probe is under delayed
1472		 * unoptimizing.
1473		 */
1474		goto disarmed;
1475	else {
1476		/* If disabling probe has special handlers, update aggrprobe */
1477		if (p->break_handler && !kprobe_gone(p))
1478			ap->break_handler = NULL;
1479		if (p->post_handler && !kprobe_gone(p)) {
1480			list_for_each_entry_rcu(list_p, &ap->list, list) {
1481				if ((list_p != p) && (list_p->post_handler))
1482					goto noclean;
1483			}
1484			ap->post_handler = NULL;
1485		}
1486noclean:
1487		/*
1488		 * Remove from the aggrprobe: this path will do nothing in
1489		 * __unregister_kprobe_bottom().
1490		 */
1491		list_del_rcu(&p->list);
1492		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1493			/*
1494			 * Try to optimize this probe again, because post
1495			 * handler may have been changed.
1496			 */
1497			optimize_kprobe(ap);
1498	}
1499	return 0;
1500
1501disarmed:
1502	BUG_ON(!kprobe_disarmed(ap));
1503	hlist_del_rcu(&ap->hlist);
1504	return 0;
1505}
1506
1507static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1508{
1509	struct kprobe *ap;
1510
1511	if (list_empty(&p->list))
1512		/* This is an independent kprobe */
1513		arch_remove_kprobe(p);
1514	else if (list_is_singular(&p->list)) {
1515		/* This is the last child of an aggrprobe */
1516		ap = list_entry(p->list.next, struct kprobe, list);
1517		list_del(&p->list);
1518		free_aggr_kprobe(ap);
1519	}
1520	/* Otherwise, do nothing. */
1521}
1522
1523int __kprobes register_kprobes(struct kprobe **kps, int num)
1524{
1525	int i, ret = 0;
1526
1527	if (num <= 0)
1528		return -EINVAL;
1529	for (i = 0; i < num; i++) {
1530		ret = register_kprobe(kps[i]);
1531		if (ret < 0) {
1532			if (i > 0)
1533				unregister_kprobes(kps, i);
1534			break;
1535		}
1536	}
1537	return ret;
1538}
1539EXPORT_SYMBOL_GPL(register_kprobes);
1540
1541void __kprobes unregister_kprobe(struct kprobe *p)
1542{
1543	unregister_kprobes(&p, 1);
1544}
1545EXPORT_SYMBOL_GPL(unregister_kprobe);
1546
1547void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1548{
1549	int i;
1550
1551	if (num <= 0)
1552		return;
1553	mutex_lock(&kprobe_mutex);
1554	for (i = 0; i < num; i++)
1555		if (__unregister_kprobe_top(kps[i]) < 0)
1556			kps[i]->addr = NULL;
1557	mutex_unlock(&kprobe_mutex);
1558
1559	synchronize_sched();
1560	for (i = 0; i < num; i++)
1561		if (kps[i]->addr)
1562			__unregister_kprobe_bottom(kps[i]);
1563}
1564EXPORT_SYMBOL_GPL(unregister_kprobes);
1565
1566static struct notifier_block kprobe_exceptions_nb = {
1567	.notifier_call = kprobe_exceptions_notify,
1568	.priority = 0x7fffffff /* we need to be notified first */
1569};
1570
1571unsigned long __weak arch_deref_entry_point(void *entry)
1572{
1573	return (unsigned long)entry;
1574}
1575
1576int __kprobes register_jprobes(struct jprobe **jps, int num)
1577{
1578	struct jprobe *jp;
1579	int ret = 0, i;
1580
1581	if (num <= 0)
1582		return -EINVAL;
1583	for (i = 0; i < num; i++) {
1584		unsigned long addr, offset;
1585		jp = jps[i];
1586		addr = arch_deref_entry_point(jp->entry);
1587
1588		/* Verify probepoint is a function entry point */
1589		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1590		    offset == 0) {
1591			jp->kp.pre_handler = setjmp_pre_handler;
1592			jp->kp.break_handler = longjmp_break_handler;
1593			ret = register_kprobe(&jp->kp);
1594		} else
1595			ret = -EINVAL;
1596
1597		if (ret < 0) {
1598			if (i > 0)
1599				unregister_jprobes(jps, i);
1600			break;
1601		}
1602	}
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(register_jprobes);
1606
1607int __kprobes register_jprobe(struct jprobe *jp)
1608{
1609	return register_jprobes(&jp, 1);
1610}
1611EXPORT_SYMBOL_GPL(register_jprobe);
1612
1613void __kprobes unregister_jprobe(struct jprobe *jp)
1614{
1615	unregister_jprobes(&jp, 1);
1616}
1617EXPORT_SYMBOL_GPL(unregister_jprobe);
1618
1619void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1620{
1621	int i;
1622
1623	if (num <= 0)
1624		return;
1625	mutex_lock(&kprobe_mutex);
1626	for (i = 0; i < num; i++)
1627		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1628			jps[i]->kp.addr = NULL;
1629	mutex_unlock(&kprobe_mutex);
1630
1631	synchronize_sched();
1632	for (i = 0; i < num; i++) {
1633		if (jps[i]->kp.addr)
1634			__unregister_kprobe_bottom(&jps[i]->kp);
1635	}
1636}
1637EXPORT_SYMBOL_GPL(unregister_jprobes);
1638
1639#ifdef CONFIG_KRETPROBES
1640/*
1641 * This kprobe pre_handler is registered with every kretprobe. When probe
1642 * hits it will set up the return probe.
1643 */
1644static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1645					   struct pt_regs *regs)
1646{
1647	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1648	unsigned long hash, flags = 0;
1649	struct kretprobe_instance *ri;
1650
1651	/*TODO: consider to only swap the RA after the last pre_handler fired */
1652	hash = hash_ptr(current, KPROBE_HASH_BITS);
1653	spin_lock_irqsave(&rp->lock, flags);
1654	if (!hlist_empty(&rp->free_instances)) {
1655		ri = hlist_entry(rp->free_instances.first,
1656				struct kretprobe_instance, hlist);
1657		hlist_del(&ri->hlist);
1658		spin_unlock_irqrestore(&rp->lock, flags);
1659
1660		ri->rp = rp;
1661		ri->task = current;
1662
1663		if (rp->entry_handler && rp->entry_handler(ri, regs))
1664			return 0;
1665
1666		arch_prepare_kretprobe(ri, regs);
1667
1668		/* XXX(hch): why is there no hlist_move_head? */
1669		INIT_HLIST_NODE(&ri->hlist);
1670		kretprobe_table_lock(hash, &flags);
1671		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1672		kretprobe_table_unlock(hash, &flags);
1673	} else {
1674		rp->nmissed++;
1675		spin_unlock_irqrestore(&rp->lock, flags);
1676	}
1677	return 0;
1678}
1679
1680int __kprobes register_kretprobe(struct kretprobe *rp)
1681{
1682	int ret = 0;
1683	struct kretprobe_instance *inst;
1684	int i;
1685	void *addr;
1686
1687	if (kretprobe_blacklist_size) {
1688		addr = kprobe_addr(&rp->kp);
1689		if (!addr)
1690			return -EINVAL;
1691
1692		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1693			if (kretprobe_blacklist[i].addr == addr)
1694				return -EINVAL;
1695		}
1696	}
1697
1698	rp->kp.pre_handler = pre_handler_kretprobe;
1699	rp->kp.post_handler = NULL;
1700	rp->kp.fault_handler = NULL;
1701	rp->kp.break_handler = NULL;
1702
1703	/* Pre-allocate memory for max kretprobe instances */
1704	if (rp->maxactive <= 0) {
1705#ifdef CONFIG_PREEMPT
1706		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1707#else
1708		rp->maxactive = num_possible_cpus();
1709#endif
1710	}
1711	spin_lock_init(&rp->lock);
1712	INIT_HLIST_HEAD(&rp->free_instances);
1713	for (i = 0; i < rp->maxactive; i++) {
1714		inst = kmalloc(sizeof(struct kretprobe_instance) +
1715			       rp->data_size, GFP_KERNEL);
1716		if (inst == NULL) {
1717			free_rp_inst(rp);
1718			return -ENOMEM;
1719		}
1720		INIT_HLIST_NODE(&inst->hlist);
1721		hlist_add_head(&inst->hlist, &rp->free_instances);
1722	}
1723
1724	rp->nmissed = 0;
1725	/* Establish function entry probe point */
1726	ret = register_kprobe(&rp->kp);
1727	if (ret != 0)
1728		free_rp_inst(rp);
1729	return ret;
1730}
1731EXPORT_SYMBOL_GPL(register_kretprobe);
1732
1733int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1734{
1735	int ret = 0, i;
1736
1737	if (num <= 0)
1738		return -EINVAL;
1739	for (i = 0; i < num; i++) {
1740		ret = register_kretprobe(rps[i]);
1741		if (ret < 0) {
1742			if (i > 0)
1743				unregister_kretprobes(rps, i);
1744			break;
1745		}
1746	}
1747	return ret;
1748}
1749EXPORT_SYMBOL_GPL(register_kretprobes);
1750
1751void __kprobes unregister_kretprobe(struct kretprobe *rp)
1752{
1753	unregister_kretprobes(&rp, 1);
1754}
1755EXPORT_SYMBOL_GPL(unregister_kretprobe);
1756
1757void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1758{
1759	int i;
1760
1761	if (num <= 0)
1762		return;
1763	mutex_lock(&kprobe_mutex);
1764	for (i = 0; i < num; i++)
1765		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1766			rps[i]->kp.addr = NULL;
1767	mutex_unlock(&kprobe_mutex);
1768
1769	synchronize_sched();
1770	for (i = 0; i < num; i++) {
1771		if (rps[i]->kp.addr) {
1772			__unregister_kprobe_bottom(&rps[i]->kp);
1773			cleanup_rp_inst(rps[i]);
1774		}
1775	}
1776}
1777EXPORT_SYMBOL_GPL(unregister_kretprobes);
1778
1779#else /* CONFIG_KRETPROBES */
1780int __kprobes register_kretprobe(struct kretprobe *rp)
1781{
1782	return -ENOSYS;
1783}
1784EXPORT_SYMBOL_GPL(register_kretprobe);
1785
1786int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1787{
1788	return -ENOSYS;
1789}
1790EXPORT_SYMBOL_GPL(register_kretprobes);
1791
1792void __kprobes unregister_kretprobe(struct kretprobe *rp)
1793{
1794}
1795EXPORT_SYMBOL_GPL(unregister_kretprobe);
1796
1797void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1798{
1799}
1800EXPORT_SYMBOL_GPL(unregister_kretprobes);
1801
1802static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1803					   struct pt_regs *regs)
1804{
1805	return 0;
1806}
1807
1808#endif /* CONFIG_KRETPROBES */
1809
1810/* Set the kprobe gone and remove its instruction buffer. */
1811static void __kprobes kill_kprobe(struct kprobe *p)
1812{
1813	struct kprobe *kp;
1814
1815	p->flags |= KPROBE_FLAG_GONE;
1816	if (kprobe_aggrprobe(p)) {
1817		/*
1818		 * If this is an aggr_kprobe, we have to list all the
1819		 * chained probes and mark them GONE.
1820		 */
1821		list_for_each_entry_rcu(kp, &p->list, list)
1822			kp->flags |= KPROBE_FLAG_GONE;
1823		p->post_handler = NULL;
1824		p->break_handler = NULL;
1825		kill_optimized_kprobe(p);
1826	}
1827	/*
1828	 * Here, we can remove insn_slot safely, because no thread calls
1829	 * the original probed function (which will be freed soon) any more.
1830	 */
1831	arch_remove_kprobe(p);
1832}
1833
1834/* Disable one kprobe */
1835int __kprobes disable_kprobe(struct kprobe *kp)
1836{
1837	int ret = 0;
1838
1839	mutex_lock(&kprobe_mutex);
1840
1841	/* Disable this kprobe */
1842	if (__disable_kprobe(kp) == NULL)
1843		ret = -EINVAL;
1844
1845	mutex_unlock(&kprobe_mutex);
1846	return ret;
1847}
1848EXPORT_SYMBOL_GPL(disable_kprobe);
1849
1850/* Enable one kprobe */
1851int __kprobes enable_kprobe(struct kprobe *kp)
1852{
1853	int ret = 0;
1854	struct kprobe *p;
1855
1856	mutex_lock(&kprobe_mutex);
1857
1858	/* Check whether specified probe is valid. */
1859	p = __get_valid_kprobe(kp);
1860	if (unlikely(p == NULL)) {
1861		ret = -EINVAL;
1862		goto out;
1863	}
1864
1865	if (kprobe_gone(kp)) {
1866		/* This kprobe has gone, we couldn't enable it. */
1867		ret = -EINVAL;
1868		goto out;
1869	}
1870
1871	if (p != kp)
1872		kp->flags &= ~KPROBE_FLAG_DISABLED;
1873
1874	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1875		p->flags &= ~KPROBE_FLAG_DISABLED;
1876		arm_kprobe(p);
1877	}
1878out:
1879	mutex_unlock(&kprobe_mutex);
1880	return ret;
1881}
1882EXPORT_SYMBOL_GPL(enable_kprobe);
1883
1884void __kprobes dump_kprobe(struct kprobe *kp)
1885{
1886	printk(KERN_WARNING "Dumping kprobe:\n");
1887	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1888	       kp->symbol_name, kp->addr, kp->offset);
1889}
1890
1891/* Module notifier call back, checking kprobes on the module */
1892static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1893					     unsigned long val, void *data)
1894{
1895	struct module *mod = data;
1896	struct hlist_head *head;
1897	struct hlist_node *node;
1898	struct kprobe *p;
1899	unsigned int i;
1900	int checkcore = (val == MODULE_STATE_GOING);
1901
1902	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1903		return NOTIFY_DONE;
1904
1905	/*
1906	 * When MODULE_STATE_GOING was notified, both of module .text and
1907	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1908	 * notified, only .init.text section would be freed. We need to
1909	 * disable kprobes which have been inserted in the sections.
1910	 */
1911	mutex_lock(&kprobe_mutex);
1912	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1913		head = &kprobe_table[i];
1914		hlist_for_each_entry_rcu(p, node, head, hlist)
1915			if (within_module_init((unsigned long)p->addr, mod) ||
1916			    (checkcore &&
1917			     within_module_core((unsigned long)p->addr, mod))) {
1918				/*
1919				 * The vaddr this probe is installed will soon
1920				 * be vfreed buy not synced to disk. Hence,
1921				 * disarming the breakpoint isn't needed.
1922				 */
1923				kill_kprobe(p);
1924			}
1925	}
1926	mutex_unlock(&kprobe_mutex);
1927	return NOTIFY_DONE;
1928}
1929
1930static struct notifier_block kprobe_module_nb = {
1931	.notifier_call = kprobes_module_callback,
1932	.priority = 0
1933};
1934
1935static int __init init_kprobes(void)
1936{
1937	int i, err = 0;
1938	unsigned long offset = 0, size = 0;
1939	char *modname, namebuf[128];
1940	const char *symbol_name;
1941	void *addr;
1942	struct kprobe_blackpoint *kb;
1943
1944	/* FIXME allocate the probe table, currently defined statically */
1945	/* initialize all list heads */
1946	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1947		INIT_HLIST_HEAD(&kprobe_table[i]);
1948		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1949		spin_lock_init(&(kretprobe_table_locks[i].lock));
1950	}
1951
1952	/*
1953	 * Lookup and populate the kprobe_blacklist.
1954	 *
1955	 * Unlike the kretprobe blacklist, we'll need to determine
1956	 * the range of addresses that belong to the said functions,
1957	 * since a kprobe need not necessarily be at the beginning
1958	 * of a function.
1959	 */
1960	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1961		kprobe_lookup_name(kb->name, addr);
1962		if (!addr)
1963			continue;
1964
1965		kb->start_addr = (unsigned long)addr;
1966		symbol_name = kallsyms_lookup(kb->start_addr,
1967				&size, &offset, &modname, namebuf);
1968		if (!symbol_name)
1969			kb->range = 0;
1970		else
1971			kb->range = size;
1972	}
1973
1974	if (kretprobe_blacklist_size) {
1975		/* lookup the function address from its name */
1976		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977			kprobe_lookup_name(kretprobe_blacklist[i].name,
1978					   kretprobe_blacklist[i].addr);
1979			if (!kretprobe_blacklist[i].addr)
1980				printk("kretprobe: lookup failed: %s\n",
1981				       kretprobe_blacklist[i].name);
1982		}
1983	}
1984
1985#if defined(CONFIG_OPTPROBES)
1986#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1987	/* Init kprobe_optinsn_slots */
1988	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1989#endif
1990	/* By default, kprobes can be optimized */
1991	kprobes_allow_optimization = true;
1992#endif
1993
1994	/* By default, kprobes are armed */
1995	kprobes_all_disarmed = false;
1996
1997	err = arch_init_kprobes();
1998	if (!err)
1999		err = register_die_notifier(&kprobe_exceptions_nb);
2000	if (!err)
2001		err = register_module_notifier(&kprobe_module_nb);
2002
2003	kprobes_initialized = (err == 0);
2004
2005	if (!err)
2006		init_test_probes();
2007	return err;
2008}
2009
2010#ifdef CONFIG_DEBUG_FS
2011static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2012		const char *sym, int offset, char *modname, struct kprobe *pp)
2013{
2014	char *kprobe_type;
2015
2016	if (p->pre_handler == pre_handler_kretprobe)
2017		kprobe_type = "r";
2018	else if (p->pre_handler == setjmp_pre_handler)
2019		kprobe_type = "j";
2020	else
2021		kprobe_type = "k";
2022
2023	if (sym)
2024		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2025			p->addr, kprobe_type, sym, offset,
2026			(modname ? modname : " "));
2027	else
2028		seq_printf(pi, "%p  %s  %p ",
2029			p->addr, kprobe_type, p->addr);
2030
2031	if (!pp)
2032		pp = p;
2033	seq_printf(pi, "%s%s%s\n",
2034		(kprobe_gone(p) ? "[GONE]" : ""),
2035		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2036		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
2037}
2038
2039static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2040{
2041	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2042}
2043
2044static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2045{
2046	(*pos)++;
2047	if (*pos >= KPROBE_TABLE_SIZE)
2048		return NULL;
2049	return pos;
2050}
2051
2052static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2053{
2054	/* Nothing to do */
2055}
2056
2057static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2058{
2059	struct hlist_head *head;
2060	struct hlist_node *node;
2061	struct kprobe *p, *kp;
2062	const char *sym = NULL;
2063	unsigned int i = *(loff_t *) v;
2064	unsigned long offset = 0;
2065	char *modname, namebuf[128];
2066
2067	head = &kprobe_table[i];
2068	preempt_disable();
2069	hlist_for_each_entry_rcu(p, node, head, hlist) {
2070		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2071					&offset, &modname, namebuf);
2072		if (kprobe_aggrprobe(p)) {
2073			list_for_each_entry_rcu(kp, &p->list, list)
2074				report_probe(pi, kp, sym, offset, modname, p);
2075		} else
2076			report_probe(pi, p, sym, offset, modname, NULL);
2077	}
2078	preempt_enable();
2079	return 0;
2080}
2081
2082static const struct seq_operations kprobes_seq_ops = {
2083	.start = kprobe_seq_start,
2084	.next  = kprobe_seq_next,
2085	.stop  = kprobe_seq_stop,
2086	.show  = show_kprobe_addr
2087};
2088
2089static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2090{
2091	return seq_open(filp, &kprobes_seq_ops);
2092}
2093
2094static const struct file_operations debugfs_kprobes_operations = {
2095	.open           = kprobes_open,
2096	.read           = seq_read,
2097	.llseek         = seq_lseek,
2098	.release        = seq_release,
2099};
2100
2101static void __kprobes arm_all_kprobes(void)
2102{
2103	struct hlist_head *head;
2104	struct hlist_node *node;
2105	struct kprobe *p;
2106	unsigned int i;
2107
2108	mutex_lock(&kprobe_mutex);
2109
2110	/* If kprobes are armed, just return */
2111	if (!kprobes_all_disarmed)
2112		goto already_enabled;
2113
2114	/* Arming kprobes doesn't optimize kprobe itself */
2115	mutex_lock(&text_mutex);
2116	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2117		head = &kprobe_table[i];
2118		hlist_for_each_entry_rcu(p, node, head, hlist)
2119			if (!kprobe_disabled(p))
2120				__arm_kprobe(p);
2121	}
2122	mutex_unlock(&text_mutex);
2123
2124	kprobes_all_disarmed = false;
2125	printk(KERN_INFO "Kprobes globally enabled\n");
2126
2127already_enabled:
2128	mutex_unlock(&kprobe_mutex);
2129	return;
2130}
2131
2132static void __kprobes disarm_all_kprobes(void)
2133{
2134	struct hlist_head *head;
2135	struct hlist_node *node;
2136	struct kprobe *p;
2137	unsigned int i;
2138
2139	mutex_lock(&kprobe_mutex);
2140
2141	/* If kprobes are already disarmed, just return */
2142	if (kprobes_all_disarmed) {
2143		mutex_unlock(&kprobe_mutex);
2144		return;
2145	}
2146
2147	kprobes_all_disarmed = true;
2148	printk(KERN_INFO "Kprobes globally disabled\n");
2149
2150	mutex_lock(&text_mutex);
2151	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2152		head = &kprobe_table[i];
2153		hlist_for_each_entry_rcu(p, node, head, hlist) {
2154			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2155				__disarm_kprobe(p, false);
2156		}
2157	}
2158	mutex_unlock(&text_mutex);
2159	mutex_unlock(&kprobe_mutex);
2160
2161	/* Wait for disarming all kprobes by optimizer */
2162	wait_for_kprobe_optimizer();
2163}
2164
2165/*
2166 * XXX: The debugfs bool file interface doesn't allow for callbacks
2167 * when the bool state is switched. We can reuse that facility when
2168 * available
2169 */
2170static ssize_t read_enabled_file_bool(struct file *file,
2171	       char __user *user_buf, size_t count, loff_t *ppos)
2172{
2173	char buf[3];
2174
2175	if (!kprobes_all_disarmed)
2176		buf[0] = '1';
2177	else
2178		buf[0] = '0';
2179	buf[1] = '\n';
2180	buf[2] = 0x00;
2181	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2182}
2183
2184static ssize_t write_enabled_file_bool(struct file *file,
2185	       const char __user *user_buf, size_t count, loff_t *ppos)
2186{
2187	char buf[32];
2188	int buf_size;
2189
2190	buf_size = min(count, (sizeof(buf)-1));
2191	if (copy_from_user(buf, user_buf, buf_size))
2192		return -EFAULT;
2193
2194	switch (buf[0]) {
2195	case 'y':
2196	case 'Y':
2197	case '1':
2198		arm_all_kprobes();
2199		break;
2200	case 'n':
2201	case 'N':
2202	case '0':
2203		disarm_all_kprobes();
2204		break;
2205	}
2206
2207	return count;
2208}
2209
2210static const struct file_operations fops_kp = {
2211	.read =         read_enabled_file_bool,
2212	.write =        write_enabled_file_bool,
2213	.llseek =	default_llseek,
2214};
2215
2216static int __kprobes debugfs_kprobe_init(void)
2217{
2218	struct dentry *dir, *file;
2219	unsigned int value = 1;
2220
2221	dir = debugfs_create_dir("kprobes", NULL);
2222	if (!dir)
2223		return -ENOMEM;
2224
2225	file = debugfs_create_file("list", 0444, dir, NULL,
2226				&debugfs_kprobes_operations);
2227	if (!file) {
2228		debugfs_remove(dir);
2229		return -ENOMEM;
2230	}
2231
2232	file = debugfs_create_file("enabled", 0600, dir,
2233					&value, &fops_kp);
2234	if (!file) {
2235		debugfs_remove(dir);
2236		return -ENOMEM;
2237	}
2238
2239	return 0;
2240}
2241
2242late_initcall(debugfs_kprobe_init);
2243#endif /* CONFIG_DEBUG_FS */
2244
2245module_init(init_kprobes);
2246
2247/* defined in arch/.../kernel/kprobes.c */
2248EXPORT_SYMBOL_GPL(jprobe_return);
2249