core.c revision 1292531f6f27af909e713671dd9cc3bcab8114b7
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147	NULL
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static ssize_t
197sched_feat_write(struct file *filp, const char __user *ubuf,
198		size_t cnt, loff_t *ppos)
199{
200	char buf[64];
201	char *cmp;
202	int neg = 0;
203	int i;
204
205	if (cnt > 63)
206		cnt = 63;
207
208	if (copy_from_user(&buf, ubuf, cnt))
209		return -EFAULT;
210
211	buf[cnt] = 0;
212	cmp = strstrip(buf);
213
214	if (strncmp(cmp, "NO_", 3) == 0) {
215		neg = 1;
216		cmp += 3;
217	}
218
219	for (i = 0; i < __SCHED_FEAT_NR; i++) {
220		if (strcmp(cmp, sched_feat_names[i]) == 0) {
221			if (neg) {
222				sysctl_sched_features &= ~(1UL << i);
223				sched_feat_disable(i);
224			} else {
225				sysctl_sched_features |= (1UL << i);
226				sched_feat_enable(i);
227			}
228			break;
229		}
230	}
231
232	if (i == __SCHED_FEAT_NR)
233		return -EINVAL;
234
235	*ppos += cnt;
236
237	return cnt;
238}
239
240static int sched_feat_open(struct inode *inode, struct file *filp)
241{
242	return single_open(filp, sched_feat_show, NULL);
243}
244
245static const struct file_operations sched_feat_fops = {
246	.open		= sched_feat_open,
247	.write		= sched_feat_write,
248	.read		= seq_read,
249	.llseek		= seq_lseek,
250	.release	= single_release,
251};
252
253static __init int sched_init_debug(void)
254{
255	debugfs_create_file("sched_features", 0644, NULL, NULL,
256			&sched_feat_fops);
257
258	return 0;
259}
260late_initcall(sched_init_debug);
261#endif /* CONFIG_SCHED_DEBUG */
262
263/*
264 * Number of tasks to iterate in a single balance run.
265 * Limited because this is done with IRQs disabled.
266 */
267const_debug unsigned int sysctl_sched_nr_migrate = 32;
268
269/*
270 * period over which we average the RT time consumption, measured
271 * in ms.
272 *
273 * default: 1s
274 */
275const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
276
277/*
278 * period over which we measure -rt task cpu usage in us.
279 * default: 1s
280 */
281unsigned int sysctl_sched_rt_period = 1000000;
282
283__read_mostly int scheduler_running;
284
285/*
286 * part of the period that we allow rt tasks to run in us.
287 * default: 0.95s
288 */
289int sysctl_sched_rt_runtime = 950000;
290
291
292
293/*
294 * __task_rq_lock - lock the rq @p resides on.
295 */
296static inline struct rq *__task_rq_lock(struct task_struct *p)
297	__acquires(rq->lock)
298{
299	struct rq *rq;
300
301	lockdep_assert_held(&p->pi_lock);
302
303	for (;;) {
304		rq = task_rq(p);
305		raw_spin_lock(&rq->lock);
306		if (likely(rq == task_rq(p)))
307			return rq;
308		raw_spin_unlock(&rq->lock);
309	}
310}
311
312/*
313 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
314 */
315static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
316	__acquires(p->pi_lock)
317	__acquires(rq->lock)
318{
319	struct rq *rq;
320
321	for (;;) {
322		raw_spin_lock_irqsave(&p->pi_lock, *flags);
323		rq = task_rq(p);
324		raw_spin_lock(&rq->lock);
325		if (likely(rq == task_rq(p)))
326			return rq;
327		raw_spin_unlock(&rq->lock);
328		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
329	}
330}
331
332static void __task_rq_unlock(struct rq *rq)
333	__releases(rq->lock)
334{
335	raw_spin_unlock(&rq->lock);
336}
337
338static inline void
339task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
340	__releases(rq->lock)
341	__releases(p->pi_lock)
342{
343	raw_spin_unlock(&rq->lock);
344	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
345}
346
347/*
348 * this_rq_lock - lock this runqueue and disable interrupts.
349 */
350static struct rq *this_rq_lock(void)
351	__acquires(rq->lock)
352{
353	struct rq *rq;
354
355	local_irq_disable();
356	rq = this_rq();
357	raw_spin_lock(&rq->lock);
358
359	return rq;
360}
361
362#ifdef CONFIG_SCHED_HRTICK
363/*
364 * Use HR-timers to deliver accurate preemption points.
365 *
366 * Its all a bit involved since we cannot program an hrt while holding the
367 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
368 * reschedule event.
369 *
370 * When we get rescheduled we reprogram the hrtick_timer outside of the
371 * rq->lock.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399/*
400 * called from hardirq (IPI) context
401 */
402static void __hrtick_start(void *arg)
403{
404	struct rq *rq = arg;
405
406	raw_spin_lock(&rq->lock);
407	hrtimer_restart(&rq->hrtick_timer);
408	rq->hrtick_csd_pending = 0;
409	raw_spin_unlock(&rq->lock);
410}
411
412/*
413 * Called to set the hrtick timer state.
414 *
415 * called with rq->lock held and irqs disabled
416 */
417void hrtick_start(struct rq *rq, u64 delay)
418{
419	struct hrtimer *timer = &rq->hrtick_timer;
420	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
421
422	hrtimer_set_expires(timer, time);
423
424	if (rq == this_rq()) {
425		hrtimer_restart(timer);
426	} else if (!rq->hrtick_csd_pending) {
427		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
428		rq->hrtick_csd_pending = 1;
429	}
430}
431
432static int
433hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
434{
435	int cpu = (int)(long)hcpu;
436
437	switch (action) {
438	case CPU_UP_CANCELED:
439	case CPU_UP_CANCELED_FROZEN:
440	case CPU_DOWN_PREPARE:
441	case CPU_DOWN_PREPARE_FROZEN:
442	case CPU_DEAD:
443	case CPU_DEAD_FROZEN:
444		hrtick_clear(cpu_rq(cpu));
445		return NOTIFY_OK;
446	}
447
448	return NOTIFY_DONE;
449}
450
451static __init void init_hrtick(void)
452{
453	hotcpu_notifier(hotplug_hrtick, 0);
454}
455#else
456/*
457 * Called to set the hrtick timer state.
458 *
459 * called with rq->lock held and irqs disabled
460 */
461void hrtick_start(struct rq *rq, u64 delay)
462{
463	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
464			HRTIMER_MODE_REL_PINNED, 0);
465}
466
467static inline void init_hrtick(void)
468{
469}
470#endif /* CONFIG_SMP */
471
472static void init_rq_hrtick(struct rq *rq)
473{
474#ifdef CONFIG_SMP
475	rq->hrtick_csd_pending = 0;
476
477	rq->hrtick_csd.flags = 0;
478	rq->hrtick_csd.func = __hrtick_start;
479	rq->hrtick_csd.info = rq;
480#endif
481
482	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
483	rq->hrtick_timer.function = hrtick;
484}
485#else	/* CONFIG_SCHED_HRTICK */
486static inline void hrtick_clear(struct rq *rq)
487{
488}
489
490static inline void init_rq_hrtick(struct rq *rq)
491{
492}
493
494static inline void init_hrtick(void)
495{
496}
497#endif	/* CONFIG_SCHED_HRTICK */
498
499/*
500 * resched_task - mark a task 'to be rescheduled now'.
501 *
502 * On UP this means the setting of the need_resched flag, on SMP it
503 * might also involve a cross-CPU call to trigger the scheduler on
504 * the target CPU.
505 */
506#ifdef CONFIG_SMP
507
508#ifndef tsk_is_polling
509#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
510#endif
511
512void resched_task(struct task_struct *p)
513{
514	int cpu;
515
516	assert_raw_spin_locked(&task_rq(p)->lock);
517
518	if (test_tsk_need_resched(p))
519		return;
520
521	set_tsk_need_resched(p);
522
523	cpu = task_cpu(p);
524	if (cpu == smp_processor_id())
525		return;
526
527	/* NEED_RESCHED must be visible before we test polling */
528	smp_mb();
529	if (!tsk_is_polling(p))
530		smp_send_reschedule(cpu);
531}
532
533void resched_cpu(int cpu)
534{
535	struct rq *rq = cpu_rq(cpu);
536	unsigned long flags;
537
538	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
539		return;
540	resched_task(cpu_curr(cpu));
541	raw_spin_unlock_irqrestore(&rq->lock, flags);
542}
543
544#ifdef CONFIG_NO_HZ
545/*
546 * In the semi idle case, use the nearest busy cpu for migrating timers
547 * from an idle cpu.  This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle cpu will add more delays to the timers than intended
551 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
552 */
553int get_nohz_timer_target(void)
554{
555	int cpu = smp_processor_id();
556	int i;
557	struct sched_domain *sd;
558
559	rcu_read_lock();
560	for_each_domain(cpu, sd) {
561		for_each_cpu(i, sched_domain_span(sd)) {
562			if (!idle_cpu(i)) {
563				cpu = i;
564				goto unlock;
565			}
566		}
567	}
568unlock:
569	rcu_read_unlock();
570	return cpu;
571}
572/*
573 * When add_timer_on() enqueues a timer into the timer wheel of an
574 * idle CPU then this timer might expire before the next timer event
575 * which is scheduled to wake up that CPU. In case of a completely
576 * idle system the next event might even be infinite time into the
577 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
578 * leaves the inner idle loop so the newly added timer is taken into
579 * account when the CPU goes back to idle and evaluates the timer
580 * wheel for the next timer event.
581 */
582void wake_up_idle_cpu(int cpu)
583{
584	struct rq *rq = cpu_rq(cpu);
585
586	if (cpu == smp_processor_id())
587		return;
588
589	/*
590	 * This is safe, as this function is called with the timer
591	 * wheel base lock of (cpu) held. When the CPU is on the way
592	 * to idle and has not yet set rq->curr to idle then it will
593	 * be serialized on the timer wheel base lock and take the new
594	 * timer into account automatically.
595	 */
596	if (rq->curr != rq->idle)
597		return;
598
599	/*
600	 * We can set TIF_RESCHED on the idle task of the other CPU
601	 * lockless. The worst case is that the other CPU runs the
602	 * idle task through an additional NOOP schedule()
603	 */
604	set_tsk_need_resched(rq->idle);
605
606	/* NEED_RESCHED must be visible before we test polling */
607	smp_mb();
608	if (!tsk_is_polling(rq->idle))
609		smp_send_reschedule(cpu);
610}
611
612static inline bool got_nohz_idle_kick(void)
613{
614	int cpu = smp_processor_id();
615	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
616}
617
618#else /* CONFIG_NO_HZ */
619
620static inline bool got_nohz_idle_kick(void)
621{
622	return false;
623}
624
625#endif /* CONFIG_NO_HZ */
626
627void sched_avg_update(struct rq *rq)
628{
629	s64 period = sched_avg_period();
630
631	while ((s64)(rq->clock - rq->age_stamp) > period) {
632		/*
633		 * Inline assembly required to prevent the compiler
634		 * optimising this loop into a divmod call.
635		 * See __iter_div_u64_rem() for another example of this.
636		 */
637		asm("" : "+rm" (rq->age_stamp));
638		rq->age_stamp += period;
639		rq->rt_avg /= 2;
640	}
641}
642
643#else /* !CONFIG_SMP */
644void resched_task(struct task_struct *p)
645{
646	assert_raw_spin_locked(&task_rq(p)->lock);
647	set_tsk_need_resched(p);
648}
649#endif /* CONFIG_SMP */
650
651#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
652			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
653/*
654 * Iterate task_group tree rooted at *from, calling @down when first entering a
655 * node and @up when leaving it for the final time.
656 *
657 * Caller must hold rcu_lock or sufficient equivalent.
658 */
659int walk_tg_tree_from(struct task_group *from,
660			     tg_visitor down, tg_visitor up, void *data)
661{
662	struct task_group *parent, *child;
663	int ret;
664
665	parent = from;
666
667down:
668	ret = (*down)(parent, data);
669	if (ret)
670		goto out;
671	list_for_each_entry_rcu(child, &parent->children, siblings) {
672		parent = child;
673		goto down;
674
675up:
676		continue;
677	}
678	ret = (*up)(parent, data);
679	if (ret || parent == from)
680		goto out;
681
682	child = parent;
683	parent = parent->parent;
684	if (parent)
685		goto up;
686out:
687	return ret;
688}
689
690int tg_nop(struct task_group *tg, void *data)
691{
692	return 0;
693}
694#endif
695
696static void set_load_weight(struct task_struct *p)
697{
698	int prio = p->static_prio - MAX_RT_PRIO;
699	struct load_weight *load = &p->se.load;
700
701	/*
702	 * SCHED_IDLE tasks get minimal weight:
703	 */
704	if (p->policy == SCHED_IDLE) {
705		load->weight = scale_load(WEIGHT_IDLEPRIO);
706		load->inv_weight = WMULT_IDLEPRIO;
707		return;
708	}
709
710	load->weight = scale_load(prio_to_weight[prio]);
711	load->inv_weight = prio_to_wmult[prio];
712}
713
714static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715{
716	update_rq_clock(rq);
717	sched_info_queued(p);
718	p->sched_class->enqueue_task(rq, p, flags);
719}
720
721static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722{
723	update_rq_clock(rq);
724	sched_info_dequeued(p);
725	p->sched_class->dequeue_task(rq, p, flags);
726}
727
728void activate_task(struct rq *rq, struct task_struct *p, int flags)
729{
730	if (task_contributes_to_load(p))
731		rq->nr_uninterruptible--;
732
733	enqueue_task(rq, p, flags);
734}
735
736void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737{
738	if (task_contributes_to_load(p))
739		rq->nr_uninterruptible++;
740
741	dequeue_task(rq, p, flags);
742}
743
744#ifdef CONFIG_IRQ_TIME_ACCOUNTING
745
746/*
747 * There are no locks covering percpu hardirq/softirq time.
748 * They are only modified in account_system_vtime, on corresponding CPU
749 * with interrupts disabled. So, writes are safe.
750 * They are read and saved off onto struct rq in update_rq_clock().
751 * This may result in other CPU reading this CPU's irq time and can
752 * race with irq/account_system_vtime on this CPU. We would either get old
753 * or new value with a side effect of accounting a slice of irq time to wrong
754 * task when irq is in progress while we read rq->clock. That is a worthy
755 * compromise in place of having locks on each irq in account_system_time.
756 */
757static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758static DEFINE_PER_CPU(u64, cpu_softirq_time);
759
760static DEFINE_PER_CPU(u64, irq_start_time);
761static int sched_clock_irqtime;
762
763void enable_sched_clock_irqtime(void)
764{
765	sched_clock_irqtime = 1;
766}
767
768void disable_sched_clock_irqtime(void)
769{
770	sched_clock_irqtime = 0;
771}
772
773#ifndef CONFIG_64BIT
774static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775
776static inline void irq_time_write_begin(void)
777{
778	__this_cpu_inc(irq_time_seq.sequence);
779	smp_wmb();
780}
781
782static inline void irq_time_write_end(void)
783{
784	smp_wmb();
785	__this_cpu_inc(irq_time_seq.sequence);
786}
787
788static inline u64 irq_time_read(int cpu)
789{
790	u64 irq_time;
791	unsigned seq;
792
793	do {
794		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795		irq_time = per_cpu(cpu_softirq_time, cpu) +
796			   per_cpu(cpu_hardirq_time, cpu);
797	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798
799	return irq_time;
800}
801#else /* CONFIG_64BIT */
802static inline void irq_time_write_begin(void)
803{
804}
805
806static inline void irq_time_write_end(void)
807{
808}
809
810static inline u64 irq_time_read(int cpu)
811{
812	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813}
814#endif /* CONFIG_64BIT */
815
816/*
817 * Called before incrementing preempt_count on {soft,}irq_enter
818 * and before decrementing preempt_count on {soft,}irq_exit.
819 */
820void account_system_vtime(struct task_struct *curr)
821{
822	unsigned long flags;
823	s64 delta;
824	int cpu;
825
826	if (!sched_clock_irqtime)
827		return;
828
829	local_irq_save(flags);
830
831	cpu = smp_processor_id();
832	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833	__this_cpu_add(irq_start_time, delta);
834
835	irq_time_write_begin();
836	/*
837	 * We do not account for softirq time from ksoftirqd here.
838	 * We want to continue accounting softirq time to ksoftirqd thread
839	 * in that case, so as not to confuse scheduler with a special task
840	 * that do not consume any time, but still wants to run.
841	 */
842	if (hardirq_count())
843		__this_cpu_add(cpu_hardirq_time, delta);
844	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
845		__this_cpu_add(cpu_softirq_time, delta);
846
847	irq_time_write_end();
848	local_irq_restore(flags);
849}
850EXPORT_SYMBOL_GPL(account_system_vtime);
851
852#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853
854#ifdef CONFIG_PARAVIRT
855static inline u64 steal_ticks(u64 steal)
856{
857	if (unlikely(steal > NSEC_PER_SEC))
858		return div_u64(steal, TICK_NSEC);
859
860	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861}
862#endif
863
864static void update_rq_clock_task(struct rq *rq, s64 delta)
865{
866/*
867 * In theory, the compile should just see 0 here, and optimize out the call
868 * to sched_rt_avg_update. But I don't trust it...
869 */
870#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871	s64 steal = 0, irq_delta = 0;
872#endif
873#ifdef CONFIG_IRQ_TIME_ACCOUNTING
874	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
875
876	/*
877	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878	 * this case when a previous update_rq_clock() happened inside a
879	 * {soft,}irq region.
880	 *
881	 * When this happens, we stop ->clock_task and only update the
882	 * prev_irq_time stamp to account for the part that fit, so that a next
883	 * update will consume the rest. This ensures ->clock_task is
884	 * monotonic.
885	 *
886	 * It does however cause some slight miss-attribution of {soft,}irq
887	 * time, a more accurate solution would be to update the irq_time using
888	 * the current rq->clock timestamp, except that would require using
889	 * atomic ops.
890	 */
891	if (irq_delta > delta)
892		irq_delta = delta;
893
894	rq->prev_irq_time += irq_delta;
895	delta -= irq_delta;
896#endif
897#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898	if (static_key_false((&paravirt_steal_rq_enabled))) {
899		u64 st;
900
901		steal = paravirt_steal_clock(cpu_of(rq));
902		steal -= rq->prev_steal_time_rq;
903
904		if (unlikely(steal > delta))
905			steal = delta;
906
907		st = steal_ticks(steal);
908		steal = st * TICK_NSEC;
909
910		rq->prev_steal_time_rq += steal;
911
912		delta -= steal;
913	}
914#endif
915
916	rq->clock_task += delta;
917
918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920		sched_rt_avg_update(rq, irq_delta + steal);
921#endif
922}
923
924#ifdef CONFIG_IRQ_TIME_ACCOUNTING
925static int irqtime_account_hi_update(void)
926{
927	u64 *cpustat = kcpustat_this_cpu->cpustat;
928	unsigned long flags;
929	u64 latest_ns;
930	int ret = 0;
931
932	local_irq_save(flags);
933	latest_ns = this_cpu_read(cpu_hardirq_time);
934	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
935		ret = 1;
936	local_irq_restore(flags);
937	return ret;
938}
939
940static int irqtime_account_si_update(void)
941{
942	u64 *cpustat = kcpustat_this_cpu->cpustat;
943	unsigned long flags;
944	u64 latest_ns;
945	int ret = 0;
946
947	local_irq_save(flags);
948	latest_ns = this_cpu_read(cpu_softirq_time);
949	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
950		ret = 1;
951	local_irq_restore(flags);
952	return ret;
953}
954
955#else /* CONFIG_IRQ_TIME_ACCOUNTING */
956
957#define sched_clock_irqtime	(0)
958
959#endif
960
961void sched_set_stop_task(int cpu, struct task_struct *stop)
962{
963	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964	struct task_struct *old_stop = cpu_rq(cpu)->stop;
965
966	if (stop) {
967		/*
968		 * Make it appear like a SCHED_FIFO task, its something
969		 * userspace knows about and won't get confused about.
970		 *
971		 * Also, it will make PI more or less work without too
972		 * much confusion -- but then, stop work should not
973		 * rely on PI working anyway.
974		 */
975		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976
977		stop->sched_class = &stop_sched_class;
978	}
979
980	cpu_rq(cpu)->stop = stop;
981
982	if (old_stop) {
983		/*
984		 * Reset it back to a normal scheduling class so that
985		 * it can die in pieces.
986		 */
987		old_stop->sched_class = &rt_sched_class;
988	}
989}
990
991/*
992 * __normal_prio - return the priority that is based on the static prio
993 */
994static inline int __normal_prio(struct task_struct *p)
995{
996	return p->static_prio;
997}
998
999/*
1000 * Calculate the expected normal priority: i.e. priority
1001 * without taking RT-inheritance into account. Might be
1002 * boosted by interactivity modifiers. Changes upon fork,
1003 * setprio syscalls, and whenever the interactivity
1004 * estimator recalculates.
1005 */
1006static inline int normal_prio(struct task_struct *p)
1007{
1008	int prio;
1009
1010	if (task_has_rt_policy(p))
1011		prio = MAX_RT_PRIO-1 - p->rt_priority;
1012	else
1013		prio = __normal_prio(p);
1014	return prio;
1015}
1016
1017/*
1018 * Calculate the current priority, i.e. the priority
1019 * taken into account by the scheduler. This value might
1020 * be boosted by RT tasks, or might be boosted by
1021 * interactivity modifiers. Will be RT if the task got
1022 * RT-boosted. If not then it returns p->normal_prio.
1023 */
1024static int effective_prio(struct task_struct *p)
1025{
1026	p->normal_prio = normal_prio(p);
1027	/*
1028	 * If we are RT tasks or we were boosted to RT priority,
1029	 * keep the priority unchanged. Otherwise, update priority
1030	 * to the normal priority:
1031	 */
1032	if (!rt_prio(p->prio))
1033		return p->normal_prio;
1034	return p->prio;
1035}
1036
1037/**
1038 * task_curr - is this task currently executing on a CPU?
1039 * @p: the task in question.
1040 */
1041inline int task_curr(const struct task_struct *p)
1042{
1043	return cpu_curr(task_cpu(p)) == p;
1044}
1045
1046static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047				       const struct sched_class *prev_class,
1048				       int oldprio)
1049{
1050	if (prev_class != p->sched_class) {
1051		if (prev_class->switched_from)
1052			prev_class->switched_from(rq, p);
1053		p->sched_class->switched_to(rq, p);
1054	} else if (oldprio != p->prio)
1055		p->sched_class->prio_changed(rq, p, oldprio);
1056}
1057
1058void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059{
1060	const struct sched_class *class;
1061
1062	if (p->sched_class == rq->curr->sched_class) {
1063		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064	} else {
1065		for_each_class(class) {
1066			if (class == rq->curr->sched_class)
1067				break;
1068			if (class == p->sched_class) {
1069				resched_task(rq->curr);
1070				break;
1071			}
1072		}
1073	}
1074
1075	/*
1076	 * A queue event has occurred, and we're going to schedule.  In
1077	 * this case, we can save a useless back to back clock update.
1078	 */
1079	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1080		rq->skip_clock_update = 1;
1081}
1082
1083#ifdef CONFIG_SMP
1084void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085{
1086#ifdef CONFIG_SCHED_DEBUG
1087	/*
1088	 * We should never call set_task_cpu() on a blocked task,
1089	 * ttwu() will sort out the placement.
1090	 */
1091	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093
1094#ifdef CONFIG_LOCKDEP
1095	/*
1096	 * The caller should hold either p->pi_lock or rq->lock, when changing
1097	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098	 *
1099	 * sched_move_task() holds both and thus holding either pins the cgroup,
1100	 * see set_task_rq().
1101	 *
1102	 * Furthermore, all task_rq users should acquire both locks, see
1103	 * task_rq_lock().
1104	 */
1105	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106				      lockdep_is_held(&task_rq(p)->lock)));
1107#endif
1108#endif
1109
1110	trace_sched_migrate_task(p, new_cpu);
1111
1112	if (task_cpu(p) != new_cpu) {
1113		p->se.nr_migrations++;
1114		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1115	}
1116
1117	__set_task_cpu(p, new_cpu);
1118}
1119
1120struct migration_arg {
1121	struct task_struct *task;
1122	int dest_cpu;
1123};
1124
1125static int migration_cpu_stop(void *data);
1126
1127/*
1128 * wait_task_inactive - wait for a thread to unschedule.
1129 *
1130 * If @match_state is nonzero, it's the @p->state value just checked and
1131 * not expected to change.  If it changes, i.e. @p might have woken up,
1132 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1133 * we return a positive number (its total switch count).  If a second call
1134 * a short while later returns the same number, the caller can be sure that
1135 * @p has remained unscheduled the whole time.
1136 *
1137 * The caller must ensure that the task *will* unschedule sometime soon,
1138 * else this function might spin for a *long* time. This function can't
1139 * be called with interrupts off, or it may introduce deadlock with
1140 * smp_call_function() if an IPI is sent by the same process we are
1141 * waiting to become inactive.
1142 */
1143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144{
1145	unsigned long flags;
1146	int running, on_rq;
1147	unsigned long ncsw;
1148	struct rq *rq;
1149
1150	for (;;) {
1151		/*
1152		 * We do the initial early heuristics without holding
1153		 * any task-queue locks at all. We'll only try to get
1154		 * the runqueue lock when things look like they will
1155		 * work out!
1156		 */
1157		rq = task_rq(p);
1158
1159		/*
1160		 * If the task is actively running on another CPU
1161		 * still, just relax and busy-wait without holding
1162		 * any locks.
1163		 *
1164		 * NOTE! Since we don't hold any locks, it's not
1165		 * even sure that "rq" stays as the right runqueue!
1166		 * But we don't care, since "task_running()" will
1167		 * return false if the runqueue has changed and p
1168		 * is actually now running somewhere else!
1169		 */
1170		while (task_running(rq, p)) {
1171			if (match_state && unlikely(p->state != match_state))
1172				return 0;
1173			cpu_relax();
1174		}
1175
1176		/*
1177		 * Ok, time to look more closely! We need the rq
1178		 * lock now, to be *sure*. If we're wrong, we'll
1179		 * just go back and repeat.
1180		 */
1181		rq = task_rq_lock(p, &flags);
1182		trace_sched_wait_task(p);
1183		running = task_running(rq, p);
1184		on_rq = p->on_rq;
1185		ncsw = 0;
1186		if (!match_state || p->state == match_state)
1187			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1188		task_rq_unlock(rq, p, &flags);
1189
1190		/*
1191		 * If it changed from the expected state, bail out now.
1192		 */
1193		if (unlikely(!ncsw))
1194			break;
1195
1196		/*
1197		 * Was it really running after all now that we
1198		 * checked with the proper locks actually held?
1199		 *
1200		 * Oops. Go back and try again..
1201		 */
1202		if (unlikely(running)) {
1203			cpu_relax();
1204			continue;
1205		}
1206
1207		/*
1208		 * It's not enough that it's not actively running,
1209		 * it must be off the runqueue _entirely_, and not
1210		 * preempted!
1211		 *
1212		 * So if it was still runnable (but just not actively
1213		 * running right now), it's preempted, and we should
1214		 * yield - it could be a while.
1215		 */
1216		if (unlikely(on_rq)) {
1217			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218
1219			set_current_state(TASK_UNINTERRUPTIBLE);
1220			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1221			continue;
1222		}
1223
1224		/*
1225		 * Ahh, all good. It wasn't running, and it wasn't
1226		 * runnable, which means that it will never become
1227		 * running in the future either. We're all done!
1228		 */
1229		break;
1230	}
1231
1232	return ncsw;
1233}
1234
1235/***
1236 * kick_process - kick a running thread to enter/exit the kernel
1237 * @p: the to-be-kicked thread
1238 *
1239 * Cause a process which is running on another CPU to enter
1240 * kernel-mode, without any delay. (to get signals handled.)
1241 *
1242 * NOTE: this function doesn't have to take the runqueue lock,
1243 * because all it wants to ensure is that the remote task enters
1244 * the kernel. If the IPI races and the task has been migrated
1245 * to another CPU then no harm is done and the purpose has been
1246 * achieved as well.
1247 */
1248void kick_process(struct task_struct *p)
1249{
1250	int cpu;
1251
1252	preempt_disable();
1253	cpu = task_cpu(p);
1254	if ((cpu != smp_processor_id()) && task_curr(p))
1255		smp_send_reschedule(cpu);
1256	preempt_enable();
1257}
1258EXPORT_SYMBOL_GPL(kick_process);
1259#endif /* CONFIG_SMP */
1260
1261#ifdef CONFIG_SMP
1262/*
1263 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 */
1265static int select_fallback_rq(int cpu, struct task_struct *p)
1266{
1267	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268	enum { cpuset, possible, fail } state = cpuset;
1269	int dest_cpu;
1270
1271	/* Look for allowed, online CPU in same node. */
1272	for_each_cpu(dest_cpu, nodemask) {
1273		if (!cpu_online(dest_cpu))
1274			continue;
1275		if (!cpu_active(dest_cpu))
1276			continue;
1277		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1278			return dest_cpu;
1279	}
1280
1281	for (;;) {
1282		/* Any allowed, online CPU? */
1283		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1284			if (!cpu_online(dest_cpu))
1285				continue;
1286			if (!cpu_active(dest_cpu))
1287				continue;
1288			goto out;
1289		}
1290
1291		switch (state) {
1292		case cpuset:
1293			/* No more Mr. Nice Guy. */
1294			cpuset_cpus_allowed_fallback(p);
1295			state = possible;
1296			break;
1297
1298		case possible:
1299			do_set_cpus_allowed(p, cpu_possible_mask);
1300			state = fail;
1301			break;
1302
1303		case fail:
1304			BUG();
1305			break;
1306		}
1307	}
1308
1309out:
1310	if (state != cpuset) {
1311		/*
1312		 * Don't tell them about moving exiting tasks or
1313		 * kernel threads (both mm NULL), since they never
1314		 * leave kernel.
1315		 */
1316		if (p->mm && printk_ratelimit()) {
1317			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1318					task_pid_nr(p), p->comm, cpu);
1319		}
1320	}
1321
1322	return dest_cpu;
1323}
1324
1325/*
1326 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1327 */
1328static inline
1329int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1330{
1331	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1332
1333	/*
1334	 * In order not to call set_task_cpu() on a blocking task we need
1335	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1336	 * cpu.
1337	 *
1338	 * Since this is common to all placement strategies, this lives here.
1339	 *
1340	 * [ this allows ->select_task() to simply return task_cpu(p) and
1341	 *   not worry about this generic constraint ]
1342	 */
1343	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1344		     !cpu_online(cpu)))
1345		cpu = select_fallback_rq(task_cpu(p), p);
1346
1347	return cpu;
1348}
1349
1350static void update_avg(u64 *avg, u64 sample)
1351{
1352	s64 diff = sample - *avg;
1353	*avg += diff >> 3;
1354}
1355#endif
1356
1357static void
1358ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1359{
1360#ifdef CONFIG_SCHEDSTATS
1361	struct rq *rq = this_rq();
1362
1363#ifdef CONFIG_SMP
1364	int this_cpu = smp_processor_id();
1365
1366	if (cpu == this_cpu) {
1367		schedstat_inc(rq, ttwu_local);
1368		schedstat_inc(p, se.statistics.nr_wakeups_local);
1369	} else {
1370		struct sched_domain *sd;
1371
1372		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1373		rcu_read_lock();
1374		for_each_domain(this_cpu, sd) {
1375			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1376				schedstat_inc(sd, ttwu_wake_remote);
1377				break;
1378			}
1379		}
1380		rcu_read_unlock();
1381	}
1382
1383	if (wake_flags & WF_MIGRATED)
1384		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1385
1386#endif /* CONFIG_SMP */
1387
1388	schedstat_inc(rq, ttwu_count);
1389	schedstat_inc(p, se.statistics.nr_wakeups);
1390
1391	if (wake_flags & WF_SYNC)
1392		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1393
1394#endif /* CONFIG_SCHEDSTATS */
1395}
1396
1397static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1398{
1399	activate_task(rq, p, en_flags);
1400	p->on_rq = 1;
1401
1402	/* if a worker is waking up, notify workqueue */
1403	if (p->flags & PF_WQ_WORKER)
1404		wq_worker_waking_up(p, cpu_of(rq));
1405}
1406
1407/*
1408 * Mark the task runnable and perform wakeup-preemption.
1409 */
1410static void
1411ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1412{
1413	trace_sched_wakeup(p, true);
1414	check_preempt_curr(rq, p, wake_flags);
1415
1416	p->state = TASK_RUNNING;
1417#ifdef CONFIG_SMP
1418	if (p->sched_class->task_woken)
1419		p->sched_class->task_woken(rq, p);
1420
1421	if (rq->idle_stamp) {
1422		u64 delta = rq->clock - rq->idle_stamp;
1423		u64 max = 2*sysctl_sched_migration_cost;
1424
1425		if (delta > max)
1426			rq->avg_idle = max;
1427		else
1428			update_avg(&rq->avg_idle, delta);
1429		rq->idle_stamp = 0;
1430	}
1431#endif
1432}
1433
1434static void
1435ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1436{
1437#ifdef CONFIG_SMP
1438	if (p->sched_contributes_to_load)
1439		rq->nr_uninterruptible--;
1440#endif
1441
1442	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1443	ttwu_do_wakeup(rq, p, wake_flags);
1444}
1445
1446/*
1447 * Called in case the task @p isn't fully descheduled from its runqueue,
1448 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1449 * since all we need to do is flip p->state to TASK_RUNNING, since
1450 * the task is still ->on_rq.
1451 */
1452static int ttwu_remote(struct task_struct *p, int wake_flags)
1453{
1454	struct rq *rq;
1455	int ret = 0;
1456
1457	rq = __task_rq_lock(p);
1458	if (p->on_rq) {
1459		ttwu_do_wakeup(rq, p, wake_flags);
1460		ret = 1;
1461	}
1462	__task_rq_unlock(rq);
1463
1464	return ret;
1465}
1466
1467#ifdef CONFIG_SMP
1468static void sched_ttwu_pending(void)
1469{
1470	struct rq *rq = this_rq();
1471	struct llist_node *llist = llist_del_all(&rq->wake_list);
1472	struct task_struct *p;
1473
1474	raw_spin_lock(&rq->lock);
1475
1476	while (llist) {
1477		p = llist_entry(llist, struct task_struct, wake_entry);
1478		llist = llist_next(llist);
1479		ttwu_do_activate(rq, p, 0);
1480	}
1481
1482	raw_spin_unlock(&rq->lock);
1483}
1484
1485void scheduler_ipi(void)
1486{
1487	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1488		return;
1489
1490	/*
1491	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1492	 * traditionally all their work was done from the interrupt return
1493	 * path. Now that we actually do some work, we need to make sure
1494	 * we do call them.
1495	 *
1496	 * Some archs already do call them, luckily irq_enter/exit nest
1497	 * properly.
1498	 *
1499	 * Arguably we should visit all archs and update all handlers,
1500	 * however a fair share of IPIs are still resched only so this would
1501	 * somewhat pessimize the simple resched case.
1502	 */
1503	irq_enter();
1504	sched_ttwu_pending();
1505
1506	/*
1507	 * Check if someone kicked us for doing the nohz idle load balance.
1508	 */
1509	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1510		this_rq()->idle_balance = 1;
1511		raise_softirq_irqoff(SCHED_SOFTIRQ);
1512	}
1513	irq_exit();
1514}
1515
1516static void ttwu_queue_remote(struct task_struct *p, int cpu)
1517{
1518	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1519		smp_send_reschedule(cpu);
1520}
1521
1522#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1523static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1524{
1525	struct rq *rq;
1526	int ret = 0;
1527
1528	rq = __task_rq_lock(p);
1529	if (p->on_cpu) {
1530		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1531		ttwu_do_wakeup(rq, p, wake_flags);
1532		ret = 1;
1533	}
1534	__task_rq_unlock(rq);
1535
1536	return ret;
1537
1538}
1539#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
1542{
1543	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549	struct rq *rq = cpu_rq(cpu);
1550
1551#if defined(CONFIG_SMP)
1552	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554		ttwu_queue_remote(p, cpu);
1555		return;
1556	}
1557#endif
1558
1559	raw_spin_lock(&rq->lock);
1560	ttwu_do_activate(rq, p, 0);
1561	raw_spin_unlock(&rq->lock);
1562}
1563
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Returns %true if @p was woken up, %false if it was already running
1577 * or @state didn't match @p's state.
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582	unsigned long flags;
1583	int cpu, success = 0;
1584
1585	smp_wmb();
1586	raw_spin_lock_irqsave(&p->pi_lock, flags);
1587	if (!(p->state & state))
1588		goto out;
1589
1590	success = 1; /* we're going to change ->state */
1591	cpu = task_cpu(p);
1592
1593	if (p->on_rq && ttwu_remote(p, wake_flags))
1594		goto stat;
1595
1596#ifdef CONFIG_SMP
1597	/*
1598	 * If the owning (remote) cpu is still in the middle of schedule() with
1599	 * this task as prev, wait until its done referencing the task.
1600	 */
1601	while (p->on_cpu) {
1602#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1603		/*
1604		 * In case the architecture enables interrupts in
1605		 * context_switch(), we cannot busy wait, since that
1606		 * would lead to deadlocks when an interrupt hits and
1607		 * tries to wake up @prev. So bail and do a complete
1608		 * remote wakeup.
1609		 */
1610		if (ttwu_activate_remote(p, wake_flags))
1611			goto stat;
1612#else
1613		cpu_relax();
1614#endif
1615	}
1616	/*
1617	 * Pairs with the smp_wmb() in finish_lock_switch().
1618	 */
1619	smp_rmb();
1620
1621	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1622	p->state = TASK_WAKING;
1623
1624	if (p->sched_class->task_waking)
1625		p->sched_class->task_waking(p);
1626
1627	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1628	if (task_cpu(p) != cpu) {
1629		wake_flags |= WF_MIGRATED;
1630		set_task_cpu(p, cpu);
1631	}
1632#endif /* CONFIG_SMP */
1633
1634	ttwu_queue(p, cpu);
1635stat:
1636	ttwu_stat(p, cpu, wake_flags);
1637out:
1638	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1639
1640	return success;
1641}
1642
1643/**
1644 * try_to_wake_up_local - try to wake up a local task with rq lock held
1645 * @p: the thread to be awakened
1646 *
1647 * Put @p on the run-queue if it's not already there. The caller must
1648 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1649 * the current task.
1650 */
1651static void try_to_wake_up_local(struct task_struct *p)
1652{
1653	struct rq *rq = task_rq(p);
1654
1655	BUG_ON(rq != this_rq());
1656	BUG_ON(p == current);
1657	lockdep_assert_held(&rq->lock);
1658
1659	if (!raw_spin_trylock(&p->pi_lock)) {
1660		raw_spin_unlock(&rq->lock);
1661		raw_spin_lock(&p->pi_lock);
1662		raw_spin_lock(&rq->lock);
1663	}
1664
1665	if (!(p->state & TASK_NORMAL))
1666		goto out;
1667
1668	if (!p->on_rq)
1669		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1670
1671	ttwu_do_wakeup(rq, p, 0);
1672	ttwu_stat(p, smp_processor_id(), 0);
1673out:
1674	raw_spin_unlock(&p->pi_lock);
1675}
1676
1677/**
1678 * wake_up_process - Wake up a specific process
1679 * @p: The process to be woken up.
1680 *
1681 * Attempt to wake up the nominated process and move it to the set of runnable
1682 * processes.  Returns 1 if the process was woken up, 0 if it was already
1683 * running.
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
1688int wake_up_process(struct task_struct *p)
1689{
1690	return try_to_wake_up(p, TASK_ALL, 0);
1691}
1692EXPORT_SYMBOL(wake_up_process);
1693
1694int wake_up_state(struct task_struct *p, unsigned int state)
1695{
1696	return try_to_wake_up(p, state, 0);
1697}
1698
1699/*
1700 * Perform scheduler related setup for a newly forked process p.
1701 * p is forked by current.
1702 *
1703 * __sched_fork() is basic setup used by init_idle() too:
1704 */
1705static void __sched_fork(struct task_struct *p)
1706{
1707	p->on_rq			= 0;
1708
1709	p->se.on_rq			= 0;
1710	p->se.exec_start		= 0;
1711	p->se.sum_exec_runtime		= 0;
1712	p->se.prev_sum_exec_runtime	= 0;
1713	p->se.nr_migrations		= 0;
1714	p->se.vruntime			= 0;
1715	INIT_LIST_HEAD(&p->se.group_node);
1716
1717#ifdef CONFIG_SCHEDSTATS
1718	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1719#endif
1720
1721	INIT_LIST_HEAD(&p->rt.run_list);
1722
1723#ifdef CONFIG_PREEMPT_NOTIFIERS
1724	INIT_HLIST_HEAD(&p->preempt_notifiers);
1725#endif
1726}
1727
1728/*
1729 * fork()/clone()-time setup:
1730 */
1731void sched_fork(struct task_struct *p)
1732{
1733	unsigned long flags;
1734	int cpu = get_cpu();
1735
1736	__sched_fork(p);
1737	/*
1738	 * We mark the process as running here. This guarantees that
1739	 * nobody will actually run it, and a signal or other external
1740	 * event cannot wake it up and insert it on the runqueue either.
1741	 */
1742	p->state = TASK_RUNNING;
1743
1744	/*
1745	 * Make sure we do not leak PI boosting priority to the child.
1746	 */
1747	p->prio = current->normal_prio;
1748
1749	/*
1750	 * Revert to default priority/policy on fork if requested.
1751	 */
1752	if (unlikely(p->sched_reset_on_fork)) {
1753		if (task_has_rt_policy(p)) {
1754			p->policy = SCHED_NORMAL;
1755			p->static_prio = NICE_TO_PRIO(0);
1756			p->rt_priority = 0;
1757		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1758			p->static_prio = NICE_TO_PRIO(0);
1759
1760		p->prio = p->normal_prio = __normal_prio(p);
1761		set_load_weight(p);
1762
1763		/*
1764		 * We don't need the reset flag anymore after the fork. It has
1765		 * fulfilled its duty:
1766		 */
1767		p->sched_reset_on_fork = 0;
1768	}
1769
1770	if (!rt_prio(p->prio))
1771		p->sched_class = &fair_sched_class;
1772
1773	if (p->sched_class->task_fork)
1774		p->sched_class->task_fork(p);
1775
1776	/*
1777	 * The child is not yet in the pid-hash so no cgroup attach races,
1778	 * and the cgroup is pinned to this child due to cgroup_fork()
1779	 * is ran before sched_fork().
1780	 *
1781	 * Silence PROVE_RCU.
1782	 */
1783	raw_spin_lock_irqsave(&p->pi_lock, flags);
1784	set_task_cpu(p, cpu);
1785	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1786
1787#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1788	if (likely(sched_info_on()))
1789		memset(&p->sched_info, 0, sizeof(p->sched_info));
1790#endif
1791#if defined(CONFIG_SMP)
1792	p->on_cpu = 0;
1793#endif
1794#ifdef CONFIG_PREEMPT_COUNT
1795	/* Want to start with kernel preemption disabled. */
1796	task_thread_info(p)->preempt_count = 1;
1797#endif
1798#ifdef CONFIG_SMP
1799	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1800#endif
1801
1802	put_cpu();
1803}
1804
1805/*
1806 * wake_up_new_task - wake up a newly created task for the first time.
1807 *
1808 * This function will do some initial scheduler statistics housekeeping
1809 * that must be done for every newly created context, then puts the task
1810 * on the runqueue and wakes it.
1811 */
1812void wake_up_new_task(struct task_struct *p)
1813{
1814	unsigned long flags;
1815	struct rq *rq;
1816
1817	raw_spin_lock_irqsave(&p->pi_lock, flags);
1818#ifdef CONFIG_SMP
1819	/*
1820	 * Fork balancing, do it here and not earlier because:
1821	 *  - cpus_allowed can change in the fork path
1822	 *  - any previously selected cpu might disappear through hotplug
1823	 */
1824	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1825#endif
1826
1827	rq = __task_rq_lock(p);
1828	activate_task(rq, p, 0);
1829	p->on_rq = 1;
1830	trace_sched_wakeup_new(p, true);
1831	check_preempt_curr(rq, p, WF_FORK);
1832#ifdef CONFIG_SMP
1833	if (p->sched_class->task_woken)
1834		p->sched_class->task_woken(rq, p);
1835#endif
1836	task_rq_unlock(rq, p, &flags);
1837}
1838
1839#ifdef CONFIG_PREEMPT_NOTIFIERS
1840
1841/**
1842 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1843 * @notifier: notifier struct to register
1844 */
1845void preempt_notifier_register(struct preempt_notifier *notifier)
1846{
1847	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848}
1849EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850
1851/**
1852 * preempt_notifier_unregister - no longer interested in preemption notifications
1853 * @notifier: notifier struct to unregister
1854 *
1855 * This is safe to call from within a preemption notifier.
1856 */
1857void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858{
1859	hlist_del(&notifier->link);
1860}
1861EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862
1863static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864{
1865	struct preempt_notifier *notifier;
1866	struct hlist_node *node;
1867
1868	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870}
1871
1872static void
1873fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874				 struct task_struct *next)
1875{
1876	struct preempt_notifier *notifier;
1877	struct hlist_node *node;
1878
1879	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880		notifier->ops->sched_out(notifier, next);
1881}
1882
1883#else /* !CONFIG_PREEMPT_NOTIFIERS */
1884
1885static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886{
1887}
1888
1889static void
1890fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891				 struct task_struct *next)
1892{
1893}
1894
1895#endif /* CONFIG_PREEMPT_NOTIFIERS */
1896
1897/**
1898 * prepare_task_switch - prepare to switch tasks
1899 * @rq: the runqueue preparing to switch
1900 * @prev: the current task that is being switched out
1901 * @next: the task we are going to switch to.
1902 *
1903 * This is called with the rq lock held and interrupts off. It must
1904 * be paired with a subsequent finish_task_switch after the context
1905 * switch.
1906 *
1907 * prepare_task_switch sets up locking and calls architecture specific
1908 * hooks.
1909 */
1910static inline void
1911prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912		    struct task_struct *next)
1913{
1914	sched_info_switch(prev, next);
1915	perf_event_task_sched_out(prev, next);
1916	fire_sched_out_preempt_notifiers(prev, next);
1917	prepare_lock_switch(rq, next);
1918	prepare_arch_switch(next);
1919	trace_sched_switch(prev, next);
1920}
1921
1922/**
1923 * finish_task_switch - clean up after a task-switch
1924 * @rq: runqueue associated with task-switch
1925 * @prev: the thread we just switched away from.
1926 *
1927 * finish_task_switch must be called after the context switch, paired
1928 * with a prepare_task_switch call before the context switch.
1929 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1930 * and do any other architecture-specific cleanup actions.
1931 *
1932 * Note that we may have delayed dropping an mm in context_switch(). If
1933 * so, we finish that here outside of the runqueue lock. (Doing it
1934 * with the lock held can cause deadlocks; see schedule() for
1935 * details.)
1936 */
1937static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1938	__releases(rq->lock)
1939{
1940	struct mm_struct *mm = rq->prev_mm;
1941	long prev_state;
1942
1943	rq->prev_mm = NULL;
1944
1945	/*
1946	 * A task struct has one reference for the use as "current".
1947	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1948	 * schedule one last time. The schedule call will never return, and
1949	 * the scheduled task must drop that reference.
1950	 * The test for TASK_DEAD must occur while the runqueue locks are
1951	 * still held, otherwise prev could be scheduled on another cpu, die
1952	 * there before we look at prev->state, and then the reference would
1953	 * be dropped twice.
1954	 *		Manfred Spraul <manfred@colorfullife.com>
1955	 */
1956	prev_state = prev->state;
1957	finish_arch_switch(prev);
1958#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1959	local_irq_disable();
1960#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1961	perf_event_task_sched_in(prev, current);
1962#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1963	local_irq_enable();
1964#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1965	finish_lock_switch(rq, prev);
1966	finish_arch_post_lock_switch();
1967
1968	fire_sched_in_preempt_notifiers(current);
1969	if (mm)
1970		mmdrop(mm);
1971	if (unlikely(prev_state == TASK_DEAD)) {
1972		/*
1973		 * Remove function-return probe instances associated with this
1974		 * task and put them back on the free list.
1975		 */
1976		kprobe_flush_task(prev);
1977		put_task_struct(prev);
1978	}
1979}
1980
1981#ifdef CONFIG_SMP
1982
1983/* assumes rq->lock is held */
1984static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985{
1986	if (prev->sched_class->pre_schedule)
1987		prev->sched_class->pre_schedule(rq, prev);
1988}
1989
1990/* rq->lock is NOT held, but preemption is disabled */
1991static inline void post_schedule(struct rq *rq)
1992{
1993	if (rq->post_schedule) {
1994		unsigned long flags;
1995
1996		raw_spin_lock_irqsave(&rq->lock, flags);
1997		if (rq->curr->sched_class->post_schedule)
1998			rq->curr->sched_class->post_schedule(rq);
1999		raw_spin_unlock_irqrestore(&rq->lock, flags);
2000
2001		rq->post_schedule = 0;
2002	}
2003}
2004
2005#else
2006
2007static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008{
2009}
2010
2011static inline void post_schedule(struct rq *rq)
2012{
2013}
2014
2015#endif
2016
2017/**
2018 * schedule_tail - first thing a freshly forked thread must call.
2019 * @prev: the thread we just switched away from.
2020 */
2021asmlinkage void schedule_tail(struct task_struct *prev)
2022	__releases(rq->lock)
2023{
2024	struct rq *rq = this_rq();
2025
2026	finish_task_switch(rq, prev);
2027
2028	/*
2029	 * FIXME: do we need to worry about rq being invalidated by the
2030	 * task_switch?
2031	 */
2032	post_schedule(rq);
2033
2034#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035	/* In this case, finish_task_switch does not reenable preemption */
2036	preempt_enable();
2037#endif
2038	if (current->set_child_tid)
2039		put_user(task_pid_vnr(current), current->set_child_tid);
2040}
2041
2042/*
2043 * context_switch - switch to the new MM and the new
2044 * thread's register state.
2045 */
2046static inline void
2047context_switch(struct rq *rq, struct task_struct *prev,
2048	       struct task_struct *next)
2049{
2050	struct mm_struct *mm, *oldmm;
2051
2052	prepare_task_switch(rq, prev, next);
2053
2054	mm = next->mm;
2055	oldmm = prev->active_mm;
2056	/*
2057	 * For paravirt, this is coupled with an exit in switch_to to
2058	 * combine the page table reload and the switch backend into
2059	 * one hypercall.
2060	 */
2061	arch_start_context_switch(prev);
2062
2063	if (!mm) {
2064		next->active_mm = oldmm;
2065		atomic_inc(&oldmm->mm_count);
2066		enter_lazy_tlb(oldmm, next);
2067	} else
2068		switch_mm(oldmm, mm, next);
2069
2070	if (!prev->mm) {
2071		prev->active_mm = NULL;
2072		rq->prev_mm = oldmm;
2073	}
2074	/*
2075	 * Since the runqueue lock will be released by the next
2076	 * task (which is an invalid locking op but in the case
2077	 * of the scheduler it's an obvious special-case), so we
2078	 * do an early lockdep release here:
2079	 */
2080#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082#endif
2083
2084	/* Here we just switch the register state and the stack. */
2085	rcu_switch_from(prev);
2086	switch_to(prev, next, prev);
2087
2088	barrier();
2089	/*
2090	 * this_rq must be evaluated again because prev may have moved
2091	 * CPUs since it called schedule(), thus the 'rq' on its stack
2092	 * frame will be invalid.
2093	 */
2094	finish_task_switch(this_rq(), prev);
2095}
2096
2097/*
2098 * nr_running, nr_uninterruptible and nr_context_switches:
2099 *
2100 * externally visible scheduler statistics: current number of runnable
2101 * threads, current number of uninterruptible-sleeping threads, total
2102 * number of context switches performed since bootup.
2103 */
2104unsigned long nr_running(void)
2105{
2106	unsigned long i, sum = 0;
2107
2108	for_each_online_cpu(i)
2109		sum += cpu_rq(i)->nr_running;
2110
2111	return sum;
2112}
2113
2114unsigned long nr_uninterruptible(void)
2115{
2116	unsigned long i, sum = 0;
2117
2118	for_each_possible_cpu(i)
2119		sum += cpu_rq(i)->nr_uninterruptible;
2120
2121	/*
2122	 * Since we read the counters lockless, it might be slightly
2123	 * inaccurate. Do not allow it to go below zero though:
2124	 */
2125	if (unlikely((long)sum < 0))
2126		sum = 0;
2127
2128	return sum;
2129}
2130
2131unsigned long long nr_context_switches(void)
2132{
2133	int i;
2134	unsigned long long sum = 0;
2135
2136	for_each_possible_cpu(i)
2137		sum += cpu_rq(i)->nr_switches;
2138
2139	return sum;
2140}
2141
2142unsigned long nr_iowait(void)
2143{
2144	unsigned long i, sum = 0;
2145
2146	for_each_possible_cpu(i)
2147		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2148
2149	return sum;
2150}
2151
2152unsigned long nr_iowait_cpu(int cpu)
2153{
2154	struct rq *this = cpu_rq(cpu);
2155	return atomic_read(&this->nr_iowait);
2156}
2157
2158unsigned long this_cpu_load(void)
2159{
2160	struct rq *this = this_rq();
2161	return this->cpu_load[0];
2162}
2163
2164
2165/* Variables and functions for calc_load */
2166static atomic_long_t calc_load_tasks;
2167static unsigned long calc_load_update;
2168unsigned long avenrun[3];
2169EXPORT_SYMBOL(avenrun);
2170
2171static long calc_load_fold_active(struct rq *this_rq)
2172{
2173	long nr_active, delta = 0;
2174
2175	nr_active = this_rq->nr_running;
2176	nr_active += (long) this_rq->nr_uninterruptible;
2177
2178	if (nr_active != this_rq->calc_load_active) {
2179		delta = nr_active - this_rq->calc_load_active;
2180		this_rq->calc_load_active = nr_active;
2181	}
2182
2183	return delta;
2184}
2185
2186static unsigned long
2187calc_load(unsigned long load, unsigned long exp, unsigned long active)
2188{
2189	load *= exp;
2190	load += active * (FIXED_1 - exp);
2191	load += 1UL << (FSHIFT - 1);
2192	return load >> FSHIFT;
2193}
2194
2195#ifdef CONFIG_NO_HZ
2196/*
2197 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2198 *
2199 * When making the ILB scale, we should try to pull this in as well.
2200 */
2201static atomic_long_t calc_load_tasks_idle;
2202
2203void calc_load_account_idle(struct rq *this_rq)
2204{
2205	long delta;
2206
2207	delta = calc_load_fold_active(this_rq);
2208	if (delta)
2209		atomic_long_add(delta, &calc_load_tasks_idle);
2210}
2211
2212static long calc_load_fold_idle(void)
2213{
2214	long delta = 0;
2215
2216	/*
2217	 * Its got a race, we don't care...
2218	 */
2219	if (atomic_long_read(&calc_load_tasks_idle))
2220		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2221
2222	return delta;
2223}
2224
2225/**
2226 * fixed_power_int - compute: x^n, in O(log n) time
2227 *
2228 * @x:         base of the power
2229 * @frac_bits: fractional bits of @x
2230 * @n:         power to raise @x to.
2231 *
2232 * By exploiting the relation between the definition of the natural power
2233 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2234 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2235 * (where: n_i \elem {0, 1}, the binary vector representing n),
2236 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2237 * of course trivially computable in O(log_2 n), the length of our binary
2238 * vector.
2239 */
2240static unsigned long
2241fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2242{
2243	unsigned long result = 1UL << frac_bits;
2244
2245	if (n) for (;;) {
2246		if (n & 1) {
2247			result *= x;
2248			result += 1UL << (frac_bits - 1);
2249			result >>= frac_bits;
2250		}
2251		n >>= 1;
2252		if (!n)
2253			break;
2254		x *= x;
2255		x += 1UL << (frac_bits - 1);
2256		x >>= frac_bits;
2257	}
2258
2259	return result;
2260}
2261
2262/*
2263 * a1 = a0 * e + a * (1 - e)
2264 *
2265 * a2 = a1 * e + a * (1 - e)
2266 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2267 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2268 *
2269 * a3 = a2 * e + a * (1 - e)
2270 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2271 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2272 *
2273 *  ...
2274 *
2275 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2276 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2277 *    = a0 * e^n + a * (1 - e^n)
2278 *
2279 * [1] application of the geometric series:
2280 *
2281 *              n         1 - x^(n+1)
2282 *     S_n := \Sum x^i = -------------
2283 *             i=0          1 - x
2284 */
2285static unsigned long
2286calc_load_n(unsigned long load, unsigned long exp,
2287	    unsigned long active, unsigned int n)
2288{
2289
2290	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2291}
2292
2293/*
2294 * NO_HZ can leave us missing all per-cpu ticks calling
2295 * calc_load_account_active(), but since an idle CPU folds its delta into
2296 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2297 * in the pending idle delta if our idle period crossed a load cycle boundary.
2298 *
2299 * Once we've updated the global active value, we need to apply the exponential
2300 * weights adjusted to the number of cycles missed.
2301 */
2302static void calc_global_nohz(void)
2303{
2304	long delta, active, n;
2305
2306	/*
2307	 * If we crossed a calc_load_update boundary, make sure to fold
2308	 * any pending idle changes, the respective CPUs might have
2309	 * missed the tick driven calc_load_account_active() update
2310	 * due to NO_HZ.
2311	 */
2312	delta = calc_load_fold_idle();
2313	if (delta)
2314		atomic_long_add(delta, &calc_load_tasks);
2315
2316	/*
2317	 * It could be the one fold was all it took, we done!
2318	 */
2319	if (time_before(jiffies, calc_load_update + 10))
2320		return;
2321
2322	/*
2323	 * Catch-up, fold however many we are behind still
2324	 */
2325	delta = jiffies - calc_load_update - 10;
2326	n = 1 + (delta / LOAD_FREQ);
2327
2328	active = atomic_long_read(&calc_load_tasks);
2329	active = active > 0 ? active * FIXED_1 : 0;
2330
2331	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2332	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2333	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2334
2335	calc_load_update += n * LOAD_FREQ;
2336}
2337#else
2338void calc_load_account_idle(struct rq *this_rq)
2339{
2340}
2341
2342static inline long calc_load_fold_idle(void)
2343{
2344	return 0;
2345}
2346
2347static void calc_global_nohz(void)
2348{
2349}
2350#endif
2351
2352/**
2353 * get_avenrun - get the load average array
2354 * @loads:	pointer to dest load array
2355 * @offset:	offset to add
2356 * @shift:	shift count to shift the result left
2357 *
2358 * These values are estimates at best, so no need for locking.
2359 */
2360void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2361{
2362	loads[0] = (avenrun[0] + offset) << shift;
2363	loads[1] = (avenrun[1] + offset) << shift;
2364	loads[2] = (avenrun[2] + offset) << shift;
2365}
2366
2367/*
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
2370 */
2371void calc_global_load(unsigned long ticks)
2372{
2373	long active;
2374
2375	if (time_before(jiffies, calc_load_update + 10))
2376		return;
2377
2378	active = atomic_long_read(&calc_load_tasks);
2379	active = active > 0 ? active * FIXED_1 : 0;
2380
2381	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2382	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2383	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2384
2385	calc_load_update += LOAD_FREQ;
2386
2387	/*
2388	 * Account one period with whatever state we found before
2389	 * folding in the nohz state and ageing the entire idle period.
2390	 *
2391	 * This avoids loosing a sample when we go idle between
2392	 * calc_load_account_active() (10 ticks ago) and now and thus
2393	 * under-accounting.
2394	 */
2395	calc_global_nohz();
2396}
2397
2398/*
2399 * Called from update_cpu_load() to periodically update this CPU's
2400 * active count.
2401 */
2402static void calc_load_account_active(struct rq *this_rq)
2403{
2404	long delta;
2405
2406	if (time_before(jiffies, this_rq->calc_load_update))
2407		return;
2408
2409	delta  = calc_load_fold_active(this_rq);
2410	delta += calc_load_fold_idle();
2411	if (delta)
2412		atomic_long_add(delta, &calc_load_tasks);
2413
2414	this_rq->calc_load_update += LOAD_FREQ;
2415}
2416
2417/*
2418 * The exact cpuload at various idx values, calculated at every tick would be
2419 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2420 *
2421 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2422 * on nth tick when cpu may be busy, then we have:
2423 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2424 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2425 *
2426 * decay_load_missed() below does efficient calculation of
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2429 *
2430 * The calculation is approximated on a 128 point scale.
2431 * degrade_zero_ticks is the number of ticks after which load at any
2432 * particular idx is approximated to be zero.
2433 * degrade_factor is a precomputed table, a row for each load idx.
2434 * Each column corresponds to degradation factor for a power of two ticks,
2435 * based on 128 point scale.
2436 * Example:
2437 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2438 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2439 *
2440 * With this power of 2 load factors, we can degrade the load n times
2441 * by looking at 1 bits in n and doing as many mult/shift instead of
2442 * n mult/shifts needed by the exact degradation.
2443 */
2444#define DEGRADE_SHIFT		7
2445static const unsigned char
2446		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2447static const unsigned char
2448		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2449					{0, 0, 0, 0, 0, 0, 0, 0},
2450					{64, 32, 8, 0, 0, 0, 0, 0},
2451					{96, 72, 40, 12, 1, 0, 0},
2452					{112, 98, 75, 43, 15, 1, 0},
2453					{120, 112, 98, 76, 45, 16, 2} };
2454
2455/*
2456 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2457 * would be when CPU is idle and so we just decay the old load without
2458 * adding any new load.
2459 */
2460static unsigned long
2461decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2462{
2463	int j = 0;
2464
2465	if (!missed_updates)
2466		return load;
2467
2468	if (missed_updates >= degrade_zero_ticks[idx])
2469		return 0;
2470
2471	if (idx == 1)
2472		return load >> missed_updates;
2473
2474	while (missed_updates) {
2475		if (missed_updates % 2)
2476			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2477
2478		missed_updates >>= 1;
2479		j++;
2480	}
2481	return load;
2482}
2483
2484/*
2485 * Update rq->cpu_load[] statistics. This function is usually called every
2486 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2487 * every tick. We fix it up based on jiffies.
2488 */
2489static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2490			      unsigned long pending_updates)
2491{
2492	int i, scale;
2493
2494	this_rq->nr_load_updates++;
2495
2496	/* Update our load: */
2497	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2498	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2499		unsigned long old_load, new_load;
2500
2501		/* scale is effectively 1 << i now, and >> i divides by scale */
2502
2503		old_load = this_rq->cpu_load[i];
2504		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2505		new_load = this_load;
2506		/*
2507		 * Round up the averaging division if load is increasing. This
2508		 * prevents us from getting stuck on 9 if the load is 10, for
2509		 * example.
2510		 */
2511		if (new_load > old_load)
2512			new_load += scale - 1;
2513
2514		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2515	}
2516
2517	sched_avg_update(this_rq);
2518}
2519
2520#ifdef CONFIG_NO_HZ
2521/*
2522 * There is no sane way to deal with nohz on smp when using jiffies because the
2523 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2524 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2525 *
2526 * Therefore we cannot use the delta approach from the regular tick since that
2527 * would seriously skew the load calculation. However we'll make do for those
2528 * updates happening while idle (nohz_idle_balance) or coming out of idle
2529 * (tick_nohz_idle_exit).
2530 *
2531 * This means we might still be one tick off for nohz periods.
2532 */
2533
2534/*
2535 * Called from nohz_idle_balance() to update the load ratings before doing the
2536 * idle balance.
2537 */
2538void update_idle_cpu_load(struct rq *this_rq)
2539{
2540	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2541	unsigned long load = this_rq->load.weight;
2542	unsigned long pending_updates;
2543
2544	/*
2545	 * bail if there's load or we're actually up-to-date.
2546	 */
2547	if (load || curr_jiffies == this_rq->last_load_update_tick)
2548		return;
2549
2550	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2551	this_rq->last_load_update_tick = curr_jiffies;
2552
2553	__update_cpu_load(this_rq, load, pending_updates);
2554}
2555
2556/*
2557 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2558 */
2559void update_cpu_load_nohz(void)
2560{
2561	struct rq *this_rq = this_rq();
2562	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2563	unsigned long pending_updates;
2564
2565	if (curr_jiffies == this_rq->last_load_update_tick)
2566		return;
2567
2568	raw_spin_lock(&this_rq->lock);
2569	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2570	if (pending_updates) {
2571		this_rq->last_load_update_tick = curr_jiffies;
2572		/*
2573		 * We were idle, this means load 0, the current load might be
2574		 * !0 due to remote wakeups and the sort.
2575		 */
2576		__update_cpu_load(this_rq, 0, pending_updates);
2577	}
2578	raw_spin_unlock(&this_rq->lock);
2579}
2580#endif /* CONFIG_NO_HZ */
2581
2582/*
2583 * Called from scheduler_tick()
2584 */
2585static void update_cpu_load_active(struct rq *this_rq)
2586{
2587	/*
2588	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2589	 */
2590	this_rq->last_load_update_tick = jiffies;
2591	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2592
2593	calc_load_account_active(this_rq);
2594}
2595
2596#ifdef CONFIG_SMP
2597
2598/*
2599 * sched_exec - execve() is a valuable balancing opportunity, because at
2600 * this point the task has the smallest effective memory and cache footprint.
2601 */
2602void sched_exec(void)
2603{
2604	struct task_struct *p = current;
2605	unsigned long flags;
2606	int dest_cpu;
2607
2608	raw_spin_lock_irqsave(&p->pi_lock, flags);
2609	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2610	if (dest_cpu == smp_processor_id())
2611		goto unlock;
2612
2613	if (likely(cpu_active(dest_cpu))) {
2614		struct migration_arg arg = { p, dest_cpu };
2615
2616		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2618		return;
2619	}
2620unlock:
2621	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2622}
2623
2624#endif
2625
2626DEFINE_PER_CPU(struct kernel_stat, kstat);
2627DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2628
2629EXPORT_PER_CPU_SYMBOL(kstat);
2630EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2631
2632/*
2633 * Return any ns on the sched_clock that have not yet been accounted in
2634 * @p in case that task is currently running.
2635 *
2636 * Called with task_rq_lock() held on @rq.
2637 */
2638static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2639{
2640	u64 ns = 0;
2641
2642	if (task_current(rq, p)) {
2643		update_rq_clock(rq);
2644		ns = rq->clock_task - p->se.exec_start;
2645		if ((s64)ns < 0)
2646			ns = 0;
2647	}
2648
2649	return ns;
2650}
2651
2652unsigned long long task_delta_exec(struct task_struct *p)
2653{
2654	unsigned long flags;
2655	struct rq *rq;
2656	u64 ns = 0;
2657
2658	rq = task_rq_lock(p, &flags);
2659	ns = do_task_delta_exec(p, rq);
2660	task_rq_unlock(rq, p, &flags);
2661
2662	return ns;
2663}
2664
2665/*
2666 * Return accounted runtime for the task.
2667 * In case the task is currently running, return the runtime plus current's
2668 * pending runtime that have not been accounted yet.
2669 */
2670unsigned long long task_sched_runtime(struct task_struct *p)
2671{
2672	unsigned long flags;
2673	struct rq *rq;
2674	u64 ns = 0;
2675
2676	rq = task_rq_lock(p, &flags);
2677	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2678	task_rq_unlock(rq, p, &flags);
2679
2680	return ns;
2681}
2682
2683#ifdef CONFIG_CGROUP_CPUACCT
2684struct cgroup_subsys cpuacct_subsys;
2685struct cpuacct root_cpuacct;
2686#endif
2687
2688static inline void task_group_account_field(struct task_struct *p, int index,
2689					    u64 tmp)
2690{
2691#ifdef CONFIG_CGROUP_CPUACCT
2692	struct kernel_cpustat *kcpustat;
2693	struct cpuacct *ca;
2694#endif
2695	/*
2696	 * Since all updates are sure to touch the root cgroup, we
2697	 * get ourselves ahead and touch it first. If the root cgroup
2698	 * is the only cgroup, then nothing else should be necessary.
2699	 *
2700	 */
2701	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2702
2703#ifdef CONFIG_CGROUP_CPUACCT
2704	if (unlikely(!cpuacct_subsys.active))
2705		return;
2706
2707	rcu_read_lock();
2708	ca = task_ca(p);
2709	while (ca && (ca != &root_cpuacct)) {
2710		kcpustat = this_cpu_ptr(ca->cpustat);
2711		kcpustat->cpustat[index] += tmp;
2712		ca = parent_ca(ca);
2713	}
2714	rcu_read_unlock();
2715#endif
2716}
2717
2718
2719/*
2720 * Account user cpu time to a process.
2721 * @p: the process that the cpu time gets accounted to
2722 * @cputime: the cpu time spent in user space since the last update
2723 * @cputime_scaled: cputime scaled by cpu frequency
2724 */
2725void account_user_time(struct task_struct *p, cputime_t cputime,
2726		       cputime_t cputime_scaled)
2727{
2728	int index;
2729
2730	/* Add user time to process. */
2731	p->utime += cputime;
2732	p->utimescaled += cputime_scaled;
2733	account_group_user_time(p, cputime);
2734
2735	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2736
2737	/* Add user time to cpustat. */
2738	task_group_account_field(p, index, (__force u64) cputime);
2739
2740	/* Account for user time used */
2741	acct_update_integrals(p);
2742}
2743
2744/*
2745 * Account guest cpu time to a process.
2746 * @p: the process that the cpu time gets accounted to
2747 * @cputime: the cpu time spent in virtual machine since the last update
2748 * @cputime_scaled: cputime scaled by cpu frequency
2749 */
2750static void account_guest_time(struct task_struct *p, cputime_t cputime,
2751			       cputime_t cputime_scaled)
2752{
2753	u64 *cpustat = kcpustat_this_cpu->cpustat;
2754
2755	/* Add guest time to process. */
2756	p->utime += cputime;
2757	p->utimescaled += cputime_scaled;
2758	account_group_user_time(p, cputime);
2759	p->gtime += cputime;
2760
2761	/* Add guest time to cpustat. */
2762	if (TASK_NICE(p) > 0) {
2763		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2764		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2765	} else {
2766		cpustat[CPUTIME_USER] += (__force u64) cputime;
2767		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2768	}
2769}
2770
2771/*
2772 * Account system cpu time to a process and desired cpustat field
2773 * @p: the process that the cpu time gets accounted to
2774 * @cputime: the cpu time spent in kernel space since the last update
2775 * @cputime_scaled: cputime scaled by cpu frequency
2776 * @target_cputime64: pointer to cpustat field that has to be updated
2777 */
2778static inline
2779void __account_system_time(struct task_struct *p, cputime_t cputime,
2780			cputime_t cputime_scaled, int index)
2781{
2782	/* Add system time to process. */
2783	p->stime += cputime;
2784	p->stimescaled += cputime_scaled;
2785	account_group_system_time(p, cputime);
2786
2787	/* Add system time to cpustat. */
2788	task_group_account_field(p, index, (__force u64) cputime);
2789
2790	/* Account for system time used */
2791	acct_update_integrals(p);
2792}
2793
2794/*
2795 * Account system cpu time to a process.
2796 * @p: the process that the cpu time gets accounted to
2797 * @hardirq_offset: the offset to subtract from hardirq_count()
2798 * @cputime: the cpu time spent in kernel space since the last update
2799 * @cputime_scaled: cputime scaled by cpu frequency
2800 */
2801void account_system_time(struct task_struct *p, int hardirq_offset,
2802			 cputime_t cputime, cputime_t cputime_scaled)
2803{
2804	int index;
2805
2806	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2807		account_guest_time(p, cputime, cputime_scaled);
2808		return;
2809	}
2810
2811	if (hardirq_count() - hardirq_offset)
2812		index = CPUTIME_IRQ;
2813	else if (in_serving_softirq())
2814		index = CPUTIME_SOFTIRQ;
2815	else
2816		index = CPUTIME_SYSTEM;
2817
2818	__account_system_time(p, cputime, cputime_scaled, index);
2819}
2820
2821/*
2822 * Account for involuntary wait time.
2823 * @cputime: the cpu time spent in involuntary wait
2824 */
2825void account_steal_time(cputime_t cputime)
2826{
2827	u64 *cpustat = kcpustat_this_cpu->cpustat;
2828
2829	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2830}
2831
2832/*
2833 * Account for idle time.
2834 * @cputime: the cpu time spent in idle wait
2835 */
2836void account_idle_time(cputime_t cputime)
2837{
2838	u64 *cpustat = kcpustat_this_cpu->cpustat;
2839	struct rq *rq = this_rq();
2840
2841	if (atomic_read(&rq->nr_iowait) > 0)
2842		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2843	else
2844		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2845}
2846
2847static __always_inline bool steal_account_process_tick(void)
2848{
2849#ifdef CONFIG_PARAVIRT
2850	if (static_key_false(&paravirt_steal_enabled)) {
2851		u64 steal, st = 0;
2852
2853		steal = paravirt_steal_clock(smp_processor_id());
2854		steal -= this_rq()->prev_steal_time;
2855
2856		st = steal_ticks(steal);
2857		this_rq()->prev_steal_time += st * TICK_NSEC;
2858
2859		account_steal_time(st);
2860		return st;
2861	}
2862#endif
2863	return false;
2864}
2865
2866#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2867
2868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2869/*
2870 * Account a tick to a process and cpustat
2871 * @p: the process that the cpu time gets accounted to
2872 * @user_tick: is the tick from userspace
2873 * @rq: the pointer to rq
2874 *
2875 * Tick demultiplexing follows the order
2876 * - pending hardirq update
2877 * - pending softirq update
2878 * - user_time
2879 * - idle_time
2880 * - system time
2881 *   - check for guest_time
2882 *   - else account as system_time
2883 *
2884 * Check for hardirq is done both for system and user time as there is
2885 * no timer going off while we are on hardirq and hence we may never get an
2886 * opportunity to update it solely in system time.
2887 * p->stime and friends are only updated on system time and not on irq
2888 * softirq as those do not count in task exec_runtime any more.
2889 */
2890static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2891						struct rq *rq)
2892{
2893	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2894	u64 *cpustat = kcpustat_this_cpu->cpustat;
2895
2896	if (steal_account_process_tick())
2897		return;
2898
2899	if (irqtime_account_hi_update()) {
2900		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2901	} else if (irqtime_account_si_update()) {
2902		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2903	} else if (this_cpu_ksoftirqd() == p) {
2904		/*
2905		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2906		 * So, we have to handle it separately here.
2907		 * Also, p->stime needs to be updated for ksoftirqd.
2908		 */
2909		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2910					CPUTIME_SOFTIRQ);
2911	} else if (user_tick) {
2912		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2913	} else if (p == rq->idle) {
2914		account_idle_time(cputime_one_jiffy);
2915	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2916		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2917	} else {
2918		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2919					CPUTIME_SYSTEM);
2920	}
2921}
2922
2923static void irqtime_account_idle_ticks(int ticks)
2924{
2925	int i;
2926	struct rq *rq = this_rq();
2927
2928	for (i = 0; i < ticks; i++)
2929		irqtime_account_process_tick(current, 0, rq);
2930}
2931#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2932static void irqtime_account_idle_ticks(int ticks) {}
2933static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2934						struct rq *rq) {}
2935#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2936
2937/*
2938 * Account a single tick of cpu time.
2939 * @p: the process that the cpu time gets accounted to
2940 * @user_tick: indicates if the tick is a user or a system tick
2941 */
2942void account_process_tick(struct task_struct *p, int user_tick)
2943{
2944	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2945	struct rq *rq = this_rq();
2946
2947	if (sched_clock_irqtime) {
2948		irqtime_account_process_tick(p, user_tick, rq);
2949		return;
2950	}
2951
2952	if (steal_account_process_tick())
2953		return;
2954
2955	if (user_tick)
2956		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2957	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2958		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2959				    one_jiffy_scaled);
2960	else
2961		account_idle_time(cputime_one_jiffy);
2962}
2963
2964/*
2965 * Account multiple ticks of steal time.
2966 * @p: the process from which the cpu time has been stolen
2967 * @ticks: number of stolen ticks
2968 */
2969void account_steal_ticks(unsigned long ticks)
2970{
2971	account_steal_time(jiffies_to_cputime(ticks));
2972}
2973
2974/*
2975 * Account multiple ticks of idle time.
2976 * @ticks: number of stolen ticks
2977 */
2978void account_idle_ticks(unsigned long ticks)
2979{
2980
2981	if (sched_clock_irqtime) {
2982		irqtime_account_idle_ticks(ticks);
2983		return;
2984	}
2985
2986	account_idle_time(jiffies_to_cputime(ticks));
2987}
2988
2989#endif
2990
2991/*
2992 * Use precise platform statistics if available:
2993 */
2994#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2995void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2996{
2997	*ut = p->utime;
2998	*st = p->stime;
2999}
3000
3001void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3002{
3003	struct task_cputime cputime;
3004
3005	thread_group_cputime(p, &cputime);
3006
3007	*ut = cputime.utime;
3008	*st = cputime.stime;
3009}
3010#else
3011
3012#ifndef nsecs_to_cputime
3013# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3014#endif
3015
3016void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3017{
3018	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3019
3020	/*
3021	 * Use CFS's precise accounting:
3022	 */
3023	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3024
3025	if (total) {
3026		u64 temp = (__force u64) rtime;
3027
3028		temp *= (__force u64) utime;
3029		do_div(temp, (__force u32) total);
3030		utime = (__force cputime_t) temp;
3031	} else
3032		utime = rtime;
3033
3034	/*
3035	 * Compare with previous values, to keep monotonicity:
3036	 */
3037	p->prev_utime = max(p->prev_utime, utime);
3038	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3039
3040	*ut = p->prev_utime;
3041	*st = p->prev_stime;
3042}
3043
3044/*
3045 * Must be called with siglock held.
3046 */
3047void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3048{
3049	struct signal_struct *sig = p->signal;
3050	struct task_cputime cputime;
3051	cputime_t rtime, utime, total;
3052
3053	thread_group_cputime(p, &cputime);
3054
3055	total = cputime.utime + cputime.stime;
3056	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3057
3058	if (total) {
3059		u64 temp = (__force u64) rtime;
3060
3061		temp *= (__force u64) cputime.utime;
3062		do_div(temp, (__force u32) total);
3063		utime = (__force cputime_t) temp;
3064	} else
3065		utime = rtime;
3066
3067	sig->prev_utime = max(sig->prev_utime, utime);
3068	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3069
3070	*ut = sig->prev_utime;
3071	*st = sig->prev_stime;
3072}
3073#endif
3074
3075/*
3076 * This function gets called by the timer code, with HZ frequency.
3077 * We call it with interrupts disabled.
3078 */
3079void scheduler_tick(void)
3080{
3081	int cpu = smp_processor_id();
3082	struct rq *rq = cpu_rq(cpu);
3083	struct task_struct *curr = rq->curr;
3084
3085	sched_clock_tick();
3086
3087	raw_spin_lock(&rq->lock);
3088	update_rq_clock(rq);
3089	update_cpu_load_active(rq);
3090	curr->sched_class->task_tick(rq, curr, 0);
3091	raw_spin_unlock(&rq->lock);
3092
3093	perf_event_task_tick();
3094
3095#ifdef CONFIG_SMP
3096	rq->idle_balance = idle_cpu(cpu);
3097	trigger_load_balance(rq, cpu);
3098#endif
3099}
3100
3101notrace unsigned long get_parent_ip(unsigned long addr)
3102{
3103	if (in_lock_functions(addr)) {
3104		addr = CALLER_ADDR2;
3105		if (in_lock_functions(addr))
3106			addr = CALLER_ADDR3;
3107	}
3108	return addr;
3109}
3110
3111#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3112				defined(CONFIG_PREEMPT_TRACER))
3113
3114void __kprobes add_preempt_count(int val)
3115{
3116#ifdef CONFIG_DEBUG_PREEMPT
3117	/*
3118	 * Underflow?
3119	 */
3120	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3121		return;
3122#endif
3123	preempt_count() += val;
3124#ifdef CONFIG_DEBUG_PREEMPT
3125	/*
3126	 * Spinlock count overflowing soon?
3127	 */
3128	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3129				PREEMPT_MASK - 10);
3130#endif
3131	if (preempt_count() == val)
3132		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3133}
3134EXPORT_SYMBOL(add_preempt_count);
3135
3136void __kprobes sub_preempt_count(int val)
3137{
3138#ifdef CONFIG_DEBUG_PREEMPT
3139	/*
3140	 * Underflow?
3141	 */
3142	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3143		return;
3144	/*
3145	 * Is the spinlock portion underflowing?
3146	 */
3147	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3148			!(preempt_count() & PREEMPT_MASK)))
3149		return;
3150#endif
3151
3152	if (preempt_count() == val)
3153		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3154	preempt_count() -= val;
3155}
3156EXPORT_SYMBOL(sub_preempt_count);
3157
3158#endif
3159
3160/*
3161 * Print scheduling while atomic bug:
3162 */
3163static noinline void __schedule_bug(struct task_struct *prev)
3164{
3165	if (oops_in_progress)
3166		return;
3167
3168	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3169		prev->comm, prev->pid, preempt_count());
3170
3171	debug_show_held_locks(prev);
3172	print_modules();
3173	if (irqs_disabled())
3174		print_irqtrace_events(prev);
3175	dump_stack();
3176	add_taint(TAINT_WARN);
3177}
3178
3179/*
3180 * Various schedule()-time debugging checks and statistics:
3181 */
3182static inline void schedule_debug(struct task_struct *prev)
3183{
3184	/*
3185	 * Test if we are atomic. Since do_exit() needs to call into
3186	 * schedule() atomically, we ignore that path for now.
3187	 * Otherwise, whine if we are scheduling when we should not be.
3188	 */
3189	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3190		__schedule_bug(prev);
3191	rcu_sleep_check();
3192
3193	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3194
3195	schedstat_inc(this_rq(), sched_count);
3196}
3197
3198static void put_prev_task(struct rq *rq, struct task_struct *prev)
3199{
3200	if (prev->on_rq || rq->skip_clock_update < 0)
3201		update_rq_clock(rq);
3202	prev->sched_class->put_prev_task(rq, prev);
3203}
3204
3205/*
3206 * Pick up the highest-prio task:
3207 */
3208static inline struct task_struct *
3209pick_next_task(struct rq *rq)
3210{
3211	const struct sched_class *class;
3212	struct task_struct *p;
3213
3214	/*
3215	 * Optimization: we know that if all tasks are in
3216	 * the fair class we can call that function directly:
3217	 */
3218	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3219		p = fair_sched_class.pick_next_task(rq);
3220		if (likely(p))
3221			return p;
3222	}
3223
3224	for_each_class(class) {
3225		p = class->pick_next_task(rq);
3226		if (p)
3227			return p;
3228	}
3229
3230	BUG(); /* the idle class will always have a runnable task */
3231}
3232
3233/*
3234 * __schedule() is the main scheduler function.
3235 */
3236static void __sched __schedule(void)
3237{
3238	struct task_struct *prev, *next;
3239	unsigned long *switch_count;
3240	struct rq *rq;
3241	int cpu;
3242
3243need_resched:
3244	preempt_disable();
3245	cpu = smp_processor_id();
3246	rq = cpu_rq(cpu);
3247	rcu_note_context_switch(cpu);
3248	prev = rq->curr;
3249
3250	schedule_debug(prev);
3251
3252	if (sched_feat(HRTICK))
3253		hrtick_clear(rq);
3254
3255	raw_spin_lock_irq(&rq->lock);
3256
3257	switch_count = &prev->nivcsw;
3258	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3259		if (unlikely(signal_pending_state(prev->state, prev))) {
3260			prev->state = TASK_RUNNING;
3261		} else {
3262			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3263			prev->on_rq = 0;
3264
3265			/*
3266			 * If a worker went to sleep, notify and ask workqueue
3267			 * whether it wants to wake up a task to maintain
3268			 * concurrency.
3269			 */
3270			if (prev->flags & PF_WQ_WORKER) {
3271				struct task_struct *to_wakeup;
3272
3273				to_wakeup = wq_worker_sleeping(prev, cpu);
3274				if (to_wakeup)
3275					try_to_wake_up_local(to_wakeup);
3276			}
3277		}
3278		switch_count = &prev->nvcsw;
3279	}
3280
3281	pre_schedule(rq, prev);
3282
3283	if (unlikely(!rq->nr_running))
3284		idle_balance(cpu, rq);
3285
3286	put_prev_task(rq, prev);
3287	next = pick_next_task(rq);
3288	clear_tsk_need_resched(prev);
3289	rq->skip_clock_update = 0;
3290
3291	if (likely(prev != next)) {
3292		rq->nr_switches++;
3293		rq->curr = next;
3294		++*switch_count;
3295
3296		context_switch(rq, prev, next); /* unlocks the rq */
3297		/*
3298		 * The context switch have flipped the stack from under us
3299		 * and restored the local variables which were saved when
3300		 * this task called schedule() in the past. prev == current
3301		 * is still correct, but it can be moved to another cpu/rq.
3302		 */
3303		cpu = smp_processor_id();
3304		rq = cpu_rq(cpu);
3305	} else
3306		raw_spin_unlock_irq(&rq->lock);
3307
3308	post_schedule(rq);
3309
3310	sched_preempt_enable_no_resched();
3311	if (need_resched())
3312		goto need_resched;
3313}
3314
3315static inline void sched_submit_work(struct task_struct *tsk)
3316{
3317	if (!tsk->state || tsk_is_pi_blocked(tsk))
3318		return;
3319	/*
3320	 * If we are going to sleep and we have plugged IO queued,
3321	 * make sure to submit it to avoid deadlocks.
3322	 */
3323	if (blk_needs_flush_plug(tsk))
3324		blk_schedule_flush_plug(tsk);
3325}
3326
3327asmlinkage void __sched schedule(void)
3328{
3329	struct task_struct *tsk = current;
3330
3331	sched_submit_work(tsk);
3332	__schedule();
3333}
3334EXPORT_SYMBOL(schedule);
3335
3336/**
3337 * schedule_preempt_disabled - called with preemption disabled
3338 *
3339 * Returns with preemption disabled. Note: preempt_count must be 1
3340 */
3341void __sched schedule_preempt_disabled(void)
3342{
3343	sched_preempt_enable_no_resched();
3344	schedule();
3345	preempt_disable();
3346}
3347
3348#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3349
3350static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3351{
3352	if (lock->owner != owner)
3353		return false;
3354
3355	/*
3356	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3357	 * lock->owner still matches owner, if that fails, owner might
3358	 * point to free()d memory, if it still matches, the rcu_read_lock()
3359	 * ensures the memory stays valid.
3360	 */
3361	barrier();
3362
3363	return owner->on_cpu;
3364}
3365
3366/*
3367 * Look out! "owner" is an entirely speculative pointer
3368 * access and not reliable.
3369 */
3370int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3371{
3372	if (!sched_feat(OWNER_SPIN))
3373		return 0;
3374
3375	rcu_read_lock();
3376	while (owner_running(lock, owner)) {
3377		if (need_resched())
3378			break;
3379
3380		arch_mutex_cpu_relax();
3381	}
3382	rcu_read_unlock();
3383
3384	/*
3385	 * We break out the loop above on need_resched() and when the
3386	 * owner changed, which is a sign for heavy contention. Return
3387	 * success only when lock->owner is NULL.
3388	 */
3389	return lock->owner == NULL;
3390}
3391#endif
3392
3393#ifdef CONFIG_PREEMPT
3394/*
3395 * this is the entry point to schedule() from in-kernel preemption
3396 * off of preempt_enable. Kernel preemptions off return from interrupt
3397 * occur there and call schedule directly.
3398 */
3399asmlinkage void __sched notrace preempt_schedule(void)
3400{
3401	struct thread_info *ti = current_thread_info();
3402
3403	/*
3404	 * If there is a non-zero preempt_count or interrupts are disabled,
3405	 * we do not want to preempt the current task. Just return..
3406	 */
3407	if (likely(ti->preempt_count || irqs_disabled()))
3408		return;
3409
3410	do {
3411		add_preempt_count_notrace(PREEMPT_ACTIVE);
3412		__schedule();
3413		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3414
3415		/*
3416		 * Check again in case we missed a preemption opportunity
3417		 * between schedule and now.
3418		 */
3419		barrier();
3420	} while (need_resched());
3421}
3422EXPORT_SYMBOL(preempt_schedule);
3423
3424/*
3425 * this is the entry point to schedule() from kernel preemption
3426 * off of irq context.
3427 * Note, that this is called and return with irqs disabled. This will
3428 * protect us against recursive calling from irq.
3429 */
3430asmlinkage void __sched preempt_schedule_irq(void)
3431{
3432	struct thread_info *ti = current_thread_info();
3433
3434	/* Catch callers which need to be fixed */
3435	BUG_ON(ti->preempt_count || !irqs_disabled());
3436
3437	do {
3438		add_preempt_count(PREEMPT_ACTIVE);
3439		local_irq_enable();
3440		__schedule();
3441		local_irq_disable();
3442		sub_preempt_count(PREEMPT_ACTIVE);
3443
3444		/*
3445		 * Check again in case we missed a preemption opportunity
3446		 * between schedule and now.
3447		 */
3448		barrier();
3449	} while (need_resched());
3450}
3451
3452#endif /* CONFIG_PREEMPT */
3453
3454int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3455			  void *key)
3456{
3457	return try_to_wake_up(curr->private, mode, wake_flags);
3458}
3459EXPORT_SYMBOL(default_wake_function);
3460
3461/*
3462 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3463 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3464 * number) then we wake all the non-exclusive tasks and one exclusive task.
3465 *
3466 * There are circumstances in which we can try to wake a task which has already
3467 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3468 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3469 */
3470static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3471			int nr_exclusive, int wake_flags, void *key)
3472{
3473	wait_queue_t *curr, *next;
3474
3475	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3476		unsigned flags = curr->flags;
3477
3478		if (curr->func(curr, mode, wake_flags, key) &&
3479				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3480			break;
3481	}
3482}
3483
3484/**
3485 * __wake_up - wake up threads blocked on a waitqueue.
3486 * @q: the waitqueue
3487 * @mode: which threads
3488 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3489 * @key: is directly passed to the wakeup function
3490 *
3491 * It may be assumed that this function implies a write memory barrier before
3492 * changing the task state if and only if any tasks are woken up.
3493 */
3494void __wake_up(wait_queue_head_t *q, unsigned int mode,
3495			int nr_exclusive, void *key)
3496{
3497	unsigned long flags;
3498
3499	spin_lock_irqsave(&q->lock, flags);
3500	__wake_up_common(q, mode, nr_exclusive, 0, key);
3501	spin_unlock_irqrestore(&q->lock, flags);
3502}
3503EXPORT_SYMBOL(__wake_up);
3504
3505/*
3506 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3507 */
3508void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3509{
3510	__wake_up_common(q, mode, nr, 0, NULL);
3511}
3512EXPORT_SYMBOL_GPL(__wake_up_locked);
3513
3514void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3515{
3516	__wake_up_common(q, mode, 1, 0, key);
3517}
3518EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3519
3520/**
3521 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3522 * @q: the waitqueue
3523 * @mode: which threads
3524 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3525 * @key: opaque value to be passed to wakeup targets
3526 *
3527 * The sync wakeup differs that the waker knows that it will schedule
3528 * away soon, so while the target thread will be woken up, it will not
3529 * be migrated to another CPU - ie. the two threads are 'synchronized'
3530 * with each other. This can prevent needless bouncing between CPUs.
3531 *
3532 * On UP it can prevent extra preemption.
3533 *
3534 * It may be assumed that this function implies a write memory barrier before
3535 * changing the task state if and only if any tasks are woken up.
3536 */
3537void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3538			int nr_exclusive, void *key)
3539{
3540	unsigned long flags;
3541	int wake_flags = WF_SYNC;
3542
3543	if (unlikely(!q))
3544		return;
3545
3546	if (unlikely(!nr_exclusive))
3547		wake_flags = 0;
3548
3549	spin_lock_irqsave(&q->lock, flags);
3550	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3551	spin_unlock_irqrestore(&q->lock, flags);
3552}
3553EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3554
3555/*
3556 * __wake_up_sync - see __wake_up_sync_key()
3557 */
3558void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3559{
3560	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3561}
3562EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3563
3564/**
3565 * complete: - signals a single thread waiting on this completion
3566 * @x:  holds the state of this particular completion
3567 *
3568 * This will wake up a single thread waiting on this completion. Threads will be
3569 * awakened in the same order in which they were queued.
3570 *
3571 * See also complete_all(), wait_for_completion() and related routines.
3572 *
3573 * It may be assumed that this function implies a write memory barrier before
3574 * changing the task state if and only if any tasks are woken up.
3575 */
3576void complete(struct completion *x)
3577{
3578	unsigned long flags;
3579
3580	spin_lock_irqsave(&x->wait.lock, flags);
3581	x->done++;
3582	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3583	spin_unlock_irqrestore(&x->wait.lock, flags);
3584}
3585EXPORT_SYMBOL(complete);
3586
3587/**
3588 * complete_all: - signals all threads waiting on this completion
3589 * @x:  holds the state of this particular completion
3590 *
3591 * This will wake up all threads waiting on this particular completion event.
3592 *
3593 * It may be assumed that this function implies a write memory barrier before
3594 * changing the task state if and only if any tasks are woken up.
3595 */
3596void complete_all(struct completion *x)
3597{
3598	unsigned long flags;
3599
3600	spin_lock_irqsave(&x->wait.lock, flags);
3601	x->done += UINT_MAX/2;
3602	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3603	spin_unlock_irqrestore(&x->wait.lock, flags);
3604}
3605EXPORT_SYMBOL(complete_all);
3606
3607static inline long __sched
3608do_wait_for_common(struct completion *x, long timeout, int state)
3609{
3610	if (!x->done) {
3611		DECLARE_WAITQUEUE(wait, current);
3612
3613		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3614		do {
3615			if (signal_pending_state(state, current)) {
3616				timeout = -ERESTARTSYS;
3617				break;
3618			}
3619			__set_current_state(state);
3620			spin_unlock_irq(&x->wait.lock);
3621			timeout = schedule_timeout(timeout);
3622			spin_lock_irq(&x->wait.lock);
3623		} while (!x->done && timeout);
3624		__remove_wait_queue(&x->wait, &wait);
3625		if (!x->done)
3626			return timeout;
3627	}
3628	x->done--;
3629	return timeout ?: 1;
3630}
3631
3632static long __sched
3633wait_for_common(struct completion *x, long timeout, int state)
3634{
3635	might_sleep();
3636
3637	spin_lock_irq(&x->wait.lock);
3638	timeout = do_wait_for_common(x, timeout, state);
3639	spin_unlock_irq(&x->wait.lock);
3640	return timeout;
3641}
3642
3643/**
3644 * wait_for_completion: - waits for completion of a task
3645 * @x:  holds the state of this particular completion
3646 *
3647 * This waits to be signaled for completion of a specific task. It is NOT
3648 * interruptible and there is no timeout.
3649 *
3650 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3651 * and interrupt capability. Also see complete().
3652 */
3653void __sched wait_for_completion(struct completion *x)
3654{
3655	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3656}
3657EXPORT_SYMBOL(wait_for_completion);
3658
3659/**
3660 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3661 * @x:  holds the state of this particular completion
3662 * @timeout:  timeout value in jiffies
3663 *
3664 * This waits for either a completion of a specific task to be signaled or for a
3665 * specified timeout to expire. The timeout is in jiffies. It is not
3666 * interruptible.
3667 *
3668 * The return value is 0 if timed out, and positive (at least 1, or number of
3669 * jiffies left till timeout) if completed.
3670 */
3671unsigned long __sched
3672wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3673{
3674	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3675}
3676EXPORT_SYMBOL(wait_for_completion_timeout);
3677
3678/**
3679 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3680 * @x:  holds the state of this particular completion
3681 *
3682 * This waits for completion of a specific task to be signaled. It is
3683 * interruptible.
3684 *
3685 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3686 */
3687int __sched wait_for_completion_interruptible(struct completion *x)
3688{
3689	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3690	if (t == -ERESTARTSYS)
3691		return t;
3692	return 0;
3693}
3694EXPORT_SYMBOL(wait_for_completion_interruptible);
3695
3696/**
3697 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3698 * @x:  holds the state of this particular completion
3699 * @timeout:  timeout value in jiffies
3700 *
3701 * This waits for either a completion of a specific task to be signaled or for a
3702 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3703 *
3704 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3705 * positive (at least 1, or number of jiffies left till timeout) if completed.
3706 */
3707long __sched
3708wait_for_completion_interruptible_timeout(struct completion *x,
3709					  unsigned long timeout)
3710{
3711	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3712}
3713EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3714
3715/**
3716 * wait_for_completion_killable: - waits for completion of a task (killable)
3717 * @x:  holds the state of this particular completion
3718 *
3719 * This waits to be signaled for completion of a specific task. It can be
3720 * interrupted by a kill signal.
3721 *
3722 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3723 */
3724int __sched wait_for_completion_killable(struct completion *x)
3725{
3726	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3727	if (t == -ERESTARTSYS)
3728		return t;
3729	return 0;
3730}
3731EXPORT_SYMBOL(wait_for_completion_killable);
3732
3733/**
3734 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3735 * @x:  holds the state of this particular completion
3736 * @timeout:  timeout value in jiffies
3737 *
3738 * This waits for either a completion of a specific task to be
3739 * signaled or for a specified timeout to expire. It can be
3740 * interrupted by a kill signal. The timeout is in jiffies.
3741 *
3742 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3743 * positive (at least 1, or number of jiffies left till timeout) if completed.
3744 */
3745long __sched
3746wait_for_completion_killable_timeout(struct completion *x,
3747				     unsigned long timeout)
3748{
3749	return wait_for_common(x, timeout, TASK_KILLABLE);
3750}
3751EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3752
3753/**
3754 *	try_wait_for_completion - try to decrement a completion without blocking
3755 *	@x:	completion structure
3756 *
3757 *	Returns: 0 if a decrement cannot be done without blocking
3758 *		 1 if a decrement succeeded.
3759 *
3760 *	If a completion is being used as a counting completion,
3761 *	attempt to decrement the counter without blocking. This
3762 *	enables us to avoid waiting if the resource the completion
3763 *	is protecting is not available.
3764 */
3765bool try_wait_for_completion(struct completion *x)
3766{
3767	unsigned long flags;
3768	int ret = 1;
3769
3770	spin_lock_irqsave(&x->wait.lock, flags);
3771	if (!x->done)
3772		ret = 0;
3773	else
3774		x->done--;
3775	spin_unlock_irqrestore(&x->wait.lock, flags);
3776	return ret;
3777}
3778EXPORT_SYMBOL(try_wait_for_completion);
3779
3780/**
3781 *	completion_done - Test to see if a completion has any waiters
3782 *	@x:	completion structure
3783 *
3784 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3785 *		 1 if there are no waiters.
3786 *
3787 */
3788bool completion_done(struct completion *x)
3789{
3790	unsigned long flags;
3791	int ret = 1;
3792
3793	spin_lock_irqsave(&x->wait.lock, flags);
3794	if (!x->done)
3795		ret = 0;
3796	spin_unlock_irqrestore(&x->wait.lock, flags);
3797	return ret;
3798}
3799EXPORT_SYMBOL(completion_done);
3800
3801static long __sched
3802sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3803{
3804	unsigned long flags;
3805	wait_queue_t wait;
3806
3807	init_waitqueue_entry(&wait, current);
3808
3809	__set_current_state(state);
3810
3811	spin_lock_irqsave(&q->lock, flags);
3812	__add_wait_queue(q, &wait);
3813	spin_unlock(&q->lock);
3814	timeout = schedule_timeout(timeout);
3815	spin_lock_irq(&q->lock);
3816	__remove_wait_queue(q, &wait);
3817	spin_unlock_irqrestore(&q->lock, flags);
3818
3819	return timeout;
3820}
3821
3822void __sched interruptible_sleep_on(wait_queue_head_t *q)
3823{
3824	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3825}
3826EXPORT_SYMBOL(interruptible_sleep_on);
3827
3828long __sched
3829interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3830{
3831	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3832}
3833EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3834
3835void __sched sleep_on(wait_queue_head_t *q)
3836{
3837	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3838}
3839EXPORT_SYMBOL(sleep_on);
3840
3841long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3842{
3843	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3844}
3845EXPORT_SYMBOL(sleep_on_timeout);
3846
3847#ifdef CONFIG_RT_MUTEXES
3848
3849/*
3850 * rt_mutex_setprio - set the current priority of a task
3851 * @p: task
3852 * @prio: prio value (kernel-internal form)
3853 *
3854 * This function changes the 'effective' priority of a task. It does
3855 * not touch ->normal_prio like __setscheduler().
3856 *
3857 * Used by the rt_mutex code to implement priority inheritance logic.
3858 */
3859void rt_mutex_setprio(struct task_struct *p, int prio)
3860{
3861	int oldprio, on_rq, running;
3862	struct rq *rq;
3863	const struct sched_class *prev_class;
3864
3865	BUG_ON(prio < 0 || prio > MAX_PRIO);
3866
3867	rq = __task_rq_lock(p);
3868
3869	/*
3870	 * Idle task boosting is a nono in general. There is one
3871	 * exception, when PREEMPT_RT and NOHZ is active:
3872	 *
3873	 * The idle task calls get_next_timer_interrupt() and holds
3874	 * the timer wheel base->lock on the CPU and another CPU wants
3875	 * to access the timer (probably to cancel it). We can safely
3876	 * ignore the boosting request, as the idle CPU runs this code
3877	 * with interrupts disabled and will complete the lock
3878	 * protected section without being interrupted. So there is no
3879	 * real need to boost.
3880	 */
3881	if (unlikely(p == rq->idle)) {
3882		WARN_ON(p != rq->curr);
3883		WARN_ON(p->pi_blocked_on);
3884		goto out_unlock;
3885	}
3886
3887	trace_sched_pi_setprio(p, prio);
3888	oldprio = p->prio;
3889	prev_class = p->sched_class;
3890	on_rq = p->on_rq;
3891	running = task_current(rq, p);
3892	if (on_rq)
3893		dequeue_task(rq, p, 0);
3894	if (running)
3895		p->sched_class->put_prev_task(rq, p);
3896
3897	if (rt_prio(prio))
3898		p->sched_class = &rt_sched_class;
3899	else
3900		p->sched_class = &fair_sched_class;
3901
3902	p->prio = prio;
3903
3904	if (running)
3905		p->sched_class->set_curr_task(rq);
3906	if (on_rq)
3907		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3908
3909	check_class_changed(rq, p, prev_class, oldprio);
3910out_unlock:
3911	__task_rq_unlock(rq);
3912}
3913#endif
3914void set_user_nice(struct task_struct *p, long nice)
3915{
3916	int old_prio, delta, on_rq;
3917	unsigned long flags;
3918	struct rq *rq;
3919
3920	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3921		return;
3922	/*
3923	 * We have to be careful, if called from sys_setpriority(),
3924	 * the task might be in the middle of scheduling on another CPU.
3925	 */
3926	rq = task_rq_lock(p, &flags);
3927	/*
3928	 * The RT priorities are set via sched_setscheduler(), but we still
3929	 * allow the 'normal' nice value to be set - but as expected
3930	 * it wont have any effect on scheduling until the task is
3931	 * SCHED_FIFO/SCHED_RR:
3932	 */
3933	if (task_has_rt_policy(p)) {
3934		p->static_prio = NICE_TO_PRIO(nice);
3935		goto out_unlock;
3936	}
3937	on_rq = p->on_rq;
3938	if (on_rq)
3939		dequeue_task(rq, p, 0);
3940
3941	p->static_prio = NICE_TO_PRIO(nice);
3942	set_load_weight(p);
3943	old_prio = p->prio;
3944	p->prio = effective_prio(p);
3945	delta = p->prio - old_prio;
3946
3947	if (on_rq) {
3948		enqueue_task(rq, p, 0);
3949		/*
3950		 * If the task increased its priority or is running and
3951		 * lowered its priority, then reschedule its CPU:
3952		 */
3953		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3954			resched_task(rq->curr);
3955	}
3956out_unlock:
3957	task_rq_unlock(rq, p, &flags);
3958}
3959EXPORT_SYMBOL(set_user_nice);
3960
3961/*
3962 * can_nice - check if a task can reduce its nice value
3963 * @p: task
3964 * @nice: nice value
3965 */
3966int can_nice(const struct task_struct *p, const int nice)
3967{
3968	/* convert nice value [19,-20] to rlimit style value [1,40] */
3969	int nice_rlim = 20 - nice;
3970
3971	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3972		capable(CAP_SYS_NICE));
3973}
3974
3975#ifdef __ARCH_WANT_SYS_NICE
3976
3977/*
3978 * sys_nice - change the priority of the current process.
3979 * @increment: priority increment
3980 *
3981 * sys_setpriority is a more generic, but much slower function that
3982 * does similar things.
3983 */
3984SYSCALL_DEFINE1(nice, int, increment)
3985{
3986	long nice, retval;
3987
3988	/*
3989	 * Setpriority might change our priority at the same moment.
3990	 * We don't have to worry. Conceptually one call occurs first
3991	 * and we have a single winner.
3992	 */
3993	if (increment < -40)
3994		increment = -40;
3995	if (increment > 40)
3996		increment = 40;
3997
3998	nice = TASK_NICE(current) + increment;
3999	if (nice < -20)
4000		nice = -20;
4001	if (nice > 19)
4002		nice = 19;
4003
4004	if (increment < 0 && !can_nice(current, nice))
4005		return -EPERM;
4006
4007	retval = security_task_setnice(current, nice);
4008	if (retval)
4009		return retval;
4010
4011	set_user_nice(current, nice);
4012	return 0;
4013}
4014
4015#endif
4016
4017/**
4018 * task_prio - return the priority value of a given task.
4019 * @p: the task in question.
4020 *
4021 * This is the priority value as seen by users in /proc.
4022 * RT tasks are offset by -200. Normal tasks are centered
4023 * around 0, value goes from -16 to +15.
4024 */
4025int task_prio(const struct task_struct *p)
4026{
4027	return p->prio - MAX_RT_PRIO;
4028}
4029
4030/**
4031 * task_nice - return the nice value of a given task.
4032 * @p: the task in question.
4033 */
4034int task_nice(const struct task_struct *p)
4035{
4036	return TASK_NICE(p);
4037}
4038EXPORT_SYMBOL(task_nice);
4039
4040/**
4041 * idle_cpu - is a given cpu idle currently?
4042 * @cpu: the processor in question.
4043 */
4044int idle_cpu(int cpu)
4045{
4046	struct rq *rq = cpu_rq(cpu);
4047
4048	if (rq->curr != rq->idle)
4049		return 0;
4050
4051	if (rq->nr_running)
4052		return 0;
4053
4054#ifdef CONFIG_SMP
4055	if (!llist_empty(&rq->wake_list))
4056		return 0;
4057#endif
4058
4059	return 1;
4060}
4061
4062/**
4063 * idle_task - return the idle task for a given cpu.
4064 * @cpu: the processor in question.
4065 */
4066struct task_struct *idle_task(int cpu)
4067{
4068	return cpu_rq(cpu)->idle;
4069}
4070
4071/**
4072 * find_process_by_pid - find a process with a matching PID value.
4073 * @pid: the pid in question.
4074 */
4075static struct task_struct *find_process_by_pid(pid_t pid)
4076{
4077	return pid ? find_task_by_vpid(pid) : current;
4078}
4079
4080/* Actually do priority change: must hold rq lock. */
4081static void
4082__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4083{
4084	p->policy = policy;
4085	p->rt_priority = prio;
4086	p->normal_prio = normal_prio(p);
4087	/* we are holding p->pi_lock already */
4088	p->prio = rt_mutex_getprio(p);
4089	if (rt_prio(p->prio))
4090		p->sched_class = &rt_sched_class;
4091	else
4092		p->sched_class = &fair_sched_class;
4093	set_load_weight(p);
4094}
4095
4096/*
4097 * check the target process has a UID that matches the current process's
4098 */
4099static bool check_same_owner(struct task_struct *p)
4100{
4101	const struct cred *cred = current_cred(), *pcred;
4102	bool match;
4103
4104	rcu_read_lock();
4105	pcred = __task_cred(p);
4106	match = (uid_eq(cred->euid, pcred->euid) ||
4107		 uid_eq(cred->euid, pcred->uid));
4108	rcu_read_unlock();
4109	return match;
4110}
4111
4112static int __sched_setscheduler(struct task_struct *p, int policy,
4113				const struct sched_param *param, bool user)
4114{
4115	int retval, oldprio, oldpolicy = -1, on_rq, running;
4116	unsigned long flags;
4117	const struct sched_class *prev_class;
4118	struct rq *rq;
4119	int reset_on_fork;
4120
4121	/* may grab non-irq protected spin_locks */
4122	BUG_ON(in_interrupt());
4123recheck:
4124	/* double check policy once rq lock held */
4125	if (policy < 0) {
4126		reset_on_fork = p->sched_reset_on_fork;
4127		policy = oldpolicy = p->policy;
4128	} else {
4129		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4130		policy &= ~SCHED_RESET_ON_FORK;
4131
4132		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4133				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4134				policy != SCHED_IDLE)
4135			return -EINVAL;
4136	}
4137
4138	/*
4139	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4140	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4141	 * SCHED_BATCH and SCHED_IDLE is 0.
4142	 */
4143	if (param->sched_priority < 0 ||
4144	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4145	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4146		return -EINVAL;
4147	if (rt_policy(policy) != (param->sched_priority != 0))
4148		return -EINVAL;
4149
4150	/*
4151	 * Allow unprivileged RT tasks to decrease priority:
4152	 */
4153	if (user && !capable(CAP_SYS_NICE)) {
4154		if (rt_policy(policy)) {
4155			unsigned long rlim_rtprio =
4156					task_rlimit(p, RLIMIT_RTPRIO);
4157
4158			/* can't set/change the rt policy */
4159			if (policy != p->policy && !rlim_rtprio)
4160				return -EPERM;
4161
4162			/* can't increase priority */
4163			if (param->sched_priority > p->rt_priority &&
4164			    param->sched_priority > rlim_rtprio)
4165				return -EPERM;
4166		}
4167
4168		/*
4169		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4170		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4171		 */
4172		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4173			if (!can_nice(p, TASK_NICE(p)))
4174				return -EPERM;
4175		}
4176
4177		/* can't change other user's priorities */
4178		if (!check_same_owner(p))
4179			return -EPERM;
4180
4181		/* Normal users shall not reset the sched_reset_on_fork flag */
4182		if (p->sched_reset_on_fork && !reset_on_fork)
4183			return -EPERM;
4184	}
4185
4186	if (user) {
4187		retval = security_task_setscheduler(p);
4188		if (retval)
4189			return retval;
4190	}
4191
4192	/*
4193	 * make sure no PI-waiters arrive (or leave) while we are
4194	 * changing the priority of the task:
4195	 *
4196	 * To be able to change p->policy safely, the appropriate
4197	 * runqueue lock must be held.
4198	 */
4199	rq = task_rq_lock(p, &flags);
4200
4201	/*
4202	 * Changing the policy of the stop threads its a very bad idea
4203	 */
4204	if (p == rq->stop) {
4205		task_rq_unlock(rq, p, &flags);
4206		return -EINVAL;
4207	}
4208
4209	/*
4210	 * If not changing anything there's no need to proceed further:
4211	 */
4212	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4213			param->sched_priority == p->rt_priority))) {
4214
4215		__task_rq_unlock(rq);
4216		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4217		return 0;
4218	}
4219
4220#ifdef CONFIG_RT_GROUP_SCHED
4221	if (user) {
4222		/*
4223		 * Do not allow realtime tasks into groups that have no runtime
4224		 * assigned.
4225		 */
4226		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4227				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4228				!task_group_is_autogroup(task_group(p))) {
4229			task_rq_unlock(rq, p, &flags);
4230			return -EPERM;
4231		}
4232	}
4233#endif
4234
4235	/* recheck policy now with rq lock held */
4236	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4237		policy = oldpolicy = -1;
4238		task_rq_unlock(rq, p, &flags);
4239		goto recheck;
4240	}
4241	on_rq = p->on_rq;
4242	running = task_current(rq, p);
4243	if (on_rq)
4244		dequeue_task(rq, p, 0);
4245	if (running)
4246		p->sched_class->put_prev_task(rq, p);
4247
4248	p->sched_reset_on_fork = reset_on_fork;
4249
4250	oldprio = p->prio;
4251	prev_class = p->sched_class;
4252	__setscheduler(rq, p, policy, param->sched_priority);
4253
4254	if (running)
4255		p->sched_class->set_curr_task(rq);
4256	if (on_rq)
4257		enqueue_task(rq, p, 0);
4258
4259	check_class_changed(rq, p, prev_class, oldprio);
4260	task_rq_unlock(rq, p, &flags);
4261
4262	rt_mutex_adjust_pi(p);
4263
4264	return 0;
4265}
4266
4267/**
4268 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4269 * @p: the task in question.
4270 * @policy: new policy.
4271 * @param: structure containing the new RT priority.
4272 *
4273 * NOTE that the task may be already dead.
4274 */
4275int sched_setscheduler(struct task_struct *p, int policy,
4276		       const struct sched_param *param)
4277{
4278	return __sched_setscheduler(p, policy, param, true);
4279}
4280EXPORT_SYMBOL_GPL(sched_setscheduler);
4281
4282/**
4283 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4284 * @p: the task in question.
4285 * @policy: new policy.
4286 * @param: structure containing the new RT priority.
4287 *
4288 * Just like sched_setscheduler, only don't bother checking if the
4289 * current context has permission.  For example, this is needed in
4290 * stop_machine(): we create temporary high priority worker threads,
4291 * but our caller might not have that capability.
4292 */
4293int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4294			       const struct sched_param *param)
4295{
4296	return __sched_setscheduler(p, policy, param, false);
4297}
4298
4299static int
4300do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4301{
4302	struct sched_param lparam;
4303	struct task_struct *p;
4304	int retval;
4305
4306	if (!param || pid < 0)
4307		return -EINVAL;
4308	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4309		return -EFAULT;
4310
4311	rcu_read_lock();
4312	retval = -ESRCH;
4313	p = find_process_by_pid(pid);
4314	if (p != NULL)
4315		retval = sched_setscheduler(p, policy, &lparam);
4316	rcu_read_unlock();
4317
4318	return retval;
4319}
4320
4321/**
4322 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4323 * @pid: the pid in question.
4324 * @policy: new policy.
4325 * @param: structure containing the new RT priority.
4326 */
4327SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4328		struct sched_param __user *, param)
4329{
4330	/* negative values for policy are not valid */
4331	if (policy < 0)
4332		return -EINVAL;
4333
4334	return do_sched_setscheduler(pid, policy, param);
4335}
4336
4337/**
4338 * sys_sched_setparam - set/change the RT priority of a thread
4339 * @pid: the pid in question.
4340 * @param: structure containing the new RT priority.
4341 */
4342SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4343{
4344	return do_sched_setscheduler(pid, -1, param);
4345}
4346
4347/**
4348 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4349 * @pid: the pid in question.
4350 */
4351SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4352{
4353	struct task_struct *p;
4354	int retval;
4355
4356	if (pid < 0)
4357		return -EINVAL;
4358
4359	retval = -ESRCH;
4360	rcu_read_lock();
4361	p = find_process_by_pid(pid);
4362	if (p) {
4363		retval = security_task_getscheduler(p);
4364		if (!retval)
4365			retval = p->policy
4366				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4367	}
4368	rcu_read_unlock();
4369	return retval;
4370}
4371
4372/**
4373 * sys_sched_getparam - get the RT priority of a thread
4374 * @pid: the pid in question.
4375 * @param: structure containing the RT priority.
4376 */
4377SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4378{
4379	struct sched_param lp;
4380	struct task_struct *p;
4381	int retval;
4382
4383	if (!param || pid < 0)
4384		return -EINVAL;
4385
4386	rcu_read_lock();
4387	p = find_process_by_pid(pid);
4388	retval = -ESRCH;
4389	if (!p)
4390		goto out_unlock;
4391
4392	retval = security_task_getscheduler(p);
4393	if (retval)
4394		goto out_unlock;
4395
4396	lp.sched_priority = p->rt_priority;
4397	rcu_read_unlock();
4398
4399	/*
4400	 * This one might sleep, we cannot do it with a spinlock held ...
4401	 */
4402	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4403
4404	return retval;
4405
4406out_unlock:
4407	rcu_read_unlock();
4408	return retval;
4409}
4410
4411long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4412{
4413	cpumask_var_t cpus_allowed, new_mask;
4414	struct task_struct *p;
4415	int retval;
4416
4417	get_online_cpus();
4418	rcu_read_lock();
4419
4420	p = find_process_by_pid(pid);
4421	if (!p) {
4422		rcu_read_unlock();
4423		put_online_cpus();
4424		return -ESRCH;
4425	}
4426
4427	/* Prevent p going away */
4428	get_task_struct(p);
4429	rcu_read_unlock();
4430
4431	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4432		retval = -ENOMEM;
4433		goto out_put_task;
4434	}
4435	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4436		retval = -ENOMEM;
4437		goto out_free_cpus_allowed;
4438	}
4439	retval = -EPERM;
4440	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4441		goto out_unlock;
4442
4443	retval = security_task_setscheduler(p);
4444	if (retval)
4445		goto out_unlock;
4446
4447	cpuset_cpus_allowed(p, cpus_allowed);
4448	cpumask_and(new_mask, in_mask, cpus_allowed);
4449again:
4450	retval = set_cpus_allowed_ptr(p, new_mask);
4451
4452	if (!retval) {
4453		cpuset_cpus_allowed(p, cpus_allowed);
4454		if (!cpumask_subset(new_mask, cpus_allowed)) {
4455			/*
4456			 * We must have raced with a concurrent cpuset
4457			 * update. Just reset the cpus_allowed to the
4458			 * cpuset's cpus_allowed
4459			 */
4460			cpumask_copy(new_mask, cpus_allowed);
4461			goto again;
4462		}
4463	}
4464out_unlock:
4465	free_cpumask_var(new_mask);
4466out_free_cpus_allowed:
4467	free_cpumask_var(cpus_allowed);
4468out_put_task:
4469	put_task_struct(p);
4470	put_online_cpus();
4471	return retval;
4472}
4473
4474static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4475			     struct cpumask *new_mask)
4476{
4477	if (len < cpumask_size())
4478		cpumask_clear(new_mask);
4479	else if (len > cpumask_size())
4480		len = cpumask_size();
4481
4482	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4483}
4484
4485/**
4486 * sys_sched_setaffinity - set the cpu affinity of a process
4487 * @pid: pid of the process
4488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4489 * @user_mask_ptr: user-space pointer to the new cpu mask
4490 */
4491SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4492		unsigned long __user *, user_mask_ptr)
4493{
4494	cpumask_var_t new_mask;
4495	int retval;
4496
4497	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4498		return -ENOMEM;
4499
4500	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4501	if (retval == 0)
4502		retval = sched_setaffinity(pid, new_mask);
4503	free_cpumask_var(new_mask);
4504	return retval;
4505}
4506
4507long sched_getaffinity(pid_t pid, struct cpumask *mask)
4508{
4509	struct task_struct *p;
4510	unsigned long flags;
4511	int retval;
4512
4513	get_online_cpus();
4514	rcu_read_lock();
4515
4516	retval = -ESRCH;
4517	p = find_process_by_pid(pid);
4518	if (!p)
4519		goto out_unlock;
4520
4521	retval = security_task_getscheduler(p);
4522	if (retval)
4523		goto out_unlock;
4524
4525	raw_spin_lock_irqsave(&p->pi_lock, flags);
4526	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4527	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4528
4529out_unlock:
4530	rcu_read_unlock();
4531	put_online_cpus();
4532
4533	return retval;
4534}
4535
4536/**
4537 * sys_sched_getaffinity - get the cpu affinity of a process
4538 * @pid: pid of the process
4539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4540 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4541 */
4542SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4543		unsigned long __user *, user_mask_ptr)
4544{
4545	int ret;
4546	cpumask_var_t mask;
4547
4548	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4549		return -EINVAL;
4550	if (len & (sizeof(unsigned long)-1))
4551		return -EINVAL;
4552
4553	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4554		return -ENOMEM;
4555
4556	ret = sched_getaffinity(pid, mask);
4557	if (ret == 0) {
4558		size_t retlen = min_t(size_t, len, cpumask_size());
4559
4560		if (copy_to_user(user_mask_ptr, mask, retlen))
4561			ret = -EFAULT;
4562		else
4563			ret = retlen;
4564	}
4565	free_cpumask_var(mask);
4566
4567	return ret;
4568}
4569
4570/**
4571 * sys_sched_yield - yield the current processor to other threads.
4572 *
4573 * This function yields the current CPU to other tasks. If there are no
4574 * other threads running on this CPU then this function will return.
4575 */
4576SYSCALL_DEFINE0(sched_yield)
4577{
4578	struct rq *rq = this_rq_lock();
4579
4580	schedstat_inc(rq, yld_count);
4581	current->sched_class->yield_task(rq);
4582
4583	/*
4584	 * Since we are going to call schedule() anyway, there's
4585	 * no need to preempt or enable interrupts:
4586	 */
4587	__release(rq->lock);
4588	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4589	do_raw_spin_unlock(&rq->lock);
4590	sched_preempt_enable_no_resched();
4591
4592	schedule();
4593
4594	return 0;
4595}
4596
4597static inline int should_resched(void)
4598{
4599	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4600}
4601
4602static void __cond_resched(void)
4603{
4604	add_preempt_count(PREEMPT_ACTIVE);
4605	__schedule();
4606	sub_preempt_count(PREEMPT_ACTIVE);
4607}
4608
4609int __sched _cond_resched(void)
4610{
4611	if (should_resched()) {
4612		__cond_resched();
4613		return 1;
4614	}
4615	return 0;
4616}
4617EXPORT_SYMBOL(_cond_resched);
4618
4619/*
4620 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4621 * call schedule, and on return reacquire the lock.
4622 *
4623 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4624 * operations here to prevent schedule() from being called twice (once via
4625 * spin_unlock(), once by hand).
4626 */
4627int __cond_resched_lock(spinlock_t *lock)
4628{
4629	int resched = should_resched();
4630	int ret = 0;
4631
4632	lockdep_assert_held(lock);
4633
4634	if (spin_needbreak(lock) || resched) {
4635		spin_unlock(lock);
4636		if (resched)
4637			__cond_resched();
4638		else
4639			cpu_relax();
4640		ret = 1;
4641		spin_lock(lock);
4642	}
4643	return ret;
4644}
4645EXPORT_SYMBOL(__cond_resched_lock);
4646
4647int __sched __cond_resched_softirq(void)
4648{
4649	BUG_ON(!in_softirq());
4650
4651	if (should_resched()) {
4652		local_bh_enable();
4653		__cond_resched();
4654		local_bh_disable();
4655		return 1;
4656	}
4657	return 0;
4658}
4659EXPORT_SYMBOL(__cond_resched_softirq);
4660
4661/**
4662 * yield - yield the current processor to other threads.
4663 *
4664 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4665 *
4666 * The scheduler is at all times free to pick the calling task as the most
4667 * eligible task to run, if removing the yield() call from your code breaks
4668 * it, its already broken.
4669 *
4670 * Typical broken usage is:
4671 *
4672 * while (!event)
4673 * 	yield();
4674 *
4675 * where one assumes that yield() will let 'the other' process run that will
4676 * make event true. If the current task is a SCHED_FIFO task that will never
4677 * happen. Never use yield() as a progress guarantee!!
4678 *
4679 * If you want to use yield() to wait for something, use wait_event().
4680 * If you want to use yield() to be 'nice' for others, use cond_resched().
4681 * If you still want to use yield(), do not!
4682 */
4683void __sched yield(void)
4684{
4685	set_current_state(TASK_RUNNING);
4686	sys_sched_yield();
4687}
4688EXPORT_SYMBOL(yield);
4689
4690/**
4691 * yield_to - yield the current processor to another thread in
4692 * your thread group, or accelerate that thread toward the
4693 * processor it's on.
4694 * @p: target task
4695 * @preempt: whether task preemption is allowed or not
4696 *
4697 * It's the caller's job to ensure that the target task struct
4698 * can't go away on us before we can do any checks.
4699 *
4700 * Returns true if we indeed boosted the target task.
4701 */
4702bool __sched yield_to(struct task_struct *p, bool preempt)
4703{
4704	struct task_struct *curr = current;
4705	struct rq *rq, *p_rq;
4706	unsigned long flags;
4707	bool yielded = 0;
4708
4709	local_irq_save(flags);
4710	rq = this_rq();
4711
4712again:
4713	p_rq = task_rq(p);
4714	double_rq_lock(rq, p_rq);
4715	while (task_rq(p) != p_rq) {
4716		double_rq_unlock(rq, p_rq);
4717		goto again;
4718	}
4719
4720	if (!curr->sched_class->yield_to_task)
4721		goto out;
4722
4723	if (curr->sched_class != p->sched_class)
4724		goto out;
4725
4726	if (task_running(p_rq, p) || p->state)
4727		goto out;
4728
4729	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4730	if (yielded) {
4731		schedstat_inc(rq, yld_count);
4732		/*
4733		 * Make p's CPU reschedule; pick_next_entity takes care of
4734		 * fairness.
4735		 */
4736		if (preempt && rq != p_rq)
4737			resched_task(p_rq->curr);
4738	} else {
4739		/*
4740		 * We might have set it in task_yield_fair(), but are
4741		 * not going to schedule(), so don't want to skip
4742		 * the next update.
4743		 */
4744		rq->skip_clock_update = 0;
4745	}
4746
4747out:
4748	double_rq_unlock(rq, p_rq);
4749	local_irq_restore(flags);
4750
4751	if (yielded)
4752		schedule();
4753
4754	return yielded;
4755}
4756EXPORT_SYMBOL_GPL(yield_to);
4757
4758/*
4759 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4760 * that process accounting knows that this is a task in IO wait state.
4761 */
4762void __sched io_schedule(void)
4763{
4764	struct rq *rq = raw_rq();
4765
4766	delayacct_blkio_start();
4767	atomic_inc(&rq->nr_iowait);
4768	blk_flush_plug(current);
4769	current->in_iowait = 1;
4770	schedule();
4771	current->in_iowait = 0;
4772	atomic_dec(&rq->nr_iowait);
4773	delayacct_blkio_end();
4774}
4775EXPORT_SYMBOL(io_schedule);
4776
4777long __sched io_schedule_timeout(long timeout)
4778{
4779	struct rq *rq = raw_rq();
4780	long ret;
4781
4782	delayacct_blkio_start();
4783	atomic_inc(&rq->nr_iowait);
4784	blk_flush_plug(current);
4785	current->in_iowait = 1;
4786	ret = schedule_timeout(timeout);
4787	current->in_iowait = 0;
4788	atomic_dec(&rq->nr_iowait);
4789	delayacct_blkio_end();
4790	return ret;
4791}
4792
4793/**
4794 * sys_sched_get_priority_max - return maximum RT priority.
4795 * @policy: scheduling class.
4796 *
4797 * this syscall returns the maximum rt_priority that can be used
4798 * by a given scheduling class.
4799 */
4800SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4801{
4802	int ret = -EINVAL;
4803
4804	switch (policy) {
4805	case SCHED_FIFO:
4806	case SCHED_RR:
4807		ret = MAX_USER_RT_PRIO-1;
4808		break;
4809	case SCHED_NORMAL:
4810	case SCHED_BATCH:
4811	case SCHED_IDLE:
4812		ret = 0;
4813		break;
4814	}
4815	return ret;
4816}
4817
4818/**
4819 * sys_sched_get_priority_min - return minimum RT priority.
4820 * @policy: scheduling class.
4821 *
4822 * this syscall returns the minimum rt_priority that can be used
4823 * by a given scheduling class.
4824 */
4825SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4826{
4827	int ret = -EINVAL;
4828
4829	switch (policy) {
4830	case SCHED_FIFO:
4831	case SCHED_RR:
4832		ret = 1;
4833		break;
4834	case SCHED_NORMAL:
4835	case SCHED_BATCH:
4836	case SCHED_IDLE:
4837		ret = 0;
4838	}
4839	return ret;
4840}
4841
4842/**
4843 * sys_sched_rr_get_interval - return the default timeslice of a process.
4844 * @pid: pid of the process.
4845 * @interval: userspace pointer to the timeslice value.
4846 *
4847 * this syscall writes the default timeslice value of a given process
4848 * into the user-space timespec buffer. A value of '0' means infinity.
4849 */
4850SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4851		struct timespec __user *, interval)
4852{
4853	struct task_struct *p;
4854	unsigned int time_slice;
4855	unsigned long flags;
4856	struct rq *rq;
4857	int retval;
4858	struct timespec t;
4859
4860	if (pid < 0)
4861		return -EINVAL;
4862
4863	retval = -ESRCH;
4864	rcu_read_lock();
4865	p = find_process_by_pid(pid);
4866	if (!p)
4867		goto out_unlock;
4868
4869	retval = security_task_getscheduler(p);
4870	if (retval)
4871		goto out_unlock;
4872
4873	rq = task_rq_lock(p, &flags);
4874	time_slice = p->sched_class->get_rr_interval(rq, p);
4875	task_rq_unlock(rq, p, &flags);
4876
4877	rcu_read_unlock();
4878	jiffies_to_timespec(time_slice, &t);
4879	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4880	return retval;
4881
4882out_unlock:
4883	rcu_read_unlock();
4884	return retval;
4885}
4886
4887static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4888
4889void sched_show_task(struct task_struct *p)
4890{
4891	unsigned long free = 0;
4892	unsigned state;
4893
4894	state = p->state ? __ffs(p->state) + 1 : 0;
4895	printk(KERN_INFO "%-15.15s %c", p->comm,
4896		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4897#if BITS_PER_LONG == 32
4898	if (state == TASK_RUNNING)
4899		printk(KERN_CONT " running  ");
4900	else
4901		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4902#else
4903	if (state == TASK_RUNNING)
4904		printk(KERN_CONT "  running task    ");
4905	else
4906		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4907#endif
4908#ifdef CONFIG_DEBUG_STACK_USAGE
4909	free = stack_not_used(p);
4910#endif
4911	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4912		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4913		(unsigned long)task_thread_info(p)->flags);
4914
4915	show_stack(p, NULL);
4916}
4917
4918void show_state_filter(unsigned long state_filter)
4919{
4920	struct task_struct *g, *p;
4921
4922#if BITS_PER_LONG == 32
4923	printk(KERN_INFO
4924		"  task                PC stack   pid father\n");
4925#else
4926	printk(KERN_INFO
4927		"  task                        PC stack   pid father\n");
4928#endif
4929	rcu_read_lock();
4930	do_each_thread(g, p) {
4931		/*
4932		 * reset the NMI-timeout, listing all files on a slow
4933		 * console might take a lot of time:
4934		 */
4935		touch_nmi_watchdog();
4936		if (!state_filter || (p->state & state_filter))
4937			sched_show_task(p);
4938	} while_each_thread(g, p);
4939
4940	touch_all_softlockup_watchdogs();
4941
4942#ifdef CONFIG_SCHED_DEBUG
4943	sysrq_sched_debug_show();
4944#endif
4945	rcu_read_unlock();
4946	/*
4947	 * Only show locks if all tasks are dumped:
4948	 */
4949	if (!state_filter)
4950		debug_show_all_locks();
4951}
4952
4953void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4954{
4955	idle->sched_class = &idle_sched_class;
4956}
4957
4958/**
4959 * init_idle - set up an idle thread for a given CPU
4960 * @idle: task in question
4961 * @cpu: cpu the idle task belongs to
4962 *
4963 * NOTE: this function does not set the idle thread's NEED_RESCHED
4964 * flag, to make booting more robust.
4965 */
4966void __cpuinit init_idle(struct task_struct *idle, int cpu)
4967{
4968	struct rq *rq = cpu_rq(cpu);
4969	unsigned long flags;
4970
4971	raw_spin_lock_irqsave(&rq->lock, flags);
4972
4973	__sched_fork(idle);
4974	idle->state = TASK_RUNNING;
4975	idle->se.exec_start = sched_clock();
4976
4977	do_set_cpus_allowed(idle, cpumask_of(cpu));
4978	/*
4979	 * We're having a chicken and egg problem, even though we are
4980	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4981	 * lockdep check in task_group() will fail.
4982	 *
4983	 * Similar case to sched_fork(). / Alternatively we could
4984	 * use task_rq_lock() here and obtain the other rq->lock.
4985	 *
4986	 * Silence PROVE_RCU
4987	 */
4988	rcu_read_lock();
4989	__set_task_cpu(idle, cpu);
4990	rcu_read_unlock();
4991
4992	rq->curr = rq->idle = idle;
4993#if defined(CONFIG_SMP)
4994	idle->on_cpu = 1;
4995#endif
4996	raw_spin_unlock_irqrestore(&rq->lock, flags);
4997
4998	/* Set the preempt count _outside_ the spinlocks! */
4999	task_thread_info(idle)->preempt_count = 0;
5000
5001	/*
5002	 * The idle tasks have their own, simple scheduling class:
5003	 */
5004	idle->sched_class = &idle_sched_class;
5005	ftrace_graph_init_idle_task(idle, cpu);
5006#if defined(CONFIG_SMP)
5007	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5008#endif
5009}
5010
5011#ifdef CONFIG_SMP
5012void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5013{
5014	if (p->sched_class && p->sched_class->set_cpus_allowed)
5015		p->sched_class->set_cpus_allowed(p, new_mask);
5016
5017	cpumask_copy(&p->cpus_allowed, new_mask);
5018	p->nr_cpus_allowed = cpumask_weight(new_mask);
5019}
5020
5021/*
5022 * This is how migration works:
5023 *
5024 * 1) we invoke migration_cpu_stop() on the target CPU using
5025 *    stop_one_cpu().
5026 * 2) stopper starts to run (implicitly forcing the migrated thread
5027 *    off the CPU)
5028 * 3) it checks whether the migrated task is still in the wrong runqueue.
5029 * 4) if it's in the wrong runqueue then the migration thread removes
5030 *    it and puts it into the right queue.
5031 * 5) stopper completes and stop_one_cpu() returns and the migration
5032 *    is done.
5033 */
5034
5035/*
5036 * Change a given task's CPU affinity. Migrate the thread to a
5037 * proper CPU and schedule it away if the CPU it's executing on
5038 * is removed from the allowed bitmask.
5039 *
5040 * NOTE: the caller must have a valid reference to the task, the
5041 * task must not exit() & deallocate itself prematurely. The
5042 * call is not atomic; no spinlocks may be held.
5043 */
5044int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5045{
5046	unsigned long flags;
5047	struct rq *rq;
5048	unsigned int dest_cpu;
5049	int ret = 0;
5050
5051	rq = task_rq_lock(p, &flags);
5052
5053	if (cpumask_equal(&p->cpus_allowed, new_mask))
5054		goto out;
5055
5056	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5057		ret = -EINVAL;
5058		goto out;
5059	}
5060
5061	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5062		ret = -EINVAL;
5063		goto out;
5064	}
5065
5066	do_set_cpus_allowed(p, new_mask);
5067
5068	/* Can the task run on the task's current CPU? If so, we're done */
5069	if (cpumask_test_cpu(task_cpu(p), new_mask))
5070		goto out;
5071
5072	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5073	if (p->on_rq) {
5074		struct migration_arg arg = { p, dest_cpu };
5075		/* Need help from migration thread: drop lock and wait. */
5076		task_rq_unlock(rq, p, &flags);
5077		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5078		tlb_migrate_finish(p->mm);
5079		return 0;
5080	}
5081out:
5082	task_rq_unlock(rq, p, &flags);
5083
5084	return ret;
5085}
5086EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5087
5088/*
5089 * Move (not current) task off this cpu, onto dest cpu. We're doing
5090 * this because either it can't run here any more (set_cpus_allowed()
5091 * away from this CPU, or CPU going down), or because we're
5092 * attempting to rebalance this task on exec (sched_exec).
5093 *
5094 * So we race with normal scheduler movements, but that's OK, as long
5095 * as the task is no longer on this CPU.
5096 *
5097 * Returns non-zero if task was successfully migrated.
5098 */
5099static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5100{
5101	struct rq *rq_dest, *rq_src;
5102	int ret = 0;
5103
5104	if (unlikely(!cpu_active(dest_cpu)))
5105		return ret;
5106
5107	rq_src = cpu_rq(src_cpu);
5108	rq_dest = cpu_rq(dest_cpu);
5109
5110	raw_spin_lock(&p->pi_lock);
5111	double_rq_lock(rq_src, rq_dest);
5112	/* Already moved. */
5113	if (task_cpu(p) != src_cpu)
5114		goto done;
5115	/* Affinity changed (again). */
5116	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5117		goto fail;
5118
5119	/*
5120	 * If we're not on a rq, the next wake-up will ensure we're
5121	 * placed properly.
5122	 */
5123	if (p->on_rq) {
5124		dequeue_task(rq_src, p, 0);
5125		set_task_cpu(p, dest_cpu);
5126		enqueue_task(rq_dest, p, 0);
5127		check_preempt_curr(rq_dest, p, 0);
5128	}
5129done:
5130	ret = 1;
5131fail:
5132	double_rq_unlock(rq_src, rq_dest);
5133	raw_spin_unlock(&p->pi_lock);
5134	return ret;
5135}
5136
5137/*
5138 * migration_cpu_stop - this will be executed by a highprio stopper thread
5139 * and performs thread migration by bumping thread off CPU then
5140 * 'pushing' onto another runqueue.
5141 */
5142static int migration_cpu_stop(void *data)
5143{
5144	struct migration_arg *arg = data;
5145
5146	/*
5147	 * The original target cpu might have gone down and we might
5148	 * be on another cpu but it doesn't matter.
5149	 */
5150	local_irq_disable();
5151	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5152	local_irq_enable();
5153	return 0;
5154}
5155
5156#ifdef CONFIG_HOTPLUG_CPU
5157
5158/*
5159 * Ensures that the idle task is using init_mm right before its cpu goes
5160 * offline.
5161 */
5162void idle_task_exit(void)
5163{
5164	struct mm_struct *mm = current->active_mm;
5165
5166	BUG_ON(cpu_online(smp_processor_id()));
5167
5168	if (mm != &init_mm)
5169		switch_mm(mm, &init_mm, current);
5170	mmdrop(mm);
5171}
5172
5173/*
5174 * While a dead CPU has no uninterruptible tasks queued at this point,
5175 * it might still have a nonzero ->nr_uninterruptible counter, because
5176 * for performance reasons the counter is not stricly tracking tasks to
5177 * their home CPUs. So we just add the counter to another CPU's counter,
5178 * to keep the global sum constant after CPU-down:
5179 */
5180static void migrate_nr_uninterruptible(struct rq *rq_src)
5181{
5182	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5183
5184	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5185	rq_src->nr_uninterruptible = 0;
5186}
5187
5188/*
5189 * remove the tasks which were accounted by rq from calc_load_tasks.
5190 */
5191static void calc_global_load_remove(struct rq *rq)
5192{
5193	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5194	rq->calc_load_active = 0;
5195}
5196
5197/*
5198 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5199 * try_to_wake_up()->select_task_rq().
5200 *
5201 * Called with rq->lock held even though we'er in stop_machine() and
5202 * there's no concurrency possible, we hold the required locks anyway
5203 * because of lock validation efforts.
5204 */
5205static void migrate_tasks(unsigned int dead_cpu)
5206{
5207	struct rq *rq = cpu_rq(dead_cpu);
5208	struct task_struct *next, *stop = rq->stop;
5209	int dest_cpu;
5210
5211	/*
5212	 * Fudge the rq selection such that the below task selection loop
5213	 * doesn't get stuck on the currently eligible stop task.
5214	 *
5215	 * We're currently inside stop_machine() and the rq is either stuck
5216	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5217	 * either way we should never end up calling schedule() until we're
5218	 * done here.
5219	 */
5220	rq->stop = NULL;
5221
5222	/* Ensure any throttled groups are reachable by pick_next_task */
5223	unthrottle_offline_cfs_rqs(rq);
5224
5225	for ( ; ; ) {
5226		/*
5227		 * There's this thread running, bail when that's the only
5228		 * remaining thread.
5229		 */
5230		if (rq->nr_running == 1)
5231			break;
5232
5233		next = pick_next_task(rq);
5234		BUG_ON(!next);
5235		next->sched_class->put_prev_task(rq, next);
5236
5237		/* Find suitable destination for @next, with force if needed. */
5238		dest_cpu = select_fallback_rq(dead_cpu, next);
5239		raw_spin_unlock(&rq->lock);
5240
5241		__migrate_task(next, dead_cpu, dest_cpu);
5242
5243		raw_spin_lock(&rq->lock);
5244	}
5245
5246	rq->stop = stop;
5247}
5248
5249#endif /* CONFIG_HOTPLUG_CPU */
5250
5251#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5252
5253static struct ctl_table sd_ctl_dir[] = {
5254	{
5255		.procname	= "sched_domain",
5256		.mode		= 0555,
5257	},
5258	{}
5259};
5260
5261static struct ctl_table sd_ctl_root[] = {
5262	{
5263		.procname	= "kernel",
5264		.mode		= 0555,
5265		.child		= sd_ctl_dir,
5266	},
5267	{}
5268};
5269
5270static struct ctl_table *sd_alloc_ctl_entry(int n)
5271{
5272	struct ctl_table *entry =
5273		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5274
5275	return entry;
5276}
5277
5278static void sd_free_ctl_entry(struct ctl_table **tablep)
5279{
5280	struct ctl_table *entry;
5281
5282	/*
5283	 * In the intermediate directories, both the child directory and
5284	 * procname are dynamically allocated and could fail but the mode
5285	 * will always be set. In the lowest directory the names are
5286	 * static strings and all have proc handlers.
5287	 */
5288	for (entry = *tablep; entry->mode; entry++) {
5289		if (entry->child)
5290			sd_free_ctl_entry(&entry->child);
5291		if (entry->proc_handler == NULL)
5292			kfree(entry->procname);
5293	}
5294
5295	kfree(*tablep);
5296	*tablep = NULL;
5297}
5298
5299static void
5300set_table_entry(struct ctl_table *entry,
5301		const char *procname, void *data, int maxlen,
5302		umode_t mode, proc_handler *proc_handler)
5303{
5304	entry->procname = procname;
5305	entry->data = data;
5306	entry->maxlen = maxlen;
5307	entry->mode = mode;
5308	entry->proc_handler = proc_handler;
5309}
5310
5311static struct ctl_table *
5312sd_alloc_ctl_domain_table(struct sched_domain *sd)
5313{
5314	struct ctl_table *table = sd_alloc_ctl_entry(13);
5315
5316	if (table == NULL)
5317		return NULL;
5318
5319	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5320		sizeof(long), 0644, proc_doulongvec_minmax);
5321	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5322		sizeof(long), 0644, proc_doulongvec_minmax);
5323	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5324		sizeof(int), 0644, proc_dointvec_minmax);
5325	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5326		sizeof(int), 0644, proc_dointvec_minmax);
5327	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5328		sizeof(int), 0644, proc_dointvec_minmax);
5329	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5330		sizeof(int), 0644, proc_dointvec_minmax);
5331	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5332		sizeof(int), 0644, proc_dointvec_minmax);
5333	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5334		sizeof(int), 0644, proc_dointvec_minmax);
5335	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5336		sizeof(int), 0644, proc_dointvec_minmax);
5337	set_table_entry(&table[9], "cache_nice_tries",
5338		&sd->cache_nice_tries,
5339		sizeof(int), 0644, proc_dointvec_minmax);
5340	set_table_entry(&table[10], "flags", &sd->flags,
5341		sizeof(int), 0644, proc_dointvec_minmax);
5342	set_table_entry(&table[11], "name", sd->name,
5343		CORENAME_MAX_SIZE, 0444, proc_dostring);
5344	/* &table[12] is terminator */
5345
5346	return table;
5347}
5348
5349static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5350{
5351	struct ctl_table *entry, *table;
5352	struct sched_domain *sd;
5353	int domain_num = 0, i;
5354	char buf[32];
5355
5356	for_each_domain(cpu, sd)
5357		domain_num++;
5358	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5359	if (table == NULL)
5360		return NULL;
5361
5362	i = 0;
5363	for_each_domain(cpu, sd) {
5364		snprintf(buf, 32, "domain%d", i);
5365		entry->procname = kstrdup(buf, GFP_KERNEL);
5366		entry->mode = 0555;
5367		entry->child = sd_alloc_ctl_domain_table(sd);
5368		entry++;
5369		i++;
5370	}
5371	return table;
5372}
5373
5374static struct ctl_table_header *sd_sysctl_header;
5375static void register_sched_domain_sysctl(void)
5376{
5377	int i, cpu_num = num_possible_cpus();
5378	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5379	char buf[32];
5380
5381	WARN_ON(sd_ctl_dir[0].child);
5382	sd_ctl_dir[0].child = entry;
5383
5384	if (entry == NULL)
5385		return;
5386
5387	for_each_possible_cpu(i) {
5388		snprintf(buf, 32, "cpu%d", i);
5389		entry->procname = kstrdup(buf, GFP_KERNEL);
5390		entry->mode = 0555;
5391		entry->child = sd_alloc_ctl_cpu_table(i);
5392		entry++;
5393	}
5394
5395	WARN_ON(sd_sysctl_header);
5396	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5397}
5398
5399/* may be called multiple times per register */
5400static void unregister_sched_domain_sysctl(void)
5401{
5402	if (sd_sysctl_header)
5403		unregister_sysctl_table(sd_sysctl_header);
5404	sd_sysctl_header = NULL;
5405	if (sd_ctl_dir[0].child)
5406		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5407}
5408#else
5409static void register_sched_domain_sysctl(void)
5410{
5411}
5412static void unregister_sched_domain_sysctl(void)
5413{
5414}
5415#endif
5416
5417static void set_rq_online(struct rq *rq)
5418{
5419	if (!rq->online) {
5420		const struct sched_class *class;
5421
5422		cpumask_set_cpu(rq->cpu, rq->rd->online);
5423		rq->online = 1;
5424
5425		for_each_class(class) {
5426			if (class->rq_online)
5427				class->rq_online(rq);
5428		}
5429	}
5430}
5431
5432static void set_rq_offline(struct rq *rq)
5433{
5434	if (rq->online) {
5435		const struct sched_class *class;
5436
5437		for_each_class(class) {
5438			if (class->rq_offline)
5439				class->rq_offline(rq);
5440		}
5441
5442		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5443		rq->online = 0;
5444	}
5445}
5446
5447/*
5448 * migration_call - callback that gets triggered when a CPU is added.
5449 * Here we can start up the necessary migration thread for the new CPU.
5450 */
5451static int __cpuinit
5452migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5453{
5454	int cpu = (long)hcpu;
5455	unsigned long flags;
5456	struct rq *rq = cpu_rq(cpu);
5457
5458	switch (action & ~CPU_TASKS_FROZEN) {
5459
5460	case CPU_UP_PREPARE:
5461		rq->calc_load_update = calc_load_update;
5462		break;
5463
5464	case CPU_ONLINE:
5465		/* Update our root-domain */
5466		raw_spin_lock_irqsave(&rq->lock, flags);
5467		if (rq->rd) {
5468			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5469
5470			set_rq_online(rq);
5471		}
5472		raw_spin_unlock_irqrestore(&rq->lock, flags);
5473		break;
5474
5475#ifdef CONFIG_HOTPLUG_CPU
5476	case CPU_DYING:
5477		sched_ttwu_pending();
5478		/* Update our root-domain */
5479		raw_spin_lock_irqsave(&rq->lock, flags);
5480		if (rq->rd) {
5481			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5482			set_rq_offline(rq);
5483		}
5484		migrate_tasks(cpu);
5485		BUG_ON(rq->nr_running != 1); /* the migration thread */
5486		raw_spin_unlock_irqrestore(&rq->lock, flags);
5487
5488		migrate_nr_uninterruptible(rq);
5489		calc_global_load_remove(rq);
5490		break;
5491#endif
5492	}
5493
5494	update_max_interval();
5495
5496	return NOTIFY_OK;
5497}
5498
5499/*
5500 * Register at high priority so that task migration (migrate_all_tasks)
5501 * happens before everything else.  This has to be lower priority than
5502 * the notifier in the perf_event subsystem, though.
5503 */
5504static struct notifier_block __cpuinitdata migration_notifier = {
5505	.notifier_call = migration_call,
5506	.priority = CPU_PRI_MIGRATION,
5507};
5508
5509static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5510				      unsigned long action, void *hcpu)
5511{
5512	switch (action & ~CPU_TASKS_FROZEN) {
5513	case CPU_STARTING:
5514	case CPU_DOWN_FAILED:
5515		set_cpu_active((long)hcpu, true);
5516		return NOTIFY_OK;
5517	default:
5518		return NOTIFY_DONE;
5519	}
5520}
5521
5522static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5523					unsigned long action, void *hcpu)
5524{
5525	switch (action & ~CPU_TASKS_FROZEN) {
5526	case CPU_DOWN_PREPARE:
5527		set_cpu_active((long)hcpu, false);
5528		return NOTIFY_OK;
5529	default:
5530		return NOTIFY_DONE;
5531	}
5532}
5533
5534static int __init migration_init(void)
5535{
5536	void *cpu = (void *)(long)smp_processor_id();
5537	int err;
5538
5539	/* Initialize migration for the boot CPU */
5540	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5541	BUG_ON(err == NOTIFY_BAD);
5542	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5543	register_cpu_notifier(&migration_notifier);
5544
5545	/* Register cpu active notifiers */
5546	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5547	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5548
5549	return 0;
5550}
5551early_initcall(migration_init);
5552#endif
5553
5554#ifdef CONFIG_SMP
5555
5556static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5557
5558#ifdef CONFIG_SCHED_DEBUG
5559
5560static __read_mostly int sched_domain_debug_enabled;
5561
5562static int __init sched_domain_debug_setup(char *str)
5563{
5564	sched_domain_debug_enabled = 1;
5565
5566	return 0;
5567}
5568early_param("sched_debug", sched_domain_debug_setup);
5569
5570static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5571				  struct cpumask *groupmask)
5572{
5573	struct sched_group *group = sd->groups;
5574	char str[256];
5575
5576	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5577	cpumask_clear(groupmask);
5578
5579	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5580
5581	if (!(sd->flags & SD_LOAD_BALANCE)) {
5582		printk("does not load-balance\n");
5583		if (sd->parent)
5584			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5585					" has parent");
5586		return -1;
5587	}
5588
5589	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5590
5591	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5592		printk(KERN_ERR "ERROR: domain->span does not contain "
5593				"CPU%d\n", cpu);
5594	}
5595	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5596		printk(KERN_ERR "ERROR: domain->groups does not contain"
5597				" CPU%d\n", cpu);
5598	}
5599
5600	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5601	do {
5602		if (!group) {
5603			printk("\n");
5604			printk(KERN_ERR "ERROR: group is NULL\n");
5605			break;
5606		}
5607
5608		if (!group->sgp->power) {
5609			printk(KERN_CONT "\n");
5610			printk(KERN_ERR "ERROR: domain->cpu_power not "
5611					"set\n");
5612			break;
5613		}
5614
5615		if (!cpumask_weight(sched_group_cpus(group))) {
5616			printk(KERN_CONT "\n");
5617			printk(KERN_ERR "ERROR: empty group\n");
5618			break;
5619		}
5620
5621		if (!(sd->flags & SD_OVERLAP) &&
5622		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5623			printk(KERN_CONT "\n");
5624			printk(KERN_ERR "ERROR: repeated CPUs\n");
5625			break;
5626		}
5627
5628		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5629
5630		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5631
5632		printk(KERN_CONT " %s", str);
5633		if (group->sgp->power != SCHED_POWER_SCALE) {
5634			printk(KERN_CONT " (cpu_power = %d)",
5635				group->sgp->power);
5636		}
5637
5638		group = group->next;
5639	} while (group != sd->groups);
5640	printk(KERN_CONT "\n");
5641
5642	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5643		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5644
5645	if (sd->parent &&
5646	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5647		printk(KERN_ERR "ERROR: parent span is not a superset "
5648			"of domain->span\n");
5649	return 0;
5650}
5651
5652static void sched_domain_debug(struct sched_domain *sd, int cpu)
5653{
5654	int level = 0;
5655
5656	if (!sched_domain_debug_enabled)
5657		return;
5658
5659	if (!sd) {
5660		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5661		return;
5662	}
5663
5664	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5665
5666	for (;;) {
5667		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5668			break;
5669		level++;
5670		sd = sd->parent;
5671		if (!sd)
5672			break;
5673	}
5674}
5675#else /* !CONFIG_SCHED_DEBUG */
5676# define sched_domain_debug(sd, cpu) do { } while (0)
5677#endif /* CONFIG_SCHED_DEBUG */
5678
5679static int sd_degenerate(struct sched_domain *sd)
5680{
5681	if (cpumask_weight(sched_domain_span(sd)) == 1)
5682		return 1;
5683
5684	/* Following flags need at least 2 groups */
5685	if (sd->flags & (SD_LOAD_BALANCE |
5686			 SD_BALANCE_NEWIDLE |
5687			 SD_BALANCE_FORK |
5688			 SD_BALANCE_EXEC |
5689			 SD_SHARE_CPUPOWER |
5690			 SD_SHARE_PKG_RESOURCES)) {
5691		if (sd->groups != sd->groups->next)
5692			return 0;
5693	}
5694
5695	/* Following flags don't use groups */
5696	if (sd->flags & (SD_WAKE_AFFINE))
5697		return 0;
5698
5699	return 1;
5700}
5701
5702static int
5703sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5704{
5705	unsigned long cflags = sd->flags, pflags = parent->flags;
5706
5707	if (sd_degenerate(parent))
5708		return 1;
5709
5710	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5711		return 0;
5712
5713	/* Flags needing groups don't count if only 1 group in parent */
5714	if (parent->groups == parent->groups->next) {
5715		pflags &= ~(SD_LOAD_BALANCE |
5716				SD_BALANCE_NEWIDLE |
5717				SD_BALANCE_FORK |
5718				SD_BALANCE_EXEC |
5719				SD_SHARE_CPUPOWER |
5720				SD_SHARE_PKG_RESOURCES);
5721		if (nr_node_ids == 1)
5722			pflags &= ~SD_SERIALIZE;
5723	}
5724	if (~cflags & pflags)
5725		return 0;
5726
5727	return 1;
5728}
5729
5730static void free_rootdomain(struct rcu_head *rcu)
5731{
5732	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5733
5734	cpupri_cleanup(&rd->cpupri);
5735	free_cpumask_var(rd->rto_mask);
5736	free_cpumask_var(rd->online);
5737	free_cpumask_var(rd->span);
5738	kfree(rd);
5739}
5740
5741static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5742{
5743	struct root_domain *old_rd = NULL;
5744	unsigned long flags;
5745
5746	raw_spin_lock_irqsave(&rq->lock, flags);
5747
5748	if (rq->rd) {
5749		old_rd = rq->rd;
5750
5751		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5752			set_rq_offline(rq);
5753
5754		cpumask_clear_cpu(rq->cpu, old_rd->span);
5755
5756		/*
5757		 * If we dont want to free the old_rt yet then
5758		 * set old_rd to NULL to skip the freeing later
5759		 * in this function:
5760		 */
5761		if (!atomic_dec_and_test(&old_rd->refcount))
5762			old_rd = NULL;
5763	}
5764
5765	atomic_inc(&rd->refcount);
5766	rq->rd = rd;
5767
5768	cpumask_set_cpu(rq->cpu, rd->span);
5769	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5770		set_rq_online(rq);
5771
5772	raw_spin_unlock_irqrestore(&rq->lock, flags);
5773
5774	if (old_rd)
5775		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5776}
5777
5778static int init_rootdomain(struct root_domain *rd)
5779{
5780	memset(rd, 0, sizeof(*rd));
5781
5782	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5783		goto out;
5784	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5785		goto free_span;
5786	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5787		goto free_online;
5788
5789	if (cpupri_init(&rd->cpupri) != 0)
5790		goto free_rto_mask;
5791	return 0;
5792
5793free_rto_mask:
5794	free_cpumask_var(rd->rto_mask);
5795free_online:
5796	free_cpumask_var(rd->online);
5797free_span:
5798	free_cpumask_var(rd->span);
5799out:
5800	return -ENOMEM;
5801}
5802
5803/*
5804 * By default the system creates a single root-domain with all cpus as
5805 * members (mimicking the global state we have today).
5806 */
5807struct root_domain def_root_domain;
5808
5809static void init_defrootdomain(void)
5810{
5811	init_rootdomain(&def_root_domain);
5812
5813	atomic_set(&def_root_domain.refcount, 1);
5814}
5815
5816static struct root_domain *alloc_rootdomain(void)
5817{
5818	struct root_domain *rd;
5819
5820	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5821	if (!rd)
5822		return NULL;
5823
5824	if (init_rootdomain(rd) != 0) {
5825		kfree(rd);
5826		return NULL;
5827	}
5828
5829	return rd;
5830}
5831
5832static void free_sched_groups(struct sched_group *sg, int free_sgp)
5833{
5834	struct sched_group *tmp, *first;
5835
5836	if (!sg)
5837		return;
5838
5839	first = sg;
5840	do {
5841		tmp = sg->next;
5842
5843		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5844			kfree(sg->sgp);
5845
5846		kfree(sg);
5847		sg = tmp;
5848	} while (sg != first);
5849}
5850
5851static void free_sched_domain(struct rcu_head *rcu)
5852{
5853	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5854
5855	/*
5856	 * If its an overlapping domain it has private groups, iterate and
5857	 * nuke them all.
5858	 */
5859	if (sd->flags & SD_OVERLAP) {
5860		free_sched_groups(sd->groups, 1);
5861	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5862		kfree(sd->groups->sgp);
5863		kfree(sd->groups);
5864	}
5865	kfree(sd);
5866}
5867
5868static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5869{
5870	call_rcu(&sd->rcu, free_sched_domain);
5871}
5872
5873static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5874{
5875	for (; sd; sd = sd->parent)
5876		destroy_sched_domain(sd, cpu);
5877}
5878
5879/*
5880 * Keep a special pointer to the highest sched_domain that has
5881 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5882 * allows us to avoid some pointer chasing select_idle_sibling().
5883 *
5884 * Also keep a unique ID per domain (we use the first cpu number in
5885 * the cpumask of the domain), this allows us to quickly tell if
5886 * two cpus are in the same cache domain, see cpus_share_cache().
5887 */
5888DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5889DEFINE_PER_CPU(int, sd_llc_id);
5890
5891static void update_top_cache_domain(int cpu)
5892{
5893	struct sched_domain *sd;
5894	int id = cpu;
5895
5896	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5897	if (sd)
5898		id = cpumask_first(sched_domain_span(sd));
5899
5900	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5901	per_cpu(sd_llc_id, cpu) = id;
5902}
5903
5904/*
5905 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5906 * hold the hotplug lock.
5907 */
5908static void
5909cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5910{
5911	struct rq *rq = cpu_rq(cpu);
5912	struct sched_domain *tmp;
5913
5914	/* Remove the sched domains which do not contribute to scheduling. */
5915	for (tmp = sd; tmp; ) {
5916		struct sched_domain *parent = tmp->parent;
5917		if (!parent)
5918			break;
5919
5920		if (sd_parent_degenerate(tmp, parent)) {
5921			tmp->parent = parent->parent;
5922			if (parent->parent)
5923				parent->parent->child = tmp;
5924			destroy_sched_domain(parent, cpu);
5925		} else
5926			tmp = tmp->parent;
5927	}
5928
5929	if (sd && sd_degenerate(sd)) {
5930		tmp = sd;
5931		sd = sd->parent;
5932		destroy_sched_domain(tmp, cpu);
5933		if (sd)
5934			sd->child = NULL;
5935	}
5936
5937	sched_domain_debug(sd, cpu);
5938
5939	rq_attach_root(rq, rd);
5940	tmp = rq->sd;
5941	rcu_assign_pointer(rq->sd, sd);
5942	destroy_sched_domains(tmp, cpu);
5943
5944	update_top_cache_domain(cpu);
5945}
5946
5947/* cpus with isolated domains */
5948static cpumask_var_t cpu_isolated_map;
5949
5950/* Setup the mask of cpus configured for isolated domains */
5951static int __init isolated_cpu_setup(char *str)
5952{
5953	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5954	cpulist_parse(str, cpu_isolated_map);
5955	return 1;
5956}
5957
5958__setup("isolcpus=", isolated_cpu_setup);
5959
5960static const struct cpumask *cpu_cpu_mask(int cpu)
5961{
5962	return cpumask_of_node(cpu_to_node(cpu));
5963}
5964
5965struct sd_data {
5966	struct sched_domain **__percpu sd;
5967	struct sched_group **__percpu sg;
5968	struct sched_group_power **__percpu sgp;
5969};
5970
5971struct s_data {
5972	struct sched_domain ** __percpu sd;
5973	struct root_domain	*rd;
5974};
5975
5976enum s_alloc {
5977	sa_rootdomain,
5978	sa_sd,
5979	sa_sd_storage,
5980	sa_none,
5981};
5982
5983struct sched_domain_topology_level;
5984
5985typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5986typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5987
5988#define SDTL_OVERLAP	0x01
5989
5990struct sched_domain_topology_level {
5991	sched_domain_init_f init;
5992	sched_domain_mask_f mask;
5993	int		    flags;
5994	int		    numa_level;
5995	struct sd_data      data;
5996};
5997
5998static int
5999build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6000{
6001	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6002	const struct cpumask *span = sched_domain_span(sd);
6003	struct cpumask *covered = sched_domains_tmpmask;
6004	struct sd_data *sdd = sd->private;
6005	struct sched_domain *child;
6006	int i;
6007
6008	cpumask_clear(covered);
6009
6010	for_each_cpu(i, span) {
6011		struct cpumask *sg_span;
6012
6013		if (cpumask_test_cpu(i, covered))
6014			continue;
6015
6016		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6017				GFP_KERNEL, cpu_to_node(cpu));
6018
6019		if (!sg)
6020			goto fail;
6021
6022		sg_span = sched_group_cpus(sg);
6023
6024		child = *per_cpu_ptr(sdd->sd, i);
6025		if (child->child) {
6026			child = child->child;
6027			cpumask_copy(sg_span, sched_domain_span(child));
6028		} else
6029			cpumask_set_cpu(i, sg_span);
6030
6031		cpumask_or(covered, covered, sg_span);
6032
6033		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6034		atomic_inc(&sg->sgp->ref);
6035
6036		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6037			       cpumask_first(sg_span) == cpu) {
6038			WARN_ON_ONCE(!cpumask_test_cpu(cpu, sg_span));
6039			groups = sg;
6040		}
6041
6042		if (!first)
6043			first = sg;
6044		if (last)
6045			last->next = sg;
6046		last = sg;
6047		last->next = first;
6048	}
6049	sd->groups = groups;
6050
6051	return 0;
6052
6053fail:
6054	free_sched_groups(first, 0);
6055
6056	return -ENOMEM;
6057}
6058
6059static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6060{
6061	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6062	struct sched_domain *child = sd->child;
6063
6064	if (child)
6065		cpu = cpumask_first(sched_domain_span(child));
6066
6067	if (sg) {
6068		*sg = *per_cpu_ptr(sdd->sg, cpu);
6069		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6070		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6071	}
6072
6073	return cpu;
6074}
6075
6076/*
6077 * build_sched_groups will build a circular linked list of the groups
6078 * covered by the given span, and will set each group's ->cpumask correctly,
6079 * and ->cpu_power to 0.
6080 *
6081 * Assumes the sched_domain tree is fully constructed
6082 */
6083static int
6084build_sched_groups(struct sched_domain *sd, int cpu)
6085{
6086	struct sched_group *first = NULL, *last = NULL;
6087	struct sd_data *sdd = sd->private;
6088	const struct cpumask *span = sched_domain_span(sd);
6089	struct cpumask *covered;
6090	int i;
6091
6092	get_group(cpu, sdd, &sd->groups);
6093	atomic_inc(&sd->groups->ref);
6094
6095	if (cpu != cpumask_first(sched_domain_span(sd)))
6096		return 0;
6097
6098	lockdep_assert_held(&sched_domains_mutex);
6099	covered = sched_domains_tmpmask;
6100
6101	cpumask_clear(covered);
6102
6103	for_each_cpu(i, span) {
6104		struct sched_group *sg;
6105		int group = get_group(i, sdd, &sg);
6106		int j;
6107
6108		if (cpumask_test_cpu(i, covered))
6109			continue;
6110
6111		cpumask_clear(sched_group_cpus(sg));
6112		sg->sgp->power = 0;
6113
6114		for_each_cpu(j, span) {
6115			if (get_group(j, sdd, NULL) != group)
6116				continue;
6117
6118			cpumask_set_cpu(j, covered);
6119			cpumask_set_cpu(j, sched_group_cpus(sg));
6120		}
6121
6122		if (!first)
6123			first = sg;
6124		if (last)
6125			last->next = sg;
6126		last = sg;
6127	}
6128	last->next = first;
6129
6130	return 0;
6131}
6132
6133/*
6134 * Initialize sched groups cpu_power.
6135 *
6136 * cpu_power indicates the capacity of sched group, which is used while
6137 * distributing the load between different sched groups in a sched domain.
6138 * Typically cpu_power for all the groups in a sched domain will be same unless
6139 * there are asymmetries in the topology. If there are asymmetries, group
6140 * having more cpu_power will pickup more load compared to the group having
6141 * less cpu_power.
6142 */
6143static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6144{
6145	struct sched_group *sg = sd->groups;
6146
6147	WARN_ON(!sd || !sg);
6148
6149	do {
6150		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6151		sg = sg->next;
6152	} while (sg != sd->groups);
6153
6154	if (cpu != group_first_cpu(sg))
6155		return;
6156
6157	update_group_power(sd, cpu);
6158	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6159}
6160
6161int __weak arch_sd_sibling_asym_packing(void)
6162{
6163       return 0*SD_ASYM_PACKING;
6164}
6165
6166/*
6167 * Initializers for schedule domains
6168 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6169 */
6170
6171#ifdef CONFIG_SCHED_DEBUG
6172# define SD_INIT_NAME(sd, type)		sd->name = #type
6173#else
6174# define SD_INIT_NAME(sd, type)		do { } while (0)
6175#endif
6176
6177#define SD_INIT_FUNC(type)						\
6178static noinline struct sched_domain *					\
6179sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6180{									\
6181	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6182	*sd = SD_##type##_INIT;						\
6183	SD_INIT_NAME(sd, type);						\
6184	sd->private = &tl->data;					\
6185	return sd;							\
6186}
6187
6188SD_INIT_FUNC(CPU)
6189#ifdef CONFIG_SCHED_SMT
6190 SD_INIT_FUNC(SIBLING)
6191#endif
6192#ifdef CONFIG_SCHED_MC
6193 SD_INIT_FUNC(MC)
6194#endif
6195#ifdef CONFIG_SCHED_BOOK
6196 SD_INIT_FUNC(BOOK)
6197#endif
6198
6199static int default_relax_domain_level = -1;
6200int sched_domain_level_max;
6201
6202static int __init setup_relax_domain_level(char *str)
6203{
6204	unsigned long val;
6205
6206	val = simple_strtoul(str, NULL, 0);
6207	if (val < sched_domain_level_max)
6208		default_relax_domain_level = val;
6209
6210	return 1;
6211}
6212__setup("relax_domain_level=", setup_relax_domain_level);
6213
6214static void set_domain_attribute(struct sched_domain *sd,
6215				 struct sched_domain_attr *attr)
6216{
6217	int request;
6218
6219	if (!attr || attr->relax_domain_level < 0) {
6220		if (default_relax_domain_level < 0)
6221			return;
6222		else
6223			request = default_relax_domain_level;
6224	} else
6225		request = attr->relax_domain_level;
6226	if (request < sd->level) {
6227		/* turn off idle balance on this domain */
6228		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6229	} else {
6230		/* turn on idle balance on this domain */
6231		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6232	}
6233}
6234
6235static void __sdt_free(const struct cpumask *cpu_map);
6236static int __sdt_alloc(const struct cpumask *cpu_map);
6237
6238static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6239				 const struct cpumask *cpu_map)
6240{
6241	switch (what) {
6242	case sa_rootdomain:
6243		if (!atomic_read(&d->rd->refcount))
6244			free_rootdomain(&d->rd->rcu); /* fall through */
6245	case sa_sd:
6246		free_percpu(d->sd); /* fall through */
6247	case sa_sd_storage:
6248		__sdt_free(cpu_map); /* fall through */
6249	case sa_none:
6250		break;
6251	}
6252}
6253
6254static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6255						   const struct cpumask *cpu_map)
6256{
6257	memset(d, 0, sizeof(*d));
6258
6259	if (__sdt_alloc(cpu_map))
6260		return sa_sd_storage;
6261	d->sd = alloc_percpu(struct sched_domain *);
6262	if (!d->sd)
6263		return sa_sd_storage;
6264	d->rd = alloc_rootdomain();
6265	if (!d->rd)
6266		return sa_sd;
6267	return sa_rootdomain;
6268}
6269
6270/*
6271 * NULL the sd_data elements we've used to build the sched_domain and
6272 * sched_group structure so that the subsequent __free_domain_allocs()
6273 * will not free the data we're using.
6274 */
6275static void claim_allocations(int cpu, struct sched_domain *sd)
6276{
6277	struct sd_data *sdd = sd->private;
6278
6279	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6280	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6281
6282	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6283		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6284
6285	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6286		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6287}
6288
6289#ifdef CONFIG_SCHED_SMT
6290static const struct cpumask *cpu_smt_mask(int cpu)
6291{
6292	return topology_thread_cpumask(cpu);
6293}
6294#endif
6295
6296/*
6297 * Topology list, bottom-up.
6298 */
6299static struct sched_domain_topology_level default_topology[] = {
6300#ifdef CONFIG_SCHED_SMT
6301	{ sd_init_SIBLING, cpu_smt_mask, },
6302#endif
6303#ifdef CONFIG_SCHED_MC
6304	{ sd_init_MC, cpu_coregroup_mask, },
6305#endif
6306#ifdef CONFIG_SCHED_BOOK
6307	{ sd_init_BOOK, cpu_book_mask, },
6308#endif
6309	{ sd_init_CPU, cpu_cpu_mask, },
6310	{ NULL, },
6311};
6312
6313static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6314
6315#ifdef CONFIG_NUMA
6316
6317static int sched_domains_numa_levels;
6318static int sched_domains_numa_scale;
6319static int *sched_domains_numa_distance;
6320static struct cpumask ***sched_domains_numa_masks;
6321static int sched_domains_curr_level;
6322
6323static inline int sd_local_flags(int level)
6324{
6325	if (sched_domains_numa_distance[level] > REMOTE_DISTANCE)
6326		return 0;
6327
6328	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6329}
6330
6331static struct sched_domain *
6332sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6333{
6334	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6335	int level = tl->numa_level;
6336	int sd_weight = cpumask_weight(
6337			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6338
6339	*sd = (struct sched_domain){
6340		.min_interval		= sd_weight,
6341		.max_interval		= 2*sd_weight,
6342		.busy_factor		= 32,
6343		.imbalance_pct		= 125,
6344		.cache_nice_tries	= 2,
6345		.busy_idx		= 3,
6346		.idle_idx		= 2,
6347		.newidle_idx		= 0,
6348		.wake_idx		= 0,
6349		.forkexec_idx		= 0,
6350
6351		.flags			= 1*SD_LOAD_BALANCE
6352					| 1*SD_BALANCE_NEWIDLE
6353					| 0*SD_BALANCE_EXEC
6354					| 0*SD_BALANCE_FORK
6355					| 0*SD_BALANCE_WAKE
6356					| 0*SD_WAKE_AFFINE
6357					| 0*SD_PREFER_LOCAL
6358					| 0*SD_SHARE_CPUPOWER
6359					| 0*SD_SHARE_PKG_RESOURCES
6360					| 1*SD_SERIALIZE
6361					| 0*SD_PREFER_SIBLING
6362					| sd_local_flags(level)
6363					,
6364		.last_balance		= jiffies,
6365		.balance_interval	= sd_weight,
6366	};
6367	SD_INIT_NAME(sd, NUMA);
6368	sd->private = &tl->data;
6369
6370	/*
6371	 * Ugly hack to pass state to sd_numa_mask()...
6372	 */
6373	sched_domains_curr_level = tl->numa_level;
6374
6375	return sd;
6376}
6377
6378static const struct cpumask *sd_numa_mask(int cpu)
6379{
6380	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6381}
6382
6383static void sched_init_numa(void)
6384{
6385	int next_distance, curr_distance = node_distance(0, 0);
6386	struct sched_domain_topology_level *tl;
6387	int level = 0;
6388	int i, j, k;
6389
6390	sched_domains_numa_scale = curr_distance;
6391	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6392	if (!sched_domains_numa_distance)
6393		return;
6394
6395	/*
6396	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6397	 * unique distances in the node_distance() table.
6398	 *
6399	 * Assumes node_distance(0,j) includes all distances in
6400	 * node_distance(i,j) in order to avoid cubic time.
6401	 *
6402	 * XXX: could be optimized to O(n log n) by using sort()
6403	 */
6404	next_distance = curr_distance;
6405	for (i = 0; i < nr_node_ids; i++) {
6406		for (j = 0; j < nr_node_ids; j++) {
6407			int distance = node_distance(0, j);
6408			if (distance > curr_distance &&
6409					(distance < next_distance ||
6410					 next_distance == curr_distance))
6411				next_distance = distance;
6412		}
6413		if (next_distance != curr_distance) {
6414			sched_domains_numa_distance[level++] = next_distance;
6415			sched_domains_numa_levels = level;
6416			curr_distance = next_distance;
6417		} else break;
6418	}
6419	/*
6420	 * 'level' contains the number of unique distances, excluding the
6421	 * identity distance node_distance(i,i).
6422	 *
6423	 * The sched_domains_nume_distance[] array includes the actual distance
6424	 * numbers.
6425	 */
6426
6427	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6428	if (!sched_domains_numa_masks)
6429		return;
6430
6431	/*
6432	 * Now for each level, construct a mask per node which contains all
6433	 * cpus of nodes that are that many hops away from us.
6434	 */
6435	for (i = 0; i < level; i++) {
6436		sched_domains_numa_masks[i] =
6437			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6438		if (!sched_domains_numa_masks[i])
6439			return;
6440
6441		for (j = 0; j < nr_node_ids; j++) {
6442			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6443			if (!mask)
6444				return;
6445
6446			sched_domains_numa_masks[i][j] = mask;
6447
6448			for (k = 0; k < nr_node_ids; k++) {
6449				if (node_distance(j, k) > sched_domains_numa_distance[i])
6450					continue;
6451
6452				cpumask_or(mask, mask, cpumask_of_node(k));
6453			}
6454		}
6455	}
6456
6457	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6458			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6459	if (!tl)
6460		return;
6461
6462	/*
6463	 * Copy the default topology bits..
6464	 */
6465	for (i = 0; default_topology[i].init; i++)
6466		tl[i] = default_topology[i];
6467
6468	/*
6469	 * .. and append 'j' levels of NUMA goodness.
6470	 */
6471	for (j = 0; j < level; i++, j++) {
6472		tl[i] = (struct sched_domain_topology_level){
6473			.init = sd_numa_init,
6474			.mask = sd_numa_mask,
6475			.flags = SDTL_OVERLAP,
6476			.numa_level = j,
6477		};
6478	}
6479
6480	sched_domain_topology = tl;
6481}
6482#else
6483static inline void sched_init_numa(void)
6484{
6485}
6486#endif /* CONFIG_NUMA */
6487
6488static int __sdt_alloc(const struct cpumask *cpu_map)
6489{
6490	struct sched_domain_topology_level *tl;
6491	int j;
6492
6493	for (tl = sched_domain_topology; tl->init; tl++) {
6494		struct sd_data *sdd = &tl->data;
6495
6496		sdd->sd = alloc_percpu(struct sched_domain *);
6497		if (!sdd->sd)
6498			return -ENOMEM;
6499
6500		sdd->sg = alloc_percpu(struct sched_group *);
6501		if (!sdd->sg)
6502			return -ENOMEM;
6503
6504		sdd->sgp = alloc_percpu(struct sched_group_power *);
6505		if (!sdd->sgp)
6506			return -ENOMEM;
6507
6508		for_each_cpu(j, cpu_map) {
6509			struct sched_domain *sd;
6510			struct sched_group *sg;
6511			struct sched_group_power *sgp;
6512
6513		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6514					GFP_KERNEL, cpu_to_node(j));
6515			if (!sd)
6516				return -ENOMEM;
6517
6518			*per_cpu_ptr(sdd->sd, j) = sd;
6519
6520			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6521					GFP_KERNEL, cpu_to_node(j));
6522			if (!sg)
6523				return -ENOMEM;
6524
6525			sg->next = sg;
6526
6527			*per_cpu_ptr(sdd->sg, j) = sg;
6528
6529			sgp = kzalloc_node(sizeof(struct sched_group_power),
6530					GFP_KERNEL, cpu_to_node(j));
6531			if (!sgp)
6532				return -ENOMEM;
6533
6534			*per_cpu_ptr(sdd->sgp, j) = sgp;
6535		}
6536	}
6537
6538	return 0;
6539}
6540
6541static void __sdt_free(const struct cpumask *cpu_map)
6542{
6543	struct sched_domain_topology_level *tl;
6544	int j;
6545
6546	for (tl = sched_domain_topology; tl->init; tl++) {
6547		struct sd_data *sdd = &tl->data;
6548
6549		for_each_cpu(j, cpu_map) {
6550			struct sched_domain *sd;
6551
6552			if (sdd->sd) {
6553				sd = *per_cpu_ptr(sdd->sd, j);
6554				if (sd && (sd->flags & SD_OVERLAP))
6555					free_sched_groups(sd->groups, 0);
6556				kfree(*per_cpu_ptr(sdd->sd, j));
6557			}
6558
6559			if (sdd->sg)
6560				kfree(*per_cpu_ptr(sdd->sg, j));
6561			if (sdd->sgp)
6562				kfree(*per_cpu_ptr(sdd->sgp, j));
6563		}
6564		free_percpu(sdd->sd);
6565		sdd->sd = NULL;
6566		free_percpu(sdd->sg);
6567		sdd->sg = NULL;
6568		free_percpu(sdd->sgp);
6569		sdd->sgp = NULL;
6570	}
6571}
6572
6573struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6574		struct s_data *d, const struct cpumask *cpu_map,
6575		struct sched_domain_attr *attr, struct sched_domain *child,
6576		int cpu)
6577{
6578	struct sched_domain *sd = tl->init(tl, cpu);
6579	if (!sd)
6580		return child;
6581
6582	set_domain_attribute(sd, attr);
6583	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6584	if (child) {
6585		sd->level = child->level + 1;
6586		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6587		child->parent = sd;
6588	}
6589	sd->child = child;
6590
6591	return sd;
6592}
6593
6594/*
6595 * Build sched domains for a given set of cpus and attach the sched domains
6596 * to the individual cpus
6597 */
6598static int build_sched_domains(const struct cpumask *cpu_map,
6599			       struct sched_domain_attr *attr)
6600{
6601	enum s_alloc alloc_state = sa_none;
6602	struct sched_domain *sd;
6603	struct s_data d;
6604	int i, ret = -ENOMEM;
6605
6606	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6607	if (alloc_state != sa_rootdomain)
6608		goto error;
6609
6610	/* Set up domains for cpus specified by the cpu_map. */
6611	for_each_cpu(i, cpu_map) {
6612		struct sched_domain_topology_level *tl;
6613
6614		sd = NULL;
6615		for (tl = sched_domain_topology; tl->init; tl++) {
6616			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6617			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6618				sd->flags |= SD_OVERLAP;
6619			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6620				break;
6621		}
6622
6623		while (sd->child)
6624			sd = sd->child;
6625
6626		*per_cpu_ptr(d.sd, i) = sd;
6627	}
6628
6629	/* Build the groups for the domains */
6630	for_each_cpu(i, cpu_map) {
6631		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6632			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6633			if (sd->flags & SD_OVERLAP) {
6634				if (build_overlap_sched_groups(sd, i))
6635					goto error;
6636			} else {
6637				if (build_sched_groups(sd, i))
6638					goto error;
6639			}
6640		}
6641	}
6642
6643	/* Calculate CPU power for physical packages and nodes */
6644	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6645		if (!cpumask_test_cpu(i, cpu_map))
6646			continue;
6647
6648		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6649			claim_allocations(i, sd);
6650			init_sched_groups_power(i, sd);
6651		}
6652	}
6653
6654	/* Attach the domains */
6655	rcu_read_lock();
6656	for_each_cpu(i, cpu_map) {
6657		sd = *per_cpu_ptr(d.sd, i);
6658		cpu_attach_domain(sd, d.rd, i);
6659	}
6660	rcu_read_unlock();
6661
6662	ret = 0;
6663error:
6664	__free_domain_allocs(&d, alloc_state, cpu_map);
6665	return ret;
6666}
6667
6668static cpumask_var_t *doms_cur;	/* current sched domains */
6669static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6670static struct sched_domain_attr *dattr_cur;
6671				/* attribues of custom domains in 'doms_cur' */
6672
6673/*
6674 * Special case: If a kmalloc of a doms_cur partition (array of
6675 * cpumask) fails, then fallback to a single sched domain,
6676 * as determined by the single cpumask fallback_doms.
6677 */
6678static cpumask_var_t fallback_doms;
6679
6680/*
6681 * arch_update_cpu_topology lets virtualized architectures update the
6682 * cpu core maps. It is supposed to return 1 if the topology changed
6683 * or 0 if it stayed the same.
6684 */
6685int __attribute__((weak)) arch_update_cpu_topology(void)
6686{
6687	return 0;
6688}
6689
6690cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6691{
6692	int i;
6693	cpumask_var_t *doms;
6694
6695	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6696	if (!doms)
6697		return NULL;
6698	for (i = 0; i < ndoms; i++) {
6699		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6700			free_sched_domains(doms, i);
6701			return NULL;
6702		}
6703	}
6704	return doms;
6705}
6706
6707void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6708{
6709	unsigned int i;
6710	for (i = 0; i < ndoms; i++)
6711		free_cpumask_var(doms[i]);
6712	kfree(doms);
6713}
6714
6715/*
6716 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6717 * For now this just excludes isolated cpus, but could be used to
6718 * exclude other special cases in the future.
6719 */
6720static int init_sched_domains(const struct cpumask *cpu_map)
6721{
6722	int err;
6723
6724	arch_update_cpu_topology();
6725	ndoms_cur = 1;
6726	doms_cur = alloc_sched_domains(ndoms_cur);
6727	if (!doms_cur)
6728		doms_cur = &fallback_doms;
6729	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6730	dattr_cur = NULL;
6731	err = build_sched_domains(doms_cur[0], NULL);
6732	register_sched_domain_sysctl();
6733
6734	return err;
6735}
6736
6737/*
6738 * Detach sched domains from a group of cpus specified in cpu_map
6739 * These cpus will now be attached to the NULL domain
6740 */
6741static void detach_destroy_domains(const struct cpumask *cpu_map)
6742{
6743	int i;
6744
6745	rcu_read_lock();
6746	for_each_cpu(i, cpu_map)
6747		cpu_attach_domain(NULL, &def_root_domain, i);
6748	rcu_read_unlock();
6749}
6750
6751/* handle null as "default" */
6752static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6753			struct sched_domain_attr *new, int idx_new)
6754{
6755	struct sched_domain_attr tmp;
6756
6757	/* fast path */
6758	if (!new && !cur)
6759		return 1;
6760
6761	tmp = SD_ATTR_INIT;
6762	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6763			new ? (new + idx_new) : &tmp,
6764			sizeof(struct sched_domain_attr));
6765}
6766
6767/*
6768 * Partition sched domains as specified by the 'ndoms_new'
6769 * cpumasks in the array doms_new[] of cpumasks. This compares
6770 * doms_new[] to the current sched domain partitioning, doms_cur[].
6771 * It destroys each deleted domain and builds each new domain.
6772 *
6773 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6774 * The masks don't intersect (don't overlap.) We should setup one
6775 * sched domain for each mask. CPUs not in any of the cpumasks will
6776 * not be load balanced. If the same cpumask appears both in the
6777 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6778 * it as it is.
6779 *
6780 * The passed in 'doms_new' should be allocated using
6781 * alloc_sched_domains.  This routine takes ownership of it and will
6782 * free_sched_domains it when done with it. If the caller failed the
6783 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6784 * and partition_sched_domains() will fallback to the single partition
6785 * 'fallback_doms', it also forces the domains to be rebuilt.
6786 *
6787 * If doms_new == NULL it will be replaced with cpu_online_mask.
6788 * ndoms_new == 0 is a special case for destroying existing domains,
6789 * and it will not create the default domain.
6790 *
6791 * Call with hotplug lock held
6792 */
6793void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6794			     struct sched_domain_attr *dattr_new)
6795{
6796	int i, j, n;
6797	int new_topology;
6798
6799	mutex_lock(&sched_domains_mutex);
6800
6801	/* always unregister in case we don't destroy any domains */
6802	unregister_sched_domain_sysctl();
6803
6804	/* Let architecture update cpu core mappings. */
6805	new_topology = arch_update_cpu_topology();
6806
6807	n = doms_new ? ndoms_new : 0;
6808
6809	/* Destroy deleted domains */
6810	for (i = 0; i < ndoms_cur; i++) {
6811		for (j = 0; j < n && !new_topology; j++) {
6812			if (cpumask_equal(doms_cur[i], doms_new[j])
6813			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6814				goto match1;
6815		}
6816		/* no match - a current sched domain not in new doms_new[] */
6817		detach_destroy_domains(doms_cur[i]);
6818match1:
6819		;
6820	}
6821
6822	if (doms_new == NULL) {
6823		ndoms_cur = 0;
6824		doms_new = &fallback_doms;
6825		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6826		WARN_ON_ONCE(dattr_new);
6827	}
6828
6829	/* Build new domains */
6830	for (i = 0; i < ndoms_new; i++) {
6831		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6832			if (cpumask_equal(doms_new[i], doms_cur[j])
6833			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6834				goto match2;
6835		}
6836		/* no match - add a new doms_new */
6837		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6838match2:
6839		;
6840	}
6841
6842	/* Remember the new sched domains */
6843	if (doms_cur != &fallback_doms)
6844		free_sched_domains(doms_cur, ndoms_cur);
6845	kfree(dattr_cur);	/* kfree(NULL) is safe */
6846	doms_cur = doms_new;
6847	dattr_cur = dattr_new;
6848	ndoms_cur = ndoms_new;
6849
6850	register_sched_domain_sysctl();
6851
6852	mutex_unlock(&sched_domains_mutex);
6853}
6854
6855/*
6856 * Update cpusets according to cpu_active mask.  If cpusets are
6857 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6858 * around partition_sched_domains().
6859 */
6860static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6861			     void *hcpu)
6862{
6863	switch (action & ~CPU_TASKS_FROZEN) {
6864	case CPU_ONLINE:
6865	case CPU_DOWN_FAILED:
6866		cpuset_update_active_cpus();
6867		return NOTIFY_OK;
6868	default:
6869		return NOTIFY_DONE;
6870	}
6871}
6872
6873static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6874			       void *hcpu)
6875{
6876	switch (action & ~CPU_TASKS_FROZEN) {
6877	case CPU_DOWN_PREPARE:
6878		cpuset_update_active_cpus();
6879		return NOTIFY_OK;
6880	default:
6881		return NOTIFY_DONE;
6882	}
6883}
6884
6885void __init sched_init_smp(void)
6886{
6887	cpumask_var_t non_isolated_cpus;
6888
6889	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6890	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6891
6892	sched_init_numa();
6893
6894	get_online_cpus();
6895	mutex_lock(&sched_domains_mutex);
6896	init_sched_domains(cpu_active_mask);
6897	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6898	if (cpumask_empty(non_isolated_cpus))
6899		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6900	mutex_unlock(&sched_domains_mutex);
6901	put_online_cpus();
6902
6903	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6904	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6905
6906	/* RT runtime code needs to handle some hotplug events */
6907	hotcpu_notifier(update_runtime, 0);
6908
6909	init_hrtick();
6910
6911	/* Move init over to a non-isolated CPU */
6912	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6913		BUG();
6914	sched_init_granularity();
6915	free_cpumask_var(non_isolated_cpus);
6916
6917	init_sched_rt_class();
6918}
6919#else
6920void __init sched_init_smp(void)
6921{
6922	sched_init_granularity();
6923}
6924#endif /* CONFIG_SMP */
6925
6926const_debug unsigned int sysctl_timer_migration = 1;
6927
6928int in_sched_functions(unsigned long addr)
6929{
6930	return in_lock_functions(addr) ||
6931		(addr >= (unsigned long)__sched_text_start
6932		&& addr < (unsigned long)__sched_text_end);
6933}
6934
6935#ifdef CONFIG_CGROUP_SCHED
6936struct task_group root_task_group;
6937#endif
6938
6939DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6940
6941void __init sched_init(void)
6942{
6943	int i, j;
6944	unsigned long alloc_size = 0, ptr;
6945
6946#ifdef CONFIG_FAIR_GROUP_SCHED
6947	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6948#endif
6949#ifdef CONFIG_RT_GROUP_SCHED
6950	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6951#endif
6952#ifdef CONFIG_CPUMASK_OFFSTACK
6953	alloc_size += num_possible_cpus() * cpumask_size();
6954#endif
6955	if (alloc_size) {
6956		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6957
6958#ifdef CONFIG_FAIR_GROUP_SCHED
6959		root_task_group.se = (struct sched_entity **)ptr;
6960		ptr += nr_cpu_ids * sizeof(void **);
6961
6962		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6963		ptr += nr_cpu_ids * sizeof(void **);
6964
6965#endif /* CONFIG_FAIR_GROUP_SCHED */
6966#ifdef CONFIG_RT_GROUP_SCHED
6967		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6968		ptr += nr_cpu_ids * sizeof(void **);
6969
6970		root_task_group.rt_rq = (struct rt_rq **)ptr;
6971		ptr += nr_cpu_ids * sizeof(void **);
6972
6973#endif /* CONFIG_RT_GROUP_SCHED */
6974#ifdef CONFIG_CPUMASK_OFFSTACK
6975		for_each_possible_cpu(i) {
6976			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6977			ptr += cpumask_size();
6978		}
6979#endif /* CONFIG_CPUMASK_OFFSTACK */
6980	}
6981
6982#ifdef CONFIG_SMP
6983	init_defrootdomain();
6984#endif
6985
6986	init_rt_bandwidth(&def_rt_bandwidth,
6987			global_rt_period(), global_rt_runtime());
6988
6989#ifdef CONFIG_RT_GROUP_SCHED
6990	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6991			global_rt_period(), global_rt_runtime());
6992#endif /* CONFIG_RT_GROUP_SCHED */
6993
6994#ifdef CONFIG_CGROUP_SCHED
6995	list_add(&root_task_group.list, &task_groups);
6996	INIT_LIST_HEAD(&root_task_group.children);
6997	INIT_LIST_HEAD(&root_task_group.siblings);
6998	autogroup_init(&init_task);
6999
7000#endif /* CONFIG_CGROUP_SCHED */
7001
7002#ifdef CONFIG_CGROUP_CPUACCT
7003	root_cpuacct.cpustat = &kernel_cpustat;
7004	root_cpuacct.cpuusage = alloc_percpu(u64);
7005	/* Too early, not expected to fail */
7006	BUG_ON(!root_cpuacct.cpuusage);
7007#endif
7008	for_each_possible_cpu(i) {
7009		struct rq *rq;
7010
7011		rq = cpu_rq(i);
7012		raw_spin_lock_init(&rq->lock);
7013		rq->nr_running = 0;
7014		rq->calc_load_active = 0;
7015		rq->calc_load_update = jiffies + LOAD_FREQ;
7016		init_cfs_rq(&rq->cfs);
7017		init_rt_rq(&rq->rt, rq);
7018#ifdef CONFIG_FAIR_GROUP_SCHED
7019		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7020		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7021		/*
7022		 * How much cpu bandwidth does root_task_group get?
7023		 *
7024		 * In case of task-groups formed thr' the cgroup filesystem, it
7025		 * gets 100% of the cpu resources in the system. This overall
7026		 * system cpu resource is divided among the tasks of
7027		 * root_task_group and its child task-groups in a fair manner,
7028		 * based on each entity's (task or task-group's) weight
7029		 * (se->load.weight).
7030		 *
7031		 * In other words, if root_task_group has 10 tasks of weight
7032		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7033		 * then A0's share of the cpu resource is:
7034		 *
7035		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7036		 *
7037		 * We achieve this by letting root_task_group's tasks sit
7038		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7039		 */
7040		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7041		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7042#endif /* CONFIG_FAIR_GROUP_SCHED */
7043
7044		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7045#ifdef CONFIG_RT_GROUP_SCHED
7046		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7047		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7048#endif
7049
7050		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7051			rq->cpu_load[j] = 0;
7052
7053		rq->last_load_update_tick = jiffies;
7054
7055#ifdef CONFIG_SMP
7056		rq->sd = NULL;
7057		rq->rd = NULL;
7058		rq->cpu_power = SCHED_POWER_SCALE;
7059		rq->post_schedule = 0;
7060		rq->active_balance = 0;
7061		rq->next_balance = jiffies;
7062		rq->push_cpu = 0;
7063		rq->cpu = i;
7064		rq->online = 0;
7065		rq->idle_stamp = 0;
7066		rq->avg_idle = 2*sysctl_sched_migration_cost;
7067
7068		INIT_LIST_HEAD(&rq->cfs_tasks);
7069
7070		rq_attach_root(rq, &def_root_domain);
7071#ifdef CONFIG_NO_HZ
7072		rq->nohz_flags = 0;
7073#endif
7074#endif
7075		init_rq_hrtick(rq);
7076		atomic_set(&rq->nr_iowait, 0);
7077	}
7078
7079	set_load_weight(&init_task);
7080
7081#ifdef CONFIG_PREEMPT_NOTIFIERS
7082	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7083#endif
7084
7085#ifdef CONFIG_RT_MUTEXES
7086	plist_head_init(&init_task.pi_waiters);
7087#endif
7088
7089	/*
7090	 * The boot idle thread does lazy MMU switching as well:
7091	 */
7092	atomic_inc(&init_mm.mm_count);
7093	enter_lazy_tlb(&init_mm, current);
7094
7095	/*
7096	 * Make us the idle thread. Technically, schedule() should not be
7097	 * called from this thread, however somewhere below it might be,
7098	 * but because we are the idle thread, we just pick up running again
7099	 * when this runqueue becomes "idle".
7100	 */
7101	init_idle(current, smp_processor_id());
7102
7103	calc_load_update = jiffies + LOAD_FREQ;
7104
7105	/*
7106	 * During early bootup we pretend to be a normal task:
7107	 */
7108	current->sched_class = &fair_sched_class;
7109
7110#ifdef CONFIG_SMP
7111	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7112	/* May be allocated at isolcpus cmdline parse time */
7113	if (cpu_isolated_map == NULL)
7114		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7115	idle_thread_set_boot_cpu();
7116#endif
7117	init_sched_fair_class();
7118
7119	scheduler_running = 1;
7120}
7121
7122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7123static inline int preempt_count_equals(int preempt_offset)
7124{
7125	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7126
7127	return (nested == preempt_offset);
7128}
7129
7130void __might_sleep(const char *file, int line, int preempt_offset)
7131{
7132	static unsigned long prev_jiffy;	/* ratelimiting */
7133
7134	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7135	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7136	    system_state != SYSTEM_RUNNING || oops_in_progress)
7137		return;
7138	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7139		return;
7140	prev_jiffy = jiffies;
7141
7142	printk(KERN_ERR
7143		"BUG: sleeping function called from invalid context at %s:%d\n",
7144			file, line);
7145	printk(KERN_ERR
7146		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7147			in_atomic(), irqs_disabled(),
7148			current->pid, current->comm);
7149
7150	debug_show_held_locks(current);
7151	if (irqs_disabled())
7152		print_irqtrace_events(current);
7153	dump_stack();
7154}
7155EXPORT_SYMBOL(__might_sleep);
7156#endif
7157
7158#ifdef CONFIG_MAGIC_SYSRQ
7159static void normalize_task(struct rq *rq, struct task_struct *p)
7160{
7161	const struct sched_class *prev_class = p->sched_class;
7162	int old_prio = p->prio;
7163	int on_rq;
7164
7165	on_rq = p->on_rq;
7166	if (on_rq)
7167		dequeue_task(rq, p, 0);
7168	__setscheduler(rq, p, SCHED_NORMAL, 0);
7169	if (on_rq) {
7170		enqueue_task(rq, p, 0);
7171		resched_task(rq->curr);
7172	}
7173
7174	check_class_changed(rq, p, prev_class, old_prio);
7175}
7176
7177void normalize_rt_tasks(void)
7178{
7179	struct task_struct *g, *p;
7180	unsigned long flags;
7181	struct rq *rq;
7182
7183	read_lock_irqsave(&tasklist_lock, flags);
7184	do_each_thread(g, p) {
7185		/*
7186		 * Only normalize user tasks:
7187		 */
7188		if (!p->mm)
7189			continue;
7190
7191		p->se.exec_start		= 0;
7192#ifdef CONFIG_SCHEDSTATS
7193		p->se.statistics.wait_start	= 0;
7194		p->se.statistics.sleep_start	= 0;
7195		p->se.statistics.block_start	= 0;
7196#endif
7197
7198		if (!rt_task(p)) {
7199			/*
7200			 * Renice negative nice level userspace
7201			 * tasks back to 0:
7202			 */
7203			if (TASK_NICE(p) < 0 && p->mm)
7204				set_user_nice(p, 0);
7205			continue;
7206		}
7207
7208		raw_spin_lock(&p->pi_lock);
7209		rq = __task_rq_lock(p);
7210
7211		normalize_task(rq, p);
7212
7213		__task_rq_unlock(rq);
7214		raw_spin_unlock(&p->pi_lock);
7215	} while_each_thread(g, p);
7216
7217	read_unlock_irqrestore(&tasklist_lock, flags);
7218}
7219
7220#endif /* CONFIG_MAGIC_SYSRQ */
7221
7222#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7223/*
7224 * These functions are only useful for the IA64 MCA handling, or kdb.
7225 *
7226 * They can only be called when the whole system has been
7227 * stopped - every CPU needs to be quiescent, and no scheduling
7228 * activity can take place. Using them for anything else would
7229 * be a serious bug, and as a result, they aren't even visible
7230 * under any other configuration.
7231 */
7232
7233/**
7234 * curr_task - return the current task for a given cpu.
7235 * @cpu: the processor in question.
7236 *
7237 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7238 */
7239struct task_struct *curr_task(int cpu)
7240{
7241	return cpu_curr(cpu);
7242}
7243
7244#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7245
7246#ifdef CONFIG_IA64
7247/**
7248 * set_curr_task - set the current task for a given cpu.
7249 * @cpu: the processor in question.
7250 * @p: the task pointer to set.
7251 *
7252 * Description: This function must only be used when non-maskable interrupts
7253 * are serviced on a separate stack. It allows the architecture to switch the
7254 * notion of the current task on a cpu in a non-blocking manner. This function
7255 * must be called with all CPU's synchronized, and interrupts disabled, the
7256 * and caller must save the original value of the current task (see
7257 * curr_task() above) and restore that value before reenabling interrupts and
7258 * re-starting the system.
7259 *
7260 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7261 */
7262void set_curr_task(int cpu, struct task_struct *p)
7263{
7264	cpu_curr(cpu) = p;
7265}
7266
7267#endif
7268
7269#ifdef CONFIG_CGROUP_SCHED
7270/* task_group_lock serializes the addition/removal of task groups */
7271static DEFINE_SPINLOCK(task_group_lock);
7272
7273static void free_sched_group(struct task_group *tg)
7274{
7275	free_fair_sched_group(tg);
7276	free_rt_sched_group(tg);
7277	autogroup_free(tg);
7278	kfree(tg);
7279}
7280
7281/* allocate runqueue etc for a new task group */
7282struct task_group *sched_create_group(struct task_group *parent)
7283{
7284	struct task_group *tg;
7285	unsigned long flags;
7286
7287	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7288	if (!tg)
7289		return ERR_PTR(-ENOMEM);
7290
7291	if (!alloc_fair_sched_group(tg, parent))
7292		goto err;
7293
7294	if (!alloc_rt_sched_group(tg, parent))
7295		goto err;
7296
7297	spin_lock_irqsave(&task_group_lock, flags);
7298	list_add_rcu(&tg->list, &task_groups);
7299
7300	WARN_ON(!parent); /* root should already exist */
7301
7302	tg->parent = parent;
7303	INIT_LIST_HEAD(&tg->children);
7304	list_add_rcu(&tg->siblings, &parent->children);
7305	spin_unlock_irqrestore(&task_group_lock, flags);
7306
7307	return tg;
7308
7309err:
7310	free_sched_group(tg);
7311	return ERR_PTR(-ENOMEM);
7312}
7313
7314/* rcu callback to free various structures associated with a task group */
7315static void free_sched_group_rcu(struct rcu_head *rhp)
7316{
7317	/* now it should be safe to free those cfs_rqs */
7318	free_sched_group(container_of(rhp, struct task_group, rcu));
7319}
7320
7321/* Destroy runqueue etc associated with a task group */
7322void sched_destroy_group(struct task_group *tg)
7323{
7324	unsigned long flags;
7325	int i;
7326
7327	/* end participation in shares distribution */
7328	for_each_possible_cpu(i)
7329		unregister_fair_sched_group(tg, i);
7330
7331	spin_lock_irqsave(&task_group_lock, flags);
7332	list_del_rcu(&tg->list);
7333	list_del_rcu(&tg->siblings);
7334	spin_unlock_irqrestore(&task_group_lock, flags);
7335
7336	/* wait for possible concurrent references to cfs_rqs complete */
7337	call_rcu(&tg->rcu, free_sched_group_rcu);
7338}
7339
7340/* change task's runqueue when it moves between groups.
7341 *	The caller of this function should have put the task in its new group
7342 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7343 *	reflect its new group.
7344 */
7345void sched_move_task(struct task_struct *tsk)
7346{
7347	int on_rq, running;
7348	unsigned long flags;
7349	struct rq *rq;
7350
7351	rq = task_rq_lock(tsk, &flags);
7352
7353	running = task_current(rq, tsk);
7354	on_rq = tsk->on_rq;
7355
7356	if (on_rq)
7357		dequeue_task(rq, tsk, 0);
7358	if (unlikely(running))
7359		tsk->sched_class->put_prev_task(rq, tsk);
7360
7361#ifdef CONFIG_FAIR_GROUP_SCHED
7362	if (tsk->sched_class->task_move_group)
7363		tsk->sched_class->task_move_group(tsk, on_rq);
7364	else
7365#endif
7366		set_task_rq(tsk, task_cpu(tsk));
7367
7368	if (unlikely(running))
7369		tsk->sched_class->set_curr_task(rq);
7370	if (on_rq)
7371		enqueue_task(rq, tsk, 0);
7372
7373	task_rq_unlock(rq, tsk, &flags);
7374}
7375#endif /* CONFIG_CGROUP_SCHED */
7376
7377#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7378static unsigned long to_ratio(u64 period, u64 runtime)
7379{
7380	if (runtime == RUNTIME_INF)
7381		return 1ULL << 20;
7382
7383	return div64_u64(runtime << 20, period);
7384}
7385#endif
7386
7387#ifdef CONFIG_RT_GROUP_SCHED
7388/*
7389 * Ensure that the real time constraints are schedulable.
7390 */
7391static DEFINE_MUTEX(rt_constraints_mutex);
7392
7393/* Must be called with tasklist_lock held */
7394static inline int tg_has_rt_tasks(struct task_group *tg)
7395{
7396	struct task_struct *g, *p;
7397
7398	do_each_thread(g, p) {
7399		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7400			return 1;
7401	} while_each_thread(g, p);
7402
7403	return 0;
7404}
7405
7406struct rt_schedulable_data {
7407	struct task_group *tg;
7408	u64 rt_period;
7409	u64 rt_runtime;
7410};
7411
7412static int tg_rt_schedulable(struct task_group *tg, void *data)
7413{
7414	struct rt_schedulable_data *d = data;
7415	struct task_group *child;
7416	unsigned long total, sum = 0;
7417	u64 period, runtime;
7418
7419	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7420	runtime = tg->rt_bandwidth.rt_runtime;
7421
7422	if (tg == d->tg) {
7423		period = d->rt_period;
7424		runtime = d->rt_runtime;
7425	}
7426
7427	/*
7428	 * Cannot have more runtime than the period.
7429	 */
7430	if (runtime > period && runtime != RUNTIME_INF)
7431		return -EINVAL;
7432
7433	/*
7434	 * Ensure we don't starve existing RT tasks.
7435	 */
7436	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7437		return -EBUSY;
7438
7439	total = to_ratio(period, runtime);
7440
7441	/*
7442	 * Nobody can have more than the global setting allows.
7443	 */
7444	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7445		return -EINVAL;
7446
7447	/*
7448	 * The sum of our children's runtime should not exceed our own.
7449	 */
7450	list_for_each_entry_rcu(child, &tg->children, siblings) {
7451		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7452		runtime = child->rt_bandwidth.rt_runtime;
7453
7454		if (child == d->tg) {
7455			period = d->rt_period;
7456			runtime = d->rt_runtime;
7457		}
7458
7459		sum += to_ratio(period, runtime);
7460	}
7461
7462	if (sum > total)
7463		return -EINVAL;
7464
7465	return 0;
7466}
7467
7468static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7469{
7470	int ret;
7471
7472	struct rt_schedulable_data data = {
7473		.tg = tg,
7474		.rt_period = period,
7475		.rt_runtime = runtime,
7476	};
7477
7478	rcu_read_lock();
7479	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7480	rcu_read_unlock();
7481
7482	return ret;
7483}
7484
7485static int tg_set_rt_bandwidth(struct task_group *tg,
7486		u64 rt_period, u64 rt_runtime)
7487{
7488	int i, err = 0;
7489
7490	mutex_lock(&rt_constraints_mutex);
7491	read_lock(&tasklist_lock);
7492	err = __rt_schedulable(tg, rt_period, rt_runtime);
7493	if (err)
7494		goto unlock;
7495
7496	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7497	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7498	tg->rt_bandwidth.rt_runtime = rt_runtime;
7499
7500	for_each_possible_cpu(i) {
7501		struct rt_rq *rt_rq = tg->rt_rq[i];
7502
7503		raw_spin_lock(&rt_rq->rt_runtime_lock);
7504		rt_rq->rt_runtime = rt_runtime;
7505		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7506	}
7507	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7508unlock:
7509	read_unlock(&tasklist_lock);
7510	mutex_unlock(&rt_constraints_mutex);
7511
7512	return err;
7513}
7514
7515int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7516{
7517	u64 rt_runtime, rt_period;
7518
7519	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7520	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7521	if (rt_runtime_us < 0)
7522		rt_runtime = RUNTIME_INF;
7523
7524	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7525}
7526
7527long sched_group_rt_runtime(struct task_group *tg)
7528{
7529	u64 rt_runtime_us;
7530
7531	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7532		return -1;
7533
7534	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7535	do_div(rt_runtime_us, NSEC_PER_USEC);
7536	return rt_runtime_us;
7537}
7538
7539int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7540{
7541	u64 rt_runtime, rt_period;
7542
7543	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7544	rt_runtime = tg->rt_bandwidth.rt_runtime;
7545
7546	if (rt_period == 0)
7547		return -EINVAL;
7548
7549	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7550}
7551
7552long sched_group_rt_period(struct task_group *tg)
7553{
7554	u64 rt_period_us;
7555
7556	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7557	do_div(rt_period_us, NSEC_PER_USEC);
7558	return rt_period_us;
7559}
7560
7561static int sched_rt_global_constraints(void)
7562{
7563	u64 runtime, period;
7564	int ret = 0;
7565
7566	if (sysctl_sched_rt_period <= 0)
7567		return -EINVAL;
7568
7569	runtime = global_rt_runtime();
7570	period = global_rt_period();
7571
7572	/*
7573	 * Sanity check on the sysctl variables.
7574	 */
7575	if (runtime > period && runtime != RUNTIME_INF)
7576		return -EINVAL;
7577
7578	mutex_lock(&rt_constraints_mutex);
7579	read_lock(&tasklist_lock);
7580	ret = __rt_schedulable(NULL, 0, 0);
7581	read_unlock(&tasklist_lock);
7582	mutex_unlock(&rt_constraints_mutex);
7583
7584	return ret;
7585}
7586
7587int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7588{
7589	/* Don't accept realtime tasks when there is no way for them to run */
7590	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7591		return 0;
7592
7593	return 1;
7594}
7595
7596#else /* !CONFIG_RT_GROUP_SCHED */
7597static int sched_rt_global_constraints(void)
7598{
7599	unsigned long flags;
7600	int i;
7601
7602	if (sysctl_sched_rt_period <= 0)
7603		return -EINVAL;
7604
7605	/*
7606	 * There's always some RT tasks in the root group
7607	 * -- migration, kstopmachine etc..
7608	 */
7609	if (sysctl_sched_rt_runtime == 0)
7610		return -EBUSY;
7611
7612	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7613	for_each_possible_cpu(i) {
7614		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7615
7616		raw_spin_lock(&rt_rq->rt_runtime_lock);
7617		rt_rq->rt_runtime = global_rt_runtime();
7618		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7619	}
7620	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7621
7622	return 0;
7623}
7624#endif /* CONFIG_RT_GROUP_SCHED */
7625
7626int sched_rt_handler(struct ctl_table *table, int write,
7627		void __user *buffer, size_t *lenp,
7628		loff_t *ppos)
7629{
7630	int ret;
7631	int old_period, old_runtime;
7632	static DEFINE_MUTEX(mutex);
7633
7634	mutex_lock(&mutex);
7635	old_period = sysctl_sched_rt_period;
7636	old_runtime = sysctl_sched_rt_runtime;
7637
7638	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7639
7640	if (!ret && write) {
7641		ret = sched_rt_global_constraints();
7642		if (ret) {
7643			sysctl_sched_rt_period = old_period;
7644			sysctl_sched_rt_runtime = old_runtime;
7645		} else {
7646			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7647			def_rt_bandwidth.rt_period =
7648				ns_to_ktime(global_rt_period());
7649		}
7650	}
7651	mutex_unlock(&mutex);
7652
7653	return ret;
7654}
7655
7656#ifdef CONFIG_CGROUP_SCHED
7657
7658/* return corresponding task_group object of a cgroup */
7659static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7660{
7661	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7662			    struct task_group, css);
7663}
7664
7665static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7666{
7667	struct task_group *tg, *parent;
7668
7669	if (!cgrp->parent) {
7670		/* This is early initialization for the top cgroup */
7671		return &root_task_group.css;
7672	}
7673
7674	parent = cgroup_tg(cgrp->parent);
7675	tg = sched_create_group(parent);
7676	if (IS_ERR(tg))
7677		return ERR_PTR(-ENOMEM);
7678
7679	return &tg->css;
7680}
7681
7682static void cpu_cgroup_destroy(struct cgroup *cgrp)
7683{
7684	struct task_group *tg = cgroup_tg(cgrp);
7685
7686	sched_destroy_group(tg);
7687}
7688
7689static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7690				 struct cgroup_taskset *tset)
7691{
7692	struct task_struct *task;
7693
7694	cgroup_taskset_for_each(task, cgrp, tset) {
7695#ifdef CONFIG_RT_GROUP_SCHED
7696		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7697			return -EINVAL;
7698#else
7699		/* We don't support RT-tasks being in separate groups */
7700		if (task->sched_class != &fair_sched_class)
7701			return -EINVAL;
7702#endif
7703	}
7704	return 0;
7705}
7706
7707static void cpu_cgroup_attach(struct cgroup *cgrp,
7708			      struct cgroup_taskset *tset)
7709{
7710	struct task_struct *task;
7711
7712	cgroup_taskset_for_each(task, cgrp, tset)
7713		sched_move_task(task);
7714}
7715
7716static void
7717cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7718		struct task_struct *task)
7719{
7720	/*
7721	 * cgroup_exit() is called in the copy_process() failure path.
7722	 * Ignore this case since the task hasn't ran yet, this avoids
7723	 * trying to poke a half freed task state from generic code.
7724	 */
7725	if (!(task->flags & PF_EXITING))
7726		return;
7727
7728	sched_move_task(task);
7729}
7730
7731#ifdef CONFIG_FAIR_GROUP_SCHED
7732static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7733				u64 shareval)
7734{
7735	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7736}
7737
7738static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7739{
7740	struct task_group *tg = cgroup_tg(cgrp);
7741
7742	return (u64) scale_load_down(tg->shares);
7743}
7744
7745#ifdef CONFIG_CFS_BANDWIDTH
7746static DEFINE_MUTEX(cfs_constraints_mutex);
7747
7748const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7749const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7750
7751static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7752
7753static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7754{
7755	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7756	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7757
7758	if (tg == &root_task_group)
7759		return -EINVAL;
7760
7761	/*
7762	 * Ensure we have at some amount of bandwidth every period.  This is
7763	 * to prevent reaching a state of large arrears when throttled via
7764	 * entity_tick() resulting in prolonged exit starvation.
7765	 */
7766	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7767		return -EINVAL;
7768
7769	/*
7770	 * Likewise, bound things on the otherside by preventing insane quota
7771	 * periods.  This also allows us to normalize in computing quota
7772	 * feasibility.
7773	 */
7774	if (period > max_cfs_quota_period)
7775		return -EINVAL;
7776
7777	mutex_lock(&cfs_constraints_mutex);
7778	ret = __cfs_schedulable(tg, period, quota);
7779	if (ret)
7780		goto out_unlock;
7781
7782	runtime_enabled = quota != RUNTIME_INF;
7783	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7784	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7785	raw_spin_lock_irq(&cfs_b->lock);
7786	cfs_b->period = ns_to_ktime(period);
7787	cfs_b->quota = quota;
7788
7789	__refill_cfs_bandwidth_runtime(cfs_b);
7790	/* restart the period timer (if active) to handle new period expiry */
7791	if (runtime_enabled && cfs_b->timer_active) {
7792		/* force a reprogram */
7793		cfs_b->timer_active = 0;
7794		__start_cfs_bandwidth(cfs_b);
7795	}
7796	raw_spin_unlock_irq(&cfs_b->lock);
7797
7798	for_each_possible_cpu(i) {
7799		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7800		struct rq *rq = cfs_rq->rq;
7801
7802		raw_spin_lock_irq(&rq->lock);
7803		cfs_rq->runtime_enabled = runtime_enabled;
7804		cfs_rq->runtime_remaining = 0;
7805
7806		if (cfs_rq->throttled)
7807			unthrottle_cfs_rq(cfs_rq);
7808		raw_spin_unlock_irq(&rq->lock);
7809	}
7810out_unlock:
7811	mutex_unlock(&cfs_constraints_mutex);
7812
7813	return ret;
7814}
7815
7816int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7817{
7818	u64 quota, period;
7819
7820	period = ktime_to_ns(tg->cfs_bandwidth.period);
7821	if (cfs_quota_us < 0)
7822		quota = RUNTIME_INF;
7823	else
7824		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7825
7826	return tg_set_cfs_bandwidth(tg, period, quota);
7827}
7828
7829long tg_get_cfs_quota(struct task_group *tg)
7830{
7831	u64 quota_us;
7832
7833	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7834		return -1;
7835
7836	quota_us = tg->cfs_bandwidth.quota;
7837	do_div(quota_us, NSEC_PER_USEC);
7838
7839	return quota_us;
7840}
7841
7842int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7843{
7844	u64 quota, period;
7845
7846	period = (u64)cfs_period_us * NSEC_PER_USEC;
7847	quota = tg->cfs_bandwidth.quota;
7848
7849	return tg_set_cfs_bandwidth(tg, period, quota);
7850}
7851
7852long tg_get_cfs_period(struct task_group *tg)
7853{
7854	u64 cfs_period_us;
7855
7856	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7857	do_div(cfs_period_us, NSEC_PER_USEC);
7858
7859	return cfs_period_us;
7860}
7861
7862static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7863{
7864	return tg_get_cfs_quota(cgroup_tg(cgrp));
7865}
7866
7867static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7868				s64 cfs_quota_us)
7869{
7870	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7871}
7872
7873static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7874{
7875	return tg_get_cfs_period(cgroup_tg(cgrp));
7876}
7877
7878static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7879				u64 cfs_period_us)
7880{
7881	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7882}
7883
7884struct cfs_schedulable_data {
7885	struct task_group *tg;
7886	u64 period, quota;
7887};
7888
7889/*
7890 * normalize group quota/period to be quota/max_period
7891 * note: units are usecs
7892 */
7893static u64 normalize_cfs_quota(struct task_group *tg,
7894			       struct cfs_schedulable_data *d)
7895{
7896	u64 quota, period;
7897
7898	if (tg == d->tg) {
7899		period = d->period;
7900		quota = d->quota;
7901	} else {
7902		period = tg_get_cfs_period(tg);
7903		quota = tg_get_cfs_quota(tg);
7904	}
7905
7906	/* note: these should typically be equivalent */
7907	if (quota == RUNTIME_INF || quota == -1)
7908		return RUNTIME_INF;
7909
7910	return to_ratio(period, quota);
7911}
7912
7913static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7914{
7915	struct cfs_schedulable_data *d = data;
7916	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7917	s64 quota = 0, parent_quota = -1;
7918
7919	if (!tg->parent) {
7920		quota = RUNTIME_INF;
7921	} else {
7922		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7923
7924		quota = normalize_cfs_quota(tg, d);
7925		parent_quota = parent_b->hierarchal_quota;
7926
7927		/*
7928		 * ensure max(child_quota) <= parent_quota, inherit when no
7929		 * limit is set
7930		 */
7931		if (quota == RUNTIME_INF)
7932			quota = parent_quota;
7933		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7934			return -EINVAL;
7935	}
7936	cfs_b->hierarchal_quota = quota;
7937
7938	return 0;
7939}
7940
7941static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7942{
7943	int ret;
7944	struct cfs_schedulable_data data = {
7945		.tg = tg,
7946		.period = period,
7947		.quota = quota,
7948	};
7949
7950	if (quota != RUNTIME_INF) {
7951		do_div(data.period, NSEC_PER_USEC);
7952		do_div(data.quota, NSEC_PER_USEC);
7953	}
7954
7955	rcu_read_lock();
7956	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7957	rcu_read_unlock();
7958
7959	return ret;
7960}
7961
7962static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7963		struct cgroup_map_cb *cb)
7964{
7965	struct task_group *tg = cgroup_tg(cgrp);
7966	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7967
7968	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7969	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7970	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7971
7972	return 0;
7973}
7974#endif /* CONFIG_CFS_BANDWIDTH */
7975#endif /* CONFIG_FAIR_GROUP_SCHED */
7976
7977#ifdef CONFIG_RT_GROUP_SCHED
7978static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7979				s64 val)
7980{
7981	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7982}
7983
7984static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7985{
7986	return sched_group_rt_runtime(cgroup_tg(cgrp));
7987}
7988
7989static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7990		u64 rt_period_us)
7991{
7992	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7993}
7994
7995static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7996{
7997	return sched_group_rt_period(cgroup_tg(cgrp));
7998}
7999#endif /* CONFIG_RT_GROUP_SCHED */
8000
8001static struct cftype cpu_files[] = {
8002#ifdef CONFIG_FAIR_GROUP_SCHED
8003	{
8004		.name = "shares",
8005		.read_u64 = cpu_shares_read_u64,
8006		.write_u64 = cpu_shares_write_u64,
8007	},
8008#endif
8009#ifdef CONFIG_CFS_BANDWIDTH
8010	{
8011		.name = "cfs_quota_us",
8012		.read_s64 = cpu_cfs_quota_read_s64,
8013		.write_s64 = cpu_cfs_quota_write_s64,
8014	},
8015	{
8016		.name = "cfs_period_us",
8017		.read_u64 = cpu_cfs_period_read_u64,
8018		.write_u64 = cpu_cfs_period_write_u64,
8019	},
8020	{
8021		.name = "stat",
8022		.read_map = cpu_stats_show,
8023	},
8024#endif
8025#ifdef CONFIG_RT_GROUP_SCHED
8026	{
8027		.name = "rt_runtime_us",
8028		.read_s64 = cpu_rt_runtime_read,
8029		.write_s64 = cpu_rt_runtime_write,
8030	},
8031	{
8032		.name = "rt_period_us",
8033		.read_u64 = cpu_rt_period_read_uint,
8034		.write_u64 = cpu_rt_period_write_uint,
8035	},
8036#endif
8037	{ }	/* terminate */
8038};
8039
8040struct cgroup_subsys cpu_cgroup_subsys = {
8041	.name		= "cpu",
8042	.create		= cpu_cgroup_create,
8043	.destroy	= cpu_cgroup_destroy,
8044	.can_attach	= cpu_cgroup_can_attach,
8045	.attach		= cpu_cgroup_attach,
8046	.exit		= cpu_cgroup_exit,
8047	.subsys_id	= cpu_cgroup_subsys_id,
8048	.base_cftypes	= cpu_files,
8049	.early_init	= 1,
8050};
8051
8052#endif	/* CONFIG_CGROUP_SCHED */
8053
8054#ifdef CONFIG_CGROUP_CPUACCT
8055
8056/*
8057 * CPU accounting code for task groups.
8058 *
8059 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8060 * (balbir@in.ibm.com).
8061 */
8062
8063/* create a new cpu accounting group */
8064static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8065{
8066	struct cpuacct *ca;
8067
8068	if (!cgrp->parent)
8069		return &root_cpuacct.css;
8070
8071	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8072	if (!ca)
8073		goto out;
8074
8075	ca->cpuusage = alloc_percpu(u64);
8076	if (!ca->cpuusage)
8077		goto out_free_ca;
8078
8079	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8080	if (!ca->cpustat)
8081		goto out_free_cpuusage;
8082
8083	return &ca->css;
8084
8085out_free_cpuusage:
8086	free_percpu(ca->cpuusage);
8087out_free_ca:
8088	kfree(ca);
8089out:
8090	return ERR_PTR(-ENOMEM);
8091}
8092
8093/* destroy an existing cpu accounting group */
8094static void cpuacct_destroy(struct cgroup *cgrp)
8095{
8096	struct cpuacct *ca = cgroup_ca(cgrp);
8097
8098	free_percpu(ca->cpustat);
8099	free_percpu(ca->cpuusage);
8100	kfree(ca);
8101}
8102
8103static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8104{
8105	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8106	u64 data;
8107
8108#ifndef CONFIG_64BIT
8109	/*
8110	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8111	 */
8112	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8113	data = *cpuusage;
8114	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8115#else
8116	data = *cpuusage;
8117#endif
8118
8119	return data;
8120}
8121
8122static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8123{
8124	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8125
8126#ifndef CONFIG_64BIT
8127	/*
8128	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8129	 */
8130	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8131	*cpuusage = val;
8132	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8133#else
8134	*cpuusage = val;
8135#endif
8136}
8137
8138/* return total cpu usage (in nanoseconds) of a group */
8139static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8140{
8141	struct cpuacct *ca = cgroup_ca(cgrp);
8142	u64 totalcpuusage = 0;
8143	int i;
8144
8145	for_each_present_cpu(i)
8146		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8147
8148	return totalcpuusage;
8149}
8150
8151static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8152								u64 reset)
8153{
8154	struct cpuacct *ca = cgroup_ca(cgrp);
8155	int err = 0;
8156	int i;
8157
8158	if (reset) {
8159		err = -EINVAL;
8160		goto out;
8161	}
8162
8163	for_each_present_cpu(i)
8164		cpuacct_cpuusage_write(ca, i, 0);
8165
8166out:
8167	return err;
8168}
8169
8170static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8171				   struct seq_file *m)
8172{
8173	struct cpuacct *ca = cgroup_ca(cgroup);
8174	u64 percpu;
8175	int i;
8176
8177	for_each_present_cpu(i) {
8178		percpu = cpuacct_cpuusage_read(ca, i);
8179		seq_printf(m, "%llu ", (unsigned long long) percpu);
8180	}
8181	seq_printf(m, "\n");
8182	return 0;
8183}
8184
8185static const char *cpuacct_stat_desc[] = {
8186	[CPUACCT_STAT_USER] = "user",
8187	[CPUACCT_STAT_SYSTEM] = "system",
8188};
8189
8190static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8191			      struct cgroup_map_cb *cb)
8192{
8193	struct cpuacct *ca = cgroup_ca(cgrp);
8194	int cpu;
8195	s64 val = 0;
8196
8197	for_each_online_cpu(cpu) {
8198		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8199		val += kcpustat->cpustat[CPUTIME_USER];
8200		val += kcpustat->cpustat[CPUTIME_NICE];
8201	}
8202	val = cputime64_to_clock_t(val);
8203	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8204
8205	val = 0;
8206	for_each_online_cpu(cpu) {
8207		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8208		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8209		val += kcpustat->cpustat[CPUTIME_IRQ];
8210		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8211	}
8212
8213	val = cputime64_to_clock_t(val);
8214	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8215
8216	return 0;
8217}
8218
8219static struct cftype files[] = {
8220	{
8221		.name = "usage",
8222		.read_u64 = cpuusage_read,
8223		.write_u64 = cpuusage_write,
8224	},
8225	{
8226		.name = "usage_percpu",
8227		.read_seq_string = cpuacct_percpu_seq_read,
8228	},
8229	{
8230		.name = "stat",
8231		.read_map = cpuacct_stats_show,
8232	},
8233	{ }	/* terminate */
8234};
8235
8236/*
8237 * charge this task's execution time to its accounting group.
8238 *
8239 * called with rq->lock held.
8240 */
8241void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8242{
8243	struct cpuacct *ca;
8244	int cpu;
8245
8246	if (unlikely(!cpuacct_subsys.active))
8247		return;
8248
8249	cpu = task_cpu(tsk);
8250
8251	rcu_read_lock();
8252
8253	ca = task_ca(tsk);
8254
8255	for (; ca; ca = parent_ca(ca)) {
8256		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8257		*cpuusage += cputime;
8258	}
8259
8260	rcu_read_unlock();
8261}
8262
8263struct cgroup_subsys cpuacct_subsys = {
8264	.name = "cpuacct",
8265	.create = cpuacct_create,
8266	.destroy = cpuacct_destroy,
8267	.subsys_id = cpuacct_subsys_id,
8268	.base_cftypes = files,
8269};
8270#endif	/* CONFIG_CGROUP_CPUACCT */
8271