core.c revision 141965c7494d984b2bf24efd361a3125278869c6
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	assert_raw_spin_locked(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id())
528		return;
529
530	/* NEED_RESCHED must be visible before we test polling */
531	smp_mb();
532	if (!tsk_is_polling(p))
533		smp_send_reschedule(cpu);
534}
535
536void resched_cpu(int cpu)
537{
538	struct rq *rq = cpu_rq(cpu);
539	unsigned long flags;
540
541	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542		return;
543	resched_task(cpu_curr(cpu));
544	raw_spin_unlock_irqrestore(&rq->lock, flags);
545}
546
547#ifdef CONFIG_NO_HZ_COMMON
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu.  This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558	int cpu = smp_processor_id();
559	int i;
560	struct sched_domain *sd;
561
562	rcu_read_lock();
563	for_each_domain(cpu, sd) {
564		for_each_cpu(i, sched_domain_span(sd)) {
565			if (!idle_cpu(i)) {
566				cpu = i;
567				goto unlock;
568			}
569		}
570	}
571unlock:
572	rcu_read_unlock();
573	return cpu;
574}
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585static void wake_up_idle_cpu(int cpu)
586{
587	struct rq *rq = cpu_rq(cpu);
588
589	if (cpu == smp_processor_id())
590		return;
591
592	/*
593	 * This is safe, as this function is called with the timer
594	 * wheel base lock of (cpu) held. When the CPU is on the way
595	 * to idle and has not yet set rq->curr to idle then it will
596	 * be serialized on the timer wheel base lock and take the new
597	 * timer into account automatically.
598	 */
599	if (rq->curr != rq->idle)
600		return;
601
602	/*
603	 * We can set TIF_RESCHED on the idle task of the other CPU
604	 * lockless. The worst case is that the other CPU runs the
605	 * idle task through an additional NOOP schedule()
606	 */
607	set_tsk_need_resched(rq->idle);
608
609	/* NEED_RESCHED must be visible before we test polling */
610	smp_mb();
611	if (!tsk_is_polling(rq->idle))
612		smp_send_reschedule(cpu);
613}
614
615static bool wake_up_full_nohz_cpu(int cpu)
616{
617	if (tick_nohz_full_cpu(cpu)) {
618		if (cpu != smp_processor_id() ||
619		    tick_nohz_tick_stopped())
620			smp_send_reschedule(cpu);
621		return true;
622	}
623
624	return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
629	if (!wake_up_full_nohz_cpu(cpu))
630		wake_up_idle_cpu(cpu);
631}
632
633static inline bool got_nohz_idle_kick(void)
634{
635	int cpu = smp_processor_id();
636
637	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638		return false;
639
640	if (idle_cpu(cpu) && !need_resched())
641		return true;
642
643	/*
644	 * We can't run Idle Load Balance on this CPU for this time so we
645	 * cancel it and clear NOHZ_BALANCE_KICK
646	 */
647	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648	return false;
649}
650
651#else /* CONFIG_NO_HZ_COMMON */
652
653static inline bool got_nohz_idle_kick(void)
654{
655	return false;
656}
657
658#endif /* CONFIG_NO_HZ_COMMON */
659
660#ifdef CONFIG_NO_HZ_FULL
661bool sched_can_stop_tick(void)
662{
663       struct rq *rq;
664
665       rq = this_rq();
666
667       /* Make sure rq->nr_running update is visible after the IPI */
668       smp_rmb();
669
670       /* More than one running task need preemption */
671       if (rq->nr_running > 1)
672               return false;
673
674       return true;
675}
676#endif /* CONFIG_NO_HZ_FULL */
677
678void sched_avg_update(struct rq *rq)
679{
680	s64 period = sched_avg_period();
681
682	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683		/*
684		 * Inline assembly required to prevent the compiler
685		 * optimising this loop into a divmod call.
686		 * See __iter_div_u64_rem() for another example of this.
687		 */
688		asm("" : "+rm" (rq->age_stamp));
689		rq->age_stamp += period;
690		rq->rt_avg /= 2;
691	}
692}
693
694#else /* !CONFIG_SMP */
695void resched_task(struct task_struct *p)
696{
697	assert_raw_spin_locked(&task_rq(p)->lock);
698	set_tsk_need_resched(p);
699}
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711			     tg_visitor down, tg_visitor up, void *data)
712{
713	struct task_group *parent, *child;
714	int ret;
715
716	parent = from;
717
718down:
719	ret = (*down)(parent, data);
720	if (ret)
721		goto out;
722	list_for_each_entry_rcu(child, &parent->children, siblings) {
723		parent = child;
724		goto down;
725
726up:
727		continue;
728	}
729	ret = (*up)(parent, data);
730	if (ret || parent == from)
731		goto out;
732
733	child = parent;
734	parent = parent->parent;
735	if (parent)
736		goto up;
737out:
738	return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743	return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749	int prio = p->static_prio - MAX_RT_PRIO;
750	struct load_weight *load = &p->se.load;
751
752	/*
753	 * SCHED_IDLE tasks get minimal weight:
754	 */
755	if (p->policy == SCHED_IDLE) {
756		load->weight = scale_load(WEIGHT_IDLEPRIO);
757		load->inv_weight = WMULT_IDLEPRIO;
758		return;
759	}
760
761	load->weight = scale_load(prio_to_weight[prio]);
762	load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767	update_rq_clock(rq);
768	sched_info_queued(p);
769	p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_dequeued(p);
776	p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	if (task_contributes_to_load(p))
782		rq->nr_uninterruptible--;
783
784	enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789	if (task_contributes_to_load(p))
790		rq->nr_uninterruptible++;
791
792	dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802	s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807	/*
808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809	 * this case when a previous update_rq_clock() happened inside a
810	 * {soft,}irq region.
811	 *
812	 * When this happens, we stop ->clock_task and only update the
813	 * prev_irq_time stamp to account for the part that fit, so that a next
814	 * update will consume the rest. This ensures ->clock_task is
815	 * monotonic.
816	 *
817	 * It does however cause some slight miss-attribution of {soft,}irq
818	 * time, a more accurate solution would be to update the irq_time using
819	 * the current rq->clock timestamp, except that would require using
820	 * atomic ops.
821	 */
822	if (irq_delta > delta)
823		irq_delta = delta;
824
825	rq->prev_irq_time += irq_delta;
826	delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829	if (static_key_false((&paravirt_steal_rq_enabled))) {
830		u64 st;
831
832		steal = paravirt_steal_clock(cpu_of(rq));
833		steal -= rq->prev_steal_time_rq;
834
835		if (unlikely(steal > delta))
836			steal = delta;
837
838		st = steal_ticks(steal);
839		steal = st * TICK_NSEC;
840
841		rq->prev_steal_time_rq += steal;
842
843		delta -= steal;
844	}
845#endif
846
847	rq->clock_task += delta;
848
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851		sched_rt_avg_update(rq, irq_delta + steal);
852#endif
853}
854
855void sched_set_stop_task(int cpu, struct task_struct *stop)
856{
857	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858	struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860	if (stop) {
861		/*
862		 * Make it appear like a SCHED_FIFO task, its something
863		 * userspace knows about and won't get confused about.
864		 *
865		 * Also, it will make PI more or less work without too
866		 * much confusion -- but then, stop work should not
867		 * rely on PI working anyway.
868		 */
869		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871		stop->sched_class = &stop_sched_class;
872	}
873
874	cpu_rq(cpu)->stop = stop;
875
876	if (old_stop) {
877		/*
878		 * Reset it back to a normal scheduling class so that
879		 * it can die in pieces.
880		 */
881		old_stop->sched_class = &rt_sched_class;
882	}
883}
884
885/*
886 * __normal_prio - return the priority that is based on the static prio
887 */
888static inline int __normal_prio(struct task_struct *p)
889{
890	return p->static_prio;
891}
892
893/*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
900static inline int normal_prio(struct task_struct *p)
901{
902	int prio;
903
904	if (task_has_rt_policy(p))
905		prio = MAX_RT_PRIO-1 - p->rt_priority;
906	else
907		prio = __normal_prio(p);
908	return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
918static int effective_prio(struct task_struct *p)
919{
920	p->normal_prio = normal_prio(p);
921	/*
922	 * If we are RT tasks or we were boosted to RT priority,
923	 * keep the priority unchanged. Otherwise, update priority
924	 * to the normal priority:
925	 */
926	if (!rt_prio(p->prio))
927		return p->normal_prio;
928	return p->prio;
929}
930
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979void register_task_migration_notifier(struct notifier_block *n)
980{
981	atomic_notifier_chain_register(&task_migration_notifier, n);
982}
983
984#ifdef CONFIG_SMP
985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986{
987#ifdef CONFIG_SCHED_DEBUG
988	/*
989	 * We should never call set_task_cpu() on a blocked task,
990	 * ttwu() will sort out the placement.
991	 */
992	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994
995#ifdef CONFIG_LOCKDEP
996	/*
997	 * The caller should hold either p->pi_lock or rq->lock, when changing
998	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999	 *
1000	 * sched_move_task() holds both and thus holding either pins the cgroup,
1001	 * see task_group().
1002	 *
1003	 * Furthermore, all task_rq users should acquire both locks, see
1004	 * task_rq_lock().
1005	 */
1006	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007				      lockdep_is_held(&task_rq(p)->lock)));
1008#endif
1009#endif
1010
1011	trace_sched_migrate_task(p, new_cpu);
1012
1013	if (task_cpu(p) != new_cpu) {
1014		struct task_migration_notifier tmn;
1015
1016		if (p->sched_class->migrate_task_rq)
1017			p->sched_class->migrate_task_rq(p, new_cpu);
1018		p->se.nr_migrations++;
1019		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020
1021		tmn.task = p;
1022		tmn.from_cpu = task_cpu(p);
1023		tmn.to_cpu = new_cpu;
1024
1025		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026	}
1027
1028	__set_task_cpu(p, new_cpu);
1029}
1030
1031struct migration_arg {
1032	struct task_struct *task;
1033	int dest_cpu;
1034};
1035
1036static int migration_cpu_stop(void *data);
1037
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change.  If it changes, i.e. @p might have woken up,
1043 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count).  If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055{
1056	unsigned long flags;
1057	int running, on_rq;
1058	unsigned long ncsw;
1059	struct rq *rq;
1060
1061	for (;;) {
1062		/*
1063		 * We do the initial early heuristics without holding
1064		 * any task-queue locks at all. We'll only try to get
1065		 * the runqueue lock when things look like they will
1066		 * work out!
1067		 */
1068		rq = task_rq(p);
1069
1070		/*
1071		 * If the task is actively running on another CPU
1072		 * still, just relax and busy-wait without holding
1073		 * any locks.
1074		 *
1075		 * NOTE! Since we don't hold any locks, it's not
1076		 * even sure that "rq" stays as the right runqueue!
1077		 * But we don't care, since "task_running()" will
1078		 * return false if the runqueue has changed and p
1079		 * is actually now running somewhere else!
1080		 */
1081		while (task_running(rq, p)) {
1082			if (match_state && unlikely(p->state != match_state))
1083				return 0;
1084			cpu_relax();
1085		}
1086
1087		/*
1088		 * Ok, time to look more closely! We need the rq
1089		 * lock now, to be *sure*. If we're wrong, we'll
1090		 * just go back and repeat.
1091		 */
1092		rq = task_rq_lock(p, &flags);
1093		trace_sched_wait_task(p);
1094		running = task_running(rq, p);
1095		on_rq = p->on_rq;
1096		ncsw = 0;
1097		if (!match_state || p->state == match_state)
1098			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099		task_rq_unlock(rq, p, &flags);
1100
1101		/*
1102		 * If it changed from the expected state, bail out now.
1103		 */
1104		if (unlikely(!ncsw))
1105			break;
1106
1107		/*
1108		 * Was it really running after all now that we
1109		 * checked with the proper locks actually held?
1110		 *
1111		 * Oops. Go back and try again..
1112		 */
1113		if (unlikely(running)) {
1114			cpu_relax();
1115			continue;
1116		}
1117
1118		/*
1119		 * It's not enough that it's not actively running,
1120		 * it must be off the runqueue _entirely_, and not
1121		 * preempted!
1122		 *
1123		 * So if it was still runnable (but just not actively
1124		 * running right now), it's preempted, and we should
1125		 * yield - it could be a while.
1126		 */
1127		if (unlikely(on_rq)) {
1128			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130			set_current_state(TASK_UNINTERRUPTIBLE);
1131			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132			continue;
1133		}
1134
1135		/*
1136		 * Ahh, all good. It wasn't running, and it wasn't
1137		 * runnable, which means that it will never become
1138		 * running in the future either. We're all done!
1139		 */
1140		break;
1141	}
1142
1143	return ncsw;
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159void kick_process(struct task_struct *p)
1160{
1161	int cpu;
1162
1163	preempt_disable();
1164	cpu = task_cpu(p);
1165	if ((cpu != smp_processor_id()) && task_curr(p))
1166		smp_send_reschedule(cpu);
1167	preempt_enable();
1168}
1169EXPORT_SYMBOL_GPL(kick_process);
1170#endif /* CONFIG_SMP */
1171
1172#ifdef CONFIG_SMP
1173/*
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175 */
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
1178	int nid = cpu_to_node(cpu);
1179	const struct cpumask *nodemask = NULL;
1180	enum { cpuset, possible, fail } state = cpuset;
1181	int dest_cpu;
1182
1183	/*
1184	 * If the node that the cpu is on has been offlined, cpu_to_node()
1185	 * will return -1. There is no cpu on the node, and we should
1186	 * select the cpu on the other node.
1187	 */
1188	if (nid != -1) {
1189		nodemask = cpumask_of_node(nid);
1190
1191		/* Look for allowed, online CPU in same node. */
1192		for_each_cpu(dest_cpu, nodemask) {
1193			if (!cpu_online(dest_cpu))
1194				continue;
1195			if (!cpu_active(dest_cpu))
1196				continue;
1197			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198				return dest_cpu;
1199		}
1200	}
1201
1202	for (;;) {
1203		/* Any allowed, online CPU? */
1204		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205			if (!cpu_online(dest_cpu))
1206				continue;
1207			if (!cpu_active(dest_cpu))
1208				continue;
1209			goto out;
1210		}
1211
1212		switch (state) {
1213		case cpuset:
1214			/* No more Mr. Nice Guy. */
1215			cpuset_cpus_allowed_fallback(p);
1216			state = possible;
1217			break;
1218
1219		case possible:
1220			do_set_cpus_allowed(p, cpu_possible_mask);
1221			state = fail;
1222			break;
1223
1224		case fail:
1225			BUG();
1226			break;
1227		}
1228	}
1229
1230out:
1231	if (state != cpuset) {
1232		/*
1233		 * Don't tell them about moving exiting tasks or
1234		 * kernel threads (both mm NULL), since they never
1235		 * leave kernel.
1236		 */
1237		if (p->mm && printk_ratelimit()) {
1238			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239					task_pid_nr(p), p->comm, cpu);
1240		}
1241	}
1242
1243	return dest_cpu;
1244}
1245
1246/*
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248 */
1249static inline
1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251{
1252	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253
1254	/*
1255	 * In order not to call set_task_cpu() on a blocking task we need
1256	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257	 * cpu.
1258	 *
1259	 * Since this is common to all placement strategies, this lives here.
1260	 *
1261	 * [ this allows ->select_task() to simply return task_cpu(p) and
1262	 *   not worry about this generic constraint ]
1263	 */
1264	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265		     !cpu_online(cpu)))
1266		cpu = select_fallback_rq(task_cpu(p), p);
1267
1268	return cpu;
1269}
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273	s64 diff = sample - *avg;
1274	*avg += diff >> 3;
1275}
1276#endif
1277
1278static void
1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280{
1281#ifdef CONFIG_SCHEDSTATS
1282	struct rq *rq = this_rq();
1283
1284#ifdef CONFIG_SMP
1285	int this_cpu = smp_processor_id();
1286
1287	if (cpu == this_cpu) {
1288		schedstat_inc(rq, ttwu_local);
1289		schedstat_inc(p, se.statistics.nr_wakeups_local);
1290	} else {
1291		struct sched_domain *sd;
1292
1293		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294		rcu_read_lock();
1295		for_each_domain(this_cpu, sd) {
1296			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297				schedstat_inc(sd, ttwu_wake_remote);
1298				break;
1299			}
1300		}
1301		rcu_read_unlock();
1302	}
1303
1304	if (wake_flags & WF_MIGRATED)
1305		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
1307#endif /* CONFIG_SMP */
1308
1309	schedstat_inc(rq, ttwu_count);
1310	schedstat_inc(p, se.statistics.nr_wakeups);
1311
1312	if (wake_flags & WF_SYNC)
1313		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
1320	activate_task(rq, p, en_flags);
1321	p->on_rq = 1;
1322
1323	/* if a worker is waking up, notify workqueue */
1324	if (p->flags & PF_WQ_WORKER)
1325		wq_worker_waking_up(p, cpu_of(rq));
1326}
1327
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
1331static void
1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333{
1334	check_preempt_curr(rq, p, wake_flags);
1335	trace_sched_wakeup(p, true);
1336
1337	p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339	if (p->sched_class->task_woken)
1340		p->sched_class->task_woken(rq, p);
1341
1342	if (rq->idle_stamp) {
1343		u64 delta = rq_clock(rq) - rq->idle_stamp;
1344		u64 max = 2*sysctl_sched_migration_cost;
1345
1346		if (delta > max)
1347			rq->avg_idle = max;
1348		else
1349			update_avg(&rq->avg_idle, delta);
1350		rq->idle_stamp = 0;
1351	}
1352#endif
1353}
1354
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359	if (p->sched_contributes_to_load)
1360		rq->nr_uninterruptible--;
1361#endif
1362
1363	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364	ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375	struct rq *rq;
1376	int ret = 0;
1377
1378	rq = __task_rq_lock(p);
1379	if (p->on_rq) {
1380		/* check_preempt_curr() may use rq clock */
1381		update_rq_clock(rq);
1382		ttwu_do_wakeup(rq, p, wake_flags);
1383		ret = 1;
1384	}
1385	__task_rq_unlock(rq);
1386
1387	return ret;
1388}
1389
1390#ifdef CONFIG_SMP
1391static void sched_ttwu_pending(void)
1392{
1393	struct rq *rq = this_rq();
1394	struct llist_node *llist = llist_del_all(&rq->wake_list);
1395	struct task_struct *p;
1396
1397	raw_spin_lock(&rq->lock);
1398
1399	while (llist) {
1400		p = llist_entry(llist, struct task_struct, wake_entry);
1401		llist = llist_next(llist);
1402		ttwu_do_activate(rq, p, 0);
1403	}
1404
1405	raw_spin_unlock(&rq->lock);
1406}
1407
1408void scheduler_ipi(void)
1409{
1410	if (llist_empty(&this_rq()->wake_list)
1411			&& !tick_nohz_full_cpu(smp_processor_id())
1412			&& !got_nohz_idle_kick())
1413		return;
1414
1415	/*
1416	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417	 * traditionally all their work was done from the interrupt return
1418	 * path. Now that we actually do some work, we need to make sure
1419	 * we do call them.
1420	 *
1421	 * Some archs already do call them, luckily irq_enter/exit nest
1422	 * properly.
1423	 *
1424	 * Arguably we should visit all archs and update all handlers,
1425	 * however a fair share of IPIs are still resched only so this would
1426	 * somewhat pessimize the simple resched case.
1427	 */
1428	irq_enter();
1429	tick_nohz_full_check();
1430	sched_ttwu_pending();
1431
1432	/*
1433	 * Check if someone kicked us for doing the nohz idle load balance.
1434	 */
1435	if (unlikely(got_nohz_idle_kick())) {
1436		this_rq()->idle_balance = 1;
1437		raise_softirq_irqoff(SCHED_SOFTIRQ);
1438	}
1439	irq_exit();
1440}
1441
1442static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443{
1444	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445		smp_send_reschedule(cpu);
1446}
1447
1448bool cpus_share_cache(int this_cpu, int that_cpu)
1449{
1450	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451}
1452#endif /* CONFIG_SMP */
1453
1454static void ttwu_queue(struct task_struct *p, int cpu)
1455{
1456	struct rq *rq = cpu_rq(cpu);
1457
1458#if defined(CONFIG_SMP)
1459	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461		ttwu_queue_remote(p, cpu);
1462		return;
1463	}
1464#endif
1465
1466	raw_spin_lock(&rq->lock);
1467	ttwu_do_activate(rq, p, 0);
1468	raw_spin_unlock(&rq->lock);
1469}
1470
1471/**
1472 * try_to_wake_up - wake up a thread
1473 * @p: the thread to be awakened
1474 * @state: the mask of task states that can be woken
1475 * @wake_flags: wake modifier flags (WF_*)
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1485 */
1486static int
1487try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1488{
1489	unsigned long flags;
1490	int cpu, success = 0;
1491
1492	smp_wmb();
1493	raw_spin_lock_irqsave(&p->pi_lock, flags);
1494	if (!(p->state & state))
1495		goto out;
1496
1497	success = 1; /* we're going to change ->state */
1498	cpu = task_cpu(p);
1499
1500	if (p->on_rq && ttwu_remote(p, wake_flags))
1501		goto stat;
1502
1503#ifdef CONFIG_SMP
1504	/*
1505	 * If the owning (remote) cpu is still in the middle of schedule() with
1506	 * this task as prev, wait until its done referencing the task.
1507	 */
1508	while (p->on_cpu)
1509		cpu_relax();
1510	/*
1511	 * Pairs with the smp_wmb() in finish_lock_switch().
1512	 */
1513	smp_rmb();
1514
1515	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516	p->state = TASK_WAKING;
1517
1518	if (p->sched_class->task_waking)
1519		p->sched_class->task_waking(p);
1520
1521	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522	if (task_cpu(p) != cpu) {
1523		wake_flags |= WF_MIGRATED;
1524		set_task_cpu(p, cpu);
1525	}
1526#endif /* CONFIG_SMP */
1527
1528	ttwu_queue(p, cpu);
1529stat:
1530	ttwu_stat(p, cpu, wake_flags);
1531out:
1532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534	return success;
1535}
1536
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547	struct rq *rq = task_rq(p);
1548
1549	if (WARN_ON_ONCE(rq != this_rq()) ||
1550	    WARN_ON_ONCE(p == current))
1551		return;
1552
1553	lockdep_assert_held(&rq->lock);
1554
1555	if (!raw_spin_trylock(&p->pi_lock)) {
1556		raw_spin_unlock(&rq->lock);
1557		raw_spin_lock(&p->pi_lock);
1558		raw_spin_lock(&rq->lock);
1559	}
1560
1561	if (!(p->state & TASK_NORMAL))
1562		goto out;
1563
1564	if (!p->on_rq)
1565		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567	ttwu_do_wakeup(rq, p, 0);
1568	ttwu_stat(p, smp_processor_id(), 0);
1569out:
1570	raw_spin_unlock(&p->pi_lock);
1571}
1572
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes.  Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
1584int wake_up_process(struct task_struct *p)
1585{
1586	WARN_ON(task_is_stopped_or_traced(p));
1587	return try_to_wake_up(p, TASK_NORMAL, 0);
1588}
1589EXPORT_SYMBOL(wake_up_process);
1590
1591int wake_up_state(struct task_struct *p, unsigned int state)
1592{
1593	return try_to_wake_up(p, state, 0);
1594}
1595
1596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602static void __sched_fork(struct task_struct *p)
1603{
1604	p->on_rq			= 0;
1605
1606	p->se.on_rq			= 0;
1607	p->se.exec_start		= 0;
1608	p->se.sum_exec_runtime		= 0;
1609	p->se.prev_sum_exec_runtime	= 0;
1610	p->se.nr_migrations		= 0;
1611	p->se.vruntime			= 0;
1612	INIT_LIST_HEAD(&p->se.group_node);
1613
1614#ifdef CONFIG_SMP
1615	p->se.avg.runnable_avg_period = 0;
1616	p->se.avg.runnable_avg_sum = 0;
1617#endif
1618#ifdef CONFIG_SCHEDSTATS
1619	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1620#endif
1621
1622	INIT_LIST_HEAD(&p->rt.run_list);
1623
1624#ifdef CONFIG_PREEMPT_NOTIFIERS
1625	INIT_HLIST_HEAD(&p->preempt_notifiers);
1626#endif
1627
1628#ifdef CONFIG_NUMA_BALANCING
1629	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1630		p->mm->numa_next_scan = jiffies;
1631		p->mm->numa_next_reset = jiffies;
1632		p->mm->numa_scan_seq = 0;
1633	}
1634
1635	p->node_stamp = 0ULL;
1636	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1637	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1638	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1639	p->numa_work.next = &p->numa_work;
1640#endif /* CONFIG_NUMA_BALANCING */
1641}
1642
1643#ifdef CONFIG_NUMA_BALANCING
1644#ifdef CONFIG_SCHED_DEBUG
1645void set_numabalancing_state(bool enabled)
1646{
1647	if (enabled)
1648		sched_feat_set("NUMA");
1649	else
1650		sched_feat_set("NO_NUMA");
1651}
1652#else
1653__read_mostly bool numabalancing_enabled;
1654
1655void set_numabalancing_state(bool enabled)
1656{
1657	numabalancing_enabled = enabled;
1658}
1659#endif /* CONFIG_SCHED_DEBUG */
1660#endif /* CONFIG_NUMA_BALANCING */
1661
1662/*
1663 * fork()/clone()-time setup:
1664 */
1665void sched_fork(struct task_struct *p)
1666{
1667	unsigned long flags;
1668	int cpu = get_cpu();
1669
1670	__sched_fork(p);
1671	/*
1672	 * We mark the process as running here. This guarantees that
1673	 * nobody will actually run it, and a signal or other external
1674	 * event cannot wake it up and insert it on the runqueue either.
1675	 */
1676	p->state = TASK_RUNNING;
1677
1678	/*
1679	 * Make sure we do not leak PI boosting priority to the child.
1680	 */
1681	p->prio = current->normal_prio;
1682
1683	/*
1684	 * Revert to default priority/policy on fork if requested.
1685	 */
1686	if (unlikely(p->sched_reset_on_fork)) {
1687		if (task_has_rt_policy(p)) {
1688			p->policy = SCHED_NORMAL;
1689			p->static_prio = NICE_TO_PRIO(0);
1690			p->rt_priority = 0;
1691		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1692			p->static_prio = NICE_TO_PRIO(0);
1693
1694		p->prio = p->normal_prio = __normal_prio(p);
1695		set_load_weight(p);
1696
1697		/*
1698		 * We don't need the reset flag anymore after the fork. It has
1699		 * fulfilled its duty:
1700		 */
1701		p->sched_reset_on_fork = 0;
1702	}
1703
1704	if (!rt_prio(p->prio))
1705		p->sched_class = &fair_sched_class;
1706
1707	if (p->sched_class->task_fork)
1708		p->sched_class->task_fork(p);
1709
1710	/*
1711	 * The child is not yet in the pid-hash so no cgroup attach races,
1712	 * and the cgroup is pinned to this child due to cgroup_fork()
1713	 * is ran before sched_fork().
1714	 *
1715	 * Silence PROVE_RCU.
1716	 */
1717	raw_spin_lock_irqsave(&p->pi_lock, flags);
1718	set_task_cpu(p, cpu);
1719	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1720
1721#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1722	if (likely(sched_info_on()))
1723		memset(&p->sched_info, 0, sizeof(p->sched_info));
1724#endif
1725#if defined(CONFIG_SMP)
1726	p->on_cpu = 0;
1727#endif
1728#ifdef CONFIG_PREEMPT_COUNT
1729	/* Want to start with kernel preemption disabled. */
1730	task_thread_info(p)->preempt_count = 1;
1731#endif
1732#ifdef CONFIG_SMP
1733	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1734#endif
1735
1736	put_cpu();
1737}
1738
1739/*
1740 * wake_up_new_task - wake up a newly created task for the first time.
1741 *
1742 * This function will do some initial scheduler statistics housekeeping
1743 * that must be done for every newly created context, then puts the task
1744 * on the runqueue and wakes it.
1745 */
1746void wake_up_new_task(struct task_struct *p)
1747{
1748	unsigned long flags;
1749	struct rq *rq;
1750
1751	raw_spin_lock_irqsave(&p->pi_lock, flags);
1752#ifdef CONFIG_SMP
1753	/*
1754	 * Fork balancing, do it here and not earlier because:
1755	 *  - cpus_allowed can change in the fork path
1756	 *  - any previously selected cpu might disappear through hotplug
1757	 */
1758	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1759#endif
1760
1761	rq = __task_rq_lock(p);
1762	activate_task(rq, p, 0);
1763	p->on_rq = 1;
1764	trace_sched_wakeup_new(p, true);
1765	check_preempt_curr(rq, p, WF_FORK);
1766#ifdef CONFIG_SMP
1767	if (p->sched_class->task_woken)
1768		p->sched_class->task_woken(rq, p);
1769#endif
1770	task_rq_unlock(rq, p, &flags);
1771}
1772
1773#ifdef CONFIG_PREEMPT_NOTIFIERS
1774
1775/**
1776 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1777 * @notifier: notifier struct to register
1778 */
1779void preempt_notifier_register(struct preempt_notifier *notifier)
1780{
1781	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1782}
1783EXPORT_SYMBOL_GPL(preempt_notifier_register);
1784
1785/**
1786 * preempt_notifier_unregister - no longer interested in preemption notifications
1787 * @notifier: notifier struct to unregister
1788 *
1789 * This is safe to call from within a preemption notifier.
1790 */
1791void preempt_notifier_unregister(struct preempt_notifier *notifier)
1792{
1793	hlist_del(&notifier->link);
1794}
1795EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1796
1797static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1798{
1799	struct preempt_notifier *notifier;
1800
1801	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1803}
1804
1805static void
1806fire_sched_out_preempt_notifiers(struct task_struct *curr,
1807				 struct task_struct *next)
1808{
1809	struct preempt_notifier *notifier;
1810
1811	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1812		notifier->ops->sched_out(notifier, next);
1813}
1814
1815#else /* !CONFIG_PREEMPT_NOTIFIERS */
1816
1817static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1818{
1819}
1820
1821static void
1822fire_sched_out_preempt_notifiers(struct task_struct *curr,
1823				 struct task_struct *next)
1824{
1825}
1826
1827#endif /* CONFIG_PREEMPT_NOTIFIERS */
1828
1829/**
1830 * prepare_task_switch - prepare to switch tasks
1831 * @rq: the runqueue preparing to switch
1832 * @prev: the current task that is being switched out
1833 * @next: the task we are going to switch to.
1834 *
1835 * This is called with the rq lock held and interrupts off. It must
1836 * be paired with a subsequent finish_task_switch after the context
1837 * switch.
1838 *
1839 * prepare_task_switch sets up locking and calls architecture specific
1840 * hooks.
1841 */
1842static inline void
1843prepare_task_switch(struct rq *rq, struct task_struct *prev,
1844		    struct task_struct *next)
1845{
1846	trace_sched_switch(prev, next);
1847	sched_info_switch(prev, next);
1848	perf_event_task_sched_out(prev, next);
1849	fire_sched_out_preempt_notifiers(prev, next);
1850	prepare_lock_switch(rq, next);
1851	prepare_arch_switch(next);
1852}
1853
1854/**
1855 * finish_task_switch - clean up after a task-switch
1856 * @rq: runqueue associated with task-switch
1857 * @prev: the thread we just switched away from.
1858 *
1859 * finish_task_switch must be called after the context switch, paired
1860 * with a prepare_task_switch call before the context switch.
1861 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1862 * and do any other architecture-specific cleanup actions.
1863 *
1864 * Note that we may have delayed dropping an mm in context_switch(). If
1865 * so, we finish that here outside of the runqueue lock. (Doing it
1866 * with the lock held can cause deadlocks; see schedule() for
1867 * details.)
1868 */
1869static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1870	__releases(rq->lock)
1871{
1872	struct mm_struct *mm = rq->prev_mm;
1873	long prev_state;
1874
1875	rq->prev_mm = NULL;
1876
1877	/*
1878	 * A task struct has one reference for the use as "current".
1879	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1880	 * schedule one last time. The schedule call will never return, and
1881	 * the scheduled task must drop that reference.
1882	 * The test for TASK_DEAD must occur while the runqueue locks are
1883	 * still held, otherwise prev could be scheduled on another cpu, die
1884	 * there before we look at prev->state, and then the reference would
1885	 * be dropped twice.
1886	 *		Manfred Spraul <manfred@colorfullife.com>
1887	 */
1888	prev_state = prev->state;
1889	vtime_task_switch(prev);
1890	finish_arch_switch(prev);
1891	perf_event_task_sched_in(prev, current);
1892	finish_lock_switch(rq, prev);
1893	finish_arch_post_lock_switch();
1894
1895	fire_sched_in_preempt_notifiers(current);
1896	if (mm)
1897		mmdrop(mm);
1898	if (unlikely(prev_state == TASK_DEAD)) {
1899		/*
1900		 * Remove function-return probe instances associated with this
1901		 * task and put them back on the free list.
1902		 */
1903		kprobe_flush_task(prev);
1904		put_task_struct(prev);
1905	}
1906
1907	tick_nohz_task_switch(current);
1908}
1909
1910#ifdef CONFIG_SMP
1911
1912/* assumes rq->lock is held */
1913static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1914{
1915	if (prev->sched_class->pre_schedule)
1916		prev->sched_class->pre_schedule(rq, prev);
1917}
1918
1919/* rq->lock is NOT held, but preemption is disabled */
1920static inline void post_schedule(struct rq *rq)
1921{
1922	if (rq->post_schedule) {
1923		unsigned long flags;
1924
1925		raw_spin_lock_irqsave(&rq->lock, flags);
1926		if (rq->curr->sched_class->post_schedule)
1927			rq->curr->sched_class->post_schedule(rq);
1928		raw_spin_unlock_irqrestore(&rq->lock, flags);
1929
1930		rq->post_schedule = 0;
1931	}
1932}
1933
1934#else
1935
1936static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1937{
1938}
1939
1940static inline void post_schedule(struct rq *rq)
1941{
1942}
1943
1944#endif
1945
1946/**
1947 * schedule_tail - first thing a freshly forked thread must call.
1948 * @prev: the thread we just switched away from.
1949 */
1950asmlinkage void schedule_tail(struct task_struct *prev)
1951	__releases(rq->lock)
1952{
1953	struct rq *rq = this_rq();
1954
1955	finish_task_switch(rq, prev);
1956
1957	/*
1958	 * FIXME: do we need to worry about rq being invalidated by the
1959	 * task_switch?
1960	 */
1961	post_schedule(rq);
1962
1963#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1964	/* In this case, finish_task_switch does not reenable preemption */
1965	preempt_enable();
1966#endif
1967	if (current->set_child_tid)
1968		put_user(task_pid_vnr(current), current->set_child_tid);
1969}
1970
1971/*
1972 * context_switch - switch to the new MM and the new
1973 * thread's register state.
1974 */
1975static inline void
1976context_switch(struct rq *rq, struct task_struct *prev,
1977	       struct task_struct *next)
1978{
1979	struct mm_struct *mm, *oldmm;
1980
1981	prepare_task_switch(rq, prev, next);
1982
1983	mm = next->mm;
1984	oldmm = prev->active_mm;
1985	/*
1986	 * For paravirt, this is coupled with an exit in switch_to to
1987	 * combine the page table reload and the switch backend into
1988	 * one hypercall.
1989	 */
1990	arch_start_context_switch(prev);
1991
1992	if (!mm) {
1993		next->active_mm = oldmm;
1994		atomic_inc(&oldmm->mm_count);
1995		enter_lazy_tlb(oldmm, next);
1996	} else
1997		switch_mm(oldmm, mm, next);
1998
1999	if (!prev->mm) {
2000		prev->active_mm = NULL;
2001		rq->prev_mm = oldmm;
2002	}
2003	/*
2004	 * Since the runqueue lock will be released by the next
2005	 * task (which is an invalid locking op but in the case
2006	 * of the scheduler it's an obvious special-case), so we
2007	 * do an early lockdep release here:
2008	 */
2009#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2010	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2011#endif
2012
2013	context_tracking_task_switch(prev, next);
2014	/* Here we just switch the register state and the stack. */
2015	switch_to(prev, next, prev);
2016
2017	barrier();
2018	/*
2019	 * this_rq must be evaluated again because prev may have moved
2020	 * CPUs since it called schedule(), thus the 'rq' on its stack
2021	 * frame will be invalid.
2022	 */
2023	finish_task_switch(this_rq(), prev);
2024}
2025
2026/*
2027 * nr_running and nr_context_switches:
2028 *
2029 * externally visible scheduler statistics: current number of runnable
2030 * threads, total number of context switches performed since bootup.
2031 */
2032unsigned long nr_running(void)
2033{
2034	unsigned long i, sum = 0;
2035
2036	for_each_online_cpu(i)
2037		sum += cpu_rq(i)->nr_running;
2038
2039	return sum;
2040}
2041
2042unsigned long long nr_context_switches(void)
2043{
2044	int i;
2045	unsigned long long sum = 0;
2046
2047	for_each_possible_cpu(i)
2048		sum += cpu_rq(i)->nr_switches;
2049
2050	return sum;
2051}
2052
2053unsigned long nr_iowait(void)
2054{
2055	unsigned long i, sum = 0;
2056
2057	for_each_possible_cpu(i)
2058		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2059
2060	return sum;
2061}
2062
2063unsigned long nr_iowait_cpu(int cpu)
2064{
2065	struct rq *this = cpu_rq(cpu);
2066	return atomic_read(&this->nr_iowait);
2067}
2068
2069#ifdef CONFIG_SMP
2070
2071/*
2072 * sched_exec - execve() is a valuable balancing opportunity, because at
2073 * this point the task has the smallest effective memory and cache footprint.
2074 */
2075void sched_exec(void)
2076{
2077	struct task_struct *p = current;
2078	unsigned long flags;
2079	int dest_cpu;
2080
2081	raw_spin_lock_irqsave(&p->pi_lock, flags);
2082	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2083	if (dest_cpu == smp_processor_id())
2084		goto unlock;
2085
2086	if (likely(cpu_active(dest_cpu))) {
2087		struct migration_arg arg = { p, dest_cpu };
2088
2089		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2090		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2091		return;
2092	}
2093unlock:
2094	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2095}
2096
2097#endif
2098
2099DEFINE_PER_CPU(struct kernel_stat, kstat);
2100DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2101
2102EXPORT_PER_CPU_SYMBOL(kstat);
2103EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2104
2105/*
2106 * Return any ns on the sched_clock that have not yet been accounted in
2107 * @p in case that task is currently running.
2108 *
2109 * Called with task_rq_lock() held on @rq.
2110 */
2111static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2112{
2113	u64 ns = 0;
2114
2115	if (task_current(rq, p)) {
2116		update_rq_clock(rq);
2117		ns = rq_clock_task(rq) - p->se.exec_start;
2118		if ((s64)ns < 0)
2119			ns = 0;
2120	}
2121
2122	return ns;
2123}
2124
2125unsigned long long task_delta_exec(struct task_struct *p)
2126{
2127	unsigned long flags;
2128	struct rq *rq;
2129	u64 ns = 0;
2130
2131	rq = task_rq_lock(p, &flags);
2132	ns = do_task_delta_exec(p, rq);
2133	task_rq_unlock(rq, p, &flags);
2134
2135	return ns;
2136}
2137
2138/*
2139 * Return accounted runtime for the task.
2140 * In case the task is currently running, return the runtime plus current's
2141 * pending runtime that have not been accounted yet.
2142 */
2143unsigned long long task_sched_runtime(struct task_struct *p)
2144{
2145	unsigned long flags;
2146	struct rq *rq;
2147	u64 ns = 0;
2148
2149	rq = task_rq_lock(p, &flags);
2150	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2151	task_rq_unlock(rq, p, &flags);
2152
2153	return ns;
2154}
2155
2156/*
2157 * This function gets called by the timer code, with HZ frequency.
2158 * We call it with interrupts disabled.
2159 */
2160void scheduler_tick(void)
2161{
2162	int cpu = smp_processor_id();
2163	struct rq *rq = cpu_rq(cpu);
2164	struct task_struct *curr = rq->curr;
2165
2166	sched_clock_tick();
2167
2168	raw_spin_lock(&rq->lock);
2169	update_rq_clock(rq);
2170	update_cpu_load_active(rq);
2171	curr->sched_class->task_tick(rq, curr, 0);
2172	raw_spin_unlock(&rq->lock);
2173
2174	perf_event_task_tick();
2175
2176#ifdef CONFIG_SMP
2177	rq->idle_balance = idle_cpu(cpu);
2178	trigger_load_balance(rq, cpu);
2179#endif
2180	rq_last_tick_reset(rq);
2181}
2182
2183#ifdef CONFIG_NO_HZ_FULL
2184/**
2185 * scheduler_tick_max_deferment
2186 *
2187 * Keep at least one tick per second when a single
2188 * active task is running because the scheduler doesn't
2189 * yet completely support full dynticks environment.
2190 *
2191 * This makes sure that uptime, CFS vruntime, load
2192 * balancing, etc... continue to move forward, even
2193 * with a very low granularity.
2194 */
2195u64 scheduler_tick_max_deferment(void)
2196{
2197	struct rq *rq = this_rq();
2198	unsigned long next, now = ACCESS_ONCE(jiffies);
2199
2200	next = rq->last_sched_tick + HZ;
2201
2202	if (time_before_eq(next, now))
2203		return 0;
2204
2205	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2206}
2207#endif
2208
2209notrace unsigned long get_parent_ip(unsigned long addr)
2210{
2211	if (in_lock_functions(addr)) {
2212		addr = CALLER_ADDR2;
2213		if (in_lock_functions(addr))
2214			addr = CALLER_ADDR3;
2215	}
2216	return addr;
2217}
2218
2219#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2220				defined(CONFIG_PREEMPT_TRACER))
2221
2222void __kprobes add_preempt_count(int val)
2223{
2224#ifdef CONFIG_DEBUG_PREEMPT
2225	/*
2226	 * Underflow?
2227	 */
2228	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2229		return;
2230#endif
2231	preempt_count() += val;
2232#ifdef CONFIG_DEBUG_PREEMPT
2233	/*
2234	 * Spinlock count overflowing soon?
2235	 */
2236	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2237				PREEMPT_MASK - 10);
2238#endif
2239	if (preempt_count() == val)
2240		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2241}
2242EXPORT_SYMBOL(add_preempt_count);
2243
2244void __kprobes sub_preempt_count(int val)
2245{
2246#ifdef CONFIG_DEBUG_PREEMPT
2247	/*
2248	 * Underflow?
2249	 */
2250	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2251		return;
2252	/*
2253	 * Is the spinlock portion underflowing?
2254	 */
2255	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2256			!(preempt_count() & PREEMPT_MASK)))
2257		return;
2258#endif
2259
2260	if (preempt_count() == val)
2261		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2262	preempt_count() -= val;
2263}
2264EXPORT_SYMBOL(sub_preempt_count);
2265
2266#endif
2267
2268/*
2269 * Print scheduling while atomic bug:
2270 */
2271static noinline void __schedule_bug(struct task_struct *prev)
2272{
2273	if (oops_in_progress)
2274		return;
2275
2276	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2277		prev->comm, prev->pid, preempt_count());
2278
2279	debug_show_held_locks(prev);
2280	print_modules();
2281	if (irqs_disabled())
2282		print_irqtrace_events(prev);
2283	dump_stack();
2284	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2285}
2286
2287/*
2288 * Various schedule()-time debugging checks and statistics:
2289 */
2290static inline void schedule_debug(struct task_struct *prev)
2291{
2292	/*
2293	 * Test if we are atomic. Since do_exit() needs to call into
2294	 * schedule() atomically, we ignore that path for now.
2295	 * Otherwise, whine if we are scheduling when we should not be.
2296	 */
2297	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2298		__schedule_bug(prev);
2299	rcu_sleep_check();
2300
2301	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2302
2303	schedstat_inc(this_rq(), sched_count);
2304}
2305
2306static void put_prev_task(struct rq *rq, struct task_struct *prev)
2307{
2308	if (prev->on_rq || rq->skip_clock_update < 0)
2309		update_rq_clock(rq);
2310	prev->sched_class->put_prev_task(rq, prev);
2311}
2312
2313/*
2314 * Pick up the highest-prio task:
2315 */
2316static inline struct task_struct *
2317pick_next_task(struct rq *rq)
2318{
2319	const struct sched_class *class;
2320	struct task_struct *p;
2321
2322	/*
2323	 * Optimization: we know that if all tasks are in
2324	 * the fair class we can call that function directly:
2325	 */
2326	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2327		p = fair_sched_class.pick_next_task(rq);
2328		if (likely(p))
2329			return p;
2330	}
2331
2332	for_each_class(class) {
2333		p = class->pick_next_task(rq);
2334		if (p)
2335			return p;
2336	}
2337
2338	BUG(); /* the idle class will always have a runnable task */
2339}
2340
2341/*
2342 * __schedule() is the main scheduler function.
2343 *
2344 * The main means of driving the scheduler and thus entering this function are:
2345 *
2346 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2347 *
2348 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2349 *      paths. For example, see arch/x86/entry_64.S.
2350 *
2351 *      To drive preemption between tasks, the scheduler sets the flag in timer
2352 *      interrupt handler scheduler_tick().
2353 *
2354 *   3. Wakeups don't really cause entry into schedule(). They add a
2355 *      task to the run-queue and that's it.
2356 *
2357 *      Now, if the new task added to the run-queue preempts the current
2358 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2359 *      called on the nearest possible occasion:
2360 *
2361 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2362 *
2363 *         - in syscall or exception context, at the next outmost
2364 *           preempt_enable(). (this might be as soon as the wake_up()'s
2365 *           spin_unlock()!)
2366 *
2367 *         - in IRQ context, return from interrupt-handler to
2368 *           preemptible context
2369 *
2370 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2371 *         then at the next:
2372 *
2373 *          - cond_resched() call
2374 *          - explicit schedule() call
2375 *          - return from syscall or exception to user-space
2376 *          - return from interrupt-handler to user-space
2377 */
2378static void __sched __schedule(void)
2379{
2380	struct task_struct *prev, *next;
2381	unsigned long *switch_count;
2382	struct rq *rq;
2383	int cpu;
2384
2385need_resched:
2386	preempt_disable();
2387	cpu = smp_processor_id();
2388	rq = cpu_rq(cpu);
2389	rcu_note_context_switch(cpu);
2390	prev = rq->curr;
2391
2392	schedule_debug(prev);
2393
2394	if (sched_feat(HRTICK))
2395		hrtick_clear(rq);
2396
2397	raw_spin_lock_irq(&rq->lock);
2398
2399	switch_count = &prev->nivcsw;
2400	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2401		if (unlikely(signal_pending_state(prev->state, prev))) {
2402			prev->state = TASK_RUNNING;
2403		} else {
2404			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2405			prev->on_rq = 0;
2406
2407			/*
2408			 * If a worker went to sleep, notify and ask workqueue
2409			 * whether it wants to wake up a task to maintain
2410			 * concurrency.
2411			 */
2412			if (prev->flags & PF_WQ_WORKER) {
2413				struct task_struct *to_wakeup;
2414
2415				to_wakeup = wq_worker_sleeping(prev, cpu);
2416				if (to_wakeup)
2417					try_to_wake_up_local(to_wakeup);
2418			}
2419		}
2420		switch_count = &prev->nvcsw;
2421	}
2422
2423	pre_schedule(rq, prev);
2424
2425	if (unlikely(!rq->nr_running))
2426		idle_balance(cpu, rq);
2427
2428	put_prev_task(rq, prev);
2429	next = pick_next_task(rq);
2430	clear_tsk_need_resched(prev);
2431	rq->skip_clock_update = 0;
2432
2433	if (likely(prev != next)) {
2434		rq->nr_switches++;
2435		rq->curr = next;
2436		++*switch_count;
2437
2438		context_switch(rq, prev, next); /* unlocks the rq */
2439		/*
2440		 * The context switch have flipped the stack from under us
2441		 * and restored the local variables which were saved when
2442		 * this task called schedule() in the past. prev == current
2443		 * is still correct, but it can be moved to another cpu/rq.
2444		 */
2445		cpu = smp_processor_id();
2446		rq = cpu_rq(cpu);
2447	} else
2448		raw_spin_unlock_irq(&rq->lock);
2449
2450	post_schedule(rq);
2451
2452	sched_preempt_enable_no_resched();
2453	if (need_resched())
2454		goto need_resched;
2455}
2456
2457static inline void sched_submit_work(struct task_struct *tsk)
2458{
2459	if (!tsk->state || tsk_is_pi_blocked(tsk))
2460		return;
2461	/*
2462	 * If we are going to sleep and we have plugged IO queued,
2463	 * make sure to submit it to avoid deadlocks.
2464	 */
2465	if (blk_needs_flush_plug(tsk))
2466		blk_schedule_flush_plug(tsk);
2467}
2468
2469asmlinkage void __sched schedule(void)
2470{
2471	struct task_struct *tsk = current;
2472
2473	sched_submit_work(tsk);
2474	__schedule();
2475}
2476EXPORT_SYMBOL(schedule);
2477
2478#ifdef CONFIG_CONTEXT_TRACKING
2479asmlinkage void __sched schedule_user(void)
2480{
2481	/*
2482	 * If we come here after a random call to set_need_resched(),
2483	 * or we have been woken up remotely but the IPI has not yet arrived,
2484	 * we haven't yet exited the RCU idle mode. Do it here manually until
2485	 * we find a better solution.
2486	 */
2487	user_exit();
2488	schedule();
2489	user_enter();
2490}
2491#endif
2492
2493/**
2494 * schedule_preempt_disabled - called with preemption disabled
2495 *
2496 * Returns with preemption disabled. Note: preempt_count must be 1
2497 */
2498void __sched schedule_preempt_disabled(void)
2499{
2500	sched_preempt_enable_no_resched();
2501	schedule();
2502	preempt_disable();
2503}
2504
2505#ifdef CONFIG_PREEMPT
2506/*
2507 * this is the entry point to schedule() from in-kernel preemption
2508 * off of preempt_enable. Kernel preemptions off return from interrupt
2509 * occur there and call schedule directly.
2510 */
2511asmlinkage void __sched notrace preempt_schedule(void)
2512{
2513	struct thread_info *ti = current_thread_info();
2514
2515	/*
2516	 * If there is a non-zero preempt_count or interrupts are disabled,
2517	 * we do not want to preempt the current task. Just return..
2518	 */
2519	if (likely(ti->preempt_count || irqs_disabled()))
2520		return;
2521
2522	do {
2523		add_preempt_count_notrace(PREEMPT_ACTIVE);
2524		__schedule();
2525		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2526
2527		/*
2528		 * Check again in case we missed a preemption opportunity
2529		 * between schedule and now.
2530		 */
2531		barrier();
2532	} while (need_resched());
2533}
2534EXPORT_SYMBOL(preempt_schedule);
2535
2536/*
2537 * this is the entry point to schedule() from kernel preemption
2538 * off of irq context.
2539 * Note, that this is called and return with irqs disabled. This will
2540 * protect us against recursive calling from irq.
2541 */
2542asmlinkage void __sched preempt_schedule_irq(void)
2543{
2544	struct thread_info *ti = current_thread_info();
2545	enum ctx_state prev_state;
2546
2547	/* Catch callers which need to be fixed */
2548	BUG_ON(ti->preempt_count || !irqs_disabled());
2549
2550	prev_state = exception_enter();
2551
2552	do {
2553		add_preempt_count(PREEMPT_ACTIVE);
2554		local_irq_enable();
2555		__schedule();
2556		local_irq_disable();
2557		sub_preempt_count(PREEMPT_ACTIVE);
2558
2559		/*
2560		 * Check again in case we missed a preemption opportunity
2561		 * between schedule and now.
2562		 */
2563		barrier();
2564	} while (need_resched());
2565
2566	exception_exit(prev_state);
2567}
2568
2569#endif /* CONFIG_PREEMPT */
2570
2571int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2572			  void *key)
2573{
2574	return try_to_wake_up(curr->private, mode, wake_flags);
2575}
2576EXPORT_SYMBOL(default_wake_function);
2577
2578/*
2579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2581 * number) then we wake all the non-exclusive tasks and one exclusive task.
2582 *
2583 * There are circumstances in which we can try to wake a task which has already
2584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2586 */
2587static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2588			int nr_exclusive, int wake_flags, void *key)
2589{
2590	wait_queue_t *curr, *next;
2591
2592	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2593		unsigned flags = curr->flags;
2594
2595		if (curr->func(curr, mode, wake_flags, key) &&
2596				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2597			break;
2598	}
2599}
2600
2601/**
2602 * __wake_up - wake up threads blocked on a waitqueue.
2603 * @q: the waitqueue
2604 * @mode: which threads
2605 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2606 * @key: is directly passed to the wakeup function
2607 *
2608 * It may be assumed that this function implies a write memory barrier before
2609 * changing the task state if and only if any tasks are woken up.
2610 */
2611void __wake_up(wait_queue_head_t *q, unsigned int mode,
2612			int nr_exclusive, void *key)
2613{
2614	unsigned long flags;
2615
2616	spin_lock_irqsave(&q->lock, flags);
2617	__wake_up_common(q, mode, nr_exclusive, 0, key);
2618	spin_unlock_irqrestore(&q->lock, flags);
2619}
2620EXPORT_SYMBOL(__wake_up);
2621
2622/*
2623 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2624 */
2625void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2626{
2627	__wake_up_common(q, mode, nr, 0, NULL);
2628}
2629EXPORT_SYMBOL_GPL(__wake_up_locked);
2630
2631void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2632{
2633	__wake_up_common(q, mode, 1, 0, key);
2634}
2635EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2636
2637/**
2638 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2639 * @q: the waitqueue
2640 * @mode: which threads
2641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2642 * @key: opaque value to be passed to wakeup targets
2643 *
2644 * The sync wakeup differs that the waker knows that it will schedule
2645 * away soon, so while the target thread will be woken up, it will not
2646 * be migrated to another CPU - ie. the two threads are 'synchronized'
2647 * with each other. This can prevent needless bouncing between CPUs.
2648 *
2649 * On UP it can prevent extra preemption.
2650 *
2651 * It may be assumed that this function implies a write memory barrier before
2652 * changing the task state if and only if any tasks are woken up.
2653 */
2654void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2655			int nr_exclusive, void *key)
2656{
2657	unsigned long flags;
2658	int wake_flags = WF_SYNC;
2659
2660	if (unlikely(!q))
2661		return;
2662
2663	if (unlikely(!nr_exclusive))
2664		wake_flags = 0;
2665
2666	spin_lock_irqsave(&q->lock, flags);
2667	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2668	spin_unlock_irqrestore(&q->lock, flags);
2669}
2670EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2671
2672/*
2673 * __wake_up_sync - see __wake_up_sync_key()
2674 */
2675void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2676{
2677	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2678}
2679EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2680
2681/**
2682 * complete: - signals a single thread waiting on this completion
2683 * @x:  holds the state of this particular completion
2684 *
2685 * This will wake up a single thread waiting on this completion. Threads will be
2686 * awakened in the same order in which they were queued.
2687 *
2688 * See also complete_all(), wait_for_completion() and related routines.
2689 *
2690 * It may be assumed that this function implies a write memory barrier before
2691 * changing the task state if and only if any tasks are woken up.
2692 */
2693void complete(struct completion *x)
2694{
2695	unsigned long flags;
2696
2697	spin_lock_irqsave(&x->wait.lock, flags);
2698	x->done++;
2699	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2700	spin_unlock_irqrestore(&x->wait.lock, flags);
2701}
2702EXPORT_SYMBOL(complete);
2703
2704/**
2705 * complete_all: - signals all threads waiting on this completion
2706 * @x:  holds the state of this particular completion
2707 *
2708 * This will wake up all threads waiting on this particular completion event.
2709 *
2710 * It may be assumed that this function implies a write memory barrier before
2711 * changing the task state if and only if any tasks are woken up.
2712 */
2713void complete_all(struct completion *x)
2714{
2715	unsigned long flags;
2716
2717	spin_lock_irqsave(&x->wait.lock, flags);
2718	x->done += UINT_MAX/2;
2719	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2720	spin_unlock_irqrestore(&x->wait.lock, flags);
2721}
2722EXPORT_SYMBOL(complete_all);
2723
2724static inline long __sched
2725do_wait_for_common(struct completion *x,
2726		   long (*action)(long), long timeout, int state)
2727{
2728	if (!x->done) {
2729		DECLARE_WAITQUEUE(wait, current);
2730
2731		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2732		do {
2733			if (signal_pending_state(state, current)) {
2734				timeout = -ERESTARTSYS;
2735				break;
2736			}
2737			__set_current_state(state);
2738			spin_unlock_irq(&x->wait.lock);
2739			timeout = action(timeout);
2740			spin_lock_irq(&x->wait.lock);
2741		} while (!x->done && timeout);
2742		__remove_wait_queue(&x->wait, &wait);
2743		if (!x->done)
2744			return timeout;
2745	}
2746	x->done--;
2747	return timeout ?: 1;
2748}
2749
2750static inline long __sched
2751__wait_for_common(struct completion *x,
2752		  long (*action)(long), long timeout, int state)
2753{
2754	might_sleep();
2755
2756	spin_lock_irq(&x->wait.lock);
2757	timeout = do_wait_for_common(x, action, timeout, state);
2758	spin_unlock_irq(&x->wait.lock);
2759	return timeout;
2760}
2761
2762static long __sched
2763wait_for_common(struct completion *x, long timeout, int state)
2764{
2765	return __wait_for_common(x, schedule_timeout, timeout, state);
2766}
2767
2768static long __sched
2769wait_for_common_io(struct completion *x, long timeout, int state)
2770{
2771	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2772}
2773
2774/**
2775 * wait_for_completion: - waits for completion of a task
2776 * @x:  holds the state of this particular completion
2777 *
2778 * This waits to be signaled for completion of a specific task. It is NOT
2779 * interruptible and there is no timeout.
2780 *
2781 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2782 * and interrupt capability. Also see complete().
2783 */
2784void __sched wait_for_completion(struct completion *x)
2785{
2786	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2787}
2788EXPORT_SYMBOL(wait_for_completion);
2789
2790/**
2791 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2792 * @x:  holds the state of this particular completion
2793 * @timeout:  timeout value in jiffies
2794 *
2795 * This waits for either a completion of a specific task to be signaled or for a
2796 * specified timeout to expire. The timeout is in jiffies. It is not
2797 * interruptible.
2798 *
2799 * The return value is 0 if timed out, and positive (at least 1, or number of
2800 * jiffies left till timeout) if completed.
2801 */
2802unsigned long __sched
2803wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2804{
2805	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2806}
2807EXPORT_SYMBOL(wait_for_completion_timeout);
2808
2809/**
2810 * wait_for_completion_io: - waits for completion of a task
2811 * @x:  holds the state of this particular completion
2812 *
2813 * This waits to be signaled for completion of a specific task. It is NOT
2814 * interruptible and there is no timeout. The caller is accounted as waiting
2815 * for IO.
2816 */
2817void __sched wait_for_completion_io(struct completion *x)
2818{
2819	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2820}
2821EXPORT_SYMBOL(wait_for_completion_io);
2822
2823/**
2824 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2825 * @x:  holds the state of this particular completion
2826 * @timeout:  timeout value in jiffies
2827 *
2828 * This waits for either a completion of a specific task to be signaled or for a
2829 * specified timeout to expire. The timeout is in jiffies. It is not
2830 * interruptible. The caller is accounted as waiting for IO.
2831 *
2832 * The return value is 0 if timed out, and positive (at least 1, or number of
2833 * jiffies left till timeout) if completed.
2834 */
2835unsigned long __sched
2836wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2837{
2838	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2839}
2840EXPORT_SYMBOL(wait_for_completion_io_timeout);
2841
2842/**
2843 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2844 * @x:  holds the state of this particular completion
2845 *
2846 * This waits for completion of a specific task to be signaled. It is
2847 * interruptible.
2848 *
2849 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2850 */
2851int __sched wait_for_completion_interruptible(struct completion *x)
2852{
2853	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2854	if (t == -ERESTARTSYS)
2855		return t;
2856	return 0;
2857}
2858EXPORT_SYMBOL(wait_for_completion_interruptible);
2859
2860/**
2861 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2862 * @x:  holds the state of this particular completion
2863 * @timeout:  timeout value in jiffies
2864 *
2865 * This waits for either a completion of a specific task to be signaled or for a
2866 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2867 *
2868 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2869 * positive (at least 1, or number of jiffies left till timeout) if completed.
2870 */
2871long __sched
2872wait_for_completion_interruptible_timeout(struct completion *x,
2873					  unsigned long timeout)
2874{
2875	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2876}
2877EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2878
2879/**
2880 * wait_for_completion_killable: - waits for completion of a task (killable)
2881 * @x:  holds the state of this particular completion
2882 *
2883 * This waits to be signaled for completion of a specific task. It can be
2884 * interrupted by a kill signal.
2885 *
2886 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2887 */
2888int __sched wait_for_completion_killable(struct completion *x)
2889{
2890	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2891	if (t == -ERESTARTSYS)
2892		return t;
2893	return 0;
2894}
2895EXPORT_SYMBOL(wait_for_completion_killable);
2896
2897/**
2898 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2899 * @x:  holds the state of this particular completion
2900 * @timeout:  timeout value in jiffies
2901 *
2902 * This waits for either a completion of a specific task to be
2903 * signaled or for a specified timeout to expire. It can be
2904 * interrupted by a kill signal. The timeout is in jiffies.
2905 *
2906 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2907 * positive (at least 1, or number of jiffies left till timeout) if completed.
2908 */
2909long __sched
2910wait_for_completion_killable_timeout(struct completion *x,
2911				     unsigned long timeout)
2912{
2913	return wait_for_common(x, timeout, TASK_KILLABLE);
2914}
2915EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2916
2917/**
2918 *	try_wait_for_completion - try to decrement a completion without blocking
2919 *	@x:	completion structure
2920 *
2921 *	Returns: 0 if a decrement cannot be done without blocking
2922 *		 1 if a decrement succeeded.
2923 *
2924 *	If a completion is being used as a counting completion,
2925 *	attempt to decrement the counter without blocking. This
2926 *	enables us to avoid waiting if the resource the completion
2927 *	is protecting is not available.
2928 */
2929bool try_wait_for_completion(struct completion *x)
2930{
2931	unsigned long flags;
2932	int ret = 1;
2933
2934	spin_lock_irqsave(&x->wait.lock, flags);
2935	if (!x->done)
2936		ret = 0;
2937	else
2938		x->done--;
2939	spin_unlock_irqrestore(&x->wait.lock, flags);
2940	return ret;
2941}
2942EXPORT_SYMBOL(try_wait_for_completion);
2943
2944/**
2945 *	completion_done - Test to see if a completion has any waiters
2946 *	@x:	completion structure
2947 *
2948 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2949 *		 1 if there are no waiters.
2950 *
2951 */
2952bool completion_done(struct completion *x)
2953{
2954	unsigned long flags;
2955	int ret = 1;
2956
2957	spin_lock_irqsave(&x->wait.lock, flags);
2958	if (!x->done)
2959		ret = 0;
2960	spin_unlock_irqrestore(&x->wait.lock, flags);
2961	return ret;
2962}
2963EXPORT_SYMBOL(completion_done);
2964
2965static long __sched
2966sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2967{
2968	unsigned long flags;
2969	wait_queue_t wait;
2970
2971	init_waitqueue_entry(&wait, current);
2972
2973	__set_current_state(state);
2974
2975	spin_lock_irqsave(&q->lock, flags);
2976	__add_wait_queue(q, &wait);
2977	spin_unlock(&q->lock);
2978	timeout = schedule_timeout(timeout);
2979	spin_lock_irq(&q->lock);
2980	__remove_wait_queue(q, &wait);
2981	spin_unlock_irqrestore(&q->lock, flags);
2982
2983	return timeout;
2984}
2985
2986void __sched interruptible_sleep_on(wait_queue_head_t *q)
2987{
2988	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2989}
2990EXPORT_SYMBOL(interruptible_sleep_on);
2991
2992long __sched
2993interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2994{
2995	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2996}
2997EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2998
2999void __sched sleep_on(wait_queue_head_t *q)
3000{
3001	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3002}
3003EXPORT_SYMBOL(sleep_on);
3004
3005long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3006{
3007	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3008}
3009EXPORT_SYMBOL(sleep_on_timeout);
3010
3011#ifdef CONFIG_RT_MUTEXES
3012
3013/*
3014 * rt_mutex_setprio - set the current priority of a task
3015 * @p: task
3016 * @prio: prio value (kernel-internal form)
3017 *
3018 * This function changes the 'effective' priority of a task. It does
3019 * not touch ->normal_prio like __setscheduler().
3020 *
3021 * Used by the rt_mutex code to implement priority inheritance logic.
3022 */
3023void rt_mutex_setprio(struct task_struct *p, int prio)
3024{
3025	int oldprio, on_rq, running;
3026	struct rq *rq;
3027	const struct sched_class *prev_class;
3028
3029	BUG_ON(prio < 0 || prio > MAX_PRIO);
3030
3031	rq = __task_rq_lock(p);
3032
3033	/*
3034	 * Idle task boosting is a nono in general. There is one
3035	 * exception, when PREEMPT_RT and NOHZ is active:
3036	 *
3037	 * The idle task calls get_next_timer_interrupt() and holds
3038	 * the timer wheel base->lock on the CPU and another CPU wants
3039	 * to access the timer (probably to cancel it). We can safely
3040	 * ignore the boosting request, as the idle CPU runs this code
3041	 * with interrupts disabled and will complete the lock
3042	 * protected section without being interrupted. So there is no
3043	 * real need to boost.
3044	 */
3045	if (unlikely(p == rq->idle)) {
3046		WARN_ON(p != rq->curr);
3047		WARN_ON(p->pi_blocked_on);
3048		goto out_unlock;
3049	}
3050
3051	trace_sched_pi_setprio(p, prio);
3052	oldprio = p->prio;
3053	prev_class = p->sched_class;
3054	on_rq = p->on_rq;
3055	running = task_current(rq, p);
3056	if (on_rq)
3057		dequeue_task(rq, p, 0);
3058	if (running)
3059		p->sched_class->put_prev_task(rq, p);
3060
3061	if (rt_prio(prio))
3062		p->sched_class = &rt_sched_class;
3063	else
3064		p->sched_class = &fair_sched_class;
3065
3066	p->prio = prio;
3067
3068	if (running)
3069		p->sched_class->set_curr_task(rq);
3070	if (on_rq)
3071		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3072
3073	check_class_changed(rq, p, prev_class, oldprio);
3074out_unlock:
3075	__task_rq_unlock(rq);
3076}
3077#endif
3078void set_user_nice(struct task_struct *p, long nice)
3079{
3080	int old_prio, delta, on_rq;
3081	unsigned long flags;
3082	struct rq *rq;
3083
3084	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3085		return;
3086	/*
3087	 * We have to be careful, if called from sys_setpriority(),
3088	 * the task might be in the middle of scheduling on another CPU.
3089	 */
3090	rq = task_rq_lock(p, &flags);
3091	/*
3092	 * The RT priorities are set via sched_setscheduler(), but we still
3093	 * allow the 'normal' nice value to be set - but as expected
3094	 * it wont have any effect on scheduling until the task is
3095	 * SCHED_FIFO/SCHED_RR:
3096	 */
3097	if (task_has_rt_policy(p)) {
3098		p->static_prio = NICE_TO_PRIO(nice);
3099		goto out_unlock;
3100	}
3101	on_rq = p->on_rq;
3102	if (on_rq)
3103		dequeue_task(rq, p, 0);
3104
3105	p->static_prio = NICE_TO_PRIO(nice);
3106	set_load_weight(p);
3107	old_prio = p->prio;
3108	p->prio = effective_prio(p);
3109	delta = p->prio - old_prio;
3110
3111	if (on_rq) {
3112		enqueue_task(rq, p, 0);
3113		/*
3114		 * If the task increased its priority or is running and
3115		 * lowered its priority, then reschedule its CPU:
3116		 */
3117		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3118			resched_task(rq->curr);
3119	}
3120out_unlock:
3121	task_rq_unlock(rq, p, &flags);
3122}
3123EXPORT_SYMBOL(set_user_nice);
3124
3125/*
3126 * can_nice - check if a task can reduce its nice value
3127 * @p: task
3128 * @nice: nice value
3129 */
3130int can_nice(const struct task_struct *p, const int nice)
3131{
3132	/* convert nice value [19,-20] to rlimit style value [1,40] */
3133	int nice_rlim = 20 - nice;
3134
3135	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3136		capable(CAP_SYS_NICE));
3137}
3138
3139#ifdef __ARCH_WANT_SYS_NICE
3140
3141/*
3142 * sys_nice - change the priority of the current process.
3143 * @increment: priority increment
3144 *
3145 * sys_setpriority is a more generic, but much slower function that
3146 * does similar things.
3147 */
3148SYSCALL_DEFINE1(nice, int, increment)
3149{
3150	long nice, retval;
3151
3152	/*
3153	 * Setpriority might change our priority at the same moment.
3154	 * We don't have to worry. Conceptually one call occurs first
3155	 * and we have a single winner.
3156	 */
3157	if (increment < -40)
3158		increment = -40;
3159	if (increment > 40)
3160		increment = 40;
3161
3162	nice = TASK_NICE(current) + increment;
3163	if (nice < -20)
3164		nice = -20;
3165	if (nice > 19)
3166		nice = 19;
3167
3168	if (increment < 0 && !can_nice(current, nice))
3169		return -EPERM;
3170
3171	retval = security_task_setnice(current, nice);
3172	if (retval)
3173		return retval;
3174
3175	set_user_nice(current, nice);
3176	return 0;
3177}
3178
3179#endif
3180
3181/**
3182 * task_prio - return the priority value of a given task.
3183 * @p: the task in question.
3184 *
3185 * This is the priority value as seen by users in /proc.
3186 * RT tasks are offset by -200. Normal tasks are centered
3187 * around 0, value goes from -16 to +15.
3188 */
3189int task_prio(const struct task_struct *p)
3190{
3191	return p->prio - MAX_RT_PRIO;
3192}
3193
3194/**
3195 * task_nice - return the nice value of a given task.
3196 * @p: the task in question.
3197 */
3198int task_nice(const struct task_struct *p)
3199{
3200	return TASK_NICE(p);
3201}
3202EXPORT_SYMBOL(task_nice);
3203
3204/**
3205 * idle_cpu - is a given cpu idle currently?
3206 * @cpu: the processor in question.
3207 */
3208int idle_cpu(int cpu)
3209{
3210	struct rq *rq = cpu_rq(cpu);
3211
3212	if (rq->curr != rq->idle)
3213		return 0;
3214
3215	if (rq->nr_running)
3216		return 0;
3217
3218#ifdef CONFIG_SMP
3219	if (!llist_empty(&rq->wake_list))
3220		return 0;
3221#endif
3222
3223	return 1;
3224}
3225
3226/**
3227 * idle_task - return the idle task for a given cpu.
3228 * @cpu: the processor in question.
3229 */
3230struct task_struct *idle_task(int cpu)
3231{
3232	return cpu_rq(cpu)->idle;
3233}
3234
3235/**
3236 * find_process_by_pid - find a process with a matching PID value.
3237 * @pid: the pid in question.
3238 */
3239static struct task_struct *find_process_by_pid(pid_t pid)
3240{
3241	return pid ? find_task_by_vpid(pid) : current;
3242}
3243
3244/* Actually do priority change: must hold rq lock. */
3245static void
3246__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3247{
3248	p->policy = policy;
3249	p->rt_priority = prio;
3250	p->normal_prio = normal_prio(p);
3251	/* we are holding p->pi_lock already */
3252	p->prio = rt_mutex_getprio(p);
3253	if (rt_prio(p->prio))
3254		p->sched_class = &rt_sched_class;
3255	else
3256		p->sched_class = &fair_sched_class;
3257	set_load_weight(p);
3258}
3259
3260/*
3261 * check the target process has a UID that matches the current process's
3262 */
3263static bool check_same_owner(struct task_struct *p)
3264{
3265	const struct cred *cred = current_cred(), *pcred;
3266	bool match;
3267
3268	rcu_read_lock();
3269	pcred = __task_cred(p);
3270	match = (uid_eq(cred->euid, pcred->euid) ||
3271		 uid_eq(cred->euid, pcred->uid));
3272	rcu_read_unlock();
3273	return match;
3274}
3275
3276static int __sched_setscheduler(struct task_struct *p, int policy,
3277				const struct sched_param *param, bool user)
3278{
3279	int retval, oldprio, oldpolicy = -1, on_rq, running;
3280	unsigned long flags;
3281	const struct sched_class *prev_class;
3282	struct rq *rq;
3283	int reset_on_fork;
3284
3285	/* may grab non-irq protected spin_locks */
3286	BUG_ON(in_interrupt());
3287recheck:
3288	/* double check policy once rq lock held */
3289	if (policy < 0) {
3290		reset_on_fork = p->sched_reset_on_fork;
3291		policy = oldpolicy = p->policy;
3292	} else {
3293		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3294		policy &= ~SCHED_RESET_ON_FORK;
3295
3296		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3297				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298				policy != SCHED_IDLE)
3299			return -EINVAL;
3300	}
3301
3302	/*
3303	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3304	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3305	 * SCHED_BATCH and SCHED_IDLE is 0.
3306	 */
3307	if (param->sched_priority < 0 ||
3308	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3309	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3310		return -EINVAL;
3311	if (rt_policy(policy) != (param->sched_priority != 0))
3312		return -EINVAL;
3313
3314	/*
3315	 * Allow unprivileged RT tasks to decrease priority:
3316	 */
3317	if (user && !capable(CAP_SYS_NICE)) {
3318		if (rt_policy(policy)) {
3319			unsigned long rlim_rtprio =
3320					task_rlimit(p, RLIMIT_RTPRIO);
3321
3322			/* can't set/change the rt policy */
3323			if (policy != p->policy && !rlim_rtprio)
3324				return -EPERM;
3325
3326			/* can't increase priority */
3327			if (param->sched_priority > p->rt_priority &&
3328			    param->sched_priority > rlim_rtprio)
3329				return -EPERM;
3330		}
3331
3332		/*
3333		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3334		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3335		 */
3336		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3337			if (!can_nice(p, TASK_NICE(p)))
3338				return -EPERM;
3339		}
3340
3341		/* can't change other user's priorities */
3342		if (!check_same_owner(p))
3343			return -EPERM;
3344
3345		/* Normal users shall not reset the sched_reset_on_fork flag */
3346		if (p->sched_reset_on_fork && !reset_on_fork)
3347			return -EPERM;
3348	}
3349
3350	if (user) {
3351		retval = security_task_setscheduler(p);
3352		if (retval)
3353			return retval;
3354	}
3355
3356	/*
3357	 * make sure no PI-waiters arrive (or leave) while we are
3358	 * changing the priority of the task:
3359	 *
3360	 * To be able to change p->policy safely, the appropriate
3361	 * runqueue lock must be held.
3362	 */
3363	rq = task_rq_lock(p, &flags);
3364
3365	/*
3366	 * Changing the policy of the stop threads its a very bad idea
3367	 */
3368	if (p == rq->stop) {
3369		task_rq_unlock(rq, p, &flags);
3370		return -EINVAL;
3371	}
3372
3373	/*
3374	 * If not changing anything there's no need to proceed further:
3375	 */
3376	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3377			param->sched_priority == p->rt_priority))) {
3378		task_rq_unlock(rq, p, &flags);
3379		return 0;
3380	}
3381
3382#ifdef CONFIG_RT_GROUP_SCHED
3383	if (user) {
3384		/*
3385		 * Do not allow realtime tasks into groups that have no runtime
3386		 * assigned.
3387		 */
3388		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3389				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3390				!task_group_is_autogroup(task_group(p))) {
3391			task_rq_unlock(rq, p, &flags);
3392			return -EPERM;
3393		}
3394	}
3395#endif
3396
3397	/* recheck policy now with rq lock held */
3398	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3399		policy = oldpolicy = -1;
3400		task_rq_unlock(rq, p, &flags);
3401		goto recheck;
3402	}
3403	on_rq = p->on_rq;
3404	running = task_current(rq, p);
3405	if (on_rq)
3406		dequeue_task(rq, p, 0);
3407	if (running)
3408		p->sched_class->put_prev_task(rq, p);
3409
3410	p->sched_reset_on_fork = reset_on_fork;
3411
3412	oldprio = p->prio;
3413	prev_class = p->sched_class;
3414	__setscheduler(rq, p, policy, param->sched_priority);
3415
3416	if (running)
3417		p->sched_class->set_curr_task(rq);
3418	if (on_rq)
3419		enqueue_task(rq, p, 0);
3420
3421	check_class_changed(rq, p, prev_class, oldprio);
3422	task_rq_unlock(rq, p, &flags);
3423
3424	rt_mutex_adjust_pi(p);
3425
3426	return 0;
3427}
3428
3429/**
3430 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3431 * @p: the task in question.
3432 * @policy: new policy.
3433 * @param: structure containing the new RT priority.
3434 *
3435 * NOTE that the task may be already dead.
3436 */
3437int sched_setscheduler(struct task_struct *p, int policy,
3438		       const struct sched_param *param)
3439{
3440	return __sched_setscheduler(p, policy, param, true);
3441}
3442EXPORT_SYMBOL_GPL(sched_setscheduler);
3443
3444/**
3445 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3446 * @p: the task in question.
3447 * @policy: new policy.
3448 * @param: structure containing the new RT priority.
3449 *
3450 * Just like sched_setscheduler, only don't bother checking if the
3451 * current context has permission.  For example, this is needed in
3452 * stop_machine(): we create temporary high priority worker threads,
3453 * but our caller might not have that capability.
3454 */
3455int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3456			       const struct sched_param *param)
3457{
3458	return __sched_setscheduler(p, policy, param, false);
3459}
3460
3461static int
3462do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3463{
3464	struct sched_param lparam;
3465	struct task_struct *p;
3466	int retval;
3467
3468	if (!param || pid < 0)
3469		return -EINVAL;
3470	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3471		return -EFAULT;
3472
3473	rcu_read_lock();
3474	retval = -ESRCH;
3475	p = find_process_by_pid(pid);
3476	if (p != NULL)
3477		retval = sched_setscheduler(p, policy, &lparam);
3478	rcu_read_unlock();
3479
3480	return retval;
3481}
3482
3483/**
3484 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3485 * @pid: the pid in question.
3486 * @policy: new policy.
3487 * @param: structure containing the new RT priority.
3488 */
3489SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3490		struct sched_param __user *, param)
3491{
3492	/* negative values for policy are not valid */
3493	if (policy < 0)
3494		return -EINVAL;
3495
3496	return do_sched_setscheduler(pid, policy, param);
3497}
3498
3499/**
3500 * sys_sched_setparam - set/change the RT priority of a thread
3501 * @pid: the pid in question.
3502 * @param: structure containing the new RT priority.
3503 */
3504SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3505{
3506	return do_sched_setscheduler(pid, -1, param);
3507}
3508
3509/**
3510 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3511 * @pid: the pid in question.
3512 */
3513SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3514{
3515	struct task_struct *p;
3516	int retval;
3517
3518	if (pid < 0)
3519		return -EINVAL;
3520
3521	retval = -ESRCH;
3522	rcu_read_lock();
3523	p = find_process_by_pid(pid);
3524	if (p) {
3525		retval = security_task_getscheduler(p);
3526		if (!retval)
3527			retval = p->policy
3528				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3529	}
3530	rcu_read_unlock();
3531	return retval;
3532}
3533
3534/**
3535 * sys_sched_getparam - get the RT priority of a thread
3536 * @pid: the pid in question.
3537 * @param: structure containing the RT priority.
3538 */
3539SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3540{
3541	struct sched_param lp;
3542	struct task_struct *p;
3543	int retval;
3544
3545	if (!param || pid < 0)
3546		return -EINVAL;
3547
3548	rcu_read_lock();
3549	p = find_process_by_pid(pid);
3550	retval = -ESRCH;
3551	if (!p)
3552		goto out_unlock;
3553
3554	retval = security_task_getscheduler(p);
3555	if (retval)
3556		goto out_unlock;
3557
3558	lp.sched_priority = p->rt_priority;
3559	rcu_read_unlock();
3560
3561	/*
3562	 * This one might sleep, we cannot do it with a spinlock held ...
3563	 */
3564	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3565
3566	return retval;
3567
3568out_unlock:
3569	rcu_read_unlock();
3570	return retval;
3571}
3572
3573long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3574{
3575	cpumask_var_t cpus_allowed, new_mask;
3576	struct task_struct *p;
3577	int retval;
3578
3579	get_online_cpus();
3580	rcu_read_lock();
3581
3582	p = find_process_by_pid(pid);
3583	if (!p) {
3584		rcu_read_unlock();
3585		put_online_cpus();
3586		return -ESRCH;
3587	}
3588
3589	/* Prevent p going away */
3590	get_task_struct(p);
3591	rcu_read_unlock();
3592
3593	if (p->flags & PF_NO_SETAFFINITY) {
3594		retval = -EINVAL;
3595		goto out_put_task;
3596	}
3597	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3598		retval = -ENOMEM;
3599		goto out_put_task;
3600	}
3601	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3602		retval = -ENOMEM;
3603		goto out_free_cpus_allowed;
3604	}
3605	retval = -EPERM;
3606	if (!check_same_owner(p)) {
3607		rcu_read_lock();
3608		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3609			rcu_read_unlock();
3610			goto out_unlock;
3611		}
3612		rcu_read_unlock();
3613	}
3614
3615	retval = security_task_setscheduler(p);
3616	if (retval)
3617		goto out_unlock;
3618
3619	cpuset_cpus_allowed(p, cpus_allowed);
3620	cpumask_and(new_mask, in_mask, cpus_allowed);
3621again:
3622	retval = set_cpus_allowed_ptr(p, new_mask);
3623
3624	if (!retval) {
3625		cpuset_cpus_allowed(p, cpus_allowed);
3626		if (!cpumask_subset(new_mask, cpus_allowed)) {
3627			/*
3628			 * We must have raced with a concurrent cpuset
3629			 * update. Just reset the cpus_allowed to the
3630			 * cpuset's cpus_allowed
3631			 */
3632			cpumask_copy(new_mask, cpus_allowed);
3633			goto again;
3634		}
3635	}
3636out_unlock:
3637	free_cpumask_var(new_mask);
3638out_free_cpus_allowed:
3639	free_cpumask_var(cpus_allowed);
3640out_put_task:
3641	put_task_struct(p);
3642	put_online_cpus();
3643	return retval;
3644}
3645
3646static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3647			     struct cpumask *new_mask)
3648{
3649	if (len < cpumask_size())
3650		cpumask_clear(new_mask);
3651	else if (len > cpumask_size())
3652		len = cpumask_size();
3653
3654	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3655}
3656
3657/**
3658 * sys_sched_setaffinity - set the cpu affinity of a process
3659 * @pid: pid of the process
3660 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3661 * @user_mask_ptr: user-space pointer to the new cpu mask
3662 */
3663SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3664		unsigned long __user *, user_mask_ptr)
3665{
3666	cpumask_var_t new_mask;
3667	int retval;
3668
3669	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3670		return -ENOMEM;
3671
3672	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3673	if (retval == 0)
3674		retval = sched_setaffinity(pid, new_mask);
3675	free_cpumask_var(new_mask);
3676	return retval;
3677}
3678
3679long sched_getaffinity(pid_t pid, struct cpumask *mask)
3680{
3681	struct task_struct *p;
3682	unsigned long flags;
3683	int retval;
3684
3685	get_online_cpus();
3686	rcu_read_lock();
3687
3688	retval = -ESRCH;
3689	p = find_process_by_pid(pid);
3690	if (!p)
3691		goto out_unlock;
3692
3693	retval = security_task_getscheduler(p);
3694	if (retval)
3695		goto out_unlock;
3696
3697	raw_spin_lock_irqsave(&p->pi_lock, flags);
3698	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3699	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3700
3701out_unlock:
3702	rcu_read_unlock();
3703	put_online_cpus();
3704
3705	return retval;
3706}
3707
3708/**
3709 * sys_sched_getaffinity - get the cpu affinity of a process
3710 * @pid: pid of the process
3711 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3712 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3713 */
3714SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3715		unsigned long __user *, user_mask_ptr)
3716{
3717	int ret;
3718	cpumask_var_t mask;
3719
3720	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3721		return -EINVAL;
3722	if (len & (sizeof(unsigned long)-1))
3723		return -EINVAL;
3724
3725	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3726		return -ENOMEM;
3727
3728	ret = sched_getaffinity(pid, mask);
3729	if (ret == 0) {
3730		size_t retlen = min_t(size_t, len, cpumask_size());
3731
3732		if (copy_to_user(user_mask_ptr, mask, retlen))
3733			ret = -EFAULT;
3734		else
3735			ret = retlen;
3736	}
3737	free_cpumask_var(mask);
3738
3739	return ret;
3740}
3741
3742/**
3743 * sys_sched_yield - yield the current processor to other threads.
3744 *
3745 * This function yields the current CPU to other tasks. If there are no
3746 * other threads running on this CPU then this function will return.
3747 */
3748SYSCALL_DEFINE0(sched_yield)
3749{
3750	struct rq *rq = this_rq_lock();
3751
3752	schedstat_inc(rq, yld_count);
3753	current->sched_class->yield_task(rq);
3754
3755	/*
3756	 * Since we are going to call schedule() anyway, there's
3757	 * no need to preempt or enable interrupts:
3758	 */
3759	__release(rq->lock);
3760	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3761	do_raw_spin_unlock(&rq->lock);
3762	sched_preempt_enable_no_resched();
3763
3764	schedule();
3765
3766	return 0;
3767}
3768
3769static inline int should_resched(void)
3770{
3771	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3772}
3773
3774static void __cond_resched(void)
3775{
3776	add_preempt_count(PREEMPT_ACTIVE);
3777	__schedule();
3778	sub_preempt_count(PREEMPT_ACTIVE);
3779}
3780
3781int __sched _cond_resched(void)
3782{
3783	if (should_resched()) {
3784		__cond_resched();
3785		return 1;
3786	}
3787	return 0;
3788}
3789EXPORT_SYMBOL(_cond_resched);
3790
3791/*
3792 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3793 * call schedule, and on return reacquire the lock.
3794 *
3795 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3796 * operations here to prevent schedule() from being called twice (once via
3797 * spin_unlock(), once by hand).
3798 */
3799int __cond_resched_lock(spinlock_t *lock)
3800{
3801	int resched = should_resched();
3802	int ret = 0;
3803
3804	lockdep_assert_held(lock);
3805
3806	if (spin_needbreak(lock) || resched) {
3807		spin_unlock(lock);
3808		if (resched)
3809			__cond_resched();
3810		else
3811			cpu_relax();
3812		ret = 1;
3813		spin_lock(lock);
3814	}
3815	return ret;
3816}
3817EXPORT_SYMBOL(__cond_resched_lock);
3818
3819int __sched __cond_resched_softirq(void)
3820{
3821	BUG_ON(!in_softirq());
3822
3823	if (should_resched()) {
3824		local_bh_enable();
3825		__cond_resched();
3826		local_bh_disable();
3827		return 1;
3828	}
3829	return 0;
3830}
3831EXPORT_SYMBOL(__cond_resched_softirq);
3832
3833/**
3834 * yield - yield the current processor to other threads.
3835 *
3836 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3837 *
3838 * The scheduler is at all times free to pick the calling task as the most
3839 * eligible task to run, if removing the yield() call from your code breaks
3840 * it, its already broken.
3841 *
3842 * Typical broken usage is:
3843 *
3844 * while (!event)
3845 * 	yield();
3846 *
3847 * where one assumes that yield() will let 'the other' process run that will
3848 * make event true. If the current task is a SCHED_FIFO task that will never
3849 * happen. Never use yield() as a progress guarantee!!
3850 *
3851 * If you want to use yield() to wait for something, use wait_event().
3852 * If you want to use yield() to be 'nice' for others, use cond_resched().
3853 * If you still want to use yield(), do not!
3854 */
3855void __sched yield(void)
3856{
3857	set_current_state(TASK_RUNNING);
3858	sys_sched_yield();
3859}
3860EXPORT_SYMBOL(yield);
3861
3862/**
3863 * yield_to - yield the current processor to another thread in
3864 * your thread group, or accelerate that thread toward the
3865 * processor it's on.
3866 * @p: target task
3867 * @preempt: whether task preemption is allowed or not
3868 *
3869 * It's the caller's job to ensure that the target task struct
3870 * can't go away on us before we can do any checks.
3871 *
3872 * Returns:
3873 *	true (>0) if we indeed boosted the target task.
3874 *	false (0) if we failed to boost the target.
3875 *	-ESRCH if there's no task to yield to.
3876 */
3877bool __sched yield_to(struct task_struct *p, bool preempt)
3878{
3879	struct task_struct *curr = current;
3880	struct rq *rq, *p_rq;
3881	unsigned long flags;
3882	int yielded = 0;
3883
3884	local_irq_save(flags);
3885	rq = this_rq();
3886
3887again:
3888	p_rq = task_rq(p);
3889	/*
3890	 * If we're the only runnable task on the rq and target rq also
3891	 * has only one task, there's absolutely no point in yielding.
3892	 */
3893	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3894		yielded = -ESRCH;
3895		goto out_irq;
3896	}
3897
3898	double_rq_lock(rq, p_rq);
3899	while (task_rq(p) != p_rq) {
3900		double_rq_unlock(rq, p_rq);
3901		goto again;
3902	}
3903
3904	if (!curr->sched_class->yield_to_task)
3905		goto out_unlock;
3906
3907	if (curr->sched_class != p->sched_class)
3908		goto out_unlock;
3909
3910	if (task_running(p_rq, p) || p->state)
3911		goto out_unlock;
3912
3913	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3914	if (yielded) {
3915		schedstat_inc(rq, yld_count);
3916		/*
3917		 * Make p's CPU reschedule; pick_next_entity takes care of
3918		 * fairness.
3919		 */
3920		if (preempt && rq != p_rq)
3921			resched_task(p_rq->curr);
3922	}
3923
3924out_unlock:
3925	double_rq_unlock(rq, p_rq);
3926out_irq:
3927	local_irq_restore(flags);
3928
3929	if (yielded > 0)
3930		schedule();
3931
3932	return yielded;
3933}
3934EXPORT_SYMBOL_GPL(yield_to);
3935
3936/*
3937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3938 * that process accounting knows that this is a task in IO wait state.
3939 */
3940void __sched io_schedule(void)
3941{
3942	struct rq *rq = raw_rq();
3943
3944	delayacct_blkio_start();
3945	atomic_inc(&rq->nr_iowait);
3946	blk_flush_plug(current);
3947	current->in_iowait = 1;
3948	schedule();
3949	current->in_iowait = 0;
3950	atomic_dec(&rq->nr_iowait);
3951	delayacct_blkio_end();
3952}
3953EXPORT_SYMBOL(io_schedule);
3954
3955long __sched io_schedule_timeout(long timeout)
3956{
3957	struct rq *rq = raw_rq();
3958	long ret;
3959
3960	delayacct_blkio_start();
3961	atomic_inc(&rq->nr_iowait);
3962	blk_flush_plug(current);
3963	current->in_iowait = 1;
3964	ret = schedule_timeout(timeout);
3965	current->in_iowait = 0;
3966	atomic_dec(&rq->nr_iowait);
3967	delayacct_blkio_end();
3968	return ret;
3969}
3970
3971/**
3972 * sys_sched_get_priority_max - return maximum RT priority.
3973 * @policy: scheduling class.
3974 *
3975 * this syscall returns the maximum rt_priority that can be used
3976 * by a given scheduling class.
3977 */
3978SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3979{
3980	int ret = -EINVAL;
3981
3982	switch (policy) {
3983	case SCHED_FIFO:
3984	case SCHED_RR:
3985		ret = MAX_USER_RT_PRIO-1;
3986		break;
3987	case SCHED_NORMAL:
3988	case SCHED_BATCH:
3989	case SCHED_IDLE:
3990		ret = 0;
3991		break;
3992	}
3993	return ret;
3994}
3995
3996/**
3997 * sys_sched_get_priority_min - return minimum RT priority.
3998 * @policy: scheduling class.
3999 *
4000 * this syscall returns the minimum rt_priority that can be used
4001 * by a given scheduling class.
4002 */
4003SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4004{
4005	int ret = -EINVAL;
4006
4007	switch (policy) {
4008	case SCHED_FIFO:
4009	case SCHED_RR:
4010		ret = 1;
4011		break;
4012	case SCHED_NORMAL:
4013	case SCHED_BATCH:
4014	case SCHED_IDLE:
4015		ret = 0;
4016	}
4017	return ret;
4018}
4019
4020/**
4021 * sys_sched_rr_get_interval - return the default timeslice of a process.
4022 * @pid: pid of the process.
4023 * @interval: userspace pointer to the timeslice value.
4024 *
4025 * this syscall writes the default timeslice value of a given process
4026 * into the user-space timespec buffer. A value of '0' means infinity.
4027 */
4028SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4029		struct timespec __user *, interval)
4030{
4031	struct task_struct *p;
4032	unsigned int time_slice;
4033	unsigned long flags;
4034	struct rq *rq;
4035	int retval;
4036	struct timespec t;
4037
4038	if (pid < 0)
4039		return -EINVAL;
4040
4041	retval = -ESRCH;
4042	rcu_read_lock();
4043	p = find_process_by_pid(pid);
4044	if (!p)
4045		goto out_unlock;
4046
4047	retval = security_task_getscheduler(p);
4048	if (retval)
4049		goto out_unlock;
4050
4051	rq = task_rq_lock(p, &flags);
4052	time_slice = p->sched_class->get_rr_interval(rq, p);
4053	task_rq_unlock(rq, p, &flags);
4054
4055	rcu_read_unlock();
4056	jiffies_to_timespec(time_slice, &t);
4057	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4058	return retval;
4059
4060out_unlock:
4061	rcu_read_unlock();
4062	return retval;
4063}
4064
4065static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4066
4067void sched_show_task(struct task_struct *p)
4068{
4069	unsigned long free = 0;
4070	int ppid;
4071	unsigned state;
4072
4073	state = p->state ? __ffs(p->state) + 1 : 0;
4074	printk(KERN_INFO "%-15.15s %c", p->comm,
4075		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4076#if BITS_PER_LONG == 32
4077	if (state == TASK_RUNNING)
4078		printk(KERN_CONT " running  ");
4079	else
4080		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4081#else
4082	if (state == TASK_RUNNING)
4083		printk(KERN_CONT "  running task    ");
4084	else
4085		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4086#endif
4087#ifdef CONFIG_DEBUG_STACK_USAGE
4088	free = stack_not_used(p);
4089#endif
4090	rcu_read_lock();
4091	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4092	rcu_read_unlock();
4093	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4094		task_pid_nr(p), ppid,
4095		(unsigned long)task_thread_info(p)->flags);
4096
4097	print_worker_info(KERN_INFO, p);
4098	show_stack(p, NULL);
4099}
4100
4101void show_state_filter(unsigned long state_filter)
4102{
4103	struct task_struct *g, *p;
4104
4105#if BITS_PER_LONG == 32
4106	printk(KERN_INFO
4107		"  task                PC stack   pid father\n");
4108#else
4109	printk(KERN_INFO
4110		"  task                        PC stack   pid father\n");
4111#endif
4112	rcu_read_lock();
4113	do_each_thread(g, p) {
4114		/*
4115		 * reset the NMI-timeout, listing all files on a slow
4116		 * console might take a lot of time:
4117		 */
4118		touch_nmi_watchdog();
4119		if (!state_filter || (p->state & state_filter))
4120			sched_show_task(p);
4121	} while_each_thread(g, p);
4122
4123	touch_all_softlockup_watchdogs();
4124
4125#ifdef CONFIG_SCHED_DEBUG
4126	sysrq_sched_debug_show();
4127#endif
4128	rcu_read_unlock();
4129	/*
4130	 * Only show locks if all tasks are dumped:
4131	 */
4132	if (!state_filter)
4133		debug_show_all_locks();
4134}
4135
4136void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4137{
4138	idle->sched_class = &idle_sched_class;
4139}
4140
4141/**
4142 * init_idle - set up an idle thread for a given CPU
4143 * @idle: task in question
4144 * @cpu: cpu the idle task belongs to
4145 *
4146 * NOTE: this function does not set the idle thread's NEED_RESCHED
4147 * flag, to make booting more robust.
4148 */
4149void __cpuinit init_idle(struct task_struct *idle, int cpu)
4150{
4151	struct rq *rq = cpu_rq(cpu);
4152	unsigned long flags;
4153
4154	raw_spin_lock_irqsave(&rq->lock, flags);
4155
4156	__sched_fork(idle);
4157	idle->state = TASK_RUNNING;
4158	idle->se.exec_start = sched_clock();
4159
4160	do_set_cpus_allowed(idle, cpumask_of(cpu));
4161	/*
4162	 * We're having a chicken and egg problem, even though we are
4163	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4164	 * lockdep check in task_group() will fail.
4165	 *
4166	 * Similar case to sched_fork(). / Alternatively we could
4167	 * use task_rq_lock() here and obtain the other rq->lock.
4168	 *
4169	 * Silence PROVE_RCU
4170	 */
4171	rcu_read_lock();
4172	__set_task_cpu(idle, cpu);
4173	rcu_read_unlock();
4174
4175	rq->curr = rq->idle = idle;
4176#if defined(CONFIG_SMP)
4177	idle->on_cpu = 1;
4178#endif
4179	raw_spin_unlock_irqrestore(&rq->lock, flags);
4180
4181	/* Set the preempt count _outside_ the spinlocks! */
4182	task_thread_info(idle)->preempt_count = 0;
4183
4184	/*
4185	 * The idle tasks have their own, simple scheduling class:
4186	 */
4187	idle->sched_class = &idle_sched_class;
4188	ftrace_graph_init_idle_task(idle, cpu);
4189	vtime_init_idle(idle);
4190#if defined(CONFIG_SMP)
4191	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4192#endif
4193}
4194
4195#ifdef CONFIG_SMP
4196void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4197{
4198	if (p->sched_class && p->sched_class->set_cpus_allowed)
4199		p->sched_class->set_cpus_allowed(p, new_mask);
4200
4201	cpumask_copy(&p->cpus_allowed, new_mask);
4202	p->nr_cpus_allowed = cpumask_weight(new_mask);
4203}
4204
4205/*
4206 * This is how migration works:
4207 *
4208 * 1) we invoke migration_cpu_stop() on the target CPU using
4209 *    stop_one_cpu().
4210 * 2) stopper starts to run (implicitly forcing the migrated thread
4211 *    off the CPU)
4212 * 3) it checks whether the migrated task is still in the wrong runqueue.
4213 * 4) if it's in the wrong runqueue then the migration thread removes
4214 *    it and puts it into the right queue.
4215 * 5) stopper completes and stop_one_cpu() returns and the migration
4216 *    is done.
4217 */
4218
4219/*
4220 * Change a given task's CPU affinity. Migrate the thread to a
4221 * proper CPU and schedule it away if the CPU it's executing on
4222 * is removed from the allowed bitmask.
4223 *
4224 * NOTE: the caller must have a valid reference to the task, the
4225 * task must not exit() & deallocate itself prematurely. The
4226 * call is not atomic; no spinlocks may be held.
4227 */
4228int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4229{
4230	unsigned long flags;
4231	struct rq *rq;
4232	unsigned int dest_cpu;
4233	int ret = 0;
4234
4235	rq = task_rq_lock(p, &flags);
4236
4237	if (cpumask_equal(&p->cpus_allowed, new_mask))
4238		goto out;
4239
4240	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4241		ret = -EINVAL;
4242		goto out;
4243	}
4244
4245	do_set_cpus_allowed(p, new_mask);
4246
4247	/* Can the task run on the task's current CPU? If so, we're done */
4248	if (cpumask_test_cpu(task_cpu(p), new_mask))
4249		goto out;
4250
4251	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4252	if (p->on_rq) {
4253		struct migration_arg arg = { p, dest_cpu };
4254		/* Need help from migration thread: drop lock and wait. */
4255		task_rq_unlock(rq, p, &flags);
4256		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4257		tlb_migrate_finish(p->mm);
4258		return 0;
4259	}
4260out:
4261	task_rq_unlock(rq, p, &flags);
4262
4263	return ret;
4264}
4265EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4266
4267/*
4268 * Move (not current) task off this cpu, onto dest cpu. We're doing
4269 * this because either it can't run here any more (set_cpus_allowed()
4270 * away from this CPU, or CPU going down), or because we're
4271 * attempting to rebalance this task on exec (sched_exec).
4272 *
4273 * So we race with normal scheduler movements, but that's OK, as long
4274 * as the task is no longer on this CPU.
4275 *
4276 * Returns non-zero if task was successfully migrated.
4277 */
4278static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4279{
4280	struct rq *rq_dest, *rq_src;
4281	int ret = 0;
4282
4283	if (unlikely(!cpu_active(dest_cpu)))
4284		return ret;
4285
4286	rq_src = cpu_rq(src_cpu);
4287	rq_dest = cpu_rq(dest_cpu);
4288
4289	raw_spin_lock(&p->pi_lock);
4290	double_rq_lock(rq_src, rq_dest);
4291	/* Already moved. */
4292	if (task_cpu(p) != src_cpu)
4293		goto done;
4294	/* Affinity changed (again). */
4295	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4296		goto fail;
4297
4298	/*
4299	 * If we're not on a rq, the next wake-up will ensure we're
4300	 * placed properly.
4301	 */
4302	if (p->on_rq) {
4303		dequeue_task(rq_src, p, 0);
4304		set_task_cpu(p, dest_cpu);
4305		enqueue_task(rq_dest, p, 0);
4306		check_preempt_curr(rq_dest, p, 0);
4307	}
4308done:
4309	ret = 1;
4310fail:
4311	double_rq_unlock(rq_src, rq_dest);
4312	raw_spin_unlock(&p->pi_lock);
4313	return ret;
4314}
4315
4316/*
4317 * migration_cpu_stop - this will be executed by a highprio stopper thread
4318 * and performs thread migration by bumping thread off CPU then
4319 * 'pushing' onto another runqueue.
4320 */
4321static int migration_cpu_stop(void *data)
4322{
4323	struct migration_arg *arg = data;
4324
4325	/*
4326	 * The original target cpu might have gone down and we might
4327	 * be on another cpu but it doesn't matter.
4328	 */
4329	local_irq_disable();
4330	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4331	local_irq_enable();
4332	return 0;
4333}
4334
4335#ifdef CONFIG_HOTPLUG_CPU
4336
4337/*
4338 * Ensures that the idle task is using init_mm right before its cpu goes
4339 * offline.
4340 */
4341void idle_task_exit(void)
4342{
4343	struct mm_struct *mm = current->active_mm;
4344
4345	BUG_ON(cpu_online(smp_processor_id()));
4346
4347	if (mm != &init_mm)
4348		switch_mm(mm, &init_mm, current);
4349	mmdrop(mm);
4350}
4351
4352/*
4353 * Since this CPU is going 'away' for a while, fold any nr_active delta
4354 * we might have. Assumes we're called after migrate_tasks() so that the
4355 * nr_active count is stable.
4356 *
4357 * Also see the comment "Global load-average calculations".
4358 */
4359static void calc_load_migrate(struct rq *rq)
4360{
4361	long delta = calc_load_fold_active(rq);
4362	if (delta)
4363		atomic_long_add(delta, &calc_load_tasks);
4364}
4365
4366/*
4367 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4368 * try_to_wake_up()->select_task_rq().
4369 *
4370 * Called with rq->lock held even though we'er in stop_machine() and
4371 * there's no concurrency possible, we hold the required locks anyway
4372 * because of lock validation efforts.
4373 */
4374static void migrate_tasks(unsigned int dead_cpu)
4375{
4376	struct rq *rq = cpu_rq(dead_cpu);
4377	struct task_struct *next, *stop = rq->stop;
4378	int dest_cpu;
4379
4380	/*
4381	 * Fudge the rq selection such that the below task selection loop
4382	 * doesn't get stuck on the currently eligible stop task.
4383	 *
4384	 * We're currently inside stop_machine() and the rq is either stuck
4385	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4386	 * either way we should never end up calling schedule() until we're
4387	 * done here.
4388	 */
4389	rq->stop = NULL;
4390
4391	/*
4392	 * put_prev_task() and pick_next_task() sched
4393	 * class method both need to have an up-to-date
4394	 * value of rq->clock[_task]
4395	 */
4396	update_rq_clock(rq);
4397
4398	for ( ; ; ) {
4399		/*
4400		 * There's this thread running, bail when that's the only
4401		 * remaining thread.
4402		 */
4403		if (rq->nr_running == 1)
4404			break;
4405
4406		next = pick_next_task(rq);
4407		BUG_ON(!next);
4408		next->sched_class->put_prev_task(rq, next);
4409
4410		/* Find suitable destination for @next, with force if needed. */
4411		dest_cpu = select_fallback_rq(dead_cpu, next);
4412		raw_spin_unlock(&rq->lock);
4413
4414		__migrate_task(next, dead_cpu, dest_cpu);
4415
4416		raw_spin_lock(&rq->lock);
4417	}
4418
4419	rq->stop = stop;
4420}
4421
4422#endif /* CONFIG_HOTPLUG_CPU */
4423
4424#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4425
4426static struct ctl_table sd_ctl_dir[] = {
4427	{
4428		.procname	= "sched_domain",
4429		.mode		= 0555,
4430	},
4431	{}
4432};
4433
4434static struct ctl_table sd_ctl_root[] = {
4435	{
4436		.procname	= "kernel",
4437		.mode		= 0555,
4438		.child		= sd_ctl_dir,
4439	},
4440	{}
4441};
4442
4443static struct ctl_table *sd_alloc_ctl_entry(int n)
4444{
4445	struct ctl_table *entry =
4446		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4447
4448	return entry;
4449}
4450
4451static void sd_free_ctl_entry(struct ctl_table **tablep)
4452{
4453	struct ctl_table *entry;
4454
4455	/*
4456	 * In the intermediate directories, both the child directory and
4457	 * procname are dynamically allocated and could fail but the mode
4458	 * will always be set. In the lowest directory the names are
4459	 * static strings and all have proc handlers.
4460	 */
4461	for (entry = *tablep; entry->mode; entry++) {
4462		if (entry->child)
4463			sd_free_ctl_entry(&entry->child);
4464		if (entry->proc_handler == NULL)
4465			kfree(entry->procname);
4466	}
4467
4468	kfree(*tablep);
4469	*tablep = NULL;
4470}
4471
4472static int min_load_idx = 0;
4473static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4474
4475static void
4476set_table_entry(struct ctl_table *entry,
4477		const char *procname, void *data, int maxlen,
4478		umode_t mode, proc_handler *proc_handler,
4479		bool load_idx)
4480{
4481	entry->procname = procname;
4482	entry->data = data;
4483	entry->maxlen = maxlen;
4484	entry->mode = mode;
4485	entry->proc_handler = proc_handler;
4486
4487	if (load_idx) {
4488		entry->extra1 = &min_load_idx;
4489		entry->extra2 = &max_load_idx;
4490	}
4491}
4492
4493static struct ctl_table *
4494sd_alloc_ctl_domain_table(struct sched_domain *sd)
4495{
4496	struct ctl_table *table = sd_alloc_ctl_entry(13);
4497
4498	if (table == NULL)
4499		return NULL;
4500
4501	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4502		sizeof(long), 0644, proc_doulongvec_minmax, false);
4503	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4504		sizeof(long), 0644, proc_doulongvec_minmax, false);
4505	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4506		sizeof(int), 0644, proc_dointvec_minmax, true);
4507	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4508		sizeof(int), 0644, proc_dointvec_minmax, true);
4509	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4510		sizeof(int), 0644, proc_dointvec_minmax, true);
4511	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4512		sizeof(int), 0644, proc_dointvec_minmax, true);
4513	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4514		sizeof(int), 0644, proc_dointvec_minmax, true);
4515	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4516		sizeof(int), 0644, proc_dointvec_minmax, false);
4517	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4518		sizeof(int), 0644, proc_dointvec_minmax, false);
4519	set_table_entry(&table[9], "cache_nice_tries",
4520		&sd->cache_nice_tries,
4521		sizeof(int), 0644, proc_dointvec_minmax, false);
4522	set_table_entry(&table[10], "flags", &sd->flags,
4523		sizeof(int), 0644, proc_dointvec_minmax, false);
4524	set_table_entry(&table[11], "name", sd->name,
4525		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4526	/* &table[12] is terminator */
4527
4528	return table;
4529}
4530
4531static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4532{
4533	struct ctl_table *entry, *table;
4534	struct sched_domain *sd;
4535	int domain_num = 0, i;
4536	char buf[32];
4537
4538	for_each_domain(cpu, sd)
4539		domain_num++;
4540	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4541	if (table == NULL)
4542		return NULL;
4543
4544	i = 0;
4545	for_each_domain(cpu, sd) {
4546		snprintf(buf, 32, "domain%d", i);
4547		entry->procname = kstrdup(buf, GFP_KERNEL);
4548		entry->mode = 0555;
4549		entry->child = sd_alloc_ctl_domain_table(sd);
4550		entry++;
4551		i++;
4552	}
4553	return table;
4554}
4555
4556static struct ctl_table_header *sd_sysctl_header;
4557static void register_sched_domain_sysctl(void)
4558{
4559	int i, cpu_num = num_possible_cpus();
4560	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4561	char buf[32];
4562
4563	WARN_ON(sd_ctl_dir[0].child);
4564	sd_ctl_dir[0].child = entry;
4565
4566	if (entry == NULL)
4567		return;
4568
4569	for_each_possible_cpu(i) {
4570		snprintf(buf, 32, "cpu%d", i);
4571		entry->procname = kstrdup(buf, GFP_KERNEL);
4572		entry->mode = 0555;
4573		entry->child = sd_alloc_ctl_cpu_table(i);
4574		entry++;
4575	}
4576
4577	WARN_ON(sd_sysctl_header);
4578	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4579}
4580
4581/* may be called multiple times per register */
4582static void unregister_sched_domain_sysctl(void)
4583{
4584	if (sd_sysctl_header)
4585		unregister_sysctl_table(sd_sysctl_header);
4586	sd_sysctl_header = NULL;
4587	if (sd_ctl_dir[0].child)
4588		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4589}
4590#else
4591static void register_sched_domain_sysctl(void)
4592{
4593}
4594static void unregister_sched_domain_sysctl(void)
4595{
4596}
4597#endif
4598
4599static void set_rq_online(struct rq *rq)
4600{
4601	if (!rq->online) {
4602		const struct sched_class *class;
4603
4604		cpumask_set_cpu(rq->cpu, rq->rd->online);
4605		rq->online = 1;
4606
4607		for_each_class(class) {
4608			if (class->rq_online)
4609				class->rq_online(rq);
4610		}
4611	}
4612}
4613
4614static void set_rq_offline(struct rq *rq)
4615{
4616	if (rq->online) {
4617		const struct sched_class *class;
4618
4619		for_each_class(class) {
4620			if (class->rq_offline)
4621				class->rq_offline(rq);
4622		}
4623
4624		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4625		rq->online = 0;
4626	}
4627}
4628
4629/*
4630 * migration_call - callback that gets triggered when a CPU is added.
4631 * Here we can start up the necessary migration thread for the new CPU.
4632 */
4633static int __cpuinit
4634migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4635{
4636	int cpu = (long)hcpu;
4637	unsigned long flags;
4638	struct rq *rq = cpu_rq(cpu);
4639
4640	switch (action & ~CPU_TASKS_FROZEN) {
4641
4642	case CPU_UP_PREPARE:
4643		rq->calc_load_update = calc_load_update;
4644		break;
4645
4646	case CPU_ONLINE:
4647		/* Update our root-domain */
4648		raw_spin_lock_irqsave(&rq->lock, flags);
4649		if (rq->rd) {
4650			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4651
4652			set_rq_online(rq);
4653		}
4654		raw_spin_unlock_irqrestore(&rq->lock, flags);
4655		break;
4656
4657#ifdef CONFIG_HOTPLUG_CPU
4658	case CPU_DYING:
4659		sched_ttwu_pending();
4660		/* Update our root-domain */
4661		raw_spin_lock_irqsave(&rq->lock, flags);
4662		if (rq->rd) {
4663			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4664			set_rq_offline(rq);
4665		}
4666		migrate_tasks(cpu);
4667		BUG_ON(rq->nr_running != 1); /* the migration thread */
4668		raw_spin_unlock_irqrestore(&rq->lock, flags);
4669		break;
4670
4671	case CPU_DEAD:
4672		calc_load_migrate(rq);
4673		break;
4674#endif
4675	}
4676
4677	update_max_interval();
4678
4679	return NOTIFY_OK;
4680}
4681
4682/*
4683 * Register at high priority so that task migration (migrate_all_tasks)
4684 * happens before everything else.  This has to be lower priority than
4685 * the notifier in the perf_event subsystem, though.
4686 */
4687static struct notifier_block __cpuinitdata migration_notifier = {
4688	.notifier_call = migration_call,
4689	.priority = CPU_PRI_MIGRATION,
4690};
4691
4692static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4693				      unsigned long action, void *hcpu)
4694{
4695	switch (action & ~CPU_TASKS_FROZEN) {
4696	case CPU_STARTING:
4697	case CPU_DOWN_FAILED:
4698		set_cpu_active((long)hcpu, true);
4699		return NOTIFY_OK;
4700	default:
4701		return NOTIFY_DONE;
4702	}
4703}
4704
4705static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4706					unsigned long action, void *hcpu)
4707{
4708	switch (action & ~CPU_TASKS_FROZEN) {
4709	case CPU_DOWN_PREPARE:
4710		set_cpu_active((long)hcpu, false);
4711		return NOTIFY_OK;
4712	default:
4713		return NOTIFY_DONE;
4714	}
4715}
4716
4717static int __init migration_init(void)
4718{
4719	void *cpu = (void *)(long)smp_processor_id();
4720	int err;
4721
4722	/* Initialize migration for the boot CPU */
4723	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4724	BUG_ON(err == NOTIFY_BAD);
4725	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4726	register_cpu_notifier(&migration_notifier);
4727
4728	/* Register cpu active notifiers */
4729	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4730	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4731
4732	return 0;
4733}
4734early_initcall(migration_init);
4735#endif
4736
4737#ifdef CONFIG_SMP
4738
4739static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4740
4741#ifdef CONFIG_SCHED_DEBUG
4742
4743static __read_mostly int sched_debug_enabled;
4744
4745static int __init sched_debug_setup(char *str)
4746{
4747	sched_debug_enabled = 1;
4748
4749	return 0;
4750}
4751early_param("sched_debug", sched_debug_setup);
4752
4753static inline bool sched_debug(void)
4754{
4755	return sched_debug_enabled;
4756}
4757
4758static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4759				  struct cpumask *groupmask)
4760{
4761	struct sched_group *group = sd->groups;
4762	char str[256];
4763
4764	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4765	cpumask_clear(groupmask);
4766
4767	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4768
4769	if (!(sd->flags & SD_LOAD_BALANCE)) {
4770		printk("does not load-balance\n");
4771		if (sd->parent)
4772			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4773					" has parent");
4774		return -1;
4775	}
4776
4777	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4778
4779	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4780		printk(KERN_ERR "ERROR: domain->span does not contain "
4781				"CPU%d\n", cpu);
4782	}
4783	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4784		printk(KERN_ERR "ERROR: domain->groups does not contain"
4785				" CPU%d\n", cpu);
4786	}
4787
4788	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4789	do {
4790		if (!group) {
4791			printk("\n");
4792			printk(KERN_ERR "ERROR: group is NULL\n");
4793			break;
4794		}
4795
4796		/*
4797		 * Even though we initialize ->power to something semi-sane,
4798		 * we leave power_orig unset. This allows us to detect if
4799		 * domain iteration is still funny without causing /0 traps.
4800		 */
4801		if (!group->sgp->power_orig) {
4802			printk(KERN_CONT "\n");
4803			printk(KERN_ERR "ERROR: domain->cpu_power not "
4804					"set\n");
4805			break;
4806		}
4807
4808		if (!cpumask_weight(sched_group_cpus(group))) {
4809			printk(KERN_CONT "\n");
4810			printk(KERN_ERR "ERROR: empty group\n");
4811			break;
4812		}
4813
4814		if (!(sd->flags & SD_OVERLAP) &&
4815		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4816			printk(KERN_CONT "\n");
4817			printk(KERN_ERR "ERROR: repeated CPUs\n");
4818			break;
4819		}
4820
4821		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4822
4823		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4824
4825		printk(KERN_CONT " %s", str);
4826		if (group->sgp->power != SCHED_POWER_SCALE) {
4827			printk(KERN_CONT " (cpu_power = %d)",
4828				group->sgp->power);
4829		}
4830
4831		group = group->next;
4832	} while (group != sd->groups);
4833	printk(KERN_CONT "\n");
4834
4835	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4836		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4837
4838	if (sd->parent &&
4839	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4840		printk(KERN_ERR "ERROR: parent span is not a superset "
4841			"of domain->span\n");
4842	return 0;
4843}
4844
4845static void sched_domain_debug(struct sched_domain *sd, int cpu)
4846{
4847	int level = 0;
4848
4849	if (!sched_debug_enabled)
4850		return;
4851
4852	if (!sd) {
4853		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4854		return;
4855	}
4856
4857	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4858
4859	for (;;) {
4860		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4861			break;
4862		level++;
4863		sd = sd->parent;
4864		if (!sd)
4865			break;
4866	}
4867}
4868#else /* !CONFIG_SCHED_DEBUG */
4869# define sched_domain_debug(sd, cpu) do { } while (0)
4870static inline bool sched_debug(void)
4871{
4872	return false;
4873}
4874#endif /* CONFIG_SCHED_DEBUG */
4875
4876static int sd_degenerate(struct sched_domain *sd)
4877{
4878	if (cpumask_weight(sched_domain_span(sd)) == 1)
4879		return 1;
4880
4881	/* Following flags need at least 2 groups */
4882	if (sd->flags & (SD_LOAD_BALANCE |
4883			 SD_BALANCE_NEWIDLE |
4884			 SD_BALANCE_FORK |
4885			 SD_BALANCE_EXEC |
4886			 SD_SHARE_CPUPOWER |
4887			 SD_SHARE_PKG_RESOURCES)) {
4888		if (sd->groups != sd->groups->next)
4889			return 0;
4890	}
4891
4892	/* Following flags don't use groups */
4893	if (sd->flags & (SD_WAKE_AFFINE))
4894		return 0;
4895
4896	return 1;
4897}
4898
4899static int
4900sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4901{
4902	unsigned long cflags = sd->flags, pflags = parent->flags;
4903
4904	if (sd_degenerate(parent))
4905		return 1;
4906
4907	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4908		return 0;
4909
4910	/* Flags needing groups don't count if only 1 group in parent */
4911	if (parent->groups == parent->groups->next) {
4912		pflags &= ~(SD_LOAD_BALANCE |
4913				SD_BALANCE_NEWIDLE |
4914				SD_BALANCE_FORK |
4915				SD_BALANCE_EXEC |
4916				SD_SHARE_CPUPOWER |
4917				SD_SHARE_PKG_RESOURCES);
4918		if (nr_node_ids == 1)
4919			pflags &= ~SD_SERIALIZE;
4920	}
4921	if (~cflags & pflags)
4922		return 0;
4923
4924	return 1;
4925}
4926
4927static void free_rootdomain(struct rcu_head *rcu)
4928{
4929	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4930
4931	cpupri_cleanup(&rd->cpupri);
4932	free_cpumask_var(rd->rto_mask);
4933	free_cpumask_var(rd->online);
4934	free_cpumask_var(rd->span);
4935	kfree(rd);
4936}
4937
4938static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4939{
4940	struct root_domain *old_rd = NULL;
4941	unsigned long flags;
4942
4943	raw_spin_lock_irqsave(&rq->lock, flags);
4944
4945	if (rq->rd) {
4946		old_rd = rq->rd;
4947
4948		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4949			set_rq_offline(rq);
4950
4951		cpumask_clear_cpu(rq->cpu, old_rd->span);
4952
4953		/*
4954		 * If we dont want to free the old_rt yet then
4955		 * set old_rd to NULL to skip the freeing later
4956		 * in this function:
4957		 */
4958		if (!atomic_dec_and_test(&old_rd->refcount))
4959			old_rd = NULL;
4960	}
4961
4962	atomic_inc(&rd->refcount);
4963	rq->rd = rd;
4964
4965	cpumask_set_cpu(rq->cpu, rd->span);
4966	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4967		set_rq_online(rq);
4968
4969	raw_spin_unlock_irqrestore(&rq->lock, flags);
4970
4971	if (old_rd)
4972		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4973}
4974
4975static int init_rootdomain(struct root_domain *rd)
4976{
4977	memset(rd, 0, sizeof(*rd));
4978
4979	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4980		goto out;
4981	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4982		goto free_span;
4983	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4984		goto free_online;
4985
4986	if (cpupri_init(&rd->cpupri) != 0)
4987		goto free_rto_mask;
4988	return 0;
4989
4990free_rto_mask:
4991	free_cpumask_var(rd->rto_mask);
4992free_online:
4993	free_cpumask_var(rd->online);
4994free_span:
4995	free_cpumask_var(rd->span);
4996out:
4997	return -ENOMEM;
4998}
4999
5000/*
5001 * By default the system creates a single root-domain with all cpus as
5002 * members (mimicking the global state we have today).
5003 */
5004struct root_domain def_root_domain;
5005
5006static void init_defrootdomain(void)
5007{
5008	init_rootdomain(&def_root_domain);
5009
5010	atomic_set(&def_root_domain.refcount, 1);
5011}
5012
5013static struct root_domain *alloc_rootdomain(void)
5014{
5015	struct root_domain *rd;
5016
5017	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5018	if (!rd)
5019		return NULL;
5020
5021	if (init_rootdomain(rd) != 0) {
5022		kfree(rd);
5023		return NULL;
5024	}
5025
5026	return rd;
5027}
5028
5029static void free_sched_groups(struct sched_group *sg, int free_sgp)
5030{
5031	struct sched_group *tmp, *first;
5032
5033	if (!sg)
5034		return;
5035
5036	first = sg;
5037	do {
5038		tmp = sg->next;
5039
5040		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5041			kfree(sg->sgp);
5042
5043		kfree(sg);
5044		sg = tmp;
5045	} while (sg != first);
5046}
5047
5048static void free_sched_domain(struct rcu_head *rcu)
5049{
5050	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5051
5052	/*
5053	 * If its an overlapping domain it has private groups, iterate and
5054	 * nuke them all.
5055	 */
5056	if (sd->flags & SD_OVERLAP) {
5057		free_sched_groups(sd->groups, 1);
5058	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5059		kfree(sd->groups->sgp);
5060		kfree(sd->groups);
5061	}
5062	kfree(sd);
5063}
5064
5065static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5066{
5067	call_rcu(&sd->rcu, free_sched_domain);
5068}
5069
5070static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5071{
5072	for (; sd; sd = sd->parent)
5073		destroy_sched_domain(sd, cpu);
5074}
5075
5076/*
5077 * Keep a special pointer to the highest sched_domain that has
5078 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5079 * allows us to avoid some pointer chasing select_idle_sibling().
5080 *
5081 * Also keep a unique ID per domain (we use the first cpu number in
5082 * the cpumask of the domain), this allows us to quickly tell if
5083 * two cpus are in the same cache domain, see cpus_share_cache().
5084 */
5085DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5086DEFINE_PER_CPU(int, sd_llc_id);
5087
5088static void update_top_cache_domain(int cpu)
5089{
5090	struct sched_domain *sd;
5091	int id = cpu;
5092
5093	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5094	if (sd)
5095		id = cpumask_first(sched_domain_span(sd));
5096
5097	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5098	per_cpu(sd_llc_id, cpu) = id;
5099}
5100
5101/*
5102 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5103 * hold the hotplug lock.
5104 */
5105static void
5106cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5107{
5108	struct rq *rq = cpu_rq(cpu);
5109	struct sched_domain *tmp;
5110
5111	/* Remove the sched domains which do not contribute to scheduling. */
5112	for (tmp = sd; tmp; ) {
5113		struct sched_domain *parent = tmp->parent;
5114		if (!parent)
5115			break;
5116
5117		if (sd_parent_degenerate(tmp, parent)) {
5118			tmp->parent = parent->parent;
5119			if (parent->parent)
5120				parent->parent->child = tmp;
5121			destroy_sched_domain(parent, cpu);
5122		} else
5123			tmp = tmp->parent;
5124	}
5125
5126	if (sd && sd_degenerate(sd)) {
5127		tmp = sd;
5128		sd = sd->parent;
5129		destroy_sched_domain(tmp, cpu);
5130		if (sd)
5131			sd->child = NULL;
5132	}
5133
5134	sched_domain_debug(sd, cpu);
5135
5136	rq_attach_root(rq, rd);
5137	tmp = rq->sd;
5138	rcu_assign_pointer(rq->sd, sd);
5139	destroy_sched_domains(tmp, cpu);
5140
5141	update_top_cache_domain(cpu);
5142}
5143
5144/* cpus with isolated domains */
5145static cpumask_var_t cpu_isolated_map;
5146
5147/* Setup the mask of cpus configured for isolated domains */
5148static int __init isolated_cpu_setup(char *str)
5149{
5150	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5151	cpulist_parse(str, cpu_isolated_map);
5152	return 1;
5153}
5154
5155__setup("isolcpus=", isolated_cpu_setup);
5156
5157static const struct cpumask *cpu_cpu_mask(int cpu)
5158{
5159	return cpumask_of_node(cpu_to_node(cpu));
5160}
5161
5162struct sd_data {
5163	struct sched_domain **__percpu sd;
5164	struct sched_group **__percpu sg;
5165	struct sched_group_power **__percpu sgp;
5166};
5167
5168struct s_data {
5169	struct sched_domain ** __percpu sd;
5170	struct root_domain	*rd;
5171};
5172
5173enum s_alloc {
5174	sa_rootdomain,
5175	sa_sd,
5176	sa_sd_storage,
5177	sa_none,
5178};
5179
5180struct sched_domain_topology_level;
5181
5182typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5183typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5184
5185#define SDTL_OVERLAP	0x01
5186
5187struct sched_domain_topology_level {
5188	sched_domain_init_f init;
5189	sched_domain_mask_f mask;
5190	int		    flags;
5191	int		    numa_level;
5192	struct sd_data      data;
5193};
5194
5195/*
5196 * Build an iteration mask that can exclude certain CPUs from the upwards
5197 * domain traversal.
5198 *
5199 * Asymmetric node setups can result in situations where the domain tree is of
5200 * unequal depth, make sure to skip domains that already cover the entire
5201 * range.
5202 *
5203 * In that case build_sched_domains() will have terminated the iteration early
5204 * and our sibling sd spans will be empty. Domains should always include the
5205 * cpu they're built on, so check that.
5206 *
5207 */
5208static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5209{
5210	const struct cpumask *span = sched_domain_span(sd);
5211	struct sd_data *sdd = sd->private;
5212	struct sched_domain *sibling;
5213	int i;
5214
5215	for_each_cpu(i, span) {
5216		sibling = *per_cpu_ptr(sdd->sd, i);
5217		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5218			continue;
5219
5220		cpumask_set_cpu(i, sched_group_mask(sg));
5221	}
5222}
5223
5224/*
5225 * Return the canonical balance cpu for this group, this is the first cpu
5226 * of this group that's also in the iteration mask.
5227 */
5228int group_balance_cpu(struct sched_group *sg)
5229{
5230	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5231}
5232
5233static int
5234build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5235{
5236	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5237	const struct cpumask *span = sched_domain_span(sd);
5238	struct cpumask *covered = sched_domains_tmpmask;
5239	struct sd_data *sdd = sd->private;
5240	struct sched_domain *child;
5241	int i;
5242
5243	cpumask_clear(covered);
5244
5245	for_each_cpu(i, span) {
5246		struct cpumask *sg_span;
5247
5248		if (cpumask_test_cpu(i, covered))
5249			continue;
5250
5251		child = *per_cpu_ptr(sdd->sd, i);
5252
5253		/* See the comment near build_group_mask(). */
5254		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5255			continue;
5256
5257		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5258				GFP_KERNEL, cpu_to_node(cpu));
5259
5260		if (!sg)
5261			goto fail;
5262
5263		sg_span = sched_group_cpus(sg);
5264		if (child->child) {
5265			child = child->child;
5266			cpumask_copy(sg_span, sched_domain_span(child));
5267		} else
5268			cpumask_set_cpu(i, sg_span);
5269
5270		cpumask_or(covered, covered, sg_span);
5271
5272		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5273		if (atomic_inc_return(&sg->sgp->ref) == 1)
5274			build_group_mask(sd, sg);
5275
5276		/*
5277		 * Initialize sgp->power such that even if we mess up the
5278		 * domains and no possible iteration will get us here, we won't
5279		 * die on a /0 trap.
5280		 */
5281		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5282
5283		/*
5284		 * Make sure the first group of this domain contains the
5285		 * canonical balance cpu. Otherwise the sched_domain iteration
5286		 * breaks. See update_sg_lb_stats().
5287		 */
5288		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5289		    group_balance_cpu(sg) == cpu)
5290			groups = sg;
5291
5292		if (!first)
5293			first = sg;
5294		if (last)
5295			last->next = sg;
5296		last = sg;
5297		last->next = first;
5298	}
5299	sd->groups = groups;
5300
5301	return 0;
5302
5303fail:
5304	free_sched_groups(first, 0);
5305
5306	return -ENOMEM;
5307}
5308
5309static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5310{
5311	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5312	struct sched_domain *child = sd->child;
5313
5314	if (child)
5315		cpu = cpumask_first(sched_domain_span(child));
5316
5317	if (sg) {
5318		*sg = *per_cpu_ptr(sdd->sg, cpu);
5319		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5320		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5321	}
5322
5323	return cpu;
5324}
5325
5326/*
5327 * build_sched_groups will build a circular linked list of the groups
5328 * covered by the given span, and will set each group's ->cpumask correctly,
5329 * and ->cpu_power to 0.
5330 *
5331 * Assumes the sched_domain tree is fully constructed
5332 */
5333static int
5334build_sched_groups(struct sched_domain *sd, int cpu)
5335{
5336	struct sched_group *first = NULL, *last = NULL;
5337	struct sd_data *sdd = sd->private;
5338	const struct cpumask *span = sched_domain_span(sd);
5339	struct cpumask *covered;
5340	int i;
5341
5342	get_group(cpu, sdd, &sd->groups);
5343	atomic_inc(&sd->groups->ref);
5344
5345	if (cpu != cpumask_first(span))
5346		return 0;
5347
5348	lockdep_assert_held(&sched_domains_mutex);
5349	covered = sched_domains_tmpmask;
5350
5351	cpumask_clear(covered);
5352
5353	for_each_cpu(i, span) {
5354		struct sched_group *sg;
5355		int group, j;
5356
5357		if (cpumask_test_cpu(i, covered))
5358			continue;
5359
5360		group = get_group(i, sdd, &sg);
5361		cpumask_clear(sched_group_cpus(sg));
5362		sg->sgp->power = 0;
5363		cpumask_setall(sched_group_mask(sg));
5364
5365		for_each_cpu(j, span) {
5366			if (get_group(j, sdd, NULL) != group)
5367				continue;
5368
5369			cpumask_set_cpu(j, covered);
5370			cpumask_set_cpu(j, sched_group_cpus(sg));
5371		}
5372
5373		if (!first)
5374			first = sg;
5375		if (last)
5376			last->next = sg;
5377		last = sg;
5378	}
5379	last->next = first;
5380
5381	return 0;
5382}
5383
5384/*
5385 * Initialize sched groups cpu_power.
5386 *
5387 * cpu_power indicates the capacity of sched group, which is used while
5388 * distributing the load between different sched groups in a sched domain.
5389 * Typically cpu_power for all the groups in a sched domain will be same unless
5390 * there are asymmetries in the topology. If there are asymmetries, group
5391 * having more cpu_power will pickup more load compared to the group having
5392 * less cpu_power.
5393 */
5394static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5395{
5396	struct sched_group *sg = sd->groups;
5397
5398	WARN_ON(!sg);
5399
5400	do {
5401		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5402		sg = sg->next;
5403	} while (sg != sd->groups);
5404
5405	if (cpu != group_balance_cpu(sg))
5406		return;
5407
5408	update_group_power(sd, cpu);
5409	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5410}
5411
5412int __weak arch_sd_sibling_asym_packing(void)
5413{
5414       return 0*SD_ASYM_PACKING;
5415}
5416
5417/*
5418 * Initializers for schedule domains
5419 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5420 */
5421
5422#ifdef CONFIG_SCHED_DEBUG
5423# define SD_INIT_NAME(sd, type)		sd->name = #type
5424#else
5425# define SD_INIT_NAME(sd, type)		do { } while (0)
5426#endif
5427
5428#define SD_INIT_FUNC(type)						\
5429static noinline struct sched_domain *					\
5430sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5431{									\
5432	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5433	*sd = SD_##type##_INIT;						\
5434	SD_INIT_NAME(sd, type);						\
5435	sd->private = &tl->data;					\
5436	return sd;							\
5437}
5438
5439SD_INIT_FUNC(CPU)
5440#ifdef CONFIG_SCHED_SMT
5441 SD_INIT_FUNC(SIBLING)
5442#endif
5443#ifdef CONFIG_SCHED_MC
5444 SD_INIT_FUNC(MC)
5445#endif
5446#ifdef CONFIG_SCHED_BOOK
5447 SD_INIT_FUNC(BOOK)
5448#endif
5449
5450static int default_relax_domain_level = -1;
5451int sched_domain_level_max;
5452
5453static int __init setup_relax_domain_level(char *str)
5454{
5455	if (kstrtoint(str, 0, &default_relax_domain_level))
5456		pr_warn("Unable to set relax_domain_level\n");
5457
5458	return 1;
5459}
5460__setup("relax_domain_level=", setup_relax_domain_level);
5461
5462static void set_domain_attribute(struct sched_domain *sd,
5463				 struct sched_domain_attr *attr)
5464{
5465	int request;
5466
5467	if (!attr || attr->relax_domain_level < 0) {
5468		if (default_relax_domain_level < 0)
5469			return;
5470		else
5471			request = default_relax_domain_level;
5472	} else
5473		request = attr->relax_domain_level;
5474	if (request < sd->level) {
5475		/* turn off idle balance on this domain */
5476		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5477	} else {
5478		/* turn on idle balance on this domain */
5479		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5480	}
5481}
5482
5483static void __sdt_free(const struct cpumask *cpu_map);
5484static int __sdt_alloc(const struct cpumask *cpu_map);
5485
5486static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5487				 const struct cpumask *cpu_map)
5488{
5489	switch (what) {
5490	case sa_rootdomain:
5491		if (!atomic_read(&d->rd->refcount))
5492			free_rootdomain(&d->rd->rcu); /* fall through */
5493	case sa_sd:
5494		free_percpu(d->sd); /* fall through */
5495	case sa_sd_storage:
5496		__sdt_free(cpu_map); /* fall through */
5497	case sa_none:
5498		break;
5499	}
5500}
5501
5502static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5503						   const struct cpumask *cpu_map)
5504{
5505	memset(d, 0, sizeof(*d));
5506
5507	if (__sdt_alloc(cpu_map))
5508		return sa_sd_storage;
5509	d->sd = alloc_percpu(struct sched_domain *);
5510	if (!d->sd)
5511		return sa_sd_storage;
5512	d->rd = alloc_rootdomain();
5513	if (!d->rd)
5514		return sa_sd;
5515	return sa_rootdomain;
5516}
5517
5518/*
5519 * NULL the sd_data elements we've used to build the sched_domain and
5520 * sched_group structure so that the subsequent __free_domain_allocs()
5521 * will not free the data we're using.
5522 */
5523static void claim_allocations(int cpu, struct sched_domain *sd)
5524{
5525	struct sd_data *sdd = sd->private;
5526
5527	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5528	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5529
5530	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5531		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5532
5533	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5534		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5535}
5536
5537#ifdef CONFIG_SCHED_SMT
5538static const struct cpumask *cpu_smt_mask(int cpu)
5539{
5540	return topology_thread_cpumask(cpu);
5541}
5542#endif
5543
5544/*
5545 * Topology list, bottom-up.
5546 */
5547static struct sched_domain_topology_level default_topology[] = {
5548#ifdef CONFIG_SCHED_SMT
5549	{ sd_init_SIBLING, cpu_smt_mask, },
5550#endif
5551#ifdef CONFIG_SCHED_MC
5552	{ sd_init_MC, cpu_coregroup_mask, },
5553#endif
5554#ifdef CONFIG_SCHED_BOOK
5555	{ sd_init_BOOK, cpu_book_mask, },
5556#endif
5557	{ sd_init_CPU, cpu_cpu_mask, },
5558	{ NULL, },
5559};
5560
5561static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5562
5563#define for_each_sd_topology(tl)			\
5564	for (tl = sched_domain_topology; tl->init; tl++)
5565
5566#ifdef CONFIG_NUMA
5567
5568static int sched_domains_numa_levels;
5569static int *sched_domains_numa_distance;
5570static struct cpumask ***sched_domains_numa_masks;
5571static int sched_domains_curr_level;
5572
5573static inline int sd_local_flags(int level)
5574{
5575	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5576		return 0;
5577
5578	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5579}
5580
5581static struct sched_domain *
5582sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5583{
5584	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5585	int level = tl->numa_level;
5586	int sd_weight = cpumask_weight(
5587			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5588
5589	*sd = (struct sched_domain){
5590		.min_interval		= sd_weight,
5591		.max_interval		= 2*sd_weight,
5592		.busy_factor		= 32,
5593		.imbalance_pct		= 125,
5594		.cache_nice_tries	= 2,
5595		.busy_idx		= 3,
5596		.idle_idx		= 2,
5597		.newidle_idx		= 0,
5598		.wake_idx		= 0,
5599		.forkexec_idx		= 0,
5600
5601		.flags			= 1*SD_LOAD_BALANCE
5602					| 1*SD_BALANCE_NEWIDLE
5603					| 0*SD_BALANCE_EXEC
5604					| 0*SD_BALANCE_FORK
5605					| 0*SD_BALANCE_WAKE
5606					| 0*SD_WAKE_AFFINE
5607					| 0*SD_SHARE_CPUPOWER
5608					| 0*SD_SHARE_PKG_RESOURCES
5609					| 1*SD_SERIALIZE
5610					| 0*SD_PREFER_SIBLING
5611					| sd_local_flags(level)
5612					,
5613		.last_balance		= jiffies,
5614		.balance_interval	= sd_weight,
5615	};
5616	SD_INIT_NAME(sd, NUMA);
5617	sd->private = &tl->data;
5618
5619	/*
5620	 * Ugly hack to pass state to sd_numa_mask()...
5621	 */
5622	sched_domains_curr_level = tl->numa_level;
5623
5624	return sd;
5625}
5626
5627static const struct cpumask *sd_numa_mask(int cpu)
5628{
5629	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5630}
5631
5632static void sched_numa_warn(const char *str)
5633{
5634	static int done = false;
5635	int i,j;
5636
5637	if (done)
5638		return;
5639
5640	done = true;
5641
5642	printk(KERN_WARNING "ERROR: %s\n\n", str);
5643
5644	for (i = 0; i < nr_node_ids; i++) {
5645		printk(KERN_WARNING "  ");
5646		for (j = 0; j < nr_node_ids; j++)
5647			printk(KERN_CONT "%02d ", node_distance(i,j));
5648		printk(KERN_CONT "\n");
5649	}
5650	printk(KERN_WARNING "\n");
5651}
5652
5653static bool find_numa_distance(int distance)
5654{
5655	int i;
5656
5657	if (distance == node_distance(0, 0))
5658		return true;
5659
5660	for (i = 0; i < sched_domains_numa_levels; i++) {
5661		if (sched_domains_numa_distance[i] == distance)
5662			return true;
5663	}
5664
5665	return false;
5666}
5667
5668static void sched_init_numa(void)
5669{
5670	int next_distance, curr_distance = node_distance(0, 0);
5671	struct sched_domain_topology_level *tl;
5672	int level = 0;
5673	int i, j, k;
5674
5675	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5676	if (!sched_domains_numa_distance)
5677		return;
5678
5679	/*
5680	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5681	 * unique distances in the node_distance() table.
5682	 *
5683	 * Assumes node_distance(0,j) includes all distances in
5684	 * node_distance(i,j) in order to avoid cubic time.
5685	 */
5686	next_distance = curr_distance;
5687	for (i = 0; i < nr_node_ids; i++) {
5688		for (j = 0; j < nr_node_ids; j++) {
5689			for (k = 0; k < nr_node_ids; k++) {
5690				int distance = node_distance(i, k);
5691
5692				if (distance > curr_distance &&
5693				    (distance < next_distance ||
5694				     next_distance == curr_distance))
5695					next_distance = distance;
5696
5697				/*
5698				 * While not a strong assumption it would be nice to know
5699				 * about cases where if node A is connected to B, B is not
5700				 * equally connected to A.
5701				 */
5702				if (sched_debug() && node_distance(k, i) != distance)
5703					sched_numa_warn("Node-distance not symmetric");
5704
5705				if (sched_debug() && i && !find_numa_distance(distance))
5706					sched_numa_warn("Node-0 not representative");
5707			}
5708			if (next_distance != curr_distance) {
5709				sched_domains_numa_distance[level++] = next_distance;
5710				sched_domains_numa_levels = level;
5711				curr_distance = next_distance;
5712			} else break;
5713		}
5714
5715		/*
5716		 * In case of sched_debug() we verify the above assumption.
5717		 */
5718		if (!sched_debug())
5719			break;
5720	}
5721	/*
5722	 * 'level' contains the number of unique distances, excluding the
5723	 * identity distance node_distance(i,i).
5724	 *
5725	 * The sched_domains_numa_distance[] array includes the actual distance
5726	 * numbers.
5727	 */
5728
5729	/*
5730	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5731	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5732	 * the array will contain less then 'level' members. This could be
5733	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5734	 * in other functions.
5735	 *
5736	 * We reset it to 'level' at the end of this function.
5737	 */
5738	sched_domains_numa_levels = 0;
5739
5740	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5741	if (!sched_domains_numa_masks)
5742		return;
5743
5744	/*
5745	 * Now for each level, construct a mask per node which contains all
5746	 * cpus of nodes that are that many hops away from us.
5747	 */
5748	for (i = 0; i < level; i++) {
5749		sched_domains_numa_masks[i] =
5750			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5751		if (!sched_domains_numa_masks[i])
5752			return;
5753
5754		for (j = 0; j < nr_node_ids; j++) {
5755			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5756			if (!mask)
5757				return;
5758
5759			sched_domains_numa_masks[i][j] = mask;
5760
5761			for (k = 0; k < nr_node_ids; k++) {
5762				if (node_distance(j, k) > sched_domains_numa_distance[i])
5763					continue;
5764
5765				cpumask_or(mask, mask, cpumask_of_node(k));
5766			}
5767		}
5768	}
5769
5770	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5771			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5772	if (!tl)
5773		return;
5774
5775	/*
5776	 * Copy the default topology bits..
5777	 */
5778	for (i = 0; default_topology[i].init; i++)
5779		tl[i] = default_topology[i];
5780
5781	/*
5782	 * .. and append 'j' levels of NUMA goodness.
5783	 */
5784	for (j = 0; j < level; i++, j++) {
5785		tl[i] = (struct sched_domain_topology_level){
5786			.init = sd_numa_init,
5787			.mask = sd_numa_mask,
5788			.flags = SDTL_OVERLAP,
5789			.numa_level = j,
5790		};
5791	}
5792
5793	sched_domain_topology = tl;
5794
5795	sched_domains_numa_levels = level;
5796}
5797
5798static void sched_domains_numa_masks_set(int cpu)
5799{
5800	int i, j;
5801	int node = cpu_to_node(cpu);
5802
5803	for (i = 0; i < sched_domains_numa_levels; i++) {
5804		for (j = 0; j < nr_node_ids; j++) {
5805			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5806				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5807		}
5808	}
5809}
5810
5811static void sched_domains_numa_masks_clear(int cpu)
5812{
5813	int i, j;
5814	for (i = 0; i < sched_domains_numa_levels; i++) {
5815		for (j = 0; j < nr_node_ids; j++)
5816			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5817	}
5818}
5819
5820/*
5821 * Update sched_domains_numa_masks[level][node] array when new cpus
5822 * are onlined.
5823 */
5824static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5825					   unsigned long action,
5826					   void *hcpu)
5827{
5828	int cpu = (long)hcpu;
5829
5830	switch (action & ~CPU_TASKS_FROZEN) {
5831	case CPU_ONLINE:
5832		sched_domains_numa_masks_set(cpu);
5833		break;
5834
5835	case CPU_DEAD:
5836		sched_domains_numa_masks_clear(cpu);
5837		break;
5838
5839	default:
5840		return NOTIFY_DONE;
5841	}
5842
5843	return NOTIFY_OK;
5844}
5845#else
5846static inline void sched_init_numa(void)
5847{
5848}
5849
5850static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5851					   unsigned long action,
5852					   void *hcpu)
5853{
5854	return 0;
5855}
5856#endif /* CONFIG_NUMA */
5857
5858static int __sdt_alloc(const struct cpumask *cpu_map)
5859{
5860	struct sched_domain_topology_level *tl;
5861	int j;
5862
5863	for_each_sd_topology(tl) {
5864		struct sd_data *sdd = &tl->data;
5865
5866		sdd->sd = alloc_percpu(struct sched_domain *);
5867		if (!sdd->sd)
5868			return -ENOMEM;
5869
5870		sdd->sg = alloc_percpu(struct sched_group *);
5871		if (!sdd->sg)
5872			return -ENOMEM;
5873
5874		sdd->sgp = alloc_percpu(struct sched_group_power *);
5875		if (!sdd->sgp)
5876			return -ENOMEM;
5877
5878		for_each_cpu(j, cpu_map) {
5879			struct sched_domain *sd;
5880			struct sched_group *sg;
5881			struct sched_group_power *sgp;
5882
5883		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5884					GFP_KERNEL, cpu_to_node(j));
5885			if (!sd)
5886				return -ENOMEM;
5887
5888			*per_cpu_ptr(sdd->sd, j) = sd;
5889
5890			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5891					GFP_KERNEL, cpu_to_node(j));
5892			if (!sg)
5893				return -ENOMEM;
5894
5895			sg->next = sg;
5896
5897			*per_cpu_ptr(sdd->sg, j) = sg;
5898
5899			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5900					GFP_KERNEL, cpu_to_node(j));
5901			if (!sgp)
5902				return -ENOMEM;
5903
5904			*per_cpu_ptr(sdd->sgp, j) = sgp;
5905		}
5906	}
5907
5908	return 0;
5909}
5910
5911static void __sdt_free(const struct cpumask *cpu_map)
5912{
5913	struct sched_domain_topology_level *tl;
5914	int j;
5915
5916	for_each_sd_topology(tl) {
5917		struct sd_data *sdd = &tl->data;
5918
5919		for_each_cpu(j, cpu_map) {
5920			struct sched_domain *sd;
5921
5922			if (sdd->sd) {
5923				sd = *per_cpu_ptr(sdd->sd, j);
5924				if (sd && (sd->flags & SD_OVERLAP))
5925					free_sched_groups(sd->groups, 0);
5926				kfree(*per_cpu_ptr(sdd->sd, j));
5927			}
5928
5929			if (sdd->sg)
5930				kfree(*per_cpu_ptr(sdd->sg, j));
5931			if (sdd->sgp)
5932				kfree(*per_cpu_ptr(sdd->sgp, j));
5933		}
5934		free_percpu(sdd->sd);
5935		sdd->sd = NULL;
5936		free_percpu(sdd->sg);
5937		sdd->sg = NULL;
5938		free_percpu(sdd->sgp);
5939		sdd->sgp = NULL;
5940	}
5941}
5942
5943struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5944		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5945		struct sched_domain *child, int cpu)
5946{
5947	struct sched_domain *sd = tl->init(tl, cpu);
5948	if (!sd)
5949		return child;
5950
5951	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5952	if (child) {
5953		sd->level = child->level + 1;
5954		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5955		child->parent = sd;
5956		sd->child = child;
5957	}
5958	set_domain_attribute(sd, attr);
5959
5960	return sd;
5961}
5962
5963/*
5964 * Build sched domains for a given set of cpus and attach the sched domains
5965 * to the individual cpus
5966 */
5967static int build_sched_domains(const struct cpumask *cpu_map,
5968			       struct sched_domain_attr *attr)
5969{
5970	enum s_alloc alloc_state;
5971	struct sched_domain *sd;
5972	struct s_data d;
5973	int i, ret = -ENOMEM;
5974
5975	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5976	if (alloc_state != sa_rootdomain)
5977		goto error;
5978
5979	/* Set up domains for cpus specified by the cpu_map. */
5980	for_each_cpu(i, cpu_map) {
5981		struct sched_domain_topology_level *tl;
5982
5983		sd = NULL;
5984		for_each_sd_topology(tl) {
5985			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5986			if (tl == sched_domain_topology)
5987				*per_cpu_ptr(d.sd, i) = sd;
5988			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5989				sd->flags |= SD_OVERLAP;
5990			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5991				break;
5992		}
5993	}
5994
5995	/* Build the groups for the domains */
5996	for_each_cpu(i, cpu_map) {
5997		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5998			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5999			if (sd->flags & SD_OVERLAP) {
6000				if (build_overlap_sched_groups(sd, i))
6001					goto error;
6002			} else {
6003				if (build_sched_groups(sd, i))
6004					goto error;
6005			}
6006		}
6007	}
6008
6009	/* Calculate CPU power for physical packages and nodes */
6010	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6011		if (!cpumask_test_cpu(i, cpu_map))
6012			continue;
6013
6014		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6015			claim_allocations(i, sd);
6016			init_sched_groups_power(i, sd);
6017		}
6018	}
6019
6020	/* Attach the domains */
6021	rcu_read_lock();
6022	for_each_cpu(i, cpu_map) {
6023		sd = *per_cpu_ptr(d.sd, i);
6024		cpu_attach_domain(sd, d.rd, i);
6025	}
6026	rcu_read_unlock();
6027
6028	ret = 0;
6029error:
6030	__free_domain_allocs(&d, alloc_state, cpu_map);
6031	return ret;
6032}
6033
6034static cpumask_var_t *doms_cur;	/* current sched domains */
6035static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6036static struct sched_domain_attr *dattr_cur;
6037				/* attribues of custom domains in 'doms_cur' */
6038
6039/*
6040 * Special case: If a kmalloc of a doms_cur partition (array of
6041 * cpumask) fails, then fallback to a single sched domain,
6042 * as determined by the single cpumask fallback_doms.
6043 */
6044static cpumask_var_t fallback_doms;
6045
6046/*
6047 * arch_update_cpu_topology lets virtualized architectures update the
6048 * cpu core maps. It is supposed to return 1 if the topology changed
6049 * or 0 if it stayed the same.
6050 */
6051int __attribute__((weak)) arch_update_cpu_topology(void)
6052{
6053	return 0;
6054}
6055
6056cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6057{
6058	int i;
6059	cpumask_var_t *doms;
6060
6061	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6062	if (!doms)
6063		return NULL;
6064	for (i = 0; i < ndoms; i++) {
6065		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6066			free_sched_domains(doms, i);
6067			return NULL;
6068		}
6069	}
6070	return doms;
6071}
6072
6073void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6074{
6075	unsigned int i;
6076	for (i = 0; i < ndoms; i++)
6077		free_cpumask_var(doms[i]);
6078	kfree(doms);
6079}
6080
6081/*
6082 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6083 * For now this just excludes isolated cpus, but could be used to
6084 * exclude other special cases in the future.
6085 */
6086static int init_sched_domains(const struct cpumask *cpu_map)
6087{
6088	int err;
6089
6090	arch_update_cpu_topology();
6091	ndoms_cur = 1;
6092	doms_cur = alloc_sched_domains(ndoms_cur);
6093	if (!doms_cur)
6094		doms_cur = &fallback_doms;
6095	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6096	err = build_sched_domains(doms_cur[0], NULL);
6097	register_sched_domain_sysctl();
6098
6099	return err;
6100}
6101
6102/*
6103 * Detach sched domains from a group of cpus specified in cpu_map
6104 * These cpus will now be attached to the NULL domain
6105 */
6106static void detach_destroy_domains(const struct cpumask *cpu_map)
6107{
6108	int i;
6109
6110	rcu_read_lock();
6111	for_each_cpu(i, cpu_map)
6112		cpu_attach_domain(NULL, &def_root_domain, i);
6113	rcu_read_unlock();
6114}
6115
6116/* handle null as "default" */
6117static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6118			struct sched_domain_attr *new, int idx_new)
6119{
6120	struct sched_domain_attr tmp;
6121
6122	/* fast path */
6123	if (!new && !cur)
6124		return 1;
6125
6126	tmp = SD_ATTR_INIT;
6127	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6128			new ? (new + idx_new) : &tmp,
6129			sizeof(struct sched_domain_attr));
6130}
6131
6132/*
6133 * Partition sched domains as specified by the 'ndoms_new'
6134 * cpumasks in the array doms_new[] of cpumasks. This compares
6135 * doms_new[] to the current sched domain partitioning, doms_cur[].
6136 * It destroys each deleted domain and builds each new domain.
6137 *
6138 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6139 * The masks don't intersect (don't overlap.) We should setup one
6140 * sched domain for each mask. CPUs not in any of the cpumasks will
6141 * not be load balanced. If the same cpumask appears both in the
6142 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6143 * it as it is.
6144 *
6145 * The passed in 'doms_new' should be allocated using
6146 * alloc_sched_domains.  This routine takes ownership of it and will
6147 * free_sched_domains it when done with it. If the caller failed the
6148 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6149 * and partition_sched_domains() will fallback to the single partition
6150 * 'fallback_doms', it also forces the domains to be rebuilt.
6151 *
6152 * If doms_new == NULL it will be replaced with cpu_online_mask.
6153 * ndoms_new == 0 is a special case for destroying existing domains,
6154 * and it will not create the default domain.
6155 *
6156 * Call with hotplug lock held
6157 */
6158void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6159			     struct sched_domain_attr *dattr_new)
6160{
6161	int i, j, n;
6162	int new_topology;
6163
6164	mutex_lock(&sched_domains_mutex);
6165
6166	/* always unregister in case we don't destroy any domains */
6167	unregister_sched_domain_sysctl();
6168
6169	/* Let architecture update cpu core mappings. */
6170	new_topology = arch_update_cpu_topology();
6171
6172	n = doms_new ? ndoms_new : 0;
6173
6174	/* Destroy deleted domains */
6175	for (i = 0; i < ndoms_cur; i++) {
6176		for (j = 0; j < n && !new_topology; j++) {
6177			if (cpumask_equal(doms_cur[i], doms_new[j])
6178			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6179				goto match1;
6180		}
6181		/* no match - a current sched domain not in new doms_new[] */
6182		detach_destroy_domains(doms_cur[i]);
6183match1:
6184		;
6185	}
6186
6187	if (doms_new == NULL) {
6188		ndoms_cur = 0;
6189		doms_new = &fallback_doms;
6190		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6191		WARN_ON_ONCE(dattr_new);
6192	}
6193
6194	/* Build new domains */
6195	for (i = 0; i < ndoms_new; i++) {
6196		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6197			if (cpumask_equal(doms_new[i], doms_cur[j])
6198			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6199				goto match2;
6200		}
6201		/* no match - add a new doms_new */
6202		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6203match2:
6204		;
6205	}
6206
6207	/* Remember the new sched domains */
6208	if (doms_cur != &fallback_doms)
6209		free_sched_domains(doms_cur, ndoms_cur);
6210	kfree(dattr_cur);	/* kfree(NULL) is safe */
6211	doms_cur = doms_new;
6212	dattr_cur = dattr_new;
6213	ndoms_cur = ndoms_new;
6214
6215	register_sched_domain_sysctl();
6216
6217	mutex_unlock(&sched_domains_mutex);
6218}
6219
6220static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6221
6222/*
6223 * Update cpusets according to cpu_active mask.  If cpusets are
6224 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6225 * around partition_sched_domains().
6226 *
6227 * If we come here as part of a suspend/resume, don't touch cpusets because we
6228 * want to restore it back to its original state upon resume anyway.
6229 */
6230static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6231			     void *hcpu)
6232{
6233	switch (action) {
6234	case CPU_ONLINE_FROZEN:
6235	case CPU_DOWN_FAILED_FROZEN:
6236
6237		/*
6238		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6239		 * resume sequence. As long as this is not the last online
6240		 * operation in the resume sequence, just build a single sched
6241		 * domain, ignoring cpusets.
6242		 */
6243		num_cpus_frozen--;
6244		if (likely(num_cpus_frozen)) {
6245			partition_sched_domains(1, NULL, NULL);
6246			break;
6247		}
6248
6249		/*
6250		 * This is the last CPU online operation. So fall through and
6251		 * restore the original sched domains by considering the
6252		 * cpuset configurations.
6253		 */
6254
6255	case CPU_ONLINE:
6256	case CPU_DOWN_FAILED:
6257		cpuset_update_active_cpus(true);
6258		break;
6259	default:
6260		return NOTIFY_DONE;
6261	}
6262	return NOTIFY_OK;
6263}
6264
6265static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6266			       void *hcpu)
6267{
6268	switch (action) {
6269	case CPU_DOWN_PREPARE:
6270		cpuset_update_active_cpus(false);
6271		break;
6272	case CPU_DOWN_PREPARE_FROZEN:
6273		num_cpus_frozen++;
6274		partition_sched_domains(1, NULL, NULL);
6275		break;
6276	default:
6277		return NOTIFY_DONE;
6278	}
6279	return NOTIFY_OK;
6280}
6281
6282void __init sched_init_smp(void)
6283{
6284	cpumask_var_t non_isolated_cpus;
6285
6286	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6287	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6288
6289	sched_init_numa();
6290
6291	get_online_cpus();
6292	mutex_lock(&sched_domains_mutex);
6293	init_sched_domains(cpu_active_mask);
6294	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6295	if (cpumask_empty(non_isolated_cpus))
6296		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6297	mutex_unlock(&sched_domains_mutex);
6298	put_online_cpus();
6299
6300	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6301	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6302	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6303
6304	init_hrtick();
6305
6306	/* Move init over to a non-isolated CPU */
6307	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6308		BUG();
6309	sched_init_granularity();
6310	free_cpumask_var(non_isolated_cpus);
6311
6312	init_sched_rt_class();
6313}
6314#else
6315void __init sched_init_smp(void)
6316{
6317	sched_init_granularity();
6318}
6319#endif /* CONFIG_SMP */
6320
6321const_debug unsigned int sysctl_timer_migration = 1;
6322
6323int in_sched_functions(unsigned long addr)
6324{
6325	return in_lock_functions(addr) ||
6326		(addr >= (unsigned long)__sched_text_start
6327		&& addr < (unsigned long)__sched_text_end);
6328}
6329
6330#ifdef CONFIG_CGROUP_SCHED
6331/*
6332 * Default task group.
6333 * Every task in system belongs to this group at bootup.
6334 */
6335struct task_group root_task_group;
6336LIST_HEAD(task_groups);
6337#endif
6338
6339DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6340
6341void __init sched_init(void)
6342{
6343	int i, j;
6344	unsigned long alloc_size = 0, ptr;
6345
6346#ifdef CONFIG_FAIR_GROUP_SCHED
6347	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6348#endif
6349#ifdef CONFIG_RT_GROUP_SCHED
6350	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6351#endif
6352#ifdef CONFIG_CPUMASK_OFFSTACK
6353	alloc_size += num_possible_cpus() * cpumask_size();
6354#endif
6355	if (alloc_size) {
6356		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6357
6358#ifdef CONFIG_FAIR_GROUP_SCHED
6359		root_task_group.se = (struct sched_entity **)ptr;
6360		ptr += nr_cpu_ids * sizeof(void **);
6361
6362		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6363		ptr += nr_cpu_ids * sizeof(void **);
6364
6365#endif /* CONFIG_FAIR_GROUP_SCHED */
6366#ifdef CONFIG_RT_GROUP_SCHED
6367		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6368		ptr += nr_cpu_ids * sizeof(void **);
6369
6370		root_task_group.rt_rq = (struct rt_rq **)ptr;
6371		ptr += nr_cpu_ids * sizeof(void **);
6372
6373#endif /* CONFIG_RT_GROUP_SCHED */
6374#ifdef CONFIG_CPUMASK_OFFSTACK
6375		for_each_possible_cpu(i) {
6376			per_cpu(load_balance_mask, i) = (void *)ptr;
6377			ptr += cpumask_size();
6378		}
6379#endif /* CONFIG_CPUMASK_OFFSTACK */
6380	}
6381
6382#ifdef CONFIG_SMP
6383	init_defrootdomain();
6384#endif
6385
6386	init_rt_bandwidth(&def_rt_bandwidth,
6387			global_rt_period(), global_rt_runtime());
6388
6389#ifdef CONFIG_RT_GROUP_SCHED
6390	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6391			global_rt_period(), global_rt_runtime());
6392#endif /* CONFIG_RT_GROUP_SCHED */
6393
6394#ifdef CONFIG_CGROUP_SCHED
6395	list_add(&root_task_group.list, &task_groups);
6396	INIT_LIST_HEAD(&root_task_group.children);
6397	INIT_LIST_HEAD(&root_task_group.siblings);
6398	autogroup_init(&init_task);
6399
6400#endif /* CONFIG_CGROUP_SCHED */
6401
6402	for_each_possible_cpu(i) {
6403		struct rq *rq;
6404
6405		rq = cpu_rq(i);
6406		raw_spin_lock_init(&rq->lock);
6407		rq->nr_running = 0;
6408		rq->calc_load_active = 0;
6409		rq->calc_load_update = jiffies + LOAD_FREQ;
6410		init_cfs_rq(&rq->cfs);
6411		init_rt_rq(&rq->rt, rq);
6412#ifdef CONFIG_FAIR_GROUP_SCHED
6413		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6414		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6415		/*
6416		 * How much cpu bandwidth does root_task_group get?
6417		 *
6418		 * In case of task-groups formed thr' the cgroup filesystem, it
6419		 * gets 100% of the cpu resources in the system. This overall
6420		 * system cpu resource is divided among the tasks of
6421		 * root_task_group and its child task-groups in a fair manner,
6422		 * based on each entity's (task or task-group's) weight
6423		 * (se->load.weight).
6424		 *
6425		 * In other words, if root_task_group has 10 tasks of weight
6426		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6427		 * then A0's share of the cpu resource is:
6428		 *
6429		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6430		 *
6431		 * We achieve this by letting root_task_group's tasks sit
6432		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6433		 */
6434		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6435		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6436#endif /* CONFIG_FAIR_GROUP_SCHED */
6437
6438		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6439#ifdef CONFIG_RT_GROUP_SCHED
6440		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6441		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6442#endif
6443
6444		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6445			rq->cpu_load[j] = 0;
6446
6447		rq->last_load_update_tick = jiffies;
6448
6449#ifdef CONFIG_SMP
6450		rq->sd = NULL;
6451		rq->rd = NULL;
6452		rq->cpu_power = SCHED_POWER_SCALE;
6453		rq->post_schedule = 0;
6454		rq->active_balance = 0;
6455		rq->next_balance = jiffies;
6456		rq->push_cpu = 0;
6457		rq->cpu = i;
6458		rq->online = 0;
6459		rq->idle_stamp = 0;
6460		rq->avg_idle = 2*sysctl_sched_migration_cost;
6461
6462		INIT_LIST_HEAD(&rq->cfs_tasks);
6463
6464		rq_attach_root(rq, &def_root_domain);
6465#ifdef CONFIG_NO_HZ_COMMON
6466		rq->nohz_flags = 0;
6467#endif
6468#ifdef CONFIG_NO_HZ_FULL
6469		rq->last_sched_tick = 0;
6470#endif
6471#endif
6472		init_rq_hrtick(rq);
6473		atomic_set(&rq->nr_iowait, 0);
6474	}
6475
6476	set_load_weight(&init_task);
6477
6478#ifdef CONFIG_PREEMPT_NOTIFIERS
6479	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6480#endif
6481
6482#ifdef CONFIG_RT_MUTEXES
6483	plist_head_init(&init_task.pi_waiters);
6484#endif
6485
6486	/*
6487	 * The boot idle thread does lazy MMU switching as well:
6488	 */
6489	atomic_inc(&init_mm.mm_count);
6490	enter_lazy_tlb(&init_mm, current);
6491
6492	/*
6493	 * Make us the idle thread. Technically, schedule() should not be
6494	 * called from this thread, however somewhere below it might be,
6495	 * but because we are the idle thread, we just pick up running again
6496	 * when this runqueue becomes "idle".
6497	 */
6498	init_idle(current, smp_processor_id());
6499
6500	calc_load_update = jiffies + LOAD_FREQ;
6501
6502	/*
6503	 * During early bootup we pretend to be a normal task:
6504	 */
6505	current->sched_class = &fair_sched_class;
6506
6507#ifdef CONFIG_SMP
6508	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6509	/* May be allocated at isolcpus cmdline parse time */
6510	if (cpu_isolated_map == NULL)
6511		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6512	idle_thread_set_boot_cpu();
6513#endif
6514	init_sched_fair_class();
6515
6516	scheduler_running = 1;
6517}
6518
6519#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6520static inline int preempt_count_equals(int preempt_offset)
6521{
6522	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6523
6524	return (nested == preempt_offset);
6525}
6526
6527void __might_sleep(const char *file, int line, int preempt_offset)
6528{
6529	static unsigned long prev_jiffy;	/* ratelimiting */
6530
6531	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6532	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6533	    system_state != SYSTEM_RUNNING || oops_in_progress)
6534		return;
6535	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6536		return;
6537	prev_jiffy = jiffies;
6538
6539	printk(KERN_ERR
6540		"BUG: sleeping function called from invalid context at %s:%d\n",
6541			file, line);
6542	printk(KERN_ERR
6543		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6544			in_atomic(), irqs_disabled(),
6545			current->pid, current->comm);
6546
6547	debug_show_held_locks(current);
6548	if (irqs_disabled())
6549		print_irqtrace_events(current);
6550	dump_stack();
6551}
6552EXPORT_SYMBOL(__might_sleep);
6553#endif
6554
6555#ifdef CONFIG_MAGIC_SYSRQ
6556static void normalize_task(struct rq *rq, struct task_struct *p)
6557{
6558	const struct sched_class *prev_class = p->sched_class;
6559	int old_prio = p->prio;
6560	int on_rq;
6561
6562	on_rq = p->on_rq;
6563	if (on_rq)
6564		dequeue_task(rq, p, 0);
6565	__setscheduler(rq, p, SCHED_NORMAL, 0);
6566	if (on_rq) {
6567		enqueue_task(rq, p, 0);
6568		resched_task(rq->curr);
6569	}
6570
6571	check_class_changed(rq, p, prev_class, old_prio);
6572}
6573
6574void normalize_rt_tasks(void)
6575{
6576	struct task_struct *g, *p;
6577	unsigned long flags;
6578	struct rq *rq;
6579
6580	read_lock_irqsave(&tasklist_lock, flags);
6581	do_each_thread(g, p) {
6582		/*
6583		 * Only normalize user tasks:
6584		 */
6585		if (!p->mm)
6586			continue;
6587
6588		p->se.exec_start		= 0;
6589#ifdef CONFIG_SCHEDSTATS
6590		p->se.statistics.wait_start	= 0;
6591		p->se.statistics.sleep_start	= 0;
6592		p->se.statistics.block_start	= 0;
6593#endif
6594
6595		if (!rt_task(p)) {
6596			/*
6597			 * Renice negative nice level userspace
6598			 * tasks back to 0:
6599			 */
6600			if (TASK_NICE(p) < 0 && p->mm)
6601				set_user_nice(p, 0);
6602			continue;
6603		}
6604
6605		raw_spin_lock(&p->pi_lock);
6606		rq = __task_rq_lock(p);
6607
6608		normalize_task(rq, p);
6609
6610		__task_rq_unlock(rq);
6611		raw_spin_unlock(&p->pi_lock);
6612	} while_each_thread(g, p);
6613
6614	read_unlock_irqrestore(&tasklist_lock, flags);
6615}
6616
6617#endif /* CONFIG_MAGIC_SYSRQ */
6618
6619#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6620/*
6621 * These functions are only useful for the IA64 MCA handling, or kdb.
6622 *
6623 * They can only be called when the whole system has been
6624 * stopped - every CPU needs to be quiescent, and no scheduling
6625 * activity can take place. Using them for anything else would
6626 * be a serious bug, and as a result, they aren't even visible
6627 * under any other configuration.
6628 */
6629
6630/**
6631 * curr_task - return the current task for a given cpu.
6632 * @cpu: the processor in question.
6633 *
6634 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6635 */
6636struct task_struct *curr_task(int cpu)
6637{
6638	return cpu_curr(cpu);
6639}
6640
6641#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6642
6643#ifdef CONFIG_IA64
6644/**
6645 * set_curr_task - set the current task for a given cpu.
6646 * @cpu: the processor in question.
6647 * @p: the task pointer to set.
6648 *
6649 * Description: This function must only be used when non-maskable interrupts
6650 * are serviced on a separate stack. It allows the architecture to switch the
6651 * notion of the current task on a cpu in a non-blocking manner. This function
6652 * must be called with all CPU's synchronized, and interrupts disabled, the
6653 * and caller must save the original value of the current task (see
6654 * curr_task() above) and restore that value before reenabling interrupts and
6655 * re-starting the system.
6656 *
6657 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6658 */
6659void set_curr_task(int cpu, struct task_struct *p)
6660{
6661	cpu_curr(cpu) = p;
6662}
6663
6664#endif
6665
6666#ifdef CONFIG_CGROUP_SCHED
6667/* task_group_lock serializes the addition/removal of task groups */
6668static DEFINE_SPINLOCK(task_group_lock);
6669
6670static void free_sched_group(struct task_group *tg)
6671{
6672	free_fair_sched_group(tg);
6673	free_rt_sched_group(tg);
6674	autogroup_free(tg);
6675	kfree(tg);
6676}
6677
6678/* allocate runqueue etc for a new task group */
6679struct task_group *sched_create_group(struct task_group *parent)
6680{
6681	struct task_group *tg;
6682
6683	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6684	if (!tg)
6685		return ERR_PTR(-ENOMEM);
6686
6687	if (!alloc_fair_sched_group(tg, parent))
6688		goto err;
6689
6690	if (!alloc_rt_sched_group(tg, parent))
6691		goto err;
6692
6693	return tg;
6694
6695err:
6696	free_sched_group(tg);
6697	return ERR_PTR(-ENOMEM);
6698}
6699
6700void sched_online_group(struct task_group *tg, struct task_group *parent)
6701{
6702	unsigned long flags;
6703
6704	spin_lock_irqsave(&task_group_lock, flags);
6705	list_add_rcu(&tg->list, &task_groups);
6706
6707	WARN_ON(!parent); /* root should already exist */
6708
6709	tg->parent = parent;
6710	INIT_LIST_HEAD(&tg->children);
6711	list_add_rcu(&tg->siblings, &parent->children);
6712	spin_unlock_irqrestore(&task_group_lock, flags);
6713}
6714
6715/* rcu callback to free various structures associated with a task group */
6716static void free_sched_group_rcu(struct rcu_head *rhp)
6717{
6718	/* now it should be safe to free those cfs_rqs */
6719	free_sched_group(container_of(rhp, struct task_group, rcu));
6720}
6721
6722/* Destroy runqueue etc associated with a task group */
6723void sched_destroy_group(struct task_group *tg)
6724{
6725	/* wait for possible concurrent references to cfs_rqs complete */
6726	call_rcu(&tg->rcu, free_sched_group_rcu);
6727}
6728
6729void sched_offline_group(struct task_group *tg)
6730{
6731	unsigned long flags;
6732	int i;
6733
6734	/* end participation in shares distribution */
6735	for_each_possible_cpu(i)
6736		unregister_fair_sched_group(tg, i);
6737
6738	spin_lock_irqsave(&task_group_lock, flags);
6739	list_del_rcu(&tg->list);
6740	list_del_rcu(&tg->siblings);
6741	spin_unlock_irqrestore(&task_group_lock, flags);
6742}
6743
6744/* change task's runqueue when it moves between groups.
6745 *	The caller of this function should have put the task in its new group
6746 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6747 *	reflect its new group.
6748 */
6749void sched_move_task(struct task_struct *tsk)
6750{
6751	struct task_group *tg;
6752	int on_rq, running;
6753	unsigned long flags;
6754	struct rq *rq;
6755
6756	rq = task_rq_lock(tsk, &flags);
6757
6758	running = task_current(rq, tsk);
6759	on_rq = tsk->on_rq;
6760
6761	if (on_rq)
6762		dequeue_task(rq, tsk, 0);
6763	if (unlikely(running))
6764		tsk->sched_class->put_prev_task(rq, tsk);
6765
6766	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6767				lockdep_is_held(&tsk->sighand->siglock)),
6768			  struct task_group, css);
6769	tg = autogroup_task_group(tsk, tg);
6770	tsk->sched_task_group = tg;
6771
6772#ifdef CONFIG_FAIR_GROUP_SCHED
6773	if (tsk->sched_class->task_move_group)
6774		tsk->sched_class->task_move_group(tsk, on_rq);
6775	else
6776#endif
6777		set_task_rq(tsk, task_cpu(tsk));
6778
6779	if (unlikely(running))
6780		tsk->sched_class->set_curr_task(rq);
6781	if (on_rq)
6782		enqueue_task(rq, tsk, 0);
6783
6784	task_rq_unlock(rq, tsk, &flags);
6785}
6786#endif /* CONFIG_CGROUP_SCHED */
6787
6788#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6789static unsigned long to_ratio(u64 period, u64 runtime)
6790{
6791	if (runtime == RUNTIME_INF)
6792		return 1ULL << 20;
6793
6794	return div64_u64(runtime << 20, period);
6795}
6796#endif
6797
6798#ifdef CONFIG_RT_GROUP_SCHED
6799/*
6800 * Ensure that the real time constraints are schedulable.
6801 */
6802static DEFINE_MUTEX(rt_constraints_mutex);
6803
6804/* Must be called with tasklist_lock held */
6805static inline int tg_has_rt_tasks(struct task_group *tg)
6806{
6807	struct task_struct *g, *p;
6808
6809	do_each_thread(g, p) {
6810		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6811			return 1;
6812	} while_each_thread(g, p);
6813
6814	return 0;
6815}
6816
6817struct rt_schedulable_data {
6818	struct task_group *tg;
6819	u64 rt_period;
6820	u64 rt_runtime;
6821};
6822
6823static int tg_rt_schedulable(struct task_group *tg, void *data)
6824{
6825	struct rt_schedulable_data *d = data;
6826	struct task_group *child;
6827	unsigned long total, sum = 0;
6828	u64 period, runtime;
6829
6830	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6831	runtime = tg->rt_bandwidth.rt_runtime;
6832
6833	if (tg == d->tg) {
6834		period = d->rt_period;
6835		runtime = d->rt_runtime;
6836	}
6837
6838	/*
6839	 * Cannot have more runtime than the period.
6840	 */
6841	if (runtime > period && runtime != RUNTIME_INF)
6842		return -EINVAL;
6843
6844	/*
6845	 * Ensure we don't starve existing RT tasks.
6846	 */
6847	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6848		return -EBUSY;
6849
6850	total = to_ratio(period, runtime);
6851
6852	/*
6853	 * Nobody can have more than the global setting allows.
6854	 */
6855	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6856		return -EINVAL;
6857
6858	/*
6859	 * The sum of our children's runtime should not exceed our own.
6860	 */
6861	list_for_each_entry_rcu(child, &tg->children, siblings) {
6862		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6863		runtime = child->rt_bandwidth.rt_runtime;
6864
6865		if (child == d->tg) {
6866			period = d->rt_period;
6867			runtime = d->rt_runtime;
6868		}
6869
6870		sum += to_ratio(period, runtime);
6871	}
6872
6873	if (sum > total)
6874		return -EINVAL;
6875
6876	return 0;
6877}
6878
6879static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6880{
6881	int ret;
6882
6883	struct rt_schedulable_data data = {
6884		.tg = tg,
6885		.rt_period = period,
6886		.rt_runtime = runtime,
6887	};
6888
6889	rcu_read_lock();
6890	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6891	rcu_read_unlock();
6892
6893	return ret;
6894}
6895
6896static int tg_set_rt_bandwidth(struct task_group *tg,
6897		u64 rt_period, u64 rt_runtime)
6898{
6899	int i, err = 0;
6900
6901	mutex_lock(&rt_constraints_mutex);
6902	read_lock(&tasklist_lock);
6903	err = __rt_schedulable(tg, rt_period, rt_runtime);
6904	if (err)
6905		goto unlock;
6906
6907	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6908	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6909	tg->rt_bandwidth.rt_runtime = rt_runtime;
6910
6911	for_each_possible_cpu(i) {
6912		struct rt_rq *rt_rq = tg->rt_rq[i];
6913
6914		raw_spin_lock(&rt_rq->rt_runtime_lock);
6915		rt_rq->rt_runtime = rt_runtime;
6916		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6917	}
6918	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6919unlock:
6920	read_unlock(&tasklist_lock);
6921	mutex_unlock(&rt_constraints_mutex);
6922
6923	return err;
6924}
6925
6926static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6927{
6928	u64 rt_runtime, rt_period;
6929
6930	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6931	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6932	if (rt_runtime_us < 0)
6933		rt_runtime = RUNTIME_INF;
6934
6935	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6936}
6937
6938static long sched_group_rt_runtime(struct task_group *tg)
6939{
6940	u64 rt_runtime_us;
6941
6942	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6943		return -1;
6944
6945	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6946	do_div(rt_runtime_us, NSEC_PER_USEC);
6947	return rt_runtime_us;
6948}
6949
6950static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6951{
6952	u64 rt_runtime, rt_period;
6953
6954	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6955	rt_runtime = tg->rt_bandwidth.rt_runtime;
6956
6957	if (rt_period == 0)
6958		return -EINVAL;
6959
6960	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6961}
6962
6963static long sched_group_rt_period(struct task_group *tg)
6964{
6965	u64 rt_period_us;
6966
6967	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6968	do_div(rt_period_us, NSEC_PER_USEC);
6969	return rt_period_us;
6970}
6971
6972static int sched_rt_global_constraints(void)
6973{
6974	u64 runtime, period;
6975	int ret = 0;
6976
6977	if (sysctl_sched_rt_period <= 0)
6978		return -EINVAL;
6979
6980	runtime = global_rt_runtime();
6981	period = global_rt_period();
6982
6983	/*
6984	 * Sanity check on the sysctl variables.
6985	 */
6986	if (runtime > period && runtime != RUNTIME_INF)
6987		return -EINVAL;
6988
6989	mutex_lock(&rt_constraints_mutex);
6990	read_lock(&tasklist_lock);
6991	ret = __rt_schedulable(NULL, 0, 0);
6992	read_unlock(&tasklist_lock);
6993	mutex_unlock(&rt_constraints_mutex);
6994
6995	return ret;
6996}
6997
6998static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6999{
7000	/* Don't accept realtime tasks when there is no way for them to run */
7001	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7002		return 0;
7003
7004	return 1;
7005}
7006
7007#else /* !CONFIG_RT_GROUP_SCHED */
7008static int sched_rt_global_constraints(void)
7009{
7010	unsigned long flags;
7011	int i;
7012
7013	if (sysctl_sched_rt_period <= 0)
7014		return -EINVAL;
7015
7016	/*
7017	 * There's always some RT tasks in the root group
7018	 * -- migration, kstopmachine etc..
7019	 */
7020	if (sysctl_sched_rt_runtime == 0)
7021		return -EBUSY;
7022
7023	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7024	for_each_possible_cpu(i) {
7025		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7026
7027		raw_spin_lock(&rt_rq->rt_runtime_lock);
7028		rt_rq->rt_runtime = global_rt_runtime();
7029		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7030	}
7031	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7032
7033	return 0;
7034}
7035#endif /* CONFIG_RT_GROUP_SCHED */
7036
7037int sched_rr_handler(struct ctl_table *table, int write,
7038		void __user *buffer, size_t *lenp,
7039		loff_t *ppos)
7040{
7041	int ret;
7042	static DEFINE_MUTEX(mutex);
7043
7044	mutex_lock(&mutex);
7045	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7046	/* make sure that internally we keep jiffies */
7047	/* also, writing zero resets timeslice to default */
7048	if (!ret && write) {
7049		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7050			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7051	}
7052	mutex_unlock(&mutex);
7053	return ret;
7054}
7055
7056int sched_rt_handler(struct ctl_table *table, int write,
7057		void __user *buffer, size_t *lenp,
7058		loff_t *ppos)
7059{
7060	int ret;
7061	int old_period, old_runtime;
7062	static DEFINE_MUTEX(mutex);
7063
7064	mutex_lock(&mutex);
7065	old_period = sysctl_sched_rt_period;
7066	old_runtime = sysctl_sched_rt_runtime;
7067
7068	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7069
7070	if (!ret && write) {
7071		ret = sched_rt_global_constraints();
7072		if (ret) {
7073			sysctl_sched_rt_period = old_period;
7074			sysctl_sched_rt_runtime = old_runtime;
7075		} else {
7076			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7077			def_rt_bandwidth.rt_period =
7078				ns_to_ktime(global_rt_period());
7079		}
7080	}
7081	mutex_unlock(&mutex);
7082
7083	return ret;
7084}
7085
7086#ifdef CONFIG_CGROUP_SCHED
7087
7088/* return corresponding task_group object of a cgroup */
7089static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7090{
7091	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7092			    struct task_group, css);
7093}
7094
7095static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7096{
7097	struct task_group *tg, *parent;
7098
7099	if (!cgrp->parent) {
7100		/* This is early initialization for the top cgroup */
7101		return &root_task_group.css;
7102	}
7103
7104	parent = cgroup_tg(cgrp->parent);
7105	tg = sched_create_group(parent);
7106	if (IS_ERR(tg))
7107		return ERR_PTR(-ENOMEM);
7108
7109	return &tg->css;
7110}
7111
7112static int cpu_cgroup_css_online(struct cgroup *cgrp)
7113{
7114	struct task_group *tg = cgroup_tg(cgrp);
7115	struct task_group *parent;
7116
7117	if (!cgrp->parent)
7118		return 0;
7119
7120	parent = cgroup_tg(cgrp->parent);
7121	sched_online_group(tg, parent);
7122	return 0;
7123}
7124
7125static void cpu_cgroup_css_free(struct cgroup *cgrp)
7126{
7127	struct task_group *tg = cgroup_tg(cgrp);
7128
7129	sched_destroy_group(tg);
7130}
7131
7132static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7133{
7134	struct task_group *tg = cgroup_tg(cgrp);
7135
7136	sched_offline_group(tg);
7137}
7138
7139static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7140				 struct cgroup_taskset *tset)
7141{
7142	struct task_struct *task;
7143
7144	cgroup_taskset_for_each(task, cgrp, tset) {
7145#ifdef CONFIG_RT_GROUP_SCHED
7146		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7147			return -EINVAL;
7148#else
7149		/* We don't support RT-tasks being in separate groups */
7150		if (task->sched_class != &fair_sched_class)
7151			return -EINVAL;
7152#endif
7153	}
7154	return 0;
7155}
7156
7157static void cpu_cgroup_attach(struct cgroup *cgrp,
7158			      struct cgroup_taskset *tset)
7159{
7160	struct task_struct *task;
7161
7162	cgroup_taskset_for_each(task, cgrp, tset)
7163		sched_move_task(task);
7164}
7165
7166static void
7167cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7168		struct task_struct *task)
7169{
7170	/*
7171	 * cgroup_exit() is called in the copy_process() failure path.
7172	 * Ignore this case since the task hasn't ran yet, this avoids
7173	 * trying to poke a half freed task state from generic code.
7174	 */
7175	if (!(task->flags & PF_EXITING))
7176		return;
7177
7178	sched_move_task(task);
7179}
7180
7181#ifdef CONFIG_FAIR_GROUP_SCHED
7182static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7183				u64 shareval)
7184{
7185	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7186}
7187
7188static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7189{
7190	struct task_group *tg = cgroup_tg(cgrp);
7191
7192	return (u64) scale_load_down(tg->shares);
7193}
7194
7195#ifdef CONFIG_CFS_BANDWIDTH
7196static DEFINE_MUTEX(cfs_constraints_mutex);
7197
7198const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7199const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7200
7201static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7202
7203static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7204{
7205	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7206	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7207
7208	if (tg == &root_task_group)
7209		return -EINVAL;
7210
7211	/*
7212	 * Ensure we have at some amount of bandwidth every period.  This is
7213	 * to prevent reaching a state of large arrears when throttled via
7214	 * entity_tick() resulting in prolonged exit starvation.
7215	 */
7216	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7217		return -EINVAL;
7218
7219	/*
7220	 * Likewise, bound things on the otherside by preventing insane quota
7221	 * periods.  This also allows us to normalize in computing quota
7222	 * feasibility.
7223	 */
7224	if (period > max_cfs_quota_period)
7225		return -EINVAL;
7226
7227	mutex_lock(&cfs_constraints_mutex);
7228	ret = __cfs_schedulable(tg, period, quota);
7229	if (ret)
7230		goto out_unlock;
7231
7232	runtime_enabled = quota != RUNTIME_INF;
7233	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7234	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7235	raw_spin_lock_irq(&cfs_b->lock);
7236	cfs_b->period = ns_to_ktime(period);
7237	cfs_b->quota = quota;
7238
7239	__refill_cfs_bandwidth_runtime(cfs_b);
7240	/* restart the period timer (if active) to handle new period expiry */
7241	if (runtime_enabled && cfs_b->timer_active) {
7242		/* force a reprogram */
7243		cfs_b->timer_active = 0;
7244		__start_cfs_bandwidth(cfs_b);
7245	}
7246	raw_spin_unlock_irq(&cfs_b->lock);
7247
7248	for_each_possible_cpu(i) {
7249		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7250		struct rq *rq = cfs_rq->rq;
7251
7252		raw_spin_lock_irq(&rq->lock);
7253		cfs_rq->runtime_enabled = runtime_enabled;
7254		cfs_rq->runtime_remaining = 0;
7255
7256		if (cfs_rq->throttled)
7257			unthrottle_cfs_rq(cfs_rq);
7258		raw_spin_unlock_irq(&rq->lock);
7259	}
7260out_unlock:
7261	mutex_unlock(&cfs_constraints_mutex);
7262
7263	return ret;
7264}
7265
7266int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7267{
7268	u64 quota, period;
7269
7270	period = ktime_to_ns(tg->cfs_bandwidth.period);
7271	if (cfs_quota_us < 0)
7272		quota = RUNTIME_INF;
7273	else
7274		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7275
7276	return tg_set_cfs_bandwidth(tg, period, quota);
7277}
7278
7279long tg_get_cfs_quota(struct task_group *tg)
7280{
7281	u64 quota_us;
7282
7283	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7284		return -1;
7285
7286	quota_us = tg->cfs_bandwidth.quota;
7287	do_div(quota_us, NSEC_PER_USEC);
7288
7289	return quota_us;
7290}
7291
7292int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7293{
7294	u64 quota, period;
7295
7296	period = (u64)cfs_period_us * NSEC_PER_USEC;
7297	quota = tg->cfs_bandwidth.quota;
7298
7299	return tg_set_cfs_bandwidth(tg, period, quota);
7300}
7301
7302long tg_get_cfs_period(struct task_group *tg)
7303{
7304	u64 cfs_period_us;
7305
7306	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7307	do_div(cfs_period_us, NSEC_PER_USEC);
7308
7309	return cfs_period_us;
7310}
7311
7312static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7313{
7314	return tg_get_cfs_quota(cgroup_tg(cgrp));
7315}
7316
7317static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7318				s64 cfs_quota_us)
7319{
7320	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7321}
7322
7323static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7324{
7325	return tg_get_cfs_period(cgroup_tg(cgrp));
7326}
7327
7328static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7329				u64 cfs_period_us)
7330{
7331	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7332}
7333
7334struct cfs_schedulable_data {
7335	struct task_group *tg;
7336	u64 period, quota;
7337};
7338
7339/*
7340 * normalize group quota/period to be quota/max_period
7341 * note: units are usecs
7342 */
7343static u64 normalize_cfs_quota(struct task_group *tg,
7344			       struct cfs_schedulable_data *d)
7345{
7346	u64 quota, period;
7347
7348	if (tg == d->tg) {
7349		period = d->period;
7350		quota = d->quota;
7351	} else {
7352		period = tg_get_cfs_period(tg);
7353		quota = tg_get_cfs_quota(tg);
7354	}
7355
7356	/* note: these should typically be equivalent */
7357	if (quota == RUNTIME_INF || quota == -1)
7358		return RUNTIME_INF;
7359
7360	return to_ratio(period, quota);
7361}
7362
7363static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7364{
7365	struct cfs_schedulable_data *d = data;
7366	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7367	s64 quota = 0, parent_quota = -1;
7368
7369	if (!tg->parent) {
7370		quota = RUNTIME_INF;
7371	} else {
7372		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7373
7374		quota = normalize_cfs_quota(tg, d);
7375		parent_quota = parent_b->hierarchal_quota;
7376
7377		/*
7378		 * ensure max(child_quota) <= parent_quota, inherit when no
7379		 * limit is set
7380		 */
7381		if (quota == RUNTIME_INF)
7382			quota = parent_quota;
7383		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7384			return -EINVAL;
7385	}
7386	cfs_b->hierarchal_quota = quota;
7387
7388	return 0;
7389}
7390
7391static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7392{
7393	int ret;
7394	struct cfs_schedulable_data data = {
7395		.tg = tg,
7396		.period = period,
7397		.quota = quota,
7398	};
7399
7400	if (quota != RUNTIME_INF) {
7401		do_div(data.period, NSEC_PER_USEC);
7402		do_div(data.quota, NSEC_PER_USEC);
7403	}
7404
7405	rcu_read_lock();
7406	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7407	rcu_read_unlock();
7408
7409	return ret;
7410}
7411
7412static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7413		struct cgroup_map_cb *cb)
7414{
7415	struct task_group *tg = cgroup_tg(cgrp);
7416	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7417
7418	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7419	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7420	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7421
7422	return 0;
7423}
7424#endif /* CONFIG_CFS_BANDWIDTH */
7425#endif /* CONFIG_FAIR_GROUP_SCHED */
7426
7427#ifdef CONFIG_RT_GROUP_SCHED
7428static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7429				s64 val)
7430{
7431	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7432}
7433
7434static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7435{
7436	return sched_group_rt_runtime(cgroup_tg(cgrp));
7437}
7438
7439static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7440		u64 rt_period_us)
7441{
7442	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7443}
7444
7445static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7446{
7447	return sched_group_rt_period(cgroup_tg(cgrp));
7448}
7449#endif /* CONFIG_RT_GROUP_SCHED */
7450
7451static struct cftype cpu_files[] = {
7452#ifdef CONFIG_FAIR_GROUP_SCHED
7453	{
7454		.name = "shares",
7455		.read_u64 = cpu_shares_read_u64,
7456		.write_u64 = cpu_shares_write_u64,
7457	},
7458#endif
7459#ifdef CONFIG_CFS_BANDWIDTH
7460	{
7461		.name = "cfs_quota_us",
7462		.read_s64 = cpu_cfs_quota_read_s64,
7463		.write_s64 = cpu_cfs_quota_write_s64,
7464	},
7465	{
7466		.name = "cfs_period_us",
7467		.read_u64 = cpu_cfs_period_read_u64,
7468		.write_u64 = cpu_cfs_period_write_u64,
7469	},
7470	{
7471		.name = "stat",
7472		.read_map = cpu_stats_show,
7473	},
7474#endif
7475#ifdef CONFIG_RT_GROUP_SCHED
7476	{
7477		.name = "rt_runtime_us",
7478		.read_s64 = cpu_rt_runtime_read,
7479		.write_s64 = cpu_rt_runtime_write,
7480	},
7481	{
7482		.name = "rt_period_us",
7483		.read_u64 = cpu_rt_period_read_uint,
7484		.write_u64 = cpu_rt_period_write_uint,
7485	},
7486#endif
7487	{ }	/* terminate */
7488};
7489
7490struct cgroup_subsys cpu_cgroup_subsys = {
7491	.name		= "cpu",
7492	.css_alloc	= cpu_cgroup_css_alloc,
7493	.css_free	= cpu_cgroup_css_free,
7494	.css_online	= cpu_cgroup_css_online,
7495	.css_offline	= cpu_cgroup_css_offline,
7496	.can_attach	= cpu_cgroup_can_attach,
7497	.attach		= cpu_cgroup_attach,
7498	.exit		= cpu_cgroup_exit,
7499	.subsys_id	= cpu_cgroup_subsys_id,
7500	.base_cftypes	= cpu_files,
7501	.early_init	= 1,
7502};
7503
7504#endif	/* CONFIG_CGROUP_SCHED */
7505
7506void dump_cpu_task(int cpu)
7507{
7508	pr_info("Task dump for CPU %d:\n", cpu);
7509	sched_show_task(cpu_curr(cpu));
7510}
7511