core.c revision 143cf23df25b7082cd706c3c53188e741e7881c3
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	rq->clock += delta;
127	update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled)	\
135	(1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139	0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled)	\
145	#name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155	int i;
156
157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158		if (!(sysctl_sched_features & (1UL << i)))
159			seq_puts(m, "NO_");
160		seq_printf(m, "%s ", sched_feat_names[i]);
161	}
162	seq_puts(m, "\n");
163
164	return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled)	\
173	jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183	if (static_key_enabled(&sched_feat_keys[i]))
184		static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189	if (!static_key_enabled(&sched_feat_keys[i]))
190		static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199	int i;
200	int neg = 0;
201
202	if (strncmp(cmp, "NO_", 3) == 0) {
203		neg = 1;
204		cmp += 3;
205	}
206
207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209			if (neg) {
210				sysctl_sched_features &= ~(1UL << i);
211				sched_feat_disable(i);
212			} else {
213				sysctl_sched_features |= (1UL << i);
214				sched_feat_enable(i);
215			}
216			break;
217		}
218	}
219
220	return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225		size_t cnt, loff_t *ppos)
226{
227	char buf[64];
228	char *cmp;
229	int i;
230
231	if (cnt > 63)
232		cnt = 63;
233
234	if (copy_from_user(&buf, ubuf, cnt))
235		return -EFAULT;
236
237	buf[cnt] = 0;
238	cmp = strstrip(buf);
239
240	i = sched_feat_set(cmp);
241	if (i == __SCHED_FEAT_NR)
242		return -EINVAL;
243
244	*ppos += cnt;
245
246	return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251	return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255	.open		= sched_feat_open,
256	.write		= sched_feat_write,
257	.read		= seq_read,
258	.llseek		= seq_lseek,
259	.release	= single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264	debugfs_create_file("sched_features", 0644, NULL, NULL,
265			&sched_feat_fops);
266
267	return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402	struct hrtimer *timer = &rq->hrtick_timer;
403	ktime_t time = hrtimer_get_softexpires(timer);
404
405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413	struct rq *rq = arg;
414
415	raw_spin_lock(&rq->lock);
416	__hrtick_restart(rq);
417	rq->hrtick_csd_pending = 0;
418	raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428	struct hrtimer *timer = &rq->hrtick_timer;
429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431	hrtimer_set_expires(timer, time);
432
433	if (rq == this_rq()) {
434		__hrtick_restart(rq);
435	} else if (!rq->hrtick_csd_pending) {
436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437		rq->hrtick_csd_pending = 1;
438	}
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444	int cpu = (int)(long)hcpu;
445
446	switch (action) {
447	case CPU_UP_CANCELED:
448	case CPU_UP_CANCELED_FROZEN:
449	case CPU_DOWN_PREPARE:
450	case CPU_DOWN_PREPARE_FROZEN:
451	case CPU_DEAD:
452	case CPU_DEAD_FROZEN:
453		hrtick_clear(cpu_rq(cpu));
454		return NOTIFY_OK;
455	}
456
457	return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462	hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473			HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484	rq->hrtick_csd_pending = 0;
485
486	rq->hrtick_csd.flags = 0;
487	rq->hrtick_csd.func = __hrtick_start;
488	rq->hrtick_csd.info = rq;
489#endif
490
491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492	rq->hrtick_timer.function = hrtick;
493}
494#else	/* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif	/* CONFIG_SCHED_HRTICK */
507
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	lockdep_assert_held(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id()) {
528		set_preempt_need_resched();
529		return;
530	}
531
532	/* NEED_RESCHED must be visible before we test polling */
533	smp_mb();
534	if (!tsk_is_polling(p))
535		smp_send_reschedule(cpu);
536}
537
538void resched_cpu(int cpu)
539{
540	struct rq *rq = cpu_rq(cpu);
541	unsigned long flags;
542
543	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544		return;
545	resched_task(cpu_curr(cpu));
546	raw_spin_unlock_irqrestore(&rq->lock, flags);
547}
548
549#ifdef CONFIG_SMP
550#ifdef CONFIG_NO_HZ_COMMON
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu.  This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559int get_nohz_timer_target(int pinned)
560{
561	int cpu = smp_processor_id();
562	int i;
563	struct sched_domain *sd;
564
565	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566		return cpu;
567
568	rcu_read_lock();
569	for_each_domain(cpu, sd) {
570		for_each_cpu(i, sched_domain_span(sd)) {
571			if (!idle_cpu(i)) {
572				cpu = i;
573				goto unlock;
574			}
575		}
576	}
577unlock:
578	rcu_read_unlock();
579	return cpu;
580}
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591static void wake_up_idle_cpu(int cpu)
592{
593	struct rq *rq = cpu_rq(cpu);
594
595	if (cpu == smp_processor_id())
596		return;
597
598	/*
599	 * This is safe, as this function is called with the timer
600	 * wheel base lock of (cpu) held. When the CPU is on the way
601	 * to idle and has not yet set rq->curr to idle then it will
602	 * be serialized on the timer wheel base lock and take the new
603	 * timer into account automatically.
604	 */
605	if (rq->curr != rq->idle)
606		return;
607
608	/*
609	 * We can set TIF_RESCHED on the idle task of the other CPU
610	 * lockless. The worst case is that the other CPU runs the
611	 * idle task through an additional NOOP schedule()
612	 */
613	set_tsk_need_resched(rq->idle);
614
615	/* NEED_RESCHED must be visible before we test polling */
616	smp_mb();
617	if (!tsk_is_polling(rq->idle))
618		smp_send_reschedule(cpu);
619}
620
621static bool wake_up_full_nohz_cpu(int cpu)
622{
623	if (tick_nohz_full_cpu(cpu)) {
624		if (cpu != smp_processor_id() ||
625		    tick_nohz_tick_stopped())
626			smp_send_reschedule(cpu);
627		return true;
628	}
629
630	return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
635	if (!wake_up_full_nohz_cpu(cpu))
636		wake_up_idle_cpu(cpu);
637}
638
639static inline bool got_nohz_idle_kick(void)
640{
641	int cpu = smp_processor_id();
642
643	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644		return false;
645
646	if (idle_cpu(cpu) && !need_resched())
647		return true;
648
649	/*
650	 * We can't run Idle Load Balance on this CPU for this time so we
651	 * cancel it and clear NOHZ_BALANCE_KICK
652	 */
653	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654	return false;
655}
656
657#else /* CONFIG_NO_HZ_COMMON */
658
659static inline bool got_nohz_idle_kick(void)
660{
661	return false;
662}
663
664#endif /* CONFIG_NO_HZ_COMMON */
665
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669       struct rq *rq;
670
671       rq = this_rq();
672
673       /* Make sure rq->nr_running update is visible after the IPI */
674       smp_rmb();
675
676       /* More than one running task need preemption */
677       if (rq->nr_running > 1)
678               return false;
679
680       return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
683
684void sched_avg_update(struct rq *rq)
685{
686	s64 period = sched_avg_period();
687
688	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689		/*
690		 * Inline assembly required to prevent the compiler
691		 * optimising this loop into a divmod call.
692		 * See __iter_div_u64_rem() for another example of this.
693		 */
694		asm("" : "+rm" (rq->age_stamp));
695		rq->age_stamp += period;
696		rq->rt_avg /= 2;
697	}
698}
699
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711			     tg_visitor down, tg_visitor up, void *data)
712{
713	struct task_group *parent, *child;
714	int ret;
715
716	parent = from;
717
718down:
719	ret = (*down)(parent, data);
720	if (ret)
721		goto out;
722	list_for_each_entry_rcu(child, &parent->children, siblings) {
723		parent = child;
724		goto down;
725
726up:
727		continue;
728	}
729	ret = (*up)(parent, data);
730	if (ret || parent == from)
731		goto out;
732
733	child = parent;
734	parent = parent->parent;
735	if (parent)
736		goto up;
737out:
738	return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743	return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749	int prio = p->static_prio - MAX_RT_PRIO;
750	struct load_weight *load = &p->se.load;
751
752	/*
753	 * SCHED_IDLE tasks get minimal weight:
754	 */
755	if (p->policy == SCHED_IDLE) {
756		load->weight = scale_load(WEIGHT_IDLEPRIO);
757		load->inv_weight = WMULT_IDLEPRIO;
758		return;
759	}
760
761	load->weight = scale_load(prio_to_weight[prio]);
762	load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767	update_rq_clock(rq);
768	sched_info_queued(rq, p);
769	p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_dequeued(rq, p);
776	p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	if (task_contributes_to_load(p))
782		rq->nr_uninterruptible--;
783
784	enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789	if (task_contributes_to_load(p))
790		rq->nr_uninterruptible++;
791
792	dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802	s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807	/*
808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809	 * this case when a previous update_rq_clock() happened inside a
810	 * {soft,}irq region.
811	 *
812	 * When this happens, we stop ->clock_task and only update the
813	 * prev_irq_time stamp to account for the part that fit, so that a next
814	 * update will consume the rest. This ensures ->clock_task is
815	 * monotonic.
816	 *
817	 * It does however cause some slight miss-attribution of {soft,}irq
818	 * time, a more accurate solution would be to update the irq_time using
819	 * the current rq->clock timestamp, except that would require using
820	 * atomic ops.
821	 */
822	if (irq_delta > delta)
823		irq_delta = delta;
824
825	rq->prev_irq_time += irq_delta;
826	delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829	if (static_key_false((&paravirt_steal_rq_enabled))) {
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		rq->prev_steal_time_rq += steal;
837		delta -= steal;
838	}
839#endif
840
841	rq->clock_task += delta;
842
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845		sched_rt_avg_update(rq, irq_delta + steal);
846#endif
847}
848
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852	struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854	if (stop) {
855		/*
856		 * Make it appear like a SCHED_FIFO task, its something
857		 * userspace knows about and won't get confused about.
858		 *
859		 * Also, it will make PI more or less work without too
860		 * much confusion -- but then, stop work should not
861		 * rely on PI working anyway.
862		 */
863		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865		stop->sched_class = &stop_sched_class;
866	}
867
868	cpu_rq(cpu)->stop = stop;
869
870	if (old_stop) {
871		/*
872		 * Reset it back to a normal scheduling class so that
873		 * it can die in pieces.
874		 */
875		old_stop->sched_class = &rt_sched_class;
876	}
877}
878
879/*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882static inline int __normal_prio(struct task_struct *p)
883{
884	return p->static_prio;
885}
886
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894static inline int normal_prio(struct task_struct *p)
895{
896	int prio;
897
898	if (task_has_dl_policy(p))
899		prio = MAX_DL_PRIO-1;
900	else if (task_has_rt_policy(p))
901		prio = MAX_RT_PRIO-1 - p->rt_priority;
902	else
903		prio = __normal_prio(p);
904	return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914static int effective_prio(struct task_struct *p)
915{
916	p->normal_prio = normal_prio(p);
917	/*
918	 * If we are RT tasks or we were boosted to RT priority,
919	 * keep the priority unchanged. Otherwise, update priority
920	 * to the normal priority:
921	 */
922	if (!rt_prio(p->prio))
923		return p->normal_prio;
924	return p->prio;
925}
926
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933inline int task_curr(const struct task_struct *p)
934{
935	return cpu_curr(task_cpu(p)) == p;
936}
937
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939				       const struct sched_class *prev_class,
940				       int oldprio)
941{
942	if (prev_class != p->sched_class) {
943		if (prev_class->switched_from)
944			prev_class->switched_from(rq, p);
945		p->sched_class->switched_to(rq, p);
946	} else if (oldprio != p->prio || dl_task(p))
947		p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952	const struct sched_class *class;
953
954	if (p->sched_class == rq->curr->sched_class) {
955		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956	} else {
957		for_each_class(class) {
958			if (class == rq->curr->sched_class)
959				break;
960			if (class == p->sched_class) {
961				resched_task(rq->curr);
962				break;
963			}
964		}
965	}
966
967	/*
968	 * A queue event has occurred, and we're going to schedule.  In
969	 * this case, we can save a useless back to back clock update.
970	 */
971	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972		rq->skip_clock_update = 1;
973}
974
975#ifdef CONFIG_SMP
976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977{
978#ifdef CONFIG_SCHED_DEBUG
979	/*
980	 * We should never call set_task_cpu() on a blocked task,
981	 * ttwu() will sort out the placement.
982	 */
983	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984			!(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986#ifdef CONFIG_LOCKDEP
987	/*
988	 * The caller should hold either p->pi_lock or rq->lock, when changing
989	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990	 *
991	 * sched_move_task() holds both and thus holding either pins the cgroup,
992	 * see task_group().
993	 *
994	 * Furthermore, all task_rq users should acquire both locks, see
995	 * task_rq_lock().
996	 */
997	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998				      lockdep_is_held(&task_rq(p)->lock)));
999#endif
1000#endif
1001
1002	trace_sched_migrate_task(p, new_cpu);
1003
1004	if (task_cpu(p) != new_cpu) {
1005		if (p->sched_class->migrate_task_rq)
1006			p->sched_class->migrate_task_rq(p, new_cpu);
1007		p->se.nr_migrations++;
1008		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009	}
1010
1011	__set_task_cpu(p, new_cpu);
1012}
1013
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016	if (p->on_rq) {
1017		struct rq *src_rq, *dst_rq;
1018
1019		src_rq = task_rq(p);
1020		dst_rq = cpu_rq(cpu);
1021
1022		deactivate_task(src_rq, p, 0);
1023		set_task_cpu(p, cpu);
1024		activate_task(dst_rq, p, 0);
1025		check_preempt_curr(dst_rq, p, 0);
1026	} else {
1027		/*
1028		 * Task isn't running anymore; make it appear like we migrated
1029		 * it before it went to sleep. This means on wakeup we make the
1030		 * previous cpu our targer instead of where it really is.
1031		 */
1032		p->wake_cpu = cpu;
1033	}
1034}
1035
1036struct migration_swap_arg {
1037	struct task_struct *src_task, *dst_task;
1038	int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043	struct migration_swap_arg *arg = data;
1044	struct rq *src_rq, *dst_rq;
1045	int ret = -EAGAIN;
1046
1047	src_rq = cpu_rq(arg->src_cpu);
1048	dst_rq = cpu_rq(arg->dst_cpu);
1049
1050	double_raw_lock(&arg->src_task->pi_lock,
1051			&arg->dst_task->pi_lock);
1052	double_rq_lock(src_rq, dst_rq);
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072	raw_spin_unlock(&arg->dst_task->pi_lock);
1073	raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075	return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083	struct migration_swap_arg arg;
1084	int ret = -EINVAL;
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	/*
1097	 * These three tests are all lockless; this is OK since all of them
1098	 * will be re-checked with proper locks held further down the line.
1099	 */
1100	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101		goto out;
1102
1103	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104		goto out;
1105
1106	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107		goto out;
1108
1109	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
1113	return ret;
1114}
1115
1116struct migration_arg {
1117	struct task_struct *task;
1118	int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change.  If it changes, i.e. @p might have woken up,
1128 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count).  If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141	unsigned long flags;
1142	int running, on_rq;
1143	unsigned long ncsw;
1144	struct rq *rq;
1145
1146	for (;;) {
1147		/*
1148		 * We do the initial early heuristics without holding
1149		 * any task-queue locks at all. We'll only try to get
1150		 * the runqueue lock when things look like they will
1151		 * work out!
1152		 */
1153		rq = task_rq(p);
1154
1155		/*
1156		 * If the task is actively running on another CPU
1157		 * still, just relax and busy-wait without holding
1158		 * any locks.
1159		 *
1160		 * NOTE! Since we don't hold any locks, it's not
1161		 * even sure that "rq" stays as the right runqueue!
1162		 * But we don't care, since "task_running()" will
1163		 * return false if the runqueue has changed and p
1164		 * is actually now running somewhere else!
1165		 */
1166		while (task_running(rq, p)) {
1167			if (match_state && unlikely(p->state != match_state))
1168				return 0;
1169			cpu_relax();
1170		}
1171
1172		/*
1173		 * Ok, time to look more closely! We need the rq
1174		 * lock now, to be *sure*. If we're wrong, we'll
1175		 * just go back and repeat.
1176		 */
1177		rq = task_rq_lock(p, &flags);
1178		trace_sched_wait_task(p);
1179		running = task_running(rq, p);
1180		on_rq = p->on_rq;
1181		ncsw = 0;
1182		if (!match_state || p->state == match_state)
1183			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184		task_rq_unlock(rq, p, &flags);
1185
1186		/*
1187		 * If it changed from the expected state, bail out now.
1188		 */
1189		if (unlikely(!ncsw))
1190			break;
1191
1192		/*
1193		 * Was it really running after all now that we
1194		 * checked with the proper locks actually held?
1195		 *
1196		 * Oops. Go back and try again..
1197		 */
1198		if (unlikely(running)) {
1199			cpu_relax();
1200			continue;
1201		}
1202
1203		/*
1204		 * It's not enough that it's not actively running,
1205		 * it must be off the runqueue _entirely_, and not
1206		 * preempted!
1207		 *
1208		 * So if it was still runnable (but just not actively
1209		 * running right now), it's preempted, and we should
1210		 * yield - it could be a while.
1211		 */
1212		if (unlikely(on_rq)) {
1213			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215			set_current_state(TASK_UNINTERRUPTIBLE);
1216			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217			continue;
1218		}
1219
1220		/*
1221		 * Ahh, all good. It wasn't running, and it wasn't
1222		 * runnable, which means that it will never become
1223		 * running in the future either. We're all done!
1224		 */
1225		break;
1226	}
1227
1228	return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246	int cpu;
1247
1248	preempt_disable();
1249	cpu = task_cpu(p);
1250	if ((cpu != smp_processor_id()) && task_curr(p))
1251		smp_send_reschedule(cpu);
1252	preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263	int nid = cpu_to_node(cpu);
1264	const struct cpumask *nodemask = NULL;
1265	enum { cpuset, possible, fail } state = cpuset;
1266	int dest_cpu;
1267
1268	/*
1269	 * If the node that the cpu is on has been offlined, cpu_to_node()
1270	 * will return -1. There is no cpu on the node, and we should
1271	 * select the cpu on the other node.
1272	 */
1273	if (nid != -1) {
1274		nodemask = cpumask_of_node(nid);
1275
1276		/* Look for allowed, online CPU in same node. */
1277		for_each_cpu(dest_cpu, nodemask) {
1278			if (!cpu_online(dest_cpu))
1279				continue;
1280			if (!cpu_active(dest_cpu))
1281				continue;
1282			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283				return dest_cpu;
1284		}
1285	}
1286
1287	for (;;) {
1288		/* Any allowed, online CPU? */
1289		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
1294			goto out;
1295		}
1296
1297		switch (state) {
1298		case cpuset:
1299			/* No more Mr. Nice Guy. */
1300			cpuset_cpus_allowed_fallback(p);
1301			state = possible;
1302			break;
1303
1304		case possible:
1305			do_set_cpus_allowed(p, cpu_possible_mask);
1306			state = fail;
1307			break;
1308
1309		case fail:
1310			BUG();
1311			break;
1312		}
1313	}
1314
1315out:
1316	if (state != cpuset) {
1317		/*
1318		 * Don't tell them about moving exiting tasks or
1319		 * kernel threads (both mm NULL), since they never
1320		 * leave kernel.
1321		 */
1322		if (p->mm && printk_ratelimit()) {
1323			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324					task_pid_nr(p), p->comm, cpu);
1325		}
1326	}
1327
1328	return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339	/*
1340	 * In order not to call set_task_cpu() on a blocking task we need
1341	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342	 * cpu.
1343	 *
1344	 * Since this is common to all placement strategies, this lives here.
1345	 *
1346	 * [ this allows ->select_task() to simply return task_cpu(p) and
1347	 *   not worry about this generic constraint ]
1348	 */
1349	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350		     !cpu_online(cpu)))
1351		cpu = select_fallback_rq(task_cpu(p), p);
1352
1353	return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358	s64 diff = sample - *avg;
1359	*avg += diff >> 3;
1360}
1361#endif
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367	struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370	int this_cpu = smp_processor_id();
1371
1372	if (cpu == this_cpu) {
1373		schedstat_inc(rq, ttwu_local);
1374		schedstat_inc(p, se.statistics.nr_wakeups_local);
1375	} else {
1376		struct sched_domain *sd;
1377
1378		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379		rcu_read_lock();
1380		for_each_domain(this_cpu, sd) {
1381			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382				schedstat_inc(sd, ttwu_wake_remote);
1383				break;
1384			}
1385		}
1386		rcu_read_unlock();
1387	}
1388
1389	if (wake_flags & WF_MIGRATED)
1390		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394	schedstat_inc(rq, ttwu_count);
1395	schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397	if (wake_flags & WF_SYNC)
1398		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405	activate_task(rq, p, en_flags);
1406	p->on_rq = 1;
1407
1408	/* if a worker is waking up, notify workqueue */
1409	if (p->flags & PF_WQ_WORKER)
1410		wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419	check_preempt_curr(rq, p, wake_flags);
1420	trace_sched_wakeup(p, true);
1421
1422	p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424	if (p->sched_class->task_woken)
1425		p->sched_class->task_woken(rq, p);
1426
1427	if (rq->idle_stamp) {
1428		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429		u64 max = 2*rq->max_idle_balance_cost;
1430
1431		update_avg(&rq->avg_idle, delta);
1432
1433		if (rq->avg_idle > max)
1434			rq->avg_idle = max;
1435
1436		rq->idle_stamp = 0;
1437	}
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445	if (p->sched_contributes_to_load)
1446		rq->nr_uninterruptible--;
1447#endif
1448
1449	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450	ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461	struct rq *rq;
1462	int ret = 0;
1463
1464	rq = __task_rq_lock(p);
1465	if (p->on_rq) {
1466		/* check_preempt_curr() may use rq clock */
1467		update_rq_clock(rq);
1468		ttwu_do_wakeup(rq, p, wake_flags);
1469		ret = 1;
1470	}
1471	__task_rq_unlock(rq);
1472
1473	return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
1479	struct rq *rq = this_rq();
1480	struct llist_node *llist = llist_del_all(&rq->wake_list);
1481	struct task_struct *p;
1482
1483	raw_spin_lock(&rq->lock);
1484
1485	while (llist) {
1486		p = llist_entry(llist, struct task_struct, wake_entry);
1487		llist = llist_next(llist);
1488		ttwu_do_activate(rq, p, 0);
1489	}
1490
1491	raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
1496	/*
1497	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499	 * this IPI.
1500	 */
1501	preempt_fold_need_resched();
1502
1503	if (llist_empty(&this_rq()->wake_list)
1504			&& !tick_nohz_full_cpu(smp_processor_id())
1505			&& !got_nohz_idle_kick())
1506		return;
1507
1508	/*
1509	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510	 * traditionally all their work was done from the interrupt return
1511	 * path. Now that we actually do some work, we need to make sure
1512	 * we do call them.
1513	 *
1514	 * Some archs already do call them, luckily irq_enter/exit nest
1515	 * properly.
1516	 *
1517	 * Arguably we should visit all archs and update all handlers,
1518	 * however a fair share of IPIs are still resched only so this would
1519	 * somewhat pessimize the simple resched case.
1520	 */
1521	irq_enter();
1522	tick_nohz_full_check();
1523	sched_ttwu_pending();
1524
1525	/*
1526	 * Check if someone kicked us for doing the nohz idle load balance.
1527	 */
1528	if (unlikely(got_nohz_idle_kick())) {
1529		this_rq()->idle_balance = 1;
1530		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531	}
1532	irq_exit();
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
1537	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538		smp_send_reschedule(cpu);
1539}
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
1542{
1543	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549	struct rq *rq = cpu_rq(cpu);
1550
1551#if defined(CONFIG_SMP)
1552	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554		ttwu_queue_remote(p, cpu);
1555		return;
1556	}
1557#endif
1558
1559	raw_spin_lock(&rq->lock);
1560	ttwu_do_activate(rq, p, 0);
1561	raw_spin_unlock(&rq->lock);
1562}
1563
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582	unsigned long flags;
1583	int cpu, success = 0;
1584
1585	/*
1586	 * If we are going to wake up a thread waiting for CONDITION we
1587	 * need to ensure that CONDITION=1 done by the caller can not be
1588	 * reordered with p->state check below. This pairs with mb() in
1589	 * set_current_state() the waiting thread does.
1590	 */
1591	smp_mb__before_spinlock();
1592	raw_spin_lock_irqsave(&p->pi_lock, flags);
1593	if (!(p->state & state))
1594		goto out;
1595
1596	success = 1; /* we're going to change ->state */
1597	cpu = task_cpu(p);
1598
1599	if (p->on_rq && ttwu_remote(p, wake_flags))
1600		goto stat;
1601
1602#ifdef CONFIG_SMP
1603	/*
1604	 * If the owning (remote) cpu is still in the middle of schedule() with
1605	 * this task as prev, wait until its done referencing the task.
1606	 */
1607	while (p->on_cpu)
1608		cpu_relax();
1609	/*
1610	 * Pairs with the smp_wmb() in finish_lock_switch().
1611	 */
1612	smp_rmb();
1613
1614	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615	p->state = TASK_WAKING;
1616
1617	if (p->sched_class->task_waking)
1618		p->sched_class->task_waking(p);
1619
1620	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621	if (task_cpu(p) != cpu) {
1622		wake_flags |= WF_MIGRATED;
1623		set_task_cpu(p, cpu);
1624	}
1625#endif /* CONFIG_SMP */
1626
1627	ttwu_queue(p, cpu);
1628stat:
1629	ttwu_stat(p, cpu, wake_flags);
1630out:
1631	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633	return success;
1634}
1635
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646	struct rq *rq = task_rq(p);
1647
1648	if (WARN_ON_ONCE(rq != this_rq()) ||
1649	    WARN_ON_ONCE(p == current))
1650		return;
1651
1652	lockdep_assert_held(&rq->lock);
1653
1654	if (!raw_spin_trylock(&p->pi_lock)) {
1655		raw_spin_unlock(&rq->lock);
1656		raw_spin_lock(&p->pi_lock);
1657		raw_spin_lock(&rq->lock);
1658	}
1659
1660	if (!(p->state & TASK_NORMAL))
1661		goto out;
1662
1663	if (!p->on_rq)
1664		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666	ttwu_do_wakeup(rq, p, 0);
1667	ttwu_stat(p, smp_processor_id(), 0);
1668out:
1669	raw_spin_unlock(&p->pi_lock);
1670}
1671
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684int wake_up_process(struct task_struct *p)
1685{
1686	WARN_ON(task_is_stopped_or_traced(p));
1687	return try_to_wake_up(p, TASK_NORMAL, 0);
1688}
1689EXPORT_SYMBOL(wake_up_process);
1690
1691int wake_up_state(struct task_struct *p, unsigned int state)
1692{
1693	return try_to_wake_up(p, state, 0);
1694}
1695
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703{
1704	p->on_rq			= 0;
1705
1706	p->se.on_rq			= 0;
1707	p->se.exec_start		= 0;
1708	p->se.sum_exec_runtime		= 0;
1709	p->se.prev_sum_exec_runtime	= 0;
1710	p->se.nr_migrations		= 0;
1711	p->se.vruntime			= 0;
1712	INIT_LIST_HEAD(&p->se.group_node);
1713
1714#ifdef CONFIG_SCHEDSTATS
1715	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716#endif
1717
1718	RB_CLEAR_NODE(&p->dl.rb_node);
1719	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720	p->dl.dl_runtime = p->dl.runtime = 0;
1721	p->dl.dl_deadline = p->dl.deadline = 0;
1722	p->dl.dl_period = 0;
1723	p->dl.flags = 0;
1724
1725	INIT_LIST_HEAD(&p->rt.run_list);
1726
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728	INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734		p->mm->numa_scan_seq = 0;
1735	}
1736
1737	if (clone_flags & CLONE_VM)
1738		p->numa_preferred_nid = current->numa_preferred_nid;
1739	else
1740		p->numa_preferred_nid = -1;
1741
1742	p->node_stamp = 0ULL;
1743	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745	p->numa_work.next = &p->numa_work;
1746	p->numa_faults_memory = NULL;
1747	p->numa_faults_buffer_memory = NULL;
1748	p->last_task_numa_placement = 0;
1749	p->last_sum_exec_runtime = 0;
1750
1751	INIT_LIST_HEAD(&p->numa_entry);
1752	p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760	if (enabled)
1761		sched_feat_set("NUMA");
1762	else
1763		sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770	numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778	struct ctl_table t;
1779	int err;
1780	int state = numabalancing_enabled;
1781
1782	if (write && !capable(CAP_SYS_ADMIN))
1783		return -EPERM;
1784
1785	t = *table;
1786	t.data = &state;
1787	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788	if (err < 0)
1789		return err;
1790	if (write)
1791		set_numabalancing_state(state);
1792	return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802	unsigned long flags;
1803	int cpu = get_cpu();
1804
1805	__sched_fork(clone_flags, p);
1806	/*
1807	 * We mark the process as running here. This guarantees that
1808	 * nobody will actually run it, and a signal or other external
1809	 * event cannot wake it up and insert it on the runqueue either.
1810	 */
1811	p->state = TASK_RUNNING;
1812
1813	/*
1814	 * Make sure we do not leak PI boosting priority to the child.
1815	 */
1816	p->prio = current->normal_prio;
1817
1818	/*
1819	 * Revert to default priority/policy on fork if requested.
1820	 */
1821	if (unlikely(p->sched_reset_on_fork)) {
1822		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823			p->policy = SCHED_NORMAL;
1824			p->static_prio = NICE_TO_PRIO(0);
1825			p->rt_priority = 0;
1826		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827			p->static_prio = NICE_TO_PRIO(0);
1828
1829		p->prio = p->normal_prio = __normal_prio(p);
1830		set_load_weight(p);
1831
1832		/*
1833		 * We don't need the reset flag anymore after the fork. It has
1834		 * fulfilled its duty:
1835		 */
1836		p->sched_reset_on_fork = 0;
1837	}
1838
1839	if (dl_prio(p->prio)) {
1840		put_cpu();
1841		return -EAGAIN;
1842	} else if (rt_prio(p->prio)) {
1843		p->sched_class = &rt_sched_class;
1844	} else {
1845		p->sched_class = &fair_sched_class;
1846	}
1847
1848	if (p->sched_class->task_fork)
1849		p->sched_class->task_fork(p);
1850
1851	/*
1852	 * The child is not yet in the pid-hash so no cgroup attach races,
1853	 * and the cgroup is pinned to this child due to cgroup_fork()
1854	 * is ran before sched_fork().
1855	 *
1856	 * Silence PROVE_RCU.
1857	 */
1858	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859	set_task_cpu(p, cpu);
1860	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863	if (likely(sched_info_on()))
1864		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867	p->on_cpu = 0;
1868#endif
1869	init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875	put_cpu();
1876	return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881	if (runtime == RUNTIME_INF)
1882		return 1ULL << 20;
1883
1884	/*
1885	 * Doing this here saves a lot of checks in all
1886	 * the calling paths, and returning zero seems
1887	 * safe for them anyway.
1888	 */
1889	if (period == 0)
1890		return 0;
1891
1892	return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898	return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903	struct root_domain *rd = cpu_rq(i)->rd;
1904	int cpus = 0;
1905
1906	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907		cpus++;
1908
1909	return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914	return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919	return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926	dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932	dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938	return dl_b->bw != -1 &&
1939	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951		       const struct sched_attr *attr)
1952{
1953
1954	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955	u64 period = attr->sched_period ?: attr->sched_deadline;
1956	u64 runtime = attr->sched_runtime;
1957	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958	int cpus, err = -1;
1959
1960	if (new_bw == p->dl.dl_bw)
1961		return 0;
1962
1963	/*
1964	 * Either if a task, enters, leave, or stays -deadline but changes
1965	 * its parameters, we may need to update accordingly the total
1966	 * allocated bandwidth of the container.
1967	 */
1968	raw_spin_lock(&dl_b->lock);
1969	cpus = dl_bw_cpus(task_cpu(p));
1970	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972		__dl_add(dl_b, new_bw);
1973		err = 0;
1974	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976		__dl_clear(dl_b, p->dl.dl_bw);
1977		__dl_add(dl_b, new_bw);
1978		err = 0;
1979	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980		__dl_clear(dl_b, p->dl.dl_bw);
1981		err = 0;
1982	}
1983	raw_spin_unlock(&dl_b->lock);
1984
1985	return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999	unsigned long flags;
2000	struct rq *rq;
2001
2002	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004	/*
2005	 * Fork balancing, do it here and not earlier because:
2006	 *  - cpus_allowed can change in the fork path
2007	 *  - any previously selected cpu might disappear through hotplug
2008	 */
2009	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012	/* Initialize new task's runnable average */
2013	init_task_runnable_average(p);
2014	rq = __task_rq_lock(p);
2015	activate_task(rq, p, 0);
2016	p->on_rq = 1;
2017	trace_sched_wakeup_new(p, true);
2018	check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020	if (p->sched_class->task_woken)
2021		p->sched_class->task_woken(rq, p);
2022#endif
2023	task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046	hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052	struct preempt_notifier *notifier;
2053
2054	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060				 struct task_struct *next)
2061{
2062	struct preempt_notifier *notifier;
2063
2064	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065		notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076				 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097		    struct task_struct *next)
2098{
2099	trace_sched_switch(prev, next);
2100	sched_info_switch(rq, prev, next);
2101	perf_event_task_sched_out(prev, next);
2102	fire_sched_out_preempt_notifiers(prev, next);
2103	prepare_lock_switch(rq, next);
2104	prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123	__releases(rq->lock)
2124{
2125	struct mm_struct *mm = rq->prev_mm;
2126	long prev_state;
2127
2128	rq->prev_mm = NULL;
2129
2130	/*
2131	 * A task struct has one reference for the use as "current".
2132	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133	 * schedule one last time. The schedule call will never return, and
2134	 * the scheduled task must drop that reference.
2135	 * The test for TASK_DEAD must occur while the runqueue locks are
2136	 * still held, otherwise prev could be scheduled on another cpu, die
2137	 * there before we look at prev->state, and then the reference would
2138	 * be dropped twice.
2139	 *		Manfred Spraul <manfred@colorfullife.com>
2140	 */
2141	prev_state = prev->state;
2142	vtime_task_switch(prev);
2143	finish_arch_switch(prev);
2144	perf_event_task_sched_in(prev, current);
2145	finish_lock_switch(rq, prev);
2146	finish_arch_post_lock_switch();
2147
2148	fire_sched_in_preempt_notifiers(current);
2149	if (mm)
2150		mmdrop(mm);
2151	if (unlikely(prev_state == TASK_DEAD)) {
2152		if (prev->sched_class->task_dead)
2153			prev->sched_class->task_dead(prev);
2154
2155		/*
2156		 * Remove function-return probe instances associated with this
2157		 * task and put them back on the free list.
2158		 */
2159		kprobe_flush_task(prev);
2160		put_task_struct(prev);
2161	}
2162
2163	tick_nohz_task_switch(current);
2164}
2165
2166#ifdef CONFIG_SMP
2167
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171	if (rq->post_schedule) {
2172		unsigned long flags;
2173
2174		raw_spin_lock_irqsave(&rq->lock, flags);
2175		if (rq->curr->sched_class->post_schedule)
2176			rq->curr->sched_class->post_schedule(rq);
2177		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179		rq->post_schedule = 0;
2180	}
2181}
2182
2183#else
2184
2185static inline void post_schedule(struct rq *rq)
2186{
2187}
2188
2189#endif
2190
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195asmlinkage void schedule_tail(struct task_struct *prev)
2196	__releases(rq->lock)
2197{
2198	struct rq *rq = this_rq();
2199
2200	finish_task_switch(rq, prev);
2201
2202	/*
2203	 * FIXME: do we need to worry about rq being invalidated by the
2204	 * task_switch?
2205	 */
2206	post_schedule(rq);
2207
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209	/* In this case, finish_task_switch does not reenable preemption */
2210	preempt_enable();
2211#endif
2212	if (current->set_child_tid)
2213		put_user(task_pid_vnr(current), current->set_child_tid);
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220static inline void
2221context_switch(struct rq *rq, struct task_struct *prev,
2222	       struct task_struct *next)
2223{
2224	struct mm_struct *mm, *oldmm;
2225
2226	prepare_task_switch(rq, prev, next);
2227
2228	mm = next->mm;
2229	oldmm = prev->active_mm;
2230	/*
2231	 * For paravirt, this is coupled with an exit in switch_to to
2232	 * combine the page table reload and the switch backend into
2233	 * one hypercall.
2234	 */
2235	arch_start_context_switch(prev);
2236
2237	if (!mm) {
2238		next->active_mm = oldmm;
2239		atomic_inc(&oldmm->mm_count);
2240		enter_lazy_tlb(oldmm, next);
2241	} else
2242		switch_mm(oldmm, mm, next);
2243
2244	if (!prev->mm) {
2245		prev->active_mm = NULL;
2246		rq->prev_mm = oldmm;
2247	}
2248	/*
2249	 * Since the runqueue lock will be released by the next
2250	 * task (which is an invalid locking op but in the case
2251	 * of the scheduler it's an obvious special-case), so we
2252	 * do an early lockdep release here:
2253	 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256#endif
2257
2258	context_tracking_task_switch(prev, next);
2259	/* Here we just switch the register state and the stack. */
2260	switch_to(prev, next, prev);
2261
2262	barrier();
2263	/*
2264	 * this_rq must be evaluated again because prev may have moved
2265	 * CPUs since it called schedule(), thus the 'rq' on its stack
2266	 * frame will be invalid.
2267	 */
2268	finish_task_switch(this_rq(), prev);
2269}
2270
2271/*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277unsigned long nr_running(void)
2278{
2279	unsigned long i, sum = 0;
2280
2281	for_each_online_cpu(i)
2282		sum += cpu_rq(i)->nr_running;
2283
2284	return sum;
2285}
2286
2287unsigned long long nr_context_switches(void)
2288{
2289	int i;
2290	unsigned long long sum = 0;
2291
2292	for_each_possible_cpu(i)
2293		sum += cpu_rq(i)->nr_switches;
2294
2295	return sum;
2296}
2297
2298unsigned long nr_iowait(void)
2299{
2300	unsigned long i, sum = 0;
2301
2302	for_each_possible_cpu(i)
2303		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305	return sum;
2306}
2307
2308unsigned long nr_iowait_cpu(int cpu)
2309{
2310	struct rq *this = cpu_rq(cpu);
2311	return atomic_read(&this->nr_iowait);
2312}
2313
2314#ifdef CONFIG_SMP
2315
2316/*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320void sched_exec(void)
2321{
2322	struct task_struct *p = current;
2323	unsigned long flags;
2324	int dest_cpu;
2325
2326	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328	if (dest_cpu == smp_processor_id())
2329		goto unlock;
2330
2331	if (likely(cpu_active(dest_cpu))) {
2332		struct migration_arg arg = { p, dest_cpu };
2333
2334		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336		return;
2337	}
2338unlock:
2339	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340}
2341
2342#endif
2343
2344DEFINE_PER_CPU(struct kernel_stat, kstat);
2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350/*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358	u64 ns = 0;
2359
2360	if (task_current(rq, p)) {
2361		update_rq_clock(rq);
2362		ns = rq_clock_task(rq) - p->se.exec_start;
2363		if ((s64)ns < 0)
2364			ns = 0;
2365	}
2366
2367	return ns;
2368}
2369
2370unsigned long long task_delta_exec(struct task_struct *p)
2371{
2372	unsigned long flags;
2373	struct rq *rq;
2374	u64 ns = 0;
2375
2376	rq = task_rq_lock(p, &flags);
2377	ns = do_task_delta_exec(p, rq);
2378	task_rq_unlock(rq, p, &flags);
2379
2380	return ns;
2381}
2382
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390	unsigned long flags;
2391	struct rq *rq;
2392	u64 ns = 0;
2393
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395	/*
2396	 * 64-bit doesn't need locks to atomically read a 64bit value.
2397	 * So we have a optimization chance when the task's delta_exec is 0.
2398	 * Reading ->on_cpu is racy, but this is ok.
2399	 *
2400	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401	 * If we race with it entering cpu, unaccounted time is 0. This is
2402	 * indistinguishable from the read occurring a few cycles earlier.
2403	 */
2404	if (!p->on_cpu)
2405		return p->se.sum_exec_runtime;
2406#endif
2407
2408	rq = task_rq_lock(p, &flags);
2409	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410	task_rq_unlock(rq, p, &flags);
2411
2412	return ns;
2413}
2414
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419void scheduler_tick(void)
2420{
2421	int cpu = smp_processor_id();
2422	struct rq *rq = cpu_rq(cpu);
2423	struct task_struct *curr = rq->curr;
2424
2425	sched_clock_tick();
2426
2427	raw_spin_lock(&rq->lock);
2428	update_rq_clock(rq);
2429	curr->sched_class->task_tick(rq, curr, 0);
2430	update_cpu_load_active(rq);
2431	raw_spin_unlock(&rq->lock);
2432
2433	perf_event_task_tick();
2434
2435#ifdef CONFIG_SMP
2436	rq->idle_balance = idle_cpu(cpu);
2437	trigger_load_balance(rq);
2438#endif
2439	rq_last_tick_reset(rq);
2440}
2441
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458	struct rq *rq = this_rq();
2459	unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461	next = rq->last_sched_tick + HZ;
2462
2463	if (time_before_eq(next, now))
2464		return 0;
2465
2466	return jiffies_to_nsecs(next - now);
2467}
2468#endif
2469
2470notrace unsigned long get_parent_ip(unsigned long addr)
2471{
2472	if (in_lock_functions(addr)) {
2473		addr = CALLER_ADDR2;
2474		if (in_lock_functions(addr))
2475			addr = CALLER_ADDR3;
2476	}
2477	return addr;
2478}
2479
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481				defined(CONFIG_PREEMPT_TRACER))
2482
2483void __kprobes preempt_count_add(int val)
2484{
2485#ifdef CONFIG_DEBUG_PREEMPT
2486	/*
2487	 * Underflow?
2488	 */
2489	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490		return;
2491#endif
2492	__preempt_count_add(val);
2493#ifdef CONFIG_DEBUG_PREEMPT
2494	/*
2495	 * Spinlock count overflowing soon?
2496	 */
2497	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498				PREEMPT_MASK - 10);
2499#endif
2500	if (preempt_count() == val) {
2501		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503		current->preempt_disable_ip = ip;
2504#endif
2505		trace_preempt_off(CALLER_ADDR0, ip);
2506	}
2507}
2508EXPORT_SYMBOL(preempt_count_add);
2509
2510void __kprobes preempt_count_sub(int val)
2511{
2512#ifdef CONFIG_DEBUG_PREEMPT
2513	/*
2514	 * Underflow?
2515	 */
2516	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517		return;
2518	/*
2519	 * Is the spinlock portion underflowing?
2520	 */
2521	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522			!(preempt_count() & PREEMPT_MASK)))
2523		return;
2524#endif
2525
2526	if (preempt_count() == val)
2527		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528	__preempt_count_sub(val);
2529}
2530EXPORT_SYMBOL(preempt_count_sub);
2531
2532#endif
2533
2534/*
2535 * Print scheduling while atomic bug:
2536 */
2537static noinline void __schedule_bug(struct task_struct *prev)
2538{
2539	if (oops_in_progress)
2540		return;
2541
2542	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543		prev->comm, prev->pid, preempt_count());
2544
2545	debug_show_held_locks(prev);
2546	print_modules();
2547	if (irqs_disabled())
2548		print_irqtrace_events(prev);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550	if (in_atomic_preempt_off()) {
2551		pr_err("Preemption disabled at:");
2552		print_ip_sym(current->preempt_disable_ip);
2553		pr_cont("\n");
2554	}
2555#endif
2556	dump_stack();
2557	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558}
2559
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
2565	/*
2566	 * Test if we are atomic. Since do_exit() needs to call into
2567	 * schedule() atomically, we ignore that path. Otherwise whine
2568	 * if we are scheduling when we should not.
2569	 */
2570	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571		__schedule_bug(prev);
2572	rcu_sleep_check();
2573
2574	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576	schedstat_inc(this_rq(), sched_count);
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
2583pick_next_task(struct rq *rq, struct task_struct *prev)
2584{
2585	const struct sched_class *class = &fair_sched_class;
2586	struct task_struct *p;
2587
2588	/*
2589	 * Optimization: we know that if all tasks are in
2590	 * the fair class we can call that function directly:
2591	 */
2592	if (likely(prev->sched_class == class &&
2593		   rq->nr_running == rq->cfs.h_nr_running)) {
2594		p = fair_sched_class.pick_next_task(rq, prev);
2595		if (unlikely(p == RETRY_TASK))
2596			goto again;
2597
2598		/* assumes fair_sched_class->next == idle_sched_class */
2599		if (unlikely(!p))
2600			p = idle_sched_class.pick_next_task(rq, prev);
2601
2602		return p;
2603	}
2604
2605again:
2606	for_each_class(class) {
2607		p = class->pick_next_task(rq, prev);
2608		if (p) {
2609			if (unlikely(p == RETRY_TASK))
2610				goto again;
2611			return p;
2612		}
2613	}
2614
2615	BUG(); /* the idle class will always have a runnable task */
2616}
2617
2618/*
2619 * __schedule() is the main scheduler function.
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 *      paths. For example, see arch/x86/entry_64.S.
2627 *
2628 *      To drive preemption between tasks, the scheduler sets the flag in timer
2629 *      interrupt handler scheduler_tick().
2630 *
2631 *   3. Wakeups don't really cause entry into schedule(). They add a
2632 *      task to the run-queue and that's it.
2633 *
2634 *      Now, if the new task added to the run-queue preempts the current
2635 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 *      called on the nearest possible occasion:
2637 *
2638 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 *         - in syscall or exception context, at the next outmost
2641 *           preempt_enable(). (this might be as soon as the wake_up()'s
2642 *           spin_unlock()!)
2643 *
2644 *         - in IRQ context, return from interrupt-handler to
2645 *           preemptible context
2646 *
2647 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 *         then at the next:
2649 *
2650 *          - cond_resched() call
2651 *          - explicit schedule() call
2652 *          - return from syscall or exception to user-space
2653 *          - return from interrupt-handler to user-space
2654 */
2655static void __sched __schedule(void)
2656{
2657	struct task_struct *prev, *next;
2658	unsigned long *switch_count;
2659	struct rq *rq;
2660	int cpu;
2661
2662need_resched:
2663	preempt_disable();
2664	cpu = smp_processor_id();
2665	rq = cpu_rq(cpu);
2666	rcu_note_context_switch(cpu);
2667	prev = rq->curr;
2668
2669	schedule_debug(prev);
2670
2671	if (sched_feat(HRTICK))
2672		hrtick_clear(rq);
2673
2674	/*
2675	 * Make sure that signal_pending_state()->signal_pending() below
2676	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677	 * done by the caller to avoid the race with signal_wake_up().
2678	 */
2679	smp_mb__before_spinlock();
2680	raw_spin_lock_irq(&rq->lock);
2681
2682	switch_count = &prev->nivcsw;
2683	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684		if (unlikely(signal_pending_state(prev->state, prev))) {
2685			prev->state = TASK_RUNNING;
2686		} else {
2687			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688			prev->on_rq = 0;
2689
2690			/*
2691			 * If a worker went to sleep, notify and ask workqueue
2692			 * whether it wants to wake up a task to maintain
2693			 * concurrency.
2694			 */
2695			if (prev->flags & PF_WQ_WORKER) {
2696				struct task_struct *to_wakeup;
2697
2698				to_wakeup = wq_worker_sleeping(prev, cpu);
2699				if (to_wakeup)
2700					try_to_wake_up_local(to_wakeup);
2701			}
2702		}
2703		switch_count = &prev->nvcsw;
2704	}
2705
2706	if (prev->on_rq || rq->skip_clock_update < 0)
2707		update_rq_clock(rq);
2708
2709	next = pick_next_task(rq, prev);
2710	clear_tsk_need_resched(prev);
2711	clear_preempt_need_resched();
2712	rq->skip_clock_update = 0;
2713
2714	if (likely(prev != next)) {
2715		rq->nr_switches++;
2716		rq->curr = next;
2717		++*switch_count;
2718
2719		context_switch(rq, prev, next); /* unlocks the rq */
2720		/*
2721		 * The context switch have flipped the stack from under us
2722		 * and restored the local variables which were saved when
2723		 * this task called schedule() in the past. prev == current
2724		 * is still correct, but it can be moved to another cpu/rq.
2725		 */
2726		cpu = smp_processor_id();
2727		rq = cpu_rq(cpu);
2728	} else
2729		raw_spin_unlock_irq(&rq->lock);
2730
2731	post_schedule(rq);
2732
2733	sched_preempt_enable_no_resched();
2734	if (need_resched())
2735		goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740	if (!tsk->state || tsk_is_pi_blocked(tsk))
2741		return;
2742	/*
2743	 * If we are going to sleep and we have plugged IO queued,
2744	 * make sure to submit it to avoid deadlocks.
2745	 */
2746	if (blk_needs_flush_plug(tsk))
2747		blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage void __sched schedule(void)
2751{
2752	struct task_struct *tsk = current;
2753
2754	sched_submit_work(tsk);
2755	__schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage void __sched schedule_user(void)
2761{
2762	/*
2763	 * If we come here after a random call to set_need_resched(),
2764	 * or we have been woken up remotely but the IPI has not yet arrived,
2765	 * we haven't yet exited the RCU idle mode. Do it here manually until
2766	 * we find a better solution.
2767	 */
2768	user_exit();
2769	schedule();
2770	user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781	sched_preempt_enable_no_resched();
2782	schedule();
2783	preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage void __sched notrace preempt_schedule(void)
2793{
2794	/*
2795	 * If there is a non-zero preempt_count or interrupts are disabled,
2796	 * we do not want to preempt the current task. Just return..
2797	 */
2798	if (likely(!preemptible()))
2799		return;
2800
2801	do {
2802		__preempt_count_add(PREEMPT_ACTIVE);
2803		__schedule();
2804		__preempt_count_sub(PREEMPT_ACTIVE);
2805
2806		/*
2807		 * Check again in case we missed a preemption opportunity
2808		 * between schedule and now.
2809		 */
2810		barrier();
2811	} while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
2824	enum ctx_state prev_state;
2825
2826	/* Catch callers which need to be fixed */
2827	BUG_ON(preempt_count() || !irqs_disabled());
2828
2829	prev_state = exception_enter();
2830
2831	do {
2832		__preempt_count_add(PREEMPT_ACTIVE);
2833		local_irq_enable();
2834		__schedule();
2835		local_irq_disable();
2836		__preempt_count_sub(PREEMPT_ACTIVE);
2837
2838		/*
2839		 * Check again in case we missed a preemption opportunity
2840		 * between schedule and now.
2841		 */
2842		barrier();
2843	} while (need_resched());
2844
2845	exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849			  void *key)
2850{
2851	return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855#ifdef CONFIG_RT_MUTEXES
2856
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
2867 */
2868void rt_mutex_setprio(struct task_struct *p, int prio)
2869{
2870	int oldprio, on_rq, running, enqueue_flag = 0;
2871	struct rq *rq;
2872	const struct sched_class *prev_class;
2873
2874	BUG_ON(prio > MAX_PRIO);
2875
2876	rq = __task_rq_lock(p);
2877
2878	/*
2879	 * Idle task boosting is a nono in general. There is one
2880	 * exception, when PREEMPT_RT and NOHZ is active:
2881	 *
2882	 * The idle task calls get_next_timer_interrupt() and holds
2883	 * the timer wheel base->lock on the CPU and another CPU wants
2884	 * to access the timer (probably to cancel it). We can safely
2885	 * ignore the boosting request, as the idle CPU runs this code
2886	 * with interrupts disabled and will complete the lock
2887	 * protected section without being interrupted. So there is no
2888	 * real need to boost.
2889	 */
2890	if (unlikely(p == rq->idle)) {
2891		WARN_ON(p != rq->curr);
2892		WARN_ON(p->pi_blocked_on);
2893		goto out_unlock;
2894	}
2895
2896	trace_sched_pi_setprio(p, prio);
2897	p->pi_top_task = rt_mutex_get_top_task(p);
2898	oldprio = p->prio;
2899	prev_class = p->sched_class;
2900	on_rq = p->on_rq;
2901	running = task_current(rq, p);
2902	if (on_rq)
2903		dequeue_task(rq, p, 0);
2904	if (running)
2905		p->sched_class->put_prev_task(rq, p);
2906
2907	/*
2908	 * Boosting condition are:
2909	 * 1. -rt task is running and holds mutex A
2910	 *      --> -dl task blocks on mutex A
2911	 *
2912	 * 2. -dl task is running and holds mutex A
2913	 *      --> -dl task blocks on mutex A and could preempt the
2914	 *          running task
2915	 */
2916	if (dl_prio(prio)) {
2917		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919			p->dl.dl_boosted = 1;
2920			p->dl.dl_throttled = 0;
2921			enqueue_flag = ENQUEUE_REPLENISH;
2922		} else
2923			p->dl.dl_boosted = 0;
2924		p->sched_class = &dl_sched_class;
2925	} else if (rt_prio(prio)) {
2926		if (dl_prio(oldprio))
2927			p->dl.dl_boosted = 0;
2928		if (oldprio < prio)
2929			enqueue_flag = ENQUEUE_HEAD;
2930		p->sched_class = &rt_sched_class;
2931	} else {
2932		if (dl_prio(oldprio))
2933			p->dl.dl_boosted = 0;
2934		p->sched_class = &fair_sched_class;
2935	}
2936
2937	p->prio = prio;
2938
2939	if (running)
2940		p->sched_class->set_curr_task(rq);
2941	if (on_rq)
2942		enqueue_task(rq, p, enqueue_flag);
2943
2944	check_class_changed(rq, p, prev_class, oldprio);
2945out_unlock:
2946	__task_rq_unlock(rq);
2947}
2948#endif
2949
2950void set_user_nice(struct task_struct *p, long nice)
2951{
2952	int old_prio, delta, on_rq;
2953	unsigned long flags;
2954	struct rq *rq;
2955
2956	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957		return;
2958	/*
2959	 * We have to be careful, if called from sys_setpriority(),
2960	 * the task might be in the middle of scheduling on another CPU.
2961	 */
2962	rq = task_rq_lock(p, &flags);
2963	/*
2964	 * The RT priorities are set via sched_setscheduler(), but we still
2965	 * allow the 'normal' nice value to be set - but as expected
2966	 * it wont have any effect on scheduling until the task is
2967	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968	 */
2969	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970		p->static_prio = NICE_TO_PRIO(nice);
2971		goto out_unlock;
2972	}
2973	on_rq = p->on_rq;
2974	if (on_rq)
2975		dequeue_task(rq, p, 0);
2976
2977	p->static_prio = NICE_TO_PRIO(nice);
2978	set_load_weight(p);
2979	old_prio = p->prio;
2980	p->prio = effective_prio(p);
2981	delta = p->prio - old_prio;
2982
2983	if (on_rq) {
2984		enqueue_task(rq, p, 0);
2985		/*
2986		 * If the task increased its priority or is running and
2987		 * lowered its priority, then reschedule its CPU:
2988		 */
2989		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990			resched_task(rq->curr);
2991	}
2992out_unlock:
2993	task_rq_unlock(rq, p, &flags);
2994}
2995EXPORT_SYMBOL(set_user_nice);
2996
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
3002int can_nice(const struct task_struct *p, const int nice)
3003{
3004	/* convert nice value [19,-20] to rlimit style value [1,40] */
3005	int nice_rlim = 20 - nice;
3006
3007	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008		capable(CAP_SYS_NICE));
3009}
3010
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
3020SYSCALL_DEFINE1(nice, int, increment)
3021{
3022	long nice, retval;
3023
3024	/*
3025	 * Setpriority might change our priority at the same moment.
3026	 * We don't have to worry. Conceptually one call occurs first
3027	 * and we have a single winner.
3028	 */
3029	if (increment < -40)
3030		increment = -40;
3031	if (increment > 40)
3032		increment = 40;
3033
3034	nice = task_nice(current) + increment;
3035	if (nice < MIN_NICE)
3036		nice = MIN_NICE;
3037	if (nice > MAX_NICE)
3038		nice = MAX_NICE;
3039
3040	if (increment < 0 && !can_nice(current, nice))
3041		return -EPERM;
3042
3043	retval = security_task_setnice(current, nice);
3044	if (retval)
3045		return retval;
3046
3047	set_user_nice(current, nice);
3048	return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
3061int task_prio(const struct task_struct *p)
3062{
3063	return p->prio - MAX_RT_PRIO;
3064}
3065
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */
3072int idle_cpu(int cpu)
3073{
3074	struct rq *rq = cpu_rq(cpu);
3075
3076	if (rq->curr != rq->idle)
3077		return 0;
3078
3079	if (rq->nr_running)
3080		return 0;
3081
3082#ifdef CONFIG_SMP
3083	if (!llist_empty(&rq->wake_list))
3084		return 0;
3085#endif
3086
3087	return 1;
3088}
3089
3090/**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
3093 *
3094 * Return: The idle task for the cpu @cpu.
3095 */
3096struct task_struct *idle_task(int cpu)
3097{
3098	return cpu_rq(cpu)->idle;
3099}
3100
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
3106 */
3107static struct task_struct *find_process_by_pid(pid_t pid)
3108{
3109	return pid ? find_task_by_vpid(pid) : current;
3110}
3111
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123	struct sched_dl_entity *dl_se = &p->dl;
3124
3125	init_dl_task_timer(dl_se);
3126	dl_se->dl_runtime = attr->sched_runtime;
3127	dl_se->dl_deadline = attr->sched_deadline;
3128	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129	dl_se->flags = attr->sched_flags;
3130	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131	dl_se->dl_throttled = 0;
3132	dl_se->dl_new = 1;
3133	dl_se->dl_yielded = 0;
3134}
3135
3136static void __setscheduler_params(struct task_struct *p,
3137		const struct sched_attr *attr)
3138{
3139	int policy = attr->sched_policy;
3140
3141	if (policy == -1) /* setparam */
3142		policy = p->policy;
3143
3144	p->policy = policy;
3145
3146	if (dl_policy(policy))
3147		__setparam_dl(p, attr);
3148	else if (fair_policy(policy))
3149		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
3151	/*
3152	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153	 * !rt_policy. Always setting this ensures that things like
3154	 * getparam()/getattr() don't report silly values for !rt tasks.
3155	 */
3156	p->rt_priority = attr->sched_priority;
3157	p->normal_prio = normal_prio(p);
3158	set_load_weight(p);
3159}
3160
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163			   const struct sched_attr *attr)
3164{
3165	__setscheduler_params(p, attr);
3166
3167	/*
3168	 * If we get here, there was no pi waiters boosting the
3169	 * task. It is safe to use the normal prio.
3170	 */
3171	p->prio = normal_prio(p);
3172
3173	if (dl_prio(p->prio))
3174		p->sched_class = &dl_sched_class;
3175	else if (rt_prio(p->prio))
3176		p->sched_class = &rt_sched_class;
3177	else
3178		p->sched_class = &fair_sched_class;
3179}
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184	struct sched_dl_entity *dl_se = &p->dl;
3185
3186	attr->sched_priority = p->rt_priority;
3187	attr->sched_runtime = dl_se->dl_runtime;
3188	attr->sched_deadline = dl_se->dl_deadline;
3189	attr->sched_period = dl_se->dl_period;
3190	attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution (1us); we
3199 * check sched_runtime only since it is always the smaller one.
3200 */
3201static bool
3202__checkparam_dl(const struct sched_attr *attr)
3203{
3204	return attr && attr->sched_deadline != 0 &&
3205		(attr->sched_period == 0 ||
3206		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3207		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3208		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3209}
3210
3211/*
3212 * check the target process has a UID that matches the current process's
3213 */
3214static bool check_same_owner(struct task_struct *p)
3215{
3216	const struct cred *cred = current_cred(), *pcred;
3217	bool match;
3218
3219	rcu_read_lock();
3220	pcred = __task_cred(p);
3221	match = (uid_eq(cred->euid, pcred->euid) ||
3222		 uid_eq(cred->euid, pcred->uid));
3223	rcu_read_unlock();
3224	return match;
3225}
3226
3227static int __sched_setscheduler(struct task_struct *p,
3228				const struct sched_attr *attr,
3229				bool user)
3230{
3231	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3232		      MAX_RT_PRIO - 1 - attr->sched_priority;
3233	int retval, oldprio, oldpolicy = -1, on_rq, running;
3234	int policy = attr->sched_policy;
3235	unsigned long flags;
3236	const struct sched_class *prev_class;
3237	struct rq *rq;
3238	int reset_on_fork;
3239
3240	/* may grab non-irq protected spin_locks */
3241	BUG_ON(in_interrupt());
3242recheck:
3243	/* double check policy once rq lock held */
3244	if (policy < 0) {
3245		reset_on_fork = p->sched_reset_on_fork;
3246		policy = oldpolicy = p->policy;
3247	} else {
3248		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3249
3250		if (policy != SCHED_DEADLINE &&
3251				policy != SCHED_FIFO && policy != SCHED_RR &&
3252				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3253				policy != SCHED_IDLE)
3254			return -EINVAL;
3255	}
3256
3257	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3258		return -EINVAL;
3259
3260	/*
3261	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3262	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3263	 * SCHED_BATCH and SCHED_IDLE is 0.
3264	 */
3265	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3266	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3267		return -EINVAL;
3268	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3269	    (rt_policy(policy) != (attr->sched_priority != 0)))
3270		return -EINVAL;
3271
3272	/*
3273	 * Allow unprivileged RT tasks to decrease priority:
3274	 */
3275	if (user && !capable(CAP_SYS_NICE)) {
3276		if (fair_policy(policy)) {
3277			if (attr->sched_nice < task_nice(p) &&
3278			    !can_nice(p, attr->sched_nice))
3279				return -EPERM;
3280		}
3281
3282		if (rt_policy(policy)) {
3283			unsigned long rlim_rtprio =
3284					task_rlimit(p, RLIMIT_RTPRIO);
3285
3286			/* can't set/change the rt policy */
3287			if (policy != p->policy && !rlim_rtprio)
3288				return -EPERM;
3289
3290			/* can't increase priority */
3291			if (attr->sched_priority > p->rt_priority &&
3292			    attr->sched_priority > rlim_rtprio)
3293				return -EPERM;
3294		}
3295
3296		 /*
3297		  * Can't set/change SCHED_DEADLINE policy at all for now
3298		  * (safest behavior); in the future we would like to allow
3299		  * unprivileged DL tasks to increase their relative deadline
3300		  * or reduce their runtime (both ways reducing utilization)
3301		  */
3302		if (dl_policy(policy))
3303			return -EPERM;
3304
3305		/*
3306		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3307		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3308		 */
3309		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3310			if (!can_nice(p, task_nice(p)))
3311				return -EPERM;
3312		}
3313
3314		/* can't change other user's priorities */
3315		if (!check_same_owner(p))
3316			return -EPERM;
3317
3318		/* Normal users shall not reset the sched_reset_on_fork flag */
3319		if (p->sched_reset_on_fork && !reset_on_fork)
3320			return -EPERM;
3321	}
3322
3323	if (user) {
3324		retval = security_task_setscheduler(p);
3325		if (retval)
3326			return retval;
3327	}
3328
3329	/*
3330	 * make sure no PI-waiters arrive (or leave) while we are
3331	 * changing the priority of the task:
3332	 *
3333	 * To be able to change p->policy safely, the appropriate
3334	 * runqueue lock must be held.
3335	 */
3336	rq = task_rq_lock(p, &flags);
3337
3338	/*
3339	 * Changing the policy of the stop threads its a very bad idea
3340	 */
3341	if (p == rq->stop) {
3342		task_rq_unlock(rq, p, &flags);
3343		return -EINVAL;
3344	}
3345
3346	/*
3347	 * If not changing anything there's no need to proceed further,
3348	 * but store a possible modification of reset_on_fork.
3349	 */
3350	if (unlikely(policy == p->policy)) {
3351		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3352			goto change;
3353		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3354			goto change;
3355		if (dl_policy(policy))
3356			goto change;
3357
3358		p->sched_reset_on_fork = reset_on_fork;
3359		task_rq_unlock(rq, p, &flags);
3360		return 0;
3361	}
3362change:
3363
3364	if (user) {
3365#ifdef CONFIG_RT_GROUP_SCHED
3366		/*
3367		 * Do not allow realtime tasks into groups that have no runtime
3368		 * assigned.
3369		 */
3370		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3371				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3372				!task_group_is_autogroup(task_group(p))) {
3373			task_rq_unlock(rq, p, &flags);
3374			return -EPERM;
3375		}
3376#endif
3377#ifdef CONFIG_SMP
3378		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3379			cpumask_t *span = rq->rd->span;
3380
3381			/*
3382			 * Don't allow tasks with an affinity mask smaller than
3383			 * the entire root_domain to become SCHED_DEADLINE. We
3384			 * will also fail if there's no bandwidth available.
3385			 */
3386			if (!cpumask_subset(span, &p->cpus_allowed) ||
3387			    rq->rd->dl_bw.bw == 0) {
3388				task_rq_unlock(rq, p, &flags);
3389				return -EPERM;
3390			}
3391		}
3392#endif
3393	}
3394
3395	/* recheck policy now with rq lock held */
3396	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397		policy = oldpolicy = -1;
3398		task_rq_unlock(rq, p, &flags);
3399		goto recheck;
3400	}
3401
3402	/*
3403	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3404	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3405	 * is available.
3406	 */
3407	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3408		task_rq_unlock(rq, p, &flags);
3409		return -EBUSY;
3410	}
3411
3412	p->sched_reset_on_fork = reset_on_fork;
3413	oldprio = p->prio;
3414
3415	/*
3416	 * Special case for priority boosted tasks.
3417	 *
3418	 * If the new priority is lower or equal (user space view)
3419	 * than the current (boosted) priority, we just store the new
3420	 * normal parameters and do not touch the scheduler class and
3421	 * the runqueue. This will be done when the task deboost
3422	 * itself.
3423	 */
3424	if (rt_mutex_check_prio(p, newprio)) {
3425		__setscheduler_params(p, attr);
3426		task_rq_unlock(rq, p, &flags);
3427		return 0;
3428	}
3429
3430	on_rq = p->on_rq;
3431	running = task_current(rq, p);
3432	if (on_rq)
3433		dequeue_task(rq, p, 0);
3434	if (running)
3435		p->sched_class->put_prev_task(rq, p);
3436
3437	prev_class = p->sched_class;
3438	__setscheduler(rq, p, attr);
3439
3440	if (running)
3441		p->sched_class->set_curr_task(rq);
3442	if (on_rq) {
3443		/*
3444		 * We enqueue to tail when the priority of a task is
3445		 * increased (user space view).
3446		 */
3447		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3448	}
3449
3450	check_class_changed(rq, p, prev_class, oldprio);
3451	task_rq_unlock(rq, p, &flags);
3452
3453	rt_mutex_adjust_pi(p);
3454
3455	return 0;
3456}
3457
3458static int _sched_setscheduler(struct task_struct *p, int policy,
3459			       const struct sched_param *param, bool check)
3460{
3461	struct sched_attr attr = {
3462		.sched_policy   = policy,
3463		.sched_priority = param->sched_priority,
3464		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3465	};
3466
3467	/*
3468	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3469	 */
3470	if (policy & SCHED_RESET_ON_FORK) {
3471		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3472		policy &= ~SCHED_RESET_ON_FORK;
3473		attr.sched_policy = policy;
3474	}
3475
3476	return __sched_setscheduler(p, &attr, check);
3477}
3478/**
3479 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3480 * @p: the task in question.
3481 * @policy: new policy.
3482 * @param: structure containing the new RT priority.
3483 *
3484 * Return: 0 on success. An error code otherwise.
3485 *
3486 * NOTE that the task may be already dead.
3487 */
3488int sched_setscheduler(struct task_struct *p, int policy,
3489		       const struct sched_param *param)
3490{
3491	return _sched_setscheduler(p, policy, param, true);
3492}
3493EXPORT_SYMBOL_GPL(sched_setscheduler);
3494
3495int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3496{
3497	return __sched_setscheduler(p, attr, true);
3498}
3499EXPORT_SYMBOL_GPL(sched_setattr);
3500
3501/**
3502 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Just like sched_setscheduler, only don't bother checking if the
3508 * current context has permission.  For example, this is needed in
3509 * stop_machine(): we create temporary high priority worker threads,
3510 * but our caller might not have that capability.
3511 *
3512 * Return: 0 on success. An error code otherwise.
3513 */
3514int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3515			       const struct sched_param *param)
3516{
3517	return _sched_setscheduler(p, policy, param, false);
3518}
3519
3520static int
3521do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3522{
3523	struct sched_param lparam;
3524	struct task_struct *p;
3525	int retval;
3526
3527	if (!param || pid < 0)
3528		return -EINVAL;
3529	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3530		return -EFAULT;
3531
3532	rcu_read_lock();
3533	retval = -ESRCH;
3534	p = find_process_by_pid(pid);
3535	if (p != NULL)
3536		retval = sched_setscheduler(p, policy, &lparam);
3537	rcu_read_unlock();
3538
3539	return retval;
3540}
3541
3542/*
3543 * Mimics kernel/events/core.c perf_copy_attr().
3544 */
3545static int sched_copy_attr(struct sched_attr __user *uattr,
3546			   struct sched_attr *attr)
3547{
3548	u32 size;
3549	int ret;
3550
3551	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3552		return -EFAULT;
3553
3554	/*
3555	 * zero the full structure, so that a short copy will be nice.
3556	 */
3557	memset(attr, 0, sizeof(*attr));
3558
3559	ret = get_user(size, &uattr->size);
3560	if (ret)
3561		return ret;
3562
3563	if (size > PAGE_SIZE)	/* silly large */
3564		goto err_size;
3565
3566	if (!size)		/* abi compat */
3567		size = SCHED_ATTR_SIZE_VER0;
3568
3569	if (size < SCHED_ATTR_SIZE_VER0)
3570		goto err_size;
3571
3572	/*
3573	 * If we're handed a bigger struct than we know of,
3574	 * ensure all the unknown bits are 0 - i.e. new
3575	 * user-space does not rely on any kernel feature
3576	 * extensions we dont know about yet.
3577	 */
3578	if (size > sizeof(*attr)) {
3579		unsigned char __user *addr;
3580		unsigned char __user *end;
3581		unsigned char val;
3582
3583		addr = (void __user *)uattr + sizeof(*attr);
3584		end  = (void __user *)uattr + size;
3585
3586		for (; addr < end; addr++) {
3587			ret = get_user(val, addr);
3588			if (ret)
3589				return ret;
3590			if (val)
3591				goto err_size;
3592		}
3593		size = sizeof(*attr);
3594	}
3595
3596	ret = copy_from_user(attr, uattr, size);
3597	if (ret)
3598		return -EFAULT;
3599
3600	/*
3601	 * XXX: do we want to be lenient like existing syscalls; or do we want
3602	 * to be strict and return an error on out-of-bounds values?
3603	 */
3604	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3605
3606out:
3607	return ret;
3608
3609err_size:
3610	put_user(sizeof(*attr), &uattr->size);
3611	ret = -E2BIG;
3612	goto out;
3613}
3614
3615/**
3616 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3617 * @pid: the pid in question.
3618 * @policy: new policy.
3619 * @param: structure containing the new RT priority.
3620 *
3621 * Return: 0 on success. An error code otherwise.
3622 */
3623SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3624		struct sched_param __user *, param)
3625{
3626	/* negative values for policy are not valid */
3627	if (policy < 0)
3628		return -EINVAL;
3629
3630	return do_sched_setscheduler(pid, policy, param);
3631}
3632
3633/**
3634 * sys_sched_setparam - set/change the RT priority of a thread
3635 * @pid: the pid in question.
3636 * @param: structure containing the new RT priority.
3637 *
3638 * Return: 0 on success. An error code otherwise.
3639 */
3640SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3641{
3642	return do_sched_setscheduler(pid, -1, param);
3643}
3644
3645/**
3646 * sys_sched_setattr - same as above, but with extended sched_attr
3647 * @pid: the pid in question.
3648 * @uattr: structure containing the extended parameters.
3649 * @flags: for future extension.
3650 */
3651SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3652			       unsigned int, flags)
3653{
3654	struct sched_attr attr;
3655	struct task_struct *p;
3656	int retval;
3657
3658	if (!uattr || pid < 0 || flags)
3659		return -EINVAL;
3660
3661	retval = sched_copy_attr(uattr, &attr);
3662	if (retval)
3663		return retval;
3664
3665	rcu_read_lock();
3666	retval = -ESRCH;
3667	p = find_process_by_pid(pid);
3668	if (p != NULL)
3669		retval = sched_setattr(p, &attr);
3670	rcu_read_unlock();
3671
3672	return retval;
3673}
3674
3675/**
3676 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3677 * @pid: the pid in question.
3678 *
3679 * Return: On success, the policy of the thread. Otherwise, a negative error
3680 * code.
3681 */
3682SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3683{
3684	struct task_struct *p;
3685	int retval;
3686
3687	if (pid < 0)
3688		return -EINVAL;
3689
3690	retval = -ESRCH;
3691	rcu_read_lock();
3692	p = find_process_by_pid(pid);
3693	if (p) {
3694		retval = security_task_getscheduler(p);
3695		if (!retval)
3696			retval = p->policy
3697				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3698	}
3699	rcu_read_unlock();
3700	return retval;
3701}
3702
3703/**
3704 * sys_sched_getparam - get the RT priority of a thread
3705 * @pid: the pid in question.
3706 * @param: structure containing the RT priority.
3707 *
3708 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3709 * code.
3710 */
3711SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3712{
3713	struct sched_param lp;
3714	struct task_struct *p;
3715	int retval;
3716
3717	if (!param || pid < 0)
3718		return -EINVAL;
3719
3720	rcu_read_lock();
3721	p = find_process_by_pid(pid);
3722	retval = -ESRCH;
3723	if (!p)
3724		goto out_unlock;
3725
3726	retval = security_task_getscheduler(p);
3727	if (retval)
3728		goto out_unlock;
3729
3730	if (task_has_dl_policy(p)) {
3731		retval = -EINVAL;
3732		goto out_unlock;
3733	}
3734	lp.sched_priority = p->rt_priority;
3735	rcu_read_unlock();
3736
3737	/*
3738	 * This one might sleep, we cannot do it with a spinlock held ...
3739	 */
3740	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3741
3742	return retval;
3743
3744out_unlock:
3745	rcu_read_unlock();
3746	return retval;
3747}
3748
3749static int sched_read_attr(struct sched_attr __user *uattr,
3750			   struct sched_attr *attr,
3751			   unsigned int usize)
3752{
3753	int ret;
3754
3755	if (!access_ok(VERIFY_WRITE, uattr, usize))
3756		return -EFAULT;
3757
3758	/*
3759	 * If we're handed a smaller struct than we know of,
3760	 * ensure all the unknown bits are 0 - i.e. old
3761	 * user-space does not get uncomplete information.
3762	 */
3763	if (usize < sizeof(*attr)) {
3764		unsigned char *addr;
3765		unsigned char *end;
3766
3767		addr = (void *)attr + usize;
3768		end  = (void *)attr + sizeof(*attr);
3769
3770		for (; addr < end; addr++) {
3771			if (*addr)
3772				goto err_size;
3773		}
3774
3775		attr->size = usize;
3776	}
3777
3778	ret = copy_to_user(uattr, attr, attr->size);
3779	if (ret)
3780		return -EFAULT;
3781
3782out:
3783	return ret;
3784
3785err_size:
3786	ret = -E2BIG;
3787	goto out;
3788}
3789
3790/**
3791 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3792 * @pid: the pid in question.
3793 * @uattr: structure containing the extended parameters.
3794 * @size: sizeof(attr) for fwd/bwd comp.
3795 * @flags: for future extension.
3796 */
3797SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3798		unsigned int, size, unsigned int, flags)
3799{
3800	struct sched_attr attr = {
3801		.size = sizeof(struct sched_attr),
3802	};
3803	struct task_struct *p;
3804	int retval;
3805
3806	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3807	    size < SCHED_ATTR_SIZE_VER0 || flags)
3808		return -EINVAL;
3809
3810	rcu_read_lock();
3811	p = find_process_by_pid(pid);
3812	retval = -ESRCH;
3813	if (!p)
3814		goto out_unlock;
3815
3816	retval = security_task_getscheduler(p);
3817	if (retval)
3818		goto out_unlock;
3819
3820	attr.sched_policy = p->policy;
3821	if (p->sched_reset_on_fork)
3822		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3823	if (task_has_dl_policy(p))
3824		__getparam_dl(p, &attr);
3825	else if (task_has_rt_policy(p))
3826		attr.sched_priority = p->rt_priority;
3827	else
3828		attr.sched_nice = task_nice(p);
3829
3830	rcu_read_unlock();
3831
3832	retval = sched_read_attr(uattr, &attr, size);
3833	return retval;
3834
3835out_unlock:
3836	rcu_read_unlock();
3837	return retval;
3838}
3839
3840long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3841{
3842	cpumask_var_t cpus_allowed, new_mask;
3843	struct task_struct *p;
3844	int retval;
3845
3846	rcu_read_lock();
3847
3848	p = find_process_by_pid(pid);
3849	if (!p) {
3850		rcu_read_unlock();
3851		return -ESRCH;
3852	}
3853
3854	/* Prevent p going away */
3855	get_task_struct(p);
3856	rcu_read_unlock();
3857
3858	if (p->flags & PF_NO_SETAFFINITY) {
3859		retval = -EINVAL;
3860		goto out_put_task;
3861	}
3862	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3863		retval = -ENOMEM;
3864		goto out_put_task;
3865	}
3866	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3867		retval = -ENOMEM;
3868		goto out_free_cpus_allowed;
3869	}
3870	retval = -EPERM;
3871	if (!check_same_owner(p)) {
3872		rcu_read_lock();
3873		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3874			rcu_read_unlock();
3875			goto out_unlock;
3876		}
3877		rcu_read_unlock();
3878	}
3879
3880	retval = security_task_setscheduler(p);
3881	if (retval)
3882		goto out_unlock;
3883
3884
3885	cpuset_cpus_allowed(p, cpus_allowed);
3886	cpumask_and(new_mask, in_mask, cpus_allowed);
3887
3888	/*
3889	 * Since bandwidth control happens on root_domain basis,
3890	 * if admission test is enabled, we only admit -deadline
3891	 * tasks allowed to run on all the CPUs in the task's
3892	 * root_domain.
3893	 */
3894#ifdef CONFIG_SMP
3895	if (task_has_dl_policy(p)) {
3896		const struct cpumask *span = task_rq(p)->rd->span;
3897
3898		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3899			retval = -EBUSY;
3900			goto out_unlock;
3901		}
3902	}
3903#endif
3904again:
3905	retval = set_cpus_allowed_ptr(p, new_mask);
3906
3907	if (!retval) {
3908		cpuset_cpus_allowed(p, cpus_allowed);
3909		if (!cpumask_subset(new_mask, cpus_allowed)) {
3910			/*
3911			 * We must have raced with a concurrent cpuset
3912			 * update. Just reset the cpus_allowed to the
3913			 * cpuset's cpus_allowed
3914			 */
3915			cpumask_copy(new_mask, cpus_allowed);
3916			goto again;
3917		}
3918	}
3919out_unlock:
3920	free_cpumask_var(new_mask);
3921out_free_cpus_allowed:
3922	free_cpumask_var(cpus_allowed);
3923out_put_task:
3924	put_task_struct(p);
3925	return retval;
3926}
3927
3928static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3929			     struct cpumask *new_mask)
3930{
3931	if (len < cpumask_size())
3932		cpumask_clear(new_mask);
3933	else if (len > cpumask_size())
3934		len = cpumask_size();
3935
3936	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3937}
3938
3939/**
3940 * sys_sched_setaffinity - set the cpu affinity of a process
3941 * @pid: pid of the process
3942 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3943 * @user_mask_ptr: user-space pointer to the new cpu mask
3944 *
3945 * Return: 0 on success. An error code otherwise.
3946 */
3947SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3948		unsigned long __user *, user_mask_ptr)
3949{
3950	cpumask_var_t new_mask;
3951	int retval;
3952
3953	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3954		return -ENOMEM;
3955
3956	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3957	if (retval == 0)
3958		retval = sched_setaffinity(pid, new_mask);
3959	free_cpumask_var(new_mask);
3960	return retval;
3961}
3962
3963long sched_getaffinity(pid_t pid, struct cpumask *mask)
3964{
3965	struct task_struct *p;
3966	unsigned long flags;
3967	int retval;
3968
3969	rcu_read_lock();
3970
3971	retval = -ESRCH;
3972	p = find_process_by_pid(pid);
3973	if (!p)
3974		goto out_unlock;
3975
3976	retval = security_task_getscheduler(p);
3977	if (retval)
3978		goto out_unlock;
3979
3980	raw_spin_lock_irqsave(&p->pi_lock, flags);
3981	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3982	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3983
3984out_unlock:
3985	rcu_read_unlock();
3986
3987	return retval;
3988}
3989
3990/**
3991 * sys_sched_getaffinity - get the cpu affinity of a process
3992 * @pid: pid of the process
3993 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3994 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3995 *
3996 * Return: 0 on success. An error code otherwise.
3997 */
3998SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3999		unsigned long __user *, user_mask_ptr)
4000{
4001	int ret;
4002	cpumask_var_t mask;
4003
4004	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4005		return -EINVAL;
4006	if (len & (sizeof(unsigned long)-1))
4007		return -EINVAL;
4008
4009	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4010		return -ENOMEM;
4011
4012	ret = sched_getaffinity(pid, mask);
4013	if (ret == 0) {
4014		size_t retlen = min_t(size_t, len, cpumask_size());
4015
4016		if (copy_to_user(user_mask_ptr, mask, retlen))
4017			ret = -EFAULT;
4018		else
4019			ret = retlen;
4020	}
4021	free_cpumask_var(mask);
4022
4023	return ret;
4024}
4025
4026/**
4027 * sys_sched_yield - yield the current processor to other threads.
4028 *
4029 * This function yields the current CPU to other tasks. If there are no
4030 * other threads running on this CPU then this function will return.
4031 *
4032 * Return: 0.
4033 */
4034SYSCALL_DEFINE0(sched_yield)
4035{
4036	struct rq *rq = this_rq_lock();
4037
4038	schedstat_inc(rq, yld_count);
4039	current->sched_class->yield_task(rq);
4040
4041	/*
4042	 * Since we are going to call schedule() anyway, there's
4043	 * no need to preempt or enable interrupts:
4044	 */
4045	__release(rq->lock);
4046	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4047	do_raw_spin_unlock(&rq->lock);
4048	sched_preempt_enable_no_resched();
4049
4050	schedule();
4051
4052	return 0;
4053}
4054
4055static void __cond_resched(void)
4056{
4057	__preempt_count_add(PREEMPT_ACTIVE);
4058	__schedule();
4059	__preempt_count_sub(PREEMPT_ACTIVE);
4060}
4061
4062int __sched _cond_resched(void)
4063{
4064	if (should_resched()) {
4065		__cond_resched();
4066		return 1;
4067	}
4068	return 0;
4069}
4070EXPORT_SYMBOL(_cond_resched);
4071
4072/*
4073 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4074 * call schedule, and on return reacquire the lock.
4075 *
4076 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4077 * operations here to prevent schedule() from being called twice (once via
4078 * spin_unlock(), once by hand).
4079 */
4080int __cond_resched_lock(spinlock_t *lock)
4081{
4082	int resched = should_resched();
4083	int ret = 0;
4084
4085	lockdep_assert_held(lock);
4086
4087	if (spin_needbreak(lock) || resched) {
4088		spin_unlock(lock);
4089		if (resched)
4090			__cond_resched();
4091		else
4092			cpu_relax();
4093		ret = 1;
4094		spin_lock(lock);
4095	}
4096	return ret;
4097}
4098EXPORT_SYMBOL(__cond_resched_lock);
4099
4100int __sched __cond_resched_softirq(void)
4101{
4102	BUG_ON(!in_softirq());
4103
4104	if (should_resched()) {
4105		local_bh_enable();
4106		__cond_resched();
4107		local_bh_disable();
4108		return 1;
4109	}
4110	return 0;
4111}
4112EXPORT_SYMBOL(__cond_resched_softirq);
4113
4114/**
4115 * yield - yield the current processor to other threads.
4116 *
4117 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4118 *
4119 * The scheduler is at all times free to pick the calling task as the most
4120 * eligible task to run, if removing the yield() call from your code breaks
4121 * it, its already broken.
4122 *
4123 * Typical broken usage is:
4124 *
4125 * while (!event)
4126 * 	yield();
4127 *
4128 * where one assumes that yield() will let 'the other' process run that will
4129 * make event true. If the current task is a SCHED_FIFO task that will never
4130 * happen. Never use yield() as a progress guarantee!!
4131 *
4132 * If you want to use yield() to wait for something, use wait_event().
4133 * If you want to use yield() to be 'nice' for others, use cond_resched().
4134 * If you still want to use yield(), do not!
4135 */
4136void __sched yield(void)
4137{
4138	set_current_state(TASK_RUNNING);
4139	sys_sched_yield();
4140}
4141EXPORT_SYMBOL(yield);
4142
4143/**
4144 * yield_to - yield the current processor to another thread in
4145 * your thread group, or accelerate that thread toward the
4146 * processor it's on.
4147 * @p: target task
4148 * @preempt: whether task preemption is allowed or not
4149 *
4150 * It's the caller's job to ensure that the target task struct
4151 * can't go away on us before we can do any checks.
4152 *
4153 * Return:
4154 *	true (>0) if we indeed boosted the target task.
4155 *	false (0) if we failed to boost the target.
4156 *	-ESRCH if there's no task to yield to.
4157 */
4158bool __sched yield_to(struct task_struct *p, bool preempt)
4159{
4160	struct task_struct *curr = current;
4161	struct rq *rq, *p_rq;
4162	unsigned long flags;
4163	int yielded = 0;
4164
4165	local_irq_save(flags);
4166	rq = this_rq();
4167
4168again:
4169	p_rq = task_rq(p);
4170	/*
4171	 * If we're the only runnable task on the rq and target rq also
4172	 * has only one task, there's absolutely no point in yielding.
4173	 */
4174	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4175		yielded = -ESRCH;
4176		goto out_irq;
4177	}
4178
4179	double_rq_lock(rq, p_rq);
4180	if (task_rq(p) != p_rq) {
4181		double_rq_unlock(rq, p_rq);
4182		goto again;
4183	}
4184
4185	if (!curr->sched_class->yield_to_task)
4186		goto out_unlock;
4187
4188	if (curr->sched_class != p->sched_class)
4189		goto out_unlock;
4190
4191	if (task_running(p_rq, p) || p->state)
4192		goto out_unlock;
4193
4194	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4195	if (yielded) {
4196		schedstat_inc(rq, yld_count);
4197		/*
4198		 * Make p's CPU reschedule; pick_next_entity takes care of
4199		 * fairness.
4200		 */
4201		if (preempt && rq != p_rq)
4202			resched_task(p_rq->curr);
4203	}
4204
4205out_unlock:
4206	double_rq_unlock(rq, p_rq);
4207out_irq:
4208	local_irq_restore(flags);
4209
4210	if (yielded > 0)
4211		schedule();
4212
4213	return yielded;
4214}
4215EXPORT_SYMBOL_GPL(yield_to);
4216
4217/*
4218 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4219 * that process accounting knows that this is a task in IO wait state.
4220 */
4221void __sched io_schedule(void)
4222{
4223	struct rq *rq = raw_rq();
4224
4225	delayacct_blkio_start();
4226	atomic_inc(&rq->nr_iowait);
4227	blk_flush_plug(current);
4228	current->in_iowait = 1;
4229	schedule();
4230	current->in_iowait = 0;
4231	atomic_dec(&rq->nr_iowait);
4232	delayacct_blkio_end();
4233}
4234EXPORT_SYMBOL(io_schedule);
4235
4236long __sched io_schedule_timeout(long timeout)
4237{
4238	struct rq *rq = raw_rq();
4239	long ret;
4240
4241	delayacct_blkio_start();
4242	atomic_inc(&rq->nr_iowait);
4243	blk_flush_plug(current);
4244	current->in_iowait = 1;
4245	ret = schedule_timeout(timeout);
4246	current->in_iowait = 0;
4247	atomic_dec(&rq->nr_iowait);
4248	delayacct_blkio_end();
4249	return ret;
4250}
4251
4252/**
4253 * sys_sched_get_priority_max - return maximum RT priority.
4254 * @policy: scheduling class.
4255 *
4256 * Return: On success, this syscall returns the maximum
4257 * rt_priority that can be used by a given scheduling class.
4258 * On failure, a negative error code is returned.
4259 */
4260SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4261{
4262	int ret = -EINVAL;
4263
4264	switch (policy) {
4265	case SCHED_FIFO:
4266	case SCHED_RR:
4267		ret = MAX_USER_RT_PRIO-1;
4268		break;
4269	case SCHED_DEADLINE:
4270	case SCHED_NORMAL:
4271	case SCHED_BATCH:
4272	case SCHED_IDLE:
4273		ret = 0;
4274		break;
4275	}
4276	return ret;
4277}
4278
4279/**
4280 * sys_sched_get_priority_min - return minimum RT priority.
4281 * @policy: scheduling class.
4282 *
4283 * Return: On success, this syscall returns the minimum
4284 * rt_priority that can be used by a given scheduling class.
4285 * On failure, a negative error code is returned.
4286 */
4287SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4288{
4289	int ret = -EINVAL;
4290
4291	switch (policy) {
4292	case SCHED_FIFO:
4293	case SCHED_RR:
4294		ret = 1;
4295		break;
4296	case SCHED_DEADLINE:
4297	case SCHED_NORMAL:
4298	case SCHED_BATCH:
4299	case SCHED_IDLE:
4300		ret = 0;
4301	}
4302	return ret;
4303}
4304
4305/**
4306 * sys_sched_rr_get_interval - return the default timeslice of a process.
4307 * @pid: pid of the process.
4308 * @interval: userspace pointer to the timeslice value.
4309 *
4310 * this syscall writes the default timeslice value of a given process
4311 * into the user-space timespec buffer. A value of '0' means infinity.
4312 *
4313 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4314 * an error code.
4315 */
4316SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4317		struct timespec __user *, interval)
4318{
4319	struct task_struct *p;
4320	unsigned int time_slice;
4321	unsigned long flags;
4322	struct rq *rq;
4323	int retval;
4324	struct timespec t;
4325
4326	if (pid < 0)
4327		return -EINVAL;
4328
4329	retval = -ESRCH;
4330	rcu_read_lock();
4331	p = find_process_by_pid(pid);
4332	if (!p)
4333		goto out_unlock;
4334
4335	retval = security_task_getscheduler(p);
4336	if (retval)
4337		goto out_unlock;
4338
4339	rq = task_rq_lock(p, &flags);
4340	time_slice = 0;
4341	if (p->sched_class->get_rr_interval)
4342		time_slice = p->sched_class->get_rr_interval(rq, p);
4343	task_rq_unlock(rq, p, &flags);
4344
4345	rcu_read_unlock();
4346	jiffies_to_timespec(time_slice, &t);
4347	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4348	return retval;
4349
4350out_unlock:
4351	rcu_read_unlock();
4352	return retval;
4353}
4354
4355static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4356
4357void sched_show_task(struct task_struct *p)
4358{
4359	unsigned long free = 0;
4360	int ppid;
4361	unsigned state;
4362
4363	state = p->state ? __ffs(p->state) + 1 : 0;
4364	printk(KERN_INFO "%-15.15s %c", p->comm,
4365		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4366#if BITS_PER_LONG == 32
4367	if (state == TASK_RUNNING)
4368		printk(KERN_CONT " running  ");
4369	else
4370		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4371#else
4372	if (state == TASK_RUNNING)
4373		printk(KERN_CONT "  running task    ");
4374	else
4375		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4376#endif
4377#ifdef CONFIG_DEBUG_STACK_USAGE
4378	free = stack_not_used(p);
4379#endif
4380	rcu_read_lock();
4381	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4382	rcu_read_unlock();
4383	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4384		task_pid_nr(p), ppid,
4385		(unsigned long)task_thread_info(p)->flags);
4386
4387	print_worker_info(KERN_INFO, p);
4388	show_stack(p, NULL);
4389}
4390
4391void show_state_filter(unsigned long state_filter)
4392{
4393	struct task_struct *g, *p;
4394
4395#if BITS_PER_LONG == 32
4396	printk(KERN_INFO
4397		"  task                PC stack   pid father\n");
4398#else
4399	printk(KERN_INFO
4400		"  task                        PC stack   pid father\n");
4401#endif
4402	rcu_read_lock();
4403	do_each_thread(g, p) {
4404		/*
4405		 * reset the NMI-timeout, listing all files on a slow
4406		 * console might take a lot of time:
4407		 */
4408		touch_nmi_watchdog();
4409		if (!state_filter || (p->state & state_filter))
4410			sched_show_task(p);
4411	} while_each_thread(g, p);
4412
4413	touch_all_softlockup_watchdogs();
4414
4415#ifdef CONFIG_SCHED_DEBUG
4416	sysrq_sched_debug_show();
4417#endif
4418	rcu_read_unlock();
4419	/*
4420	 * Only show locks if all tasks are dumped:
4421	 */
4422	if (!state_filter)
4423		debug_show_all_locks();
4424}
4425
4426void init_idle_bootup_task(struct task_struct *idle)
4427{
4428	idle->sched_class = &idle_sched_class;
4429}
4430
4431/**
4432 * init_idle - set up an idle thread for a given CPU
4433 * @idle: task in question
4434 * @cpu: cpu the idle task belongs to
4435 *
4436 * NOTE: this function does not set the idle thread's NEED_RESCHED
4437 * flag, to make booting more robust.
4438 */
4439void init_idle(struct task_struct *idle, int cpu)
4440{
4441	struct rq *rq = cpu_rq(cpu);
4442	unsigned long flags;
4443
4444	raw_spin_lock_irqsave(&rq->lock, flags);
4445
4446	__sched_fork(0, idle);
4447	idle->state = TASK_RUNNING;
4448	idle->se.exec_start = sched_clock();
4449
4450	do_set_cpus_allowed(idle, cpumask_of(cpu));
4451	/*
4452	 * We're having a chicken and egg problem, even though we are
4453	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4454	 * lockdep check in task_group() will fail.
4455	 *
4456	 * Similar case to sched_fork(). / Alternatively we could
4457	 * use task_rq_lock() here and obtain the other rq->lock.
4458	 *
4459	 * Silence PROVE_RCU
4460	 */
4461	rcu_read_lock();
4462	__set_task_cpu(idle, cpu);
4463	rcu_read_unlock();
4464
4465	rq->curr = rq->idle = idle;
4466	idle->on_rq = 1;
4467#if defined(CONFIG_SMP)
4468	idle->on_cpu = 1;
4469#endif
4470	raw_spin_unlock_irqrestore(&rq->lock, flags);
4471
4472	/* Set the preempt count _outside_ the spinlocks! */
4473	init_idle_preempt_count(idle, cpu);
4474
4475	/*
4476	 * The idle tasks have their own, simple scheduling class:
4477	 */
4478	idle->sched_class = &idle_sched_class;
4479	ftrace_graph_init_idle_task(idle, cpu);
4480	vtime_init_idle(idle, cpu);
4481#if defined(CONFIG_SMP)
4482	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4483#endif
4484}
4485
4486#ifdef CONFIG_SMP
4487void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4488{
4489	if (p->sched_class && p->sched_class->set_cpus_allowed)
4490		p->sched_class->set_cpus_allowed(p, new_mask);
4491
4492	cpumask_copy(&p->cpus_allowed, new_mask);
4493	p->nr_cpus_allowed = cpumask_weight(new_mask);
4494}
4495
4496/*
4497 * This is how migration works:
4498 *
4499 * 1) we invoke migration_cpu_stop() on the target CPU using
4500 *    stop_one_cpu().
4501 * 2) stopper starts to run (implicitly forcing the migrated thread
4502 *    off the CPU)
4503 * 3) it checks whether the migrated task is still in the wrong runqueue.
4504 * 4) if it's in the wrong runqueue then the migration thread removes
4505 *    it and puts it into the right queue.
4506 * 5) stopper completes and stop_one_cpu() returns and the migration
4507 *    is done.
4508 */
4509
4510/*
4511 * Change a given task's CPU affinity. Migrate the thread to a
4512 * proper CPU and schedule it away if the CPU it's executing on
4513 * is removed from the allowed bitmask.
4514 *
4515 * NOTE: the caller must have a valid reference to the task, the
4516 * task must not exit() & deallocate itself prematurely. The
4517 * call is not atomic; no spinlocks may be held.
4518 */
4519int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4520{
4521	unsigned long flags;
4522	struct rq *rq;
4523	unsigned int dest_cpu;
4524	int ret = 0;
4525
4526	rq = task_rq_lock(p, &flags);
4527
4528	if (cpumask_equal(&p->cpus_allowed, new_mask))
4529		goto out;
4530
4531	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4532		ret = -EINVAL;
4533		goto out;
4534	}
4535
4536	do_set_cpus_allowed(p, new_mask);
4537
4538	/* Can the task run on the task's current CPU? If so, we're done */
4539	if (cpumask_test_cpu(task_cpu(p), new_mask))
4540		goto out;
4541
4542	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4543	if (p->on_rq) {
4544		struct migration_arg arg = { p, dest_cpu };
4545		/* Need help from migration thread: drop lock and wait. */
4546		task_rq_unlock(rq, p, &flags);
4547		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4548		tlb_migrate_finish(p->mm);
4549		return 0;
4550	}
4551out:
4552	task_rq_unlock(rq, p, &flags);
4553
4554	return ret;
4555}
4556EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4557
4558/*
4559 * Move (not current) task off this cpu, onto dest cpu. We're doing
4560 * this because either it can't run here any more (set_cpus_allowed()
4561 * away from this CPU, or CPU going down), or because we're
4562 * attempting to rebalance this task on exec (sched_exec).
4563 *
4564 * So we race with normal scheduler movements, but that's OK, as long
4565 * as the task is no longer on this CPU.
4566 *
4567 * Returns non-zero if task was successfully migrated.
4568 */
4569static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4570{
4571	struct rq *rq_dest, *rq_src;
4572	int ret = 0;
4573
4574	if (unlikely(!cpu_active(dest_cpu)))
4575		return ret;
4576
4577	rq_src = cpu_rq(src_cpu);
4578	rq_dest = cpu_rq(dest_cpu);
4579
4580	raw_spin_lock(&p->pi_lock);
4581	double_rq_lock(rq_src, rq_dest);
4582	/* Already moved. */
4583	if (task_cpu(p) != src_cpu)
4584		goto done;
4585	/* Affinity changed (again). */
4586	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4587		goto fail;
4588
4589	/*
4590	 * If we're not on a rq, the next wake-up will ensure we're
4591	 * placed properly.
4592	 */
4593	if (p->on_rq) {
4594		dequeue_task(rq_src, p, 0);
4595		set_task_cpu(p, dest_cpu);
4596		enqueue_task(rq_dest, p, 0);
4597		check_preempt_curr(rq_dest, p, 0);
4598	}
4599done:
4600	ret = 1;
4601fail:
4602	double_rq_unlock(rq_src, rq_dest);
4603	raw_spin_unlock(&p->pi_lock);
4604	return ret;
4605}
4606
4607#ifdef CONFIG_NUMA_BALANCING
4608/* Migrate current task p to target_cpu */
4609int migrate_task_to(struct task_struct *p, int target_cpu)
4610{
4611	struct migration_arg arg = { p, target_cpu };
4612	int curr_cpu = task_cpu(p);
4613
4614	if (curr_cpu == target_cpu)
4615		return 0;
4616
4617	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4618		return -EINVAL;
4619
4620	/* TODO: This is not properly updating schedstats */
4621
4622	trace_sched_move_numa(p, curr_cpu, target_cpu);
4623	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4624}
4625
4626/*
4627 * Requeue a task on a given node and accurately track the number of NUMA
4628 * tasks on the runqueues
4629 */
4630void sched_setnuma(struct task_struct *p, int nid)
4631{
4632	struct rq *rq;
4633	unsigned long flags;
4634	bool on_rq, running;
4635
4636	rq = task_rq_lock(p, &flags);
4637	on_rq = p->on_rq;
4638	running = task_current(rq, p);
4639
4640	if (on_rq)
4641		dequeue_task(rq, p, 0);
4642	if (running)
4643		p->sched_class->put_prev_task(rq, p);
4644
4645	p->numa_preferred_nid = nid;
4646
4647	if (running)
4648		p->sched_class->set_curr_task(rq);
4649	if (on_rq)
4650		enqueue_task(rq, p, 0);
4651	task_rq_unlock(rq, p, &flags);
4652}
4653#endif
4654
4655/*
4656 * migration_cpu_stop - this will be executed by a highprio stopper thread
4657 * and performs thread migration by bumping thread off CPU then
4658 * 'pushing' onto another runqueue.
4659 */
4660static int migration_cpu_stop(void *data)
4661{
4662	struct migration_arg *arg = data;
4663
4664	/*
4665	 * The original target cpu might have gone down and we might
4666	 * be on another cpu but it doesn't matter.
4667	 */
4668	local_irq_disable();
4669	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4670	local_irq_enable();
4671	return 0;
4672}
4673
4674#ifdef CONFIG_HOTPLUG_CPU
4675
4676/*
4677 * Ensures that the idle task is using init_mm right before its cpu goes
4678 * offline.
4679 */
4680void idle_task_exit(void)
4681{
4682	struct mm_struct *mm = current->active_mm;
4683
4684	BUG_ON(cpu_online(smp_processor_id()));
4685
4686	if (mm != &init_mm) {
4687		switch_mm(mm, &init_mm, current);
4688		finish_arch_post_lock_switch();
4689	}
4690	mmdrop(mm);
4691}
4692
4693/*
4694 * Since this CPU is going 'away' for a while, fold any nr_active delta
4695 * we might have. Assumes we're called after migrate_tasks() so that the
4696 * nr_active count is stable.
4697 *
4698 * Also see the comment "Global load-average calculations".
4699 */
4700static void calc_load_migrate(struct rq *rq)
4701{
4702	long delta = calc_load_fold_active(rq);
4703	if (delta)
4704		atomic_long_add(delta, &calc_load_tasks);
4705}
4706
4707static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4708{
4709}
4710
4711static const struct sched_class fake_sched_class = {
4712	.put_prev_task = put_prev_task_fake,
4713};
4714
4715static struct task_struct fake_task = {
4716	/*
4717	 * Avoid pull_{rt,dl}_task()
4718	 */
4719	.prio = MAX_PRIO + 1,
4720	.sched_class = &fake_sched_class,
4721};
4722
4723/*
4724 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4725 * try_to_wake_up()->select_task_rq().
4726 *
4727 * Called with rq->lock held even though we'er in stop_machine() and
4728 * there's no concurrency possible, we hold the required locks anyway
4729 * because of lock validation efforts.
4730 */
4731static void migrate_tasks(unsigned int dead_cpu)
4732{
4733	struct rq *rq = cpu_rq(dead_cpu);
4734	struct task_struct *next, *stop = rq->stop;
4735	int dest_cpu;
4736
4737	/*
4738	 * Fudge the rq selection such that the below task selection loop
4739	 * doesn't get stuck on the currently eligible stop task.
4740	 *
4741	 * We're currently inside stop_machine() and the rq is either stuck
4742	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4743	 * either way we should never end up calling schedule() until we're
4744	 * done here.
4745	 */
4746	rq->stop = NULL;
4747
4748	/*
4749	 * put_prev_task() and pick_next_task() sched
4750	 * class method both need to have an up-to-date
4751	 * value of rq->clock[_task]
4752	 */
4753	update_rq_clock(rq);
4754
4755	for ( ; ; ) {
4756		/*
4757		 * There's this thread running, bail when that's the only
4758		 * remaining thread.
4759		 */
4760		if (rq->nr_running == 1)
4761			break;
4762
4763		next = pick_next_task(rq, &fake_task);
4764		BUG_ON(!next);
4765		next->sched_class->put_prev_task(rq, next);
4766
4767		/* Find suitable destination for @next, with force if needed. */
4768		dest_cpu = select_fallback_rq(dead_cpu, next);
4769		raw_spin_unlock(&rq->lock);
4770
4771		__migrate_task(next, dead_cpu, dest_cpu);
4772
4773		raw_spin_lock(&rq->lock);
4774	}
4775
4776	rq->stop = stop;
4777}
4778
4779#endif /* CONFIG_HOTPLUG_CPU */
4780
4781#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4782
4783static struct ctl_table sd_ctl_dir[] = {
4784	{
4785		.procname	= "sched_domain",
4786		.mode		= 0555,
4787	},
4788	{}
4789};
4790
4791static struct ctl_table sd_ctl_root[] = {
4792	{
4793		.procname	= "kernel",
4794		.mode		= 0555,
4795		.child		= sd_ctl_dir,
4796	},
4797	{}
4798};
4799
4800static struct ctl_table *sd_alloc_ctl_entry(int n)
4801{
4802	struct ctl_table *entry =
4803		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4804
4805	return entry;
4806}
4807
4808static void sd_free_ctl_entry(struct ctl_table **tablep)
4809{
4810	struct ctl_table *entry;
4811
4812	/*
4813	 * In the intermediate directories, both the child directory and
4814	 * procname are dynamically allocated and could fail but the mode
4815	 * will always be set. In the lowest directory the names are
4816	 * static strings and all have proc handlers.
4817	 */
4818	for (entry = *tablep; entry->mode; entry++) {
4819		if (entry->child)
4820			sd_free_ctl_entry(&entry->child);
4821		if (entry->proc_handler == NULL)
4822			kfree(entry->procname);
4823	}
4824
4825	kfree(*tablep);
4826	*tablep = NULL;
4827}
4828
4829static int min_load_idx = 0;
4830static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4831
4832static void
4833set_table_entry(struct ctl_table *entry,
4834		const char *procname, void *data, int maxlen,
4835		umode_t mode, proc_handler *proc_handler,
4836		bool load_idx)
4837{
4838	entry->procname = procname;
4839	entry->data = data;
4840	entry->maxlen = maxlen;
4841	entry->mode = mode;
4842	entry->proc_handler = proc_handler;
4843
4844	if (load_idx) {
4845		entry->extra1 = &min_load_idx;
4846		entry->extra2 = &max_load_idx;
4847	}
4848}
4849
4850static struct ctl_table *
4851sd_alloc_ctl_domain_table(struct sched_domain *sd)
4852{
4853	struct ctl_table *table = sd_alloc_ctl_entry(14);
4854
4855	if (table == NULL)
4856		return NULL;
4857
4858	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4859		sizeof(long), 0644, proc_doulongvec_minmax, false);
4860	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4861		sizeof(long), 0644, proc_doulongvec_minmax, false);
4862	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4863		sizeof(int), 0644, proc_dointvec_minmax, true);
4864	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4865		sizeof(int), 0644, proc_dointvec_minmax, true);
4866	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4867		sizeof(int), 0644, proc_dointvec_minmax, true);
4868	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4869		sizeof(int), 0644, proc_dointvec_minmax, true);
4870	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4871		sizeof(int), 0644, proc_dointvec_minmax, true);
4872	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4873		sizeof(int), 0644, proc_dointvec_minmax, false);
4874	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4875		sizeof(int), 0644, proc_dointvec_minmax, false);
4876	set_table_entry(&table[9], "cache_nice_tries",
4877		&sd->cache_nice_tries,
4878		sizeof(int), 0644, proc_dointvec_minmax, false);
4879	set_table_entry(&table[10], "flags", &sd->flags,
4880		sizeof(int), 0644, proc_dointvec_minmax, false);
4881	set_table_entry(&table[11], "max_newidle_lb_cost",
4882		&sd->max_newidle_lb_cost,
4883		sizeof(long), 0644, proc_doulongvec_minmax, false);
4884	set_table_entry(&table[12], "name", sd->name,
4885		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4886	/* &table[13] is terminator */
4887
4888	return table;
4889}
4890
4891static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4892{
4893	struct ctl_table *entry, *table;
4894	struct sched_domain *sd;
4895	int domain_num = 0, i;
4896	char buf[32];
4897
4898	for_each_domain(cpu, sd)
4899		domain_num++;
4900	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4901	if (table == NULL)
4902		return NULL;
4903
4904	i = 0;
4905	for_each_domain(cpu, sd) {
4906		snprintf(buf, 32, "domain%d", i);
4907		entry->procname = kstrdup(buf, GFP_KERNEL);
4908		entry->mode = 0555;
4909		entry->child = sd_alloc_ctl_domain_table(sd);
4910		entry++;
4911		i++;
4912	}
4913	return table;
4914}
4915
4916static struct ctl_table_header *sd_sysctl_header;
4917static void register_sched_domain_sysctl(void)
4918{
4919	int i, cpu_num = num_possible_cpus();
4920	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4921	char buf[32];
4922
4923	WARN_ON(sd_ctl_dir[0].child);
4924	sd_ctl_dir[0].child = entry;
4925
4926	if (entry == NULL)
4927		return;
4928
4929	for_each_possible_cpu(i) {
4930		snprintf(buf, 32, "cpu%d", i);
4931		entry->procname = kstrdup(buf, GFP_KERNEL);
4932		entry->mode = 0555;
4933		entry->child = sd_alloc_ctl_cpu_table(i);
4934		entry++;
4935	}
4936
4937	WARN_ON(sd_sysctl_header);
4938	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4939}
4940
4941/* may be called multiple times per register */
4942static void unregister_sched_domain_sysctl(void)
4943{
4944	if (sd_sysctl_header)
4945		unregister_sysctl_table(sd_sysctl_header);
4946	sd_sysctl_header = NULL;
4947	if (sd_ctl_dir[0].child)
4948		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4949}
4950#else
4951static void register_sched_domain_sysctl(void)
4952{
4953}
4954static void unregister_sched_domain_sysctl(void)
4955{
4956}
4957#endif
4958
4959static void set_rq_online(struct rq *rq)
4960{
4961	if (!rq->online) {
4962		const struct sched_class *class;
4963
4964		cpumask_set_cpu(rq->cpu, rq->rd->online);
4965		rq->online = 1;
4966
4967		for_each_class(class) {
4968			if (class->rq_online)
4969				class->rq_online(rq);
4970		}
4971	}
4972}
4973
4974static void set_rq_offline(struct rq *rq)
4975{
4976	if (rq->online) {
4977		const struct sched_class *class;
4978
4979		for_each_class(class) {
4980			if (class->rq_offline)
4981				class->rq_offline(rq);
4982		}
4983
4984		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4985		rq->online = 0;
4986	}
4987}
4988
4989/*
4990 * migration_call - callback that gets triggered when a CPU is added.
4991 * Here we can start up the necessary migration thread for the new CPU.
4992 */
4993static int
4994migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4995{
4996	int cpu = (long)hcpu;
4997	unsigned long flags;
4998	struct rq *rq = cpu_rq(cpu);
4999
5000	switch (action & ~CPU_TASKS_FROZEN) {
5001
5002	case CPU_UP_PREPARE:
5003		rq->calc_load_update = calc_load_update;
5004		break;
5005
5006	case CPU_ONLINE:
5007		/* Update our root-domain */
5008		raw_spin_lock_irqsave(&rq->lock, flags);
5009		if (rq->rd) {
5010			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5011
5012			set_rq_online(rq);
5013		}
5014		raw_spin_unlock_irqrestore(&rq->lock, flags);
5015		break;
5016
5017#ifdef CONFIG_HOTPLUG_CPU
5018	case CPU_DYING:
5019		sched_ttwu_pending();
5020		/* Update our root-domain */
5021		raw_spin_lock_irqsave(&rq->lock, flags);
5022		if (rq->rd) {
5023			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5024			set_rq_offline(rq);
5025		}
5026		migrate_tasks(cpu);
5027		BUG_ON(rq->nr_running != 1); /* the migration thread */
5028		raw_spin_unlock_irqrestore(&rq->lock, flags);
5029		break;
5030
5031	case CPU_DEAD:
5032		calc_load_migrate(rq);
5033		break;
5034#endif
5035	}
5036
5037	update_max_interval();
5038
5039	return NOTIFY_OK;
5040}
5041
5042/*
5043 * Register at high priority so that task migration (migrate_all_tasks)
5044 * happens before everything else.  This has to be lower priority than
5045 * the notifier in the perf_event subsystem, though.
5046 */
5047static struct notifier_block migration_notifier = {
5048	.notifier_call = migration_call,
5049	.priority = CPU_PRI_MIGRATION,
5050};
5051
5052static int sched_cpu_active(struct notifier_block *nfb,
5053				      unsigned long action, void *hcpu)
5054{
5055	switch (action & ~CPU_TASKS_FROZEN) {
5056	case CPU_STARTING:
5057	case CPU_DOWN_FAILED:
5058		set_cpu_active((long)hcpu, true);
5059		return NOTIFY_OK;
5060	default:
5061		return NOTIFY_DONE;
5062	}
5063}
5064
5065static int sched_cpu_inactive(struct notifier_block *nfb,
5066					unsigned long action, void *hcpu)
5067{
5068	unsigned long flags;
5069	long cpu = (long)hcpu;
5070
5071	switch (action & ~CPU_TASKS_FROZEN) {
5072	case CPU_DOWN_PREPARE:
5073		set_cpu_active(cpu, false);
5074
5075		/* explicitly allow suspend */
5076		if (!(action & CPU_TASKS_FROZEN)) {
5077			struct dl_bw *dl_b = dl_bw_of(cpu);
5078			bool overflow;
5079			int cpus;
5080
5081			raw_spin_lock_irqsave(&dl_b->lock, flags);
5082			cpus = dl_bw_cpus(cpu);
5083			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5084			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5085
5086			if (overflow)
5087				return notifier_from_errno(-EBUSY);
5088		}
5089		return NOTIFY_OK;
5090	}
5091
5092	return NOTIFY_DONE;
5093}
5094
5095static int __init migration_init(void)
5096{
5097	void *cpu = (void *)(long)smp_processor_id();
5098	int err;
5099
5100	/* Initialize migration for the boot CPU */
5101	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5102	BUG_ON(err == NOTIFY_BAD);
5103	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5104	register_cpu_notifier(&migration_notifier);
5105
5106	/* Register cpu active notifiers */
5107	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5108	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5109
5110	return 0;
5111}
5112early_initcall(migration_init);
5113#endif
5114
5115#ifdef CONFIG_SMP
5116
5117static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5118
5119#ifdef CONFIG_SCHED_DEBUG
5120
5121static __read_mostly int sched_debug_enabled;
5122
5123static int __init sched_debug_setup(char *str)
5124{
5125	sched_debug_enabled = 1;
5126
5127	return 0;
5128}
5129early_param("sched_debug", sched_debug_setup);
5130
5131static inline bool sched_debug(void)
5132{
5133	return sched_debug_enabled;
5134}
5135
5136static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5137				  struct cpumask *groupmask)
5138{
5139	struct sched_group *group = sd->groups;
5140	char str[256];
5141
5142	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5143	cpumask_clear(groupmask);
5144
5145	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5146
5147	if (!(sd->flags & SD_LOAD_BALANCE)) {
5148		printk("does not load-balance\n");
5149		if (sd->parent)
5150			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5151					" has parent");
5152		return -1;
5153	}
5154
5155	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5156
5157	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5158		printk(KERN_ERR "ERROR: domain->span does not contain "
5159				"CPU%d\n", cpu);
5160	}
5161	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5162		printk(KERN_ERR "ERROR: domain->groups does not contain"
5163				" CPU%d\n", cpu);
5164	}
5165
5166	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5167	do {
5168		if (!group) {
5169			printk("\n");
5170			printk(KERN_ERR "ERROR: group is NULL\n");
5171			break;
5172		}
5173
5174		/*
5175		 * Even though we initialize ->power to something semi-sane,
5176		 * we leave power_orig unset. This allows us to detect if
5177		 * domain iteration is still funny without causing /0 traps.
5178		 */
5179		if (!group->sgp->power_orig) {
5180			printk(KERN_CONT "\n");
5181			printk(KERN_ERR "ERROR: domain->cpu_power not "
5182					"set\n");
5183			break;
5184		}
5185
5186		if (!cpumask_weight(sched_group_cpus(group))) {
5187			printk(KERN_CONT "\n");
5188			printk(KERN_ERR "ERROR: empty group\n");
5189			break;
5190		}
5191
5192		if (!(sd->flags & SD_OVERLAP) &&
5193		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5194			printk(KERN_CONT "\n");
5195			printk(KERN_ERR "ERROR: repeated CPUs\n");
5196			break;
5197		}
5198
5199		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5200
5201		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5202
5203		printk(KERN_CONT " %s", str);
5204		if (group->sgp->power != SCHED_POWER_SCALE) {
5205			printk(KERN_CONT " (cpu_power = %d)",
5206				group->sgp->power);
5207		}
5208
5209		group = group->next;
5210	} while (group != sd->groups);
5211	printk(KERN_CONT "\n");
5212
5213	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5214		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5215
5216	if (sd->parent &&
5217	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5218		printk(KERN_ERR "ERROR: parent span is not a superset "
5219			"of domain->span\n");
5220	return 0;
5221}
5222
5223static void sched_domain_debug(struct sched_domain *sd, int cpu)
5224{
5225	int level = 0;
5226
5227	if (!sched_debug_enabled)
5228		return;
5229
5230	if (!sd) {
5231		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5232		return;
5233	}
5234
5235	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5236
5237	for (;;) {
5238		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5239			break;
5240		level++;
5241		sd = sd->parent;
5242		if (!sd)
5243			break;
5244	}
5245}
5246#else /* !CONFIG_SCHED_DEBUG */
5247# define sched_domain_debug(sd, cpu) do { } while (0)
5248static inline bool sched_debug(void)
5249{
5250	return false;
5251}
5252#endif /* CONFIG_SCHED_DEBUG */
5253
5254static int sd_degenerate(struct sched_domain *sd)
5255{
5256	if (cpumask_weight(sched_domain_span(sd)) == 1)
5257		return 1;
5258
5259	/* Following flags need at least 2 groups */
5260	if (sd->flags & (SD_LOAD_BALANCE |
5261			 SD_BALANCE_NEWIDLE |
5262			 SD_BALANCE_FORK |
5263			 SD_BALANCE_EXEC |
5264			 SD_SHARE_CPUPOWER |
5265			 SD_SHARE_PKG_RESOURCES)) {
5266		if (sd->groups != sd->groups->next)
5267			return 0;
5268	}
5269
5270	/* Following flags don't use groups */
5271	if (sd->flags & (SD_WAKE_AFFINE))
5272		return 0;
5273
5274	return 1;
5275}
5276
5277static int
5278sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5279{
5280	unsigned long cflags = sd->flags, pflags = parent->flags;
5281
5282	if (sd_degenerate(parent))
5283		return 1;
5284
5285	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5286		return 0;
5287
5288	/* Flags needing groups don't count if only 1 group in parent */
5289	if (parent->groups == parent->groups->next) {
5290		pflags &= ~(SD_LOAD_BALANCE |
5291				SD_BALANCE_NEWIDLE |
5292				SD_BALANCE_FORK |
5293				SD_BALANCE_EXEC |
5294				SD_SHARE_CPUPOWER |
5295				SD_SHARE_PKG_RESOURCES |
5296				SD_PREFER_SIBLING);
5297		if (nr_node_ids == 1)
5298			pflags &= ~SD_SERIALIZE;
5299	}
5300	if (~cflags & pflags)
5301		return 0;
5302
5303	return 1;
5304}
5305
5306static void free_rootdomain(struct rcu_head *rcu)
5307{
5308	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5309
5310	cpupri_cleanup(&rd->cpupri);
5311	cpudl_cleanup(&rd->cpudl);
5312	free_cpumask_var(rd->dlo_mask);
5313	free_cpumask_var(rd->rto_mask);
5314	free_cpumask_var(rd->online);
5315	free_cpumask_var(rd->span);
5316	kfree(rd);
5317}
5318
5319static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5320{
5321	struct root_domain *old_rd = NULL;
5322	unsigned long flags;
5323
5324	raw_spin_lock_irqsave(&rq->lock, flags);
5325
5326	if (rq->rd) {
5327		old_rd = rq->rd;
5328
5329		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5330			set_rq_offline(rq);
5331
5332		cpumask_clear_cpu(rq->cpu, old_rd->span);
5333
5334		/*
5335		 * If we dont want to free the old_rd yet then
5336		 * set old_rd to NULL to skip the freeing later
5337		 * in this function:
5338		 */
5339		if (!atomic_dec_and_test(&old_rd->refcount))
5340			old_rd = NULL;
5341	}
5342
5343	atomic_inc(&rd->refcount);
5344	rq->rd = rd;
5345
5346	cpumask_set_cpu(rq->cpu, rd->span);
5347	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5348		set_rq_online(rq);
5349
5350	raw_spin_unlock_irqrestore(&rq->lock, flags);
5351
5352	if (old_rd)
5353		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5354}
5355
5356static int init_rootdomain(struct root_domain *rd)
5357{
5358	memset(rd, 0, sizeof(*rd));
5359
5360	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5361		goto out;
5362	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5363		goto free_span;
5364	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5365		goto free_online;
5366	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5367		goto free_dlo_mask;
5368
5369	init_dl_bw(&rd->dl_bw);
5370	if (cpudl_init(&rd->cpudl) != 0)
5371		goto free_dlo_mask;
5372
5373	if (cpupri_init(&rd->cpupri) != 0)
5374		goto free_rto_mask;
5375	return 0;
5376
5377free_rto_mask:
5378	free_cpumask_var(rd->rto_mask);
5379free_dlo_mask:
5380	free_cpumask_var(rd->dlo_mask);
5381free_online:
5382	free_cpumask_var(rd->online);
5383free_span:
5384	free_cpumask_var(rd->span);
5385out:
5386	return -ENOMEM;
5387}
5388
5389/*
5390 * By default the system creates a single root-domain with all cpus as
5391 * members (mimicking the global state we have today).
5392 */
5393struct root_domain def_root_domain;
5394
5395static void init_defrootdomain(void)
5396{
5397	init_rootdomain(&def_root_domain);
5398
5399	atomic_set(&def_root_domain.refcount, 1);
5400}
5401
5402static struct root_domain *alloc_rootdomain(void)
5403{
5404	struct root_domain *rd;
5405
5406	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5407	if (!rd)
5408		return NULL;
5409
5410	if (init_rootdomain(rd) != 0) {
5411		kfree(rd);
5412		return NULL;
5413	}
5414
5415	return rd;
5416}
5417
5418static void free_sched_groups(struct sched_group *sg, int free_sgp)
5419{
5420	struct sched_group *tmp, *first;
5421
5422	if (!sg)
5423		return;
5424
5425	first = sg;
5426	do {
5427		tmp = sg->next;
5428
5429		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5430			kfree(sg->sgp);
5431
5432		kfree(sg);
5433		sg = tmp;
5434	} while (sg != first);
5435}
5436
5437static void free_sched_domain(struct rcu_head *rcu)
5438{
5439	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5440
5441	/*
5442	 * If its an overlapping domain it has private groups, iterate and
5443	 * nuke them all.
5444	 */
5445	if (sd->flags & SD_OVERLAP) {
5446		free_sched_groups(sd->groups, 1);
5447	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5448		kfree(sd->groups->sgp);
5449		kfree(sd->groups);
5450	}
5451	kfree(sd);
5452}
5453
5454static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5455{
5456	call_rcu(&sd->rcu, free_sched_domain);
5457}
5458
5459static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5460{
5461	for (; sd; sd = sd->parent)
5462		destroy_sched_domain(sd, cpu);
5463}
5464
5465/*
5466 * Keep a special pointer to the highest sched_domain that has
5467 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5468 * allows us to avoid some pointer chasing select_idle_sibling().
5469 *
5470 * Also keep a unique ID per domain (we use the first cpu number in
5471 * the cpumask of the domain), this allows us to quickly tell if
5472 * two cpus are in the same cache domain, see cpus_share_cache().
5473 */
5474DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5475DEFINE_PER_CPU(int, sd_llc_size);
5476DEFINE_PER_CPU(int, sd_llc_id);
5477DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5478DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5479DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5480
5481static void update_top_cache_domain(int cpu)
5482{
5483	struct sched_domain *sd;
5484	struct sched_domain *busy_sd = NULL;
5485	int id = cpu;
5486	int size = 1;
5487
5488	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5489	if (sd) {
5490		id = cpumask_first(sched_domain_span(sd));
5491		size = cpumask_weight(sched_domain_span(sd));
5492		busy_sd = sd->parent; /* sd_busy */
5493	}
5494	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5495
5496	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5497	per_cpu(sd_llc_size, cpu) = size;
5498	per_cpu(sd_llc_id, cpu) = id;
5499
5500	sd = lowest_flag_domain(cpu, SD_NUMA);
5501	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5502
5503	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5504	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5505}
5506
5507/*
5508 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5509 * hold the hotplug lock.
5510 */
5511static void
5512cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5513{
5514	struct rq *rq = cpu_rq(cpu);
5515	struct sched_domain *tmp;
5516
5517	/* Remove the sched domains which do not contribute to scheduling. */
5518	for (tmp = sd; tmp; ) {
5519		struct sched_domain *parent = tmp->parent;
5520		if (!parent)
5521			break;
5522
5523		if (sd_parent_degenerate(tmp, parent)) {
5524			tmp->parent = parent->parent;
5525			if (parent->parent)
5526				parent->parent->child = tmp;
5527			/*
5528			 * Transfer SD_PREFER_SIBLING down in case of a
5529			 * degenerate parent; the spans match for this
5530			 * so the property transfers.
5531			 */
5532			if (parent->flags & SD_PREFER_SIBLING)
5533				tmp->flags |= SD_PREFER_SIBLING;
5534			destroy_sched_domain(parent, cpu);
5535		} else
5536			tmp = tmp->parent;
5537	}
5538
5539	if (sd && sd_degenerate(sd)) {
5540		tmp = sd;
5541		sd = sd->parent;
5542		destroy_sched_domain(tmp, cpu);
5543		if (sd)
5544			sd->child = NULL;
5545	}
5546
5547	sched_domain_debug(sd, cpu);
5548
5549	rq_attach_root(rq, rd);
5550	tmp = rq->sd;
5551	rcu_assign_pointer(rq->sd, sd);
5552	destroy_sched_domains(tmp, cpu);
5553
5554	update_top_cache_domain(cpu);
5555}
5556
5557/* cpus with isolated domains */
5558static cpumask_var_t cpu_isolated_map;
5559
5560/* Setup the mask of cpus configured for isolated domains */
5561static int __init isolated_cpu_setup(char *str)
5562{
5563	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5564	cpulist_parse(str, cpu_isolated_map);
5565	return 1;
5566}
5567
5568__setup("isolcpus=", isolated_cpu_setup);
5569
5570static const struct cpumask *cpu_cpu_mask(int cpu)
5571{
5572	return cpumask_of_node(cpu_to_node(cpu));
5573}
5574
5575struct sd_data {
5576	struct sched_domain **__percpu sd;
5577	struct sched_group **__percpu sg;
5578	struct sched_group_power **__percpu sgp;
5579};
5580
5581struct s_data {
5582	struct sched_domain ** __percpu sd;
5583	struct root_domain	*rd;
5584};
5585
5586enum s_alloc {
5587	sa_rootdomain,
5588	sa_sd,
5589	sa_sd_storage,
5590	sa_none,
5591};
5592
5593struct sched_domain_topology_level;
5594
5595typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5596typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5597
5598#define SDTL_OVERLAP	0x01
5599
5600struct sched_domain_topology_level {
5601	sched_domain_init_f init;
5602	sched_domain_mask_f mask;
5603	int		    flags;
5604	int		    numa_level;
5605	struct sd_data      data;
5606};
5607
5608/*
5609 * Build an iteration mask that can exclude certain CPUs from the upwards
5610 * domain traversal.
5611 *
5612 * Asymmetric node setups can result in situations where the domain tree is of
5613 * unequal depth, make sure to skip domains that already cover the entire
5614 * range.
5615 *
5616 * In that case build_sched_domains() will have terminated the iteration early
5617 * and our sibling sd spans will be empty. Domains should always include the
5618 * cpu they're built on, so check that.
5619 *
5620 */
5621static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5622{
5623	const struct cpumask *span = sched_domain_span(sd);
5624	struct sd_data *sdd = sd->private;
5625	struct sched_domain *sibling;
5626	int i;
5627
5628	for_each_cpu(i, span) {
5629		sibling = *per_cpu_ptr(sdd->sd, i);
5630		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5631			continue;
5632
5633		cpumask_set_cpu(i, sched_group_mask(sg));
5634	}
5635}
5636
5637/*
5638 * Return the canonical balance cpu for this group, this is the first cpu
5639 * of this group that's also in the iteration mask.
5640 */
5641int group_balance_cpu(struct sched_group *sg)
5642{
5643	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5644}
5645
5646static int
5647build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5648{
5649	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5650	const struct cpumask *span = sched_domain_span(sd);
5651	struct cpumask *covered = sched_domains_tmpmask;
5652	struct sd_data *sdd = sd->private;
5653	struct sched_domain *child;
5654	int i;
5655
5656	cpumask_clear(covered);
5657
5658	for_each_cpu(i, span) {
5659		struct cpumask *sg_span;
5660
5661		if (cpumask_test_cpu(i, covered))
5662			continue;
5663
5664		child = *per_cpu_ptr(sdd->sd, i);
5665
5666		/* See the comment near build_group_mask(). */
5667		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5668			continue;
5669
5670		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5671				GFP_KERNEL, cpu_to_node(cpu));
5672
5673		if (!sg)
5674			goto fail;
5675
5676		sg_span = sched_group_cpus(sg);
5677		if (child->child) {
5678			child = child->child;
5679			cpumask_copy(sg_span, sched_domain_span(child));
5680		} else
5681			cpumask_set_cpu(i, sg_span);
5682
5683		cpumask_or(covered, covered, sg_span);
5684
5685		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5686		if (atomic_inc_return(&sg->sgp->ref) == 1)
5687			build_group_mask(sd, sg);
5688
5689		/*
5690		 * Initialize sgp->power such that even if we mess up the
5691		 * domains and no possible iteration will get us here, we won't
5692		 * die on a /0 trap.
5693		 */
5694		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5695		sg->sgp->power_orig = sg->sgp->power;
5696
5697		/*
5698		 * Make sure the first group of this domain contains the
5699		 * canonical balance cpu. Otherwise the sched_domain iteration
5700		 * breaks. See update_sg_lb_stats().
5701		 */
5702		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5703		    group_balance_cpu(sg) == cpu)
5704			groups = sg;
5705
5706		if (!first)
5707			first = sg;
5708		if (last)
5709			last->next = sg;
5710		last = sg;
5711		last->next = first;
5712	}
5713	sd->groups = groups;
5714
5715	return 0;
5716
5717fail:
5718	free_sched_groups(first, 0);
5719
5720	return -ENOMEM;
5721}
5722
5723static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5724{
5725	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5726	struct sched_domain *child = sd->child;
5727
5728	if (child)
5729		cpu = cpumask_first(sched_domain_span(child));
5730
5731	if (sg) {
5732		*sg = *per_cpu_ptr(sdd->sg, cpu);
5733		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5734		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5735	}
5736
5737	return cpu;
5738}
5739
5740/*
5741 * build_sched_groups will build a circular linked list of the groups
5742 * covered by the given span, and will set each group's ->cpumask correctly,
5743 * and ->cpu_power to 0.
5744 *
5745 * Assumes the sched_domain tree is fully constructed
5746 */
5747static int
5748build_sched_groups(struct sched_domain *sd, int cpu)
5749{
5750	struct sched_group *first = NULL, *last = NULL;
5751	struct sd_data *sdd = sd->private;
5752	const struct cpumask *span = sched_domain_span(sd);
5753	struct cpumask *covered;
5754	int i;
5755
5756	get_group(cpu, sdd, &sd->groups);
5757	atomic_inc(&sd->groups->ref);
5758
5759	if (cpu != cpumask_first(span))
5760		return 0;
5761
5762	lockdep_assert_held(&sched_domains_mutex);
5763	covered = sched_domains_tmpmask;
5764
5765	cpumask_clear(covered);
5766
5767	for_each_cpu(i, span) {
5768		struct sched_group *sg;
5769		int group, j;
5770
5771		if (cpumask_test_cpu(i, covered))
5772			continue;
5773
5774		group = get_group(i, sdd, &sg);
5775		cpumask_clear(sched_group_cpus(sg));
5776		sg->sgp->power = 0;
5777		cpumask_setall(sched_group_mask(sg));
5778
5779		for_each_cpu(j, span) {
5780			if (get_group(j, sdd, NULL) != group)
5781				continue;
5782
5783			cpumask_set_cpu(j, covered);
5784			cpumask_set_cpu(j, sched_group_cpus(sg));
5785		}
5786
5787		if (!first)
5788			first = sg;
5789		if (last)
5790			last->next = sg;
5791		last = sg;
5792	}
5793	last->next = first;
5794
5795	return 0;
5796}
5797
5798/*
5799 * Initialize sched groups cpu_power.
5800 *
5801 * cpu_power indicates the capacity of sched group, which is used while
5802 * distributing the load between different sched groups in a sched domain.
5803 * Typically cpu_power for all the groups in a sched domain will be same unless
5804 * there are asymmetries in the topology. If there are asymmetries, group
5805 * having more cpu_power will pickup more load compared to the group having
5806 * less cpu_power.
5807 */
5808static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5809{
5810	struct sched_group *sg = sd->groups;
5811
5812	WARN_ON(!sg);
5813
5814	do {
5815		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5816		sg = sg->next;
5817	} while (sg != sd->groups);
5818
5819	if (cpu != group_balance_cpu(sg))
5820		return;
5821
5822	update_group_power(sd, cpu);
5823	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5824}
5825
5826int __weak arch_sd_sibling_asym_packing(void)
5827{
5828       return 0*SD_ASYM_PACKING;
5829}
5830
5831/*
5832 * Initializers for schedule domains
5833 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5834 */
5835
5836#ifdef CONFIG_SCHED_DEBUG
5837# define SD_INIT_NAME(sd, type)		sd->name = #type
5838#else
5839# define SD_INIT_NAME(sd, type)		do { } while (0)
5840#endif
5841
5842#define SD_INIT_FUNC(type)						\
5843static noinline struct sched_domain *					\
5844sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5845{									\
5846	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5847	*sd = SD_##type##_INIT;						\
5848	SD_INIT_NAME(sd, type);						\
5849	sd->private = &tl->data;					\
5850	return sd;							\
5851}
5852
5853SD_INIT_FUNC(CPU)
5854#ifdef CONFIG_SCHED_SMT
5855 SD_INIT_FUNC(SIBLING)
5856#endif
5857#ifdef CONFIG_SCHED_MC
5858 SD_INIT_FUNC(MC)
5859#endif
5860#ifdef CONFIG_SCHED_BOOK
5861 SD_INIT_FUNC(BOOK)
5862#endif
5863
5864static int default_relax_domain_level = -1;
5865int sched_domain_level_max;
5866
5867static int __init setup_relax_domain_level(char *str)
5868{
5869	if (kstrtoint(str, 0, &default_relax_domain_level))
5870		pr_warn("Unable to set relax_domain_level\n");
5871
5872	return 1;
5873}
5874__setup("relax_domain_level=", setup_relax_domain_level);
5875
5876static void set_domain_attribute(struct sched_domain *sd,
5877				 struct sched_domain_attr *attr)
5878{
5879	int request;
5880
5881	if (!attr || attr->relax_domain_level < 0) {
5882		if (default_relax_domain_level < 0)
5883			return;
5884		else
5885			request = default_relax_domain_level;
5886	} else
5887		request = attr->relax_domain_level;
5888	if (request < sd->level) {
5889		/* turn off idle balance on this domain */
5890		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5891	} else {
5892		/* turn on idle balance on this domain */
5893		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5894	}
5895}
5896
5897static void __sdt_free(const struct cpumask *cpu_map);
5898static int __sdt_alloc(const struct cpumask *cpu_map);
5899
5900static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5901				 const struct cpumask *cpu_map)
5902{
5903	switch (what) {
5904	case sa_rootdomain:
5905		if (!atomic_read(&d->rd->refcount))
5906			free_rootdomain(&d->rd->rcu); /* fall through */
5907	case sa_sd:
5908		free_percpu(d->sd); /* fall through */
5909	case sa_sd_storage:
5910		__sdt_free(cpu_map); /* fall through */
5911	case sa_none:
5912		break;
5913	}
5914}
5915
5916static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5917						   const struct cpumask *cpu_map)
5918{
5919	memset(d, 0, sizeof(*d));
5920
5921	if (__sdt_alloc(cpu_map))
5922		return sa_sd_storage;
5923	d->sd = alloc_percpu(struct sched_domain *);
5924	if (!d->sd)
5925		return sa_sd_storage;
5926	d->rd = alloc_rootdomain();
5927	if (!d->rd)
5928		return sa_sd;
5929	return sa_rootdomain;
5930}
5931
5932/*
5933 * NULL the sd_data elements we've used to build the sched_domain and
5934 * sched_group structure so that the subsequent __free_domain_allocs()
5935 * will not free the data we're using.
5936 */
5937static void claim_allocations(int cpu, struct sched_domain *sd)
5938{
5939	struct sd_data *sdd = sd->private;
5940
5941	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5942	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5943
5944	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5945		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5946
5947	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5948		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5949}
5950
5951#ifdef CONFIG_SCHED_SMT
5952static const struct cpumask *cpu_smt_mask(int cpu)
5953{
5954	return topology_thread_cpumask(cpu);
5955}
5956#endif
5957
5958/*
5959 * Topology list, bottom-up.
5960 */
5961static struct sched_domain_topology_level default_topology[] = {
5962#ifdef CONFIG_SCHED_SMT
5963	{ sd_init_SIBLING, cpu_smt_mask, },
5964#endif
5965#ifdef CONFIG_SCHED_MC
5966	{ sd_init_MC, cpu_coregroup_mask, },
5967#endif
5968#ifdef CONFIG_SCHED_BOOK
5969	{ sd_init_BOOK, cpu_book_mask, },
5970#endif
5971	{ sd_init_CPU, cpu_cpu_mask, },
5972	{ NULL, },
5973};
5974
5975static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5976
5977#define for_each_sd_topology(tl)			\
5978	for (tl = sched_domain_topology; tl->init; tl++)
5979
5980#ifdef CONFIG_NUMA
5981
5982static int sched_domains_numa_levels;
5983static int *sched_domains_numa_distance;
5984static struct cpumask ***sched_domains_numa_masks;
5985static int sched_domains_curr_level;
5986
5987static inline int sd_local_flags(int level)
5988{
5989	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5990		return 0;
5991
5992	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5993}
5994
5995static struct sched_domain *
5996sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5997{
5998	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5999	int level = tl->numa_level;
6000	int sd_weight = cpumask_weight(
6001			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6002
6003	*sd = (struct sched_domain){
6004		.min_interval		= sd_weight,
6005		.max_interval		= 2*sd_weight,
6006		.busy_factor		= 32,
6007		.imbalance_pct		= 125,
6008		.cache_nice_tries	= 2,
6009		.busy_idx		= 3,
6010		.idle_idx		= 2,
6011		.newidle_idx		= 0,
6012		.wake_idx		= 0,
6013		.forkexec_idx		= 0,
6014
6015		.flags			= 1*SD_LOAD_BALANCE
6016					| 1*SD_BALANCE_NEWIDLE
6017					| 0*SD_BALANCE_EXEC
6018					| 0*SD_BALANCE_FORK
6019					| 0*SD_BALANCE_WAKE
6020					| 0*SD_WAKE_AFFINE
6021					| 0*SD_SHARE_CPUPOWER
6022					| 0*SD_SHARE_PKG_RESOURCES
6023					| 1*SD_SERIALIZE
6024					| 0*SD_PREFER_SIBLING
6025					| 1*SD_NUMA
6026					| sd_local_flags(level)
6027					,
6028		.last_balance		= jiffies,
6029		.balance_interval	= sd_weight,
6030		.max_newidle_lb_cost	= 0,
6031		.next_decay_max_lb_cost	= jiffies,
6032	};
6033	SD_INIT_NAME(sd, NUMA);
6034	sd->private = &tl->data;
6035
6036	/*
6037	 * Ugly hack to pass state to sd_numa_mask()...
6038	 */
6039	sched_domains_curr_level = tl->numa_level;
6040
6041	return sd;
6042}
6043
6044static const struct cpumask *sd_numa_mask(int cpu)
6045{
6046	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6047}
6048
6049static void sched_numa_warn(const char *str)
6050{
6051	static int done = false;
6052	int i,j;
6053
6054	if (done)
6055		return;
6056
6057	done = true;
6058
6059	printk(KERN_WARNING "ERROR: %s\n\n", str);
6060
6061	for (i = 0; i < nr_node_ids; i++) {
6062		printk(KERN_WARNING "  ");
6063		for (j = 0; j < nr_node_ids; j++)
6064			printk(KERN_CONT "%02d ", node_distance(i,j));
6065		printk(KERN_CONT "\n");
6066	}
6067	printk(KERN_WARNING "\n");
6068}
6069
6070static bool find_numa_distance(int distance)
6071{
6072	int i;
6073
6074	if (distance == node_distance(0, 0))
6075		return true;
6076
6077	for (i = 0; i < sched_domains_numa_levels; i++) {
6078		if (sched_domains_numa_distance[i] == distance)
6079			return true;
6080	}
6081
6082	return false;
6083}
6084
6085static void sched_init_numa(void)
6086{
6087	int next_distance, curr_distance = node_distance(0, 0);
6088	struct sched_domain_topology_level *tl;
6089	int level = 0;
6090	int i, j, k;
6091
6092	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6093	if (!sched_domains_numa_distance)
6094		return;
6095
6096	/*
6097	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6098	 * unique distances in the node_distance() table.
6099	 *
6100	 * Assumes node_distance(0,j) includes all distances in
6101	 * node_distance(i,j) in order to avoid cubic time.
6102	 */
6103	next_distance = curr_distance;
6104	for (i = 0; i < nr_node_ids; i++) {
6105		for (j = 0; j < nr_node_ids; j++) {
6106			for (k = 0; k < nr_node_ids; k++) {
6107				int distance = node_distance(i, k);
6108
6109				if (distance > curr_distance &&
6110				    (distance < next_distance ||
6111				     next_distance == curr_distance))
6112					next_distance = distance;
6113
6114				/*
6115				 * While not a strong assumption it would be nice to know
6116				 * about cases where if node A is connected to B, B is not
6117				 * equally connected to A.
6118				 */
6119				if (sched_debug() && node_distance(k, i) != distance)
6120					sched_numa_warn("Node-distance not symmetric");
6121
6122				if (sched_debug() && i && !find_numa_distance(distance))
6123					sched_numa_warn("Node-0 not representative");
6124			}
6125			if (next_distance != curr_distance) {
6126				sched_domains_numa_distance[level++] = next_distance;
6127				sched_domains_numa_levels = level;
6128				curr_distance = next_distance;
6129			} else break;
6130		}
6131
6132		/*
6133		 * In case of sched_debug() we verify the above assumption.
6134		 */
6135		if (!sched_debug())
6136			break;
6137	}
6138	/*
6139	 * 'level' contains the number of unique distances, excluding the
6140	 * identity distance node_distance(i,i).
6141	 *
6142	 * The sched_domains_numa_distance[] array includes the actual distance
6143	 * numbers.
6144	 */
6145
6146	/*
6147	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6148	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6149	 * the array will contain less then 'level' members. This could be
6150	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6151	 * in other functions.
6152	 *
6153	 * We reset it to 'level' at the end of this function.
6154	 */
6155	sched_domains_numa_levels = 0;
6156
6157	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6158	if (!sched_domains_numa_masks)
6159		return;
6160
6161	/*
6162	 * Now for each level, construct a mask per node which contains all
6163	 * cpus of nodes that are that many hops away from us.
6164	 */
6165	for (i = 0; i < level; i++) {
6166		sched_domains_numa_masks[i] =
6167			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6168		if (!sched_domains_numa_masks[i])
6169			return;
6170
6171		for (j = 0; j < nr_node_ids; j++) {
6172			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6173			if (!mask)
6174				return;
6175
6176			sched_domains_numa_masks[i][j] = mask;
6177
6178			for (k = 0; k < nr_node_ids; k++) {
6179				if (node_distance(j, k) > sched_domains_numa_distance[i])
6180					continue;
6181
6182				cpumask_or(mask, mask, cpumask_of_node(k));
6183			}
6184		}
6185	}
6186
6187	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6188			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6189	if (!tl)
6190		return;
6191
6192	/*
6193	 * Copy the default topology bits..
6194	 */
6195	for (i = 0; default_topology[i].init; i++)
6196		tl[i] = default_topology[i];
6197
6198	/*
6199	 * .. and append 'j' levels of NUMA goodness.
6200	 */
6201	for (j = 0; j < level; i++, j++) {
6202		tl[i] = (struct sched_domain_topology_level){
6203			.init = sd_numa_init,
6204			.mask = sd_numa_mask,
6205			.flags = SDTL_OVERLAP,
6206			.numa_level = j,
6207		};
6208	}
6209
6210	sched_domain_topology = tl;
6211
6212	sched_domains_numa_levels = level;
6213}
6214
6215static void sched_domains_numa_masks_set(int cpu)
6216{
6217	int i, j;
6218	int node = cpu_to_node(cpu);
6219
6220	for (i = 0; i < sched_domains_numa_levels; i++) {
6221		for (j = 0; j < nr_node_ids; j++) {
6222			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6223				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6224		}
6225	}
6226}
6227
6228static void sched_domains_numa_masks_clear(int cpu)
6229{
6230	int i, j;
6231	for (i = 0; i < sched_domains_numa_levels; i++) {
6232		for (j = 0; j < nr_node_ids; j++)
6233			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6234	}
6235}
6236
6237/*
6238 * Update sched_domains_numa_masks[level][node] array when new cpus
6239 * are onlined.
6240 */
6241static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6242					   unsigned long action,
6243					   void *hcpu)
6244{
6245	int cpu = (long)hcpu;
6246
6247	switch (action & ~CPU_TASKS_FROZEN) {
6248	case CPU_ONLINE:
6249		sched_domains_numa_masks_set(cpu);
6250		break;
6251
6252	case CPU_DEAD:
6253		sched_domains_numa_masks_clear(cpu);
6254		break;
6255
6256	default:
6257		return NOTIFY_DONE;
6258	}
6259
6260	return NOTIFY_OK;
6261}
6262#else
6263static inline void sched_init_numa(void)
6264{
6265}
6266
6267static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6268					   unsigned long action,
6269					   void *hcpu)
6270{
6271	return 0;
6272}
6273#endif /* CONFIG_NUMA */
6274
6275static int __sdt_alloc(const struct cpumask *cpu_map)
6276{
6277	struct sched_domain_topology_level *tl;
6278	int j;
6279
6280	for_each_sd_topology(tl) {
6281		struct sd_data *sdd = &tl->data;
6282
6283		sdd->sd = alloc_percpu(struct sched_domain *);
6284		if (!sdd->sd)
6285			return -ENOMEM;
6286
6287		sdd->sg = alloc_percpu(struct sched_group *);
6288		if (!sdd->sg)
6289			return -ENOMEM;
6290
6291		sdd->sgp = alloc_percpu(struct sched_group_power *);
6292		if (!sdd->sgp)
6293			return -ENOMEM;
6294
6295		for_each_cpu(j, cpu_map) {
6296			struct sched_domain *sd;
6297			struct sched_group *sg;
6298			struct sched_group_power *sgp;
6299
6300		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6301					GFP_KERNEL, cpu_to_node(j));
6302			if (!sd)
6303				return -ENOMEM;
6304
6305			*per_cpu_ptr(sdd->sd, j) = sd;
6306
6307			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6308					GFP_KERNEL, cpu_to_node(j));
6309			if (!sg)
6310				return -ENOMEM;
6311
6312			sg->next = sg;
6313
6314			*per_cpu_ptr(sdd->sg, j) = sg;
6315
6316			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6317					GFP_KERNEL, cpu_to_node(j));
6318			if (!sgp)
6319				return -ENOMEM;
6320
6321			*per_cpu_ptr(sdd->sgp, j) = sgp;
6322		}
6323	}
6324
6325	return 0;
6326}
6327
6328static void __sdt_free(const struct cpumask *cpu_map)
6329{
6330	struct sched_domain_topology_level *tl;
6331	int j;
6332
6333	for_each_sd_topology(tl) {
6334		struct sd_data *sdd = &tl->data;
6335
6336		for_each_cpu(j, cpu_map) {
6337			struct sched_domain *sd;
6338
6339			if (sdd->sd) {
6340				sd = *per_cpu_ptr(sdd->sd, j);
6341				if (sd && (sd->flags & SD_OVERLAP))
6342					free_sched_groups(sd->groups, 0);
6343				kfree(*per_cpu_ptr(sdd->sd, j));
6344			}
6345
6346			if (sdd->sg)
6347				kfree(*per_cpu_ptr(sdd->sg, j));
6348			if (sdd->sgp)
6349				kfree(*per_cpu_ptr(sdd->sgp, j));
6350		}
6351		free_percpu(sdd->sd);
6352		sdd->sd = NULL;
6353		free_percpu(sdd->sg);
6354		sdd->sg = NULL;
6355		free_percpu(sdd->sgp);
6356		sdd->sgp = NULL;
6357	}
6358}
6359
6360struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6361		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6362		struct sched_domain *child, int cpu)
6363{
6364	struct sched_domain *sd = tl->init(tl, cpu);
6365	if (!sd)
6366		return child;
6367
6368	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6369	if (child) {
6370		sd->level = child->level + 1;
6371		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6372		child->parent = sd;
6373		sd->child = child;
6374	}
6375	set_domain_attribute(sd, attr);
6376
6377	return sd;
6378}
6379
6380/*
6381 * Build sched domains for a given set of cpus and attach the sched domains
6382 * to the individual cpus
6383 */
6384static int build_sched_domains(const struct cpumask *cpu_map,
6385			       struct sched_domain_attr *attr)
6386{
6387	enum s_alloc alloc_state;
6388	struct sched_domain *sd;
6389	struct s_data d;
6390	int i, ret = -ENOMEM;
6391
6392	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6393	if (alloc_state != sa_rootdomain)
6394		goto error;
6395
6396	/* Set up domains for cpus specified by the cpu_map. */
6397	for_each_cpu(i, cpu_map) {
6398		struct sched_domain_topology_level *tl;
6399
6400		sd = NULL;
6401		for_each_sd_topology(tl) {
6402			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6403			if (tl == sched_domain_topology)
6404				*per_cpu_ptr(d.sd, i) = sd;
6405			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6406				sd->flags |= SD_OVERLAP;
6407			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6408				break;
6409		}
6410	}
6411
6412	/* Build the groups for the domains */
6413	for_each_cpu(i, cpu_map) {
6414		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6415			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6416			if (sd->flags & SD_OVERLAP) {
6417				if (build_overlap_sched_groups(sd, i))
6418					goto error;
6419			} else {
6420				if (build_sched_groups(sd, i))
6421					goto error;
6422			}
6423		}
6424	}
6425
6426	/* Calculate CPU power for physical packages and nodes */
6427	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6428		if (!cpumask_test_cpu(i, cpu_map))
6429			continue;
6430
6431		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6432			claim_allocations(i, sd);
6433			init_sched_groups_power(i, sd);
6434		}
6435	}
6436
6437	/* Attach the domains */
6438	rcu_read_lock();
6439	for_each_cpu(i, cpu_map) {
6440		sd = *per_cpu_ptr(d.sd, i);
6441		cpu_attach_domain(sd, d.rd, i);
6442	}
6443	rcu_read_unlock();
6444
6445	ret = 0;
6446error:
6447	__free_domain_allocs(&d, alloc_state, cpu_map);
6448	return ret;
6449}
6450
6451static cpumask_var_t *doms_cur;	/* current sched domains */
6452static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6453static struct sched_domain_attr *dattr_cur;
6454				/* attribues of custom domains in 'doms_cur' */
6455
6456/*
6457 * Special case: If a kmalloc of a doms_cur partition (array of
6458 * cpumask) fails, then fallback to a single sched domain,
6459 * as determined by the single cpumask fallback_doms.
6460 */
6461static cpumask_var_t fallback_doms;
6462
6463/*
6464 * arch_update_cpu_topology lets virtualized architectures update the
6465 * cpu core maps. It is supposed to return 1 if the topology changed
6466 * or 0 if it stayed the same.
6467 */
6468int __weak arch_update_cpu_topology(void)
6469{
6470	return 0;
6471}
6472
6473cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6474{
6475	int i;
6476	cpumask_var_t *doms;
6477
6478	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6479	if (!doms)
6480		return NULL;
6481	for (i = 0; i < ndoms; i++) {
6482		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6483			free_sched_domains(doms, i);
6484			return NULL;
6485		}
6486	}
6487	return doms;
6488}
6489
6490void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6491{
6492	unsigned int i;
6493	for (i = 0; i < ndoms; i++)
6494		free_cpumask_var(doms[i]);
6495	kfree(doms);
6496}
6497
6498/*
6499 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6500 * For now this just excludes isolated cpus, but could be used to
6501 * exclude other special cases in the future.
6502 */
6503static int init_sched_domains(const struct cpumask *cpu_map)
6504{
6505	int err;
6506
6507	arch_update_cpu_topology();
6508	ndoms_cur = 1;
6509	doms_cur = alloc_sched_domains(ndoms_cur);
6510	if (!doms_cur)
6511		doms_cur = &fallback_doms;
6512	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6513	err = build_sched_domains(doms_cur[0], NULL);
6514	register_sched_domain_sysctl();
6515
6516	return err;
6517}
6518
6519/*
6520 * Detach sched domains from a group of cpus specified in cpu_map
6521 * These cpus will now be attached to the NULL domain
6522 */
6523static void detach_destroy_domains(const struct cpumask *cpu_map)
6524{
6525	int i;
6526
6527	rcu_read_lock();
6528	for_each_cpu(i, cpu_map)
6529		cpu_attach_domain(NULL, &def_root_domain, i);
6530	rcu_read_unlock();
6531}
6532
6533/* handle null as "default" */
6534static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6535			struct sched_domain_attr *new, int idx_new)
6536{
6537	struct sched_domain_attr tmp;
6538
6539	/* fast path */
6540	if (!new && !cur)
6541		return 1;
6542
6543	tmp = SD_ATTR_INIT;
6544	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6545			new ? (new + idx_new) : &tmp,
6546			sizeof(struct sched_domain_attr));
6547}
6548
6549/*
6550 * Partition sched domains as specified by the 'ndoms_new'
6551 * cpumasks in the array doms_new[] of cpumasks. This compares
6552 * doms_new[] to the current sched domain partitioning, doms_cur[].
6553 * It destroys each deleted domain and builds each new domain.
6554 *
6555 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6556 * The masks don't intersect (don't overlap.) We should setup one
6557 * sched domain for each mask. CPUs not in any of the cpumasks will
6558 * not be load balanced. If the same cpumask appears both in the
6559 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6560 * it as it is.
6561 *
6562 * The passed in 'doms_new' should be allocated using
6563 * alloc_sched_domains.  This routine takes ownership of it and will
6564 * free_sched_domains it when done with it. If the caller failed the
6565 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6566 * and partition_sched_domains() will fallback to the single partition
6567 * 'fallback_doms', it also forces the domains to be rebuilt.
6568 *
6569 * If doms_new == NULL it will be replaced with cpu_online_mask.
6570 * ndoms_new == 0 is a special case for destroying existing domains,
6571 * and it will not create the default domain.
6572 *
6573 * Call with hotplug lock held
6574 */
6575void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6576			     struct sched_domain_attr *dattr_new)
6577{
6578	int i, j, n;
6579	int new_topology;
6580
6581	mutex_lock(&sched_domains_mutex);
6582
6583	/* always unregister in case we don't destroy any domains */
6584	unregister_sched_domain_sysctl();
6585
6586	/* Let architecture update cpu core mappings. */
6587	new_topology = arch_update_cpu_topology();
6588
6589	n = doms_new ? ndoms_new : 0;
6590
6591	/* Destroy deleted domains */
6592	for (i = 0; i < ndoms_cur; i++) {
6593		for (j = 0; j < n && !new_topology; j++) {
6594			if (cpumask_equal(doms_cur[i], doms_new[j])
6595			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6596				goto match1;
6597		}
6598		/* no match - a current sched domain not in new doms_new[] */
6599		detach_destroy_domains(doms_cur[i]);
6600match1:
6601		;
6602	}
6603
6604	n = ndoms_cur;
6605	if (doms_new == NULL) {
6606		n = 0;
6607		doms_new = &fallback_doms;
6608		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6609		WARN_ON_ONCE(dattr_new);
6610	}
6611
6612	/* Build new domains */
6613	for (i = 0; i < ndoms_new; i++) {
6614		for (j = 0; j < n && !new_topology; j++) {
6615			if (cpumask_equal(doms_new[i], doms_cur[j])
6616			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6617				goto match2;
6618		}
6619		/* no match - add a new doms_new */
6620		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6621match2:
6622		;
6623	}
6624
6625	/* Remember the new sched domains */
6626	if (doms_cur != &fallback_doms)
6627		free_sched_domains(doms_cur, ndoms_cur);
6628	kfree(dattr_cur);	/* kfree(NULL) is safe */
6629	doms_cur = doms_new;
6630	dattr_cur = dattr_new;
6631	ndoms_cur = ndoms_new;
6632
6633	register_sched_domain_sysctl();
6634
6635	mutex_unlock(&sched_domains_mutex);
6636}
6637
6638static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6639
6640/*
6641 * Update cpusets according to cpu_active mask.  If cpusets are
6642 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6643 * around partition_sched_domains().
6644 *
6645 * If we come here as part of a suspend/resume, don't touch cpusets because we
6646 * want to restore it back to its original state upon resume anyway.
6647 */
6648static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6649			     void *hcpu)
6650{
6651	switch (action) {
6652	case CPU_ONLINE_FROZEN:
6653	case CPU_DOWN_FAILED_FROZEN:
6654
6655		/*
6656		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6657		 * resume sequence. As long as this is not the last online
6658		 * operation in the resume sequence, just build a single sched
6659		 * domain, ignoring cpusets.
6660		 */
6661		num_cpus_frozen--;
6662		if (likely(num_cpus_frozen)) {
6663			partition_sched_domains(1, NULL, NULL);
6664			break;
6665		}
6666
6667		/*
6668		 * This is the last CPU online operation. So fall through and
6669		 * restore the original sched domains by considering the
6670		 * cpuset configurations.
6671		 */
6672
6673	case CPU_ONLINE:
6674	case CPU_DOWN_FAILED:
6675		cpuset_update_active_cpus(true);
6676		break;
6677	default:
6678		return NOTIFY_DONE;
6679	}
6680	return NOTIFY_OK;
6681}
6682
6683static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6684			       void *hcpu)
6685{
6686	switch (action) {
6687	case CPU_DOWN_PREPARE:
6688		cpuset_update_active_cpus(false);
6689		break;
6690	case CPU_DOWN_PREPARE_FROZEN:
6691		num_cpus_frozen++;
6692		partition_sched_domains(1, NULL, NULL);
6693		break;
6694	default:
6695		return NOTIFY_DONE;
6696	}
6697	return NOTIFY_OK;
6698}
6699
6700void __init sched_init_smp(void)
6701{
6702	cpumask_var_t non_isolated_cpus;
6703
6704	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6705	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6706
6707	sched_init_numa();
6708
6709	/*
6710	 * There's no userspace yet to cause hotplug operations; hence all the
6711	 * cpu masks are stable and all blatant races in the below code cannot
6712	 * happen.
6713	 */
6714	mutex_lock(&sched_domains_mutex);
6715	init_sched_domains(cpu_active_mask);
6716	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6717	if (cpumask_empty(non_isolated_cpus))
6718		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6719	mutex_unlock(&sched_domains_mutex);
6720
6721	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6722	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6723	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6724
6725	init_hrtick();
6726
6727	/* Move init over to a non-isolated CPU */
6728	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6729		BUG();
6730	sched_init_granularity();
6731	free_cpumask_var(non_isolated_cpus);
6732
6733	init_sched_rt_class();
6734	init_sched_dl_class();
6735}
6736#else
6737void __init sched_init_smp(void)
6738{
6739	sched_init_granularity();
6740}
6741#endif /* CONFIG_SMP */
6742
6743const_debug unsigned int sysctl_timer_migration = 1;
6744
6745int in_sched_functions(unsigned long addr)
6746{
6747	return in_lock_functions(addr) ||
6748		(addr >= (unsigned long)__sched_text_start
6749		&& addr < (unsigned long)__sched_text_end);
6750}
6751
6752#ifdef CONFIG_CGROUP_SCHED
6753/*
6754 * Default task group.
6755 * Every task in system belongs to this group at bootup.
6756 */
6757struct task_group root_task_group;
6758LIST_HEAD(task_groups);
6759#endif
6760
6761DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6762
6763void __init sched_init(void)
6764{
6765	int i, j;
6766	unsigned long alloc_size = 0, ptr;
6767
6768#ifdef CONFIG_FAIR_GROUP_SCHED
6769	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6770#endif
6771#ifdef CONFIG_RT_GROUP_SCHED
6772	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6773#endif
6774#ifdef CONFIG_CPUMASK_OFFSTACK
6775	alloc_size += num_possible_cpus() * cpumask_size();
6776#endif
6777	if (alloc_size) {
6778		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6779
6780#ifdef CONFIG_FAIR_GROUP_SCHED
6781		root_task_group.se = (struct sched_entity **)ptr;
6782		ptr += nr_cpu_ids * sizeof(void **);
6783
6784		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6785		ptr += nr_cpu_ids * sizeof(void **);
6786
6787#endif /* CONFIG_FAIR_GROUP_SCHED */
6788#ifdef CONFIG_RT_GROUP_SCHED
6789		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6790		ptr += nr_cpu_ids * sizeof(void **);
6791
6792		root_task_group.rt_rq = (struct rt_rq **)ptr;
6793		ptr += nr_cpu_ids * sizeof(void **);
6794
6795#endif /* CONFIG_RT_GROUP_SCHED */
6796#ifdef CONFIG_CPUMASK_OFFSTACK
6797		for_each_possible_cpu(i) {
6798			per_cpu(load_balance_mask, i) = (void *)ptr;
6799			ptr += cpumask_size();
6800		}
6801#endif /* CONFIG_CPUMASK_OFFSTACK */
6802	}
6803
6804	init_rt_bandwidth(&def_rt_bandwidth,
6805			global_rt_period(), global_rt_runtime());
6806	init_dl_bandwidth(&def_dl_bandwidth,
6807			global_rt_period(), global_rt_runtime());
6808
6809#ifdef CONFIG_SMP
6810	init_defrootdomain();
6811#endif
6812
6813#ifdef CONFIG_RT_GROUP_SCHED
6814	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6815			global_rt_period(), global_rt_runtime());
6816#endif /* CONFIG_RT_GROUP_SCHED */
6817
6818#ifdef CONFIG_CGROUP_SCHED
6819	list_add(&root_task_group.list, &task_groups);
6820	INIT_LIST_HEAD(&root_task_group.children);
6821	INIT_LIST_HEAD(&root_task_group.siblings);
6822	autogroup_init(&init_task);
6823
6824#endif /* CONFIG_CGROUP_SCHED */
6825
6826	for_each_possible_cpu(i) {
6827		struct rq *rq;
6828
6829		rq = cpu_rq(i);
6830		raw_spin_lock_init(&rq->lock);
6831		rq->nr_running = 0;
6832		rq->calc_load_active = 0;
6833		rq->calc_load_update = jiffies + LOAD_FREQ;
6834		init_cfs_rq(&rq->cfs);
6835		init_rt_rq(&rq->rt, rq);
6836		init_dl_rq(&rq->dl, rq);
6837#ifdef CONFIG_FAIR_GROUP_SCHED
6838		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6839		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6840		/*
6841		 * How much cpu bandwidth does root_task_group get?
6842		 *
6843		 * In case of task-groups formed thr' the cgroup filesystem, it
6844		 * gets 100% of the cpu resources in the system. This overall
6845		 * system cpu resource is divided among the tasks of
6846		 * root_task_group and its child task-groups in a fair manner,
6847		 * based on each entity's (task or task-group's) weight
6848		 * (se->load.weight).
6849		 *
6850		 * In other words, if root_task_group has 10 tasks of weight
6851		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6852		 * then A0's share of the cpu resource is:
6853		 *
6854		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6855		 *
6856		 * We achieve this by letting root_task_group's tasks sit
6857		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6858		 */
6859		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6860		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6861#endif /* CONFIG_FAIR_GROUP_SCHED */
6862
6863		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6864#ifdef CONFIG_RT_GROUP_SCHED
6865		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6866#endif
6867
6868		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6869			rq->cpu_load[j] = 0;
6870
6871		rq->last_load_update_tick = jiffies;
6872
6873#ifdef CONFIG_SMP
6874		rq->sd = NULL;
6875		rq->rd = NULL;
6876		rq->cpu_power = SCHED_POWER_SCALE;
6877		rq->post_schedule = 0;
6878		rq->active_balance = 0;
6879		rq->next_balance = jiffies;
6880		rq->push_cpu = 0;
6881		rq->cpu = i;
6882		rq->online = 0;
6883		rq->idle_stamp = 0;
6884		rq->avg_idle = 2*sysctl_sched_migration_cost;
6885		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6886
6887		INIT_LIST_HEAD(&rq->cfs_tasks);
6888
6889		rq_attach_root(rq, &def_root_domain);
6890#ifdef CONFIG_NO_HZ_COMMON
6891		rq->nohz_flags = 0;
6892#endif
6893#ifdef CONFIG_NO_HZ_FULL
6894		rq->last_sched_tick = 0;
6895#endif
6896#endif
6897		init_rq_hrtick(rq);
6898		atomic_set(&rq->nr_iowait, 0);
6899	}
6900
6901	set_load_weight(&init_task);
6902
6903#ifdef CONFIG_PREEMPT_NOTIFIERS
6904	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6905#endif
6906
6907	/*
6908	 * The boot idle thread does lazy MMU switching as well:
6909	 */
6910	atomic_inc(&init_mm.mm_count);
6911	enter_lazy_tlb(&init_mm, current);
6912
6913	/*
6914	 * Make us the idle thread. Technically, schedule() should not be
6915	 * called from this thread, however somewhere below it might be,
6916	 * but because we are the idle thread, we just pick up running again
6917	 * when this runqueue becomes "idle".
6918	 */
6919	init_idle(current, smp_processor_id());
6920
6921	calc_load_update = jiffies + LOAD_FREQ;
6922
6923	/*
6924	 * During early bootup we pretend to be a normal task:
6925	 */
6926	current->sched_class = &fair_sched_class;
6927
6928#ifdef CONFIG_SMP
6929	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6930	/* May be allocated at isolcpus cmdline parse time */
6931	if (cpu_isolated_map == NULL)
6932		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6933	idle_thread_set_boot_cpu();
6934#endif
6935	init_sched_fair_class();
6936
6937	scheduler_running = 1;
6938}
6939
6940#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6941static inline int preempt_count_equals(int preempt_offset)
6942{
6943	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6944
6945	return (nested == preempt_offset);
6946}
6947
6948void __might_sleep(const char *file, int line, int preempt_offset)
6949{
6950	static unsigned long prev_jiffy;	/* ratelimiting */
6951
6952	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6953	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6954	     !is_idle_task(current)) ||
6955	    system_state != SYSTEM_RUNNING || oops_in_progress)
6956		return;
6957	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6958		return;
6959	prev_jiffy = jiffies;
6960
6961	printk(KERN_ERR
6962		"BUG: sleeping function called from invalid context at %s:%d\n",
6963			file, line);
6964	printk(KERN_ERR
6965		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6966			in_atomic(), irqs_disabled(),
6967			current->pid, current->comm);
6968
6969	debug_show_held_locks(current);
6970	if (irqs_disabled())
6971		print_irqtrace_events(current);
6972#ifdef CONFIG_DEBUG_PREEMPT
6973	if (!preempt_count_equals(preempt_offset)) {
6974		pr_err("Preemption disabled at:");
6975		print_ip_sym(current->preempt_disable_ip);
6976		pr_cont("\n");
6977	}
6978#endif
6979	dump_stack();
6980}
6981EXPORT_SYMBOL(__might_sleep);
6982#endif
6983
6984#ifdef CONFIG_MAGIC_SYSRQ
6985static void normalize_task(struct rq *rq, struct task_struct *p)
6986{
6987	const struct sched_class *prev_class = p->sched_class;
6988	struct sched_attr attr = {
6989		.sched_policy = SCHED_NORMAL,
6990	};
6991	int old_prio = p->prio;
6992	int on_rq;
6993
6994	on_rq = p->on_rq;
6995	if (on_rq)
6996		dequeue_task(rq, p, 0);
6997	__setscheduler(rq, p, &attr);
6998	if (on_rq) {
6999		enqueue_task(rq, p, 0);
7000		resched_task(rq->curr);
7001	}
7002
7003	check_class_changed(rq, p, prev_class, old_prio);
7004}
7005
7006void normalize_rt_tasks(void)
7007{
7008	struct task_struct *g, *p;
7009	unsigned long flags;
7010	struct rq *rq;
7011
7012	read_lock_irqsave(&tasklist_lock, flags);
7013	do_each_thread(g, p) {
7014		/*
7015		 * Only normalize user tasks:
7016		 */
7017		if (!p->mm)
7018			continue;
7019
7020		p->se.exec_start		= 0;
7021#ifdef CONFIG_SCHEDSTATS
7022		p->se.statistics.wait_start	= 0;
7023		p->se.statistics.sleep_start	= 0;
7024		p->se.statistics.block_start	= 0;
7025#endif
7026
7027		if (!dl_task(p) && !rt_task(p)) {
7028			/*
7029			 * Renice negative nice level userspace
7030			 * tasks back to 0:
7031			 */
7032			if (task_nice(p) < 0 && p->mm)
7033				set_user_nice(p, 0);
7034			continue;
7035		}
7036
7037		raw_spin_lock(&p->pi_lock);
7038		rq = __task_rq_lock(p);
7039
7040		normalize_task(rq, p);
7041
7042		__task_rq_unlock(rq);
7043		raw_spin_unlock(&p->pi_lock);
7044	} while_each_thread(g, p);
7045
7046	read_unlock_irqrestore(&tasklist_lock, flags);
7047}
7048
7049#endif /* CONFIG_MAGIC_SYSRQ */
7050
7051#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7052/*
7053 * These functions are only useful for the IA64 MCA handling, or kdb.
7054 *
7055 * They can only be called when the whole system has been
7056 * stopped - every CPU needs to be quiescent, and no scheduling
7057 * activity can take place. Using them for anything else would
7058 * be a serious bug, and as a result, they aren't even visible
7059 * under any other configuration.
7060 */
7061
7062/**
7063 * curr_task - return the current task for a given cpu.
7064 * @cpu: the processor in question.
7065 *
7066 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7067 *
7068 * Return: The current task for @cpu.
7069 */
7070struct task_struct *curr_task(int cpu)
7071{
7072	return cpu_curr(cpu);
7073}
7074
7075#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7076
7077#ifdef CONFIG_IA64
7078/**
7079 * set_curr_task - set the current task for a given cpu.
7080 * @cpu: the processor in question.
7081 * @p: the task pointer to set.
7082 *
7083 * Description: This function must only be used when non-maskable interrupts
7084 * are serviced on a separate stack. It allows the architecture to switch the
7085 * notion of the current task on a cpu in a non-blocking manner. This function
7086 * must be called with all CPU's synchronized, and interrupts disabled, the
7087 * and caller must save the original value of the current task (see
7088 * curr_task() above) and restore that value before reenabling interrupts and
7089 * re-starting the system.
7090 *
7091 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7092 */
7093void set_curr_task(int cpu, struct task_struct *p)
7094{
7095	cpu_curr(cpu) = p;
7096}
7097
7098#endif
7099
7100#ifdef CONFIG_CGROUP_SCHED
7101/* task_group_lock serializes the addition/removal of task groups */
7102static DEFINE_SPINLOCK(task_group_lock);
7103
7104static void free_sched_group(struct task_group *tg)
7105{
7106	free_fair_sched_group(tg);
7107	free_rt_sched_group(tg);
7108	autogroup_free(tg);
7109	kfree(tg);
7110}
7111
7112/* allocate runqueue etc for a new task group */
7113struct task_group *sched_create_group(struct task_group *parent)
7114{
7115	struct task_group *tg;
7116
7117	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7118	if (!tg)
7119		return ERR_PTR(-ENOMEM);
7120
7121	if (!alloc_fair_sched_group(tg, parent))
7122		goto err;
7123
7124	if (!alloc_rt_sched_group(tg, parent))
7125		goto err;
7126
7127	return tg;
7128
7129err:
7130	free_sched_group(tg);
7131	return ERR_PTR(-ENOMEM);
7132}
7133
7134void sched_online_group(struct task_group *tg, struct task_group *parent)
7135{
7136	unsigned long flags;
7137
7138	spin_lock_irqsave(&task_group_lock, flags);
7139	list_add_rcu(&tg->list, &task_groups);
7140
7141	WARN_ON(!parent); /* root should already exist */
7142
7143	tg->parent = parent;
7144	INIT_LIST_HEAD(&tg->children);
7145	list_add_rcu(&tg->siblings, &parent->children);
7146	spin_unlock_irqrestore(&task_group_lock, flags);
7147}
7148
7149/* rcu callback to free various structures associated with a task group */
7150static void free_sched_group_rcu(struct rcu_head *rhp)
7151{
7152	/* now it should be safe to free those cfs_rqs */
7153	free_sched_group(container_of(rhp, struct task_group, rcu));
7154}
7155
7156/* Destroy runqueue etc associated with a task group */
7157void sched_destroy_group(struct task_group *tg)
7158{
7159	/* wait for possible concurrent references to cfs_rqs complete */
7160	call_rcu(&tg->rcu, free_sched_group_rcu);
7161}
7162
7163void sched_offline_group(struct task_group *tg)
7164{
7165	unsigned long flags;
7166	int i;
7167
7168	/* end participation in shares distribution */
7169	for_each_possible_cpu(i)
7170		unregister_fair_sched_group(tg, i);
7171
7172	spin_lock_irqsave(&task_group_lock, flags);
7173	list_del_rcu(&tg->list);
7174	list_del_rcu(&tg->siblings);
7175	spin_unlock_irqrestore(&task_group_lock, flags);
7176}
7177
7178/* change task's runqueue when it moves between groups.
7179 *	The caller of this function should have put the task in its new group
7180 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7181 *	reflect its new group.
7182 */
7183void sched_move_task(struct task_struct *tsk)
7184{
7185	struct task_group *tg;
7186	int on_rq, running;
7187	unsigned long flags;
7188	struct rq *rq;
7189
7190	rq = task_rq_lock(tsk, &flags);
7191
7192	running = task_current(rq, tsk);
7193	on_rq = tsk->on_rq;
7194
7195	if (on_rq)
7196		dequeue_task(rq, tsk, 0);
7197	if (unlikely(running))
7198		tsk->sched_class->put_prev_task(rq, tsk);
7199
7200	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7201				lockdep_is_held(&tsk->sighand->siglock)),
7202			  struct task_group, css);
7203	tg = autogroup_task_group(tsk, tg);
7204	tsk->sched_task_group = tg;
7205
7206#ifdef CONFIG_FAIR_GROUP_SCHED
7207	if (tsk->sched_class->task_move_group)
7208		tsk->sched_class->task_move_group(tsk, on_rq);
7209	else
7210#endif
7211		set_task_rq(tsk, task_cpu(tsk));
7212
7213	if (unlikely(running))
7214		tsk->sched_class->set_curr_task(rq);
7215	if (on_rq)
7216		enqueue_task(rq, tsk, 0);
7217
7218	task_rq_unlock(rq, tsk, &flags);
7219}
7220#endif /* CONFIG_CGROUP_SCHED */
7221
7222#ifdef CONFIG_RT_GROUP_SCHED
7223/*
7224 * Ensure that the real time constraints are schedulable.
7225 */
7226static DEFINE_MUTEX(rt_constraints_mutex);
7227
7228/* Must be called with tasklist_lock held */
7229static inline int tg_has_rt_tasks(struct task_group *tg)
7230{
7231	struct task_struct *g, *p;
7232
7233	do_each_thread(g, p) {
7234		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7235			return 1;
7236	} while_each_thread(g, p);
7237
7238	return 0;
7239}
7240
7241struct rt_schedulable_data {
7242	struct task_group *tg;
7243	u64 rt_period;
7244	u64 rt_runtime;
7245};
7246
7247static int tg_rt_schedulable(struct task_group *tg, void *data)
7248{
7249	struct rt_schedulable_data *d = data;
7250	struct task_group *child;
7251	unsigned long total, sum = 0;
7252	u64 period, runtime;
7253
7254	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7255	runtime = tg->rt_bandwidth.rt_runtime;
7256
7257	if (tg == d->tg) {
7258		period = d->rt_period;
7259		runtime = d->rt_runtime;
7260	}
7261
7262	/*
7263	 * Cannot have more runtime than the period.
7264	 */
7265	if (runtime > period && runtime != RUNTIME_INF)
7266		return -EINVAL;
7267
7268	/*
7269	 * Ensure we don't starve existing RT tasks.
7270	 */
7271	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7272		return -EBUSY;
7273
7274	total = to_ratio(period, runtime);
7275
7276	/*
7277	 * Nobody can have more than the global setting allows.
7278	 */
7279	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7280		return -EINVAL;
7281
7282	/*
7283	 * The sum of our children's runtime should not exceed our own.
7284	 */
7285	list_for_each_entry_rcu(child, &tg->children, siblings) {
7286		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7287		runtime = child->rt_bandwidth.rt_runtime;
7288
7289		if (child == d->tg) {
7290			period = d->rt_period;
7291			runtime = d->rt_runtime;
7292		}
7293
7294		sum += to_ratio(period, runtime);
7295	}
7296
7297	if (sum > total)
7298		return -EINVAL;
7299
7300	return 0;
7301}
7302
7303static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7304{
7305	int ret;
7306
7307	struct rt_schedulable_data data = {
7308		.tg = tg,
7309		.rt_period = period,
7310		.rt_runtime = runtime,
7311	};
7312
7313	rcu_read_lock();
7314	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7315	rcu_read_unlock();
7316
7317	return ret;
7318}
7319
7320static int tg_set_rt_bandwidth(struct task_group *tg,
7321		u64 rt_period, u64 rt_runtime)
7322{
7323	int i, err = 0;
7324
7325	mutex_lock(&rt_constraints_mutex);
7326	read_lock(&tasklist_lock);
7327	err = __rt_schedulable(tg, rt_period, rt_runtime);
7328	if (err)
7329		goto unlock;
7330
7331	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7332	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7333	tg->rt_bandwidth.rt_runtime = rt_runtime;
7334
7335	for_each_possible_cpu(i) {
7336		struct rt_rq *rt_rq = tg->rt_rq[i];
7337
7338		raw_spin_lock(&rt_rq->rt_runtime_lock);
7339		rt_rq->rt_runtime = rt_runtime;
7340		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7341	}
7342	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7343unlock:
7344	read_unlock(&tasklist_lock);
7345	mutex_unlock(&rt_constraints_mutex);
7346
7347	return err;
7348}
7349
7350static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7351{
7352	u64 rt_runtime, rt_period;
7353
7354	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7355	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7356	if (rt_runtime_us < 0)
7357		rt_runtime = RUNTIME_INF;
7358
7359	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7360}
7361
7362static long sched_group_rt_runtime(struct task_group *tg)
7363{
7364	u64 rt_runtime_us;
7365
7366	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7367		return -1;
7368
7369	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7370	do_div(rt_runtime_us, NSEC_PER_USEC);
7371	return rt_runtime_us;
7372}
7373
7374static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7375{
7376	u64 rt_runtime, rt_period;
7377
7378	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7379	rt_runtime = tg->rt_bandwidth.rt_runtime;
7380
7381	if (rt_period == 0)
7382		return -EINVAL;
7383
7384	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7385}
7386
7387static long sched_group_rt_period(struct task_group *tg)
7388{
7389	u64 rt_period_us;
7390
7391	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7392	do_div(rt_period_us, NSEC_PER_USEC);
7393	return rt_period_us;
7394}
7395#endif /* CONFIG_RT_GROUP_SCHED */
7396
7397#ifdef CONFIG_RT_GROUP_SCHED
7398static int sched_rt_global_constraints(void)
7399{
7400	int ret = 0;
7401
7402	mutex_lock(&rt_constraints_mutex);
7403	read_lock(&tasklist_lock);
7404	ret = __rt_schedulable(NULL, 0, 0);
7405	read_unlock(&tasklist_lock);
7406	mutex_unlock(&rt_constraints_mutex);
7407
7408	return ret;
7409}
7410
7411static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7412{
7413	/* Don't accept realtime tasks when there is no way for them to run */
7414	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7415		return 0;
7416
7417	return 1;
7418}
7419
7420#else /* !CONFIG_RT_GROUP_SCHED */
7421static int sched_rt_global_constraints(void)
7422{
7423	unsigned long flags;
7424	int i, ret = 0;
7425
7426	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7427	for_each_possible_cpu(i) {
7428		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7429
7430		raw_spin_lock(&rt_rq->rt_runtime_lock);
7431		rt_rq->rt_runtime = global_rt_runtime();
7432		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7433	}
7434	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7435
7436	return ret;
7437}
7438#endif /* CONFIG_RT_GROUP_SCHED */
7439
7440static int sched_dl_global_constraints(void)
7441{
7442	u64 runtime = global_rt_runtime();
7443	u64 period = global_rt_period();
7444	u64 new_bw = to_ratio(period, runtime);
7445	int cpu, ret = 0;
7446	unsigned long flags;
7447
7448	/*
7449	 * Here we want to check the bandwidth not being set to some
7450	 * value smaller than the currently allocated bandwidth in
7451	 * any of the root_domains.
7452	 *
7453	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7454	 * cycling on root_domains... Discussion on different/better
7455	 * solutions is welcome!
7456	 */
7457	for_each_possible_cpu(cpu) {
7458		struct dl_bw *dl_b = dl_bw_of(cpu);
7459
7460		raw_spin_lock_irqsave(&dl_b->lock, flags);
7461		if (new_bw < dl_b->total_bw)
7462			ret = -EBUSY;
7463		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7464
7465		if (ret)
7466			break;
7467	}
7468
7469	return ret;
7470}
7471
7472static void sched_dl_do_global(void)
7473{
7474	u64 new_bw = -1;
7475	int cpu;
7476	unsigned long flags;
7477
7478	def_dl_bandwidth.dl_period = global_rt_period();
7479	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7480
7481	if (global_rt_runtime() != RUNTIME_INF)
7482		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7483
7484	/*
7485	 * FIXME: As above...
7486	 */
7487	for_each_possible_cpu(cpu) {
7488		struct dl_bw *dl_b = dl_bw_of(cpu);
7489
7490		raw_spin_lock_irqsave(&dl_b->lock, flags);
7491		dl_b->bw = new_bw;
7492		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7493	}
7494}
7495
7496static int sched_rt_global_validate(void)
7497{
7498	if (sysctl_sched_rt_period <= 0)
7499		return -EINVAL;
7500
7501	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7502		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7503		return -EINVAL;
7504
7505	return 0;
7506}
7507
7508static void sched_rt_do_global(void)
7509{
7510	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7511	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7512}
7513
7514int sched_rt_handler(struct ctl_table *table, int write,
7515		void __user *buffer, size_t *lenp,
7516		loff_t *ppos)
7517{
7518	int old_period, old_runtime;
7519	static DEFINE_MUTEX(mutex);
7520	int ret;
7521
7522	mutex_lock(&mutex);
7523	old_period = sysctl_sched_rt_period;
7524	old_runtime = sysctl_sched_rt_runtime;
7525
7526	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7527
7528	if (!ret && write) {
7529		ret = sched_rt_global_validate();
7530		if (ret)
7531			goto undo;
7532
7533		ret = sched_rt_global_constraints();
7534		if (ret)
7535			goto undo;
7536
7537		ret = sched_dl_global_constraints();
7538		if (ret)
7539			goto undo;
7540
7541		sched_rt_do_global();
7542		sched_dl_do_global();
7543	}
7544	if (0) {
7545undo:
7546		sysctl_sched_rt_period = old_period;
7547		sysctl_sched_rt_runtime = old_runtime;
7548	}
7549	mutex_unlock(&mutex);
7550
7551	return ret;
7552}
7553
7554int sched_rr_handler(struct ctl_table *table, int write,
7555		void __user *buffer, size_t *lenp,
7556		loff_t *ppos)
7557{
7558	int ret;
7559	static DEFINE_MUTEX(mutex);
7560
7561	mutex_lock(&mutex);
7562	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7563	/* make sure that internally we keep jiffies */
7564	/* also, writing zero resets timeslice to default */
7565	if (!ret && write) {
7566		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7567			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7568	}
7569	mutex_unlock(&mutex);
7570	return ret;
7571}
7572
7573#ifdef CONFIG_CGROUP_SCHED
7574
7575static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7576{
7577	return css ? container_of(css, struct task_group, css) : NULL;
7578}
7579
7580static struct cgroup_subsys_state *
7581cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7582{
7583	struct task_group *parent = css_tg(parent_css);
7584	struct task_group *tg;
7585
7586	if (!parent) {
7587		/* This is early initialization for the top cgroup */
7588		return &root_task_group.css;
7589	}
7590
7591	tg = sched_create_group(parent);
7592	if (IS_ERR(tg))
7593		return ERR_PTR(-ENOMEM);
7594
7595	return &tg->css;
7596}
7597
7598static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7599{
7600	struct task_group *tg = css_tg(css);
7601	struct task_group *parent = css_tg(css_parent(css));
7602
7603	if (parent)
7604		sched_online_group(tg, parent);
7605	return 0;
7606}
7607
7608static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7609{
7610	struct task_group *tg = css_tg(css);
7611
7612	sched_destroy_group(tg);
7613}
7614
7615static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7616{
7617	struct task_group *tg = css_tg(css);
7618
7619	sched_offline_group(tg);
7620}
7621
7622static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7623				 struct cgroup_taskset *tset)
7624{
7625	struct task_struct *task;
7626
7627	cgroup_taskset_for_each(task, tset) {
7628#ifdef CONFIG_RT_GROUP_SCHED
7629		if (!sched_rt_can_attach(css_tg(css), task))
7630			return -EINVAL;
7631#else
7632		/* We don't support RT-tasks being in separate groups */
7633		if (task->sched_class != &fair_sched_class)
7634			return -EINVAL;
7635#endif
7636	}
7637	return 0;
7638}
7639
7640static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7641			      struct cgroup_taskset *tset)
7642{
7643	struct task_struct *task;
7644
7645	cgroup_taskset_for_each(task, tset)
7646		sched_move_task(task);
7647}
7648
7649static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7650			    struct cgroup_subsys_state *old_css,
7651			    struct task_struct *task)
7652{
7653	/*
7654	 * cgroup_exit() is called in the copy_process() failure path.
7655	 * Ignore this case since the task hasn't ran yet, this avoids
7656	 * trying to poke a half freed task state from generic code.
7657	 */
7658	if (!(task->flags & PF_EXITING))
7659		return;
7660
7661	sched_move_task(task);
7662}
7663
7664#ifdef CONFIG_FAIR_GROUP_SCHED
7665static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7666				struct cftype *cftype, u64 shareval)
7667{
7668	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7669}
7670
7671static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7672			       struct cftype *cft)
7673{
7674	struct task_group *tg = css_tg(css);
7675
7676	return (u64) scale_load_down(tg->shares);
7677}
7678
7679#ifdef CONFIG_CFS_BANDWIDTH
7680static DEFINE_MUTEX(cfs_constraints_mutex);
7681
7682const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7683const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7684
7685static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7686
7687static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7688{
7689	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7690	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7691
7692	if (tg == &root_task_group)
7693		return -EINVAL;
7694
7695	/*
7696	 * Ensure we have at some amount of bandwidth every period.  This is
7697	 * to prevent reaching a state of large arrears when throttled via
7698	 * entity_tick() resulting in prolonged exit starvation.
7699	 */
7700	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7701		return -EINVAL;
7702
7703	/*
7704	 * Likewise, bound things on the otherside by preventing insane quota
7705	 * periods.  This also allows us to normalize in computing quota
7706	 * feasibility.
7707	 */
7708	if (period > max_cfs_quota_period)
7709		return -EINVAL;
7710
7711	mutex_lock(&cfs_constraints_mutex);
7712	ret = __cfs_schedulable(tg, period, quota);
7713	if (ret)
7714		goto out_unlock;
7715
7716	runtime_enabled = quota != RUNTIME_INF;
7717	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7718	/*
7719	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7720	 * before making related changes, and on->off must occur afterwards
7721	 */
7722	if (runtime_enabled && !runtime_was_enabled)
7723		cfs_bandwidth_usage_inc();
7724	raw_spin_lock_irq(&cfs_b->lock);
7725	cfs_b->period = ns_to_ktime(period);
7726	cfs_b->quota = quota;
7727
7728	__refill_cfs_bandwidth_runtime(cfs_b);
7729	/* restart the period timer (if active) to handle new period expiry */
7730	if (runtime_enabled && cfs_b->timer_active) {
7731		/* force a reprogram */
7732		cfs_b->timer_active = 0;
7733		__start_cfs_bandwidth(cfs_b);
7734	}
7735	raw_spin_unlock_irq(&cfs_b->lock);
7736
7737	for_each_possible_cpu(i) {
7738		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7739		struct rq *rq = cfs_rq->rq;
7740
7741		raw_spin_lock_irq(&rq->lock);
7742		cfs_rq->runtime_enabled = runtime_enabled;
7743		cfs_rq->runtime_remaining = 0;
7744
7745		if (cfs_rq->throttled)
7746			unthrottle_cfs_rq(cfs_rq);
7747		raw_spin_unlock_irq(&rq->lock);
7748	}
7749	if (runtime_was_enabled && !runtime_enabled)
7750		cfs_bandwidth_usage_dec();
7751out_unlock:
7752	mutex_unlock(&cfs_constraints_mutex);
7753
7754	return ret;
7755}
7756
7757int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7758{
7759	u64 quota, period;
7760
7761	period = ktime_to_ns(tg->cfs_bandwidth.period);
7762	if (cfs_quota_us < 0)
7763		quota = RUNTIME_INF;
7764	else
7765		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7766
7767	return tg_set_cfs_bandwidth(tg, period, quota);
7768}
7769
7770long tg_get_cfs_quota(struct task_group *tg)
7771{
7772	u64 quota_us;
7773
7774	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7775		return -1;
7776
7777	quota_us = tg->cfs_bandwidth.quota;
7778	do_div(quota_us, NSEC_PER_USEC);
7779
7780	return quota_us;
7781}
7782
7783int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7784{
7785	u64 quota, period;
7786
7787	period = (u64)cfs_period_us * NSEC_PER_USEC;
7788	quota = tg->cfs_bandwidth.quota;
7789
7790	return tg_set_cfs_bandwidth(tg, period, quota);
7791}
7792
7793long tg_get_cfs_period(struct task_group *tg)
7794{
7795	u64 cfs_period_us;
7796
7797	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7798	do_div(cfs_period_us, NSEC_PER_USEC);
7799
7800	return cfs_period_us;
7801}
7802
7803static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7804				  struct cftype *cft)
7805{
7806	return tg_get_cfs_quota(css_tg(css));
7807}
7808
7809static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7810				   struct cftype *cftype, s64 cfs_quota_us)
7811{
7812	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7813}
7814
7815static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7816				   struct cftype *cft)
7817{
7818	return tg_get_cfs_period(css_tg(css));
7819}
7820
7821static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7822				    struct cftype *cftype, u64 cfs_period_us)
7823{
7824	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7825}
7826
7827struct cfs_schedulable_data {
7828	struct task_group *tg;
7829	u64 period, quota;
7830};
7831
7832/*
7833 * normalize group quota/period to be quota/max_period
7834 * note: units are usecs
7835 */
7836static u64 normalize_cfs_quota(struct task_group *tg,
7837			       struct cfs_schedulable_data *d)
7838{
7839	u64 quota, period;
7840
7841	if (tg == d->tg) {
7842		period = d->period;
7843		quota = d->quota;
7844	} else {
7845		period = tg_get_cfs_period(tg);
7846		quota = tg_get_cfs_quota(tg);
7847	}
7848
7849	/* note: these should typically be equivalent */
7850	if (quota == RUNTIME_INF || quota == -1)
7851		return RUNTIME_INF;
7852
7853	return to_ratio(period, quota);
7854}
7855
7856static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7857{
7858	struct cfs_schedulable_data *d = data;
7859	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7860	s64 quota = 0, parent_quota = -1;
7861
7862	if (!tg->parent) {
7863		quota = RUNTIME_INF;
7864	} else {
7865		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7866
7867		quota = normalize_cfs_quota(tg, d);
7868		parent_quota = parent_b->hierarchal_quota;
7869
7870		/*
7871		 * ensure max(child_quota) <= parent_quota, inherit when no
7872		 * limit is set
7873		 */
7874		if (quota == RUNTIME_INF)
7875			quota = parent_quota;
7876		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7877			return -EINVAL;
7878	}
7879	cfs_b->hierarchal_quota = quota;
7880
7881	return 0;
7882}
7883
7884static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7885{
7886	int ret;
7887	struct cfs_schedulable_data data = {
7888		.tg = tg,
7889		.period = period,
7890		.quota = quota,
7891	};
7892
7893	if (quota != RUNTIME_INF) {
7894		do_div(data.period, NSEC_PER_USEC);
7895		do_div(data.quota, NSEC_PER_USEC);
7896	}
7897
7898	rcu_read_lock();
7899	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7900	rcu_read_unlock();
7901
7902	return ret;
7903}
7904
7905static int cpu_stats_show(struct seq_file *sf, void *v)
7906{
7907	struct task_group *tg = css_tg(seq_css(sf));
7908	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7909
7910	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7911	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7912	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7913
7914	return 0;
7915}
7916#endif /* CONFIG_CFS_BANDWIDTH */
7917#endif /* CONFIG_FAIR_GROUP_SCHED */
7918
7919#ifdef CONFIG_RT_GROUP_SCHED
7920static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7921				struct cftype *cft, s64 val)
7922{
7923	return sched_group_set_rt_runtime(css_tg(css), val);
7924}
7925
7926static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7927			       struct cftype *cft)
7928{
7929	return sched_group_rt_runtime(css_tg(css));
7930}
7931
7932static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7933				    struct cftype *cftype, u64 rt_period_us)
7934{
7935	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7936}
7937
7938static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7939				   struct cftype *cft)
7940{
7941	return sched_group_rt_period(css_tg(css));
7942}
7943#endif /* CONFIG_RT_GROUP_SCHED */
7944
7945static struct cftype cpu_files[] = {
7946#ifdef CONFIG_FAIR_GROUP_SCHED
7947	{
7948		.name = "shares",
7949		.read_u64 = cpu_shares_read_u64,
7950		.write_u64 = cpu_shares_write_u64,
7951	},
7952#endif
7953#ifdef CONFIG_CFS_BANDWIDTH
7954	{
7955		.name = "cfs_quota_us",
7956		.read_s64 = cpu_cfs_quota_read_s64,
7957		.write_s64 = cpu_cfs_quota_write_s64,
7958	},
7959	{
7960		.name = "cfs_period_us",
7961		.read_u64 = cpu_cfs_period_read_u64,
7962		.write_u64 = cpu_cfs_period_write_u64,
7963	},
7964	{
7965		.name = "stat",
7966		.seq_show = cpu_stats_show,
7967	},
7968#endif
7969#ifdef CONFIG_RT_GROUP_SCHED
7970	{
7971		.name = "rt_runtime_us",
7972		.read_s64 = cpu_rt_runtime_read,
7973		.write_s64 = cpu_rt_runtime_write,
7974	},
7975	{
7976		.name = "rt_period_us",
7977		.read_u64 = cpu_rt_period_read_uint,
7978		.write_u64 = cpu_rt_period_write_uint,
7979	},
7980#endif
7981	{ }	/* terminate */
7982};
7983
7984struct cgroup_subsys cpu_cgrp_subsys = {
7985	.css_alloc	= cpu_cgroup_css_alloc,
7986	.css_free	= cpu_cgroup_css_free,
7987	.css_online	= cpu_cgroup_css_online,
7988	.css_offline	= cpu_cgroup_css_offline,
7989	.can_attach	= cpu_cgroup_can_attach,
7990	.attach		= cpu_cgroup_attach,
7991	.exit		= cpu_cgroup_exit,
7992	.base_cftypes	= cpu_files,
7993	.early_init	= 1,
7994};
7995
7996#endif	/* CONFIG_CGROUP_SCHED */
7997
7998void dump_cpu_task(int cpu)
7999{
8000	pr_info("Task dump for CPU %d:\n", cpu);
8001	sched_show_task(cpu_curr(cpu));
8002}
8003