core.c revision 1724813d9f2c7ff702b46d3e4a4f6d9b10a8f8c2
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * Maximum bandwidth available for all -deadline tasks and groups
301 * (if group scheduling is configured) on each CPU.
302 *
303 * default: 5%
304 */
305unsigned int sysctl_sched_dl_period = 1000000;
306int sysctl_sched_dl_runtime = 50000;
307
308
309
310/*
311 * __task_rq_lock - lock the rq @p resides on.
312 */
313static inline struct rq *__task_rq_lock(struct task_struct *p)
314	__acquires(rq->lock)
315{
316	struct rq *rq;
317
318	lockdep_assert_held(&p->pi_lock);
319
320	for (;;) {
321		rq = task_rq(p);
322		raw_spin_lock(&rq->lock);
323		if (likely(rq == task_rq(p)))
324			return rq;
325		raw_spin_unlock(&rq->lock);
326	}
327}
328
329/*
330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
331 */
332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333	__acquires(p->pi_lock)
334	__acquires(rq->lock)
335{
336	struct rq *rq;
337
338	for (;;) {
339		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340		rq = task_rq(p);
341		raw_spin_lock(&rq->lock);
342		if (likely(rq == task_rq(p)))
343			return rq;
344		raw_spin_unlock(&rq->lock);
345		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346	}
347}
348
349static void __task_rq_unlock(struct rq *rq)
350	__releases(rq->lock)
351{
352	raw_spin_unlock(&rq->lock);
353}
354
355static inline void
356task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
357	__releases(rq->lock)
358	__releases(p->pi_lock)
359{
360	raw_spin_unlock(&rq->lock);
361	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362}
363
364/*
365 * this_rq_lock - lock this runqueue and disable interrupts.
366 */
367static struct rq *this_rq_lock(void)
368	__acquires(rq->lock)
369{
370	struct rq *rq;
371
372	local_irq_disable();
373	rq = this_rq();
374	raw_spin_lock(&rq->lock);
375
376	return rq;
377}
378
379#ifdef CONFIG_SCHED_HRTICK
380/*
381 * Use HR-timers to deliver accurate preemption points.
382 */
383
384static void hrtick_clear(struct rq *rq)
385{
386	if (hrtimer_active(&rq->hrtick_timer))
387		hrtimer_cancel(&rq->hrtick_timer);
388}
389
390/*
391 * High-resolution timer tick.
392 * Runs from hardirq context with interrupts disabled.
393 */
394static enum hrtimer_restart hrtick(struct hrtimer *timer)
395{
396	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
397
398	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399
400	raw_spin_lock(&rq->lock);
401	update_rq_clock(rq);
402	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
403	raw_spin_unlock(&rq->lock);
404
405	return HRTIMER_NORESTART;
406}
407
408#ifdef CONFIG_SMP
409
410static int __hrtick_restart(struct rq *rq)
411{
412	struct hrtimer *timer = &rq->hrtick_timer;
413	ktime_t time = hrtimer_get_softexpires(timer);
414
415	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
416}
417
418/*
419 * called from hardirq (IPI) context
420 */
421static void __hrtick_start(void *arg)
422{
423	struct rq *rq = arg;
424
425	raw_spin_lock(&rq->lock);
426	__hrtick_restart(rq);
427	rq->hrtick_csd_pending = 0;
428	raw_spin_unlock(&rq->lock);
429}
430
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
436void hrtick_start(struct rq *rq, u64 delay)
437{
438	struct hrtimer *timer = &rq->hrtick_timer;
439	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
440
441	hrtimer_set_expires(timer, time);
442
443	if (rq == this_rq()) {
444		__hrtick_restart(rq);
445	} else if (!rq->hrtick_csd_pending) {
446		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
447		rq->hrtick_csd_pending = 1;
448	}
449}
450
451static int
452hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
453{
454	int cpu = (int)(long)hcpu;
455
456	switch (action) {
457	case CPU_UP_CANCELED:
458	case CPU_UP_CANCELED_FROZEN:
459	case CPU_DOWN_PREPARE:
460	case CPU_DOWN_PREPARE_FROZEN:
461	case CPU_DEAD:
462	case CPU_DEAD_FROZEN:
463		hrtick_clear(cpu_rq(cpu));
464		return NOTIFY_OK;
465	}
466
467	return NOTIFY_DONE;
468}
469
470static __init void init_hrtick(void)
471{
472	hotcpu_notifier(hotplug_hrtick, 0);
473}
474#else
475/*
476 * Called to set the hrtick timer state.
477 *
478 * called with rq->lock held and irqs disabled
479 */
480void hrtick_start(struct rq *rq, u64 delay)
481{
482	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
483			HRTIMER_MODE_REL_PINNED, 0);
484}
485
486static inline void init_hrtick(void)
487{
488}
489#endif /* CONFIG_SMP */
490
491static void init_rq_hrtick(struct rq *rq)
492{
493#ifdef CONFIG_SMP
494	rq->hrtick_csd_pending = 0;
495
496	rq->hrtick_csd.flags = 0;
497	rq->hrtick_csd.func = __hrtick_start;
498	rq->hrtick_csd.info = rq;
499#endif
500
501	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
502	rq->hrtick_timer.function = hrtick;
503}
504#else	/* CONFIG_SCHED_HRTICK */
505static inline void hrtick_clear(struct rq *rq)
506{
507}
508
509static inline void init_rq_hrtick(struct rq *rq)
510{
511}
512
513static inline void init_hrtick(void)
514{
515}
516#endif	/* CONFIG_SCHED_HRTICK */
517
518/*
519 * resched_task - mark a task 'to be rescheduled now'.
520 *
521 * On UP this means the setting of the need_resched flag, on SMP it
522 * might also involve a cross-CPU call to trigger the scheduler on
523 * the target CPU.
524 */
525void resched_task(struct task_struct *p)
526{
527	int cpu;
528
529	lockdep_assert_held(&task_rq(p)->lock);
530
531	if (test_tsk_need_resched(p))
532		return;
533
534	set_tsk_need_resched(p);
535
536	cpu = task_cpu(p);
537	if (cpu == smp_processor_id()) {
538		set_preempt_need_resched();
539		return;
540	}
541
542	/* NEED_RESCHED must be visible before we test polling */
543	smp_mb();
544	if (!tsk_is_polling(p))
545		smp_send_reschedule(cpu);
546}
547
548void resched_cpu(int cpu)
549{
550	struct rq *rq = cpu_rq(cpu);
551	unsigned long flags;
552
553	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
554		return;
555	resched_task(cpu_curr(cpu));
556	raw_spin_unlock_irqrestore(&rq->lock, flags);
557}
558
559#ifdef CONFIG_SMP
560#ifdef CONFIG_NO_HZ_COMMON
561/*
562 * In the semi idle case, use the nearest busy cpu for migrating timers
563 * from an idle cpu.  This is good for power-savings.
564 *
565 * We don't do similar optimization for completely idle system, as
566 * selecting an idle cpu will add more delays to the timers than intended
567 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
568 */
569int get_nohz_timer_target(void)
570{
571	int cpu = smp_processor_id();
572	int i;
573	struct sched_domain *sd;
574
575	rcu_read_lock();
576	for_each_domain(cpu, sd) {
577		for_each_cpu(i, sched_domain_span(sd)) {
578			if (!idle_cpu(i)) {
579				cpu = i;
580				goto unlock;
581			}
582		}
583	}
584unlock:
585	rcu_read_unlock();
586	return cpu;
587}
588/*
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
597 */
598static void wake_up_idle_cpu(int cpu)
599{
600	struct rq *rq = cpu_rq(cpu);
601
602	if (cpu == smp_processor_id())
603		return;
604
605	/*
606	 * This is safe, as this function is called with the timer
607	 * wheel base lock of (cpu) held. When the CPU is on the way
608	 * to idle and has not yet set rq->curr to idle then it will
609	 * be serialized on the timer wheel base lock and take the new
610	 * timer into account automatically.
611	 */
612	if (rq->curr != rq->idle)
613		return;
614
615	/*
616	 * We can set TIF_RESCHED on the idle task of the other CPU
617	 * lockless. The worst case is that the other CPU runs the
618	 * idle task through an additional NOOP schedule()
619	 */
620	set_tsk_need_resched(rq->idle);
621
622	/* NEED_RESCHED must be visible before we test polling */
623	smp_mb();
624	if (!tsk_is_polling(rq->idle))
625		smp_send_reschedule(cpu);
626}
627
628static bool wake_up_full_nohz_cpu(int cpu)
629{
630	if (tick_nohz_full_cpu(cpu)) {
631		if (cpu != smp_processor_id() ||
632		    tick_nohz_tick_stopped())
633			smp_send_reschedule(cpu);
634		return true;
635	}
636
637	return false;
638}
639
640void wake_up_nohz_cpu(int cpu)
641{
642	if (!wake_up_full_nohz_cpu(cpu))
643		wake_up_idle_cpu(cpu);
644}
645
646static inline bool got_nohz_idle_kick(void)
647{
648	int cpu = smp_processor_id();
649
650	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
651		return false;
652
653	if (idle_cpu(cpu) && !need_resched())
654		return true;
655
656	/*
657	 * We can't run Idle Load Balance on this CPU for this time so we
658	 * cancel it and clear NOHZ_BALANCE_KICK
659	 */
660	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
661	return false;
662}
663
664#else /* CONFIG_NO_HZ_COMMON */
665
666static inline bool got_nohz_idle_kick(void)
667{
668	return false;
669}
670
671#endif /* CONFIG_NO_HZ_COMMON */
672
673#ifdef CONFIG_NO_HZ_FULL
674bool sched_can_stop_tick(void)
675{
676       struct rq *rq;
677
678       rq = this_rq();
679
680       /* Make sure rq->nr_running update is visible after the IPI */
681       smp_rmb();
682
683       /* More than one running task need preemption */
684       if (rq->nr_running > 1)
685               return false;
686
687       return true;
688}
689#endif /* CONFIG_NO_HZ_FULL */
690
691void sched_avg_update(struct rq *rq)
692{
693	s64 period = sched_avg_period();
694
695	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
696		/*
697		 * Inline assembly required to prevent the compiler
698		 * optimising this loop into a divmod call.
699		 * See __iter_div_u64_rem() for another example of this.
700		 */
701		asm("" : "+rm" (rq->age_stamp));
702		rq->age_stamp += period;
703		rq->rt_avg /= 2;
704	}
705}
706
707#endif /* CONFIG_SMP */
708
709#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
710			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
711/*
712 * Iterate task_group tree rooted at *from, calling @down when first entering a
713 * node and @up when leaving it for the final time.
714 *
715 * Caller must hold rcu_lock or sufficient equivalent.
716 */
717int walk_tg_tree_from(struct task_group *from,
718			     tg_visitor down, tg_visitor up, void *data)
719{
720	struct task_group *parent, *child;
721	int ret;
722
723	parent = from;
724
725down:
726	ret = (*down)(parent, data);
727	if (ret)
728		goto out;
729	list_for_each_entry_rcu(child, &parent->children, siblings) {
730		parent = child;
731		goto down;
732
733up:
734		continue;
735	}
736	ret = (*up)(parent, data);
737	if (ret || parent == from)
738		goto out;
739
740	child = parent;
741	parent = parent->parent;
742	if (parent)
743		goto up;
744out:
745	return ret;
746}
747
748int tg_nop(struct task_group *tg, void *data)
749{
750	return 0;
751}
752#endif
753
754static void set_load_weight(struct task_struct *p)
755{
756	int prio = p->static_prio - MAX_RT_PRIO;
757	struct load_weight *load = &p->se.load;
758
759	/*
760	 * SCHED_IDLE tasks get minimal weight:
761	 */
762	if (p->policy == SCHED_IDLE) {
763		load->weight = scale_load(WEIGHT_IDLEPRIO);
764		load->inv_weight = WMULT_IDLEPRIO;
765		return;
766	}
767
768	load->weight = scale_load(prio_to_weight[prio]);
769	load->inv_weight = prio_to_wmult[prio];
770}
771
772static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_queued(rq, p);
776	p->sched_class->enqueue_task(rq, p, flags);
777}
778
779static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	update_rq_clock(rq);
782	sched_info_dequeued(rq, p);
783	p->sched_class->dequeue_task(rq, p, flags);
784}
785
786void activate_task(struct rq *rq, struct task_struct *p, int flags)
787{
788	if (task_contributes_to_load(p))
789		rq->nr_uninterruptible--;
790
791	enqueue_task(rq, p, flags);
792}
793
794void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795{
796	if (task_contributes_to_load(p))
797		rq->nr_uninterruptible++;
798
799	dequeue_task(rq, p, flags);
800}
801
802static void update_rq_clock_task(struct rq *rq, s64 delta)
803{
804/*
805 * In theory, the compile should just see 0 here, and optimize out the call
806 * to sched_rt_avg_update. But I don't trust it...
807 */
808#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
809	s64 steal = 0, irq_delta = 0;
810#endif
811#ifdef CONFIG_IRQ_TIME_ACCOUNTING
812	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
813
814	/*
815	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
816	 * this case when a previous update_rq_clock() happened inside a
817	 * {soft,}irq region.
818	 *
819	 * When this happens, we stop ->clock_task and only update the
820	 * prev_irq_time stamp to account for the part that fit, so that a next
821	 * update will consume the rest. This ensures ->clock_task is
822	 * monotonic.
823	 *
824	 * It does however cause some slight miss-attribution of {soft,}irq
825	 * time, a more accurate solution would be to update the irq_time using
826	 * the current rq->clock timestamp, except that would require using
827	 * atomic ops.
828	 */
829	if (irq_delta > delta)
830		irq_delta = delta;
831
832	rq->prev_irq_time += irq_delta;
833	delta -= irq_delta;
834#endif
835#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
836	if (static_key_false((&paravirt_steal_rq_enabled))) {
837		u64 st;
838
839		steal = paravirt_steal_clock(cpu_of(rq));
840		steal -= rq->prev_steal_time_rq;
841
842		if (unlikely(steal > delta))
843			steal = delta;
844
845		st = steal_ticks(steal);
846		steal = st * TICK_NSEC;
847
848		rq->prev_steal_time_rq += steal;
849
850		delta -= steal;
851	}
852#endif
853
854	rq->clock_task += delta;
855
856#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
857	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
858		sched_rt_avg_update(rq, irq_delta + steal);
859#endif
860}
861
862void sched_set_stop_task(int cpu, struct task_struct *stop)
863{
864	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
865	struct task_struct *old_stop = cpu_rq(cpu)->stop;
866
867	if (stop) {
868		/*
869		 * Make it appear like a SCHED_FIFO task, its something
870		 * userspace knows about and won't get confused about.
871		 *
872		 * Also, it will make PI more or less work without too
873		 * much confusion -- but then, stop work should not
874		 * rely on PI working anyway.
875		 */
876		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
877
878		stop->sched_class = &stop_sched_class;
879	}
880
881	cpu_rq(cpu)->stop = stop;
882
883	if (old_stop) {
884		/*
885		 * Reset it back to a normal scheduling class so that
886		 * it can die in pieces.
887		 */
888		old_stop->sched_class = &rt_sched_class;
889	}
890}
891
892/*
893 * __normal_prio - return the priority that is based on the static prio
894 */
895static inline int __normal_prio(struct task_struct *p)
896{
897	return p->static_prio;
898}
899
900/*
901 * Calculate the expected normal priority: i.e. priority
902 * without taking RT-inheritance into account. Might be
903 * boosted by interactivity modifiers. Changes upon fork,
904 * setprio syscalls, and whenever the interactivity
905 * estimator recalculates.
906 */
907static inline int normal_prio(struct task_struct *p)
908{
909	int prio;
910
911	if (task_has_dl_policy(p))
912		prio = MAX_DL_PRIO-1;
913	else if (task_has_rt_policy(p))
914		prio = MAX_RT_PRIO-1 - p->rt_priority;
915	else
916		prio = __normal_prio(p);
917	return prio;
918}
919
920/*
921 * Calculate the current priority, i.e. the priority
922 * taken into account by the scheduler. This value might
923 * be boosted by RT tasks, or might be boosted by
924 * interactivity modifiers. Will be RT if the task got
925 * RT-boosted. If not then it returns p->normal_prio.
926 */
927static int effective_prio(struct task_struct *p)
928{
929	p->normal_prio = normal_prio(p);
930	/*
931	 * If we are RT tasks or we were boosted to RT priority,
932	 * keep the priority unchanged. Otherwise, update priority
933	 * to the normal priority:
934	 */
935	if (!rt_prio(p->prio))
936		return p->normal_prio;
937	return p->prio;
938}
939
940/**
941 * task_curr - is this task currently executing on a CPU?
942 * @p: the task in question.
943 *
944 * Return: 1 if the task is currently executing. 0 otherwise.
945 */
946inline int task_curr(const struct task_struct *p)
947{
948	return cpu_curr(task_cpu(p)) == p;
949}
950
951static inline void check_class_changed(struct rq *rq, struct task_struct *p,
952				       const struct sched_class *prev_class,
953				       int oldprio)
954{
955	if (prev_class != p->sched_class) {
956		if (prev_class->switched_from)
957			prev_class->switched_from(rq, p);
958		p->sched_class->switched_to(rq, p);
959	} else if (oldprio != p->prio || dl_task(p))
960		p->sched_class->prio_changed(rq, p, oldprio);
961}
962
963void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
964{
965	const struct sched_class *class;
966
967	if (p->sched_class == rq->curr->sched_class) {
968		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
969	} else {
970		for_each_class(class) {
971			if (class == rq->curr->sched_class)
972				break;
973			if (class == p->sched_class) {
974				resched_task(rq->curr);
975				break;
976			}
977		}
978	}
979
980	/*
981	 * A queue event has occurred, and we're going to schedule.  In
982	 * this case, we can save a useless back to back clock update.
983	 */
984	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
985		rq->skip_clock_update = 1;
986}
987
988#ifdef CONFIG_SMP
989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
990{
991#ifdef CONFIG_SCHED_DEBUG
992	/*
993	 * We should never call set_task_cpu() on a blocked task,
994	 * ttwu() will sort out the placement.
995	 */
996	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
997			!(task_preempt_count(p) & PREEMPT_ACTIVE));
998
999#ifdef CONFIG_LOCKDEP
1000	/*
1001	 * The caller should hold either p->pi_lock or rq->lock, when changing
1002	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003	 *
1004	 * sched_move_task() holds both and thus holding either pins the cgroup,
1005	 * see task_group().
1006	 *
1007	 * Furthermore, all task_rq users should acquire both locks, see
1008	 * task_rq_lock().
1009	 */
1010	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011				      lockdep_is_held(&task_rq(p)->lock)));
1012#endif
1013#endif
1014
1015	trace_sched_migrate_task(p, new_cpu);
1016
1017	if (task_cpu(p) != new_cpu) {
1018		if (p->sched_class->migrate_task_rq)
1019			p->sched_class->migrate_task_rq(p, new_cpu);
1020		p->se.nr_migrations++;
1021		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1022	}
1023
1024	__set_task_cpu(p, new_cpu);
1025}
1026
1027static void __migrate_swap_task(struct task_struct *p, int cpu)
1028{
1029	if (p->on_rq) {
1030		struct rq *src_rq, *dst_rq;
1031
1032		src_rq = task_rq(p);
1033		dst_rq = cpu_rq(cpu);
1034
1035		deactivate_task(src_rq, p, 0);
1036		set_task_cpu(p, cpu);
1037		activate_task(dst_rq, p, 0);
1038		check_preempt_curr(dst_rq, p, 0);
1039	} else {
1040		/*
1041		 * Task isn't running anymore; make it appear like we migrated
1042		 * it before it went to sleep. This means on wakeup we make the
1043		 * previous cpu our targer instead of where it really is.
1044		 */
1045		p->wake_cpu = cpu;
1046	}
1047}
1048
1049struct migration_swap_arg {
1050	struct task_struct *src_task, *dst_task;
1051	int src_cpu, dst_cpu;
1052};
1053
1054static int migrate_swap_stop(void *data)
1055{
1056	struct migration_swap_arg *arg = data;
1057	struct rq *src_rq, *dst_rq;
1058	int ret = -EAGAIN;
1059
1060	src_rq = cpu_rq(arg->src_cpu);
1061	dst_rq = cpu_rq(arg->dst_cpu);
1062
1063	double_raw_lock(&arg->src_task->pi_lock,
1064			&arg->dst_task->pi_lock);
1065	double_rq_lock(src_rq, dst_rq);
1066	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1067		goto unlock;
1068
1069	if (task_cpu(arg->src_task) != arg->src_cpu)
1070		goto unlock;
1071
1072	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1073		goto unlock;
1074
1075	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1076		goto unlock;
1077
1078	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1079	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1080
1081	ret = 0;
1082
1083unlock:
1084	double_rq_unlock(src_rq, dst_rq);
1085	raw_spin_unlock(&arg->dst_task->pi_lock);
1086	raw_spin_unlock(&arg->src_task->pi_lock);
1087
1088	return ret;
1089}
1090
1091/*
1092 * Cross migrate two tasks
1093 */
1094int migrate_swap(struct task_struct *cur, struct task_struct *p)
1095{
1096	struct migration_swap_arg arg;
1097	int ret = -EINVAL;
1098
1099	arg = (struct migration_swap_arg){
1100		.src_task = cur,
1101		.src_cpu = task_cpu(cur),
1102		.dst_task = p,
1103		.dst_cpu = task_cpu(p),
1104	};
1105
1106	if (arg.src_cpu == arg.dst_cpu)
1107		goto out;
1108
1109	/*
1110	 * These three tests are all lockless; this is OK since all of them
1111	 * will be re-checked with proper locks held further down the line.
1112	 */
1113	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1114		goto out;
1115
1116	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1117		goto out;
1118
1119	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1120		goto out;
1121
1122	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1123
1124out:
1125	return ret;
1126}
1127
1128struct migration_arg {
1129	struct task_struct *task;
1130	int dest_cpu;
1131};
1132
1133static int migration_cpu_stop(void *data);
1134
1135/*
1136 * wait_task_inactive - wait for a thread to unschedule.
1137 *
1138 * If @match_state is nonzero, it's the @p->state value just checked and
1139 * not expected to change.  If it changes, i.e. @p might have woken up,
1140 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1141 * we return a positive number (its total switch count).  If a second call
1142 * a short while later returns the same number, the caller can be sure that
1143 * @p has remained unscheduled the whole time.
1144 *
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1150 */
1151unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1152{
1153	unsigned long flags;
1154	int running, on_rq;
1155	unsigned long ncsw;
1156	struct rq *rq;
1157
1158	for (;;) {
1159		/*
1160		 * We do the initial early heuristics without holding
1161		 * any task-queue locks at all. We'll only try to get
1162		 * the runqueue lock when things look like they will
1163		 * work out!
1164		 */
1165		rq = task_rq(p);
1166
1167		/*
1168		 * If the task is actively running on another CPU
1169		 * still, just relax and busy-wait without holding
1170		 * any locks.
1171		 *
1172		 * NOTE! Since we don't hold any locks, it's not
1173		 * even sure that "rq" stays as the right runqueue!
1174		 * But we don't care, since "task_running()" will
1175		 * return false if the runqueue has changed and p
1176		 * is actually now running somewhere else!
1177		 */
1178		while (task_running(rq, p)) {
1179			if (match_state && unlikely(p->state != match_state))
1180				return 0;
1181			cpu_relax();
1182		}
1183
1184		/*
1185		 * Ok, time to look more closely! We need the rq
1186		 * lock now, to be *sure*. If we're wrong, we'll
1187		 * just go back and repeat.
1188		 */
1189		rq = task_rq_lock(p, &flags);
1190		trace_sched_wait_task(p);
1191		running = task_running(rq, p);
1192		on_rq = p->on_rq;
1193		ncsw = 0;
1194		if (!match_state || p->state == match_state)
1195			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1196		task_rq_unlock(rq, p, &flags);
1197
1198		/*
1199		 * If it changed from the expected state, bail out now.
1200		 */
1201		if (unlikely(!ncsw))
1202			break;
1203
1204		/*
1205		 * Was it really running after all now that we
1206		 * checked with the proper locks actually held?
1207		 *
1208		 * Oops. Go back and try again..
1209		 */
1210		if (unlikely(running)) {
1211			cpu_relax();
1212			continue;
1213		}
1214
1215		/*
1216		 * It's not enough that it's not actively running,
1217		 * it must be off the runqueue _entirely_, and not
1218		 * preempted!
1219		 *
1220		 * So if it was still runnable (but just not actively
1221		 * running right now), it's preempted, and we should
1222		 * yield - it could be a while.
1223		 */
1224		if (unlikely(on_rq)) {
1225			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1226
1227			set_current_state(TASK_UNINTERRUPTIBLE);
1228			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1229			continue;
1230		}
1231
1232		/*
1233		 * Ahh, all good. It wasn't running, and it wasn't
1234		 * runnable, which means that it will never become
1235		 * running in the future either. We're all done!
1236		 */
1237		break;
1238	}
1239
1240	return ncsw;
1241}
1242
1243/***
1244 * kick_process - kick a running thread to enter/exit the kernel
1245 * @p: the to-be-kicked thread
1246 *
1247 * Cause a process which is running on another CPU to enter
1248 * kernel-mode, without any delay. (to get signals handled.)
1249 *
1250 * NOTE: this function doesn't have to take the runqueue lock,
1251 * because all it wants to ensure is that the remote task enters
1252 * the kernel. If the IPI races and the task has been migrated
1253 * to another CPU then no harm is done and the purpose has been
1254 * achieved as well.
1255 */
1256void kick_process(struct task_struct *p)
1257{
1258	int cpu;
1259
1260	preempt_disable();
1261	cpu = task_cpu(p);
1262	if ((cpu != smp_processor_id()) && task_curr(p))
1263		smp_send_reschedule(cpu);
1264	preempt_enable();
1265}
1266EXPORT_SYMBOL_GPL(kick_process);
1267#endif /* CONFIG_SMP */
1268
1269#ifdef CONFIG_SMP
1270/*
1271 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1272 */
1273static int select_fallback_rq(int cpu, struct task_struct *p)
1274{
1275	int nid = cpu_to_node(cpu);
1276	const struct cpumask *nodemask = NULL;
1277	enum { cpuset, possible, fail } state = cpuset;
1278	int dest_cpu;
1279
1280	/*
1281	 * If the node that the cpu is on has been offlined, cpu_to_node()
1282	 * will return -1. There is no cpu on the node, and we should
1283	 * select the cpu on the other node.
1284	 */
1285	if (nid != -1) {
1286		nodemask = cpumask_of_node(nid);
1287
1288		/* Look for allowed, online CPU in same node. */
1289		for_each_cpu(dest_cpu, nodemask) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
1294			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1295				return dest_cpu;
1296		}
1297	}
1298
1299	for (;;) {
1300		/* Any allowed, online CPU? */
1301		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1302			if (!cpu_online(dest_cpu))
1303				continue;
1304			if (!cpu_active(dest_cpu))
1305				continue;
1306			goto out;
1307		}
1308
1309		switch (state) {
1310		case cpuset:
1311			/* No more Mr. Nice Guy. */
1312			cpuset_cpus_allowed_fallback(p);
1313			state = possible;
1314			break;
1315
1316		case possible:
1317			do_set_cpus_allowed(p, cpu_possible_mask);
1318			state = fail;
1319			break;
1320
1321		case fail:
1322			BUG();
1323			break;
1324		}
1325	}
1326
1327out:
1328	if (state != cpuset) {
1329		/*
1330		 * Don't tell them about moving exiting tasks or
1331		 * kernel threads (both mm NULL), since they never
1332		 * leave kernel.
1333		 */
1334		if (p->mm && printk_ratelimit()) {
1335			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1336					task_pid_nr(p), p->comm, cpu);
1337		}
1338	}
1339
1340	return dest_cpu;
1341}
1342
1343/*
1344 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1345 */
1346static inline
1347int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1348{
1349	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1350
1351	/*
1352	 * In order not to call set_task_cpu() on a blocking task we need
1353	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1354	 * cpu.
1355	 *
1356	 * Since this is common to all placement strategies, this lives here.
1357	 *
1358	 * [ this allows ->select_task() to simply return task_cpu(p) and
1359	 *   not worry about this generic constraint ]
1360	 */
1361	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1362		     !cpu_online(cpu)))
1363		cpu = select_fallback_rq(task_cpu(p), p);
1364
1365	return cpu;
1366}
1367
1368static void update_avg(u64 *avg, u64 sample)
1369{
1370	s64 diff = sample - *avg;
1371	*avg += diff >> 3;
1372}
1373#endif
1374
1375static void
1376ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1377{
1378#ifdef CONFIG_SCHEDSTATS
1379	struct rq *rq = this_rq();
1380
1381#ifdef CONFIG_SMP
1382	int this_cpu = smp_processor_id();
1383
1384	if (cpu == this_cpu) {
1385		schedstat_inc(rq, ttwu_local);
1386		schedstat_inc(p, se.statistics.nr_wakeups_local);
1387	} else {
1388		struct sched_domain *sd;
1389
1390		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1391		rcu_read_lock();
1392		for_each_domain(this_cpu, sd) {
1393			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1394				schedstat_inc(sd, ttwu_wake_remote);
1395				break;
1396			}
1397		}
1398		rcu_read_unlock();
1399	}
1400
1401	if (wake_flags & WF_MIGRATED)
1402		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1403
1404#endif /* CONFIG_SMP */
1405
1406	schedstat_inc(rq, ttwu_count);
1407	schedstat_inc(p, se.statistics.nr_wakeups);
1408
1409	if (wake_flags & WF_SYNC)
1410		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1411
1412#endif /* CONFIG_SCHEDSTATS */
1413}
1414
1415static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1416{
1417	activate_task(rq, p, en_flags);
1418	p->on_rq = 1;
1419
1420	/* if a worker is waking up, notify workqueue */
1421	if (p->flags & PF_WQ_WORKER)
1422		wq_worker_waking_up(p, cpu_of(rq));
1423}
1424
1425/*
1426 * Mark the task runnable and perform wakeup-preemption.
1427 */
1428static void
1429ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1430{
1431	check_preempt_curr(rq, p, wake_flags);
1432	trace_sched_wakeup(p, true);
1433
1434	p->state = TASK_RUNNING;
1435#ifdef CONFIG_SMP
1436	if (p->sched_class->task_woken)
1437		p->sched_class->task_woken(rq, p);
1438
1439	if (rq->idle_stamp) {
1440		u64 delta = rq_clock(rq) - rq->idle_stamp;
1441		u64 max = 2*rq->max_idle_balance_cost;
1442
1443		update_avg(&rq->avg_idle, delta);
1444
1445		if (rq->avg_idle > max)
1446			rq->avg_idle = max;
1447
1448		rq->idle_stamp = 0;
1449	}
1450#endif
1451}
1452
1453static void
1454ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1455{
1456#ifdef CONFIG_SMP
1457	if (p->sched_contributes_to_load)
1458		rq->nr_uninterruptible--;
1459#endif
1460
1461	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1462	ttwu_do_wakeup(rq, p, wake_flags);
1463}
1464
1465/*
1466 * Called in case the task @p isn't fully descheduled from its runqueue,
1467 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1468 * since all we need to do is flip p->state to TASK_RUNNING, since
1469 * the task is still ->on_rq.
1470 */
1471static int ttwu_remote(struct task_struct *p, int wake_flags)
1472{
1473	struct rq *rq;
1474	int ret = 0;
1475
1476	rq = __task_rq_lock(p);
1477	if (p->on_rq) {
1478		/* check_preempt_curr() may use rq clock */
1479		update_rq_clock(rq);
1480		ttwu_do_wakeup(rq, p, wake_flags);
1481		ret = 1;
1482	}
1483	__task_rq_unlock(rq);
1484
1485	return ret;
1486}
1487
1488#ifdef CONFIG_SMP
1489static void sched_ttwu_pending(void)
1490{
1491	struct rq *rq = this_rq();
1492	struct llist_node *llist = llist_del_all(&rq->wake_list);
1493	struct task_struct *p;
1494
1495	raw_spin_lock(&rq->lock);
1496
1497	while (llist) {
1498		p = llist_entry(llist, struct task_struct, wake_entry);
1499		llist = llist_next(llist);
1500		ttwu_do_activate(rq, p, 0);
1501	}
1502
1503	raw_spin_unlock(&rq->lock);
1504}
1505
1506void scheduler_ipi(void)
1507{
1508	/*
1509	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1510	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1511	 * this IPI.
1512	 */
1513	if (tif_need_resched())
1514		set_preempt_need_resched();
1515
1516	if (llist_empty(&this_rq()->wake_list)
1517			&& !tick_nohz_full_cpu(smp_processor_id())
1518			&& !got_nohz_idle_kick())
1519		return;
1520
1521	/*
1522	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1523	 * traditionally all their work was done from the interrupt return
1524	 * path. Now that we actually do some work, we need to make sure
1525	 * we do call them.
1526	 *
1527	 * Some archs already do call them, luckily irq_enter/exit nest
1528	 * properly.
1529	 *
1530	 * Arguably we should visit all archs and update all handlers,
1531	 * however a fair share of IPIs are still resched only so this would
1532	 * somewhat pessimize the simple resched case.
1533	 */
1534	irq_enter();
1535	tick_nohz_full_check();
1536	sched_ttwu_pending();
1537
1538	/*
1539	 * Check if someone kicked us for doing the nohz idle load balance.
1540	 */
1541	if (unlikely(got_nohz_idle_kick())) {
1542		this_rq()->idle_balance = 1;
1543		raise_softirq_irqoff(SCHED_SOFTIRQ);
1544	}
1545	irq_exit();
1546}
1547
1548static void ttwu_queue_remote(struct task_struct *p, int cpu)
1549{
1550	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1551		smp_send_reschedule(cpu);
1552}
1553
1554bool cpus_share_cache(int this_cpu, int that_cpu)
1555{
1556	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1557}
1558#endif /* CONFIG_SMP */
1559
1560static void ttwu_queue(struct task_struct *p, int cpu)
1561{
1562	struct rq *rq = cpu_rq(cpu);
1563
1564#if defined(CONFIG_SMP)
1565	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1566		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1567		ttwu_queue_remote(p, cpu);
1568		return;
1569	}
1570#endif
1571
1572	raw_spin_lock(&rq->lock);
1573	ttwu_do_activate(rq, p, 0);
1574	raw_spin_unlock(&rq->lock);
1575}
1576
1577/**
1578 * try_to_wake_up - wake up a thread
1579 * @p: the thread to be awakened
1580 * @state: the mask of task states that can be woken
1581 * @wake_flags: wake modifier flags (WF_*)
1582 *
1583 * Put it on the run-queue if it's not already there. The "current"
1584 * thread is always on the run-queue (except when the actual
1585 * re-schedule is in progress), and as such you're allowed to do
1586 * the simpler "current->state = TASK_RUNNING" to mark yourself
1587 * runnable without the overhead of this.
1588 *
1589 * Return: %true if @p was woken up, %false if it was already running.
1590 * or @state didn't match @p's state.
1591 */
1592static int
1593try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1594{
1595	unsigned long flags;
1596	int cpu, success = 0;
1597
1598	/*
1599	 * If we are going to wake up a thread waiting for CONDITION we
1600	 * need to ensure that CONDITION=1 done by the caller can not be
1601	 * reordered with p->state check below. This pairs with mb() in
1602	 * set_current_state() the waiting thread does.
1603	 */
1604	smp_mb__before_spinlock();
1605	raw_spin_lock_irqsave(&p->pi_lock, flags);
1606	if (!(p->state & state))
1607		goto out;
1608
1609	success = 1; /* we're going to change ->state */
1610	cpu = task_cpu(p);
1611
1612	if (p->on_rq && ttwu_remote(p, wake_flags))
1613		goto stat;
1614
1615#ifdef CONFIG_SMP
1616	/*
1617	 * If the owning (remote) cpu is still in the middle of schedule() with
1618	 * this task as prev, wait until its done referencing the task.
1619	 */
1620	while (p->on_cpu)
1621		cpu_relax();
1622	/*
1623	 * Pairs with the smp_wmb() in finish_lock_switch().
1624	 */
1625	smp_rmb();
1626
1627	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1628	p->state = TASK_WAKING;
1629
1630	if (p->sched_class->task_waking)
1631		p->sched_class->task_waking(p);
1632
1633	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1634	if (task_cpu(p) != cpu) {
1635		wake_flags |= WF_MIGRATED;
1636		set_task_cpu(p, cpu);
1637	}
1638#endif /* CONFIG_SMP */
1639
1640	ttwu_queue(p, cpu);
1641stat:
1642	ttwu_stat(p, cpu, wake_flags);
1643out:
1644	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1645
1646	return success;
1647}
1648
1649/**
1650 * try_to_wake_up_local - try to wake up a local task with rq lock held
1651 * @p: the thread to be awakened
1652 *
1653 * Put @p on the run-queue if it's not already there. The caller must
1654 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1655 * the current task.
1656 */
1657static void try_to_wake_up_local(struct task_struct *p)
1658{
1659	struct rq *rq = task_rq(p);
1660
1661	if (WARN_ON_ONCE(rq != this_rq()) ||
1662	    WARN_ON_ONCE(p == current))
1663		return;
1664
1665	lockdep_assert_held(&rq->lock);
1666
1667	if (!raw_spin_trylock(&p->pi_lock)) {
1668		raw_spin_unlock(&rq->lock);
1669		raw_spin_lock(&p->pi_lock);
1670		raw_spin_lock(&rq->lock);
1671	}
1672
1673	if (!(p->state & TASK_NORMAL))
1674		goto out;
1675
1676	if (!p->on_rq)
1677		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1678
1679	ttwu_do_wakeup(rq, p, 0);
1680	ttwu_stat(p, smp_processor_id(), 0);
1681out:
1682	raw_spin_unlock(&p->pi_lock);
1683}
1684
1685/**
1686 * wake_up_process - Wake up a specific process
1687 * @p: The process to be woken up.
1688 *
1689 * Attempt to wake up the nominated process and move it to the set of runnable
1690 * processes.
1691 *
1692 * Return: 1 if the process was woken up, 0 if it was already running.
1693 *
1694 * It may be assumed that this function implies a write memory barrier before
1695 * changing the task state if and only if any tasks are woken up.
1696 */
1697int wake_up_process(struct task_struct *p)
1698{
1699	WARN_ON(task_is_stopped_or_traced(p));
1700	return try_to_wake_up(p, TASK_NORMAL, 0);
1701}
1702EXPORT_SYMBOL(wake_up_process);
1703
1704int wake_up_state(struct task_struct *p, unsigned int state)
1705{
1706	return try_to_wake_up(p, state, 0);
1707}
1708
1709/*
1710 * Perform scheduler related setup for a newly forked process p.
1711 * p is forked by current.
1712 *
1713 * __sched_fork() is basic setup used by init_idle() too:
1714 */
1715static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1716{
1717	p->on_rq			= 0;
1718
1719	p->se.on_rq			= 0;
1720	p->se.exec_start		= 0;
1721	p->se.sum_exec_runtime		= 0;
1722	p->se.prev_sum_exec_runtime	= 0;
1723	p->se.nr_migrations		= 0;
1724	p->se.vruntime			= 0;
1725	INIT_LIST_HEAD(&p->se.group_node);
1726
1727#ifdef CONFIG_SCHEDSTATS
1728	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1729#endif
1730
1731	RB_CLEAR_NODE(&p->dl.rb_node);
1732	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1733	p->dl.dl_runtime = p->dl.runtime = 0;
1734	p->dl.dl_deadline = p->dl.deadline = 0;
1735	p->dl.dl_period = 0;
1736	p->dl.flags = 0;
1737
1738	INIT_LIST_HEAD(&p->rt.run_list);
1739
1740#ifdef CONFIG_PREEMPT_NOTIFIERS
1741	INIT_HLIST_HEAD(&p->preempt_notifiers);
1742#endif
1743
1744#ifdef CONFIG_NUMA_BALANCING
1745	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1746		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1747		p->mm->numa_scan_seq = 0;
1748	}
1749
1750	if (clone_flags & CLONE_VM)
1751		p->numa_preferred_nid = current->numa_preferred_nid;
1752	else
1753		p->numa_preferred_nid = -1;
1754
1755	p->node_stamp = 0ULL;
1756	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1757	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1758	p->numa_work.next = &p->numa_work;
1759	p->numa_faults = NULL;
1760	p->numa_faults_buffer = NULL;
1761
1762	INIT_LIST_HEAD(&p->numa_entry);
1763	p->numa_group = NULL;
1764#endif /* CONFIG_NUMA_BALANCING */
1765}
1766
1767#ifdef CONFIG_NUMA_BALANCING
1768#ifdef CONFIG_SCHED_DEBUG
1769void set_numabalancing_state(bool enabled)
1770{
1771	if (enabled)
1772		sched_feat_set("NUMA");
1773	else
1774		sched_feat_set("NO_NUMA");
1775}
1776#else
1777__read_mostly bool numabalancing_enabled;
1778
1779void set_numabalancing_state(bool enabled)
1780{
1781	numabalancing_enabled = enabled;
1782}
1783#endif /* CONFIG_SCHED_DEBUG */
1784#endif /* CONFIG_NUMA_BALANCING */
1785
1786/*
1787 * fork()/clone()-time setup:
1788 */
1789int sched_fork(unsigned long clone_flags, struct task_struct *p)
1790{
1791	unsigned long flags;
1792	int cpu = get_cpu();
1793
1794	__sched_fork(clone_flags, p);
1795	/*
1796	 * We mark the process as running here. This guarantees that
1797	 * nobody will actually run it, and a signal or other external
1798	 * event cannot wake it up and insert it on the runqueue either.
1799	 */
1800	p->state = TASK_RUNNING;
1801
1802	/*
1803	 * Make sure we do not leak PI boosting priority to the child.
1804	 */
1805	p->prio = current->normal_prio;
1806
1807	/*
1808	 * Revert to default priority/policy on fork if requested.
1809	 */
1810	if (unlikely(p->sched_reset_on_fork)) {
1811		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1812			p->policy = SCHED_NORMAL;
1813			p->static_prio = NICE_TO_PRIO(0);
1814			p->rt_priority = 0;
1815		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1816			p->static_prio = NICE_TO_PRIO(0);
1817
1818		p->prio = p->normal_prio = __normal_prio(p);
1819		set_load_weight(p);
1820
1821		/*
1822		 * We don't need the reset flag anymore after the fork. It has
1823		 * fulfilled its duty:
1824		 */
1825		p->sched_reset_on_fork = 0;
1826	}
1827
1828	if (dl_prio(p->prio)) {
1829		put_cpu();
1830		return -EAGAIN;
1831	} else if (rt_prio(p->prio)) {
1832		p->sched_class = &rt_sched_class;
1833	} else {
1834		p->sched_class = &fair_sched_class;
1835	}
1836
1837	if (p->sched_class->task_fork)
1838		p->sched_class->task_fork(p);
1839
1840	/*
1841	 * The child is not yet in the pid-hash so no cgroup attach races,
1842	 * and the cgroup is pinned to this child due to cgroup_fork()
1843	 * is ran before sched_fork().
1844	 *
1845	 * Silence PROVE_RCU.
1846	 */
1847	raw_spin_lock_irqsave(&p->pi_lock, flags);
1848	set_task_cpu(p, cpu);
1849	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1850
1851#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1852	if (likely(sched_info_on()))
1853		memset(&p->sched_info, 0, sizeof(p->sched_info));
1854#endif
1855#if defined(CONFIG_SMP)
1856	p->on_cpu = 0;
1857#endif
1858	init_task_preempt_count(p);
1859#ifdef CONFIG_SMP
1860	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1861	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1862#endif
1863
1864	put_cpu();
1865	return 0;
1866}
1867
1868unsigned long to_ratio(u64 period, u64 runtime)
1869{
1870	if (runtime == RUNTIME_INF)
1871		return 1ULL << 20;
1872
1873	/*
1874	 * Doing this here saves a lot of checks in all
1875	 * the calling paths, and returning zero seems
1876	 * safe for them anyway.
1877	 */
1878	if (period == 0)
1879		return 0;
1880
1881	return div64_u64(runtime << 20, period);
1882}
1883
1884#ifdef CONFIG_SMP
1885inline struct dl_bw *dl_bw_of(int i)
1886{
1887	return &cpu_rq(i)->rd->dl_bw;
1888}
1889
1890static inline int __dl_span_weight(struct rq *rq)
1891{
1892	return cpumask_weight(rq->rd->span);
1893}
1894#else
1895inline struct dl_bw *dl_bw_of(int i)
1896{
1897	return &cpu_rq(i)->dl.dl_bw;
1898}
1899
1900static inline int __dl_span_weight(struct rq *rq)
1901{
1902	return 1;
1903}
1904#endif
1905
1906static inline
1907void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1908{
1909	dl_b->total_bw -= tsk_bw;
1910}
1911
1912static inline
1913void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1914{
1915	dl_b->total_bw += tsk_bw;
1916}
1917
1918static inline
1919bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1920{
1921	return dl_b->bw != -1 &&
1922	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1923}
1924
1925/*
1926 * We must be sure that accepting a new task (or allowing changing the
1927 * parameters of an existing one) is consistent with the bandwidth
1928 * constraints. If yes, this function also accordingly updates the currently
1929 * allocated bandwidth to reflect the new situation.
1930 *
1931 * This function is called while holding p's rq->lock.
1932 */
1933static int dl_overflow(struct task_struct *p, int policy,
1934		       const struct sched_attr *attr)
1935{
1936
1937	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1938	u64 period = attr->sched_period;
1939	u64 runtime = attr->sched_runtime;
1940	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1941	int cpus = __dl_span_weight(task_rq(p));
1942	int err = -1;
1943
1944	if (new_bw == p->dl.dl_bw)
1945		return 0;
1946
1947	/*
1948	 * Either if a task, enters, leave, or stays -deadline but changes
1949	 * its parameters, we may need to update accordingly the total
1950	 * allocated bandwidth of the container.
1951	 */
1952	raw_spin_lock(&dl_b->lock);
1953	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1954	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1955		__dl_add(dl_b, new_bw);
1956		err = 0;
1957	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1958		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1959		__dl_clear(dl_b, p->dl.dl_bw);
1960		__dl_add(dl_b, new_bw);
1961		err = 0;
1962	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1963		__dl_clear(dl_b, p->dl.dl_bw);
1964		err = 0;
1965	}
1966	raw_spin_unlock(&dl_b->lock);
1967
1968	return err;
1969}
1970
1971extern void init_dl_bw(struct dl_bw *dl_b);
1972
1973/*
1974 * wake_up_new_task - wake up a newly created task for the first time.
1975 *
1976 * This function will do some initial scheduler statistics housekeeping
1977 * that must be done for every newly created context, then puts the task
1978 * on the runqueue and wakes it.
1979 */
1980void wake_up_new_task(struct task_struct *p)
1981{
1982	unsigned long flags;
1983	struct rq *rq;
1984
1985	raw_spin_lock_irqsave(&p->pi_lock, flags);
1986#ifdef CONFIG_SMP
1987	/*
1988	 * Fork balancing, do it here and not earlier because:
1989	 *  - cpus_allowed can change in the fork path
1990	 *  - any previously selected cpu might disappear through hotplug
1991	 */
1992	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1993#endif
1994
1995	/* Initialize new task's runnable average */
1996	init_task_runnable_average(p);
1997	rq = __task_rq_lock(p);
1998	activate_task(rq, p, 0);
1999	p->on_rq = 1;
2000	trace_sched_wakeup_new(p, true);
2001	check_preempt_curr(rq, p, WF_FORK);
2002#ifdef CONFIG_SMP
2003	if (p->sched_class->task_woken)
2004		p->sched_class->task_woken(rq, p);
2005#endif
2006	task_rq_unlock(rq, p, &flags);
2007}
2008
2009#ifdef CONFIG_PREEMPT_NOTIFIERS
2010
2011/**
2012 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2013 * @notifier: notifier struct to register
2014 */
2015void preempt_notifier_register(struct preempt_notifier *notifier)
2016{
2017	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2018}
2019EXPORT_SYMBOL_GPL(preempt_notifier_register);
2020
2021/**
2022 * preempt_notifier_unregister - no longer interested in preemption notifications
2023 * @notifier: notifier struct to unregister
2024 *
2025 * This is safe to call from within a preemption notifier.
2026 */
2027void preempt_notifier_unregister(struct preempt_notifier *notifier)
2028{
2029	hlist_del(&notifier->link);
2030}
2031EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2032
2033static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2034{
2035	struct preempt_notifier *notifier;
2036
2037	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2038		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2039}
2040
2041static void
2042fire_sched_out_preempt_notifiers(struct task_struct *curr,
2043				 struct task_struct *next)
2044{
2045	struct preempt_notifier *notifier;
2046
2047	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2048		notifier->ops->sched_out(notifier, next);
2049}
2050
2051#else /* !CONFIG_PREEMPT_NOTIFIERS */
2052
2053static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2054{
2055}
2056
2057static void
2058fire_sched_out_preempt_notifiers(struct task_struct *curr,
2059				 struct task_struct *next)
2060{
2061}
2062
2063#endif /* CONFIG_PREEMPT_NOTIFIERS */
2064
2065/**
2066 * prepare_task_switch - prepare to switch tasks
2067 * @rq: the runqueue preparing to switch
2068 * @prev: the current task that is being switched out
2069 * @next: the task we are going to switch to.
2070 *
2071 * This is called with the rq lock held and interrupts off. It must
2072 * be paired with a subsequent finish_task_switch after the context
2073 * switch.
2074 *
2075 * prepare_task_switch sets up locking and calls architecture specific
2076 * hooks.
2077 */
2078static inline void
2079prepare_task_switch(struct rq *rq, struct task_struct *prev,
2080		    struct task_struct *next)
2081{
2082	trace_sched_switch(prev, next);
2083	sched_info_switch(rq, prev, next);
2084	perf_event_task_sched_out(prev, next);
2085	fire_sched_out_preempt_notifiers(prev, next);
2086	prepare_lock_switch(rq, next);
2087	prepare_arch_switch(next);
2088}
2089
2090/**
2091 * finish_task_switch - clean up after a task-switch
2092 * @rq: runqueue associated with task-switch
2093 * @prev: the thread we just switched away from.
2094 *
2095 * finish_task_switch must be called after the context switch, paired
2096 * with a prepare_task_switch call before the context switch.
2097 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2098 * and do any other architecture-specific cleanup actions.
2099 *
2100 * Note that we may have delayed dropping an mm in context_switch(). If
2101 * so, we finish that here outside of the runqueue lock. (Doing it
2102 * with the lock held can cause deadlocks; see schedule() for
2103 * details.)
2104 */
2105static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2106	__releases(rq->lock)
2107{
2108	struct mm_struct *mm = rq->prev_mm;
2109	long prev_state;
2110
2111	rq->prev_mm = NULL;
2112
2113	/*
2114	 * A task struct has one reference for the use as "current".
2115	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2116	 * schedule one last time. The schedule call will never return, and
2117	 * the scheduled task must drop that reference.
2118	 * The test for TASK_DEAD must occur while the runqueue locks are
2119	 * still held, otherwise prev could be scheduled on another cpu, die
2120	 * there before we look at prev->state, and then the reference would
2121	 * be dropped twice.
2122	 *		Manfred Spraul <manfred@colorfullife.com>
2123	 */
2124	prev_state = prev->state;
2125	vtime_task_switch(prev);
2126	finish_arch_switch(prev);
2127	perf_event_task_sched_in(prev, current);
2128	finish_lock_switch(rq, prev);
2129	finish_arch_post_lock_switch();
2130
2131	fire_sched_in_preempt_notifiers(current);
2132	if (mm)
2133		mmdrop(mm);
2134	if (unlikely(prev_state == TASK_DEAD)) {
2135		task_numa_free(prev);
2136
2137		if (prev->sched_class->task_dead)
2138			prev->sched_class->task_dead(prev);
2139
2140		/*
2141		 * Remove function-return probe instances associated with this
2142		 * task and put them back on the free list.
2143		 */
2144		kprobe_flush_task(prev);
2145		put_task_struct(prev);
2146	}
2147
2148	tick_nohz_task_switch(current);
2149}
2150
2151#ifdef CONFIG_SMP
2152
2153/* assumes rq->lock is held */
2154static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2155{
2156	if (prev->sched_class->pre_schedule)
2157		prev->sched_class->pre_schedule(rq, prev);
2158}
2159
2160/* rq->lock is NOT held, but preemption is disabled */
2161static inline void post_schedule(struct rq *rq)
2162{
2163	if (rq->post_schedule) {
2164		unsigned long flags;
2165
2166		raw_spin_lock_irqsave(&rq->lock, flags);
2167		if (rq->curr->sched_class->post_schedule)
2168			rq->curr->sched_class->post_schedule(rq);
2169		raw_spin_unlock_irqrestore(&rq->lock, flags);
2170
2171		rq->post_schedule = 0;
2172	}
2173}
2174
2175#else
2176
2177static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2178{
2179}
2180
2181static inline void post_schedule(struct rq *rq)
2182{
2183}
2184
2185#endif
2186
2187/**
2188 * schedule_tail - first thing a freshly forked thread must call.
2189 * @prev: the thread we just switched away from.
2190 */
2191asmlinkage void schedule_tail(struct task_struct *prev)
2192	__releases(rq->lock)
2193{
2194	struct rq *rq = this_rq();
2195
2196	finish_task_switch(rq, prev);
2197
2198	/*
2199	 * FIXME: do we need to worry about rq being invalidated by the
2200	 * task_switch?
2201	 */
2202	post_schedule(rq);
2203
2204#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2205	/* In this case, finish_task_switch does not reenable preemption */
2206	preempt_enable();
2207#endif
2208	if (current->set_child_tid)
2209		put_user(task_pid_vnr(current), current->set_child_tid);
2210}
2211
2212/*
2213 * context_switch - switch to the new MM and the new
2214 * thread's register state.
2215 */
2216static inline void
2217context_switch(struct rq *rq, struct task_struct *prev,
2218	       struct task_struct *next)
2219{
2220	struct mm_struct *mm, *oldmm;
2221
2222	prepare_task_switch(rq, prev, next);
2223
2224	mm = next->mm;
2225	oldmm = prev->active_mm;
2226	/*
2227	 * For paravirt, this is coupled with an exit in switch_to to
2228	 * combine the page table reload and the switch backend into
2229	 * one hypercall.
2230	 */
2231	arch_start_context_switch(prev);
2232
2233	if (!mm) {
2234		next->active_mm = oldmm;
2235		atomic_inc(&oldmm->mm_count);
2236		enter_lazy_tlb(oldmm, next);
2237	} else
2238		switch_mm(oldmm, mm, next);
2239
2240	if (!prev->mm) {
2241		prev->active_mm = NULL;
2242		rq->prev_mm = oldmm;
2243	}
2244	/*
2245	 * Since the runqueue lock will be released by the next
2246	 * task (which is an invalid locking op but in the case
2247	 * of the scheduler it's an obvious special-case), so we
2248	 * do an early lockdep release here:
2249	 */
2250#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2251	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2252#endif
2253
2254	context_tracking_task_switch(prev, next);
2255	/* Here we just switch the register state and the stack. */
2256	switch_to(prev, next, prev);
2257
2258	barrier();
2259	/*
2260	 * this_rq must be evaluated again because prev may have moved
2261	 * CPUs since it called schedule(), thus the 'rq' on its stack
2262	 * frame will be invalid.
2263	 */
2264	finish_task_switch(this_rq(), prev);
2265}
2266
2267/*
2268 * nr_running and nr_context_switches:
2269 *
2270 * externally visible scheduler statistics: current number of runnable
2271 * threads, total number of context switches performed since bootup.
2272 */
2273unsigned long nr_running(void)
2274{
2275	unsigned long i, sum = 0;
2276
2277	for_each_online_cpu(i)
2278		sum += cpu_rq(i)->nr_running;
2279
2280	return sum;
2281}
2282
2283unsigned long long nr_context_switches(void)
2284{
2285	int i;
2286	unsigned long long sum = 0;
2287
2288	for_each_possible_cpu(i)
2289		sum += cpu_rq(i)->nr_switches;
2290
2291	return sum;
2292}
2293
2294unsigned long nr_iowait(void)
2295{
2296	unsigned long i, sum = 0;
2297
2298	for_each_possible_cpu(i)
2299		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2300
2301	return sum;
2302}
2303
2304unsigned long nr_iowait_cpu(int cpu)
2305{
2306	struct rq *this = cpu_rq(cpu);
2307	return atomic_read(&this->nr_iowait);
2308}
2309
2310#ifdef CONFIG_SMP
2311
2312/*
2313 * sched_exec - execve() is a valuable balancing opportunity, because at
2314 * this point the task has the smallest effective memory and cache footprint.
2315 */
2316void sched_exec(void)
2317{
2318	struct task_struct *p = current;
2319	unsigned long flags;
2320	int dest_cpu;
2321
2322	raw_spin_lock_irqsave(&p->pi_lock, flags);
2323	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2324	if (dest_cpu == smp_processor_id())
2325		goto unlock;
2326
2327	if (likely(cpu_active(dest_cpu))) {
2328		struct migration_arg arg = { p, dest_cpu };
2329
2330		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2331		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2332		return;
2333	}
2334unlock:
2335	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2336}
2337
2338#endif
2339
2340DEFINE_PER_CPU(struct kernel_stat, kstat);
2341DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2342
2343EXPORT_PER_CPU_SYMBOL(kstat);
2344EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2345
2346/*
2347 * Return any ns on the sched_clock that have not yet been accounted in
2348 * @p in case that task is currently running.
2349 *
2350 * Called with task_rq_lock() held on @rq.
2351 */
2352static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2353{
2354	u64 ns = 0;
2355
2356	if (task_current(rq, p)) {
2357		update_rq_clock(rq);
2358		ns = rq_clock_task(rq) - p->se.exec_start;
2359		if ((s64)ns < 0)
2360			ns = 0;
2361	}
2362
2363	return ns;
2364}
2365
2366unsigned long long task_delta_exec(struct task_struct *p)
2367{
2368	unsigned long flags;
2369	struct rq *rq;
2370	u64 ns = 0;
2371
2372	rq = task_rq_lock(p, &flags);
2373	ns = do_task_delta_exec(p, rq);
2374	task_rq_unlock(rq, p, &flags);
2375
2376	return ns;
2377}
2378
2379/*
2380 * Return accounted runtime for the task.
2381 * In case the task is currently running, return the runtime plus current's
2382 * pending runtime that have not been accounted yet.
2383 */
2384unsigned long long task_sched_runtime(struct task_struct *p)
2385{
2386	unsigned long flags;
2387	struct rq *rq;
2388	u64 ns = 0;
2389
2390#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2391	/*
2392	 * 64-bit doesn't need locks to atomically read a 64bit value.
2393	 * So we have a optimization chance when the task's delta_exec is 0.
2394	 * Reading ->on_cpu is racy, but this is ok.
2395	 *
2396	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2397	 * If we race with it entering cpu, unaccounted time is 0. This is
2398	 * indistinguishable from the read occurring a few cycles earlier.
2399	 */
2400	if (!p->on_cpu)
2401		return p->se.sum_exec_runtime;
2402#endif
2403
2404	rq = task_rq_lock(p, &flags);
2405	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2406	task_rq_unlock(rq, p, &flags);
2407
2408	return ns;
2409}
2410
2411/*
2412 * This function gets called by the timer code, with HZ frequency.
2413 * We call it with interrupts disabled.
2414 */
2415void scheduler_tick(void)
2416{
2417	int cpu = smp_processor_id();
2418	struct rq *rq = cpu_rq(cpu);
2419	struct task_struct *curr = rq->curr;
2420
2421	sched_clock_tick();
2422
2423	raw_spin_lock(&rq->lock);
2424	update_rq_clock(rq);
2425	curr->sched_class->task_tick(rq, curr, 0);
2426	update_cpu_load_active(rq);
2427	raw_spin_unlock(&rq->lock);
2428
2429	perf_event_task_tick();
2430
2431#ifdef CONFIG_SMP
2432	rq->idle_balance = idle_cpu(cpu);
2433	trigger_load_balance(rq, cpu);
2434#endif
2435	rq_last_tick_reset(rq);
2436}
2437
2438#ifdef CONFIG_NO_HZ_FULL
2439/**
2440 * scheduler_tick_max_deferment
2441 *
2442 * Keep at least one tick per second when a single
2443 * active task is running because the scheduler doesn't
2444 * yet completely support full dynticks environment.
2445 *
2446 * This makes sure that uptime, CFS vruntime, load
2447 * balancing, etc... continue to move forward, even
2448 * with a very low granularity.
2449 *
2450 * Return: Maximum deferment in nanoseconds.
2451 */
2452u64 scheduler_tick_max_deferment(void)
2453{
2454	struct rq *rq = this_rq();
2455	unsigned long next, now = ACCESS_ONCE(jiffies);
2456
2457	next = rq->last_sched_tick + HZ;
2458
2459	if (time_before_eq(next, now))
2460		return 0;
2461
2462	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2463}
2464#endif
2465
2466notrace unsigned long get_parent_ip(unsigned long addr)
2467{
2468	if (in_lock_functions(addr)) {
2469		addr = CALLER_ADDR2;
2470		if (in_lock_functions(addr))
2471			addr = CALLER_ADDR3;
2472	}
2473	return addr;
2474}
2475
2476#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2477				defined(CONFIG_PREEMPT_TRACER))
2478
2479void __kprobes preempt_count_add(int val)
2480{
2481#ifdef CONFIG_DEBUG_PREEMPT
2482	/*
2483	 * Underflow?
2484	 */
2485	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2486		return;
2487#endif
2488	__preempt_count_add(val);
2489#ifdef CONFIG_DEBUG_PREEMPT
2490	/*
2491	 * Spinlock count overflowing soon?
2492	 */
2493	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2494				PREEMPT_MASK - 10);
2495#endif
2496	if (preempt_count() == val)
2497		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2498}
2499EXPORT_SYMBOL(preempt_count_add);
2500
2501void __kprobes preempt_count_sub(int val)
2502{
2503#ifdef CONFIG_DEBUG_PREEMPT
2504	/*
2505	 * Underflow?
2506	 */
2507	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2508		return;
2509	/*
2510	 * Is the spinlock portion underflowing?
2511	 */
2512	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2513			!(preempt_count() & PREEMPT_MASK)))
2514		return;
2515#endif
2516
2517	if (preempt_count() == val)
2518		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2519	__preempt_count_sub(val);
2520}
2521EXPORT_SYMBOL(preempt_count_sub);
2522
2523#endif
2524
2525/*
2526 * Print scheduling while atomic bug:
2527 */
2528static noinline void __schedule_bug(struct task_struct *prev)
2529{
2530	if (oops_in_progress)
2531		return;
2532
2533	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2534		prev->comm, prev->pid, preempt_count());
2535
2536	debug_show_held_locks(prev);
2537	print_modules();
2538	if (irqs_disabled())
2539		print_irqtrace_events(prev);
2540	dump_stack();
2541	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2542}
2543
2544/*
2545 * Various schedule()-time debugging checks and statistics:
2546 */
2547static inline void schedule_debug(struct task_struct *prev)
2548{
2549	/*
2550	 * Test if we are atomic. Since do_exit() needs to call into
2551	 * schedule() atomically, we ignore that path. Otherwise whine
2552	 * if we are scheduling when we should not.
2553	 */
2554	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2555		__schedule_bug(prev);
2556	rcu_sleep_check();
2557
2558	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2559
2560	schedstat_inc(this_rq(), sched_count);
2561}
2562
2563static void put_prev_task(struct rq *rq, struct task_struct *prev)
2564{
2565	if (prev->on_rq || rq->skip_clock_update < 0)
2566		update_rq_clock(rq);
2567	prev->sched_class->put_prev_task(rq, prev);
2568}
2569
2570/*
2571 * Pick up the highest-prio task:
2572 */
2573static inline struct task_struct *
2574pick_next_task(struct rq *rq)
2575{
2576	const struct sched_class *class;
2577	struct task_struct *p;
2578
2579	/*
2580	 * Optimization: we know that if all tasks are in
2581	 * the fair class we can call that function directly:
2582	 */
2583	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2584		p = fair_sched_class.pick_next_task(rq);
2585		if (likely(p))
2586			return p;
2587	}
2588
2589	for_each_class(class) {
2590		p = class->pick_next_task(rq);
2591		if (p)
2592			return p;
2593	}
2594
2595	BUG(); /* the idle class will always have a runnable task */
2596}
2597
2598/*
2599 * __schedule() is the main scheduler function.
2600 *
2601 * The main means of driving the scheduler and thus entering this function are:
2602 *
2603 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2604 *
2605 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2606 *      paths. For example, see arch/x86/entry_64.S.
2607 *
2608 *      To drive preemption between tasks, the scheduler sets the flag in timer
2609 *      interrupt handler scheduler_tick().
2610 *
2611 *   3. Wakeups don't really cause entry into schedule(). They add a
2612 *      task to the run-queue and that's it.
2613 *
2614 *      Now, if the new task added to the run-queue preempts the current
2615 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2616 *      called on the nearest possible occasion:
2617 *
2618 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2619 *
2620 *         - in syscall or exception context, at the next outmost
2621 *           preempt_enable(). (this might be as soon as the wake_up()'s
2622 *           spin_unlock()!)
2623 *
2624 *         - in IRQ context, return from interrupt-handler to
2625 *           preemptible context
2626 *
2627 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2628 *         then at the next:
2629 *
2630 *          - cond_resched() call
2631 *          - explicit schedule() call
2632 *          - return from syscall or exception to user-space
2633 *          - return from interrupt-handler to user-space
2634 */
2635static void __sched __schedule(void)
2636{
2637	struct task_struct *prev, *next;
2638	unsigned long *switch_count;
2639	struct rq *rq;
2640	int cpu;
2641
2642need_resched:
2643	preempt_disable();
2644	cpu = smp_processor_id();
2645	rq = cpu_rq(cpu);
2646	rcu_note_context_switch(cpu);
2647	prev = rq->curr;
2648
2649	schedule_debug(prev);
2650
2651	if (sched_feat(HRTICK))
2652		hrtick_clear(rq);
2653
2654	/*
2655	 * Make sure that signal_pending_state()->signal_pending() below
2656	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2657	 * done by the caller to avoid the race with signal_wake_up().
2658	 */
2659	smp_mb__before_spinlock();
2660	raw_spin_lock_irq(&rq->lock);
2661
2662	switch_count = &prev->nivcsw;
2663	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2664		if (unlikely(signal_pending_state(prev->state, prev))) {
2665			prev->state = TASK_RUNNING;
2666		} else {
2667			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2668			prev->on_rq = 0;
2669
2670			/*
2671			 * If a worker went to sleep, notify and ask workqueue
2672			 * whether it wants to wake up a task to maintain
2673			 * concurrency.
2674			 */
2675			if (prev->flags & PF_WQ_WORKER) {
2676				struct task_struct *to_wakeup;
2677
2678				to_wakeup = wq_worker_sleeping(prev, cpu);
2679				if (to_wakeup)
2680					try_to_wake_up_local(to_wakeup);
2681			}
2682		}
2683		switch_count = &prev->nvcsw;
2684	}
2685
2686	pre_schedule(rq, prev);
2687
2688	if (unlikely(!rq->nr_running))
2689		idle_balance(cpu, rq);
2690
2691	put_prev_task(rq, prev);
2692	next = pick_next_task(rq);
2693	clear_tsk_need_resched(prev);
2694	clear_preempt_need_resched();
2695	rq->skip_clock_update = 0;
2696
2697	if (likely(prev != next)) {
2698		rq->nr_switches++;
2699		rq->curr = next;
2700		++*switch_count;
2701
2702		context_switch(rq, prev, next); /* unlocks the rq */
2703		/*
2704		 * The context switch have flipped the stack from under us
2705		 * and restored the local variables which were saved when
2706		 * this task called schedule() in the past. prev == current
2707		 * is still correct, but it can be moved to another cpu/rq.
2708		 */
2709		cpu = smp_processor_id();
2710		rq = cpu_rq(cpu);
2711	} else
2712		raw_spin_unlock_irq(&rq->lock);
2713
2714	post_schedule(rq);
2715
2716	sched_preempt_enable_no_resched();
2717	if (need_resched())
2718		goto need_resched;
2719}
2720
2721static inline void sched_submit_work(struct task_struct *tsk)
2722{
2723	if (!tsk->state || tsk_is_pi_blocked(tsk))
2724		return;
2725	/*
2726	 * If we are going to sleep and we have plugged IO queued,
2727	 * make sure to submit it to avoid deadlocks.
2728	 */
2729	if (blk_needs_flush_plug(tsk))
2730		blk_schedule_flush_plug(tsk);
2731}
2732
2733asmlinkage void __sched schedule(void)
2734{
2735	struct task_struct *tsk = current;
2736
2737	sched_submit_work(tsk);
2738	__schedule();
2739}
2740EXPORT_SYMBOL(schedule);
2741
2742#ifdef CONFIG_CONTEXT_TRACKING
2743asmlinkage void __sched schedule_user(void)
2744{
2745	/*
2746	 * If we come here after a random call to set_need_resched(),
2747	 * or we have been woken up remotely but the IPI has not yet arrived,
2748	 * we haven't yet exited the RCU idle mode. Do it here manually until
2749	 * we find a better solution.
2750	 */
2751	user_exit();
2752	schedule();
2753	user_enter();
2754}
2755#endif
2756
2757/**
2758 * schedule_preempt_disabled - called with preemption disabled
2759 *
2760 * Returns with preemption disabled. Note: preempt_count must be 1
2761 */
2762void __sched schedule_preempt_disabled(void)
2763{
2764	sched_preempt_enable_no_resched();
2765	schedule();
2766	preempt_disable();
2767}
2768
2769#ifdef CONFIG_PREEMPT
2770/*
2771 * this is the entry point to schedule() from in-kernel preemption
2772 * off of preempt_enable. Kernel preemptions off return from interrupt
2773 * occur there and call schedule directly.
2774 */
2775asmlinkage void __sched notrace preempt_schedule(void)
2776{
2777	/*
2778	 * If there is a non-zero preempt_count or interrupts are disabled,
2779	 * we do not want to preempt the current task. Just return..
2780	 */
2781	if (likely(!preemptible()))
2782		return;
2783
2784	do {
2785		__preempt_count_add(PREEMPT_ACTIVE);
2786		__schedule();
2787		__preempt_count_sub(PREEMPT_ACTIVE);
2788
2789		/*
2790		 * Check again in case we missed a preemption opportunity
2791		 * between schedule and now.
2792		 */
2793		barrier();
2794	} while (need_resched());
2795}
2796EXPORT_SYMBOL(preempt_schedule);
2797#endif /* CONFIG_PREEMPT */
2798
2799/*
2800 * this is the entry point to schedule() from kernel preemption
2801 * off of irq context.
2802 * Note, that this is called and return with irqs disabled. This will
2803 * protect us against recursive calling from irq.
2804 */
2805asmlinkage void __sched preempt_schedule_irq(void)
2806{
2807	enum ctx_state prev_state;
2808
2809	/* Catch callers which need to be fixed */
2810	BUG_ON(preempt_count() || !irqs_disabled());
2811
2812	prev_state = exception_enter();
2813
2814	do {
2815		__preempt_count_add(PREEMPT_ACTIVE);
2816		local_irq_enable();
2817		__schedule();
2818		local_irq_disable();
2819		__preempt_count_sub(PREEMPT_ACTIVE);
2820
2821		/*
2822		 * Check again in case we missed a preemption opportunity
2823		 * between schedule and now.
2824		 */
2825		barrier();
2826	} while (need_resched());
2827
2828	exception_exit(prev_state);
2829}
2830
2831int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2832			  void *key)
2833{
2834	return try_to_wake_up(curr->private, mode, wake_flags);
2835}
2836EXPORT_SYMBOL(default_wake_function);
2837
2838static long __sched
2839sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2840{
2841	unsigned long flags;
2842	wait_queue_t wait;
2843
2844	init_waitqueue_entry(&wait, current);
2845
2846	__set_current_state(state);
2847
2848	spin_lock_irqsave(&q->lock, flags);
2849	__add_wait_queue(q, &wait);
2850	spin_unlock(&q->lock);
2851	timeout = schedule_timeout(timeout);
2852	spin_lock_irq(&q->lock);
2853	__remove_wait_queue(q, &wait);
2854	spin_unlock_irqrestore(&q->lock, flags);
2855
2856	return timeout;
2857}
2858
2859void __sched interruptible_sleep_on(wait_queue_head_t *q)
2860{
2861	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2862}
2863EXPORT_SYMBOL(interruptible_sleep_on);
2864
2865long __sched
2866interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2867{
2868	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2869}
2870EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2871
2872void __sched sleep_on(wait_queue_head_t *q)
2873{
2874	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2875}
2876EXPORT_SYMBOL(sleep_on);
2877
2878long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2879{
2880	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2881}
2882EXPORT_SYMBOL(sleep_on_timeout);
2883
2884#ifdef CONFIG_RT_MUTEXES
2885
2886/*
2887 * rt_mutex_setprio - set the current priority of a task
2888 * @p: task
2889 * @prio: prio value (kernel-internal form)
2890 *
2891 * This function changes the 'effective' priority of a task. It does
2892 * not touch ->normal_prio like __setscheduler().
2893 *
2894 * Used by the rt_mutex code to implement priority inheritance logic.
2895 */
2896void rt_mutex_setprio(struct task_struct *p, int prio)
2897{
2898	int oldprio, on_rq, running, enqueue_flag = 0;
2899	struct rq *rq;
2900	const struct sched_class *prev_class;
2901
2902	BUG_ON(prio > MAX_PRIO);
2903
2904	rq = __task_rq_lock(p);
2905
2906	/*
2907	 * Idle task boosting is a nono in general. There is one
2908	 * exception, when PREEMPT_RT and NOHZ is active:
2909	 *
2910	 * The idle task calls get_next_timer_interrupt() and holds
2911	 * the timer wheel base->lock on the CPU and another CPU wants
2912	 * to access the timer (probably to cancel it). We can safely
2913	 * ignore the boosting request, as the idle CPU runs this code
2914	 * with interrupts disabled and will complete the lock
2915	 * protected section without being interrupted. So there is no
2916	 * real need to boost.
2917	 */
2918	if (unlikely(p == rq->idle)) {
2919		WARN_ON(p != rq->curr);
2920		WARN_ON(p->pi_blocked_on);
2921		goto out_unlock;
2922	}
2923
2924	trace_sched_pi_setprio(p, prio);
2925	p->pi_top_task = rt_mutex_get_top_task(p);
2926	oldprio = p->prio;
2927	prev_class = p->sched_class;
2928	on_rq = p->on_rq;
2929	running = task_current(rq, p);
2930	if (on_rq)
2931		dequeue_task(rq, p, 0);
2932	if (running)
2933		p->sched_class->put_prev_task(rq, p);
2934
2935	/*
2936	 * Boosting condition are:
2937	 * 1. -rt task is running and holds mutex A
2938	 *      --> -dl task blocks on mutex A
2939	 *
2940	 * 2. -dl task is running and holds mutex A
2941	 *      --> -dl task blocks on mutex A and could preempt the
2942	 *          running task
2943	 */
2944	if (dl_prio(prio)) {
2945		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2946			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2947			p->dl.dl_boosted = 1;
2948			p->dl.dl_throttled = 0;
2949			enqueue_flag = ENQUEUE_REPLENISH;
2950		} else
2951			p->dl.dl_boosted = 0;
2952		p->sched_class = &dl_sched_class;
2953	} else if (rt_prio(prio)) {
2954		if (dl_prio(oldprio))
2955			p->dl.dl_boosted = 0;
2956		if (oldprio < prio)
2957			enqueue_flag = ENQUEUE_HEAD;
2958		p->sched_class = &rt_sched_class;
2959	} else {
2960		if (dl_prio(oldprio))
2961			p->dl.dl_boosted = 0;
2962		p->sched_class = &fair_sched_class;
2963	}
2964
2965	p->prio = prio;
2966
2967	if (running)
2968		p->sched_class->set_curr_task(rq);
2969	if (on_rq)
2970		enqueue_task(rq, p, enqueue_flag);
2971
2972	check_class_changed(rq, p, prev_class, oldprio);
2973out_unlock:
2974	__task_rq_unlock(rq);
2975}
2976#endif
2977
2978void set_user_nice(struct task_struct *p, long nice)
2979{
2980	int old_prio, delta, on_rq;
2981	unsigned long flags;
2982	struct rq *rq;
2983
2984	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2985		return;
2986	/*
2987	 * We have to be careful, if called from sys_setpriority(),
2988	 * the task might be in the middle of scheduling on another CPU.
2989	 */
2990	rq = task_rq_lock(p, &flags);
2991	/*
2992	 * The RT priorities are set via sched_setscheduler(), but we still
2993	 * allow the 'normal' nice value to be set - but as expected
2994	 * it wont have any effect on scheduling until the task is
2995	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2996	 */
2997	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2998		p->static_prio = NICE_TO_PRIO(nice);
2999		goto out_unlock;
3000	}
3001	on_rq = p->on_rq;
3002	if (on_rq)
3003		dequeue_task(rq, p, 0);
3004
3005	p->static_prio = NICE_TO_PRIO(nice);
3006	set_load_weight(p);
3007	old_prio = p->prio;
3008	p->prio = effective_prio(p);
3009	delta = p->prio - old_prio;
3010
3011	if (on_rq) {
3012		enqueue_task(rq, p, 0);
3013		/*
3014		 * If the task increased its priority or is running and
3015		 * lowered its priority, then reschedule its CPU:
3016		 */
3017		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3018			resched_task(rq->curr);
3019	}
3020out_unlock:
3021	task_rq_unlock(rq, p, &flags);
3022}
3023EXPORT_SYMBOL(set_user_nice);
3024
3025/*
3026 * can_nice - check if a task can reduce its nice value
3027 * @p: task
3028 * @nice: nice value
3029 */
3030int can_nice(const struct task_struct *p, const int nice)
3031{
3032	/* convert nice value [19,-20] to rlimit style value [1,40] */
3033	int nice_rlim = 20 - nice;
3034
3035	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3036		capable(CAP_SYS_NICE));
3037}
3038
3039#ifdef __ARCH_WANT_SYS_NICE
3040
3041/*
3042 * sys_nice - change the priority of the current process.
3043 * @increment: priority increment
3044 *
3045 * sys_setpriority is a more generic, but much slower function that
3046 * does similar things.
3047 */
3048SYSCALL_DEFINE1(nice, int, increment)
3049{
3050	long nice, retval;
3051
3052	/*
3053	 * Setpriority might change our priority at the same moment.
3054	 * We don't have to worry. Conceptually one call occurs first
3055	 * and we have a single winner.
3056	 */
3057	if (increment < -40)
3058		increment = -40;
3059	if (increment > 40)
3060		increment = 40;
3061
3062	nice = TASK_NICE(current) + increment;
3063	if (nice < -20)
3064		nice = -20;
3065	if (nice > 19)
3066		nice = 19;
3067
3068	if (increment < 0 && !can_nice(current, nice))
3069		return -EPERM;
3070
3071	retval = security_task_setnice(current, nice);
3072	if (retval)
3073		return retval;
3074
3075	set_user_nice(current, nice);
3076	return 0;
3077}
3078
3079#endif
3080
3081/**
3082 * task_prio - return the priority value of a given task.
3083 * @p: the task in question.
3084 *
3085 * Return: The priority value as seen by users in /proc.
3086 * RT tasks are offset by -200. Normal tasks are centered
3087 * around 0, value goes from -16 to +15.
3088 */
3089int task_prio(const struct task_struct *p)
3090{
3091	return p->prio - MAX_RT_PRIO;
3092}
3093
3094/**
3095 * task_nice - return the nice value of a given task.
3096 * @p: the task in question.
3097 *
3098 * Return: The nice value [ -20 ... 0 ... 19 ].
3099 */
3100int task_nice(const struct task_struct *p)
3101{
3102	return TASK_NICE(p);
3103}
3104EXPORT_SYMBOL(task_nice);
3105
3106/**
3107 * idle_cpu - is a given cpu idle currently?
3108 * @cpu: the processor in question.
3109 *
3110 * Return: 1 if the CPU is currently idle. 0 otherwise.
3111 */
3112int idle_cpu(int cpu)
3113{
3114	struct rq *rq = cpu_rq(cpu);
3115
3116	if (rq->curr != rq->idle)
3117		return 0;
3118
3119	if (rq->nr_running)
3120		return 0;
3121
3122#ifdef CONFIG_SMP
3123	if (!llist_empty(&rq->wake_list))
3124		return 0;
3125#endif
3126
3127	return 1;
3128}
3129
3130/**
3131 * idle_task - return the idle task for a given cpu.
3132 * @cpu: the processor in question.
3133 *
3134 * Return: The idle task for the cpu @cpu.
3135 */
3136struct task_struct *idle_task(int cpu)
3137{
3138	return cpu_rq(cpu)->idle;
3139}
3140
3141/**
3142 * find_process_by_pid - find a process with a matching PID value.
3143 * @pid: the pid in question.
3144 *
3145 * The task of @pid, if found. %NULL otherwise.
3146 */
3147static struct task_struct *find_process_by_pid(pid_t pid)
3148{
3149	return pid ? find_task_by_vpid(pid) : current;
3150}
3151
3152/*
3153 * This function initializes the sched_dl_entity of a newly becoming
3154 * SCHED_DEADLINE task.
3155 *
3156 * Only the static values are considered here, the actual runtime and the
3157 * absolute deadline will be properly calculated when the task is enqueued
3158 * for the first time with its new policy.
3159 */
3160static void
3161__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3162{
3163	struct sched_dl_entity *dl_se = &p->dl;
3164
3165	init_dl_task_timer(dl_se);
3166	dl_se->dl_runtime = attr->sched_runtime;
3167	dl_se->dl_deadline = attr->sched_deadline;
3168	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3169	dl_se->flags = attr->sched_flags;
3170	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3171	dl_se->dl_throttled = 0;
3172	dl_se->dl_new = 1;
3173}
3174
3175/* Actually do priority change: must hold pi & rq lock. */
3176static void __setscheduler(struct rq *rq, struct task_struct *p,
3177			   const struct sched_attr *attr)
3178{
3179	int policy = attr->sched_policy;
3180
3181	p->policy = policy;
3182
3183	if (dl_policy(policy))
3184		__setparam_dl(p, attr);
3185	else if (rt_policy(policy))
3186		p->rt_priority = attr->sched_priority;
3187	else
3188		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3189
3190	p->normal_prio = normal_prio(p);
3191	p->prio = rt_mutex_getprio(p);
3192
3193	if (dl_prio(p->prio))
3194		p->sched_class = &dl_sched_class;
3195	else if (rt_prio(p->prio))
3196		p->sched_class = &rt_sched_class;
3197	else
3198		p->sched_class = &fair_sched_class;
3199
3200	set_load_weight(p);
3201}
3202
3203static void
3204__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3205{
3206	struct sched_dl_entity *dl_se = &p->dl;
3207
3208	attr->sched_priority = p->rt_priority;
3209	attr->sched_runtime = dl_se->dl_runtime;
3210	attr->sched_deadline = dl_se->dl_deadline;
3211	attr->sched_period = dl_se->dl_period;
3212	attr->sched_flags = dl_se->flags;
3213}
3214
3215/*
3216 * This function validates the new parameters of a -deadline task.
3217 * We ask for the deadline not being zero, and greater or equal
3218 * than the runtime, as well as the period of being zero or
3219 * greater than deadline. Furthermore, we have to be sure that
3220 * user parameters are above the internal resolution (1us); we
3221 * check sched_runtime only since it is always the smaller one.
3222 */
3223static bool
3224__checkparam_dl(const struct sched_attr *attr)
3225{
3226	return attr && attr->sched_deadline != 0 &&
3227		(attr->sched_period == 0 ||
3228		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3229		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3230		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3231}
3232
3233/*
3234 * check the target process has a UID that matches the current process's
3235 */
3236static bool check_same_owner(struct task_struct *p)
3237{
3238	const struct cred *cred = current_cred(), *pcred;
3239	bool match;
3240
3241	rcu_read_lock();
3242	pcred = __task_cred(p);
3243	match = (uid_eq(cred->euid, pcred->euid) ||
3244		 uid_eq(cred->euid, pcred->uid));
3245	rcu_read_unlock();
3246	return match;
3247}
3248
3249static int __sched_setscheduler(struct task_struct *p,
3250				const struct sched_attr *attr,
3251				bool user)
3252{
3253	int retval, oldprio, oldpolicy = -1, on_rq, running;
3254	int policy = attr->sched_policy;
3255	unsigned long flags;
3256	const struct sched_class *prev_class;
3257	struct rq *rq;
3258	int reset_on_fork;
3259
3260	/* may grab non-irq protected spin_locks */
3261	BUG_ON(in_interrupt());
3262recheck:
3263	/* double check policy once rq lock held */
3264	if (policy < 0) {
3265		reset_on_fork = p->sched_reset_on_fork;
3266		policy = oldpolicy = p->policy;
3267	} else {
3268		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3269		policy &= ~SCHED_RESET_ON_FORK;
3270
3271		if (policy != SCHED_DEADLINE &&
3272				policy != SCHED_FIFO && policy != SCHED_RR &&
3273				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3274				policy != SCHED_IDLE)
3275			return -EINVAL;
3276	}
3277
3278	/*
3279	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3280	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3281	 * SCHED_BATCH and SCHED_IDLE is 0.
3282	 */
3283	if (attr->sched_priority < 0 ||
3284	    (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3285	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3286		return -EINVAL;
3287	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3288	    (rt_policy(policy) != (attr->sched_priority != 0)))
3289		return -EINVAL;
3290
3291	/*
3292	 * Allow unprivileged RT tasks to decrease priority:
3293	 */
3294	if (user && !capable(CAP_SYS_NICE)) {
3295		if (fair_policy(policy)) {
3296			if (!can_nice(p, attr->sched_nice))
3297				return -EPERM;
3298		}
3299
3300		if (rt_policy(policy)) {
3301			unsigned long rlim_rtprio =
3302					task_rlimit(p, RLIMIT_RTPRIO);
3303
3304			/* can't set/change the rt policy */
3305			if (policy != p->policy && !rlim_rtprio)
3306				return -EPERM;
3307
3308			/* can't increase priority */
3309			if (attr->sched_priority > p->rt_priority &&
3310			    attr->sched_priority > rlim_rtprio)
3311				return -EPERM;
3312		}
3313
3314		/*
3315		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3316		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3317		 */
3318		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3319			if (!can_nice(p, TASK_NICE(p)))
3320				return -EPERM;
3321		}
3322
3323		/* can't change other user's priorities */
3324		if (!check_same_owner(p))
3325			return -EPERM;
3326
3327		/* Normal users shall not reset the sched_reset_on_fork flag */
3328		if (p->sched_reset_on_fork && !reset_on_fork)
3329			return -EPERM;
3330	}
3331
3332	if (user) {
3333		retval = security_task_setscheduler(p);
3334		if (retval)
3335			return retval;
3336	}
3337
3338	/*
3339	 * make sure no PI-waiters arrive (or leave) while we are
3340	 * changing the priority of the task:
3341	 *
3342	 * To be able to change p->policy safely, the appropriate
3343	 * runqueue lock must be held.
3344	 */
3345	rq = task_rq_lock(p, &flags);
3346
3347	/*
3348	 * Changing the policy of the stop threads its a very bad idea
3349	 */
3350	if (p == rq->stop) {
3351		task_rq_unlock(rq, p, &flags);
3352		return -EINVAL;
3353	}
3354
3355	/*
3356	 * If not changing anything there's no need to proceed further:
3357	 */
3358	if (unlikely(policy == p->policy)) {
3359		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3360			goto change;
3361		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3362			goto change;
3363		if (dl_policy(policy))
3364			goto change;
3365
3366		task_rq_unlock(rq, p, &flags);
3367		return 0;
3368	}
3369change:
3370
3371	if (user) {
3372#ifdef CONFIG_RT_GROUP_SCHED
3373		/*
3374		 * Do not allow realtime tasks into groups that have no runtime
3375		 * assigned.
3376		 */
3377		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3378				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3379				!task_group_is_autogroup(task_group(p))) {
3380			task_rq_unlock(rq, p, &flags);
3381			return -EPERM;
3382		}
3383#endif
3384#ifdef CONFIG_SMP
3385		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3386			cpumask_t *span = rq->rd->span;
3387
3388			/*
3389			 * Don't allow tasks with an affinity mask smaller than
3390			 * the entire root_domain to become SCHED_DEADLINE. We
3391			 * will also fail if there's no bandwidth available.
3392			 */
3393			if (!cpumask_subset(span, &p->cpus_allowed) ||
3394			    rq->rd->dl_bw.bw == 0) {
3395				task_rq_unlock(rq, p, &flags);
3396				return -EPERM;
3397			}
3398		}
3399#endif
3400	}
3401
3402	/* recheck policy now with rq lock held */
3403	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3404		policy = oldpolicy = -1;
3405		task_rq_unlock(rq, p, &flags);
3406		goto recheck;
3407	}
3408
3409	/*
3410	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3411	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3412	 * is available.
3413	 */
3414	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3415		task_rq_unlock(rq, p, &flags);
3416		return -EBUSY;
3417	}
3418
3419	on_rq = p->on_rq;
3420	running = task_current(rq, p);
3421	if (on_rq)
3422		dequeue_task(rq, p, 0);
3423	if (running)
3424		p->sched_class->put_prev_task(rq, p);
3425
3426	p->sched_reset_on_fork = reset_on_fork;
3427
3428	oldprio = p->prio;
3429	prev_class = p->sched_class;
3430	__setscheduler(rq, p, attr);
3431
3432	if (running)
3433		p->sched_class->set_curr_task(rq);
3434	if (on_rq)
3435		enqueue_task(rq, p, 0);
3436
3437	check_class_changed(rq, p, prev_class, oldprio);
3438	task_rq_unlock(rq, p, &flags);
3439
3440	rt_mutex_adjust_pi(p);
3441
3442	return 0;
3443}
3444
3445/**
3446 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3447 * @p: the task in question.
3448 * @policy: new policy.
3449 * @param: structure containing the new RT priority.
3450 *
3451 * Return: 0 on success. An error code otherwise.
3452 *
3453 * NOTE that the task may be already dead.
3454 */
3455int sched_setscheduler(struct task_struct *p, int policy,
3456		       const struct sched_param *param)
3457{
3458	struct sched_attr attr = {
3459		.sched_policy   = policy,
3460		.sched_priority = param->sched_priority
3461	};
3462	return __sched_setscheduler(p, &attr, true);
3463}
3464EXPORT_SYMBOL_GPL(sched_setscheduler);
3465
3466int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3467{
3468	return __sched_setscheduler(p, attr, true);
3469}
3470EXPORT_SYMBOL_GPL(sched_setattr);
3471
3472/**
3473 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3474 * @p: the task in question.
3475 * @policy: new policy.
3476 * @param: structure containing the new RT priority.
3477 *
3478 * Just like sched_setscheduler, only don't bother checking if the
3479 * current context has permission.  For example, this is needed in
3480 * stop_machine(): we create temporary high priority worker threads,
3481 * but our caller might not have that capability.
3482 *
3483 * Return: 0 on success. An error code otherwise.
3484 */
3485int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3486			       const struct sched_param *param)
3487{
3488	struct sched_attr attr = {
3489		.sched_policy   = policy,
3490		.sched_priority = param->sched_priority
3491	};
3492	return __sched_setscheduler(p, &attr, false);
3493}
3494
3495static int
3496do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3497{
3498	struct sched_param lparam;
3499	struct task_struct *p;
3500	int retval;
3501
3502	if (!param || pid < 0)
3503		return -EINVAL;
3504	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3505		return -EFAULT;
3506
3507	rcu_read_lock();
3508	retval = -ESRCH;
3509	p = find_process_by_pid(pid);
3510	if (p != NULL)
3511		retval = sched_setscheduler(p, policy, &lparam);
3512	rcu_read_unlock();
3513
3514	return retval;
3515}
3516
3517/*
3518 * Mimics kernel/events/core.c perf_copy_attr().
3519 */
3520static int sched_copy_attr(struct sched_attr __user *uattr,
3521			   struct sched_attr *attr)
3522{
3523	u32 size;
3524	int ret;
3525
3526	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3527		return -EFAULT;
3528
3529	/*
3530	 * zero the full structure, so that a short copy will be nice.
3531	 */
3532	memset(attr, 0, sizeof(*attr));
3533
3534	ret = get_user(size, &uattr->size);
3535	if (ret)
3536		return ret;
3537
3538	if (size > PAGE_SIZE)	/* silly large */
3539		goto err_size;
3540
3541	if (!size)		/* abi compat */
3542		size = SCHED_ATTR_SIZE_VER0;
3543
3544	if (size < SCHED_ATTR_SIZE_VER0)
3545		goto err_size;
3546
3547	/*
3548	 * If we're handed a bigger struct than we know of,
3549	 * ensure all the unknown bits are 0 - i.e. new
3550	 * user-space does not rely on any kernel feature
3551	 * extensions we dont know about yet.
3552	 */
3553	if (size > sizeof(*attr)) {
3554		unsigned char __user *addr;
3555		unsigned char __user *end;
3556		unsigned char val;
3557
3558		addr = (void __user *)uattr + sizeof(*attr);
3559		end  = (void __user *)uattr + size;
3560
3561		for (; addr < end; addr++) {
3562			ret = get_user(val, addr);
3563			if (ret)
3564				return ret;
3565			if (val)
3566				goto err_size;
3567		}
3568		size = sizeof(*attr);
3569	}
3570
3571	ret = copy_from_user(attr, uattr, size);
3572	if (ret)
3573		return -EFAULT;
3574
3575	/*
3576	 * XXX: do we want to be lenient like existing syscalls; or do we want
3577	 * to be strict and return an error on out-of-bounds values?
3578	 */
3579	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3580
3581out:
3582	return ret;
3583
3584err_size:
3585	put_user(sizeof(*attr), &uattr->size);
3586	ret = -E2BIG;
3587	goto out;
3588}
3589
3590/**
3591 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3592 * @pid: the pid in question.
3593 * @policy: new policy.
3594 * @param: structure containing the new RT priority.
3595 *
3596 * Return: 0 on success. An error code otherwise.
3597 */
3598SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3599		struct sched_param __user *, param)
3600{
3601	/* negative values for policy are not valid */
3602	if (policy < 0)
3603		return -EINVAL;
3604
3605	return do_sched_setscheduler(pid, policy, param);
3606}
3607
3608/**
3609 * sys_sched_setparam - set/change the RT priority of a thread
3610 * @pid: the pid in question.
3611 * @param: structure containing the new RT priority.
3612 *
3613 * Return: 0 on success. An error code otherwise.
3614 */
3615SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3616{
3617	return do_sched_setscheduler(pid, -1, param);
3618}
3619
3620/**
3621 * sys_sched_setattr - same as above, but with extended sched_attr
3622 * @pid: the pid in question.
3623 * @attr: structure containing the extended parameters.
3624 */
3625SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3626{
3627	struct sched_attr attr;
3628	struct task_struct *p;
3629	int retval;
3630
3631	if (!uattr || pid < 0)
3632		return -EINVAL;
3633
3634	if (sched_copy_attr(uattr, &attr))
3635		return -EFAULT;
3636
3637	rcu_read_lock();
3638	retval = -ESRCH;
3639	p = find_process_by_pid(pid);
3640	if (p != NULL)
3641		retval = sched_setattr(p, &attr);
3642	rcu_read_unlock();
3643
3644	return retval;
3645}
3646
3647/**
3648 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3649 * @pid: the pid in question.
3650 *
3651 * Return: On success, the policy of the thread. Otherwise, a negative error
3652 * code.
3653 */
3654SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3655{
3656	struct task_struct *p;
3657	int retval;
3658
3659	if (pid < 0)
3660		return -EINVAL;
3661
3662	retval = -ESRCH;
3663	rcu_read_lock();
3664	p = find_process_by_pid(pid);
3665	if (p) {
3666		retval = security_task_getscheduler(p);
3667		if (!retval)
3668			retval = p->policy
3669				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3670	}
3671	rcu_read_unlock();
3672	return retval;
3673}
3674
3675/**
3676 * sys_sched_getparam - get the RT priority of a thread
3677 * @pid: the pid in question.
3678 * @param: structure containing the RT priority.
3679 *
3680 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3681 * code.
3682 */
3683SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3684{
3685	struct sched_param lp;
3686	struct task_struct *p;
3687	int retval;
3688
3689	if (!param || pid < 0)
3690		return -EINVAL;
3691
3692	rcu_read_lock();
3693	p = find_process_by_pid(pid);
3694	retval = -ESRCH;
3695	if (!p)
3696		goto out_unlock;
3697
3698	retval = security_task_getscheduler(p);
3699	if (retval)
3700		goto out_unlock;
3701
3702	if (task_has_dl_policy(p)) {
3703		retval = -EINVAL;
3704		goto out_unlock;
3705	}
3706	lp.sched_priority = p->rt_priority;
3707	rcu_read_unlock();
3708
3709	/*
3710	 * This one might sleep, we cannot do it with a spinlock held ...
3711	 */
3712	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3713
3714	return retval;
3715
3716out_unlock:
3717	rcu_read_unlock();
3718	return retval;
3719}
3720
3721static int sched_read_attr(struct sched_attr __user *uattr,
3722			   struct sched_attr *attr,
3723			   unsigned int usize)
3724{
3725	int ret;
3726
3727	if (!access_ok(VERIFY_WRITE, uattr, usize))
3728		return -EFAULT;
3729
3730	/*
3731	 * If we're handed a smaller struct than we know of,
3732	 * ensure all the unknown bits are 0 - i.e. old
3733	 * user-space does not get uncomplete information.
3734	 */
3735	if (usize < sizeof(*attr)) {
3736		unsigned char *addr;
3737		unsigned char *end;
3738
3739		addr = (void *)attr + usize;
3740		end  = (void *)attr + sizeof(*attr);
3741
3742		for (; addr < end; addr++) {
3743			if (*addr)
3744				goto err_size;
3745		}
3746
3747		attr->size = usize;
3748	}
3749
3750	ret = copy_to_user(uattr, attr, usize);
3751	if (ret)
3752		return -EFAULT;
3753
3754out:
3755	return ret;
3756
3757err_size:
3758	ret = -E2BIG;
3759	goto out;
3760}
3761
3762/**
3763 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3764 * @pid: the pid in question.
3765 * @attr: structure containing the extended parameters.
3766 * @size: sizeof(attr) for fwd/bwd comp.
3767 */
3768SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3769		unsigned int, size)
3770{
3771	struct sched_attr attr = {
3772		.size = sizeof(struct sched_attr),
3773	};
3774	struct task_struct *p;
3775	int retval;
3776
3777	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3778	    size < SCHED_ATTR_SIZE_VER0)
3779		return -EINVAL;
3780
3781	rcu_read_lock();
3782	p = find_process_by_pid(pid);
3783	retval = -ESRCH;
3784	if (!p)
3785		goto out_unlock;
3786
3787	retval = security_task_getscheduler(p);
3788	if (retval)
3789		goto out_unlock;
3790
3791	attr.sched_policy = p->policy;
3792	if (task_has_dl_policy(p))
3793		__getparam_dl(p, &attr);
3794	else if (task_has_rt_policy(p))
3795		attr.sched_priority = p->rt_priority;
3796	else
3797		attr.sched_nice = TASK_NICE(p);
3798
3799	rcu_read_unlock();
3800
3801	retval = sched_read_attr(uattr, &attr, size);
3802	return retval;
3803
3804out_unlock:
3805	rcu_read_unlock();
3806	return retval;
3807}
3808
3809long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3810{
3811	cpumask_var_t cpus_allowed, new_mask;
3812	struct task_struct *p;
3813	int retval;
3814
3815	rcu_read_lock();
3816
3817	p = find_process_by_pid(pid);
3818	if (!p) {
3819		rcu_read_unlock();
3820		return -ESRCH;
3821	}
3822
3823	/* Prevent p going away */
3824	get_task_struct(p);
3825	rcu_read_unlock();
3826
3827	if (p->flags & PF_NO_SETAFFINITY) {
3828		retval = -EINVAL;
3829		goto out_put_task;
3830	}
3831	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3832		retval = -ENOMEM;
3833		goto out_put_task;
3834	}
3835	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3836		retval = -ENOMEM;
3837		goto out_free_cpus_allowed;
3838	}
3839	retval = -EPERM;
3840	if (!check_same_owner(p)) {
3841		rcu_read_lock();
3842		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3843			rcu_read_unlock();
3844			goto out_unlock;
3845		}
3846		rcu_read_unlock();
3847	}
3848
3849	retval = security_task_setscheduler(p);
3850	if (retval)
3851		goto out_unlock;
3852
3853
3854	cpuset_cpus_allowed(p, cpus_allowed);
3855	cpumask_and(new_mask, in_mask, cpus_allowed);
3856
3857	/*
3858	 * Since bandwidth control happens on root_domain basis,
3859	 * if admission test is enabled, we only admit -deadline
3860	 * tasks allowed to run on all the CPUs in the task's
3861	 * root_domain.
3862	 */
3863#ifdef CONFIG_SMP
3864	if (task_has_dl_policy(p)) {
3865		const struct cpumask *span = task_rq(p)->rd->span;
3866
3867		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3868			retval = -EBUSY;
3869			goto out_unlock;
3870		}
3871	}
3872#endif
3873again:
3874	retval = set_cpus_allowed_ptr(p, new_mask);
3875
3876	if (!retval) {
3877		cpuset_cpus_allowed(p, cpus_allowed);
3878		if (!cpumask_subset(new_mask, cpus_allowed)) {
3879			/*
3880			 * We must have raced with a concurrent cpuset
3881			 * update. Just reset the cpus_allowed to the
3882			 * cpuset's cpus_allowed
3883			 */
3884			cpumask_copy(new_mask, cpus_allowed);
3885			goto again;
3886		}
3887	}
3888out_unlock:
3889	free_cpumask_var(new_mask);
3890out_free_cpus_allowed:
3891	free_cpumask_var(cpus_allowed);
3892out_put_task:
3893	put_task_struct(p);
3894	return retval;
3895}
3896
3897static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3898			     struct cpumask *new_mask)
3899{
3900	if (len < cpumask_size())
3901		cpumask_clear(new_mask);
3902	else if (len > cpumask_size())
3903		len = cpumask_size();
3904
3905	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3906}
3907
3908/**
3909 * sys_sched_setaffinity - set the cpu affinity of a process
3910 * @pid: pid of the process
3911 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3912 * @user_mask_ptr: user-space pointer to the new cpu mask
3913 *
3914 * Return: 0 on success. An error code otherwise.
3915 */
3916SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3917		unsigned long __user *, user_mask_ptr)
3918{
3919	cpumask_var_t new_mask;
3920	int retval;
3921
3922	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3923		return -ENOMEM;
3924
3925	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3926	if (retval == 0)
3927		retval = sched_setaffinity(pid, new_mask);
3928	free_cpumask_var(new_mask);
3929	return retval;
3930}
3931
3932long sched_getaffinity(pid_t pid, struct cpumask *mask)
3933{
3934	struct task_struct *p;
3935	unsigned long flags;
3936	int retval;
3937
3938	rcu_read_lock();
3939
3940	retval = -ESRCH;
3941	p = find_process_by_pid(pid);
3942	if (!p)
3943		goto out_unlock;
3944
3945	retval = security_task_getscheduler(p);
3946	if (retval)
3947		goto out_unlock;
3948
3949	raw_spin_lock_irqsave(&p->pi_lock, flags);
3950	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3951	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3952
3953out_unlock:
3954	rcu_read_unlock();
3955
3956	return retval;
3957}
3958
3959/**
3960 * sys_sched_getaffinity - get the cpu affinity of a process
3961 * @pid: pid of the process
3962 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3963 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3964 *
3965 * Return: 0 on success. An error code otherwise.
3966 */
3967SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3968		unsigned long __user *, user_mask_ptr)
3969{
3970	int ret;
3971	cpumask_var_t mask;
3972
3973	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3974		return -EINVAL;
3975	if (len & (sizeof(unsigned long)-1))
3976		return -EINVAL;
3977
3978	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3979		return -ENOMEM;
3980
3981	ret = sched_getaffinity(pid, mask);
3982	if (ret == 0) {
3983		size_t retlen = min_t(size_t, len, cpumask_size());
3984
3985		if (copy_to_user(user_mask_ptr, mask, retlen))
3986			ret = -EFAULT;
3987		else
3988			ret = retlen;
3989	}
3990	free_cpumask_var(mask);
3991
3992	return ret;
3993}
3994
3995/**
3996 * sys_sched_yield - yield the current processor to other threads.
3997 *
3998 * This function yields the current CPU to other tasks. If there are no
3999 * other threads running on this CPU then this function will return.
4000 *
4001 * Return: 0.
4002 */
4003SYSCALL_DEFINE0(sched_yield)
4004{
4005	struct rq *rq = this_rq_lock();
4006
4007	schedstat_inc(rq, yld_count);
4008	current->sched_class->yield_task(rq);
4009
4010	/*
4011	 * Since we are going to call schedule() anyway, there's
4012	 * no need to preempt or enable interrupts:
4013	 */
4014	__release(rq->lock);
4015	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4016	do_raw_spin_unlock(&rq->lock);
4017	sched_preempt_enable_no_resched();
4018
4019	schedule();
4020
4021	return 0;
4022}
4023
4024static void __cond_resched(void)
4025{
4026	__preempt_count_add(PREEMPT_ACTIVE);
4027	__schedule();
4028	__preempt_count_sub(PREEMPT_ACTIVE);
4029}
4030
4031int __sched _cond_resched(void)
4032{
4033	if (should_resched()) {
4034		__cond_resched();
4035		return 1;
4036	}
4037	return 0;
4038}
4039EXPORT_SYMBOL(_cond_resched);
4040
4041/*
4042 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4043 * call schedule, and on return reacquire the lock.
4044 *
4045 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4046 * operations here to prevent schedule() from being called twice (once via
4047 * spin_unlock(), once by hand).
4048 */
4049int __cond_resched_lock(spinlock_t *lock)
4050{
4051	int resched = should_resched();
4052	int ret = 0;
4053
4054	lockdep_assert_held(lock);
4055
4056	if (spin_needbreak(lock) || resched) {
4057		spin_unlock(lock);
4058		if (resched)
4059			__cond_resched();
4060		else
4061			cpu_relax();
4062		ret = 1;
4063		spin_lock(lock);
4064	}
4065	return ret;
4066}
4067EXPORT_SYMBOL(__cond_resched_lock);
4068
4069int __sched __cond_resched_softirq(void)
4070{
4071	BUG_ON(!in_softirq());
4072
4073	if (should_resched()) {
4074		local_bh_enable();
4075		__cond_resched();
4076		local_bh_disable();
4077		return 1;
4078	}
4079	return 0;
4080}
4081EXPORT_SYMBOL(__cond_resched_softirq);
4082
4083/**
4084 * yield - yield the current processor to other threads.
4085 *
4086 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4087 *
4088 * The scheduler is at all times free to pick the calling task as the most
4089 * eligible task to run, if removing the yield() call from your code breaks
4090 * it, its already broken.
4091 *
4092 * Typical broken usage is:
4093 *
4094 * while (!event)
4095 * 	yield();
4096 *
4097 * where one assumes that yield() will let 'the other' process run that will
4098 * make event true. If the current task is a SCHED_FIFO task that will never
4099 * happen. Never use yield() as a progress guarantee!!
4100 *
4101 * If you want to use yield() to wait for something, use wait_event().
4102 * If you want to use yield() to be 'nice' for others, use cond_resched().
4103 * If you still want to use yield(), do not!
4104 */
4105void __sched yield(void)
4106{
4107	set_current_state(TASK_RUNNING);
4108	sys_sched_yield();
4109}
4110EXPORT_SYMBOL(yield);
4111
4112/**
4113 * yield_to - yield the current processor to another thread in
4114 * your thread group, or accelerate that thread toward the
4115 * processor it's on.
4116 * @p: target task
4117 * @preempt: whether task preemption is allowed or not
4118 *
4119 * It's the caller's job to ensure that the target task struct
4120 * can't go away on us before we can do any checks.
4121 *
4122 * Return:
4123 *	true (>0) if we indeed boosted the target task.
4124 *	false (0) if we failed to boost the target.
4125 *	-ESRCH if there's no task to yield to.
4126 */
4127bool __sched yield_to(struct task_struct *p, bool preempt)
4128{
4129	struct task_struct *curr = current;
4130	struct rq *rq, *p_rq;
4131	unsigned long flags;
4132	int yielded = 0;
4133
4134	local_irq_save(flags);
4135	rq = this_rq();
4136
4137again:
4138	p_rq = task_rq(p);
4139	/*
4140	 * If we're the only runnable task on the rq and target rq also
4141	 * has only one task, there's absolutely no point in yielding.
4142	 */
4143	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4144		yielded = -ESRCH;
4145		goto out_irq;
4146	}
4147
4148	double_rq_lock(rq, p_rq);
4149	if (task_rq(p) != p_rq) {
4150		double_rq_unlock(rq, p_rq);
4151		goto again;
4152	}
4153
4154	if (!curr->sched_class->yield_to_task)
4155		goto out_unlock;
4156
4157	if (curr->sched_class != p->sched_class)
4158		goto out_unlock;
4159
4160	if (task_running(p_rq, p) || p->state)
4161		goto out_unlock;
4162
4163	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4164	if (yielded) {
4165		schedstat_inc(rq, yld_count);
4166		/*
4167		 * Make p's CPU reschedule; pick_next_entity takes care of
4168		 * fairness.
4169		 */
4170		if (preempt && rq != p_rq)
4171			resched_task(p_rq->curr);
4172	}
4173
4174out_unlock:
4175	double_rq_unlock(rq, p_rq);
4176out_irq:
4177	local_irq_restore(flags);
4178
4179	if (yielded > 0)
4180		schedule();
4181
4182	return yielded;
4183}
4184EXPORT_SYMBOL_GPL(yield_to);
4185
4186/*
4187 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4188 * that process accounting knows that this is a task in IO wait state.
4189 */
4190void __sched io_schedule(void)
4191{
4192	struct rq *rq = raw_rq();
4193
4194	delayacct_blkio_start();
4195	atomic_inc(&rq->nr_iowait);
4196	blk_flush_plug(current);
4197	current->in_iowait = 1;
4198	schedule();
4199	current->in_iowait = 0;
4200	atomic_dec(&rq->nr_iowait);
4201	delayacct_blkio_end();
4202}
4203EXPORT_SYMBOL(io_schedule);
4204
4205long __sched io_schedule_timeout(long timeout)
4206{
4207	struct rq *rq = raw_rq();
4208	long ret;
4209
4210	delayacct_blkio_start();
4211	atomic_inc(&rq->nr_iowait);
4212	blk_flush_plug(current);
4213	current->in_iowait = 1;
4214	ret = schedule_timeout(timeout);
4215	current->in_iowait = 0;
4216	atomic_dec(&rq->nr_iowait);
4217	delayacct_blkio_end();
4218	return ret;
4219}
4220
4221/**
4222 * sys_sched_get_priority_max - return maximum RT priority.
4223 * @policy: scheduling class.
4224 *
4225 * Return: On success, this syscall returns the maximum
4226 * rt_priority that can be used by a given scheduling class.
4227 * On failure, a negative error code is returned.
4228 */
4229SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4230{
4231	int ret = -EINVAL;
4232
4233	switch (policy) {
4234	case SCHED_FIFO:
4235	case SCHED_RR:
4236		ret = MAX_USER_RT_PRIO-1;
4237		break;
4238	case SCHED_DEADLINE:
4239	case SCHED_NORMAL:
4240	case SCHED_BATCH:
4241	case SCHED_IDLE:
4242		ret = 0;
4243		break;
4244	}
4245	return ret;
4246}
4247
4248/**
4249 * sys_sched_get_priority_min - return minimum RT priority.
4250 * @policy: scheduling class.
4251 *
4252 * Return: On success, this syscall returns the minimum
4253 * rt_priority that can be used by a given scheduling class.
4254 * On failure, a negative error code is returned.
4255 */
4256SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4257{
4258	int ret = -EINVAL;
4259
4260	switch (policy) {
4261	case SCHED_FIFO:
4262	case SCHED_RR:
4263		ret = 1;
4264		break;
4265	case SCHED_DEADLINE:
4266	case SCHED_NORMAL:
4267	case SCHED_BATCH:
4268	case SCHED_IDLE:
4269		ret = 0;
4270	}
4271	return ret;
4272}
4273
4274/**
4275 * sys_sched_rr_get_interval - return the default timeslice of a process.
4276 * @pid: pid of the process.
4277 * @interval: userspace pointer to the timeslice value.
4278 *
4279 * this syscall writes the default timeslice value of a given process
4280 * into the user-space timespec buffer. A value of '0' means infinity.
4281 *
4282 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4283 * an error code.
4284 */
4285SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4286		struct timespec __user *, interval)
4287{
4288	struct task_struct *p;
4289	unsigned int time_slice;
4290	unsigned long flags;
4291	struct rq *rq;
4292	int retval;
4293	struct timespec t;
4294
4295	if (pid < 0)
4296		return -EINVAL;
4297
4298	retval = -ESRCH;
4299	rcu_read_lock();
4300	p = find_process_by_pid(pid);
4301	if (!p)
4302		goto out_unlock;
4303
4304	retval = security_task_getscheduler(p);
4305	if (retval)
4306		goto out_unlock;
4307
4308	rq = task_rq_lock(p, &flags);
4309	time_slice = p->sched_class->get_rr_interval(rq, p);
4310	task_rq_unlock(rq, p, &flags);
4311
4312	rcu_read_unlock();
4313	jiffies_to_timespec(time_slice, &t);
4314	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4315	return retval;
4316
4317out_unlock:
4318	rcu_read_unlock();
4319	return retval;
4320}
4321
4322static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4323
4324void sched_show_task(struct task_struct *p)
4325{
4326	unsigned long free = 0;
4327	int ppid;
4328	unsigned state;
4329
4330	state = p->state ? __ffs(p->state) + 1 : 0;
4331	printk(KERN_INFO "%-15.15s %c", p->comm,
4332		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4333#if BITS_PER_LONG == 32
4334	if (state == TASK_RUNNING)
4335		printk(KERN_CONT " running  ");
4336	else
4337		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4338#else
4339	if (state == TASK_RUNNING)
4340		printk(KERN_CONT "  running task    ");
4341	else
4342		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4343#endif
4344#ifdef CONFIG_DEBUG_STACK_USAGE
4345	free = stack_not_used(p);
4346#endif
4347	rcu_read_lock();
4348	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4349	rcu_read_unlock();
4350	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4351		task_pid_nr(p), ppid,
4352		(unsigned long)task_thread_info(p)->flags);
4353
4354	print_worker_info(KERN_INFO, p);
4355	show_stack(p, NULL);
4356}
4357
4358void show_state_filter(unsigned long state_filter)
4359{
4360	struct task_struct *g, *p;
4361
4362#if BITS_PER_LONG == 32
4363	printk(KERN_INFO
4364		"  task                PC stack   pid father\n");
4365#else
4366	printk(KERN_INFO
4367		"  task                        PC stack   pid father\n");
4368#endif
4369	rcu_read_lock();
4370	do_each_thread(g, p) {
4371		/*
4372		 * reset the NMI-timeout, listing all files on a slow
4373		 * console might take a lot of time:
4374		 */
4375		touch_nmi_watchdog();
4376		if (!state_filter || (p->state & state_filter))
4377			sched_show_task(p);
4378	} while_each_thread(g, p);
4379
4380	touch_all_softlockup_watchdogs();
4381
4382#ifdef CONFIG_SCHED_DEBUG
4383	sysrq_sched_debug_show();
4384#endif
4385	rcu_read_unlock();
4386	/*
4387	 * Only show locks if all tasks are dumped:
4388	 */
4389	if (!state_filter)
4390		debug_show_all_locks();
4391}
4392
4393void init_idle_bootup_task(struct task_struct *idle)
4394{
4395	idle->sched_class = &idle_sched_class;
4396}
4397
4398/**
4399 * init_idle - set up an idle thread for a given CPU
4400 * @idle: task in question
4401 * @cpu: cpu the idle task belongs to
4402 *
4403 * NOTE: this function does not set the idle thread's NEED_RESCHED
4404 * flag, to make booting more robust.
4405 */
4406void init_idle(struct task_struct *idle, int cpu)
4407{
4408	struct rq *rq = cpu_rq(cpu);
4409	unsigned long flags;
4410
4411	raw_spin_lock_irqsave(&rq->lock, flags);
4412
4413	__sched_fork(0, idle);
4414	idle->state = TASK_RUNNING;
4415	idle->se.exec_start = sched_clock();
4416
4417	do_set_cpus_allowed(idle, cpumask_of(cpu));
4418	/*
4419	 * We're having a chicken and egg problem, even though we are
4420	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4421	 * lockdep check in task_group() will fail.
4422	 *
4423	 * Similar case to sched_fork(). / Alternatively we could
4424	 * use task_rq_lock() here and obtain the other rq->lock.
4425	 *
4426	 * Silence PROVE_RCU
4427	 */
4428	rcu_read_lock();
4429	__set_task_cpu(idle, cpu);
4430	rcu_read_unlock();
4431
4432	rq->curr = rq->idle = idle;
4433#if defined(CONFIG_SMP)
4434	idle->on_cpu = 1;
4435#endif
4436	raw_spin_unlock_irqrestore(&rq->lock, flags);
4437
4438	/* Set the preempt count _outside_ the spinlocks! */
4439	init_idle_preempt_count(idle, cpu);
4440
4441	/*
4442	 * The idle tasks have their own, simple scheduling class:
4443	 */
4444	idle->sched_class = &idle_sched_class;
4445	ftrace_graph_init_idle_task(idle, cpu);
4446	vtime_init_idle(idle, cpu);
4447#if defined(CONFIG_SMP)
4448	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4449#endif
4450}
4451
4452#ifdef CONFIG_SMP
4453void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4454{
4455	if (p->sched_class && p->sched_class->set_cpus_allowed)
4456		p->sched_class->set_cpus_allowed(p, new_mask);
4457
4458	cpumask_copy(&p->cpus_allowed, new_mask);
4459	p->nr_cpus_allowed = cpumask_weight(new_mask);
4460}
4461
4462/*
4463 * This is how migration works:
4464 *
4465 * 1) we invoke migration_cpu_stop() on the target CPU using
4466 *    stop_one_cpu().
4467 * 2) stopper starts to run (implicitly forcing the migrated thread
4468 *    off the CPU)
4469 * 3) it checks whether the migrated task is still in the wrong runqueue.
4470 * 4) if it's in the wrong runqueue then the migration thread removes
4471 *    it and puts it into the right queue.
4472 * 5) stopper completes and stop_one_cpu() returns and the migration
4473 *    is done.
4474 */
4475
4476/*
4477 * Change a given task's CPU affinity. Migrate the thread to a
4478 * proper CPU and schedule it away if the CPU it's executing on
4479 * is removed from the allowed bitmask.
4480 *
4481 * NOTE: the caller must have a valid reference to the task, the
4482 * task must not exit() & deallocate itself prematurely. The
4483 * call is not atomic; no spinlocks may be held.
4484 */
4485int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4486{
4487	unsigned long flags;
4488	struct rq *rq;
4489	unsigned int dest_cpu;
4490	int ret = 0;
4491
4492	rq = task_rq_lock(p, &flags);
4493
4494	if (cpumask_equal(&p->cpus_allowed, new_mask))
4495		goto out;
4496
4497	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4498		ret = -EINVAL;
4499		goto out;
4500	}
4501
4502	do_set_cpus_allowed(p, new_mask);
4503
4504	/* Can the task run on the task's current CPU? If so, we're done */
4505	if (cpumask_test_cpu(task_cpu(p), new_mask))
4506		goto out;
4507
4508	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4509	if (p->on_rq) {
4510		struct migration_arg arg = { p, dest_cpu };
4511		/* Need help from migration thread: drop lock and wait. */
4512		task_rq_unlock(rq, p, &flags);
4513		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4514		tlb_migrate_finish(p->mm);
4515		return 0;
4516	}
4517out:
4518	task_rq_unlock(rq, p, &flags);
4519
4520	return ret;
4521}
4522EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4523
4524/*
4525 * When dealing with a -deadline task, we have to check if moving it to
4526 * a new CPU is possible or not. In fact, this is only true iff there
4527 * is enough bandwidth available on such CPU, otherwise we want the
4528 * whole migration procedure to fail over.
4529 */
4530static inline
4531bool set_task_cpu_dl(struct task_struct *p, unsigned int cpu)
4532{
4533	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4534	struct dl_bw *cpu_b = dl_bw_of(cpu);
4535	int ret = 1;
4536	u64 bw;
4537
4538	if (dl_b == cpu_b)
4539		return 1;
4540
4541	raw_spin_lock(&dl_b->lock);
4542	raw_spin_lock(&cpu_b->lock);
4543
4544	bw = cpu_b->bw * cpumask_weight(cpu_rq(cpu)->rd->span);
4545	if (dl_bandwidth_enabled() &&
4546	    bw < cpu_b->total_bw + p->dl.dl_bw) {
4547		ret = 0;
4548		goto unlock;
4549	}
4550	dl_b->total_bw -= p->dl.dl_bw;
4551	cpu_b->total_bw += p->dl.dl_bw;
4552
4553unlock:
4554	raw_spin_unlock(&cpu_b->lock);
4555	raw_spin_unlock(&dl_b->lock);
4556
4557	return ret;
4558}
4559
4560/*
4561 * Move (not current) task off this cpu, onto dest cpu. We're doing
4562 * this because either it can't run here any more (set_cpus_allowed()
4563 * away from this CPU, or CPU going down), or because we're
4564 * attempting to rebalance this task on exec (sched_exec).
4565 *
4566 * So we race with normal scheduler movements, but that's OK, as long
4567 * as the task is no longer on this CPU.
4568 *
4569 * Returns non-zero if task was successfully migrated.
4570 */
4571static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4572{
4573	struct rq *rq_dest, *rq_src;
4574	int ret = 0;
4575
4576	if (unlikely(!cpu_active(dest_cpu)))
4577		return ret;
4578
4579	rq_src = cpu_rq(src_cpu);
4580	rq_dest = cpu_rq(dest_cpu);
4581
4582	raw_spin_lock(&p->pi_lock);
4583	double_rq_lock(rq_src, rq_dest);
4584	/* Already moved. */
4585	if (task_cpu(p) != src_cpu)
4586		goto done;
4587	/* Affinity changed (again). */
4588	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4589		goto fail;
4590
4591	/*
4592	 * If p is -deadline, proceed only if there is enough
4593	 * bandwidth available on dest_cpu
4594	 */
4595	if (unlikely(dl_task(p)) && !set_task_cpu_dl(p, dest_cpu))
4596		goto fail;
4597
4598	/*
4599	 * If we're not on a rq, the next wake-up will ensure we're
4600	 * placed properly.
4601	 */
4602	if (p->on_rq) {
4603		dequeue_task(rq_src, p, 0);
4604		set_task_cpu(p, dest_cpu);
4605		enqueue_task(rq_dest, p, 0);
4606		check_preempt_curr(rq_dest, p, 0);
4607	}
4608done:
4609	ret = 1;
4610fail:
4611	double_rq_unlock(rq_src, rq_dest);
4612	raw_spin_unlock(&p->pi_lock);
4613	return ret;
4614}
4615
4616#ifdef CONFIG_NUMA_BALANCING
4617/* Migrate current task p to target_cpu */
4618int migrate_task_to(struct task_struct *p, int target_cpu)
4619{
4620	struct migration_arg arg = { p, target_cpu };
4621	int curr_cpu = task_cpu(p);
4622
4623	if (curr_cpu == target_cpu)
4624		return 0;
4625
4626	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4627		return -EINVAL;
4628
4629	/* TODO: This is not properly updating schedstats */
4630
4631	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4632}
4633
4634/*
4635 * Requeue a task on a given node and accurately track the number of NUMA
4636 * tasks on the runqueues
4637 */
4638void sched_setnuma(struct task_struct *p, int nid)
4639{
4640	struct rq *rq;
4641	unsigned long flags;
4642	bool on_rq, running;
4643
4644	rq = task_rq_lock(p, &flags);
4645	on_rq = p->on_rq;
4646	running = task_current(rq, p);
4647
4648	if (on_rq)
4649		dequeue_task(rq, p, 0);
4650	if (running)
4651		p->sched_class->put_prev_task(rq, p);
4652
4653	p->numa_preferred_nid = nid;
4654
4655	if (running)
4656		p->sched_class->set_curr_task(rq);
4657	if (on_rq)
4658		enqueue_task(rq, p, 0);
4659	task_rq_unlock(rq, p, &flags);
4660}
4661#endif
4662
4663/*
4664 * migration_cpu_stop - this will be executed by a highprio stopper thread
4665 * and performs thread migration by bumping thread off CPU then
4666 * 'pushing' onto another runqueue.
4667 */
4668static int migration_cpu_stop(void *data)
4669{
4670	struct migration_arg *arg = data;
4671
4672	/*
4673	 * The original target cpu might have gone down and we might
4674	 * be on another cpu but it doesn't matter.
4675	 */
4676	local_irq_disable();
4677	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4678	local_irq_enable();
4679	return 0;
4680}
4681
4682#ifdef CONFIG_HOTPLUG_CPU
4683
4684/*
4685 * Ensures that the idle task is using init_mm right before its cpu goes
4686 * offline.
4687 */
4688void idle_task_exit(void)
4689{
4690	struct mm_struct *mm = current->active_mm;
4691
4692	BUG_ON(cpu_online(smp_processor_id()));
4693
4694	if (mm != &init_mm)
4695		switch_mm(mm, &init_mm, current);
4696	mmdrop(mm);
4697}
4698
4699/*
4700 * Since this CPU is going 'away' for a while, fold any nr_active delta
4701 * we might have. Assumes we're called after migrate_tasks() so that the
4702 * nr_active count is stable.
4703 *
4704 * Also see the comment "Global load-average calculations".
4705 */
4706static void calc_load_migrate(struct rq *rq)
4707{
4708	long delta = calc_load_fold_active(rq);
4709	if (delta)
4710		atomic_long_add(delta, &calc_load_tasks);
4711}
4712
4713/*
4714 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4715 * try_to_wake_up()->select_task_rq().
4716 *
4717 * Called with rq->lock held even though we'er in stop_machine() and
4718 * there's no concurrency possible, we hold the required locks anyway
4719 * because of lock validation efforts.
4720 */
4721static void migrate_tasks(unsigned int dead_cpu)
4722{
4723	struct rq *rq = cpu_rq(dead_cpu);
4724	struct task_struct *next, *stop = rq->stop;
4725	int dest_cpu;
4726
4727	/*
4728	 * Fudge the rq selection such that the below task selection loop
4729	 * doesn't get stuck on the currently eligible stop task.
4730	 *
4731	 * We're currently inside stop_machine() and the rq is either stuck
4732	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4733	 * either way we should never end up calling schedule() until we're
4734	 * done here.
4735	 */
4736	rq->stop = NULL;
4737
4738	/*
4739	 * put_prev_task() and pick_next_task() sched
4740	 * class method both need to have an up-to-date
4741	 * value of rq->clock[_task]
4742	 */
4743	update_rq_clock(rq);
4744
4745	for ( ; ; ) {
4746		/*
4747		 * There's this thread running, bail when that's the only
4748		 * remaining thread.
4749		 */
4750		if (rq->nr_running == 1)
4751			break;
4752
4753		next = pick_next_task(rq);
4754		BUG_ON(!next);
4755		next->sched_class->put_prev_task(rq, next);
4756
4757		/* Find suitable destination for @next, with force if needed. */
4758		dest_cpu = select_fallback_rq(dead_cpu, next);
4759		raw_spin_unlock(&rq->lock);
4760
4761		__migrate_task(next, dead_cpu, dest_cpu);
4762
4763		raw_spin_lock(&rq->lock);
4764	}
4765
4766	rq->stop = stop;
4767}
4768
4769#endif /* CONFIG_HOTPLUG_CPU */
4770
4771#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4772
4773static struct ctl_table sd_ctl_dir[] = {
4774	{
4775		.procname	= "sched_domain",
4776		.mode		= 0555,
4777	},
4778	{}
4779};
4780
4781static struct ctl_table sd_ctl_root[] = {
4782	{
4783		.procname	= "kernel",
4784		.mode		= 0555,
4785		.child		= sd_ctl_dir,
4786	},
4787	{}
4788};
4789
4790static struct ctl_table *sd_alloc_ctl_entry(int n)
4791{
4792	struct ctl_table *entry =
4793		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4794
4795	return entry;
4796}
4797
4798static void sd_free_ctl_entry(struct ctl_table **tablep)
4799{
4800	struct ctl_table *entry;
4801
4802	/*
4803	 * In the intermediate directories, both the child directory and
4804	 * procname are dynamically allocated and could fail but the mode
4805	 * will always be set. In the lowest directory the names are
4806	 * static strings and all have proc handlers.
4807	 */
4808	for (entry = *tablep; entry->mode; entry++) {
4809		if (entry->child)
4810			sd_free_ctl_entry(&entry->child);
4811		if (entry->proc_handler == NULL)
4812			kfree(entry->procname);
4813	}
4814
4815	kfree(*tablep);
4816	*tablep = NULL;
4817}
4818
4819static int min_load_idx = 0;
4820static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4821
4822static void
4823set_table_entry(struct ctl_table *entry,
4824		const char *procname, void *data, int maxlen,
4825		umode_t mode, proc_handler *proc_handler,
4826		bool load_idx)
4827{
4828	entry->procname = procname;
4829	entry->data = data;
4830	entry->maxlen = maxlen;
4831	entry->mode = mode;
4832	entry->proc_handler = proc_handler;
4833
4834	if (load_idx) {
4835		entry->extra1 = &min_load_idx;
4836		entry->extra2 = &max_load_idx;
4837	}
4838}
4839
4840static struct ctl_table *
4841sd_alloc_ctl_domain_table(struct sched_domain *sd)
4842{
4843	struct ctl_table *table = sd_alloc_ctl_entry(13);
4844
4845	if (table == NULL)
4846		return NULL;
4847
4848	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4849		sizeof(long), 0644, proc_doulongvec_minmax, false);
4850	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4851		sizeof(long), 0644, proc_doulongvec_minmax, false);
4852	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4853		sizeof(int), 0644, proc_dointvec_minmax, true);
4854	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4855		sizeof(int), 0644, proc_dointvec_minmax, true);
4856	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4857		sizeof(int), 0644, proc_dointvec_minmax, true);
4858	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4859		sizeof(int), 0644, proc_dointvec_minmax, true);
4860	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4861		sizeof(int), 0644, proc_dointvec_minmax, true);
4862	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4863		sizeof(int), 0644, proc_dointvec_minmax, false);
4864	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4865		sizeof(int), 0644, proc_dointvec_minmax, false);
4866	set_table_entry(&table[9], "cache_nice_tries",
4867		&sd->cache_nice_tries,
4868		sizeof(int), 0644, proc_dointvec_minmax, false);
4869	set_table_entry(&table[10], "flags", &sd->flags,
4870		sizeof(int), 0644, proc_dointvec_minmax, false);
4871	set_table_entry(&table[11], "name", sd->name,
4872		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4873	/* &table[12] is terminator */
4874
4875	return table;
4876}
4877
4878static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4879{
4880	struct ctl_table *entry, *table;
4881	struct sched_domain *sd;
4882	int domain_num = 0, i;
4883	char buf[32];
4884
4885	for_each_domain(cpu, sd)
4886		domain_num++;
4887	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4888	if (table == NULL)
4889		return NULL;
4890
4891	i = 0;
4892	for_each_domain(cpu, sd) {
4893		snprintf(buf, 32, "domain%d", i);
4894		entry->procname = kstrdup(buf, GFP_KERNEL);
4895		entry->mode = 0555;
4896		entry->child = sd_alloc_ctl_domain_table(sd);
4897		entry++;
4898		i++;
4899	}
4900	return table;
4901}
4902
4903static struct ctl_table_header *sd_sysctl_header;
4904static void register_sched_domain_sysctl(void)
4905{
4906	int i, cpu_num = num_possible_cpus();
4907	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4908	char buf[32];
4909
4910	WARN_ON(sd_ctl_dir[0].child);
4911	sd_ctl_dir[0].child = entry;
4912
4913	if (entry == NULL)
4914		return;
4915
4916	for_each_possible_cpu(i) {
4917		snprintf(buf, 32, "cpu%d", i);
4918		entry->procname = kstrdup(buf, GFP_KERNEL);
4919		entry->mode = 0555;
4920		entry->child = sd_alloc_ctl_cpu_table(i);
4921		entry++;
4922	}
4923
4924	WARN_ON(sd_sysctl_header);
4925	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4926}
4927
4928/* may be called multiple times per register */
4929static void unregister_sched_domain_sysctl(void)
4930{
4931	if (sd_sysctl_header)
4932		unregister_sysctl_table(sd_sysctl_header);
4933	sd_sysctl_header = NULL;
4934	if (sd_ctl_dir[0].child)
4935		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4936}
4937#else
4938static void register_sched_domain_sysctl(void)
4939{
4940}
4941static void unregister_sched_domain_sysctl(void)
4942{
4943}
4944#endif
4945
4946static void set_rq_online(struct rq *rq)
4947{
4948	if (!rq->online) {
4949		const struct sched_class *class;
4950
4951		cpumask_set_cpu(rq->cpu, rq->rd->online);
4952		rq->online = 1;
4953
4954		for_each_class(class) {
4955			if (class->rq_online)
4956				class->rq_online(rq);
4957		}
4958	}
4959}
4960
4961static void set_rq_offline(struct rq *rq)
4962{
4963	if (rq->online) {
4964		const struct sched_class *class;
4965
4966		for_each_class(class) {
4967			if (class->rq_offline)
4968				class->rq_offline(rq);
4969		}
4970
4971		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4972		rq->online = 0;
4973	}
4974}
4975
4976/*
4977 * migration_call - callback that gets triggered when a CPU is added.
4978 * Here we can start up the necessary migration thread for the new CPU.
4979 */
4980static int
4981migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4982{
4983	int cpu = (long)hcpu;
4984	unsigned long flags;
4985	struct rq *rq = cpu_rq(cpu);
4986
4987	switch (action & ~CPU_TASKS_FROZEN) {
4988
4989	case CPU_UP_PREPARE:
4990		rq->calc_load_update = calc_load_update;
4991		break;
4992
4993	case CPU_ONLINE:
4994		/* Update our root-domain */
4995		raw_spin_lock_irqsave(&rq->lock, flags);
4996		if (rq->rd) {
4997			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4998
4999			set_rq_online(rq);
5000		}
5001		raw_spin_unlock_irqrestore(&rq->lock, flags);
5002		break;
5003
5004#ifdef CONFIG_HOTPLUG_CPU
5005	case CPU_DYING:
5006		sched_ttwu_pending();
5007		/* Update our root-domain */
5008		raw_spin_lock_irqsave(&rq->lock, flags);
5009		if (rq->rd) {
5010			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5011			set_rq_offline(rq);
5012		}
5013		migrate_tasks(cpu);
5014		BUG_ON(rq->nr_running != 1); /* the migration thread */
5015		raw_spin_unlock_irqrestore(&rq->lock, flags);
5016		break;
5017
5018	case CPU_DEAD:
5019		calc_load_migrate(rq);
5020		break;
5021#endif
5022	}
5023
5024	update_max_interval();
5025
5026	return NOTIFY_OK;
5027}
5028
5029/*
5030 * Register at high priority so that task migration (migrate_all_tasks)
5031 * happens before everything else.  This has to be lower priority than
5032 * the notifier in the perf_event subsystem, though.
5033 */
5034static struct notifier_block migration_notifier = {
5035	.notifier_call = migration_call,
5036	.priority = CPU_PRI_MIGRATION,
5037};
5038
5039static int sched_cpu_active(struct notifier_block *nfb,
5040				      unsigned long action, void *hcpu)
5041{
5042	switch (action & ~CPU_TASKS_FROZEN) {
5043	case CPU_STARTING:
5044	case CPU_DOWN_FAILED:
5045		set_cpu_active((long)hcpu, true);
5046		return NOTIFY_OK;
5047	default:
5048		return NOTIFY_DONE;
5049	}
5050}
5051
5052static int sched_cpu_inactive(struct notifier_block *nfb,
5053					unsigned long action, void *hcpu)
5054{
5055	switch (action & ~CPU_TASKS_FROZEN) {
5056	case CPU_DOWN_PREPARE:
5057		set_cpu_active((long)hcpu, false);
5058		return NOTIFY_OK;
5059	default:
5060		return NOTIFY_DONE;
5061	}
5062}
5063
5064static int __init migration_init(void)
5065{
5066	void *cpu = (void *)(long)smp_processor_id();
5067	int err;
5068
5069	/* Initialize migration for the boot CPU */
5070	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5071	BUG_ON(err == NOTIFY_BAD);
5072	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5073	register_cpu_notifier(&migration_notifier);
5074
5075	/* Register cpu active notifiers */
5076	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5077	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5078
5079	return 0;
5080}
5081early_initcall(migration_init);
5082#endif
5083
5084#ifdef CONFIG_SMP
5085
5086static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5087
5088#ifdef CONFIG_SCHED_DEBUG
5089
5090static __read_mostly int sched_debug_enabled;
5091
5092static int __init sched_debug_setup(char *str)
5093{
5094	sched_debug_enabled = 1;
5095
5096	return 0;
5097}
5098early_param("sched_debug", sched_debug_setup);
5099
5100static inline bool sched_debug(void)
5101{
5102	return sched_debug_enabled;
5103}
5104
5105static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5106				  struct cpumask *groupmask)
5107{
5108	struct sched_group *group = sd->groups;
5109	char str[256];
5110
5111	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5112	cpumask_clear(groupmask);
5113
5114	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5115
5116	if (!(sd->flags & SD_LOAD_BALANCE)) {
5117		printk("does not load-balance\n");
5118		if (sd->parent)
5119			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5120					" has parent");
5121		return -1;
5122	}
5123
5124	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5125
5126	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5127		printk(KERN_ERR "ERROR: domain->span does not contain "
5128				"CPU%d\n", cpu);
5129	}
5130	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5131		printk(KERN_ERR "ERROR: domain->groups does not contain"
5132				" CPU%d\n", cpu);
5133	}
5134
5135	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5136	do {
5137		if (!group) {
5138			printk("\n");
5139			printk(KERN_ERR "ERROR: group is NULL\n");
5140			break;
5141		}
5142
5143		/*
5144		 * Even though we initialize ->power to something semi-sane,
5145		 * we leave power_orig unset. This allows us to detect if
5146		 * domain iteration is still funny without causing /0 traps.
5147		 */
5148		if (!group->sgp->power_orig) {
5149			printk(KERN_CONT "\n");
5150			printk(KERN_ERR "ERROR: domain->cpu_power not "
5151					"set\n");
5152			break;
5153		}
5154
5155		if (!cpumask_weight(sched_group_cpus(group))) {
5156			printk(KERN_CONT "\n");
5157			printk(KERN_ERR "ERROR: empty group\n");
5158			break;
5159		}
5160
5161		if (!(sd->flags & SD_OVERLAP) &&
5162		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5163			printk(KERN_CONT "\n");
5164			printk(KERN_ERR "ERROR: repeated CPUs\n");
5165			break;
5166		}
5167
5168		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5169
5170		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5171
5172		printk(KERN_CONT " %s", str);
5173		if (group->sgp->power != SCHED_POWER_SCALE) {
5174			printk(KERN_CONT " (cpu_power = %d)",
5175				group->sgp->power);
5176		}
5177
5178		group = group->next;
5179	} while (group != sd->groups);
5180	printk(KERN_CONT "\n");
5181
5182	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5183		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5184
5185	if (sd->parent &&
5186	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5187		printk(KERN_ERR "ERROR: parent span is not a superset "
5188			"of domain->span\n");
5189	return 0;
5190}
5191
5192static void sched_domain_debug(struct sched_domain *sd, int cpu)
5193{
5194	int level = 0;
5195
5196	if (!sched_debug_enabled)
5197		return;
5198
5199	if (!sd) {
5200		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5201		return;
5202	}
5203
5204	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5205
5206	for (;;) {
5207		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5208			break;
5209		level++;
5210		sd = sd->parent;
5211		if (!sd)
5212			break;
5213	}
5214}
5215#else /* !CONFIG_SCHED_DEBUG */
5216# define sched_domain_debug(sd, cpu) do { } while (0)
5217static inline bool sched_debug(void)
5218{
5219	return false;
5220}
5221#endif /* CONFIG_SCHED_DEBUG */
5222
5223static int sd_degenerate(struct sched_domain *sd)
5224{
5225	if (cpumask_weight(sched_domain_span(sd)) == 1)
5226		return 1;
5227
5228	/* Following flags need at least 2 groups */
5229	if (sd->flags & (SD_LOAD_BALANCE |
5230			 SD_BALANCE_NEWIDLE |
5231			 SD_BALANCE_FORK |
5232			 SD_BALANCE_EXEC |
5233			 SD_SHARE_CPUPOWER |
5234			 SD_SHARE_PKG_RESOURCES)) {
5235		if (sd->groups != sd->groups->next)
5236			return 0;
5237	}
5238
5239	/* Following flags don't use groups */
5240	if (sd->flags & (SD_WAKE_AFFINE))
5241		return 0;
5242
5243	return 1;
5244}
5245
5246static int
5247sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5248{
5249	unsigned long cflags = sd->flags, pflags = parent->flags;
5250
5251	if (sd_degenerate(parent))
5252		return 1;
5253
5254	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5255		return 0;
5256
5257	/* Flags needing groups don't count if only 1 group in parent */
5258	if (parent->groups == parent->groups->next) {
5259		pflags &= ~(SD_LOAD_BALANCE |
5260				SD_BALANCE_NEWIDLE |
5261				SD_BALANCE_FORK |
5262				SD_BALANCE_EXEC |
5263				SD_SHARE_CPUPOWER |
5264				SD_SHARE_PKG_RESOURCES |
5265				SD_PREFER_SIBLING);
5266		if (nr_node_ids == 1)
5267			pflags &= ~SD_SERIALIZE;
5268	}
5269	if (~cflags & pflags)
5270		return 0;
5271
5272	return 1;
5273}
5274
5275static void free_rootdomain(struct rcu_head *rcu)
5276{
5277	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5278
5279	cpupri_cleanup(&rd->cpupri);
5280	cpudl_cleanup(&rd->cpudl);
5281	free_cpumask_var(rd->dlo_mask);
5282	free_cpumask_var(rd->rto_mask);
5283	free_cpumask_var(rd->online);
5284	free_cpumask_var(rd->span);
5285	kfree(rd);
5286}
5287
5288static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5289{
5290	struct root_domain *old_rd = NULL;
5291	unsigned long flags;
5292
5293	raw_spin_lock_irqsave(&rq->lock, flags);
5294
5295	if (rq->rd) {
5296		old_rd = rq->rd;
5297
5298		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5299			set_rq_offline(rq);
5300
5301		cpumask_clear_cpu(rq->cpu, old_rd->span);
5302
5303		/*
5304		 * If we dont want to free the old_rd yet then
5305		 * set old_rd to NULL to skip the freeing later
5306		 * in this function:
5307		 */
5308		if (!atomic_dec_and_test(&old_rd->refcount))
5309			old_rd = NULL;
5310	}
5311
5312	atomic_inc(&rd->refcount);
5313	rq->rd = rd;
5314
5315	cpumask_set_cpu(rq->cpu, rd->span);
5316	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5317		set_rq_online(rq);
5318
5319	raw_spin_unlock_irqrestore(&rq->lock, flags);
5320
5321	if (old_rd)
5322		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5323}
5324
5325static int init_rootdomain(struct root_domain *rd)
5326{
5327	memset(rd, 0, sizeof(*rd));
5328
5329	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5330		goto out;
5331	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5332		goto free_span;
5333	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5334		goto free_online;
5335	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5336		goto free_dlo_mask;
5337
5338	init_dl_bw(&rd->dl_bw);
5339	if (cpudl_init(&rd->cpudl) != 0)
5340		goto free_dlo_mask;
5341
5342	if (cpupri_init(&rd->cpupri) != 0)
5343		goto free_rto_mask;
5344	return 0;
5345
5346free_rto_mask:
5347	free_cpumask_var(rd->rto_mask);
5348free_dlo_mask:
5349	free_cpumask_var(rd->dlo_mask);
5350free_online:
5351	free_cpumask_var(rd->online);
5352free_span:
5353	free_cpumask_var(rd->span);
5354out:
5355	return -ENOMEM;
5356}
5357
5358/*
5359 * By default the system creates a single root-domain with all cpus as
5360 * members (mimicking the global state we have today).
5361 */
5362struct root_domain def_root_domain;
5363
5364static void init_defrootdomain(void)
5365{
5366	init_rootdomain(&def_root_domain);
5367
5368	atomic_set(&def_root_domain.refcount, 1);
5369}
5370
5371static struct root_domain *alloc_rootdomain(void)
5372{
5373	struct root_domain *rd;
5374
5375	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5376	if (!rd)
5377		return NULL;
5378
5379	if (init_rootdomain(rd) != 0) {
5380		kfree(rd);
5381		return NULL;
5382	}
5383
5384	return rd;
5385}
5386
5387static void free_sched_groups(struct sched_group *sg, int free_sgp)
5388{
5389	struct sched_group *tmp, *first;
5390
5391	if (!sg)
5392		return;
5393
5394	first = sg;
5395	do {
5396		tmp = sg->next;
5397
5398		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5399			kfree(sg->sgp);
5400
5401		kfree(sg);
5402		sg = tmp;
5403	} while (sg != first);
5404}
5405
5406static void free_sched_domain(struct rcu_head *rcu)
5407{
5408	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5409
5410	/*
5411	 * If its an overlapping domain it has private groups, iterate and
5412	 * nuke them all.
5413	 */
5414	if (sd->flags & SD_OVERLAP) {
5415		free_sched_groups(sd->groups, 1);
5416	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5417		kfree(sd->groups->sgp);
5418		kfree(sd->groups);
5419	}
5420	kfree(sd);
5421}
5422
5423static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5424{
5425	call_rcu(&sd->rcu, free_sched_domain);
5426}
5427
5428static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5429{
5430	for (; sd; sd = sd->parent)
5431		destroy_sched_domain(sd, cpu);
5432}
5433
5434/*
5435 * Keep a special pointer to the highest sched_domain that has
5436 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5437 * allows us to avoid some pointer chasing select_idle_sibling().
5438 *
5439 * Also keep a unique ID per domain (we use the first cpu number in
5440 * the cpumask of the domain), this allows us to quickly tell if
5441 * two cpus are in the same cache domain, see cpus_share_cache().
5442 */
5443DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5444DEFINE_PER_CPU(int, sd_llc_size);
5445DEFINE_PER_CPU(int, sd_llc_id);
5446DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5447DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5448DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5449
5450static void update_top_cache_domain(int cpu)
5451{
5452	struct sched_domain *sd;
5453	struct sched_domain *busy_sd = NULL;
5454	int id = cpu;
5455	int size = 1;
5456
5457	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5458	if (sd) {
5459		id = cpumask_first(sched_domain_span(sd));
5460		size = cpumask_weight(sched_domain_span(sd));
5461		busy_sd = sd->parent; /* sd_busy */
5462	}
5463	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5464
5465	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5466	per_cpu(sd_llc_size, cpu) = size;
5467	per_cpu(sd_llc_id, cpu) = id;
5468
5469	sd = lowest_flag_domain(cpu, SD_NUMA);
5470	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5471
5472	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5473	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5474}
5475
5476/*
5477 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5478 * hold the hotplug lock.
5479 */
5480static void
5481cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5482{
5483	struct rq *rq = cpu_rq(cpu);
5484	struct sched_domain *tmp;
5485
5486	/* Remove the sched domains which do not contribute to scheduling. */
5487	for (tmp = sd; tmp; ) {
5488		struct sched_domain *parent = tmp->parent;
5489		if (!parent)
5490			break;
5491
5492		if (sd_parent_degenerate(tmp, parent)) {
5493			tmp->parent = parent->parent;
5494			if (parent->parent)
5495				parent->parent->child = tmp;
5496			/*
5497			 * Transfer SD_PREFER_SIBLING down in case of a
5498			 * degenerate parent; the spans match for this
5499			 * so the property transfers.
5500			 */
5501			if (parent->flags & SD_PREFER_SIBLING)
5502				tmp->flags |= SD_PREFER_SIBLING;
5503			destroy_sched_domain(parent, cpu);
5504		} else
5505			tmp = tmp->parent;
5506	}
5507
5508	if (sd && sd_degenerate(sd)) {
5509		tmp = sd;
5510		sd = sd->parent;
5511		destroy_sched_domain(tmp, cpu);
5512		if (sd)
5513			sd->child = NULL;
5514	}
5515
5516	sched_domain_debug(sd, cpu);
5517
5518	rq_attach_root(rq, rd);
5519	tmp = rq->sd;
5520	rcu_assign_pointer(rq->sd, sd);
5521	destroy_sched_domains(tmp, cpu);
5522
5523	update_top_cache_domain(cpu);
5524}
5525
5526/* cpus with isolated domains */
5527static cpumask_var_t cpu_isolated_map;
5528
5529/* Setup the mask of cpus configured for isolated domains */
5530static int __init isolated_cpu_setup(char *str)
5531{
5532	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5533	cpulist_parse(str, cpu_isolated_map);
5534	return 1;
5535}
5536
5537__setup("isolcpus=", isolated_cpu_setup);
5538
5539static const struct cpumask *cpu_cpu_mask(int cpu)
5540{
5541	return cpumask_of_node(cpu_to_node(cpu));
5542}
5543
5544struct sd_data {
5545	struct sched_domain **__percpu sd;
5546	struct sched_group **__percpu sg;
5547	struct sched_group_power **__percpu sgp;
5548};
5549
5550struct s_data {
5551	struct sched_domain ** __percpu sd;
5552	struct root_domain	*rd;
5553};
5554
5555enum s_alloc {
5556	sa_rootdomain,
5557	sa_sd,
5558	sa_sd_storage,
5559	sa_none,
5560};
5561
5562struct sched_domain_topology_level;
5563
5564typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5565typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5566
5567#define SDTL_OVERLAP	0x01
5568
5569struct sched_domain_topology_level {
5570	sched_domain_init_f init;
5571	sched_domain_mask_f mask;
5572	int		    flags;
5573	int		    numa_level;
5574	struct sd_data      data;
5575};
5576
5577/*
5578 * Build an iteration mask that can exclude certain CPUs from the upwards
5579 * domain traversal.
5580 *
5581 * Asymmetric node setups can result in situations where the domain tree is of
5582 * unequal depth, make sure to skip domains that already cover the entire
5583 * range.
5584 *
5585 * In that case build_sched_domains() will have terminated the iteration early
5586 * and our sibling sd spans will be empty. Domains should always include the
5587 * cpu they're built on, so check that.
5588 *
5589 */
5590static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5591{
5592	const struct cpumask *span = sched_domain_span(sd);
5593	struct sd_data *sdd = sd->private;
5594	struct sched_domain *sibling;
5595	int i;
5596
5597	for_each_cpu(i, span) {
5598		sibling = *per_cpu_ptr(sdd->sd, i);
5599		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5600			continue;
5601
5602		cpumask_set_cpu(i, sched_group_mask(sg));
5603	}
5604}
5605
5606/*
5607 * Return the canonical balance cpu for this group, this is the first cpu
5608 * of this group that's also in the iteration mask.
5609 */
5610int group_balance_cpu(struct sched_group *sg)
5611{
5612	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5613}
5614
5615static int
5616build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5617{
5618	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5619	const struct cpumask *span = sched_domain_span(sd);
5620	struct cpumask *covered = sched_domains_tmpmask;
5621	struct sd_data *sdd = sd->private;
5622	struct sched_domain *child;
5623	int i;
5624
5625	cpumask_clear(covered);
5626
5627	for_each_cpu(i, span) {
5628		struct cpumask *sg_span;
5629
5630		if (cpumask_test_cpu(i, covered))
5631			continue;
5632
5633		child = *per_cpu_ptr(sdd->sd, i);
5634
5635		/* See the comment near build_group_mask(). */
5636		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5637			continue;
5638
5639		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5640				GFP_KERNEL, cpu_to_node(cpu));
5641
5642		if (!sg)
5643			goto fail;
5644
5645		sg_span = sched_group_cpus(sg);
5646		if (child->child) {
5647			child = child->child;
5648			cpumask_copy(sg_span, sched_domain_span(child));
5649		} else
5650			cpumask_set_cpu(i, sg_span);
5651
5652		cpumask_or(covered, covered, sg_span);
5653
5654		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5655		if (atomic_inc_return(&sg->sgp->ref) == 1)
5656			build_group_mask(sd, sg);
5657
5658		/*
5659		 * Initialize sgp->power such that even if we mess up the
5660		 * domains and no possible iteration will get us here, we won't
5661		 * die on a /0 trap.
5662		 */
5663		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5664		sg->sgp->power_orig = sg->sgp->power;
5665
5666		/*
5667		 * Make sure the first group of this domain contains the
5668		 * canonical balance cpu. Otherwise the sched_domain iteration
5669		 * breaks. See update_sg_lb_stats().
5670		 */
5671		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5672		    group_balance_cpu(sg) == cpu)
5673			groups = sg;
5674
5675		if (!first)
5676			first = sg;
5677		if (last)
5678			last->next = sg;
5679		last = sg;
5680		last->next = first;
5681	}
5682	sd->groups = groups;
5683
5684	return 0;
5685
5686fail:
5687	free_sched_groups(first, 0);
5688
5689	return -ENOMEM;
5690}
5691
5692static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5693{
5694	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5695	struct sched_domain *child = sd->child;
5696
5697	if (child)
5698		cpu = cpumask_first(sched_domain_span(child));
5699
5700	if (sg) {
5701		*sg = *per_cpu_ptr(sdd->sg, cpu);
5702		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5703		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5704	}
5705
5706	return cpu;
5707}
5708
5709/*
5710 * build_sched_groups will build a circular linked list of the groups
5711 * covered by the given span, and will set each group's ->cpumask correctly,
5712 * and ->cpu_power to 0.
5713 *
5714 * Assumes the sched_domain tree is fully constructed
5715 */
5716static int
5717build_sched_groups(struct sched_domain *sd, int cpu)
5718{
5719	struct sched_group *first = NULL, *last = NULL;
5720	struct sd_data *sdd = sd->private;
5721	const struct cpumask *span = sched_domain_span(sd);
5722	struct cpumask *covered;
5723	int i;
5724
5725	get_group(cpu, sdd, &sd->groups);
5726	atomic_inc(&sd->groups->ref);
5727
5728	if (cpu != cpumask_first(span))
5729		return 0;
5730
5731	lockdep_assert_held(&sched_domains_mutex);
5732	covered = sched_domains_tmpmask;
5733
5734	cpumask_clear(covered);
5735
5736	for_each_cpu(i, span) {
5737		struct sched_group *sg;
5738		int group, j;
5739
5740		if (cpumask_test_cpu(i, covered))
5741			continue;
5742
5743		group = get_group(i, sdd, &sg);
5744		cpumask_clear(sched_group_cpus(sg));
5745		sg->sgp->power = 0;
5746		cpumask_setall(sched_group_mask(sg));
5747
5748		for_each_cpu(j, span) {
5749			if (get_group(j, sdd, NULL) != group)
5750				continue;
5751
5752			cpumask_set_cpu(j, covered);
5753			cpumask_set_cpu(j, sched_group_cpus(sg));
5754		}
5755
5756		if (!first)
5757			first = sg;
5758		if (last)
5759			last->next = sg;
5760		last = sg;
5761	}
5762	last->next = first;
5763
5764	return 0;
5765}
5766
5767/*
5768 * Initialize sched groups cpu_power.
5769 *
5770 * cpu_power indicates the capacity of sched group, which is used while
5771 * distributing the load between different sched groups in a sched domain.
5772 * Typically cpu_power for all the groups in a sched domain will be same unless
5773 * there are asymmetries in the topology. If there are asymmetries, group
5774 * having more cpu_power will pickup more load compared to the group having
5775 * less cpu_power.
5776 */
5777static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5778{
5779	struct sched_group *sg = sd->groups;
5780
5781	WARN_ON(!sg);
5782
5783	do {
5784		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5785		sg = sg->next;
5786	} while (sg != sd->groups);
5787
5788	if (cpu != group_balance_cpu(sg))
5789		return;
5790
5791	update_group_power(sd, cpu);
5792	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5793}
5794
5795int __weak arch_sd_sibling_asym_packing(void)
5796{
5797       return 0*SD_ASYM_PACKING;
5798}
5799
5800/*
5801 * Initializers for schedule domains
5802 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5803 */
5804
5805#ifdef CONFIG_SCHED_DEBUG
5806# define SD_INIT_NAME(sd, type)		sd->name = #type
5807#else
5808# define SD_INIT_NAME(sd, type)		do { } while (0)
5809#endif
5810
5811#define SD_INIT_FUNC(type)						\
5812static noinline struct sched_domain *					\
5813sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5814{									\
5815	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5816	*sd = SD_##type##_INIT;						\
5817	SD_INIT_NAME(sd, type);						\
5818	sd->private = &tl->data;					\
5819	return sd;							\
5820}
5821
5822SD_INIT_FUNC(CPU)
5823#ifdef CONFIG_SCHED_SMT
5824 SD_INIT_FUNC(SIBLING)
5825#endif
5826#ifdef CONFIG_SCHED_MC
5827 SD_INIT_FUNC(MC)
5828#endif
5829#ifdef CONFIG_SCHED_BOOK
5830 SD_INIT_FUNC(BOOK)
5831#endif
5832
5833static int default_relax_domain_level = -1;
5834int sched_domain_level_max;
5835
5836static int __init setup_relax_domain_level(char *str)
5837{
5838	if (kstrtoint(str, 0, &default_relax_domain_level))
5839		pr_warn("Unable to set relax_domain_level\n");
5840
5841	return 1;
5842}
5843__setup("relax_domain_level=", setup_relax_domain_level);
5844
5845static void set_domain_attribute(struct sched_domain *sd,
5846				 struct sched_domain_attr *attr)
5847{
5848	int request;
5849
5850	if (!attr || attr->relax_domain_level < 0) {
5851		if (default_relax_domain_level < 0)
5852			return;
5853		else
5854			request = default_relax_domain_level;
5855	} else
5856		request = attr->relax_domain_level;
5857	if (request < sd->level) {
5858		/* turn off idle balance on this domain */
5859		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5860	} else {
5861		/* turn on idle balance on this domain */
5862		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5863	}
5864}
5865
5866static void __sdt_free(const struct cpumask *cpu_map);
5867static int __sdt_alloc(const struct cpumask *cpu_map);
5868
5869static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5870				 const struct cpumask *cpu_map)
5871{
5872	switch (what) {
5873	case sa_rootdomain:
5874		if (!atomic_read(&d->rd->refcount))
5875			free_rootdomain(&d->rd->rcu); /* fall through */
5876	case sa_sd:
5877		free_percpu(d->sd); /* fall through */
5878	case sa_sd_storage:
5879		__sdt_free(cpu_map); /* fall through */
5880	case sa_none:
5881		break;
5882	}
5883}
5884
5885static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5886						   const struct cpumask *cpu_map)
5887{
5888	memset(d, 0, sizeof(*d));
5889
5890	if (__sdt_alloc(cpu_map))
5891		return sa_sd_storage;
5892	d->sd = alloc_percpu(struct sched_domain *);
5893	if (!d->sd)
5894		return sa_sd_storage;
5895	d->rd = alloc_rootdomain();
5896	if (!d->rd)
5897		return sa_sd;
5898	return sa_rootdomain;
5899}
5900
5901/*
5902 * NULL the sd_data elements we've used to build the sched_domain and
5903 * sched_group structure so that the subsequent __free_domain_allocs()
5904 * will not free the data we're using.
5905 */
5906static void claim_allocations(int cpu, struct sched_domain *sd)
5907{
5908	struct sd_data *sdd = sd->private;
5909
5910	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5911	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5912
5913	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5914		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5915
5916	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5917		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5918}
5919
5920#ifdef CONFIG_SCHED_SMT
5921static const struct cpumask *cpu_smt_mask(int cpu)
5922{
5923	return topology_thread_cpumask(cpu);
5924}
5925#endif
5926
5927/*
5928 * Topology list, bottom-up.
5929 */
5930static struct sched_domain_topology_level default_topology[] = {
5931#ifdef CONFIG_SCHED_SMT
5932	{ sd_init_SIBLING, cpu_smt_mask, },
5933#endif
5934#ifdef CONFIG_SCHED_MC
5935	{ sd_init_MC, cpu_coregroup_mask, },
5936#endif
5937#ifdef CONFIG_SCHED_BOOK
5938	{ sd_init_BOOK, cpu_book_mask, },
5939#endif
5940	{ sd_init_CPU, cpu_cpu_mask, },
5941	{ NULL, },
5942};
5943
5944static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5945
5946#define for_each_sd_topology(tl)			\
5947	for (tl = sched_domain_topology; tl->init; tl++)
5948
5949#ifdef CONFIG_NUMA
5950
5951static int sched_domains_numa_levels;
5952static int *sched_domains_numa_distance;
5953static struct cpumask ***sched_domains_numa_masks;
5954static int sched_domains_curr_level;
5955
5956static inline int sd_local_flags(int level)
5957{
5958	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5959		return 0;
5960
5961	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5962}
5963
5964static struct sched_domain *
5965sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5966{
5967	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5968	int level = tl->numa_level;
5969	int sd_weight = cpumask_weight(
5970			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5971
5972	*sd = (struct sched_domain){
5973		.min_interval		= sd_weight,
5974		.max_interval		= 2*sd_weight,
5975		.busy_factor		= 32,
5976		.imbalance_pct		= 125,
5977		.cache_nice_tries	= 2,
5978		.busy_idx		= 3,
5979		.idle_idx		= 2,
5980		.newidle_idx		= 0,
5981		.wake_idx		= 0,
5982		.forkexec_idx		= 0,
5983
5984		.flags			= 1*SD_LOAD_BALANCE
5985					| 1*SD_BALANCE_NEWIDLE
5986					| 0*SD_BALANCE_EXEC
5987					| 0*SD_BALANCE_FORK
5988					| 0*SD_BALANCE_WAKE
5989					| 0*SD_WAKE_AFFINE
5990					| 0*SD_SHARE_CPUPOWER
5991					| 0*SD_SHARE_PKG_RESOURCES
5992					| 1*SD_SERIALIZE
5993					| 0*SD_PREFER_SIBLING
5994					| 1*SD_NUMA
5995					| sd_local_flags(level)
5996					,
5997		.last_balance		= jiffies,
5998		.balance_interval	= sd_weight,
5999	};
6000	SD_INIT_NAME(sd, NUMA);
6001	sd->private = &tl->data;
6002
6003	/*
6004	 * Ugly hack to pass state to sd_numa_mask()...
6005	 */
6006	sched_domains_curr_level = tl->numa_level;
6007
6008	return sd;
6009}
6010
6011static const struct cpumask *sd_numa_mask(int cpu)
6012{
6013	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6014}
6015
6016static void sched_numa_warn(const char *str)
6017{
6018	static int done = false;
6019	int i,j;
6020
6021	if (done)
6022		return;
6023
6024	done = true;
6025
6026	printk(KERN_WARNING "ERROR: %s\n\n", str);
6027
6028	for (i = 0; i < nr_node_ids; i++) {
6029		printk(KERN_WARNING "  ");
6030		for (j = 0; j < nr_node_ids; j++)
6031			printk(KERN_CONT "%02d ", node_distance(i,j));
6032		printk(KERN_CONT "\n");
6033	}
6034	printk(KERN_WARNING "\n");
6035}
6036
6037static bool find_numa_distance(int distance)
6038{
6039	int i;
6040
6041	if (distance == node_distance(0, 0))
6042		return true;
6043
6044	for (i = 0; i < sched_domains_numa_levels; i++) {
6045		if (sched_domains_numa_distance[i] == distance)
6046			return true;
6047	}
6048
6049	return false;
6050}
6051
6052static void sched_init_numa(void)
6053{
6054	int next_distance, curr_distance = node_distance(0, 0);
6055	struct sched_domain_topology_level *tl;
6056	int level = 0;
6057	int i, j, k;
6058
6059	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6060	if (!sched_domains_numa_distance)
6061		return;
6062
6063	/*
6064	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6065	 * unique distances in the node_distance() table.
6066	 *
6067	 * Assumes node_distance(0,j) includes all distances in
6068	 * node_distance(i,j) in order to avoid cubic time.
6069	 */
6070	next_distance = curr_distance;
6071	for (i = 0; i < nr_node_ids; i++) {
6072		for (j = 0; j < nr_node_ids; j++) {
6073			for (k = 0; k < nr_node_ids; k++) {
6074				int distance = node_distance(i, k);
6075
6076				if (distance > curr_distance &&
6077				    (distance < next_distance ||
6078				     next_distance == curr_distance))
6079					next_distance = distance;
6080
6081				/*
6082				 * While not a strong assumption it would be nice to know
6083				 * about cases where if node A is connected to B, B is not
6084				 * equally connected to A.
6085				 */
6086				if (sched_debug() && node_distance(k, i) != distance)
6087					sched_numa_warn("Node-distance not symmetric");
6088
6089				if (sched_debug() && i && !find_numa_distance(distance))
6090					sched_numa_warn("Node-0 not representative");
6091			}
6092			if (next_distance != curr_distance) {
6093				sched_domains_numa_distance[level++] = next_distance;
6094				sched_domains_numa_levels = level;
6095				curr_distance = next_distance;
6096			} else break;
6097		}
6098
6099		/*
6100		 * In case of sched_debug() we verify the above assumption.
6101		 */
6102		if (!sched_debug())
6103			break;
6104	}
6105	/*
6106	 * 'level' contains the number of unique distances, excluding the
6107	 * identity distance node_distance(i,i).
6108	 *
6109	 * The sched_domains_numa_distance[] array includes the actual distance
6110	 * numbers.
6111	 */
6112
6113	/*
6114	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6115	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6116	 * the array will contain less then 'level' members. This could be
6117	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6118	 * in other functions.
6119	 *
6120	 * We reset it to 'level' at the end of this function.
6121	 */
6122	sched_domains_numa_levels = 0;
6123
6124	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6125	if (!sched_domains_numa_masks)
6126		return;
6127
6128	/*
6129	 * Now for each level, construct a mask per node which contains all
6130	 * cpus of nodes that are that many hops away from us.
6131	 */
6132	for (i = 0; i < level; i++) {
6133		sched_domains_numa_masks[i] =
6134			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6135		if (!sched_domains_numa_masks[i])
6136			return;
6137
6138		for (j = 0; j < nr_node_ids; j++) {
6139			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6140			if (!mask)
6141				return;
6142
6143			sched_domains_numa_masks[i][j] = mask;
6144
6145			for (k = 0; k < nr_node_ids; k++) {
6146				if (node_distance(j, k) > sched_domains_numa_distance[i])
6147					continue;
6148
6149				cpumask_or(mask, mask, cpumask_of_node(k));
6150			}
6151		}
6152	}
6153
6154	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6155			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6156	if (!tl)
6157		return;
6158
6159	/*
6160	 * Copy the default topology bits..
6161	 */
6162	for (i = 0; default_topology[i].init; i++)
6163		tl[i] = default_topology[i];
6164
6165	/*
6166	 * .. and append 'j' levels of NUMA goodness.
6167	 */
6168	for (j = 0; j < level; i++, j++) {
6169		tl[i] = (struct sched_domain_topology_level){
6170			.init = sd_numa_init,
6171			.mask = sd_numa_mask,
6172			.flags = SDTL_OVERLAP,
6173			.numa_level = j,
6174		};
6175	}
6176
6177	sched_domain_topology = tl;
6178
6179	sched_domains_numa_levels = level;
6180}
6181
6182static void sched_domains_numa_masks_set(int cpu)
6183{
6184	int i, j;
6185	int node = cpu_to_node(cpu);
6186
6187	for (i = 0; i < sched_domains_numa_levels; i++) {
6188		for (j = 0; j < nr_node_ids; j++) {
6189			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6190				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6191		}
6192	}
6193}
6194
6195static void sched_domains_numa_masks_clear(int cpu)
6196{
6197	int i, j;
6198	for (i = 0; i < sched_domains_numa_levels; i++) {
6199		for (j = 0; j < nr_node_ids; j++)
6200			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6201	}
6202}
6203
6204/*
6205 * Update sched_domains_numa_masks[level][node] array when new cpus
6206 * are onlined.
6207 */
6208static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6209					   unsigned long action,
6210					   void *hcpu)
6211{
6212	int cpu = (long)hcpu;
6213
6214	switch (action & ~CPU_TASKS_FROZEN) {
6215	case CPU_ONLINE:
6216		sched_domains_numa_masks_set(cpu);
6217		break;
6218
6219	case CPU_DEAD:
6220		sched_domains_numa_masks_clear(cpu);
6221		break;
6222
6223	default:
6224		return NOTIFY_DONE;
6225	}
6226
6227	return NOTIFY_OK;
6228}
6229#else
6230static inline void sched_init_numa(void)
6231{
6232}
6233
6234static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6235					   unsigned long action,
6236					   void *hcpu)
6237{
6238	return 0;
6239}
6240#endif /* CONFIG_NUMA */
6241
6242static int __sdt_alloc(const struct cpumask *cpu_map)
6243{
6244	struct sched_domain_topology_level *tl;
6245	int j;
6246
6247	for_each_sd_topology(tl) {
6248		struct sd_data *sdd = &tl->data;
6249
6250		sdd->sd = alloc_percpu(struct sched_domain *);
6251		if (!sdd->sd)
6252			return -ENOMEM;
6253
6254		sdd->sg = alloc_percpu(struct sched_group *);
6255		if (!sdd->sg)
6256			return -ENOMEM;
6257
6258		sdd->sgp = alloc_percpu(struct sched_group_power *);
6259		if (!sdd->sgp)
6260			return -ENOMEM;
6261
6262		for_each_cpu(j, cpu_map) {
6263			struct sched_domain *sd;
6264			struct sched_group *sg;
6265			struct sched_group_power *sgp;
6266
6267		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6268					GFP_KERNEL, cpu_to_node(j));
6269			if (!sd)
6270				return -ENOMEM;
6271
6272			*per_cpu_ptr(sdd->sd, j) = sd;
6273
6274			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6275					GFP_KERNEL, cpu_to_node(j));
6276			if (!sg)
6277				return -ENOMEM;
6278
6279			sg->next = sg;
6280
6281			*per_cpu_ptr(sdd->sg, j) = sg;
6282
6283			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6284					GFP_KERNEL, cpu_to_node(j));
6285			if (!sgp)
6286				return -ENOMEM;
6287
6288			*per_cpu_ptr(sdd->sgp, j) = sgp;
6289		}
6290	}
6291
6292	return 0;
6293}
6294
6295static void __sdt_free(const struct cpumask *cpu_map)
6296{
6297	struct sched_domain_topology_level *tl;
6298	int j;
6299
6300	for_each_sd_topology(tl) {
6301		struct sd_data *sdd = &tl->data;
6302
6303		for_each_cpu(j, cpu_map) {
6304			struct sched_domain *sd;
6305
6306			if (sdd->sd) {
6307				sd = *per_cpu_ptr(sdd->sd, j);
6308				if (sd && (sd->flags & SD_OVERLAP))
6309					free_sched_groups(sd->groups, 0);
6310				kfree(*per_cpu_ptr(sdd->sd, j));
6311			}
6312
6313			if (sdd->sg)
6314				kfree(*per_cpu_ptr(sdd->sg, j));
6315			if (sdd->sgp)
6316				kfree(*per_cpu_ptr(sdd->sgp, j));
6317		}
6318		free_percpu(sdd->sd);
6319		sdd->sd = NULL;
6320		free_percpu(sdd->sg);
6321		sdd->sg = NULL;
6322		free_percpu(sdd->sgp);
6323		sdd->sgp = NULL;
6324	}
6325}
6326
6327struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6328		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6329		struct sched_domain *child, int cpu)
6330{
6331	struct sched_domain *sd = tl->init(tl, cpu);
6332	if (!sd)
6333		return child;
6334
6335	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6336	if (child) {
6337		sd->level = child->level + 1;
6338		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6339		child->parent = sd;
6340		sd->child = child;
6341	}
6342	set_domain_attribute(sd, attr);
6343
6344	return sd;
6345}
6346
6347/*
6348 * Build sched domains for a given set of cpus and attach the sched domains
6349 * to the individual cpus
6350 */
6351static int build_sched_domains(const struct cpumask *cpu_map,
6352			       struct sched_domain_attr *attr)
6353{
6354	enum s_alloc alloc_state;
6355	struct sched_domain *sd;
6356	struct s_data d;
6357	int i, ret = -ENOMEM;
6358
6359	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6360	if (alloc_state != sa_rootdomain)
6361		goto error;
6362
6363	/* Set up domains for cpus specified by the cpu_map. */
6364	for_each_cpu(i, cpu_map) {
6365		struct sched_domain_topology_level *tl;
6366
6367		sd = NULL;
6368		for_each_sd_topology(tl) {
6369			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6370			if (tl == sched_domain_topology)
6371				*per_cpu_ptr(d.sd, i) = sd;
6372			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6373				sd->flags |= SD_OVERLAP;
6374			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6375				break;
6376		}
6377	}
6378
6379	/* Build the groups for the domains */
6380	for_each_cpu(i, cpu_map) {
6381		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6382			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6383			if (sd->flags & SD_OVERLAP) {
6384				if (build_overlap_sched_groups(sd, i))
6385					goto error;
6386			} else {
6387				if (build_sched_groups(sd, i))
6388					goto error;
6389			}
6390		}
6391	}
6392
6393	/* Calculate CPU power for physical packages and nodes */
6394	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6395		if (!cpumask_test_cpu(i, cpu_map))
6396			continue;
6397
6398		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6399			claim_allocations(i, sd);
6400			init_sched_groups_power(i, sd);
6401		}
6402	}
6403
6404	/* Attach the domains */
6405	rcu_read_lock();
6406	for_each_cpu(i, cpu_map) {
6407		sd = *per_cpu_ptr(d.sd, i);
6408		cpu_attach_domain(sd, d.rd, i);
6409	}
6410	rcu_read_unlock();
6411
6412	ret = 0;
6413error:
6414	__free_domain_allocs(&d, alloc_state, cpu_map);
6415	return ret;
6416}
6417
6418static cpumask_var_t *doms_cur;	/* current sched domains */
6419static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6420static struct sched_domain_attr *dattr_cur;
6421				/* attribues of custom domains in 'doms_cur' */
6422
6423/*
6424 * Special case: If a kmalloc of a doms_cur partition (array of
6425 * cpumask) fails, then fallback to a single sched domain,
6426 * as determined by the single cpumask fallback_doms.
6427 */
6428static cpumask_var_t fallback_doms;
6429
6430/*
6431 * arch_update_cpu_topology lets virtualized architectures update the
6432 * cpu core maps. It is supposed to return 1 if the topology changed
6433 * or 0 if it stayed the same.
6434 */
6435int __attribute__((weak)) arch_update_cpu_topology(void)
6436{
6437	return 0;
6438}
6439
6440cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6441{
6442	int i;
6443	cpumask_var_t *doms;
6444
6445	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6446	if (!doms)
6447		return NULL;
6448	for (i = 0; i < ndoms; i++) {
6449		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6450			free_sched_domains(doms, i);
6451			return NULL;
6452		}
6453	}
6454	return doms;
6455}
6456
6457void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6458{
6459	unsigned int i;
6460	for (i = 0; i < ndoms; i++)
6461		free_cpumask_var(doms[i]);
6462	kfree(doms);
6463}
6464
6465/*
6466 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6467 * For now this just excludes isolated cpus, but could be used to
6468 * exclude other special cases in the future.
6469 */
6470static int init_sched_domains(const struct cpumask *cpu_map)
6471{
6472	int err;
6473
6474	arch_update_cpu_topology();
6475	ndoms_cur = 1;
6476	doms_cur = alloc_sched_domains(ndoms_cur);
6477	if (!doms_cur)
6478		doms_cur = &fallback_doms;
6479	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6480	err = build_sched_domains(doms_cur[0], NULL);
6481	register_sched_domain_sysctl();
6482
6483	return err;
6484}
6485
6486/*
6487 * Detach sched domains from a group of cpus specified in cpu_map
6488 * These cpus will now be attached to the NULL domain
6489 */
6490static void detach_destroy_domains(const struct cpumask *cpu_map)
6491{
6492	int i;
6493
6494	rcu_read_lock();
6495	for_each_cpu(i, cpu_map)
6496		cpu_attach_domain(NULL, &def_root_domain, i);
6497	rcu_read_unlock();
6498}
6499
6500/* handle null as "default" */
6501static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6502			struct sched_domain_attr *new, int idx_new)
6503{
6504	struct sched_domain_attr tmp;
6505
6506	/* fast path */
6507	if (!new && !cur)
6508		return 1;
6509
6510	tmp = SD_ATTR_INIT;
6511	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6512			new ? (new + idx_new) : &tmp,
6513			sizeof(struct sched_domain_attr));
6514}
6515
6516/*
6517 * Partition sched domains as specified by the 'ndoms_new'
6518 * cpumasks in the array doms_new[] of cpumasks. This compares
6519 * doms_new[] to the current sched domain partitioning, doms_cur[].
6520 * It destroys each deleted domain and builds each new domain.
6521 *
6522 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6523 * The masks don't intersect (don't overlap.) We should setup one
6524 * sched domain for each mask. CPUs not in any of the cpumasks will
6525 * not be load balanced. If the same cpumask appears both in the
6526 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6527 * it as it is.
6528 *
6529 * The passed in 'doms_new' should be allocated using
6530 * alloc_sched_domains.  This routine takes ownership of it and will
6531 * free_sched_domains it when done with it. If the caller failed the
6532 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6533 * and partition_sched_domains() will fallback to the single partition
6534 * 'fallback_doms', it also forces the domains to be rebuilt.
6535 *
6536 * If doms_new == NULL it will be replaced with cpu_online_mask.
6537 * ndoms_new == 0 is a special case for destroying existing domains,
6538 * and it will not create the default domain.
6539 *
6540 * Call with hotplug lock held
6541 */
6542void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6543			     struct sched_domain_attr *dattr_new)
6544{
6545	int i, j, n;
6546	int new_topology;
6547
6548	mutex_lock(&sched_domains_mutex);
6549
6550	/* always unregister in case we don't destroy any domains */
6551	unregister_sched_domain_sysctl();
6552
6553	/* Let architecture update cpu core mappings. */
6554	new_topology = arch_update_cpu_topology();
6555
6556	n = doms_new ? ndoms_new : 0;
6557
6558	/* Destroy deleted domains */
6559	for (i = 0; i < ndoms_cur; i++) {
6560		for (j = 0; j < n && !new_topology; j++) {
6561			if (cpumask_equal(doms_cur[i], doms_new[j])
6562			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6563				goto match1;
6564		}
6565		/* no match - a current sched domain not in new doms_new[] */
6566		detach_destroy_domains(doms_cur[i]);
6567match1:
6568		;
6569	}
6570
6571	n = ndoms_cur;
6572	if (doms_new == NULL) {
6573		n = 0;
6574		doms_new = &fallback_doms;
6575		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6576		WARN_ON_ONCE(dattr_new);
6577	}
6578
6579	/* Build new domains */
6580	for (i = 0; i < ndoms_new; i++) {
6581		for (j = 0; j < n && !new_topology; j++) {
6582			if (cpumask_equal(doms_new[i], doms_cur[j])
6583			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6584				goto match2;
6585		}
6586		/* no match - add a new doms_new */
6587		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6588match2:
6589		;
6590	}
6591
6592	/* Remember the new sched domains */
6593	if (doms_cur != &fallback_doms)
6594		free_sched_domains(doms_cur, ndoms_cur);
6595	kfree(dattr_cur);	/* kfree(NULL) is safe */
6596	doms_cur = doms_new;
6597	dattr_cur = dattr_new;
6598	ndoms_cur = ndoms_new;
6599
6600	register_sched_domain_sysctl();
6601
6602	mutex_unlock(&sched_domains_mutex);
6603}
6604
6605static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6606
6607/*
6608 * Update cpusets according to cpu_active mask.  If cpusets are
6609 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6610 * around partition_sched_domains().
6611 *
6612 * If we come here as part of a suspend/resume, don't touch cpusets because we
6613 * want to restore it back to its original state upon resume anyway.
6614 */
6615static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6616			     void *hcpu)
6617{
6618	switch (action) {
6619	case CPU_ONLINE_FROZEN:
6620	case CPU_DOWN_FAILED_FROZEN:
6621
6622		/*
6623		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6624		 * resume sequence. As long as this is not the last online
6625		 * operation in the resume sequence, just build a single sched
6626		 * domain, ignoring cpusets.
6627		 */
6628		num_cpus_frozen--;
6629		if (likely(num_cpus_frozen)) {
6630			partition_sched_domains(1, NULL, NULL);
6631			break;
6632		}
6633
6634		/*
6635		 * This is the last CPU online operation. So fall through and
6636		 * restore the original sched domains by considering the
6637		 * cpuset configurations.
6638		 */
6639
6640	case CPU_ONLINE:
6641	case CPU_DOWN_FAILED:
6642		cpuset_update_active_cpus(true);
6643		break;
6644	default:
6645		return NOTIFY_DONE;
6646	}
6647	return NOTIFY_OK;
6648}
6649
6650static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6651			       void *hcpu)
6652{
6653	switch (action) {
6654	case CPU_DOWN_PREPARE:
6655		cpuset_update_active_cpus(false);
6656		break;
6657	case CPU_DOWN_PREPARE_FROZEN:
6658		num_cpus_frozen++;
6659		partition_sched_domains(1, NULL, NULL);
6660		break;
6661	default:
6662		return NOTIFY_DONE;
6663	}
6664	return NOTIFY_OK;
6665}
6666
6667void __init sched_init_smp(void)
6668{
6669	cpumask_var_t non_isolated_cpus;
6670
6671	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6672	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6673
6674	sched_init_numa();
6675
6676	/*
6677	 * There's no userspace yet to cause hotplug operations; hence all the
6678	 * cpu masks are stable and all blatant races in the below code cannot
6679	 * happen.
6680	 */
6681	mutex_lock(&sched_domains_mutex);
6682	init_sched_domains(cpu_active_mask);
6683	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6684	if (cpumask_empty(non_isolated_cpus))
6685		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6686	mutex_unlock(&sched_domains_mutex);
6687
6688	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6689	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6690	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6691
6692	init_hrtick();
6693
6694	/* Move init over to a non-isolated CPU */
6695	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6696		BUG();
6697	sched_init_granularity();
6698	free_cpumask_var(non_isolated_cpus);
6699
6700	init_sched_rt_class();
6701	init_sched_dl_class();
6702}
6703#else
6704void __init sched_init_smp(void)
6705{
6706	sched_init_granularity();
6707}
6708#endif /* CONFIG_SMP */
6709
6710const_debug unsigned int sysctl_timer_migration = 1;
6711
6712int in_sched_functions(unsigned long addr)
6713{
6714	return in_lock_functions(addr) ||
6715		(addr >= (unsigned long)__sched_text_start
6716		&& addr < (unsigned long)__sched_text_end);
6717}
6718
6719#ifdef CONFIG_CGROUP_SCHED
6720/*
6721 * Default task group.
6722 * Every task in system belongs to this group at bootup.
6723 */
6724struct task_group root_task_group;
6725LIST_HEAD(task_groups);
6726#endif
6727
6728DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6729
6730void __init sched_init(void)
6731{
6732	int i, j;
6733	unsigned long alloc_size = 0, ptr;
6734
6735#ifdef CONFIG_FAIR_GROUP_SCHED
6736	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6737#endif
6738#ifdef CONFIG_RT_GROUP_SCHED
6739	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6740#endif
6741#ifdef CONFIG_CPUMASK_OFFSTACK
6742	alloc_size += num_possible_cpus() * cpumask_size();
6743#endif
6744	if (alloc_size) {
6745		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6746
6747#ifdef CONFIG_FAIR_GROUP_SCHED
6748		root_task_group.se = (struct sched_entity **)ptr;
6749		ptr += nr_cpu_ids * sizeof(void **);
6750
6751		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6752		ptr += nr_cpu_ids * sizeof(void **);
6753
6754#endif /* CONFIG_FAIR_GROUP_SCHED */
6755#ifdef CONFIG_RT_GROUP_SCHED
6756		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6757		ptr += nr_cpu_ids * sizeof(void **);
6758
6759		root_task_group.rt_rq = (struct rt_rq **)ptr;
6760		ptr += nr_cpu_ids * sizeof(void **);
6761
6762#endif /* CONFIG_RT_GROUP_SCHED */
6763#ifdef CONFIG_CPUMASK_OFFSTACK
6764		for_each_possible_cpu(i) {
6765			per_cpu(load_balance_mask, i) = (void *)ptr;
6766			ptr += cpumask_size();
6767		}
6768#endif /* CONFIG_CPUMASK_OFFSTACK */
6769	}
6770
6771	init_rt_bandwidth(&def_rt_bandwidth,
6772			global_rt_period(), global_rt_runtime());
6773	init_dl_bandwidth(&def_dl_bandwidth,
6774			global_rt_period(), global_rt_runtime());
6775
6776#ifdef CONFIG_SMP
6777	init_defrootdomain();
6778#endif
6779
6780#ifdef CONFIG_RT_GROUP_SCHED
6781	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6782			global_rt_period(), global_rt_runtime());
6783#endif /* CONFIG_RT_GROUP_SCHED */
6784
6785#ifdef CONFIG_CGROUP_SCHED
6786	list_add(&root_task_group.list, &task_groups);
6787	INIT_LIST_HEAD(&root_task_group.children);
6788	INIT_LIST_HEAD(&root_task_group.siblings);
6789	autogroup_init(&init_task);
6790
6791#endif /* CONFIG_CGROUP_SCHED */
6792
6793	for_each_possible_cpu(i) {
6794		struct rq *rq;
6795
6796		rq = cpu_rq(i);
6797		raw_spin_lock_init(&rq->lock);
6798		rq->nr_running = 0;
6799		rq->calc_load_active = 0;
6800		rq->calc_load_update = jiffies + LOAD_FREQ;
6801		init_cfs_rq(&rq->cfs);
6802		init_rt_rq(&rq->rt, rq);
6803		init_dl_rq(&rq->dl, rq);
6804#ifdef CONFIG_FAIR_GROUP_SCHED
6805		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6806		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6807		/*
6808		 * How much cpu bandwidth does root_task_group get?
6809		 *
6810		 * In case of task-groups formed thr' the cgroup filesystem, it
6811		 * gets 100% of the cpu resources in the system. This overall
6812		 * system cpu resource is divided among the tasks of
6813		 * root_task_group and its child task-groups in a fair manner,
6814		 * based on each entity's (task or task-group's) weight
6815		 * (se->load.weight).
6816		 *
6817		 * In other words, if root_task_group has 10 tasks of weight
6818		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6819		 * then A0's share of the cpu resource is:
6820		 *
6821		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6822		 *
6823		 * We achieve this by letting root_task_group's tasks sit
6824		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6825		 */
6826		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6827		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6828#endif /* CONFIG_FAIR_GROUP_SCHED */
6829
6830		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6831#ifdef CONFIG_RT_GROUP_SCHED
6832		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6833		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6834#endif
6835
6836		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6837			rq->cpu_load[j] = 0;
6838
6839		rq->last_load_update_tick = jiffies;
6840
6841#ifdef CONFIG_SMP
6842		rq->sd = NULL;
6843		rq->rd = NULL;
6844		rq->cpu_power = SCHED_POWER_SCALE;
6845		rq->post_schedule = 0;
6846		rq->active_balance = 0;
6847		rq->next_balance = jiffies;
6848		rq->push_cpu = 0;
6849		rq->cpu = i;
6850		rq->online = 0;
6851		rq->idle_stamp = 0;
6852		rq->avg_idle = 2*sysctl_sched_migration_cost;
6853		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6854
6855		INIT_LIST_HEAD(&rq->cfs_tasks);
6856
6857		rq_attach_root(rq, &def_root_domain);
6858#ifdef CONFIG_NO_HZ_COMMON
6859		rq->nohz_flags = 0;
6860#endif
6861#ifdef CONFIG_NO_HZ_FULL
6862		rq->last_sched_tick = 0;
6863#endif
6864#endif
6865		init_rq_hrtick(rq);
6866		atomic_set(&rq->nr_iowait, 0);
6867	}
6868
6869	set_load_weight(&init_task);
6870
6871#ifdef CONFIG_PREEMPT_NOTIFIERS
6872	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6873#endif
6874
6875	/*
6876	 * The boot idle thread does lazy MMU switching as well:
6877	 */
6878	atomic_inc(&init_mm.mm_count);
6879	enter_lazy_tlb(&init_mm, current);
6880
6881	/*
6882	 * Make us the idle thread. Technically, schedule() should not be
6883	 * called from this thread, however somewhere below it might be,
6884	 * but because we are the idle thread, we just pick up running again
6885	 * when this runqueue becomes "idle".
6886	 */
6887	init_idle(current, smp_processor_id());
6888
6889	calc_load_update = jiffies + LOAD_FREQ;
6890
6891	/*
6892	 * During early bootup we pretend to be a normal task:
6893	 */
6894	current->sched_class = &fair_sched_class;
6895
6896#ifdef CONFIG_SMP
6897	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6898	/* May be allocated at isolcpus cmdline parse time */
6899	if (cpu_isolated_map == NULL)
6900		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6901	idle_thread_set_boot_cpu();
6902#endif
6903	init_sched_fair_class();
6904
6905	scheduler_running = 1;
6906}
6907
6908#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6909static inline int preempt_count_equals(int preempt_offset)
6910{
6911	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6912
6913	return (nested == preempt_offset);
6914}
6915
6916void __might_sleep(const char *file, int line, int preempt_offset)
6917{
6918	static unsigned long prev_jiffy;	/* ratelimiting */
6919
6920	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6921	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6922	    system_state != SYSTEM_RUNNING || oops_in_progress)
6923		return;
6924	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6925		return;
6926	prev_jiffy = jiffies;
6927
6928	printk(KERN_ERR
6929		"BUG: sleeping function called from invalid context at %s:%d\n",
6930			file, line);
6931	printk(KERN_ERR
6932		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6933			in_atomic(), irqs_disabled(),
6934			current->pid, current->comm);
6935
6936	debug_show_held_locks(current);
6937	if (irqs_disabled())
6938		print_irqtrace_events(current);
6939	dump_stack();
6940}
6941EXPORT_SYMBOL(__might_sleep);
6942#endif
6943
6944#ifdef CONFIG_MAGIC_SYSRQ
6945static void normalize_task(struct rq *rq, struct task_struct *p)
6946{
6947	const struct sched_class *prev_class = p->sched_class;
6948	struct sched_attr attr = {
6949		.sched_policy = SCHED_NORMAL,
6950	};
6951	int old_prio = p->prio;
6952	int on_rq;
6953
6954	on_rq = p->on_rq;
6955	if (on_rq)
6956		dequeue_task(rq, p, 0);
6957	__setscheduler(rq, p, &attr);
6958	if (on_rq) {
6959		enqueue_task(rq, p, 0);
6960		resched_task(rq->curr);
6961	}
6962
6963	check_class_changed(rq, p, prev_class, old_prio);
6964}
6965
6966void normalize_rt_tasks(void)
6967{
6968	struct task_struct *g, *p;
6969	unsigned long flags;
6970	struct rq *rq;
6971
6972	read_lock_irqsave(&tasklist_lock, flags);
6973	do_each_thread(g, p) {
6974		/*
6975		 * Only normalize user tasks:
6976		 */
6977		if (!p->mm)
6978			continue;
6979
6980		p->se.exec_start		= 0;
6981#ifdef CONFIG_SCHEDSTATS
6982		p->se.statistics.wait_start	= 0;
6983		p->se.statistics.sleep_start	= 0;
6984		p->se.statistics.block_start	= 0;
6985#endif
6986
6987		if (!dl_task(p) && !rt_task(p)) {
6988			/*
6989			 * Renice negative nice level userspace
6990			 * tasks back to 0:
6991			 */
6992			if (TASK_NICE(p) < 0 && p->mm)
6993				set_user_nice(p, 0);
6994			continue;
6995		}
6996
6997		raw_spin_lock(&p->pi_lock);
6998		rq = __task_rq_lock(p);
6999
7000		normalize_task(rq, p);
7001
7002		__task_rq_unlock(rq);
7003		raw_spin_unlock(&p->pi_lock);
7004	} while_each_thread(g, p);
7005
7006	read_unlock_irqrestore(&tasklist_lock, flags);
7007}
7008
7009#endif /* CONFIG_MAGIC_SYSRQ */
7010
7011#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7012/*
7013 * These functions are only useful for the IA64 MCA handling, or kdb.
7014 *
7015 * They can only be called when the whole system has been
7016 * stopped - every CPU needs to be quiescent, and no scheduling
7017 * activity can take place. Using them for anything else would
7018 * be a serious bug, and as a result, they aren't even visible
7019 * under any other configuration.
7020 */
7021
7022/**
7023 * curr_task - return the current task for a given cpu.
7024 * @cpu: the processor in question.
7025 *
7026 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7027 *
7028 * Return: The current task for @cpu.
7029 */
7030struct task_struct *curr_task(int cpu)
7031{
7032	return cpu_curr(cpu);
7033}
7034
7035#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7036
7037#ifdef CONFIG_IA64
7038/**
7039 * set_curr_task - set the current task for a given cpu.
7040 * @cpu: the processor in question.
7041 * @p: the task pointer to set.
7042 *
7043 * Description: This function must only be used when non-maskable interrupts
7044 * are serviced on a separate stack. It allows the architecture to switch the
7045 * notion of the current task on a cpu in a non-blocking manner. This function
7046 * must be called with all CPU's synchronized, and interrupts disabled, the
7047 * and caller must save the original value of the current task (see
7048 * curr_task() above) and restore that value before reenabling interrupts and
7049 * re-starting the system.
7050 *
7051 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7052 */
7053void set_curr_task(int cpu, struct task_struct *p)
7054{
7055	cpu_curr(cpu) = p;
7056}
7057
7058#endif
7059
7060#ifdef CONFIG_CGROUP_SCHED
7061/* task_group_lock serializes the addition/removal of task groups */
7062static DEFINE_SPINLOCK(task_group_lock);
7063
7064static void free_sched_group(struct task_group *tg)
7065{
7066	free_fair_sched_group(tg);
7067	free_rt_sched_group(tg);
7068	autogroup_free(tg);
7069	kfree(tg);
7070}
7071
7072/* allocate runqueue etc for a new task group */
7073struct task_group *sched_create_group(struct task_group *parent)
7074{
7075	struct task_group *tg;
7076
7077	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7078	if (!tg)
7079		return ERR_PTR(-ENOMEM);
7080
7081	if (!alloc_fair_sched_group(tg, parent))
7082		goto err;
7083
7084	if (!alloc_rt_sched_group(tg, parent))
7085		goto err;
7086
7087	return tg;
7088
7089err:
7090	free_sched_group(tg);
7091	return ERR_PTR(-ENOMEM);
7092}
7093
7094void sched_online_group(struct task_group *tg, struct task_group *parent)
7095{
7096	unsigned long flags;
7097
7098	spin_lock_irqsave(&task_group_lock, flags);
7099	list_add_rcu(&tg->list, &task_groups);
7100
7101	WARN_ON(!parent); /* root should already exist */
7102
7103	tg->parent = parent;
7104	INIT_LIST_HEAD(&tg->children);
7105	list_add_rcu(&tg->siblings, &parent->children);
7106	spin_unlock_irqrestore(&task_group_lock, flags);
7107}
7108
7109/* rcu callback to free various structures associated with a task group */
7110static void free_sched_group_rcu(struct rcu_head *rhp)
7111{
7112	/* now it should be safe to free those cfs_rqs */
7113	free_sched_group(container_of(rhp, struct task_group, rcu));
7114}
7115
7116/* Destroy runqueue etc associated with a task group */
7117void sched_destroy_group(struct task_group *tg)
7118{
7119	/* wait for possible concurrent references to cfs_rqs complete */
7120	call_rcu(&tg->rcu, free_sched_group_rcu);
7121}
7122
7123void sched_offline_group(struct task_group *tg)
7124{
7125	unsigned long flags;
7126	int i;
7127
7128	/* end participation in shares distribution */
7129	for_each_possible_cpu(i)
7130		unregister_fair_sched_group(tg, i);
7131
7132	spin_lock_irqsave(&task_group_lock, flags);
7133	list_del_rcu(&tg->list);
7134	list_del_rcu(&tg->siblings);
7135	spin_unlock_irqrestore(&task_group_lock, flags);
7136}
7137
7138/* change task's runqueue when it moves between groups.
7139 *	The caller of this function should have put the task in its new group
7140 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7141 *	reflect its new group.
7142 */
7143void sched_move_task(struct task_struct *tsk)
7144{
7145	struct task_group *tg;
7146	int on_rq, running;
7147	unsigned long flags;
7148	struct rq *rq;
7149
7150	rq = task_rq_lock(tsk, &flags);
7151
7152	running = task_current(rq, tsk);
7153	on_rq = tsk->on_rq;
7154
7155	if (on_rq)
7156		dequeue_task(rq, tsk, 0);
7157	if (unlikely(running))
7158		tsk->sched_class->put_prev_task(rq, tsk);
7159
7160	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7161				lockdep_is_held(&tsk->sighand->siglock)),
7162			  struct task_group, css);
7163	tg = autogroup_task_group(tsk, tg);
7164	tsk->sched_task_group = tg;
7165
7166#ifdef CONFIG_FAIR_GROUP_SCHED
7167	if (tsk->sched_class->task_move_group)
7168		tsk->sched_class->task_move_group(tsk, on_rq);
7169	else
7170#endif
7171		set_task_rq(tsk, task_cpu(tsk));
7172
7173	if (unlikely(running))
7174		tsk->sched_class->set_curr_task(rq);
7175	if (on_rq)
7176		enqueue_task(rq, tsk, 0);
7177
7178	task_rq_unlock(rq, tsk, &flags);
7179}
7180#endif /* CONFIG_CGROUP_SCHED */
7181
7182#ifdef CONFIG_RT_GROUP_SCHED
7183/*
7184 * Ensure that the real time constraints are schedulable.
7185 */
7186static DEFINE_MUTEX(rt_constraints_mutex);
7187
7188/* Must be called with tasklist_lock held */
7189static inline int tg_has_rt_tasks(struct task_group *tg)
7190{
7191	struct task_struct *g, *p;
7192
7193	do_each_thread(g, p) {
7194		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7195			return 1;
7196	} while_each_thread(g, p);
7197
7198	return 0;
7199}
7200
7201struct rt_schedulable_data {
7202	struct task_group *tg;
7203	u64 rt_period;
7204	u64 rt_runtime;
7205};
7206
7207static int tg_rt_schedulable(struct task_group *tg, void *data)
7208{
7209	struct rt_schedulable_data *d = data;
7210	struct task_group *child;
7211	unsigned long total, sum = 0;
7212	u64 period, runtime;
7213
7214	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7215	runtime = tg->rt_bandwidth.rt_runtime;
7216
7217	if (tg == d->tg) {
7218		period = d->rt_period;
7219		runtime = d->rt_runtime;
7220	}
7221
7222	/*
7223	 * Cannot have more runtime than the period.
7224	 */
7225	if (runtime > period && runtime != RUNTIME_INF)
7226		return -EINVAL;
7227
7228	/*
7229	 * Ensure we don't starve existing RT tasks.
7230	 */
7231	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7232		return -EBUSY;
7233
7234	total = to_ratio(period, runtime);
7235
7236	/*
7237	 * Nobody can have more than the global setting allows.
7238	 */
7239	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7240		return -EINVAL;
7241
7242	/*
7243	 * The sum of our children's runtime should not exceed our own.
7244	 */
7245	list_for_each_entry_rcu(child, &tg->children, siblings) {
7246		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7247		runtime = child->rt_bandwidth.rt_runtime;
7248
7249		if (child == d->tg) {
7250			period = d->rt_period;
7251			runtime = d->rt_runtime;
7252		}
7253
7254		sum += to_ratio(period, runtime);
7255	}
7256
7257	if (sum > total)
7258		return -EINVAL;
7259
7260	return 0;
7261}
7262
7263static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7264{
7265	int ret;
7266
7267	struct rt_schedulable_data data = {
7268		.tg = tg,
7269		.rt_period = period,
7270		.rt_runtime = runtime,
7271	};
7272
7273	rcu_read_lock();
7274	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7275	rcu_read_unlock();
7276
7277	return ret;
7278}
7279
7280static int tg_set_rt_bandwidth(struct task_group *tg,
7281		u64 rt_period, u64 rt_runtime)
7282{
7283	int i, err = 0;
7284
7285	mutex_lock(&rt_constraints_mutex);
7286	read_lock(&tasklist_lock);
7287	err = __rt_schedulable(tg, rt_period, rt_runtime);
7288	if (err)
7289		goto unlock;
7290
7291	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7292	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7293	tg->rt_bandwidth.rt_runtime = rt_runtime;
7294
7295	for_each_possible_cpu(i) {
7296		struct rt_rq *rt_rq = tg->rt_rq[i];
7297
7298		raw_spin_lock(&rt_rq->rt_runtime_lock);
7299		rt_rq->rt_runtime = rt_runtime;
7300		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7301	}
7302	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7303unlock:
7304	read_unlock(&tasklist_lock);
7305	mutex_unlock(&rt_constraints_mutex);
7306
7307	return err;
7308}
7309
7310static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7311{
7312	u64 rt_runtime, rt_period;
7313
7314	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7315	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7316	if (rt_runtime_us < 0)
7317		rt_runtime = RUNTIME_INF;
7318
7319	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7320}
7321
7322static long sched_group_rt_runtime(struct task_group *tg)
7323{
7324	u64 rt_runtime_us;
7325
7326	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7327		return -1;
7328
7329	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7330	do_div(rt_runtime_us, NSEC_PER_USEC);
7331	return rt_runtime_us;
7332}
7333
7334static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7335{
7336	u64 rt_runtime, rt_period;
7337
7338	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7339	rt_runtime = tg->rt_bandwidth.rt_runtime;
7340
7341	if (rt_period == 0)
7342		return -EINVAL;
7343
7344	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7345}
7346
7347static long sched_group_rt_period(struct task_group *tg)
7348{
7349	u64 rt_period_us;
7350
7351	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7352	do_div(rt_period_us, NSEC_PER_USEC);
7353	return rt_period_us;
7354}
7355#endif /* CONFIG_RT_GROUP_SCHED */
7356
7357#ifdef CONFIG_RT_GROUP_SCHED
7358static int sched_rt_global_constraints(void)
7359{
7360	int ret = 0;
7361
7362	mutex_lock(&rt_constraints_mutex);
7363	read_lock(&tasklist_lock);
7364	ret = __rt_schedulable(NULL, 0, 0);
7365	read_unlock(&tasklist_lock);
7366	mutex_unlock(&rt_constraints_mutex);
7367
7368	return ret;
7369}
7370
7371static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7372{
7373	/* Don't accept realtime tasks when there is no way for them to run */
7374	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7375		return 0;
7376
7377	return 1;
7378}
7379
7380#else /* !CONFIG_RT_GROUP_SCHED */
7381static int sched_rt_global_constraints(void)
7382{
7383	unsigned long flags;
7384	int i, ret = 0;
7385
7386	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7387	for_each_possible_cpu(i) {
7388		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7389
7390		raw_spin_lock(&rt_rq->rt_runtime_lock);
7391		rt_rq->rt_runtime = global_rt_runtime();
7392		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7393	}
7394	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7395
7396	return ret;
7397}
7398#endif /* CONFIG_RT_GROUP_SCHED */
7399
7400static int sched_dl_global_constraints(void)
7401{
7402	u64 runtime = global_rt_runtime();
7403	u64 period = global_rt_period();
7404	u64 new_bw = to_ratio(period, runtime);
7405	int cpu, ret = 0;
7406
7407	/*
7408	 * Here we want to check the bandwidth not being set to some
7409	 * value smaller than the currently allocated bandwidth in
7410	 * any of the root_domains.
7411	 *
7412	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7413	 * cycling on root_domains... Discussion on different/better
7414	 * solutions is welcome!
7415	 */
7416	for_each_possible_cpu(cpu) {
7417		struct dl_bw *dl_b = dl_bw_of(cpu);
7418
7419		raw_spin_lock(&dl_b->lock);
7420		if (new_bw < dl_b->total_bw)
7421			ret = -EBUSY;
7422		raw_spin_unlock(&dl_b->lock);
7423
7424		if (ret)
7425			break;
7426	}
7427
7428	return ret;
7429}
7430
7431static void sched_dl_do_global(void)
7432{
7433	u64 new_bw = -1;
7434	int cpu;
7435
7436	def_dl_bandwidth.dl_period = global_rt_period();
7437	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7438
7439	if (global_rt_runtime() != RUNTIME_INF)
7440		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7441
7442	/*
7443	 * FIXME: As above...
7444	 */
7445	for_each_possible_cpu(cpu) {
7446		struct dl_bw *dl_b = dl_bw_of(cpu);
7447
7448		raw_spin_lock(&dl_b->lock);
7449		dl_b->bw = new_bw;
7450		raw_spin_unlock(&dl_b->lock);
7451	}
7452}
7453
7454static int sched_rt_global_validate(void)
7455{
7456	if (sysctl_sched_rt_period <= 0)
7457		return -EINVAL;
7458
7459	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7460		return -EINVAL;
7461
7462	return 0;
7463}
7464
7465static void sched_rt_do_global(void)
7466{
7467	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7468	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7469}
7470
7471int sched_rt_handler(struct ctl_table *table, int write,
7472		void __user *buffer, size_t *lenp,
7473		loff_t *ppos)
7474{
7475	int old_period, old_runtime;
7476	static DEFINE_MUTEX(mutex);
7477	int ret;
7478
7479	mutex_lock(&mutex);
7480	old_period = sysctl_sched_rt_period;
7481	old_runtime = sysctl_sched_rt_runtime;
7482
7483	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7484
7485	if (!ret && write) {
7486		ret = sched_rt_global_validate();
7487		if (ret)
7488			goto undo;
7489
7490		ret = sched_rt_global_constraints();
7491		if (ret)
7492			goto undo;
7493
7494		ret = sched_dl_global_constraints();
7495		if (ret)
7496			goto undo;
7497
7498		sched_rt_do_global();
7499		sched_dl_do_global();
7500	}
7501	if (0) {
7502undo:
7503		sysctl_sched_rt_period = old_period;
7504		sysctl_sched_rt_runtime = old_runtime;
7505	}
7506	mutex_unlock(&mutex);
7507
7508	return ret;
7509}
7510
7511int sched_rr_handler(struct ctl_table *table, int write,
7512		void __user *buffer, size_t *lenp,
7513		loff_t *ppos)
7514{
7515	int ret;
7516	static DEFINE_MUTEX(mutex);
7517
7518	mutex_lock(&mutex);
7519	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7520	/* make sure that internally we keep jiffies */
7521	/* also, writing zero resets timeslice to default */
7522	if (!ret && write) {
7523		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7524			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7525	}
7526	mutex_unlock(&mutex);
7527	return ret;
7528}
7529
7530#ifdef CONFIG_CGROUP_SCHED
7531
7532static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7533{
7534	return css ? container_of(css, struct task_group, css) : NULL;
7535}
7536
7537static struct cgroup_subsys_state *
7538cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7539{
7540	struct task_group *parent = css_tg(parent_css);
7541	struct task_group *tg;
7542
7543	if (!parent) {
7544		/* This is early initialization for the top cgroup */
7545		return &root_task_group.css;
7546	}
7547
7548	tg = sched_create_group(parent);
7549	if (IS_ERR(tg))
7550		return ERR_PTR(-ENOMEM);
7551
7552	return &tg->css;
7553}
7554
7555static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7556{
7557	struct task_group *tg = css_tg(css);
7558	struct task_group *parent = css_tg(css_parent(css));
7559
7560	if (parent)
7561		sched_online_group(tg, parent);
7562	return 0;
7563}
7564
7565static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7566{
7567	struct task_group *tg = css_tg(css);
7568
7569	sched_destroy_group(tg);
7570}
7571
7572static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7573{
7574	struct task_group *tg = css_tg(css);
7575
7576	sched_offline_group(tg);
7577}
7578
7579static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7580				 struct cgroup_taskset *tset)
7581{
7582	struct task_struct *task;
7583
7584	cgroup_taskset_for_each(task, css, tset) {
7585#ifdef CONFIG_RT_GROUP_SCHED
7586		if (!sched_rt_can_attach(css_tg(css), task))
7587			return -EINVAL;
7588#else
7589		/* We don't support RT-tasks being in separate groups */
7590		if (task->sched_class != &fair_sched_class)
7591			return -EINVAL;
7592#endif
7593	}
7594	return 0;
7595}
7596
7597static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7598			      struct cgroup_taskset *tset)
7599{
7600	struct task_struct *task;
7601
7602	cgroup_taskset_for_each(task, css, tset)
7603		sched_move_task(task);
7604}
7605
7606static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7607			    struct cgroup_subsys_state *old_css,
7608			    struct task_struct *task)
7609{
7610	/*
7611	 * cgroup_exit() is called in the copy_process() failure path.
7612	 * Ignore this case since the task hasn't ran yet, this avoids
7613	 * trying to poke a half freed task state from generic code.
7614	 */
7615	if (!(task->flags & PF_EXITING))
7616		return;
7617
7618	sched_move_task(task);
7619}
7620
7621#ifdef CONFIG_FAIR_GROUP_SCHED
7622static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7623				struct cftype *cftype, u64 shareval)
7624{
7625	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7626}
7627
7628static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7629			       struct cftype *cft)
7630{
7631	struct task_group *tg = css_tg(css);
7632
7633	return (u64) scale_load_down(tg->shares);
7634}
7635
7636#ifdef CONFIG_CFS_BANDWIDTH
7637static DEFINE_MUTEX(cfs_constraints_mutex);
7638
7639const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7640const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7641
7642static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7643
7644static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7645{
7646	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7647	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7648
7649	if (tg == &root_task_group)
7650		return -EINVAL;
7651
7652	/*
7653	 * Ensure we have at some amount of bandwidth every period.  This is
7654	 * to prevent reaching a state of large arrears when throttled via
7655	 * entity_tick() resulting in prolonged exit starvation.
7656	 */
7657	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7658		return -EINVAL;
7659
7660	/*
7661	 * Likewise, bound things on the otherside by preventing insane quota
7662	 * periods.  This also allows us to normalize in computing quota
7663	 * feasibility.
7664	 */
7665	if (period > max_cfs_quota_period)
7666		return -EINVAL;
7667
7668	mutex_lock(&cfs_constraints_mutex);
7669	ret = __cfs_schedulable(tg, period, quota);
7670	if (ret)
7671		goto out_unlock;
7672
7673	runtime_enabled = quota != RUNTIME_INF;
7674	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7675	/*
7676	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7677	 * before making related changes, and on->off must occur afterwards
7678	 */
7679	if (runtime_enabled && !runtime_was_enabled)
7680		cfs_bandwidth_usage_inc();
7681	raw_spin_lock_irq(&cfs_b->lock);
7682	cfs_b->period = ns_to_ktime(period);
7683	cfs_b->quota = quota;
7684
7685	__refill_cfs_bandwidth_runtime(cfs_b);
7686	/* restart the period timer (if active) to handle new period expiry */
7687	if (runtime_enabled && cfs_b->timer_active) {
7688		/* force a reprogram */
7689		cfs_b->timer_active = 0;
7690		__start_cfs_bandwidth(cfs_b);
7691	}
7692	raw_spin_unlock_irq(&cfs_b->lock);
7693
7694	for_each_possible_cpu(i) {
7695		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7696		struct rq *rq = cfs_rq->rq;
7697
7698		raw_spin_lock_irq(&rq->lock);
7699		cfs_rq->runtime_enabled = runtime_enabled;
7700		cfs_rq->runtime_remaining = 0;
7701
7702		if (cfs_rq->throttled)
7703			unthrottle_cfs_rq(cfs_rq);
7704		raw_spin_unlock_irq(&rq->lock);
7705	}
7706	if (runtime_was_enabled && !runtime_enabled)
7707		cfs_bandwidth_usage_dec();
7708out_unlock:
7709	mutex_unlock(&cfs_constraints_mutex);
7710
7711	return ret;
7712}
7713
7714int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7715{
7716	u64 quota, period;
7717
7718	period = ktime_to_ns(tg->cfs_bandwidth.period);
7719	if (cfs_quota_us < 0)
7720		quota = RUNTIME_INF;
7721	else
7722		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7723
7724	return tg_set_cfs_bandwidth(tg, period, quota);
7725}
7726
7727long tg_get_cfs_quota(struct task_group *tg)
7728{
7729	u64 quota_us;
7730
7731	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7732		return -1;
7733
7734	quota_us = tg->cfs_bandwidth.quota;
7735	do_div(quota_us, NSEC_PER_USEC);
7736
7737	return quota_us;
7738}
7739
7740int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7741{
7742	u64 quota, period;
7743
7744	period = (u64)cfs_period_us * NSEC_PER_USEC;
7745	quota = tg->cfs_bandwidth.quota;
7746
7747	return tg_set_cfs_bandwidth(tg, period, quota);
7748}
7749
7750long tg_get_cfs_period(struct task_group *tg)
7751{
7752	u64 cfs_period_us;
7753
7754	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7755	do_div(cfs_period_us, NSEC_PER_USEC);
7756
7757	return cfs_period_us;
7758}
7759
7760static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7761				  struct cftype *cft)
7762{
7763	return tg_get_cfs_quota(css_tg(css));
7764}
7765
7766static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7767				   struct cftype *cftype, s64 cfs_quota_us)
7768{
7769	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7770}
7771
7772static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7773				   struct cftype *cft)
7774{
7775	return tg_get_cfs_period(css_tg(css));
7776}
7777
7778static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7779				    struct cftype *cftype, u64 cfs_period_us)
7780{
7781	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7782}
7783
7784struct cfs_schedulable_data {
7785	struct task_group *tg;
7786	u64 period, quota;
7787};
7788
7789/*
7790 * normalize group quota/period to be quota/max_period
7791 * note: units are usecs
7792 */
7793static u64 normalize_cfs_quota(struct task_group *tg,
7794			       struct cfs_schedulable_data *d)
7795{
7796	u64 quota, period;
7797
7798	if (tg == d->tg) {
7799		period = d->period;
7800		quota = d->quota;
7801	} else {
7802		period = tg_get_cfs_period(tg);
7803		quota = tg_get_cfs_quota(tg);
7804	}
7805
7806	/* note: these should typically be equivalent */
7807	if (quota == RUNTIME_INF || quota == -1)
7808		return RUNTIME_INF;
7809
7810	return to_ratio(period, quota);
7811}
7812
7813static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7814{
7815	struct cfs_schedulable_data *d = data;
7816	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7817	s64 quota = 0, parent_quota = -1;
7818
7819	if (!tg->parent) {
7820		quota = RUNTIME_INF;
7821	} else {
7822		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7823
7824		quota = normalize_cfs_quota(tg, d);
7825		parent_quota = parent_b->hierarchal_quota;
7826
7827		/*
7828		 * ensure max(child_quota) <= parent_quota, inherit when no
7829		 * limit is set
7830		 */
7831		if (quota == RUNTIME_INF)
7832			quota = parent_quota;
7833		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7834			return -EINVAL;
7835	}
7836	cfs_b->hierarchal_quota = quota;
7837
7838	return 0;
7839}
7840
7841static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7842{
7843	int ret;
7844	struct cfs_schedulable_data data = {
7845		.tg = tg,
7846		.period = period,
7847		.quota = quota,
7848	};
7849
7850	if (quota != RUNTIME_INF) {
7851		do_div(data.period, NSEC_PER_USEC);
7852		do_div(data.quota, NSEC_PER_USEC);
7853	}
7854
7855	rcu_read_lock();
7856	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7857	rcu_read_unlock();
7858
7859	return ret;
7860}
7861
7862static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7863		struct cgroup_map_cb *cb)
7864{
7865	struct task_group *tg = css_tg(css);
7866	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7867
7868	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7869	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7870	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7871
7872	return 0;
7873}
7874#endif /* CONFIG_CFS_BANDWIDTH */
7875#endif /* CONFIG_FAIR_GROUP_SCHED */
7876
7877#ifdef CONFIG_RT_GROUP_SCHED
7878static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7879				struct cftype *cft, s64 val)
7880{
7881	return sched_group_set_rt_runtime(css_tg(css), val);
7882}
7883
7884static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7885			       struct cftype *cft)
7886{
7887	return sched_group_rt_runtime(css_tg(css));
7888}
7889
7890static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7891				    struct cftype *cftype, u64 rt_period_us)
7892{
7893	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7894}
7895
7896static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7897				   struct cftype *cft)
7898{
7899	return sched_group_rt_period(css_tg(css));
7900}
7901#endif /* CONFIG_RT_GROUP_SCHED */
7902
7903static struct cftype cpu_files[] = {
7904#ifdef CONFIG_FAIR_GROUP_SCHED
7905	{
7906		.name = "shares",
7907		.read_u64 = cpu_shares_read_u64,
7908		.write_u64 = cpu_shares_write_u64,
7909	},
7910#endif
7911#ifdef CONFIG_CFS_BANDWIDTH
7912	{
7913		.name = "cfs_quota_us",
7914		.read_s64 = cpu_cfs_quota_read_s64,
7915		.write_s64 = cpu_cfs_quota_write_s64,
7916	},
7917	{
7918		.name = "cfs_period_us",
7919		.read_u64 = cpu_cfs_period_read_u64,
7920		.write_u64 = cpu_cfs_period_write_u64,
7921	},
7922	{
7923		.name = "stat",
7924		.read_map = cpu_stats_show,
7925	},
7926#endif
7927#ifdef CONFIG_RT_GROUP_SCHED
7928	{
7929		.name = "rt_runtime_us",
7930		.read_s64 = cpu_rt_runtime_read,
7931		.write_s64 = cpu_rt_runtime_write,
7932	},
7933	{
7934		.name = "rt_period_us",
7935		.read_u64 = cpu_rt_period_read_uint,
7936		.write_u64 = cpu_rt_period_write_uint,
7937	},
7938#endif
7939	{ }	/* terminate */
7940};
7941
7942struct cgroup_subsys cpu_cgroup_subsys = {
7943	.name		= "cpu",
7944	.css_alloc	= cpu_cgroup_css_alloc,
7945	.css_free	= cpu_cgroup_css_free,
7946	.css_online	= cpu_cgroup_css_online,
7947	.css_offline	= cpu_cgroup_css_offline,
7948	.can_attach	= cpu_cgroup_can_attach,
7949	.attach		= cpu_cgroup_attach,
7950	.exit		= cpu_cgroup_exit,
7951	.subsys_id	= cpu_cgroup_subsys_id,
7952	.base_cftypes	= cpu_files,
7953	.early_init	= 1,
7954};
7955
7956#endif	/* CONFIG_CGROUP_SCHED */
7957
7958void dump_cpu_task(int cpu)
7959{
7960	pr_info("Task dump for CPU %d:\n", cpu);
7961	sched_show_task(cpu_curr(cpu));
7962}
7963