core.c revision 1a687c2e9a99335c9e77392f050fe607fa18a652
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static int sched_feat_set(char *cmp)
196{
197	int i;
198	int neg = 0;
199
200	if (strncmp(cmp, "NO_", 3) == 0) {
201		neg = 1;
202		cmp += 3;
203	}
204
205	for (i = 0; i < __SCHED_FEAT_NR; i++) {
206		if (strcmp(cmp, sched_feat_names[i]) == 0) {
207			if (neg) {
208				sysctl_sched_features &= ~(1UL << i);
209				sched_feat_disable(i);
210			} else {
211				sysctl_sched_features |= (1UL << i);
212				sched_feat_enable(i);
213			}
214			break;
215		}
216	}
217
218	return i;
219}
220
221static ssize_t
222sched_feat_write(struct file *filp, const char __user *ubuf,
223		size_t cnt, loff_t *ppos)
224{
225	char buf[64];
226	char *cmp;
227	int i;
228
229	if (cnt > 63)
230		cnt = 63;
231
232	if (copy_from_user(&buf, ubuf, cnt))
233		return -EFAULT;
234
235	buf[cnt] = 0;
236	cmp = strstrip(buf);
237
238	i = sched_feat_set(cmp);
239	if (i == __SCHED_FEAT_NR)
240		return -EINVAL;
241
242	*ppos += cnt;
243
244	return cnt;
245}
246
247static int sched_feat_open(struct inode *inode, struct file *filp)
248{
249	return single_open(filp, sched_feat_show, NULL);
250}
251
252static const struct file_operations sched_feat_fops = {
253	.open		= sched_feat_open,
254	.write		= sched_feat_write,
255	.read		= seq_read,
256	.llseek		= seq_lseek,
257	.release	= single_release,
258};
259
260static __init int sched_init_debug(void)
261{
262	debugfs_create_file("sched_features", 0644, NULL, NULL,
263			&sched_feat_fops);
264
265	return 0;
266}
267late_initcall(sched_init_debug);
268#endif /* CONFIG_SCHED_DEBUG */
269
270/*
271 * Number of tasks to iterate in a single balance run.
272 * Limited because this is done with IRQs disabled.
273 */
274const_debug unsigned int sysctl_sched_nr_migrate = 32;
275
276/*
277 * period over which we average the RT time consumption, measured
278 * in ms.
279 *
280 * default: 1s
281 */
282const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
283
284/*
285 * period over which we measure -rt task cpu usage in us.
286 * default: 1s
287 */
288unsigned int sysctl_sched_rt_period = 1000000;
289
290__read_mostly int scheduler_running;
291
292/*
293 * part of the period that we allow rt tasks to run in us.
294 * default: 0.95s
295 */
296int sysctl_sched_rt_runtime = 950000;
297
298
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 *
373 * Its all a bit involved since we cannot program an hrt while holding the
374 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
375 * reschedule event.
376 *
377 * When we get rescheduled we reprogram the hrtick_timer outside of the
378 * rq->lock.
379 */
380
381static void hrtick_clear(struct rq *rq)
382{
383	if (hrtimer_active(&rq->hrtick_timer))
384		hrtimer_cancel(&rq->hrtick_timer);
385}
386
387/*
388 * High-resolution timer tick.
389 * Runs from hardirq context with interrupts disabled.
390 */
391static enum hrtimer_restart hrtick(struct hrtimer *timer)
392{
393	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
394
395	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396
397	raw_spin_lock(&rq->lock);
398	update_rq_clock(rq);
399	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
400	raw_spin_unlock(&rq->lock);
401
402	return HRTIMER_NORESTART;
403}
404
405#ifdef CONFIG_SMP
406/*
407 * called from hardirq (IPI) context
408 */
409static void __hrtick_start(void *arg)
410{
411	struct rq *rq = arg;
412
413	raw_spin_lock(&rq->lock);
414	hrtimer_restart(&rq->hrtick_timer);
415	rq->hrtick_csd_pending = 0;
416	raw_spin_unlock(&rq->lock);
417}
418
419/*
420 * Called to set the hrtick timer state.
421 *
422 * called with rq->lock held and irqs disabled
423 */
424void hrtick_start(struct rq *rq, u64 delay)
425{
426	struct hrtimer *timer = &rq->hrtick_timer;
427	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
428
429	hrtimer_set_expires(timer, time);
430
431	if (rq == this_rq()) {
432		hrtimer_restart(timer);
433	} else if (!rq->hrtick_csd_pending) {
434		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
435		rq->hrtick_csd_pending = 1;
436	}
437}
438
439static int
440hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
441{
442	int cpu = (int)(long)hcpu;
443
444	switch (action) {
445	case CPU_UP_CANCELED:
446	case CPU_UP_CANCELED_FROZEN:
447	case CPU_DOWN_PREPARE:
448	case CPU_DOWN_PREPARE_FROZEN:
449	case CPU_DEAD:
450	case CPU_DEAD_FROZEN:
451		hrtick_clear(cpu_rq(cpu));
452		return NOTIFY_OK;
453	}
454
455	return NOTIFY_DONE;
456}
457
458static __init void init_hrtick(void)
459{
460	hotcpu_notifier(hotplug_hrtick, 0);
461}
462#else
463/*
464 * Called to set the hrtick timer state.
465 *
466 * called with rq->lock held and irqs disabled
467 */
468void hrtick_start(struct rq *rq, u64 delay)
469{
470	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
471			HRTIMER_MODE_REL_PINNED, 0);
472}
473
474static inline void init_hrtick(void)
475{
476}
477#endif /* CONFIG_SMP */
478
479static void init_rq_hrtick(struct rq *rq)
480{
481#ifdef CONFIG_SMP
482	rq->hrtick_csd_pending = 0;
483
484	rq->hrtick_csd.flags = 0;
485	rq->hrtick_csd.func = __hrtick_start;
486	rq->hrtick_csd.info = rq;
487#endif
488
489	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
490	rq->hrtick_timer.function = hrtick;
491}
492#else	/* CONFIG_SCHED_HRTICK */
493static inline void hrtick_clear(struct rq *rq)
494{
495}
496
497static inline void init_rq_hrtick(struct rq *rq)
498{
499}
500
501static inline void init_hrtick(void)
502{
503}
504#endif	/* CONFIG_SCHED_HRTICK */
505
506/*
507 * resched_task - mark a task 'to be rescheduled now'.
508 *
509 * On UP this means the setting of the need_resched flag, on SMP it
510 * might also involve a cross-CPU call to trigger the scheduler on
511 * the target CPU.
512 */
513#ifdef CONFIG_SMP
514
515#ifndef tsk_is_polling
516#define tsk_is_polling(t) 0
517#endif
518
519void resched_task(struct task_struct *p)
520{
521	int cpu;
522
523	assert_raw_spin_locked(&task_rq(p)->lock);
524
525	if (test_tsk_need_resched(p))
526		return;
527
528	set_tsk_need_resched(p);
529
530	cpu = task_cpu(p);
531	if (cpu == smp_processor_id())
532		return;
533
534	/* NEED_RESCHED must be visible before we test polling */
535	smp_mb();
536	if (!tsk_is_polling(p))
537		smp_send_reschedule(cpu);
538}
539
540void resched_cpu(int cpu)
541{
542	struct rq *rq = cpu_rq(cpu);
543	unsigned long flags;
544
545	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
546		return;
547	resched_task(cpu_curr(cpu));
548	raw_spin_unlock_irqrestore(&rq->lock, flags);
549}
550
551#ifdef CONFIG_NO_HZ
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static inline bool got_nohz_idle_kick(void)
620{
621	int cpu = smp_processor_id();
622	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623}
624
625#else /* CONFIG_NO_HZ */
626
627static inline bool got_nohz_idle_kick(void)
628{
629	return false;
630}
631
632#endif /* CONFIG_NO_HZ */
633
634void sched_avg_update(struct rq *rq)
635{
636	s64 period = sched_avg_period();
637
638	while ((s64)(rq->clock - rq->age_stamp) > period) {
639		/*
640		 * Inline assembly required to prevent the compiler
641		 * optimising this loop into a divmod call.
642		 * See __iter_div_u64_rem() for another example of this.
643		 */
644		asm("" : "+rm" (rq->age_stamp));
645		rq->age_stamp += period;
646		rq->rt_avg /= 2;
647	}
648}
649
650#else /* !CONFIG_SMP */
651void resched_task(struct task_struct *p)
652{
653	assert_raw_spin_locked(&task_rq(p)->lock);
654	set_tsk_need_resched(p);
655}
656#endif /* CONFIG_SMP */
657
658#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
659			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
660/*
661 * Iterate task_group tree rooted at *from, calling @down when first entering a
662 * node and @up when leaving it for the final time.
663 *
664 * Caller must hold rcu_lock or sufficient equivalent.
665 */
666int walk_tg_tree_from(struct task_group *from,
667			     tg_visitor down, tg_visitor up, void *data)
668{
669	struct task_group *parent, *child;
670	int ret;
671
672	parent = from;
673
674down:
675	ret = (*down)(parent, data);
676	if (ret)
677		goto out;
678	list_for_each_entry_rcu(child, &parent->children, siblings) {
679		parent = child;
680		goto down;
681
682up:
683		continue;
684	}
685	ret = (*up)(parent, data);
686	if (ret || parent == from)
687		goto out;
688
689	child = parent;
690	parent = parent->parent;
691	if (parent)
692		goto up;
693out:
694	return ret;
695}
696
697int tg_nop(struct task_group *tg, void *data)
698{
699	return 0;
700}
701#endif
702
703static void set_load_weight(struct task_struct *p)
704{
705	int prio = p->static_prio - MAX_RT_PRIO;
706	struct load_weight *load = &p->se.load;
707
708	/*
709	 * SCHED_IDLE tasks get minimal weight:
710	 */
711	if (p->policy == SCHED_IDLE) {
712		load->weight = scale_load(WEIGHT_IDLEPRIO);
713		load->inv_weight = WMULT_IDLEPRIO;
714		return;
715	}
716
717	load->weight = scale_load(prio_to_weight[prio]);
718	load->inv_weight = prio_to_wmult[prio];
719}
720
721static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722{
723	update_rq_clock(rq);
724	sched_info_queued(p);
725	p->sched_class->enqueue_task(rq, p, flags);
726}
727
728static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
729{
730	update_rq_clock(rq);
731	sched_info_dequeued(p);
732	p->sched_class->dequeue_task(rq, p, flags);
733}
734
735void activate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible--;
739
740	enqueue_task(rq, p, flags);
741}
742
743void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
744{
745	if (task_contributes_to_load(p))
746		rq->nr_uninterruptible++;
747
748	dequeue_task(rq, p, flags);
749}
750
751static void update_rq_clock_task(struct rq *rq, s64 delta)
752{
753/*
754 * In theory, the compile should just see 0 here, and optimize out the call
755 * to sched_rt_avg_update. But I don't trust it...
756 */
757#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
758	s64 steal = 0, irq_delta = 0;
759#endif
760#ifdef CONFIG_IRQ_TIME_ACCOUNTING
761	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
762
763	/*
764	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
765	 * this case when a previous update_rq_clock() happened inside a
766	 * {soft,}irq region.
767	 *
768	 * When this happens, we stop ->clock_task and only update the
769	 * prev_irq_time stamp to account for the part that fit, so that a next
770	 * update will consume the rest. This ensures ->clock_task is
771	 * monotonic.
772	 *
773	 * It does however cause some slight miss-attribution of {soft,}irq
774	 * time, a more accurate solution would be to update the irq_time using
775	 * the current rq->clock timestamp, except that would require using
776	 * atomic ops.
777	 */
778	if (irq_delta > delta)
779		irq_delta = delta;
780
781	rq->prev_irq_time += irq_delta;
782	delta -= irq_delta;
783#endif
784#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
785	if (static_key_false((&paravirt_steal_rq_enabled))) {
786		u64 st;
787
788		steal = paravirt_steal_clock(cpu_of(rq));
789		steal -= rq->prev_steal_time_rq;
790
791		if (unlikely(steal > delta))
792			steal = delta;
793
794		st = steal_ticks(steal);
795		steal = st * TICK_NSEC;
796
797		rq->prev_steal_time_rq += steal;
798
799		delta -= steal;
800	}
801#endif
802
803	rq->clock_task += delta;
804
805#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
806	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
807		sched_rt_avg_update(rq, irq_delta + steal);
808#endif
809}
810
811void sched_set_stop_task(int cpu, struct task_struct *stop)
812{
813	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
814	struct task_struct *old_stop = cpu_rq(cpu)->stop;
815
816	if (stop) {
817		/*
818		 * Make it appear like a SCHED_FIFO task, its something
819		 * userspace knows about and won't get confused about.
820		 *
821		 * Also, it will make PI more or less work without too
822		 * much confusion -- but then, stop work should not
823		 * rely on PI working anyway.
824		 */
825		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
826
827		stop->sched_class = &stop_sched_class;
828	}
829
830	cpu_rq(cpu)->stop = stop;
831
832	if (old_stop) {
833		/*
834		 * Reset it back to a normal scheduling class so that
835		 * it can die in pieces.
836		 */
837		old_stop->sched_class = &rt_sched_class;
838	}
839}
840
841/*
842 * __normal_prio - return the priority that is based on the static prio
843 */
844static inline int __normal_prio(struct task_struct *p)
845{
846	return p->static_prio;
847}
848
849/*
850 * Calculate the expected normal priority: i.e. priority
851 * without taking RT-inheritance into account. Might be
852 * boosted by interactivity modifiers. Changes upon fork,
853 * setprio syscalls, and whenever the interactivity
854 * estimator recalculates.
855 */
856static inline int normal_prio(struct task_struct *p)
857{
858	int prio;
859
860	if (task_has_rt_policy(p))
861		prio = MAX_RT_PRIO-1 - p->rt_priority;
862	else
863		prio = __normal_prio(p);
864	return prio;
865}
866
867/*
868 * Calculate the current priority, i.e. the priority
869 * taken into account by the scheduler. This value might
870 * be boosted by RT tasks, or might be boosted by
871 * interactivity modifiers. Will be RT if the task got
872 * RT-boosted. If not then it returns p->normal_prio.
873 */
874static int effective_prio(struct task_struct *p)
875{
876	p->normal_prio = normal_prio(p);
877	/*
878	 * If we are RT tasks or we were boosted to RT priority,
879	 * keep the priority unchanged. Otherwise, update priority
880	 * to the normal priority:
881	 */
882	if (!rt_prio(p->prio))
883		return p->normal_prio;
884	return p->prio;
885}
886
887/**
888 * task_curr - is this task currently executing on a CPU?
889 * @p: the task in question.
890 */
891inline int task_curr(const struct task_struct *p)
892{
893	return cpu_curr(task_cpu(p)) == p;
894}
895
896static inline void check_class_changed(struct rq *rq, struct task_struct *p,
897				       const struct sched_class *prev_class,
898				       int oldprio)
899{
900	if (prev_class != p->sched_class) {
901		if (prev_class->switched_from)
902			prev_class->switched_from(rq, p);
903		p->sched_class->switched_to(rq, p);
904	} else if (oldprio != p->prio)
905		p->sched_class->prio_changed(rq, p, oldprio);
906}
907
908void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
909{
910	const struct sched_class *class;
911
912	if (p->sched_class == rq->curr->sched_class) {
913		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
914	} else {
915		for_each_class(class) {
916			if (class == rq->curr->sched_class)
917				break;
918			if (class == p->sched_class) {
919				resched_task(rq->curr);
920				break;
921			}
922		}
923	}
924
925	/*
926	 * A queue event has occurred, and we're going to schedule.  In
927	 * this case, we can save a useless back to back clock update.
928	 */
929	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
930		rq->skip_clock_update = 1;
931}
932
933#ifdef CONFIG_SMP
934void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
935{
936#ifdef CONFIG_SCHED_DEBUG
937	/*
938	 * We should never call set_task_cpu() on a blocked task,
939	 * ttwu() will sort out the placement.
940	 */
941	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
942			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
943
944#ifdef CONFIG_LOCKDEP
945	/*
946	 * The caller should hold either p->pi_lock or rq->lock, when changing
947	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
948	 *
949	 * sched_move_task() holds both and thus holding either pins the cgroup,
950	 * see task_group().
951	 *
952	 * Furthermore, all task_rq users should acquire both locks, see
953	 * task_rq_lock().
954	 */
955	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
956				      lockdep_is_held(&task_rq(p)->lock)));
957#endif
958#endif
959
960	trace_sched_migrate_task(p, new_cpu);
961
962	if (task_cpu(p) != new_cpu) {
963		p->se.nr_migrations++;
964		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
965	}
966
967	__set_task_cpu(p, new_cpu);
968}
969
970struct migration_arg {
971	struct task_struct *task;
972	int dest_cpu;
973};
974
975static int migration_cpu_stop(void *data);
976
977/*
978 * wait_task_inactive - wait for a thread to unschedule.
979 *
980 * If @match_state is nonzero, it's the @p->state value just checked and
981 * not expected to change.  If it changes, i.e. @p might have woken up,
982 * then return zero.  When we succeed in waiting for @p to be off its CPU,
983 * we return a positive number (its total switch count).  If a second call
984 * a short while later returns the same number, the caller can be sure that
985 * @p has remained unscheduled the whole time.
986 *
987 * The caller must ensure that the task *will* unschedule sometime soon,
988 * else this function might spin for a *long* time. This function can't
989 * be called with interrupts off, or it may introduce deadlock with
990 * smp_call_function() if an IPI is sent by the same process we are
991 * waiting to become inactive.
992 */
993unsigned long wait_task_inactive(struct task_struct *p, long match_state)
994{
995	unsigned long flags;
996	int running, on_rq;
997	unsigned long ncsw;
998	struct rq *rq;
999
1000	for (;;) {
1001		/*
1002		 * We do the initial early heuristics without holding
1003		 * any task-queue locks at all. We'll only try to get
1004		 * the runqueue lock when things look like they will
1005		 * work out!
1006		 */
1007		rq = task_rq(p);
1008
1009		/*
1010		 * If the task is actively running on another CPU
1011		 * still, just relax and busy-wait without holding
1012		 * any locks.
1013		 *
1014		 * NOTE! Since we don't hold any locks, it's not
1015		 * even sure that "rq" stays as the right runqueue!
1016		 * But we don't care, since "task_running()" will
1017		 * return false if the runqueue has changed and p
1018		 * is actually now running somewhere else!
1019		 */
1020		while (task_running(rq, p)) {
1021			if (match_state && unlikely(p->state != match_state))
1022				return 0;
1023			cpu_relax();
1024		}
1025
1026		/*
1027		 * Ok, time to look more closely! We need the rq
1028		 * lock now, to be *sure*. If we're wrong, we'll
1029		 * just go back and repeat.
1030		 */
1031		rq = task_rq_lock(p, &flags);
1032		trace_sched_wait_task(p);
1033		running = task_running(rq, p);
1034		on_rq = p->on_rq;
1035		ncsw = 0;
1036		if (!match_state || p->state == match_state)
1037			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1038		task_rq_unlock(rq, p, &flags);
1039
1040		/*
1041		 * If it changed from the expected state, bail out now.
1042		 */
1043		if (unlikely(!ncsw))
1044			break;
1045
1046		/*
1047		 * Was it really running after all now that we
1048		 * checked with the proper locks actually held?
1049		 *
1050		 * Oops. Go back and try again..
1051		 */
1052		if (unlikely(running)) {
1053			cpu_relax();
1054			continue;
1055		}
1056
1057		/*
1058		 * It's not enough that it's not actively running,
1059		 * it must be off the runqueue _entirely_, and not
1060		 * preempted!
1061		 *
1062		 * So if it was still runnable (but just not actively
1063		 * running right now), it's preempted, and we should
1064		 * yield - it could be a while.
1065		 */
1066		if (unlikely(on_rq)) {
1067			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1068
1069			set_current_state(TASK_UNINTERRUPTIBLE);
1070			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1071			continue;
1072		}
1073
1074		/*
1075		 * Ahh, all good. It wasn't running, and it wasn't
1076		 * runnable, which means that it will never become
1077		 * running in the future either. We're all done!
1078		 */
1079		break;
1080	}
1081
1082	return ncsw;
1083}
1084
1085/***
1086 * kick_process - kick a running thread to enter/exit the kernel
1087 * @p: the to-be-kicked thread
1088 *
1089 * Cause a process which is running on another CPU to enter
1090 * kernel-mode, without any delay. (to get signals handled.)
1091 *
1092 * NOTE: this function doesn't have to take the runqueue lock,
1093 * because all it wants to ensure is that the remote task enters
1094 * the kernel. If the IPI races and the task has been migrated
1095 * to another CPU then no harm is done and the purpose has been
1096 * achieved as well.
1097 */
1098void kick_process(struct task_struct *p)
1099{
1100	int cpu;
1101
1102	preempt_disable();
1103	cpu = task_cpu(p);
1104	if ((cpu != smp_processor_id()) && task_curr(p))
1105		smp_send_reschedule(cpu);
1106	preempt_enable();
1107}
1108EXPORT_SYMBOL_GPL(kick_process);
1109#endif /* CONFIG_SMP */
1110
1111#ifdef CONFIG_SMP
1112/*
1113 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1114 */
1115static int select_fallback_rq(int cpu, struct task_struct *p)
1116{
1117	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1118	enum { cpuset, possible, fail } state = cpuset;
1119	int dest_cpu;
1120
1121	/* Look for allowed, online CPU in same node. */
1122	for_each_cpu(dest_cpu, nodemask) {
1123		if (!cpu_online(dest_cpu))
1124			continue;
1125		if (!cpu_active(dest_cpu))
1126			continue;
1127		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1128			return dest_cpu;
1129	}
1130
1131	for (;;) {
1132		/* Any allowed, online CPU? */
1133		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1134			if (!cpu_online(dest_cpu))
1135				continue;
1136			if (!cpu_active(dest_cpu))
1137				continue;
1138			goto out;
1139		}
1140
1141		switch (state) {
1142		case cpuset:
1143			/* No more Mr. Nice Guy. */
1144			cpuset_cpus_allowed_fallback(p);
1145			state = possible;
1146			break;
1147
1148		case possible:
1149			do_set_cpus_allowed(p, cpu_possible_mask);
1150			state = fail;
1151			break;
1152
1153		case fail:
1154			BUG();
1155			break;
1156		}
1157	}
1158
1159out:
1160	if (state != cpuset) {
1161		/*
1162		 * Don't tell them about moving exiting tasks or
1163		 * kernel threads (both mm NULL), since they never
1164		 * leave kernel.
1165		 */
1166		if (p->mm && printk_ratelimit()) {
1167			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1168					task_pid_nr(p), p->comm, cpu);
1169		}
1170	}
1171
1172	return dest_cpu;
1173}
1174
1175/*
1176 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1177 */
1178static inline
1179int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1180{
1181	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1182
1183	/*
1184	 * In order not to call set_task_cpu() on a blocking task we need
1185	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1186	 * cpu.
1187	 *
1188	 * Since this is common to all placement strategies, this lives here.
1189	 *
1190	 * [ this allows ->select_task() to simply return task_cpu(p) and
1191	 *   not worry about this generic constraint ]
1192	 */
1193	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1194		     !cpu_online(cpu)))
1195		cpu = select_fallback_rq(task_cpu(p), p);
1196
1197	return cpu;
1198}
1199
1200static void update_avg(u64 *avg, u64 sample)
1201{
1202	s64 diff = sample - *avg;
1203	*avg += diff >> 3;
1204}
1205#endif
1206
1207static void
1208ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1209{
1210#ifdef CONFIG_SCHEDSTATS
1211	struct rq *rq = this_rq();
1212
1213#ifdef CONFIG_SMP
1214	int this_cpu = smp_processor_id();
1215
1216	if (cpu == this_cpu) {
1217		schedstat_inc(rq, ttwu_local);
1218		schedstat_inc(p, se.statistics.nr_wakeups_local);
1219	} else {
1220		struct sched_domain *sd;
1221
1222		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1223		rcu_read_lock();
1224		for_each_domain(this_cpu, sd) {
1225			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1226				schedstat_inc(sd, ttwu_wake_remote);
1227				break;
1228			}
1229		}
1230		rcu_read_unlock();
1231	}
1232
1233	if (wake_flags & WF_MIGRATED)
1234		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1235
1236#endif /* CONFIG_SMP */
1237
1238	schedstat_inc(rq, ttwu_count);
1239	schedstat_inc(p, se.statistics.nr_wakeups);
1240
1241	if (wake_flags & WF_SYNC)
1242		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1243
1244#endif /* CONFIG_SCHEDSTATS */
1245}
1246
1247static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1248{
1249	activate_task(rq, p, en_flags);
1250	p->on_rq = 1;
1251
1252	/* if a worker is waking up, notify workqueue */
1253	if (p->flags & PF_WQ_WORKER)
1254		wq_worker_waking_up(p, cpu_of(rq));
1255}
1256
1257/*
1258 * Mark the task runnable and perform wakeup-preemption.
1259 */
1260static void
1261ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1262{
1263	trace_sched_wakeup(p, true);
1264	check_preempt_curr(rq, p, wake_flags);
1265
1266	p->state = TASK_RUNNING;
1267#ifdef CONFIG_SMP
1268	if (p->sched_class->task_woken)
1269		p->sched_class->task_woken(rq, p);
1270
1271	if (rq->idle_stamp) {
1272		u64 delta = rq->clock - rq->idle_stamp;
1273		u64 max = 2*sysctl_sched_migration_cost;
1274
1275		if (delta > max)
1276			rq->avg_idle = max;
1277		else
1278			update_avg(&rq->avg_idle, delta);
1279		rq->idle_stamp = 0;
1280	}
1281#endif
1282}
1283
1284static void
1285ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1286{
1287#ifdef CONFIG_SMP
1288	if (p->sched_contributes_to_load)
1289		rq->nr_uninterruptible--;
1290#endif
1291
1292	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1293	ttwu_do_wakeup(rq, p, wake_flags);
1294}
1295
1296/*
1297 * Called in case the task @p isn't fully descheduled from its runqueue,
1298 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1299 * since all we need to do is flip p->state to TASK_RUNNING, since
1300 * the task is still ->on_rq.
1301 */
1302static int ttwu_remote(struct task_struct *p, int wake_flags)
1303{
1304	struct rq *rq;
1305	int ret = 0;
1306
1307	rq = __task_rq_lock(p);
1308	if (p->on_rq) {
1309		ttwu_do_wakeup(rq, p, wake_flags);
1310		ret = 1;
1311	}
1312	__task_rq_unlock(rq);
1313
1314	return ret;
1315}
1316
1317#ifdef CONFIG_SMP
1318static void sched_ttwu_pending(void)
1319{
1320	struct rq *rq = this_rq();
1321	struct llist_node *llist = llist_del_all(&rq->wake_list);
1322	struct task_struct *p;
1323
1324	raw_spin_lock(&rq->lock);
1325
1326	while (llist) {
1327		p = llist_entry(llist, struct task_struct, wake_entry);
1328		llist = llist_next(llist);
1329		ttwu_do_activate(rq, p, 0);
1330	}
1331
1332	raw_spin_unlock(&rq->lock);
1333}
1334
1335void scheduler_ipi(void)
1336{
1337	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1338		return;
1339
1340	/*
1341	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1342	 * traditionally all their work was done from the interrupt return
1343	 * path. Now that we actually do some work, we need to make sure
1344	 * we do call them.
1345	 *
1346	 * Some archs already do call them, luckily irq_enter/exit nest
1347	 * properly.
1348	 *
1349	 * Arguably we should visit all archs and update all handlers,
1350	 * however a fair share of IPIs are still resched only so this would
1351	 * somewhat pessimize the simple resched case.
1352	 */
1353	irq_enter();
1354	sched_ttwu_pending();
1355
1356	/*
1357	 * Check if someone kicked us for doing the nohz idle load balance.
1358	 */
1359	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1360		this_rq()->idle_balance = 1;
1361		raise_softirq_irqoff(SCHED_SOFTIRQ);
1362	}
1363	irq_exit();
1364}
1365
1366static void ttwu_queue_remote(struct task_struct *p, int cpu)
1367{
1368	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1369		smp_send_reschedule(cpu);
1370}
1371
1372bool cpus_share_cache(int this_cpu, int that_cpu)
1373{
1374	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1375}
1376#endif /* CONFIG_SMP */
1377
1378static void ttwu_queue(struct task_struct *p, int cpu)
1379{
1380	struct rq *rq = cpu_rq(cpu);
1381
1382#if defined(CONFIG_SMP)
1383	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1384		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1385		ttwu_queue_remote(p, cpu);
1386		return;
1387	}
1388#endif
1389
1390	raw_spin_lock(&rq->lock);
1391	ttwu_do_activate(rq, p, 0);
1392	raw_spin_unlock(&rq->lock);
1393}
1394
1395/**
1396 * try_to_wake_up - wake up a thread
1397 * @p: the thread to be awakened
1398 * @state: the mask of task states that can be woken
1399 * @wake_flags: wake modifier flags (WF_*)
1400 *
1401 * Put it on the run-queue if it's not already there. The "current"
1402 * thread is always on the run-queue (except when the actual
1403 * re-schedule is in progress), and as such you're allowed to do
1404 * the simpler "current->state = TASK_RUNNING" to mark yourself
1405 * runnable without the overhead of this.
1406 *
1407 * Returns %true if @p was woken up, %false if it was already running
1408 * or @state didn't match @p's state.
1409 */
1410static int
1411try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1412{
1413	unsigned long flags;
1414	int cpu, success = 0;
1415
1416	smp_wmb();
1417	raw_spin_lock_irqsave(&p->pi_lock, flags);
1418	if (!(p->state & state))
1419		goto out;
1420
1421	success = 1; /* we're going to change ->state */
1422	cpu = task_cpu(p);
1423
1424	if (p->on_rq && ttwu_remote(p, wake_flags))
1425		goto stat;
1426
1427#ifdef CONFIG_SMP
1428	/*
1429	 * If the owning (remote) cpu is still in the middle of schedule() with
1430	 * this task as prev, wait until its done referencing the task.
1431	 */
1432	while (p->on_cpu)
1433		cpu_relax();
1434	/*
1435	 * Pairs with the smp_wmb() in finish_lock_switch().
1436	 */
1437	smp_rmb();
1438
1439	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1440	p->state = TASK_WAKING;
1441
1442	if (p->sched_class->task_waking)
1443		p->sched_class->task_waking(p);
1444
1445	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1446	if (task_cpu(p) != cpu) {
1447		wake_flags |= WF_MIGRATED;
1448		set_task_cpu(p, cpu);
1449	}
1450#endif /* CONFIG_SMP */
1451
1452	ttwu_queue(p, cpu);
1453stat:
1454	ttwu_stat(p, cpu, wake_flags);
1455out:
1456	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1457
1458	return success;
1459}
1460
1461/**
1462 * try_to_wake_up_local - try to wake up a local task with rq lock held
1463 * @p: the thread to be awakened
1464 *
1465 * Put @p on the run-queue if it's not already there. The caller must
1466 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1467 * the current task.
1468 */
1469static void try_to_wake_up_local(struct task_struct *p)
1470{
1471	struct rq *rq = task_rq(p);
1472
1473	BUG_ON(rq != this_rq());
1474	BUG_ON(p == current);
1475	lockdep_assert_held(&rq->lock);
1476
1477	if (!raw_spin_trylock(&p->pi_lock)) {
1478		raw_spin_unlock(&rq->lock);
1479		raw_spin_lock(&p->pi_lock);
1480		raw_spin_lock(&rq->lock);
1481	}
1482
1483	if (!(p->state & TASK_NORMAL))
1484		goto out;
1485
1486	if (!p->on_rq)
1487		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1488
1489	ttwu_do_wakeup(rq, p, 0);
1490	ttwu_stat(p, smp_processor_id(), 0);
1491out:
1492	raw_spin_unlock(&p->pi_lock);
1493}
1494
1495/**
1496 * wake_up_process - Wake up a specific process
1497 * @p: The process to be woken up.
1498 *
1499 * Attempt to wake up the nominated process and move it to the set of runnable
1500 * processes.  Returns 1 if the process was woken up, 0 if it was already
1501 * running.
1502 *
1503 * It may be assumed that this function implies a write memory barrier before
1504 * changing the task state if and only if any tasks are woken up.
1505 */
1506int wake_up_process(struct task_struct *p)
1507{
1508	return try_to_wake_up(p, TASK_ALL, 0);
1509}
1510EXPORT_SYMBOL(wake_up_process);
1511
1512int wake_up_state(struct task_struct *p, unsigned int state)
1513{
1514	return try_to_wake_up(p, state, 0);
1515}
1516
1517/*
1518 * Perform scheduler related setup for a newly forked process p.
1519 * p is forked by current.
1520 *
1521 * __sched_fork() is basic setup used by init_idle() too:
1522 */
1523static void __sched_fork(struct task_struct *p)
1524{
1525	p->on_rq			= 0;
1526
1527	p->se.on_rq			= 0;
1528	p->se.exec_start		= 0;
1529	p->se.sum_exec_runtime		= 0;
1530	p->se.prev_sum_exec_runtime	= 0;
1531	p->se.nr_migrations		= 0;
1532	p->se.vruntime			= 0;
1533	INIT_LIST_HEAD(&p->se.group_node);
1534
1535#ifdef CONFIG_SCHEDSTATS
1536	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1537#endif
1538
1539	INIT_LIST_HEAD(&p->rt.run_list);
1540
1541#ifdef CONFIG_PREEMPT_NOTIFIERS
1542	INIT_HLIST_HEAD(&p->preempt_notifiers);
1543#endif
1544
1545#ifdef CONFIG_NUMA_BALANCING
1546	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1547		p->mm->numa_next_scan = jiffies;
1548		p->mm->numa_next_reset = jiffies;
1549		p->mm->numa_scan_seq = 0;
1550	}
1551
1552	p->node_stamp = 0ULL;
1553	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1554	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1555	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1556	p->numa_work.next = &p->numa_work;
1557#endif /* CONFIG_NUMA_BALANCING */
1558}
1559
1560#ifdef CONFIG_NUMA_BALANCING
1561void set_numabalancing_state(bool enabled)
1562{
1563	if (enabled)
1564		sched_feat_set("NUMA");
1565	else
1566		sched_feat_set("NO_NUMA");
1567}
1568#endif /* CONFIG_NUMA_BALANCING */
1569
1570/*
1571 * fork()/clone()-time setup:
1572 */
1573void sched_fork(struct task_struct *p)
1574{
1575	unsigned long flags;
1576	int cpu = get_cpu();
1577
1578	__sched_fork(p);
1579	/*
1580	 * We mark the process as running here. This guarantees that
1581	 * nobody will actually run it, and a signal or other external
1582	 * event cannot wake it up and insert it on the runqueue either.
1583	 */
1584	p->state = TASK_RUNNING;
1585
1586	/*
1587	 * Make sure we do not leak PI boosting priority to the child.
1588	 */
1589	p->prio = current->normal_prio;
1590
1591	/*
1592	 * Revert to default priority/policy on fork if requested.
1593	 */
1594	if (unlikely(p->sched_reset_on_fork)) {
1595		if (task_has_rt_policy(p)) {
1596			p->policy = SCHED_NORMAL;
1597			p->static_prio = NICE_TO_PRIO(0);
1598			p->rt_priority = 0;
1599		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1600			p->static_prio = NICE_TO_PRIO(0);
1601
1602		p->prio = p->normal_prio = __normal_prio(p);
1603		set_load_weight(p);
1604
1605		/*
1606		 * We don't need the reset flag anymore after the fork. It has
1607		 * fulfilled its duty:
1608		 */
1609		p->sched_reset_on_fork = 0;
1610	}
1611
1612	if (!rt_prio(p->prio))
1613		p->sched_class = &fair_sched_class;
1614
1615	if (p->sched_class->task_fork)
1616		p->sched_class->task_fork(p);
1617
1618	/*
1619	 * The child is not yet in the pid-hash so no cgroup attach races,
1620	 * and the cgroup is pinned to this child due to cgroup_fork()
1621	 * is ran before sched_fork().
1622	 *
1623	 * Silence PROVE_RCU.
1624	 */
1625	raw_spin_lock_irqsave(&p->pi_lock, flags);
1626	set_task_cpu(p, cpu);
1627	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1628
1629#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1630	if (likely(sched_info_on()))
1631		memset(&p->sched_info, 0, sizeof(p->sched_info));
1632#endif
1633#if defined(CONFIG_SMP)
1634	p->on_cpu = 0;
1635#endif
1636#ifdef CONFIG_PREEMPT_COUNT
1637	/* Want to start with kernel preemption disabled. */
1638	task_thread_info(p)->preempt_count = 1;
1639#endif
1640#ifdef CONFIG_SMP
1641	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1642#endif
1643
1644	put_cpu();
1645}
1646
1647/*
1648 * wake_up_new_task - wake up a newly created task for the first time.
1649 *
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1653 */
1654void wake_up_new_task(struct task_struct *p)
1655{
1656	unsigned long flags;
1657	struct rq *rq;
1658
1659	raw_spin_lock_irqsave(&p->pi_lock, flags);
1660#ifdef CONFIG_SMP
1661	/*
1662	 * Fork balancing, do it here and not earlier because:
1663	 *  - cpus_allowed can change in the fork path
1664	 *  - any previously selected cpu might disappear through hotplug
1665	 */
1666	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1667#endif
1668
1669	rq = __task_rq_lock(p);
1670	activate_task(rq, p, 0);
1671	p->on_rq = 1;
1672	trace_sched_wakeup_new(p, true);
1673	check_preempt_curr(rq, p, WF_FORK);
1674#ifdef CONFIG_SMP
1675	if (p->sched_class->task_woken)
1676		p->sched_class->task_woken(rq, p);
1677#endif
1678	task_rq_unlock(rq, p, &flags);
1679}
1680
1681#ifdef CONFIG_PREEMPT_NOTIFIERS
1682
1683/**
1684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1685 * @notifier: notifier struct to register
1686 */
1687void preempt_notifier_register(struct preempt_notifier *notifier)
1688{
1689	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1690}
1691EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692
1693/**
1694 * preempt_notifier_unregister - no longer interested in preemption notifications
1695 * @notifier: notifier struct to unregister
1696 *
1697 * This is safe to call from within a preemption notifier.
1698 */
1699void preempt_notifier_unregister(struct preempt_notifier *notifier)
1700{
1701	hlist_del(&notifier->link);
1702}
1703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1704
1705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1706{
1707	struct preempt_notifier *notifier;
1708	struct hlist_node *node;
1709
1710	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712}
1713
1714static void
1715fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716				 struct task_struct *next)
1717{
1718	struct preempt_notifier *notifier;
1719	struct hlist_node *node;
1720
1721	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1722		notifier->ops->sched_out(notifier, next);
1723}
1724
1725#else /* !CONFIG_PREEMPT_NOTIFIERS */
1726
1727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1728{
1729}
1730
1731static void
1732fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733				 struct task_struct *next)
1734{
1735}
1736
1737#endif /* CONFIG_PREEMPT_NOTIFIERS */
1738
1739/**
1740 * prepare_task_switch - prepare to switch tasks
1741 * @rq: the runqueue preparing to switch
1742 * @prev: the current task that is being switched out
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
1752static inline void
1753prepare_task_switch(struct rq *rq, struct task_struct *prev,
1754		    struct task_struct *next)
1755{
1756	trace_sched_switch(prev, next);
1757	sched_info_switch(prev, next);
1758	perf_event_task_sched_out(prev, next);
1759	fire_sched_out_preempt_notifiers(prev, next);
1760	prepare_lock_switch(rq, next);
1761	prepare_arch_switch(next);
1762}
1763
1764/**
1765 * finish_task_switch - clean up after a task-switch
1766 * @rq: runqueue associated with task-switch
1767 * @prev: the thread we just switched away from.
1768 *
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1773 *
1774 * Note that we may have delayed dropping an mm in context_switch(). If
1775 * so, we finish that here outside of the runqueue lock. (Doing it
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1778 */
1779static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1780	__releases(rq->lock)
1781{
1782	struct mm_struct *mm = rq->prev_mm;
1783	long prev_state;
1784
1785	rq->prev_mm = NULL;
1786
1787	/*
1788	 * A task struct has one reference for the use as "current".
1789	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1790	 * schedule one last time. The schedule call will never return, and
1791	 * the scheduled task must drop that reference.
1792	 * The test for TASK_DEAD must occur while the runqueue locks are
1793	 * still held, otherwise prev could be scheduled on another cpu, die
1794	 * there before we look at prev->state, and then the reference would
1795	 * be dropped twice.
1796	 *		Manfred Spraul <manfred@colorfullife.com>
1797	 */
1798	prev_state = prev->state;
1799	vtime_task_switch(prev);
1800	finish_arch_switch(prev);
1801	perf_event_task_sched_in(prev, current);
1802	finish_lock_switch(rq, prev);
1803	finish_arch_post_lock_switch();
1804
1805	fire_sched_in_preempt_notifiers(current);
1806	if (mm)
1807		mmdrop(mm);
1808	if (unlikely(prev_state == TASK_DEAD)) {
1809		/*
1810		 * Remove function-return probe instances associated with this
1811		 * task and put them back on the free list.
1812		 */
1813		kprobe_flush_task(prev);
1814		put_task_struct(prev);
1815	}
1816}
1817
1818#ifdef CONFIG_SMP
1819
1820/* assumes rq->lock is held */
1821static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1822{
1823	if (prev->sched_class->pre_schedule)
1824		prev->sched_class->pre_schedule(rq, prev);
1825}
1826
1827/* rq->lock is NOT held, but preemption is disabled */
1828static inline void post_schedule(struct rq *rq)
1829{
1830	if (rq->post_schedule) {
1831		unsigned long flags;
1832
1833		raw_spin_lock_irqsave(&rq->lock, flags);
1834		if (rq->curr->sched_class->post_schedule)
1835			rq->curr->sched_class->post_schedule(rq);
1836		raw_spin_unlock_irqrestore(&rq->lock, flags);
1837
1838		rq->post_schedule = 0;
1839	}
1840}
1841
1842#else
1843
1844static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1845{
1846}
1847
1848static inline void post_schedule(struct rq *rq)
1849{
1850}
1851
1852#endif
1853
1854/**
1855 * schedule_tail - first thing a freshly forked thread must call.
1856 * @prev: the thread we just switched away from.
1857 */
1858asmlinkage void schedule_tail(struct task_struct *prev)
1859	__releases(rq->lock)
1860{
1861	struct rq *rq = this_rq();
1862
1863	finish_task_switch(rq, prev);
1864
1865	/*
1866	 * FIXME: do we need to worry about rq being invalidated by the
1867	 * task_switch?
1868	 */
1869	post_schedule(rq);
1870
1871#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1872	/* In this case, finish_task_switch does not reenable preemption */
1873	preempt_enable();
1874#endif
1875	if (current->set_child_tid)
1876		put_user(task_pid_vnr(current), current->set_child_tid);
1877}
1878
1879/*
1880 * context_switch - switch to the new MM and the new
1881 * thread's register state.
1882 */
1883static inline void
1884context_switch(struct rq *rq, struct task_struct *prev,
1885	       struct task_struct *next)
1886{
1887	struct mm_struct *mm, *oldmm;
1888
1889	prepare_task_switch(rq, prev, next);
1890
1891	mm = next->mm;
1892	oldmm = prev->active_mm;
1893	/*
1894	 * For paravirt, this is coupled with an exit in switch_to to
1895	 * combine the page table reload and the switch backend into
1896	 * one hypercall.
1897	 */
1898	arch_start_context_switch(prev);
1899
1900	if (!mm) {
1901		next->active_mm = oldmm;
1902		atomic_inc(&oldmm->mm_count);
1903		enter_lazy_tlb(oldmm, next);
1904	} else
1905		switch_mm(oldmm, mm, next);
1906
1907	if (!prev->mm) {
1908		prev->active_mm = NULL;
1909		rq->prev_mm = oldmm;
1910	}
1911	/*
1912	 * Since the runqueue lock will be released by the next
1913	 * task (which is an invalid locking op but in the case
1914	 * of the scheduler it's an obvious special-case), so we
1915	 * do an early lockdep release here:
1916	 */
1917#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1918	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1919#endif
1920
1921	/* Here we just switch the register state and the stack. */
1922	rcu_switch(prev, next);
1923	switch_to(prev, next, prev);
1924
1925	barrier();
1926	/*
1927	 * this_rq must be evaluated again because prev may have moved
1928	 * CPUs since it called schedule(), thus the 'rq' on its stack
1929	 * frame will be invalid.
1930	 */
1931	finish_task_switch(this_rq(), prev);
1932}
1933
1934/*
1935 * nr_running, nr_uninterruptible and nr_context_switches:
1936 *
1937 * externally visible scheduler statistics: current number of runnable
1938 * threads, current number of uninterruptible-sleeping threads, total
1939 * number of context switches performed since bootup.
1940 */
1941unsigned long nr_running(void)
1942{
1943	unsigned long i, sum = 0;
1944
1945	for_each_online_cpu(i)
1946		sum += cpu_rq(i)->nr_running;
1947
1948	return sum;
1949}
1950
1951unsigned long nr_uninterruptible(void)
1952{
1953	unsigned long i, sum = 0;
1954
1955	for_each_possible_cpu(i)
1956		sum += cpu_rq(i)->nr_uninterruptible;
1957
1958	/*
1959	 * Since we read the counters lockless, it might be slightly
1960	 * inaccurate. Do not allow it to go below zero though:
1961	 */
1962	if (unlikely((long)sum < 0))
1963		sum = 0;
1964
1965	return sum;
1966}
1967
1968unsigned long long nr_context_switches(void)
1969{
1970	int i;
1971	unsigned long long sum = 0;
1972
1973	for_each_possible_cpu(i)
1974		sum += cpu_rq(i)->nr_switches;
1975
1976	return sum;
1977}
1978
1979unsigned long nr_iowait(void)
1980{
1981	unsigned long i, sum = 0;
1982
1983	for_each_possible_cpu(i)
1984		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1985
1986	return sum;
1987}
1988
1989unsigned long nr_iowait_cpu(int cpu)
1990{
1991	struct rq *this = cpu_rq(cpu);
1992	return atomic_read(&this->nr_iowait);
1993}
1994
1995unsigned long this_cpu_load(void)
1996{
1997	struct rq *this = this_rq();
1998	return this->cpu_load[0];
1999}
2000
2001
2002/*
2003 * Global load-average calculations
2004 *
2005 * We take a distributed and async approach to calculating the global load-avg
2006 * in order to minimize overhead.
2007 *
2008 * The global load average is an exponentially decaying average of nr_running +
2009 * nr_uninterruptible.
2010 *
2011 * Once every LOAD_FREQ:
2012 *
2013 *   nr_active = 0;
2014 *   for_each_possible_cpu(cpu)
2015 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2016 *
2017 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2018 *
2019 * Due to a number of reasons the above turns in the mess below:
2020 *
2021 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2022 *    serious number of cpus, therefore we need to take a distributed approach
2023 *    to calculating nr_active.
2024 *
2025 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2026 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2027 *
2028 *    So assuming nr_active := 0 when we start out -- true per definition, we
2029 *    can simply take per-cpu deltas and fold those into a global accumulate
2030 *    to obtain the same result. See calc_load_fold_active().
2031 *
2032 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2033 *    across the machine, we assume 10 ticks is sufficient time for every
2034 *    cpu to have completed this task.
2035 *
2036 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2037 *    again, being late doesn't loose the delta, just wrecks the sample.
2038 *
2039 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2040 *    this would add another cross-cpu cacheline miss and atomic operation
2041 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2042 *    when it went into uninterruptible state and decrement on whatever cpu
2043 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2044 *    all cpus yields the correct result.
2045 *
2046 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2047 */
2048
2049/* Variables and functions for calc_load */
2050static atomic_long_t calc_load_tasks;
2051static unsigned long calc_load_update;
2052unsigned long avenrun[3];
2053EXPORT_SYMBOL(avenrun); /* should be removed */
2054
2055/**
2056 * get_avenrun - get the load average array
2057 * @loads:	pointer to dest load array
2058 * @offset:	offset to add
2059 * @shift:	shift count to shift the result left
2060 *
2061 * These values are estimates at best, so no need for locking.
2062 */
2063void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2064{
2065	loads[0] = (avenrun[0] + offset) << shift;
2066	loads[1] = (avenrun[1] + offset) << shift;
2067	loads[2] = (avenrun[2] + offset) << shift;
2068}
2069
2070static long calc_load_fold_active(struct rq *this_rq)
2071{
2072	long nr_active, delta = 0;
2073
2074	nr_active = this_rq->nr_running;
2075	nr_active += (long) this_rq->nr_uninterruptible;
2076
2077	if (nr_active != this_rq->calc_load_active) {
2078		delta = nr_active - this_rq->calc_load_active;
2079		this_rq->calc_load_active = nr_active;
2080	}
2081
2082	return delta;
2083}
2084
2085/*
2086 * a1 = a0 * e + a * (1 - e)
2087 */
2088static unsigned long
2089calc_load(unsigned long load, unsigned long exp, unsigned long active)
2090{
2091	load *= exp;
2092	load += active * (FIXED_1 - exp);
2093	load += 1UL << (FSHIFT - 1);
2094	return load >> FSHIFT;
2095}
2096
2097#ifdef CONFIG_NO_HZ
2098/*
2099 * Handle NO_HZ for the global load-average.
2100 *
2101 * Since the above described distributed algorithm to compute the global
2102 * load-average relies on per-cpu sampling from the tick, it is affected by
2103 * NO_HZ.
2104 *
2105 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2106 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2107 * when we read the global state.
2108 *
2109 * Obviously reality has to ruin such a delightfully simple scheme:
2110 *
2111 *  - When we go NO_HZ idle during the window, we can negate our sample
2112 *    contribution, causing under-accounting.
2113 *
2114 *    We avoid this by keeping two idle-delta counters and flipping them
2115 *    when the window starts, thus separating old and new NO_HZ load.
2116 *
2117 *    The only trick is the slight shift in index flip for read vs write.
2118 *
2119 *        0s            5s            10s           15s
2120 *          +10           +10           +10           +10
2121 *        |-|-----------|-|-----------|-|-----------|-|
2122 *    r:0 0 1           1 0           0 1           1 0
2123 *    w:0 1 1           0 0           1 1           0 0
2124 *
2125 *    This ensures we'll fold the old idle contribution in this window while
2126 *    accumlating the new one.
2127 *
2128 *  - When we wake up from NO_HZ idle during the window, we push up our
2129 *    contribution, since we effectively move our sample point to a known
2130 *    busy state.
2131 *
2132 *    This is solved by pushing the window forward, and thus skipping the
2133 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2134 *    was in effect at the time the window opened). This also solves the issue
2135 *    of having to deal with a cpu having been in NOHZ idle for multiple
2136 *    LOAD_FREQ intervals.
2137 *
2138 * When making the ILB scale, we should try to pull this in as well.
2139 */
2140static atomic_long_t calc_load_idle[2];
2141static int calc_load_idx;
2142
2143static inline int calc_load_write_idx(void)
2144{
2145	int idx = calc_load_idx;
2146
2147	/*
2148	 * See calc_global_nohz(), if we observe the new index, we also
2149	 * need to observe the new update time.
2150	 */
2151	smp_rmb();
2152
2153	/*
2154	 * If the folding window started, make sure we start writing in the
2155	 * next idle-delta.
2156	 */
2157	if (!time_before(jiffies, calc_load_update))
2158		idx++;
2159
2160	return idx & 1;
2161}
2162
2163static inline int calc_load_read_idx(void)
2164{
2165	return calc_load_idx & 1;
2166}
2167
2168void calc_load_enter_idle(void)
2169{
2170	struct rq *this_rq = this_rq();
2171	long delta;
2172
2173	/*
2174	 * We're going into NOHZ mode, if there's any pending delta, fold it
2175	 * into the pending idle delta.
2176	 */
2177	delta = calc_load_fold_active(this_rq);
2178	if (delta) {
2179		int idx = calc_load_write_idx();
2180		atomic_long_add(delta, &calc_load_idle[idx]);
2181	}
2182}
2183
2184void calc_load_exit_idle(void)
2185{
2186	struct rq *this_rq = this_rq();
2187
2188	/*
2189	 * If we're still before the sample window, we're done.
2190	 */
2191	if (time_before(jiffies, this_rq->calc_load_update))
2192		return;
2193
2194	/*
2195	 * We woke inside or after the sample window, this means we're already
2196	 * accounted through the nohz accounting, so skip the entire deal and
2197	 * sync up for the next window.
2198	 */
2199	this_rq->calc_load_update = calc_load_update;
2200	if (time_before(jiffies, this_rq->calc_load_update + 10))
2201		this_rq->calc_load_update += LOAD_FREQ;
2202}
2203
2204static long calc_load_fold_idle(void)
2205{
2206	int idx = calc_load_read_idx();
2207	long delta = 0;
2208
2209	if (atomic_long_read(&calc_load_idle[idx]))
2210		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2211
2212	return delta;
2213}
2214
2215/**
2216 * fixed_power_int - compute: x^n, in O(log n) time
2217 *
2218 * @x:         base of the power
2219 * @frac_bits: fractional bits of @x
2220 * @n:         power to raise @x to.
2221 *
2222 * By exploiting the relation between the definition of the natural power
2223 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2224 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2225 * (where: n_i \elem {0, 1}, the binary vector representing n),
2226 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2227 * of course trivially computable in O(log_2 n), the length of our binary
2228 * vector.
2229 */
2230static unsigned long
2231fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2232{
2233	unsigned long result = 1UL << frac_bits;
2234
2235	if (n) for (;;) {
2236		if (n & 1) {
2237			result *= x;
2238			result += 1UL << (frac_bits - 1);
2239			result >>= frac_bits;
2240		}
2241		n >>= 1;
2242		if (!n)
2243			break;
2244		x *= x;
2245		x += 1UL << (frac_bits - 1);
2246		x >>= frac_bits;
2247	}
2248
2249	return result;
2250}
2251
2252/*
2253 * a1 = a0 * e + a * (1 - e)
2254 *
2255 * a2 = a1 * e + a * (1 - e)
2256 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2257 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2258 *
2259 * a3 = a2 * e + a * (1 - e)
2260 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2261 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2262 *
2263 *  ...
2264 *
2265 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2266 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2267 *    = a0 * e^n + a * (1 - e^n)
2268 *
2269 * [1] application of the geometric series:
2270 *
2271 *              n         1 - x^(n+1)
2272 *     S_n := \Sum x^i = -------------
2273 *             i=0          1 - x
2274 */
2275static unsigned long
2276calc_load_n(unsigned long load, unsigned long exp,
2277	    unsigned long active, unsigned int n)
2278{
2279
2280	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2281}
2282
2283/*
2284 * NO_HZ can leave us missing all per-cpu ticks calling
2285 * calc_load_account_active(), but since an idle CPU folds its delta into
2286 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2287 * in the pending idle delta if our idle period crossed a load cycle boundary.
2288 *
2289 * Once we've updated the global active value, we need to apply the exponential
2290 * weights adjusted to the number of cycles missed.
2291 */
2292static void calc_global_nohz(void)
2293{
2294	long delta, active, n;
2295
2296	if (!time_before(jiffies, calc_load_update + 10)) {
2297		/*
2298		 * Catch-up, fold however many we are behind still
2299		 */
2300		delta = jiffies - calc_load_update - 10;
2301		n = 1 + (delta / LOAD_FREQ);
2302
2303		active = atomic_long_read(&calc_load_tasks);
2304		active = active > 0 ? active * FIXED_1 : 0;
2305
2306		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2307		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2308		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2309
2310		calc_load_update += n * LOAD_FREQ;
2311	}
2312
2313	/*
2314	 * Flip the idle index...
2315	 *
2316	 * Make sure we first write the new time then flip the index, so that
2317	 * calc_load_write_idx() will see the new time when it reads the new
2318	 * index, this avoids a double flip messing things up.
2319	 */
2320	smp_wmb();
2321	calc_load_idx++;
2322}
2323#else /* !CONFIG_NO_HZ */
2324
2325static inline long calc_load_fold_idle(void) { return 0; }
2326static inline void calc_global_nohz(void) { }
2327
2328#endif /* CONFIG_NO_HZ */
2329
2330/*
2331 * calc_load - update the avenrun load estimates 10 ticks after the
2332 * CPUs have updated calc_load_tasks.
2333 */
2334void calc_global_load(unsigned long ticks)
2335{
2336	long active, delta;
2337
2338	if (time_before(jiffies, calc_load_update + 10))
2339		return;
2340
2341	/*
2342	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2343	 */
2344	delta = calc_load_fold_idle();
2345	if (delta)
2346		atomic_long_add(delta, &calc_load_tasks);
2347
2348	active = atomic_long_read(&calc_load_tasks);
2349	active = active > 0 ? active * FIXED_1 : 0;
2350
2351	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2352	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2353	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2354
2355	calc_load_update += LOAD_FREQ;
2356
2357	/*
2358	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2359	 */
2360	calc_global_nohz();
2361}
2362
2363/*
2364 * Called from update_cpu_load() to periodically update this CPU's
2365 * active count.
2366 */
2367static void calc_load_account_active(struct rq *this_rq)
2368{
2369	long delta;
2370
2371	if (time_before(jiffies, this_rq->calc_load_update))
2372		return;
2373
2374	delta  = calc_load_fold_active(this_rq);
2375	if (delta)
2376		atomic_long_add(delta, &calc_load_tasks);
2377
2378	this_rq->calc_load_update += LOAD_FREQ;
2379}
2380
2381/*
2382 * End of global load-average stuff
2383 */
2384
2385/*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412#define DEGRADE_SHIFT		7
2413static const unsigned char
2414		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415static const unsigned char
2416		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417					{0, 0, 0, 0, 0, 0, 0, 0},
2418					{64, 32, 8, 0, 0, 0, 0, 0},
2419					{96, 72, 40, 12, 1, 0, 0},
2420					{112, 98, 75, 43, 15, 1, 0},
2421					{120, 112, 98, 76, 45, 16, 2} };
2422
2423/*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428static unsigned long
2429decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430{
2431	int j = 0;
2432
2433	if (!missed_updates)
2434		return load;
2435
2436	if (missed_updates >= degrade_zero_ticks[idx])
2437		return 0;
2438
2439	if (idx == 1)
2440		return load >> missed_updates;
2441
2442	while (missed_updates) {
2443		if (missed_updates % 2)
2444			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446		missed_updates >>= 1;
2447		j++;
2448	}
2449	return load;
2450}
2451
2452/*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2458			      unsigned long pending_updates)
2459{
2460	int i, scale;
2461
2462	this_rq->nr_load_updates++;
2463
2464	/* Update our load: */
2465	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2466	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2467		unsigned long old_load, new_load;
2468
2469		/* scale is effectively 1 << i now, and >> i divides by scale */
2470
2471		old_load = this_rq->cpu_load[i];
2472		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2473		new_load = this_load;
2474		/*
2475		 * Round up the averaging division if load is increasing. This
2476		 * prevents us from getting stuck on 9 if the load is 10, for
2477		 * example.
2478		 */
2479		if (new_load > old_load)
2480			new_load += scale - 1;
2481
2482		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2483	}
2484
2485	sched_avg_update(this_rq);
2486}
2487
2488#ifdef CONFIG_NO_HZ
2489/*
2490 * There is no sane way to deal with nohz on smp when using jiffies because the
2491 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2492 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2493 *
2494 * Therefore we cannot use the delta approach from the regular tick since that
2495 * would seriously skew the load calculation. However we'll make do for those
2496 * updates happening while idle (nohz_idle_balance) or coming out of idle
2497 * (tick_nohz_idle_exit).
2498 *
2499 * This means we might still be one tick off for nohz periods.
2500 */
2501
2502/*
2503 * Called from nohz_idle_balance() to update the load ratings before doing the
2504 * idle balance.
2505 */
2506void update_idle_cpu_load(struct rq *this_rq)
2507{
2508	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2509	unsigned long load = this_rq->load.weight;
2510	unsigned long pending_updates;
2511
2512	/*
2513	 * bail if there's load or we're actually up-to-date.
2514	 */
2515	if (load || curr_jiffies == this_rq->last_load_update_tick)
2516		return;
2517
2518	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2519	this_rq->last_load_update_tick = curr_jiffies;
2520
2521	__update_cpu_load(this_rq, load, pending_updates);
2522}
2523
2524/*
2525 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2526 */
2527void update_cpu_load_nohz(void)
2528{
2529	struct rq *this_rq = this_rq();
2530	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2531	unsigned long pending_updates;
2532
2533	if (curr_jiffies == this_rq->last_load_update_tick)
2534		return;
2535
2536	raw_spin_lock(&this_rq->lock);
2537	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2538	if (pending_updates) {
2539		this_rq->last_load_update_tick = curr_jiffies;
2540		/*
2541		 * We were idle, this means load 0, the current load might be
2542		 * !0 due to remote wakeups and the sort.
2543		 */
2544		__update_cpu_load(this_rq, 0, pending_updates);
2545	}
2546	raw_spin_unlock(&this_rq->lock);
2547}
2548#endif /* CONFIG_NO_HZ */
2549
2550/*
2551 * Called from scheduler_tick()
2552 */
2553static void update_cpu_load_active(struct rq *this_rq)
2554{
2555	/*
2556	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2557	 */
2558	this_rq->last_load_update_tick = jiffies;
2559	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2560
2561	calc_load_account_active(this_rq);
2562}
2563
2564#ifdef CONFIG_SMP
2565
2566/*
2567 * sched_exec - execve() is a valuable balancing opportunity, because at
2568 * this point the task has the smallest effective memory and cache footprint.
2569 */
2570void sched_exec(void)
2571{
2572	struct task_struct *p = current;
2573	unsigned long flags;
2574	int dest_cpu;
2575
2576	raw_spin_lock_irqsave(&p->pi_lock, flags);
2577	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2578	if (dest_cpu == smp_processor_id())
2579		goto unlock;
2580
2581	if (likely(cpu_active(dest_cpu))) {
2582		struct migration_arg arg = { p, dest_cpu };
2583
2584		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2585		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2586		return;
2587	}
2588unlock:
2589	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2590}
2591
2592#endif
2593
2594DEFINE_PER_CPU(struct kernel_stat, kstat);
2595DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2596
2597EXPORT_PER_CPU_SYMBOL(kstat);
2598EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2599
2600/*
2601 * Return any ns on the sched_clock that have not yet been accounted in
2602 * @p in case that task is currently running.
2603 *
2604 * Called with task_rq_lock() held on @rq.
2605 */
2606static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2607{
2608	u64 ns = 0;
2609
2610	if (task_current(rq, p)) {
2611		update_rq_clock(rq);
2612		ns = rq->clock_task - p->se.exec_start;
2613		if ((s64)ns < 0)
2614			ns = 0;
2615	}
2616
2617	return ns;
2618}
2619
2620unsigned long long task_delta_exec(struct task_struct *p)
2621{
2622	unsigned long flags;
2623	struct rq *rq;
2624	u64 ns = 0;
2625
2626	rq = task_rq_lock(p, &flags);
2627	ns = do_task_delta_exec(p, rq);
2628	task_rq_unlock(rq, p, &flags);
2629
2630	return ns;
2631}
2632
2633/*
2634 * Return accounted runtime for the task.
2635 * In case the task is currently running, return the runtime plus current's
2636 * pending runtime that have not been accounted yet.
2637 */
2638unsigned long long task_sched_runtime(struct task_struct *p)
2639{
2640	unsigned long flags;
2641	struct rq *rq;
2642	u64 ns = 0;
2643
2644	rq = task_rq_lock(p, &flags);
2645	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2646	task_rq_unlock(rq, p, &flags);
2647
2648	return ns;
2649}
2650
2651/*
2652 * This function gets called by the timer code, with HZ frequency.
2653 * We call it with interrupts disabled.
2654 */
2655void scheduler_tick(void)
2656{
2657	int cpu = smp_processor_id();
2658	struct rq *rq = cpu_rq(cpu);
2659	struct task_struct *curr = rq->curr;
2660
2661	sched_clock_tick();
2662
2663	raw_spin_lock(&rq->lock);
2664	update_rq_clock(rq);
2665	update_cpu_load_active(rq);
2666	curr->sched_class->task_tick(rq, curr, 0);
2667	raw_spin_unlock(&rq->lock);
2668
2669	perf_event_task_tick();
2670
2671#ifdef CONFIG_SMP
2672	rq->idle_balance = idle_cpu(cpu);
2673	trigger_load_balance(rq, cpu);
2674#endif
2675}
2676
2677notrace unsigned long get_parent_ip(unsigned long addr)
2678{
2679	if (in_lock_functions(addr)) {
2680		addr = CALLER_ADDR2;
2681		if (in_lock_functions(addr))
2682			addr = CALLER_ADDR3;
2683	}
2684	return addr;
2685}
2686
2687#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2688				defined(CONFIG_PREEMPT_TRACER))
2689
2690void __kprobes add_preempt_count(int val)
2691{
2692#ifdef CONFIG_DEBUG_PREEMPT
2693	/*
2694	 * Underflow?
2695	 */
2696	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2697		return;
2698#endif
2699	preempt_count() += val;
2700#ifdef CONFIG_DEBUG_PREEMPT
2701	/*
2702	 * Spinlock count overflowing soon?
2703	 */
2704	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2705				PREEMPT_MASK - 10);
2706#endif
2707	if (preempt_count() == val)
2708		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2709}
2710EXPORT_SYMBOL(add_preempt_count);
2711
2712void __kprobes sub_preempt_count(int val)
2713{
2714#ifdef CONFIG_DEBUG_PREEMPT
2715	/*
2716	 * Underflow?
2717	 */
2718	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2719		return;
2720	/*
2721	 * Is the spinlock portion underflowing?
2722	 */
2723	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2724			!(preempt_count() & PREEMPT_MASK)))
2725		return;
2726#endif
2727
2728	if (preempt_count() == val)
2729		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2730	preempt_count() -= val;
2731}
2732EXPORT_SYMBOL(sub_preempt_count);
2733
2734#endif
2735
2736/*
2737 * Print scheduling while atomic bug:
2738 */
2739static noinline void __schedule_bug(struct task_struct *prev)
2740{
2741	if (oops_in_progress)
2742		return;
2743
2744	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2745		prev->comm, prev->pid, preempt_count());
2746
2747	debug_show_held_locks(prev);
2748	print_modules();
2749	if (irqs_disabled())
2750		print_irqtrace_events(prev);
2751	dump_stack();
2752	add_taint(TAINT_WARN);
2753}
2754
2755/*
2756 * Various schedule()-time debugging checks and statistics:
2757 */
2758static inline void schedule_debug(struct task_struct *prev)
2759{
2760	/*
2761	 * Test if we are atomic. Since do_exit() needs to call into
2762	 * schedule() atomically, we ignore that path for now.
2763	 * Otherwise, whine if we are scheduling when we should not be.
2764	 */
2765	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2766		__schedule_bug(prev);
2767	rcu_sleep_check();
2768
2769	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2770
2771	schedstat_inc(this_rq(), sched_count);
2772}
2773
2774static void put_prev_task(struct rq *rq, struct task_struct *prev)
2775{
2776	if (prev->on_rq || rq->skip_clock_update < 0)
2777		update_rq_clock(rq);
2778	prev->sched_class->put_prev_task(rq, prev);
2779}
2780
2781/*
2782 * Pick up the highest-prio task:
2783 */
2784static inline struct task_struct *
2785pick_next_task(struct rq *rq)
2786{
2787	const struct sched_class *class;
2788	struct task_struct *p;
2789
2790	/*
2791	 * Optimization: we know that if all tasks are in
2792	 * the fair class we can call that function directly:
2793	 */
2794	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2795		p = fair_sched_class.pick_next_task(rq);
2796		if (likely(p))
2797			return p;
2798	}
2799
2800	for_each_class(class) {
2801		p = class->pick_next_task(rq);
2802		if (p)
2803			return p;
2804	}
2805
2806	BUG(); /* the idle class will always have a runnable task */
2807}
2808
2809/*
2810 * __schedule() is the main scheduler function.
2811 *
2812 * The main means of driving the scheduler and thus entering this function are:
2813 *
2814 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2815 *
2816 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2817 *      paths. For example, see arch/x86/entry_64.S.
2818 *
2819 *      To drive preemption between tasks, the scheduler sets the flag in timer
2820 *      interrupt handler scheduler_tick().
2821 *
2822 *   3. Wakeups don't really cause entry into schedule(). They add a
2823 *      task to the run-queue and that's it.
2824 *
2825 *      Now, if the new task added to the run-queue preempts the current
2826 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2827 *      called on the nearest possible occasion:
2828 *
2829 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2830 *
2831 *         - in syscall or exception context, at the next outmost
2832 *           preempt_enable(). (this might be as soon as the wake_up()'s
2833 *           spin_unlock()!)
2834 *
2835 *         - in IRQ context, return from interrupt-handler to
2836 *           preemptible context
2837 *
2838 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2839 *         then at the next:
2840 *
2841 *          - cond_resched() call
2842 *          - explicit schedule() call
2843 *          - return from syscall or exception to user-space
2844 *          - return from interrupt-handler to user-space
2845 */
2846static void __sched __schedule(void)
2847{
2848	struct task_struct *prev, *next;
2849	unsigned long *switch_count;
2850	struct rq *rq;
2851	int cpu;
2852
2853need_resched:
2854	preempt_disable();
2855	cpu = smp_processor_id();
2856	rq = cpu_rq(cpu);
2857	rcu_note_context_switch(cpu);
2858	prev = rq->curr;
2859
2860	schedule_debug(prev);
2861
2862	if (sched_feat(HRTICK))
2863		hrtick_clear(rq);
2864
2865	raw_spin_lock_irq(&rq->lock);
2866
2867	switch_count = &prev->nivcsw;
2868	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2869		if (unlikely(signal_pending_state(prev->state, prev))) {
2870			prev->state = TASK_RUNNING;
2871		} else {
2872			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2873			prev->on_rq = 0;
2874
2875			/*
2876			 * If a worker went to sleep, notify and ask workqueue
2877			 * whether it wants to wake up a task to maintain
2878			 * concurrency.
2879			 */
2880			if (prev->flags & PF_WQ_WORKER) {
2881				struct task_struct *to_wakeup;
2882
2883				to_wakeup = wq_worker_sleeping(prev, cpu);
2884				if (to_wakeup)
2885					try_to_wake_up_local(to_wakeup);
2886			}
2887		}
2888		switch_count = &prev->nvcsw;
2889	}
2890
2891	pre_schedule(rq, prev);
2892
2893	if (unlikely(!rq->nr_running))
2894		idle_balance(cpu, rq);
2895
2896	put_prev_task(rq, prev);
2897	next = pick_next_task(rq);
2898	clear_tsk_need_resched(prev);
2899	rq->skip_clock_update = 0;
2900
2901	if (likely(prev != next)) {
2902		rq->nr_switches++;
2903		rq->curr = next;
2904		++*switch_count;
2905
2906		context_switch(rq, prev, next); /* unlocks the rq */
2907		/*
2908		 * The context switch have flipped the stack from under us
2909		 * and restored the local variables which were saved when
2910		 * this task called schedule() in the past. prev == current
2911		 * is still correct, but it can be moved to another cpu/rq.
2912		 */
2913		cpu = smp_processor_id();
2914		rq = cpu_rq(cpu);
2915	} else
2916		raw_spin_unlock_irq(&rq->lock);
2917
2918	post_schedule(rq);
2919
2920	sched_preempt_enable_no_resched();
2921	if (need_resched())
2922		goto need_resched;
2923}
2924
2925static inline void sched_submit_work(struct task_struct *tsk)
2926{
2927	if (!tsk->state || tsk_is_pi_blocked(tsk))
2928		return;
2929	/*
2930	 * If we are going to sleep and we have plugged IO queued,
2931	 * make sure to submit it to avoid deadlocks.
2932	 */
2933	if (blk_needs_flush_plug(tsk))
2934		blk_schedule_flush_plug(tsk);
2935}
2936
2937asmlinkage void __sched schedule(void)
2938{
2939	struct task_struct *tsk = current;
2940
2941	sched_submit_work(tsk);
2942	__schedule();
2943}
2944EXPORT_SYMBOL(schedule);
2945
2946#ifdef CONFIG_RCU_USER_QS
2947asmlinkage void __sched schedule_user(void)
2948{
2949	/*
2950	 * If we come here after a random call to set_need_resched(),
2951	 * or we have been woken up remotely but the IPI has not yet arrived,
2952	 * we haven't yet exited the RCU idle mode. Do it here manually until
2953	 * we find a better solution.
2954	 */
2955	rcu_user_exit();
2956	schedule();
2957	rcu_user_enter();
2958}
2959#endif
2960
2961/**
2962 * schedule_preempt_disabled - called with preemption disabled
2963 *
2964 * Returns with preemption disabled. Note: preempt_count must be 1
2965 */
2966void __sched schedule_preempt_disabled(void)
2967{
2968	sched_preempt_enable_no_resched();
2969	schedule();
2970	preempt_disable();
2971}
2972
2973#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2974
2975static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2976{
2977	if (lock->owner != owner)
2978		return false;
2979
2980	/*
2981	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2982	 * lock->owner still matches owner, if that fails, owner might
2983	 * point to free()d memory, if it still matches, the rcu_read_lock()
2984	 * ensures the memory stays valid.
2985	 */
2986	barrier();
2987
2988	return owner->on_cpu;
2989}
2990
2991/*
2992 * Look out! "owner" is an entirely speculative pointer
2993 * access and not reliable.
2994 */
2995int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2996{
2997	if (!sched_feat(OWNER_SPIN))
2998		return 0;
2999
3000	rcu_read_lock();
3001	while (owner_running(lock, owner)) {
3002		if (need_resched())
3003			break;
3004
3005		arch_mutex_cpu_relax();
3006	}
3007	rcu_read_unlock();
3008
3009	/*
3010	 * We break out the loop above on need_resched() and when the
3011	 * owner changed, which is a sign for heavy contention. Return
3012	 * success only when lock->owner is NULL.
3013	 */
3014	return lock->owner == NULL;
3015}
3016#endif
3017
3018#ifdef CONFIG_PREEMPT
3019/*
3020 * this is the entry point to schedule() from in-kernel preemption
3021 * off of preempt_enable. Kernel preemptions off return from interrupt
3022 * occur there and call schedule directly.
3023 */
3024asmlinkage void __sched notrace preempt_schedule(void)
3025{
3026	struct thread_info *ti = current_thread_info();
3027
3028	/*
3029	 * If there is a non-zero preempt_count or interrupts are disabled,
3030	 * we do not want to preempt the current task. Just return..
3031	 */
3032	if (likely(ti->preempt_count || irqs_disabled()))
3033		return;
3034
3035	do {
3036		add_preempt_count_notrace(PREEMPT_ACTIVE);
3037		__schedule();
3038		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3039
3040		/*
3041		 * Check again in case we missed a preemption opportunity
3042		 * between schedule and now.
3043		 */
3044		barrier();
3045	} while (need_resched());
3046}
3047EXPORT_SYMBOL(preempt_schedule);
3048
3049/*
3050 * this is the entry point to schedule() from kernel preemption
3051 * off of irq context.
3052 * Note, that this is called and return with irqs disabled. This will
3053 * protect us against recursive calling from irq.
3054 */
3055asmlinkage void __sched preempt_schedule_irq(void)
3056{
3057	struct thread_info *ti = current_thread_info();
3058
3059	/* Catch callers which need to be fixed */
3060	BUG_ON(ti->preempt_count || !irqs_disabled());
3061
3062	rcu_user_exit();
3063	do {
3064		add_preempt_count(PREEMPT_ACTIVE);
3065		local_irq_enable();
3066		__schedule();
3067		local_irq_disable();
3068		sub_preempt_count(PREEMPT_ACTIVE);
3069
3070		/*
3071		 * Check again in case we missed a preemption opportunity
3072		 * between schedule and now.
3073		 */
3074		barrier();
3075	} while (need_resched());
3076}
3077
3078#endif /* CONFIG_PREEMPT */
3079
3080int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3081			  void *key)
3082{
3083	return try_to_wake_up(curr->private, mode, wake_flags);
3084}
3085EXPORT_SYMBOL(default_wake_function);
3086
3087/*
3088 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3089 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3090 * number) then we wake all the non-exclusive tasks and one exclusive task.
3091 *
3092 * There are circumstances in which we can try to wake a task which has already
3093 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3094 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3095 */
3096static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3097			int nr_exclusive, int wake_flags, void *key)
3098{
3099	wait_queue_t *curr, *next;
3100
3101	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3102		unsigned flags = curr->flags;
3103
3104		if (curr->func(curr, mode, wake_flags, key) &&
3105				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3106			break;
3107	}
3108}
3109
3110/**
3111 * __wake_up - wake up threads blocked on a waitqueue.
3112 * @q: the waitqueue
3113 * @mode: which threads
3114 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3115 * @key: is directly passed to the wakeup function
3116 *
3117 * It may be assumed that this function implies a write memory barrier before
3118 * changing the task state if and only if any tasks are woken up.
3119 */
3120void __wake_up(wait_queue_head_t *q, unsigned int mode,
3121			int nr_exclusive, void *key)
3122{
3123	unsigned long flags;
3124
3125	spin_lock_irqsave(&q->lock, flags);
3126	__wake_up_common(q, mode, nr_exclusive, 0, key);
3127	spin_unlock_irqrestore(&q->lock, flags);
3128}
3129EXPORT_SYMBOL(__wake_up);
3130
3131/*
3132 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3133 */
3134void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3135{
3136	__wake_up_common(q, mode, nr, 0, NULL);
3137}
3138EXPORT_SYMBOL_GPL(__wake_up_locked);
3139
3140void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3141{
3142	__wake_up_common(q, mode, 1, 0, key);
3143}
3144EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3145
3146/**
3147 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3148 * @q: the waitqueue
3149 * @mode: which threads
3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151 * @key: opaque value to be passed to wakeup targets
3152 *
3153 * The sync wakeup differs that the waker knows that it will schedule
3154 * away soon, so while the target thread will be woken up, it will not
3155 * be migrated to another CPU - ie. the two threads are 'synchronized'
3156 * with each other. This can prevent needless bouncing between CPUs.
3157 *
3158 * On UP it can prevent extra preemption.
3159 *
3160 * It may be assumed that this function implies a write memory barrier before
3161 * changing the task state if and only if any tasks are woken up.
3162 */
3163void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3164			int nr_exclusive, void *key)
3165{
3166	unsigned long flags;
3167	int wake_flags = WF_SYNC;
3168
3169	if (unlikely(!q))
3170		return;
3171
3172	if (unlikely(!nr_exclusive))
3173		wake_flags = 0;
3174
3175	spin_lock_irqsave(&q->lock, flags);
3176	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3177	spin_unlock_irqrestore(&q->lock, flags);
3178}
3179EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3180
3181/*
3182 * __wake_up_sync - see __wake_up_sync_key()
3183 */
3184void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3185{
3186	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3187}
3188EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3189
3190/**
3191 * complete: - signals a single thread waiting on this completion
3192 * @x:  holds the state of this particular completion
3193 *
3194 * This will wake up a single thread waiting on this completion. Threads will be
3195 * awakened in the same order in which they were queued.
3196 *
3197 * See also complete_all(), wait_for_completion() and related routines.
3198 *
3199 * It may be assumed that this function implies a write memory barrier before
3200 * changing the task state if and only if any tasks are woken up.
3201 */
3202void complete(struct completion *x)
3203{
3204	unsigned long flags;
3205
3206	spin_lock_irqsave(&x->wait.lock, flags);
3207	x->done++;
3208	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3209	spin_unlock_irqrestore(&x->wait.lock, flags);
3210}
3211EXPORT_SYMBOL(complete);
3212
3213/**
3214 * complete_all: - signals all threads waiting on this completion
3215 * @x:  holds the state of this particular completion
3216 *
3217 * This will wake up all threads waiting on this particular completion event.
3218 *
3219 * It may be assumed that this function implies a write memory barrier before
3220 * changing the task state if and only if any tasks are woken up.
3221 */
3222void complete_all(struct completion *x)
3223{
3224	unsigned long flags;
3225
3226	spin_lock_irqsave(&x->wait.lock, flags);
3227	x->done += UINT_MAX/2;
3228	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3229	spin_unlock_irqrestore(&x->wait.lock, flags);
3230}
3231EXPORT_SYMBOL(complete_all);
3232
3233static inline long __sched
3234do_wait_for_common(struct completion *x, long timeout, int state)
3235{
3236	if (!x->done) {
3237		DECLARE_WAITQUEUE(wait, current);
3238
3239		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3240		do {
3241			if (signal_pending_state(state, current)) {
3242				timeout = -ERESTARTSYS;
3243				break;
3244			}
3245			__set_current_state(state);
3246			spin_unlock_irq(&x->wait.lock);
3247			timeout = schedule_timeout(timeout);
3248			spin_lock_irq(&x->wait.lock);
3249		} while (!x->done && timeout);
3250		__remove_wait_queue(&x->wait, &wait);
3251		if (!x->done)
3252			return timeout;
3253	}
3254	x->done--;
3255	return timeout ?: 1;
3256}
3257
3258static long __sched
3259wait_for_common(struct completion *x, long timeout, int state)
3260{
3261	might_sleep();
3262
3263	spin_lock_irq(&x->wait.lock);
3264	timeout = do_wait_for_common(x, timeout, state);
3265	spin_unlock_irq(&x->wait.lock);
3266	return timeout;
3267}
3268
3269/**
3270 * wait_for_completion: - waits for completion of a task
3271 * @x:  holds the state of this particular completion
3272 *
3273 * This waits to be signaled for completion of a specific task. It is NOT
3274 * interruptible and there is no timeout.
3275 *
3276 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3277 * and interrupt capability. Also see complete().
3278 */
3279void __sched wait_for_completion(struct completion *x)
3280{
3281	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3282}
3283EXPORT_SYMBOL(wait_for_completion);
3284
3285/**
3286 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3287 * @x:  holds the state of this particular completion
3288 * @timeout:  timeout value in jiffies
3289 *
3290 * This waits for either a completion of a specific task to be signaled or for a
3291 * specified timeout to expire. The timeout is in jiffies. It is not
3292 * interruptible.
3293 *
3294 * The return value is 0 if timed out, and positive (at least 1, or number of
3295 * jiffies left till timeout) if completed.
3296 */
3297unsigned long __sched
3298wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3299{
3300	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3301}
3302EXPORT_SYMBOL(wait_for_completion_timeout);
3303
3304/**
3305 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3306 * @x:  holds the state of this particular completion
3307 *
3308 * This waits for completion of a specific task to be signaled. It is
3309 * interruptible.
3310 *
3311 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3312 */
3313int __sched wait_for_completion_interruptible(struct completion *x)
3314{
3315	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3316	if (t == -ERESTARTSYS)
3317		return t;
3318	return 0;
3319}
3320EXPORT_SYMBOL(wait_for_completion_interruptible);
3321
3322/**
3323 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3324 * @x:  holds the state of this particular completion
3325 * @timeout:  timeout value in jiffies
3326 *
3327 * This waits for either a completion of a specific task to be signaled or for a
3328 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3329 *
3330 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3331 * positive (at least 1, or number of jiffies left till timeout) if completed.
3332 */
3333long __sched
3334wait_for_completion_interruptible_timeout(struct completion *x,
3335					  unsigned long timeout)
3336{
3337	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3338}
3339EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3340
3341/**
3342 * wait_for_completion_killable: - waits for completion of a task (killable)
3343 * @x:  holds the state of this particular completion
3344 *
3345 * This waits to be signaled for completion of a specific task. It can be
3346 * interrupted by a kill signal.
3347 *
3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3349 */
3350int __sched wait_for_completion_killable(struct completion *x)
3351{
3352	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3353	if (t == -ERESTARTSYS)
3354		return t;
3355	return 0;
3356}
3357EXPORT_SYMBOL(wait_for_completion_killable);
3358
3359/**
3360 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3361 * @x:  holds the state of this particular completion
3362 * @timeout:  timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be
3365 * signaled or for a specified timeout to expire. It can be
3366 * interrupted by a kill signal. The timeout is in jiffies.
3367 *
3368 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3369 * positive (at least 1, or number of jiffies left till timeout) if completed.
3370 */
3371long __sched
3372wait_for_completion_killable_timeout(struct completion *x,
3373				     unsigned long timeout)
3374{
3375	return wait_for_common(x, timeout, TASK_KILLABLE);
3376}
3377EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3378
3379/**
3380 *	try_wait_for_completion - try to decrement a completion without blocking
3381 *	@x:	completion structure
3382 *
3383 *	Returns: 0 if a decrement cannot be done without blocking
3384 *		 1 if a decrement succeeded.
3385 *
3386 *	If a completion is being used as a counting completion,
3387 *	attempt to decrement the counter without blocking. This
3388 *	enables us to avoid waiting if the resource the completion
3389 *	is protecting is not available.
3390 */
3391bool try_wait_for_completion(struct completion *x)
3392{
3393	unsigned long flags;
3394	int ret = 1;
3395
3396	spin_lock_irqsave(&x->wait.lock, flags);
3397	if (!x->done)
3398		ret = 0;
3399	else
3400		x->done--;
3401	spin_unlock_irqrestore(&x->wait.lock, flags);
3402	return ret;
3403}
3404EXPORT_SYMBOL(try_wait_for_completion);
3405
3406/**
3407 *	completion_done - Test to see if a completion has any waiters
3408 *	@x:	completion structure
3409 *
3410 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3411 *		 1 if there are no waiters.
3412 *
3413 */
3414bool completion_done(struct completion *x)
3415{
3416	unsigned long flags;
3417	int ret = 1;
3418
3419	spin_lock_irqsave(&x->wait.lock, flags);
3420	if (!x->done)
3421		ret = 0;
3422	spin_unlock_irqrestore(&x->wait.lock, flags);
3423	return ret;
3424}
3425EXPORT_SYMBOL(completion_done);
3426
3427static long __sched
3428sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3429{
3430	unsigned long flags;
3431	wait_queue_t wait;
3432
3433	init_waitqueue_entry(&wait, current);
3434
3435	__set_current_state(state);
3436
3437	spin_lock_irqsave(&q->lock, flags);
3438	__add_wait_queue(q, &wait);
3439	spin_unlock(&q->lock);
3440	timeout = schedule_timeout(timeout);
3441	spin_lock_irq(&q->lock);
3442	__remove_wait_queue(q, &wait);
3443	spin_unlock_irqrestore(&q->lock, flags);
3444
3445	return timeout;
3446}
3447
3448void __sched interruptible_sleep_on(wait_queue_head_t *q)
3449{
3450	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3451}
3452EXPORT_SYMBOL(interruptible_sleep_on);
3453
3454long __sched
3455interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3456{
3457	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3458}
3459EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3460
3461void __sched sleep_on(wait_queue_head_t *q)
3462{
3463	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3464}
3465EXPORT_SYMBOL(sleep_on);
3466
3467long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3468{
3469	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3470}
3471EXPORT_SYMBOL(sleep_on_timeout);
3472
3473#ifdef CONFIG_RT_MUTEXES
3474
3475/*
3476 * rt_mutex_setprio - set the current priority of a task
3477 * @p: task
3478 * @prio: prio value (kernel-internal form)
3479 *
3480 * This function changes the 'effective' priority of a task. It does
3481 * not touch ->normal_prio like __setscheduler().
3482 *
3483 * Used by the rt_mutex code to implement priority inheritance logic.
3484 */
3485void rt_mutex_setprio(struct task_struct *p, int prio)
3486{
3487	int oldprio, on_rq, running;
3488	struct rq *rq;
3489	const struct sched_class *prev_class;
3490
3491	BUG_ON(prio < 0 || prio > MAX_PRIO);
3492
3493	rq = __task_rq_lock(p);
3494
3495	/*
3496	 * Idle task boosting is a nono in general. There is one
3497	 * exception, when PREEMPT_RT and NOHZ is active:
3498	 *
3499	 * The idle task calls get_next_timer_interrupt() and holds
3500	 * the timer wheel base->lock on the CPU and another CPU wants
3501	 * to access the timer (probably to cancel it). We can safely
3502	 * ignore the boosting request, as the idle CPU runs this code
3503	 * with interrupts disabled and will complete the lock
3504	 * protected section without being interrupted. So there is no
3505	 * real need to boost.
3506	 */
3507	if (unlikely(p == rq->idle)) {
3508		WARN_ON(p != rq->curr);
3509		WARN_ON(p->pi_blocked_on);
3510		goto out_unlock;
3511	}
3512
3513	trace_sched_pi_setprio(p, prio);
3514	oldprio = p->prio;
3515	prev_class = p->sched_class;
3516	on_rq = p->on_rq;
3517	running = task_current(rq, p);
3518	if (on_rq)
3519		dequeue_task(rq, p, 0);
3520	if (running)
3521		p->sched_class->put_prev_task(rq, p);
3522
3523	if (rt_prio(prio))
3524		p->sched_class = &rt_sched_class;
3525	else
3526		p->sched_class = &fair_sched_class;
3527
3528	p->prio = prio;
3529
3530	if (running)
3531		p->sched_class->set_curr_task(rq);
3532	if (on_rq)
3533		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3534
3535	check_class_changed(rq, p, prev_class, oldprio);
3536out_unlock:
3537	__task_rq_unlock(rq);
3538}
3539#endif
3540void set_user_nice(struct task_struct *p, long nice)
3541{
3542	int old_prio, delta, on_rq;
3543	unsigned long flags;
3544	struct rq *rq;
3545
3546	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3547		return;
3548	/*
3549	 * We have to be careful, if called from sys_setpriority(),
3550	 * the task might be in the middle of scheduling on another CPU.
3551	 */
3552	rq = task_rq_lock(p, &flags);
3553	/*
3554	 * The RT priorities are set via sched_setscheduler(), but we still
3555	 * allow the 'normal' nice value to be set - but as expected
3556	 * it wont have any effect on scheduling until the task is
3557	 * SCHED_FIFO/SCHED_RR:
3558	 */
3559	if (task_has_rt_policy(p)) {
3560		p->static_prio = NICE_TO_PRIO(nice);
3561		goto out_unlock;
3562	}
3563	on_rq = p->on_rq;
3564	if (on_rq)
3565		dequeue_task(rq, p, 0);
3566
3567	p->static_prio = NICE_TO_PRIO(nice);
3568	set_load_weight(p);
3569	old_prio = p->prio;
3570	p->prio = effective_prio(p);
3571	delta = p->prio - old_prio;
3572
3573	if (on_rq) {
3574		enqueue_task(rq, p, 0);
3575		/*
3576		 * If the task increased its priority or is running and
3577		 * lowered its priority, then reschedule its CPU:
3578		 */
3579		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3580			resched_task(rq->curr);
3581	}
3582out_unlock:
3583	task_rq_unlock(rq, p, &flags);
3584}
3585EXPORT_SYMBOL(set_user_nice);
3586
3587/*
3588 * can_nice - check if a task can reduce its nice value
3589 * @p: task
3590 * @nice: nice value
3591 */
3592int can_nice(const struct task_struct *p, const int nice)
3593{
3594	/* convert nice value [19,-20] to rlimit style value [1,40] */
3595	int nice_rlim = 20 - nice;
3596
3597	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3598		capable(CAP_SYS_NICE));
3599}
3600
3601#ifdef __ARCH_WANT_SYS_NICE
3602
3603/*
3604 * sys_nice - change the priority of the current process.
3605 * @increment: priority increment
3606 *
3607 * sys_setpriority is a more generic, but much slower function that
3608 * does similar things.
3609 */
3610SYSCALL_DEFINE1(nice, int, increment)
3611{
3612	long nice, retval;
3613
3614	/*
3615	 * Setpriority might change our priority at the same moment.
3616	 * We don't have to worry. Conceptually one call occurs first
3617	 * and we have a single winner.
3618	 */
3619	if (increment < -40)
3620		increment = -40;
3621	if (increment > 40)
3622		increment = 40;
3623
3624	nice = TASK_NICE(current) + increment;
3625	if (nice < -20)
3626		nice = -20;
3627	if (nice > 19)
3628		nice = 19;
3629
3630	if (increment < 0 && !can_nice(current, nice))
3631		return -EPERM;
3632
3633	retval = security_task_setnice(current, nice);
3634	if (retval)
3635		return retval;
3636
3637	set_user_nice(current, nice);
3638	return 0;
3639}
3640
3641#endif
3642
3643/**
3644 * task_prio - return the priority value of a given task.
3645 * @p: the task in question.
3646 *
3647 * This is the priority value as seen by users in /proc.
3648 * RT tasks are offset by -200. Normal tasks are centered
3649 * around 0, value goes from -16 to +15.
3650 */
3651int task_prio(const struct task_struct *p)
3652{
3653	return p->prio - MAX_RT_PRIO;
3654}
3655
3656/**
3657 * task_nice - return the nice value of a given task.
3658 * @p: the task in question.
3659 */
3660int task_nice(const struct task_struct *p)
3661{
3662	return TASK_NICE(p);
3663}
3664EXPORT_SYMBOL(task_nice);
3665
3666/**
3667 * idle_cpu - is a given cpu idle currently?
3668 * @cpu: the processor in question.
3669 */
3670int idle_cpu(int cpu)
3671{
3672	struct rq *rq = cpu_rq(cpu);
3673
3674	if (rq->curr != rq->idle)
3675		return 0;
3676
3677	if (rq->nr_running)
3678		return 0;
3679
3680#ifdef CONFIG_SMP
3681	if (!llist_empty(&rq->wake_list))
3682		return 0;
3683#endif
3684
3685	return 1;
3686}
3687
3688/**
3689 * idle_task - return the idle task for a given cpu.
3690 * @cpu: the processor in question.
3691 */
3692struct task_struct *idle_task(int cpu)
3693{
3694	return cpu_rq(cpu)->idle;
3695}
3696
3697/**
3698 * find_process_by_pid - find a process with a matching PID value.
3699 * @pid: the pid in question.
3700 */
3701static struct task_struct *find_process_by_pid(pid_t pid)
3702{
3703	return pid ? find_task_by_vpid(pid) : current;
3704}
3705
3706/* Actually do priority change: must hold rq lock. */
3707static void
3708__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3709{
3710	p->policy = policy;
3711	p->rt_priority = prio;
3712	p->normal_prio = normal_prio(p);
3713	/* we are holding p->pi_lock already */
3714	p->prio = rt_mutex_getprio(p);
3715	if (rt_prio(p->prio))
3716		p->sched_class = &rt_sched_class;
3717	else
3718		p->sched_class = &fair_sched_class;
3719	set_load_weight(p);
3720}
3721
3722/*
3723 * check the target process has a UID that matches the current process's
3724 */
3725static bool check_same_owner(struct task_struct *p)
3726{
3727	const struct cred *cred = current_cred(), *pcred;
3728	bool match;
3729
3730	rcu_read_lock();
3731	pcred = __task_cred(p);
3732	match = (uid_eq(cred->euid, pcred->euid) ||
3733		 uid_eq(cred->euid, pcred->uid));
3734	rcu_read_unlock();
3735	return match;
3736}
3737
3738static int __sched_setscheduler(struct task_struct *p, int policy,
3739				const struct sched_param *param, bool user)
3740{
3741	int retval, oldprio, oldpolicy = -1, on_rq, running;
3742	unsigned long flags;
3743	const struct sched_class *prev_class;
3744	struct rq *rq;
3745	int reset_on_fork;
3746
3747	/* may grab non-irq protected spin_locks */
3748	BUG_ON(in_interrupt());
3749recheck:
3750	/* double check policy once rq lock held */
3751	if (policy < 0) {
3752		reset_on_fork = p->sched_reset_on_fork;
3753		policy = oldpolicy = p->policy;
3754	} else {
3755		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3756		policy &= ~SCHED_RESET_ON_FORK;
3757
3758		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3759				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3760				policy != SCHED_IDLE)
3761			return -EINVAL;
3762	}
3763
3764	/*
3765	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3766	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3767	 * SCHED_BATCH and SCHED_IDLE is 0.
3768	 */
3769	if (param->sched_priority < 0 ||
3770	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3771	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3772		return -EINVAL;
3773	if (rt_policy(policy) != (param->sched_priority != 0))
3774		return -EINVAL;
3775
3776	/*
3777	 * Allow unprivileged RT tasks to decrease priority:
3778	 */
3779	if (user && !capable(CAP_SYS_NICE)) {
3780		if (rt_policy(policy)) {
3781			unsigned long rlim_rtprio =
3782					task_rlimit(p, RLIMIT_RTPRIO);
3783
3784			/* can't set/change the rt policy */
3785			if (policy != p->policy && !rlim_rtprio)
3786				return -EPERM;
3787
3788			/* can't increase priority */
3789			if (param->sched_priority > p->rt_priority &&
3790			    param->sched_priority > rlim_rtprio)
3791				return -EPERM;
3792		}
3793
3794		/*
3795		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3797		 */
3798		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3799			if (!can_nice(p, TASK_NICE(p)))
3800				return -EPERM;
3801		}
3802
3803		/* can't change other user's priorities */
3804		if (!check_same_owner(p))
3805			return -EPERM;
3806
3807		/* Normal users shall not reset the sched_reset_on_fork flag */
3808		if (p->sched_reset_on_fork && !reset_on_fork)
3809			return -EPERM;
3810	}
3811
3812	if (user) {
3813		retval = security_task_setscheduler(p);
3814		if (retval)
3815			return retval;
3816	}
3817
3818	/*
3819	 * make sure no PI-waiters arrive (or leave) while we are
3820	 * changing the priority of the task:
3821	 *
3822	 * To be able to change p->policy safely, the appropriate
3823	 * runqueue lock must be held.
3824	 */
3825	rq = task_rq_lock(p, &flags);
3826
3827	/*
3828	 * Changing the policy of the stop threads its a very bad idea
3829	 */
3830	if (p == rq->stop) {
3831		task_rq_unlock(rq, p, &flags);
3832		return -EINVAL;
3833	}
3834
3835	/*
3836	 * If not changing anything there's no need to proceed further:
3837	 */
3838	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3839			param->sched_priority == p->rt_priority))) {
3840		task_rq_unlock(rq, p, &flags);
3841		return 0;
3842	}
3843
3844#ifdef CONFIG_RT_GROUP_SCHED
3845	if (user) {
3846		/*
3847		 * Do not allow realtime tasks into groups that have no runtime
3848		 * assigned.
3849		 */
3850		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3851				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3852				!task_group_is_autogroup(task_group(p))) {
3853			task_rq_unlock(rq, p, &flags);
3854			return -EPERM;
3855		}
3856	}
3857#endif
3858
3859	/* recheck policy now with rq lock held */
3860	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3861		policy = oldpolicy = -1;
3862		task_rq_unlock(rq, p, &flags);
3863		goto recheck;
3864	}
3865	on_rq = p->on_rq;
3866	running = task_current(rq, p);
3867	if (on_rq)
3868		dequeue_task(rq, p, 0);
3869	if (running)
3870		p->sched_class->put_prev_task(rq, p);
3871
3872	p->sched_reset_on_fork = reset_on_fork;
3873
3874	oldprio = p->prio;
3875	prev_class = p->sched_class;
3876	__setscheduler(rq, p, policy, param->sched_priority);
3877
3878	if (running)
3879		p->sched_class->set_curr_task(rq);
3880	if (on_rq)
3881		enqueue_task(rq, p, 0);
3882
3883	check_class_changed(rq, p, prev_class, oldprio);
3884	task_rq_unlock(rq, p, &flags);
3885
3886	rt_mutex_adjust_pi(p);
3887
3888	return 0;
3889}
3890
3891/**
3892 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3893 * @p: the task in question.
3894 * @policy: new policy.
3895 * @param: structure containing the new RT priority.
3896 *
3897 * NOTE that the task may be already dead.
3898 */
3899int sched_setscheduler(struct task_struct *p, int policy,
3900		       const struct sched_param *param)
3901{
3902	return __sched_setscheduler(p, policy, param, true);
3903}
3904EXPORT_SYMBOL_GPL(sched_setscheduler);
3905
3906/**
3907 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3908 * @p: the task in question.
3909 * @policy: new policy.
3910 * @param: structure containing the new RT priority.
3911 *
3912 * Just like sched_setscheduler, only don't bother checking if the
3913 * current context has permission.  For example, this is needed in
3914 * stop_machine(): we create temporary high priority worker threads,
3915 * but our caller might not have that capability.
3916 */
3917int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3918			       const struct sched_param *param)
3919{
3920	return __sched_setscheduler(p, policy, param, false);
3921}
3922
3923static int
3924do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3925{
3926	struct sched_param lparam;
3927	struct task_struct *p;
3928	int retval;
3929
3930	if (!param || pid < 0)
3931		return -EINVAL;
3932	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3933		return -EFAULT;
3934
3935	rcu_read_lock();
3936	retval = -ESRCH;
3937	p = find_process_by_pid(pid);
3938	if (p != NULL)
3939		retval = sched_setscheduler(p, policy, &lparam);
3940	rcu_read_unlock();
3941
3942	return retval;
3943}
3944
3945/**
3946 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3947 * @pid: the pid in question.
3948 * @policy: new policy.
3949 * @param: structure containing the new RT priority.
3950 */
3951SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3952		struct sched_param __user *, param)
3953{
3954	/* negative values for policy are not valid */
3955	if (policy < 0)
3956		return -EINVAL;
3957
3958	return do_sched_setscheduler(pid, policy, param);
3959}
3960
3961/**
3962 * sys_sched_setparam - set/change the RT priority of a thread
3963 * @pid: the pid in question.
3964 * @param: structure containing the new RT priority.
3965 */
3966SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3967{
3968	return do_sched_setscheduler(pid, -1, param);
3969}
3970
3971/**
3972 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3973 * @pid: the pid in question.
3974 */
3975SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3976{
3977	struct task_struct *p;
3978	int retval;
3979
3980	if (pid < 0)
3981		return -EINVAL;
3982
3983	retval = -ESRCH;
3984	rcu_read_lock();
3985	p = find_process_by_pid(pid);
3986	if (p) {
3987		retval = security_task_getscheduler(p);
3988		if (!retval)
3989			retval = p->policy
3990				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3991	}
3992	rcu_read_unlock();
3993	return retval;
3994}
3995
3996/**
3997 * sys_sched_getparam - get the RT priority of a thread
3998 * @pid: the pid in question.
3999 * @param: structure containing the RT priority.
4000 */
4001SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4002{
4003	struct sched_param lp;
4004	struct task_struct *p;
4005	int retval;
4006
4007	if (!param || pid < 0)
4008		return -EINVAL;
4009
4010	rcu_read_lock();
4011	p = find_process_by_pid(pid);
4012	retval = -ESRCH;
4013	if (!p)
4014		goto out_unlock;
4015
4016	retval = security_task_getscheduler(p);
4017	if (retval)
4018		goto out_unlock;
4019
4020	lp.sched_priority = p->rt_priority;
4021	rcu_read_unlock();
4022
4023	/*
4024	 * This one might sleep, we cannot do it with a spinlock held ...
4025	 */
4026	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4027
4028	return retval;
4029
4030out_unlock:
4031	rcu_read_unlock();
4032	return retval;
4033}
4034
4035long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4036{
4037	cpumask_var_t cpus_allowed, new_mask;
4038	struct task_struct *p;
4039	int retval;
4040
4041	get_online_cpus();
4042	rcu_read_lock();
4043
4044	p = find_process_by_pid(pid);
4045	if (!p) {
4046		rcu_read_unlock();
4047		put_online_cpus();
4048		return -ESRCH;
4049	}
4050
4051	/* Prevent p going away */
4052	get_task_struct(p);
4053	rcu_read_unlock();
4054
4055	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4056		retval = -ENOMEM;
4057		goto out_put_task;
4058	}
4059	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4060		retval = -ENOMEM;
4061		goto out_free_cpus_allowed;
4062	}
4063	retval = -EPERM;
4064	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4065		goto out_unlock;
4066
4067	retval = security_task_setscheduler(p);
4068	if (retval)
4069		goto out_unlock;
4070
4071	cpuset_cpus_allowed(p, cpus_allowed);
4072	cpumask_and(new_mask, in_mask, cpus_allowed);
4073again:
4074	retval = set_cpus_allowed_ptr(p, new_mask);
4075
4076	if (!retval) {
4077		cpuset_cpus_allowed(p, cpus_allowed);
4078		if (!cpumask_subset(new_mask, cpus_allowed)) {
4079			/*
4080			 * We must have raced with a concurrent cpuset
4081			 * update. Just reset the cpus_allowed to the
4082			 * cpuset's cpus_allowed
4083			 */
4084			cpumask_copy(new_mask, cpus_allowed);
4085			goto again;
4086		}
4087	}
4088out_unlock:
4089	free_cpumask_var(new_mask);
4090out_free_cpus_allowed:
4091	free_cpumask_var(cpus_allowed);
4092out_put_task:
4093	put_task_struct(p);
4094	put_online_cpus();
4095	return retval;
4096}
4097
4098static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4099			     struct cpumask *new_mask)
4100{
4101	if (len < cpumask_size())
4102		cpumask_clear(new_mask);
4103	else if (len > cpumask_size())
4104		len = cpumask_size();
4105
4106	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4107}
4108
4109/**
4110 * sys_sched_setaffinity - set the cpu affinity of a process
4111 * @pid: pid of the process
4112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4113 * @user_mask_ptr: user-space pointer to the new cpu mask
4114 */
4115SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4116		unsigned long __user *, user_mask_ptr)
4117{
4118	cpumask_var_t new_mask;
4119	int retval;
4120
4121	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4122		return -ENOMEM;
4123
4124	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4125	if (retval == 0)
4126		retval = sched_setaffinity(pid, new_mask);
4127	free_cpumask_var(new_mask);
4128	return retval;
4129}
4130
4131long sched_getaffinity(pid_t pid, struct cpumask *mask)
4132{
4133	struct task_struct *p;
4134	unsigned long flags;
4135	int retval;
4136
4137	get_online_cpus();
4138	rcu_read_lock();
4139
4140	retval = -ESRCH;
4141	p = find_process_by_pid(pid);
4142	if (!p)
4143		goto out_unlock;
4144
4145	retval = security_task_getscheduler(p);
4146	if (retval)
4147		goto out_unlock;
4148
4149	raw_spin_lock_irqsave(&p->pi_lock, flags);
4150	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4151	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4152
4153out_unlock:
4154	rcu_read_unlock();
4155	put_online_cpus();
4156
4157	return retval;
4158}
4159
4160/**
4161 * sys_sched_getaffinity - get the cpu affinity of a process
4162 * @pid: pid of the process
4163 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4164 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4165 */
4166SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4167		unsigned long __user *, user_mask_ptr)
4168{
4169	int ret;
4170	cpumask_var_t mask;
4171
4172	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4173		return -EINVAL;
4174	if (len & (sizeof(unsigned long)-1))
4175		return -EINVAL;
4176
4177	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4178		return -ENOMEM;
4179
4180	ret = sched_getaffinity(pid, mask);
4181	if (ret == 0) {
4182		size_t retlen = min_t(size_t, len, cpumask_size());
4183
4184		if (copy_to_user(user_mask_ptr, mask, retlen))
4185			ret = -EFAULT;
4186		else
4187			ret = retlen;
4188	}
4189	free_cpumask_var(mask);
4190
4191	return ret;
4192}
4193
4194/**
4195 * sys_sched_yield - yield the current processor to other threads.
4196 *
4197 * This function yields the current CPU to other tasks. If there are no
4198 * other threads running on this CPU then this function will return.
4199 */
4200SYSCALL_DEFINE0(sched_yield)
4201{
4202	struct rq *rq = this_rq_lock();
4203
4204	schedstat_inc(rq, yld_count);
4205	current->sched_class->yield_task(rq);
4206
4207	/*
4208	 * Since we are going to call schedule() anyway, there's
4209	 * no need to preempt or enable interrupts:
4210	 */
4211	__release(rq->lock);
4212	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213	do_raw_spin_unlock(&rq->lock);
4214	sched_preempt_enable_no_resched();
4215
4216	schedule();
4217
4218	return 0;
4219}
4220
4221static inline int should_resched(void)
4222{
4223	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4224}
4225
4226static void __cond_resched(void)
4227{
4228	add_preempt_count(PREEMPT_ACTIVE);
4229	__schedule();
4230	sub_preempt_count(PREEMPT_ACTIVE);
4231}
4232
4233int __sched _cond_resched(void)
4234{
4235	if (should_resched()) {
4236		__cond_resched();
4237		return 1;
4238	}
4239	return 0;
4240}
4241EXPORT_SYMBOL(_cond_resched);
4242
4243/*
4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4245 * call schedule, and on return reacquire the lock.
4246 *
4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4250 */
4251int __cond_resched_lock(spinlock_t *lock)
4252{
4253	int resched = should_resched();
4254	int ret = 0;
4255
4256	lockdep_assert_held(lock);
4257
4258	if (spin_needbreak(lock) || resched) {
4259		spin_unlock(lock);
4260		if (resched)
4261			__cond_resched();
4262		else
4263			cpu_relax();
4264		ret = 1;
4265		spin_lock(lock);
4266	}
4267	return ret;
4268}
4269EXPORT_SYMBOL(__cond_resched_lock);
4270
4271int __sched __cond_resched_softirq(void)
4272{
4273	BUG_ON(!in_softirq());
4274
4275	if (should_resched()) {
4276		local_bh_enable();
4277		__cond_resched();
4278		local_bh_disable();
4279		return 1;
4280	}
4281	return 0;
4282}
4283EXPORT_SYMBOL(__cond_resched_softirq);
4284
4285/**
4286 * yield - yield the current processor to other threads.
4287 *
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4289 *
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4293 *
4294 * Typical broken usage is:
4295 *
4296 * while (!event)
4297 * 	yield();
4298 *
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4302 *
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
4306 */
4307void __sched yield(void)
4308{
4309	set_current_state(TASK_RUNNING);
4310	sys_sched_yield();
4311}
4312EXPORT_SYMBOL(yield);
4313
4314/**
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
4318 * @p: target task
4319 * @preempt: whether task preemption is allowed or not
4320 *
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4323 *
4324 * Returns true if we indeed boosted the target task.
4325 */
4326bool __sched yield_to(struct task_struct *p, bool preempt)
4327{
4328	struct task_struct *curr = current;
4329	struct rq *rq, *p_rq;
4330	unsigned long flags;
4331	bool yielded = 0;
4332
4333	local_irq_save(flags);
4334	rq = this_rq();
4335
4336again:
4337	p_rq = task_rq(p);
4338	double_rq_lock(rq, p_rq);
4339	while (task_rq(p) != p_rq) {
4340		double_rq_unlock(rq, p_rq);
4341		goto again;
4342	}
4343
4344	if (!curr->sched_class->yield_to_task)
4345		goto out;
4346
4347	if (curr->sched_class != p->sched_class)
4348		goto out;
4349
4350	if (task_running(p_rq, p) || p->state)
4351		goto out;
4352
4353	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4354	if (yielded) {
4355		schedstat_inc(rq, yld_count);
4356		/*
4357		 * Make p's CPU reschedule; pick_next_entity takes care of
4358		 * fairness.
4359		 */
4360		if (preempt && rq != p_rq)
4361			resched_task(p_rq->curr);
4362	}
4363
4364out:
4365	double_rq_unlock(rq, p_rq);
4366	local_irq_restore(flags);
4367
4368	if (yielded)
4369		schedule();
4370
4371	return yielded;
4372}
4373EXPORT_SYMBOL_GPL(yield_to);
4374
4375/*
4376 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4377 * that process accounting knows that this is a task in IO wait state.
4378 */
4379void __sched io_schedule(void)
4380{
4381	struct rq *rq = raw_rq();
4382
4383	delayacct_blkio_start();
4384	atomic_inc(&rq->nr_iowait);
4385	blk_flush_plug(current);
4386	current->in_iowait = 1;
4387	schedule();
4388	current->in_iowait = 0;
4389	atomic_dec(&rq->nr_iowait);
4390	delayacct_blkio_end();
4391}
4392EXPORT_SYMBOL(io_schedule);
4393
4394long __sched io_schedule_timeout(long timeout)
4395{
4396	struct rq *rq = raw_rq();
4397	long ret;
4398
4399	delayacct_blkio_start();
4400	atomic_inc(&rq->nr_iowait);
4401	blk_flush_plug(current);
4402	current->in_iowait = 1;
4403	ret = schedule_timeout(timeout);
4404	current->in_iowait = 0;
4405	atomic_dec(&rq->nr_iowait);
4406	delayacct_blkio_end();
4407	return ret;
4408}
4409
4410/**
4411 * sys_sched_get_priority_max - return maximum RT priority.
4412 * @policy: scheduling class.
4413 *
4414 * this syscall returns the maximum rt_priority that can be used
4415 * by a given scheduling class.
4416 */
4417SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4418{
4419	int ret = -EINVAL;
4420
4421	switch (policy) {
4422	case SCHED_FIFO:
4423	case SCHED_RR:
4424		ret = MAX_USER_RT_PRIO-1;
4425		break;
4426	case SCHED_NORMAL:
4427	case SCHED_BATCH:
4428	case SCHED_IDLE:
4429		ret = 0;
4430		break;
4431	}
4432	return ret;
4433}
4434
4435/**
4436 * sys_sched_get_priority_min - return minimum RT priority.
4437 * @policy: scheduling class.
4438 *
4439 * this syscall returns the minimum rt_priority that can be used
4440 * by a given scheduling class.
4441 */
4442SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4443{
4444	int ret = -EINVAL;
4445
4446	switch (policy) {
4447	case SCHED_FIFO:
4448	case SCHED_RR:
4449		ret = 1;
4450		break;
4451	case SCHED_NORMAL:
4452	case SCHED_BATCH:
4453	case SCHED_IDLE:
4454		ret = 0;
4455	}
4456	return ret;
4457}
4458
4459/**
4460 * sys_sched_rr_get_interval - return the default timeslice of a process.
4461 * @pid: pid of the process.
4462 * @interval: userspace pointer to the timeslice value.
4463 *
4464 * this syscall writes the default timeslice value of a given process
4465 * into the user-space timespec buffer. A value of '0' means infinity.
4466 */
4467SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4468		struct timespec __user *, interval)
4469{
4470	struct task_struct *p;
4471	unsigned int time_slice;
4472	unsigned long flags;
4473	struct rq *rq;
4474	int retval;
4475	struct timespec t;
4476
4477	if (pid < 0)
4478		return -EINVAL;
4479
4480	retval = -ESRCH;
4481	rcu_read_lock();
4482	p = find_process_by_pid(pid);
4483	if (!p)
4484		goto out_unlock;
4485
4486	retval = security_task_getscheduler(p);
4487	if (retval)
4488		goto out_unlock;
4489
4490	rq = task_rq_lock(p, &flags);
4491	time_slice = p->sched_class->get_rr_interval(rq, p);
4492	task_rq_unlock(rq, p, &flags);
4493
4494	rcu_read_unlock();
4495	jiffies_to_timespec(time_slice, &t);
4496	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4497	return retval;
4498
4499out_unlock:
4500	rcu_read_unlock();
4501	return retval;
4502}
4503
4504static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4505
4506void sched_show_task(struct task_struct *p)
4507{
4508	unsigned long free = 0;
4509	unsigned state;
4510
4511	state = p->state ? __ffs(p->state) + 1 : 0;
4512	printk(KERN_INFO "%-15.15s %c", p->comm,
4513		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4514#if BITS_PER_LONG == 32
4515	if (state == TASK_RUNNING)
4516		printk(KERN_CONT " running  ");
4517	else
4518		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4519#else
4520	if (state == TASK_RUNNING)
4521		printk(KERN_CONT "  running task    ");
4522	else
4523		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4524#endif
4525#ifdef CONFIG_DEBUG_STACK_USAGE
4526	free = stack_not_used(p);
4527#endif
4528	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4529		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4530		(unsigned long)task_thread_info(p)->flags);
4531
4532	show_stack(p, NULL);
4533}
4534
4535void show_state_filter(unsigned long state_filter)
4536{
4537	struct task_struct *g, *p;
4538
4539#if BITS_PER_LONG == 32
4540	printk(KERN_INFO
4541		"  task                PC stack   pid father\n");
4542#else
4543	printk(KERN_INFO
4544		"  task                        PC stack   pid father\n");
4545#endif
4546	rcu_read_lock();
4547	do_each_thread(g, p) {
4548		/*
4549		 * reset the NMI-timeout, listing all files on a slow
4550		 * console might take a lot of time:
4551		 */
4552		touch_nmi_watchdog();
4553		if (!state_filter || (p->state & state_filter))
4554			sched_show_task(p);
4555	} while_each_thread(g, p);
4556
4557	touch_all_softlockup_watchdogs();
4558
4559#ifdef CONFIG_SCHED_DEBUG
4560	sysrq_sched_debug_show();
4561#endif
4562	rcu_read_unlock();
4563	/*
4564	 * Only show locks if all tasks are dumped:
4565	 */
4566	if (!state_filter)
4567		debug_show_all_locks();
4568}
4569
4570void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4571{
4572	idle->sched_class = &idle_sched_class;
4573}
4574
4575/**
4576 * init_idle - set up an idle thread for a given CPU
4577 * @idle: task in question
4578 * @cpu: cpu the idle task belongs to
4579 *
4580 * NOTE: this function does not set the idle thread's NEED_RESCHED
4581 * flag, to make booting more robust.
4582 */
4583void __cpuinit init_idle(struct task_struct *idle, int cpu)
4584{
4585	struct rq *rq = cpu_rq(cpu);
4586	unsigned long flags;
4587
4588	raw_spin_lock_irqsave(&rq->lock, flags);
4589
4590	__sched_fork(idle);
4591	idle->state = TASK_RUNNING;
4592	idle->se.exec_start = sched_clock();
4593
4594	do_set_cpus_allowed(idle, cpumask_of(cpu));
4595	/*
4596	 * We're having a chicken and egg problem, even though we are
4597	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4598	 * lockdep check in task_group() will fail.
4599	 *
4600	 * Similar case to sched_fork(). / Alternatively we could
4601	 * use task_rq_lock() here and obtain the other rq->lock.
4602	 *
4603	 * Silence PROVE_RCU
4604	 */
4605	rcu_read_lock();
4606	__set_task_cpu(idle, cpu);
4607	rcu_read_unlock();
4608
4609	rq->curr = rq->idle = idle;
4610#if defined(CONFIG_SMP)
4611	idle->on_cpu = 1;
4612#endif
4613	raw_spin_unlock_irqrestore(&rq->lock, flags);
4614
4615	/* Set the preempt count _outside_ the spinlocks! */
4616	task_thread_info(idle)->preempt_count = 0;
4617
4618	/*
4619	 * The idle tasks have their own, simple scheduling class:
4620	 */
4621	idle->sched_class = &idle_sched_class;
4622	ftrace_graph_init_idle_task(idle, cpu);
4623#if defined(CONFIG_SMP)
4624	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4625#endif
4626}
4627
4628#ifdef CONFIG_SMP
4629void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4630{
4631	if (p->sched_class && p->sched_class->set_cpus_allowed)
4632		p->sched_class->set_cpus_allowed(p, new_mask);
4633
4634	cpumask_copy(&p->cpus_allowed, new_mask);
4635	p->nr_cpus_allowed = cpumask_weight(new_mask);
4636}
4637
4638/*
4639 * This is how migration works:
4640 *
4641 * 1) we invoke migration_cpu_stop() on the target CPU using
4642 *    stop_one_cpu().
4643 * 2) stopper starts to run (implicitly forcing the migrated thread
4644 *    off the CPU)
4645 * 3) it checks whether the migrated task is still in the wrong runqueue.
4646 * 4) if it's in the wrong runqueue then the migration thread removes
4647 *    it and puts it into the right queue.
4648 * 5) stopper completes and stop_one_cpu() returns and the migration
4649 *    is done.
4650 */
4651
4652/*
4653 * Change a given task's CPU affinity. Migrate the thread to a
4654 * proper CPU and schedule it away if the CPU it's executing on
4655 * is removed from the allowed bitmask.
4656 *
4657 * NOTE: the caller must have a valid reference to the task, the
4658 * task must not exit() & deallocate itself prematurely. The
4659 * call is not atomic; no spinlocks may be held.
4660 */
4661int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4662{
4663	unsigned long flags;
4664	struct rq *rq;
4665	unsigned int dest_cpu;
4666	int ret = 0;
4667
4668	rq = task_rq_lock(p, &flags);
4669
4670	if (cpumask_equal(&p->cpus_allowed, new_mask))
4671		goto out;
4672
4673	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4674		ret = -EINVAL;
4675		goto out;
4676	}
4677
4678	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4679		ret = -EINVAL;
4680		goto out;
4681	}
4682
4683	do_set_cpus_allowed(p, new_mask);
4684
4685	/* Can the task run on the task's current CPU? If so, we're done */
4686	if (cpumask_test_cpu(task_cpu(p), new_mask))
4687		goto out;
4688
4689	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4690	if (p->on_rq) {
4691		struct migration_arg arg = { p, dest_cpu };
4692		/* Need help from migration thread: drop lock and wait. */
4693		task_rq_unlock(rq, p, &flags);
4694		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4695		tlb_migrate_finish(p->mm);
4696		return 0;
4697	}
4698out:
4699	task_rq_unlock(rq, p, &flags);
4700
4701	return ret;
4702}
4703EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4704
4705/*
4706 * Move (not current) task off this cpu, onto dest cpu. We're doing
4707 * this because either it can't run here any more (set_cpus_allowed()
4708 * away from this CPU, or CPU going down), or because we're
4709 * attempting to rebalance this task on exec (sched_exec).
4710 *
4711 * So we race with normal scheduler movements, but that's OK, as long
4712 * as the task is no longer on this CPU.
4713 *
4714 * Returns non-zero if task was successfully migrated.
4715 */
4716static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4717{
4718	struct rq *rq_dest, *rq_src;
4719	int ret = 0;
4720
4721	if (unlikely(!cpu_active(dest_cpu)))
4722		return ret;
4723
4724	rq_src = cpu_rq(src_cpu);
4725	rq_dest = cpu_rq(dest_cpu);
4726
4727	raw_spin_lock(&p->pi_lock);
4728	double_rq_lock(rq_src, rq_dest);
4729	/* Already moved. */
4730	if (task_cpu(p) != src_cpu)
4731		goto done;
4732	/* Affinity changed (again). */
4733	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4734		goto fail;
4735
4736	/*
4737	 * If we're not on a rq, the next wake-up will ensure we're
4738	 * placed properly.
4739	 */
4740	if (p->on_rq) {
4741		dequeue_task(rq_src, p, 0);
4742		set_task_cpu(p, dest_cpu);
4743		enqueue_task(rq_dest, p, 0);
4744		check_preempt_curr(rq_dest, p, 0);
4745	}
4746done:
4747	ret = 1;
4748fail:
4749	double_rq_unlock(rq_src, rq_dest);
4750	raw_spin_unlock(&p->pi_lock);
4751	return ret;
4752}
4753
4754/*
4755 * migration_cpu_stop - this will be executed by a highprio stopper thread
4756 * and performs thread migration by bumping thread off CPU then
4757 * 'pushing' onto another runqueue.
4758 */
4759static int migration_cpu_stop(void *data)
4760{
4761	struct migration_arg *arg = data;
4762
4763	/*
4764	 * The original target cpu might have gone down and we might
4765	 * be on another cpu but it doesn't matter.
4766	 */
4767	local_irq_disable();
4768	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4769	local_irq_enable();
4770	return 0;
4771}
4772
4773#ifdef CONFIG_HOTPLUG_CPU
4774
4775/*
4776 * Ensures that the idle task is using init_mm right before its cpu goes
4777 * offline.
4778 */
4779void idle_task_exit(void)
4780{
4781	struct mm_struct *mm = current->active_mm;
4782
4783	BUG_ON(cpu_online(smp_processor_id()));
4784
4785	if (mm != &init_mm)
4786		switch_mm(mm, &init_mm, current);
4787	mmdrop(mm);
4788}
4789
4790/*
4791 * Since this CPU is going 'away' for a while, fold any nr_active delta
4792 * we might have. Assumes we're called after migrate_tasks() so that the
4793 * nr_active count is stable.
4794 *
4795 * Also see the comment "Global load-average calculations".
4796 */
4797static void calc_load_migrate(struct rq *rq)
4798{
4799	long delta = calc_load_fold_active(rq);
4800	if (delta)
4801		atomic_long_add(delta, &calc_load_tasks);
4802}
4803
4804/*
4805 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4806 * try_to_wake_up()->select_task_rq().
4807 *
4808 * Called with rq->lock held even though we'er in stop_machine() and
4809 * there's no concurrency possible, we hold the required locks anyway
4810 * because of lock validation efforts.
4811 */
4812static void migrate_tasks(unsigned int dead_cpu)
4813{
4814	struct rq *rq = cpu_rq(dead_cpu);
4815	struct task_struct *next, *stop = rq->stop;
4816	int dest_cpu;
4817
4818	/*
4819	 * Fudge the rq selection such that the below task selection loop
4820	 * doesn't get stuck on the currently eligible stop task.
4821	 *
4822	 * We're currently inside stop_machine() and the rq is either stuck
4823	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4824	 * either way we should never end up calling schedule() until we're
4825	 * done here.
4826	 */
4827	rq->stop = NULL;
4828
4829	for ( ; ; ) {
4830		/*
4831		 * There's this thread running, bail when that's the only
4832		 * remaining thread.
4833		 */
4834		if (rq->nr_running == 1)
4835			break;
4836
4837		next = pick_next_task(rq);
4838		BUG_ON(!next);
4839		next->sched_class->put_prev_task(rq, next);
4840
4841		/* Find suitable destination for @next, with force if needed. */
4842		dest_cpu = select_fallback_rq(dead_cpu, next);
4843		raw_spin_unlock(&rq->lock);
4844
4845		__migrate_task(next, dead_cpu, dest_cpu);
4846
4847		raw_spin_lock(&rq->lock);
4848	}
4849
4850	rq->stop = stop;
4851}
4852
4853#endif /* CONFIG_HOTPLUG_CPU */
4854
4855#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4856
4857static struct ctl_table sd_ctl_dir[] = {
4858	{
4859		.procname	= "sched_domain",
4860		.mode		= 0555,
4861	},
4862	{}
4863};
4864
4865static struct ctl_table sd_ctl_root[] = {
4866	{
4867		.procname	= "kernel",
4868		.mode		= 0555,
4869		.child		= sd_ctl_dir,
4870	},
4871	{}
4872};
4873
4874static struct ctl_table *sd_alloc_ctl_entry(int n)
4875{
4876	struct ctl_table *entry =
4877		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4878
4879	return entry;
4880}
4881
4882static void sd_free_ctl_entry(struct ctl_table **tablep)
4883{
4884	struct ctl_table *entry;
4885
4886	/*
4887	 * In the intermediate directories, both the child directory and
4888	 * procname are dynamically allocated and could fail but the mode
4889	 * will always be set. In the lowest directory the names are
4890	 * static strings and all have proc handlers.
4891	 */
4892	for (entry = *tablep; entry->mode; entry++) {
4893		if (entry->child)
4894			sd_free_ctl_entry(&entry->child);
4895		if (entry->proc_handler == NULL)
4896			kfree(entry->procname);
4897	}
4898
4899	kfree(*tablep);
4900	*tablep = NULL;
4901}
4902
4903static int min_load_idx = 0;
4904static int max_load_idx = CPU_LOAD_IDX_MAX;
4905
4906static void
4907set_table_entry(struct ctl_table *entry,
4908		const char *procname, void *data, int maxlen,
4909		umode_t mode, proc_handler *proc_handler,
4910		bool load_idx)
4911{
4912	entry->procname = procname;
4913	entry->data = data;
4914	entry->maxlen = maxlen;
4915	entry->mode = mode;
4916	entry->proc_handler = proc_handler;
4917
4918	if (load_idx) {
4919		entry->extra1 = &min_load_idx;
4920		entry->extra2 = &max_load_idx;
4921	}
4922}
4923
4924static struct ctl_table *
4925sd_alloc_ctl_domain_table(struct sched_domain *sd)
4926{
4927	struct ctl_table *table = sd_alloc_ctl_entry(13);
4928
4929	if (table == NULL)
4930		return NULL;
4931
4932	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4933		sizeof(long), 0644, proc_doulongvec_minmax, false);
4934	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4935		sizeof(long), 0644, proc_doulongvec_minmax, false);
4936	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4937		sizeof(int), 0644, proc_dointvec_minmax, true);
4938	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4939		sizeof(int), 0644, proc_dointvec_minmax, true);
4940	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4941		sizeof(int), 0644, proc_dointvec_minmax, true);
4942	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4943		sizeof(int), 0644, proc_dointvec_minmax, true);
4944	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4945		sizeof(int), 0644, proc_dointvec_minmax, true);
4946	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4947		sizeof(int), 0644, proc_dointvec_minmax, false);
4948	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4949		sizeof(int), 0644, proc_dointvec_minmax, false);
4950	set_table_entry(&table[9], "cache_nice_tries",
4951		&sd->cache_nice_tries,
4952		sizeof(int), 0644, proc_dointvec_minmax, false);
4953	set_table_entry(&table[10], "flags", &sd->flags,
4954		sizeof(int), 0644, proc_dointvec_minmax, false);
4955	set_table_entry(&table[11], "name", sd->name,
4956		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4957	/* &table[12] is terminator */
4958
4959	return table;
4960}
4961
4962static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4963{
4964	struct ctl_table *entry, *table;
4965	struct sched_domain *sd;
4966	int domain_num = 0, i;
4967	char buf[32];
4968
4969	for_each_domain(cpu, sd)
4970		domain_num++;
4971	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4972	if (table == NULL)
4973		return NULL;
4974
4975	i = 0;
4976	for_each_domain(cpu, sd) {
4977		snprintf(buf, 32, "domain%d", i);
4978		entry->procname = kstrdup(buf, GFP_KERNEL);
4979		entry->mode = 0555;
4980		entry->child = sd_alloc_ctl_domain_table(sd);
4981		entry++;
4982		i++;
4983	}
4984	return table;
4985}
4986
4987static struct ctl_table_header *sd_sysctl_header;
4988static void register_sched_domain_sysctl(void)
4989{
4990	int i, cpu_num = num_possible_cpus();
4991	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4992	char buf[32];
4993
4994	WARN_ON(sd_ctl_dir[0].child);
4995	sd_ctl_dir[0].child = entry;
4996
4997	if (entry == NULL)
4998		return;
4999
5000	for_each_possible_cpu(i) {
5001		snprintf(buf, 32, "cpu%d", i);
5002		entry->procname = kstrdup(buf, GFP_KERNEL);
5003		entry->mode = 0555;
5004		entry->child = sd_alloc_ctl_cpu_table(i);
5005		entry++;
5006	}
5007
5008	WARN_ON(sd_sysctl_header);
5009	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5010}
5011
5012/* may be called multiple times per register */
5013static void unregister_sched_domain_sysctl(void)
5014{
5015	if (sd_sysctl_header)
5016		unregister_sysctl_table(sd_sysctl_header);
5017	sd_sysctl_header = NULL;
5018	if (sd_ctl_dir[0].child)
5019		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5020}
5021#else
5022static void register_sched_domain_sysctl(void)
5023{
5024}
5025static void unregister_sched_domain_sysctl(void)
5026{
5027}
5028#endif
5029
5030static void set_rq_online(struct rq *rq)
5031{
5032	if (!rq->online) {
5033		const struct sched_class *class;
5034
5035		cpumask_set_cpu(rq->cpu, rq->rd->online);
5036		rq->online = 1;
5037
5038		for_each_class(class) {
5039			if (class->rq_online)
5040				class->rq_online(rq);
5041		}
5042	}
5043}
5044
5045static void set_rq_offline(struct rq *rq)
5046{
5047	if (rq->online) {
5048		const struct sched_class *class;
5049
5050		for_each_class(class) {
5051			if (class->rq_offline)
5052				class->rq_offline(rq);
5053		}
5054
5055		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5056		rq->online = 0;
5057	}
5058}
5059
5060/*
5061 * migration_call - callback that gets triggered when a CPU is added.
5062 * Here we can start up the necessary migration thread for the new CPU.
5063 */
5064static int __cpuinit
5065migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5066{
5067	int cpu = (long)hcpu;
5068	unsigned long flags;
5069	struct rq *rq = cpu_rq(cpu);
5070
5071	switch (action & ~CPU_TASKS_FROZEN) {
5072
5073	case CPU_UP_PREPARE:
5074		rq->calc_load_update = calc_load_update;
5075		break;
5076
5077	case CPU_ONLINE:
5078		/* Update our root-domain */
5079		raw_spin_lock_irqsave(&rq->lock, flags);
5080		if (rq->rd) {
5081			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5082
5083			set_rq_online(rq);
5084		}
5085		raw_spin_unlock_irqrestore(&rq->lock, flags);
5086		break;
5087
5088#ifdef CONFIG_HOTPLUG_CPU
5089	case CPU_DYING:
5090		sched_ttwu_pending();
5091		/* Update our root-domain */
5092		raw_spin_lock_irqsave(&rq->lock, flags);
5093		if (rq->rd) {
5094			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5095			set_rq_offline(rq);
5096		}
5097		migrate_tasks(cpu);
5098		BUG_ON(rq->nr_running != 1); /* the migration thread */
5099		raw_spin_unlock_irqrestore(&rq->lock, flags);
5100		break;
5101
5102	case CPU_DEAD:
5103		calc_load_migrate(rq);
5104		break;
5105#endif
5106	}
5107
5108	update_max_interval();
5109
5110	return NOTIFY_OK;
5111}
5112
5113/*
5114 * Register at high priority so that task migration (migrate_all_tasks)
5115 * happens before everything else.  This has to be lower priority than
5116 * the notifier in the perf_event subsystem, though.
5117 */
5118static struct notifier_block __cpuinitdata migration_notifier = {
5119	.notifier_call = migration_call,
5120	.priority = CPU_PRI_MIGRATION,
5121};
5122
5123static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5124				      unsigned long action, void *hcpu)
5125{
5126	switch (action & ~CPU_TASKS_FROZEN) {
5127	case CPU_STARTING:
5128	case CPU_DOWN_FAILED:
5129		set_cpu_active((long)hcpu, true);
5130		return NOTIFY_OK;
5131	default:
5132		return NOTIFY_DONE;
5133	}
5134}
5135
5136static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5137					unsigned long action, void *hcpu)
5138{
5139	switch (action & ~CPU_TASKS_FROZEN) {
5140	case CPU_DOWN_PREPARE:
5141		set_cpu_active((long)hcpu, false);
5142		return NOTIFY_OK;
5143	default:
5144		return NOTIFY_DONE;
5145	}
5146}
5147
5148static int __init migration_init(void)
5149{
5150	void *cpu = (void *)(long)smp_processor_id();
5151	int err;
5152
5153	/* Initialize migration for the boot CPU */
5154	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5155	BUG_ON(err == NOTIFY_BAD);
5156	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5157	register_cpu_notifier(&migration_notifier);
5158
5159	/* Register cpu active notifiers */
5160	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5161	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5162
5163	return 0;
5164}
5165early_initcall(migration_init);
5166#endif
5167
5168#ifdef CONFIG_SMP
5169
5170static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5171
5172#ifdef CONFIG_SCHED_DEBUG
5173
5174static __read_mostly int sched_debug_enabled;
5175
5176static int __init sched_debug_setup(char *str)
5177{
5178	sched_debug_enabled = 1;
5179
5180	return 0;
5181}
5182early_param("sched_debug", sched_debug_setup);
5183
5184static inline bool sched_debug(void)
5185{
5186	return sched_debug_enabled;
5187}
5188
5189static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5190				  struct cpumask *groupmask)
5191{
5192	struct sched_group *group = sd->groups;
5193	char str[256];
5194
5195	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5196	cpumask_clear(groupmask);
5197
5198	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5199
5200	if (!(sd->flags & SD_LOAD_BALANCE)) {
5201		printk("does not load-balance\n");
5202		if (sd->parent)
5203			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5204					" has parent");
5205		return -1;
5206	}
5207
5208	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5209
5210	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5211		printk(KERN_ERR "ERROR: domain->span does not contain "
5212				"CPU%d\n", cpu);
5213	}
5214	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5215		printk(KERN_ERR "ERROR: domain->groups does not contain"
5216				" CPU%d\n", cpu);
5217	}
5218
5219	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5220	do {
5221		if (!group) {
5222			printk("\n");
5223			printk(KERN_ERR "ERROR: group is NULL\n");
5224			break;
5225		}
5226
5227		/*
5228		 * Even though we initialize ->power to something semi-sane,
5229		 * we leave power_orig unset. This allows us to detect if
5230		 * domain iteration is still funny without causing /0 traps.
5231		 */
5232		if (!group->sgp->power_orig) {
5233			printk(KERN_CONT "\n");
5234			printk(KERN_ERR "ERROR: domain->cpu_power not "
5235					"set\n");
5236			break;
5237		}
5238
5239		if (!cpumask_weight(sched_group_cpus(group))) {
5240			printk(KERN_CONT "\n");
5241			printk(KERN_ERR "ERROR: empty group\n");
5242			break;
5243		}
5244
5245		if (!(sd->flags & SD_OVERLAP) &&
5246		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5247			printk(KERN_CONT "\n");
5248			printk(KERN_ERR "ERROR: repeated CPUs\n");
5249			break;
5250		}
5251
5252		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5253
5254		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5255
5256		printk(KERN_CONT " %s", str);
5257		if (group->sgp->power != SCHED_POWER_SCALE) {
5258			printk(KERN_CONT " (cpu_power = %d)",
5259				group->sgp->power);
5260		}
5261
5262		group = group->next;
5263	} while (group != sd->groups);
5264	printk(KERN_CONT "\n");
5265
5266	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5267		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5268
5269	if (sd->parent &&
5270	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5271		printk(KERN_ERR "ERROR: parent span is not a superset "
5272			"of domain->span\n");
5273	return 0;
5274}
5275
5276static void sched_domain_debug(struct sched_domain *sd, int cpu)
5277{
5278	int level = 0;
5279
5280	if (!sched_debug_enabled)
5281		return;
5282
5283	if (!sd) {
5284		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5285		return;
5286	}
5287
5288	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5289
5290	for (;;) {
5291		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5292			break;
5293		level++;
5294		sd = sd->parent;
5295		if (!sd)
5296			break;
5297	}
5298}
5299#else /* !CONFIG_SCHED_DEBUG */
5300# define sched_domain_debug(sd, cpu) do { } while (0)
5301static inline bool sched_debug(void)
5302{
5303	return false;
5304}
5305#endif /* CONFIG_SCHED_DEBUG */
5306
5307static int sd_degenerate(struct sched_domain *sd)
5308{
5309	if (cpumask_weight(sched_domain_span(sd)) == 1)
5310		return 1;
5311
5312	/* Following flags need at least 2 groups */
5313	if (sd->flags & (SD_LOAD_BALANCE |
5314			 SD_BALANCE_NEWIDLE |
5315			 SD_BALANCE_FORK |
5316			 SD_BALANCE_EXEC |
5317			 SD_SHARE_CPUPOWER |
5318			 SD_SHARE_PKG_RESOURCES)) {
5319		if (sd->groups != sd->groups->next)
5320			return 0;
5321	}
5322
5323	/* Following flags don't use groups */
5324	if (sd->flags & (SD_WAKE_AFFINE))
5325		return 0;
5326
5327	return 1;
5328}
5329
5330static int
5331sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5332{
5333	unsigned long cflags = sd->flags, pflags = parent->flags;
5334
5335	if (sd_degenerate(parent))
5336		return 1;
5337
5338	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5339		return 0;
5340
5341	/* Flags needing groups don't count if only 1 group in parent */
5342	if (parent->groups == parent->groups->next) {
5343		pflags &= ~(SD_LOAD_BALANCE |
5344				SD_BALANCE_NEWIDLE |
5345				SD_BALANCE_FORK |
5346				SD_BALANCE_EXEC |
5347				SD_SHARE_CPUPOWER |
5348				SD_SHARE_PKG_RESOURCES);
5349		if (nr_node_ids == 1)
5350			pflags &= ~SD_SERIALIZE;
5351	}
5352	if (~cflags & pflags)
5353		return 0;
5354
5355	return 1;
5356}
5357
5358static void free_rootdomain(struct rcu_head *rcu)
5359{
5360	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5361
5362	cpupri_cleanup(&rd->cpupri);
5363	free_cpumask_var(rd->rto_mask);
5364	free_cpumask_var(rd->online);
5365	free_cpumask_var(rd->span);
5366	kfree(rd);
5367}
5368
5369static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5370{
5371	struct root_domain *old_rd = NULL;
5372	unsigned long flags;
5373
5374	raw_spin_lock_irqsave(&rq->lock, flags);
5375
5376	if (rq->rd) {
5377		old_rd = rq->rd;
5378
5379		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5380			set_rq_offline(rq);
5381
5382		cpumask_clear_cpu(rq->cpu, old_rd->span);
5383
5384		/*
5385		 * If we dont want to free the old_rt yet then
5386		 * set old_rd to NULL to skip the freeing later
5387		 * in this function:
5388		 */
5389		if (!atomic_dec_and_test(&old_rd->refcount))
5390			old_rd = NULL;
5391	}
5392
5393	atomic_inc(&rd->refcount);
5394	rq->rd = rd;
5395
5396	cpumask_set_cpu(rq->cpu, rd->span);
5397	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5398		set_rq_online(rq);
5399
5400	raw_spin_unlock_irqrestore(&rq->lock, flags);
5401
5402	if (old_rd)
5403		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5404}
5405
5406static int init_rootdomain(struct root_domain *rd)
5407{
5408	memset(rd, 0, sizeof(*rd));
5409
5410	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5411		goto out;
5412	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5413		goto free_span;
5414	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5415		goto free_online;
5416
5417	if (cpupri_init(&rd->cpupri) != 0)
5418		goto free_rto_mask;
5419	return 0;
5420
5421free_rto_mask:
5422	free_cpumask_var(rd->rto_mask);
5423free_online:
5424	free_cpumask_var(rd->online);
5425free_span:
5426	free_cpumask_var(rd->span);
5427out:
5428	return -ENOMEM;
5429}
5430
5431/*
5432 * By default the system creates a single root-domain with all cpus as
5433 * members (mimicking the global state we have today).
5434 */
5435struct root_domain def_root_domain;
5436
5437static void init_defrootdomain(void)
5438{
5439	init_rootdomain(&def_root_domain);
5440
5441	atomic_set(&def_root_domain.refcount, 1);
5442}
5443
5444static struct root_domain *alloc_rootdomain(void)
5445{
5446	struct root_domain *rd;
5447
5448	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5449	if (!rd)
5450		return NULL;
5451
5452	if (init_rootdomain(rd) != 0) {
5453		kfree(rd);
5454		return NULL;
5455	}
5456
5457	return rd;
5458}
5459
5460static void free_sched_groups(struct sched_group *sg, int free_sgp)
5461{
5462	struct sched_group *tmp, *first;
5463
5464	if (!sg)
5465		return;
5466
5467	first = sg;
5468	do {
5469		tmp = sg->next;
5470
5471		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5472			kfree(sg->sgp);
5473
5474		kfree(sg);
5475		sg = tmp;
5476	} while (sg != first);
5477}
5478
5479static void free_sched_domain(struct rcu_head *rcu)
5480{
5481	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5482
5483	/*
5484	 * If its an overlapping domain it has private groups, iterate and
5485	 * nuke them all.
5486	 */
5487	if (sd->flags & SD_OVERLAP) {
5488		free_sched_groups(sd->groups, 1);
5489	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5490		kfree(sd->groups->sgp);
5491		kfree(sd->groups);
5492	}
5493	kfree(sd);
5494}
5495
5496static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5497{
5498	call_rcu(&sd->rcu, free_sched_domain);
5499}
5500
5501static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5502{
5503	for (; sd; sd = sd->parent)
5504		destroy_sched_domain(sd, cpu);
5505}
5506
5507/*
5508 * Keep a special pointer to the highest sched_domain that has
5509 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5510 * allows us to avoid some pointer chasing select_idle_sibling().
5511 *
5512 * Also keep a unique ID per domain (we use the first cpu number in
5513 * the cpumask of the domain), this allows us to quickly tell if
5514 * two cpus are in the same cache domain, see cpus_share_cache().
5515 */
5516DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5517DEFINE_PER_CPU(int, sd_llc_id);
5518
5519static void update_top_cache_domain(int cpu)
5520{
5521	struct sched_domain *sd;
5522	int id = cpu;
5523
5524	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5525	if (sd)
5526		id = cpumask_first(sched_domain_span(sd));
5527
5528	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5529	per_cpu(sd_llc_id, cpu) = id;
5530}
5531
5532/*
5533 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5534 * hold the hotplug lock.
5535 */
5536static void
5537cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5538{
5539	struct rq *rq = cpu_rq(cpu);
5540	struct sched_domain *tmp;
5541
5542	/* Remove the sched domains which do not contribute to scheduling. */
5543	for (tmp = sd; tmp; ) {
5544		struct sched_domain *parent = tmp->parent;
5545		if (!parent)
5546			break;
5547
5548		if (sd_parent_degenerate(tmp, parent)) {
5549			tmp->parent = parent->parent;
5550			if (parent->parent)
5551				parent->parent->child = tmp;
5552			destroy_sched_domain(parent, cpu);
5553		} else
5554			tmp = tmp->parent;
5555	}
5556
5557	if (sd && sd_degenerate(sd)) {
5558		tmp = sd;
5559		sd = sd->parent;
5560		destroy_sched_domain(tmp, cpu);
5561		if (sd)
5562			sd->child = NULL;
5563	}
5564
5565	sched_domain_debug(sd, cpu);
5566
5567	rq_attach_root(rq, rd);
5568	tmp = rq->sd;
5569	rcu_assign_pointer(rq->sd, sd);
5570	destroy_sched_domains(tmp, cpu);
5571
5572	update_top_cache_domain(cpu);
5573}
5574
5575/* cpus with isolated domains */
5576static cpumask_var_t cpu_isolated_map;
5577
5578/* Setup the mask of cpus configured for isolated domains */
5579static int __init isolated_cpu_setup(char *str)
5580{
5581	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5582	cpulist_parse(str, cpu_isolated_map);
5583	return 1;
5584}
5585
5586__setup("isolcpus=", isolated_cpu_setup);
5587
5588static const struct cpumask *cpu_cpu_mask(int cpu)
5589{
5590	return cpumask_of_node(cpu_to_node(cpu));
5591}
5592
5593struct sd_data {
5594	struct sched_domain **__percpu sd;
5595	struct sched_group **__percpu sg;
5596	struct sched_group_power **__percpu sgp;
5597};
5598
5599struct s_data {
5600	struct sched_domain ** __percpu sd;
5601	struct root_domain	*rd;
5602};
5603
5604enum s_alloc {
5605	sa_rootdomain,
5606	sa_sd,
5607	sa_sd_storage,
5608	sa_none,
5609};
5610
5611struct sched_domain_topology_level;
5612
5613typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5614typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5615
5616#define SDTL_OVERLAP	0x01
5617
5618struct sched_domain_topology_level {
5619	sched_domain_init_f init;
5620	sched_domain_mask_f mask;
5621	int		    flags;
5622	int		    numa_level;
5623	struct sd_data      data;
5624};
5625
5626/*
5627 * Build an iteration mask that can exclude certain CPUs from the upwards
5628 * domain traversal.
5629 *
5630 * Asymmetric node setups can result in situations where the domain tree is of
5631 * unequal depth, make sure to skip domains that already cover the entire
5632 * range.
5633 *
5634 * In that case build_sched_domains() will have terminated the iteration early
5635 * and our sibling sd spans will be empty. Domains should always include the
5636 * cpu they're built on, so check that.
5637 *
5638 */
5639static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5640{
5641	const struct cpumask *span = sched_domain_span(sd);
5642	struct sd_data *sdd = sd->private;
5643	struct sched_domain *sibling;
5644	int i;
5645
5646	for_each_cpu(i, span) {
5647		sibling = *per_cpu_ptr(sdd->sd, i);
5648		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5649			continue;
5650
5651		cpumask_set_cpu(i, sched_group_mask(sg));
5652	}
5653}
5654
5655/*
5656 * Return the canonical balance cpu for this group, this is the first cpu
5657 * of this group that's also in the iteration mask.
5658 */
5659int group_balance_cpu(struct sched_group *sg)
5660{
5661	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5662}
5663
5664static int
5665build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5666{
5667	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5668	const struct cpumask *span = sched_domain_span(sd);
5669	struct cpumask *covered = sched_domains_tmpmask;
5670	struct sd_data *sdd = sd->private;
5671	struct sched_domain *child;
5672	int i;
5673
5674	cpumask_clear(covered);
5675
5676	for_each_cpu(i, span) {
5677		struct cpumask *sg_span;
5678
5679		if (cpumask_test_cpu(i, covered))
5680			continue;
5681
5682		child = *per_cpu_ptr(sdd->sd, i);
5683
5684		/* See the comment near build_group_mask(). */
5685		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5686			continue;
5687
5688		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5689				GFP_KERNEL, cpu_to_node(cpu));
5690
5691		if (!sg)
5692			goto fail;
5693
5694		sg_span = sched_group_cpus(sg);
5695		if (child->child) {
5696			child = child->child;
5697			cpumask_copy(sg_span, sched_domain_span(child));
5698		} else
5699			cpumask_set_cpu(i, sg_span);
5700
5701		cpumask_or(covered, covered, sg_span);
5702
5703		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5704		if (atomic_inc_return(&sg->sgp->ref) == 1)
5705			build_group_mask(sd, sg);
5706
5707		/*
5708		 * Initialize sgp->power such that even if we mess up the
5709		 * domains and no possible iteration will get us here, we won't
5710		 * die on a /0 trap.
5711		 */
5712		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5713
5714		/*
5715		 * Make sure the first group of this domain contains the
5716		 * canonical balance cpu. Otherwise the sched_domain iteration
5717		 * breaks. See update_sg_lb_stats().
5718		 */
5719		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5720		    group_balance_cpu(sg) == cpu)
5721			groups = sg;
5722
5723		if (!first)
5724			first = sg;
5725		if (last)
5726			last->next = sg;
5727		last = sg;
5728		last->next = first;
5729	}
5730	sd->groups = groups;
5731
5732	return 0;
5733
5734fail:
5735	free_sched_groups(first, 0);
5736
5737	return -ENOMEM;
5738}
5739
5740static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5741{
5742	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5743	struct sched_domain *child = sd->child;
5744
5745	if (child)
5746		cpu = cpumask_first(sched_domain_span(child));
5747
5748	if (sg) {
5749		*sg = *per_cpu_ptr(sdd->sg, cpu);
5750		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5751		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5752	}
5753
5754	return cpu;
5755}
5756
5757/*
5758 * build_sched_groups will build a circular linked list of the groups
5759 * covered by the given span, and will set each group's ->cpumask correctly,
5760 * and ->cpu_power to 0.
5761 *
5762 * Assumes the sched_domain tree is fully constructed
5763 */
5764static int
5765build_sched_groups(struct sched_domain *sd, int cpu)
5766{
5767	struct sched_group *first = NULL, *last = NULL;
5768	struct sd_data *sdd = sd->private;
5769	const struct cpumask *span = sched_domain_span(sd);
5770	struct cpumask *covered;
5771	int i;
5772
5773	get_group(cpu, sdd, &sd->groups);
5774	atomic_inc(&sd->groups->ref);
5775
5776	if (cpu != cpumask_first(sched_domain_span(sd)))
5777		return 0;
5778
5779	lockdep_assert_held(&sched_domains_mutex);
5780	covered = sched_domains_tmpmask;
5781
5782	cpumask_clear(covered);
5783
5784	for_each_cpu(i, span) {
5785		struct sched_group *sg;
5786		int group = get_group(i, sdd, &sg);
5787		int j;
5788
5789		if (cpumask_test_cpu(i, covered))
5790			continue;
5791
5792		cpumask_clear(sched_group_cpus(sg));
5793		sg->sgp->power = 0;
5794		cpumask_setall(sched_group_mask(sg));
5795
5796		for_each_cpu(j, span) {
5797			if (get_group(j, sdd, NULL) != group)
5798				continue;
5799
5800			cpumask_set_cpu(j, covered);
5801			cpumask_set_cpu(j, sched_group_cpus(sg));
5802		}
5803
5804		if (!first)
5805			first = sg;
5806		if (last)
5807			last->next = sg;
5808		last = sg;
5809	}
5810	last->next = first;
5811
5812	return 0;
5813}
5814
5815/*
5816 * Initialize sched groups cpu_power.
5817 *
5818 * cpu_power indicates the capacity of sched group, which is used while
5819 * distributing the load between different sched groups in a sched domain.
5820 * Typically cpu_power for all the groups in a sched domain will be same unless
5821 * there are asymmetries in the topology. If there are asymmetries, group
5822 * having more cpu_power will pickup more load compared to the group having
5823 * less cpu_power.
5824 */
5825static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5826{
5827	struct sched_group *sg = sd->groups;
5828
5829	WARN_ON(!sd || !sg);
5830
5831	do {
5832		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5833		sg = sg->next;
5834	} while (sg != sd->groups);
5835
5836	if (cpu != group_balance_cpu(sg))
5837		return;
5838
5839	update_group_power(sd, cpu);
5840	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5841}
5842
5843int __weak arch_sd_sibling_asym_packing(void)
5844{
5845       return 0*SD_ASYM_PACKING;
5846}
5847
5848/*
5849 * Initializers for schedule domains
5850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5851 */
5852
5853#ifdef CONFIG_SCHED_DEBUG
5854# define SD_INIT_NAME(sd, type)		sd->name = #type
5855#else
5856# define SD_INIT_NAME(sd, type)		do { } while (0)
5857#endif
5858
5859#define SD_INIT_FUNC(type)						\
5860static noinline struct sched_domain *					\
5861sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5862{									\
5863	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5864	*sd = SD_##type##_INIT;						\
5865	SD_INIT_NAME(sd, type);						\
5866	sd->private = &tl->data;					\
5867	return sd;							\
5868}
5869
5870SD_INIT_FUNC(CPU)
5871#ifdef CONFIG_SCHED_SMT
5872 SD_INIT_FUNC(SIBLING)
5873#endif
5874#ifdef CONFIG_SCHED_MC
5875 SD_INIT_FUNC(MC)
5876#endif
5877#ifdef CONFIG_SCHED_BOOK
5878 SD_INIT_FUNC(BOOK)
5879#endif
5880
5881static int default_relax_domain_level = -1;
5882int sched_domain_level_max;
5883
5884static int __init setup_relax_domain_level(char *str)
5885{
5886	if (kstrtoint(str, 0, &default_relax_domain_level))
5887		pr_warn("Unable to set relax_domain_level\n");
5888
5889	return 1;
5890}
5891__setup("relax_domain_level=", setup_relax_domain_level);
5892
5893static void set_domain_attribute(struct sched_domain *sd,
5894				 struct sched_domain_attr *attr)
5895{
5896	int request;
5897
5898	if (!attr || attr->relax_domain_level < 0) {
5899		if (default_relax_domain_level < 0)
5900			return;
5901		else
5902			request = default_relax_domain_level;
5903	} else
5904		request = attr->relax_domain_level;
5905	if (request < sd->level) {
5906		/* turn off idle balance on this domain */
5907		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5908	} else {
5909		/* turn on idle balance on this domain */
5910		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5911	}
5912}
5913
5914static void __sdt_free(const struct cpumask *cpu_map);
5915static int __sdt_alloc(const struct cpumask *cpu_map);
5916
5917static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5918				 const struct cpumask *cpu_map)
5919{
5920	switch (what) {
5921	case sa_rootdomain:
5922		if (!atomic_read(&d->rd->refcount))
5923			free_rootdomain(&d->rd->rcu); /* fall through */
5924	case sa_sd:
5925		free_percpu(d->sd); /* fall through */
5926	case sa_sd_storage:
5927		__sdt_free(cpu_map); /* fall through */
5928	case sa_none:
5929		break;
5930	}
5931}
5932
5933static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5934						   const struct cpumask *cpu_map)
5935{
5936	memset(d, 0, sizeof(*d));
5937
5938	if (__sdt_alloc(cpu_map))
5939		return sa_sd_storage;
5940	d->sd = alloc_percpu(struct sched_domain *);
5941	if (!d->sd)
5942		return sa_sd_storage;
5943	d->rd = alloc_rootdomain();
5944	if (!d->rd)
5945		return sa_sd;
5946	return sa_rootdomain;
5947}
5948
5949/*
5950 * NULL the sd_data elements we've used to build the sched_domain and
5951 * sched_group structure so that the subsequent __free_domain_allocs()
5952 * will not free the data we're using.
5953 */
5954static void claim_allocations(int cpu, struct sched_domain *sd)
5955{
5956	struct sd_data *sdd = sd->private;
5957
5958	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5959	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5960
5961	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5962		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5963
5964	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5965		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5966}
5967
5968#ifdef CONFIG_SCHED_SMT
5969static const struct cpumask *cpu_smt_mask(int cpu)
5970{
5971	return topology_thread_cpumask(cpu);
5972}
5973#endif
5974
5975/*
5976 * Topology list, bottom-up.
5977 */
5978static struct sched_domain_topology_level default_topology[] = {
5979#ifdef CONFIG_SCHED_SMT
5980	{ sd_init_SIBLING, cpu_smt_mask, },
5981#endif
5982#ifdef CONFIG_SCHED_MC
5983	{ sd_init_MC, cpu_coregroup_mask, },
5984#endif
5985#ifdef CONFIG_SCHED_BOOK
5986	{ sd_init_BOOK, cpu_book_mask, },
5987#endif
5988	{ sd_init_CPU, cpu_cpu_mask, },
5989	{ NULL, },
5990};
5991
5992static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5993
5994#ifdef CONFIG_NUMA
5995
5996static int sched_domains_numa_levels;
5997static int *sched_domains_numa_distance;
5998static struct cpumask ***sched_domains_numa_masks;
5999static int sched_domains_curr_level;
6000
6001static inline int sd_local_flags(int level)
6002{
6003	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6004		return 0;
6005
6006	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6007}
6008
6009static struct sched_domain *
6010sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6011{
6012	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6013	int level = tl->numa_level;
6014	int sd_weight = cpumask_weight(
6015			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6016
6017	*sd = (struct sched_domain){
6018		.min_interval		= sd_weight,
6019		.max_interval		= 2*sd_weight,
6020		.busy_factor		= 32,
6021		.imbalance_pct		= 125,
6022		.cache_nice_tries	= 2,
6023		.busy_idx		= 3,
6024		.idle_idx		= 2,
6025		.newidle_idx		= 0,
6026		.wake_idx		= 0,
6027		.forkexec_idx		= 0,
6028
6029		.flags			= 1*SD_LOAD_BALANCE
6030					| 1*SD_BALANCE_NEWIDLE
6031					| 0*SD_BALANCE_EXEC
6032					| 0*SD_BALANCE_FORK
6033					| 0*SD_BALANCE_WAKE
6034					| 0*SD_WAKE_AFFINE
6035					| 0*SD_SHARE_CPUPOWER
6036					| 0*SD_SHARE_PKG_RESOURCES
6037					| 1*SD_SERIALIZE
6038					| 0*SD_PREFER_SIBLING
6039					| sd_local_flags(level)
6040					,
6041		.last_balance		= jiffies,
6042		.balance_interval	= sd_weight,
6043	};
6044	SD_INIT_NAME(sd, NUMA);
6045	sd->private = &tl->data;
6046
6047	/*
6048	 * Ugly hack to pass state to sd_numa_mask()...
6049	 */
6050	sched_domains_curr_level = tl->numa_level;
6051
6052	return sd;
6053}
6054
6055static const struct cpumask *sd_numa_mask(int cpu)
6056{
6057	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6058}
6059
6060static void sched_numa_warn(const char *str)
6061{
6062	static int done = false;
6063	int i,j;
6064
6065	if (done)
6066		return;
6067
6068	done = true;
6069
6070	printk(KERN_WARNING "ERROR: %s\n\n", str);
6071
6072	for (i = 0; i < nr_node_ids; i++) {
6073		printk(KERN_WARNING "  ");
6074		for (j = 0; j < nr_node_ids; j++)
6075			printk(KERN_CONT "%02d ", node_distance(i,j));
6076		printk(KERN_CONT "\n");
6077	}
6078	printk(KERN_WARNING "\n");
6079}
6080
6081static bool find_numa_distance(int distance)
6082{
6083	int i;
6084
6085	if (distance == node_distance(0, 0))
6086		return true;
6087
6088	for (i = 0; i < sched_domains_numa_levels; i++) {
6089		if (sched_domains_numa_distance[i] == distance)
6090			return true;
6091	}
6092
6093	return false;
6094}
6095
6096static void sched_init_numa(void)
6097{
6098	int next_distance, curr_distance = node_distance(0, 0);
6099	struct sched_domain_topology_level *tl;
6100	int level = 0;
6101	int i, j, k;
6102
6103	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6104	if (!sched_domains_numa_distance)
6105		return;
6106
6107	/*
6108	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6109	 * unique distances in the node_distance() table.
6110	 *
6111	 * Assumes node_distance(0,j) includes all distances in
6112	 * node_distance(i,j) in order to avoid cubic time.
6113	 */
6114	next_distance = curr_distance;
6115	for (i = 0; i < nr_node_ids; i++) {
6116		for (j = 0; j < nr_node_ids; j++) {
6117			for (k = 0; k < nr_node_ids; k++) {
6118				int distance = node_distance(i, k);
6119
6120				if (distance > curr_distance &&
6121				    (distance < next_distance ||
6122				     next_distance == curr_distance))
6123					next_distance = distance;
6124
6125				/*
6126				 * While not a strong assumption it would be nice to know
6127				 * about cases where if node A is connected to B, B is not
6128				 * equally connected to A.
6129				 */
6130				if (sched_debug() && node_distance(k, i) != distance)
6131					sched_numa_warn("Node-distance not symmetric");
6132
6133				if (sched_debug() && i && !find_numa_distance(distance))
6134					sched_numa_warn("Node-0 not representative");
6135			}
6136			if (next_distance != curr_distance) {
6137				sched_domains_numa_distance[level++] = next_distance;
6138				sched_domains_numa_levels = level;
6139				curr_distance = next_distance;
6140			} else break;
6141		}
6142
6143		/*
6144		 * In case of sched_debug() we verify the above assumption.
6145		 */
6146		if (!sched_debug())
6147			break;
6148	}
6149	/*
6150	 * 'level' contains the number of unique distances, excluding the
6151	 * identity distance node_distance(i,i).
6152	 *
6153	 * The sched_domains_nume_distance[] array includes the actual distance
6154	 * numbers.
6155	 */
6156
6157	/*
6158	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6159	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6160	 * the array will contain less then 'level' members. This could be
6161	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6162	 * in other functions.
6163	 *
6164	 * We reset it to 'level' at the end of this function.
6165	 */
6166	sched_domains_numa_levels = 0;
6167
6168	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6169	if (!sched_domains_numa_masks)
6170		return;
6171
6172	/*
6173	 * Now for each level, construct a mask per node which contains all
6174	 * cpus of nodes that are that many hops away from us.
6175	 */
6176	for (i = 0; i < level; i++) {
6177		sched_domains_numa_masks[i] =
6178			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6179		if (!sched_domains_numa_masks[i])
6180			return;
6181
6182		for (j = 0; j < nr_node_ids; j++) {
6183			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6184			if (!mask)
6185				return;
6186
6187			sched_domains_numa_masks[i][j] = mask;
6188
6189			for (k = 0; k < nr_node_ids; k++) {
6190				if (node_distance(j, k) > sched_domains_numa_distance[i])
6191					continue;
6192
6193				cpumask_or(mask, mask, cpumask_of_node(k));
6194			}
6195		}
6196	}
6197
6198	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6199			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6200	if (!tl)
6201		return;
6202
6203	/*
6204	 * Copy the default topology bits..
6205	 */
6206	for (i = 0; default_topology[i].init; i++)
6207		tl[i] = default_topology[i];
6208
6209	/*
6210	 * .. and append 'j' levels of NUMA goodness.
6211	 */
6212	for (j = 0; j < level; i++, j++) {
6213		tl[i] = (struct sched_domain_topology_level){
6214			.init = sd_numa_init,
6215			.mask = sd_numa_mask,
6216			.flags = SDTL_OVERLAP,
6217			.numa_level = j,
6218		};
6219	}
6220
6221	sched_domain_topology = tl;
6222
6223	sched_domains_numa_levels = level;
6224}
6225
6226static void sched_domains_numa_masks_set(int cpu)
6227{
6228	int i, j;
6229	int node = cpu_to_node(cpu);
6230
6231	for (i = 0; i < sched_domains_numa_levels; i++) {
6232		for (j = 0; j < nr_node_ids; j++) {
6233			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6234				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6235		}
6236	}
6237}
6238
6239static void sched_domains_numa_masks_clear(int cpu)
6240{
6241	int i, j;
6242	for (i = 0; i < sched_domains_numa_levels; i++) {
6243		for (j = 0; j < nr_node_ids; j++)
6244			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6245	}
6246}
6247
6248/*
6249 * Update sched_domains_numa_masks[level][node] array when new cpus
6250 * are onlined.
6251 */
6252static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6253					   unsigned long action,
6254					   void *hcpu)
6255{
6256	int cpu = (long)hcpu;
6257
6258	switch (action & ~CPU_TASKS_FROZEN) {
6259	case CPU_ONLINE:
6260		sched_domains_numa_masks_set(cpu);
6261		break;
6262
6263	case CPU_DEAD:
6264		sched_domains_numa_masks_clear(cpu);
6265		break;
6266
6267	default:
6268		return NOTIFY_DONE;
6269	}
6270
6271	return NOTIFY_OK;
6272}
6273#else
6274static inline void sched_init_numa(void)
6275{
6276}
6277
6278static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6279					   unsigned long action,
6280					   void *hcpu)
6281{
6282	return 0;
6283}
6284#endif /* CONFIG_NUMA */
6285
6286static int __sdt_alloc(const struct cpumask *cpu_map)
6287{
6288	struct sched_domain_topology_level *tl;
6289	int j;
6290
6291	for (tl = sched_domain_topology; tl->init; tl++) {
6292		struct sd_data *sdd = &tl->data;
6293
6294		sdd->sd = alloc_percpu(struct sched_domain *);
6295		if (!sdd->sd)
6296			return -ENOMEM;
6297
6298		sdd->sg = alloc_percpu(struct sched_group *);
6299		if (!sdd->sg)
6300			return -ENOMEM;
6301
6302		sdd->sgp = alloc_percpu(struct sched_group_power *);
6303		if (!sdd->sgp)
6304			return -ENOMEM;
6305
6306		for_each_cpu(j, cpu_map) {
6307			struct sched_domain *sd;
6308			struct sched_group *sg;
6309			struct sched_group_power *sgp;
6310
6311		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6312					GFP_KERNEL, cpu_to_node(j));
6313			if (!sd)
6314				return -ENOMEM;
6315
6316			*per_cpu_ptr(sdd->sd, j) = sd;
6317
6318			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6319					GFP_KERNEL, cpu_to_node(j));
6320			if (!sg)
6321				return -ENOMEM;
6322
6323			sg->next = sg;
6324
6325			*per_cpu_ptr(sdd->sg, j) = sg;
6326
6327			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6328					GFP_KERNEL, cpu_to_node(j));
6329			if (!sgp)
6330				return -ENOMEM;
6331
6332			*per_cpu_ptr(sdd->sgp, j) = sgp;
6333		}
6334	}
6335
6336	return 0;
6337}
6338
6339static void __sdt_free(const struct cpumask *cpu_map)
6340{
6341	struct sched_domain_topology_level *tl;
6342	int j;
6343
6344	for (tl = sched_domain_topology; tl->init; tl++) {
6345		struct sd_data *sdd = &tl->data;
6346
6347		for_each_cpu(j, cpu_map) {
6348			struct sched_domain *sd;
6349
6350			if (sdd->sd) {
6351				sd = *per_cpu_ptr(sdd->sd, j);
6352				if (sd && (sd->flags & SD_OVERLAP))
6353					free_sched_groups(sd->groups, 0);
6354				kfree(*per_cpu_ptr(sdd->sd, j));
6355			}
6356
6357			if (sdd->sg)
6358				kfree(*per_cpu_ptr(sdd->sg, j));
6359			if (sdd->sgp)
6360				kfree(*per_cpu_ptr(sdd->sgp, j));
6361		}
6362		free_percpu(sdd->sd);
6363		sdd->sd = NULL;
6364		free_percpu(sdd->sg);
6365		sdd->sg = NULL;
6366		free_percpu(sdd->sgp);
6367		sdd->sgp = NULL;
6368	}
6369}
6370
6371struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6372		struct s_data *d, const struct cpumask *cpu_map,
6373		struct sched_domain_attr *attr, struct sched_domain *child,
6374		int cpu)
6375{
6376	struct sched_domain *sd = tl->init(tl, cpu);
6377	if (!sd)
6378		return child;
6379
6380	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6381	if (child) {
6382		sd->level = child->level + 1;
6383		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6384		child->parent = sd;
6385	}
6386	sd->child = child;
6387	set_domain_attribute(sd, attr);
6388
6389	return sd;
6390}
6391
6392/*
6393 * Build sched domains for a given set of cpus and attach the sched domains
6394 * to the individual cpus
6395 */
6396static int build_sched_domains(const struct cpumask *cpu_map,
6397			       struct sched_domain_attr *attr)
6398{
6399	enum s_alloc alloc_state = sa_none;
6400	struct sched_domain *sd;
6401	struct s_data d;
6402	int i, ret = -ENOMEM;
6403
6404	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6405	if (alloc_state != sa_rootdomain)
6406		goto error;
6407
6408	/* Set up domains for cpus specified by the cpu_map. */
6409	for_each_cpu(i, cpu_map) {
6410		struct sched_domain_topology_level *tl;
6411
6412		sd = NULL;
6413		for (tl = sched_domain_topology; tl->init; tl++) {
6414			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6415			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6416				sd->flags |= SD_OVERLAP;
6417			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6418				break;
6419		}
6420
6421		while (sd->child)
6422			sd = sd->child;
6423
6424		*per_cpu_ptr(d.sd, i) = sd;
6425	}
6426
6427	/* Build the groups for the domains */
6428	for_each_cpu(i, cpu_map) {
6429		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6430			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6431			if (sd->flags & SD_OVERLAP) {
6432				if (build_overlap_sched_groups(sd, i))
6433					goto error;
6434			} else {
6435				if (build_sched_groups(sd, i))
6436					goto error;
6437			}
6438		}
6439	}
6440
6441	/* Calculate CPU power for physical packages and nodes */
6442	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6443		if (!cpumask_test_cpu(i, cpu_map))
6444			continue;
6445
6446		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6447			claim_allocations(i, sd);
6448			init_sched_groups_power(i, sd);
6449		}
6450	}
6451
6452	/* Attach the domains */
6453	rcu_read_lock();
6454	for_each_cpu(i, cpu_map) {
6455		sd = *per_cpu_ptr(d.sd, i);
6456		cpu_attach_domain(sd, d.rd, i);
6457	}
6458	rcu_read_unlock();
6459
6460	ret = 0;
6461error:
6462	__free_domain_allocs(&d, alloc_state, cpu_map);
6463	return ret;
6464}
6465
6466static cpumask_var_t *doms_cur;	/* current sched domains */
6467static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6468static struct sched_domain_attr *dattr_cur;
6469				/* attribues of custom domains in 'doms_cur' */
6470
6471/*
6472 * Special case: If a kmalloc of a doms_cur partition (array of
6473 * cpumask) fails, then fallback to a single sched domain,
6474 * as determined by the single cpumask fallback_doms.
6475 */
6476static cpumask_var_t fallback_doms;
6477
6478/*
6479 * arch_update_cpu_topology lets virtualized architectures update the
6480 * cpu core maps. It is supposed to return 1 if the topology changed
6481 * or 0 if it stayed the same.
6482 */
6483int __attribute__((weak)) arch_update_cpu_topology(void)
6484{
6485	return 0;
6486}
6487
6488cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6489{
6490	int i;
6491	cpumask_var_t *doms;
6492
6493	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6494	if (!doms)
6495		return NULL;
6496	for (i = 0; i < ndoms; i++) {
6497		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6498			free_sched_domains(doms, i);
6499			return NULL;
6500		}
6501	}
6502	return doms;
6503}
6504
6505void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6506{
6507	unsigned int i;
6508	for (i = 0; i < ndoms; i++)
6509		free_cpumask_var(doms[i]);
6510	kfree(doms);
6511}
6512
6513/*
6514 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6515 * For now this just excludes isolated cpus, but could be used to
6516 * exclude other special cases in the future.
6517 */
6518static int init_sched_domains(const struct cpumask *cpu_map)
6519{
6520	int err;
6521
6522	arch_update_cpu_topology();
6523	ndoms_cur = 1;
6524	doms_cur = alloc_sched_domains(ndoms_cur);
6525	if (!doms_cur)
6526		doms_cur = &fallback_doms;
6527	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6528	err = build_sched_domains(doms_cur[0], NULL);
6529	register_sched_domain_sysctl();
6530
6531	return err;
6532}
6533
6534/*
6535 * Detach sched domains from a group of cpus specified in cpu_map
6536 * These cpus will now be attached to the NULL domain
6537 */
6538static void detach_destroy_domains(const struct cpumask *cpu_map)
6539{
6540	int i;
6541
6542	rcu_read_lock();
6543	for_each_cpu(i, cpu_map)
6544		cpu_attach_domain(NULL, &def_root_domain, i);
6545	rcu_read_unlock();
6546}
6547
6548/* handle null as "default" */
6549static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6550			struct sched_domain_attr *new, int idx_new)
6551{
6552	struct sched_domain_attr tmp;
6553
6554	/* fast path */
6555	if (!new && !cur)
6556		return 1;
6557
6558	tmp = SD_ATTR_INIT;
6559	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6560			new ? (new + idx_new) : &tmp,
6561			sizeof(struct sched_domain_attr));
6562}
6563
6564/*
6565 * Partition sched domains as specified by the 'ndoms_new'
6566 * cpumasks in the array doms_new[] of cpumasks. This compares
6567 * doms_new[] to the current sched domain partitioning, doms_cur[].
6568 * It destroys each deleted domain and builds each new domain.
6569 *
6570 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6571 * The masks don't intersect (don't overlap.) We should setup one
6572 * sched domain for each mask. CPUs not in any of the cpumasks will
6573 * not be load balanced. If the same cpumask appears both in the
6574 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6575 * it as it is.
6576 *
6577 * The passed in 'doms_new' should be allocated using
6578 * alloc_sched_domains.  This routine takes ownership of it and will
6579 * free_sched_domains it when done with it. If the caller failed the
6580 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6581 * and partition_sched_domains() will fallback to the single partition
6582 * 'fallback_doms', it also forces the domains to be rebuilt.
6583 *
6584 * If doms_new == NULL it will be replaced with cpu_online_mask.
6585 * ndoms_new == 0 is a special case for destroying existing domains,
6586 * and it will not create the default domain.
6587 *
6588 * Call with hotplug lock held
6589 */
6590void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6591			     struct sched_domain_attr *dattr_new)
6592{
6593	int i, j, n;
6594	int new_topology;
6595
6596	mutex_lock(&sched_domains_mutex);
6597
6598	/* always unregister in case we don't destroy any domains */
6599	unregister_sched_domain_sysctl();
6600
6601	/* Let architecture update cpu core mappings. */
6602	new_topology = arch_update_cpu_topology();
6603
6604	n = doms_new ? ndoms_new : 0;
6605
6606	/* Destroy deleted domains */
6607	for (i = 0; i < ndoms_cur; i++) {
6608		for (j = 0; j < n && !new_topology; j++) {
6609			if (cpumask_equal(doms_cur[i], doms_new[j])
6610			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6611				goto match1;
6612		}
6613		/* no match - a current sched domain not in new doms_new[] */
6614		detach_destroy_domains(doms_cur[i]);
6615match1:
6616		;
6617	}
6618
6619	if (doms_new == NULL) {
6620		ndoms_cur = 0;
6621		doms_new = &fallback_doms;
6622		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6623		WARN_ON_ONCE(dattr_new);
6624	}
6625
6626	/* Build new domains */
6627	for (i = 0; i < ndoms_new; i++) {
6628		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6629			if (cpumask_equal(doms_new[i], doms_cur[j])
6630			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6631				goto match2;
6632		}
6633		/* no match - add a new doms_new */
6634		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6635match2:
6636		;
6637	}
6638
6639	/* Remember the new sched domains */
6640	if (doms_cur != &fallback_doms)
6641		free_sched_domains(doms_cur, ndoms_cur);
6642	kfree(dattr_cur);	/* kfree(NULL) is safe */
6643	doms_cur = doms_new;
6644	dattr_cur = dattr_new;
6645	ndoms_cur = ndoms_new;
6646
6647	register_sched_domain_sysctl();
6648
6649	mutex_unlock(&sched_domains_mutex);
6650}
6651
6652static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6653
6654/*
6655 * Update cpusets according to cpu_active mask.  If cpusets are
6656 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6657 * around partition_sched_domains().
6658 *
6659 * If we come here as part of a suspend/resume, don't touch cpusets because we
6660 * want to restore it back to its original state upon resume anyway.
6661 */
6662static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6663			     void *hcpu)
6664{
6665	switch (action) {
6666	case CPU_ONLINE_FROZEN:
6667	case CPU_DOWN_FAILED_FROZEN:
6668
6669		/*
6670		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6671		 * resume sequence. As long as this is not the last online
6672		 * operation in the resume sequence, just build a single sched
6673		 * domain, ignoring cpusets.
6674		 */
6675		num_cpus_frozen--;
6676		if (likely(num_cpus_frozen)) {
6677			partition_sched_domains(1, NULL, NULL);
6678			break;
6679		}
6680
6681		/*
6682		 * This is the last CPU online operation. So fall through and
6683		 * restore the original sched domains by considering the
6684		 * cpuset configurations.
6685		 */
6686
6687	case CPU_ONLINE:
6688	case CPU_DOWN_FAILED:
6689		cpuset_update_active_cpus(true);
6690		break;
6691	default:
6692		return NOTIFY_DONE;
6693	}
6694	return NOTIFY_OK;
6695}
6696
6697static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6698			       void *hcpu)
6699{
6700	switch (action) {
6701	case CPU_DOWN_PREPARE:
6702		cpuset_update_active_cpus(false);
6703		break;
6704	case CPU_DOWN_PREPARE_FROZEN:
6705		num_cpus_frozen++;
6706		partition_sched_domains(1, NULL, NULL);
6707		break;
6708	default:
6709		return NOTIFY_DONE;
6710	}
6711	return NOTIFY_OK;
6712}
6713
6714void __init sched_init_smp(void)
6715{
6716	cpumask_var_t non_isolated_cpus;
6717
6718	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6719	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6720
6721	sched_init_numa();
6722
6723	get_online_cpus();
6724	mutex_lock(&sched_domains_mutex);
6725	init_sched_domains(cpu_active_mask);
6726	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6727	if (cpumask_empty(non_isolated_cpus))
6728		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6729	mutex_unlock(&sched_domains_mutex);
6730	put_online_cpus();
6731
6732	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6733	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6734	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6735
6736	/* RT runtime code needs to handle some hotplug events */
6737	hotcpu_notifier(update_runtime, 0);
6738
6739	init_hrtick();
6740
6741	/* Move init over to a non-isolated CPU */
6742	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6743		BUG();
6744	sched_init_granularity();
6745	free_cpumask_var(non_isolated_cpus);
6746
6747	init_sched_rt_class();
6748}
6749#else
6750void __init sched_init_smp(void)
6751{
6752	sched_init_granularity();
6753}
6754#endif /* CONFIG_SMP */
6755
6756const_debug unsigned int sysctl_timer_migration = 1;
6757
6758int in_sched_functions(unsigned long addr)
6759{
6760	return in_lock_functions(addr) ||
6761		(addr >= (unsigned long)__sched_text_start
6762		&& addr < (unsigned long)__sched_text_end);
6763}
6764
6765#ifdef CONFIG_CGROUP_SCHED
6766struct task_group root_task_group;
6767LIST_HEAD(task_groups);
6768#endif
6769
6770DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6771
6772void __init sched_init(void)
6773{
6774	int i, j;
6775	unsigned long alloc_size = 0, ptr;
6776
6777#ifdef CONFIG_FAIR_GROUP_SCHED
6778	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6779#endif
6780#ifdef CONFIG_RT_GROUP_SCHED
6781	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6782#endif
6783#ifdef CONFIG_CPUMASK_OFFSTACK
6784	alloc_size += num_possible_cpus() * cpumask_size();
6785#endif
6786	if (alloc_size) {
6787		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6788
6789#ifdef CONFIG_FAIR_GROUP_SCHED
6790		root_task_group.se = (struct sched_entity **)ptr;
6791		ptr += nr_cpu_ids * sizeof(void **);
6792
6793		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6794		ptr += nr_cpu_ids * sizeof(void **);
6795
6796#endif /* CONFIG_FAIR_GROUP_SCHED */
6797#ifdef CONFIG_RT_GROUP_SCHED
6798		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6799		ptr += nr_cpu_ids * sizeof(void **);
6800
6801		root_task_group.rt_rq = (struct rt_rq **)ptr;
6802		ptr += nr_cpu_ids * sizeof(void **);
6803
6804#endif /* CONFIG_RT_GROUP_SCHED */
6805#ifdef CONFIG_CPUMASK_OFFSTACK
6806		for_each_possible_cpu(i) {
6807			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6808			ptr += cpumask_size();
6809		}
6810#endif /* CONFIG_CPUMASK_OFFSTACK */
6811	}
6812
6813#ifdef CONFIG_SMP
6814	init_defrootdomain();
6815#endif
6816
6817	init_rt_bandwidth(&def_rt_bandwidth,
6818			global_rt_period(), global_rt_runtime());
6819
6820#ifdef CONFIG_RT_GROUP_SCHED
6821	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6822			global_rt_period(), global_rt_runtime());
6823#endif /* CONFIG_RT_GROUP_SCHED */
6824
6825#ifdef CONFIG_CGROUP_SCHED
6826	list_add(&root_task_group.list, &task_groups);
6827	INIT_LIST_HEAD(&root_task_group.children);
6828	INIT_LIST_HEAD(&root_task_group.siblings);
6829	autogroup_init(&init_task);
6830
6831#endif /* CONFIG_CGROUP_SCHED */
6832
6833#ifdef CONFIG_CGROUP_CPUACCT
6834	root_cpuacct.cpustat = &kernel_cpustat;
6835	root_cpuacct.cpuusage = alloc_percpu(u64);
6836	/* Too early, not expected to fail */
6837	BUG_ON(!root_cpuacct.cpuusage);
6838#endif
6839	for_each_possible_cpu(i) {
6840		struct rq *rq;
6841
6842		rq = cpu_rq(i);
6843		raw_spin_lock_init(&rq->lock);
6844		rq->nr_running = 0;
6845		rq->calc_load_active = 0;
6846		rq->calc_load_update = jiffies + LOAD_FREQ;
6847		init_cfs_rq(&rq->cfs);
6848		init_rt_rq(&rq->rt, rq);
6849#ifdef CONFIG_FAIR_GROUP_SCHED
6850		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6851		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6852		/*
6853		 * How much cpu bandwidth does root_task_group get?
6854		 *
6855		 * In case of task-groups formed thr' the cgroup filesystem, it
6856		 * gets 100% of the cpu resources in the system. This overall
6857		 * system cpu resource is divided among the tasks of
6858		 * root_task_group and its child task-groups in a fair manner,
6859		 * based on each entity's (task or task-group's) weight
6860		 * (se->load.weight).
6861		 *
6862		 * In other words, if root_task_group has 10 tasks of weight
6863		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6864		 * then A0's share of the cpu resource is:
6865		 *
6866		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6867		 *
6868		 * We achieve this by letting root_task_group's tasks sit
6869		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6870		 */
6871		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6872		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6873#endif /* CONFIG_FAIR_GROUP_SCHED */
6874
6875		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6876#ifdef CONFIG_RT_GROUP_SCHED
6877		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6878		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6879#endif
6880
6881		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6882			rq->cpu_load[j] = 0;
6883
6884		rq->last_load_update_tick = jiffies;
6885
6886#ifdef CONFIG_SMP
6887		rq->sd = NULL;
6888		rq->rd = NULL;
6889		rq->cpu_power = SCHED_POWER_SCALE;
6890		rq->post_schedule = 0;
6891		rq->active_balance = 0;
6892		rq->next_balance = jiffies;
6893		rq->push_cpu = 0;
6894		rq->cpu = i;
6895		rq->online = 0;
6896		rq->idle_stamp = 0;
6897		rq->avg_idle = 2*sysctl_sched_migration_cost;
6898
6899		INIT_LIST_HEAD(&rq->cfs_tasks);
6900
6901		rq_attach_root(rq, &def_root_domain);
6902#ifdef CONFIG_NO_HZ
6903		rq->nohz_flags = 0;
6904#endif
6905#endif
6906		init_rq_hrtick(rq);
6907		atomic_set(&rq->nr_iowait, 0);
6908	}
6909
6910	set_load_weight(&init_task);
6911
6912#ifdef CONFIG_PREEMPT_NOTIFIERS
6913	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6914#endif
6915
6916#ifdef CONFIG_RT_MUTEXES
6917	plist_head_init(&init_task.pi_waiters);
6918#endif
6919
6920	/*
6921	 * The boot idle thread does lazy MMU switching as well:
6922	 */
6923	atomic_inc(&init_mm.mm_count);
6924	enter_lazy_tlb(&init_mm, current);
6925
6926	/*
6927	 * Make us the idle thread. Technically, schedule() should not be
6928	 * called from this thread, however somewhere below it might be,
6929	 * but because we are the idle thread, we just pick up running again
6930	 * when this runqueue becomes "idle".
6931	 */
6932	init_idle(current, smp_processor_id());
6933
6934	calc_load_update = jiffies + LOAD_FREQ;
6935
6936	/*
6937	 * During early bootup we pretend to be a normal task:
6938	 */
6939	current->sched_class = &fair_sched_class;
6940
6941#ifdef CONFIG_SMP
6942	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6943	/* May be allocated at isolcpus cmdline parse time */
6944	if (cpu_isolated_map == NULL)
6945		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6946	idle_thread_set_boot_cpu();
6947#endif
6948	init_sched_fair_class();
6949
6950	scheduler_running = 1;
6951}
6952
6953#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6954static inline int preempt_count_equals(int preempt_offset)
6955{
6956	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6957
6958	return (nested == preempt_offset);
6959}
6960
6961void __might_sleep(const char *file, int line, int preempt_offset)
6962{
6963	static unsigned long prev_jiffy;	/* ratelimiting */
6964
6965	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6966	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6967	    system_state != SYSTEM_RUNNING || oops_in_progress)
6968		return;
6969	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6970		return;
6971	prev_jiffy = jiffies;
6972
6973	printk(KERN_ERR
6974		"BUG: sleeping function called from invalid context at %s:%d\n",
6975			file, line);
6976	printk(KERN_ERR
6977		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6978			in_atomic(), irqs_disabled(),
6979			current->pid, current->comm);
6980
6981	debug_show_held_locks(current);
6982	if (irqs_disabled())
6983		print_irqtrace_events(current);
6984	dump_stack();
6985}
6986EXPORT_SYMBOL(__might_sleep);
6987#endif
6988
6989#ifdef CONFIG_MAGIC_SYSRQ
6990static void normalize_task(struct rq *rq, struct task_struct *p)
6991{
6992	const struct sched_class *prev_class = p->sched_class;
6993	int old_prio = p->prio;
6994	int on_rq;
6995
6996	on_rq = p->on_rq;
6997	if (on_rq)
6998		dequeue_task(rq, p, 0);
6999	__setscheduler(rq, p, SCHED_NORMAL, 0);
7000	if (on_rq) {
7001		enqueue_task(rq, p, 0);
7002		resched_task(rq->curr);
7003	}
7004
7005	check_class_changed(rq, p, prev_class, old_prio);
7006}
7007
7008void normalize_rt_tasks(void)
7009{
7010	struct task_struct *g, *p;
7011	unsigned long flags;
7012	struct rq *rq;
7013
7014	read_lock_irqsave(&tasklist_lock, flags);
7015	do_each_thread(g, p) {
7016		/*
7017		 * Only normalize user tasks:
7018		 */
7019		if (!p->mm)
7020			continue;
7021
7022		p->se.exec_start		= 0;
7023#ifdef CONFIG_SCHEDSTATS
7024		p->se.statistics.wait_start	= 0;
7025		p->se.statistics.sleep_start	= 0;
7026		p->se.statistics.block_start	= 0;
7027#endif
7028
7029		if (!rt_task(p)) {
7030			/*
7031			 * Renice negative nice level userspace
7032			 * tasks back to 0:
7033			 */
7034			if (TASK_NICE(p) < 0 && p->mm)
7035				set_user_nice(p, 0);
7036			continue;
7037		}
7038
7039		raw_spin_lock(&p->pi_lock);
7040		rq = __task_rq_lock(p);
7041
7042		normalize_task(rq, p);
7043
7044		__task_rq_unlock(rq);
7045		raw_spin_unlock(&p->pi_lock);
7046	} while_each_thread(g, p);
7047
7048	read_unlock_irqrestore(&tasklist_lock, flags);
7049}
7050
7051#endif /* CONFIG_MAGIC_SYSRQ */
7052
7053#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7054/*
7055 * These functions are only useful for the IA64 MCA handling, or kdb.
7056 *
7057 * They can only be called when the whole system has been
7058 * stopped - every CPU needs to be quiescent, and no scheduling
7059 * activity can take place. Using them for anything else would
7060 * be a serious bug, and as a result, they aren't even visible
7061 * under any other configuration.
7062 */
7063
7064/**
7065 * curr_task - return the current task for a given cpu.
7066 * @cpu: the processor in question.
7067 *
7068 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7069 */
7070struct task_struct *curr_task(int cpu)
7071{
7072	return cpu_curr(cpu);
7073}
7074
7075#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7076
7077#ifdef CONFIG_IA64
7078/**
7079 * set_curr_task - set the current task for a given cpu.
7080 * @cpu: the processor in question.
7081 * @p: the task pointer to set.
7082 *
7083 * Description: This function must only be used when non-maskable interrupts
7084 * are serviced on a separate stack. It allows the architecture to switch the
7085 * notion of the current task on a cpu in a non-blocking manner. This function
7086 * must be called with all CPU's synchronized, and interrupts disabled, the
7087 * and caller must save the original value of the current task (see
7088 * curr_task() above) and restore that value before reenabling interrupts and
7089 * re-starting the system.
7090 *
7091 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7092 */
7093void set_curr_task(int cpu, struct task_struct *p)
7094{
7095	cpu_curr(cpu) = p;
7096}
7097
7098#endif
7099
7100#ifdef CONFIG_CGROUP_SCHED
7101/* task_group_lock serializes the addition/removal of task groups */
7102static DEFINE_SPINLOCK(task_group_lock);
7103
7104static void free_sched_group(struct task_group *tg)
7105{
7106	free_fair_sched_group(tg);
7107	free_rt_sched_group(tg);
7108	autogroup_free(tg);
7109	kfree(tg);
7110}
7111
7112/* allocate runqueue etc for a new task group */
7113struct task_group *sched_create_group(struct task_group *parent)
7114{
7115	struct task_group *tg;
7116	unsigned long flags;
7117
7118	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7119	if (!tg)
7120		return ERR_PTR(-ENOMEM);
7121
7122	if (!alloc_fair_sched_group(tg, parent))
7123		goto err;
7124
7125	if (!alloc_rt_sched_group(tg, parent))
7126		goto err;
7127
7128	spin_lock_irqsave(&task_group_lock, flags);
7129	list_add_rcu(&tg->list, &task_groups);
7130
7131	WARN_ON(!parent); /* root should already exist */
7132
7133	tg->parent = parent;
7134	INIT_LIST_HEAD(&tg->children);
7135	list_add_rcu(&tg->siblings, &parent->children);
7136	spin_unlock_irqrestore(&task_group_lock, flags);
7137
7138	return tg;
7139
7140err:
7141	free_sched_group(tg);
7142	return ERR_PTR(-ENOMEM);
7143}
7144
7145/* rcu callback to free various structures associated with a task group */
7146static void free_sched_group_rcu(struct rcu_head *rhp)
7147{
7148	/* now it should be safe to free those cfs_rqs */
7149	free_sched_group(container_of(rhp, struct task_group, rcu));
7150}
7151
7152/* Destroy runqueue etc associated with a task group */
7153void sched_destroy_group(struct task_group *tg)
7154{
7155	unsigned long flags;
7156	int i;
7157
7158	/* end participation in shares distribution */
7159	for_each_possible_cpu(i)
7160		unregister_fair_sched_group(tg, i);
7161
7162	spin_lock_irqsave(&task_group_lock, flags);
7163	list_del_rcu(&tg->list);
7164	list_del_rcu(&tg->siblings);
7165	spin_unlock_irqrestore(&task_group_lock, flags);
7166
7167	/* wait for possible concurrent references to cfs_rqs complete */
7168	call_rcu(&tg->rcu, free_sched_group_rcu);
7169}
7170
7171/* change task's runqueue when it moves between groups.
7172 *	The caller of this function should have put the task in its new group
7173 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7174 *	reflect its new group.
7175 */
7176void sched_move_task(struct task_struct *tsk)
7177{
7178	struct task_group *tg;
7179	int on_rq, running;
7180	unsigned long flags;
7181	struct rq *rq;
7182
7183	rq = task_rq_lock(tsk, &flags);
7184
7185	running = task_current(rq, tsk);
7186	on_rq = tsk->on_rq;
7187
7188	if (on_rq)
7189		dequeue_task(rq, tsk, 0);
7190	if (unlikely(running))
7191		tsk->sched_class->put_prev_task(rq, tsk);
7192
7193	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7194				lockdep_is_held(&tsk->sighand->siglock)),
7195			  struct task_group, css);
7196	tg = autogroup_task_group(tsk, tg);
7197	tsk->sched_task_group = tg;
7198
7199#ifdef CONFIG_FAIR_GROUP_SCHED
7200	if (tsk->sched_class->task_move_group)
7201		tsk->sched_class->task_move_group(tsk, on_rq);
7202	else
7203#endif
7204		set_task_rq(tsk, task_cpu(tsk));
7205
7206	if (unlikely(running))
7207		tsk->sched_class->set_curr_task(rq);
7208	if (on_rq)
7209		enqueue_task(rq, tsk, 0);
7210
7211	task_rq_unlock(rq, tsk, &flags);
7212}
7213#endif /* CONFIG_CGROUP_SCHED */
7214
7215#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7216static unsigned long to_ratio(u64 period, u64 runtime)
7217{
7218	if (runtime == RUNTIME_INF)
7219		return 1ULL << 20;
7220
7221	return div64_u64(runtime << 20, period);
7222}
7223#endif
7224
7225#ifdef CONFIG_RT_GROUP_SCHED
7226/*
7227 * Ensure that the real time constraints are schedulable.
7228 */
7229static DEFINE_MUTEX(rt_constraints_mutex);
7230
7231/* Must be called with tasklist_lock held */
7232static inline int tg_has_rt_tasks(struct task_group *tg)
7233{
7234	struct task_struct *g, *p;
7235
7236	do_each_thread(g, p) {
7237		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7238			return 1;
7239	} while_each_thread(g, p);
7240
7241	return 0;
7242}
7243
7244struct rt_schedulable_data {
7245	struct task_group *tg;
7246	u64 rt_period;
7247	u64 rt_runtime;
7248};
7249
7250static int tg_rt_schedulable(struct task_group *tg, void *data)
7251{
7252	struct rt_schedulable_data *d = data;
7253	struct task_group *child;
7254	unsigned long total, sum = 0;
7255	u64 period, runtime;
7256
7257	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7258	runtime = tg->rt_bandwidth.rt_runtime;
7259
7260	if (tg == d->tg) {
7261		period = d->rt_period;
7262		runtime = d->rt_runtime;
7263	}
7264
7265	/*
7266	 * Cannot have more runtime than the period.
7267	 */
7268	if (runtime > period && runtime != RUNTIME_INF)
7269		return -EINVAL;
7270
7271	/*
7272	 * Ensure we don't starve existing RT tasks.
7273	 */
7274	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7275		return -EBUSY;
7276
7277	total = to_ratio(period, runtime);
7278
7279	/*
7280	 * Nobody can have more than the global setting allows.
7281	 */
7282	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7283		return -EINVAL;
7284
7285	/*
7286	 * The sum of our children's runtime should not exceed our own.
7287	 */
7288	list_for_each_entry_rcu(child, &tg->children, siblings) {
7289		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7290		runtime = child->rt_bandwidth.rt_runtime;
7291
7292		if (child == d->tg) {
7293			period = d->rt_period;
7294			runtime = d->rt_runtime;
7295		}
7296
7297		sum += to_ratio(period, runtime);
7298	}
7299
7300	if (sum > total)
7301		return -EINVAL;
7302
7303	return 0;
7304}
7305
7306static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7307{
7308	int ret;
7309
7310	struct rt_schedulable_data data = {
7311		.tg = tg,
7312		.rt_period = period,
7313		.rt_runtime = runtime,
7314	};
7315
7316	rcu_read_lock();
7317	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7318	rcu_read_unlock();
7319
7320	return ret;
7321}
7322
7323static int tg_set_rt_bandwidth(struct task_group *tg,
7324		u64 rt_period, u64 rt_runtime)
7325{
7326	int i, err = 0;
7327
7328	mutex_lock(&rt_constraints_mutex);
7329	read_lock(&tasklist_lock);
7330	err = __rt_schedulable(tg, rt_period, rt_runtime);
7331	if (err)
7332		goto unlock;
7333
7334	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7335	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7336	tg->rt_bandwidth.rt_runtime = rt_runtime;
7337
7338	for_each_possible_cpu(i) {
7339		struct rt_rq *rt_rq = tg->rt_rq[i];
7340
7341		raw_spin_lock(&rt_rq->rt_runtime_lock);
7342		rt_rq->rt_runtime = rt_runtime;
7343		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7344	}
7345	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7346unlock:
7347	read_unlock(&tasklist_lock);
7348	mutex_unlock(&rt_constraints_mutex);
7349
7350	return err;
7351}
7352
7353int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7354{
7355	u64 rt_runtime, rt_period;
7356
7357	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7358	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7359	if (rt_runtime_us < 0)
7360		rt_runtime = RUNTIME_INF;
7361
7362	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7363}
7364
7365long sched_group_rt_runtime(struct task_group *tg)
7366{
7367	u64 rt_runtime_us;
7368
7369	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7370		return -1;
7371
7372	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7373	do_div(rt_runtime_us, NSEC_PER_USEC);
7374	return rt_runtime_us;
7375}
7376
7377int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7378{
7379	u64 rt_runtime, rt_period;
7380
7381	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7382	rt_runtime = tg->rt_bandwidth.rt_runtime;
7383
7384	if (rt_period == 0)
7385		return -EINVAL;
7386
7387	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7388}
7389
7390long sched_group_rt_period(struct task_group *tg)
7391{
7392	u64 rt_period_us;
7393
7394	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7395	do_div(rt_period_us, NSEC_PER_USEC);
7396	return rt_period_us;
7397}
7398
7399static int sched_rt_global_constraints(void)
7400{
7401	u64 runtime, period;
7402	int ret = 0;
7403
7404	if (sysctl_sched_rt_period <= 0)
7405		return -EINVAL;
7406
7407	runtime = global_rt_runtime();
7408	period = global_rt_period();
7409
7410	/*
7411	 * Sanity check on the sysctl variables.
7412	 */
7413	if (runtime > period && runtime != RUNTIME_INF)
7414		return -EINVAL;
7415
7416	mutex_lock(&rt_constraints_mutex);
7417	read_lock(&tasklist_lock);
7418	ret = __rt_schedulable(NULL, 0, 0);
7419	read_unlock(&tasklist_lock);
7420	mutex_unlock(&rt_constraints_mutex);
7421
7422	return ret;
7423}
7424
7425int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7426{
7427	/* Don't accept realtime tasks when there is no way for them to run */
7428	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7429		return 0;
7430
7431	return 1;
7432}
7433
7434#else /* !CONFIG_RT_GROUP_SCHED */
7435static int sched_rt_global_constraints(void)
7436{
7437	unsigned long flags;
7438	int i;
7439
7440	if (sysctl_sched_rt_period <= 0)
7441		return -EINVAL;
7442
7443	/*
7444	 * There's always some RT tasks in the root group
7445	 * -- migration, kstopmachine etc..
7446	 */
7447	if (sysctl_sched_rt_runtime == 0)
7448		return -EBUSY;
7449
7450	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7451	for_each_possible_cpu(i) {
7452		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7453
7454		raw_spin_lock(&rt_rq->rt_runtime_lock);
7455		rt_rq->rt_runtime = global_rt_runtime();
7456		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7457	}
7458	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7459
7460	return 0;
7461}
7462#endif /* CONFIG_RT_GROUP_SCHED */
7463
7464int sched_rt_handler(struct ctl_table *table, int write,
7465		void __user *buffer, size_t *lenp,
7466		loff_t *ppos)
7467{
7468	int ret;
7469	int old_period, old_runtime;
7470	static DEFINE_MUTEX(mutex);
7471
7472	mutex_lock(&mutex);
7473	old_period = sysctl_sched_rt_period;
7474	old_runtime = sysctl_sched_rt_runtime;
7475
7476	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7477
7478	if (!ret && write) {
7479		ret = sched_rt_global_constraints();
7480		if (ret) {
7481			sysctl_sched_rt_period = old_period;
7482			sysctl_sched_rt_runtime = old_runtime;
7483		} else {
7484			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7485			def_rt_bandwidth.rt_period =
7486				ns_to_ktime(global_rt_period());
7487		}
7488	}
7489	mutex_unlock(&mutex);
7490
7491	return ret;
7492}
7493
7494#ifdef CONFIG_CGROUP_SCHED
7495
7496/* return corresponding task_group object of a cgroup */
7497static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7498{
7499	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7500			    struct task_group, css);
7501}
7502
7503static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7504{
7505	struct task_group *tg, *parent;
7506
7507	if (!cgrp->parent) {
7508		/* This is early initialization for the top cgroup */
7509		return &root_task_group.css;
7510	}
7511
7512	parent = cgroup_tg(cgrp->parent);
7513	tg = sched_create_group(parent);
7514	if (IS_ERR(tg))
7515		return ERR_PTR(-ENOMEM);
7516
7517	return &tg->css;
7518}
7519
7520static void cpu_cgroup_destroy(struct cgroup *cgrp)
7521{
7522	struct task_group *tg = cgroup_tg(cgrp);
7523
7524	sched_destroy_group(tg);
7525}
7526
7527static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7528				 struct cgroup_taskset *tset)
7529{
7530	struct task_struct *task;
7531
7532	cgroup_taskset_for_each(task, cgrp, tset) {
7533#ifdef CONFIG_RT_GROUP_SCHED
7534		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7535			return -EINVAL;
7536#else
7537		/* We don't support RT-tasks being in separate groups */
7538		if (task->sched_class != &fair_sched_class)
7539			return -EINVAL;
7540#endif
7541	}
7542	return 0;
7543}
7544
7545static void cpu_cgroup_attach(struct cgroup *cgrp,
7546			      struct cgroup_taskset *tset)
7547{
7548	struct task_struct *task;
7549
7550	cgroup_taskset_for_each(task, cgrp, tset)
7551		sched_move_task(task);
7552}
7553
7554static void
7555cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7556		struct task_struct *task)
7557{
7558	/*
7559	 * cgroup_exit() is called in the copy_process() failure path.
7560	 * Ignore this case since the task hasn't ran yet, this avoids
7561	 * trying to poke a half freed task state from generic code.
7562	 */
7563	if (!(task->flags & PF_EXITING))
7564		return;
7565
7566	sched_move_task(task);
7567}
7568
7569#ifdef CONFIG_FAIR_GROUP_SCHED
7570static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7571				u64 shareval)
7572{
7573	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7574}
7575
7576static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7577{
7578	struct task_group *tg = cgroup_tg(cgrp);
7579
7580	return (u64) scale_load_down(tg->shares);
7581}
7582
7583#ifdef CONFIG_CFS_BANDWIDTH
7584static DEFINE_MUTEX(cfs_constraints_mutex);
7585
7586const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7587const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7588
7589static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7590
7591static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7592{
7593	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7594	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7595
7596	if (tg == &root_task_group)
7597		return -EINVAL;
7598
7599	/*
7600	 * Ensure we have at some amount of bandwidth every period.  This is
7601	 * to prevent reaching a state of large arrears when throttled via
7602	 * entity_tick() resulting in prolonged exit starvation.
7603	 */
7604	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7605		return -EINVAL;
7606
7607	/*
7608	 * Likewise, bound things on the otherside by preventing insane quota
7609	 * periods.  This also allows us to normalize in computing quota
7610	 * feasibility.
7611	 */
7612	if (period > max_cfs_quota_period)
7613		return -EINVAL;
7614
7615	mutex_lock(&cfs_constraints_mutex);
7616	ret = __cfs_schedulable(tg, period, quota);
7617	if (ret)
7618		goto out_unlock;
7619
7620	runtime_enabled = quota != RUNTIME_INF;
7621	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7622	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7623	raw_spin_lock_irq(&cfs_b->lock);
7624	cfs_b->period = ns_to_ktime(period);
7625	cfs_b->quota = quota;
7626
7627	__refill_cfs_bandwidth_runtime(cfs_b);
7628	/* restart the period timer (if active) to handle new period expiry */
7629	if (runtime_enabled && cfs_b->timer_active) {
7630		/* force a reprogram */
7631		cfs_b->timer_active = 0;
7632		__start_cfs_bandwidth(cfs_b);
7633	}
7634	raw_spin_unlock_irq(&cfs_b->lock);
7635
7636	for_each_possible_cpu(i) {
7637		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7638		struct rq *rq = cfs_rq->rq;
7639
7640		raw_spin_lock_irq(&rq->lock);
7641		cfs_rq->runtime_enabled = runtime_enabled;
7642		cfs_rq->runtime_remaining = 0;
7643
7644		if (cfs_rq->throttled)
7645			unthrottle_cfs_rq(cfs_rq);
7646		raw_spin_unlock_irq(&rq->lock);
7647	}
7648out_unlock:
7649	mutex_unlock(&cfs_constraints_mutex);
7650
7651	return ret;
7652}
7653
7654int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7655{
7656	u64 quota, period;
7657
7658	period = ktime_to_ns(tg->cfs_bandwidth.period);
7659	if (cfs_quota_us < 0)
7660		quota = RUNTIME_INF;
7661	else
7662		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7663
7664	return tg_set_cfs_bandwidth(tg, period, quota);
7665}
7666
7667long tg_get_cfs_quota(struct task_group *tg)
7668{
7669	u64 quota_us;
7670
7671	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7672		return -1;
7673
7674	quota_us = tg->cfs_bandwidth.quota;
7675	do_div(quota_us, NSEC_PER_USEC);
7676
7677	return quota_us;
7678}
7679
7680int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7681{
7682	u64 quota, period;
7683
7684	period = (u64)cfs_period_us * NSEC_PER_USEC;
7685	quota = tg->cfs_bandwidth.quota;
7686
7687	return tg_set_cfs_bandwidth(tg, period, quota);
7688}
7689
7690long tg_get_cfs_period(struct task_group *tg)
7691{
7692	u64 cfs_period_us;
7693
7694	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7695	do_div(cfs_period_us, NSEC_PER_USEC);
7696
7697	return cfs_period_us;
7698}
7699
7700static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7701{
7702	return tg_get_cfs_quota(cgroup_tg(cgrp));
7703}
7704
7705static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7706				s64 cfs_quota_us)
7707{
7708	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7709}
7710
7711static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7712{
7713	return tg_get_cfs_period(cgroup_tg(cgrp));
7714}
7715
7716static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7717				u64 cfs_period_us)
7718{
7719	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7720}
7721
7722struct cfs_schedulable_data {
7723	struct task_group *tg;
7724	u64 period, quota;
7725};
7726
7727/*
7728 * normalize group quota/period to be quota/max_period
7729 * note: units are usecs
7730 */
7731static u64 normalize_cfs_quota(struct task_group *tg,
7732			       struct cfs_schedulable_data *d)
7733{
7734	u64 quota, period;
7735
7736	if (tg == d->tg) {
7737		period = d->period;
7738		quota = d->quota;
7739	} else {
7740		period = tg_get_cfs_period(tg);
7741		quota = tg_get_cfs_quota(tg);
7742	}
7743
7744	/* note: these should typically be equivalent */
7745	if (quota == RUNTIME_INF || quota == -1)
7746		return RUNTIME_INF;
7747
7748	return to_ratio(period, quota);
7749}
7750
7751static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7752{
7753	struct cfs_schedulable_data *d = data;
7754	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7755	s64 quota = 0, parent_quota = -1;
7756
7757	if (!tg->parent) {
7758		quota = RUNTIME_INF;
7759	} else {
7760		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7761
7762		quota = normalize_cfs_quota(tg, d);
7763		parent_quota = parent_b->hierarchal_quota;
7764
7765		/*
7766		 * ensure max(child_quota) <= parent_quota, inherit when no
7767		 * limit is set
7768		 */
7769		if (quota == RUNTIME_INF)
7770			quota = parent_quota;
7771		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7772			return -EINVAL;
7773	}
7774	cfs_b->hierarchal_quota = quota;
7775
7776	return 0;
7777}
7778
7779static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7780{
7781	int ret;
7782	struct cfs_schedulable_data data = {
7783		.tg = tg,
7784		.period = period,
7785		.quota = quota,
7786	};
7787
7788	if (quota != RUNTIME_INF) {
7789		do_div(data.period, NSEC_PER_USEC);
7790		do_div(data.quota, NSEC_PER_USEC);
7791	}
7792
7793	rcu_read_lock();
7794	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7795	rcu_read_unlock();
7796
7797	return ret;
7798}
7799
7800static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7801		struct cgroup_map_cb *cb)
7802{
7803	struct task_group *tg = cgroup_tg(cgrp);
7804	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7805
7806	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7807	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7808	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7809
7810	return 0;
7811}
7812#endif /* CONFIG_CFS_BANDWIDTH */
7813#endif /* CONFIG_FAIR_GROUP_SCHED */
7814
7815#ifdef CONFIG_RT_GROUP_SCHED
7816static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7817				s64 val)
7818{
7819	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7820}
7821
7822static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7823{
7824	return sched_group_rt_runtime(cgroup_tg(cgrp));
7825}
7826
7827static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7828		u64 rt_period_us)
7829{
7830	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7831}
7832
7833static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7834{
7835	return sched_group_rt_period(cgroup_tg(cgrp));
7836}
7837#endif /* CONFIG_RT_GROUP_SCHED */
7838
7839static struct cftype cpu_files[] = {
7840#ifdef CONFIG_FAIR_GROUP_SCHED
7841	{
7842		.name = "shares",
7843		.read_u64 = cpu_shares_read_u64,
7844		.write_u64 = cpu_shares_write_u64,
7845	},
7846#endif
7847#ifdef CONFIG_CFS_BANDWIDTH
7848	{
7849		.name = "cfs_quota_us",
7850		.read_s64 = cpu_cfs_quota_read_s64,
7851		.write_s64 = cpu_cfs_quota_write_s64,
7852	},
7853	{
7854		.name = "cfs_period_us",
7855		.read_u64 = cpu_cfs_period_read_u64,
7856		.write_u64 = cpu_cfs_period_write_u64,
7857	},
7858	{
7859		.name = "stat",
7860		.read_map = cpu_stats_show,
7861	},
7862#endif
7863#ifdef CONFIG_RT_GROUP_SCHED
7864	{
7865		.name = "rt_runtime_us",
7866		.read_s64 = cpu_rt_runtime_read,
7867		.write_s64 = cpu_rt_runtime_write,
7868	},
7869	{
7870		.name = "rt_period_us",
7871		.read_u64 = cpu_rt_period_read_uint,
7872		.write_u64 = cpu_rt_period_write_uint,
7873	},
7874#endif
7875	{ }	/* terminate */
7876};
7877
7878struct cgroup_subsys cpu_cgroup_subsys = {
7879	.name		= "cpu",
7880	.create		= cpu_cgroup_create,
7881	.destroy	= cpu_cgroup_destroy,
7882	.can_attach	= cpu_cgroup_can_attach,
7883	.attach		= cpu_cgroup_attach,
7884	.exit		= cpu_cgroup_exit,
7885	.subsys_id	= cpu_cgroup_subsys_id,
7886	.base_cftypes	= cpu_files,
7887	.early_init	= 1,
7888};
7889
7890#endif	/* CONFIG_CGROUP_SCHED */
7891
7892#ifdef CONFIG_CGROUP_CPUACCT
7893
7894/*
7895 * CPU accounting code for task groups.
7896 *
7897 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7898 * (balbir@in.ibm.com).
7899 */
7900
7901struct cpuacct root_cpuacct;
7902
7903/* create a new cpu accounting group */
7904static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7905{
7906	struct cpuacct *ca;
7907
7908	if (!cgrp->parent)
7909		return &root_cpuacct.css;
7910
7911	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7912	if (!ca)
7913		goto out;
7914
7915	ca->cpuusage = alloc_percpu(u64);
7916	if (!ca->cpuusage)
7917		goto out_free_ca;
7918
7919	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7920	if (!ca->cpustat)
7921		goto out_free_cpuusage;
7922
7923	return &ca->css;
7924
7925out_free_cpuusage:
7926	free_percpu(ca->cpuusage);
7927out_free_ca:
7928	kfree(ca);
7929out:
7930	return ERR_PTR(-ENOMEM);
7931}
7932
7933/* destroy an existing cpu accounting group */
7934static void cpuacct_destroy(struct cgroup *cgrp)
7935{
7936	struct cpuacct *ca = cgroup_ca(cgrp);
7937
7938	free_percpu(ca->cpustat);
7939	free_percpu(ca->cpuusage);
7940	kfree(ca);
7941}
7942
7943static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7944{
7945	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7946	u64 data;
7947
7948#ifndef CONFIG_64BIT
7949	/*
7950	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7951	 */
7952	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7953	data = *cpuusage;
7954	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7955#else
7956	data = *cpuusage;
7957#endif
7958
7959	return data;
7960}
7961
7962static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7963{
7964	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7965
7966#ifndef CONFIG_64BIT
7967	/*
7968	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7969	 */
7970	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7971	*cpuusage = val;
7972	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7973#else
7974	*cpuusage = val;
7975#endif
7976}
7977
7978/* return total cpu usage (in nanoseconds) of a group */
7979static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7980{
7981	struct cpuacct *ca = cgroup_ca(cgrp);
7982	u64 totalcpuusage = 0;
7983	int i;
7984
7985	for_each_present_cpu(i)
7986		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7987
7988	return totalcpuusage;
7989}
7990
7991static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7992								u64 reset)
7993{
7994	struct cpuacct *ca = cgroup_ca(cgrp);
7995	int err = 0;
7996	int i;
7997
7998	if (reset) {
7999		err = -EINVAL;
8000		goto out;
8001	}
8002
8003	for_each_present_cpu(i)
8004		cpuacct_cpuusage_write(ca, i, 0);
8005
8006out:
8007	return err;
8008}
8009
8010static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8011				   struct seq_file *m)
8012{
8013	struct cpuacct *ca = cgroup_ca(cgroup);
8014	u64 percpu;
8015	int i;
8016
8017	for_each_present_cpu(i) {
8018		percpu = cpuacct_cpuusage_read(ca, i);
8019		seq_printf(m, "%llu ", (unsigned long long) percpu);
8020	}
8021	seq_printf(m, "\n");
8022	return 0;
8023}
8024
8025static const char *cpuacct_stat_desc[] = {
8026	[CPUACCT_STAT_USER] = "user",
8027	[CPUACCT_STAT_SYSTEM] = "system",
8028};
8029
8030static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8031			      struct cgroup_map_cb *cb)
8032{
8033	struct cpuacct *ca = cgroup_ca(cgrp);
8034	int cpu;
8035	s64 val = 0;
8036
8037	for_each_online_cpu(cpu) {
8038		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8039		val += kcpustat->cpustat[CPUTIME_USER];
8040		val += kcpustat->cpustat[CPUTIME_NICE];
8041	}
8042	val = cputime64_to_clock_t(val);
8043	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8044
8045	val = 0;
8046	for_each_online_cpu(cpu) {
8047		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8048		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8049		val += kcpustat->cpustat[CPUTIME_IRQ];
8050		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8051	}
8052
8053	val = cputime64_to_clock_t(val);
8054	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8055
8056	return 0;
8057}
8058
8059static struct cftype files[] = {
8060	{
8061		.name = "usage",
8062		.read_u64 = cpuusage_read,
8063		.write_u64 = cpuusage_write,
8064	},
8065	{
8066		.name = "usage_percpu",
8067		.read_seq_string = cpuacct_percpu_seq_read,
8068	},
8069	{
8070		.name = "stat",
8071		.read_map = cpuacct_stats_show,
8072	},
8073	{ }	/* terminate */
8074};
8075
8076/*
8077 * charge this task's execution time to its accounting group.
8078 *
8079 * called with rq->lock held.
8080 */
8081void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8082{
8083	struct cpuacct *ca;
8084	int cpu;
8085
8086	if (unlikely(!cpuacct_subsys.active))
8087		return;
8088
8089	cpu = task_cpu(tsk);
8090
8091	rcu_read_lock();
8092
8093	ca = task_ca(tsk);
8094
8095	for (; ca; ca = parent_ca(ca)) {
8096		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8097		*cpuusage += cputime;
8098	}
8099
8100	rcu_read_unlock();
8101}
8102
8103struct cgroup_subsys cpuacct_subsys = {
8104	.name = "cpuacct",
8105	.create = cpuacct_create,
8106	.destroy = cpuacct_destroy,
8107	.subsys_id = cpuacct_subsys_id,
8108	.base_cftypes = files,
8109};
8110#endif	/* CONFIG_CGROUP_CPUACCT */
8111