core.c revision 1c792db7f7957e2e34b9a164f08200e36a25dfd0
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74
75#include <asm/tlb.h>
76#include <asm/irq_regs.h>
77#ifdef CONFIG_PARAVIRT
78#include <asm/paravirt.h>
79#endif
80
81#include "sched.h"
82#include "../workqueue_sched.h"
83
84#define CREATE_TRACE_POINTS
85#include <trace/events/sched.h>
86
87void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88{
89	unsigned long delta;
90	ktime_t soft, hard, now;
91
92	for (;;) {
93		if (hrtimer_active(period_timer))
94			break;
95
96		now = hrtimer_cb_get_time(period_timer);
97		hrtimer_forward(period_timer, now, period);
98
99		soft = hrtimer_get_softexpires(period_timer);
100		hard = hrtimer_get_expires(period_timer);
101		delta = ktime_to_ns(ktime_sub(hard, soft));
102		__hrtimer_start_range_ns(period_timer, soft, delta,
103					 HRTIMER_MODE_ABS_PINNED, 0);
104	}
105}
106
107DEFINE_MUTEX(sched_domains_mutex);
108DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109
110static void update_rq_clock_task(struct rq *rq, s64 delta);
111
112void update_rq_clock(struct rq *rq)
113{
114	s64 delta;
115
116	if (rq->skip_clock_update > 0)
117		return;
118
119	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120	rq->clock += delta;
121	update_rq_clock_task(rq, delta);
122}
123
124/*
125 * Debugging: various feature bits
126 */
127
128#define SCHED_FEAT(name, enabled)	\
129	(1UL << __SCHED_FEAT_##name) * enabled |
130
131const_debug unsigned int sysctl_sched_features =
132#include "features.h"
133	0;
134
135#undef SCHED_FEAT
136
137#ifdef CONFIG_SCHED_DEBUG
138#define SCHED_FEAT(name, enabled)	\
139	#name ,
140
141static __read_mostly char *sched_feat_names[] = {
142#include "features.h"
143	NULL
144};
145
146#undef SCHED_FEAT
147
148static int sched_feat_show(struct seq_file *m, void *v)
149{
150	int i;
151
152	for (i = 0; sched_feat_names[i]; i++) {
153		if (!(sysctl_sched_features & (1UL << i)))
154			seq_puts(m, "NO_");
155		seq_printf(m, "%s ", sched_feat_names[i]);
156	}
157	seq_puts(m, "\n");
158
159	return 0;
160}
161
162static ssize_t
163sched_feat_write(struct file *filp, const char __user *ubuf,
164		size_t cnt, loff_t *ppos)
165{
166	char buf[64];
167	char *cmp;
168	int neg = 0;
169	int i;
170
171	if (cnt > 63)
172		cnt = 63;
173
174	if (copy_from_user(&buf, ubuf, cnt))
175		return -EFAULT;
176
177	buf[cnt] = 0;
178	cmp = strstrip(buf);
179
180	if (strncmp(cmp, "NO_", 3) == 0) {
181		neg = 1;
182		cmp += 3;
183	}
184
185	for (i = 0; sched_feat_names[i]; i++) {
186		if (strcmp(cmp, sched_feat_names[i]) == 0) {
187			if (neg)
188				sysctl_sched_features &= ~(1UL << i);
189			else
190				sysctl_sched_features |= (1UL << i);
191			break;
192		}
193	}
194
195	if (!sched_feat_names[i])
196		return -EINVAL;
197
198	*ppos += cnt;
199
200	return cnt;
201}
202
203static int sched_feat_open(struct inode *inode, struct file *filp)
204{
205	return single_open(filp, sched_feat_show, NULL);
206}
207
208static const struct file_operations sched_feat_fops = {
209	.open		= sched_feat_open,
210	.write		= sched_feat_write,
211	.read		= seq_read,
212	.llseek		= seq_lseek,
213	.release	= single_release,
214};
215
216static __init int sched_init_debug(void)
217{
218	debugfs_create_file("sched_features", 0644, NULL, NULL,
219			&sched_feat_fops);
220
221	return 0;
222}
223late_initcall(sched_init_debug);
224
225#endif
226
227/*
228 * Number of tasks to iterate in a single balance run.
229 * Limited because this is done with IRQs disabled.
230 */
231const_debug unsigned int sysctl_sched_nr_migrate = 32;
232
233/*
234 * period over which we average the RT time consumption, measured
235 * in ms.
236 *
237 * default: 1s
238 */
239const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
240
241/*
242 * period over which we measure -rt task cpu usage in us.
243 * default: 1s
244 */
245unsigned int sysctl_sched_rt_period = 1000000;
246
247__read_mostly int scheduler_running;
248
249/*
250 * part of the period that we allow rt tasks to run in us.
251 * default: 0.95s
252 */
253int sysctl_sched_rt_runtime = 950000;
254
255
256
257/*
258 * __task_rq_lock - lock the rq @p resides on.
259 */
260static inline struct rq *__task_rq_lock(struct task_struct *p)
261	__acquires(rq->lock)
262{
263	struct rq *rq;
264
265	lockdep_assert_held(&p->pi_lock);
266
267	for (;;) {
268		rq = task_rq(p);
269		raw_spin_lock(&rq->lock);
270		if (likely(rq == task_rq(p)))
271			return rq;
272		raw_spin_unlock(&rq->lock);
273	}
274}
275
276/*
277 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
278 */
279static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
280	__acquires(p->pi_lock)
281	__acquires(rq->lock)
282{
283	struct rq *rq;
284
285	for (;;) {
286		raw_spin_lock_irqsave(&p->pi_lock, *flags);
287		rq = task_rq(p);
288		raw_spin_lock(&rq->lock);
289		if (likely(rq == task_rq(p)))
290			return rq;
291		raw_spin_unlock(&rq->lock);
292		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
293	}
294}
295
296static void __task_rq_unlock(struct rq *rq)
297	__releases(rq->lock)
298{
299	raw_spin_unlock(&rq->lock);
300}
301
302static inline void
303task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
304	__releases(rq->lock)
305	__releases(p->pi_lock)
306{
307	raw_spin_unlock(&rq->lock);
308	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
309}
310
311/*
312 * this_rq_lock - lock this runqueue and disable interrupts.
313 */
314static struct rq *this_rq_lock(void)
315	__acquires(rq->lock)
316{
317	struct rq *rq;
318
319	local_irq_disable();
320	rq = this_rq();
321	raw_spin_lock(&rq->lock);
322
323	return rq;
324}
325
326#ifdef CONFIG_SCHED_HRTICK
327/*
328 * Use HR-timers to deliver accurate preemption points.
329 *
330 * Its all a bit involved since we cannot program an hrt while holding the
331 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
332 * reschedule event.
333 *
334 * When we get rescheduled we reprogram the hrtick_timer outside of the
335 * rq->lock.
336 */
337
338static void hrtick_clear(struct rq *rq)
339{
340	if (hrtimer_active(&rq->hrtick_timer))
341		hrtimer_cancel(&rq->hrtick_timer);
342}
343
344/*
345 * High-resolution timer tick.
346 * Runs from hardirq context with interrupts disabled.
347 */
348static enum hrtimer_restart hrtick(struct hrtimer *timer)
349{
350	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
351
352	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
353
354	raw_spin_lock(&rq->lock);
355	update_rq_clock(rq);
356	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
357	raw_spin_unlock(&rq->lock);
358
359	return HRTIMER_NORESTART;
360}
361
362#ifdef CONFIG_SMP
363/*
364 * called from hardirq (IPI) context
365 */
366static void __hrtick_start(void *arg)
367{
368	struct rq *rq = arg;
369
370	raw_spin_lock(&rq->lock);
371	hrtimer_restart(&rq->hrtick_timer);
372	rq->hrtick_csd_pending = 0;
373	raw_spin_unlock(&rq->lock);
374}
375
376/*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
381void hrtick_start(struct rq *rq, u64 delay)
382{
383	struct hrtimer *timer = &rq->hrtick_timer;
384	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
385
386	hrtimer_set_expires(timer, time);
387
388	if (rq == this_rq()) {
389		hrtimer_restart(timer);
390	} else if (!rq->hrtick_csd_pending) {
391		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
392		rq->hrtick_csd_pending = 1;
393	}
394}
395
396static int
397hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
398{
399	int cpu = (int)(long)hcpu;
400
401	switch (action) {
402	case CPU_UP_CANCELED:
403	case CPU_UP_CANCELED_FROZEN:
404	case CPU_DOWN_PREPARE:
405	case CPU_DOWN_PREPARE_FROZEN:
406	case CPU_DEAD:
407	case CPU_DEAD_FROZEN:
408		hrtick_clear(cpu_rq(cpu));
409		return NOTIFY_OK;
410	}
411
412	return NOTIFY_DONE;
413}
414
415static __init void init_hrtick(void)
416{
417	hotcpu_notifier(hotplug_hrtick, 0);
418}
419#else
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
428			HRTIMER_MODE_REL_PINNED, 0);
429}
430
431static inline void init_hrtick(void)
432{
433}
434#endif /* CONFIG_SMP */
435
436static void init_rq_hrtick(struct rq *rq)
437{
438#ifdef CONFIG_SMP
439	rq->hrtick_csd_pending = 0;
440
441	rq->hrtick_csd.flags = 0;
442	rq->hrtick_csd.func = __hrtick_start;
443	rq->hrtick_csd.info = rq;
444#endif
445
446	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
447	rq->hrtick_timer.function = hrtick;
448}
449#else	/* CONFIG_SCHED_HRTICK */
450static inline void hrtick_clear(struct rq *rq)
451{
452}
453
454static inline void init_rq_hrtick(struct rq *rq)
455{
456}
457
458static inline void init_hrtick(void)
459{
460}
461#endif	/* CONFIG_SCHED_HRTICK */
462
463/*
464 * resched_task - mark a task 'to be rescheduled now'.
465 *
466 * On UP this means the setting of the need_resched flag, on SMP it
467 * might also involve a cross-CPU call to trigger the scheduler on
468 * the target CPU.
469 */
470#ifdef CONFIG_SMP
471
472#ifndef tsk_is_polling
473#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
474#endif
475
476void resched_task(struct task_struct *p)
477{
478	int cpu;
479
480	assert_raw_spin_locked(&task_rq(p)->lock);
481
482	if (test_tsk_need_resched(p))
483		return;
484
485	set_tsk_need_resched(p);
486
487	cpu = task_cpu(p);
488	if (cpu == smp_processor_id())
489		return;
490
491	/* NEED_RESCHED must be visible before we test polling */
492	smp_mb();
493	if (!tsk_is_polling(p))
494		smp_send_reschedule(cpu);
495}
496
497void resched_cpu(int cpu)
498{
499	struct rq *rq = cpu_rq(cpu);
500	unsigned long flags;
501
502	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
503		return;
504	resched_task(cpu_curr(cpu));
505	raw_spin_unlock_irqrestore(&rq->lock, flags);
506}
507
508#ifdef CONFIG_NO_HZ
509/*
510 * In the semi idle case, use the nearest busy cpu for migrating timers
511 * from an idle cpu.  This is good for power-savings.
512 *
513 * We don't do similar optimization for completely idle system, as
514 * selecting an idle cpu will add more delays to the timers than intended
515 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
516 */
517int get_nohz_timer_target(void)
518{
519	int cpu = smp_processor_id();
520	int i;
521	struct sched_domain *sd;
522
523	rcu_read_lock();
524	for_each_domain(cpu, sd) {
525		for_each_cpu(i, sched_domain_span(sd)) {
526			if (!idle_cpu(i)) {
527				cpu = i;
528				goto unlock;
529			}
530		}
531	}
532unlock:
533	rcu_read_unlock();
534	return cpu;
535}
536/*
537 * When add_timer_on() enqueues a timer into the timer wheel of an
538 * idle CPU then this timer might expire before the next timer event
539 * which is scheduled to wake up that CPU. In case of a completely
540 * idle system the next event might even be infinite time into the
541 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
542 * leaves the inner idle loop so the newly added timer is taken into
543 * account when the CPU goes back to idle and evaluates the timer
544 * wheel for the next timer event.
545 */
546void wake_up_idle_cpu(int cpu)
547{
548	struct rq *rq = cpu_rq(cpu);
549
550	if (cpu == smp_processor_id())
551		return;
552
553	/*
554	 * This is safe, as this function is called with the timer
555	 * wheel base lock of (cpu) held. When the CPU is on the way
556	 * to idle and has not yet set rq->curr to idle then it will
557	 * be serialized on the timer wheel base lock and take the new
558	 * timer into account automatically.
559	 */
560	if (rq->curr != rq->idle)
561		return;
562
563	/*
564	 * We can set TIF_RESCHED on the idle task of the other CPU
565	 * lockless. The worst case is that the other CPU runs the
566	 * idle task through an additional NOOP schedule()
567	 */
568	set_tsk_need_resched(rq->idle);
569
570	/* NEED_RESCHED must be visible before we test polling */
571	smp_mb();
572	if (!tsk_is_polling(rq->idle))
573		smp_send_reschedule(cpu);
574}
575
576static inline bool got_nohz_idle_kick(void)
577{
578	int cpu = smp_processor_id();
579	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
580}
581
582#else /* CONFIG_NO_HZ */
583
584static inline bool got_nohz_idle_kick(void)
585{
586	return false;
587}
588
589#endif /* CONFIG_NO_HZ */
590
591void sched_avg_update(struct rq *rq)
592{
593	s64 period = sched_avg_period();
594
595	while ((s64)(rq->clock - rq->age_stamp) > period) {
596		/*
597		 * Inline assembly required to prevent the compiler
598		 * optimising this loop into a divmod call.
599		 * See __iter_div_u64_rem() for another example of this.
600		 */
601		asm("" : "+rm" (rq->age_stamp));
602		rq->age_stamp += period;
603		rq->rt_avg /= 2;
604	}
605}
606
607#else /* !CONFIG_SMP */
608void resched_task(struct task_struct *p)
609{
610	assert_raw_spin_locked(&task_rq(p)->lock);
611	set_tsk_need_resched(p);
612}
613#endif /* CONFIG_SMP */
614
615#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
616			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
617/*
618 * Iterate task_group tree rooted at *from, calling @down when first entering a
619 * node and @up when leaving it for the final time.
620 *
621 * Caller must hold rcu_lock or sufficient equivalent.
622 */
623int walk_tg_tree_from(struct task_group *from,
624			     tg_visitor down, tg_visitor up, void *data)
625{
626	struct task_group *parent, *child;
627	int ret;
628
629	parent = from;
630
631down:
632	ret = (*down)(parent, data);
633	if (ret)
634		goto out;
635	list_for_each_entry_rcu(child, &parent->children, siblings) {
636		parent = child;
637		goto down;
638
639up:
640		continue;
641	}
642	ret = (*up)(parent, data);
643	if (ret || parent == from)
644		goto out;
645
646	child = parent;
647	parent = parent->parent;
648	if (parent)
649		goto up;
650out:
651	return ret;
652}
653
654int tg_nop(struct task_group *tg, void *data)
655{
656	return 0;
657}
658#endif
659
660void update_cpu_load(struct rq *this_rq);
661
662static void set_load_weight(struct task_struct *p)
663{
664	int prio = p->static_prio - MAX_RT_PRIO;
665	struct load_weight *load = &p->se.load;
666
667	/*
668	 * SCHED_IDLE tasks get minimal weight:
669	 */
670	if (p->policy == SCHED_IDLE) {
671		load->weight = scale_load(WEIGHT_IDLEPRIO);
672		load->inv_weight = WMULT_IDLEPRIO;
673		return;
674	}
675
676	load->weight = scale_load(prio_to_weight[prio]);
677	load->inv_weight = prio_to_wmult[prio];
678}
679
680static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
681{
682	update_rq_clock(rq);
683	sched_info_queued(p);
684	p->sched_class->enqueue_task(rq, p, flags);
685}
686
687static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
688{
689	update_rq_clock(rq);
690	sched_info_dequeued(p);
691	p->sched_class->dequeue_task(rq, p, flags);
692}
693
694/*
695 * activate_task - move a task to the runqueue.
696 */
697void activate_task(struct rq *rq, struct task_struct *p, int flags)
698{
699	if (task_contributes_to_load(p))
700		rq->nr_uninterruptible--;
701
702	enqueue_task(rq, p, flags);
703}
704
705/*
706 * deactivate_task - remove a task from the runqueue.
707 */
708void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
709{
710	if (task_contributes_to_load(p))
711		rq->nr_uninterruptible++;
712
713	dequeue_task(rq, p, flags);
714}
715
716#ifdef CONFIG_IRQ_TIME_ACCOUNTING
717
718/*
719 * There are no locks covering percpu hardirq/softirq time.
720 * They are only modified in account_system_vtime, on corresponding CPU
721 * with interrupts disabled. So, writes are safe.
722 * They are read and saved off onto struct rq in update_rq_clock().
723 * This may result in other CPU reading this CPU's irq time and can
724 * race with irq/account_system_vtime on this CPU. We would either get old
725 * or new value with a side effect of accounting a slice of irq time to wrong
726 * task when irq is in progress while we read rq->clock. That is a worthy
727 * compromise in place of having locks on each irq in account_system_time.
728 */
729static DEFINE_PER_CPU(u64, cpu_hardirq_time);
730static DEFINE_PER_CPU(u64, cpu_softirq_time);
731
732static DEFINE_PER_CPU(u64, irq_start_time);
733static int sched_clock_irqtime;
734
735void enable_sched_clock_irqtime(void)
736{
737	sched_clock_irqtime = 1;
738}
739
740void disable_sched_clock_irqtime(void)
741{
742	sched_clock_irqtime = 0;
743}
744
745#ifndef CONFIG_64BIT
746static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
747
748static inline void irq_time_write_begin(void)
749{
750	__this_cpu_inc(irq_time_seq.sequence);
751	smp_wmb();
752}
753
754static inline void irq_time_write_end(void)
755{
756	smp_wmb();
757	__this_cpu_inc(irq_time_seq.sequence);
758}
759
760static inline u64 irq_time_read(int cpu)
761{
762	u64 irq_time;
763	unsigned seq;
764
765	do {
766		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
767		irq_time = per_cpu(cpu_softirq_time, cpu) +
768			   per_cpu(cpu_hardirq_time, cpu);
769	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
770
771	return irq_time;
772}
773#else /* CONFIG_64BIT */
774static inline void irq_time_write_begin(void)
775{
776}
777
778static inline void irq_time_write_end(void)
779{
780}
781
782static inline u64 irq_time_read(int cpu)
783{
784	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
785}
786#endif /* CONFIG_64BIT */
787
788/*
789 * Called before incrementing preempt_count on {soft,}irq_enter
790 * and before decrementing preempt_count on {soft,}irq_exit.
791 */
792void account_system_vtime(struct task_struct *curr)
793{
794	unsigned long flags;
795	s64 delta;
796	int cpu;
797
798	if (!sched_clock_irqtime)
799		return;
800
801	local_irq_save(flags);
802
803	cpu = smp_processor_id();
804	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
805	__this_cpu_add(irq_start_time, delta);
806
807	irq_time_write_begin();
808	/*
809	 * We do not account for softirq time from ksoftirqd here.
810	 * We want to continue accounting softirq time to ksoftirqd thread
811	 * in that case, so as not to confuse scheduler with a special task
812	 * that do not consume any time, but still wants to run.
813	 */
814	if (hardirq_count())
815		__this_cpu_add(cpu_hardirq_time, delta);
816	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
817		__this_cpu_add(cpu_softirq_time, delta);
818
819	irq_time_write_end();
820	local_irq_restore(flags);
821}
822EXPORT_SYMBOL_GPL(account_system_vtime);
823
824#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
825
826#ifdef CONFIG_PARAVIRT
827static inline u64 steal_ticks(u64 steal)
828{
829	if (unlikely(steal > NSEC_PER_SEC))
830		return div_u64(steal, TICK_NSEC);
831
832	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
833}
834#endif
835
836static void update_rq_clock_task(struct rq *rq, s64 delta)
837{
838/*
839 * In theory, the compile should just see 0 here, and optimize out the call
840 * to sched_rt_avg_update. But I don't trust it...
841 */
842#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
843	s64 steal = 0, irq_delta = 0;
844#endif
845#ifdef CONFIG_IRQ_TIME_ACCOUNTING
846	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
847
848	/*
849	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
850	 * this case when a previous update_rq_clock() happened inside a
851	 * {soft,}irq region.
852	 *
853	 * When this happens, we stop ->clock_task and only update the
854	 * prev_irq_time stamp to account for the part that fit, so that a next
855	 * update will consume the rest. This ensures ->clock_task is
856	 * monotonic.
857	 *
858	 * It does however cause some slight miss-attribution of {soft,}irq
859	 * time, a more accurate solution would be to update the irq_time using
860	 * the current rq->clock timestamp, except that would require using
861	 * atomic ops.
862	 */
863	if (irq_delta > delta)
864		irq_delta = delta;
865
866	rq->prev_irq_time += irq_delta;
867	delta -= irq_delta;
868#endif
869#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
870	if (static_branch((&paravirt_steal_rq_enabled))) {
871		u64 st;
872
873		steal = paravirt_steal_clock(cpu_of(rq));
874		steal -= rq->prev_steal_time_rq;
875
876		if (unlikely(steal > delta))
877			steal = delta;
878
879		st = steal_ticks(steal);
880		steal = st * TICK_NSEC;
881
882		rq->prev_steal_time_rq += steal;
883
884		delta -= steal;
885	}
886#endif
887
888	rq->clock_task += delta;
889
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
892		sched_rt_avg_update(rq, irq_delta + steal);
893#endif
894}
895
896#ifdef CONFIG_IRQ_TIME_ACCOUNTING
897static int irqtime_account_hi_update(void)
898{
899	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
900	unsigned long flags;
901	u64 latest_ns;
902	int ret = 0;
903
904	local_irq_save(flags);
905	latest_ns = this_cpu_read(cpu_hardirq_time);
906	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
907		ret = 1;
908	local_irq_restore(flags);
909	return ret;
910}
911
912static int irqtime_account_si_update(void)
913{
914	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
915	unsigned long flags;
916	u64 latest_ns;
917	int ret = 0;
918
919	local_irq_save(flags);
920	latest_ns = this_cpu_read(cpu_softirq_time);
921	if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
922		ret = 1;
923	local_irq_restore(flags);
924	return ret;
925}
926
927#else /* CONFIG_IRQ_TIME_ACCOUNTING */
928
929#define sched_clock_irqtime	(0)
930
931#endif
932
933void sched_set_stop_task(int cpu, struct task_struct *stop)
934{
935	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
936	struct task_struct *old_stop = cpu_rq(cpu)->stop;
937
938	if (stop) {
939		/*
940		 * Make it appear like a SCHED_FIFO task, its something
941		 * userspace knows about and won't get confused about.
942		 *
943		 * Also, it will make PI more or less work without too
944		 * much confusion -- but then, stop work should not
945		 * rely on PI working anyway.
946		 */
947		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
948
949		stop->sched_class = &stop_sched_class;
950	}
951
952	cpu_rq(cpu)->stop = stop;
953
954	if (old_stop) {
955		/*
956		 * Reset it back to a normal scheduling class so that
957		 * it can die in pieces.
958		 */
959		old_stop->sched_class = &rt_sched_class;
960	}
961}
962
963/*
964 * __normal_prio - return the priority that is based on the static prio
965 */
966static inline int __normal_prio(struct task_struct *p)
967{
968	return p->static_prio;
969}
970
971/*
972 * Calculate the expected normal priority: i.e. priority
973 * without taking RT-inheritance into account. Might be
974 * boosted by interactivity modifiers. Changes upon fork,
975 * setprio syscalls, and whenever the interactivity
976 * estimator recalculates.
977 */
978static inline int normal_prio(struct task_struct *p)
979{
980	int prio;
981
982	if (task_has_rt_policy(p))
983		prio = MAX_RT_PRIO-1 - p->rt_priority;
984	else
985		prio = __normal_prio(p);
986	return prio;
987}
988
989/*
990 * Calculate the current priority, i.e. the priority
991 * taken into account by the scheduler. This value might
992 * be boosted by RT tasks, or might be boosted by
993 * interactivity modifiers. Will be RT if the task got
994 * RT-boosted. If not then it returns p->normal_prio.
995 */
996static int effective_prio(struct task_struct *p)
997{
998	p->normal_prio = normal_prio(p);
999	/*
1000	 * If we are RT tasks or we were boosted to RT priority,
1001	 * keep the priority unchanged. Otherwise, update priority
1002	 * to the normal priority:
1003	 */
1004	if (!rt_prio(p->prio))
1005		return p->normal_prio;
1006	return p->prio;
1007}
1008
1009/**
1010 * task_curr - is this task currently executing on a CPU?
1011 * @p: the task in question.
1012 */
1013inline int task_curr(const struct task_struct *p)
1014{
1015	return cpu_curr(task_cpu(p)) == p;
1016}
1017
1018static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1019				       const struct sched_class *prev_class,
1020				       int oldprio)
1021{
1022	if (prev_class != p->sched_class) {
1023		if (prev_class->switched_from)
1024			prev_class->switched_from(rq, p);
1025		p->sched_class->switched_to(rq, p);
1026	} else if (oldprio != p->prio)
1027		p->sched_class->prio_changed(rq, p, oldprio);
1028}
1029
1030void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1031{
1032	const struct sched_class *class;
1033
1034	if (p->sched_class == rq->curr->sched_class) {
1035		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1036	} else {
1037		for_each_class(class) {
1038			if (class == rq->curr->sched_class)
1039				break;
1040			if (class == p->sched_class) {
1041				resched_task(rq->curr);
1042				break;
1043			}
1044		}
1045	}
1046
1047	/*
1048	 * A queue event has occurred, and we're going to schedule.  In
1049	 * this case, we can save a useless back to back clock update.
1050	 */
1051	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1052		rq->skip_clock_update = 1;
1053}
1054
1055#ifdef CONFIG_SMP
1056void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1057{
1058#ifdef CONFIG_SCHED_DEBUG
1059	/*
1060	 * We should never call set_task_cpu() on a blocked task,
1061	 * ttwu() will sort out the placement.
1062	 */
1063	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1064			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1065
1066#ifdef CONFIG_LOCKDEP
1067	/*
1068	 * The caller should hold either p->pi_lock or rq->lock, when changing
1069	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1070	 *
1071	 * sched_move_task() holds both and thus holding either pins the cgroup,
1072	 * see set_task_rq().
1073	 *
1074	 * Furthermore, all task_rq users should acquire both locks, see
1075	 * task_rq_lock().
1076	 */
1077	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1078				      lockdep_is_held(&task_rq(p)->lock)));
1079#endif
1080#endif
1081
1082	trace_sched_migrate_task(p, new_cpu);
1083
1084	if (task_cpu(p) != new_cpu) {
1085		p->se.nr_migrations++;
1086		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1087	}
1088
1089	__set_task_cpu(p, new_cpu);
1090}
1091
1092struct migration_arg {
1093	struct task_struct *task;
1094	int dest_cpu;
1095};
1096
1097static int migration_cpu_stop(void *data);
1098
1099/*
1100 * wait_task_inactive - wait for a thread to unschedule.
1101 *
1102 * If @match_state is nonzero, it's the @p->state value just checked and
1103 * not expected to change.  If it changes, i.e. @p might have woken up,
1104 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1105 * we return a positive number (its total switch count).  If a second call
1106 * a short while later returns the same number, the caller can be sure that
1107 * @p has remained unscheduled the whole time.
1108 *
1109 * The caller must ensure that the task *will* unschedule sometime soon,
1110 * else this function might spin for a *long* time. This function can't
1111 * be called with interrupts off, or it may introduce deadlock with
1112 * smp_call_function() if an IPI is sent by the same process we are
1113 * waiting to become inactive.
1114 */
1115unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1116{
1117	unsigned long flags;
1118	int running, on_rq;
1119	unsigned long ncsw;
1120	struct rq *rq;
1121
1122	for (;;) {
1123		/*
1124		 * We do the initial early heuristics without holding
1125		 * any task-queue locks at all. We'll only try to get
1126		 * the runqueue lock when things look like they will
1127		 * work out!
1128		 */
1129		rq = task_rq(p);
1130
1131		/*
1132		 * If the task is actively running on another CPU
1133		 * still, just relax and busy-wait without holding
1134		 * any locks.
1135		 *
1136		 * NOTE! Since we don't hold any locks, it's not
1137		 * even sure that "rq" stays as the right runqueue!
1138		 * But we don't care, since "task_running()" will
1139		 * return false if the runqueue has changed and p
1140		 * is actually now running somewhere else!
1141		 */
1142		while (task_running(rq, p)) {
1143			if (match_state && unlikely(p->state != match_state))
1144				return 0;
1145			cpu_relax();
1146		}
1147
1148		/*
1149		 * Ok, time to look more closely! We need the rq
1150		 * lock now, to be *sure*. If we're wrong, we'll
1151		 * just go back and repeat.
1152		 */
1153		rq = task_rq_lock(p, &flags);
1154		trace_sched_wait_task(p);
1155		running = task_running(rq, p);
1156		on_rq = p->on_rq;
1157		ncsw = 0;
1158		if (!match_state || p->state == match_state)
1159			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1160		task_rq_unlock(rq, p, &flags);
1161
1162		/*
1163		 * If it changed from the expected state, bail out now.
1164		 */
1165		if (unlikely(!ncsw))
1166			break;
1167
1168		/*
1169		 * Was it really running after all now that we
1170		 * checked with the proper locks actually held?
1171		 *
1172		 * Oops. Go back and try again..
1173		 */
1174		if (unlikely(running)) {
1175			cpu_relax();
1176			continue;
1177		}
1178
1179		/*
1180		 * It's not enough that it's not actively running,
1181		 * it must be off the runqueue _entirely_, and not
1182		 * preempted!
1183		 *
1184		 * So if it was still runnable (but just not actively
1185		 * running right now), it's preempted, and we should
1186		 * yield - it could be a while.
1187		 */
1188		if (unlikely(on_rq)) {
1189			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1190
1191			set_current_state(TASK_UNINTERRUPTIBLE);
1192			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1193			continue;
1194		}
1195
1196		/*
1197		 * Ahh, all good. It wasn't running, and it wasn't
1198		 * runnable, which means that it will never become
1199		 * running in the future either. We're all done!
1200		 */
1201		break;
1202	}
1203
1204	return ncsw;
1205}
1206
1207/***
1208 * kick_process - kick a running thread to enter/exit the kernel
1209 * @p: the to-be-kicked thread
1210 *
1211 * Cause a process which is running on another CPU to enter
1212 * kernel-mode, without any delay. (to get signals handled.)
1213 *
1214 * NOTE: this function doesn't have to take the runqueue lock,
1215 * because all it wants to ensure is that the remote task enters
1216 * the kernel. If the IPI races and the task has been migrated
1217 * to another CPU then no harm is done and the purpose has been
1218 * achieved as well.
1219 */
1220void kick_process(struct task_struct *p)
1221{
1222	int cpu;
1223
1224	preempt_disable();
1225	cpu = task_cpu(p);
1226	if ((cpu != smp_processor_id()) && task_curr(p))
1227		smp_send_reschedule(cpu);
1228	preempt_enable();
1229}
1230EXPORT_SYMBOL_GPL(kick_process);
1231#endif /* CONFIG_SMP */
1232
1233#ifdef CONFIG_SMP
1234/*
1235 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1236 */
1237static int select_fallback_rq(int cpu, struct task_struct *p)
1238{
1239	int dest_cpu;
1240	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1241
1242	/* Look for allowed, online CPU in same node. */
1243	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1244		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1245			return dest_cpu;
1246
1247	/* Any allowed, online CPU? */
1248	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1249	if (dest_cpu < nr_cpu_ids)
1250		return dest_cpu;
1251
1252	/* No more Mr. Nice Guy. */
1253	dest_cpu = cpuset_cpus_allowed_fallback(p);
1254	/*
1255	 * Don't tell them about moving exiting tasks or
1256	 * kernel threads (both mm NULL), since they never
1257	 * leave kernel.
1258	 */
1259	if (p->mm && printk_ratelimit()) {
1260		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1261				task_pid_nr(p), p->comm, cpu);
1262	}
1263
1264	return dest_cpu;
1265}
1266
1267/*
1268 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1269 */
1270static inline
1271int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1272{
1273	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1274
1275	/*
1276	 * In order not to call set_task_cpu() on a blocking task we need
1277	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1278	 * cpu.
1279	 *
1280	 * Since this is common to all placement strategies, this lives here.
1281	 *
1282	 * [ this allows ->select_task() to simply return task_cpu(p) and
1283	 *   not worry about this generic constraint ]
1284	 */
1285	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1286		     !cpu_online(cpu)))
1287		cpu = select_fallback_rq(task_cpu(p), p);
1288
1289	return cpu;
1290}
1291
1292static void update_avg(u64 *avg, u64 sample)
1293{
1294	s64 diff = sample - *avg;
1295	*avg += diff >> 3;
1296}
1297#endif
1298
1299static void
1300ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1301{
1302#ifdef CONFIG_SCHEDSTATS
1303	struct rq *rq = this_rq();
1304
1305#ifdef CONFIG_SMP
1306	int this_cpu = smp_processor_id();
1307
1308	if (cpu == this_cpu) {
1309		schedstat_inc(rq, ttwu_local);
1310		schedstat_inc(p, se.statistics.nr_wakeups_local);
1311	} else {
1312		struct sched_domain *sd;
1313
1314		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1315		rcu_read_lock();
1316		for_each_domain(this_cpu, sd) {
1317			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1318				schedstat_inc(sd, ttwu_wake_remote);
1319				break;
1320			}
1321		}
1322		rcu_read_unlock();
1323	}
1324
1325	if (wake_flags & WF_MIGRATED)
1326		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1327
1328#endif /* CONFIG_SMP */
1329
1330	schedstat_inc(rq, ttwu_count);
1331	schedstat_inc(p, se.statistics.nr_wakeups);
1332
1333	if (wake_flags & WF_SYNC)
1334		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1335
1336#endif /* CONFIG_SCHEDSTATS */
1337}
1338
1339static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1340{
1341	activate_task(rq, p, en_flags);
1342	p->on_rq = 1;
1343
1344	/* if a worker is waking up, notify workqueue */
1345	if (p->flags & PF_WQ_WORKER)
1346		wq_worker_waking_up(p, cpu_of(rq));
1347}
1348
1349/*
1350 * Mark the task runnable and perform wakeup-preemption.
1351 */
1352static void
1353ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1354{
1355	trace_sched_wakeup(p, true);
1356	check_preempt_curr(rq, p, wake_flags);
1357
1358	p->state = TASK_RUNNING;
1359#ifdef CONFIG_SMP
1360	if (p->sched_class->task_woken)
1361		p->sched_class->task_woken(rq, p);
1362
1363	if (rq->idle_stamp) {
1364		u64 delta = rq->clock - rq->idle_stamp;
1365		u64 max = 2*sysctl_sched_migration_cost;
1366
1367		if (delta > max)
1368			rq->avg_idle = max;
1369		else
1370			update_avg(&rq->avg_idle, delta);
1371		rq->idle_stamp = 0;
1372	}
1373#endif
1374}
1375
1376static void
1377ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1378{
1379#ifdef CONFIG_SMP
1380	if (p->sched_contributes_to_load)
1381		rq->nr_uninterruptible--;
1382#endif
1383
1384	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1385	ttwu_do_wakeup(rq, p, wake_flags);
1386}
1387
1388/*
1389 * Called in case the task @p isn't fully descheduled from its runqueue,
1390 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1391 * since all we need to do is flip p->state to TASK_RUNNING, since
1392 * the task is still ->on_rq.
1393 */
1394static int ttwu_remote(struct task_struct *p, int wake_flags)
1395{
1396	struct rq *rq;
1397	int ret = 0;
1398
1399	rq = __task_rq_lock(p);
1400	if (p->on_rq) {
1401		ttwu_do_wakeup(rq, p, wake_flags);
1402		ret = 1;
1403	}
1404	__task_rq_unlock(rq);
1405
1406	return ret;
1407}
1408
1409#ifdef CONFIG_SMP
1410static void sched_ttwu_pending(void)
1411{
1412	struct rq *rq = this_rq();
1413	struct llist_node *llist = llist_del_all(&rq->wake_list);
1414	struct task_struct *p;
1415
1416	raw_spin_lock(&rq->lock);
1417
1418	while (llist) {
1419		p = llist_entry(llist, struct task_struct, wake_entry);
1420		llist = llist_next(llist);
1421		ttwu_do_activate(rq, p, 0);
1422	}
1423
1424	raw_spin_unlock(&rq->lock);
1425}
1426
1427void scheduler_ipi(void)
1428{
1429	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1430		return;
1431
1432	/*
1433	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1434	 * traditionally all their work was done from the interrupt return
1435	 * path. Now that we actually do some work, we need to make sure
1436	 * we do call them.
1437	 *
1438	 * Some archs already do call them, luckily irq_enter/exit nest
1439	 * properly.
1440	 *
1441	 * Arguably we should visit all archs and update all handlers,
1442	 * however a fair share of IPIs are still resched only so this would
1443	 * somewhat pessimize the simple resched case.
1444	 */
1445	irq_enter();
1446	sched_ttwu_pending();
1447
1448	/*
1449	 * Check if someone kicked us for doing the nohz idle load balance.
1450	 */
1451	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1452		this_rq()->idle_balance = 1;
1453		raise_softirq_irqoff(SCHED_SOFTIRQ);
1454	}
1455	irq_exit();
1456}
1457
1458static void ttwu_queue_remote(struct task_struct *p, int cpu)
1459{
1460	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1461		smp_send_reschedule(cpu);
1462}
1463
1464#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1465static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1466{
1467	struct rq *rq;
1468	int ret = 0;
1469
1470	rq = __task_rq_lock(p);
1471	if (p->on_cpu) {
1472		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1473		ttwu_do_wakeup(rq, p, wake_flags);
1474		ret = 1;
1475	}
1476	__task_rq_unlock(rq);
1477
1478	return ret;
1479
1480}
1481#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1482#endif /* CONFIG_SMP */
1483
1484static void ttwu_queue(struct task_struct *p, int cpu)
1485{
1486	struct rq *rq = cpu_rq(cpu);
1487
1488#if defined(CONFIG_SMP)
1489	if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
1490		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1491		ttwu_queue_remote(p, cpu);
1492		return;
1493	}
1494#endif
1495
1496	raw_spin_lock(&rq->lock);
1497	ttwu_do_activate(rq, p, 0);
1498	raw_spin_unlock(&rq->lock);
1499}
1500
1501/**
1502 * try_to_wake_up - wake up a thread
1503 * @p: the thread to be awakened
1504 * @state: the mask of task states that can be woken
1505 * @wake_flags: wake modifier flags (WF_*)
1506 *
1507 * Put it on the run-queue if it's not already there. The "current"
1508 * thread is always on the run-queue (except when the actual
1509 * re-schedule is in progress), and as such you're allowed to do
1510 * the simpler "current->state = TASK_RUNNING" to mark yourself
1511 * runnable without the overhead of this.
1512 *
1513 * Returns %true if @p was woken up, %false if it was already running
1514 * or @state didn't match @p's state.
1515 */
1516static int
1517try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1518{
1519	unsigned long flags;
1520	int cpu, success = 0;
1521
1522	smp_wmb();
1523	raw_spin_lock_irqsave(&p->pi_lock, flags);
1524	if (!(p->state & state))
1525		goto out;
1526
1527	success = 1; /* we're going to change ->state */
1528	cpu = task_cpu(p);
1529
1530	if (p->on_rq && ttwu_remote(p, wake_flags))
1531		goto stat;
1532
1533#ifdef CONFIG_SMP
1534	/*
1535	 * If the owning (remote) cpu is still in the middle of schedule() with
1536	 * this task as prev, wait until its done referencing the task.
1537	 */
1538	while (p->on_cpu) {
1539#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1540		/*
1541		 * In case the architecture enables interrupts in
1542		 * context_switch(), we cannot busy wait, since that
1543		 * would lead to deadlocks when an interrupt hits and
1544		 * tries to wake up @prev. So bail and do a complete
1545		 * remote wakeup.
1546		 */
1547		if (ttwu_activate_remote(p, wake_flags))
1548			goto stat;
1549#else
1550		cpu_relax();
1551#endif
1552	}
1553	/*
1554	 * Pairs with the smp_wmb() in finish_lock_switch().
1555	 */
1556	smp_rmb();
1557
1558	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1559	p->state = TASK_WAKING;
1560
1561	if (p->sched_class->task_waking)
1562		p->sched_class->task_waking(p);
1563
1564	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1565	if (task_cpu(p) != cpu) {
1566		wake_flags |= WF_MIGRATED;
1567		set_task_cpu(p, cpu);
1568	}
1569#endif /* CONFIG_SMP */
1570
1571	ttwu_queue(p, cpu);
1572stat:
1573	ttwu_stat(p, cpu, wake_flags);
1574out:
1575	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1576
1577	return success;
1578}
1579
1580/**
1581 * try_to_wake_up_local - try to wake up a local task with rq lock held
1582 * @p: the thread to be awakened
1583 *
1584 * Put @p on the run-queue if it's not already there. The caller must
1585 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1586 * the current task.
1587 */
1588static void try_to_wake_up_local(struct task_struct *p)
1589{
1590	struct rq *rq = task_rq(p);
1591
1592	BUG_ON(rq != this_rq());
1593	BUG_ON(p == current);
1594	lockdep_assert_held(&rq->lock);
1595
1596	if (!raw_spin_trylock(&p->pi_lock)) {
1597		raw_spin_unlock(&rq->lock);
1598		raw_spin_lock(&p->pi_lock);
1599		raw_spin_lock(&rq->lock);
1600	}
1601
1602	if (!(p->state & TASK_NORMAL))
1603		goto out;
1604
1605	if (!p->on_rq)
1606		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1607
1608	ttwu_do_wakeup(rq, p, 0);
1609	ttwu_stat(p, smp_processor_id(), 0);
1610out:
1611	raw_spin_unlock(&p->pi_lock);
1612}
1613
1614/**
1615 * wake_up_process - Wake up a specific process
1616 * @p: The process to be woken up.
1617 *
1618 * Attempt to wake up the nominated process and move it to the set of runnable
1619 * processes.  Returns 1 if the process was woken up, 0 if it was already
1620 * running.
1621 *
1622 * It may be assumed that this function implies a write memory barrier before
1623 * changing the task state if and only if any tasks are woken up.
1624 */
1625int wake_up_process(struct task_struct *p)
1626{
1627	return try_to_wake_up(p, TASK_ALL, 0);
1628}
1629EXPORT_SYMBOL(wake_up_process);
1630
1631int wake_up_state(struct task_struct *p, unsigned int state)
1632{
1633	return try_to_wake_up(p, state, 0);
1634}
1635
1636/*
1637 * Perform scheduler related setup for a newly forked process p.
1638 * p is forked by current.
1639 *
1640 * __sched_fork() is basic setup used by init_idle() too:
1641 */
1642static void __sched_fork(struct task_struct *p)
1643{
1644	p->on_rq			= 0;
1645
1646	p->se.on_rq			= 0;
1647	p->se.exec_start		= 0;
1648	p->se.sum_exec_runtime		= 0;
1649	p->se.prev_sum_exec_runtime	= 0;
1650	p->se.nr_migrations		= 0;
1651	p->se.vruntime			= 0;
1652	INIT_LIST_HEAD(&p->se.group_node);
1653
1654#ifdef CONFIG_SCHEDSTATS
1655	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1656#endif
1657
1658	INIT_LIST_HEAD(&p->rt.run_list);
1659
1660#ifdef CONFIG_PREEMPT_NOTIFIERS
1661	INIT_HLIST_HEAD(&p->preempt_notifiers);
1662#endif
1663}
1664
1665/*
1666 * fork()/clone()-time setup:
1667 */
1668void sched_fork(struct task_struct *p)
1669{
1670	unsigned long flags;
1671	int cpu = get_cpu();
1672
1673	__sched_fork(p);
1674	/*
1675	 * We mark the process as running here. This guarantees that
1676	 * nobody will actually run it, and a signal or other external
1677	 * event cannot wake it up and insert it on the runqueue either.
1678	 */
1679	p->state = TASK_RUNNING;
1680
1681	/*
1682	 * Make sure we do not leak PI boosting priority to the child.
1683	 */
1684	p->prio = current->normal_prio;
1685
1686	/*
1687	 * Revert to default priority/policy on fork if requested.
1688	 */
1689	if (unlikely(p->sched_reset_on_fork)) {
1690		if (task_has_rt_policy(p)) {
1691			p->policy = SCHED_NORMAL;
1692			p->static_prio = NICE_TO_PRIO(0);
1693			p->rt_priority = 0;
1694		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1695			p->static_prio = NICE_TO_PRIO(0);
1696
1697		p->prio = p->normal_prio = __normal_prio(p);
1698		set_load_weight(p);
1699
1700		/*
1701		 * We don't need the reset flag anymore after the fork. It has
1702		 * fulfilled its duty:
1703		 */
1704		p->sched_reset_on_fork = 0;
1705	}
1706
1707	if (!rt_prio(p->prio))
1708		p->sched_class = &fair_sched_class;
1709
1710	if (p->sched_class->task_fork)
1711		p->sched_class->task_fork(p);
1712
1713	/*
1714	 * The child is not yet in the pid-hash so no cgroup attach races,
1715	 * and the cgroup is pinned to this child due to cgroup_fork()
1716	 * is ran before sched_fork().
1717	 *
1718	 * Silence PROVE_RCU.
1719	 */
1720	raw_spin_lock_irqsave(&p->pi_lock, flags);
1721	set_task_cpu(p, cpu);
1722	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1723
1724#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1725	if (likely(sched_info_on()))
1726		memset(&p->sched_info, 0, sizeof(p->sched_info));
1727#endif
1728#if defined(CONFIG_SMP)
1729	p->on_cpu = 0;
1730#endif
1731#ifdef CONFIG_PREEMPT_COUNT
1732	/* Want to start with kernel preemption disabled. */
1733	task_thread_info(p)->preempt_count = 1;
1734#endif
1735#ifdef CONFIG_SMP
1736	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1737#endif
1738
1739	put_cpu();
1740}
1741
1742/*
1743 * wake_up_new_task - wake up a newly created task for the first time.
1744 *
1745 * This function will do some initial scheduler statistics housekeeping
1746 * that must be done for every newly created context, then puts the task
1747 * on the runqueue and wakes it.
1748 */
1749void wake_up_new_task(struct task_struct *p)
1750{
1751	unsigned long flags;
1752	struct rq *rq;
1753
1754	raw_spin_lock_irqsave(&p->pi_lock, flags);
1755#ifdef CONFIG_SMP
1756	/*
1757	 * Fork balancing, do it here and not earlier because:
1758	 *  - cpus_allowed can change in the fork path
1759	 *  - any previously selected cpu might disappear through hotplug
1760	 */
1761	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1762#endif
1763
1764	rq = __task_rq_lock(p);
1765	activate_task(rq, p, 0);
1766	p->on_rq = 1;
1767	trace_sched_wakeup_new(p, true);
1768	check_preempt_curr(rq, p, WF_FORK);
1769#ifdef CONFIG_SMP
1770	if (p->sched_class->task_woken)
1771		p->sched_class->task_woken(rq, p);
1772#endif
1773	task_rq_unlock(rq, p, &flags);
1774}
1775
1776#ifdef CONFIG_PREEMPT_NOTIFIERS
1777
1778/**
1779 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1780 * @notifier: notifier struct to register
1781 */
1782void preempt_notifier_register(struct preempt_notifier *notifier)
1783{
1784	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1785}
1786EXPORT_SYMBOL_GPL(preempt_notifier_register);
1787
1788/**
1789 * preempt_notifier_unregister - no longer interested in preemption notifications
1790 * @notifier: notifier struct to unregister
1791 *
1792 * This is safe to call from within a preemption notifier.
1793 */
1794void preempt_notifier_unregister(struct preempt_notifier *notifier)
1795{
1796	hlist_del(&notifier->link);
1797}
1798EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1799
1800static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1801{
1802	struct preempt_notifier *notifier;
1803	struct hlist_node *node;
1804
1805	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1806		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1807}
1808
1809static void
1810fire_sched_out_preempt_notifiers(struct task_struct *curr,
1811				 struct task_struct *next)
1812{
1813	struct preempt_notifier *notifier;
1814	struct hlist_node *node;
1815
1816	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1817		notifier->ops->sched_out(notifier, next);
1818}
1819
1820#else /* !CONFIG_PREEMPT_NOTIFIERS */
1821
1822static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1823{
1824}
1825
1826static void
1827fire_sched_out_preempt_notifiers(struct task_struct *curr,
1828				 struct task_struct *next)
1829{
1830}
1831
1832#endif /* CONFIG_PREEMPT_NOTIFIERS */
1833
1834/**
1835 * prepare_task_switch - prepare to switch tasks
1836 * @rq: the runqueue preparing to switch
1837 * @prev: the current task that is being switched out
1838 * @next: the task we are going to switch to.
1839 *
1840 * This is called with the rq lock held and interrupts off. It must
1841 * be paired with a subsequent finish_task_switch after the context
1842 * switch.
1843 *
1844 * prepare_task_switch sets up locking and calls architecture specific
1845 * hooks.
1846 */
1847static inline void
1848prepare_task_switch(struct rq *rq, struct task_struct *prev,
1849		    struct task_struct *next)
1850{
1851	sched_info_switch(prev, next);
1852	perf_event_task_sched_out(prev, next);
1853	fire_sched_out_preempt_notifiers(prev, next);
1854	prepare_lock_switch(rq, next);
1855	prepare_arch_switch(next);
1856	trace_sched_switch(prev, next);
1857}
1858
1859/**
1860 * finish_task_switch - clean up after a task-switch
1861 * @rq: runqueue associated with task-switch
1862 * @prev: the thread we just switched away from.
1863 *
1864 * finish_task_switch must be called after the context switch, paired
1865 * with a prepare_task_switch call before the context switch.
1866 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1867 * and do any other architecture-specific cleanup actions.
1868 *
1869 * Note that we may have delayed dropping an mm in context_switch(). If
1870 * so, we finish that here outside of the runqueue lock. (Doing it
1871 * with the lock held can cause deadlocks; see schedule() for
1872 * details.)
1873 */
1874static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1875	__releases(rq->lock)
1876{
1877	struct mm_struct *mm = rq->prev_mm;
1878	long prev_state;
1879
1880	rq->prev_mm = NULL;
1881
1882	/*
1883	 * A task struct has one reference for the use as "current".
1884	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1885	 * schedule one last time. The schedule call will never return, and
1886	 * the scheduled task must drop that reference.
1887	 * The test for TASK_DEAD must occur while the runqueue locks are
1888	 * still held, otherwise prev could be scheduled on another cpu, die
1889	 * there before we look at prev->state, and then the reference would
1890	 * be dropped twice.
1891	 *		Manfred Spraul <manfred@colorfullife.com>
1892	 */
1893	prev_state = prev->state;
1894	finish_arch_switch(prev);
1895#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1896	local_irq_disable();
1897#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1898	perf_event_task_sched_in(prev, current);
1899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1900	local_irq_enable();
1901#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1902	finish_lock_switch(rq, prev);
1903
1904	fire_sched_in_preempt_notifiers(current);
1905	if (mm)
1906		mmdrop(mm);
1907	if (unlikely(prev_state == TASK_DEAD)) {
1908		/*
1909		 * Remove function-return probe instances associated with this
1910		 * task and put them back on the free list.
1911		 */
1912		kprobe_flush_task(prev);
1913		put_task_struct(prev);
1914	}
1915}
1916
1917#ifdef CONFIG_SMP
1918
1919/* assumes rq->lock is held */
1920static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1921{
1922	if (prev->sched_class->pre_schedule)
1923		prev->sched_class->pre_schedule(rq, prev);
1924}
1925
1926/* rq->lock is NOT held, but preemption is disabled */
1927static inline void post_schedule(struct rq *rq)
1928{
1929	if (rq->post_schedule) {
1930		unsigned long flags;
1931
1932		raw_spin_lock_irqsave(&rq->lock, flags);
1933		if (rq->curr->sched_class->post_schedule)
1934			rq->curr->sched_class->post_schedule(rq);
1935		raw_spin_unlock_irqrestore(&rq->lock, flags);
1936
1937		rq->post_schedule = 0;
1938	}
1939}
1940
1941#else
1942
1943static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1944{
1945}
1946
1947static inline void post_schedule(struct rq *rq)
1948{
1949}
1950
1951#endif
1952
1953/**
1954 * schedule_tail - first thing a freshly forked thread must call.
1955 * @prev: the thread we just switched away from.
1956 */
1957asmlinkage void schedule_tail(struct task_struct *prev)
1958	__releases(rq->lock)
1959{
1960	struct rq *rq = this_rq();
1961
1962	finish_task_switch(rq, prev);
1963
1964	/*
1965	 * FIXME: do we need to worry about rq being invalidated by the
1966	 * task_switch?
1967	 */
1968	post_schedule(rq);
1969
1970#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1971	/* In this case, finish_task_switch does not reenable preemption */
1972	preempt_enable();
1973#endif
1974	if (current->set_child_tid)
1975		put_user(task_pid_vnr(current), current->set_child_tid);
1976}
1977
1978/*
1979 * context_switch - switch to the new MM and the new
1980 * thread's register state.
1981 */
1982static inline void
1983context_switch(struct rq *rq, struct task_struct *prev,
1984	       struct task_struct *next)
1985{
1986	struct mm_struct *mm, *oldmm;
1987
1988	prepare_task_switch(rq, prev, next);
1989
1990	mm = next->mm;
1991	oldmm = prev->active_mm;
1992	/*
1993	 * For paravirt, this is coupled with an exit in switch_to to
1994	 * combine the page table reload and the switch backend into
1995	 * one hypercall.
1996	 */
1997	arch_start_context_switch(prev);
1998
1999	if (!mm) {
2000		next->active_mm = oldmm;
2001		atomic_inc(&oldmm->mm_count);
2002		enter_lazy_tlb(oldmm, next);
2003	} else
2004		switch_mm(oldmm, mm, next);
2005
2006	if (!prev->mm) {
2007		prev->active_mm = NULL;
2008		rq->prev_mm = oldmm;
2009	}
2010	/*
2011	 * Since the runqueue lock will be released by the next
2012	 * task (which is an invalid locking op but in the case
2013	 * of the scheduler it's an obvious special-case), so we
2014	 * do an early lockdep release here:
2015	 */
2016#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2017	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2018#endif
2019
2020	/* Here we just switch the register state and the stack. */
2021	switch_to(prev, next, prev);
2022
2023	barrier();
2024	/*
2025	 * this_rq must be evaluated again because prev may have moved
2026	 * CPUs since it called schedule(), thus the 'rq' on its stack
2027	 * frame will be invalid.
2028	 */
2029	finish_task_switch(this_rq(), prev);
2030}
2031
2032/*
2033 * nr_running, nr_uninterruptible and nr_context_switches:
2034 *
2035 * externally visible scheduler statistics: current number of runnable
2036 * threads, current number of uninterruptible-sleeping threads, total
2037 * number of context switches performed since bootup.
2038 */
2039unsigned long nr_running(void)
2040{
2041	unsigned long i, sum = 0;
2042
2043	for_each_online_cpu(i)
2044		sum += cpu_rq(i)->nr_running;
2045
2046	return sum;
2047}
2048
2049unsigned long nr_uninterruptible(void)
2050{
2051	unsigned long i, sum = 0;
2052
2053	for_each_possible_cpu(i)
2054		sum += cpu_rq(i)->nr_uninterruptible;
2055
2056	/*
2057	 * Since we read the counters lockless, it might be slightly
2058	 * inaccurate. Do not allow it to go below zero though:
2059	 */
2060	if (unlikely((long)sum < 0))
2061		sum = 0;
2062
2063	return sum;
2064}
2065
2066unsigned long long nr_context_switches(void)
2067{
2068	int i;
2069	unsigned long long sum = 0;
2070
2071	for_each_possible_cpu(i)
2072		sum += cpu_rq(i)->nr_switches;
2073
2074	return sum;
2075}
2076
2077unsigned long nr_iowait(void)
2078{
2079	unsigned long i, sum = 0;
2080
2081	for_each_possible_cpu(i)
2082		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2083
2084	return sum;
2085}
2086
2087unsigned long nr_iowait_cpu(int cpu)
2088{
2089	struct rq *this = cpu_rq(cpu);
2090	return atomic_read(&this->nr_iowait);
2091}
2092
2093unsigned long this_cpu_load(void)
2094{
2095	struct rq *this = this_rq();
2096	return this->cpu_load[0];
2097}
2098
2099
2100/* Variables and functions for calc_load */
2101static atomic_long_t calc_load_tasks;
2102static unsigned long calc_load_update;
2103unsigned long avenrun[3];
2104EXPORT_SYMBOL(avenrun);
2105
2106static long calc_load_fold_active(struct rq *this_rq)
2107{
2108	long nr_active, delta = 0;
2109
2110	nr_active = this_rq->nr_running;
2111	nr_active += (long) this_rq->nr_uninterruptible;
2112
2113	if (nr_active != this_rq->calc_load_active) {
2114		delta = nr_active - this_rq->calc_load_active;
2115		this_rq->calc_load_active = nr_active;
2116	}
2117
2118	return delta;
2119}
2120
2121static unsigned long
2122calc_load(unsigned long load, unsigned long exp, unsigned long active)
2123{
2124	load *= exp;
2125	load += active * (FIXED_1 - exp);
2126	load += 1UL << (FSHIFT - 1);
2127	return load >> FSHIFT;
2128}
2129
2130#ifdef CONFIG_NO_HZ
2131/*
2132 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2133 *
2134 * When making the ILB scale, we should try to pull this in as well.
2135 */
2136static atomic_long_t calc_load_tasks_idle;
2137
2138void calc_load_account_idle(struct rq *this_rq)
2139{
2140	long delta;
2141
2142	delta = calc_load_fold_active(this_rq);
2143	if (delta)
2144		atomic_long_add(delta, &calc_load_tasks_idle);
2145}
2146
2147static long calc_load_fold_idle(void)
2148{
2149	long delta = 0;
2150
2151	/*
2152	 * Its got a race, we don't care...
2153	 */
2154	if (atomic_long_read(&calc_load_tasks_idle))
2155		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2156
2157	return delta;
2158}
2159
2160/**
2161 * fixed_power_int - compute: x^n, in O(log n) time
2162 *
2163 * @x:         base of the power
2164 * @frac_bits: fractional bits of @x
2165 * @n:         power to raise @x to.
2166 *
2167 * By exploiting the relation between the definition of the natural power
2168 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2169 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2170 * (where: n_i \elem {0, 1}, the binary vector representing n),
2171 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2172 * of course trivially computable in O(log_2 n), the length of our binary
2173 * vector.
2174 */
2175static unsigned long
2176fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2177{
2178	unsigned long result = 1UL << frac_bits;
2179
2180	if (n) for (;;) {
2181		if (n & 1) {
2182			result *= x;
2183			result += 1UL << (frac_bits - 1);
2184			result >>= frac_bits;
2185		}
2186		n >>= 1;
2187		if (!n)
2188			break;
2189		x *= x;
2190		x += 1UL << (frac_bits - 1);
2191		x >>= frac_bits;
2192	}
2193
2194	return result;
2195}
2196
2197/*
2198 * a1 = a0 * e + a * (1 - e)
2199 *
2200 * a2 = a1 * e + a * (1 - e)
2201 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2202 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2203 *
2204 * a3 = a2 * e + a * (1 - e)
2205 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2206 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2207 *
2208 *  ...
2209 *
2210 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2211 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2212 *    = a0 * e^n + a * (1 - e^n)
2213 *
2214 * [1] application of the geometric series:
2215 *
2216 *              n         1 - x^(n+1)
2217 *     S_n := \Sum x^i = -------------
2218 *             i=0          1 - x
2219 */
2220static unsigned long
2221calc_load_n(unsigned long load, unsigned long exp,
2222	    unsigned long active, unsigned int n)
2223{
2224
2225	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2226}
2227
2228/*
2229 * NO_HZ can leave us missing all per-cpu ticks calling
2230 * calc_load_account_active(), but since an idle CPU folds its delta into
2231 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2232 * in the pending idle delta if our idle period crossed a load cycle boundary.
2233 *
2234 * Once we've updated the global active value, we need to apply the exponential
2235 * weights adjusted to the number of cycles missed.
2236 */
2237static void calc_global_nohz(unsigned long ticks)
2238{
2239	long delta, active, n;
2240
2241	if (time_before(jiffies, calc_load_update))
2242		return;
2243
2244	/*
2245	 * If we crossed a calc_load_update boundary, make sure to fold
2246	 * any pending idle changes, the respective CPUs might have
2247	 * missed the tick driven calc_load_account_active() update
2248	 * due to NO_HZ.
2249	 */
2250	delta = calc_load_fold_idle();
2251	if (delta)
2252		atomic_long_add(delta, &calc_load_tasks);
2253
2254	/*
2255	 * If we were idle for multiple load cycles, apply them.
2256	 */
2257	if (ticks >= LOAD_FREQ) {
2258		n = ticks / LOAD_FREQ;
2259
2260		active = atomic_long_read(&calc_load_tasks);
2261		active = active > 0 ? active * FIXED_1 : 0;
2262
2263		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2264		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2265		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2266
2267		calc_load_update += n * LOAD_FREQ;
2268	}
2269
2270	/*
2271	 * Its possible the remainder of the above division also crosses
2272	 * a LOAD_FREQ period, the regular check in calc_global_load()
2273	 * which comes after this will take care of that.
2274	 *
2275	 * Consider us being 11 ticks before a cycle completion, and us
2276	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2277	 * age us 4 cycles, and the test in calc_global_load() will
2278	 * pick up the final one.
2279	 */
2280}
2281#else
2282void calc_load_account_idle(struct rq *this_rq)
2283{
2284}
2285
2286static inline long calc_load_fold_idle(void)
2287{
2288	return 0;
2289}
2290
2291static void calc_global_nohz(unsigned long ticks)
2292{
2293}
2294#endif
2295
2296/**
2297 * get_avenrun - get the load average array
2298 * @loads:	pointer to dest load array
2299 * @offset:	offset to add
2300 * @shift:	shift count to shift the result left
2301 *
2302 * These values are estimates at best, so no need for locking.
2303 */
2304void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2305{
2306	loads[0] = (avenrun[0] + offset) << shift;
2307	loads[1] = (avenrun[1] + offset) << shift;
2308	loads[2] = (avenrun[2] + offset) << shift;
2309}
2310
2311/*
2312 * calc_load - update the avenrun load estimates 10 ticks after the
2313 * CPUs have updated calc_load_tasks.
2314 */
2315void calc_global_load(unsigned long ticks)
2316{
2317	long active;
2318
2319	calc_global_nohz(ticks);
2320
2321	if (time_before(jiffies, calc_load_update + 10))
2322		return;
2323
2324	active = atomic_long_read(&calc_load_tasks);
2325	active = active > 0 ? active * FIXED_1 : 0;
2326
2327	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2328	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2329	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2330
2331	calc_load_update += LOAD_FREQ;
2332}
2333
2334/*
2335 * Called from update_cpu_load() to periodically update this CPU's
2336 * active count.
2337 */
2338static void calc_load_account_active(struct rq *this_rq)
2339{
2340	long delta;
2341
2342	if (time_before(jiffies, this_rq->calc_load_update))
2343		return;
2344
2345	delta  = calc_load_fold_active(this_rq);
2346	delta += calc_load_fold_idle();
2347	if (delta)
2348		atomic_long_add(delta, &calc_load_tasks);
2349
2350	this_rq->calc_load_update += LOAD_FREQ;
2351}
2352
2353/*
2354 * The exact cpuload at various idx values, calculated at every tick would be
2355 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2356 *
2357 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2358 * on nth tick when cpu may be busy, then we have:
2359 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2360 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2361 *
2362 * decay_load_missed() below does efficient calculation of
2363 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2364 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2365 *
2366 * The calculation is approximated on a 128 point scale.
2367 * degrade_zero_ticks is the number of ticks after which load at any
2368 * particular idx is approximated to be zero.
2369 * degrade_factor is a precomputed table, a row for each load idx.
2370 * Each column corresponds to degradation factor for a power of two ticks,
2371 * based on 128 point scale.
2372 * Example:
2373 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2374 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2375 *
2376 * With this power of 2 load factors, we can degrade the load n times
2377 * by looking at 1 bits in n and doing as many mult/shift instead of
2378 * n mult/shifts needed by the exact degradation.
2379 */
2380#define DEGRADE_SHIFT		7
2381static const unsigned char
2382		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2383static const unsigned char
2384		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2385					{0, 0, 0, 0, 0, 0, 0, 0},
2386					{64, 32, 8, 0, 0, 0, 0, 0},
2387					{96, 72, 40, 12, 1, 0, 0},
2388					{112, 98, 75, 43, 15, 1, 0},
2389					{120, 112, 98, 76, 45, 16, 2} };
2390
2391/*
2392 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2393 * would be when CPU is idle and so we just decay the old load without
2394 * adding any new load.
2395 */
2396static unsigned long
2397decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2398{
2399	int j = 0;
2400
2401	if (!missed_updates)
2402		return load;
2403
2404	if (missed_updates >= degrade_zero_ticks[idx])
2405		return 0;
2406
2407	if (idx == 1)
2408		return load >> missed_updates;
2409
2410	while (missed_updates) {
2411		if (missed_updates % 2)
2412			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2413
2414		missed_updates >>= 1;
2415		j++;
2416	}
2417	return load;
2418}
2419
2420/*
2421 * Update rq->cpu_load[] statistics. This function is usually called every
2422 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2423 * every tick. We fix it up based on jiffies.
2424 */
2425void update_cpu_load(struct rq *this_rq)
2426{
2427	unsigned long this_load = this_rq->load.weight;
2428	unsigned long curr_jiffies = jiffies;
2429	unsigned long pending_updates;
2430	int i, scale;
2431
2432	this_rq->nr_load_updates++;
2433
2434	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2435	if (curr_jiffies == this_rq->last_load_update_tick)
2436		return;
2437
2438	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2439	this_rq->last_load_update_tick = curr_jiffies;
2440
2441	/* Update our load: */
2442	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2443	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2444		unsigned long old_load, new_load;
2445
2446		/* scale is effectively 1 << i now, and >> i divides by scale */
2447
2448		old_load = this_rq->cpu_load[i];
2449		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2450		new_load = this_load;
2451		/*
2452		 * Round up the averaging division if load is increasing. This
2453		 * prevents us from getting stuck on 9 if the load is 10, for
2454		 * example.
2455		 */
2456		if (new_load > old_load)
2457			new_load += scale - 1;
2458
2459		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2460	}
2461
2462	sched_avg_update(this_rq);
2463}
2464
2465static void update_cpu_load_active(struct rq *this_rq)
2466{
2467	update_cpu_load(this_rq);
2468
2469	calc_load_account_active(this_rq);
2470}
2471
2472#ifdef CONFIG_SMP
2473
2474/*
2475 * sched_exec - execve() is a valuable balancing opportunity, because at
2476 * this point the task has the smallest effective memory and cache footprint.
2477 */
2478void sched_exec(void)
2479{
2480	struct task_struct *p = current;
2481	unsigned long flags;
2482	int dest_cpu;
2483
2484	raw_spin_lock_irqsave(&p->pi_lock, flags);
2485	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2486	if (dest_cpu == smp_processor_id())
2487		goto unlock;
2488
2489	if (likely(cpu_active(dest_cpu))) {
2490		struct migration_arg arg = { p, dest_cpu };
2491
2492		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2493		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2494		return;
2495	}
2496unlock:
2497	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2498}
2499
2500#endif
2501
2502DEFINE_PER_CPU(struct kernel_stat, kstat);
2503
2504EXPORT_PER_CPU_SYMBOL(kstat);
2505
2506/*
2507 * Return any ns on the sched_clock that have not yet been accounted in
2508 * @p in case that task is currently running.
2509 *
2510 * Called with task_rq_lock() held on @rq.
2511 */
2512static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2513{
2514	u64 ns = 0;
2515
2516	if (task_current(rq, p)) {
2517		update_rq_clock(rq);
2518		ns = rq->clock_task - p->se.exec_start;
2519		if ((s64)ns < 0)
2520			ns = 0;
2521	}
2522
2523	return ns;
2524}
2525
2526unsigned long long task_delta_exec(struct task_struct *p)
2527{
2528	unsigned long flags;
2529	struct rq *rq;
2530	u64 ns = 0;
2531
2532	rq = task_rq_lock(p, &flags);
2533	ns = do_task_delta_exec(p, rq);
2534	task_rq_unlock(rq, p, &flags);
2535
2536	return ns;
2537}
2538
2539/*
2540 * Return accounted runtime for the task.
2541 * In case the task is currently running, return the runtime plus current's
2542 * pending runtime that have not been accounted yet.
2543 */
2544unsigned long long task_sched_runtime(struct task_struct *p)
2545{
2546	unsigned long flags;
2547	struct rq *rq;
2548	u64 ns = 0;
2549
2550	rq = task_rq_lock(p, &flags);
2551	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2552	task_rq_unlock(rq, p, &flags);
2553
2554	return ns;
2555}
2556
2557/*
2558 * Account user cpu time to a process.
2559 * @p: the process that the cpu time gets accounted to
2560 * @cputime: the cpu time spent in user space since the last update
2561 * @cputime_scaled: cputime scaled by cpu frequency
2562 */
2563void account_user_time(struct task_struct *p, cputime_t cputime,
2564		       cputime_t cputime_scaled)
2565{
2566	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2567	cputime64_t tmp;
2568
2569	/* Add user time to process. */
2570	p->utime = cputime_add(p->utime, cputime);
2571	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
2572	account_group_user_time(p, cputime);
2573
2574	/* Add user time to cpustat. */
2575	tmp = cputime_to_cputime64(cputime);
2576	if (TASK_NICE(p) > 0)
2577		cpustat->nice = cputime64_add(cpustat->nice, tmp);
2578	else
2579		cpustat->user = cputime64_add(cpustat->user, tmp);
2580
2581	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
2582	/* Account for user time used */
2583	acct_update_integrals(p);
2584}
2585
2586/*
2587 * Account guest cpu time to a process.
2588 * @p: the process that the cpu time gets accounted to
2589 * @cputime: the cpu time spent in virtual machine since the last update
2590 * @cputime_scaled: cputime scaled by cpu frequency
2591 */
2592static void account_guest_time(struct task_struct *p, cputime_t cputime,
2593			       cputime_t cputime_scaled)
2594{
2595	cputime64_t tmp;
2596	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2597
2598	tmp = cputime_to_cputime64(cputime);
2599
2600	/* Add guest time to process. */
2601	p->utime = cputime_add(p->utime, cputime);
2602	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
2603	account_group_user_time(p, cputime);
2604	p->gtime = cputime_add(p->gtime, cputime);
2605
2606	/* Add guest time to cpustat. */
2607	if (TASK_NICE(p) > 0) {
2608		cpustat->nice = cputime64_add(cpustat->nice, tmp);
2609		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
2610	} else {
2611		cpustat->user = cputime64_add(cpustat->user, tmp);
2612		cpustat->guest = cputime64_add(cpustat->guest, tmp);
2613	}
2614}
2615
2616/*
2617 * Account system cpu time to a process and desired cpustat field
2618 * @p: the process that the cpu time gets accounted to
2619 * @cputime: the cpu time spent in kernel space since the last update
2620 * @cputime_scaled: cputime scaled by cpu frequency
2621 * @target_cputime64: pointer to cpustat field that has to be updated
2622 */
2623static inline
2624void __account_system_time(struct task_struct *p, cputime_t cputime,
2625			cputime_t cputime_scaled, cputime64_t *target_cputime64)
2626{
2627	cputime64_t tmp = cputime_to_cputime64(cputime);
2628
2629	/* Add system time to process. */
2630	p->stime = cputime_add(p->stime, cputime);
2631	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
2632	account_group_system_time(p, cputime);
2633
2634	/* Add system time to cpustat. */
2635	*target_cputime64 = cputime64_add(*target_cputime64, tmp);
2636	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
2637
2638	/* Account for system time used */
2639	acct_update_integrals(p);
2640}
2641
2642/*
2643 * Account system cpu time to a process.
2644 * @p: the process that the cpu time gets accounted to
2645 * @hardirq_offset: the offset to subtract from hardirq_count()
2646 * @cputime: the cpu time spent in kernel space since the last update
2647 * @cputime_scaled: cputime scaled by cpu frequency
2648 */
2649void account_system_time(struct task_struct *p, int hardirq_offset,
2650			 cputime_t cputime, cputime_t cputime_scaled)
2651{
2652	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2653	cputime64_t *target_cputime64;
2654
2655	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2656		account_guest_time(p, cputime, cputime_scaled);
2657		return;
2658	}
2659
2660	if (hardirq_count() - hardirq_offset)
2661		target_cputime64 = &cpustat->irq;
2662	else if (in_serving_softirq())
2663		target_cputime64 = &cpustat->softirq;
2664	else
2665		target_cputime64 = &cpustat->system;
2666
2667	__account_system_time(p, cputime, cputime_scaled, target_cputime64);
2668}
2669
2670/*
2671 * Account for involuntary wait time.
2672 * @cputime: the cpu time spent in involuntary wait
2673 */
2674void account_steal_time(cputime_t cputime)
2675{
2676	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2677	cputime64_t cputime64 = cputime_to_cputime64(cputime);
2678
2679	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
2680}
2681
2682/*
2683 * Account for idle time.
2684 * @cputime: the cpu time spent in idle wait
2685 */
2686void account_idle_time(cputime_t cputime)
2687{
2688	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2689	cputime64_t cputime64 = cputime_to_cputime64(cputime);
2690	struct rq *rq = this_rq();
2691
2692	if (atomic_read(&rq->nr_iowait) > 0)
2693		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
2694	else
2695		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
2696}
2697
2698static __always_inline bool steal_account_process_tick(void)
2699{
2700#ifdef CONFIG_PARAVIRT
2701	if (static_branch(&paravirt_steal_enabled)) {
2702		u64 steal, st = 0;
2703
2704		steal = paravirt_steal_clock(smp_processor_id());
2705		steal -= this_rq()->prev_steal_time;
2706
2707		st = steal_ticks(steal);
2708		this_rq()->prev_steal_time += st * TICK_NSEC;
2709
2710		account_steal_time(st);
2711		return st;
2712	}
2713#endif
2714	return false;
2715}
2716
2717#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2718
2719#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2720/*
2721 * Account a tick to a process and cpustat
2722 * @p: the process that the cpu time gets accounted to
2723 * @user_tick: is the tick from userspace
2724 * @rq: the pointer to rq
2725 *
2726 * Tick demultiplexing follows the order
2727 * - pending hardirq update
2728 * - pending softirq update
2729 * - user_time
2730 * - idle_time
2731 * - system time
2732 *   - check for guest_time
2733 *   - else account as system_time
2734 *
2735 * Check for hardirq is done both for system and user time as there is
2736 * no timer going off while we are on hardirq and hence we may never get an
2737 * opportunity to update it solely in system time.
2738 * p->stime and friends are only updated on system time and not on irq
2739 * softirq as those do not count in task exec_runtime any more.
2740 */
2741static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2742						struct rq *rq)
2743{
2744	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2745	cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
2746	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2747
2748	if (steal_account_process_tick())
2749		return;
2750
2751	if (irqtime_account_hi_update()) {
2752		cpustat->irq = cputime64_add(cpustat->irq, tmp);
2753	} else if (irqtime_account_si_update()) {
2754		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2755	} else if (this_cpu_ksoftirqd() == p) {
2756		/*
2757		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2758		 * So, we have to handle it separately here.
2759		 * Also, p->stime needs to be updated for ksoftirqd.
2760		 */
2761		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2762					&cpustat->softirq);
2763	} else if (user_tick) {
2764		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2765	} else if (p == rq->idle) {
2766		account_idle_time(cputime_one_jiffy);
2767	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2768		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2769	} else {
2770		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2771					&cpustat->system);
2772	}
2773}
2774
2775static void irqtime_account_idle_ticks(int ticks)
2776{
2777	int i;
2778	struct rq *rq = this_rq();
2779
2780	for (i = 0; i < ticks; i++)
2781		irqtime_account_process_tick(current, 0, rq);
2782}
2783#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2784static void irqtime_account_idle_ticks(int ticks) {}
2785static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2786						struct rq *rq) {}
2787#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2788
2789/*
2790 * Account a single tick of cpu time.
2791 * @p: the process that the cpu time gets accounted to
2792 * @user_tick: indicates if the tick is a user or a system tick
2793 */
2794void account_process_tick(struct task_struct *p, int user_tick)
2795{
2796	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2797	struct rq *rq = this_rq();
2798
2799	if (sched_clock_irqtime) {
2800		irqtime_account_process_tick(p, user_tick, rq);
2801		return;
2802	}
2803
2804	if (steal_account_process_tick())
2805		return;
2806
2807	if (user_tick)
2808		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2809	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2810		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2811				    one_jiffy_scaled);
2812	else
2813		account_idle_time(cputime_one_jiffy);
2814}
2815
2816/*
2817 * Account multiple ticks of steal time.
2818 * @p: the process from which the cpu time has been stolen
2819 * @ticks: number of stolen ticks
2820 */
2821void account_steal_ticks(unsigned long ticks)
2822{
2823	account_steal_time(jiffies_to_cputime(ticks));
2824}
2825
2826/*
2827 * Account multiple ticks of idle time.
2828 * @ticks: number of stolen ticks
2829 */
2830void account_idle_ticks(unsigned long ticks)
2831{
2832
2833	if (sched_clock_irqtime) {
2834		irqtime_account_idle_ticks(ticks);
2835		return;
2836	}
2837
2838	account_idle_time(jiffies_to_cputime(ticks));
2839}
2840
2841#endif
2842
2843/*
2844 * Use precise platform statistics if available:
2845 */
2846#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2847void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2848{
2849	*ut = p->utime;
2850	*st = p->stime;
2851}
2852
2853void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2854{
2855	struct task_cputime cputime;
2856
2857	thread_group_cputime(p, &cputime);
2858
2859	*ut = cputime.utime;
2860	*st = cputime.stime;
2861}
2862#else
2863
2864#ifndef nsecs_to_cputime
2865# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2866#endif
2867
2868void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2869{
2870	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
2871
2872	/*
2873	 * Use CFS's precise accounting:
2874	 */
2875	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2876
2877	if (total) {
2878		u64 temp = rtime;
2879
2880		temp *= utime;
2881		do_div(temp, total);
2882		utime = (cputime_t)temp;
2883	} else
2884		utime = rtime;
2885
2886	/*
2887	 * Compare with previous values, to keep monotonicity:
2888	 */
2889	p->prev_utime = max(p->prev_utime, utime);
2890	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
2891
2892	*ut = p->prev_utime;
2893	*st = p->prev_stime;
2894}
2895
2896/*
2897 * Must be called with siglock held.
2898 */
2899void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2900{
2901	struct signal_struct *sig = p->signal;
2902	struct task_cputime cputime;
2903	cputime_t rtime, utime, total;
2904
2905	thread_group_cputime(p, &cputime);
2906
2907	total = cputime_add(cputime.utime, cputime.stime);
2908	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2909
2910	if (total) {
2911		u64 temp = rtime;
2912
2913		temp *= cputime.utime;
2914		do_div(temp, total);
2915		utime = (cputime_t)temp;
2916	} else
2917		utime = rtime;
2918
2919	sig->prev_utime = max(sig->prev_utime, utime);
2920	sig->prev_stime = max(sig->prev_stime,
2921			      cputime_sub(rtime, sig->prev_utime));
2922
2923	*ut = sig->prev_utime;
2924	*st = sig->prev_stime;
2925}
2926#endif
2927
2928/*
2929 * This function gets called by the timer code, with HZ frequency.
2930 * We call it with interrupts disabled.
2931 */
2932void scheduler_tick(void)
2933{
2934	int cpu = smp_processor_id();
2935	struct rq *rq = cpu_rq(cpu);
2936	struct task_struct *curr = rq->curr;
2937
2938	sched_clock_tick();
2939
2940	raw_spin_lock(&rq->lock);
2941	update_rq_clock(rq);
2942	update_cpu_load_active(rq);
2943	curr->sched_class->task_tick(rq, curr, 0);
2944	raw_spin_unlock(&rq->lock);
2945
2946	perf_event_task_tick();
2947
2948#ifdef CONFIG_SMP
2949	rq->idle_balance = idle_cpu(cpu);
2950	trigger_load_balance(rq, cpu);
2951#endif
2952}
2953
2954notrace unsigned long get_parent_ip(unsigned long addr)
2955{
2956	if (in_lock_functions(addr)) {
2957		addr = CALLER_ADDR2;
2958		if (in_lock_functions(addr))
2959			addr = CALLER_ADDR3;
2960	}
2961	return addr;
2962}
2963
2964#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2965				defined(CONFIG_PREEMPT_TRACER))
2966
2967void __kprobes add_preempt_count(int val)
2968{
2969#ifdef CONFIG_DEBUG_PREEMPT
2970	/*
2971	 * Underflow?
2972	 */
2973	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2974		return;
2975#endif
2976	preempt_count() += val;
2977#ifdef CONFIG_DEBUG_PREEMPT
2978	/*
2979	 * Spinlock count overflowing soon?
2980	 */
2981	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2982				PREEMPT_MASK - 10);
2983#endif
2984	if (preempt_count() == val)
2985		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2986}
2987EXPORT_SYMBOL(add_preempt_count);
2988
2989void __kprobes sub_preempt_count(int val)
2990{
2991#ifdef CONFIG_DEBUG_PREEMPT
2992	/*
2993	 * Underflow?
2994	 */
2995	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2996		return;
2997	/*
2998	 * Is the spinlock portion underflowing?
2999	 */
3000	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3001			!(preempt_count() & PREEMPT_MASK)))
3002		return;
3003#endif
3004
3005	if (preempt_count() == val)
3006		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3007	preempt_count() -= val;
3008}
3009EXPORT_SYMBOL(sub_preempt_count);
3010
3011#endif
3012
3013/*
3014 * Print scheduling while atomic bug:
3015 */
3016static noinline void __schedule_bug(struct task_struct *prev)
3017{
3018	struct pt_regs *regs = get_irq_regs();
3019
3020	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3021		prev->comm, prev->pid, preempt_count());
3022
3023	debug_show_held_locks(prev);
3024	print_modules();
3025	if (irqs_disabled())
3026		print_irqtrace_events(prev);
3027
3028	if (regs)
3029		show_regs(regs);
3030	else
3031		dump_stack();
3032}
3033
3034/*
3035 * Various schedule()-time debugging checks and statistics:
3036 */
3037static inline void schedule_debug(struct task_struct *prev)
3038{
3039	/*
3040	 * Test if we are atomic. Since do_exit() needs to call into
3041	 * schedule() atomically, we ignore that path for now.
3042	 * Otherwise, whine if we are scheduling when we should not be.
3043	 */
3044	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3045		__schedule_bug(prev);
3046	rcu_sleep_check();
3047
3048	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3049
3050	schedstat_inc(this_rq(), sched_count);
3051}
3052
3053static void put_prev_task(struct rq *rq, struct task_struct *prev)
3054{
3055	if (prev->on_rq || rq->skip_clock_update < 0)
3056		update_rq_clock(rq);
3057	prev->sched_class->put_prev_task(rq, prev);
3058}
3059
3060/*
3061 * Pick up the highest-prio task:
3062 */
3063static inline struct task_struct *
3064pick_next_task(struct rq *rq)
3065{
3066	const struct sched_class *class;
3067	struct task_struct *p;
3068
3069	/*
3070	 * Optimization: we know that if all tasks are in
3071	 * the fair class we can call that function directly:
3072	 */
3073	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3074		p = fair_sched_class.pick_next_task(rq);
3075		if (likely(p))
3076			return p;
3077	}
3078
3079	for_each_class(class) {
3080		p = class->pick_next_task(rq);
3081		if (p)
3082			return p;
3083	}
3084
3085	BUG(); /* the idle class will always have a runnable task */
3086}
3087
3088/*
3089 * __schedule() is the main scheduler function.
3090 */
3091static void __sched __schedule(void)
3092{
3093	struct task_struct *prev, *next;
3094	unsigned long *switch_count;
3095	struct rq *rq;
3096	int cpu;
3097
3098need_resched:
3099	preempt_disable();
3100	cpu = smp_processor_id();
3101	rq = cpu_rq(cpu);
3102	rcu_note_context_switch(cpu);
3103	prev = rq->curr;
3104
3105	schedule_debug(prev);
3106
3107	if (sched_feat(HRTICK))
3108		hrtick_clear(rq);
3109
3110	raw_spin_lock_irq(&rq->lock);
3111
3112	switch_count = &prev->nivcsw;
3113	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3114		if (unlikely(signal_pending_state(prev->state, prev))) {
3115			prev->state = TASK_RUNNING;
3116		} else {
3117			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3118			prev->on_rq = 0;
3119
3120			/*
3121			 * If a worker went to sleep, notify and ask workqueue
3122			 * whether it wants to wake up a task to maintain
3123			 * concurrency.
3124			 */
3125			if (prev->flags & PF_WQ_WORKER) {
3126				struct task_struct *to_wakeup;
3127
3128				to_wakeup = wq_worker_sleeping(prev, cpu);
3129				if (to_wakeup)
3130					try_to_wake_up_local(to_wakeup);
3131			}
3132		}
3133		switch_count = &prev->nvcsw;
3134	}
3135
3136	pre_schedule(rq, prev);
3137
3138	if (unlikely(!rq->nr_running))
3139		idle_balance(cpu, rq);
3140
3141	put_prev_task(rq, prev);
3142	next = pick_next_task(rq);
3143	clear_tsk_need_resched(prev);
3144	rq->skip_clock_update = 0;
3145
3146	if (likely(prev != next)) {
3147		rq->nr_switches++;
3148		rq->curr = next;
3149		++*switch_count;
3150
3151		context_switch(rq, prev, next); /* unlocks the rq */
3152		/*
3153		 * The context switch have flipped the stack from under us
3154		 * and restored the local variables which were saved when
3155		 * this task called schedule() in the past. prev == current
3156		 * is still correct, but it can be moved to another cpu/rq.
3157		 */
3158		cpu = smp_processor_id();
3159		rq = cpu_rq(cpu);
3160	} else
3161		raw_spin_unlock_irq(&rq->lock);
3162
3163	post_schedule(rq);
3164
3165	preempt_enable_no_resched();
3166	if (need_resched())
3167		goto need_resched;
3168}
3169
3170static inline void sched_submit_work(struct task_struct *tsk)
3171{
3172	if (!tsk->state)
3173		return;
3174	/*
3175	 * If we are going to sleep and we have plugged IO queued,
3176	 * make sure to submit it to avoid deadlocks.
3177	 */
3178	if (blk_needs_flush_plug(tsk))
3179		blk_schedule_flush_plug(tsk);
3180}
3181
3182asmlinkage void __sched schedule(void)
3183{
3184	struct task_struct *tsk = current;
3185
3186	sched_submit_work(tsk);
3187	__schedule();
3188}
3189EXPORT_SYMBOL(schedule);
3190
3191#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3192
3193static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3194{
3195	if (lock->owner != owner)
3196		return false;
3197
3198	/*
3199	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3200	 * lock->owner still matches owner, if that fails, owner might
3201	 * point to free()d memory, if it still matches, the rcu_read_lock()
3202	 * ensures the memory stays valid.
3203	 */
3204	barrier();
3205
3206	return owner->on_cpu;
3207}
3208
3209/*
3210 * Look out! "owner" is an entirely speculative pointer
3211 * access and not reliable.
3212 */
3213int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3214{
3215	if (!sched_feat(OWNER_SPIN))
3216		return 0;
3217
3218	rcu_read_lock();
3219	while (owner_running(lock, owner)) {
3220		if (need_resched())
3221			break;
3222
3223		arch_mutex_cpu_relax();
3224	}
3225	rcu_read_unlock();
3226
3227	/*
3228	 * We break out the loop above on need_resched() and when the
3229	 * owner changed, which is a sign for heavy contention. Return
3230	 * success only when lock->owner is NULL.
3231	 */
3232	return lock->owner == NULL;
3233}
3234#endif
3235
3236#ifdef CONFIG_PREEMPT
3237/*
3238 * this is the entry point to schedule() from in-kernel preemption
3239 * off of preempt_enable. Kernel preemptions off return from interrupt
3240 * occur there and call schedule directly.
3241 */
3242asmlinkage void __sched notrace preempt_schedule(void)
3243{
3244	struct thread_info *ti = current_thread_info();
3245
3246	/*
3247	 * If there is a non-zero preempt_count or interrupts are disabled,
3248	 * we do not want to preempt the current task. Just return..
3249	 */
3250	if (likely(ti->preempt_count || irqs_disabled()))
3251		return;
3252
3253	do {
3254		add_preempt_count_notrace(PREEMPT_ACTIVE);
3255		__schedule();
3256		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3257
3258		/*
3259		 * Check again in case we missed a preemption opportunity
3260		 * between schedule and now.
3261		 */
3262		barrier();
3263	} while (need_resched());
3264}
3265EXPORT_SYMBOL(preempt_schedule);
3266
3267/*
3268 * this is the entry point to schedule() from kernel preemption
3269 * off of irq context.
3270 * Note, that this is called and return with irqs disabled. This will
3271 * protect us against recursive calling from irq.
3272 */
3273asmlinkage void __sched preempt_schedule_irq(void)
3274{
3275	struct thread_info *ti = current_thread_info();
3276
3277	/* Catch callers which need to be fixed */
3278	BUG_ON(ti->preempt_count || !irqs_disabled());
3279
3280	do {
3281		add_preempt_count(PREEMPT_ACTIVE);
3282		local_irq_enable();
3283		__schedule();
3284		local_irq_disable();
3285		sub_preempt_count(PREEMPT_ACTIVE);
3286
3287		/*
3288		 * Check again in case we missed a preemption opportunity
3289		 * between schedule and now.
3290		 */
3291		barrier();
3292	} while (need_resched());
3293}
3294
3295#endif /* CONFIG_PREEMPT */
3296
3297int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3298			  void *key)
3299{
3300	return try_to_wake_up(curr->private, mode, wake_flags);
3301}
3302EXPORT_SYMBOL(default_wake_function);
3303
3304/*
3305 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3306 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3307 * number) then we wake all the non-exclusive tasks and one exclusive task.
3308 *
3309 * There are circumstances in which we can try to wake a task which has already
3310 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3311 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3312 */
3313static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3314			int nr_exclusive, int wake_flags, void *key)
3315{
3316	wait_queue_t *curr, *next;
3317
3318	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3319		unsigned flags = curr->flags;
3320
3321		if (curr->func(curr, mode, wake_flags, key) &&
3322				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3323			break;
3324	}
3325}
3326
3327/**
3328 * __wake_up - wake up threads blocked on a waitqueue.
3329 * @q: the waitqueue
3330 * @mode: which threads
3331 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3332 * @key: is directly passed to the wakeup function
3333 *
3334 * It may be assumed that this function implies a write memory barrier before
3335 * changing the task state if and only if any tasks are woken up.
3336 */
3337void __wake_up(wait_queue_head_t *q, unsigned int mode,
3338			int nr_exclusive, void *key)
3339{
3340	unsigned long flags;
3341
3342	spin_lock_irqsave(&q->lock, flags);
3343	__wake_up_common(q, mode, nr_exclusive, 0, key);
3344	spin_unlock_irqrestore(&q->lock, flags);
3345}
3346EXPORT_SYMBOL(__wake_up);
3347
3348/*
3349 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3350 */
3351void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3352{
3353	__wake_up_common(q, mode, 1, 0, NULL);
3354}
3355EXPORT_SYMBOL_GPL(__wake_up_locked);
3356
3357void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3358{
3359	__wake_up_common(q, mode, 1, 0, key);
3360}
3361EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3362
3363/**
3364 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3365 * @q: the waitqueue
3366 * @mode: which threads
3367 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3368 * @key: opaque value to be passed to wakeup targets
3369 *
3370 * The sync wakeup differs that the waker knows that it will schedule
3371 * away soon, so while the target thread will be woken up, it will not
3372 * be migrated to another CPU - ie. the two threads are 'synchronized'
3373 * with each other. This can prevent needless bouncing between CPUs.
3374 *
3375 * On UP it can prevent extra preemption.
3376 *
3377 * It may be assumed that this function implies a write memory barrier before
3378 * changing the task state if and only if any tasks are woken up.
3379 */
3380void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3381			int nr_exclusive, void *key)
3382{
3383	unsigned long flags;
3384	int wake_flags = WF_SYNC;
3385
3386	if (unlikely(!q))
3387		return;
3388
3389	if (unlikely(!nr_exclusive))
3390		wake_flags = 0;
3391
3392	spin_lock_irqsave(&q->lock, flags);
3393	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3394	spin_unlock_irqrestore(&q->lock, flags);
3395}
3396EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3397
3398/*
3399 * __wake_up_sync - see __wake_up_sync_key()
3400 */
3401void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3402{
3403	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3404}
3405EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3406
3407/**
3408 * complete: - signals a single thread waiting on this completion
3409 * @x:  holds the state of this particular completion
3410 *
3411 * This will wake up a single thread waiting on this completion. Threads will be
3412 * awakened in the same order in which they were queued.
3413 *
3414 * See also complete_all(), wait_for_completion() and related routines.
3415 *
3416 * It may be assumed that this function implies a write memory barrier before
3417 * changing the task state if and only if any tasks are woken up.
3418 */
3419void complete(struct completion *x)
3420{
3421	unsigned long flags;
3422
3423	spin_lock_irqsave(&x->wait.lock, flags);
3424	x->done++;
3425	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3426	spin_unlock_irqrestore(&x->wait.lock, flags);
3427}
3428EXPORT_SYMBOL(complete);
3429
3430/**
3431 * complete_all: - signals all threads waiting on this completion
3432 * @x:  holds the state of this particular completion
3433 *
3434 * This will wake up all threads waiting on this particular completion event.
3435 *
3436 * It may be assumed that this function implies a write memory barrier before
3437 * changing the task state if and only if any tasks are woken up.
3438 */
3439void complete_all(struct completion *x)
3440{
3441	unsigned long flags;
3442
3443	spin_lock_irqsave(&x->wait.lock, flags);
3444	x->done += UINT_MAX/2;
3445	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3446	spin_unlock_irqrestore(&x->wait.lock, flags);
3447}
3448EXPORT_SYMBOL(complete_all);
3449
3450static inline long __sched
3451do_wait_for_common(struct completion *x, long timeout, int state)
3452{
3453	if (!x->done) {
3454		DECLARE_WAITQUEUE(wait, current);
3455
3456		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3457		do {
3458			if (signal_pending_state(state, current)) {
3459				timeout = -ERESTARTSYS;
3460				break;
3461			}
3462			__set_current_state(state);
3463			spin_unlock_irq(&x->wait.lock);
3464			timeout = schedule_timeout(timeout);
3465			spin_lock_irq(&x->wait.lock);
3466		} while (!x->done && timeout);
3467		__remove_wait_queue(&x->wait, &wait);
3468		if (!x->done)
3469			return timeout;
3470	}
3471	x->done--;
3472	return timeout ?: 1;
3473}
3474
3475static long __sched
3476wait_for_common(struct completion *x, long timeout, int state)
3477{
3478	might_sleep();
3479
3480	spin_lock_irq(&x->wait.lock);
3481	timeout = do_wait_for_common(x, timeout, state);
3482	spin_unlock_irq(&x->wait.lock);
3483	return timeout;
3484}
3485
3486/**
3487 * wait_for_completion: - waits for completion of a task
3488 * @x:  holds the state of this particular completion
3489 *
3490 * This waits to be signaled for completion of a specific task. It is NOT
3491 * interruptible and there is no timeout.
3492 *
3493 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3494 * and interrupt capability. Also see complete().
3495 */
3496void __sched wait_for_completion(struct completion *x)
3497{
3498	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3499}
3500EXPORT_SYMBOL(wait_for_completion);
3501
3502/**
3503 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3504 * @x:  holds the state of this particular completion
3505 * @timeout:  timeout value in jiffies
3506 *
3507 * This waits for either a completion of a specific task to be signaled or for a
3508 * specified timeout to expire. The timeout is in jiffies. It is not
3509 * interruptible.
3510 *
3511 * The return value is 0 if timed out, and positive (at least 1, or number of
3512 * jiffies left till timeout) if completed.
3513 */
3514unsigned long __sched
3515wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3516{
3517	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3518}
3519EXPORT_SYMBOL(wait_for_completion_timeout);
3520
3521/**
3522 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3523 * @x:  holds the state of this particular completion
3524 *
3525 * This waits for completion of a specific task to be signaled. It is
3526 * interruptible.
3527 *
3528 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3529 */
3530int __sched wait_for_completion_interruptible(struct completion *x)
3531{
3532	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3533	if (t == -ERESTARTSYS)
3534		return t;
3535	return 0;
3536}
3537EXPORT_SYMBOL(wait_for_completion_interruptible);
3538
3539/**
3540 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3541 * @x:  holds the state of this particular completion
3542 * @timeout:  timeout value in jiffies
3543 *
3544 * This waits for either a completion of a specific task to be signaled or for a
3545 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3546 *
3547 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3548 * positive (at least 1, or number of jiffies left till timeout) if completed.
3549 */
3550long __sched
3551wait_for_completion_interruptible_timeout(struct completion *x,
3552					  unsigned long timeout)
3553{
3554	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3555}
3556EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3557
3558/**
3559 * wait_for_completion_killable: - waits for completion of a task (killable)
3560 * @x:  holds the state of this particular completion
3561 *
3562 * This waits to be signaled for completion of a specific task. It can be
3563 * interrupted by a kill signal.
3564 *
3565 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3566 */
3567int __sched wait_for_completion_killable(struct completion *x)
3568{
3569	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3570	if (t == -ERESTARTSYS)
3571		return t;
3572	return 0;
3573}
3574EXPORT_SYMBOL(wait_for_completion_killable);
3575
3576/**
3577 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3578 * @x:  holds the state of this particular completion
3579 * @timeout:  timeout value in jiffies
3580 *
3581 * This waits for either a completion of a specific task to be
3582 * signaled or for a specified timeout to expire. It can be
3583 * interrupted by a kill signal. The timeout is in jiffies.
3584 *
3585 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3586 * positive (at least 1, or number of jiffies left till timeout) if completed.
3587 */
3588long __sched
3589wait_for_completion_killable_timeout(struct completion *x,
3590				     unsigned long timeout)
3591{
3592	return wait_for_common(x, timeout, TASK_KILLABLE);
3593}
3594EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3595
3596/**
3597 *	try_wait_for_completion - try to decrement a completion without blocking
3598 *	@x:	completion structure
3599 *
3600 *	Returns: 0 if a decrement cannot be done without blocking
3601 *		 1 if a decrement succeeded.
3602 *
3603 *	If a completion is being used as a counting completion,
3604 *	attempt to decrement the counter without blocking. This
3605 *	enables us to avoid waiting if the resource the completion
3606 *	is protecting is not available.
3607 */
3608bool try_wait_for_completion(struct completion *x)
3609{
3610	unsigned long flags;
3611	int ret = 1;
3612
3613	spin_lock_irqsave(&x->wait.lock, flags);
3614	if (!x->done)
3615		ret = 0;
3616	else
3617		x->done--;
3618	spin_unlock_irqrestore(&x->wait.lock, flags);
3619	return ret;
3620}
3621EXPORT_SYMBOL(try_wait_for_completion);
3622
3623/**
3624 *	completion_done - Test to see if a completion has any waiters
3625 *	@x:	completion structure
3626 *
3627 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3628 *		 1 if there are no waiters.
3629 *
3630 */
3631bool completion_done(struct completion *x)
3632{
3633	unsigned long flags;
3634	int ret = 1;
3635
3636	spin_lock_irqsave(&x->wait.lock, flags);
3637	if (!x->done)
3638		ret = 0;
3639	spin_unlock_irqrestore(&x->wait.lock, flags);
3640	return ret;
3641}
3642EXPORT_SYMBOL(completion_done);
3643
3644static long __sched
3645sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3646{
3647	unsigned long flags;
3648	wait_queue_t wait;
3649
3650	init_waitqueue_entry(&wait, current);
3651
3652	__set_current_state(state);
3653
3654	spin_lock_irqsave(&q->lock, flags);
3655	__add_wait_queue(q, &wait);
3656	spin_unlock(&q->lock);
3657	timeout = schedule_timeout(timeout);
3658	spin_lock_irq(&q->lock);
3659	__remove_wait_queue(q, &wait);
3660	spin_unlock_irqrestore(&q->lock, flags);
3661
3662	return timeout;
3663}
3664
3665void __sched interruptible_sleep_on(wait_queue_head_t *q)
3666{
3667	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3668}
3669EXPORT_SYMBOL(interruptible_sleep_on);
3670
3671long __sched
3672interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3673{
3674	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3675}
3676EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3677
3678void __sched sleep_on(wait_queue_head_t *q)
3679{
3680	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3681}
3682EXPORT_SYMBOL(sleep_on);
3683
3684long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3685{
3686	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3687}
3688EXPORT_SYMBOL(sleep_on_timeout);
3689
3690#ifdef CONFIG_RT_MUTEXES
3691
3692/*
3693 * rt_mutex_setprio - set the current priority of a task
3694 * @p: task
3695 * @prio: prio value (kernel-internal form)
3696 *
3697 * This function changes the 'effective' priority of a task. It does
3698 * not touch ->normal_prio like __setscheduler().
3699 *
3700 * Used by the rt_mutex code to implement priority inheritance logic.
3701 */
3702void rt_mutex_setprio(struct task_struct *p, int prio)
3703{
3704	int oldprio, on_rq, running;
3705	struct rq *rq;
3706	const struct sched_class *prev_class;
3707
3708	BUG_ON(prio < 0 || prio > MAX_PRIO);
3709
3710	rq = __task_rq_lock(p);
3711
3712	trace_sched_pi_setprio(p, prio);
3713	oldprio = p->prio;
3714	prev_class = p->sched_class;
3715	on_rq = p->on_rq;
3716	running = task_current(rq, p);
3717	if (on_rq)
3718		dequeue_task(rq, p, 0);
3719	if (running)
3720		p->sched_class->put_prev_task(rq, p);
3721
3722	if (rt_prio(prio))
3723		p->sched_class = &rt_sched_class;
3724	else
3725		p->sched_class = &fair_sched_class;
3726
3727	p->prio = prio;
3728
3729	if (running)
3730		p->sched_class->set_curr_task(rq);
3731	if (on_rq)
3732		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3733
3734	check_class_changed(rq, p, prev_class, oldprio);
3735	__task_rq_unlock(rq);
3736}
3737
3738#endif
3739
3740void set_user_nice(struct task_struct *p, long nice)
3741{
3742	int old_prio, delta, on_rq;
3743	unsigned long flags;
3744	struct rq *rq;
3745
3746	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3747		return;
3748	/*
3749	 * We have to be careful, if called from sys_setpriority(),
3750	 * the task might be in the middle of scheduling on another CPU.
3751	 */
3752	rq = task_rq_lock(p, &flags);
3753	/*
3754	 * The RT priorities are set via sched_setscheduler(), but we still
3755	 * allow the 'normal' nice value to be set - but as expected
3756	 * it wont have any effect on scheduling until the task is
3757	 * SCHED_FIFO/SCHED_RR:
3758	 */
3759	if (task_has_rt_policy(p)) {
3760		p->static_prio = NICE_TO_PRIO(nice);
3761		goto out_unlock;
3762	}
3763	on_rq = p->on_rq;
3764	if (on_rq)
3765		dequeue_task(rq, p, 0);
3766
3767	p->static_prio = NICE_TO_PRIO(nice);
3768	set_load_weight(p);
3769	old_prio = p->prio;
3770	p->prio = effective_prio(p);
3771	delta = p->prio - old_prio;
3772
3773	if (on_rq) {
3774		enqueue_task(rq, p, 0);
3775		/*
3776		 * If the task increased its priority or is running and
3777		 * lowered its priority, then reschedule its CPU:
3778		 */
3779		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3780			resched_task(rq->curr);
3781	}
3782out_unlock:
3783	task_rq_unlock(rq, p, &flags);
3784}
3785EXPORT_SYMBOL(set_user_nice);
3786
3787/*
3788 * can_nice - check if a task can reduce its nice value
3789 * @p: task
3790 * @nice: nice value
3791 */
3792int can_nice(const struct task_struct *p, const int nice)
3793{
3794	/* convert nice value [19,-20] to rlimit style value [1,40] */
3795	int nice_rlim = 20 - nice;
3796
3797	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3798		capable(CAP_SYS_NICE));
3799}
3800
3801#ifdef __ARCH_WANT_SYS_NICE
3802
3803/*
3804 * sys_nice - change the priority of the current process.
3805 * @increment: priority increment
3806 *
3807 * sys_setpriority is a more generic, but much slower function that
3808 * does similar things.
3809 */
3810SYSCALL_DEFINE1(nice, int, increment)
3811{
3812	long nice, retval;
3813
3814	/*
3815	 * Setpriority might change our priority at the same moment.
3816	 * We don't have to worry. Conceptually one call occurs first
3817	 * and we have a single winner.
3818	 */
3819	if (increment < -40)
3820		increment = -40;
3821	if (increment > 40)
3822		increment = 40;
3823
3824	nice = TASK_NICE(current) + increment;
3825	if (nice < -20)
3826		nice = -20;
3827	if (nice > 19)
3828		nice = 19;
3829
3830	if (increment < 0 && !can_nice(current, nice))
3831		return -EPERM;
3832
3833	retval = security_task_setnice(current, nice);
3834	if (retval)
3835		return retval;
3836
3837	set_user_nice(current, nice);
3838	return 0;
3839}
3840
3841#endif
3842
3843/**
3844 * task_prio - return the priority value of a given task.
3845 * @p: the task in question.
3846 *
3847 * This is the priority value as seen by users in /proc.
3848 * RT tasks are offset by -200. Normal tasks are centered
3849 * around 0, value goes from -16 to +15.
3850 */
3851int task_prio(const struct task_struct *p)
3852{
3853	return p->prio - MAX_RT_PRIO;
3854}
3855
3856/**
3857 * task_nice - return the nice value of a given task.
3858 * @p: the task in question.
3859 */
3860int task_nice(const struct task_struct *p)
3861{
3862	return TASK_NICE(p);
3863}
3864EXPORT_SYMBOL(task_nice);
3865
3866/**
3867 * idle_cpu - is a given cpu idle currently?
3868 * @cpu: the processor in question.
3869 */
3870int idle_cpu(int cpu)
3871{
3872	struct rq *rq = cpu_rq(cpu);
3873
3874	if (rq->curr != rq->idle)
3875		return 0;
3876
3877	if (rq->nr_running)
3878		return 0;
3879
3880#ifdef CONFIG_SMP
3881	if (!llist_empty(&rq->wake_list))
3882		return 0;
3883#endif
3884
3885	return 1;
3886}
3887
3888/**
3889 * idle_task - return the idle task for a given cpu.
3890 * @cpu: the processor in question.
3891 */
3892struct task_struct *idle_task(int cpu)
3893{
3894	return cpu_rq(cpu)->idle;
3895}
3896
3897/**
3898 * find_process_by_pid - find a process with a matching PID value.
3899 * @pid: the pid in question.
3900 */
3901static struct task_struct *find_process_by_pid(pid_t pid)
3902{
3903	return pid ? find_task_by_vpid(pid) : current;
3904}
3905
3906/* Actually do priority change: must hold rq lock. */
3907static void
3908__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3909{
3910	p->policy = policy;
3911	p->rt_priority = prio;
3912	p->normal_prio = normal_prio(p);
3913	/* we are holding p->pi_lock already */
3914	p->prio = rt_mutex_getprio(p);
3915	if (rt_prio(p->prio))
3916		p->sched_class = &rt_sched_class;
3917	else
3918		p->sched_class = &fair_sched_class;
3919	set_load_weight(p);
3920}
3921
3922/*
3923 * check the target process has a UID that matches the current process's
3924 */
3925static bool check_same_owner(struct task_struct *p)
3926{
3927	const struct cred *cred = current_cred(), *pcred;
3928	bool match;
3929
3930	rcu_read_lock();
3931	pcred = __task_cred(p);
3932	if (cred->user->user_ns == pcred->user->user_ns)
3933		match = (cred->euid == pcred->euid ||
3934			 cred->euid == pcred->uid);
3935	else
3936		match = false;
3937	rcu_read_unlock();
3938	return match;
3939}
3940
3941static int __sched_setscheduler(struct task_struct *p, int policy,
3942				const struct sched_param *param, bool user)
3943{
3944	int retval, oldprio, oldpolicy = -1, on_rq, running;
3945	unsigned long flags;
3946	const struct sched_class *prev_class;
3947	struct rq *rq;
3948	int reset_on_fork;
3949
3950	/* may grab non-irq protected spin_locks */
3951	BUG_ON(in_interrupt());
3952recheck:
3953	/* double check policy once rq lock held */
3954	if (policy < 0) {
3955		reset_on_fork = p->sched_reset_on_fork;
3956		policy = oldpolicy = p->policy;
3957	} else {
3958		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3959		policy &= ~SCHED_RESET_ON_FORK;
3960
3961		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3962				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3963				policy != SCHED_IDLE)
3964			return -EINVAL;
3965	}
3966
3967	/*
3968	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3969	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3970	 * SCHED_BATCH and SCHED_IDLE is 0.
3971	 */
3972	if (param->sched_priority < 0 ||
3973	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3974	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3975		return -EINVAL;
3976	if (rt_policy(policy) != (param->sched_priority != 0))
3977		return -EINVAL;
3978
3979	/*
3980	 * Allow unprivileged RT tasks to decrease priority:
3981	 */
3982	if (user && !capable(CAP_SYS_NICE)) {
3983		if (rt_policy(policy)) {
3984			unsigned long rlim_rtprio =
3985					task_rlimit(p, RLIMIT_RTPRIO);
3986
3987			/* can't set/change the rt policy */
3988			if (policy != p->policy && !rlim_rtprio)
3989				return -EPERM;
3990
3991			/* can't increase priority */
3992			if (param->sched_priority > p->rt_priority &&
3993			    param->sched_priority > rlim_rtprio)
3994				return -EPERM;
3995		}
3996
3997		/*
3998		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3999		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4000		 */
4001		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4002			if (!can_nice(p, TASK_NICE(p)))
4003				return -EPERM;
4004		}
4005
4006		/* can't change other user's priorities */
4007		if (!check_same_owner(p))
4008			return -EPERM;
4009
4010		/* Normal users shall not reset the sched_reset_on_fork flag */
4011		if (p->sched_reset_on_fork && !reset_on_fork)
4012			return -EPERM;
4013	}
4014
4015	if (user) {
4016		retval = security_task_setscheduler(p);
4017		if (retval)
4018			return retval;
4019	}
4020
4021	/*
4022	 * make sure no PI-waiters arrive (or leave) while we are
4023	 * changing the priority of the task:
4024	 *
4025	 * To be able to change p->policy safely, the appropriate
4026	 * runqueue lock must be held.
4027	 */
4028	rq = task_rq_lock(p, &flags);
4029
4030	/*
4031	 * Changing the policy of the stop threads its a very bad idea
4032	 */
4033	if (p == rq->stop) {
4034		task_rq_unlock(rq, p, &flags);
4035		return -EINVAL;
4036	}
4037
4038	/*
4039	 * If not changing anything there's no need to proceed further:
4040	 */
4041	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4042			param->sched_priority == p->rt_priority))) {
4043
4044		__task_rq_unlock(rq);
4045		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4046		return 0;
4047	}
4048
4049#ifdef CONFIG_RT_GROUP_SCHED
4050	if (user) {
4051		/*
4052		 * Do not allow realtime tasks into groups that have no runtime
4053		 * assigned.
4054		 */
4055		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4056				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4057				!task_group_is_autogroup(task_group(p))) {
4058			task_rq_unlock(rq, p, &flags);
4059			return -EPERM;
4060		}
4061	}
4062#endif
4063
4064	/* recheck policy now with rq lock held */
4065	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4066		policy = oldpolicy = -1;
4067		task_rq_unlock(rq, p, &flags);
4068		goto recheck;
4069	}
4070	on_rq = p->on_rq;
4071	running = task_current(rq, p);
4072	if (on_rq)
4073		deactivate_task(rq, p, 0);
4074	if (running)
4075		p->sched_class->put_prev_task(rq, p);
4076
4077	p->sched_reset_on_fork = reset_on_fork;
4078
4079	oldprio = p->prio;
4080	prev_class = p->sched_class;
4081	__setscheduler(rq, p, policy, param->sched_priority);
4082
4083	if (running)
4084		p->sched_class->set_curr_task(rq);
4085	if (on_rq)
4086		activate_task(rq, p, 0);
4087
4088	check_class_changed(rq, p, prev_class, oldprio);
4089	task_rq_unlock(rq, p, &flags);
4090
4091	rt_mutex_adjust_pi(p);
4092
4093	return 0;
4094}
4095
4096/**
4097 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4098 * @p: the task in question.
4099 * @policy: new policy.
4100 * @param: structure containing the new RT priority.
4101 *
4102 * NOTE that the task may be already dead.
4103 */
4104int sched_setscheduler(struct task_struct *p, int policy,
4105		       const struct sched_param *param)
4106{
4107	return __sched_setscheduler(p, policy, param, true);
4108}
4109EXPORT_SYMBOL_GPL(sched_setscheduler);
4110
4111/**
4112 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4113 * @p: the task in question.
4114 * @policy: new policy.
4115 * @param: structure containing the new RT priority.
4116 *
4117 * Just like sched_setscheduler, only don't bother checking if the
4118 * current context has permission.  For example, this is needed in
4119 * stop_machine(): we create temporary high priority worker threads,
4120 * but our caller might not have that capability.
4121 */
4122int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4123			       const struct sched_param *param)
4124{
4125	return __sched_setscheduler(p, policy, param, false);
4126}
4127
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130{
4131	struct sched_param lparam;
4132	struct task_struct *p;
4133	int retval;
4134
4135	if (!param || pid < 0)
4136		return -EINVAL;
4137	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138		return -EFAULT;
4139
4140	rcu_read_lock();
4141	retval = -ESRCH;
4142	p = find_process_by_pid(pid);
4143	if (p != NULL)
4144		retval = sched_setscheduler(p, policy, &lparam);
4145	rcu_read_unlock();
4146
4147	return retval;
4148}
4149
4150/**
4151 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4152 * @pid: the pid in question.
4153 * @policy: new policy.
4154 * @param: structure containing the new RT priority.
4155 */
4156SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4157		struct sched_param __user *, param)
4158{
4159	/* negative values for policy are not valid */
4160	if (policy < 0)
4161		return -EINVAL;
4162
4163	return do_sched_setscheduler(pid, policy, param);
4164}
4165
4166/**
4167 * sys_sched_setparam - set/change the RT priority of a thread
4168 * @pid: the pid in question.
4169 * @param: structure containing the new RT priority.
4170 */
4171SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4172{
4173	return do_sched_setscheduler(pid, -1, param);
4174}
4175
4176/**
4177 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4178 * @pid: the pid in question.
4179 */
4180SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4181{
4182	struct task_struct *p;
4183	int retval;
4184
4185	if (pid < 0)
4186		return -EINVAL;
4187
4188	retval = -ESRCH;
4189	rcu_read_lock();
4190	p = find_process_by_pid(pid);
4191	if (p) {
4192		retval = security_task_getscheduler(p);
4193		if (!retval)
4194			retval = p->policy
4195				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4196	}
4197	rcu_read_unlock();
4198	return retval;
4199}
4200
4201/**
4202 * sys_sched_getparam - get the RT priority of a thread
4203 * @pid: the pid in question.
4204 * @param: structure containing the RT priority.
4205 */
4206SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4207{
4208	struct sched_param lp;
4209	struct task_struct *p;
4210	int retval;
4211
4212	if (!param || pid < 0)
4213		return -EINVAL;
4214
4215	rcu_read_lock();
4216	p = find_process_by_pid(pid);
4217	retval = -ESRCH;
4218	if (!p)
4219		goto out_unlock;
4220
4221	retval = security_task_getscheduler(p);
4222	if (retval)
4223		goto out_unlock;
4224
4225	lp.sched_priority = p->rt_priority;
4226	rcu_read_unlock();
4227
4228	/*
4229	 * This one might sleep, we cannot do it with a spinlock held ...
4230	 */
4231	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4232
4233	return retval;
4234
4235out_unlock:
4236	rcu_read_unlock();
4237	return retval;
4238}
4239
4240long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4241{
4242	cpumask_var_t cpus_allowed, new_mask;
4243	struct task_struct *p;
4244	int retval;
4245
4246	get_online_cpus();
4247	rcu_read_lock();
4248
4249	p = find_process_by_pid(pid);
4250	if (!p) {
4251		rcu_read_unlock();
4252		put_online_cpus();
4253		return -ESRCH;
4254	}
4255
4256	/* Prevent p going away */
4257	get_task_struct(p);
4258	rcu_read_unlock();
4259
4260	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4261		retval = -ENOMEM;
4262		goto out_put_task;
4263	}
4264	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4265		retval = -ENOMEM;
4266		goto out_free_cpus_allowed;
4267	}
4268	retval = -EPERM;
4269	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
4270		goto out_unlock;
4271
4272	retval = security_task_setscheduler(p);
4273	if (retval)
4274		goto out_unlock;
4275
4276	cpuset_cpus_allowed(p, cpus_allowed);
4277	cpumask_and(new_mask, in_mask, cpus_allowed);
4278again:
4279	retval = set_cpus_allowed_ptr(p, new_mask);
4280
4281	if (!retval) {
4282		cpuset_cpus_allowed(p, cpus_allowed);
4283		if (!cpumask_subset(new_mask, cpus_allowed)) {
4284			/*
4285			 * We must have raced with a concurrent cpuset
4286			 * update. Just reset the cpus_allowed to the
4287			 * cpuset's cpus_allowed
4288			 */
4289			cpumask_copy(new_mask, cpus_allowed);
4290			goto again;
4291		}
4292	}
4293out_unlock:
4294	free_cpumask_var(new_mask);
4295out_free_cpus_allowed:
4296	free_cpumask_var(cpus_allowed);
4297out_put_task:
4298	put_task_struct(p);
4299	put_online_cpus();
4300	return retval;
4301}
4302
4303static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4304			     struct cpumask *new_mask)
4305{
4306	if (len < cpumask_size())
4307		cpumask_clear(new_mask);
4308	else if (len > cpumask_size())
4309		len = cpumask_size();
4310
4311	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4312}
4313
4314/**
4315 * sys_sched_setaffinity - set the cpu affinity of a process
4316 * @pid: pid of the process
4317 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4318 * @user_mask_ptr: user-space pointer to the new cpu mask
4319 */
4320SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4321		unsigned long __user *, user_mask_ptr)
4322{
4323	cpumask_var_t new_mask;
4324	int retval;
4325
4326	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4327		return -ENOMEM;
4328
4329	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4330	if (retval == 0)
4331		retval = sched_setaffinity(pid, new_mask);
4332	free_cpumask_var(new_mask);
4333	return retval;
4334}
4335
4336long sched_getaffinity(pid_t pid, struct cpumask *mask)
4337{
4338	struct task_struct *p;
4339	unsigned long flags;
4340	int retval;
4341
4342	get_online_cpus();
4343	rcu_read_lock();
4344
4345	retval = -ESRCH;
4346	p = find_process_by_pid(pid);
4347	if (!p)
4348		goto out_unlock;
4349
4350	retval = security_task_getscheduler(p);
4351	if (retval)
4352		goto out_unlock;
4353
4354	raw_spin_lock_irqsave(&p->pi_lock, flags);
4355	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4356	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4357
4358out_unlock:
4359	rcu_read_unlock();
4360	put_online_cpus();
4361
4362	return retval;
4363}
4364
4365/**
4366 * sys_sched_getaffinity - get the cpu affinity of a process
4367 * @pid: pid of the process
4368 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4369 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4370 */
4371SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4372		unsigned long __user *, user_mask_ptr)
4373{
4374	int ret;
4375	cpumask_var_t mask;
4376
4377	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4378		return -EINVAL;
4379	if (len & (sizeof(unsigned long)-1))
4380		return -EINVAL;
4381
4382	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4383		return -ENOMEM;
4384
4385	ret = sched_getaffinity(pid, mask);
4386	if (ret == 0) {
4387		size_t retlen = min_t(size_t, len, cpumask_size());
4388
4389		if (copy_to_user(user_mask_ptr, mask, retlen))
4390			ret = -EFAULT;
4391		else
4392			ret = retlen;
4393	}
4394	free_cpumask_var(mask);
4395
4396	return ret;
4397}
4398
4399/**
4400 * sys_sched_yield - yield the current processor to other threads.
4401 *
4402 * This function yields the current CPU to other tasks. If there are no
4403 * other threads running on this CPU then this function will return.
4404 */
4405SYSCALL_DEFINE0(sched_yield)
4406{
4407	struct rq *rq = this_rq_lock();
4408
4409	schedstat_inc(rq, yld_count);
4410	current->sched_class->yield_task(rq);
4411
4412	/*
4413	 * Since we are going to call schedule() anyway, there's
4414	 * no need to preempt or enable interrupts:
4415	 */
4416	__release(rq->lock);
4417	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4418	do_raw_spin_unlock(&rq->lock);
4419	preempt_enable_no_resched();
4420
4421	schedule();
4422
4423	return 0;
4424}
4425
4426static inline int should_resched(void)
4427{
4428	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4429}
4430
4431static void __cond_resched(void)
4432{
4433	add_preempt_count(PREEMPT_ACTIVE);
4434	__schedule();
4435	sub_preempt_count(PREEMPT_ACTIVE);
4436}
4437
4438int __sched _cond_resched(void)
4439{
4440	if (should_resched()) {
4441		__cond_resched();
4442		return 1;
4443	}
4444	return 0;
4445}
4446EXPORT_SYMBOL(_cond_resched);
4447
4448/*
4449 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4450 * call schedule, and on return reacquire the lock.
4451 *
4452 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4453 * operations here to prevent schedule() from being called twice (once via
4454 * spin_unlock(), once by hand).
4455 */
4456int __cond_resched_lock(spinlock_t *lock)
4457{
4458	int resched = should_resched();
4459	int ret = 0;
4460
4461	lockdep_assert_held(lock);
4462
4463	if (spin_needbreak(lock) || resched) {
4464		spin_unlock(lock);
4465		if (resched)
4466			__cond_resched();
4467		else
4468			cpu_relax();
4469		ret = 1;
4470		spin_lock(lock);
4471	}
4472	return ret;
4473}
4474EXPORT_SYMBOL(__cond_resched_lock);
4475
4476int __sched __cond_resched_softirq(void)
4477{
4478	BUG_ON(!in_softirq());
4479
4480	if (should_resched()) {
4481		local_bh_enable();
4482		__cond_resched();
4483		local_bh_disable();
4484		return 1;
4485	}
4486	return 0;
4487}
4488EXPORT_SYMBOL(__cond_resched_softirq);
4489
4490/**
4491 * yield - yield the current processor to other threads.
4492 *
4493 * This is a shortcut for kernel-space yielding - it marks the
4494 * thread runnable and calls sys_sched_yield().
4495 */
4496void __sched yield(void)
4497{
4498	set_current_state(TASK_RUNNING);
4499	sys_sched_yield();
4500}
4501EXPORT_SYMBOL(yield);
4502
4503/**
4504 * yield_to - yield the current processor to another thread in
4505 * your thread group, or accelerate that thread toward the
4506 * processor it's on.
4507 * @p: target task
4508 * @preempt: whether task preemption is allowed or not
4509 *
4510 * It's the caller's job to ensure that the target task struct
4511 * can't go away on us before we can do any checks.
4512 *
4513 * Returns true if we indeed boosted the target task.
4514 */
4515bool __sched yield_to(struct task_struct *p, bool preempt)
4516{
4517	struct task_struct *curr = current;
4518	struct rq *rq, *p_rq;
4519	unsigned long flags;
4520	bool yielded = 0;
4521
4522	local_irq_save(flags);
4523	rq = this_rq();
4524
4525again:
4526	p_rq = task_rq(p);
4527	double_rq_lock(rq, p_rq);
4528	while (task_rq(p) != p_rq) {
4529		double_rq_unlock(rq, p_rq);
4530		goto again;
4531	}
4532
4533	if (!curr->sched_class->yield_to_task)
4534		goto out;
4535
4536	if (curr->sched_class != p->sched_class)
4537		goto out;
4538
4539	if (task_running(p_rq, p) || p->state)
4540		goto out;
4541
4542	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4543	if (yielded) {
4544		schedstat_inc(rq, yld_count);
4545		/*
4546		 * Make p's CPU reschedule; pick_next_entity takes care of
4547		 * fairness.
4548		 */
4549		if (preempt && rq != p_rq)
4550			resched_task(p_rq->curr);
4551	} else {
4552		/*
4553		 * We might have set it in task_yield_fair(), but are
4554		 * not going to schedule(), so don't want to skip
4555		 * the next update.
4556		 */
4557		rq->skip_clock_update = 0;
4558	}
4559
4560out:
4561	double_rq_unlock(rq, p_rq);
4562	local_irq_restore(flags);
4563
4564	if (yielded)
4565		schedule();
4566
4567	return yielded;
4568}
4569EXPORT_SYMBOL_GPL(yield_to);
4570
4571/*
4572 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4573 * that process accounting knows that this is a task in IO wait state.
4574 */
4575void __sched io_schedule(void)
4576{
4577	struct rq *rq = raw_rq();
4578
4579	delayacct_blkio_start();
4580	atomic_inc(&rq->nr_iowait);
4581	blk_flush_plug(current);
4582	current->in_iowait = 1;
4583	schedule();
4584	current->in_iowait = 0;
4585	atomic_dec(&rq->nr_iowait);
4586	delayacct_blkio_end();
4587}
4588EXPORT_SYMBOL(io_schedule);
4589
4590long __sched io_schedule_timeout(long timeout)
4591{
4592	struct rq *rq = raw_rq();
4593	long ret;
4594
4595	delayacct_blkio_start();
4596	atomic_inc(&rq->nr_iowait);
4597	blk_flush_plug(current);
4598	current->in_iowait = 1;
4599	ret = schedule_timeout(timeout);
4600	current->in_iowait = 0;
4601	atomic_dec(&rq->nr_iowait);
4602	delayacct_blkio_end();
4603	return ret;
4604}
4605
4606/**
4607 * sys_sched_get_priority_max - return maximum RT priority.
4608 * @policy: scheduling class.
4609 *
4610 * this syscall returns the maximum rt_priority that can be used
4611 * by a given scheduling class.
4612 */
4613SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4614{
4615	int ret = -EINVAL;
4616
4617	switch (policy) {
4618	case SCHED_FIFO:
4619	case SCHED_RR:
4620		ret = MAX_USER_RT_PRIO-1;
4621		break;
4622	case SCHED_NORMAL:
4623	case SCHED_BATCH:
4624	case SCHED_IDLE:
4625		ret = 0;
4626		break;
4627	}
4628	return ret;
4629}
4630
4631/**
4632 * sys_sched_get_priority_min - return minimum RT priority.
4633 * @policy: scheduling class.
4634 *
4635 * this syscall returns the minimum rt_priority that can be used
4636 * by a given scheduling class.
4637 */
4638SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4639{
4640	int ret = -EINVAL;
4641
4642	switch (policy) {
4643	case SCHED_FIFO:
4644	case SCHED_RR:
4645		ret = 1;
4646		break;
4647	case SCHED_NORMAL:
4648	case SCHED_BATCH:
4649	case SCHED_IDLE:
4650		ret = 0;
4651	}
4652	return ret;
4653}
4654
4655/**
4656 * sys_sched_rr_get_interval - return the default timeslice of a process.
4657 * @pid: pid of the process.
4658 * @interval: userspace pointer to the timeslice value.
4659 *
4660 * this syscall writes the default timeslice value of a given process
4661 * into the user-space timespec buffer. A value of '0' means infinity.
4662 */
4663SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4664		struct timespec __user *, interval)
4665{
4666	struct task_struct *p;
4667	unsigned int time_slice;
4668	unsigned long flags;
4669	struct rq *rq;
4670	int retval;
4671	struct timespec t;
4672
4673	if (pid < 0)
4674		return -EINVAL;
4675
4676	retval = -ESRCH;
4677	rcu_read_lock();
4678	p = find_process_by_pid(pid);
4679	if (!p)
4680		goto out_unlock;
4681
4682	retval = security_task_getscheduler(p);
4683	if (retval)
4684		goto out_unlock;
4685
4686	rq = task_rq_lock(p, &flags);
4687	time_slice = p->sched_class->get_rr_interval(rq, p);
4688	task_rq_unlock(rq, p, &flags);
4689
4690	rcu_read_unlock();
4691	jiffies_to_timespec(time_slice, &t);
4692	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4693	return retval;
4694
4695out_unlock:
4696	rcu_read_unlock();
4697	return retval;
4698}
4699
4700static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4701
4702void sched_show_task(struct task_struct *p)
4703{
4704	unsigned long free = 0;
4705	unsigned state;
4706
4707	state = p->state ? __ffs(p->state) + 1 : 0;
4708	printk(KERN_INFO "%-15.15s %c", p->comm,
4709		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4710#if BITS_PER_LONG == 32
4711	if (state == TASK_RUNNING)
4712		printk(KERN_CONT " running  ");
4713	else
4714		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4715#else
4716	if (state == TASK_RUNNING)
4717		printk(KERN_CONT "  running task    ");
4718	else
4719		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4720#endif
4721#ifdef CONFIG_DEBUG_STACK_USAGE
4722	free = stack_not_used(p);
4723#endif
4724	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4725		task_pid_nr(p), task_pid_nr(p->real_parent),
4726		(unsigned long)task_thread_info(p)->flags);
4727
4728	show_stack(p, NULL);
4729}
4730
4731void show_state_filter(unsigned long state_filter)
4732{
4733	struct task_struct *g, *p;
4734
4735#if BITS_PER_LONG == 32
4736	printk(KERN_INFO
4737		"  task                PC stack   pid father\n");
4738#else
4739	printk(KERN_INFO
4740		"  task                        PC stack   pid father\n");
4741#endif
4742	rcu_read_lock();
4743	do_each_thread(g, p) {
4744		/*
4745		 * reset the NMI-timeout, listing all files on a slow
4746		 * console might take a lot of time:
4747		 */
4748		touch_nmi_watchdog();
4749		if (!state_filter || (p->state & state_filter))
4750			sched_show_task(p);
4751	} while_each_thread(g, p);
4752
4753	touch_all_softlockup_watchdogs();
4754
4755#ifdef CONFIG_SCHED_DEBUG
4756	sysrq_sched_debug_show();
4757#endif
4758	rcu_read_unlock();
4759	/*
4760	 * Only show locks if all tasks are dumped:
4761	 */
4762	if (!state_filter)
4763		debug_show_all_locks();
4764}
4765
4766void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4767{
4768	idle->sched_class = &idle_sched_class;
4769}
4770
4771/**
4772 * init_idle - set up an idle thread for a given CPU
4773 * @idle: task in question
4774 * @cpu: cpu the idle task belongs to
4775 *
4776 * NOTE: this function does not set the idle thread's NEED_RESCHED
4777 * flag, to make booting more robust.
4778 */
4779void __cpuinit init_idle(struct task_struct *idle, int cpu)
4780{
4781	struct rq *rq = cpu_rq(cpu);
4782	unsigned long flags;
4783
4784	raw_spin_lock_irqsave(&rq->lock, flags);
4785
4786	__sched_fork(idle);
4787	idle->state = TASK_RUNNING;
4788	idle->se.exec_start = sched_clock();
4789
4790	do_set_cpus_allowed(idle, cpumask_of(cpu));
4791	/*
4792	 * We're having a chicken and egg problem, even though we are
4793	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4794	 * lockdep check in task_group() will fail.
4795	 *
4796	 * Similar case to sched_fork(). / Alternatively we could
4797	 * use task_rq_lock() here and obtain the other rq->lock.
4798	 *
4799	 * Silence PROVE_RCU
4800	 */
4801	rcu_read_lock();
4802	__set_task_cpu(idle, cpu);
4803	rcu_read_unlock();
4804
4805	rq->curr = rq->idle = idle;
4806#if defined(CONFIG_SMP)
4807	idle->on_cpu = 1;
4808#endif
4809	raw_spin_unlock_irqrestore(&rq->lock, flags);
4810
4811	/* Set the preempt count _outside_ the spinlocks! */
4812	task_thread_info(idle)->preempt_count = 0;
4813
4814	/*
4815	 * The idle tasks have their own, simple scheduling class:
4816	 */
4817	idle->sched_class = &idle_sched_class;
4818	ftrace_graph_init_idle_task(idle, cpu);
4819#if defined(CONFIG_SMP)
4820	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4821#endif
4822}
4823
4824#ifdef CONFIG_SMP
4825void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4826{
4827	if (p->sched_class && p->sched_class->set_cpus_allowed)
4828		p->sched_class->set_cpus_allowed(p, new_mask);
4829
4830	cpumask_copy(&p->cpus_allowed, new_mask);
4831	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4832}
4833
4834/*
4835 * This is how migration works:
4836 *
4837 * 1) we invoke migration_cpu_stop() on the target CPU using
4838 *    stop_one_cpu().
4839 * 2) stopper starts to run (implicitly forcing the migrated thread
4840 *    off the CPU)
4841 * 3) it checks whether the migrated task is still in the wrong runqueue.
4842 * 4) if it's in the wrong runqueue then the migration thread removes
4843 *    it and puts it into the right queue.
4844 * 5) stopper completes and stop_one_cpu() returns and the migration
4845 *    is done.
4846 */
4847
4848/*
4849 * Change a given task's CPU affinity. Migrate the thread to a
4850 * proper CPU and schedule it away if the CPU it's executing on
4851 * is removed from the allowed bitmask.
4852 *
4853 * NOTE: the caller must have a valid reference to the task, the
4854 * task must not exit() & deallocate itself prematurely. The
4855 * call is not atomic; no spinlocks may be held.
4856 */
4857int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4858{
4859	unsigned long flags;
4860	struct rq *rq;
4861	unsigned int dest_cpu;
4862	int ret = 0;
4863
4864	rq = task_rq_lock(p, &flags);
4865
4866	if (cpumask_equal(&p->cpus_allowed, new_mask))
4867		goto out;
4868
4869	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4870		ret = -EINVAL;
4871		goto out;
4872	}
4873
4874	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4875		ret = -EINVAL;
4876		goto out;
4877	}
4878
4879	do_set_cpus_allowed(p, new_mask);
4880
4881	/* Can the task run on the task's current CPU? If so, we're done */
4882	if (cpumask_test_cpu(task_cpu(p), new_mask))
4883		goto out;
4884
4885	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4886	if (p->on_rq) {
4887		struct migration_arg arg = { p, dest_cpu };
4888		/* Need help from migration thread: drop lock and wait. */
4889		task_rq_unlock(rq, p, &flags);
4890		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4891		tlb_migrate_finish(p->mm);
4892		return 0;
4893	}
4894out:
4895	task_rq_unlock(rq, p, &flags);
4896
4897	return ret;
4898}
4899EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4900
4901/*
4902 * Move (not current) task off this cpu, onto dest cpu. We're doing
4903 * this because either it can't run here any more (set_cpus_allowed()
4904 * away from this CPU, or CPU going down), or because we're
4905 * attempting to rebalance this task on exec (sched_exec).
4906 *
4907 * So we race with normal scheduler movements, but that's OK, as long
4908 * as the task is no longer on this CPU.
4909 *
4910 * Returns non-zero if task was successfully migrated.
4911 */
4912static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4913{
4914	struct rq *rq_dest, *rq_src;
4915	int ret = 0;
4916
4917	if (unlikely(!cpu_active(dest_cpu)))
4918		return ret;
4919
4920	rq_src = cpu_rq(src_cpu);
4921	rq_dest = cpu_rq(dest_cpu);
4922
4923	raw_spin_lock(&p->pi_lock);
4924	double_rq_lock(rq_src, rq_dest);
4925	/* Already moved. */
4926	if (task_cpu(p) != src_cpu)
4927		goto done;
4928	/* Affinity changed (again). */
4929	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4930		goto fail;
4931
4932	/*
4933	 * If we're not on a rq, the next wake-up will ensure we're
4934	 * placed properly.
4935	 */
4936	if (p->on_rq) {
4937		deactivate_task(rq_src, p, 0);
4938		set_task_cpu(p, dest_cpu);
4939		activate_task(rq_dest, p, 0);
4940		check_preempt_curr(rq_dest, p, 0);
4941	}
4942done:
4943	ret = 1;
4944fail:
4945	double_rq_unlock(rq_src, rq_dest);
4946	raw_spin_unlock(&p->pi_lock);
4947	return ret;
4948}
4949
4950/*
4951 * migration_cpu_stop - this will be executed by a highprio stopper thread
4952 * and performs thread migration by bumping thread off CPU then
4953 * 'pushing' onto another runqueue.
4954 */
4955static int migration_cpu_stop(void *data)
4956{
4957	struct migration_arg *arg = data;
4958
4959	/*
4960	 * The original target cpu might have gone down and we might
4961	 * be on another cpu but it doesn't matter.
4962	 */
4963	local_irq_disable();
4964	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4965	local_irq_enable();
4966	return 0;
4967}
4968
4969#ifdef CONFIG_HOTPLUG_CPU
4970
4971/*
4972 * Ensures that the idle task is using init_mm right before its cpu goes
4973 * offline.
4974 */
4975void idle_task_exit(void)
4976{
4977	struct mm_struct *mm = current->active_mm;
4978
4979	BUG_ON(cpu_online(smp_processor_id()));
4980
4981	if (mm != &init_mm)
4982		switch_mm(mm, &init_mm, current);
4983	mmdrop(mm);
4984}
4985
4986/*
4987 * While a dead CPU has no uninterruptible tasks queued at this point,
4988 * it might still have a nonzero ->nr_uninterruptible counter, because
4989 * for performance reasons the counter is not stricly tracking tasks to
4990 * their home CPUs. So we just add the counter to another CPU's counter,
4991 * to keep the global sum constant after CPU-down:
4992 */
4993static void migrate_nr_uninterruptible(struct rq *rq_src)
4994{
4995	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
4996
4997	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4998	rq_src->nr_uninterruptible = 0;
4999}
5000
5001/*
5002 * remove the tasks which were accounted by rq from calc_load_tasks.
5003 */
5004static void calc_global_load_remove(struct rq *rq)
5005{
5006	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5007	rq->calc_load_active = 0;
5008}
5009
5010/*
5011 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5012 * try_to_wake_up()->select_task_rq().
5013 *
5014 * Called with rq->lock held even though we'er in stop_machine() and
5015 * there's no concurrency possible, we hold the required locks anyway
5016 * because of lock validation efforts.
5017 */
5018static void migrate_tasks(unsigned int dead_cpu)
5019{
5020	struct rq *rq = cpu_rq(dead_cpu);
5021	struct task_struct *next, *stop = rq->stop;
5022	int dest_cpu;
5023
5024	/*
5025	 * Fudge the rq selection such that the below task selection loop
5026	 * doesn't get stuck on the currently eligible stop task.
5027	 *
5028	 * We're currently inside stop_machine() and the rq is either stuck
5029	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5030	 * either way we should never end up calling schedule() until we're
5031	 * done here.
5032	 */
5033	rq->stop = NULL;
5034
5035	/* Ensure any throttled groups are reachable by pick_next_task */
5036	unthrottle_offline_cfs_rqs(rq);
5037
5038	for ( ; ; ) {
5039		/*
5040		 * There's this thread running, bail when that's the only
5041		 * remaining thread.
5042		 */
5043		if (rq->nr_running == 1)
5044			break;
5045
5046		next = pick_next_task(rq);
5047		BUG_ON(!next);
5048		next->sched_class->put_prev_task(rq, next);
5049
5050		/* Find suitable destination for @next, with force if needed. */
5051		dest_cpu = select_fallback_rq(dead_cpu, next);
5052		raw_spin_unlock(&rq->lock);
5053
5054		__migrate_task(next, dead_cpu, dest_cpu);
5055
5056		raw_spin_lock(&rq->lock);
5057	}
5058
5059	rq->stop = stop;
5060}
5061
5062#endif /* CONFIG_HOTPLUG_CPU */
5063
5064#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5065
5066static struct ctl_table sd_ctl_dir[] = {
5067	{
5068		.procname	= "sched_domain",
5069		.mode		= 0555,
5070	},
5071	{}
5072};
5073
5074static struct ctl_table sd_ctl_root[] = {
5075	{
5076		.procname	= "kernel",
5077		.mode		= 0555,
5078		.child		= sd_ctl_dir,
5079	},
5080	{}
5081};
5082
5083static struct ctl_table *sd_alloc_ctl_entry(int n)
5084{
5085	struct ctl_table *entry =
5086		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5087
5088	return entry;
5089}
5090
5091static void sd_free_ctl_entry(struct ctl_table **tablep)
5092{
5093	struct ctl_table *entry;
5094
5095	/*
5096	 * In the intermediate directories, both the child directory and
5097	 * procname are dynamically allocated and could fail but the mode
5098	 * will always be set. In the lowest directory the names are
5099	 * static strings and all have proc handlers.
5100	 */
5101	for (entry = *tablep; entry->mode; entry++) {
5102		if (entry->child)
5103			sd_free_ctl_entry(&entry->child);
5104		if (entry->proc_handler == NULL)
5105			kfree(entry->procname);
5106	}
5107
5108	kfree(*tablep);
5109	*tablep = NULL;
5110}
5111
5112static void
5113set_table_entry(struct ctl_table *entry,
5114		const char *procname, void *data, int maxlen,
5115		mode_t mode, proc_handler *proc_handler)
5116{
5117	entry->procname = procname;
5118	entry->data = data;
5119	entry->maxlen = maxlen;
5120	entry->mode = mode;
5121	entry->proc_handler = proc_handler;
5122}
5123
5124static struct ctl_table *
5125sd_alloc_ctl_domain_table(struct sched_domain *sd)
5126{
5127	struct ctl_table *table = sd_alloc_ctl_entry(13);
5128
5129	if (table == NULL)
5130		return NULL;
5131
5132	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5133		sizeof(long), 0644, proc_doulongvec_minmax);
5134	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5135		sizeof(long), 0644, proc_doulongvec_minmax);
5136	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5137		sizeof(int), 0644, proc_dointvec_minmax);
5138	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5139		sizeof(int), 0644, proc_dointvec_minmax);
5140	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5141		sizeof(int), 0644, proc_dointvec_minmax);
5142	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5143		sizeof(int), 0644, proc_dointvec_minmax);
5144	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5145		sizeof(int), 0644, proc_dointvec_minmax);
5146	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5147		sizeof(int), 0644, proc_dointvec_minmax);
5148	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5149		sizeof(int), 0644, proc_dointvec_minmax);
5150	set_table_entry(&table[9], "cache_nice_tries",
5151		&sd->cache_nice_tries,
5152		sizeof(int), 0644, proc_dointvec_minmax);
5153	set_table_entry(&table[10], "flags", &sd->flags,
5154		sizeof(int), 0644, proc_dointvec_minmax);
5155	set_table_entry(&table[11], "name", sd->name,
5156		CORENAME_MAX_SIZE, 0444, proc_dostring);
5157	/* &table[12] is terminator */
5158
5159	return table;
5160}
5161
5162static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5163{
5164	struct ctl_table *entry, *table;
5165	struct sched_domain *sd;
5166	int domain_num = 0, i;
5167	char buf[32];
5168
5169	for_each_domain(cpu, sd)
5170		domain_num++;
5171	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5172	if (table == NULL)
5173		return NULL;
5174
5175	i = 0;
5176	for_each_domain(cpu, sd) {
5177		snprintf(buf, 32, "domain%d", i);
5178		entry->procname = kstrdup(buf, GFP_KERNEL);
5179		entry->mode = 0555;
5180		entry->child = sd_alloc_ctl_domain_table(sd);
5181		entry++;
5182		i++;
5183	}
5184	return table;
5185}
5186
5187static struct ctl_table_header *sd_sysctl_header;
5188static void register_sched_domain_sysctl(void)
5189{
5190	int i, cpu_num = num_possible_cpus();
5191	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5192	char buf[32];
5193
5194	WARN_ON(sd_ctl_dir[0].child);
5195	sd_ctl_dir[0].child = entry;
5196
5197	if (entry == NULL)
5198		return;
5199
5200	for_each_possible_cpu(i) {
5201		snprintf(buf, 32, "cpu%d", i);
5202		entry->procname = kstrdup(buf, GFP_KERNEL);
5203		entry->mode = 0555;
5204		entry->child = sd_alloc_ctl_cpu_table(i);
5205		entry++;
5206	}
5207
5208	WARN_ON(sd_sysctl_header);
5209	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5210}
5211
5212/* may be called multiple times per register */
5213static void unregister_sched_domain_sysctl(void)
5214{
5215	if (sd_sysctl_header)
5216		unregister_sysctl_table(sd_sysctl_header);
5217	sd_sysctl_header = NULL;
5218	if (sd_ctl_dir[0].child)
5219		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5220}
5221#else
5222static void register_sched_domain_sysctl(void)
5223{
5224}
5225static void unregister_sched_domain_sysctl(void)
5226{
5227}
5228#endif
5229
5230static void set_rq_online(struct rq *rq)
5231{
5232	if (!rq->online) {
5233		const struct sched_class *class;
5234
5235		cpumask_set_cpu(rq->cpu, rq->rd->online);
5236		rq->online = 1;
5237
5238		for_each_class(class) {
5239			if (class->rq_online)
5240				class->rq_online(rq);
5241		}
5242	}
5243}
5244
5245static void set_rq_offline(struct rq *rq)
5246{
5247	if (rq->online) {
5248		const struct sched_class *class;
5249
5250		for_each_class(class) {
5251			if (class->rq_offline)
5252				class->rq_offline(rq);
5253		}
5254
5255		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5256		rq->online = 0;
5257	}
5258}
5259
5260/*
5261 * migration_call - callback that gets triggered when a CPU is added.
5262 * Here we can start up the necessary migration thread for the new CPU.
5263 */
5264static int __cpuinit
5265migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5266{
5267	int cpu = (long)hcpu;
5268	unsigned long flags;
5269	struct rq *rq = cpu_rq(cpu);
5270
5271	switch (action & ~CPU_TASKS_FROZEN) {
5272
5273	case CPU_UP_PREPARE:
5274		rq->calc_load_update = calc_load_update;
5275		break;
5276
5277	case CPU_ONLINE:
5278		/* Update our root-domain */
5279		raw_spin_lock_irqsave(&rq->lock, flags);
5280		if (rq->rd) {
5281			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5282
5283			set_rq_online(rq);
5284		}
5285		raw_spin_unlock_irqrestore(&rq->lock, flags);
5286		break;
5287
5288#ifdef CONFIG_HOTPLUG_CPU
5289	case CPU_DYING:
5290		sched_ttwu_pending();
5291		/* Update our root-domain */
5292		raw_spin_lock_irqsave(&rq->lock, flags);
5293		if (rq->rd) {
5294			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5295			set_rq_offline(rq);
5296		}
5297		migrate_tasks(cpu);
5298		BUG_ON(rq->nr_running != 1); /* the migration thread */
5299		raw_spin_unlock_irqrestore(&rq->lock, flags);
5300
5301		migrate_nr_uninterruptible(rq);
5302		calc_global_load_remove(rq);
5303		break;
5304#endif
5305	}
5306
5307	update_max_interval();
5308
5309	return NOTIFY_OK;
5310}
5311
5312/*
5313 * Register at high priority so that task migration (migrate_all_tasks)
5314 * happens before everything else.  This has to be lower priority than
5315 * the notifier in the perf_event subsystem, though.
5316 */
5317static struct notifier_block __cpuinitdata migration_notifier = {
5318	.notifier_call = migration_call,
5319	.priority = CPU_PRI_MIGRATION,
5320};
5321
5322static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5323				      unsigned long action, void *hcpu)
5324{
5325	switch (action & ~CPU_TASKS_FROZEN) {
5326	case CPU_ONLINE:
5327	case CPU_DOWN_FAILED:
5328		set_cpu_active((long)hcpu, true);
5329		return NOTIFY_OK;
5330	default:
5331		return NOTIFY_DONE;
5332	}
5333}
5334
5335static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5336					unsigned long action, void *hcpu)
5337{
5338	switch (action & ~CPU_TASKS_FROZEN) {
5339	case CPU_DOWN_PREPARE:
5340		set_cpu_active((long)hcpu, false);
5341		return NOTIFY_OK;
5342	default:
5343		return NOTIFY_DONE;
5344	}
5345}
5346
5347static int __init migration_init(void)
5348{
5349	void *cpu = (void *)(long)smp_processor_id();
5350	int err;
5351
5352	/* Initialize migration for the boot CPU */
5353	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5354	BUG_ON(err == NOTIFY_BAD);
5355	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5356	register_cpu_notifier(&migration_notifier);
5357
5358	/* Register cpu active notifiers */
5359	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5360	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5361
5362	return 0;
5363}
5364early_initcall(migration_init);
5365#endif
5366
5367#ifdef CONFIG_SMP
5368
5369static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5370
5371#ifdef CONFIG_SCHED_DEBUG
5372
5373static __read_mostly int sched_domain_debug_enabled;
5374
5375static int __init sched_domain_debug_setup(char *str)
5376{
5377	sched_domain_debug_enabled = 1;
5378
5379	return 0;
5380}
5381early_param("sched_debug", sched_domain_debug_setup);
5382
5383static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5384				  struct cpumask *groupmask)
5385{
5386	struct sched_group *group = sd->groups;
5387	char str[256];
5388
5389	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5390	cpumask_clear(groupmask);
5391
5392	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5393
5394	if (!(sd->flags & SD_LOAD_BALANCE)) {
5395		printk("does not load-balance\n");
5396		if (sd->parent)
5397			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5398					" has parent");
5399		return -1;
5400	}
5401
5402	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5403
5404	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5405		printk(KERN_ERR "ERROR: domain->span does not contain "
5406				"CPU%d\n", cpu);
5407	}
5408	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5409		printk(KERN_ERR "ERROR: domain->groups does not contain"
5410				" CPU%d\n", cpu);
5411	}
5412
5413	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5414	do {
5415		if (!group) {
5416			printk("\n");
5417			printk(KERN_ERR "ERROR: group is NULL\n");
5418			break;
5419		}
5420
5421		if (!group->sgp->power) {
5422			printk(KERN_CONT "\n");
5423			printk(KERN_ERR "ERROR: domain->cpu_power not "
5424					"set\n");
5425			break;
5426		}
5427
5428		if (!cpumask_weight(sched_group_cpus(group))) {
5429			printk(KERN_CONT "\n");
5430			printk(KERN_ERR "ERROR: empty group\n");
5431			break;
5432		}
5433
5434		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5435			printk(KERN_CONT "\n");
5436			printk(KERN_ERR "ERROR: repeated CPUs\n");
5437			break;
5438		}
5439
5440		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5441
5442		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5443
5444		printk(KERN_CONT " %s", str);
5445		if (group->sgp->power != SCHED_POWER_SCALE) {
5446			printk(KERN_CONT " (cpu_power = %d)",
5447				group->sgp->power);
5448		}
5449
5450		group = group->next;
5451	} while (group != sd->groups);
5452	printk(KERN_CONT "\n");
5453
5454	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5455		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5456
5457	if (sd->parent &&
5458	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5459		printk(KERN_ERR "ERROR: parent span is not a superset "
5460			"of domain->span\n");
5461	return 0;
5462}
5463
5464static void sched_domain_debug(struct sched_domain *sd, int cpu)
5465{
5466	int level = 0;
5467
5468	if (!sched_domain_debug_enabled)
5469		return;
5470
5471	if (!sd) {
5472		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5473		return;
5474	}
5475
5476	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5477
5478	for (;;) {
5479		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5480			break;
5481		level++;
5482		sd = sd->parent;
5483		if (!sd)
5484			break;
5485	}
5486}
5487#else /* !CONFIG_SCHED_DEBUG */
5488# define sched_domain_debug(sd, cpu) do { } while (0)
5489#endif /* CONFIG_SCHED_DEBUG */
5490
5491static int sd_degenerate(struct sched_domain *sd)
5492{
5493	if (cpumask_weight(sched_domain_span(sd)) == 1)
5494		return 1;
5495
5496	/* Following flags need at least 2 groups */
5497	if (sd->flags & (SD_LOAD_BALANCE |
5498			 SD_BALANCE_NEWIDLE |
5499			 SD_BALANCE_FORK |
5500			 SD_BALANCE_EXEC |
5501			 SD_SHARE_CPUPOWER |
5502			 SD_SHARE_PKG_RESOURCES)) {
5503		if (sd->groups != sd->groups->next)
5504			return 0;
5505	}
5506
5507	/* Following flags don't use groups */
5508	if (sd->flags & (SD_WAKE_AFFINE))
5509		return 0;
5510
5511	return 1;
5512}
5513
5514static int
5515sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5516{
5517	unsigned long cflags = sd->flags, pflags = parent->flags;
5518
5519	if (sd_degenerate(parent))
5520		return 1;
5521
5522	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5523		return 0;
5524
5525	/* Flags needing groups don't count if only 1 group in parent */
5526	if (parent->groups == parent->groups->next) {
5527		pflags &= ~(SD_LOAD_BALANCE |
5528				SD_BALANCE_NEWIDLE |
5529				SD_BALANCE_FORK |
5530				SD_BALANCE_EXEC |
5531				SD_SHARE_CPUPOWER |
5532				SD_SHARE_PKG_RESOURCES);
5533		if (nr_node_ids == 1)
5534			pflags &= ~SD_SERIALIZE;
5535	}
5536	if (~cflags & pflags)
5537		return 0;
5538
5539	return 1;
5540}
5541
5542static void free_rootdomain(struct rcu_head *rcu)
5543{
5544	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5545
5546	cpupri_cleanup(&rd->cpupri);
5547	free_cpumask_var(rd->rto_mask);
5548	free_cpumask_var(rd->online);
5549	free_cpumask_var(rd->span);
5550	kfree(rd);
5551}
5552
5553static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5554{
5555	struct root_domain *old_rd = NULL;
5556	unsigned long flags;
5557
5558	raw_spin_lock_irqsave(&rq->lock, flags);
5559
5560	if (rq->rd) {
5561		old_rd = rq->rd;
5562
5563		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5564			set_rq_offline(rq);
5565
5566		cpumask_clear_cpu(rq->cpu, old_rd->span);
5567
5568		/*
5569		 * If we dont want to free the old_rt yet then
5570		 * set old_rd to NULL to skip the freeing later
5571		 * in this function:
5572		 */
5573		if (!atomic_dec_and_test(&old_rd->refcount))
5574			old_rd = NULL;
5575	}
5576
5577	atomic_inc(&rd->refcount);
5578	rq->rd = rd;
5579
5580	cpumask_set_cpu(rq->cpu, rd->span);
5581	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5582		set_rq_online(rq);
5583
5584	raw_spin_unlock_irqrestore(&rq->lock, flags);
5585
5586	if (old_rd)
5587		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5588}
5589
5590static int init_rootdomain(struct root_domain *rd)
5591{
5592	memset(rd, 0, sizeof(*rd));
5593
5594	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5595		goto out;
5596	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5597		goto free_span;
5598	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5599		goto free_online;
5600
5601	if (cpupri_init(&rd->cpupri) != 0)
5602		goto free_rto_mask;
5603	return 0;
5604
5605free_rto_mask:
5606	free_cpumask_var(rd->rto_mask);
5607free_online:
5608	free_cpumask_var(rd->online);
5609free_span:
5610	free_cpumask_var(rd->span);
5611out:
5612	return -ENOMEM;
5613}
5614
5615/*
5616 * By default the system creates a single root-domain with all cpus as
5617 * members (mimicking the global state we have today).
5618 */
5619struct root_domain def_root_domain;
5620
5621static void init_defrootdomain(void)
5622{
5623	init_rootdomain(&def_root_domain);
5624
5625	atomic_set(&def_root_domain.refcount, 1);
5626}
5627
5628static struct root_domain *alloc_rootdomain(void)
5629{
5630	struct root_domain *rd;
5631
5632	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5633	if (!rd)
5634		return NULL;
5635
5636	if (init_rootdomain(rd) != 0) {
5637		kfree(rd);
5638		return NULL;
5639	}
5640
5641	return rd;
5642}
5643
5644static void free_sched_groups(struct sched_group *sg, int free_sgp)
5645{
5646	struct sched_group *tmp, *first;
5647
5648	if (!sg)
5649		return;
5650
5651	first = sg;
5652	do {
5653		tmp = sg->next;
5654
5655		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5656			kfree(sg->sgp);
5657
5658		kfree(sg);
5659		sg = tmp;
5660	} while (sg != first);
5661}
5662
5663static void free_sched_domain(struct rcu_head *rcu)
5664{
5665	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5666
5667	/*
5668	 * If its an overlapping domain it has private groups, iterate and
5669	 * nuke them all.
5670	 */
5671	if (sd->flags & SD_OVERLAP) {
5672		free_sched_groups(sd->groups, 1);
5673	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5674		kfree(sd->groups->sgp);
5675		kfree(sd->groups);
5676	}
5677	kfree(sd);
5678}
5679
5680static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5681{
5682	call_rcu(&sd->rcu, free_sched_domain);
5683}
5684
5685static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5686{
5687	for (; sd; sd = sd->parent)
5688		destroy_sched_domain(sd, cpu);
5689}
5690
5691/*
5692 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5693 * hold the hotplug lock.
5694 */
5695static void
5696cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5697{
5698	struct rq *rq = cpu_rq(cpu);
5699	struct sched_domain *tmp;
5700
5701	/* Remove the sched domains which do not contribute to scheduling. */
5702	for (tmp = sd; tmp; ) {
5703		struct sched_domain *parent = tmp->parent;
5704		if (!parent)
5705			break;
5706
5707		if (sd_parent_degenerate(tmp, parent)) {
5708			tmp->parent = parent->parent;
5709			if (parent->parent)
5710				parent->parent->child = tmp;
5711			destroy_sched_domain(parent, cpu);
5712		} else
5713			tmp = tmp->parent;
5714	}
5715
5716	if (sd && sd_degenerate(sd)) {
5717		tmp = sd;
5718		sd = sd->parent;
5719		destroy_sched_domain(tmp, cpu);
5720		if (sd)
5721			sd->child = NULL;
5722	}
5723
5724	sched_domain_debug(sd, cpu);
5725
5726	rq_attach_root(rq, rd);
5727	tmp = rq->sd;
5728	rcu_assign_pointer(rq->sd, sd);
5729	destroy_sched_domains(tmp, cpu);
5730}
5731
5732/* cpus with isolated domains */
5733static cpumask_var_t cpu_isolated_map;
5734
5735/* Setup the mask of cpus configured for isolated domains */
5736static int __init isolated_cpu_setup(char *str)
5737{
5738	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5739	cpulist_parse(str, cpu_isolated_map);
5740	return 1;
5741}
5742
5743__setup("isolcpus=", isolated_cpu_setup);
5744
5745#ifdef CONFIG_NUMA
5746
5747/**
5748 * find_next_best_node - find the next node to include in a sched_domain
5749 * @node: node whose sched_domain we're building
5750 * @used_nodes: nodes already in the sched_domain
5751 *
5752 * Find the next node to include in a given scheduling domain. Simply
5753 * finds the closest node not already in the @used_nodes map.
5754 *
5755 * Should use nodemask_t.
5756 */
5757static int find_next_best_node(int node, nodemask_t *used_nodes)
5758{
5759	int i, n, val, min_val, best_node = -1;
5760
5761	min_val = INT_MAX;
5762
5763	for (i = 0; i < nr_node_ids; i++) {
5764		/* Start at @node */
5765		n = (node + i) % nr_node_ids;
5766
5767		if (!nr_cpus_node(n))
5768			continue;
5769
5770		/* Skip already used nodes */
5771		if (node_isset(n, *used_nodes))
5772			continue;
5773
5774		/* Simple min distance search */
5775		val = node_distance(node, n);
5776
5777		if (val < min_val) {
5778			min_val = val;
5779			best_node = n;
5780		}
5781	}
5782
5783	if (best_node != -1)
5784		node_set(best_node, *used_nodes);
5785	return best_node;
5786}
5787
5788/**
5789 * sched_domain_node_span - get a cpumask for a node's sched_domain
5790 * @node: node whose cpumask we're constructing
5791 * @span: resulting cpumask
5792 *
5793 * Given a node, construct a good cpumask for its sched_domain to span. It
5794 * should be one that prevents unnecessary balancing, but also spreads tasks
5795 * out optimally.
5796 */
5797static void sched_domain_node_span(int node, struct cpumask *span)
5798{
5799	nodemask_t used_nodes;
5800	int i;
5801
5802	cpumask_clear(span);
5803	nodes_clear(used_nodes);
5804
5805	cpumask_or(span, span, cpumask_of_node(node));
5806	node_set(node, used_nodes);
5807
5808	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5809		int next_node = find_next_best_node(node, &used_nodes);
5810		if (next_node < 0)
5811			break;
5812		cpumask_or(span, span, cpumask_of_node(next_node));
5813	}
5814}
5815
5816static const struct cpumask *cpu_node_mask(int cpu)
5817{
5818	lockdep_assert_held(&sched_domains_mutex);
5819
5820	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5821
5822	return sched_domains_tmpmask;
5823}
5824
5825static const struct cpumask *cpu_allnodes_mask(int cpu)
5826{
5827	return cpu_possible_mask;
5828}
5829#endif /* CONFIG_NUMA */
5830
5831static const struct cpumask *cpu_cpu_mask(int cpu)
5832{
5833	return cpumask_of_node(cpu_to_node(cpu));
5834}
5835
5836int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5837
5838struct sd_data {
5839	struct sched_domain **__percpu sd;
5840	struct sched_group **__percpu sg;
5841	struct sched_group_power **__percpu sgp;
5842};
5843
5844struct s_data {
5845	struct sched_domain ** __percpu sd;
5846	struct root_domain	*rd;
5847};
5848
5849enum s_alloc {
5850	sa_rootdomain,
5851	sa_sd,
5852	sa_sd_storage,
5853	sa_none,
5854};
5855
5856struct sched_domain_topology_level;
5857
5858typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5859typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5860
5861#define SDTL_OVERLAP	0x01
5862
5863struct sched_domain_topology_level {
5864	sched_domain_init_f init;
5865	sched_domain_mask_f mask;
5866	int		    flags;
5867	struct sd_data      data;
5868};
5869
5870static int
5871build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5872{
5873	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5874	const struct cpumask *span = sched_domain_span(sd);
5875	struct cpumask *covered = sched_domains_tmpmask;
5876	struct sd_data *sdd = sd->private;
5877	struct sched_domain *child;
5878	int i;
5879
5880	cpumask_clear(covered);
5881
5882	for_each_cpu(i, span) {
5883		struct cpumask *sg_span;
5884
5885		if (cpumask_test_cpu(i, covered))
5886			continue;
5887
5888		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5889				GFP_KERNEL, cpu_to_node(cpu));
5890
5891		if (!sg)
5892			goto fail;
5893
5894		sg_span = sched_group_cpus(sg);
5895
5896		child = *per_cpu_ptr(sdd->sd, i);
5897		if (child->child) {
5898			child = child->child;
5899			cpumask_copy(sg_span, sched_domain_span(child));
5900		} else
5901			cpumask_set_cpu(i, sg_span);
5902
5903		cpumask_or(covered, covered, sg_span);
5904
5905		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5906		atomic_inc(&sg->sgp->ref);
5907
5908		if (cpumask_test_cpu(cpu, sg_span))
5909			groups = sg;
5910
5911		if (!first)
5912			first = sg;
5913		if (last)
5914			last->next = sg;
5915		last = sg;
5916		last->next = first;
5917	}
5918	sd->groups = groups;
5919
5920	return 0;
5921
5922fail:
5923	free_sched_groups(first, 0);
5924
5925	return -ENOMEM;
5926}
5927
5928static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5929{
5930	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5931	struct sched_domain *child = sd->child;
5932
5933	if (child)
5934		cpu = cpumask_first(sched_domain_span(child));
5935
5936	if (sg) {
5937		*sg = *per_cpu_ptr(sdd->sg, cpu);
5938		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5939		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5940	}
5941
5942	return cpu;
5943}
5944
5945/*
5946 * build_sched_groups will build a circular linked list of the groups
5947 * covered by the given span, and will set each group's ->cpumask correctly,
5948 * and ->cpu_power to 0.
5949 *
5950 * Assumes the sched_domain tree is fully constructed
5951 */
5952static int
5953build_sched_groups(struct sched_domain *sd, int cpu)
5954{
5955	struct sched_group *first = NULL, *last = NULL;
5956	struct sd_data *sdd = sd->private;
5957	const struct cpumask *span = sched_domain_span(sd);
5958	struct cpumask *covered;
5959	int i;
5960
5961	get_group(cpu, sdd, &sd->groups);
5962	atomic_inc(&sd->groups->ref);
5963
5964	if (cpu != cpumask_first(sched_domain_span(sd)))
5965		return 0;
5966
5967	lockdep_assert_held(&sched_domains_mutex);
5968	covered = sched_domains_tmpmask;
5969
5970	cpumask_clear(covered);
5971
5972	for_each_cpu(i, span) {
5973		struct sched_group *sg;
5974		int group = get_group(i, sdd, &sg);
5975		int j;
5976
5977		if (cpumask_test_cpu(i, covered))
5978			continue;
5979
5980		cpumask_clear(sched_group_cpus(sg));
5981		sg->sgp->power = 0;
5982
5983		for_each_cpu(j, span) {
5984			if (get_group(j, sdd, NULL) != group)
5985				continue;
5986
5987			cpumask_set_cpu(j, covered);
5988			cpumask_set_cpu(j, sched_group_cpus(sg));
5989		}
5990
5991		if (!first)
5992			first = sg;
5993		if (last)
5994			last->next = sg;
5995		last = sg;
5996	}
5997	last->next = first;
5998
5999	return 0;
6000}
6001
6002/*
6003 * Initialize sched groups cpu_power.
6004 *
6005 * cpu_power indicates the capacity of sched group, which is used while
6006 * distributing the load between different sched groups in a sched domain.
6007 * Typically cpu_power for all the groups in a sched domain will be same unless
6008 * there are asymmetries in the topology. If there are asymmetries, group
6009 * having more cpu_power will pickup more load compared to the group having
6010 * less cpu_power.
6011 */
6012static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6013{
6014	struct sched_group *sg = sd->groups;
6015
6016	WARN_ON(!sd || !sg);
6017
6018	do {
6019		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6020		sg = sg->next;
6021	} while (sg != sd->groups);
6022
6023	if (cpu != group_first_cpu(sg))
6024		return;
6025
6026	update_group_power(sd, cpu);
6027}
6028
6029int __weak arch_sd_sibling_asym_packing(void)
6030{
6031       return 0*SD_ASYM_PACKING;
6032}
6033
6034/*
6035 * Initializers for schedule domains
6036 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6037 */
6038
6039#ifdef CONFIG_SCHED_DEBUG
6040# define SD_INIT_NAME(sd, type)		sd->name = #type
6041#else
6042# define SD_INIT_NAME(sd, type)		do { } while (0)
6043#endif
6044
6045#define SD_INIT_FUNC(type)						\
6046static noinline struct sched_domain *					\
6047sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6048{									\
6049	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6050	*sd = SD_##type##_INIT;						\
6051	SD_INIT_NAME(sd, type);						\
6052	sd->private = &tl->data;					\
6053	return sd;							\
6054}
6055
6056SD_INIT_FUNC(CPU)
6057#ifdef CONFIG_NUMA
6058 SD_INIT_FUNC(ALLNODES)
6059 SD_INIT_FUNC(NODE)
6060#endif
6061#ifdef CONFIG_SCHED_SMT
6062 SD_INIT_FUNC(SIBLING)
6063#endif
6064#ifdef CONFIG_SCHED_MC
6065 SD_INIT_FUNC(MC)
6066#endif
6067#ifdef CONFIG_SCHED_BOOK
6068 SD_INIT_FUNC(BOOK)
6069#endif
6070
6071static int default_relax_domain_level = -1;
6072int sched_domain_level_max;
6073
6074static int __init setup_relax_domain_level(char *str)
6075{
6076	unsigned long val;
6077
6078	val = simple_strtoul(str, NULL, 0);
6079	if (val < sched_domain_level_max)
6080		default_relax_domain_level = val;
6081
6082	return 1;
6083}
6084__setup("relax_domain_level=", setup_relax_domain_level);
6085
6086static void set_domain_attribute(struct sched_domain *sd,
6087				 struct sched_domain_attr *attr)
6088{
6089	int request;
6090
6091	if (!attr || attr->relax_domain_level < 0) {
6092		if (default_relax_domain_level < 0)
6093			return;
6094		else
6095			request = default_relax_domain_level;
6096	} else
6097		request = attr->relax_domain_level;
6098	if (request < sd->level) {
6099		/* turn off idle balance on this domain */
6100		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6101	} else {
6102		/* turn on idle balance on this domain */
6103		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6104	}
6105}
6106
6107static void __sdt_free(const struct cpumask *cpu_map);
6108static int __sdt_alloc(const struct cpumask *cpu_map);
6109
6110static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6111				 const struct cpumask *cpu_map)
6112{
6113	switch (what) {
6114	case sa_rootdomain:
6115		if (!atomic_read(&d->rd->refcount))
6116			free_rootdomain(&d->rd->rcu); /* fall through */
6117	case sa_sd:
6118		free_percpu(d->sd); /* fall through */
6119	case sa_sd_storage:
6120		__sdt_free(cpu_map); /* fall through */
6121	case sa_none:
6122		break;
6123	}
6124}
6125
6126static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6127						   const struct cpumask *cpu_map)
6128{
6129	memset(d, 0, sizeof(*d));
6130
6131	if (__sdt_alloc(cpu_map))
6132		return sa_sd_storage;
6133	d->sd = alloc_percpu(struct sched_domain *);
6134	if (!d->sd)
6135		return sa_sd_storage;
6136	d->rd = alloc_rootdomain();
6137	if (!d->rd)
6138		return sa_sd;
6139	return sa_rootdomain;
6140}
6141
6142/*
6143 * NULL the sd_data elements we've used to build the sched_domain and
6144 * sched_group structure so that the subsequent __free_domain_allocs()
6145 * will not free the data we're using.
6146 */
6147static void claim_allocations(int cpu, struct sched_domain *sd)
6148{
6149	struct sd_data *sdd = sd->private;
6150
6151	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6152	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6153
6154	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6155		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6156
6157	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6158		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6159}
6160
6161#ifdef CONFIG_SCHED_SMT
6162static const struct cpumask *cpu_smt_mask(int cpu)
6163{
6164	return topology_thread_cpumask(cpu);
6165}
6166#endif
6167
6168/*
6169 * Topology list, bottom-up.
6170 */
6171static struct sched_domain_topology_level default_topology[] = {
6172#ifdef CONFIG_SCHED_SMT
6173	{ sd_init_SIBLING, cpu_smt_mask, },
6174#endif
6175#ifdef CONFIG_SCHED_MC
6176	{ sd_init_MC, cpu_coregroup_mask, },
6177#endif
6178#ifdef CONFIG_SCHED_BOOK
6179	{ sd_init_BOOK, cpu_book_mask, },
6180#endif
6181	{ sd_init_CPU, cpu_cpu_mask, },
6182#ifdef CONFIG_NUMA
6183	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6184	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6185#endif
6186	{ NULL, },
6187};
6188
6189static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6190
6191static int __sdt_alloc(const struct cpumask *cpu_map)
6192{
6193	struct sched_domain_topology_level *tl;
6194	int j;
6195
6196	for (tl = sched_domain_topology; tl->init; tl++) {
6197		struct sd_data *sdd = &tl->data;
6198
6199		sdd->sd = alloc_percpu(struct sched_domain *);
6200		if (!sdd->sd)
6201			return -ENOMEM;
6202
6203		sdd->sg = alloc_percpu(struct sched_group *);
6204		if (!sdd->sg)
6205			return -ENOMEM;
6206
6207		sdd->sgp = alloc_percpu(struct sched_group_power *);
6208		if (!sdd->sgp)
6209			return -ENOMEM;
6210
6211		for_each_cpu(j, cpu_map) {
6212			struct sched_domain *sd;
6213			struct sched_group *sg;
6214			struct sched_group_power *sgp;
6215
6216		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6217					GFP_KERNEL, cpu_to_node(j));
6218			if (!sd)
6219				return -ENOMEM;
6220
6221			*per_cpu_ptr(sdd->sd, j) = sd;
6222
6223			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6224					GFP_KERNEL, cpu_to_node(j));
6225			if (!sg)
6226				return -ENOMEM;
6227
6228			*per_cpu_ptr(sdd->sg, j) = sg;
6229
6230			sgp = kzalloc_node(sizeof(struct sched_group_power),
6231					GFP_KERNEL, cpu_to_node(j));
6232			if (!sgp)
6233				return -ENOMEM;
6234
6235			*per_cpu_ptr(sdd->sgp, j) = sgp;
6236		}
6237	}
6238
6239	return 0;
6240}
6241
6242static void __sdt_free(const struct cpumask *cpu_map)
6243{
6244	struct sched_domain_topology_level *tl;
6245	int j;
6246
6247	for (tl = sched_domain_topology; tl->init; tl++) {
6248		struct sd_data *sdd = &tl->data;
6249
6250		for_each_cpu(j, cpu_map) {
6251			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6252			if (sd && (sd->flags & SD_OVERLAP))
6253				free_sched_groups(sd->groups, 0);
6254			kfree(*per_cpu_ptr(sdd->sd, j));
6255			kfree(*per_cpu_ptr(sdd->sg, j));
6256			kfree(*per_cpu_ptr(sdd->sgp, j));
6257		}
6258		free_percpu(sdd->sd);
6259		free_percpu(sdd->sg);
6260		free_percpu(sdd->sgp);
6261	}
6262}
6263
6264struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6265		struct s_data *d, const struct cpumask *cpu_map,
6266		struct sched_domain_attr *attr, struct sched_domain *child,
6267		int cpu)
6268{
6269	struct sched_domain *sd = tl->init(tl, cpu);
6270	if (!sd)
6271		return child;
6272
6273	set_domain_attribute(sd, attr);
6274	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6275	if (child) {
6276		sd->level = child->level + 1;
6277		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6278		child->parent = sd;
6279	}
6280	sd->child = child;
6281
6282	return sd;
6283}
6284
6285/*
6286 * Build sched domains for a given set of cpus and attach the sched domains
6287 * to the individual cpus
6288 */
6289static int build_sched_domains(const struct cpumask *cpu_map,
6290			       struct sched_domain_attr *attr)
6291{
6292	enum s_alloc alloc_state = sa_none;
6293	struct sched_domain *sd;
6294	struct s_data d;
6295	int i, ret = -ENOMEM;
6296
6297	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6298	if (alloc_state != sa_rootdomain)
6299		goto error;
6300
6301	/* Set up domains for cpus specified by the cpu_map. */
6302	for_each_cpu(i, cpu_map) {
6303		struct sched_domain_topology_level *tl;
6304
6305		sd = NULL;
6306		for (tl = sched_domain_topology; tl->init; tl++) {
6307			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6308			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6309				sd->flags |= SD_OVERLAP;
6310			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6311				break;
6312		}
6313
6314		while (sd->child)
6315			sd = sd->child;
6316
6317		*per_cpu_ptr(d.sd, i) = sd;
6318	}
6319
6320	/* Build the groups for the domains */
6321	for_each_cpu(i, cpu_map) {
6322		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6323			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6324			if (sd->flags & SD_OVERLAP) {
6325				if (build_overlap_sched_groups(sd, i))
6326					goto error;
6327			} else {
6328				if (build_sched_groups(sd, i))
6329					goto error;
6330			}
6331		}
6332	}
6333
6334	/* Calculate CPU power for physical packages and nodes */
6335	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6336		if (!cpumask_test_cpu(i, cpu_map))
6337			continue;
6338
6339		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6340			claim_allocations(i, sd);
6341			init_sched_groups_power(i, sd);
6342		}
6343	}
6344
6345	/* Attach the domains */
6346	rcu_read_lock();
6347	for_each_cpu(i, cpu_map) {
6348		sd = *per_cpu_ptr(d.sd, i);
6349		cpu_attach_domain(sd, d.rd, i);
6350	}
6351	rcu_read_unlock();
6352
6353	ret = 0;
6354error:
6355	__free_domain_allocs(&d, alloc_state, cpu_map);
6356	return ret;
6357}
6358
6359static cpumask_var_t *doms_cur;	/* current sched domains */
6360static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6361static struct sched_domain_attr *dattr_cur;
6362				/* attribues of custom domains in 'doms_cur' */
6363
6364/*
6365 * Special case: If a kmalloc of a doms_cur partition (array of
6366 * cpumask) fails, then fallback to a single sched domain,
6367 * as determined by the single cpumask fallback_doms.
6368 */
6369static cpumask_var_t fallback_doms;
6370
6371/*
6372 * arch_update_cpu_topology lets virtualized architectures update the
6373 * cpu core maps. It is supposed to return 1 if the topology changed
6374 * or 0 if it stayed the same.
6375 */
6376int __attribute__((weak)) arch_update_cpu_topology(void)
6377{
6378	return 0;
6379}
6380
6381cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6382{
6383	int i;
6384	cpumask_var_t *doms;
6385
6386	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6387	if (!doms)
6388		return NULL;
6389	for (i = 0; i < ndoms; i++) {
6390		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6391			free_sched_domains(doms, i);
6392			return NULL;
6393		}
6394	}
6395	return doms;
6396}
6397
6398void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6399{
6400	unsigned int i;
6401	for (i = 0; i < ndoms; i++)
6402		free_cpumask_var(doms[i]);
6403	kfree(doms);
6404}
6405
6406/*
6407 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6408 * For now this just excludes isolated cpus, but could be used to
6409 * exclude other special cases in the future.
6410 */
6411static int init_sched_domains(const struct cpumask *cpu_map)
6412{
6413	int err;
6414
6415	arch_update_cpu_topology();
6416	ndoms_cur = 1;
6417	doms_cur = alloc_sched_domains(ndoms_cur);
6418	if (!doms_cur)
6419		doms_cur = &fallback_doms;
6420	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6421	dattr_cur = NULL;
6422	err = build_sched_domains(doms_cur[0], NULL);
6423	register_sched_domain_sysctl();
6424
6425	return err;
6426}
6427
6428/*
6429 * Detach sched domains from a group of cpus specified in cpu_map
6430 * These cpus will now be attached to the NULL domain
6431 */
6432static void detach_destroy_domains(const struct cpumask *cpu_map)
6433{
6434	int i;
6435
6436	rcu_read_lock();
6437	for_each_cpu(i, cpu_map)
6438		cpu_attach_domain(NULL, &def_root_domain, i);
6439	rcu_read_unlock();
6440}
6441
6442/* handle null as "default" */
6443static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6444			struct sched_domain_attr *new, int idx_new)
6445{
6446	struct sched_domain_attr tmp;
6447
6448	/* fast path */
6449	if (!new && !cur)
6450		return 1;
6451
6452	tmp = SD_ATTR_INIT;
6453	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6454			new ? (new + idx_new) : &tmp,
6455			sizeof(struct sched_domain_attr));
6456}
6457
6458/*
6459 * Partition sched domains as specified by the 'ndoms_new'
6460 * cpumasks in the array doms_new[] of cpumasks. This compares
6461 * doms_new[] to the current sched domain partitioning, doms_cur[].
6462 * It destroys each deleted domain and builds each new domain.
6463 *
6464 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6465 * The masks don't intersect (don't overlap.) We should setup one
6466 * sched domain for each mask. CPUs not in any of the cpumasks will
6467 * not be load balanced. If the same cpumask appears both in the
6468 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6469 * it as it is.
6470 *
6471 * The passed in 'doms_new' should be allocated using
6472 * alloc_sched_domains.  This routine takes ownership of it and will
6473 * free_sched_domains it when done with it. If the caller failed the
6474 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6475 * and partition_sched_domains() will fallback to the single partition
6476 * 'fallback_doms', it also forces the domains to be rebuilt.
6477 *
6478 * If doms_new == NULL it will be replaced with cpu_online_mask.
6479 * ndoms_new == 0 is a special case for destroying existing domains,
6480 * and it will not create the default domain.
6481 *
6482 * Call with hotplug lock held
6483 */
6484void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6485			     struct sched_domain_attr *dattr_new)
6486{
6487	int i, j, n;
6488	int new_topology;
6489
6490	mutex_lock(&sched_domains_mutex);
6491
6492	/* always unregister in case we don't destroy any domains */
6493	unregister_sched_domain_sysctl();
6494
6495	/* Let architecture update cpu core mappings. */
6496	new_topology = arch_update_cpu_topology();
6497
6498	n = doms_new ? ndoms_new : 0;
6499
6500	/* Destroy deleted domains */
6501	for (i = 0; i < ndoms_cur; i++) {
6502		for (j = 0; j < n && !new_topology; j++) {
6503			if (cpumask_equal(doms_cur[i], doms_new[j])
6504			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6505				goto match1;
6506		}
6507		/* no match - a current sched domain not in new doms_new[] */
6508		detach_destroy_domains(doms_cur[i]);
6509match1:
6510		;
6511	}
6512
6513	if (doms_new == NULL) {
6514		ndoms_cur = 0;
6515		doms_new = &fallback_doms;
6516		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6517		WARN_ON_ONCE(dattr_new);
6518	}
6519
6520	/* Build new domains */
6521	for (i = 0; i < ndoms_new; i++) {
6522		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6523			if (cpumask_equal(doms_new[i], doms_cur[j])
6524			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6525				goto match2;
6526		}
6527		/* no match - add a new doms_new */
6528		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6529match2:
6530		;
6531	}
6532
6533	/* Remember the new sched domains */
6534	if (doms_cur != &fallback_doms)
6535		free_sched_domains(doms_cur, ndoms_cur);
6536	kfree(dattr_cur);	/* kfree(NULL) is safe */
6537	doms_cur = doms_new;
6538	dattr_cur = dattr_new;
6539	ndoms_cur = ndoms_new;
6540
6541	register_sched_domain_sysctl();
6542
6543	mutex_unlock(&sched_domains_mutex);
6544}
6545
6546#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6547static void reinit_sched_domains(void)
6548{
6549	get_online_cpus();
6550
6551	/* Destroy domains first to force the rebuild */
6552	partition_sched_domains(0, NULL, NULL);
6553
6554	rebuild_sched_domains();
6555	put_online_cpus();
6556}
6557
6558static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6559{
6560	unsigned int level = 0;
6561
6562	if (sscanf(buf, "%u", &level) != 1)
6563		return -EINVAL;
6564
6565	/*
6566	 * level is always be positive so don't check for
6567	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6568	 * What happens on 0 or 1 byte write,
6569	 * need to check for count as well?
6570	 */
6571
6572	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6573		return -EINVAL;
6574
6575	if (smt)
6576		sched_smt_power_savings = level;
6577	else
6578		sched_mc_power_savings = level;
6579
6580	reinit_sched_domains();
6581
6582	return count;
6583}
6584
6585#ifdef CONFIG_SCHED_MC
6586static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
6587					   struct sysdev_class_attribute *attr,
6588					   char *page)
6589{
6590	return sprintf(page, "%u\n", sched_mc_power_savings);
6591}
6592static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
6593					    struct sysdev_class_attribute *attr,
6594					    const char *buf, size_t count)
6595{
6596	return sched_power_savings_store(buf, count, 0);
6597}
6598static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
6599			 sched_mc_power_savings_show,
6600			 sched_mc_power_savings_store);
6601#endif
6602
6603#ifdef CONFIG_SCHED_SMT
6604static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
6605					    struct sysdev_class_attribute *attr,
6606					    char *page)
6607{
6608	return sprintf(page, "%u\n", sched_smt_power_savings);
6609}
6610static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
6611					     struct sysdev_class_attribute *attr,
6612					     const char *buf, size_t count)
6613{
6614	return sched_power_savings_store(buf, count, 1);
6615}
6616static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
6617		   sched_smt_power_savings_show,
6618		   sched_smt_power_savings_store);
6619#endif
6620
6621int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6622{
6623	int err = 0;
6624
6625#ifdef CONFIG_SCHED_SMT
6626	if (smt_capable())
6627		err = sysfs_create_file(&cls->kset.kobj,
6628					&attr_sched_smt_power_savings.attr);
6629#endif
6630#ifdef CONFIG_SCHED_MC
6631	if (!err && mc_capable())
6632		err = sysfs_create_file(&cls->kset.kobj,
6633					&attr_sched_mc_power_savings.attr);
6634#endif
6635	return err;
6636}
6637#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6638
6639/*
6640 * Update cpusets according to cpu_active mask.  If cpusets are
6641 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6642 * around partition_sched_domains().
6643 */
6644static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6645			     void *hcpu)
6646{
6647	switch (action & ~CPU_TASKS_FROZEN) {
6648	case CPU_ONLINE:
6649	case CPU_DOWN_FAILED:
6650		cpuset_update_active_cpus();
6651		return NOTIFY_OK;
6652	default:
6653		return NOTIFY_DONE;
6654	}
6655}
6656
6657static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6658			       void *hcpu)
6659{
6660	switch (action & ~CPU_TASKS_FROZEN) {
6661	case CPU_DOWN_PREPARE:
6662		cpuset_update_active_cpus();
6663		return NOTIFY_OK;
6664	default:
6665		return NOTIFY_DONE;
6666	}
6667}
6668
6669void __init sched_init_smp(void)
6670{
6671	cpumask_var_t non_isolated_cpus;
6672
6673	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6674	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6675
6676	get_online_cpus();
6677	mutex_lock(&sched_domains_mutex);
6678	init_sched_domains(cpu_active_mask);
6679	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6680	if (cpumask_empty(non_isolated_cpus))
6681		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6682	mutex_unlock(&sched_domains_mutex);
6683	put_online_cpus();
6684
6685	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6686	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6687
6688	/* RT runtime code needs to handle some hotplug events */
6689	hotcpu_notifier(update_runtime, 0);
6690
6691	init_hrtick();
6692
6693	/* Move init over to a non-isolated CPU */
6694	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6695		BUG();
6696	sched_init_granularity();
6697	free_cpumask_var(non_isolated_cpus);
6698
6699	init_sched_rt_class();
6700}
6701#else
6702void __init sched_init_smp(void)
6703{
6704	sched_init_granularity();
6705}
6706#endif /* CONFIG_SMP */
6707
6708const_debug unsigned int sysctl_timer_migration = 1;
6709
6710int in_sched_functions(unsigned long addr)
6711{
6712	return in_lock_functions(addr) ||
6713		(addr >= (unsigned long)__sched_text_start
6714		&& addr < (unsigned long)__sched_text_end);
6715}
6716
6717#ifdef CONFIG_CGROUP_SCHED
6718struct task_group root_task_group;
6719#endif
6720
6721DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6722
6723void __init sched_init(void)
6724{
6725	int i, j;
6726	unsigned long alloc_size = 0, ptr;
6727
6728#ifdef CONFIG_FAIR_GROUP_SCHED
6729	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6730#endif
6731#ifdef CONFIG_RT_GROUP_SCHED
6732	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6733#endif
6734#ifdef CONFIG_CPUMASK_OFFSTACK
6735	alloc_size += num_possible_cpus() * cpumask_size();
6736#endif
6737	if (alloc_size) {
6738		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6739
6740#ifdef CONFIG_FAIR_GROUP_SCHED
6741		root_task_group.se = (struct sched_entity **)ptr;
6742		ptr += nr_cpu_ids * sizeof(void **);
6743
6744		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6745		ptr += nr_cpu_ids * sizeof(void **);
6746
6747#endif /* CONFIG_FAIR_GROUP_SCHED */
6748#ifdef CONFIG_RT_GROUP_SCHED
6749		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6750		ptr += nr_cpu_ids * sizeof(void **);
6751
6752		root_task_group.rt_rq = (struct rt_rq **)ptr;
6753		ptr += nr_cpu_ids * sizeof(void **);
6754
6755#endif /* CONFIG_RT_GROUP_SCHED */
6756#ifdef CONFIG_CPUMASK_OFFSTACK
6757		for_each_possible_cpu(i) {
6758			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6759			ptr += cpumask_size();
6760		}
6761#endif /* CONFIG_CPUMASK_OFFSTACK */
6762	}
6763
6764#ifdef CONFIG_SMP
6765	init_defrootdomain();
6766#endif
6767
6768	init_rt_bandwidth(&def_rt_bandwidth,
6769			global_rt_period(), global_rt_runtime());
6770
6771#ifdef CONFIG_RT_GROUP_SCHED
6772	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6773			global_rt_period(), global_rt_runtime());
6774#endif /* CONFIG_RT_GROUP_SCHED */
6775
6776#ifdef CONFIG_CGROUP_SCHED
6777	list_add(&root_task_group.list, &task_groups);
6778	INIT_LIST_HEAD(&root_task_group.children);
6779	INIT_LIST_HEAD(&root_task_group.siblings);
6780	autogroup_init(&init_task);
6781#endif /* CONFIG_CGROUP_SCHED */
6782
6783	for_each_possible_cpu(i) {
6784		struct rq *rq;
6785
6786		rq = cpu_rq(i);
6787		raw_spin_lock_init(&rq->lock);
6788		rq->nr_running = 0;
6789		rq->calc_load_active = 0;
6790		rq->calc_load_update = jiffies + LOAD_FREQ;
6791		init_cfs_rq(&rq->cfs);
6792		init_rt_rq(&rq->rt, rq);
6793#ifdef CONFIG_FAIR_GROUP_SCHED
6794		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6795		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6796		/*
6797		 * How much cpu bandwidth does root_task_group get?
6798		 *
6799		 * In case of task-groups formed thr' the cgroup filesystem, it
6800		 * gets 100% of the cpu resources in the system. This overall
6801		 * system cpu resource is divided among the tasks of
6802		 * root_task_group and its child task-groups in a fair manner,
6803		 * based on each entity's (task or task-group's) weight
6804		 * (se->load.weight).
6805		 *
6806		 * In other words, if root_task_group has 10 tasks of weight
6807		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6808		 * then A0's share of the cpu resource is:
6809		 *
6810		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6811		 *
6812		 * We achieve this by letting root_task_group's tasks sit
6813		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6814		 */
6815		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6816		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6817#endif /* CONFIG_FAIR_GROUP_SCHED */
6818
6819		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6820#ifdef CONFIG_RT_GROUP_SCHED
6821		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6822		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6823#endif
6824
6825		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6826			rq->cpu_load[j] = 0;
6827
6828		rq->last_load_update_tick = jiffies;
6829
6830#ifdef CONFIG_SMP
6831		rq->sd = NULL;
6832		rq->rd = NULL;
6833		rq->cpu_power = SCHED_POWER_SCALE;
6834		rq->post_schedule = 0;
6835		rq->active_balance = 0;
6836		rq->next_balance = jiffies;
6837		rq->push_cpu = 0;
6838		rq->cpu = i;
6839		rq->online = 0;
6840		rq->idle_stamp = 0;
6841		rq->avg_idle = 2*sysctl_sched_migration_cost;
6842		rq_attach_root(rq, &def_root_domain);
6843#ifdef CONFIG_NO_HZ
6844		rq->nohz_flags = 0;
6845#endif
6846#endif
6847		init_rq_hrtick(rq);
6848		atomic_set(&rq->nr_iowait, 0);
6849	}
6850
6851	set_load_weight(&init_task);
6852
6853#ifdef CONFIG_PREEMPT_NOTIFIERS
6854	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6855#endif
6856
6857#ifdef CONFIG_RT_MUTEXES
6858	plist_head_init(&init_task.pi_waiters);
6859#endif
6860
6861	/*
6862	 * The boot idle thread does lazy MMU switching as well:
6863	 */
6864	atomic_inc(&init_mm.mm_count);
6865	enter_lazy_tlb(&init_mm, current);
6866
6867	/*
6868	 * Make us the idle thread. Technically, schedule() should not be
6869	 * called from this thread, however somewhere below it might be,
6870	 * but because we are the idle thread, we just pick up running again
6871	 * when this runqueue becomes "idle".
6872	 */
6873	init_idle(current, smp_processor_id());
6874
6875	calc_load_update = jiffies + LOAD_FREQ;
6876
6877	/*
6878	 * During early bootup we pretend to be a normal task:
6879	 */
6880	current->sched_class = &fair_sched_class;
6881
6882#ifdef CONFIG_SMP
6883	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6884	/* May be allocated at isolcpus cmdline parse time */
6885	if (cpu_isolated_map == NULL)
6886		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6887#endif
6888	init_sched_fair_class();
6889
6890	scheduler_running = 1;
6891}
6892
6893#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6894static inline int preempt_count_equals(int preempt_offset)
6895{
6896	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6897
6898	return (nested == preempt_offset);
6899}
6900
6901void __might_sleep(const char *file, int line, int preempt_offset)
6902{
6903	static unsigned long prev_jiffy;	/* ratelimiting */
6904
6905	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6906	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6907	    system_state != SYSTEM_RUNNING || oops_in_progress)
6908		return;
6909	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6910		return;
6911	prev_jiffy = jiffies;
6912
6913	printk(KERN_ERR
6914		"BUG: sleeping function called from invalid context at %s:%d\n",
6915			file, line);
6916	printk(KERN_ERR
6917		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6918			in_atomic(), irqs_disabled(),
6919			current->pid, current->comm);
6920
6921	debug_show_held_locks(current);
6922	if (irqs_disabled())
6923		print_irqtrace_events(current);
6924	dump_stack();
6925}
6926EXPORT_SYMBOL(__might_sleep);
6927#endif
6928
6929#ifdef CONFIG_MAGIC_SYSRQ
6930static void normalize_task(struct rq *rq, struct task_struct *p)
6931{
6932	const struct sched_class *prev_class = p->sched_class;
6933	int old_prio = p->prio;
6934	int on_rq;
6935
6936	on_rq = p->on_rq;
6937	if (on_rq)
6938		deactivate_task(rq, p, 0);
6939	__setscheduler(rq, p, SCHED_NORMAL, 0);
6940	if (on_rq) {
6941		activate_task(rq, p, 0);
6942		resched_task(rq->curr);
6943	}
6944
6945	check_class_changed(rq, p, prev_class, old_prio);
6946}
6947
6948void normalize_rt_tasks(void)
6949{
6950	struct task_struct *g, *p;
6951	unsigned long flags;
6952	struct rq *rq;
6953
6954	read_lock_irqsave(&tasklist_lock, flags);
6955	do_each_thread(g, p) {
6956		/*
6957		 * Only normalize user tasks:
6958		 */
6959		if (!p->mm)
6960			continue;
6961
6962		p->se.exec_start		= 0;
6963#ifdef CONFIG_SCHEDSTATS
6964		p->se.statistics.wait_start	= 0;
6965		p->se.statistics.sleep_start	= 0;
6966		p->se.statistics.block_start	= 0;
6967#endif
6968
6969		if (!rt_task(p)) {
6970			/*
6971			 * Renice negative nice level userspace
6972			 * tasks back to 0:
6973			 */
6974			if (TASK_NICE(p) < 0 && p->mm)
6975				set_user_nice(p, 0);
6976			continue;
6977		}
6978
6979		raw_spin_lock(&p->pi_lock);
6980		rq = __task_rq_lock(p);
6981
6982		normalize_task(rq, p);
6983
6984		__task_rq_unlock(rq);
6985		raw_spin_unlock(&p->pi_lock);
6986	} while_each_thread(g, p);
6987
6988	read_unlock_irqrestore(&tasklist_lock, flags);
6989}
6990
6991#endif /* CONFIG_MAGIC_SYSRQ */
6992
6993#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6994/*
6995 * These functions are only useful for the IA64 MCA handling, or kdb.
6996 *
6997 * They can only be called when the whole system has been
6998 * stopped - every CPU needs to be quiescent, and no scheduling
6999 * activity can take place. Using them for anything else would
7000 * be a serious bug, and as a result, they aren't even visible
7001 * under any other configuration.
7002 */
7003
7004/**
7005 * curr_task - return the current task for a given cpu.
7006 * @cpu: the processor in question.
7007 *
7008 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7009 */
7010struct task_struct *curr_task(int cpu)
7011{
7012	return cpu_curr(cpu);
7013}
7014
7015#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7016
7017#ifdef CONFIG_IA64
7018/**
7019 * set_curr_task - set the current task for a given cpu.
7020 * @cpu: the processor in question.
7021 * @p: the task pointer to set.
7022 *
7023 * Description: This function must only be used when non-maskable interrupts
7024 * are serviced on a separate stack. It allows the architecture to switch the
7025 * notion of the current task on a cpu in a non-blocking manner. This function
7026 * must be called with all CPU's synchronized, and interrupts disabled, the
7027 * and caller must save the original value of the current task (see
7028 * curr_task() above) and restore that value before reenabling interrupts and
7029 * re-starting the system.
7030 *
7031 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7032 */
7033void set_curr_task(int cpu, struct task_struct *p)
7034{
7035	cpu_curr(cpu) = p;
7036}
7037
7038#endif
7039
7040#ifdef CONFIG_RT_GROUP_SCHED
7041#else /* !CONFIG_RT_GROUP_SCHED */
7042#endif /* CONFIG_RT_GROUP_SCHED */
7043
7044#ifdef CONFIG_CGROUP_SCHED
7045/* task_group_lock serializes the addition/removal of task groups */
7046static DEFINE_SPINLOCK(task_group_lock);
7047
7048static void free_sched_group(struct task_group *tg)
7049{
7050	free_fair_sched_group(tg);
7051	free_rt_sched_group(tg);
7052	autogroup_free(tg);
7053	kfree(tg);
7054}
7055
7056/* allocate runqueue etc for a new task group */
7057struct task_group *sched_create_group(struct task_group *parent)
7058{
7059	struct task_group *tg;
7060	unsigned long flags;
7061
7062	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7063	if (!tg)
7064		return ERR_PTR(-ENOMEM);
7065
7066	if (!alloc_fair_sched_group(tg, parent))
7067		goto err;
7068
7069	if (!alloc_rt_sched_group(tg, parent))
7070		goto err;
7071
7072	spin_lock_irqsave(&task_group_lock, flags);
7073	list_add_rcu(&tg->list, &task_groups);
7074
7075	WARN_ON(!parent); /* root should already exist */
7076
7077	tg->parent = parent;
7078	INIT_LIST_HEAD(&tg->children);
7079	list_add_rcu(&tg->siblings, &parent->children);
7080	spin_unlock_irqrestore(&task_group_lock, flags);
7081
7082	return tg;
7083
7084err:
7085	free_sched_group(tg);
7086	return ERR_PTR(-ENOMEM);
7087}
7088
7089/* rcu callback to free various structures associated with a task group */
7090static void free_sched_group_rcu(struct rcu_head *rhp)
7091{
7092	/* now it should be safe to free those cfs_rqs */
7093	free_sched_group(container_of(rhp, struct task_group, rcu));
7094}
7095
7096/* Destroy runqueue etc associated with a task group */
7097void sched_destroy_group(struct task_group *tg)
7098{
7099	unsigned long flags;
7100	int i;
7101
7102	/* end participation in shares distribution */
7103	for_each_possible_cpu(i)
7104		unregister_fair_sched_group(tg, i);
7105
7106	spin_lock_irqsave(&task_group_lock, flags);
7107	list_del_rcu(&tg->list);
7108	list_del_rcu(&tg->siblings);
7109	spin_unlock_irqrestore(&task_group_lock, flags);
7110
7111	/* wait for possible concurrent references to cfs_rqs complete */
7112	call_rcu(&tg->rcu, free_sched_group_rcu);
7113}
7114
7115/* change task's runqueue when it moves between groups.
7116 *	The caller of this function should have put the task in its new group
7117 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7118 *	reflect its new group.
7119 */
7120void sched_move_task(struct task_struct *tsk)
7121{
7122	int on_rq, running;
7123	unsigned long flags;
7124	struct rq *rq;
7125
7126	rq = task_rq_lock(tsk, &flags);
7127
7128	running = task_current(rq, tsk);
7129	on_rq = tsk->on_rq;
7130
7131	if (on_rq)
7132		dequeue_task(rq, tsk, 0);
7133	if (unlikely(running))
7134		tsk->sched_class->put_prev_task(rq, tsk);
7135
7136#ifdef CONFIG_FAIR_GROUP_SCHED
7137	if (tsk->sched_class->task_move_group)
7138		tsk->sched_class->task_move_group(tsk, on_rq);
7139	else
7140#endif
7141		set_task_rq(tsk, task_cpu(tsk));
7142
7143	if (unlikely(running))
7144		tsk->sched_class->set_curr_task(rq);
7145	if (on_rq)
7146		enqueue_task(rq, tsk, 0);
7147
7148	task_rq_unlock(rq, tsk, &flags);
7149}
7150#endif /* CONFIG_CGROUP_SCHED */
7151
7152#ifdef CONFIG_FAIR_GROUP_SCHED
7153#endif
7154
7155#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7156static unsigned long to_ratio(u64 period, u64 runtime)
7157{
7158	if (runtime == RUNTIME_INF)
7159		return 1ULL << 20;
7160
7161	return div64_u64(runtime << 20, period);
7162}
7163#endif
7164
7165#ifdef CONFIG_RT_GROUP_SCHED
7166/*
7167 * Ensure that the real time constraints are schedulable.
7168 */
7169static DEFINE_MUTEX(rt_constraints_mutex);
7170
7171/* Must be called with tasklist_lock held */
7172static inline int tg_has_rt_tasks(struct task_group *tg)
7173{
7174	struct task_struct *g, *p;
7175
7176	do_each_thread(g, p) {
7177		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7178			return 1;
7179	} while_each_thread(g, p);
7180
7181	return 0;
7182}
7183
7184struct rt_schedulable_data {
7185	struct task_group *tg;
7186	u64 rt_period;
7187	u64 rt_runtime;
7188};
7189
7190static int tg_rt_schedulable(struct task_group *tg, void *data)
7191{
7192	struct rt_schedulable_data *d = data;
7193	struct task_group *child;
7194	unsigned long total, sum = 0;
7195	u64 period, runtime;
7196
7197	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7198	runtime = tg->rt_bandwidth.rt_runtime;
7199
7200	if (tg == d->tg) {
7201		period = d->rt_period;
7202		runtime = d->rt_runtime;
7203	}
7204
7205	/*
7206	 * Cannot have more runtime than the period.
7207	 */
7208	if (runtime > period && runtime != RUNTIME_INF)
7209		return -EINVAL;
7210
7211	/*
7212	 * Ensure we don't starve existing RT tasks.
7213	 */
7214	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7215		return -EBUSY;
7216
7217	total = to_ratio(period, runtime);
7218
7219	/*
7220	 * Nobody can have more than the global setting allows.
7221	 */
7222	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7223		return -EINVAL;
7224
7225	/*
7226	 * The sum of our children's runtime should not exceed our own.
7227	 */
7228	list_for_each_entry_rcu(child, &tg->children, siblings) {
7229		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7230		runtime = child->rt_bandwidth.rt_runtime;
7231
7232		if (child == d->tg) {
7233			period = d->rt_period;
7234			runtime = d->rt_runtime;
7235		}
7236
7237		sum += to_ratio(period, runtime);
7238	}
7239
7240	if (sum > total)
7241		return -EINVAL;
7242
7243	return 0;
7244}
7245
7246static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7247{
7248	int ret;
7249
7250	struct rt_schedulable_data data = {
7251		.tg = tg,
7252		.rt_period = period,
7253		.rt_runtime = runtime,
7254	};
7255
7256	rcu_read_lock();
7257	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7258	rcu_read_unlock();
7259
7260	return ret;
7261}
7262
7263static int tg_set_rt_bandwidth(struct task_group *tg,
7264		u64 rt_period, u64 rt_runtime)
7265{
7266	int i, err = 0;
7267
7268	mutex_lock(&rt_constraints_mutex);
7269	read_lock(&tasklist_lock);
7270	err = __rt_schedulable(tg, rt_period, rt_runtime);
7271	if (err)
7272		goto unlock;
7273
7274	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7275	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7276	tg->rt_bandwidth.rt_runtime = rt_runtime;
7277
7278	for_each_possible_cpu(i) {
7279		struct rt_rq *rt_rq = tg->rt_rq[i];
7280
7281		raw_spin_lock(&rt_rq->rt_runtime_lock);
7282		rt_rq->rt_runtime = rt_runtime;
7283		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7284	}
7285	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7286unlock:
7287	read_unlock(&tasklist_lock);
7288	mutex_unlock(&rt_constraints_mutex);
7289
7290	return err;
7291}
7292
7293int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7294{
7295	u64 rt_runtime, rt_period;
7296
7297	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7298	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7299	if (rt_runtime_us < 0)
7300		rt_runtime = RUNTIME_INF;
7301
7302	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7303}
7304
7305long sched_group_rt_runtime(struct task_group *tg)
7306{
7307	u64 rt_runtime_us;
7308
7309	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7310		return -1;
7311
7312	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7313	do_div(rt_runtime_us, NSEC_PER_USEC);
7314	return rt_runtime_us;
7315}
7316
7317int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7318{
7319	u64 rt_runtime, rt_period;
7320
7321	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7322	rt_runtime = tg->rt_bandwidth.rt_runtime;
7323
7324	if (rt_period == 0)
7325		return -EINVAL;
7326
7327	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7328}
7329
7330long sched_group_rt_period(struct task_group *tg)
7331{
7332	u64 rt_period_us;
7333
7334	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7335	do_div(rt_period_us, NSEC_PER_USEC);
7336	return rt_period_us;
7337}
7338
7339static int sched_rt_global_constraints(void)
7340{
7341	u64 runtime, period;
7342	int ret = 0;
7343
7344	if (sysctl_sched_rt_period <= 0)
7345		return -EINVAL;
7346
7347	runtime = global_rt_runtime();
7348	period = global_rt_period();
7349
7350	/*
7351	 * Sanity check on the sysctl variables.
7352	 */
7353	if (runtime > period && runtime != RUNTIME_INF)
7354		return -EINVAL;
7355
7356	mutex_lock(&rt_constraints_mutex);
7357	read_lock(&tasklist_lock);
7358	ret = __rt_schedulable(NULL, 0, 0);
7359	read_unlock(&tasklist_lock);
7360	mutex_unlock(&rt_constraints_mutex);
7361
7362	return ret;
7363}
7364
7365int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7366{
7367	/* Don't accept realtime tasks when there is no way for them to run */
7368	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7369		return 0;
7370
7371	return 1;
7372}
7373
7374#else /* !CONFIG_RT_GROUP_SCHED */
7375static int sched_rt_global_constraints(void)
7376{
7377	unsigned long flags;
7378	int i;
7379
7380	if (sysctl_sched_rt_period <= 0)
7381		return -EINVAL;
7382
7383	/*
7384	 * There's always some RT tasks in the root group
7385	 * -- migration, kstopmachine etc..
7386	 */
7387	if (sysctl_sched_rt_runtime == 0)
7388		return -EBUSY;
7389
7390	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7391	for_each_possible_cpu(i) {
7392		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7393
7394		raw_spin_lock(&rt_rq->rt_runtime_lock);
7395		rt_rq->rt_runtime = global_rt_runtime();
7396		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7397	}
7398	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7399
7400	return 0;
7401}
7402#endif /* CONFIG_RT_GROUP_SCHED */
7403
7404int sched_rt_handler(struct ctl_table *table, int write,
7405		void __user *buffer, size_t *lenp,
7406		loff_t *ppos)
7407{
7408	int ret;
7409	int old_period, old_runtime;
7410	static DEFINE_MUTEX(mutex);
7411
7412	mutex_lock(&mutex);
7413	old_period = sysctl_sched_rt_period;
7414	old_runtime = sysctl_sched_rt_runtime;
7415
7416	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7417
7418	if (!ret && write) {
7419		ret = sched_rt_global_constraints();
7420		if (ret) {
7421			sysctl_sched_rt_period = old_period;
7422			sysctl_sched_rt_runtime = old_runtime;
7423		} else {
7424			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7425			def_rt_bandwidth.rt_period =
7426				ns_to_ktime(global_rt_period());
7427		}
7428	}
7429	mutex_unlock(&mutex);
7430
7431	return ret;
7432}
7433
7434#ifdef CONFIG_CGROUP_SCHED
7435
7436/* return corresponding task_group object of a cgroup */
7437static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7438{
7439	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7440			    struct task_group, css);
7441}
7442
7443static struct cgroup_subsys_state *
7444cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7445{
7446	struct task_group *tg, *parent;
7447
7448	if (!cgrp->parent) {
7449		/* This is early initialization for the top cgroup */
7450		return &root_task_group.css;
7451	}
7452
7453	parent = cgroup_tg(cgrp->parent);
7454	tg = sched_create_group(parent);
7455	if (IS_ERR(tg))
7456		return ERR_PTR(-ENOMEM);
7457
7458	return &tg->css;
7459}
7460
7461static void
7462cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7463{
7464	struct task_group *tg = cgroup_tg(cgrp);
7465
7466	sched_destroy_group(tg);
7467}
7468
7469static int
7470cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7471{
7472#ifdef CONFIG_RT_GROUP_SCHED
7473	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
7474		return -EINVAL;
7475#else
7476	/* We don't support RT-tasks being in separate groups */
7477	if (tsk->sched_class != &fair_sched_class)
7478		return -EINVAL;
7479#endif
7480	return 0;
7481}
7482
7483static void
7484cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7485{
7486	sched_move_task(tsk);
7487}
7488
7489static void
7490cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7491		struct cgroup *old_cgrp, struct task_struct *task)
7492{
7493	/*
7494	 * cgroup_exit() is called in the copy_process() failure path.
7495	 * Ignore this case since the task hasn't ran yet, this avoids
7496	 * trying to poke a half freed task state from generic code.
7497	 */
7498	if (!(task->flags & PF_EXITING))
7499		return;
7500
7501	sched_move_task(task);
7502}
7503
7504#ifdef CONFIG_FAIR_GROUP_SCHED
7505static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7506				u64 shareval)
7507{
7508	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7509}
7510
7511static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7512{
7513	struct task_group *tg = cgroup_tg(cgrp);
7514
7515	return (u64) scale_load_down(tg->shares);
7516}
7517
7518#ifdef CONFIG_CFS_BANDWIDTH
7519static DEFINE_MUTEX(cfs_constraints_mutex);
7520
7521const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7522const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7523
7524static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7525
7526static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7527{
7528	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7529	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7530
7531	if (tg == &root_task_group)
7532		return -EINVAL;
7533
7534	/*
7535	 * Ensure we have at some amount of bandwidth every period.  This is
7536	 * to prevent reaching a state of large arrears when throttled via
7537	 * entity_tick() resulting in prolonged exit starvation.
7538	 */
7539	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7540		return -EINVAL;
7541
7542	/*
7543	 * Likewise, bound things on the otherside by preventing insane quota
7544	 * periods.  This also allows us to normalize in computing quota
7545	 * feasibility.
7546	 */
7547	if (period > max_cfs_quota_period)
7548		return -EINVAL;
7549
7550	mutex_lock(&cfs_constraints_mutex);
7551	ret = __cfs_schedulable(tg, period, quota);
7552	if (ret)
7553		goto out_unlock;
7554
7555	runtime_enabled = quota != RUNTIME_INF;
7556	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7557	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7558	raw_spin_lock_irq(&cfs_b->lock);
7559	cfs_b->period = ns_to_ktime(period);
7560	cfs_b->quota = quota;
7561
7562	__refill_cfs_bandwidth_runtime(cfs_b);
7563	/* restart the period timer (if active) to handle new period expiry */
7564	if (runtime_enabled && cfs_b->timer_active) {
7565		/* force a reprogram */
7566		cfs_b->timer_active = 0;
7567		__start_cfs_bandwidth(cfs_b);
7568	}
7569	raw_spin_unlock_irq(&cfs_b->lock);
7570
7571	for_each_possible_cpu(i) {
7572		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7573		struct rq *rq = cfs_rq->rq;
7574
7575		raw_spin_lock_irq(&rq->lock);
7576		cfs_rq->runtime_enabled = runtime_enabled;
7577		cfs_rq->runtime_remaining = 0;
7578
7579		if (cfs_rq->throttled)
7580			unthrottle_cfs_rq(cfs_rq);
7581		raw_spin_unlock_irq(&rq->lock);
7582	}
7583out_unlock:
7584	mutex_unlock(&cfs_constraints_mutex);
7585
7586	return ret;
7587}
7588
7589int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7590{
7591	u64 quota, period;
7592
7593	period = ktime_to_ns(tg->cfs_bandwidth.period);
7594	if (cfs_quota_us < 0)
7595		quota = RUNTIME_INF;
7596	else
7597		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7598
7599	return tg_set_cfs_bandwidth(tg, period, quota);
7600}
7601
7602long tg_get_cfs_quota(struct task_group *tg)
7603{
7604	u64 quota_us;
7605
7606	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7607		return -1;
7608
7609	quota_us = tg->cfs_bandwidth.quota;
7610	do_div(quota_us, NSEC_PER_USEC);
7611
7612	return quota_us;
7613}
7614
7615int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7616{
7617	u64 quota, period;
7618
7619	period = (u64)cfs_period_us * NSEC_PER_USEC;
7620	quota = tg->cfs_bandwidth.quota;
7621
7622	if (period <= 0)
7623		return -EINVAL;
7624
7625	return tg_set_cfs_bandwidth(tg, period, quota);
7626}
7627
7628long tg_get_cfs_period(struct task_group *tg)
7629{
7630	u64 cfs_period_us;
7631
7632	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7633	do_div(cfs_period_us, NSEC_PER_USEC);
7634
7635	return cfs_period_us;
7636}
7637
7638static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7639{
7640	return tg_get_cfs_quota(cgroup_tg(cgrp));
7641}
7642
7643static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7644				s64 cfs_quota_us)
7645{
7646	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7647}
7648
7649static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7650{
7651	return tg_get_cfs_period(cgroup_tg(cgrp));
7652}
7653
7654static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7655				u64 cfs_period_us)
7656{
7657	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7658}
7659
7660struct cfs_schedulable_data {
7661	struct task_group *tg;
7662	u64 period, quota;
7663};
7664
7665/*
7666 * normalize group quota/period to be quota/max_period
7667 * note: units are usecs
7668 */
7669static u64 normalize_cfs_quota(struct task_group *tg,
7670			       struct cfs_schedulable_data *d)
7671{
7672	u64 quota, period;
7673
7674	if (tg == d->tg) {
7675		period = d->period;
7676		quota = d->quota;
7677	} else {
7678		period = tg_get_cfs_period(tg);
7679		quota = tg_get_cfs_quota(tg);
7680	}
7681
7682	/* note: these should typically be equivalent */
7683	if (quota == RUNTIME_INF || quota == -1)
7684		return RUNTIME_INF;
7685
7686	return to_ratio(period, quota);
7687}
7688
7689static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7690{
7691	struct cfs_schedulable_data *d = data;
7692	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7693	s64 quota = 0, parent_quota = -1;
7694
7695	if (!tg->parent) {
7696		quota = RUNTIME_INF;
7697	} else {
7698		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7699
7700		quota = normalize_cfs_quota(tg, d);
7701		parent_quota = parent_b->hierarchal_quota;
7702
7703		/*
7704		 * ensure max(child_quota) <= parent_quota, inherit when no
7705		 * limit is set
7706		 */
7707		if (quota == RUNTIME_INF)
7708			quota = parent_quota;
7709		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7710			return -EINVAL;
7711	}
7712	cfs_b->hierarchal_quota = quota;
7713
7714	return 0;
7715}
7716
7717static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7718{
7719	int ret;
7720	struct cfs_schedulable_data data = {
7721		.tg = tg,
7722		.period = period,
7723		.quota = quota,
7724	};
7725
7726	if (quota != RUNTIME_INF) {
7727		do_div(data.period, NSEC_PER_USEC);
7728		do_div(data.quota, NSEC_PER_USEC);
7729	}
7730
7731	rcu_read_lock();
7732	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7733	rcu_read_unlock();
7734
7735	return ret;
7736}
7737
7738static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7739		struct cgroup_map_cb *cb)
7740{
7741	struct task_group *tg = cgroup_tg(cgrp);
7742	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7743
7744	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7745	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7746	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7747
7748	return 0;
7749}
7750#endif /* CONFIG_CFS_BANDWIDTH */
7751#endif /* CONFIG_FAIR_GROUP_SCHED */
7752
7753#ifdef CONFIG_RT_GROUP_SCHED
7754static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7755				s64 val)
7756{
7757	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7758}
7759
7760static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7761{
7762	return sched_group_rt_runtime(cgroup_tg(cgrp));
7763}
7764
7765static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7766		u64 rt_period_us)
7767{
7768	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7769}
7770
7771static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7772{
7773	return sched_group_rt_period(cgroup_tg(cgrp));
7774}
7775#endif /* CONFIG_RT_GROUP_SCHED */
7776
7777static struct cftype cpu_files[] = {
7778#ifdef CONFIG_FAIR_GROUP_SCHED
7779	{
7780		.name = "shares",
7781		.read_u64 = cpu_shares_read_u64,
7782		.write_u64 = cpu_shares_write_u64,
7783	},
7784#endif
7785#ifdef CONFIG_CFS_BANDWIDTH
7786	{
7787		.name = "cfs_quota_us",
7788		.read_s64 = cpu_cfs_quota_read_s64,
7789		.write_s64 = cpu_cfs_quota_write_s64,
7790	},
7791	{
7792		.name = "cfs_period_us",
7793		.read_u64 = cpu_cfs_period_read_u64,
7794		.write_u64 = cpu_cfs_period_write_u64,
7795	},
7796	{
7797		.name = "stat",
7798		.read_map = cpu_stats_show,
7799	},
7800#endif
7801#ifdef CONFIG_RT_GROUP_SCHED
7802	{
7803		.name = "rt_runtime_us",
7804		.read_s64 = cpu_rt_runtime_read,
7805		.write_s64 = cpu_rt_runtime_write,
7806	},
7807	{
7808		.name = "rt_period_us",
7809		.read_u64 = cpu_rt_period_read_uint,
7810		.write_u64 = cpu_rt_period_write_uint,
7811	},
7812#endif
7813};
7814
7815static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7816{
7817	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7818}
7819
7820struct cgroup_subsys cpu_cgroup_subsys = {
7821	.name		= "cpu",
7822	.create		= cpu_cgroup_create,
7823	.destroy	= cpu_cgroup_destroy,
7824	.can_attach_task = cpu_cgroup_can_attach_task,
7825	.attach_task	= cpu_cgroup_attach_task,
7826	.exit		= cpu_cgroup_exit,
7827	.populate	= cpu_cgroup_populate,
7828	.subsys_id	= cpu_cgroup_subsys_id,
7829	.early_init	= 1,
7830};
7831
7832#endif	/* CONFIG_CGROUP_SCHED */
7833
7834#ifdef CONFIG_CGROUP_CPUACCT
7835
7836/*
7837 * CPU accounting code for task groups.
7838 *
7839 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7840 * (balbir@in.ibm.com).
7841 */
7842
7843/* track cpu usage of a group of tasks and its child groups */
7844struct cpuacct {
7845	struct cgroup_subsys_state css;
7846	/* cpuusage holds pointer to a u64-type object on every cpu */
7847	u64 __percpu *cpuusage;
7848	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
7849	struct cpuacct *parent;
7850};
7851
7852struct cgroup_subsys cpuacct_subsys;
7853
7854/* return cpu accounting group corresponding to this container */
7855static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
7856{
7857	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
7858			    struct cpuacct, css);
7859}
7860
7861/* return cpu accounting group to which this task belongs */
7862static inline struct cpuacct *task_ca(struct task_struct *tsk)
7863{
7864	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7865			    struct cpuacct, css);
7866}
7867
7868/* create a new cpu accounting group */
7869static struct cgroup_subsys_state *cpuacct_create(
7870	struct cgroup_subsys *ss, struct cgroup *cgrp)
7871{
7872	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7873	int i;
7874
7875	if (!ca)
7876		goto out;
7877
7878	ca->cpuusage = alloc_percpu(u64);
7879	if (!ca->cpuusage)
7880		goto out_free_ca;
7881
7882	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
7883		if (percpu_counter_init(&ca->cpustat[i], 0))
7884			goto out_free_counters;
7885
7886	if (cgrp->parent)
7887		ca->parent = cgroup_ca(cgrp->parent);
7888
7889	return &ca->css;
7890
7891out_free_counters:
7892	while (--i >= 0)
7893		percpu_counter_destroy(&ca->cpustat[i]);
7894	free_percpu(ca->cpuusage);
7895out_free_ca:
7896	kfree(ca);
7897out:
7898	return ERR_PTR(-ENOMEM);
7899}
7900
7901/* destroy an existing cpu accounting group */
7902static void
7903cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7904{
7905	struct cpuacct *ca = cgroup_ca(cgrp);
7906	int i;
7907
7908	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
7909		percpu_counter_destroy(&ca->cpustat[i]);
7910	free_percpu(ca->cpuusage);
7911	kfree(ca);
7912}
7913
7914static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7915{
7916	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7917	u64 data;
7918
7919#ifndef CONFIG_64BIT
7920	/*
7921	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7922	 */
7923	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7924	data = *cpuusage;
7925	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7926#else
7927	data = *cpuusage;
7928#endif
7929
7930	return data;
7931}
7932
7933static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7934{
7935	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7936
7937#ifndef CONFIG_64BIT
7938	/*
7939	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7940	 */
7941	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7942	*cpuusage = val;
7943	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7944#else
7945	*cpuusage = val;
7946#endif
7947}
7948
7949/* return total cpu usage (in nanoseconds) of a group */
7950static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7951{
7952	struct cpuacct *ca = cgroup_ca(cgrp);
7953	u64 totalcpuusage = 0;
7954	int i;
7955
7956	for_each_present_cpu(i)
7957		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7958
7959	return totalcpuusage;
7960}
7961
7962static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7963								u64 reset)
7964{
7965	struct cpuacct *ca = cgroup_ca(cgrp);
7966	int err = 0;
7967	int i;
7968
7969	if (reset) {
7970		err = -EINVAL;
7971		goto out;
7972	}
7973
7974	for_each_present_cpu(i)
7975		cpuacct_cpuusage_write(ca, i, 0);
7976
7977out:
7978	return err;
7979}
7980
7981static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7982				   struct seq_file *m)
7983{
7984	struct cpuacct *ca = cgroup_ca(cgroup);
7985	u64 percpu;
7986	int i;
7987
7988	for_each_present_cpu(i) {
7989		percpu = cpuacct_cpuusage_read(ca, i);
7990		seq_printf(m, "%llu ", (unsigned long long) percpu);
7991	}
7992	seq_printf(m, "\n");
7993	return 0;
7994}
7995
7996static const char *cpuacct_stat_desc[] = {
7997	[CPUACCT_STAT_USER] = "user",
7998	[CPUACCT_STAT_SYSTEM] = "system",
7999};
8000
8001static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8002		struct cgroup_map_cb *cb)
8003{
8004	struct cpuacct *ca = cgroup_ca(cgrp);
8005	int i;
8006
8007	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8008		s64 val = percpu_counter_read(&ca->cpustat[i]);
8009		val = cputime64_to_clock_t(val);
8010		cb->fill(cb, cpuacct_stat_desc[i], val);
8011	}
8012	return 0;
8013}
8014
8015static struct cftype files[] = {
8016	{
8017		.name = "usage",
8018		.read_u64 = cpuusage_read,
8019		.write_u64 = cpuusage_write,
8020	},
8021	{
8022		.name = "usage_percpu",
8023		.read_seq_string = cpuacct_percpu_seq_read,
8024	},
8025	{
8026		.name = "stat",
8027		.read_map = cpuacct_stats_show,
8028	},
8029};
8030
8031static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8032{
8033	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8034}
8035
8036/*
8037 * charge this task's execution time to its accounting group.
8038 *
8039 * called with rq->lock held.
8040 */
8041void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8042{
8043	struct cpuacct *ca;
8044	int cpu;
8045
8046	if (unlikely(!cpuacct_subsys.active))
8047		return;
8048
8049	cpu = task_cpu(tsk);
8050
8051	rcu_read_lock();
8052
8053	ca = task_ca(tsk);
8054
8055	for (; ca; ca = ca->parent) {
8056		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8057		*cpuusage += cputime;
8058	}
8059
8060	rcu_read_unlock();
8061}
8062
8063/*
8064 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8065 * in cputime_t units. As a result, cpuacct_update_stats calls
8066 * percpu_counter_add with values large enough to always overflow the
8067 * per cpu batch limit causing bad SMP scalability.
8068 *
8069 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8070 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8071 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8072 */
8073#ifdef CONFIG_SMP
8074#define CPUACCT_BATCH	\
8075	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8076#else
8077#define CPUACCT_BATCH	0
8078#endif
8079
8080/*
8081 * Charge the system/user time to the task's accounting group.
8082 */
8083void cpuacct_update_stats(struct task_struct *tsk,
8084		enum cpuacct_stat_index idx, cputime_t val)
8085{
8086	struct cpuacct *ca;
8087	int batch = CPUACCT_BATCH;
8088
8089	if (unlikely(!cpuacct_subsys.active))
8090		return;
8091
8092	rcu_read_lock();
8093	ca = task_ca(tsk);
8094
8095	do {
8096		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8097		ca = ca->parent;
8098	} while (ca);
8099	rcu_read_unlock();
8100}
8101
8102struct cgroup_subsys cpuacct_subsys = {
8103	.name = "cpuacct",
8104	.create = cpuacct_create,
8105	.destroy = cpuacct_destroy,
8106	.populate = cpuacct_populate,
8107	.subsys_id = cpuacct_subsys_id,
8108};
8109#endif	/* CONFIG_CGROUP_CPUACCT */
8110