core.c revision 1e3646ffc64b232cb14a5ef01d7b98997c1b73f9
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_rq_lock(src_rq, dst_rq);
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072
1073	return ret;
1074}
1075
1076/*
1077 * Cross migrate two tasks
1078 */
1079int migrate_swap(struct task_struct *cur, struct task_struct *p)
1080{
1081	struct migration_swap_arg arg;
1082	int ret = -EINVAL;
1083
1084	get_online_cpus();
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1097		goto out;
1098
1099	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1100		goto out;
1101
1102	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1103		goto out;
1104
1105	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1106
1107out:
1108	put_online_cpus();
1109	return ret;
1110}
1111
1112struct migration_arg {
1113	struct task_struct *task;
1114	int dest_cpu;
1115};
1116
1117static int migration_cpu_stop(void *data);
1118
1119/*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
1122 * If @match_state is nonzero, it's the @p->state value just checked and
1123 * not expected to change.  If it changes, i.e. @p might have woken up,
1124 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1125 * we return a positive number (its total switch count).  If a second call
1126 * a short while later returns the same number, the caller can be sure that
1127 * @p has remained unscheduled the whole time.
1128 *
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
1135unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1136{
1137	unsigned long flags;
1138	int running, on_rq;
1139	unsigned long ncsw;
1140	struct rq *rq;
1141
1142	for (;;) {
1143		/*
1144		 * We do the initial early heuristics without holding
1145		 * any task-queue locks at all. We'll only try to get
1146		 * the runqueue lock when things look like they will
1147		 * work out!
1148		 */
1149		rq = task_rq(p);
1150
1151		/*
1152		 * If the task is actively running on another CPU
1153		 * still, just relax and busy-wait without holding
1154		 * any locks.
1155		 *
1156		 * NOTE! Since we don't hold any locks, it's not
1157		 * even sure that "rq" stays as the right runqueue!
1158		 * But we don't care, since "task_running()" will
1159		 * return false if the runqueue has changed and p
1160		 * is actually now running somewhere else!
1161		 */
1162		while (task_running(rq, p)) {
1163			if (match_state && unlikely(p->state != match_state))
1164				return 0;
1165			cpu_relax();
1166		}
1167
1168		/*
1169		 * Ok, time to look more closely! We need the rq
1170		 * lock now, to be *sure*. If we're wrong, we'll
1171		 * just go back and repeat.
1172		 */
1173		rq = task_rq_lock(p, &flags);
1174		trace_sched_wait_task(p);
1175		running = task_running(rq, p);
1176		on_rq = p->on_rq;
1177		ncsw = 0;
1178		if (!match_state || p->state == match_state)
1179			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1180		task_rq_unlock(rq, p, &flags);
1181
1182		/*
1183		 * If it changed from the expected state, bail out now.
1184		 */
1185		if (unlikely(!ncsw))
1186			break;
1187
1188		/*
1189		 * Was it really running after all now that we
1190		 * checked with the proper locks actually held?
1191		 *
1192		 * Oops. Go back and try again..
1193		 */
1194		if (unlikely(running)) {
1195			cpu_relax();
1196			continue;
1197		}
1198
1199		/*
1200		 * It's not enough that it's not actively running,
1201		 * it must be off the runqueue _entirely_, and not
1202		 * preempted!
1203		 *
1204		 * So if it was still runnable (but just not actively
1205		 * running right now), it's preempted, and we should
1206		 * yield - it could be a while.
1207		 */
1208		if (unlikely(on_rq)) {
1209			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1210
1211			set_current_state(TASK_UNINTERRUPTIBLE);
1212			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1213			continue;
1214		}
1215
1216		/*
1217		 * Ahh, all good. It wasn't running, and it wasn't
1218		 * runnable, which means that it will never become
1219		 * running in the future either. We're all done!
1220		 */
1221		break;
1222	}
1223
1224	return ncsw;
1225}
1226
1227/***
1228 * kick_process - kick a running thread to enter/exit the kernel
1229 * @p: the to-be-kicked thread
1230 *
1231 * Cause a process which is running on another CPU to enter
1232 * kernel-mode, without any delay. (to get signals handled.)
1233 *
1234 * NOTE: this function doesn't have to take the runqueue lock,
1235 * because all it wants to ensure is that the remote task enters
1236 * the kernel. If the IPI races and the task has been migrated
1237 * to another CPU then no harm is done and the purpose has been
1238 * achieved as well.
1239 */
1240void kick_process(struct task_struct *p)
1241{
1242	int cpu;
1243
1244	preempt_disable();
1245	cpu = task_cpu(p);
1246	if ((cpu != smp_processor_id()) && task_curr(p))
1247		smp_send_reschedule(cpu);
1248	preempt_enable();
1249}
1250EXPORT_SYMBOL_GPL(kick_process);
1251#endif /* CONFIG_SMP */
1252
1253#ifdef CONFIG_SMP
1254/*
1255 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1256 */
1257static int select_fallback_rq(int cpu, struct task_struct *p)
1258{
1259	int nid = cpu_to_node(cpu);
1260	const struct cpumask *nodemask = NULL;
1261	enum { cpuset, possible, fail } state = cpuset;
1262	int dest_cpu;
1263
1264	/*
1265	 * If the node that the cpu is on has been offlined, cpu_to_node()
1266	 * will return -1. There is no cpu on the node, and we should
1267	 * select the cpu on the other node.
1268	 */
1269	if (nid != -1) {
1270		nodemask = cpumask_of_node(nid);
1271
1272		/* Look for allowed, online CPU in same node. */
1273		for_each_cpu(dest_cpu, nodemask) {
1274			if (!cpu_online(dest_cpu))
1275				continue;
1276			if (!cpu_active(dest_cpu))
1277				continue;
1278			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279				return dest_cpu;
1280		}
1281	}
1282
1283	for (;;) {
1284		/* Any allowed, online CPU? */
1285		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1286			if (!cpu_online(dest_cpu))
1287				continue;
1288			if (!cpu_active(dest_cpu))
1289				continue;
1290			goto out;
1291		}
1292
1293		switch (state) {
1294		case cpuset:
1295			/* No more Mr. Nice Guy. */
1296			cpuset_cpus_allowed_fallback(p);
1297			state = possible;
1298			break;
1299
1300		case possible:
1301			do_set_cpus_allowed(p, cpu_possible_mask);
1302			state = fail;
1303			break;
1304
1305		case fail:
1306			BUG();
1307			break;
1308		}
1309	}
1310
1311out:
1312	if (state != cpuset) {
1313		/*
1314		 * Don't tell them about moving exiting tasks or
1315		 * kernel threads (both mm NULL), since they never
1316		 * leave kernel.
1317		 */
1318		if (p->mm && printk_ratelimit()) {
1319			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1320					task_pid_nr(p), p->comm, cpu);
1321		}
1322	}
1323
1324	return dest_cpu;
1325}
1326
1327/*
1328 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1329 */
1330static inline
1331int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1332{
1333	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1334
1335	/*
1336	 * In order not to call set_task_cpu() on a blocking task we need
1337	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1338	 * cpu.
1339	 *
1340	 * Since this is common to all placement strategies, this lives here.
1341	 *
1342	 * [ this allows ->select_task() to simply return task_cpu(p) and
1343	 *   not worry about this generic constraint ]
1344	 */
1345	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1346		     !cpu_online(cpu)))
1347		cpu = select_fallback_rq(task_cpu(p), p);
1348
1349	return cpu;
1350}
1351
1352static void update_avg(u64 *avg, u64 sample)
1353{
1354	s64 diff = sample - *avg;
1355	*avg += diff >> 3;
1356}
1357#endif
1358
1359static void
1360ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1361{
1362#ifdef CONFIG_SCHEDSTATS
1363	struct rq *rq = this_rq();
1364
1365#ifdef CONFIG_SMP
1366	int this_cpu = smp_processor_id();
1367
1368	if (cpu == this_cpu) {
1369		schedstat_inc(rq, ttwu_local);
1370		schedstat_inc(p, se.statistics.nr_wakeups_local);
1371	} else {
1372		struct sched_domain *sd;
1373
1374		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1375		rcu_read_lock();
1376		for_each_domain(this_cpu, sd) {
1377			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1378				schedstat_inc(sd, ttwu_wake_remote);
1379				break;
1380			}
1381		}
1382		rcu_read_unlock();
1383	}
1384
1385	if (wake_flags & WF_MIGRATED)
1386		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1387
1388#endif /* CONFIG_SMP */
1389
1390	schedstat_inc(rq, ttwu_count);
1391	schedstat_inc(p, se.statistics.nr_wakeups);
1392
1393	if (wake_flags & WF_SYNC)
1394		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1395
1396#endif /* CONFIG_SCHEDSTATS */
1397}
1398
1399static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1400{
1401	activate_task(rq, p, en_flags);
1402	p->on_rq = 1;
1403
1404	/* if a worker is waking up, notify workqueue */
1405	if (p->flags & PF_WQ_WORKER)
1406		wq_worker_waking_up(p, cpu_of(rq));
1407}
1408
1409/*
1410 * Mark the task runnable and perform wakeup-preemption.
1411 */
1412static void
1413ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1414{
1415	check_preempt_curr(rq, p, wake_flags);
1416	trace_sched_wakeup(p, true);
1417
1418	p->state = TASK_RUNNING;
1419#ifdef CONFIG_SMP
1420	if (p->sched_class->task_woken)
1421		p->sched_class->task_woken(rq, p);
1422
1423	if (rq->idle_stamp) {
1424		u64 delta = rq_clock(rq) - rq->idle_stamp;
1425		u64 max = 2*rq->max_idle_balance_cost;
1426
1427		update_avg(&rq->avg_idle, delta);
1428
1429		if (rq->avg_idle > max)
1430			rq->avg_idle = max;
1431
1432		rq->idle_stamp = 0;
1433	}
1434#endif
1435}
1436
1437static void
1438ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1439{
1440#ifdef CONFIG_SMP
1441	if (p->sched_contributes_to_load)
1442		rq->nr_uninterruptible--;
1443#endif
1444
1445	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1446	ttwu_do_wakeup(rq, p, wake_flags);
1447}
1448
1449/*
1450 * Called in case the task @p isn't fully descheduled from its runqueue,
1451 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1452 * since all we need to do is flip p->state to TASK_RUNNING, since
1453 * the task is still ->on_rq.
1454 */
1455static int ttwu_remote(struct task_struct *p, int wake_flags)
1456{
1457	struct rq *rq;
1458	int ret = 0;
1459
1460	rq = __task_rq_lock(p);
1461	if (p->on_rq) {
1462		/* check_preempt_curr() may use rq clock */
1463		update_rq_clock(rq);
1464		ttwu_do_wakeup(rq, p, wake_flags);
1465		ret = 1;
1466	}
1467	__task_rq_unlock(rq);
1468
1469	return ret;
1470}
1471
1472#ifdef CONFIG_SMP
1473static void sched_ttwu_pending(void)
1474{
1475	struct rq *rq = this_rq();
1476	struct llist_node *llist = llist_del_all(&rq->wake_list);
1477	struct task_struct *p;
1478
1479	raw_spin_lock(&rq->lock);
1480
1481	while (llist) {
1482		p = llist_entry(llist, struct task_struct, wake_entry);
1483		llist = llist_next(llist);
1484		ttwu_do_activate(rq, p, 0);
1485	}
1486
1487	raw_spin_unlock(&rq->lock);
1488}
1489
1490void scheduler_ipi(void)
1491{
1492	/*
1493	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1494	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1495	 * this IPI.
1496	 */
1497	if (tif_need_resched())
1498		set_preempt_need_resched();
1499
1500	if (llist_empty(&this_rq()->wake_list)
1501			&& !tick_nohz_full_cpu(smp_processor_id())
1502			&& !got_nohz_idle_kick())
1503		return;
1504
1505	/*
1506	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1507	 * traditionally all their work was done from the interrupt return
1508	 * path. Now that we actually do some work, we need to make sure
1509	 * we do call them.
1510	 *
1511	 * Some archs already do call them, luckily irq_enter/exit nest
1512	 * properly.
1513	 *
1514	 * Arguably we should visit all archs and update all handlers,
1515	 * however a fair share of IPIs are still resched only so this would
1516	 * somewhat pessimize the simple resched case.
1517	 */
1518	irq_enter();
1519	tick_nohz_full_check();
1520	sched_ttwu_pending();
1521
1522	/*
1523	 * Check if someone kicked us for doing the nohz idle load balance.
1524	 */
1525	if (unlikely(got_nohz_idle_kick())) {
1526		this_rq()->idle_balance = 1;
1527		raise_softirq_irqoff(SCHED_SOFTIRQ);
1528	}
1529	irq_exit();
1530}
1531
1532static void ttwu_queue_remote(struct task_struct *p, int cpu)
1533{
1534	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1535		smp_send_reschedule(cpu);
1536}
1537
1538bool cpus_share_cache(int this_cpu, int that_cpu)
1539{
1540	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1541}
1542#endif /* CONFIG_SMP */
1543
1544static void ttwu_queue(struct task_struct *p, int cpu)
1545{
1546	struct rq *rq = cpu_rq(cpu);
1547
1548#if defined(CONFIG_SMP)
1549	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1550		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1551		ttwu_queue_remote(p, cpu);
1552		return;
1553	}
1554#endif
1555
1556	raw_spin_lock(&rq->lock);
1557	ttwu_do_activate(rq, p, 0);
1558	raw_spin_unlock(&rq->lock);
1559}
1560
1561/**
1562 * try_to_wake_up - wake up a thread
1563 * @p: the thread to be awakened
1564 * @state: the mask of task states that can be woken
1565 * @wake_flags: wake modifier flags (WF_*)
1566 *
1567 * Put it on the run-queue if it's not already there. The "current"
1568 * thread is always on the run-queue (except when the actual
1569 * re-schedule is in progress), and as such you're allowed to do
1570 * the simpler "current->state = TASK_RUNNING" to mark yourself
1571 * runnable without the overhead of this.
1572 *
1573 * Return: %true if @p was woken up, %false if it was already running.
1574 * or @state didn't match @p's state.
1575 */
1576static int
1577try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1578{
1579	unsigned long flags;
1580	int cpu, success = 0;
1581
1582	/*
1583	 * If we are going to wake up a thread waiting for CONDITION we
1584	 * need to ensure that CONDITION=1 done by the caller can not be
1585	 * reordered with p->state check below. This pairs with mb() in
1586	 * set_current_state() the waiting thread does.
1587	 */
1588	smp_mb__before_spinlock();
1589	raw_spin_lock_irqsave(&p->pi_lock, flags);
1590	if (!(p->state & state))
1591		goto out;
1592
1593	success = 1; /* we're going to change ->state */
1594	cpu = task_cpu(p);
1595
1596	if (p->on_rq && ttwu_remote(p, wake_flags))
1597		goto stat;
1598
1599#ifdef CONFIG_SMP
1600	/*
1601	 * If the owning (remote) cpu is still in the middle of schedule() with
1602	 * this task as prev, wait until its done referencing the task.
1603	 */
1604	while (p->on_cpu)
1605		cpu_relax();
1606	/*
1607	 * Pairs with the smp_wmb() in finish_lock_switch().
1608	 */
1609	smp_rmb();
1610
1611	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1612	p->state = TASK_WAKING;
1613
1614	if (p->sched_class->task_waking)
1615		p->sched_class->task_waking(p);
1616
1617	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1618	if (task_cpu(p) != cpu) {
1619		wake_flags |= WF_MIGRATED;
1620		set_task_cpu(p, cpu);
1621	}
1622#endif /* CONFIG_SMP */
1623
1624	ttwu_queue(p, cpu);
1625stat:
1626	ttwu_stat(p, cpu, wake_flags);
1627out:
1628	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1629
1630	return success;
1631}
1632
1633/**
1634 * try_to_wake_up_local - try to wake up a local task with rq lock held
1635 * @p: the thread to be awakened
1636 *
1637 * Put @p on the run-queue if it's not already there. The caller must
1638 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1639 * the current task.
1640 */
1641static void try_to_wake_up_local(struct task_struct *p)
1642{
1643	struct rq *rq = task_rq(p);
1644
1645	if (WARN_ON_ONCE(rq != this_rq()) ||
1646	    WARN_ON_ONCE(p == current))
1647		return;
1648
1649	lockdep_assert_held(&rq->lock);
1650
1651	if (!raw_spin_trylock(&p->pi_lock)) {
1652		raw_spin_unlock(&rq->lock);
1653		raw_spin_lock(&p->pi_lock);
1654		raw_spin_lock(&rq->lock);
1655	}
1656
1657	if (!(p->state & TASK_NORMAL))
1658		goto out;
1659
1660	if (!p->on_rq)
1661		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1662
1663	ttwu_do_wakeup(rq, p, 0);
1664	ttwu_stat(p, smp_processor_id(), 0);
1665out:
1666	raw_spin_unlock(&p->pi_lock);
1667}
1668
1669/**
1670 * wake_up_process - Wake up a specific process
1671 * @p: The process to be woken up.
1672 *
1673 * Attempt to wake up the nominated process and move it to the set of runnable
1674 * processes.
1675 *
1676 * Return: 1 if the process was woken up, 0 if it was already running.
1677 *
1678 * It may be assumed that this function implies a write memory barrier before
1679 * changing the task state if and only if any tasks are woken up.
1680 */
1681int wake_up_process(struct task_struct *p)
1682{
1683	WARN_ON(task_is_stopped_or_traced(p));
1684	return try_to_wake_up(p, TASK_NORMAL, 0);
1685}
1686EXPORT_SYMBOL(wake_up_process);
1687
1688int wake_up_state(struct task_struct *p, unsigned int state)
1689{
1690	return try_to_wake_up(p, state, 0);
1691}
1692
1693/*
1694 * Perform scheduler related setup for a newly forked process p.
1695 * p is forked by current.
1696 *
1697 * __sched_fork() is basic setup used by init_idle() too:
1698 */
1699static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1700{
1701	p->on_rq			= 0;
1702
1703	p->se.on_rq			= 0;
1704	p->se.exec_start		= 0;
1705	p->se.sum_exec_runtime		= 0;
1706	p->se.prev_sum_exec_runtime	= 0;
1707	p->se.nr_migrations		= 0;
1708	p->se.vruntime			= 0;
1709	INIT_LIST_HEAD(&p->se.group_node);
1710
1711#ifdef CONFIG_SCHEDSTATS
1712	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1713#endif
1714
1715	INIT_LIST_HEAD(&p->rt.run_list);
1716
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718	INIT_HLIST_HEAD(&p->preempt_notifiers);
1719#endif
1720
1721#ifdef CONFIG_NUMA_BALANCING
1722	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1723		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1724		p->mm->numa_scan_seq = 0;
1725	}
1726
1727	if (clone_flags & CLONE_VM)
1728		p->numa_preferred_nid = current->numa_preferred_nid;
1729	else
1730		p->numa_preferred_nid = -1;
1731
1732	p->node_stamp = 0ULL;
1733	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1734	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1735	p->numa_work.next = &p->numa_work;
1736	p->numa_faults = NULL;
1737	p->numa_faults_buffer = NULL;
1738
1739	INIT_LIST_HEAD(&p->numa_entry);
1740	p->numa_group = NULL;
1741#endif /* CONFIG_NUMA_BALANCING */
1742}
1743
1744#ifdef CONFIG_NUMA_BALANCING
1745#ifdef CONFIG_SCHED_DEBUG
1746void set_numabalancing_state(bool enabled)
1747{
1748	if (enabled)
1749		sched_feat_set("NUMA");
1750	else
1751		sched_feat_set("NO_NUMA");
1752}
1753#else
1754__read_mostly bool numabalancing_enabled;
1755
1756void set_numabalancing_state(bool enabled)
1757{
1758	numabalancing_enabled = enabled;
1759}
1760#endif /* CONFIG_SCHED_DEBUG */
1761#endif /* CONFIG_NUMA_BALANCING */
1762
1763/*
1764 * fork()/clone()-time setup:
1765 */
1766void sched_fork(unsigned long clone_flags, struct task_struct *p)
1767{
1768	unsigned long flags;
1769	int cpu = get_cpu();
1770
1771	__sched_fork(clone_flags, p);
1772	/*
1773	 * We mark the process as running here. This guarantees that
1774	 * nobody will actually run it, and a signal or other external
1775	 * event cannot wake it up and insert it on the runqueue either.
1776	 */
1777	p->state = TASK_RUNNING;
1778
1779	/*
1780	 * Make sure we do not leak PI boosting priority to the child.
1781	 */
1782	p->prio = current->normal_prio;
1783
1784	/*
1785	 * Revert to default priority/policy on fork if requested.
1786	 */
1787	if (unlikely(p->sched_reset_on_fork)) {
1788		if (task_has_rt_policy(p)) {
1789			p->policy = SCHED_NORMAL;
1790			p->static_prio = NICE_TO_PRIO(0);
1791			p->rt_priority = 0;
1792		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1793			p->static_prio = NICE_TO_PRIO(0);
1794
1795		p->prio = p->normal_prio = __normal_prio(p);
1796		set_load_weight(p);
1797
1798		/*
1799		 * We don't need the reset flag anymore after the fork. It has
1800		 * fulfilled its duty:
1801		 */
1802		p->sched_reset_on_fork = 0;
1803	}
1804
1805	if (!rt_prio(p->prio))
1806		p->sched_class = &fair_sched_class;
1807
1808	if (p->sched_class->task_fork)
1809		p->sched_class->task_fork(p);
1810
1811	/*
1812	 * The child is not yet in the pid-hash so no cgroup attach races,
1813	 * and the cgroup is pinned to this child due to cgroup_fork()
1814	 * is ran before sched_fork().
1815	 *
1816	 * Silence PROVE_RCU.
1817	 */
1818	raw_spin_lock_irqsave(&p->pi_lock, flags);
1819	set_task_cpu(p, cpu);
1820	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1821
1822#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1823	if (likely(sched_info_on()))
1824		memset(&p->sched_info, 0, sizeof(p->sched_info));
1825#endif
1826#if defined(CONFIG_SMP)
1827	p->on_cpu = 0;
1828#endif
1829	init_task_preempt_count(p);
1830#ifdef CONFIG_SMP
1831	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1832#endif
1833
1834	put_cpu();
1835}
1836
1837/*
1838 * wake_up_new_task - wake up a newly created task for the first time.
1839 *
1840 * This function will do some initial scheduler statistics housekeeping
1841 * that must be done for every newly created context, then puts the task
1842 * on the runqueue and wakes it.
1843 */
1844void wake_up_new_task(struct task_struct *p)
1845{
1846	unsigned long flags;
1847	struct rq *rq;
1848
1849	raw_spin_lock_irqsave(&p->pi_lock, flags);
1850#ifdef CONFIG_SMP
1851	/*
1852	 * Fork balancing, do it here and not earlier because:
1853	 *  - cpus_allowed can change in the fork path
1854	 *  - any previously selected cpu might disappear through hotplug
1855	 */
1856	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1857#endif
1858
1859	/* Initialize new task's runnable average */
1860	init_task_runnable_average(p);
1861	rq = __task_rq_lock(p);
1862	activate_task(rq, p, 0);
1863	p->on_rq = 1;
1864	trace_sched_wakeup_new(p, true);
1865	check_preempt_curr(rq, p, WF_FORK);
1866#ifdef CONFIG_SMP
1867	if (p->sched_class->task_woken)
1868		p->sched_class->task_woken(rq, p);
1869#endif
1870	task_rq_unlock(rq, p, &flags);
1871}
1872
1873#ifdef CONFIG_PREEMPT_NOTIFIERS
1874
1875/**
1876 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1877 * @notifier: notifier struct to register
1878 */
1879void preempt_notifier_register(struct preempt_notifier *notifier)
1880{
1881	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1882}
1883EXPORT_SYMBOL_GPL(preempt_notifier_register);
1884
1885/**
1886 * preempt_notifier_unregister - no longer interested in preemption notifications
1887 * @notifier: notifier struct to unregister
1888 *
1889 * This is safe to call from within a preemption notifier.
1890 */
1891void preempt_notifier_unregister(struct preempt_notifier *notifier)
1892{
1893	hlist_del(&notifier->link);
1894}
1895EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1896
1897static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1898{
1899	struct preempt_notifier *notifier;
1900
1901	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1902		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1903}
1904
1905static void
1906fire_sched_out_preempt_notifiers(struct task_struct *curr,
1907				 struct task_struct *next)
1908{
1909	struct preempt_notifier *notifier;
1910
1911	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1912		notifier->ops->sched_out(notifier, next);
1913}
1914
1915#else /* !CONFIG_PREEMPT_NOTIFIERS */
1916
1917static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1918{
1919}
1920
1921static void
1922fire_sched_out_preempt_notifiers(struct task_struct *curr,
1923				 struct task_struct *next)
1924{
1925}
1926
1927#endif /* CONFIG_PREEMPT_NOTIFIERS */
1928
1929/**
1930 * prepare_task_switch - prepare to switch tasks
1931 * @rq: the runqueue preparing to switch
1932 * @prev: the current task that is being switched out
1933 * @next: the task we are going to switch to.
1934 *
1935 * This is called with the rq lock held and interrupts off. It must
1936 * be paired with a subsequent finish_task_switch after the context
1937 * switch.
1938 *
1939 * prepare_task_switch sets up locking and calls architecture specific
1940 * hooks.
1941 */
1942static inline void
1943prepare_task_switch(struct rq *rq, struct task_struct *prev,
1944		    struct task_struct *next)
1945{
1946	trace_sched_switch(prev, next);
1947	sched_info_switch(rq, prev, next);
1948	perf_event_task_sched_out(prev, next);
1949	fire_sched_out_preempt_notifiers(prev, next);
1950	prepare_lock_switch(rq, next);
1951	prepare_arch_switch(next);
1952}
1953
1954/**
1955 * finish_task_switch - clean up after a task-switch
1956 * @rq: runqueue associated with task-switch
1957 * @prev: the thread we just switched away from.
1958 *
1959 * finish_task_switch must be called after the context switch, paired
1960 * with a prepare_task_switch call before the context switch.
1961 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1962 * and do any other architecture-specific cleanup actions.
1963 *
1964 * Note that we may have delayed dropping an mm in context_switch(). If
1965 * so, we finish that here outside of the runqueue lock. (Doing it
1966 * with the lock held can cause deadlocks; see schedule() for
1967 * details.)
1968 */
1969static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1970	__releases(rq->lock)
1971{
1972	struct mm_struct *mm = rq->prev_mm;
1973	long prev_state;
1974
1975	rq->prev_mm = NULL;
1976
1977	/*
1978	 * A task struct has one reference for the use as "current".
1979	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1980	 * schedule one last time. The schedule call will never return, and
1981	 * the scheduled task must drop that reference.
1982	 * The test for TASK_DEAD must occur while the runqueue locks are
1983	 * still held, otherwise prev could be scheduled on another cpu, die
1984	 * there before we look at prev->state, and then the reference would
1985	 * be dropped twice.
1986	 *		Manfred Spraul <manfred@colorfullife.com>
1987	 */
1988	prev_state = prev->state;
1989	vtime_task_switch(prev);
1990	finish_arch_switch(prev);
1991	perf_event_task_sched_in(prev, current);
1992	finish_lock_switch(rq, prev);
1993	finish_arch_post_lock_switch();
1994
1995	fire_sched_in_preempt_notifiers(current);
1996	if (mm)
1997		mmdrop(mm);
1998	if (unlikely(prev_state == TASK_DEAD)) {
1999		task_numa_free(prev);
2000
2001		/*
2002		 * Remove function-return probe instances associated with this
2003		 * task and put them back on the free list.
2004		 */
2005		kprobe_flush_task(prev);
2006		put_task_struct(prev);
2007	}
2008
2009	tick_nohz_task_switch(current);
2010}
2011
2012#ifdef CONFIG_SMP
2013
2014/* assumes rq->lock is held */
2015static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2016{
2017	if (prev->sched_class->pre_schedule)
2018		prev->sched_class->pre_schedule(rq, prev);
2019}
2020
2021/* rq->lock is NOT held, but preemption is disabled */
2022static inline void post_schedule(struct rq *rq)
2023{
2024	if (rq->post_schedule) {
2025		unsigned long flags;
2026
2027		raw_spin_lock_irqsave(&rq->lock, flags);
2028		if (rq->curr->sched_class->post_schedule)
2029			rq->curr->sched_class->post_schedule(rq);
2030		raw_spin_unlock_irqrestore(&rq->lock, flags);
2031
2032		rq->post_schedule = 0;
2033	}
2034}
2035
2036#else
2037
2038static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2039{
2040}
2041
2042static inline void post_schedule(struct rq *rq)
2043{
2044}
2045
2046#endif
2047
2048/**
2049 * schedule_tail - first thing a freshly forked thread must call.
2050 * @prev: the thread we just switched away from.
2051 */
2052asmlinkage void schedule_tail(struct task_struct *prev)
2053	__releases(rq->lock)
2054{
2055	struct rq *rq = this_rq();
2056
2057	finish_task_switch(rq, prev);
2058
2059	/*
2060	 * FIXME: do we need to worry about rq being invalidated by the
2061	 * task_switch?
2062	 */
2063	post_schedule(rq);
2064
2065#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2066	/* In this case, finish_task_switch does not reenable preemption */
2067	preempt_enable();
2068#endif
2069	if (current->set_child_tid)
2070		put_user(task_pid_vnr(current), current->set_child_tid);
2071}
2072
2073/*
2074 * context_switch - switch to the new MM and the new
2075 * thread's register state.
2076 */
2077static inline void
2078context_switch(struct rq *rq, struct task_struct *prev,
2079	       struct task_struct *next)
2080{
2081	struct mm_struct *mm, *oldmm;
2082
2083	prepare_task_switch(rq, prev, next);
2084
2085	mm = next->mm;
2086	oldmm = prev->active_mm;
2087	/*
2088	 * For paravirt, this is coupled with an exit in switch_to to
2089	 * combine the page table reload and the switch backend into
2090	 * one hypercall.
2091	 */
2092	arch_start_context_switch(prev);
2093
2094	if (!mm) {
2095		next->active_mm = oldmm;
2096		atomic_inc(&oldmm->mm_count);
2097		enter_lazy_tlb(oldmm, next);
2098	} else
2099		switch_mm(oldmm, mm, next);
2100
2101	if (!prev->mm) {
2102		prev->active_mm = NULL;
2103		rq->prev_mm = oldmm;
2104	}
2105	/*
2106	 * Since the runqueue lock will be released by the next
2107	 * task (which is an invalid locking op but in the case
2108	 * of the scheduler it's an obvious special-case), so we
2109	 * do an early lockdep release here:
2110	 */
2111#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2112	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2113#endif
2114
2115	context_tracking_task_switch(prev, next);
2116	/* Here we just switch the register state and the stack. */
2117	switch_to(prev, next, prev);
2118
2119	barrier();
2120	/*
2121	 * this_rq must be evaluated again because prev may have moved
2122	 * CPUs since it called schedule(), thus the 'rq' on its stack
2123	 * frame will be invalid.
2124	 */
2125	finish_task_switch(this_rq(), prev);
2126}
2127
2128/*
2129 * nr_running and nr_context_switches:
2130 *
2131 * externally visible scheduler statistics: current number of runnable
2132 * threads, total number of context switches performed since bootup.
2133 */
2134unsigned long nr_running(void)
2135{
2136	unsigned long i, sum = 0;
2137
2138	for_each_online_cpu(i)
2139		sum += cpu_rq(i)->nr_running;
2140
2141	return sum;
2142}
2143
2144unsigned long long nr_context_switches(void)
2145{
2146	int i;
2147	unsigned long long sum = 0;
2148
2149	for_each_possible_cpu(i)
2150		sum += cpu_rq(i)->nr_switches;
2151
2152	return sum;
2153}
2154
2155unsigned long nr_iowait(void)
2156{
2157	unsigned long i, sum = 0;
2158
2159	for_each_possible_cpu(i)
2160		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2161
2162	return sum;
2163}
2164
2165unsigned long nr_iowait_cpu(int cpu)
2166{
2167	struct rq *this = cpu_rq(cpu);
2168	return atomic_read(&this->nr_iowait);
2169}
2170
2171#ifdef CONFIG_SMP
2172
2173/*
2174 * sched_exec - execve() is a valuable balancing opportunity, because at
2175 * this point the task has the smallest effective memory and cache footprint.
2176 */
2177void sched_exec(void)
2178{
2179	struct task_struct *p = current;
2180	unsigned long flags;
2181	int dest_cpu;
2182
2183	raw_spin_lock_irqsave(&p->pi_lock, flags);
2184	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2185	if (dest_cpu == smp_processor_id())
2186		goto unlock;
2187
2188	if (likely(cpu_active(dest_cpu))) {
2189		struct migration_arg arg = { p, dest_cpu };
2190
2191		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2192		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2193		return;
2194	}
2195unlock:
2196	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197}
2198
2199#endif
2200
2201DEFINE_PER_CPU(struct kernel_stat, kstat);
2202DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2203
2204EXPORT_PER_CPU_SYMBOL(kstat);
2205EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2206
2207/*
2208 * Return any ns on the sched_clock that have not yet been accounted in
2209 * @p in case that task is currently running.
2210 *
2211 * Called with task_rq_lock() held on @rq.
2212 */
2213static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2214{
2215	u64 ns = 0;
2216
2217	if (task_current(rq, p)) {
2218		update_rq_clock(rq);
2219		ns = rq_clock_task(rq) - p->se.exec_start;
2220		if ((s64)ns < 0)
2221			ns = 0;
2222	}
2223
2224	return ns;
2225}
2226
2227unsigned long long task_delta_exec(struct task_struct *p)
2228{
2229	unsigned long flags;
2230	struct rq *rq;
2231	u64 ns = 0;
2232
2233	rq = task_rq_lock(p, &flags);
2234	ns = do_task_delta_exec(p, rq);
2235	task_rq_unlock(rq, p, &flags);
2236
2237	return ns;
2238}
2239
2240/*
2241 * Return accounted runtime for the task.
2242 * In case the task is currently running, return the runtime plus current's
2243 * pending runtime that have not been accounted yet.
2244 */
2245unsigned long long task_sched_runtime(struct task_struct *p)
2246{
2247	unsigned long flags;
2248	struct rq *rq;
2249	u64 ns = 0;
2250
2251	rq = task_rq_lock(p, &flags);
2252	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2253	task_rq_unlock(rq, p, &flags);
2254
2255	return ns;
2256}
2257
2258/*
2259 * This function gets called by the timer code, with HZ frequency.
2260 * We call it with interrupts disabled.
2261 */
2262void scheduler_tick(void)
2263{
2264	int cpu = smp_processor_id();
2265	struct rq *rq = cpu_rq(cpu);
2266	struct task_struct *curr = rq->curr;
2267
2268	sched_clock_tick();
2269
2270	raw_spin_lock(&rq->lock);
2271	update_rq_clock(rq);
2272	curr->sched_class->task_tick(rq, curr, 0);
2273	update_cpu_load_active(rq);
2274	raw_spin_unlock(&rq->lock);
2275
2276	perf_event_task_tick();
2277
2278#ifdef CONFIG_SMP
2279	rq->idle_balance = idle_cpu(cpu);
2280	trigger_load_balance(rq, cpu);
2281#endif
2282	rq_last_tick_reset(rq);
2283}
2284
2285#ifdef CONFIG_NO_HZ_FULL
2286/**
2287 * scheduler_tick_max_deferment
2288 *
2289 * Keep at least one tick per second when a single
2290 * active task is running because the scheduler doesn't
2291 * yet completely support full dynticks environment.
2292 *
2293 * This makes sure that uptime, CFS vruntime, load
2294 * balancing, etc... continue to move forward, even
2295 * with a very low granularity.
2296 *
2297 * Return: Maximum deferment in nanoseconds.
2298 */
2299u64 scheduler_tick_max_deferment(void)
2300{
2301	struct rq *rq = this_rq();
2302	unsigned long next, now = ACCESS_ONCE(jiffies);
2303
2304	next = rq->last_sched_tick + HZ;
2305
2306	if (time_before_eq(next, now))
2307		return 0;
2308
2309	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2310}
2311#endif
2312
2313notrace unsigned long get_parent_ip(unsigned long addr)
2314{
2315	if (in_lock_functions(addr)) {
2316		addr = CALLER_ADDR2;
2317		if (in_lock_functions(addr))
2318			addr = CALLER_ADDR3;
2319	}
2320	return addr;
2321}
2322
2323#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2324				defined(CONFIG_PREEMPT_TRACER))
2325
2326void __kprobes preempt_count_add(int val)
2327{
2328#ifdef CONFIG_DEBUG_PREEMPT
2329	/*
2330	 * Underflow?
2331	 */
2332	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2333		return;
2334#endif
2335	__preempt_count_add(val);
2336#ifdef CONFIG_DEBUG_PREEMPT
2337	/*
2338	 * Spinlock count overflowing soon?
2339	 */
2340	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2341				PREEMPT_MASK - 10);
2342#endif
2343	if (preempt_count() == val)
2344		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2345}
2346EXPORT_SYMBOL(preempt_count_add);
2347
2348void __kprobes preempt_count_sub(int val)
2349{
2350#ifdef CONFIG_DEBUG_PREEMPT
2351	/*
2352	 * Underflow?
2353	 */
2354	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2355		return;
2356	/*
2357	 * Is the spinlock portion underflowing?
2358	 */
2359	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2360			!(preempt_count() & PREEMPT_MASK)))
2361		return;
2362#endif
2363
2364	if (preempt_count() == val)
2365		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2366	__preempt_count_sub(val);
2367}
2368EXPORT_SYMBOL(preempt_count_sub);
2369
2370#endif
2371
2372/*
2373 * Print scheduling while atomic bug:
2374 */
2375static noinline void __schedule_bug(struct task_struct *prev)
2376{
2377	if (oops_in_progress)
2378		return;
2379
2380	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2381		prev->comm, prev->pid, preempt_count());
2382
2383	debug_show_held_locks(prev);
2384	print_modules();
2385	if (irqs_disabled())
2386		print_irqtrace_events(prev);
2387	dump_stack();
2388	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2389}
2390
2391/*
2392 * Various schedule()-time debugging checks and statistics:
2393 */
2394static inline void schedule_debug(struct task_struct *prev)
2395{
2396	/*
2397	 * Test if we are atomic. Since do_exit() needs to call into
2398	 * schedule() atomically, we ignore that path for now.
2399	 * Otherwise, whine if we are scheduling when we should not be.
2400	 */
2401	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2402		__schedule_bug(prev);
2403	rcu_sleep_check();
2404
2405	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2406
2407	schedstat_inc(this_rq(), sched_count);
2408}
2409
2410static void put_prev_task(struct rq *rq, struct task_struct *prev)
2411{
2412	if (prev->on_rq || rq->skip_clock_update < 0)
2413		update_rq_clock(rq);
2414	prev->sched_class->put_prev_task(rq, prev);
2415}
2416
2417/*
2418 * Pick up the highest-prio task:
2419 */
2420static inline struct task_struct *
2421pick_next_task(struct rq *rq)
2422{
2423	const struct sched_class *class;
2424	struct task_struct *p;
2425
2426	/*
2427	 * Optimization: we know that if all tasks are in
2428	 * the fair class we can call that function directly:
2429	 */
2430	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2431		p = fair_sched_class.pick_next_task(rq);
2432		if (likely(p))
2433			return p;
2434	}
2435
2436	for_each_class(class) {
2437		p = class->pick_next_task(rq);
2438		if (p)
2439			return p;
2440	}
2441
2442	BUG(); /* the idle class will always have a runnable task */
2443}
2444
2445/*
2446 * __schedule() is the main scheduler function.
2447 *
2448 * The main means of driving the scheduler and thus entering this function are:
2449 *
2450 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2451 *
2452 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2453 *      paths. For example, see arch/x86/entry_64.S.
2454 *
2455 *      To drive preemption between tasks, the scheduler sets the flag in timer
2456 *      interrupt handler scheduler_tick().
2457 *
2458 *   3. Wakeups don't really cause entry into schedule(). They add a
2459 *      task to the run-queue and that's it.
2460 *
2461 *      Now, if the new task added to the run-queue preempts the current
2462 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2463 *      called on the nearest possible occasion:
2464 *
2465 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2466 *
2467 *         - in syscall or exception context, at the next outmost
2468 *           preempt_enable(). (this might be as soon as the wake_up()'s
2469 *           spin_unlock()!)
2470 *
2471 *         - in IRQ context, return from interrupt-handler to
2472 *           preemptible context
2473 *
2474 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2475 *         then at the next:
2476 *
2477 *          - cond_resched() call
2478 *          - explicit schedule() call
2479 *          - return from syscall or exception to user-space
2480 *          - return from interrupt-handler to user-space
2481 */
2482static void __sched __schedule(void)
2483{
2484	struct task_struct *prev, *next;
2485	unsigned long *switch_count;
2486	struct rq *rq;
2487	int cpu;
2488
2489need_resched:
2490	preempt_disable();
2491	cpu = smp_processor_id();
2492	rq = cpu_rq(cpu);
2493	rcu_note_context_switch(cpu);
2494	prev = rq->curr;
2495
2496	schedule_debug(prev);
2497
2498	if (sched_feat(HRTICK))
2499		hrtick_clear(rq);
2500
2501	/*
2502	 * Make sure that signal_pending_state()->signal_pending() below
2503	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2504	 * done by the caller to avoid the race with signal_wake_up().
2505	 */
2506	smp_mb__before_spinlock();
2507	raw_spin_lock_irq(&rq->lock);
2508
2509	switch_count = &prev->nivcsw;
2510	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2511		if (unlikely(signal_pending_state(prev->state, prev))) {
2512			prev->state = TASK_RUNNING;
2513		} else {
2514			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2515			prev->on_rq = 0;
2516
2517			/*
2518			 * If a worker went to sleep, notify and ask workqueue
2519			 * whether it wants to wake up a task to maintain
2520			 * concurrency.
2521			 */
2522			if (prev->flags & PF_WQ_WORKER) {
2523				struct task_struct *to_wakeup;
2524
2525				to_wakeup = wq_worker_sleeping(prev, cpu);
2526				if (to_wakeup)
2527					try_to_wake_up_local(to_wakeup);
2528			}
2529		}
2530		switch_count = &prev->nvcsw;
2531	}
2532
2533	pre_schedule(rq, prev);
2534
2535	if (unlikely(!rq->nr_running))
2536		idle_balance(cpu, rq);
2537
2538	put_prev_task(rq, prev);
2539	next = pick_next_task(rq);
2540	clear_tsk_need_resched(prev);
2541	clear_preempt_need_resched();
2542	rq->skip_clock_update = 0;
2543
2544	if (likely(prev != next)) {
2545		rq->nr_switches++;
2546		rq->curr = next;
2547		++*switch_count;
2548
2549		context_switch(rq, prev, next); /* unlocks the rq */
2550		/*
2551		 * The context switch have flipped the stack from under us
2552		 * and restored the local variables which were saved when
2553		 * this task called schedule() in the past. prev == current
2554		 * is still correct, but it can be moved to another cpu/rq.
2555		 */
2556		cpu = smp_processor_id();
2557		rq = cpu_rq(cpu);
2558	} else
2559		raw_spin_unlock_irq(&rq->lock);
2560
2561	post_schedule(rq);
2562
2563	sched_preempt_enable_no_resched();
2564	if (need_resched())
2565		goto need_resched;
2566}
2567
2568static inline void sched_submit_work(struct task_struct *tsk)
2569{
2570	if (!tsk->state || tsk_is_pi_blocked(tsk))
2571		return;
2572	/*
2573	 * If we are going to sleep and we have plugged IO queued,
2574	 * make sure to submit it to avoid deadlocks.
2575	 */
2576	if (blk_needs_flush_plug(tsk))
2577		blk_schedule_flush_plug(tsk);
2578}
2579
2580asmlinkage void __sched schedule(void)
2581{
2582	struct task_struct *tsk = current;
2583
2584	sched_submit_work(tsk);
2585	__schedule();
2586}
2587EXPORT_SYMBOL(schedule);
2588
2589#ifdef CONFIG_CONTEXT_TRACKING
2590asmlinkage void __sched schedule_user(void)
2591{
2592	/*
2593	 * If we come here after a random call to set_need_resched(),
2594	 * or we have been woken up remotely but the IPI has not yet arrived,
2595	 * we haven't yet exited the RCU idle mode. Do it here manually until
2596	 * we find a better solution.
2597	 */
2598	user_exit();
2599	schedule();
2600	user_enter();
2601}
2602#endif
2603
2604/**
2605 * schedule_preempt_disabled - called with preemption disabled
2606 *
2607 * Returns with preemption disabled. Note: preempt_count must be 1
2608 */
2609void __sched schedule_preempt_disabled(void)
2610{
2611	sched_preempt_enable_no_resched();
2612	schedule();
2613	preempt_disable();
2614}
2615
2616#ifdef CONFIG_PREEMPT
2617/*
2618 * this is the entry point to schedule() from in-kernel preemption
2619 * off of preempt_enable. Kernel preemptions off return from interrupt
2620 * occur there and call schedule directly.
2621 */
2622asmlinkage void __sched notrace preempt_schedule(void)
2623{
2624	/*
2625	 * If there is a non-zero preempt_count or interrupts are disabled,
2626	 * we do not want to preempt the current task. Just return..
2627	 */
2628	if (likely(!preemptible()))
2629		return;
2630
2631	do {
2632		__preempt_count_add(PREEMPT_ACTIVE);
2633		__schedule();
2634		__preempt_count_sub(PREEMPT_ACTIVE);
2635
2636		/*
2637		 * Check again in case we missed a preemption opportunity
2638		 * between schedule and now.
2639		 */
2640		barrier();
2641	} while (need_resched());
2642}
2643EXPORT_SYMBOL(preempt_schedule);
2644
2645/*
2646 * this is the entry point to schedule() from kernel preemption
2647 * off of irq context.
2648 * Note, that this is called and return with irqs disabled. This will
2649 * protect us against recursive calling from irq.
2650 */
2651asmlinkage void __sched preempt_schedule_irq(void)
2652{
2653	enum ctx_state prev_state;
2654
2655	/* Catch callers which need to be fixed */
2656	BUG_ON(preempt_count() || !irqs_disabled());
2657
2658	prev_state = exception_enter();
2659
2660	do {
2661		__preempt_count_add(PREEMPT_ACTIVE);
2662		local_irq_enable();
2663		__schedule();
2664		local_irq_disable();
2665		__preempt_count_sub(PREEMPT_ACTIVE);
2666
2667		/*
2668		 * Check again in case we missed a preemption opportunity
2669		 * between schedule and now.
2670		 */
2671		barrier();
2672	} while (need_resched());
2673
2674	exception_exit(prev_state);
2675}
2676
2677#endif /* CONFIG_PREEMPT */
2678
2679int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2680			  void *key)
2681{
2682	return try_to_wake_up(curr->private, mode, wake_flags);
2683}
2684EXPORT_SYMBOL(default_wake_function);
2685
2686/*
2687 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2688 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2689 * number) then we wake all the non-exclusive tasks and one exclusive task.
2690 *
2691 * There are circumstances in which we can try to wake a task which has already
2692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2694 */
2695static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2696			int nr_exclusive, int wake_flags, void *key)
2697{
2698	wait_queue_t *curr, *next;
2699
2700	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2701		unsigned flags = curr->flags;
2702
2703		if (curr->func(curr, mode, wake_flags, key) &&
2704				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2705			break;
2706	}
2707}
2708
2709/**
2710 * __wake_up - wake up threads blocked on a waitqueue.
2711 * @q: the waitqueue
2712 * @mode: which threads
2713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2714 * @key: is directly passed to the wakeup function
2715 *
2716 * It may be assumed that this function implies a write memory barrier before
2717 * changing the task state if and only if any tasks are woken up.
2718 */
2719void __wake_up(wait_queue_head_t *q, unsigned int mode,
2720			int nr_exclusive, void *key)
2721{
2722	unsigned long flags;
2723
2724	spin_lock_irqsave(&q->lock, flags);
2725	__wake_up_common(q, mode, nr_exclusive, 0, key);
2726	spin_unlock_irqrestore(&q->lock, flags);
2727}
2728EXPORT_SYMBOL(__wake_up);
2729
2730/*
2731 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2732 */
2733void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2734{
2735	__wake_up_common(q, mode, nr, 0, NULL);
2736}
2737EXPORT_SYMBOL_GPL(__wake_up_locked);
2738
2739void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2740{
2741	__wake_up_common(q, mode, 1, 0, key);
2742}
2743EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2744
2745/**
2746 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2747 * @q: the waitqueue
2748 * @mode: which threads
2749 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2750 * @key: opaque value to be passed to wakeup targets
2751 *
2752 * The sync wakeup differs that the waker knows that it will schedule
2753 * away soon, so while the target thread will be woken up, it will not
2754 * be migrated to another CPU - ie. the two threads are 'synchronized'
2755 * with each other. This can prevent needless bouncing between CPUs.
2756 *
2757 * On UP it can prevent extra preemption.
2758 *
2759 * It may be assumed that this function implies a write memory barrier before
2760 * changing the task state if and only if any tasks are woken up.
2761 */
2762void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2763			int nr_exclusive, void *key)
2764{
2765	unsigned long flags;
2766	int wake_flags = WF_SYNC;
2767
2768	if (unlikely(!q))
2769		return;
2770
2771	if (unlikely(nr_exclusive != 1))
2772		wake_flags = 0;
2773
2774	spin_lock_irqsave(&q->lock, flags);
2775	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2776	spin_unlock_irqrestore(&q->lock, flags);
2777}
2778EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2779
2780/*
2781 * __wake_up_sync - see __wake_up_sync_key()
2782 */
2783void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2784{
2785	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2786}
2787EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2788
2789/**
2790 * complete: - signals a single thread waiting on this completion
2791 * @x:  holds the state of this particular completion
2792 *
2793 * This will wake up a single thread waiting on this completion. Threads will be
2794 * awakened in the same order in which they were queued.
2795 *
2796 * See also complete_all(), wait_for_completion() and related routines.
2797 *
2798 * It may be assumed that this function implies a write memory barrier before
2799 * changing the task state if and only if any tasks are woken up.
2800 */
2801void complete(struct completion *x)
2802{
2803	unsigned long flags;
2804
2805	spin_lock_irqsave(&x->wait.lock, flags);
2806	x->done++;
2807	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2808	spin_unlock_irqrestore(&x->wait.lock, flags);
2809}
2810EXPORT_SYMBOL(complete);
2811
2812/**
2813 * complete_all: - signals all threads waiting on this completion
2814 * @x:  holds the state of this particular completion
2815 *
2816 * This will wake up all threads waiting on this particular completion event.
2817 *
2818 * It may be assumed that this function implies a write memory barrier before
2819 * changing the task state if and only if any tasks are woken up.
2820 */
2821void complete_all(struct completion *x)
2822{
2823	unsigned long flags;
2824
2825	spin_lock_irqsave(&x->wait.lock, flags);
2826	x->done += UINT_MAX/2;
2827	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2828	spin_unlock_irqrestore(&x->wait.lock, flags);
2829}
2830EXPORT_SYMBOL(complete_all);
2831
2832static inline long __sched
2833do_wait_for_common(struct completion *x,
2834		   long (*action)(long), long timeout, int state)
2835{
2836	if (!x->done) {
2837		DECLARE_WAITQUEUE(wait, current);
2838
2839		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2840		do {
2841			if (signal_pending_state(state, current)) {
2842				timeout = -ERESTARTSYS;
2843				break;
2844			}
2845			__set_current_state(state);
2846			spin_unlock_irq(&x->wait.lock);
2847			timeout = action(timeout);
2848			spin_lock_irq(&x->wait.lock);
2849		} while (!x->done && timeout);
2850		__remove_wait_queue(&x->wait, &wait);
2851		if (!x->done)
2852			return timeout;
2853	}
2854	x->done--;
2855	return timeout ?: 1;
2856}
2857
2858static inline long __sched
2859__wait_for_common(struct completion *x,
2860		  long (*action)(long), long timeout, int state)
2861{
2862	might_sleep();
2863
2864	spin_lock_irq(&x->wait.lock);
2865	timeout = do_wait_for_common(x, action, timeout, state);
2866	spin_unlock_irq(&x->wait.lock);
2867	return timeout;
2868}
2869
2870static long __sched
2871wait_for_common(struct completion *x, long timeout, int state)
2872{
2873	return __wait_for_common(x, schedule_timeout, timeout, state);
2874}
2875
2876static long __sched
2877wait_for_common_io(struct completion *x, long timeout, int state)
2878{
2879	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2880}
2881
2882/**
2883 * wait_for_completion: - waits for completion of a task
2884 * @x:  holds the state of this particular completion
2885 *
2886 * This waits to be signaled for completion of a specific task. It is NOT
2887 * interruptible and there is no timeout.
2888 *
2889 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2890 * and interrupt capability. Also see complete().
2891 */
2892void __sched wait_for_completion(struct completion *x)
2893{
2894	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2895}
2896EXPORT_SYMBOL(wait_for_completion);
2897
2898/**
2899 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2900 * @x:  holds the state of this particular completion
2901 * @timeout:  timeout value in jiffies
2902 *
2903 * This waits for either a completion of a specific task to be signaled or for a
2904 * specified timeout to expire. The timeout is in jiffies. It is not
2905 * interruptible.
2906 *
2907 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2908 * till timeout) if completed.
2909 */
2910unsigned long __sched
2911wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2912{
2913	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2914}
2915EXPORT_SYMBOL(wait_for_completion_timeout);
2916
2917/**
2918 * wait_for_completion_io: - waits for completion of a task
2919 * @x:  holds the state of this particular completion
2920 *
2921 * This waits to be signaled for completion of a specific task. It is NOT
2922 * interruptible and there is no timeout. The caller is accounted as waiting
2923 * for IO.
2924 */
2925void __sched wait_for_completion_io(struct completion *x)
2926{
2927	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2928}
2929EXPORT_SYMBOL(wait_for_completion_io);
2930
2931/**
2932 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2933 * @x:  holds the state of this particular completion
2934 * @timeout:  timeout value in jiffies
2935 *
2936 * This waits for either a completion of a specific task to be signaled or for a
2937 * specified timeout to expire. The timeout is in jiffies. It is not
2938 * interruptible. The caller is accounted as waiting for IO.
2939 *
2940 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2941 * till timeout) if completed.
2942 */
2943unsigned long __sched
2944wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2945{
2946	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2947}
2948EXPORT_SYMBOL(wait_for_completion_io_timeout);
2949
2950/**
2951 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2952 * @x:  holds the state of this particular completion
2953 *
2954 * This waits for completion of a specific task to be signaled. It is
2955 * interruptible.
2956 *
2957 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2958 */
2959int __sched wait_for_completion_interruptible(struct completion *x)
2960{
2961	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2962	if (t == -ERESTARTSYS)
2963		return t;
2964	return 0;
2965}
2966EXPORT_SYMBOL(wait_for_completion_interruptible);
2967
2968/**
2969 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2970 * @x:  holds the state of this particular completion
2971 * @timeout:  timeout value in jiffies
2972 *
2973 * This waits for either a completion of a specific task to be signaled or for a
2974 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2975 *
2976 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2977 * or number of jiffies left till timeout) if completed.
2978 */
2979long __sched
2980wait_for_completion_interruptible_timeout(struct completion *x,
2981					  unsigned long timeout)
2982{
2983	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2984}
2985EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2986
2987/**
2988 * wait_for_completion_killable: - waits for completion of a task (killable)
2989 * @x:  holds the state of this particular completion
2990 *
2991 * This waits to be signaled for completion of a specific task. It can be
2992 * interrupted by a kill signal.
2993 *
2994 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2995 */
2996int __sched wait_for_completion_killable(struct completion *x)
2997{
2998	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2999	if (t == -ERESTARTSYS)
3000		return t;
3001	return 0;
3002}
3003EXPORT_SYMBOL(wait_for_completion_killable);
3004
3005/**
3006 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3007 * @x:  holds the state of this particular completion
3008 * @timeout:  timeout value in jiffies
3009 *
3010 * This waits for either a completion of a specific task to be
3011 * signaled or for a specified timeout to expire. It can be
3012 * interrupted by a kill signal. The timeout is in jiffies.
3013 *
3014 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3015 * or number of jiffies left till timeout) if completed.
3016 */
3017long __sched
3018wait_for_completion_killable_timeout(struct completion *x,
3019				     unsigned long timeout)
3020{
3021	return wait_for_common(x, timeout, TASK_KILLABLE);
3022}
3023EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3024
3025/**
3026 *	try_wait_for_completion - try to decrement a completion without blocking
3027 *	@x:	completion structure
3028 *
3029 *	Return: 0 if a decrement cannot be done without blocking
3030 *		 1 if a decrement succeeded.
3031 *
3032 *	If a completion is being used as a counting completion,
3033 *	attempt to decrement the counter without blocking. This
3034 *	enables us to avoid waiting if the resource the completion
3035 *	is protecting is not available.
3036 */
3037bool try_wait_for_completion(struct completion *x)
3038{
3039	unsigned long flags;
3040	int ret = 1;
3041
3042	spin_lock_irqsave(&x->wait.lock, flags);
3043	if (!x->done)
3044		ret = 0;
3045	else
3046		x->done--;
3047	spin_unlock_irqrestore(&x->wait.lock, flags);
3048	return ret;
3049}
3050EXPORT_SYMBOL(try_wait_for_completion);
3051
3052/**
3053 *	completion_done - Test to see if a completion has any waiters
3054 *	@x:	completion structure
3055 *
3056 *	Return: 0 if there are waiters (wait_for_completion() in progress)
3057 *		 1 if there are no waiters.
3058 *
3059 */
3060bool completion_done(struct completion *x)
3061{
3062	unsigned long flags;
3063	int ret = 1;
3064
3065	spin_lock_irqsave(&x->wait.lock, flags);
3066	if (!x->done)
3067		ret = 0;
3068	spin_unlock_irqrestore(&x->wait.lock, flags);
3069	return ret;
3070}
3071EXPORT_SYMBOL(completion_done);
3072
3073static long __sched
3074sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3075{
3076	unsigned long flags;
3077	wait_queue_t wait;
3078
3079	init_waitqueue_entry(&wait, current);
3080
3081	__set_current_state(state);
3082
3083	spin_lock_irqsave(&q->lock, flags);
3084	__add_wait_queue(q, &wait);
3085	spin_unlock(&q->lock);
3086	timeout = schedule_timeout(timeout);
3087	spin_lock_irq(&q->lock);
3088	__remove_wait_queue(q, &wait);
3089	spin_unlock_irqrestore(&q->lock, flags);
3090
3091	return timeout;
3092}
3093
3094void __sched interruptible_sleep_on(wait_queue_head_t *q)
3095{
3096	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3097}
3098EXPORT_SYMBOL(interruptible_sleep_on);
3099
3100long __sched
3101interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3102{
3103	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3104}
3105EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3106
3107void __sched sleep_on(wait_queue_head_t *q)
3108{
3109	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3110}
3111EXPORT_SYMBOL(sleep_on);
3112
3113long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3114{
3115	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3116}
3117EXPORT_SYMBOL(sleep_on_timeout);
3118
3119#ifdef CONFIG_RT_MUTEXES
3120
3121/*
3122 * rt_mutex_setprio - set the current priority of a task
3123 * @p: task
3124 * @prio: prio value (kernel-internal form)
3125 *
3126 * This function changes the 'effective' priority of a task. It does
3127 * not touch ->normal_prio like __setscheduler().
3128 *
3129 * Used by the rt_mutex code to implement priority inheritance logic.
3130 */
3131void rt_mutex_setprio(struct task_struct *p, int prio)
3132{
3133	int oldprio, on_rq, running;
3134	struct rq *rq;
3135	const struct sched_class *prev_class;
3136
3137	BUG_ON(prio < 0 || prio > MAX_PRIO);
3138
3139	rq = __task_rq_lock(p);
3140
3141	/*
3142	 * Idle task boosting is a nono in general. There is one
3143	 * exception, when PREEMPT_RT and NOHZ is active:
3144	 *
3145	 * The idle task calls get_next_timer_interrupt() and holds
3146	 * the timer wheel base->lock on the CPU and another CPU wants
3147	 * to access the timer (probably to cancel it). We can safely
3148	 * ignore the boosting request, as the idle CPU runs this code
3149	 * with interrupts disabled and will complete the lock
3150	 * protected section without being interrupted. So there is no
3151	 * real need to boost.
3152	 */
3153	if (unlikely(p == rq->idle)) {
3154		WARN_ON(p != rq->curr);
3155		WARN_ON(p->pi_blocked_on);
3156		goto out_unlock;
3157	}
3158
3159	trace_sched_pi_setprio(p, prio);
3160	oldprio = p->prio;
3161	prev_class = p->sched_class;
3162	on_rq = p->on_rq;
3163	running = task_current(rq, p);
3164	if (on_rq)
3165		dequeue_task(rq, p, 0);
3166	if (running)
3167		p->sched_class->put_prev_task(rq, p);
3168
3169	if (rt_prio(prio))
3170		p->sched_class = &rt_sched_class;
3171	else
3172		p->sched_class = &fair_sched_class;
3173
3174	p->prio = prio;
3175
3176	if (running)
3177		p->sched_class->set_curr_task(rq);
3178	if (on_rq)
3179		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3180
3181	check_class_changed(rq, p, prev_class, oldprio);
3182out_unlock:
3183	__task_rq_unlock(rq);
3184}
3185#endif
3186void set_user_nice(struct task_struct *p, long nice)
3187{
3188	int old_prio, delta, on_rq;
3189	unsigned long flags;
3190	struct rq *rq;
3191
3192	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3193		return;
3194	/*
3195	 * We have to be careful, if called from sys_setpriority(),
3196	 * the task might be in the middle of scheduling on another CPU.
3197	 */
3198	rq = task_rq_lock(p, &flags);
3199	/*
3200	 * The RT priorities are set via sched_setscheduler(), but we still
3201	 * allow the 'normal' nice value to be set - but as expected
3202	 * it wont have any effect on scheduling until the task is
3203	 * SCHED_FIFO/SCHED_RR:
3204	 */
3205	if (task_has_rt_policy(p)) {
3206		p->static_prio = NICE_TO_PRIO(nice);
3207		goto out_unlock;
3208	}
3209	on_rq = p->on_rq;
3210	if (on_rq)
3211		dequeue_task(rq, p, 0);
3212
3213	p->static_prio = NICE_TO_PRIO(nice);
3214	set_load_weight(p);
3215	old_prio = p->prio;
3216	p->prio = effective_prio(p);
3217	delta = p->prio - old_prio;
3218
3219	if (on_rq) {
3220		enqueue_task(rq, p, 0);
3221		/*
3222		 * If the task increased its priority or is running and
3223		 * lowered its priority, then reschedule its CPU:
3224		 */
3225		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3226			resched_task(rq->curr);
3227	}
3228out_unlock:
3229	task_rq_unlock(rq, p, &flags);
3230}
3231EXPORT_SYMBOL(set_user_nice);
3232
3233/*
3234 * can_nice - check if a task can reduce its nice value
3235 * @p: task
3236 * @nice: nice value
3237 */
3238int can_nice(const struct task_struct *p, const int nice)
3239{
3240	/* convert nice value [19,-20] to rlimit style value [1,40] */
3241	int nice_rlim = 20 - nice;
3242
3243	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3244		capable(CAP_SYS_NICE));
3245}
3246
3247#ifdef __ARCH_WANT_SYS_NICE
3248
3249/*
3250 * sys_nice - change the priority of the current process.
3251 * @increment: priority increment
3252 *
3253 * sys_setpriority is a more generic, but much slower function that
3254 * does similar things.
3255 */
3256SYSCALL_DEFINE1(nice, int, increment)
3257{
3258	long nice, retval;
3259
3260	/*
3261	 * Setpriority might change our priority at the same moment.
3262	 * We don't have to worry. Conceptually one call occurs first
3263	 * and we have a single winner.
3264	 */
3265	if (increment < -40)
3266		increment = -40;
3267	if (increment > 40)
3268		increment = 40;
3269
3270	nice = TASK_NICE(current) + increment;
3271	if (nice < -20)
3272		nice = -20;
3273	if (nice > 19)
3274		nice = 19;
3275
3276	if (increment < 0 && !can_nice(current, nice))
3277		return -EPERM;
3278
3279	retval = security_task_setnice(current, nice);
3280	if (retval)
3281		return retval;
3282
3283	set_user_nice(current, nice);
3284	return 0;
3285}
3286
3287#endif
3288
3289/**
3290 * task_prio - return the priority value of a given task.
3291 * @p: the task in question.
3292 *
3293 * Return: The priority value as seen by users in /proc.
3294 * RT tasks are offset by -200. Normal tasks are centered
3295 * around 0, value goes from -16 to +15.
3296 */
3297int task_prio(const struct task_struct *p)
3298{
3299	return p->prio - MAX_RT_PRIO;
3300}
3301
3302/**
3303 * task_nice - return the nice value of a given task.
3304 * @p: the task in question.
3305 *
3306 * Return: The nice value [ -20 ... 0 ... 19 ].
3307 */
3308int task_nice(const struct task_struct *p)
3309{
3310	return TASK_NICE(p);
3311}
3312EXPORT_SYMBOL(task_nice);
3313
3314/**
3315 * idle_cpu - is a given cpu idle currently?
3316 * @cpu: the processor in question.
3317 *
3318 * Return: 1 if the CPU is currently idle. 0 otherwise.
3319 */
3320int idle_cpu(int cpu)
3321{
3322	struct rq *rq = cpu_rq(cpu);
3323
3324	if (rq->curr != rq->idle)
3325		return 0;
3326
3327	if (rq->nr_running)
3328		return 0;
3329
3330#ifdef CONFIG_SMP
3331	if (!llist_empty(&rq->wake_list))
3332		return 0;
3333#endif
3334
3335	return 1;
3336}
3337
3338/**
3339 * idle_task - return the idle task for a given cpu.
3340 * @cpu: the processor in question.
3341 *
3342 * Return: The idle task for the cpu @cpu.
3343 */
3344struct task_struct *idle_task(int cpu)
3345{
3346	return cpu_rq(cpu)->idle;
3347}
3348
3349/**
3350 * find_process_by_pid - find a process with a matching PID value.
3351 * @pid: the pid in question.
3352 *
3353 * The task of @pid, if found. %NULL otherwise.
3354 */
3355static struct task_struct *find_process_by_pid(pid_t pid)
3356{
3357	return pid ? find_task_by_vpid(pid) : current;
3358}
3359
3360/* Actually do priority change: must hold rq lock. */
3361static void
3362__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3363{
3364	p->policy = policy;
3365	p->rt_priority = prio;
3366	p->normal_prio = normal_prio(p);
3367	/* we are holding p->pi_lock already */
3368	p->prio = rt_mutex_getprio(p);
3369	if (rt_prio(p->prio))
3370		p->sched_class = &rt_sched_class;
3371	else
3372		p->sched_class = &fair_sched_class;
3373	set_load_weight(p);
3374}
3375
3376/*
3377 * check the target process has a UID that matches the current process's
3378 */
3379static bool check_same_owner(struct task_struct *p)
3380{
3381	const struct cred *cred = current_cred(), *pcred;
3382	bool match;
3383
3384	rcu_read_lock();
3385	pcred = __task_cred(p);
3386	match = (uid_eq(cred->euid, pcred->euid) ||
3387		 uid_eq(cred->euid, pcred->uid));
3388	rcu_read_unlock();
3389	return match;
3390}
3391
3392static int __sched_setscheduler(struct task_struct *p, int policy,
3393				const struct sched_param *param, bool user)
3394{
3395	int retval, oldprio, oldpolicy = -1, on_rq, running;
3396	unsigned long flags;
3397	const struct sched_class *prev_class;
3398	struct rq *rq;
3399	int reset_on_fork;
3400
3401	/* may grab non-irq protected spin_locks */
3402	BUG_ON(in_interrupt());
3403recheck:
3404	/* double check policy once rq lock held */
3405	if (policy < 0) {
3406		reset_on_fork = p->sched_reset_on_fork;
3407		policy = oldpolicy = p->policy;
3408	} else {
3409		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3410		policy &= ~SCHED_RESET_ON_FORK;
3411
3412		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3413				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3414				policy != SCHED_IDLE)
3415			return -EINVAL;
3416	}
3417
3418	/*
3419	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3420	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3421	 * SCHED_BATCH and SCHED_IDLE is 0.
3422	 */
3423	if (param->sched_priority < 0 ||
3424	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3425	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3426		return -EINVAL;
3427	if (rt_policy(policy) != (param->sched_priority != 0))
3428		return -EINVAL;
3429
3430	/*
3431	 * Allow unprivileged RT tasks to decrease priority:
3432	 */
3433	if (user && !capable(CAP_SYS_NICE)) {
3434		if (rt_policy(policy)) {
3435			unsigned long rlim_rtprio =
3436					task_rlimit(p, RLIMIT_RTPRIO);
3437
3438			/* can't set/change the rt policy */
3439			if (policy != p->policy && !rlim_rtprio)
3440				return -EPERM;
3441
3442			/* can't increase priority */
3443			if (param->sched_priority > p->rt_priority &&
3444			    param->sched_priority > rlim_rtprio)
3445				return -EPERM;
3446		}
3447
3448		/*
3449		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3450		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3451		 */
3452		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3453			if (!can_nice(p, TASK_NICE(p)))
3454				return -EPERM;
3455		}
3456
3457		/* can't change other user's priorities */
3458		if (!check_same_owner(p))
3459			return -EPERM;
3460
3461		/* Normal users shall not reset the sched_reset_on_fork flag */
3462		if (p->sched_reset_on_fork && !reset_on_fork)
3463			return -EPERM;
3464	}
3465
3466	if (user) {
3467		retval = security_task_setscheduler(p);
3468		if (retval)
3469			return retval;
3470	}
3471
3472	/*
3473	 * make sure no PI-waiters arrive (or leave) while we are
3474	 * changing the priority of the task:
3475	 *
3476	 * To be able to change p->policy safely, the appropriate
3477	 * runqueue lock must be held.
3478	 */
3479	rq = task_rq_lock(p, &flags);
3480
3481	/*
3482	 * Changing the policy of the stop threads its a very bad idea
3483	 */
3484	if (p == rq->stop) {
3485		task_rq_unlock(rq, p, &flags);
3486		return -EINVAL;
3487	}
3488
3489	/*
3490	 * If not changing anything there's no need to proceed further:
3491	 */
3492	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3493			param->sched_priority == p->rt_priority))) {
3494		task_rq_unlock(rq, p, &flags);
3495		return 0;
3496	}
3497
3498#ifdef CONFIG_RT_GROUP_SCHED
3499	if (user) {
3500		/*
3501		 * Do not allow realtime tasks into groups that have no runtime
3502		 * assigned.
3503		 */
3504		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3505				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3506				!task_group_is_autogroup(task_group(p))) {
3507			task_rq_unlock(rq, p, &flags);
3508			return -EPERM;
3509		}
3510	}
3511#endif
3512
3513	/* recheck policy now with rq lock held */
3514	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3515		policy = oldpolicy = -1;
3516		task_rq_unlock(rq, p, &flags);
3517		goto recheck;
3518	}
3519	on_rq = p->on_rq;
3520	running = task_current(rq, p);
3521	if (on_rq)
3522		dequeue_task(rq, p, 0);
3523	if (running)
3524		p->sched_class->put_prev_task(rq, p);
3525
3526	p->sched_reset_on_fork = reset_on_fork;
3527
3528	oldprio = p->prio;
3529	prev_class = p->sched_class;
3530	__setscheduler(rq, p, policy, param->sched_priority);
3531
3532	if (running)
3533		p->sched_class->set_curr_task(rq);
3534	if (on_rq)
3535		enqueue_task(rq, p, 0);
3536
3537	check_class_changed(rq, p, prev_class, oldprio);
3538	task_rq_unlock(rq, p, &flags);
3539
3540	rt_mutex_adjust_pi(p);
3541
3542	return 0;
3543}
3544
3545/**
3546 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3547 * @p: the task in question.
3548 * @policy: new policy.
3549 * @param: structure containing the new RT priority.
3550 *
3551 * Return: 0 on success. An error code otherwise.
3552 *
3553 * NOTE that the task may be already dead.
3554 */
3555int sched_setscheduler(struct task_struct *p, int policy,
3556		       const struct sched_param *param)
3557{
3558	return __sched_setscheduler(p, policy, param, true);
3559}
3560EXPORT_SYMBOL_GPL(sched_setscheduler);
3561
3562/**
3563 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3564 * @p: the task in question.
3565 * @policy: new policy.
3566 * @param: structure containing the new RT priority.
3567 *
3568 * Just like sched_setscheduler, only don't bother checking if the
3569 * current context has permission.  For example, this is needed in
3570 * stop_machine(): we create temporary high priority worker threads,
3571 * but our caller might not have that capability.
3572 *
3573 * Return: 0 on success. An error code otherwise.
3574 */
3575int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3576			       const struct sched_param *param)
3577{
3578	return __sched_setscheduler(p, policy, param, false);
3579}
3580
3581static int
3582do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3583{
3584	struct sched_param lparam;
3585	struct task_struct *p;
3586	int retval;
3587
3588	if (!param || pid < 0)
3589		return -EINVAL;
3590	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3591		return -EFAULT;
3592
3593	rcu_read_lock();
3594	retval = -ESRCH;
3595	p = find_process_by_pid(pid);
3596	if (p != NULL)
3597		retval = sched_setscheduler(p, policy, &lparam);
3598	rcu_read_unlock();
3599
3600	return retval;
3601}
3602
3603/**
3604 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3605 * @pid: the pid in question.
3606 * @policy: new policy.
3607 * @param: structure containing the new RT priority.
3608 *
3609 * Return: 0 on success. An error code otherwise.
3610 */
3611SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3612		struct sched_param __user *, param)
3613{
3614	/* negative values for policy are not valid */
3615	if (policy < 0)
3616		return -EINVAL;
3617
3618	return do_sched_setscheduler(pid, policy, param);
3619}
3620
3621/**
3622 * sys_sched_setparam - set/change the RT priority of a thread
3623 * @pid: the pid in question.
3624 * @param: structure containing the new RT priority.
3625 *
3626 * Return: 0 on success. An error code otherwise.
3627 */
3628SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3629{
3630	return do_sched_setscheduler(pid, -1, param);
3631}
3632
3633/**
3634 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3635 * @pid: the pid in question.
3636 *
3637 * Return: On success, the policy of the thread. Otherwise, a negative error
3638 * code.
3639 */
3640SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3641{
3642	struct task_struct *p;
3643	int retval;
3644
3645	if (pid < 0)
3646		return -EINVAL;
3647
3648	retval = -ESRCH;
3649	rcu_read_lock();
3650	p = find_process_by_pid(pid);
3651	if (p) {
3652		retval = security_task_getscheduler(p);
3653		if (!retval)
3654			retval = p->policy
3655				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3656	}
3657	rcu_read_unlock();
3658	return retval;
3659}
3660
3661/**
3662 * sys_sched_getparam - get the RT priority of a thread
3663 * @pid: the pid in question.
3664 * @param: structure containing the RT priority.
3665 *
3666 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3667 * code.
3668 */
3669SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3670{
3671	struct sched_param lp;
3672	struct task_struct *p;
3673	int retval;
3674
3675	if (!param || pid < 0)
3676		return -EINVAL;
3677
3678	rcu_read_lock();
3679	p = find_process_by_pid(pid);
3680	retval = -ESRCH;
3681	if (!p)
3682		goto out_unlock;
3683
3684	retval = security_task_getscheduler(p);
3685	if (retval)
3686		goto out_unlock;
3687
3688	lp.sched_priority = p->rt_priority;
3689	rcu_read_unlock();
3690
3691	/*
3692	 * This one might sleep, we cannot do it with a spinlock held ...
3693	 */
3694	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3695
3696	return retval;
3697
3698out_unlock:
3699	rcu_read_unlock();
3700	return retval;
3701}
3702
3703long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3704{
3705	cpumask_var_t cpus_allowed, new_mask;
3706	struct task_struct *p;
3707	int retval;
3708
3709	get_online_cpus();
3710	rcu_read_lock();
3711
3712	p = find_process_by_pid(pid);
3713	if (!p) {
3714		rcu_read_unlock();
3715		put_online_cpus();
3716		return -ESRCH;
3717	}
3718
3719	/* Prevent p going away */
3720	get_task_struct(p);
3721	rcu_read_unlock();
3722
3723	if (p->flags & PF_NO_SETAFFINITY) {
3724		retval = -EINVAL;
3725		goto out_put_task;
3726	}
3727	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3728		retval = -ENOMEM;
3729		goto out_put_task;
3730	}
3731	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3732		retval = -ENOMEM;
3733		goto out_free_cpus_allowed;
3734	}
3735	retval = -EPERM;
3736	if (!check_same_owner(p)) {
3737		rcu_read_lock();
3738		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3739			rcu_read_unlock();
3740			goto out_unlock;
3741		}
3742		rcu_read_unlock();
3743	}
3744
3745	retval = security_task_setscheduler(p);
3746	if (retval)
3747		goto out_unlock;
3748
3749	cpuset_cpus_allowed(p, cpus_allowed);
3750	cpumask_and(new_mask, in_mask, cpus_allowed);
3751again:
3752	retval = set_cpus_allowed_ptr(p, new_mask);
3753
3754	if (!retval) {
3755		cpuset_cpus_allowed(p, cpus_allowed);
3756		if (!cpumask_subset(new_mask, cpus_allowed)) {
3757			/*
3758			 * We must have raced with a concurrent cpuset
3759			 * update. Just reset the cpus_allowed to the
3760			 * cpuset's cpus_allowed
3761			 */
3762			cpumask_copy(new_mask, cpus_allowed);
3763			goto again;
3764		}
3765	}
3766out_unlock:
3767	free_cpumask_var(new_mask);
3768out_free_cpus_allowed:
3769	free_cpumask_var(cpus_allowed);
3770out_put_task:
3771	put_task_struct(p);
3772	put_online_cpus();
3773	return retval;
3774}
3775
3776static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3777			     struct cpumask *new_mask)
3778{
3779	if (len < cpumask_size())
3780		cpumask_clear(new_mask);
3781	else if (len > cpumask_size())
3782		len = cpumask_size();
3783
3784	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3785}
3786
3787/**
3788 * sys_sched_setaffinity - set the cpu affinity of a process
3789 * @pid: pid of the process
3790 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3791 * @user_mask_ptr: user-space pointer to the new cpu mask
3792 *
3793 * Return: 0 on success. An error code otherwise.
3794 */
3795SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3796		unsigned long __user *, user_mask_ptr)
3797{
3798	cpumask_var_t new_mask;
3799	int retval;
3800
3801	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3802		return -ENOMEM;
3803
3804	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3805	if (retval == 0)
3806		retval = sched_setaffinity(pid, new_mask);
3807	free_cpumask_var(new_mask);
3808	return retval;
3809}
3810
3811long sched_getaffinity(pid_t pid, struct cpumask *mask)
3812{
3813	struct task_struct *p;
3814	unsigned long flags;
3815	int retval;
3816
3817	get_online_cpus();
3818	rcu_read_lock();
3819
3820	retval = -ESRCH;
3821	p = find_process_by_pid(pid);
3822	if (!p)
3823		goto out_unlock;
3824
3825	retval = security_task_getscheduler(p);
3826	if (retval)
3827		goto out_unlock;
3828
3829	raw_spin_lock_irqsave(&p->pi_lock, flags);
3830	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3831	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3832
3833out_unlock:
3834	rcu_read_unlock();
3835	put_online_cpus();
3836
3837	return retval;
3838}
3839
3840/**
3841 * sys_sched_getaffinity - get the cpu affinity of a process
3842 * @pid: pid of the process
3843 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3844 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3845 *
3846 * Return: 0 on success. An error code otherwise.
3847 */
3848SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3849		unsigned long __user *, user_mask_ptr)
3850{
3851	int ret;
3852	cpumask_var_t mask;
3853
3854	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3855		return -EINVAL;
3856	if (len & (sizeof(unsigned long)-1))
3857		return -EINVAL;
3858
3859	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3860		return -ENOMEM;
3861
3862	ret = sched_getaffinity(pid, mask);
3863	if (ret == 0) {
3864		size_t retlen = min_t(size_t, len, cpumask_size());
3865
3866		if (copy_to_user(user_mask_ptr, mask, retlen))
3867			ret = -EFAULT;
3868		else
3869			ret = retlen;
3870	}
3871	free_cpumask_var(mask);
3872
3873	return ret;
3874}
3875
3876/**
3877 * sys_sched_yield - yield the current processor to other threads.
3878 *
3879 * This function yields the current CPU to other tasks. If there are no
3880 * other threads running on this CPU then this function will return.
3881 *
3882 * Return: 0.
3883 */
3884SYSCALL_DEFINE0(sched_yield)
3885{
3886	struct rq *rq = this_rq_lock();
3887
3888	schedstat_inc(rq, yld_count);
3889	current->sched_class->yield_task(rq);
3890
3891	/*
3892	 * Since we are going to call schedule() anyway, there's
3893	 * no need to preempt or enable interrupts:
3894	 */
3895	__release(rq->lock);
3896	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3897	do_raw_spin_unlock(&rq->lock);
3898	sched_preempt_enable_no_resched();
3899
3900	schedule();
3901
3902	return 0;
3903}
3904
3905static void __cond_resched(void)
3906{
3907	__preempt_count_add(PREEMPT_ACTIVE);
3908	__schedule();
3909	__preempt_count_sub(PREEMPT_ACTIVE);
3910}
3911
3912int __sched _cond_resched(void)
3913{
3914	if (should_resched()) {
3915		__cond_resched();
3916		return 1;
3917	}
3918	return 0;
3919}
3920EXPORT_SYMBOL(_cond_resched);
3921
3922/*
3923 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3924 * call schedule, and on return reacquire the lock.
3925 *
3926 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3927 * operations here to prevent schedule() from being called twice (once via
3928 * spin_unlock(), once by hand).
3929 */
3930int __cond_resched_lock(spinlock_t *lock)
3931{
3932	int resched = should_resched();
3933	int ret = 0;
3934
3935	lockdep_assert_held(lock);
3936
3937	if (spin_needbreak(lock) || resched) {
3938		spin_unlock(lock);
3939		if (resched)
3940			__cond_resched();
3941		else
3942			cpu_relax();
3943		ret = 1;
3944		spin_lock(lock);
3945	}
3946	return ret;
3947}
3948EXPORT_SYMBOL(__cond_resched_lock);
3949
3950int __sched __cond_resched_softirq(void)
3951{
3952	BUG_ON(!in_softirq());
3953
3954	if (should_resched()) {
3955		local_bh_enable();
3956		__cond_resched();
3957		local_bh_disable();
3958		return 1;
3959	}
3960	return 0;
3961}
3962EXPORT_SYMBOL(__cond_resched_softirq);
3963
3964/**
3965 * yield - yield the current processor to other threads.
3966 *
3967 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3968 *
3969 * The scheduler is at all times free to pick the calling task as the most
3970 * eligible task to run, if removing the yield() call from your code breaks
3971 * it, its already broken.
3972 *
3973 * Typical broken usage is:
3974 *
3975 * while (!event)
3976 * 	yield();
3977 *
3978 * where one assumes that yield() will let 'the other' process run that will
3979 * make event true. If the current task is a SCHED_FIFO task that will never
3980 * happen. Never use yield() as a progress guarantee!!
3981 *
3982 * If you want to use yield() to wait for something, use wait_event().
3983 * If you want to use yield() to be 'nice' for others, use cond_resched().
3984 * If you still want to use yield(), do not!
3985 */
3986void __sched yield(void)
3987{
3988	set_current_state(TASK_RUNNING);
3989	sys_sched_yield();
3990}
3991EXPORT_SYMBOL(yield);
3992
3993/**
3994 * yield_to - yield the current processor to another thread in
3995 * your thread group, or accelerate that thread toward the
3996 * processor it's on.
3997 * @p: target task
3998 * @preempt: whether task preemption is allowed or not
3999 *
4000 * It's the caller's job to ensure that the target task struct
4001 * can't go away on us before we can do any checks.
4002 *
4003 * Return:
4004 *	true (>0) if we indeed boosted the target task.
4005 *	false (0) if we failed to boost the target.
4006 *	-ESRCH if there's no task to yield to.
4007 */
4008bool __sched yield_to(struct task_struct *p, bool preempt)
4009{
4010	struct task_struct *curr = current;
4011	struct rq *rq, *p_rq;
4012	unsigned long flags;
4013	int yielded = 0;
4014
4015	local_irq_save(flags);
4016	rq = this_rq();
4017
4018again:
4019	p_rq = task_rq(p);
4020	/*
4021	 * If we're the only runnable task on the rq and target rq also
4022	 * has only one task, there's absolutely no point in yielding.
4023	 */
4024	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4025		yielded = -ESRCH;
4026		goto out_irq;
4027	}
4028
4029	double_rq_lock(rq, p_rq);
4030	while (task_rq(p) != p_rq) {
4031		double_rq_unlock(rq, p_rq);
4032		goto again;
4033	}
4034
4035	if (!curr->sched_class->yield_to_task)
4036		goto out_unlock;
4037
4038	if (curr->sched_class != p->sched_class)
4039		goto out_unlock;
4040
4041	if (task_running(p_rq, p) || p->state)
4042		goto out_unlock;
4043
4044	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4045	if (yielded) {
4046		schedstat_inc(rq, yld_count);
4047		/*
4048		 * Make p's CPU reschedule; pick_next_entity takes care of
4049		 * fairness.
4050		 */
4051		if (preempt && rq != p_rq)
4052			resched_task(p_rq->curr);
4053	}
4054
4055out_unlock:
4056	double_rq_unlock(rq, p_rq);
4057out_irq:
4058	local_irq_restore(flags);
4059
4060	if (yielded > 0)
4061		schedule();
4062
4063	return yielded;
4064}
4065EXPORT_SYMBOL_GPL(yield_to);
4066
4067/*
4068 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4069 * that process accounting knows that this is a task in IO wait state.
4070 */
4071void __sched io_schedule(void)
4072{
4073	struct rq *rq = raw_rq();
4074
4075	delayacct_blkio_start();
4076	atomic_inc(&rq->nr_iowait);
4077	blk_flush_plug(current);
4078	current->in_iowait = 1;
4079	schedule();
4080	current->in_iowait = 0;
4081	atomic_dec(&rq->nr_iowait);
4082	delayacct_blkio_end();
4083}
4084EXPORT_SYMBOL(io_schedule);
4085
4086long __sched io_schedule_timeout(long timeout)
4087{
4088	struct rq *rq = raw_rq();
4089	long ret;
4090
4091	delayacct_blkio_start();
4092	atomic_inc(&rq->nr_iowait);
4093	blk_flush_plug(current);
4094	current->in_iowait = 1;
4095	ret = schedule_timeout(timeout);
4096	current->in_iowait = 0;
4097	atomic_dec(&rq->nr_iowait);
4098	delayacct_blkio_end();
4099	return ret;
4100}
4101
4102/**
4103 * sys_sched_get_priority_max - return maximum RT priority.
4104 * @policy: scheduling class.
4105 *
4106 * Return: On success, this syscall returns the maximum
4107 * rt_priority that can be used by a given scheduling class.
4108 * On failure, a negative error code is returned.
4109 */
4110SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4111{
4112	int ret = -EINVAL;
4113
4114	switch (policy) {
4115	case SCHED_FIFO:
4116	case SCHED_RR:
4117		ret = MAX_USER_RT_PRIO-1;
4118		break;
4119	case SCHED_NORMAL:
4120	case SCHED_BATCH:
4121	case SCHED_IDLE:
4122		ret = 0;
4123		break;
4124	}
4125	return ret;
4126}
4127
4128/**
4129 * sys_sched_get_priority_min - return minimum RT priority.
4130 * @policy: scheduling class.
4131 *
4132 * Return: On success, this syscall returns the minimum
4133 * rt_priority that can be used by a given scheduling class.
4134 * On failure, a negative error code is returned.
4135 */
4136SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4137{
4138	int ret = -EINVAL;
4139
4140	switch (policy) {
4141	case SCHED_FIFO:
4142	case SCHED_RR:
4143		ret = 1;
4144		break;
4145	case SCHED_NORMAL:
4146	case SCHED_BATCH:
4147	case SCHED_IDLE:
4148		ret = 0;
4149	}
4150	return ret;
4151}
4152
4153/**
4154 * sys_sched_rr_get_interval - return the default timeslice of a process.
4155 * @pid: pid of the process.
4156 * @interval: userspace pointer to the timeslice value.
4157 *
4158 * this syscall writes the default timeslice value of a given process
4159 * into the user-space timespec buffer. A value of '0' means infinity.
4160 *
4161 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4162 * an error code.
4163 */
4164SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4165		struct timespec __user *, interval)
4166{
4167	struct task_struct *p;
4168	unsigned int time_slice;
4169	unsigned long flags;
4170	struct rq *rq;
4171	int retval;
4172	struct timespec t;
4173
4174	if (pid < 0)
4175		return -EINVAL;
4176
4177	retval = -ESRCH;
4178	rcu_read_lock();
4179	p = find_process_by_pid(pid);
4180	if (!p)
4181		goto out_unlock;
4182
4183	retval = security_task_getscheduler(p);
4184	if (retval)
4185		goto out_unlock;
4186
4187	rq = task_rq_lock(p, &flags);
4188	time_slice = p->sched_class->get_rr_interval(rq, p);
4189	task_rq_unlock(rq, p, &flags);
4190
4191	rcu_read_unlock();
4192	jiffies_to_timespec(time_slice, &t);
4193	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4194	return retval;
4195
4196out_unlock:
4197	rcu_read_unlock();
4198	return retval;
4199}
4200
4201static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4202
4203void sched_show_task(struct task_struct *p)
4204{
4205	unsigned long free = 0;
4206	int ppid;
4207	unsigned state;
4208
4209	state = p->state ? __ffs(p->state) + 1 : 0;
4210	printk(KERN_INFO "%-15.15s %c", p->comm,
4211		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4212#if BITS_PER_LONG == 32
4213	if (state == TASK_RUNNING)
4214		printk(KERN_CONT " running  ");
4215	else
4216		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4217#else
4218	if (state == TASK_RUNNING)
4219		printk(KERN_CONT "  running task    ");
4220	else
4221		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4222#endif
4223#ifdef CONFIG_DEBUG_STACK_USAGE
4224	free = stack_not_used(p);
4225#endif
4226	rcu_read_lock();
4227	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4228	rcu_read_unlock();
4229	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4230		task_pid_nr(p), ppid,
4231		(unsigned long)task_thread_info(p)->flags);
4232
4233	print_worker_info(KERN_INFO, p);
4234	show_stack(p, NULL);
4235}
4236
4237void show_state_filter(unsigned long state_filter)
4238{
4239	struct task_struct *g, *p;
4240
4241#if BITS_PER_LONG == 32
4242	printk(KERN_INFO
4243		"  task                PC stack   pid father\n");
4244#else
4245	printk(KERN_INFO
4246		"  task                        PC stack   pid father\n");
4247#endif
4248	rcu_read_lock();
4249	do_each_thread(g, p) {
4250		/*
4251		 * reset the NMI-timeout, listing all files on a slow
4252		 * console might take a lot of time:
4253		 */
4254		touch_nmi_watchdog();
4255		if (!state_filter || (p->state & state_filter))
4256			sched_show_task(p);
4257	} while_each_thread(g, p);
4258
4259	touch_all_softlockup_watchdogs();
4260
4261#ifdef CONFIG_SCHED_DEBUG
4262	sysrq_sched_debug_show();
4263#endif
4264	rcu_read_unlock();
4265	/*
4266	 * Only show locks if all tasks are dumped:
4267	 */
4268	if (!state_filter)
4269		debug_show_all_locks();
4270}
4271
4272void init_idle_bootup_task(struct task_struct *idle)
4273{
4274	idle->sched_class = &idle_sched_class;
4275}
4276
4277/**
4278 * init_idle - set up an idle thread for a given CPU
4279 * @idle: task in question
4280 * @cpu: cpu the idle task belongs to
4281 *
4282 * NOTE: this function does not set the idle thread's NEED_RESCHED
4283 * flag, to make booting more robust.
4284 */
4285void init_idle(struct task_struct *idle, int cpu)
4286{
4287	struct rq *rq = cpu_rq(cpu);
4288	unsigned long flags;
4289
4290	raw_spin_lock_irqsave(&rq->lock, flags);
4291
4292	__sched_fork(0, idle);
4293	idle->state = TASK_RUNNING;
4294	idle->se.exec_start = sched_clock();
4295
4296	do_set_cpus_allowed(idle, cpumask_of(cpu));
4297	/*
4298	 * We're having a chicken and egg problem, even though we are
4299	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4300	 * lockdep check in task_group() will fail.
4301	 *
4302	 * Similar case to sched_fork(). / Alternatively we could
4303	 * use task_rq_lock() here and obtain the other rq->lock.
4304	 *
4305	 * Silence PROVE_RCU
4306	 */
4307	rcu_read_lock();
4308	__set_task_cpu(idle, cpu);
4309	rcu_read_unlock();
4310
4311	rq->curr = rq->idle = idle;
4312#if defined(CONFIG_SMP)
4313	idle->on_cpu = 1;
4314#endif
4315	raw_spin_unlock_irqrestore(&rq->lock, flags);
4316
4317	/* Set the preempt count _outside_ the spinlocks! */
4318	init_idle_preempt_count(idle, cpu);
4319
4320	/*
4321	 * The idle tasks have their own, simple scheduling class:
4322	 */
4323	idle->sched_class = &idle_sched_class;
4324	ftrace_graph_init_idle_task(idle, cpu);
4325	vtime_init_idle(idle, cpu);
4326#if defined(CONFIG_SMP)
4327	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4328#endif
4329}
4330
4331#ifdef CONFIG_SMP
4332void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4333{
4334	if (p->sched_class && p->sched_class->set_cpus_allowed)
4335		p->sched_class->set_cpus_allowed(p, new_mask);
4336
4337	cpumask_copy(&p->cpus_allowed, new_mask);
4338	p->nr_cpus_allowed = cpumask_weight(new_mask);
4339}
4340
4341/*
4342 * This is how migration works:
4343 *
4344 * 1) we invoke migration_cpu_stop() on the target CPU using
4345 *    stop_one_cpu().
4346 * 2) stopper starts to run (implicitly forcing the migrated thread
4347 *    off the CPU)
4348 * 3) it checks whether the migrated task is still in the wrong runqueue.
4349 * 4) if it's in the wrong runqueue then the migration thread removes
4350 *    it and puts it into the right queue.
4351 * 5) stopper completes and stop_one_cpu() returns and the migration
4352 *    is done.
4353 */
4354
4355/*
4356 * Change a given task's CPU affinity. Migrate the thread to a
4357 * proper CPU and schedule it away if the CPU it's executing on
4358 * is removed from the allowed bitmask.
4359 *
4360 * NOTE: the caller must have a valid reference to the task, the
4361 * task must not exit() & deallocate itself prematurely. The
4362 * call is not atomic; no spinlocks may be held.
4363 */
4364int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4365{
4366	unsigned long flags;
4367	struct rq *rq;
4368	unsigned int dest_cpu;
4369	int ret = 0;
4370
4371	rq = task_rq_lock(p, &flags);
4372
4373	if (cpumask_equal(&p->cpus_allowed, new_mask))
4374		goto out;
4375
4376	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4377		ret = -EINVAL;
4378		goto out;
4379	}
4380
4381	do_set_cpus_allowed(p, new_mask);
4382
4383	/* Can the task run on the task's current CPU? If so, we're done */
4384	if (cpumask_test_cpu(task_cpu(p), new_mask))
4385		goto out;
4386
4387	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4388	if (p->on_rq) {
4389		struct migration_arg arg = { p, dest_cpu };
4390		/* Need help from migration thread: drop lock and wait. */
4391		task_rq_unlock(rq, p, &flags);
4392		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4393		tlb_migrate_finish(p->mm);
4394		return 0;
4395	}
4396out:
4397	task_rq_unlock(rq, p, &flags);
4398
4399	return ret;
4400}
4401EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4402
4403/*
4404 * Move (not current) task off this cpu, onto dest cpu. We're doing
4405 * this because either it can't run here any more (set_cpus_allowed()
4406 * away from this CPU, or CPU going down), or because we're
4407 * attempting to rebalance this task on exec (sched_exec).
4408 *
4409 * So we race with normal scheduler movements, but that's OK, as long
4410 * as the task is no longer on this CPU.
4411 *
4412 * Returns non-zero if task was successfully migrated.
4413 */
4414static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4415{
4416	struct rq *rq_dest, *rq_src;
4417	int ret = 0;
4418
4419	if (unlikely(!cpu_active(dest_cpu)))
4420		return ret;
4421
4422	rq_src = cpu_rq(src_cpu);
4423	rq_dest = cpu_rq(dest_cpu);
4424
4425	raw_spin_lock(&p->pi_lock);
4426	double_rq_lock(rq_src, rq_dest);
4427	/* Already moved. */
4428	if (task_cpu(p) != src_cpu)
4429		goto done;
4430	/* Affinity changed (again). */
4431	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4432		goto fail;
4433
4434	/*
4435	 * If we're not on a rq, the next wake-up will ensure we're
4436	 * placed properly.
4437	 */
4438	if (p->on_rq) {
4439		dequeue_task(rq_src, p, 0);
4440		set_task_cpu(p, dest_cpu);
4441		enqueue_task(rq_dest, p, 0);
4442		check_preempt_curr(rq_dest, p, 0);
4443	}
4444done:
4445	ret = 1;
4446fail:
4447	double_rq_unlock(rq_src, rq_dest);
4448	raw_spin_unlock(&p->pi_lock);
4449	return ret;
4450}
4451
4452#ifdef CONFIG_NUMA_BALANCING
4453/* Migrate current task p to target_cpu */
4454int migrate_task_to(struct task_struct *p, int target_cpu)
4455{
4456	struct migration_arg arg = { p, target_cpu };
4457	int curr_cpu = task_cpu(p);
4458
4459	if (curr_cpu == target_cpu)
4460		return 0;
4461
4462	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4463		return -EINVAL;
4464
4465	/* TODO: This is not properly updating schedstats */
4466
4467	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4468}
4469
4470/*
4471 * Requeue a task on a given node and accurately track the number of NUMA
4472 * tasks on the runqueues
4473 */
4474void sched_setnuma(struct task_struct *p, int nid)
4475{
4476	struct rq *rq;
4477	unsigned long flags;
4478	bool on_rq, running;
4479
4480	rq = task_rq_lock(p, &flags);
4481	on_rq = p->on_rq;
4482	running = task_current(rq, p);
4483
4484	if (on_rq)
4485		dequeue_task(rq, p, 0);
4486	if (running)
4487		p->sched_class->put_prev_task(rq, p);
4488
4489	p->numa_preferred_nid = nid;
4490
4491	if (running)
4492		p->sched_class->set_curr_task(rq);
4493	if (on_rq)
4494		enqueue_task(rq, p, 0);
4495	task_rq_unlock(rq, p, &flags);
4496}
4497#endif
4498
4499/*
4500 * migration_cpu_stop - this will be executed by a highprio stopper thread
4501 * and performs thread migration by bumping thread off CPU then
4502 * 'pushing' onto another runqueue.
4503 */
4504static int migration_cpu_stop(void *data)
4505{
4506	struct migration_arg *arg = data;
4507
4508	/*
4509	 * The original target cpu might have gone down and we might
4510	 * be on another cpu but it doesn't matter.
4511	 */
4512	local_irq_disable();
4513	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4514	local_irq_enable();
4515	return 0;
4516}
4517
4518#ifdef CONFIG_HOTPLUG_CPU
4519
4520/*
4521 * Ensures that the idle task is using init_mm right before its cpu goes
4522 * offline.
4523 */
4524void idle_task_exit(void)
4525{
4526	struct mm_struct *mm = current->active_mm;
4527
4528	BUG_ON(cpu_online(smp_processor_id()));
4529
4530	if (mm != &init_mm)
4531		switch_mm(mm, &init_mm, current);
4532	mmdrop(mm);
4533}
4534
4535/*
4536 * Since this CPU is going 'away' for a while, fold any nr_active delta
4537 * we might have. Assumes we're called after migrate_tasks() so that the
4538 * nr_active count is stable.
4539 *
4540 * Also see the comment "Global load-average calculations".
4541 */
4542static void calc_load_migrate(struct rq *rq)
4543{
4544	long delta = calc_load_fold_active(rq);
4545	if (delta)
4546		atomic_long_add(delta, &calc_load_tasks);
4547}
4548
4549/*
4550 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4551 * try_to_wake_up()->select_task_rq().
4552 *
4553 * Called with rq->lock held even though we'er in stop_machine() and
4554 * there's no concurrency possible, we hold the required locks anyway
4555 * because of lock validation efforts.
4556 */
4557static void migrate_tasks(unsigned int dead_cpu)
4558{
4559	struct rq *rq = cpu_rq(dead_cpu);
4560	struct task_struct *next, *stop = rq->stop;
4561	int dest_cpu;
4562
4563	/*
4564	 * Fudge the rq selection such that the below task selection loop
4565	 * doesn't get stuck on the currently eligible stop task.
4566	 *
4567	 * We're currently inside stop_machine() and the rq is either stuck
4568	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4569	 * either way we should never end up calling schedule() until we're
4570	 * done here.
4571	 */
4572	rq->stop = NULL;
4573
4574	/*
4575	 * put_prev_task() and pick_next_task() sched
4576	 * class method both need to have an up-to-date
4577	 * value of rq->clock[_task]
4578	 */
4579	update_rq_clock(rq);
4580
4581	for ( ; ; ) {
4582		/*
4583		 * There's this thread running, bail when that's the only
4584		 * remaining thread.
4585		 */
4586		if (rq->nr_running == 1)
4587			break;
4588
4589		next = pick_next_task(rq);
4590		BUG_ON(!next);
4591		next->sched_class->put_prev_task(rq, next);
4592
4593		/* Find suitable destination for @next, with force if needed. */
4594		dest_cpu = select_fallback_rq(dead_cpu, next);
4595		raw_spin_unlock(&rq->lock);
4596
4597		__migrate_task(next, dead_cpu, dest_cpu);
4598
4599		raw_spin_lock(&rq->lock);
4600	}
4601
4602	rq->stop = stop;
4603}
4604
4605#endif /* CONFIG_HOTPLUG_CPU */
4606
4607#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4608
4609static struct ctl_table sd_ctl_dir[] = {
4610	{
4611		.procname	= "sched_domain",
4612		.mode		= 0555,
4613	},
4614	{}
4615};
4616
4617static struct ctl_table sd_ctl_root[] = {
4618	{
4619		.procname	= "kernel",
4620		.mode		= 0555,
4621		.child		= sd_ctl_dir,
4622	},
4623	{}
4624};
4625
4626static struct ctl_table *sd_alloc_ctl_entry(int n)
4627{
4628	struct ctl_table *entry =
4629		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4630
4631	return entry;
4632}
4633
4634static void sd_free_ctl_entry(struct ctl_table **tablep)
4635{
4636	struct ctl_table *entry;
4637
4638	/*
4639	 * In the intermediate directories, both the child directory and
4640	 * procname are dynamically allocated and could fail but the mode
4641	 * will always be set. In the lowest directory the names are
4642	 * static strings and all have proc handlers.
4643	 */
4644	for (entry = *tablep; entry->mode; entry++) {
4645		if (entry->child)
4646			sd_free_ctl_entry(&entry->child);
4647		if (entry->proc_handler == NULL)
4648			kfree(entry->procname);
4649	}
4650
4651	kfree(*tablep);
4652	*tablep = NULL;
4653}
4654
4655static int min_load_idx = 0;
4656static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4657
4658static void
4659set_table_entry(struct ctl_table *entry,
4660		const char *procname, void *data, int maxlen,
4661		umode_t mode, proc_handler *proc_handler,
4662		bool load_idx)
4663{
4664	entry->procname = procname;
4665	entry->data = data;
4666	entry->maxlen = maxlen;
4667	entry->mode = mode;
4668	entry->proc_handler = proc_handler;
4669
4670	if (load_idx) {
4671		entry->extra1 = &min_load_idx;
4672		entry->extra2 = &max_load_idx;
4673	}
4674}
4675
4676static struct ctl_table *
4677sd_alloc_ctl_domain_table(struct sched_domain *sd)
4678{
4679	struct ctl_table *table = sd_alloc_ctl_entry(13);
4680
4681	if (table == NULL)
4682		return NULL;
4683
4684	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4685		sizeof(long), 0644, proc_doulongvec_minmax, false);
4686	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4687		sizeof(long), 0644, proc_doulongvec_minmax, false);
4688	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4689		sizeof(int), 0644, proc_dointvec_minmax, true);
4690	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4691		sizeof(int), 0644, proc_dointvec_minmax, true);
4692	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4693		sizeof(int), 0644, proc_dointvec_minmax, true);
4694	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4695		sizeof(int), 0644, proc_dointvec_minmax, true);
4696	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4697		sizeof(int), 0644, proc_dointvec_minmax, true);
4698	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4699		sizeof(int), 0644, proc_dointvec_minmax, false);
4700	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4701		sizeof(int), 0644, proc_dointvec_minmax, false);
4702	set_table_entry(&table[9], "cache_nice_tries",
4703		&sd->cache_nice_tries,
4704		sizeof(int), 0644, proc_dointvec_minmax, false);
4705	set_table_entry(&table[10], "flags", &sd->flags,
4706		sizeof(int), 0644, proc_dointvec_minmax, false);
4707	set_table_entry(&table[11], "name", sd->name,
4708		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4709	/* &table[12] is terminator */
4710
4711	return table;
4712}
4713
4714static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4715{
4716	struct ctl_table *entry, *table;
4717	struct sched_domain *sd;
4718	int domain_num = 0, i;
4719	char buf[32];
4720
4721	for_each_domain(cpu, sd)
4722		domain_num++;
4723	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4724	if (table == NULL)
4725		return NULL;
4726
4727	i = 0;
4728	for_each_domain(cpu, sd) {
4729		snprintf(buf, 32, "domain%d", i);
4730		entry->procname = kstrdup(buf, GFP_KERNEL);
4731		entry->mode = 0555;
4732		entry->child = sd_alloc_ctl_domain_table(sd);
4733		entry++;
4734		i++;
4735	}
4736	return table;
4737}
4738
4739static struct ctl_table_header *sd_sysctl_header;
4740static void register_sched_domain_sysctl(void)
4741{
4742	int i, cpu_num = num_possible_cpus();
4743	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4744	char buf[32];
4745
4746	WARN_ON(sd_ctl_dir[0].child);
4747	sd_ctl_dir[0].child = entry;
4748
4749	if (entry == NULL)
4750		return;
4751
4752	for_each_possible_cpu(i) {
4753		snprintf(buf, 32, "cpu%d", i);
4754		entry->procname = kstrdup(buf, GFP_KERNEL);
4755		entry->mode = 0555;
4756		entry->child = sd_alloc_ctl_cpu_table(i);
4757		entry++;
4758	}
4759
4760	WARN_ON(sd_sysctl_header);
4761	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4762}
4763
4764/* may be called multiple times per register */
4765static void unregister_sched_domain_sysctl(void)
4766{
4767	if (sd_sysctl_header)
4768		unregister_sysctl_table(sd_sysctl_header);
4769	sd_sysctl_header = NULL;
4770	if (sd_ctl_dir[0].child)
4771		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4772}
4773#else
4774static void register_sched_domain_sysctl(void)
4775{
4776}
4777static void unregister_sched_domain_sysctl(void)
4778{
4779}
4780#endif
4781
4782static void set_rq_online(struct rq *rq)
4783{
4784	if (!rq->online) {
4785		const struct sched_class *class;
4786
4787		cpumask_set_cpu(rq->cpu, rq->rd->online);
4788		rq->online = 1;
4789
4790		for_each_class(class) {
4791			if (class->rq_online)
4792				class->rq_online(rq);
4793		}
4794	}
4795}
4796
4797static void set_rq_offline(struct rq *rq)
4798{
4799	if (rq->online) {
4800		const struct sched_class *class;
4801
4802		for_each_class(class) {
4803			if (class->rq_offline)
4804				class->rq_offline(rq);
4805		}
4806
4807		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4808		rq->online = 0;
4809	}
4810}
4811
4812/*
4813 * migration_call - callback that gets triggered when a CPU is added.
4814 * Here we can start up the necessary migration thread for the new CPU.
4815 */
4816static int
4817migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4818{
4819	int cpu = (long)hcpu;
4820	unsigned long flags;
4821	struct rq *rq = cpu_rq(cpu);
4822
4823	switch (action & ~CPU_TASKS_FROZEN) {
4824
4825	case CPU_UP_PREPARE:
4826		rq->calc_load_update = calc_load_update;
4827		break;
4828
4829	case CPU_ONLINE:
4830		/* Update our root-domain */
4831		raw_spin_lock_irqsave(&rq->lock, flags);
4832		if (rq->rd) {
4833			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4834
4835			set_rq_online(rq);
4836		}
4837		raw_spin_unlock_irqrestore(&rq->lock, flags);
4838		break;
4839
4840#ifdef CONFIG_HOTPLUG_CPU
4841	case CPU_DYING:
4842		sched_ttwu_pending();
4843		/* Update our root-domain */
4844		raw_spin_lock_irqsave(&rq->lock, flags);
4845		if (rq->rd) {
4846			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4847			set_rq_offline(rq);
4848		}
4849		migrate_tasks(cpu);
4850		BUG_ON(rq->nr_running != 1); /* the migration thread */
4851		raw_spin_unlock_irqrestore(&rq->lock, flags);
4852		break;
4853
4854	case CPU_DEAD:
4855		calc_load_migrate(rq);
4856		break;
4857#endif
4858	}
4859
4860	update_max_interval();
4861
4862	return NOTIFY_OK;
4863}
4864
4865/*
4866 * Register at high priority so that task migration (migrate_all_tasks)
4867 * happens before everything else.  This has to be lower priority than
4868 * the notifier in the perf_event subsystem, though.
4869 */
4870static struct notifier_block migration_notifier = {
4871	.notifier_call = migration_call,
4872	.priority = CPU_PRI_MIGRATION,
4873};
4874
4875static int sched_cpu_active(struct notifier_block *nfb,
4876				      unsigned long action, void *hcpu)
4877{
4878	switch (action & ~CPU_TASKS_FROZEN) {
4879	case CPU_STARTING:
4880	case CPU_DOWN_FAILED:
4881		set_cpu_active((long)hcpu, true);
4882		return NOTIFY_OK;
4883	default:
4884		return NOTIFY_DONE;
4885	}
4886}
4887
4888static int sched_cpu_inactive(struct notifier_block *nfb,
4889					unsigned long action, void *hcpu)
4890{
4891	switch (action & ~CPU_TASKS_FROZEN) {
4892	case CPU_DOWN_PREPARE:
4893		set_cpu_active((long)hcpu, false);
4894		return NOTIFY_OK;
4895	default:
4896		return NOTIFY_DONE;
4897	}
4898}
4899
4900static int __init migration_init(void)
4901{
4902	void *cpu = (void *)(long)smp_processor_id();
4903	int err;
4904
4905	/* Initialize migration for the boot CPU */
4906	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4907	BUG_ON(err == NOTIFY_BAD);
4908	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4909	register_cpu_notifier(&migration_notifier);
4910
4911	/* Register cpu active notifiers */
4912	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4913	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4914
4915	return 0;
4916}
4917early_initcall(migration_init);
4918#endif
4919
4920#ifdef CONFIG_SMP
4921
4922static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4923
4924#ifdef CONFIG_SCHED_DEBUG
4925
4926static __read_mostly int sched_debug_enabled;
4927
4928static int __init sched_debug_setup(char *str)
4929{
4930	sched_debug_enabled = 1;
4931
4932	return 0;
4933}
4934early_param("sched_debug", sched_debug_setup);
4935
4936static inline bool sched_debug(void)
4937{
4938	return sched_debug_enabled;
4939}
4940
4941static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4942				  struct cpumask *groupmask)
4943{
4944	struct sched_group *group = sd->groups;
4945	char str[256];
4946
4947	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4948	cpumask_clear(groupmask);
4949
4950	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4951
4952	if (!(sd->flags & SD_LOAD_BALANCE)) {
4953		printk("does not load-balance\n");
4954		if (sd->parent)
4955			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4956					" has parent");
4957		return -1;
4958	}
4959
4960	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4961
4962	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4963		printk(KERN_ERR "ERROR: domain->span does not contain "
4964				"CPU%d\n", cpu);
4965	}
4966	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4967		printk(KERN_ERR "ERROR: domain->groups does not contain"
4968				" CPU%d\n", cpu);
4969	}
4970
4971	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4972	do {
4973		if (!group) {
4974			printk("\n");
4975			printk(KERN_ERR "ERROR: group is NULL\n");
4976			break;
4977		}
4978
4979		/*
4980		 * Even though we initialize ->power to something semi-sane,
4981		 * we leave power_orig unset. This allows us to detect if
4982		 * domain iteration is still funny without causing /0 traps.
4983		 */
4984		if (!group->sgp->power_orig) {
4985			printk(KERN_CONT "\n");
4986			printk(KERN_ERR "ERROR: domain->cpu_power not "
4987					"set\n");
4988			break;
4989		}
4990
4991		if (!cpumask_weight(sched_group_cpus(group))) {
4992			printk(KERN_CONT "\n");
4993			printk(KERN_ERR "ERROR: empty group\n");
4994			break;
4995		}
4996
4997		if (!(sd->flags & SD_OVERLAP) &&
4998		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4999			printk(KERN_CONT "\n");
5000			printk(KERN_ERR "ERROR: repeated CPUs\n");
5001			break;
5002		}
5003
5004		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5005
5006		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5007
5008		printk(KERN_CONT " %s", str);
5009		if (group->sgp->power != SCHED_POWER_SCALE) {
5010			printk(KERN_CONT " (cpu_power = %d)",
5011				group->sgp->power);
5012		}
5013
5014		group = group->next;
5015	} while (group != sd->groups);
5016	printk(KERN_CONT "\n");
5017
5018	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5019		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5020
5021	if (sd->parent &&
5022	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5023		printk(KERN_ERR "ERROR: parent span is not a superset "
5024			"of domain->span\n");
5025	return 0;
5026}
5027
5028static void sched_domain_debug(struct sched_domain *sd, int cpu)
5029{
5030	int level = 0;
5031
5032	if (!sched_debug_enabled)
5033		return;
5034
5035	if (!sd) {
5036		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5037		return;
5038	}
5039
5040	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5041
5042	for (;;) {
5043		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5044			break;
5045		level++;
5046		sd = sd->parent;
5047		if (!sd)
5048			break;
5049	}
5050}
5051#else /* !CONFIG_SCHED_DEBUG */
5052# define sched_domain_debug(sd, cpu) do { } while (0)
5053static inline bool sched_debug(void)
5054{
5055	return false;
5056}
5057#endif /* CONFIG_SCHED_DEBUG */
5058
5059static int sd_degenerate(struct sched_domain *sd)
5060{
5061	if (cpumask_weight(sched_domain_span(sd)) == 1)
5062		return 1;
5063
5064	/* Following flags need at least 2 groups */
5065	if (sd->flags & (SD_LOAD_BALANCE |
5066			 SD_BALANCE_NEWIDLE |
5067			 SD_BALANCE_FORK |
5068			 SD_BALANCE_EXEC |
5069			 SD_SHARE_CPUPOWER |
5070			 SD_SHARE_PKG_RESOURCES)) {
5071		if (sd->groups != sd->groups->next)
5072			return 0;
5073	}
5074
5075	/* Following flags don't use groups */
5076	if (sd->flags & (SD_WAKE_AFFINE))
5077		return 0;
5078
5079	return 1;
5080}
5081
5082static int
5083sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5084{
5085	unsigned long cflags = sd->flags, pflags = parent->flags;
5086
5087	if (sd_degenerate(parent))
5088		return 1;
5089
5090	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5091		return 0;
5092
5093	/* Flags needing groups don't count if only 1 group in parent */
5094	if (parent->groups == parent->groups->next) {
5095		pflags &= ~(SD_LOAD_BALANCE |
5096				SD_BALANCE_NEWIDLE |
5097				SD_BALANCE_FORK |
5098				SD_BALANCE_EXEC |
5099				SD_SHARE_CPUPOWER |
5100				SD_SHARE_PKG_RESOURCES |
5101				SD_PREFER_SIBLING);
5102		if (nr_node_ids == 1)
5103			pflags &= ~SD_SERIALIZE;
5104	}
5105	if (~cflags & pflags)
5106		return 0;
5107
5108	return 1;
5109}
5110
5111static void free_rootdomain(struct rcu_head *rcu)
5112{
5113	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5114
5115	cpupri_cleanup(&rd->cpupri);
5116	free_cpumask_var(rd->rto_mask);
5117	free_cpumask_var(rd->online);
5118	free_cpumask_var(rd->span);
5119	kfree(rd);
5120}
5121
5122static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5123{
5124	struct root_domain *old_rd = NULL;
5125	unsigned long flags;
5126
5127	raw_spin_lock_irqsave(&rq->lock, flags);
5128
5129	if (rq->rd) {
5130		old_rd = rq->rd;
5131
5132		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5133			set_rq_offline(rq);
5134
5135		cpumask_clear_cpu(rq->cpu, old_rd->span);
5136
5137		/*
5138		 * If we dont want to free the old_rt yet then
5139		 * set old_rd to NULL to skip the freeing later
5140		 * in this function:
5141		 */
5142		if (!atomic_dec_and_test(&old_rd->refcount))
5143			old_rd = NULL;
5144	}
5145
5146	atomic_inc(&rd->refcount);
5147	rq->rd = rd;
5148
5149	cpumask_set_cpu(rq->cpu, rd->span);
5150	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5151		set_rq_online(rq);
5152
5153	raw_spin_unlock_irqrestore(&rq->lock, flags);
5154
5155	if (old_rd)
5156		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5157}
5158
5159static int init_rootdomain(struct root_domain *rd)
5160{
5161	memset(rd, 0, sizeof(*rd));
5162
5163	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5164		goto out;
5165	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5166		goto free_span;
5167	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5168		goto free_online;
5169
5170	if (cpupri_init(&rd->cpupri) != 0)
5171		goto free_rto_mask;
5172	return 0;
5173
5174free_rto_mask:
5175	free_cpumask_var(rd->rto_mask);
5176free_online:
5177	free_cpumask_var(rd->online);
5178free_span:
5179	free_cpumask_var(rd->span);
5180out:
5181	return -ENOMEM;
5182}
5183
5184/*
5185 * By default the system creates a single root-domain with all cpus as
5186 * members (mimicking the global state we have today).
5187 */
5188struct root_domain def_root_domain;
5189
5190static void init_defrootdomain(void)
5191{
5192	init_rootdomain(&def_root_domain);
5193
5194	atomic_set(&def_root_domain.refcount, 1);
5195}
5196
5197static struct root_domain *alloc_rootdomain(void)
5198{
5199	struct root_domain *rd;
5200
5201	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5202	if (!rd)
5203		return NULL;
5204
5205	if (init_rootdomain(rd) != 0) {
5206		kfree(rd);
5207		return NULL;
5208	}
5209
5210	return rd;
5211}
5212
5213static void free_sched_groups(struct sched_group *sg, int free_sgp)
5214{
5215	struct sched_group *tmp, *first;
5216
5217	if (!sg)
5218		return;
5219
5220	first = sg;
5221	do {
5222		tmp = sg->next;
5223
5224		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5225			kfree(sg->sgp);
5226
5227		kfree(sg);
5228		sg = tmp;
5229	} while (sg != first);
5230}
5231
5232static void free_sched_domain(struct rcu_head *rcu)
5233{
5234	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5235
5236	/*
5237	 * If its an overlapping domain it has private groups, iterate and
5238	 * nuke them all.
5239	 */
5240	if (sd->flags & SD_OVERLAP) {
5241		free_sched_groups(sd->groups, 1);
5242	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5243		kfree(sd->groups->sgp);
5244		kfree(sd->groups);
5245	}
5246	kfree(sd);
5247}
5248
5249static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5250{
5251	call_rcu(&sd->rcu, free_sched_domain);
5252}
5253
5254static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5255{
5256	for (; sd; sd = sd->parent)
5257		destroy_sched_domain(sd, cpu);
5258}
5259
5260/*
5261 * Keep a special pointer to the highest sched_domain that has
5262 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5263 * allows us to avoid some pointer chasing select_idle_sibling().
5264 *
5265 * Also keep a unique ID per domain (we use the first cpu number in
5266 * the cpumask of the domain), this allows us to quickly tell if
5267 * two cpus are in the same cache domain, see cpus_share_cache().
5268 */
5269DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5270DEFINE_PER_CPU(int, sd_llc_size);
5271DEFINE_PER_CPU(int, sd_llc_id);
5272DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5273
5274static void update_top_cache_domain(int cpu)
5275{
5276	struct sched_domain *sd;
5277	int id = cpu;
5278	int size = 1;
5279
5280	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5281	if (sd) {
5282		id = cpumask_first(sched_domain_span(sd));
5283		size = cpumask_weight(sched_domain_span(sd));
5284	}
5285
5286	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5287	per_cpu(sd_llc_size, cpu) = size;
5288	per_cpu(sd_llc_id, cpu) = id;
5289
5290	sd = lowest_flag_domain(cpu, SD_NUMA);
5291	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5292}
5293
5294/*
5295 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5296 * hold the hotplug lock.
5297 */
5298static void
5299cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5300{
5301	struct rq *rq = cpu_rq(cpu);
5302	struct sched_domain *tmp;
5303
5304	/* Remove the sched domains which do not contribute to scheduling. */
5305	for (tmp = sd; tmp; ) {
5306		struct sched_domain *parent = tmp->parent;
5307		if (!parent)
5308			break;
5309
5310		if (sd_parent_degenerate(tmp, parent)) {
5311			tmp->parent = parent->parent;
5312			if (parent->parent)
5313				parent->parent->child = tmp;
5314			/*
5315			 * Transfer SD_PREFER_SIBLING down in case of a
5316			 * degenerate parent; the spans match for this
5317			 * so the property transfers.
5318			 */
5319			if (parent->flags & SD_PREFER_SIBLING)
5320				tmp->flags |= SD_PREFER_SIBLING;
5321			destroy_sched_domain(parent, cpu);
5322		} else
5323			tmp = tmp->parent;
5324	}
5325
5326	if (sd && sd_degenerate(sd)) {
5327		tmp = sd;
5328		sd = sd->parent;
5329		destroy_sched_domain(tmp, cpu);
5330		if (sd)
5331			sd->child = NULL;
5332	}
5333
5334	sched_domain_debug(sd, cpu);
5335
5336	rq_attach_root(rq, rd);
5337	tmp = rq->sd;
5338	rcu_assign_pointer(rq->sd, sd);
5339	destroy_sched_domains(tmp, cpu);
5340
5341	update_top_cache_domain(cpu);
5342}
5343
5344/* cpus with isolated domains */
5345static cpumask_var_t cpu_isolated_map;
5346
5347/* Setup the mask of cpus configured for isolated domains */
5348static int __init isolated_cpu_setup(char *str)
5349{
5350	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5351	cpulist_parse(str, cpu_isolated_map);
5352	return 1;
5353}
5354
5355__setup("isolcpus=", isolated_cpu_setup);
5356
5357static const struct cpumask *cpu_cpu_mask(int cpu)
5358{
5359	return cpumask_of_node(cpu_to_node(cpu));
5360}
5361
5362struct sd_data {
5363	struct sched_domain **__percpu sd;
5364	struct sched_group **__percpu sg;
5365	struct sched_group_power **__percpu sgp;
5366};
5367
5368struct s_data {
5369	struct sched_domain ** __percpu sd;
5370	struct root_domain	*rd;
5371};
5372
5373enum s_alloc {
5374	sa_rootdomain,
5375	sa_sd,
5376	sa_sd_storage,
5377	sa_none,
5378};
5379
5380struct sched_domain_topology_level;
5381
5382typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5383typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5384
5385#define SDTL_OVERLAP	0x01
5386
5387struct sched_domain_topology_level {
5388	sched_domain_init_f init;
5389	sched_domain_mask_f mask;
5390	int		    flags;
5391	int		    numa_level;
5392	struct sd_data      data;
5393};
5394
5395/*
5396 * Build an iteration mask that can exclude certain CPUs from the upwards
5397 * domain traversal.
5398 *
5399 * Asymmetric node setups can result in situations where the domain tree is of
5400 * unequal depth, make sure to skip domains that already cover the entire
5401 * range.
5402 *
5403 * In that case build_sched_domains() will have terminated the iteration early
5404 * and our sibling sd spans will be empty. Domains should always include the
5405 * cpu they're built on, so check that.
5406 *
5407 */
5408static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5409{
5410	const struct cpumask *span = sched_domain_span(sd);
5411	struct sd_data *sdd = sd->private;
5412	struct sched_domain *sibling;
5413	int i;
5414
5415	for_each_cpu(i, span) {
5416		sibling = *per_cpu_ptr(sdd->sd, i);
5417		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5418			continue;
5419
5420		cpumask_set_cpu(i, sched_group_mask(sg));
5421	}
5422}
5423
5424/*
5425 * Return the canonical balance cpu for this group, this is the first cpu
5426 * of this group that's also in the iteration mask.
5427 */
5428int group_balance_cpu(struct sched_group *sg)
5429{
5430	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5431}
5432
5433static int
5434build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5435{
5436	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5437	const struct cpumask *span = sched_domain_span(sd);
5438	struct cpumask *covered = sched_domains_tmpmask;
5439	struct sd_data *sdd = sd->private;
5440	struct sched_domain *child;
5441	int i;
5442
5443	cpumask_clear(covered);
5444
5445	for_each_cpu(i, span) {
5446		struct cpumask *sg_span;
5447
5448		if (cpumask_test_cpu(i, covered))
5449			continue;
5450
5451		child = *per_cpu_ptr(sdd->sd, i);
5452
5453		/* See the comment near build_group_mask(). */
5454		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5455			continue;
5456
5457		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5458				GFP_KERNEL, cpu_to_node(cpu));
5459
5460		if (!sg)
5461			goto fail;
5462
5463		sg_span = sched_group_cpus(sg);
5464		if (child->child) {
5465			child = child->child;
5466			cpumask_copy(sg_span, sched_domain_span(child));
5467		} else
5468			cpumask_set_cpu(i, sg_span);
5469
5470		cpumask_or(covered, covered, sg_span);
5471
5472		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5473		if (atomic_inc_return(&sg->sgp->ref) == 1)
5474			build_group_mask(sd, sg);
5475
5476		/*
5477		 * Initialize sgp->power such that even if we mess up the
5478		 * domains and no possible iteration will get us here, we won't
5479		 * die on a /0 trap.
5480		 */
5481		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5482
5483		/*
5484		 * Make sure the first group of this domain contains the
5485		 * canonical balance cpu. Otherwise the sched_domain iteration
5486		 * breaks. See update_sg_lb_stats().
5487		 */
5488		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5489		    group_balance_cpu(sg) == cpu)
5490			groups = sg;
5491
5492		if (!first)
5493			first = sg;
5494		if (last)
5495			last->next = sg;
5496		last = sg;
5497		last->next = first;
5498	}
5499	sd->groups = groups;
5500
5501	return 0;
5502
5503fail:
5504	free_sched_groups(first, 0);
5505
5506	return -ENOMEM;
5507}
5508
5509static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5510{
5511	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5512	struct sched_domain *child = sd->child;
5513
5514	if (child)
5515		cpu = cpumask_first(sched_domain_span(child));
5516
5517	if (sg) {
5518		*sg = *per_cpu_ptr(sdd->sg, cpu);
5519		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5520		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5521	}
5522
5523	return cpu;
5524}
5525
5526/*
5527 * build_sched_groups will build a circular linked list of the groups
5528 * covered by the given span, and will set each group's ->cpumask correctly,
5529 * and ->cpu_power to 0.
5530 *
5531 * Assumes the sched_domain tree is fully constructed
5532 */
5533static int
5534build_sched_groups(struct sched_domain *sd, int cpu)
5535{
5536	struct sched_group *first = NULL, *last = NULL;
5537	struct sd_data *sdd = sd->private;
5538	const struct cpumask *span = sched_domain_span(sd);
5539	struct cpumask *covered;
5540	int i;
5541
5542	get_group(cpu, sdd, &sd->groups);
5543	atomic_inc(&sd->groups->ref);
5544
5545	if (cpu != cpumask_first(span))
5546		return 0;
5547
5548	lockdep_assert_held(&sched_domains_mutex);
5549	covered = sched_domains_tmpmask;
5550
5551	cpumask_clear(covered);
5552
5553	for_each_cpu(i, span) {
5554		struct sched_group *sg;
5555		int group, j;
5556
5557		if (cpumask_test_cpu(i, covered))
5558			continue;
5559
5560		group = get_group(i, sdd, &sg);
5561		cpumask_clear(sched_group_cpus(sg));
5562		sg->sgp->power = 0;
5563		cpumask_setall(sched_group_mask(sg));
5564
5565		for_each_cpu(j, span) {
5566			if (get_group(j, sdd, NULL) != group)
5567				continue;
5568
5569			cpumask_set_cpu(j, covered);
5570			cpumask_set_cpu(j, sched_group_cpus(sg));
5571		}
5572
5573		if (!first)
5574			first = sg;
5575		if (last)
5576			last->next = sg;
5577		last = sg;
5578	}
5579	last->next = first;
5580
5581	return 0;
5582}
5583
5584/*
5585 * Initialize sched groups cpu_power.
5586 *
5587 * cpu_power indicates the capacity of sched group, which is used while
5588 * distributing the load between different sched groups in a sched domain.
5589 * Typically cpu_power for all the groups in a sched domain will be same unless
5590 * there are asymmetries in the topology. If there are asymmetries, group
5591 * having more cpu_power will pickup more load compared to the group having
5592 * less cpu_power.
5593 */
5594static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5595{
5596	struct sched_group *sg = sd->groups;
5597
5598	WARN_ON(!sg);
5599
5600	do {
5601		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5602		sg = sg->next;
5603	} while (sg != sd->groups);
5604
5605	if (cpu != group_balance_cpu(sg))
5606		return;
5607
5608	update_group_power(sd, cpu);
5609	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5610}
5611
5612int __weak arch_sd_sibling_asym_packing(void)
5613{
5614       return 0*SD_ASYM_PACKING;
5615}
5616
5617/*
5618 * Initializers for schedule domains
5619 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5620 */
5621
5622#ifdef CONFIG_SCHED_DEBUG
5623# define SD_INIT_NAME(sd, type)		sd->name = #type
5624#else
5625# define SD_INIT_NAME(sd, type)		do { } while (0)
5626#endif
5627
5628#define SD_INIT_FUNC(type)						\
5629static noinline struct sched_domain *					\
5630sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5631{									\
5632	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5633	*sd = SD_##type##_INIT;						\
5634	SD_INIT_NAME(sd, type);						\
5635	sd->private = &tl->data;					\
5636	return sd;							\
5637}
5638
5639SD_INIT_FUNC(CPU)
5640#ifdef CONFIG_SCHED_SMT
5641 SD_INIT_FUNC(SIBLING)
5642#endif
5643#ifdef CONFIG_SCHED_MC
5644 SD_INIT_FUNC(MC)
5645#endif
5646#ifdef CONFIG_SCHED_BOOK
5647 SD_INIT_FUNC(BOOK)
5648#endif
5649
5650static int default_relax_domain_level = -1;
5651int sched_domain_level_max;
5652
5653static int __init setup_relax_domain_level(char *str)
5654{
5655	if (kstrtoint(str, 0, &default_relax_domain_level))
5656		pr_warn("Unable to set relax_domain_level\n");
5657
5658	return 1;
5659}
5660__setup("relax_domain_level=", setup_relax_domain_level);
5661
5662static void set_domain_attribute(struct sched_domain *sd,
5663				 struct sched_domain_attr *attr)
5664{
5665	int request;
5666
5667	if (!attr || attr->relax_domain_level < 0) {
5668		if (default_relax_domain_level < 0)
5669			return;
5670		else
5671			request = default_relax_domain_level;
5672	} else
5673		request = attr->relax_domain_level;
5674	if (request < sd->level) {
5675		/* turn off idle balance on this domain */
5676		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5677	} else {
5678		/* turn on idle balance on this domain */
5679		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5680	}
5681}
5682
5683static void __sdt_free(const struct cpumask *cpu_map);
5684static int __sdt_alloc(const struct cpumask *cpu_map);
5685
5686static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5687				 const struct cpumask *cpu_map)
5688{
5689	switch (what) {
5690	case sa_rootdomain:
5691		if (!atomic_read(&d->rd->refcount))
5692			free_rootdomain(&d->rd->rcu); /* fall through */
5693	case sa_sd:
5694		free_percpu(d->sd); /* fall through */
5695	case sa_sd_storage:
5696		__sdt_free(cpu_map); /* fall through */
5697	case sa_none:
5698		break;
5699	}
5700}
5701
5702static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5703						   const struct cpumask *cpu_map)
5704{
5705	memset(d, 0, sizeof(*d));
5706
5707	if (__sdt_alloc(cpu_map))
5708		return sa_sd_storage;
5709	d->sd = alloc_percpu(struct sched_domain *);
5710	if (!d->sd)
5711		return sa_sd_storage;
5712	d->rd = alloc_rootdomain();
5713	if (!d->rd)
5714		return sa_sd;
5715	return sa_rootdomain;
5716}
5717
5718/*
5719 * NULL the sd_data elements we've used to build the sched_domain and
5720 * sched_group structure so that the subsequent __free_domain_allocs()
5721 * will not free the data we're using.
5722 */
5723static void claim_allocations(int cpu, struct sched_domain *sd)
5724{
5725	struct sd_data *sdd = sd->private;
5726
5727	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5728	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5729
5730	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5731		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5732
5733	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5734		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5735}
5736
5737#ifdef CONFIG_SCHED_SMT
5738static const struct cpumask *cpu_smt_mask(int cpu)
5739{
5740	return topology_thread_cpumask(cpu);
5741}
5742#endif
5743
5744/*
5745 * Topology list, bottom-up.
5746 */
5747static struct sched_domain_topology_level default_topology[] = {
5748#ifdef CONFIG_SCHED_SMT
5749	{ sd_init_SIBLING, cpu_smt_mask, },
5750#endif
5751#ifdef CONFIG_SCHED_MC
5752	{ sd_init_MC, cpu_coregroup_mask, },
5753#endif
5754#ifdef CONFIG_SCHED_BOOK
5755	{ sd_init_BOOK, cpu_book_mask, },
5756#endif
5757	{ sd_init_CPU, cpu_cpu_mask, },
5758	{ NULL, },
5759};
5760
5761static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5762
5763#define for_each_sd_topology(tl)			\
5764	for (tl = sched_domain_topology; tl->init; tl++)
5765
5766#ifdef CONFIG_NUMA
5767
5768static int sched_domains_numa_levels;
5769static int *sched_domains_numa_distance;
5770static struct cpumask ***sched_domains_numa_masks;
5771static int sched_domains_curr_level;
5772
5773static inline int sd_local_flags(int level)
5774{
5775	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5776		return 0;
5777
5778	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5779}
5780
5781static struct sched_domain *
5782sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5783{
5784	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5785	int level = tl->numa_level;
5786	int sd_weight = cpumask_weight(
5787			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5788
5789	*sd = (struct sched_domain){
5790		.min_interval		= sd_weight,
5791		.max_interval		= 2*sd_weight,
5792		.busy_factor		= 32,
5793		.imbalance_pct		= 125,
5794		.cache_nice_tries	= 2,
5795		.busy_idx		= 3,
5796		.idle_idx		= 2,
5797		.newidle_idx		= 0,
5798		.wake_idx		= 0,
5799		.forkexec_idx		= 0,
5800
5801		.flags			= 1*SD_LOAD_BALANCE
5802					| 1*SD_BALANCE_NEWIDLE
5803					| 0*SD_BALANCE_EXEC
5804					| 0*SD_BALANCE_FORK
5805					| 0*SD_BALANCE_WAKE
5806					| 0*SD_WAKE_AFFINE
5807					| 0*SD_SHARE_CPUPOWER
5808					| 0*SD_SHARE_PKG_RESOURCES
5809					| 1*SD_SERIALIZE
5810					| 0*SD_PREFER_SIBLING
5811					| 1*SD_NUMA
5812					| sd_local_flags(level)
5813					,
5814		.last_balance		= jiffies,
5815		.balance_interval	= sd_weight,
5816	};
5817	SD_INIT_NAME(sd, NUMA);
5818	sd->private = &tl->data;
5819
5820	/*
5821	 * Ugly hack to pass state to sd_numa_mask()...
5822	 */
5823	sched_domains_curr_level = tl->numa_level;
5824
5825	return sd;
5826}
5827
5828static const struct cpumask *sd_numa_mask(int cpu)
5829{
5830	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5831}
5832
5833static void sched_numa_warn(const char *str)
5834{
5835	static int done = false;
5836	int i,j;
5837
5838	if (done)
5839		return;
5840
5841	done = true;
5842
5843	printk(KERN_WARNING "ERROR: %s\n\n", str);
5844
5845	for (i = 0; i < nr_node_ids; i++) {
5846		printk(KERN_WARNING "  ");
5847		for (j = 0; j < nr_node_ids; j++)
5848			printk(KERN_CONT "%02d ", node_distance(i,j));
5849		printk(KERN_CONT "\n");
5850	}
5851	printk(KERN_WARNING "\n");
5852}
5853
5854static bool find_numa_distance(int distance)
5855{
5856	int i;
5857
5858	if (distance == node_distance(0, 0))
5859		return true;
5860
5861	for (i = 0; i < sched_domains_numa_levels; i++) {
5862		if (sched_domains_numa_distance[i] == distance)
5863			return true;
5864	}
5865
5866	return false;
5867}
5868
5869static void sched_init_numa(void)
5870{
5871	int next_distance, curr_distance = node_distance(0, 0);
5872	struct sched_domain_topology_level *tl;
5873	int level = 0;
5874	int i, j, k;
5875
5876	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5877	if (!sched_domains_numa_distance)
5878		return;
5879
5880	/*
5881	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5882	 * unique distances in the node_distance() table.
5883	 *
5884	 * Assumes node_distance(0,j) includes all distances in
5885	 * node_distance(i,j) in order to avoid cubic time.
5886	 */
5887	next_distance = curr_distance;
5888	for (i = 0; i < nr_node_ids; i++) {
5889		for (j = 0; j < nr_node_ids; j++) {
5890			for (k = 0; k < nr_node_ids; k++) {
5891				int distance = node_distance(i, k);
5892
5893				if (distance > curr_distance &&
5894				    (distance < next_distance ||
5895				     next_distance == curr_distance))
5896					next_distance = distance;
5897
5898				/*
5899				 * While not a strong assumption it would be nice to know
5900				 * about cases where if node A is connected to B, B is not
5901				 * equally connected to A.
5902				 */
5903				if (sched_debug() && node_distance(k, i) != distance)
5904					sched_numa_warn("Node-distance not symmetric");
5905
5906				if (sched_debug() && i && !find_numa_distance(distance))
5907					sched_numa_warn("Node-0 not representative");
5908			}
5909			if (next_distance != curr_distance) {
5910				sched_domains_numa_distance[level++] = next_distance;
5911				sched_domains_numa_levels = level;
5912				curr_distance = next_distance;
5913			} else break;
5914		}
5915
5916		/*
5917		 * In case of sched_debug() we verify the above assumption.
5918		 */
5919		if (!sched_debug())
5920			break;
5921	}
5922	/*
5923	 * 'level' contains the number of unique distances, excluding the
5924	 * identity distance node_distance(i,i).
5925	 *
5926	 * The sched_domains_numa_distance[] array includes the actual distance
5927	 * numbers.
5928	 */
5929
5930	/*
5931	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5932	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5933	 * the array will contain less then 'level' members. This could be
5934	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5935	 * in other functions.
5936	 *
5937	 * We reset it to 'level' at the end of this function.
5938	 */
5939	sched_domains_numa_levels = 0;
5940
5941	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5942	if (!sched_domains_numa_masks)
5943		return;
5944
5945	/*
5946	 * Now for each level, construct a mask per node which contains all
5947	 * cpus of nodes that are that many hops away from us.
5948	 */
5949	for (i = 0; i < level; i++) {
5950		sched_domains_numa_masks[i] =
5951			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5952		if (!sched_domains_numa_masks[i])
5953			return;
5954
5955		for (j = 0; j < nr_node_ids; j++) {
5956			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5957			if (!mask)
5958				return;
5959
5960			sched_domains_numa_masks[i][j] = mask;
5961
5962			for (k = 0; k < nr_node_ids; k++) {
5963				if (node_distance(j, k) > sched_domains_numa_distance[i])
5964					continue;
5965
5966				cpumask_or(mask, mask, cpumask_of_node(k));
5967			}
5968		}
5969	}
5970
5971	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5972			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5973	if (!tl)
5974		return;
5975
5976	/*
5977	 * Copy the default topology bits..
5978	 */
5979	for (i = 0; default_topology[i].init; i++)
5980		tl[i] = default_topology[i];
5981
5982	/*
5983	 * .. and append 'j' levels of NUMA goodness.
5984	 */
5985	for (j = 0; j < level; i++, j++) {
5986		tl[i] = (struct sched_domain_topology_level){
5987			.init = sd_numa_init,
5988			.mask = sd_numa_mask,
5989			.flags = SDTL_OVERLAP,
5990			.numa_level = j,
5991		};
5992	}
5993
5994	sched_domain_topology = tl;
5995
5996	sched_domains_numa_levels = level;
5997}
5998
5999static void sched_domains_numa_masks_set(int cpu)
6000{
6001	int i, j;
6002	int node = cpu_to_node(cpu);
6003
6004	for (i = 0; i < sched_domains_numa_levels; i++) {
6005		for (j = 0; j < nr_node_ids; j++) {
6006			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6007				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6008		}
6009	}
6010}
6011
6012static void sched_domains_numa_masks_clear(int cpu)
6013{
6014	int i, j;
6015	for (i = 0; i < sched_domains_numa_levels; i++) {
6016		for (j = 0; j < nr_node_ids; j++)
6017			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6018	}
6019}
6020
6021/*
6022 * Update sched_domains_numa_masks[level][node] array when new cpus
6023 * are onlined.
6024 */
6025static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6026					   unsigned long action,
6027					   void *hcpu)
6028{
6029	int cpu = (long)hcpu;
6030
6031	switch (action & ~CPU_TASKS_FROZEN) {
6032	case CPU_ONLINE:
6033		sched_domains_numa_masks_set(cpu);
6034		break;
6035
6036	case CPU_DEAD:
6037		sched_domains_numa_masks_clear(cpu);
6038		break;
6039
6040	default:
6041		return NOTIFY_DONE;
6042	}
6043
6044	return NOTIFY_OK;
6045}
6046#else
6047static inline void sched_init_numa(void)
6048{
6049}
6050
6051static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6052					   unsigned long action,
6053					   void *hcpu)
6054{
6055	return 0;
6056}
6057#endif /* CONFIG_NUMA */
6058
6059static int __sdt_alloc(const struct cpumask *cpu_map)
6060{
6061	struct sched_domain_topology_level *tl;
6062	int j;
6063
6064	for_each_sd_topology(tl) {
6065		struct sd_data *sdd = &tl->data;
6066
6067		sdd->sd = alloc_percpu(struct sched_domain *);
6068		if (!sdd->sd)
6069			return -ENOMEM;
6070
6071		sdd->sg = alloc_percpu(struct sched_group *);
6072		if (!sdd->sg)
6073			return -ENOMEM;
6074
6075		sdd->sgp = alloc_percpu(struct sched_group_power *);
6076		if (!sdd->sgp)
6077			return -ENOMEM;
6078
6079		for_each_cpu(j, cpu_map) {
6080			struct sched_domain *sd;
6081			struct sched_group *sg;
6082			struct sched_group_power *sgp;
6083
6084		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6085					GFP_KERNEL, cpu_to_node(j));
6086			if (!sd)
6087				return -ENOMEM;
6088
6089			*per_cpu_ptr(sdd->sd, j) = sd;
6090
6091			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6092					GFP_KERNEL, cpu_to_node(j));
6093			if (!sg)
6094				return -ENOMEM;
6095
6096			sg->next = sg;
6097
6098			*per_cpu_ptr(sdd->sg, j) = sg;
6099
6100			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6101					GFP_KERNEL, cpu_to_node(j));
6102			if (!sgp)
6103				return -ENOMEM;
6104
6105			*per_cpu_ptr(sdd->sgp, j) = sgp;
6106		}
6107	}
6108
6109	return 0;
6110}
6111
6112static void __sdt_free(const struct cpumask *cpu_map)
6113{
6114	struct sched_domain_topology_level *tl;
6115	int j;
6116
6117	for_each_sd_topology(tl) {
6118		struct sd_data *sdd = &tl->data;
6119
6120		for_each_cpu(j, cpu_map) {
6121			struct sched_domain *sd;
6122
6123			if (sdd->sd) {
6124				sd = *per_cpu_ptr(sdd->sd, j);
6125				if (sd && (sd->flags & SD_OVERLAP))
6126					free_sched_groups(sd->groups, 0);
6127				kfree(*per_cpu_ptr(sdd->sd, j));
6128			}
6129
6130			if (sdd->sg)
6131				kfree(*per_cpu_ptr(sdd->sg, j));
6132			if (sdd->sgp)
6133				kfree(*per_cpu_ptr(sdd->sgp, j));
6134		}
6135		free_percpu(sdd->sd);
6136		sdd->sd = NULL;
6137		free_percpu(sdd->sg);
6138		sdd->sg = NULL;
6139		free_percpu(sdd->sgp);
6140		sdd->sgp = NULL;
6141	}
6142}
6143
6144struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6145		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6146		struct sched_domain *child, int cpu)
6147{
6148	struct sched_domain *sd = tl->init(tl, cpu);
6149	if (!sd)
6150		return child;
6151
6152	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6153	if (child) {
6154		sd->level = child->level + 1;
6155		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6156		child->parent = sd;
6157		sd->child = child;
6158	}
6159	set_domain_attribute(sd, attr);
6160
6161	return sd;
6162}
6163
6164/*
6165 * Build sched domains for a given set of cpus and attach the sched domains
6166 * to the individual cpus
6167 */
6168static int build_sched_domains(const struct cpumask *cpu_map,
6169			       struct sched_domain_attr *attr)
6170{
6171	enum s_alloc alloc_state;
6172	struct sched_domain *sd;
6173	struct s_data d;
6174	int i, ret = -ENOMEM;
6175
6176	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6177	if (alloc_state != sa_rootdomain)
6178		goto error;
6179
6180	/* Set up domains for cpus specified by the cpu_map. */
6181	for_each_cpu(i, cpu_map) {
6182		struct sched_domain_topology_level *tl;
6183
6184		sd = NULL;
6185		for_each_sd_topology(tl) {
6186			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6187			if (tl == sched_domain_topology)
6188				*per_cpu_ptr(d.sd, i) = sd;
6189			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6190				sd->flags |= SD_OVERLAP;
6191			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6192				break;
6193		}
6194	}
6195
6196	/* Build the groups for the domains */
6197	for_each_cpu(i, cpu_map) {
6198		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6199			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6200			if (sd->flags & SD_OVERLAP) {
6201				if (build_overlap_sched_groups(sd, i))
6202					goto error;
6203			} else {
6204				if (build_sched_groups(sd, i))
6205					goto error;
6206			}
6207		}
6208	}
6209
6210	/* Calculate CPU power for physical packages and nodes */
6211	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6212		if (!cpumask_test_cpu(i, cpu_map))
6213			continue;
6214
6215		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6216			claim_allocations(i, sd);
6217			init_sched_groups_power(i, sd);
6218		}
6219	}
6220
6221	/* Attach the domains */
6222	rcu_read_lock();
6223	for_each_cpu(i, cpu_map) {
6224		sd = *per_cpu_ptr(d.sd, i);
6225		cpu_attach_domain(sd, d.rd, i);
6226	}
6227	rcu_read_unlock();
6228
6229	ret = 0;
6230error:
6231	__free_domain_allocs(&d, alloc_state, cpu_map);
6232	return ret;
6233}
6234
6235static cpumask_var_t *doms_cur;	/* current sched domains */
6236static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6237static struct sched_domain_attr *dattr_cur;
6238				/* attribues of custom domains in 'doms_cur' */
6239
6240/*
6241 * Special case: If a kmalloc of a doms_cur partition (array of
6242 * cpumask) fails, then fallback to a single sched domain,
6243 * as determined by the single cpumask fallback_doms.
6244 */
6245static cpumask_var_t fallback_doms;
6246
6247/*
6248 * arch_update_cpu_topology lets virtualized architectures update the
6249 * cpu core maps. It is supposed to return 1 if the topology changed
6250 * or 0 if it stayed the same.
6251 */
6252int __attribute__((weak)) arch_update_cpu_topology(void)
6253{
6254	return 0;
6255}
6256
6257cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6258{
6259	int i;
6260	cpumask_var_t *doms;
6261
6262	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6263	if (!doms)
6264		return NULL;
6265	for (i = 0; i < ndoms; i++) {
6266		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6267			free_sched_domains(doms, i);
6268			return NULL;
6269		}
6270	}
6271	return doms;
6272}
6273
6274void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6275{
6276	unsigned int i;
6277	for (i = 0; i < ndoms; i++)
6278		free_cpumask_var(doms[i]);
6279	kfree(doms);
6280}
6281
6282/*
6283 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6284 * For now this just excludes isolated cpus, but could be used to
6285 * exclude other special cases in the future.
6286 */
6287static int init_sched_domains(const struct cpumask *cpu_map)
6288{
6289	int err;
6290
6291	arch_update_cpu_topology();
6292	ndoms_cur = 1;
6293	doms_cur = alloc_sched_domains(ndoms_cur);
6294	if (!doms_cur)
6295		doms_cur = &fallback_doms;
6296	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6297	err = build_sched_domains(doms_cur[0], NULL);
6298	register_sched_domain_sysctl();
6299
6300	return err;
6301}
6302
6303/*
6304 * Detach sched domains from a group of cpus specified in cpu_map
6305 * These cpus will now be attached to the NULL domain
6306 */
6307static void detach_destroy_domains(const struct cpumask *cpu_map)
6308{
6309	int i;
6310
6311	rcu_read_lock();
6312	for_each_cpu(i, cpu_map)
6313		cpu_attach_domain(NULL, &def_root_domain, i);
6314	rcu_read_unlock();
6315}
6316
6317/* handle null as "default" */
6318static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6319			struct sched_domain_attr *new, int idx_new)
6320{
6321	struct sched_domain_attr tmp;
6322
6323	/* fast path */
6324	if (!new && !cur)
6325		return 1;
6326
6327	tmp = SD_ATTR_INIT;
6328	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6329			new ? (new + idx_new) : &tmp,
6330			sizeof(struct sched_domain_attr));
6331}
6332
6333/*
6334 * Partition sched domains as specified by the 'ndoms_new'
6335 * cpumasks in the array doms_new[] of cpumasks. This compares
6336 * doms_new[] to the current sched domain partitioning, doms_cur[].
6337 * It destroys each deleted domain and builds each new domain.
6338 *
6339 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6340 * The masks don't intersect (don't overlap.) We should setup one
6341 * sched domain for each mask. CPUs not in any of the cpumasks will
6342 * not be load balanced. If the same cpumask appears both in the
6343 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6344 * it as it is.
6345 *
6346 * The passed in 'doms_new' should be allocated using
6347 * alloc_sched_domains.  This routine takes ownership of it and will
6348 * free_sched_domains it when done with it. If the caller failed the
6349 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6350 * and partition_sched_domains() will fallback to the single partition
6351 * 'fallback_doms', it also forces the domains to be rebuilt.
6352 *
6353 * If doms_new == NULL it will be replaced with cpu_online_mask.
6354 * ndoms_new == 0 is a special case for destroying existing domains,
6355 * and it will not create the default domain.
6356 *
6357 * Call with hotplug lock held
6358 */
6359void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6360			     struct sched_domain_attr *dattr_new)
6361{
6362	int i, j, n;
6363	int new_topology;
6364
6365	mutex_lock(&sched_domains_mutex);
6366
6367	/* always unregister in case we don't destroy any domains */
6368	unregister_sched_domain_sysctl();
6369
6370	/* Let architecture update cpu core mappings. */
6371	new_topology = arch_update_cpu_topology();
6372
6373	n = doms_new ? ndoms_new : 0;
6374
6375	/* Destroy deleted domains */
6376	for (i = 0; i < ndoms_cur; i++) {
6377		for (j = 0; j < n && !new_topology; j++) {
6378			if (cpumask_equal(doms_cur[i], doms_new[j])
6379			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6380				goto match1;
6381		}
6382		/* no match - a current sched domain not in new doms_new[] */
6383		detach_destroy_domains(doms_cur[i]);
6384match1:
6385		;
6386	}
6387
6388	n = ndoms_cur;
6389	if (doms_new == NULL) {
6390		n = 0;
6391		doms_new = &fallback_doms;
6392		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6393		WARN_ON_ONCE(dattr_new);
6394	}
6395
6396	/* Build new domains */
6397	for (i = 0; i < ndoms_new; i++) {
6398		for (j = 0; j < n && !new_topology; j++) {
6399			if (cpumask_equal(doms_new[i], doms_cur[j])
6400			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6401				goto match2;
6402		}
6403		/* no match - add a new doms_new */
6404		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6405match2:
6406		;
6407	}
6408
6409	/* Remember the new sched domains */
6410	if (doms_cur != &fallback_doms)
6411		free_sched_domains(doms_cur, ndoms_cur);
6412	kfree(dattr_cur);	/* kfree(NULL) is safe */
6413	doms_cur = doms_new;
6414	dattr_cur = dattr_new;
6415	ndoms_cur = ndoms_new;
6416
6417	register_sched_domain_sysctl();
6418
6419	mutex_unlock(&sched_domains_mutex);
6420}
6421
6422static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6423
6424/*
6425 * Update cpusets according to cpu_active mask.  If cpusets are
6426 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6427 * around partition_sched_domains().
6428 *
6429 * If we come here as part of a suspend/resume, don't touch cpusets because we
6430 * want to restore it back to its original state upon resume anyway.
6431 */
6432static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6433			     void *hcpu)
6434{
6435	switch (action) {
6436	case CPU_ONLINE_FROZEN:
6437	case CPU_DOWN_FAILED_FROZEN:
6438
6439		/*
6440		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6441		 * resume sequence. As long as this is not the last online
6442		 * operation in the resume sequence, just build a single sched
6443		 * domain, ignoring cpusets.
6444		 */
6445		num_cpus_frozen--;
6446		if (likely(num_cpus_frozen)) {
6447			partition_sched_domains(1, NULL, NULL);
6448			break;
6449		}
6450
6451		/*
6452		 * This is the last CPU online operation. So fall through and
6453		 * restore the original sched domains by considering the
6454		 * cpuset configurations.
6455		 */
6456
6457	case CPU_ONLINE:
6458	case CPU_DOWN_FAILED:
6459		cpuset_update_active_cpus(true);
6460		break;
6461	default:
6462		return NOTIFY_DONE;
6463	}
6464	return NOTIFY_OK;
6465}
6466
6467static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6468			       void *hcpu)
6469{
6470	switch (action) {
6471	case CPU_DOWN_PREPARE:
6472		cpuset_update_active_cpus(false);
6473		break;
6474	case CPU_DOWN_PREPARE_FROZEN:
6475		num_cpus_frozen++;
6476		partition_sched_domains(1, NULL, NULL);
6477		break;
6478	default:
6479		return NOTIFY_DONE;
6480	}
6481	return NOTIFY_OK;
6482}
6483
6484void __init sched_init_smp(void)
6485{
6486	cpumask_var_t non_isolated_cpus;
6487
6488	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6489	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6490
6491	sched_init_numa();
6492
6493	get_online_cpus();
6494	mutex_lock(&sched_domains_mutex);
6495	init_sched_domains(cpu_active_mask);
6496	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6497	if (cpumask_empty(non_isolated_cpus))
6498		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6499	mutex_unlock(&sched_domains_mutex);
6500	put_online_cpus();
6501
6502	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6503	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6504	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6505
6506	init_hrtick();
6507
6508	/* Move init over to a non-isolated CPU */
6509	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6510		BUG();
6511	sched_init_granularity();
6512	free_cpumask_var(non_isolated_cpus);
6513
6514	init_sched_rt_class();
6515}
6516#else
6517void __init sched_init_smp(void)
6518{
6519	sched_init_granularity();
6520}
6521#endif /* CONFIG_SMP */
6522
6523const_debug unsigned int sysctl_timer_migration = 1;
6524
6525int in_sched_functions(unsigned long addr)
6526{
6527	return in_lock_functions(addr) ||
6528		(addr >= (unsigned long)__sched_text_start
6529		&& addr < (unsigned long)__sched_text_end);
6530}
6531
6532#ifdef CONFIG_CGROUP_SCHED
6533/*
6534 * Default task group.
6535 * Every task in system belongs to this group at bootup.
6536 */
6537struct task_group root_task_group;
6538LIST_HEAD(task_groups);
6539#endif
6540
6541DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6542
6543void __init sched_init(void)
6544{
6545	int i, j;
6546	unsigned long alloc_size = 0, ptr;
6547
6548#ifdef CONFIG_FAIR_GROUP_SCHED
6549	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6550#endif
6551#ifdef CONFIG_RT_GROUP_SCHED
6552	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6553#endif
6554#ifdef CONFIG_CPUMASK_OFFSTACK
6555	alloc_size += num_possible_cpus() * cpumask_size();
6556#endif
6557	if (alloc_size) {
6558		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6559
6560#ifdef CONFIG_FAIR_GROUP_SCHED
6561		root_task_group.se = (struct sched_entity **)ptr;
6562		ptr += nr_cpu_ids * sizeof(void **);
6563
6564		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6565		ptr += nr_cpu_ids * sizeof(void **);
6566
6567#endif /* CONFIG_FAIR_GROUP_SCHED */
6568#ifdef CONFIG_RT_GROUP_SCHED
6569		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6570		ptr += nr_cpu_ids * sizeof(void **);
6571
6572		root_task_group.rt_rq = (struct rt_rq **)ptr;
6573		ptr += nr_cpu_ids * sizeof(void **);
6574
6575#endif /* CONFIG_RT_GROUP_SCHED */
6576#ifdef CONFIG_CPUMASK_OFFSTACK
6577		for_each_possible_cpu(i) {
6578			per_cpu(load_balance_mask, i) = (void *)ptr;
6579			ptr += cpumask_size();
6580		}
6581#endif /* CONFIG_CPUMASK_OFFSTACK */
6582	}
6583
6584#ifdef CONFIG_SMP
6585	init_defrootdomain();
6586#endif
6587
6588	init_rt_bandwidth(&def_rt_bandwidth,
6589			global_rt_period(), global_rt_runtime());
6590
6591#ifdef CONFIG_RT_GROUP_SCHED
6592	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6593			global_rt_period(), global_rt_runtime());
6594#endif /* CONFIG_RT_GROUP_SCHED */
6595
6596#ifdef CONFIG_CGROUP_SCHED
6597	list_add(&root_task_group.list, &task_groups);
6598	INIT_LIST_HEAD(&root_task_group.children);
6599	INIT_LIST_HEAD(&root_task_group.siblings);
6600	autogroup_init(&init_task);
6601
6602#endif /* CONFIG_CGROUP_SCHED */
6603
6604	for_each_possible_cpu(i) {
6605		struct rq *rq;
6606
6607		rq = cpu_rq(i);
6608		raw_spin_lock_init(&rq->lock);
6609		rq->nr_running = 0;
6610		rq->calc_load_active = 0;
6611		rq->calc_load_update = jiffies + LOAD_FREQ;
6612		init_cfs_rq(&rq->cfs);
6613		init_rt_rq(&rq->rt, rq);
6614#ifdef CONFIG_FAIR_GROUP_SCHED
6615		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6616		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6617		/*
6618		 * How much cpu bandwidth does root_task_group get?
6619		 *
6620		 * In case of task-groups formed thr' the cgroup filesystem, it
6621		 * gets 100% of the cpu resources in the system. This overall
6622		 * system cpu resource is divided among the tasks of
6623		 * root_task_group and its child task-groups in a fair manner,
6624		 * based on each entity's (task or task-group's) weight
6625		 * (se->load.weight).
6626		 *
6627		 * In other words, if root_task_group has 10 tasks of weight
6628		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6629		 * then A0's share of the cpu resource is:
6630		 *
6631		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6632		 *
6633		 * We achieve this by letting root_task_group's tasks sit
6634		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6635		 */
6636		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6637		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6638#endif /* CONFIG_FAIR_GROUP_SCHED */
6639
6640		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6641#ifdef CONFIG_RT_GROUP_SCHED
6642		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6643		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6644#endif
6645
6646		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6647			rq->cpu_load[j] = 0;
6648
6649		rq->last_load_update_tick = jiffies;
6650
6651#ifdef CONFIG_SMP
6652		rq->sd = NULL;
6653		rq->rd = NULL;
6654		rq->cpu_power = SCHED_POWER_SCALE;
6655		rq->post_schedule = 0;
6656		rq->active_balance = 0;
6657		rq->next_balance = jiffies;
6658		rq->push_cpu = 0;
6659		rq->cpu = i;
6660		rq->online = 0;
6661		rq->idle_stamp = 0;
6662		rq->avg_idle = 2*sysctl_sched_migration_cost;
6663		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6664
6665		INIT_LIST_HEAD(&rq->cfs_tasks);
6666
6667		rq_attach_root(rq, &def_root_domain);
6668#ifdef CONFIG_NO_HZ_COMMON
6669		rq->nohz_flags = 0;
6670#endif
6671#ifdef CONFIG_NO_HZ_FULL
6672		rq->last_sched_tick = 0;
6673#endif
6674#endif
6675		init_rq_hrtick(rq);
6676		atomic_set(&rq->nr_iowait, 0);
6677	}
6678
6679	set_load_weight(&init_task);
6680
6681#ifdef CONFIG_PREEMPT_NOTIFIERS
6682	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6683#endif
6684
6685#ifdef CONFIG_RT_MUTEXES
6686	plist_head_init(&init_task.pi_waiters);
6687#endif
6688
6689	/*
6690	 * The boot idle thread does lazy MMU switching as well:
6691	 */
6692	atomic_inc(&init_mm.mm_count);
6693	enter_lazy_tlb(&init_mm, current);
6694
6695	/*
6696	 * Make us the idle thread. Technically, schedule() should not be
6697	 * called from this thread, however somewhere below it might be,
6698	 * but because we are the idle thread, we just pick up running again
6699	 * when this runqueue becomes "idle".
6700	 */
6701	init_idle(current, smp_processor_id());
6702
6703	calc_load_update = jiffies + LOAD_FREQ;
6704
6705	/*
6706	 * During early bootup we pretend to be a normal task:
6707	 */
6708	current->sched_class = &fair_sched_class;
6709
6710#ifdef CONFIG_SMP
6711	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6712	/* May be allocated at isolcpus cmdline parse time */
6713	if (cpu_isolated_map == NULL)
6714		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6715	idle_thread_set_boot_cpu();
6716#endif
6717	init_sched_fair_class();
6718
6719	scheduler_running = 1;
6720}
6721
6722#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6723static inline int preempt_count_equals(int preempt_offset)
6724{
6725	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6726
6727	return (nested == preempt_offset);
6728}
6729
6730void __might_sleep(const char *file, int line, int preempt_offset)
6731{
6732	static unsigned long prev_jiffy;	/* ratelimiting */
6733
6734	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6735	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6736	    system_state != SYSTEM_RUNNING || oops_in_progress)
6737		return;
6738	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6739		return;
6740	prev_jiffy = jiffies;
6741
6742	printk(KERN_ERR
6743		"BUG: sleeping function called from invalid context at %s:%d\n",
6744			file, line);
6745	printk(KERN_ERR
6746		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6747			in_atomic(), irqs_disabled(),
6748			current->pid, current->comm);
6749
6750	debug_show_held_locks(current);
6751	if (irqs_disabled())
6752		print_irqtrace_events(current);
6753	dump_stack();
6754}
6755EXPORT_SYMBOL(__might_sleep);
6756#endif
6757
6758#ifdef CONFIG_MAGIC_SYSRQ
6759static void normalize_task(struct rq *rq, struct task_struct *p)
6760{
6761	const struct sched_class *prev_class = p->sched_class;
6762	int old_prio = p->prio;
6763	int on_rq;
6764
6765	on_rq = p->on_rq;
6766	if (on_rq)
6767		dequeue_task(rq, p, 0);
6768	__setscheduler(rq, p, SCHED_NORMAL, 0);
6769	if (on_rq) {
6770		enqueue_task(rq, p, 0);
6771		resched_task(rq->curr);
6772	}
6773
6774	check_class_changed(rq, p, prev_class, old_prio);
6775}
6776
6777void normalize_rt_tasks(void)
6778{
6779	struct task_struct *g, *p;
6780	unsigned long flags;
6781	struct rq *rq;
6782
6783	read_lock_irqsave(&tasklist_lock, flags);
6784	do_each_thread(g, p) {
6785		/*
6786		 * Only normalize user tasks:
6787		 */
6788		if (!p->mm)
6789			continue;
6790
6791		p->se.exec_start		= 0;
6792#ifdef CONFIG_SCHEDSTATS
6793		p->se.statistics.wait_start	= 0;
6794		p->se.statistics.sleep_start	= 0;
6795		p->se.statistics.block_start	= 0;
6796#endif
6797
6798		if (!rt_task(p)) {
6799			/*
6800			 * Renice negative nice level userspace
6801			 * tasks back to 0:
6802			 */
6803			if (TASK_NICE(p) < 0 && p->mm)
6804				set_user_nice(p, 0);
6805			continue;
6806		}
6807
6808		raw_spin_lock(&p->pi_lock);
6809		rq = __task_rq_lock(p);
6810
6811		normalize_task(rq, p);
6812
6813		__task_rq_unlock(rq);
6814		raw_spin_unlock(&p->pi_lock);
6815	} while_each_thread(g, p);
6816
6817	read_unlock_irqrestore(&tasklist_lock, flags);
6818}
6819
6820#endif /* CONFIG_MAGIC_SYSRQ */
6821
6822#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6823/*
6824 * These functions are only useful for the IA64 MCA handling, or kdb.
6825 *
6826 * They can only be called when the whole system has been
6827 * stopped - every CPU needs to be quiescent, and no scheduling
6828 * activity can take place. Using them for anything else would
6829 * be a serious bug, and as a result, they aren't even visible
6830 * under any other configuration.
6831 */
6832
6833/**
6834 * curr_task - return the current task for a given cpu.
6835 * @cpu: the processor in question.
6836 *
6837 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6838 *
6839 * Return: The current task for @cpu.
6840 */
6841struct task_struct *curr_task(int cpu)
6842{
6843	return cpu_curr(cpu);
6844}
6845
6846#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6847
6848#ifdef CONFIG_IA64
6849/**
6850 * set_curr_task - set the current task for a given cpu.
6851 * @cpu: the processor in question.
6852 * @p: the task pointer to set.
6853 *
6854 * Description: This function must only be used when non-maskable interrupts
6855 * are serviced on a separate stack. It allows the architecture to switch the
6856 * notion of the current task on a cpu in a non-blocking manner. This function
6857 * must be called with all CPU's synchronized, and interrupts disabled, the
6858 * and caller must save the original value of the current task (see
6859 * curr_task() above) and restore that value before reenabling interrupts and
6860 * re-starting the system.
6861 *
6862 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6863 */
6864void set_curr_task(int cpu, struct task_struct *p)
6865{
6866	cpu_curr(cpu) = p;
6867}
6868
6869#endif
6870
6871#ifdef CONFIG_CGROUP_SCHED
6872/* task_group_lock serializes the addition/removal of task groups */
6873static DEFINE_SPINLOCK(task_group_lock);
6874
6875static void free_sched_group(struct task_group *tg)
6876{
6877	free_fair_sched_group(tg);
6878	free_rt_sched_group(tg);
6879	autogroup_free(tg);
6880	kfree(tg);
6881}
6882
6883/* allocate runqueue etc for a new task group */
6884struct task_group *sched_create_group(struct task_group *parent)
6885{
6886	struct task_group *tg;
6887
6888	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6889	if (!tg)
6890		return ERR_PTR(-ENOMEM);
6891
6892	if (!alloc_fair_sched_group(tg, parent))
6893		goto err;
6894
6895	if (!alloc_rt_sched_group(tg, parent))
6896		goto err;
6897
6898	return tg;
6899
6900err:
6901	free_sched_group(tg);
6902	return ERR_PTR(-ENOMEM);
6903}
6904
6905void sched_online_group(struct task_group *tg, struct task_group *parent)
6906{
6907	unsigned long flags;
6908
6909	spin_lock_irqsave(&task_group_lock, flags);
6910	list_add_rcu(&tg->list, &task_groups);
6911
6912	WARN_ON(!parent); /* root should already exist */
6913
6914	tg->parent = parent;
6915	INIT_LIST_HEAD(&tg->children);
6916	list_add_rcu(&tg->siblings, &parent->children);
6917	spin_unlock_irqrestore(&task_group_lock, flags);
6918}
6919
6920/* rcu callback to free various structures associated with a task group */
6921static void free_sched_group_rcu(struct rcu_head *rhp)
6922{
6923	/* now it should be safe to free those cfs_rqs */
6924	free_sched_group(container_of(rhp, struct task_group, rcu));
6925}
6926
6927/* Destroy runqueue etc associated with a task group */
6928void sched_destroy_group(struct task_group *tg)
6929{
6930	/* wait for possible concurrent references to cfs_rqs complete */
6931	call_rcu(&tg->rcu, free_sched_group_rcu);
6932}
6933
6934void sched_offline_group(struct task_group *tg)
6935{
6936	unsigned long flags;
6937	int i;
6938
6939	/* end participation in shares distribution */
6940	for_each_possible_cpu(i)
6941		unregister_fair_sched_group(tg, i);
6942
6943	spin_lock_irqsave(&task_group_lock, flags);
6944	list_del_rcu(&tg->list);
6945	list_del_rcu(&tg->siblings);
6946	spin_unlock_irqrestore(&task_group_lock, flags);
6947}
6948
6949/* change task's runqueue when it moves between groups.
6950 *	The caller of this function should have put the task in its new group
6951 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6952 *	reflect its new group.
6953 */
6954void sched_move_task(struct task_struct *tsk)
6955{
6956	struct task_group *tg;
6957	int on_rq, running;
6958	unsigned long flags;
6959	struct rq *rq;
6960
6961	rq = task_rq_lock(tsk, &flags);
6962
6963	running = task_current(rq, tsk);
6964	on_rq = tsk->on_rq;
6965
6966	if (on_rq)
6967		dequeue_task(rq, tsk, 0);
6968	if (unlikely(running))
6969		tsk->sched_class->put_prev_task(rq, tsk);
6970
6971	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6972				lockdep_is_held(&tsk->sighand->siglock)),
6973			  struct task_group, css);
6974	tg = autogroup_task_group(tsk, tg);
6975	tsk->sched_task_group = tg;
6976
6977#ifdef CONFIG_FAIR_GROUP_SCHED
6978	if (tsk->sched_class->task_move_group)
6979		tsk->sched_class->task_move_group(tsk, on_rq);
6980	else
6981#endif
6982		set_task_rq(tsk, task_cpu(tsk));
6983
6984	if (unlikely(running))
6985		tsk->sched_class->set_curr_task(rq);
6986	if (on_rq)
6987		enqueue_task(rq, tsk, 0);
6988
6989	task_rq_unlock(rq, tsk, &flags);
6990}
6991#endif /* CONFIG_CGROUP_SCHED */
6992
6993#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6994static unsigned long to_ratio(u64 period, u64 runtime)
6995{
6996	if (runtime == RUNTIME_INF)
6997		return 1ULL << 20;
6998
6999	return div64_u64(runtime << 20, period);
7000}
7001#endif
7002
7003#ifdef CONFIG_RT_GROUP_SCHED
7004/*
7005 * Ensure that the real time constraints are schedulable.
7006 */
7007static DEFINE_MUTEX(rt_constraints_mutex);
7008
7009/* Must be called with tasklist_lock held */
7010static inline int tg_has_rt_tasks(struct task_group *tg)
7011{
7012	struct task_struct *g, *p;
7013
7014	do_each_thread(g, p) {
7015		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7016			return 1;
7017	} while_each_thread(g, p);
7018
7019	return 0;
7020}
7021
7022struct rt_schedulable_data {
7023	struct task_group *tg;
7024	u64 rt_period;
7025	u64 rt_runtime;
7026};
7027
7028static int tg_rt_schedulable(struct task_group *tg, void *data)
7029{
7030	struct rt_schedulable_data *d = data;
7031	struct task_group *child;
7032	unsigned long total, sum = 0;
7033	u64 period, runtime;
7034
7035	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7036	runtime = tg->rt_bandwidth.rt_runtime;
7037
7038	if (tg == d->tg) {
7039		period = d->rt_period;
7040		runtime = d->rt_runtime;
7041	}
7042
7043	/*
7044	 * Cannot have more runtime than the period.
7045	 */
7046	if (runtime > period && runtime != RUNTIME_INF)
7047		return -EINVAL;
7048
7049	/*
7050	 * Ensure we don't starve existing RT tasks.
7051	 */
7052	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7053		return -EBUSY;
7054
7055	total = to_ratio(period, runtime);
7056
7057	/*
7058	 * Nobody can have more than the global setting allows.
7059	 */
7060	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7061		return -EINVAL;
7062
7063	/*
7064	 * The sum of our children's runtime should not exceed our own.
7065	 */
7066	list_for_each_entry_rcu(child, &tg->children, siblings) {
7067		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7068		runtime = child->rt_bandwidth.rt_runtime;
7069
7070		if (child == d->tg) {
7071			period = d->rt_period;
7072			runtime = d->rt_runtime;
7073		}
7074
7075		sum += to_ratio(period, runtime);
7076	}
7077
7078	if (sum > total)
7079		return -EINVAL;
7080
7081	return 0;
7082}
7083
7084static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7085{
7086	int ret;
7087
7088	struct rt_schedulable_data data = {
7089		.tg = tg,
7090		.rt_period = period,
7091		.rt_runtime = runtime,
7092	};
7093
7094	rcu_read_lock();
7095	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7096	rcu_read_unlock();
7097
7098	return ret;
7099}
7100
7101static int tg_set_rt_bandwidth(struct task_group *tg,
7102		u64 rt_period, u64 rt_runtime)
7103{
7104	int i, err = 0;
7105
7106	mutex_lock(&rt_constraints_mutex);
7107	read_lock(&tasklist_lock);
7108	err = __rt_schedulable(tg, rt_period, rt_runtime);
7109	if (err)
7110		goto unlock;
7111
7112	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7113	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7114	tg->rt_bandwidth.rt_runtime = rt_runtime;
7115
7116	for_each_possible_cpu(i) {
7117		struct rt_rq *rt_rq = tg->rt_rq[i];
7118
7119		raw_spin_lock(&rt_rq->rt_runtime_lock);
7120		rt_rq->rt_runtime = rt_runtime;
7121		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7122	}
7123	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7124unlock:
7125	read_unlock(&tasklist_lock);
7126	mutex_unlock(&rt_constraints_mutex);
7127
7128	return err;
7129}
7130
7131static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7132{
7133	u64 rt_runtime, rt_period;
7134
7135	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7136	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7137	if (rt_runtime_us < 0)
7138		rt_runtime = RUNTIME_INF;
7139
7140	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7141}
7142
7143static long sched_group_rt_runtime(struct task_group *tg)
7144{
7145	u64 rt_runtime_us;
7146
7147	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7148		return -1;
7149
7150	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7151	do_div(rt_runtime_us, NSEC_PER_USEC);
7152	return rt_runtime_us;
7153}
7154
7155static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7156{
7157	u64 rt_runtime, rt_period;
7158
7159	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7160	rt_runtime = tg->rt_bandwidth.rt_runtime;
7161
7162	if (rt_period == 0)
7163		return -EINVAL;
7164
7165	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7166}
7167
7168static long sched_group_rt_period(struct task_group *tg)
7169{
7170	u64 rt_period_us;
7171
7172	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7173	do_div(rt_period_us, NSEC_PER_USEC);
7174	return rt_period_us;
7175}
7176
7177static int sched_rt_global_constraints(void)
7178{
7179	u64 runtime, period;
7180	int ret = 0;
7181
7182	if (sysctl_sched_rt_period <= 0)
7183		return -EINVAL;
7184
7185	runtime = global_rt_runtime();
7186	period = global_rt_period();
7187
7188	/*
7189	 * Sanity check on the sysctl variables.
7190	 */
7191	if (runtime > period && runtime != RUNTIME_INF)
7192		return -EINVAL;
7193
7194	mutex_lock(&rt_constraints_mutex);
7195	read_lock(&tasklist_lock);
7196	ret = __rt_schedulable(NULL, 0, 0);
7197	read_unlock(&tasklist_lock);
7198	mutex_unlock(&rt_constraints_mutex);
7199
7200	return ret;
7201}
7202
7203static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7204{
7205	/* Don't accept realtime tasks when there is no way for them to run */
7206	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7207		return 0;
7208
7209	return 1;
7210}
7211
7212#else /* !CONFIG_RT_GROUP_SCHED */
7213static int sched_rt_global_constraints(void)
7214{
7215	unsigned long flags;
7216	int i;
7217
7218	if (sysctl_sched_rt_period <= 0)
7219		return -EINVAL;
7220
7221	/*
7222	 * There's always some RT tasks in the root group
7223	 * -- migration, kstopmachine etc..
7224	 */
7225	if (sysctl_sched_rt_runtime == 0)
7226		return -EBUSY;
7227
7228	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7229	for_each_possible_cpu(i) {
7230		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7231
7232		raw_spin_lock(&rt_rq->rt_runtime_lock);
7233		rt_rq->rt_runtime = global_rt_runtime();
7234		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7235	}
7236	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7237
7238	return 0;
7239}
7240#endif /* CONFIG_RT_GROUP_SCHED */
7241
7242int sched_rr_handler(struct ctl_table *table, int write,
7243		void __user *buffer, size_t *lenp,
7244		loff_t *ppos)
7245{
7246	int ret;
7247	static DEFINE_MUTEX(mutex);
7248
7249	mutex_lock(&mutex);
7250	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7251	/* make sure that internally we keep jiffies */
7252	/* also, writing zero resets timeslice to default */
7253	if (!ret && write) {
7254		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7255			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7256	}
7257	mutex_unlock(&mutex);
7258	return ret;
7259}
7260
7261int sched_rt_handler(struct ctl_table *table, int write,
7262		void __user *buffer, size_t *lenp,
7263		loff_t *ppos)
7264{
7265	int ret;
7266	int old_period, old_runtime;
7267	static DEFINE_MUTEX(mutex);
7268
7269	mutex_lock(&mutex);
7270	old_period = sysctl_sched_rt_period;
7271	old_runtime = sysctl_sched_rt_runtime;
7272
7273	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7274
7275	if (!ret && write) {
7276		ret = sched_rt_global_constraints();
7277		if (ret) {
7278			sysctl_sched_rt_period = old_period;
7279			sysctl_sched_rt_runtime = old_runtime;
7280		} else {
7281			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7282			def_rt_bandwidth.rt_period =
7283				ns_to_ktime(global_rt_period());
7284		}
7285	}
7286	mutex_unlock(&mutex);
7287
7288	return ret;
7289}
7290
7291#ifdef CONFIG_CGROUP_SCHED
7292
7293static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7294{
7295	return css ? container_of(css, struct task_group, css) : NULL;
7296}
7297
7298static struct cgroup_subsys_state *
7299cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7300{
7301	struct task_group *parent = css_tg(parent_css);
7302	struct task_group *tg;
7303
7304	if (!parent) {
7305		/* This is early initialization for the top cgroup */
7306		return &root_task_group.css;
7307	}
7308
7309	tg = sched_create_group(parent);
7310	if (IS_ERR(tg))
7311		return ERR_PTR(-ENOMEM);
7312
7313	return &tg->css;
7314}
7315
7316static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7317{
7318	struct task_group *tg = css_tg(css);
7319	struct task_group *parent = css_tg(css_parent(css));
7320
7321	if (parent)
7322		sched_online_group(tg, parent);
7323	return 0;
7324}
7325
7326static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7327{
7328	struct task_group *tg = css_tg(css);
7329
7330	sched_destroy_group(tg);
7331}
7332
7333static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7334{
7335	struct task_group *tg = css_tg(css);
7336
7337	sched_offline_group(tg);
7338}
7339
7340static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7341				 struct cgroup_taskset *tset)
7342{
7343	struct task_struct *task;
7344
7345	cgroup_taskset_for_each(task, css, tset) {
7346#ifdef CONFIG_RT_GROUP_SCHED
7347		if (!sched_rt_can_attach(css_tg(css), task))
7348			return -EINVAL;
7349#else
7350		/* We don't support RT-tasks being in separate groups */
7351		if (task->sched_class != &fair_sched_class)
7352			return -EINVAL;
7353#endif
7354	}
7355	return 0;
7356}
7357
7358static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7359			      struct cgroup_taskset *tset)
7360{
7361	struct task_struct *task;
7362
7363	cgroup_taskset_for_each(task, css, tset)
7364		sched_move_task(task);
7365}
7366
7367static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7368			    struct cgroup_subsys_state *old_css,
7369			    struct task_struct *task)
7370{
7371	/*
7372	 * cgroup_exit() is called in the copy_process() failure path.
7373	 * Ignore this case since the task hasn't ran yet, this avoids
7374	 * trying to poke a half freed task state from generic code.
7375	 */
7376	if (!(task->flags & PF_EXITING))
7377		return;
7378
7379	sched_move_task(task);
7380}
7381
7382#ifdef CONFIG_FAIR_GROUP_SCHED
7383static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7384				struct cftype *cftype, u64 shareval)
7385{
7386	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7387}
7388
7389static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7390			       struct cftype *cft)
7391{
7392	struct task_group *tg = css_tg(css);
7393
7394	return (u64) scale_load_down(tg->shares);
7395}
7396
7397#ifdef CONFIG_CFS_BANDWIDTH
7398static DEFINE_MUTEX(cfs_constraints_mutex);
7399
7400const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7401const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7402
7403static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7404
7405static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7406{
7407	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7408	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7409
7410	if (tg == &root_task_group)
7411		return -EINVAL;
7412
7413	/*
7414	 * Ensure we have at some amount of bandwidth every period.  This is
7415	 * to prevent reaching a state of large arrears when throttled via
7416	 * entity_tick() resulting in prolonged exit starvation.
7417	 */
7418	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7419		return -EINVAL;
7420
7421	/*
7422	 * Likewise, bound things on the otherside by preventing insane quota
7423	 * periods.  This also allows us to normalize in computing quota
7424	 * feasibility.
7425	 */
7426	if (period > max_cfs_quota_period)
7427		return -EINVAL;
7428
7429	mutex_lock(&cfs_constraints_mutex);
7430	ret = __cfs_schedulable(tg, period, quota);
7431	if (ret)
7432		goto out_unlock;
7433
7434	runtime_enabled = quota != RUNTIME_INF;
7435	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7436	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7437	raw_spin_lock_irq(&cfs_b->lock);
7438	cfs_b->period = ns_to_ktime(period);
7439	cfs_b->quota = quota;
7440
7441	__refill_cfs_bandwidth_runtime(cfs_b);
7442	/* restart the period timer (if active) to handle new period expiry */
7443	if (runtime_enabled && cfs_b->timer_active) {
7444		/* force a reprogram */
7445		cfs_b->timer_active = 0;
7446		__start_cfs_bandwidth(cfs_b);
7447	}
7448	raw_spin_unlock_irq(&cfs_b->lock);
7449
7450	for_each_possible_cpu(i) {
7451		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7452		struct rq *rq = cfs_rq->rq;
7453
7454		raw_spin_lock_irq(&rq->lock);
7455		cfs_rq->runtime_enabled = runtime_enabled;
7456		cfs_rq->runtime_remaining = 0;
7457
7458		if (cfs_rq->throttled)
7459			unthrottle_cfs_rq(cfs_rq);
7460		raw_spin_unlock_irq(&rq->lock);
7461	}
7462out_unlock:
7463	mutex_unlock(&cfs_constraints_mutex);
7464
7465	return ret;
7466}
7467
7468int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7469{
7470	u64 quota, period;
7471
7472	period = ktime_to_ns(tg->cfs_bandwidth.period);
7473	if (cfs_quota_us < 0)
7474		quota = RUNTIME_INF;
7475	else
7476		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7477
7478	return tg_set_cfs_bandwidth(tg, period, quota);
7479}
7480
7481long tg_get_cfs_quota(struct task_group *tg)
7482{
7483	u64 quota_us;
7484
7485	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7486		return -1;
7487
7488	quota_us = tg->cfs_bandwidth.quota;
7489	do_div(quota_us, NSEC_PER_USEC);
7490
7491	return quota_us;
7492}
7493
7494int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7495{
7496	u64 quota, period;
7497
7498	period = (u64)cfs_period_us * NSEC_PER_USEC;
7499	quota = tg->cfs_bandwidth.quota;
7500
7501	return tg_set_cfs_bandwidth(tg, period, quota);
7502}
7503
7504long tg_get_cfs_period(struct task_group *tg)
7505{
7506	u64 cfs_period_us;
7507
7508	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7509	do_div(cfs_period_us, NSEC_PER_USEC);
7510
7511	return cfs_period_us;
7512}
7513
7514static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7515				  struct cftype *cft)
7516{
7517	return tg_get_cfs_quota(css_tg(css));
7518}
7519
7520static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7521				   struct cftype *cftype, s64 cfs_quota_us)
7522{
7523	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7524}
7525
7526static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7527				   struct cftype *cft)
7528{
7529	return tg_get_cfs_period(css_tg(css));
7530}
7531
7532static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7533				    struct cftype *cftype, u64 cfs_period_us)
7534{
7535	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7536}
7537
7538struct cfs_schedulable_data {
7539	struct task_group *tg;
7540	u64 period, quota;
7541};
7542
7543/*
7544 * normalize group quota/period to be quota/max_period
7545 * note: units are usecs
7546 */
7547static u64 normalize_cfs_quota(struct task_group *tg,
7548			       struct cfs_schedulable_data *d)
7549{
7550	u64 quota, period;
7551
7552	if (tg == d->tg) {
7553		period = d->period;
7554		quota = d->quota;
7555	} else {
7556		period = tg_get_cfs_period(tg);
7557		quota = tg_get_cfs_quota(tg);
7558	}
7559
7560	/* note: these should typically be equivalent */
7561	if (quota == RUNTIME_INF || quota == -1)
7562		return RUNTIME_INF;
7563
7564	return to_ratio(period, quota);
7565}
7566
7567static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7568{
7569	struct cfs_schedulable_data *d = data;
7570	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7571	s64 quota = 0, parent_quota = -1;
7572
7573	if (!tg->parent) {
7574		quota = RUNTIME_INF;
7575	} else {
7576		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7577
7578		quota = normalize_cfs_quota(tg, d);
7579		parent_quota = parent_b->hierarchal_quota;
7580
7581		/*
7582		 * ensure max(child_quota) <= parent_quota, inherit when no
7583		 * limit is set
7584		 */
7585		if (quota == RUNTIME_INF)
7586			quota = parent_quota;
7587		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7588			return -EINVAL;
7589	}
7590	cfs_b->hierarchal_quota = quota;
7591
7592	return 0;
7593}
7594
7595static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7596{
7597	int ret;
7598	struct cfs_schedulable_data data = {
7599		.tg = tg,
7600		.period = period,
7601		.quota = quota,
7602	};
7603
7604	if (quota != RUNTIME_INF) {
7605		do_div(data.period, NSEC_PER_USEC);
7606		do_div(data.quota, NSEC_PER_USEC);
7607	}
7608
7609	rcu_read_lock();
7610	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7611	rcu_read_unlock();
7612
7613	return ret;
7614}
7615
7616static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7617		struct cgroup_map_cb *cb)
7618{
7619	struct task_group *tg = css_tg(css);
7620	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7621
7622	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7623	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7624	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7625
7626	return 0;
7627}
7628#endif /* CONFIG_CFS_BANDWIDTH */
7629#endif /* CONFIG_FAIR_GROUP_SCHED */
7630
7631#ifdef CONFIG_RT_GROUP_SCHED
7632static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7633				struct cftype *cft, s64 val)
7634{
7635	return sched_group_set_rt_runtime(css_tg(css), val);
7636}
7637
7638static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7639			       struct cftype *cft)
7640{
7641	return sched_group_rt_runtime(css_tg(css));
7642}
7643
7644static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7645				    struct cftype *cftype, u64 rt_period_us)
7646{
7647	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7648}
7649
7650static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7651				   struct cftype *cft)
7652{
7653	return sched_group_rt_period(css_tg(css));
7654}
7655#endif /* CONFIG_RT_GROUP_SCHED */
7656
7657static struct cftype cpu_files[] = {
7658#ifdef CONFIG_FAIR_GROUP_SCHED
7659	{
7660		.name = "shares",
7661		.read_u64 = cpu_shares_read_u64,
7662		.write_u64 = cpu_shares_write_u64,
7663	},
7664#endif
7665#ifdef CONFIG_CFS_BANDWIDTH
7666	{
7667		.name = "cfs_quota_us",
7668		.read_s64 = cpu_cfs_quota_read_s64,
7669		.write_s64 = cpu_cfs_quota_write_s64,
7670	},
7671	{
7672		.name = "cfs_period_us",
7673		.read_u64 = cpu_cfs_period_read_u64,
7674		.write_u64 = cpu_cfs_period_write_u64,
7675	},
7676	{
7677		.name = "stat",
7678		.read_map = cpu_stats_show,
7679	},
7680#endif
7681#ifdef CONFIG_RT_GROUP_SCHED
7682	{
7683		.name = "rt_runtime_us",
7684		.read_s64 = cpu_rt_runtime_read,
7685		.write_s64 = cpu_rt_runtime_write,
7686	},
7687	{
7688		.name = "rt_period_us",
7689		.read_u64 = cpu_rt_period_read_uint,
7690		.write_u64 = cpu_rt_period_write_uint,
7691	},
7692#endif
7693	{ }	/* terminate */
7694};
7695
7696struct cgroup_subsys cpu_cgroup_subsys = {
7697	.name		= "cpu",
7698	.css_alloc	= cpu_cgroup_css_alloc,
7699	.css_free	= cpu_cgroup_css_free,
7700	.css_online	= cpu_cgroup_css_online,
7701	.css_offline	= cpu_cgroup_css_offline,
7702	.can_attach	= cpu_cgroup_can_attach,
7703	.attach		= cpu_cgroup_attach,
7704	.exit		= cpu_cgroup_exit,
7705	.subsys_id	= cpu_cgroup_subsys_id,
7706	.base_cftypes	= cpu_files,
7707	.early_init	= 1,
7708};
7709
7710#endif	/* CONFIG_CGROUP_SCHED */
7711
7712void dump_cpu_task(int cpu)
7713{
7714	pr_info("Task dump for CPU %d:\n", cpu);
7715	sched_show_task(cpu_curr(cpu));
7716}
7717