core.c revision 201c373e8e4823700d3160d5c28e1ab18fd1193e
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695static void set_load_weight(struct task_struct *p)
696{
697	int prio = p->static_prio - MAX_RT_PRIO;
698	struct load_weight *load = &p->se.load;
699
700	/*
701	 * SCHED_IDLE tasks get minimal weight:
702	 */
703	if (p->policy == SCHED_IDLE) {
704		load->weight = scale_load(WEIGHT_IDLEPRIO);
705		load->inv_weight = WMULT_IDLEPRIO;
706		return;
707	}
708
709	load->weight = scale_load(prio_to_weight[prio]);
710	load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715	update_rq_clock(rq);
716	sched_info_queued(p);
717	p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722	update_rq_clock(rq);
723	sched_info_dequeued(p);
724	p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729	if (task_contributes_to_load(p))
730		rq->nr_uninterruptible--;
731
732	enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible++;
739
740	dequeue_task(rq, p, flags);
741}
742
743static void update_rq_clock_task(struct rq *rq, s64 delta)
744{
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750	s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754
755	/*
756	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757	 * this case when a previous update_rq_clock() happened inside a
758	 * {soft,}irq region.
759	 *
760	 * When this happens, we stop ->clock_task and only update the
761	 * prev_irq_time stamp to account for the part that fit, so that a next
762	 * update will consume the rest. This ensures ->clock_task is
763	 * monotonic.
764	 *
765	 * It does however cause some slight miss-attribution of {soft,}irq
766	 * time, a more accurate solution would be to update the irq_time using
767	 * the current rq->clock timestamp, except that would require using
768	 * atomic ops.
769	 */
770	if (irq_delta > delta)
771		irq_delta = delta;
772
773	rq->prev_irq_time += irq_delta;
774	delta -= irq_delta;
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777	if (static_key_false((&paravirt_steal_rq_enabled))) {
778		u64 st;
779
780		steal = paravirt_steal_clock(cpu_of(rq));
781		steal -= rq->prev_steal_time_rq;
782
783		if (unlikely(steal > delta))
784			steal = delta;
785
786		st = steal_ticks(steal);
787		steal = st * TICK_NSEC;
788
789		rq->prev_steal_time_rq += steal;
790
791		delta -= steal;
792	}
793#endif
794
795	rq->clock_task += delta;
796
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799		sched_rt_avg_update(rq, irq_delta + steal);
800#endif
801}
802
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806	struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808	if (stop) {
809		/*
810		 * Make it appear like a SCHED_FIFO task, its something
811		 * userspace knows about and won't get confused about.
812		 *
813		 * Also, it will make PI more or less work without too
814		 * much confusion -- but then, stop work should not
815		 * rely on PI working anyway.
816		 */
817		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819		stop->sched_class = &stop_sched_class;
820	}
821
822	cpu_rq(cpu)->stop = stop;
823
824	if (old_stop) {
825		/*
826		 * Reset it back to a normal scheduling class so that
827		 * it can die in pieces.
828		 */
829		old_stop->sched_class = &rt_sched_class;
830	}
831}
832
833/*
834 * __normal_prio - return the priority that is based on the static prio
835 */
836static inline int __normal_prio(struct task_struct *p)
837{
838	return p->static_prio;
839}
840
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
848static inline int normal_prio(struct task_struct *p)
849{
850	int prio;
851
852	if (task_has_rt_policy(p))
853		prio = MAX_RT_PRIO-1 - p->rt_priority;
854	else
855		prio = __normal_prio(p);
856	return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
866static int effective_prio(struct task_struct *p)
867{
868	p->normal_prio = normal_prio(p);
869	/*
870	 * If we are RT tasks or we were boosted to RT priority,
871	 * keep the priority unchanged. Otherwise, update priority
872	 * to the normal priority:
873	 */
874	if (!rt_prio(p->prio))
875		return p->normal_prio;
876	return p->prio;
877}
878
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
883inline int task_curr(const struct task_struct *p)
884{
885	return cpu_curr(task_cpu(p)) == p;
886}
887
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889				       const struct sched_class *prev_class,
890				       int oldprio)
891{
892	if (prev_class != p->sched_class) {
893		if (prev_class->switched_from)
894			prev_class->switched_from(rq, p);
895		p->sched_class->switched_to(rq, p);
896	} else if (oldprio != p->prio)
897		p->sched_class->prio_changed(rq, p, oldprio);
898}
899
900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901{
902	const struct sched_class *class;
903
904	if (p->sched_class == rq->curr->sched_class) {
905		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906	} else {
907		for_each_class(class) {
908			if (class == rq->curr->sched_class)
909				break;
910			if (class == p->sched_class) {
911				resched_task(rq->curr);
912				break;
913			}
914		}
915	}
916
917	/*
918	 * A queue event has occurred, and we're going to schedule.  In
919	 * this case, we can save a useless back to back clock update.
920	 */
921	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922		rq->skip_clock_update = 1;
923}
924
925#ifdef CONFIG_SMP
926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927{
928#ifdef CONFIG_SCHED_DEBUG
929	/*
930	 * We should never call set_task_cpu() on a blocked task,
931	 * ttwu() will sort out the placement.
932	 */
933	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935
936#ifdef CONFIG_LOCKDEP
937	/*
938	 * The caller should hold either p->pi_lock or rq->lock, when changing
939	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940	 *
941	 * sched_move_task() holds both and thus holding either pins the cgroup,
942	 * see task_group().
943	 *
944	 * Furthermore, all task_rq users should acquire both locks, see
945	 * task_rq_lock().
946	 */
947	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948				      lockdep_is_held(&task_rq(p)->lock)));
949#endif
950#endif
951
952	trace_sched_migrate_task(p, new_cpu);
953
954	if (task_cpu(p) != new_cpu) {
955		p->se.nr_migrations++;
956		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957	}
958
959	__set_task_cpu(p, new_cpu);
960}
961
962struct migration_arg {
963	struct task_struct *task;
964	int dest_cpu;
965};
966
967static int migration_cpu_stop(void *data);
968
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change.  If it changes, i.e. @p might have woken up,
974 * then return zero.  When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count).  If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986{
987	unsigned long flags;
988	int running, on_rq;
989	unsigned long ncsw;
990	struct rq *rq;
991
992	for (;;) {
993		/*
994		 * We do the initial early heuristics without holding
995		 * any task-queue locks at all. We'll only try to get
996		 * the runqueue lock when things look like they will
997		 * work out!
998		 */
999		rq = task_rq(p);
1000
1001		/*
1002		 * If the task is actively running on another CPU
1003		 * still, just relax and busy-wait without holding
1004		 * any locks.
1005		 *
1006		 * NOTE! Since we don't hold any locks, it's not
1007		 * even sure that "rq" stays as the right runqueue!
1008		 * But we don't care, since "task_running()" will
1009		 * return false if the runqueue has changed and p
1010		 * is actually now running somewhere else!
1011		 */
1012		while (task_running(rq, p)) {
1013			if (match_state && unlikely(p->state != match_state))
1014				return 0;
1015			cpu_relax();
1016		}
1017
1018		/*
1019		 * Ok, time to look more closely! We need the rq
1020		 * lock now, to be *sure*. If we're wrong, we'll
1021		 * just go back and repeat.
1022		 */
1023		rq = task_rq_lock(p, &flags);
1024		trace_sched_wait_task(p);
1025		running = task_running(rq, p);
1026		on_rq = p->on_rq;
1027		ncsw = 0;
1028		if (!match_state || p->state == match_state)
1029			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030		task_rq_unlock(rq, p, &flags);
1031
1032		/*
1033		 * If it changed from the expected state, bail out now.
1034		 */
1035		if (unlikely(!ncsw))
1036			break;
1037
1038		/*
1039		 * Was it really running after all now that we
1040		 * checked with the proper locks actually held?
1041		 *
1042		 * Oops. Go back and try again..
1043		 */
1044		if (unlikely(running)) {
1045			cpu_relax();
1046			continue;
1047		}
1048
1049		/*
1050		 * It's not enough that it's not actively running,
1051		 * it must be off the runqueue _entirely_, and not
1052		 * preempted!
1053		 *
1054		 * So if it was still runnable (but just not actively
1055		 * running right now), it's preempted, and we should
1056		 * yield - it could be a while.
1057		 */
1058		if (unlikely(on_rq)) {
1059			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061			set_current_state(TASK_UNINTERRUPTIBLE);
1062			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063			continue;
1064		}
1065
1066		/*
1067		 * Ahh, all good. It wasn't running, and it wasn't
1068		 * runnable, which means that it will never become
1069		 * running in the future either. We're all done!
1070		 */
1071		break;
1072	}
1073
1074	return ncsw;
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesn't have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
1090void kick_process(struct task_struct *p)
1091{
1092	int cpu;
1093
1094	preempt_disable();
1095	cpu = task_cpu(p);
1096	if ((cpu != smp_processor_id()) && task_curr(p))
1097		smp_send_reschedule(cpu);
1098	preempt_enable();
1099}
1100EXPORT_SYMBOL_GPL(kick_process);
1101#endif /* CONFIG_SMP */
1102
1103#ifdef CONFIG_SMP
1104/*
1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106 */
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
1109	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110	enum { cpuset, possible, fail } state = cpuset;
1111	int dest_cpu;
1112
1113	/* Look for allowed, online CPU in same node. */
1114	for_each_cpu(dest_cpu, nodemask) {
1115		if (!cpu_online(dest_cpu))
1116			continue;
1117		if (!cpu_active(dest_cpu))
1118			continue;
1119		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120			return dest_cpu;
1121	}
1122
1123	for (;;) {
1124		/* Any allowed, online CPU? */
1125		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126			if (!cpu_online(dest_cpu))
1127				continue;
1128			if (!cpu_active(dest_cpu))
1129				continue;
1130			goto out;
1131		}
1132
1133		switch (state) {
1134		case cpuset:
1135			/* No more Mr. Nice Guy. */
1136			cpuset_cpus_allowed_fallback(p);
1137			state = possible;
1138			break;
1139
1140		case possible:
1141			do_set_cpus_allowed(p, cpu_possible_mask);
1142			state = fail;
1143			break;
1144
1145		case fail:
1146			BUG();
1147			break;
1148		}
1149	}
1150
1151out:
1152	if (state != cpuset) {
1153		/*
1154		 * Don't tell them about moving exiting tasks or
1155		 * kernel threads (both mm NULL), since they never
1156		 * leave kernel.
1157		 */
1158		if (p->mm && printk_ratelimit()) {
1159			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160					task_pid_nr(p), p->comm, cpu);
1161		}
1162	}
1163
1164	return dest_cpu;
1165}
1166
1167/*
1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169 */
1170static inline
1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172{
1173	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174
1175	/*
1176	 * In order not to call set_task_cpu() on a blocking task we need
1177	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178	 * cpu.
1179	 *
1180	 * Since this is common to all placement strategies, this lives here.
1181	 *
1182	 * [ this allows ->select_task() to simply return task_cpu(p) and
1183	 *   not worry about this generic constraint ]
1184	 */
1185	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186		     !cpu_online(cpu)))
1187		cpu = select_fallback_rq(task_cpu(p), p);
1188
1189	return cpu;
1190}
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194	s64 diff = sample - *avg;
1195	*avg += diff >> 3;
1196}
1197#endif
1198
1199static void
1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201{
1202#ifdef CONFIG_SCHEDSTATS
1203	struct rq *rq = this_rq();
1204
1205#ifdef CONFIG_SMP
1206	int this_cpu = smp_processor_id();
1207
1208	if (cpu == this_cpu) {
1209		schedstat_inc(rq, ttwu_local);
1210		schedstat_inc(p, se.statistics.nr_wakeups_local);
1211	} else {
1212		struct sched_domain *sd;
1213
1214		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215		rcu_read_lock();
1216		for_each_domain(this_cpu, sd) {
1217			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218				schedstat_inc(sd, ttwu_wake_remote);
1219				break;
1220			}
1221		}
1222		rcu_read_unlock();
1223	}
1224
1225	if (wake_flags & WF_MIGRATED)
1226		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
1228#endif /* CONFIG_SMP */
1229
1230	schedstat_inc(rq, ttwu_count);
1231	schedstat_inc(p, se.statistics.nr_wakeups);
1232
1233	if (wake_flags & WF_SYNC)
1234		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
1241	activate_task(rq, p, en_flags);
1242	p->on_rq = 1;
1243
1244	/* if a worker is waking up, notify workqueue */
1245	if (p->flags & PF_WQ_WORKER)
1246		wq_worker_waking_up(p, cpu_of(rq));
1247}
1248
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
1252static void
1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254{
1255	trace_sched_wakeup(p, true);
1256	check_preempt_curr(rq, p, wake_flags);
1257
1258	p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260	if (p->sched_class->task_woken)
1261		p->sched_class->task_woken(rq, p);
1262
1263	if (rq->idle_stamp) {
1264		u64 delta = rq->clock - rq->idle_stamp;
1265		u64 max = 2*sysctl_sched_migration_cost;
1266
1267		if (delta > max)
1268			rq->avg_idle = max;
1269		else
1270			update_avg(&rq->avg_idle, delta);
1271		rq->idle_stamp = 0;
1272	}
1273#endif
1274}
1275
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280	if (p->sched_contributes_to_load)
1281		rq->nr_uninterruptible--;
1282#endif
1283
1284	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285	ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296	struct rq *rq;
1297	int ret = 0;
1298
1299	rq = __task_rq_lock(p);
1300	if (p->on_rq) {
1301		ttwu_do_wakeup(rq, p, wake_flags);
1302		ret = 1;
1303	}
1304	__task_rq_unlock(rq);
1305
1306	return ret;
1307}
1308
1309#ifdef CONFIG_SMP
1310static void sched_ttwu_pending(void)
1311{
1312	struct rq *rq = this_rq();
1313	struct llist_node *llist = llist_del_all(&rq->wake_list);
1314	struct task_struct *p;
1315
1316	raw_spin_lock(&rq->lock);
1317
1318	while (llist) {
1319		p = llist_entry(llist, struct task_struct, wake_entry);
1320		llist = llist_next(llist);
1321		ttwu_do_activate(rq, p, 0);
1322	}
1323
1324	raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
1329	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330		return;
1331
1332	/*
1333	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334	 * traditionally all their work was done from the interrupt return
1335	 * path. Now that we actually do some work, we need to make sure
1336	 * we do call them.
1337	 *
1338	 * Some archs already do call them, luckily irq_enter/exit nest
1339	 * properly.
1340	 *
1341	 * Arguably we should visit all archs and update all handlers,
1342	 * however a fair share of IPIs are still resched only so this would
1343	 * somewhat pessimize the simple resched case.
1344	 */
1345	irq_enter();
1346	sched_ttwu_pending();
1347
1348	/*
1349	 * Check if someone kicked us for doing the nohz idle load balance.
1350	 */
1351	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352		this_rq()->idle_balance = 1;
1353		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354	}
1355	irq_exit();
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
1360	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361		smp_send_reschedule(cpu);
1362}
1363
1364#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1365static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1366{
1367	struct rq *rq;
1368	int ret = 0;
1369
1370	rq = __task_rq_lock(p);
1371	if (p->on_cpu) {
1372		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1373		ttwu_do_wakeup(rq, p, wake_flags);
1374		ret = 1;
1375	}
1376	__task_rq_unlock(rq);
1377
1378	return ret;
1379
1380}
1381#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1382
1383bool cpus_share_cache(int this_cpu, int that_cpu)
1384{
1385	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1386}
1387#endif /* CONFIG_SMP */
1388
1389static void ttwu_queue(struct task_struct *p, int cpu)
1390{
1391	struct rq *rq = cpu_rq(cpu);
1392
1393#if defined(CONFIG_SMP)
1394	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1395		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1396		ttwu_queue_remote(p, cpu);
1397		return;
1398	}
1399#endif
1400
1401	raw_spin_lock(&rq->lock);
1402	ttwu_do_activate(rq, p, 0);
1403	raw_spin_unlock(&rq->lock);
1404}
1405
1406/**
1407 * try_to_wake_up - wake up a thread
1408 * @p: the thread to be awakened
1409 * @state: the mask of task states that can be woken
1410 * @wake_flags: wake modifier flags (WF_*)
1411 *
1412 * Put it on the run-queue if it's not already there. The "current"
1413 * thread is always on the run-queue (except when the actual
1414 * re-schedule is in progress), and as such you're allowed to do
1415 * the simpler "current->state = TASK_RUNNING" to mark yourself
1416 * runnable without the overhead of this.
1417 *
1418 * Returns %true if @p was woken up, %false if it was already running
1419 * or @state didn't match @p's state.
1420 */
1421static int
1422try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1423{
1424	unsigned long flags;
1425	int cpu, success = 0;
1426
1427	smp_wmb();
1428	raw_spin_lock_irqsave(&p->pi_lock, flags);
1429	if (!(p->state & state))
1430		goto out;
1431
1432	success = 1; /* we're going to change ->state */
1433	cpu = task_cpu(p);
1434
1435	if (p->on_rq && ttwu_remote(p, wake_flags))
1436		goto stat;
1437
1438#ifdef CONFIG_SMP
1439	/*
1440	 * If the owning (remote) cpu is still in the middle of schedule() with
1441	 * this task as prev, wait until its done referencing the task.
1442	 */
1443	while (p->on_cpu) {
1444#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1445		/*
1446		 * In case the architecture enables interrupts in
1447		 * context_switch(), we cannot busy wait, since that
1448		 * would lead to deadlocks when an interrupt hits and
1449		 * tries to wake up @prev. So bail and do a complete
1450		 * remote wakeup.
1451		 */
1452		if (ttwu_activate_remote(p, wake_flags))
1453			goto stat;
1454#else
1455		cpu_relax();
1456#endif
1457	}
1458	/*
1459	 * Pairs with the smp_wmb() in finish_lock_switch().
1460	 */
1461	smp_rmb();
1462
1463	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1464	p->state = TASK_WAKING;
1465
1466	if (p->sched_class->task_waking)
1467		p->sched_class->task_waking(p);
1468
1469	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1470	if (task_cpu(p) != cpu) {
1471		wake_flags |= WF_MIGRATED;
1472		set_task_cpu(p, cpu);
1473	}
1474#endif /* CONFIG_SMP */
1475
1476	ttwu_queue(p, cpu);
1477stat:
1478	ttwu_stat(p, cpu, wake_flags);
1479out:
1480	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1481
1482	return success;
1483}
1484
1485/**
1486 * try_to_wake_up_local - try to wake up a local task with rq lock held
1487 * @p: the thread to be awakened
1488 *
1489 * Put @p on the run-queue if it's not already there. The caller must
1490 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1491 * the current task.
1492 */
1493static void try_to_wake_up_local(struct task_struct *p)
1494{
1495	struct rq *rq = task_rq(p);
1496
1497	BUG_ON(rq != this_rq());
1498	BUG_ON(p == current);
1499	lockdep_assert_held(&rq->lock);
1500
1501	if (!raw_spin_trylock(&p->pi_lock)) {
1502		raw_spin_unlock(&rq->lock);
1503		raw_spin_lock(&p->pi_lock);
1504		raw_spin_lock(&rq->lock);
1505	}
1506
1507	if (!(p->state & TASK_NORMAL))
1508		goto out;
1509
1510	if (!p->on_rq)
1511		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1512
1513	ttwu_do_wakeup(rq, p, 0);
1514	ttwu_stat(p, smp_processor_id(), 0);
1515out:
1516	raw_spin_unlock(&p->pi_lock);
1517}
1518
1519/**
1520 * wake_up_process - Wake up a specific process
1521 * @p: The process to be woken up.
1522 *
1523 * Attempt to wake up the nominated process and move it to the set of runnable
1524 * processes.  Returns 1 if the process was woken up, 0 if it was already
1525 * running.
1526 *
1527 * It may be assumed that this function implies a write memory barrier before
1528 * changing the task state if and only if any tasks are woken up.
1529 */
1530int wake_up_process(struct task_struct *p)
1531{
1532	return try_to_wake_up(p, TASK_ALL, 0);
1533}
1534EXPORT_SYMBOL(wake_up_process);
1535
1536int wake_up_state(struct task_struct *p, unsigned int state)
1537{
1538	return try_to_wake_up(p, state, 0);
1539}
1540
1541/*
1542 * Perform scheduler related setup for a newly forked process p.
1543 * p is forked by current.
1544 *
1545 * __sched_fork() is basic setup used by init_idle() too:
1546 */
1547static void __sched_fork(struct task_struct *p)
1548{
1549	p->on_rq			= 0;
1550
1551	p->se.on_rq			= 0;
1552	p->se.exec_start		= 0;
1553	p->se.sum_exec_runtime		= 0;
1554	p->se.prev_sum_exec_runtime	= 0;
1555	p->se.nr_migrations		= 0;
1556	p->se.vruntime			= 0;
1557	INIT_LIST_HEAD(&p->se.group_node);
1558
1559#ifdef CONFIG_SCHEDSTATS
1560	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1561#endif
1562
1563	INIT_LIST_HEAD(&p->rt.run_list);
1564
1565#ifdef CONFIG_PREEMPT_NOTIFIERS
1566	INIT_HLIST_HEAD(&p->preempt_notifiers);
1567#endif
1568}
1569
1570/*
1571 * fork()/clone()-time setup:
1572 */
1573void sched_fork(struct task_struct *p)
1574{
1575	unsigned long flags;
1576	int cpu = get_cpu();
1577
1578	__sched_fork(p);
1579	/*
1580	 * We mark the process as running here. This guarantees that
1581	 * nobody will actually run it, and a signal or other external
1582	 * event cannot wake it up and insert it on the runqueue either.
1583	 */
1584	p->state = TASK_RUNNING;
1585
1586	/*
1587	 * Make sure we do not leak PI boosting priority to the child.
1588	 */
1589	p->prio = current->normal_prio;
1590
1591	/*
1592	 * Revert to default priority/policy on fork if requested.
1593	 */
1594	if (unlikely(p->sched_reset_on_fork)) {
1595		if (task_has_rt_policy(p)) {
1596			p->policy = SCHED_NORMAL;
1597			p->static_prio = NICE_TO_PRIO(0);
1598			p->rt_priority = 0;
1599		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1600			p->static_prio = NICE_TO_PRIO(0);
1601
1602		p->prio = p->normal_prio = __normal_prio(p);
1603		set_load_weight(p);
1604
1605		/*
1606		 * We don't need the reset flag anymore after the fork. It has
1607		 * fulfilled its duty:
1608		 */
1609		p->sched_reset_on_fork = 0;
1610	}
1611
1612	if (!rt_prio(p->prio))
1613		p->sched_class = &fair_sched_class;
1614
1615	if (p->sched_class->task_fork)
1616		p->sched_class->task_fork(p);
1617
1618	/*
1619	 * The child is not yet in the pid-hash so no cgroup attach races,
1620	 * and the cgroup is pinned to this child due to cgroup_fork()
1621	 * is ran before sched_fork().
1622	 *
1623	 * Silence PROVE_RCU.
1624	 */
1625	raw_spin_lock_irqsave(&p->pi_lock, flags);
1626	set_task_cpu(p, cpu);
1627	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1628
1629#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1630	if (likely(sched_info_on()))
1631		memset(&p->sched_info, 0, sizeof(p->sched_info));
1632#endif
1633#if defined(CONFIG_SMP)
1634	p->on_cpu = 0;
1635#endif
1636#ifdef CONFIG_PREEMPT_COUNT
1637	/* Want to start with kernel preemption disabled. */
1638	task_thread_info(p)->preempt_count = 1;
1639#endif
1640#ifdef CONFIG_SMP
1641	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1642#endif
1643
1644	put_cpu();
1645}
1646
1647/*
1648 * wake_up_new_task - wake up a newly created task for the first time.
1649 *
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1653 */
1654void wake_up_new_task(struct task_struct *p)
1655{
1656	unsigned long flags;
1657	struct rq *rq;
1658
1659	raw_spin_lock_irqsave(&p->pi_lock, flags);
1660#ifdef CONFIG_SMP
1661	/*
1662	 * Fork balancing, do it here and not earlier because:
1663	 *  - cpus_allowed can change in the fork path
1664	 *  - any previously selected cpu might disappear through hotplug
1665	 */
1666	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1667#endif
1668
1669	rq = __task_rq_lock(p);
1670	activate_task(rq, p, 0);
1671	p->on_rq = 1;
1672	trace_sched_wakeup_new(p, true);
1673	check_preempt_curr(rq, p, WF_FORK);
1674#ifdef CONFIG_SMP
1675	if (p->sched_class->task_woken)
1676		p->sched_class->task_woken(rq, p);
1677#endif
1678	task_rq_unlock(rq, p, &flags);
1679}
1680
1681#ifdef CONFIG_PREEMPT_NOTIFIERS
1682
1683/**
1684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1685 * @notifier: notifier struct to register
1686 */
1687void preempt_notifier_register(struct preempt_notifier *notifier)
1688{
1689	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1690}
1691EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692
1693/**
1694 * preempt_notifier_unregister - no longer interested in preemption notifications
1695 * @notifier: notifier struct to unregister
1696 *
1697 * This is safe to call from within a preemption notifier.
1698 */
1699void preempt_notifier_unregister(struct preempt_notifier *notifier)
1700{
1701	hlist_del(&notifier->link);
1702}
1703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1704
1705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1706{
1707	struct preempt_notifier *notifier;
1708	struct hlist_node *node;
1709
1710	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712}
1713
1714static void
1715fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716				 struct task_struct *next)
1717{
1718	struct preempt_notifier *notifier;
1719	struct hlist_node *node;
1720
1721	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1722		notifier->ops->sched_out(notifier, next);
1723}
1724
1725#else /* !CONFIG_PREEMPT_NOTIFIERS */
1726
1727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1728{
1729}
1730
1731static void
1732fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733				 struct task_struct *next)
1734{
1735}
1736
1737#endif /* CONFIG_PREEMPT_NOTIFIERS */
1738
1739/**
1740 * prepare_task_switch - prepare to switch tasks
1741 * @rq: the runqueue preparing to switch
1742 * @prev: the current task that is being switched out
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
1752static inline void
1753prepare_task_switch(struct rq *rq, struct task_struct *prev,
1754		    struct task_struct *next)
1755{
1756	trace_sched_switch(prev, next);
1757	sched_info_switch(prev, next);
1758	perf_event_task_sched_out(prev, next);
1759	fire_sched_out_preempt_notifiers(prev, next);
1760	prepare_lock_switch(rq, next);
1761	prepare_arch_switch(next);
1762}
1763
1764/**
1765 * finish_task_switch - clean up after a task-switch
1766 * @rq: runqueue associated with task-switch
1767 * @prev: the thread we just switched away from.
1768 *
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1773 *
1774 * Note that we may have delayed dropping an mm in context_switch(). If
1775 * so, we finish that here outside of the runqueue lock. (Doing it
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1778 */
1779static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1780	__releases(rq->lock)
1781{
1782	struct mm_struct *mm = rq->prev_mm;
1783	long prev_state;
1784
1785	rq->prev_mm = NULL;
1786
1787	/*
1788	 * A task struct has one reference for the use as "current".
1789	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1790	 * schedule one last time. The schedule call will never return, and
1791	 * the scheduled task must drop that reference.
1792	 * The test for TASK_DEAD must occur while the runqueue locks are
1793	 * still held, otherwise prev could be scheduled on another cpu, die
1794	 * there before we look at prev->state, and then the reference would
1795	 * be dropped twice.
1796	 *		Manfred Spraul <manfred@colorfullife.com>
1797	 */
1798	prev_state = prev->state;
1799	account_switch_vtime(prev);
1800	finish_arch_switch(prev);
1801#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1802	local_irq_disable();
1803#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1804	perf_event_task_sched_in(prev, current);
1805#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1806	local_irq_enable();
1807#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1808	finish_lock_switch(rq, prev);
1809	finish_arch_post_lock_switch();
1810
1811	fire_sched_in_preempt_notifiers(current);
1812	if (mm)
1813		mmdrop(mm);
1814	if (unlikely(prev_state == TASK_DEAD)) {
1815		/*
1816		 * Remove function-return probe instances associated with this
1817		 * task and put them back on the free list.
1818		 */
1819		kprobe_flush_task(prev);
1820		put_task_struct(prev);
1821	}
1822}
1823
1824#ifdef CONFIG_SMP
1825
1826/* assumes rq->lock is held */
1827static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1828{
1829	if (prev->sched_class->pre_schedule)
1830		prev->sched_class->pre_schedule(rq, prev);
1831}
1832
1833/* rq->lock is NOT held, but preemption is disabled */
1834static inline void post_schedule(struct rq *rq)
1835{
1836	if (rq->post_schedule) {
1837		unsigned long flags;
1838
1839		raw_spin_lock_irqsave(&rq->lock, flags);
1840		if (rq->curr->sched_class->post_schedule)
1841			rq->curr->sched_class->post_schedule(rq);
1842		raw_spin_unlock_irqrestore(&rq->lock, flags);
1843
1844		rq->post_schedule = 0;
1845	}
1846}
1847
1848#else
1849
1850static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1851{
1852}
1853
1854static inline void post_schedule(struct rq *rq)
1855{
1856}
1857
1858#endif
1859
1860/**
1861 * schedule_tail - first thing a freshly forked thread must call.
1862 * @prev: the thread we just switched away from.
1863 */
1864asmlinkage void schedule_tail(struct task_struct *prev)
1865	__releases(rq->lock)
1866{
1867	struct rq *rq = this_rq();
1868
1869	finish_task_switch(rq, prev);
1870
1871	/*
1872	 * FIXME: do we need to worry about rq being invalidated by the
1873	 * task_switch?
1874	 */
1875	post_schedule(rq);
1876
1877#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1878	/* In this case, finish_task_switch does not reenable preemption */
1879	preempt_enable();
1880#endif
1881	if (current->set_child_tid)
1882		put_user(task_pid_vnr(current), current->set_child_tid);
1883}
1884
1885/*
1886 * context_switch - switch to the new MM and the new
1887 * thread's register state.
1888 */
1889static inline void
1890context_switch(struct rq *rq, struct task_struct *prev,
1891	       struct task_struct *next)
1892{
1893	struct mm_struct *mm, *oldmm;
1894
1895	prepare_task_switch(rq, prev, next);
1896
1897	mm = next->mm;
1898	oldmm = prev->active_mm;
1899	/*
1900	 * For paravirt, this is coupled with an exit in switch_to to
1901	 * combine the page table reload and the switch backend into
1902	 * one hypercall.
1903	 */
1904	arch_start_context_switch(prev);
1905
1906	if (!mm) {
1907		next->active_mm = oldmm;
1908		atomic_inc(&oldmm->mm_count);
1909		enter_lazy_tlb(oldmm, next);
1910	} else
1911		switch_mm(oldmm, mm, next);
1912
1913	if (!prev->mm) {
1914		prev->active_mm = NULL;
1915		rq->prev_mm = oldmm;
1916	}
1917	/*
1918	 * Since the runqueue lock will be released by the next
1919	 * task (which is an invalid locking op but in the case
1920	 * of the scheduler it's an obvious special-case), so we
1921	 * do an early lockdep release here:
1922	 */
1923#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1924	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1925#endif
1926
1927	/* Here we just switch the register state and the stack. */
1928	switch_to(prev, next, prev);
1929
1930	barrier();
1931	/*
1932	 * this_rq must be evaluated again because prev may have moved
1933	 * CPUs since it called schedule(), thus the 'rq' on its stack
1934	 * frame will be invalid.
1935	 */
1936	finish_task_switch(this_rq(), prev);
1937}
1938
1939/*
1940 * nr_running, nr_uninterruptible and nr_context_switches:
1941 *
1942 * externally visible scheduler statistics: current number of runnable
1943 * threads, current number of uninterruptible-sleeping threads, total
1944 * number of context switches performed since bootup.
1945 */
1946unsigned long nr_running(void)
1947{
1948	unsigned long i, sum = 0;
1949
1950	for_each_online_cpu(i)
1951		sum += cpu_rq(i)->nr_running;
1952
1953	return sum;
1954}
1955
1956unsigned long nr_uninterruptible(void)
1957{
1958	unsigned long i, sum = 0;
1959
1960	for_each_possible_cpu(i)
1961		sum += cpu_rq(i)->nr_uninterruptible;
1962
1963	/*
1964	 * Since we read the counters lockless, it might be slightly
1965	 * inaccurate. Do not allow it to go below zero though:
1966	 */
1967	if (unlikely((long)sum < 0))
1968		sum = 0;
1969
1970	return sum;
1971}
1972
1973unsigned long long nr_context_switches(void)
1974{
1975	int i;
1976	unsigned long long sum = 0;
1977
1978	for_each_possible_cpu(i)
1979		sum += cpu_rq(i)->nr_switches;
1980
1981	return sum;
1982}
1983
1984unsigned long nr_iowait(void)
1985{
1986	unsigned long i, sum = 0;
1987
1988	for_each_possible_cpu(i)
1989		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1990
1991	return sum;
1992}
1993
1994unsigned long nr_iowait_cpu(int cpu)
1995{
1996	struct rq *this = cpu_rq(cpu);
1997	return atomic_read(&this->nr_iowait);
1998}
1999
2000unsigned long this_cpu_load(void)
2001{
2002	struct rq *this = this_rq();
2003	return this->cpu_load[0];
2004}
2005
2006
2007/*
2008 * Global load-average calculations
2009 *
2010 * We take a distributed and async approach to calculating the global load-avg
2011 * in order to minimize overhead.
2012 *
2013 * The global load average is an exponentially decaying average of nr_running +
2014 * nr_uninterruptible.
2015 *
2016 * Once every LOAD_FREQ:
2017 *
2018 *   nr_active = 0;
2019 *   for_each_possible_cpu(cpu)
2020 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2021 *
2022 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2023 *
2024 * Due to a number of reasons the above turns in the mess below:
2025 *
2026 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2027 *    serious number of cpus, therefore we need to take a distributed approach
2028 *    to calculating nr_active.
2029 *
2030 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2031 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2032 *
2033 *    So assuming nr_active := 0 when we start out -- true per definition, we
2034 *    can simply take per-cpu deltas and fold those into a global accumulate
2035 *    to obtain the same result. See calc_load_fold_active().
2036 *
2037 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2038 *    across the machine, we assume 10 ticks is sufficient time for every
2039 *    cpu to have completed this task.
2040 *
2041 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2042 *    again, being late doesn't loose the delta, just wrecks the sample.
2043 *
2044 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2045 *    this would add another cross-cpu cacheline miss and atomic operation
2046 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2047 *    when it went into uninterruptible state and decrement on whatever cpu
2048 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2049 *    all cpus yields the correct result.
2050 *
2051 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2052 */
2053
2054/* Variables and functions for calc_load */
2055static atomic_long_t calc_load_tasks;
2056static unsigned long calc_load_update;
2057unsigned long avenrun[3];
2058EXPORT_SYMBOL(avenrun); /* should be removed */
2059
2060/**
2061 * get_avenrun - get the load average array
2062 * @loads:	pointer to dest load array
2063 * @offset:	offset to add
2064 * @shift:	shift count to shift the result left
2065 *
2066 * These values are estimates at best, so no need for locking.
2067 */
2068void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2069{
2070	loads[0] = (avenrun[0] + offset) << shift;
2071	loads[1] = (avenrun[1] + offset) << shift;
2072	loads[2] = (avenrun[2] + offset) << shift;
2073}
2074
2075static long calc_load_fold_active(struct rq *this_rq)
2076{
2077	long nr_active, delta = 0;
2078
2079	nr_active = this_rq->nr_running;
2080	nr_active += (long) this_rq->nr_uninterruptible;
2081
2082	if (nr_active != this_rq->calc_load_active) {
2083		delta = nr_active - this_rq->calc_load_active;
2084		this_rq->calc_load_active = nr_active;
2085	}
2086
2087	return delta;
2088}
2089
2090/*
2091 * a1 = a0 * e + a * (1 - e)
2092 */
2093static unsigned long
2094calc_load(unsigned long load, unsigned long exp, unsigned long active)
2095{
2096	load *= exp;
2097	load += active * (FIXED_1 - exp);
2098	load += 1UL << (FSHIFT - 1);
2099	return load >> FSHIFT;
2100}
2101
2102#ifdef CONFIG_NO_HZ
2103/*
2104 * Handle NO_HZ for the global load-average.
2105 *
2106 * Since the above described distributed algorithm to compute the global
2107 * load-average relies on per-cpu sampling from the tick, it is affected by
2108 * NO_HZ.
2109 *
2110 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2111 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2112 * when we read the global state.
2113 *
2114 * Obviously reality has to ruin such a delightfully simple scheme:
2115 *
2116 *  - When we go NO_HZ idle during the window, we can negate our sample
2117 *    contribution, causing under-accounting.
2118 *
2119 *    We avoid this by keeping two idle-delta counters and flipping them
2120 *    when the window starts, thus separating old and new NO_HZ load.
2121 *
2122 *    The only trick is the slight shift in index flip for read vs write.
2123 *
2124 *        0s            5s            10s           15s
2125 *          +10           +10           +10           +10
2126 *        |-|-----------|-|-----------|-|-----------|-|
2127 *    r:0 0 1           1 0           0 1           1 0
2128 *    w:0 1 1           0 0           1 1           0 0
2129 *
2130 *    This ensures we'll fold the old idle contribution in this window while
2131 *    accumlating the new one.
2132 *
2133 *  - When we wake up from NO_HZ idle during the window, we push up our
2134 *    contribution, since we effectively move our sample point to a known
2135 *    busy state.
2136 *
2137 *    This is solved by pushing the window forward, and thus skipping the
2138 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2139 *    was in effect at the time the window opened). This also solves the issue
2140 *    of having to deal with a cpu having been in NOHZ idle for multiple
2141 *    LOAD_FREQ intervals.
2142 *
2143 * When making the ILB scale, we should try to pull this in as well.
2144 */
2145static atomic_long_t calc_load_idle[2];
2146static int calc_load_idx;
2147
2148static inline int calc_load_write_idx(void)
2149{
2150	int idx = calc_load_idx;
2151
2152	/*
2153	 * See calc_global_nohz(), if we observe the new index, we also
2154	 * need to observe the new update time.
2155	 */
2156	smp_rmb();
2157
2158	/*
2159	 * If the folding window started, make sure we start writing in the
2160	 * next idle-delta.
2161	 */
2162	if (!time_before(jiffies, calc_load_update))
2163		idx++;
2164
2165	return idx & 1;
2166}
2167
2168static inline int calc_load_read_idx(void)
2169{
2170	return calc_load_idx & 1;
2171}
2172
2173void calc_load_enter_idle(void)
2174{
2175	struct rq *this_rq = this_rq();
2176	long delta;
2177
2178	/*
2179	 * We're going into NOHZ mode, if there's any pending delta, fold it
2180	 * into the pending idle delta.
2181	 */
2182	delta = calc_load_fold_active(this_rq);
2183	if (delta) {
2184		int idx = calc_load_write_idx();
2185		atomic_long_add(delta, &calc_load_idle[idx]);
2186	}
2187}
2188
2189void calc_load_exit_idle(void)
2190{
2191	struct rq *this_rq = this_rq();
2192
2193	/*
2194	 * If we're still before the sample window, we're done.
2195	 */
2196	if (time_before(jiffies, this_rq->calc_load_update))
2197		return;
2198
2199	/*
2200	 * We woke inside or after the sample window, this means we're already
2201	 * accounted through the nohz accounting, so skip the entire deal and
2202	 * sync up for the next window.
2203	 */
2204	this_rq->calc_load_update = calc_load_update;
2205	if (time_before(jiffies, this_rq->calc_load_update + 10))
2206		this_rq->calc_load_update += LOAD_FREQ;
2207}
2208
2209static long calc_load_fold_idle(void)
2210{
2211	int idx = calc_load_read_idx();
2212	long delta = 0;
2213
2214	if (atomic_long_read(&calc_load_idle[idx]))
2215		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2216
2217	return delta;
2218}
2219
2220/**
2221 * fixed_power_int - compute: x^n, in O(log n) time
2222 *
2223 * @x:         base of the power
2224 * @frac_bits: fractional bits of @x
2225 * @n:         power to raise @x to.
2226 *
2227 * By exploiting the relation between the definition of the natural power
2228 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2229 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2230 * (where: n_i \elem {0, 1}, the binary vector representing n),
2231 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2232 * of course trivially computable in O(log_2 n), the length of our binary
2233 * vector.
2234 */
2235static unsigned long
2236fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2237{
2238	unsigned long result = 1UL << frac_bits;
2239
2240	if (n) for (;;) {
2241		if (n & 1) {
2242			result *= x;
2243			result += 1UL << (frac_bits - 1);
2244			result >>= frac_bits;
2245		}
2246		n >>= 1;
2247		if (!n)
2248			break;
2249		x *= x;
2250		x += 1UL << (frac_bits - 1);
2251		x >>= frac_bits;
2252	}
2253
2254	return result;
2255}
2256
2257/*
2258 * a1 = a0 * e + a * (1 - e)
2259 *
2260 * a2 = a1 * e + a * (1 - e)
2261 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2262 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2263 *
2264 * a3 = a2 * e + a * (1 - e)
2265 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2266 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2267 *
2268 *  ...
2269 *
2270 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2271 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2272 *    = a0 * e^n + a * (1 - e^n)
2273 *
2274 * [1] application of the geometric series:
2275 *
2276 *              n         1 - x^(n+1)
2277 *     S_n := \Sum x^i = -------------
2278 *             i=0          1 - x
2279 */
2280static unsigned long
2281calc_load_n(unsigned long load, unsigned long exp,
2282	    unsigned long active, unsigned int n)
2283{
2284
2285	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2286}
2287
2288/*
2289 * NO_HZ can leave us missing all per-cpu ticks calling
2290 * calc_load_account_active(), but since an idle CPU folds its delta into
2291 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2292 * in the pending idle delta if our idle period crossed a load cycle boundary.
2293 *
2294 * Once we've updated the global active value, we need to apply the exponential
2295 * weights adjusted to the number of cycles missed.
2296 */
2297static void calc_global_nohz(void)
2298{
2299	long delta, active, n;
2300
2301	if (!time_before(jiffies, calc_load_update + 10)) {
2302		/*
2303		 * Catch-up, fold however many we are behind still
2304		 */
2305		delta = jiffies - calc_load_update - 10;
2306		n = 1 + (delta / LOAD_FREQ);
2307
2308		active = atomic_long_read(&calc_load_tasks);
2309		active = active > 0 ? active * FIXED_1 : 0;
2310
2311		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2312		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2313		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2314
2315		calc_load_update += n * LOAD_FREQ;
2316	}
2317
2318	/*
2319	 * Flip the idle index...
2320	 *
2321	 * Make sure we first write the new time then flip the index, so that
2322	 * calc_load_write_idx() will see the new time when it reads the new
2323	 * index, this avoids a double flip messing things up.
2324	 */
2325	smp_wmb();
2326	calc_load_idx++;
2327}
2328#else /* !CONFIG_NO_HZ */
2329
2330static inline long calc_load_fold_idle(void) { return 0; }
2331static inline void calc_global_nohz(void) { }
2332
2333#endif /* CONFIG_NO_HZ */
2334
2335/*
2336 * calc_load - update the avenrun load estimates 10 ticks after the
2337 * CPUs have updated calc_load_tasks.
2338 */
2339void calc_global_load(unsigned long ticks)
2340{
2341	long active, delta;
2342
2343	if (time_before(jiffies, calc_load_update + 10))
2344		return;
2345
2346	/*
2347	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2348	 */
2349	delta = calc_load_fold_idle();
2350	if (delta)
2351		atomic_long_add(delta, &calc_load_tasks);
2352
2353	active = atomic_long_read(&calc_load_tasks);
2354	active = active > 0 ? active * FIXED_1 : 0;
2355
2356	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2357	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2358	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2359
2360	calc_load_update += LOAD_FREQ;
2361
2362	/*
2363	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2364	 */
2365	calc_global_nohz();
2366}
2367
2368/*
2369 * Called from update_cpu_load() to periodically update this CPU's
2370 * active count.
2371 */
2372static void calc_load_account_active(struct rq *this_rq)
2373{
2374	long delta;
2375
2376	if (time_before(jiffies, this_rq->calc_load_update))
2377		return;
2378
2379	delta  = calc_load_fold_active(this_rq);
2380	if (delta)
2381		atomic_long_add(delta, &calc_load_tasks);
2382
2383	this_rq->calc_load_update += LOAD_FREQ;
2384}
2385
2386/*
2387 * End of global load-average stuff
2388 */
2389
2390/*
2391 * The exact cpuload at various idx values, calculated at every tick would be
2392 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2393 *
2394 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2395 * on nth tick when cpu may be busy, then we have:
2396 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2398 *
2399 * decay_load_missed() below does efficient calculation of
2400 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2401 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2402 *
2403 * The calculation is approximated on a 128 point scale.
2404 * degrade_zero_ticks is the number of ticks after which load at any
2405 * particular idx is approximated to be zero.
2406 * degrade_factor is a precomputed table, a row for each load idx.
2407 * Each column corresponds to degradation factor for a power of two ticks,
2408 * based on 128 point scale.
2409 * Example:
2410 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2411 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2412 *
2413 * With this power of 2 load factors, we can degrade the load n times
2414 * by looking at 1 bits in n and doing as many mult/shift instead of
2415 * n mult/shifts needed by the exact degradation.
2416 */
2417#define DEGRADE_SHIFT		7
2418static const unsigned char
2419		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2420static const unsigned char
2421		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2422					{0, 0, 0, 0, 0, 0, 0, 0},
2423					{64, 32, 8, 0, 0, 0, 0, 0},
2424					{96, 72, 40, 12, 1, 0, 0},
2425					{112, 98, 75, 43, 15, 1, 0},
2426					{120, 112, 98, 76, 45, 16, 2} };
2427
2428/*
2429 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2430 * would be when CPU is idle and so we just decay the old load without
2431 * adding any new load.
2432 */
2433static unsigned long
2434decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2435{
2436	int j = 0;
2437
2438	if (!missed_updates)
2439		return load;
2440
2441	if (missed_updates >= degrade_zero_ticks[idx])
2442		return 0;
2443
2444	if (idx == 1)
2445		return load >> missed_updates;
2446
2447	while (missed_updates) {
2448		if (missed_updates % 2)
2449			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2450
2451		missed_updates >>= 1;
2452		j++;
2453	}
2454	return load;
2455}
2456
2457/*
2458 * Update rq->cpu_load[] statistics. This function is usually called every
2459 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2460 * every tick. We fix it up based on jiffies.
2461 */
2462static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2463			      unsigned long pending_updates)
2464{
2465	int i, scale;
2466
2467	this_rq->nr_load_updates++;
2468
2469	/* Update our load: */
2470	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2471	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2472		unsigned long old_load, new_load;
2473
2474		/* scale is effectively 1 << i now, and >> i divides by scale */
2475
2476		old_load = this_rq->cpu_load[i];
2477		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2478		new_load = this_load;
2479		/*
2480		 * Round up the averaging division if load is increasing. This
2481		 * prevents us from getting stuck on 9 if the load is 10, for
2482		 * example.
2483		 */
2484		if (new_load > old_load)
2485			new_load += scale - 1;
2486
2487		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2488	}
2489
2490	sched_avg_update(this_rq);
2491}
2492
2493#ifdef CONFIG_NO_HZ
2494/*
2495 * There is no sane way to deal with nohz on smp when using jiffies because the
2496 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2497 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2498 *
2499 * Therefore we cannot use the delta approach from the regular tick since that
2500 * would seriously skew the load calculation. However we'll make do for those
2501 * updates happening while idle (nohz_idle_balance) or coming out of idle
2502 * (tick_nohz_idle_exit).
2503 *
2504 * This means we might still be one tick off for nohz periods.
2505 */
2506
2507/*
2508 * Called from nohz_idle_balance() to update the load ratings before doing the
2509 * idle balance.
2510 */
2511void update_idle_cpu_load(struct rq *this_rq)
2512{
2513	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2514	unsigned long load = this_rq->load.weight;
2515	unsigned long pending_updates;
2516
2517	/*
2518	 * bail if there's load or we're actually up-to-date.
2519	 */
2520	if (load || curr_jiffies == this_rq->last_load_update_tick)
2521		return;
2522
2523	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2524	this_rq->last_load_update_tick = curr_jiffies;
2525
2526	__update_cpu_load(this_rq, load, pending_updates);
2527}
2528
2529/*
2530 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2531 */
2532void update_cpu_load_nohz(void)
2533{
2534	struct rq *this_rq = this_rq();
2535	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536	unsigned long pending_updates;
2537
2538	if (curr_jiffies == this_rq->last_load_update_tick)
2539		return;
2540
2541	raw_spin_lock(&this_rq->lock);
2542	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2543	if (pending_updates) {
2544		this_rq->last_load_update_tick = curr_jiffies;
2545		/*
2546		 * We were idle, this means load 0, the current load might be
2547		 * !0 due to remote wakeups and the sort.
2548		 */
2549		__update_cpu_load(this_rq, 0, pending_updates);
2550	}
2551	raw_spin_unlock(&this_rq->lock);
2552}
2553#endif /* CONFIG_NO_HZ */
2554
2555/*
2556 * Called from scheduler_tick()
2557 */
2558static void update_cpu_load_active(struct rq *this_rq)
2559{
2560	/*
2561	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2562	 */
2563	this_rq->last_load_update_tick = jiffies;
2564	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2565
2566	calc_load_account_active(this_rq);
2567}
2568
2569#ifdef CONFIG_SMP
2570
2571/*
2572 * sched_exec - execve() is a valuable balancing opportunity, because at
2573 * this point the task has the smallest effective memory and cache footprint.
2574 */
2575void sched_exec(void)
2576{
2577	struct task_struct *p = current;
2578	unsigned long flags;
2579	int dest_cpu;
2580
2581	raw_spin_lock_irqsave(&p->pi_lock, flags);
2582	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2583	if (dest_cpu == smp_processor_id())
2584		goto unlock;
2585
2586	if (likely(cpu_active(dest_cpu))) {
2587		struct migration_arg arg = { p, dest_cpu };
2588
2589		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2590		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2591		return;
2592	}
2593unlock:
2594	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2595}
2596
2597#endif
2598
2599DEFINE_PER_CPU(struct kernel_stat, kstat);
2600DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2601
2602EXPORT_PER_CPU_SYMBOL(kstat);
2603EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2604
2605/*
2606 * Return any ns on the sched_clock that have not yet been accounted in
2607 * @p in case that task is currently running.
2608 *
2609 * Called with task_rq_lock() held on @rq.
2610 */
2611static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2612{
2613	u64 ns = 0;
2614
2615	if (task_current(rq, p)) {
2616		update_rq_clock(rq);
2617		ns = rq->clock_task - p->se.exec_start;
2618		if ((s64)ns < 0)
2619			ns = 0;
2620	}
2621
2622	return ns;
2623}
2624
2625unsigned long long task_delta_exec(struct task_struct *p)
2626{
2627	unsigned long flags;
2628	struct rq *rq;
2629	u64 ns = 0;
2630
2631	rq = task_rq_lock(p, &flags);
2632	ns = do_task_delta_exec(p, rq);
2633	task_rq_unlock(rq, p, &flags);
2634
2635	return ns;
2636}
2637
2638/*
2639 * Return accounted runtime for the task.
2640 * In case the task is currently running, return the runtime plus current's
2641 * pending runtime that have not been accounted yet.
2642 */
2643unsigned long long task_sched_runtime(struct task_struct *p)
2644{
2645	unsigned long flags;
2646	struct rq *rq;
2647	u64 ns = 0;
2648
2649	rq = task_rq_lock(p, &flags);
2650	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2651	task_rq_unlock(rq, p, &flags);
2652
2653	return ns;
2654}
2655
2656/*
2657 * This function gets called by the timer code, with HZ frequency.
2658 * We call it with interrupts disabled.
2659 */
2660void scheduler_tick(void)
2661{
2662	int cpu = smp_processor_id();
2663	struct rq *rq = cpu_rq(cpu);
2664	struct task_struct *curr = rq->curr;
2665
2666	sched_clock_tick();
2667
2668	raw_spin_lock(&rq->lock);
2669	update_rq_clock(rq);
2670	update_cpu_load_active(rq);
2671	curr->sched_class->task_tick(rq, curr, 0);
2672	raw_spin_unlock(&rq->lock);
2673
2674	perf_event_task_tick();
2675
2676#ifdef CONFIG_SMP
2677	rq->idle_balance = idle_cpu(cpu);
2678	trigger_load_balance(rq, cpu);
2679#endif
2680}
2681
2682notrace unsigned long get_parent_ip(unsigned long addr)
2683{
2684	if (in_lock_functions(addr)) {
2685		addr = CALLER_ADDR2;
2686		if (in_lock_functions(addr))
2687			addr = CALLER_ADDR3;
2688	}
2689	return addr;
2690}
2691
2692#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2693				defined(CONFIG_PREEMPT_TRACER))
2694
2695void __kprobes add_preempt_count(int val)
2696{
2697#ifdef CONFIG_DEBUG_PREEMPT
2698	/*
2699	 * Underflow?
2700	 */
2701	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2702		return;
2703#endif
2704	preempt_count() += val;
2705#ifdef CONFIG_DEBUG_PREEMPT
2706	/*
2707	 * Spinlock count overflowing soon?
2708	 */
2709	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2710				PREEMPT_MASK - 10);
2711#endif
2712	if (preempt_count() == val)
2713		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2714}
2715EXPORT_SYMBOL(add_preempt_count);
2716
2717void __kprobes sub_preempt_count(int val)
2718{
2719#ifdef CONFIG_DEBUG_PREEMPT
2720	/*
2721	 * Underflow?
2722	 */
2723	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2724		return;
2725	/*
2726	 * Is the spinlock portion underflowing?
2727	 */
2728	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2729			!(preempt_count() & PREEMPT_MASK)))
2730		return;
2731#endif
2732
2733	if (preempt_count() == val)
2734		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2735	preempt_count() -= val;
2736}
2737EXPORT_SYMBOL(sub_preempt_count);
2738
2739#endif
2740
2741/*
2742 * Print scheduling while atomic bug:
2743 */
2744static noinline void __schedule_bug(struct task_struct *prev)
2745{
2746	if (oops_in_progress)
2747		return;
2748
2749	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2750		prev->comm, prev->pid, preempt_count());
2751
2752	debug_show_held_locks(prev);
2753	print_modules();
2754	if (irqs_disabled())
2755		print_irqtrace_events(prev);
2756	dump_stack();
2757	add_taint(TAINT_WARN);
2758}
2759
2760/*
2761 * Various schedule()-time debugging checks and statistics:
2762 */
2763static inline void schedule_debug(struct task_struct *prev)
2764{
2765	/*
2766	 * Test if we are atomic. Since do_exit() needs to call into
2767	 * schedule() atomically, we ignore that path for now.
2768	 * Otherwise, whine if we are scheduling when we should not be.
2769	 */
2770	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2771		__schedule_bug(prev);
2772	rcu_sleep_check();
2773
2774	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2775
2776	schedstat_inc(this_rq(), sched_count);
2777}
2778
2779static void put_prev_task(struct rq *rq, struct task_struct *prev)
2780{
2781	if (prev->on_rq || rq->skip_clock_update < 0)
2782		update_rq_clock(rq);
2783	prev->sched_class->put_prev_task(rq, prev);
2784}
2785
2786/*
2787 * Pick up the highest-prio task:
2788 */
2789static inline struct task_struct *
2790pick_next_task(struct rq *rq)
2791{
2792	const struct sched_class *class;
2793	struct task_struct *p;
2794
2795	/*
2796	 * Optimization: we know that if all tasks are in
2797	 * the fair class we can call that function directly:
2798	 */
2799	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2800		p = fair_sched_class.pick_next_task(rq);
2801		if (likely(p))
2802			return p;
2803	}
2804
2805	for_each_class(class) {
2806		p = class->pick_next_task(rq);
2807		if (p)
2808			return p;
2809	}
2810
2811	BUG(); /* the idle class will always have a runnable task */
2812}
2813
2814/*
2815 * __schedule() is the main scheduler function.
2816 *
2817 * The main means of driving the scheduler and thus entering this function are:
2818 *
2819 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2820 *
2821 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2822 *      paths. For example, see arch/x86/entry_64.S.
2823 *
2824 *      To drive preemption between tasks, the scheduler sets the flag in timer
2825 *      interrupt handler scheduler_tick().
2826 *
2827 *   3. Wakeups don't really cause entry into schedule(). They add a
2828 *      task to the run-queue and that's it.
2829 *
2830 *      Now, if the new task added to the run-queue preempts the current
2831 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2832 *      called on the nearest possible occasion:
2833 *
2834 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2835 *
2836 *         - in syscall or exception context, at the next outmost
2837 *           preempt_enable(). (this might be as soon as the wake_up()'s
2838 *           spin_unlock()!)
2839 *
2840 *         - in IRQ context, return from interrupt-handler to
2841 *           preemptible context
2842 *
2843 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2844 *         then at the next:
2845 *
2846 *          - cond_resched() call
2847 *          - explicit schedule() call
2848 *          - return from syscall or exception to user-space
2849 *          - return from interrupt-handler to user-space
2850 */
2851static void __sched __schedule(void)
2852{
2853	struct task_struct *prev, *next;
2854	unsigned long *switch_count;
2855	struct rq *rq;
2856	int cpu;
2857
2858need_resched:
2859	preempt_disable();
2860	cpu = smp_processor_id();
2861	rq = cpu_rq(cpu);
2862	rcu_note_context_switch(cpu);
2863	prev = rq->curr;
2864
2865	schedule_debug(prev);
2866
2867	if (sched_feat(HRTICK))
2868		hrtick_clear(rq);
2869
2870	raw_spin_lock_irq(&rq->lock);
2871
2872	switch_count = &prev->nivcsw;
2873	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2874		if (unlikely(signal_pending_state(prev->state, prev))) {
2875			prev->state = TASK_RUNNING;
2876		} else {
2877			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2878			prev->on_rq = 0;
2879
2880			/*
2881			 * If a worker went to sleep, notify and ask workqueue
2882			 * whether it wants to wake up a task to maintain
2883			 * concurrency.
2884			 */
2885			if (prev->flags & PF_WQ_WORKER) {
2886				struct task_struct *to_wakeup;
2887
2888				to_wakeup = wq_worker_sleeping(prev, cpu);
2889				if (to_wakeup)
2890					try_to_wake_up_local(to_wakeup);
2891			}
2892		}
2893		switch_count = &prev->nvcsw;
2894	}
2895
2896	pre_schedule(rq, prev);
2897
2898	if (unlikely(!rq->nr_running))
2899		idle_balance(cpu, rq);
2900
2901	put_prev_task(rq, prev);
2902	next = pick_next_task(rq);
2903	clear_tsk_need_resched(prev);
2904	rq->skip_clock_update = 0;
2905
2906	if (likely(prev != next)) {
2907		rq->nr_switches++;
2908		rq->curr = next;
2909		++*switch_count;
2910
2911		context_switch(rq, prev, next); /* unlocks the rq */
2912		/*
2913		 * The context switch have flipped the stack from under us
2914		 * and restored the local variables which were saved when
2915		 * this task called schedule() in the past. prev == current
2916		 * is still correct, but it can be moved to another cpu/rq.
2917		 */
2918		cpu = smp_processor_id();
2919		rq = cpu_rq(cpu);
2920	} else
2921		raw_spin_unlock_irq(&rq->lock);
2922
2923	post_schedule(rq);
2924
2925	sched_preempt_enable_no_resched();
2926	if (need_resched())
2927		goto need_resched;
2928}
2929
2930static inline void sched_submit_work(struct task_struct *tsk)
2931{
2932	if (!tsk->state || tsk_is_pi_blocked(tsk))
2933		return;
2934	/*
2935	 * If we are going to sleep and we have plugged IO queued,
2936	 * make sure to submit it to avoid deadlocks.
2937	 */
2938	if (blk_needs_flush_plug(tsk))
2939		blk_schedule_flush_plug(tsk);
2940}
2941
2942asmlinkage void __sched schedule(void)
2943{
2944	struct task_struct *tsk = current;
2945
2946	sched_submit_work(tsk);
2947	__schedule();
2948}
2949EXPORT_SYMBOL(schedule);
2950
2951/**
2952 * schedule_preempt_disabled - called with preemption disabled
2953 *
2954 * Returns with preemption disabled. Note: preempt_count must be 1
2955 */
2956void __sched schedule_preempt_disabled(void)
2957{
2958	sched_preempt_enable_no_resched();
2959	schedule();
2960	preempt_disable();
2961}
2962
2963#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2964
2965static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2966{
2967	if (lock->owner != owner)
2968		return false;
2969
2970	/*
2971	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2972	 * lock->owner still matches owner, if that fails, owner might
2973	 * point to free()d memory, if it still matches, the rcu_read_lock()
2974	 * ensures the memory stays valid.
2975	 */
2976	barrier();
2977
2978	return owner->on_cpu;
2979}
2980
2981/*
2982 * Look out! "owner" is an entirely speculative pointer
2983 * access and not reliable.
2984 */
2985int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2986{
2987	if (!sched_feat(OWNER_SPIN))
2988		return 0;
2989
2990	rcu_read_lock();
2991	while (owner_running(lock, owner)) {
2992		if (need_resched())
2993			break;
2994
2995		arch_mutex_cpu_relax();
2996	}
2997	rcu_read_unlock();
2998
2999	/*
3000	 * We break out the loop above on need_resched() and when the
3001	 * owner changed, which is a sign for heavy contention. Return
3002	 * success only when lock->owner is NULL.
3003	 */
3004	return lock->owner == NULL;
3005}
3006#endif
3007
3008#ifdef CONFIG_PREEMPT
3009/*
3010 * this is the entry point to schedule() from in-kernel preemption
3011 * off of preempt_enable. Kernel preemptions off return from interrupt
3012 * occur there and call schedule directly.
3013 */
3014asmlinkage void __sched notrace preempt_schedule(void)
3015{
3016	struct thread_info *ti = current_thread_info();
3017
3018	/*
3019	 * If there is a non-zero preempt_count or interrupts are disabled,
3020	 * we do not want to preempt the current task. Just return..
3021	 */
3022	if (likely(ti->preempt_count || irqs_disabled()))
3023		return;
3024
3025	do {
3026		add_preempt_count_notrace(PREEMPT_ACTIVE);
3027		__schedule();
3028		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3029
3030		/*
3031		 * Check again in case we missed a preemption opportunity
3032		 * between schedule and now.
3033		 */
3034		barrier();
3035	} while (need_resched());
3036}
3037EXPORT_SYMBOL(preempt_schedule);
3038
3039/*
3040 * this is the entry point to schedule() from kernel preemption
3041 * off of irq context.
3042 * Note, that this is called and return with irqs disabled. This will
3043 * protect us against recursive calling from irq.
3044 */
3045asmlinkage void __sched preempt_schedule_irq(void)
3046{
3047	struct thread_info *ti = current_thread_info();
3048
3049	/* Catch callers which need to be fixed */
3050	BUG_ON(ti->preempt_count || !irqs_disabled());
3051
3052	do {
3053		add_preempt_count(PREEMPT_ACTIVE);
3054		local_irq_enable();
3055		__schedule();
3056		local_irq_disable();
3057		sub_preempt_count(PREEMPT_ACTIVE);
3058
3059		/*
3060		 * Check again in case we missed a preemption opportunity
3061		 * between schedule and now.
3062		 */
3063		barrier();
3064	} while (need_resched());
3065}
3066
3067#endif /* CONFIG_PREEMPT */
3068
3069int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3070			  void *key)
3071{
3072	return try_to_wake_up(curr->private, mode, wake_flags);
3073}
3074EXPORT_SYMBOL(default_wake_function);
3075
3076/*
3077 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3078 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3079 * number) then we wake all the non-exclusive tasks and one exclusive task.
3080 *
3081 * There are circumstances in which we can try to wake a task which has already
3082 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3083 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3084 */
3085static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3086			int nr_exclusive, int wake_flags, void *key)
3087{
3088	wait_queue_t *curr, *next;
3089
3090	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3091		unsigned flags = curr->flags;
3092
3093		if (curr->func(curr, mode, wake_flags, key) &&
3094				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3095			break;
3096	}
3097}
3098
3099/**
3100 * __wake_up - wake up threads blocked on a waitqueue.
3101 * @q: the waitqueue
3102 * @mode: which threads
3103 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3104 * @key: is directly passed to the wakeup function
3105 *
3106 * It may be assumed that this function implies a write memory barrier before
3107 * changing the task state if and only if any tasks are woken up.
3108 */
3109void __wake_up(wait_queue_head_t *q, unsigned int mode,
3110			int nr_exclusive, void *key)
3111{
3112	unsigned long flags;
3113
3114	spin_lock_irqsave(&q->lock, flags);
3115	__wake_up_common(q, mode, nr_exclusive, 0, key);
3116	spin_unlock_irqrestore(&q->lock, flags);
3117}
3118EXPORT_SYMBOL(__wake_up);
3119
3120/*
3121 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3122 */
3123void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3124{
3125	__wake_up_common(q, mode, nr, 0, NULL);
3126}
3127EXPORT_SYMBOL_GPL(__wake_up_locked);
3128
3129void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3130{
3131	__wake_up_common(q, mode, 1, 0, key);
3132}
3133EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3134
3135/**
3136 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3137 * @q: the waitqueue
3138 * @mode: which threads
3139 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3140 * @key: opaque value to be passed to wakeup targets
3141 *
3142 * The sync wakeup differs that the waker knows that it will schedule
3143 * away soon, so while the target thread will be woken up, it will not
3144 * be migrated to another CPU - ie. the two threads are 'synchronized'
3145 * with each other. This can prevent needless bouncing between CPUs.
3146 *
3147 * On UP it can prevent extra preemption.
3148 *
3149 * It may be assumed that this function implies a write memory barrier before
3150 * changing the task state if and only if any tasks are woken up.
3151 */
3152void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3153			int nr_exclusive, void *key)
3154{
3155	unsigned long flags;
3156	int wake_flags = WF_SYNC;
3157
3158	if (unlikely(!q))
3159		return;
3160
3161	if (unlikely(!nr_exclusive))
3162		wake_flags = 0;
3163
3164	spin_lock_irqsave(&q->lock, flags);
3165	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3166	spin_unlock_irqrestore(&q->lock, flags);
3167}
3168EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3169
3170/*
3171 * __wake_up_sync - see __wake_up_sync_key()
3172 */
3173void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3174{
3175	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3176}
3177EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3178
3179/**
3180 * complete: - signals a single thread waiting on this completion
3181 * @x:  holds the state of this particular completion
3182 *
3183 * This will wake up a single thread waiting on this completion. Threads will be
3184 * awakened in the same order in which they were queued.
3185 *
3186 * See also complete_all(), wait_for_completion() and related routines.
3187 *
3188 * It may be assumed that this function implies a write memory barrier before
3189 * changing the task state if and only if any tasks are woken up.
3190 */
3191void complete(struct completion *x)
3192{
3193	unsigned long flags;
3194
3195	spin_lock_irqsave(&x->wait.lock, flags);
3196	x->done++;
3197	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3198	spin_unlock_irqrestore(&x->wait.lock, flags);
3199}
3200EXPORT_SYMBOL(complete);
3201
3202/**
3203 * complete_all: - signals all threads waiting on this completion
3204 * @x:  holds the state of this particular completion
3205 *
3206 * This will wake up all threads waiting on this particular completion event.
3207 *
3208 * It may be assumed that this function implies a write memory barrier before
3209 * changing the task state if and only if any tasks are woken up.
3210 */
3211void complete_all(struct completion *x)
3212{
3213	unsigned long flags;
3214
3215	spin_lock_irqsave(&x->wait.lock, flags);
3216	x->done += UINT_MAX/2;
3217	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3218	spin_unlock_irqrestore(&x->wait.lock, flags);
3219}
3220EXPORT_SYMBOL(complete_all);
3221
3222static inline long __sched
3223do_wait_for_common(struct completion *x, long timeout, int state)
3224{
3225	if (!x->done) {
3226		DECLARE_WAITQUEUE(wait, current);
3227
3228		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3229		do {
3230			if (signal_pending_state(state, current)) {
3231				timeout = -ERESTARTSYS;
3232				break;
3233			}
3234			__set_current_state(state);
3235			spin_unlock_irq(&x->wait.lock);
3236			timeout = schedule_timeout(timeout);
3237			spin_lock_irq(&x->wait.lock);
3238		} while (!x->done && timeout);
3239		__remove_wait_queue(&x->wait, &wait);
3240		if (!x->done)
3241			return timeout;
3242	}
3243	x->done--;
3244	return timeout ?: 1;
3245}
3246
3247static long __sched
3248wait_for_common(struct completion *x, long timeout, int state)
3249{
3250	might_sleep();
3251
3252	spin_lock_irq(&x->wait.lock);
3253	timeout = do_wait_for_common(x, timeout, state);
3254	spin_unlock_irq(&x->wait.lock);
3255	return timeout;
3256}
3257
3258/**
3259 * wait_for_completion: - waits for completion of a task
3260 * @x:  holds the state of this particular completion
3261 *
3262 * This waits to be signaled for completion of a specific task. It is NOT
3263 * interruptible and there is no timeout.
3264 *
3265 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3266 * and interrupt capability. Also see complete().
3267 */
3268void __sched wait_for_completion(struct completion *x)
3269{
3270	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3271}
3272EXPORT_SYMBOL(wait_for_completion);
3273
3274/**
3275 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3276 * @x:  holds the state of this particular completion
3277 * @timeout:  timeout value in jiffies
3278 *
3279 * This waits for either a completion of a specific task to be signaled or for a
3280 * specified timeout to expire. The timeout is in jiffies. It is not
3281 * interruptible.
3282 *
3283 * The return value is 0 if timed out, and positive (at least 1, or number of
3284 * jiffies left till timeout) if completed.
3285 */
3286unsigned long __sched
3287wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3288{
3289	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3290}
3291EXPORT_SYMBOL(wait_for_completion_timeout);
3292
3293/**
3294 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3295 * @x:  holds the state of this particular completion
3296 *
3297 * This waits for completion of a specific task to be signaled. It is
3298 * interruptible.
3299 *
3300 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3301 */
3302int __sched wait_for_completion_interruptible(struct completion *x)
3303{
3304	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3305	if (t == -ERESTARTSYS)
3306		return t;
3307	return 0;
3308}
3309EXPORT_SYMBOL(wait_for_completion_interruptible);
3310
3311/**
3312 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3313 * @x:  holds the state of this particular completion
3314 * @timeout:  timeout value in jiffies
3315 *
3316 * This waits for either a completion of a specific task to be signaled or for a
3317 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3318 *
3319 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3320 * positive (at least 1, or number of jiffies left till timeout) if completed.
3321 */
3322long __sched
3323wait_for_completion_interruptible_timeout(struct completion *x,
3324					  unsigned long timeout)
3325{
3326	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3327}
3328EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3329
3330/**
3331 * wait_for_completion_killable: - waits for completion of a task (killable)
3332 * @x:  holds the state of this particular completion
3333 *
3334 * This waits to be signaled for completion of a specific task. It can be
3335 * interrupted by a kill signal.
3336 *
3337 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3338 */
3339int __sched wait_for_completion_killable(struct completion *x)
3340{
3341	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3342	if (t == -ERESTARTSYS)
3343		return t;
3344	return 0;
3345}
3346EXPORT_SYMBOL(wait_for_completion_killable);
3347
3348/**
3349 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3350 * @x:  holds the state of this particular completion
3351 * @timeout:  timeout value in jiffies
3352 *
3353 * This waits for either a completion of a specific task to be
3354 * signaled or for a specified timeout to expire. It can be
3355 * interrupted by a kill signal. The timeout is in jiffies.
3356 *
3357 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3358 * positive (at least 1, or number of jiffies left till timeout) if completed.
3359 */
3360long __sched
3361wait_for_completion_killable_timeout(struct completion *x,
3362				     unsigned long timeout)
3363{
3364	return wait_for_common(x, timeout, TASK_KILLABLE);
3365}
3366EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3367
3368/**
3369 *	try_wait_for_completion - try to decrement a completion without blocking
3370 *	@x:	completion structure
3371 *
3372 *	Returns: 0 if a decrement cannot be done without blocking
3373 *		 1 if a decrement succeeded.
3374 *
3375 *	If a completion is being used as a counting completion,
3376 *	attempt to decrement the counter without blocking. This
3377 *	enables us to avoid waiting if the resource the completion
3378 *	is protecting is not available.
3379 */
3380bool try_wait_for_completion(struct completion *x)
3381{
3382	unsigned long flags;
3383	int ret = 1;
3384
3385	spin_lock_irqsave(&x->wait.lock, flags);
3386	if (!x->done)
3387		ret = 0;
3388	else
3389		x->done--;
3390	spin_unlock_irqrestore(&x->wait.lock, flags);
3391	return ret;
3392}
3393EXPORT_SYMBOL(try_wait_for_completion);
3394
3395/**
3396 *	completion_done - Test to see if a completion has any waiters
3397 *	@x:	completion structure
3398 *
3399 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3400 *		 1 if there are no waiters.
3401 *
3402 */
3403bool completion_done(struct completion *x)
3404{
3405	unsigned long flags;
3406	int ret = 1;
3407
3408	spin_lock_irqsave(&x->wait.lock, flags);
3409	if (!x->done)
3410		ret = 0;
3411	spin_unlock_irqrestore(&x->wait.lock, flags);
3412	return ret;
3413}
3414EXPORT_SYMBOL(completion_done);
3415
3416static long __sched
3417sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3418{
3419	unsigned long flags;
3420	wait_queue_t wait;
3421
3422	init_waitqueue_entry(&wait, current);
3423
3424	__set_current_state(state);
3425
3426	spin_lock_irqsave(&q->lock, flags);
3427	__add_wait_queue(q, &wait);
3428	spin_unlock(&q->lock);
3429	timeout = schedule_timeout(timeout);
3430	spin_lock_irq(&q->lock);
3431	__remove_wait_queue(q, &wait);
3432	spin_unlock_irqrestore(&q->lock, flags);
3433
3434	return timeout;
3435}
3436
3437void __sched interruptible_sleep_on(wait_queue_head_t *q)
3438{
3439	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3440}
3441EXPORT_SYMBOL(interruptible_sleep_on);
3442
3443long __sched
3444interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3445{
3446	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3447}
3448EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3449
3450void __sched sleep_on(wait_queue_head_t *q)
3451{
3452	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3453}
3454EXPORT_SYMBOL(sleep_on);
3455
3456long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3457{
3458	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3459}
3460EXPORT_SYMBOL(sleep_on_timeout);
3461
3462#ifdef CONFIG_RT_MUTEXES
3463
3464/*
3465 * rt_mutex_setprio - set the current priority of a task
3466 * @p: task
3467 * @prio: prio value (kernel-internal form)
3468 *
3469 * This function changes the 'effective' priority of a task. It does
3470 * not touch ->normal_prio like __setscheduler().
3471 *
3472 * Used by the rt_mutex code to implement priority inheritance logic.
3473 */
3474void rt_mutex_setprio(struct task_struct *p, int prio)
3475{
3476	int oldprio, on_rq, running;
3477	struct rq *rq;
3478	const struct sched_class *prev_class;
3479
3480	BUG_ON(prio < 0 || prio > MAX_PRIO);
3481
3482	rq = __task_rq_lock(p);
3483
3484	/*
3485	 * Idle task boosting is a nono in general. There is one
3486	 * exception, when PREEMPT_RT and NOHZ is active:
3487	 *
3488	 * The idle task calls get_next_timer_interrupt() and holds
3489	 * the timer wheel base->lock on the CPU and another CPU wants
3490	 * to access the timer (probably to cancel it). We can safely
3491	 * ignore the boosting request, as the idle CPU runs this code
3492	 * with interrupts disabled and will complete the lock
3493	 * protected section without being interrupted. So there is no
3494	 * real need to boost.
3495	 */
3496	if (unlikely(p == rq->idle)) {
3497		WARN_ON(p != rq->curr);
3498		WARN_ON(p->pi_blocked_on);
3499		goto out_unlock;
3500	}
3501
3502	trace_sched_pi_setprio(p, prio);
3503	oldprio = p->prio;
3504	prev_class = p->sched_class;
3505	on_rq = p->on_rq;
3506	running = task_current(rq, p);
3507	if (on_rq)
3508		dequeue_task(rq, p, 0);
3509	if (running)
3510		p->sched_class->put_prev_task(rq, p);
3511
3512	if (rt_prio(prio))
3513		p->sched_class = &rt_sched_class;
3514	else
3515		p->sched_class = &fair_sched_class;
3516
3517	p->prio = prio;
3518
3519	if (running)
3520		p->sched_class->set_curr_task(rq);
3521	if (on_rq)
3522		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3523
3524	check_class_changed(rq, p, prev_class, oldprio);
3525out_unlock:
3526	__task_rq_unlock(rq);
3527}
3528#endif
3529void set_user_nice(struct task_struct *p, long nice)
3530{
3531	int old_prio, delta, on_rq;
3532	unsigned long flags;
3533	struct rq *rq;
3534
3535	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3536		return;
3537	/*
3538	 * We have to be careful, if called from sys_setpriority(),
3539	 * the task might be in the middle of scheduling on another CPU.
3540	 */
3541	rq = task_rq_lock(p, &flags);
3542	/*
3543	 * The RT priorities are set via sched_setscheduler(), but we still
3544	 * allow the 'normal' nice value to be set - but as expected
3545	 * it wont have any effect on scheduling until the task is
3546	 * SCHED_FIFO/SCHED_RR:
3547	 */
3548	if (task_has_rt_policy(p)) {
3549		p->static_prio = NICE_TO_PRIO(nice);
3550		goto out_unlock;
3551	}
3552	on_rq = p->on_rq;
3553	if (on_rq)
3554		dequeue_task(rq, p, 0);
3555
3556	p->static_prio = NICE_TO_PRIO(nice);
3557	set_load_weight(p);
3558	old_prio = p->prio;
3559	p->prio = effective_prio(p);
3560	delta = p->prio - old_prio;
3561
3562	if (on_rq) {
3563		enqueue_task(rq, p, 0);
3564		/*
3565		 * If the task increased its priority or is running and
3566		 * lowered its priority, then reschedule its CPU:
3567		 */
3568		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3569			resched_task(rq->curr);
3570	}
3571out_unlock:
3572	task_rq_unlock(rq, p, &flags);
3573}
3574EXPORT_SYMBOL(set_user_nice);
3575
3576/*
3577 * can_nice - check if a task can reduce its nice value
3578 * @p: task
3579 * @nice: nice value
3580 */
3581int can_nice(const struct task_struct *p, const int nice)
3582{
3583	/* convert nice value [19,-20] to rlimit style value [1,40] */
3584	int nice_rlim = 20 - nice;
3585
3586	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3587		capable(CAP_SYS_NICE));
3588}
3589
3590#ifdef __ARCH_WANT_SYS_NICE
3591
3592/*
3593 * sys_nice - change the priority of the current process.
3594 * @increment: priority increment
3595 *
3596 * sys_setpriority is a more generic, but much slower function that
3597 * does similar things.
3598 */
3599SYSCALL_DEFINE1(nice, int, increment)
3600{
3601	long nice, retval;
3602
3603	/*
3604	 * Setpriority might change our priority at the same moment.
3605	 * We don't have to worry. Conceptually one call occurs first
3606	 * and we have a single winner.
3607	 */
3608	if (increment < -40)
3609		increment = -40;
3610	if (increment > 40)
3611		increment = 40;
3612
3613	nice = TASK_NICE(current) + increment;
3614	if (nice < -20)
3615		nice = -20;
3616	if (nice > 19)
3617		nice = 19;
3618
3619	if (increment < 0 && !can_nice(current, nice))
3620		return -EPERM;
3621
3622	retval = security_task_setnice(current, nice);
3623	if (retval)
3624		return retval;
3625
3626	set_user_nice(current, nice);
3627	return 0;
3628}
3629
3630#endif
3631
3632/**
3633 * task_prio - return the priority value of a given task.
3634 * @p: the task in question.
3635 *
3636 * This is the priority value as seen by users in /proc.
3637 * RT tasks are offset by -200. Normal tasks are centered
3638 * around 0, value goes from -16 to +15.
3639 */
3640int task_prio(const struct task_struct *p)
3641{
3642	return p->prio - MAX_RT_PRIO;
3643}
3644
3645/**
3646 * task_nice - return the nice value of a given task.
3647 * @p: the task in question.
3648 */
3649int task_nice(const struct task_struct *p)
3650{
3651	return TASK_NICE(p);
3652}
3653EXPORT_SYMBOL(task_nice);
3654
3655/**
3656 * idle_cpu - is a given cpu idle currently?
3657 * @cpu: the processor in question.
3658 */
3659int idle_cpu(int cpu)
3660{
3661	struct rq *rq = cpu_rq(cpu);
3662
3663	if (rq->curr != rq->idle)
3664		return 0;
3665
3666	if (rq->nr_running)
3667		return 0;
3668
3669#ifdef CONFIG_SMP
3670	if (!llist_empty(&rq->wake_list))
3671		return 0;
3672#endif
3673
3674	return 1;
3675}
3676
3677/**
3678 * idle_task - return the idle task for a given cpu.
3679 * @cpu: the processor in question.
3680 */
3681struct task_struct *idle_task(int cpu)
3682{
3683	return cpu_rq(cpu)->idle;
3684}
3685
3686/**
3687 * find_process_by_pid - find a process with a matching PID value.
3688 * @pid: the pid in question.
3689 */
3690static struct task_struct *find_process_by_pid(pid_t pid)
3691{
3692	return pid ? find_task_by_vpid(pid) : current;
3693}
3694
3695/* Actually do priority change: must hold rq lock. */
3696static void
3697__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3698{
3699	p->policy = policy;
3700	p->rt_priority = prio;
3701	p->normal_prio = normal_prio(p);
3702	/* we are holding p->pi_lock already */
3703	p->prio = rt_mutex_getprio(p);
3704	if (rt_prio(p->prio))
3705		p->sched_class = &rt_sched_class;
3706	else
3707		p->sched_class = &fair_sched_class;
3708	set_load_weight(p);
3709}
3710
3711/*
3712 * check the target process has a UID that matches the current process's
3713 */
3714static bool check_same_owner(struct task_struct *p)
3715{
3716	const struct cred *cred = current_cred(), *pcred;
3717	bool match;
3718
3719	rcu_read_lock();
3720	pcred = __task_cred(p);
3721	match = (uid_eq(cred->euid, pcred->euid) ||
3722		 uid_eq(cred->euid, pcred->uid));
3723	rcu_read_unlock();
3724	return match;
3725}
3726
3727static int __sched_setscheduler(struct task_struct *p, int policy,
3728				const struct sched_param *param, bool user)
3729{
3730	int retval, oldprio, oldpolicy = -1, on_rq, running;
3731	unsigned long flags;
3732	const struct sched_class *prev_class;
3733	struct rq *rq;
3734	int reset_on_fork;
3735
3736	/* may grab non-irq protected spin_locks */
3737	BUG_ON(in_interrupt());
3738recheck:
3739	/* double check policy once rq lock held */
3740	if (policy < 0) {
3741		reset_on_fork = p->sched_reset_on_fork;
3742		policy = oldpolicy = p->policy;
3743	} else {
3744		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3745		policy &= ~SCHED_RESET_ON_FORK;
3746
3747		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3748				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3749				policy != SCHED_IDLE)
3750			return -EINVAL;
3751	}
3752
3753	/*
3754	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3755	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3756	 * SCHED_BATCH and SCHED_IDLE is 0.
3757	 */
3758	if (param->sched_priority < 0 ||
3759	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3760	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3761		return -EINVAL;
3762	if (rt_policy(policy) != (param->sched_priority != 0))
3763		return -EINVAL;
3764
3765	/*
3766	 * Allow unprivileged RT tasks to decrease priority:
3767	 */
3768	if (user && !capable(CAP_SYS_NICE)) {
3769		if (rt_policy(policy)) {
3770			unsigned long rlim_rtprio =
3771					task_rlimit(p, RLIMIT_RTPRIO);
3772
3773			/* can't set/change the rt policy */
3774			if (policy != p->policy && !rlim_rtprio)
3775				return -EPERM;
3776
3777			/* can't increase priority */
3778			if (param->sched_priority > p->rt_priority &&
3779			    param->sched_priority > rlim_rtprio)
3780				return -EPERM;
3781		}
3782
3783		/*
3784		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3785		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3786		 */
3787		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3788			if (!can_nice(p, TASK_NICE(p)))
3789				return -EPERM;
3790		}
3791
3792		/* can't change other user's priorities */
3793		if (!check_same_owner(p))
3794			return -EPERM;
3795
3796		/* Normal users shall not reset the sched_reset_on_fork flag */
3797		if (p->sched_reset_on_fork && !reset_on_fork)
3798			return -EPERM;
3799	}
3800
3801	if (user) {
3802		retval = security_task_setscheduler(p);
3803		if (retval)
3804			return retval;
3805	}
3806
3807	/*
3808	 * make sure no PI-waiters arrive (or leave) while we are
3809	 * changing the priority of the task:
3810	 *
3811	 * To be able to change p->policy safely, the appropriate
3812	 * runqueue lock must be held.
3813	 */
3814	rq = task_rq_lock(p, &flags);
3815
3816	/*
3817	 * Changing the policy of the stop threads its a very bad idea
3818	 */
3819	if (p == rq->stop) {
3820		task_rq_unlock(rq, p, &flags);
3821		return -EINVAL;
3822	}
3823
3824	/*
3825	 * If not changing anything there's no need to proceed further:
3826	 */
3827	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3828			param->sched_priority == p->rt_priority))) {
3829		task_rq_unlock(rq, p, &flags);
3830		return 0;
3831	}
3832
3833#ifdef CONFIG_RT_GROUP_SCHED
3834	if (user) {
3835		/*
3836		 * Do not allow realtime tasks into groups that have no runtime
3837		 * assigned.
3838		 */
3839		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3840				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3841				!task_group_is_autogroup(task_group(p))) {
3842			task_rq_unlock(rq, p, &flags);
3843			return -EPERM;
3844		}
3845	}
3846#endif
3847
3848	/* recheck policy now with rq lock held */
3849	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3850		policy = oldpolicy = -1;
3851		task_rq_unlock(rq, p, &flags);
3852		goto recheck;
3853	}
3854	on_rq = p->on_rq;
3855	running = task_current(rq, p);
3856	if (on_rq)
3857		dequeue_task(rq, p, 0);
3858	if (running)
3859		p->sched_class->put_prev_task(rq, p);
3860
3861	p->sched_reset_on_fork = reset_on_fork;
3862
3863	oldprio = p->prio;
3864	prev_class = p->sched_class;
3865	__setscheduler(rq, p, policy, param->sched_priority);
3866
3867	if (running)
3868		p->sched_class->set_curr_task(rq);
3869	if (on_rq)
3870		enqueue_task(rq, p, 0);
3871
3872	check_class_changed(rq, p, prev_class, oldprio);
3873	task_rq_unlock(rq, p, &flags);
3874
3875	rt_mutex_adjust_pi(p);
3876
3877	return 0;
3878}
3879
3880/**
3881 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3882 * @p: the task in question.
3883 * @policy: new policy.
3884 * @param: structure containing the new RT priority.
3885 *
3886 * NOTE that the task may be already dead.
3887 */
3888int sched_setscheduler(struct task_struct *p, int policy,
3889		       const struct sched_param *param)
3890{
3891	return __sched_setscheduler(p, policy, param, true);
3892}
3893EXPORT_SYMBOL_GPL(sched_setscheduler);
3894
3895/**
3896 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3897 * @p: the task in question.
3898 * @policy: new policy.
3899 * @param: structure containing the new RT priority.
3900 *
3901 * Just like sched_setscheduler, only don't bother checking if the
3902 * current context has permission.  For example, this is needed in
3903 * stop_machine(): we create temporary high priority worker threads,
3904 * but our caller might not have that capability.
3905 */
3906int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3907			       const struct sched_param *param)
3908{
3909	return __sched_setscheduler(p, policy, param, false);
3910}
3911
3912static int
3913do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3914{
3915	struct sched_param lparam;
3916	struct task_struct *p;
3917	int retval;
3918
3919	if (!param || pid < 0)
3920		return -EINVAL;
3921	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3922		return -EFAULT;
3923
3924	rcu_read_lock();
3925	retval = -ESRCH;
3926	p = find_process_by_pid(pid);
3927	if (p != NULL)
3928		retval = sched_setscheduler(p, policy, &lparam);
3929	rcu_read_unlock();
3930
3931	return retval;
3932}
3933
3934/**
3935 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3936 * @pid: the pid in question.
3937 * @policy: new policy.
3938 * @param: structure containing the new RT priority.
3939 */
3940SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3941		struct sched_param __user *, param)
3942{
3943	/* negative values for policy are not valid */
3944	if (policy < 0)
3945		return -EINVAL;
3946
3947	return do_sched_setscheduler(pid, policy, param);
3948}
3949
3950/**
3951 * sys_sched_setparam - set/change the RT priority of a thread
3952 * @pid: the pid in question.
3953 * @param: structure containing the new RT priority.
3954 */
3955SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3956{
3957	return do_sched_setscheduler(pid, -1, param);
3958}
3959
3960/**
3961 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3962 * @pid: the pid in question.
3963 */
3964SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3965{
3966	struct task_struct *p;
3967	int retval;
3968
3969	if (pid < 0)
3970		return -EINVAL;
3971
3972	retval = -ESRCH;
3973	rcu_read_lock();
3974	p = find_process_by_pid(pid);
3975	if (p) {
3976		retval = security_task_getscheduler(p);
3977		if (!retval)
3978			retval = p->policy
3979				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3980	}
3981	rcu_read_unlock();
3982	return retval;
3983}
3984
3985/**
3986 * sys_sched_getparam - get the RT priority of a thread
3987 * @pid: the pid in question.
3988 * @param: structure containing the RT priority.
3989 */
3990SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3991{
3992	struct sched_param lp;
3993	struct task_struct *p;
3994	int retval;
3995
3996	if (!param || pid < 0)
3997		return -EINVAL;
3998
3999	rcu_read_lock();
4000	p = find_process_by_pid(pid);
4001	retval = -ESRCH;
4002	if (!p)
4003		goto out_unlock;
4004
4005	retval = security_task_getscheduler(p);
4006	if (retval)
4007		goto out_unlock;
4008
4009	lp.sched_priority = p->rt_priority;
4010	rcu_read_unlock();
4011
4012	/*
4013	 * This one might sleep, we cannot do it with a spinlock held ...
4014	 */
4015	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4016
4017	return retval;
4018
4019out_unlock:
4020	rcu_read_unlock();
4021	return retval;
4022}
4023
4024long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4025{
4026	cpumask_var_t cpus_allowed, new_mask;
4027	struct task_struct *p;
4028	int retval;
4029
4030	get_online_cpus();
4031	rcu_read_lock();
4032
4033	p = find_process_by_pid(pid);
4034	if (!p) {
4035		rcu_read_unlock();
4036		put_online_cpus();
4037		return -ESRCH;
4038	}
4039
4040	/* Prevent p going away */
4041	get_task_struct(p);
4042	rcu_read_unlock();
4043
4044	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4045		retval = -ENOMEM;
4046		goto out_put_task;
4047	}
4048	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4049		retval = -ENOMEM;
4050		goto out_free_cpus_allowed;
4051	}
4052	retval = -EPERM;
4053	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4054		goto out_unlock;
4055
4056	retval = security_task_setscheduler(p);
4057	if (retval)
4058		goto out_unlock;
4059
4060	cpuset_cpus_allowed(p, cpus_allowed);
4061	cpumask_and(new_mask, in_mask, cpus_allowed);
4062again:
4063	retval = set_cpus_allowed_ptr(p, new_mask);
4064
4065	if (!retval) {
4066		cpuset_cpus_allowed(p, cpus_allowed);
4067		if (!cpumask_subset(new_mask, cpus_allowed)) {
4068			/*
4069			 * We must have raced with a concurrent cpuset
4070			 * update. Just reset the cpus_allowed to the
4071			 * cpuset's cpus_allowed
4072			 */
4073			cpumask_copy(new_mask, cpus_allowed);
4074			goto again;
4075		}
4076	}
4077out_unlock:
4078	free_cpumask_var(new_mask);
4079out_free_cpus_allowed:
4080	free_cpumask_var(cpus_allowed);
4081out_put_task:
4082	put_task_struct(p);
4083	put_online_cpus();
4084	return retval;
4085}
4086
4087static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4088			     struct cpumask *new_mask)
4089{
4090	if (len < cpumask_size())
4091		cpumask_clear(new_mask);
4092	else if (len > cpumask_size())
4093		len = cpumask_size();
4094
4095	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4096}
4097
4098/**
4099 * sys_sched_setaffinity - set the cpu affinity of a process
4100 * @pid: pid of the process
4101 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4102 * @user_mask_ptr: user-space pointer to the new cpu mask
4103 */
4104SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4105		unsigned long __user *, user_mask_ptr)
4106{
4107	cpumask_var_t new_mask;
4108	int retval;
4109
4110	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4111		return -ENOMEM;
4112
4113	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4114	if (retval == 0)
4115		retval = sched_setaffinity(pid, new_mask);
4116	free_cpumask_var(new_mask);
4117	return retval;
4118}
4119
4120long sched_getaffinity(pid_t pid, struct cpumask *mask)
4121{
4122	struct task_struct *p;
4123	unsigned long flags;
4124	int retval;
4125
4126	get_online_cpus();
4127	rcu_read_lock();
4128
4129	retval = -ESRCH;
4130	p = find_process_by_pid(pid);
4131	if (!p)
4132		goto out_unlock;
4133
4134	retval = security_task_getscheduler(p);
4135	if (retval)
4136		goto out_unlock;
4137
4138	raw_spin_lock_irqsave(&p->pi_lock, flags);
4139	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4140	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4141
4142out_unlock:
4143	rcu_read_unlock();
4144	put_online_cpus();
4145
4146	return retval;
4147}
4148
4149/**
4150 * sys_sched_getaffinity - get the cpu affinity of a process
4151 * @pid: pid of the process
4152 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4153 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4154 */
4155SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4156		unsigned long __user *, user_mask_ptr)
4157{
4158	int ret;
4159	cpumask_var_t mask;
4160
4161	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4162		return -EINVAL;
4163	if (len & (sizeof(unsigned long)-1))
4164		return -EINVAL;
4165
4166	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4167		return -ENOMEM;
4168
4169	ret = sched_getaffinity(pid, mask);
4170	if (ret == 0) {
4171		size_t retlen = min_t(size_t, len, cpumask_size());
4172
4173		if (copy_to_user(user_mask_ptr, mask, retlen))
4174			ret = -EFAULT;
4175		else
4176			ret = retlen;
4177	}
4178	free_cpumask_var(mask);
4179
4180	return ret;
4181}
4182
4183/**
4184 * sys_sched_yield - yield the current processor to other threads.
4185 *
4186 * This function yields the current CPU to other tasks. If there are no
4187 * other threads running on this CPU then this function will return.
4188 */
4189SYSCALL_DEFINE0(sched_yield)
4190{
4191	struct rq *rq = this_rq_lock();
4192
4193	schedstat_inc(rq, yld_count);
4194	current->sched_class->yield_task(rq);
4195
4196	/*
4197	 * Since we are going to call schedule() anyway, there's
4198	 * no need to preempt or enable interrupts:
4199	 */
4200	__release(rq->lock);
4201	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4202	do_raw_spin_unlock(&rq->lock);
4203	sched_preempt_enable_no_resched();
4204
4205	schedule();
4206
4207	return 0;
4208}
4209
4210static inline int should_resched(void)
4211{
4212	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4213}
4214
4215static void __cond_resched(void)
4216{
4217	add_preempt_count(PREEMPT_ACTIVE);
4218	__schedule();
4219	sub_preempt_count(PREEMPT_ACTIVE);
4220}
4221
4222int __sched _cond_resched(void)
4223{
4224	if (should_resched()) {
4225		__cond_resched();
4226		return 1;
4227	}
4228	return 0;
4229}
4230EXPORT_SYMBOL(_cond_resched);
4231
4232/*
4233 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4234 * call schedule, and on return reacquire the lock.
4235 *
4236 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4237 * operations here to prevent schedule() from being called twice (once via
4238 * spin_unlock(), once by hand).
4239 */
4240int __cond_resched_lock(spinlock_t *lock)
4241{
4242	int resched = should_resched();
4243	int ret = 0;
4244
4245	lockdep_assert_held(lock);
4246
4247	if (spin_needbreak(lock) || resched) {
4248		spin_unlock(lock);
4249		if (resched)
4250			__cond_resched();
4251		else
4252			cpu_relax();
4253		ret = 1;
4254		spin_lock(lock);
4255	}
4256	return ret;
4257}
4258EXPORT_SYMBOL(__cond_resched_lock);
4259
4260int __sched __cond_resched_softirq(void)
4261{
4262	BUG_ON(!in_softirq());
4263
4264	if (should_resched()) {
4265		local_bh_enable();
4266		__cond_resched();
4267		local_bh_disable();
4268		return 1;
4269	}
4270	return 0;
4271}
4272EXPORT_SYMBOL(__cond_resched_softirq);
4273
4274/**
4275 * yield - yield the current processor to other threads.
4276 *
4277 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4278 *
4279 * The scheduler is at all times free to pick the calling task as the most
4280 * eligible task to run, if removing the yield() call from your code breaks
4281 * it, its already broken.
4282 *
4283 * Typical broken usage is:
4284 *
4285 * while (!event)
4286 * 	yield();
4287 *
4288 * where one assumes that yield() will let 'the other' process run that will
4289 * make event true. If the current task is a SCHED_FIFO task that will never
4290 * happen. Never use yield() as a progress guarantee!!
4291 *
4292 * If you want to use yield() to wait for something, use wait_event().
4293 * If you want to use yield() to be 'nice' for others, use cond_resched().
4294 * If you still want to use yield(), do not!
4295 */
4296void __sched yield(void)
4297{
4298	set_current_state(TASK_RUNNING);
4299	sys_sched_yield();
4300}
4301EXPORT_SYMBOL(yield);
4302
4303/**
4304 * yield_to - yield the current processor to another thread in
4305 * your thread group, or accelerate that thread toward the
4306 * processor it's on.
4307 * @p: target task
4308 * @preempt: whether task preemption is allowed or not
4309 *
4310 * It's the caller's job to ensure that the target task struct
4311 * can't go away on us before we can do any checks.
4312 *
4313 * Returns true if we indeed boosted the target task.
4314 */
4315bool __sched yield_to(struct task_struct *p, bool preempt)
4316{
4317	struct task_struct *curr = current;
4318	struct rq *rq, *p_rq;
4319	unsigned long flags;
4320	bool yielded = 0;
4321
4322	local_irq_save(flags);
4323	rq = this_rq();
4324
4325again:
4326	p_rq = task_rq(p);
4327	double_rq_lock(rq, p_rq);
4328	while (task_rq(p) != p_rq) {
4329		double_rq_unlock(rq, p_rq);
4330		goto again;
4331	}
4332
4333	if (!curr->sched_class->yield_to_task)
4334		goto out;
4335
4336	if (curr->sched_class != p->sched_class)
4337		goto out;
4338
4339	if (task_running(p_rq, p) || p->state)
4340		goto out;
4341
4342	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4343	if (yielded) {
4344		schedstat_inc(rq, yld_count);
4345		/*
4346		 * Make p's CPU reschedule; pick_next_entity takes care of
4347		 * fairness.
4348		 */
4349		if (preempt && rq != p_rq)
4350			resched_task(p_rq->curr);
4351	} else {
4352		/*
4353		 * We might have set it in task_yield_fair(), but are
4354		 * not going to schedule(), so don't want to skip
4355		 * the next update.
4356		 */
4357		rq->skip_clock_update = 0;
4358	}
4359
4360out:
4361	double_rq_unlock(rq, p_rq);
4362	local_irq_restore(flags);
4363
4364	if (yielded)
4365		schedule();
4366
4367	return yielded;
4368}
4369EXPORT_SYMBOL_GPL(yield_to);
4370
4371/*
4372 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4373 * that process accounting knows that this is a task in IO wait state.
4374 */
4375void __sched io_schedule(void)
4376{
4377	struct rq *rq = raw_rq();
4378
4379	delayacct_blkio_start();
4380	atomic_inc(&rq->nr_iowait);
4381	blk_flush_plug(current);
4382	current->in_iowait = 1;
4383	schedule();
4384	current->in_iowait = 0;
4385	atomic_dec(&rq->nr_iowait);
4386	delayacct_blkio_end();
4387}
4388EXPORT_SYMBOL(io_schedule);
4389
4390long __sched io_schedule_timeout(long timeout)
4391{
4392	struct rq *rq = raw_rq();
4393	long ret;
4394
4395	delayacct_blkio_start();
4396	atomic_inc(&rq->nr_iowait);
4397	blk_flush_plug(current);
4398	current->in_iowait = 1;
4399	ret = schedule_timeout(timeout);
4400	current->in_iowait = 0;
4401	atomic_dec(&rq->nr_iowait);
4402	delayacct_blkio_end();
4403	return ret;
4404}
4405
4406/**
4407 * sys_sched_get_priority_max - return maximum RT priority.
4408 * @policy: scheduling class.
4409 *
4410 * this syscall returns the maximum rt_priority that can be used
4411 * by a given scheduling class.
4412 */
4413SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4414{
4415	int ret = -EINVAL;
4416
4417	switch (policy) {
4418	case SCHED_FIFO:
4419	case SCHED_RR:
4420		ret = MAX_USER_RT_PRIO-1;
4421		break;
4422	case SCHED_NORMAL:
4423	case SCHED_BATCH:
4424	case SCHED_IDLE:
4425		ret = 0;
4426		break;
4427	}
4428	return ret;
4429}
4430
4431/**
4432 * sys_sched_get_priority_min - return minimum RT priority.
4433 * @policy: scheduling class.
4434 *
4435 * this syscall returns the minimum rt_priority that can be used
4436 * by a given scheduling class.
4437 */
4438SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4439{
4440	int ret = -EINVAL;
4441
4442	switch (policy) {
4443	case SCHED_FIFO:
4444	case SCHED_RR:
4445		ret = 1;
4446		break;
4447	case SCHED_NORMAL:
4448	case SCHED_BATCH:
4449	case SCHED_IDLE:
4450		ret = 0;
4451	}
4452	return ret;
4453}
4454
4455/**
4456 * sys_sched_rr_get_interval - return the default timeslice of a process.
4457 * @pid: pid of the process.
4458 * @interval: userspace pointer to the timeslice value.
4459 *
4460 * this syscall writes the default timeslice value of a given process
4461 * into the user-space timespec buffer. A value of '0' means infinity.
4462 */
4463SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4464		struct timespec __user *, interval)
4465{
4466	struct task_struct *p;
4467	unsigned int time_slice;
4468	unsigned long flags;
4469	struct rq *rq;
4470	int retval;
4471	struct timespec t;
4472
4473	if (pid < 0)
4474		return -EINVAL;
4475
4476	retval = -ESRCH;
4477	rcu_read_lock();
4478	p = find_process_by_pid(pid);
4479	if (!p)
4480		goto out_unlock;
4481
4482	retval = security_task_getscheduler(p);
4483	if (retval)
4484		goto out_unlock;
4485
4486	rq = task_rq_lock(p, &flags);
4487	time_slice = p->sched_class->get_rr_interval(rq, p);
4488	task_rq_unlock(rq, p, &flags);
4489
4490	rcu_read_unlock();
4491	jiffies_to_timespec(time_slice, &t);
4492	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4493	return retval;
4494
4495out_unlock:
4496	rcu_read_unlock();
4497	return retval;
4498}
4499
4500static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4501
4502void sched_show_task(struct task_struct *p)
4503{
4504	unsigned long free = 0;
4505	unsigned state;
4506
4507	state = p->state ? __ffs(p->state) + 1 : 0;
4508	printk(KERN_INFO "%-15.15s %c", p->comm,
4509		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4510#if BITS_PER_LONG == 32
4511	if (state == TASK_RUNNING)
4512		printk(KERN_CONT " running  ");
4513	else
4514		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4515#else
4516	if (state == TASK_RUNNING)
4517		printk(KERN_CONT "  running task    ");
4518	else
4519		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4520#endif
4521#ifdef CONFIG_DEBUG_STACK_USAGE
4522	free = stack_not_used(p);
4523#endif
4524	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4525		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4526		(unsigned long)task_thread_info(p)->flags);
4527
4528	show_stack(p, NULL);
4529}
4530
4531void show_state_filter(unsigned long state_filter)
4532{
4533	struct task_struct *g, *p;
4534
4535#if BITS_PER_LONG == 32
4536	printk(KERN_INFO
4537		"  task                PC stack   pid father\n");
4538#else
4539	printk(KERN_INFO
4540		"  task                        PC stack   pid father\n");
4541#endif
4542	rcu_read_lock();
4543	do_each_thread(g, p) {
4544		/*
4545		 * reset the NMI-timeout, listing all files on a slow
4546		 * console might take a lot of time:
4547		 */
4548		touch_nmi_watchdog();
4549		if (!state_filter || (p->state & state_filter))
4550			sched_show_task(p);
4551	} while_each_thread(g, p);
4552
4553	touch_all_softlockup_watchdogs();
4554
4555#ifdef CONFIG_SCHED_DEBUG
4556	sysrq_sched_debug_show();
4557#endif
4558	rcu_read_unlock();
4559	/*
4560	 * Only show locks if all tasks are dumped:
4561	 */
4562	if (!state_filter)
4563		debug_show_all_locks();
4564}
4565
4566void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4567{
4568	idle->sched_class = &idle_sched_class;
4569}
4570
4571/**
4572 * init_idle - set up an idle thread for a given CPU
4573 * @idle: task in question
4574 * @cpu: cpu the idle task belongs to
4575 *
4576 * NOTE: this function does not set the idle thread's NEED_RESCHED
4577 * flag, to make booting more robust.
4578 */
4579void __cpuinit init_idle(struct task_struct *idle, int cpu)
4580{
4581	struct rq *rq = cpu_rq(cpu);
4582	unsigned long flags;
4583
4584	raw_spin_lock_irqsave(&rq->lock, flags);
4585
4586	__sched_fork(idle);
4587	idle->state = TASK_RUNNING;
4588	idle->se.exec_start = sched_clock();
4589
4590	do_set_cpus_allowed(idle, cpumask_of(cpu));
4591	/*
4592	 * We're having a chicken and egg problem, even though we are
4593	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4594	 * lockdep check in task_group() will fail.
4595	 *
4596	 * Similar case to sched_fork(). / Alternatively we could
4597	 * use task_rq_lock() here and obtain the other rq->lock.
4598	 *
4599	 * Silence PROVE_RCU
4600	 */
4601	rcu_read_lock();
4602	__set_task_cpu(idle, cpu);
4603	rcu_read_unlock();
4604
4605	rq->curr = rq->idle = idle;
4606#if defined(CONFIG_SMP)
4607	idle->on_cpu = 1;
4608#endif
4609	raw_spin_unlock_irqrestore(&rq->lock, flags);
4610
4611	/* Set the preempt count _outside_ the spinlocks! */
4612	task_thread_info(idle)->preempt_count = 0;
4613
4614	/*
4615	 * The idle tasks have their own, simple scheduling class:
4616	 */
4617	idle->sched_class = &idle_sched_class;
4618	ftrace_graph_init_idle_task(idle, cpu);
4619#if defined(CONFIG_SMP)
4620	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4621#endif
4622}
4623
4624#ifdef CONFIG_SMP
4625void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4626{
4627	if (p->sched_class && p->sched_class->set_cpus_allowed)
4628		p->sched_class->set_cpus_allowed(p, new_mask);
4629
4630	cpumask_copy(&p->cpus_allowed, new_mask);
4631	p->nr_cpus_allowed = cpumask_weight(new_mask);
4632}
4633
4634/*
4635 * This is how migration works:
4636 *
4637 * 1) we invoke migration_cpu_stop() on the target CPU using
4638 *    stop_one_cpu().
4639 * 2) stopper starts to run (implicitly forcing the migrated thread
4640 *    off the CPU)
4641 * 3) it checks whether the migrated task is still in the wrong runqueue.
4642 * 4) if it's in the wrong runqueue then the migration thread removes
4643 *    it and puts it into the right queue.
4644 * 5) stopper completes and stop_one_cpu() returns and the migration
4645 *    is done.
4646 */
4647
4648/*
4649 * Change a given task's CPU affinity. Migrate the thread to a
4650 * proper CPU and schedule it away if the CPU it's executing on
4651 * is removed from the allowed bitmask.
4652 *
4653 * NOTE: the caller must have a valid reference to the task, the
4654 * task must not exit() & deallocate itself prematurely. The
4655 * call is not atomic; no spinlocks may be held.
4656 */
4657int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4658{
4659	unsigned long flags;
4660	struct rq *rq;
4661	unsigned int dest_cpu;
4662	int ret = 0;
4663
4664	rq = task_rq_lock(p, &flags);
4665
4666	if (cpumask_equal(&p->cpus_allowed, new_mask))
4667		goto out;
4668
4669	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4670		ret = -EINVAL;
4671		goto out;
4672	}
4673
4674	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4675		ret = -EINVAL;
4676		goto out;
4677	}
4678
4679	do_set_cpus_allowed(p, new_mask);
4680
4681	/* Can the task run on the task's current CPU? If so, we're done */
4682	if (cpumask_test_cpu(task_cpu(p), new_mask))
4683		goto out;
4684
4685	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4686	if (p->on_rq) {
4687		struct migration_arg arg = { p, dest_cpu };
4688		/* Need help from migration thread: drop lock and wait. */
4689		task_rq_unlock(rq, p, &flags);
4690		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4691		tlb_migrate_finish(p->mm);
4692		return 0;
4693	}
4694out:
4695	task_rq_unlock(rq, p, &flags);
4696
4697	return ret;
4698}
4699EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4700
4701/*
4702 * Move (not current) task off this cpu, onto dest cpu. We're doing
4703 * this because either it can't run here any more (set_cpus_allowed()
4704 * away from this CPU, or CPU going down), or because we're
4705 * attempting to rebalance this task on exec (sched_exec).
4706 *
4707 * So we race with normal scheduler movements, but that's OK, as long
4708 * as the task is no longer on this CPU.
4709 *
4710 * Returns non-zero if task was successfully migrated.
4711 */
4712static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4713{
4714	struct rq *rq_dest, *rq_src;
4715	int ret = 0;
4716
4717	if (unlikely(!cpu_active(dest_cpu)))
4718		return ret;
4719
4720	rq_src = cpu_rq(src_cpu);
4721	rq_dest = cpu_rq(dest_cpu);
4722
4723	raw_spin_lock(&p->pi_lock);
4724	double_rq_lock(rq_src, rq_dest);
4725	/* Already moved. */
4726	if (task_cpu(p) != src_cpu)
4727		goto done;
4728	/* Affinity changed (again). */
4729	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4730		goto fail;
4731
4732	/*
4733	 * If we're not on a rq, the next wake-up will ensure we're
4734	 * placed properly.
4735	 */
4736	if (p->on_rq) {
4737		dequeue_task(rq_src, p, 0);
4738		set_task_cpu(p, dest_cpu);
4739		enqueue_task(rq_dest, p, 0);
4740		check_preempt_curr(rq_dest, p, 0);
4741	}
4742done:
4743	ret = 1;
4744fail:
4745	double_rq_unlock(rq_src, rq_dest);
4746	raw_spin_unlock(&p->pi_lock);
4747	return ret;
4748}
4749
4750/*
4751 * migration_cpu_stop - this will be executed by a highprio stopper thread
4752 * and performs thread migration by bumping thread off CPU then
4753 * 'pushing' onto another runqueue.
4754 */
4755static int migration_cpu_stop(void *data)
4756{
4757	struct migration_arg *arg = data;
4758
4759	/*
4760	 * The original target cpu might have gone down and we might
4761	 * be on another cpu but it doesn't matter.
4762	 */
4763	local_irq_disable();
4764	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4765	local_irq_enable();
4766	return 0;
4767}
4768
4769#ifdef CONFIG_HOTPLUG_CPU
4770
4771/*
4772 * Ensures that the idle task is using init_mm right before its cpu goes
4773 * offline.
4774 */
4775void idle_task_exit(void)
4776{
4777	struct mm_struct *mm = current->active_mm;
4778
4779	BUG_ON(cpu_online(smp_processor_id()));
4780
4781	if (mm != &init_mm)
4782		switch_mm(mm, &init_mm, current);
4783	mmdrop(mm);
4784}
4785
4786/*
4787 * Since this CPU is going 'away' for a while, fold any nr_active delta
4788 * we might have. Assumes we're called after migrate_tasks() so that the
4789 * nr_active count is stable.
4790 *
4791 * Also see the comment "Global load-average calculations".
4792 */
4793static void calc_load_migrate(struct rq *rq)
4794{
4795	long delta = calc_load_fold_active(rq);
4796	if (delta)
4797		atomic_long_add(delta, &calc_load_tasks);
4798}
4799
4800/*
4801 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4802 * try_to_wake_up()->select_task_rq().
4803 *
4804 * Called with rq->lock held even though we'er in stop_machine() and
4805 * there's no concurrency possible, we hold the required locks anyway
4806 * because of lock validation efforts.
4807 */
4808static void migrate_tasks(unsigned int dead_cpu)
4809{
4810	struct rq *rq = cpu_rq(dead_cpu);
4811	struct task_struct *next, *stop = rq->stop;
4812	int dest_cpu;
4813
4814	/*
4815	 * Fudge the rq selection such that the below task selection loop
4816	 * doesn't get stuck on the currently eligible stop task.
4817	 *
4818	 * We're currently inside stop_machine() and the rq is either stuck
4819	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4820	 * either way we should never end up calling schedule() until we're
4821	 * done here.
4822	 */
4823	rq->stop = NULL;
4824
4825	for ( ; ; ) {
4826		/*
4827		 * There's this thread running, bail when that's the only
4828		 * remaining thread.
4829		 */
4830		if (rq->nr_running == 1)
4831			break;
4832
4833		next = pick_next_task(rq);
4834		BUG_ON(!next);
4835		next->sched_class->put_prev_task(rq, next);
4836
4837		/* Find suitable destination for @next, with force if needed. */
4838		dest_cpu = select_fallback_rq(dead_cpu, next);
4839		raw_spin_unlock(&rq->lock);
4840
4841		__migrate_task(next, dead_cpu, dest_cpu);
4842
4843		raw_spin_lock(&rq->lock);
4844	}
4845
4846	rq->stop = stop;
4847}
4848
4849#endif /* CONFIG_HOTPLUG_CPU */
4850
4851#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4852
4853static struct ctl_table sd_ctl_dir[] = {
4854	{
4855		.procname	= "sched_domain",
4856		.mode		= 0555,
4857	},
4858	{}
4859};
4860
4861static struct ctl_table sd_ctl_root[] = {
4862	{
4863		.procname	= "kernel",
4864		.mode		= 0555,
4865		.child		= sd_ctl_dir,
4866	},
4867	{}
4868};
4869
4870static struct ctl_table *sd_alloc_ctl_entry(int n)
4871{
4872	struct ctl_table *entry =
4873		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4874
4875	return entry;
4876}
4877
4878static void sd_free_ctl_entry(struct ctl_table **tablep)
4879{
4880	struct ctl_table *entry;
4881
4882	/*
4883	 * In the intermediate directories, both the child directory and
4884	 * procname are dynamically allocated and could fail but the mode
4885	 * will always be set. In the lowest directory the names are
4886	 * static strings and all have proc handlers.
4887	 */
4888	for (entry = *tablep; entry->mode; entry++) {
4889		if (entry->child)
4890			sd_free_ctl_entry(&entry->child);
4891		if (entry->proc_handler == NULL)
4892			kfree(entry->procname);
4893	}
4894
4895	kfree(*tablep);
4896	*tablep = NULL;
4897}
4898
4899static int min_load_idx = 0;
4900static int max_load_idx = CPU_LOAD_IDX_MAX;
4901
4902static void
4903set_table_entry(struct ctl_table *entry,
4904		const char *procname, void *data, int maxlen,
4905		umode_t mode, proc_handler *proc_handler,
4906		bool load_idx)
4907{
4908	entry->procname = procname;
4909	entry->data = data;
4910	entry->maxlen = maxlen;
4911	entry->mode = mode;
4912	entry->proc_handler = proc_handler;
4913
4914	if (load_idx) {
4915		entry->extra1 = &min_load_idx;
4916		entry->extra2 = &max_load_idx;
4917	}
4918}
4919
4920static struct ctl_table *
4921sd_alloc_ctl_domain_table(struct sched_domain *sd)
4922{
4923	struct ctl_table *table = sd_alloc_ctl_entry(13);
4924
4925	if (table == NULL)
4926		return NULL;
4927
4928	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4929		sizeof(long), 0644, proc_doulongvec_minmax, false);
4930	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4931		sizeof(long), 0644, proc_doulongvec_minmax, false);
4932	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4933		sizeof(int), 0644, proc_dointvec_minmax, true);
4934	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4935		sizeof(int), 0644, proc_dointvec_minmax, true);
4936	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4937		sizeof(int), 0644, proc_dointvec_minmax, true);
4938	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4939		sizeof(int), 0644, proc_dointvec_minmax, true);
4940	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4941		sizeof(int), 0644, proc_dointvec_minmax, true);
4942	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4943		sizeof(int), 0644, proc_dointvec_minmax, false);
4944	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4945		sizeof(int), 0644, proc_dointvec_minmax, false);
4946	set_table_entry(&table[9], "cache_nice_tries",
4947		&sd->cache_nice_tries,
4948		sizeof(int), 0644, proc_dointvec_minmax, false);
4949	set_table_entry(&table[10], "flags", &sd->flags,
4950		sizeof(int), 0644, proc_dointvec_minmax, false);
4951	set_table_entry(&table[11], "name", sd->name,
4952		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4953	/* &table[12] is terminator */
4954
4955	return table;
4956}
4957
4958static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4959{
4960	struct ctl_table *entry, *table;
4961	struct sched_domain *sd;
4962	int domain_num = 0, i;
4963	char buf[32];
4964
4965	for_each_domain(cpu, sd)
4966		domain_num++;
4967	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4968	if (table == NULL)
4969		return NULL;
4970
4971	i = 0;
4972	for_each_domain(cpu, sd) {
4973		snprintf(buf, 32, "domain%d", i);
4974		entry->procname = kstrdup(buf, GFP_KERNEL);
4975		entry->mode = 0555;
4976		entry->child = sd_alloc_ctl_domain_table(sd);
4977		entry++;
4978		i++;
4979	}
4980	return table;
4981}
4982
4983static struct ctl_table_header *sd_sysctl_header;
4984static void register_sched_domain_sysctl(void)
4985{
4986	int i, cpu_num = num_possible_cpus();
4987	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4988	char buf[32];
4989
4990	WARN_ON(sd_ctl_dir[0].child);
4991	sd_ctl_dir[0].child = entry;
4992
4993	if (entry == NULL)
4994		return;
4995
4996	for_each_possible_cpu(i) {
4997		snprintf(buf, 32, "cpu%d", i);
4998		entry->procname = kstrdup(buf, GFP_KERNEL);
4999		entry->mode = 0555;
5000		entry->child = sd_alloc_ctl_cpu_table(i);
5001		entry++;
5002	}
5003
5004	WARN_ON(sd_sysctl_header);
5005	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5006}
5007
5008/* may be called multiple times per register */
5009static void unregister_sched_domain_sysctl(void)
5010{
5011	if (sd_sysctl_header)
5012		unregister_sysctl_table(sd_sysctl_header);
5013	sd_sysctl_header = NULL;
5014	if (sd_ctl_dir[0].child)
5015		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5016}
5017#else
5018static void register_sched_domain_sysctl(void)
5019{
5020}
5021static void unregister_sched_domain_sysctl(void)
5022{
5023}
5024#endif
5025
5026static void set_rq_online(struct rq *rq)
5027{
5028	if (!rq->online) {
5029		const struct sched_class *class;
5030
5031		cpumask_set_cpu(rq->cpu, rq->rd->online);
5032		rq->online = 1;
5033
5034		for_each_class(class) {
5035			if (class->rq_online)
5036				class->rq_online(rq);
5037		}
5038	}
5039}
5040
5041static void set_rq_offline(struct rq *rq)
5042{
5043	if (rq->online) {
5044		const struct sched_class *class;
5045
5046		for_each_class(class) {
5047			if (class->rq_offline)
5048				class->rq_offline(rq);
5049		}
5050
5051		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5052		rq->online = 0;
5053	}
5054}
5055
5056/*
5057 * migration_call - callback that gets triggered when a CPU is added.
5058 * Here we can start up the necessary migration thread for the new CPU.
5059 */
5060static int __cpuinit
5061migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5062{
5063	int cpu = (long)hcpu;
5064	unsigned long flags;
5065	struct rq *rq = cpu_rq(cpu);
5066
5067	switch (action & ~CPU_TASKS_FROZEN) {
5068
5069	case CPU_UP_PREPARE:
5070		rq->calc_load_update = calc_load_update;
5071		break;
5072
5073	case CPU_ONLINE:
5074		/* Update our root-domain */
5075		raw_spin_lock_irqsave(&rq->lock, flags);
5076		if (rq->rd) {
5077			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5078
5079			set_rq_online(rq);
5080		}
5081		raw_spin_unlock_irqrestore(&rq->lock, flags);
5082		break;
5083
5084#ifdef CONFIG_HOTPLUG_CPU
5085	case CPU_DYING:
5086		sched_ttwu_pending();
5087		/* Update our root-domain */
5088		raw_spin_lock_irqsave(&rq->lock, flags);
5089		if (rq->rd) {
5090			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5091			set_rq_offline(rq);
5092		}
5093		migrate_tasks(cpu);
5094		BUG_ON(rq->nr_running != 1); /* the migration thread */
5095		raw_spin_unlock_irqrestore(&rq->lock, flags);
5096
5097		calc_load_migrate(rq);
5098		break;
5099#endif
5100	}
5101
5102	update_max_interval();
5103
5104	return NOTIFY_OK;
5105}
5106
5107/*
5108 * Register at high priority so that task migration (migrate_all_tasks)
5109 * happens before everything else.  This has to be lower priority than
5110 * the notifier in the perf_event subsystem, though.
5111 */
5112static struct notifier_block __cpuinitdata migration_notifier = {
5113	.notifier_call = migration_call,
5114	.priority = CPU_PRI_MIGRATION,
5115};
5116
5117static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5118				      unsigned long action, void *hcpu)
5119{
5120	switch (action & ~CPU_TASKS_FROZEN) {
5121	case CPU_STARTING:
5122	case CPU_DOWN_FAILED:
5123		set_cpu_active((long)hcpu, true);
5124		return NOTIFY_OK;
5125	default:
5126		return NOTIFY_DONE;
5127	}
5128}
5129
5130static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5131					unsigned long action, void *hcpu)
5132{
5133	switch (action & ~CPU_TASKS_FROZEN) {
5134	case CPU_DOWN_PREPARE:
5135		set_cpu_active((long)hcpu, false);
5136		return NOTIFY_OK;
5137	default:
5138		return NOTIFY_DONE;
5139	}
5140}
5141
5142static int __init migration_init(void)
5143{
5144	void *cpu = (void *)(long)smp_processor_id();
5145	int err;
5146
5147	/* Initialize migration for the boot CPU */
5148	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5149	BUG_ON(err == NOTIFY_BAD);
5150	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5151	register_cpu_notifier(&migration_notifier);
5152
5153	/* Register cpu active notifiers */
5154	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5155	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5156
5157	return 0;
5158}
5159early_initcall(migration_init);
5160#endif
5161
5162#ifdef CONFIG_SMP
5163
5164static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5165
5166#ifdef CONFIG_SCHED_DEBUG
5167
5168static __read_mostly int sched_debug_enabled;
5169
5170static int __init sched_debug_setup(char *str)
5171{
5172	sched_debug_enabled = 1;
5173
5174	return 0;
5175}
5176early_param("sched_debug", sched_debug_setup);
5177
5178static inline bool sched_debug(void)
5179{
5180	return sched_debug_enabled;
5181}
5182
5183static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5184				  struct cpumask *groupmask)
5185{
5186	struct sched_group *group = sd->groups;
5187	char str[256];
5188
5189	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5190	cpumask_clear(groupmask);
5191
5192	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5193
5194	if (!(sd->flags & SD_LOAD_BALANCE)) {
5195		printk("does not load-balance\n");
5196		if (sd->parent)
5197			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5198					" has parent");
5199		return -1;
5200	}
5201
5202	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5203
5204	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5205		printk(KERN_ERR "ERROR: domain->span does not contain "
5206				"CPU%d\n", cpu);
5207	}
5208	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5209		printk(KERN_ERR "ERROR: domain->groups does not contain"
5210				" CPU%d\n", cpu);
5211	}
5212
5213	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5214	do {
5215		if (!group) {
5216			printk("\n");
5217			printk(KERN_ERR "ERROR: group is NULL\n");
5218			break;
5219		}
5220
5221		/*
5222		 * Even though we initialize ->power to something semi-sane,
5223		 * we leave power_orig unset. This allows us to detect if
5224		 * domain iteration is still funny without causing /0 traps.
5225		 */
5226		if (!group->sgp->power_orig) {
5227			printk(KERN_CONT "\n");
5228			printk(KERN_ERR "ERROR: domain->cpu_power not "
5229					"set\n");
5230			break;
5231		}
5232
5233		if (!cpumask_weight(sched_group_cpus(group))) {
5234			printk(KERN_CONT "\n");
5235			printk(KERN_ERR "ERROR: empty group\n");
5236			break;
5237		}
5238
5239		if (!(sd->flags & SD_OVERLAP) &&
5240		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5241			printk(KERN_CONT "\n");
5242			printk(KERN_ERR "ERROR: repeated CPUs\n");
5243			break;
5244		}
5245
5246		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5247
5248		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5249
5250		printk(KERN_CONT " %s", str);
5251		if (group->sgp->power != SCHED_POWER_SCALE) {
5252			printk(KERN_CONT " (cpu_power = %d)",
5253				group->sgp->power);
5254		}
5255
5256		group = group->next;
5257	} while (group != sd->groups);
5258	printk(KERN_CONT "\n");
5259
5260	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5261		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5262
5263	if (sd->parent &&
5264	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5265		printk(KERN_ERR "ERROR: parent span is not a superset "
5266			"of domain->span\n");
5267	return 0;
5268}
5269
5270static void sched_domain_debug(struct sched_domain *sd, int cpu)
5271{
5272	int level = 0;
5273
5274	if (!sched_debug_enabled)
5275		return;
5276
5277	if (!sd) {
5278		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5279		return;
5280	}
5281
5282	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5283
5284	for (;;) {
5285		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5286			break;
5287		level++;
5288		sd = sd->parent;
5289		if (!sd)
5290			break;
5291	}
5292}
5293#else /* !CONFIG_SCHED_DEBUG */
5294# define sched_domain_debug(sd, cpu) do { } while (0)
5295static inline bool sched_debug(void)
5296{
5297	return false;
5298}
5299#endif /* CONFIG_SCHED_DEBUG */
5300
5301static int sd_degenerate(struct sched_domain *sd)
5302{
5303	if (cpumask_weight(sched_domain_span(sd)) == 1)
5304		return 1;
5305
5306	/* Following flags need at least 2 groups */
5307	if (sd->flags & (SD_LOAD_BALANCE |
5308			 SD_BALANCE_NEWIDLE |
5309			 SD_BALANCE_FORK |
5310			 SD_BALANCE_EXEC |
5311			 SD_SHARE_CPUPOWER |
5312			 SD_SHARE_PKG_RESOURCES)) {
5313		if (sd->groups != sd->groups->next)
5314			return 0;
5315	}
5316
5317	/* Following flags don't use groups */
5318	if (sd->flags & (SD_WAKE_AFFINE))
5319		return 0;
5320
5321	return 1;
5322}
5323
5324static int
5325sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5326{
5327	unsigned long cflags = sd->flags, pflags = parent->flags;
5328
5329	if (sd_degenerate(parent))
5330		return 1;
5331
5332	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5333		return 0;
5334
5335	/* Flags needing groups don't count if only 1 group in parent */
5336	if (parent->groups == parent->groups->next) {
5337		pflags &= ~(SD_LOAD_BALANCE |
5338				SD_BALANCE_NEWIDLE |
5339				SD_BALANCE_FORK |
5340				SD_BALANCE_EXEC |
5341				SD_SHARE_CPUPOWER |
5342				SD_SHARE_PKG_RESOURCES);
5343		if (nr_node_ids == 1)
5344			pflags &= ~SD_SERIALIZE;
5345	}
5346	if (~cflags & pflags)
5347		return 0;
5348
5349	return 1;
5350}
5351
5352static void free_rootdomain(struct rcu_head *rcu)
5353{
5354	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5355
5356	cpupri_cleanup(&rd->cpupri);
5357	free_cpumask_var(rd->rto_mask);
5358	free_cpumask_var(rd->online);
5359	free_cpumask_var(rd->span);
5360	kfree(rd);
5361}
5362
5363static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5364{
5365	struct root_domain *old_rd = NULL;
5366	unsigned long flags;
5367
5368	raw_spin_lock_irqsave(&rq->lock, flags);
5369
5370	if (rq->rd) {
5371		old_rd = rq->rd;
5372
5373		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5374			set_rq_offline(rq);
5375
5376		cpumask_clear_cpu(rq->cpu, old_rd->span);
5377
5378		/*
5379		 * If we dont want to free the old_rt yet then
5380		 * set old_rd to NULL to skip the freeing later
5381		 * in this function:
5382		 */
5383		if (!atomic_dec_and_test(&old_rd->refcount))
5384			old_rd = NULL;
5385	}
5386
5387	atomic_inc(&rd->refcount);
5388	rq->rd = rd;
5389
5390	cpumask_set_cpu(rq->cpu, rd->span);
5391	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5392		set_rq_online(rq);
5393
5394	raw_spin_unlock_irqrestore(&rq->lock, flags);
5395
5396	if (old_rd)
5397		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5398}
5399
5400static int init_rootdomain(struct root_domain *rd)
5401{
5402	memset(rd, 0, sizeof(*rd));
5403
5404	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5405		goto out;
5406	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5407		goto free_span;
5408	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5409		goto free_online;
5410
5411	if (cpupri_init(&rd->cpupri) != 0)
5412		goto free_rto_mask;
5413	return 0;
5414
5415free_rto_mask:
5416	free_cpumask_var(rd->rto_mask);
5417free_online:
5418	free_cpumask_var(rd->online);
5419free_span:
5420	free_cpumask_var(rd->span);
5421out:
5422	return -ENOMEM;
5423}
5424
5425/*
5426 * By default the system creates a single root-domain with all cpus as
5427 * members (mimicking the global state we have today).
5428 */
5429struct root_domain def_root_domain;
5430
5431static void init_defrootdomain(void)
5432{
5433	init_rootdomain(&def_root_domain);
5434
5435	atomic_set(&def_root_domain.refcount, 1);
5436}
5437
5438static struct root_domain *alloc_rootdomain(void)
5439{
5440	struct root_domain *rd;
5441
5442	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5443	if (!rd)
5444		return NULL;
5445
5446	if (init_rootdomain(rd) != 0) {
5447		kfree(rd);
5448		return NULL;
5449	}
5450
5451	return rd;
5452}
5453
5454static void free_sched_groups(struct sched_group *sg, int free_sgp)
5455{
5456	struct sched_group *tmp, *first;
5457
5458	if (!sg)
5459		return;
5460
5461	first = sg;
5462	do {
5463		tmp = sg->next;
5464
5465		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5466			kfree(sg->sgp);
5467
5468		kfree(sg);
5469		sg = tmp;
5470	} while (sg != first);
5471}
5472
5473static void free_sched_domain(struct rcu_head *rcu)
5474{
5475	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5476
5477	/*
5478	 * If its an overlapping domain it has private groups, iterate and
5479	 * nuke them all.
5480	 */
5481	if (sd->flags & SD_OVERLAP) {
5482		free_sched_groups(sd->groups, 1);
5483	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5484		kfree(sd->groups->sgp);
5485		kfree(sd->groups);
5486	}
5487	kfree(sd);
5488}
5489
5490static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5491{
5492	call_rcu(&sd->rcu, free_sched_domain);
5493}
5494
5495static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5496{
5497	for (; sd; sd = sd->parent)
5498		destroy_sched_domain(sd, cpu);
5499}
5500
5501/*
5502 * Keep a special pointer to the highest sched_domain that has
5503 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5504 * allows us to avoid some pointer chasing select_idle_sibling().
5505 *
5506 * Iterate domains and sched_groups downward, assigning CPUs to be
5507 * select_idle_sibling() hw buddy.  Cross-wiring hw makes bouncing
5508 * due to random perturbation self canceling, ie sw buddies pull
5509 * their counterpart to their CPU's hw counterpart.
5510 *
5511 * Also keep a unique ID per domain (we use the first cpu number in
5512 * the cpumask of the domain), this allows us to quickly tell if
5513 * two cpus are in the same cache domain, see cpus_share_cache().
5514 */
5515DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5516DEFINE_PER_CPU(int, sd_llc_id);
5517
5518static void update_top_cache_domain(int cpu)
5519{
5520	struct sched_domain *sd;
5521	int id = cpu;
5522
5523	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5524	if (sd) {
5525		struct sched_domain *tmp = sd;
5526		struct sched_group *sg, *prev;
5527		bool right;
5528
5529		/*
5530		 * Traverse to first CPU in group, and count hops
5531		 * to cpu from there, switching direction on each
5532		 * hop, never ever pointing the last CPU rightward.
5533		 */
5534		do {
5535			id = cpumask_first(sched_domain_span(tmp));
5536			prev = sg = tmp->groups;
5537			right = 1;
5538
5539			while (cpumask_first(sched_group_cpus(sg)) != id)
5540				sg = sg->next;
5541
5542			while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
5543				prev = sg;
5544				sg = sg->next;
5545				right = !right;
5546			}
5547
5548			/* A CPU went down, never point back to domain start. */
5549			if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
5550				right = false;
5551
5552			sg = right ? sg->next : prev;
5553			tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
5554		} while ((tmp = tmp->child));
5555
5556		id = cpumask_first(sched_domain_span(sd));
5557	}
5558
5559	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5560	per_cpu(sd_llc_id, cpu) = id;
5561}
5562
5563/*
5564 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5565 * hold the hotplug lock.
5566 */
5567static void
5568cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5569{
5570	struct rq *rq = cpu_rq(cpu);
5571	struct sched_domain *tmp;
5572
5573	/* Remove the sched domains which do not contribute to scheduling. */
5574	for (tmp = sd; tmp; ) {
5575		struct sched_domain *parent = tmp->parent;
5576		if (!parent)
5577			break;
5578
5579		if (sd_parent_degenerate(tmp, parent)) {
5580			tmp->parent = parent->parent;
5581			if (parent->parent)
5582				parent->parent->child = tmp;
5583			destroy_sched_domain(parent, cpu);
5584		} else
5585			tmp = tmp->parent;
5586	}
5587
5588	if (sd && sd_degenerate(sd)) {
5589		tmp = sd;
5590		sd = sd->parent;
5591		destroy_sched_domain(tmp, cpu);
5592		if (sd)
5593			sd->child = NULL;
5594	}
5595
5596	sched_domain_debug(sd, cpu);
5597
5598	rq_attach_root(rq, rd);
5599	tmp = rq->sd;
5600	rcu_assign_pointer(rq->sd, sd);
5601	destroy_sched_domains(tmp, cpu);
5602
5603	update_top_cache_domain(cpu);
5604}
5605
5606/* cpus with isolated domains */
5607static cpumask_var_t cpu_isolated_map;
5608
5609/* Setup the mask of cpus configured for isolated domains */
5610static int __init isolated_cpu_setup(char *str)
5611{
5612	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5613	cpulist_parse(str, cpu_isolated_map);
5614	return 1;
5615}
5616
5617__setup("isolcpus=", isolated_cpu_setup);
5618
5619static const struct cpumask *cpu_cpu_mask(int cpu)
5620{
5621	return cpumask_of_node(cpu_to_node(cpu));
5622}
5623
5624struct sd_data {
5625	struct sched_domain **__percpu sd;
5626	struct sched_group **__percpu sg;
5627	struct sched_group_power **__percpu sgp;
5628};
5629
5630struct s_data {
5631	struct sched_domain ** __percpu sd;
5632	struct root_domain	*rd;
5633};
5634
5635enum s_alloc {
5636	sa_rootdomain,
5637	sa_sd,
5638	sa_sd_storage,
5639	sa_none,
5640};
5641
5642struct sched_domain_topology_level;
5643
5644typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5645typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5646
5647#define SDTL_OVERLAP	0x01
5648
5649struct sched_domain_topology_level {
5650	sched_domain_init_f init;
5651	sched_domain_mask_f mask;
5652	int		    flags;
5653	int		    numa_level;
5654	struct sd_data      data;
5655};
5656
5657/*
5658 * Build an iteration mask that can exclude certain CPUs from the upwards
5659 * domain traversal.
5660 *
5661 * Asymmetric node setups can result in situations where the domain tree is of
5662 * unequal depth, make sure to skip domains that already cover the entire
5663 * range.
5664 *
5665 * In that case build_sched_domains() will have terminated the iteration early
5666 * and our sibling sd spans will be empty. Domains should always include the
5667 * cpu they're built on, so check that.
5668 *
5669 */
5670static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5671{
5672	const struct cpumask *span = sched_domain_span(sd);
5673	struct sd_data *sdd = sd->private;
5674	struct sched_domain *sibling;
5675	int i;
5676
5677	for_each_cpu(i, span) {
5678		sibling = *per_cpu_ptr(sdd->sd, i);
5679		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5680			continue;
5681
5682		cpumask_set_cpu(i, sched_group_mask(sg));
5683	}
5684}
5685
5686/*
5687 * Return the canonical balance cpu for this group, this is the first cpu
5688 * of this group that's also in the iteration mask.
5689 */
5690int group_balance_cpu(struct sched_group *sg)
5691{
5692	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5693}
5694
5695static int
5696build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5697{
5698	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5699	const struct cpumask *span = sched_domain_span(sd);
5700	struct cpumask *covered = sched_domains_tmpmask;
5701	struct sd_data *sdd = sd->private;
5702	struct sched_domain *child;
5703	int i;
5704
5705	cpumask_clear(covered);
5706
5707	for_each_cpu(i, span) {
5708		struct cpumask *sg_span;
5709
5710		if (cpumask_test_cpu(i, covered))
5711			continue;
5712
5713		child = *per_cpu_ptr(sdd->sd, i);
5714
5715		/* See the comment near build_group_mask(). */
5716		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5717			continue;
5718
5719		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5720				GFP_KERNEL, cpu_to_node(cpu));
5721
5722		if (!sg)
5723			goto fail;
5724
5725		sg_span = sched_group_cpus(sg);
5726		if (child->child) {
5727			child = child->child;
5728			cpumask_copy(sg_span, sched_domain_span(child));
5729		} else
5730			cpumask_set_cpu(i, sg_span);
5731
5732		cpumask_or(covered, covered, sg_span);
5733
5734		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5735		if (atomic_inc_return(&sg->sgp->ref) == 1)
5736			build_group_mask(sd, sg);
5737
5738		/*
5739		 * Initialize sgp->power such that even if we mess up the
5740		 * domains and no possible iteration will get us here, we won't
5741		 * die on a /0 trap.
5742		 */
5743		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5744
5745		/*
5746		 * Make sure the first group of this domain contains the
5747		 * canonical balance cpu. Otherwise the sched_domain iteration
5748		 * breaks. See update_sg_lb_stats().
5749		 */
5750		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5751		    group_balance_cpu(sg) == cpu)
5752			groups = sg;
5753
5754		if (!first)
5755			first = sg;
5756		if (last)
5757			last->next = sg;
5758		last = sg;
5759		last->next = first;
5760	}
5761	sd->groups = groups;
5762
5763	return 0;
5764
5765fail:
5766	free_sched_groups(first, 0);
5767
5768	return -ENOMEM;
5769}
5770
5771static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5772{
5773	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5774	struct sched_domain *child = sd->child;
5775
5776	if (child)
5777		cpu = cpumask_first(sched_domain_span(child));
5778
5779	if (sg) {
5780		*sg = *per_cpu_ptr(sdd->sg, cpu);
5781		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5782		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5783	}
5784
5785	return cpu;
5786}
5787
5788/*
5789 * build_sched_groups will build a circular linked list of the groups
5790 * covered by the given span, and will set each group's ->cpumask correctly,
5791 * and ->cpu_power to 0.
5792 *
5793 * Assumes the sched_domain tree is fully constructed
5794 */
5795static int
5796build_sched_groups(struct sched_domain *sd, int cpu)
5797{
5798	struct sched_group *first = NULL, *last = NULL;
5799	struct sd_data *sdd = sd->private;
5800	const struct cpumask *span = sched_domain_span(sd);
5801	struct cpumask *covered;
5802	int i;
5803
5804	get_group(cpu, sdd, &sd->groups);
5805	atomic_inc(&sd->groups->ref);
5806
5807	if (cpu != cpumask_first(sched_domain_span(sd)))
5808		return 0;
5809
5810	lockdep_assert_held(&sched_domains_mutex);
5811	covered = sched_domains_tmpmask;
5812
5813	cpumask_clear(covered);
5814
5815	for_each_cpu(i, span) {
5816		struct sched_group *sg;
5817		int group = get_group(i, sdd, &sg);
5818		int j;
5819
5820		if (cpumask_test_cpu(i, covered))
5821			continue;
5822
5823		cpumask_clear(sched_group_cpus(sg));
5824		sg->sgp->power = 0;
5825		cpumask_setall(sched_group_mask(sg));
5826
5827		for_each_cpu(j, span) {
5828			if (get_group(j, sdd, NULL) != group)
5829				continue;
5830
5831			cpumask_set_cpu(j, covered);
5832			cpumask_set_cpu(j, sched_group_cpus(sg));
5833		}
5834
5835		if (!first)
5836			first = sg;
5837		if (last)
5838			last->next = sg;
5839		last = sg;
5840	}
5841	last->next = first;
5842
5843	return 0;
5844}
5845
5846/*
5847 * Initialize sched groups cpu_power.
5848 *
5849 * cpu_power indicates the capacity of sched group, which is used while
5850 * distributing the load between different sched groups in a sched domain.
5851 * Typically cpu_power for all the groups in a sched domain will be same unless
5852 * there are asymmetries in the topology. If there are asymmetries, group
5853 * having more cpu_power will pickup more load compared to the group having
5854 * less cpu_power.
5855 */
5856static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5857{
5858	struct sched_group *sg = sd->groups;
5859
5860	WARN_ON(!sd || !sg);
5861
5862	do {
5863		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5864		sg = sg->next;
5865	} while (sg != sd->groups);
5866
5867	if (cpu != group_balance_cpu(sg))
5868		return;
5869
5870	update_group_power(sd, cpu);
5871	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5872}
5873
5874int __weak arch_sd_sibling_asym_packing(void)
5875{
5876       return 0*SD_ASYM_PACKING;
5877}
5878
5879/*
5880 * Initializers for schedule domains
5881 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5882 */
5883
5884#ifdef CONFIG_SCHED_DEBUG
5885# define SD_INIT_NAME(sd, type)		sd->name = #type
5886#else
5887# define SD_INIT_NAME(sd, type)		do { } while (0)
5888#endif
5889
5890#define SD_INIT_FUNC(type)						\
5891static noinline struct sched_domain *					\
5892sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5893{									\
5894	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5895	*sd = SD_##type##_INIT;						\
5896	SD_INIT_NAME(sd, type);						\
5897	sd->private = &tl->data;					\
5898	return sd;							\
5899}
5900
5901SD_INIT_FUNC(CPU)
5902#ifdef CONFIG_SCHED_SMT
5903 SD_INIT_FUNC(SIBLING)
5904#endif
5905#ifdef CONFIG_SCHED_MC
5906 SD_INIT_FUNC(MC)
5907#endif
5908#ifdef CONFIG_SCHED_BOOK
5909 SD_INIT_FUNC(BOOK)
5910#endif
5911
5912static int default_relax_domain_level = -1;
5913int sched_domain_level_max;
5914
5915static int __init setup_relax_domain_level(char *str)
5916{
5917	if (kstrtoint(str, 0, &default_relax_domain_level))
5918		pr_warn("Unable to set relax_domain_level\n");
5919
5920	return 1;
5921}
5922__setup("relax_domain_level=", setup_relax_domain_level);
5923
5924static void set_domain_attribute(struct sched_domain *sd,
5925				 struct sched_domain_attr *attr)
5926{
5927	int request;
5928
5929	if (!attr || attr->relax_domain_level < 0) {
5930		if (default_relax_domain_level < 0)
5931			return;
5932		else
5933			request = default_relax_domain_level;
5934	} else
5935		request = attr->relax_domain_level;
5936	if (request < sd->level) {
5937		/* turn off idle balance on this domain */
5938		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5939	} else {
5940		/* turn on idle balance on this domain */
5941		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5942	}
5943}
5944
5945static void __sdt_free(const struct cpumask *cpu_map);
5946static int __sdt_alloc(const struct cpumask *cpu_map);
5947
5948static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5949				 const struct cpumask *cpu_map)
5950{
5951	switch (what) {
5952	case sa_rootdomain:
5953		if (!atomic_read(&d->rd->refcount))
5954			free_rootdomain(&d->rd->rcu); /* fall through */
5955	case sa_sd:
5956		free_percpu(d->sd); /* fall through */
5957	case sa_sd_storage:
5958		__sdt_free(cpu_map); /* fall through */
5959	case sa_none:
5960		break;
5961	}
5962}
5963
5964static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5965						   const struct cpumask *cpu_map)
5966{
5967	memset(d, 0, sizeof(*d));
5968
5969	if (__sdt_alloc(cpu_map))
5970		return sa_sd_storage;
5971	d->sd = alloc_percpu(struct sched_domain *);
5972	if (!d->sd)
5973		return sa_sd_storage;
5974	d->rd = alloc_rootdomain();
5975	if (!d->rd)
5976		return sa_sd;
5977	return sa_rootdomain;
5978}
5979
5980/*
5981 * NULL the sd_data elements we've used to build the sched_domain and
5982 * sched_group structure so that the subsequent __free_domain_allocs()
5983 * will not free the data we're using.
5984 */
5985static void claim_allocations(int cpu, struct sched_domain *sd)
5986{
5987	struct sd_data *sdd = sd->private;
5988
5989	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5990	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5991
5992	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5993		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5994
5995	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5996		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5997}
5998
5999#ifdef CONFIG_SCHED_SMT
6000static const struct cpumask *cpu_smt_mask(int cpu)
6001{
6002	return topology_thread_cpumask(cpu);
6003}
6004#endif
6005
6006/*
6007 * Topology list, bottom-up.
6008 */
6009static struct sched_domain_topology_level default_topology[] = {
6010#ifdef CONFIG_SCHED_SMT
6011	{ sd_init_SIBLING, cpu_smt_mask, },
6012#endif
6013#ifdef CONFIG_SCHED_MC
6014	{ sd_init_MC, cpu_coregroup_mask, },
6015#endif
6016#ifdef CONFIG_SCHED_BOOK
6017	{ sd_init_BOOK, cpu_book_mask, },
6018#endif
6019	{ sd_init_CPU, cpu_cpu_mask, },
6020	{ NULL, },
6021};
6022
6023static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6024
6025#ifdef CONFIG_NUMA
6026
6027static int sched_domains_numa_levels;
6028static int *sched_domains_numa_distance;
6029static struct cpumask ***sched_domains_numa_masks;
6030static int sched_domains_curr_level;
6031
6032static inline int sd_local_flags(int level)
6033{
6034	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6035		return 0;
6036
6037	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6038}
6039
6040static struct sched_domain *
6041sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6042{
6043	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6044	int level = tl->numa_level;
6045	int sd_weight = cpumask_weight(
6046			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6047
6048	*sd = (struct sched_domain){
6049		.min_interval		= sd_weight,
6050		.max_interval		= 2*sd_weight,
6051		.busy_factor		= 32,
6052		.imbalance_pct		= 125,
6053		.cache_nice_tries	= 2,
6054		.busy_idx		= 3,
6055		.idle_idx		= 2,
6056		.newidle_idx		= 0,
6057		.wake_idx		= 0,
6058		.forkexec_idx		= 0,
6059
6060		.flags			= 1*SD_LOAD_BALANCE
6061					| 1*SD_BALANCE_NEWIDLE
6062					| 0*SD_BALANCE_EXEC
6063					| 0*SD_BALANCE_FORK
6064					| 0*SD_BALANCE_WAKE
6065					| 0*SD_WAKE_AFFINE
6066					| 0*SD_SHARE_CPUPOWER
6067					| 0*SD_SHARE_PKG_RESOURCES
6068					| 1*SD_SERIALIZE
6069					| 0*SD_PREFER_SIBLING
6070					| sd_local_flags(level)
6071					,
6072		.last_balance		= jiffies,
6073		.balance_interval	= sd_weight,
6074	};
6075	SD_INIT_NAME(sd, NUMA);
6076	sd->private = &tl->data;
6077
6078	/*
6079	 * Ugly hack to pass state to sd_numa_mask()...
6080	 */
6081	sched_domains_curr_level = tl->numa_level;
6082
6083	return sd;
6084}
6085
6086static const struct cpumask *sd_numa_mask(int cpu)
6087{
6088	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6089}
6090
6091static void sched_numa_warn(const char *str)
6092{
6093	static int done = false;
6094	int i,j;
6095
6096	if (done)
6097		return;
6098
6099	done = true;
6100
6101	printk(KERN_WARNING "ERROR: %s\n\n", str);
6102
6103	for (i = 0; i < nr_node_ids; i++) {
6104		printk(KERN_WARNING "  ");
6105		for (j = 0; j < nr_node_ids; j++)
6106			printk(KERN_CONT "%02d ", node_distance(i,j));
6107		printk(KERN_CONT "\n");
6108	}
6109	printk(KERN_WARNING "\n");
6110}
6111
6112static bool find_numa_distance(int distance)
6113{
6114	int i;
6115
6116	if (distance == node_distance(0, 0))
6117		return true;
6118
6119	for (i = 0; i < sched_domains_numa_levels; i++) {
6120		if (sched_domains_numa_distance[i] == distance)
6121			return true;
6122	}
6123
6124	return false;
6125}
6126
6127static void sched_init_numa(void)
6128{
6129	int next_distance, curr_distance = node_distance(0, 0);
6130	struct sched_domain_topology_level *tl;
6131	int level = 0;
6132	int i, j, k;
6133
6134	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6135	if (!sched_domains_numa_distance)
6136		return;
6137
6138	/*
6139	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6140	 * unique distances in the node_distance() table.
6141	 *
6142	 * Assumes node_distance(0,j) includes all distances in
6143	 * node_distance(i,j) in order to avoid cubic time.
6144	 */
6145	next_distance = curr_distance;
6146	for (i = 0; i < nr_node_ids; i++) {
6147		for (j = 0; j < nr_node_ids; j++) {
6148			for (k = 0; k < nr_node_ids; k++) {
6149				int distance = node_distance(i, k);
6150
6151				if (distance > curr_distance &&
6152				    (distance < next_distance ||
6153				     next_distance == curr_distance))
6154					next_distance = distance;
6155
6156				/*
6157				 * While not a strong assumption it would be nice to know
6158				 * about cases where if node A is connected to B, B is not
6159				 * equally connected to A.
6160				 */
6161				if (sched_debug() && node_distance(k, i) != distance)
6162					sched_numa_warn("Node-distance not symmetric");
6163
6164				if (sched_debug() && i && !find_numa_distance(distance))
6165					sched_numa_warn("Node-0 not representative");
6166			}
6167			if (next_distance != curr_distance) {
6168				sched_domains_numa_distance[level++] = next_distance;
6169				sched_domains_numa_levels = level;
6170				curr_distance = next_distance;
6171			} else break;
6172		}
6173
6174		/*
6175		 * In case of sched_debug() we verify the above assumption.
6176		 */
6177		if (!sched_debug())
6178			break;
6179	}
6180	/*
6181	 * 'level' contains the number of unique distances, excluding the
6182	 * identity distance node_distance(i,i).
6183	 *
6184	 * The sched_domains_nume_distance[] array includes the actual distance
6185	 * numbers.
6186	 */
6187
6188	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6189	if (!sched_domains_numa_masks)
6190		return;
6191
6192	/*
6193	 * Now for each level, construct a mask per node which contains all
6194	 * cpus of nodes that are that many hops away from us.
6195	 */
6196	for (i = 0; i < level; i++) {
6197		sched_domains_numa_masks[i] =
6198			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6199		if (!sched_domains_numa_masks[i])
6200			return;
6201
6202		for (j = 0; j < nr_node_ids; j++) {
6203			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6204			if (!mask)
6205				return;
6206
6207			sched_domains_numa_masks[i][j] = mask;
6208
6209			for (k = 0; k < nr_node_ids; k++) {
6210				if (node_distance(j, k) > sched_domains_numa_distance[i])
6211					continue;
6212
6213				cpumask_or(mask, mask, cpumask_of_node(k));
6214			}
6215		}
6216	}
6217
6218	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6219			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6220	if (!tl)
6221		return;
6222
6223	/*
6224	 * Copy the default topology bits..
6225	 */
6226	for (i = 0; default_topology[i].init; i++)
6227		tl[i] = default_topology[i];
6228
6229	/*
6230	 * .. and append 'j' levels of NUMA goodness.
6231	 */
6232	for (j = 0; j < level; i++, j++) {
6233		tl[i] = (struct sched_domain_topology_level){
6234			.init = sd_numa_init,
6235			.mask = sd_numa_mask,
6236			.flags = SDTL_OVERLAP,
6237			.numa_level = j,
6238		};
6239	}
6240
6241	sched_domain_topology = tl;
6242}
6243#else
6244static inline void sched_init_numa(void)
6245{
6246}
6247#endif /* CONFIG_NUMA */
6248
6249static int __sdt_alloc(const struct cpumask *cpu_map)
6250{
6251	struct sched_domain_topology_level *tl;
6252	int j;
6253
6254	for (tl = sched_domain_topology; tl->init; tl++) {
6255		struct sd_data *sdd = &tl->data;
6256
6257		sdd->sd = alloc_percpu(struct sched_domain *);
6258		if (!sdd->sd)
6259			return -ENOMEM;
6260
6261		sdd->sg = alloc_percpu(struct sched_group *);
6262		if (!sdd->sg)
6263			return -ENOMEM;
6264
6265		sdd->sgp = alloc_percpu(struct sched_group_power *);
6266		if (!sdd->sgp)
6267			return -ENOMEM;
6268
6269		for_each_cpu(j, cpu_map) {
6270			struct sched_domain *sd;
6271			struct sched_group *sg;
6272			struct sched_group_power *sgp;
6273
6274		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6275					GFP_KERNEL, cpu_to_node(j));
6276			if (!sd)
6277				return -ENOMEM;
6278
6279			*per_cpu_ptr(sdd->sd, j) = sd;
6280
6281			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6282					GFP_KERNEL, cpu_to_node(j));
6283			if (!sg)
6284				return -ENOMEM;
6285
6286			sg->next = sg;
6287
6288			*per_cpu_ptr(sdd->sg, j) = sg;
6289
6290			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6291					GFP_KERNEL, cpu_to_node(j));
6292			if (!sgp)
6293				return -ENOMEM;
6294
6295			*per_cpu_ptr(sdd->sgp, j) = sgp;
6296		}
6297	}
6298
6299	return 0;
6300}
6301
6302static void __sdt_free(const struct cpumask *cpu_map)
6303{
6304	struct sched_domain_topology_level *tl;
6305	int j;
6306
6307	for (tl = sched_domain_topology; tl->init; tl++) {
6308		struct sd_data *sdd = &tl->data;
6309
6310		for_each_cpu(j, cpu_map) {
6311			struct sched_domain *sd;
6312
6313			if (sdd->sd) {
6314				sd = *per_cpu_ptr(sdd->sd, j);
6315				if (sd && (sd->flags & SD_OVERLAP))
6316					free_sched_groups(sd->groups, 0);
6317				kfree(*per_cpu_ptr(sdd->sd, j));
6318			}
6319
6320			if (sdd->sg)
6321				kfree(*per_cpu_ptr(sdd->sg, j));
6322			if (sdd->sgp)
6323				kfree(*per_cpu_ptr(sdd->sgp, j));
6324		}
6325		free_percpu(sdd->sd);
6326		sdd->sd = NULL;
6327		free_percpu(sdd->sg);
6328		sdd->sg = NULL;
6329		free_percpu(sdd->sgp);
6330		sdd->sgp = NULL;
6331	}
6332}
6333
6334struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6335		struct s_data *d, const struct cpumask *cpu_map,
6336		struct sched_domain_attr *attr, struct sched_domain *child,
6337		int cpu)
6338{
6339	struct sched_domain *sd = tl->init(tl, cpu);
6340	if (!sd)
6341		return child;
6342
6343	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6344	if (child) {
6345		sd->level = child->level + 1;
6346		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6347		child->parent = sd;
6348	}
6349	sd->child = child;
6350	set_domain_attribute(sd, attr);
6351
6352	return sd;
6353}
6354
6355/*
6356 * Build sched domains for a given set of cpus and attach the sched domains
6357 * to the individual cpus
6358 */
6359static int build_sched_domains(const struct cpumask *cpu_map,
6360			       struct sched_domain_attr *attr)
6361{
6362	enum s_alloc alloc_state = sa_none;
6363	struct sched_domain *sd;
6364	struct s_data d;
6365	int i, ret = -ENOMEM;
6366
6367	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6368	if (alloc_state != sa_rootdomain)
6369		goto error;
6370
6371	/* Set up domains for cpus specified by the cpu_map. */
6372	for_each_cpu(i, cpu_map) {
6373		struct sched_domain_topology_level *tl;
6374
6375		sd = NULL;
6376		for (tl = sched_domain_topology; tl->init; tl++) {
6377			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6378			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6379				sd->flags |= SD_OVERLAP;
6380			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6381				break;
6382		}
6383
6384		while (sd->child)
6385			sd = sd->child;
6386
6387		*per_cpu_ptr(d.sd, i) = sd;
6388	}
6389
6390	/* Build the groups for the domains */
6391	for_each_cpu(i, cpu_map) {
6392		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6393			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6394			if (sd->flags & SD_OVERLAP) {
6395				if (build_overlap_sched_groups(sd, i))
6396					goto error;
6397			} else {
6398				if (build_sched_groups(sd, i))
6399					goto error;
6400			}
6401		}
6402	}
6403
6404	/* Calculate CPU power for physical packages and nodes */
6405	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6406		if (!cpumask_test_cpu(i, cpu_map))
6407			continue;
6408
6409		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6410			claim_allocations(i, sd);
6411			init_sched_groups_power(i, sd);
6412		}
6413	}
6414
6415	/* Attach the domains */
6416	rcu_read_lock();
6417	for_each_cpu(i, cpu_map) {
6418		sd = *per_cpu_ptr(d.sd, i);
6419		cpu_attach_domain(sd, d.rd, i);
6420	}
6421	rcu_read_unlock();
6422
6423	ret = 0;
6424error:
6425	__free_domain_allocs(&d, alloc_state, cpu_map);
6426	return ret;
6427}
6428
6429static cpumask_var_t *doms_cur;	/* current sched domains */
6430static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6431static struct sched_domain_attr *dattr_cur;
6432				/* attribues of custom domains in 'doms_cur' */
6433
6434/*
6435 * Special case: If a kmalloc of a doms_cur partition (array of
6436 * cpumask) fails, then fallback to a single sched domain,
6437 * as determined by the single cpumask fallback_doms.
6438 */
6439static cpumask_var_t fallback_doms;
6440
6441/*
6442 * arch_update_cpu_topology lets virtualized architectures update the
6443 * cpu core maps. It is supposed to return 1 if the topology changed
6444 * or 0 if it stayed the same.
6445 */
6446int __attribute__((weak)) arch_update_cpu_topology(void)
6447{
6448	return 0;
6449}
6450
6451cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6452{
6453	int i;
6454	cpumask_var_t *doms;
6455
6456	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6457	if (!doms)
6458		return NULL;
6459	for (i = 0; i < ndoms; i++) {
6460		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6461			free_sched_domains(doms, i);
6462			return NULL;
6463		}
6464	}
6465	return doms;
6466}
6467
6468void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6469{
6470	unsigned int i;
6471	for (i = 0; i < ndoms; i++)
6472		free_cpumask_var(doms[i]);
6473	kfree(doms);
6474}
6475
6476/*
6477 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6478 * For now this just excludes isolated cpus, but could be used to
6479 * exclude other special cases in the future.
6480 */
6481static int init_sched_domains(const struct cpumask *cpu_map)
6482{
6483	int err;
6484
6485	arch_update_cpu_topology();
6486	ndoms_cur = 1;
6487	doms_cur = alloc_sched_domains(ndoms_cur);
6488	if (!doms_cur)
6489		doms_cur = &fallback_doms;
6490	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6491	err = build_sched_domains(doms_cur[0], NULL);
6492	register_sched_domain_sysctl();
6493
6494	return err;
6495}
6496
6497/*
6498 * Detach sched domains from a group of cpus specified in cpu_map
6499 * These cpus will now be attached to the NULL domain
6500 */
6501static void detach_destroy_domains(const struct cpumask *cpu_map)
6502{
6503	int i;
6504
6505	rcu_read_lock();
6506	for_each_cpu(i, cpu_map)
6507		cpu_attach_domain(NULL, &def_root_domain, i);
6508	rcu_read_unlock();
6509}
6510
6511/* handle null as "default" */
6512static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6513			struct sched_domain_attr *new, int idx_new)
6514{
6515	struct sched_domain_attr tmp;
6516
6517	/* fast path */
6518	if (!new && !cur)
6519		return 1;
6520
6521	tmp = SD_ATTR_INIT;
6522	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6523			new ? (new + idx_new) : &tmp,
6524			sizeof(struct sched_domain_attr));
6525}
6526
6527/*
6528 * Partition sched domains as specified by the 'ndoms_new'
6529 * cpumasks in the array doms_new[] of cpumasks. This compares
6530 * doms_new[] to the current sched domain partitioning, doms_cur[].
6531 * It destroys each deleted domain and builds each new domain.
6532 *
6533 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6534 * The masks don't intersect (don't overlap.) We should setup one
6535 * sched domain for each mask. CPUs not in any of the cpumasks will
6536 * not be load balanced. If the same cpumask appears both in the
6537 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6538 * it as it is.
6539 *
6540 * The passed in 'doms_new' should be allocated using
6541 * alloc_sched_domains.  This routine takes ownership of it and will
6542 * free_sched_domains it when done with it. If the caller failed the
6543 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6544 * and partition_sched_domains() will fallback to the single partition
6545 * 'fallback_doms', it also forces the domains to be rebuilt.
6546 *
6547 * If doms_new == NULL it will be replaced with cpu_online_mask.
6548 * ndoms_new == 0 is a special case for destroying existing domains,
6549 * and it will not create the default domain.
6550 *
6551 * Call with hotplug lock held
6552 */
6553void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6554			     struct sched_domain_attr *dattr_new)
6555{
6556	int i, j, n;
6557	int new_topology;
6558
6559	mutex_lock(&sched_domains_mutex);
6560
6561	/* always unregister in case we don't destroy any domains */
6562	unregister_sched_domain_sysctl();
6563
6564	/* Let architecture update cpu core mappings. */
6565	new_topology = arch_update_cpu_topology();
6566
6567	n = doms_new ? ndoms_new : 0;
6568
6569	/* Destroy deleted domains */
6570	for (i = 0; i < ndoms_cur; i++) {
6571		for (j = 0; j < n && !new_topology; j++) {
6572			if (cpumask_equal(doms_cur[i], doms_new[j])
6573			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6574				goto match1;
6575		}
6576		/* no match - a current sched domain not in new doms_new[] */
6577		detach_destroy_domains(doms_cur[i]);
6578match1:
6579		;
6580	}
6581
6582	if (doms_new == NULL) {
6583		ndoms_cur = 0;
6584		doms_new = &fallback_doms;
6585		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6586		WARN_ON_ONCE(dattr_new);
6587	}
6588
6589	/* Build new domains */
6590	for (i = 0; i < ndoms_new; i++) {
6591		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6592			if (cpumask_equal(doms_new[i], doms_cur[j])
6593			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6594				goto match2;
6595		}
6596		/* no match - add a new doms_new */
6597		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6598match2:
6599		;
6600	}
6601
6602	/* Remember the new sched domains */
6603	if (doms_cur != &fallback_doms)
6604		free_sched_domains(doms_cur, ndoms_cur);
6605	kfree(dattr_cur);	/* kfree(NULL) is safe */
6606	doms_cur = doms_new;
6607	dattr_cur = dattr_new;
6608	ndoms_cur = ndoms_new;
6609
6610	register_sched_domain_sysctl();
6611
6612	mutex_unlock(&sched_domains_mutex);
6613}
6614
6615static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6616
6617/*
6618 * Update cpusets according to cpu_active mask.  If cpusets are
6619 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6620 * around partition_sched_domains().
6621 *
6622 * If we come here as part of a suspend/resume, don't touch cpusets because we
6623 * want to restore it back to its original state upon resume anyway.
6624 */
6625static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6626			     void *hcpu)
6627{
6628	switch (action) {
6629	case CPU_ONLINE_FROZEN:
6630	case CPU_DOWN_FAILED_FROZEN:
6631
6632		/*
6633		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6634		 * resume sequence. As long as this is not the last online
6635		 * operation in the resume sequence, just build a single sched
6636		 * domain, ignoring cpusets.
6637		 */
6638		num_cpus_frozen--;
6639		if (likely(num_cpus_frozen)) {
6640			partition_sched_domains(1, NULL, NULL);
6641			break;
6642		}
6643
6644		/*
6645		 * This is the last CPU online operation. So fall through and
6646		 * restore the original sched domains by considering the
6647		 * cpuset configurations.
6648		 */
6649
6650	case CPU_ONLINE:
6651	case CPU_DOWN_FAILED:
6652		cpuset_update_active_cpus(true);
6653		break;
6654	default:
6655		return NOTIFY_DONE;
6656	}
6657	return NOTIFY_OK;
6658}
6659
6660static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6661			       void *hcpu)
6662{
6663	switch (action) {
6664	case CPU_DOWN_PREPARE:
6665		cpuset_update_active_cpus(false);
6666		break;
6667	case CPU_DOWN_PREPARE_FROZEN:
6668		num_cpus_frozen++;
6669		partition_sched_domains(1, NULL, NULL);
6670		break;
6671	default:
6672		return NOTIFY_DONE;
6673	}
6674	return NOTIFY_OK;
6675}
6676
6677void __init sched_init_smp(void)
6678{
6679	cpumask_var_t non_isolated_cpus;
6680
6681	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6682	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6683
6684	sched_init_numa();
6685
6686	get_online_cpus();
6687	mutex_lock(&sched_domains_mutex);
6688	init_sched_domains(cpu_active_mask);
6689	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6690	if (cpumask_empty(non_isolated_cpus))
6691		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6692	mutex_unlock(&sched_domains_mutex);
6693	put_online_cpus();
6694
6695	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6696	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6697
6698	/* RT runtime code needs to handle some hotplug events */
6699	hotcpu_notifier(update_runtime, 0);
6700
6701	init_hrtick();
6702
6703	/* Move init over to a non-isolated CPU */
6704	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6705		BUG();
6706	sched_init_granularity();
6707	free_cpumask_var(non_isolated_cpus);
6708
6709	init_sched_rt_class();
6710}
6711#else
6712void __init sched_init_smp(void)
6713{
6714	sched_init_granularity();
6715}
6716#endif /* CONFIG_SMP */
6717
6718const_debug unsigned int sysctl_timer_migration = 1;
6719
6720int in_sched_functions(unsigned long addr)
6721{
6722	return in_lock_functions(addr) ||
6723		(addr >= (unsigned long)__sched_text_start
6724		&& addr < (unsigned long)__sched_text_end);
6725}
6726
6727#ifdef CONFIG_CGROUP_SCHED
6728struct task_group root_task_group;
6729LIST_HEAD(task_groups);
6730#endif
6731
6732DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6733
6734void __init sched_init(void)
6735{
6736	int i, j;
6737	unsigned long alloc_size = 0, ptr;
6738
6739#ifdef CONFIG_FAIR_GROUP_SCHED
6740	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6741#endif
6742#ifdef CONFIG_RT_GROUP_SCHED
6743	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6744#endif
6745#ifdef CONFIG_CPUMASK_OFFSTACK
6746	alloc_size += num_possible_cpus() * cpumask_size();
6747#endif
6748	if (alloc_size) {
6749		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6750
6751#ifdef CONFIG_FAIR_GROUP_SCHED
6752		root_task_group.se = (struct sched_entity **)ptr;
6753		ptr += nr_cpu_ids * sizeof(void **);
6754
6755		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6756		ptr += nr_cpu_ids * sizeof(void **);
6757
6758#endif /* CONFIG_FAIR_GROUP_SCHED */
6759#ifdef CONFIG_RT_GROUP_SCHED
6760		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6761		ptr += nr_cpu_ids * sizeof(void **);
6762
6763		root_task_group.rt_rq = (struct rt_rq **)ptr;
6764		ptr += nr_cpu_ids * sizeof(void **);
6765
6766#endif /* CONFIG_RT_GROUP_SCHED */
6767#ifdef CONFIG_CPUMASK_OFFSTACK
6768		for_each_possible_cpu(i) {
6769			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6770			ptr += cpumask_size();
6771		}
6772#endif /* CONFIG_CPUMASK_OFFSTACK */
6773	}
6774
6775#ifdef CONFIG_SMP
6776	init_defrootdomain();
6777#endif
6778
6779	init_rt_bandwidth(&def_rt_bandwidth,
6780			global_rt_period(), global_rt_runtime());
6781
6782#ifdef CONFIG_RT_GROUP_SCHED
6783	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6784			global_rt_period(), global_rt_runtime());
6785#endif /* CONFIG_RT_GROUP_SCHED */
6786
6787#ifdef CONFIG_CGROUP_SCHED
6788	list_add(&root_task_group.list, &task_groups);
6789	INIT_LIST_HEAD(&root_task_group.children);
6790	INIT_LIST_HEAD(&root_task_group.siblings);
6791	autogroup_init(&init_task);
6792
6793#endif /* CONFIG_CGROUP_SCHED */
6794
6795#ifdef CONFIG_CGROUP_CPUACCT
6796	root_cpuacct.cpustat = &kernel_cpustat;
6797	root_cpuacct.cpuusage = alloc_percpu(u64);
6798	/* Too early, not expected to fail */
6799	BUG_ON(!root_cpuacct.cpuusage);
6800#endif
6801	for_each_possible_cpu(i) {
6802		struct rq *rq;
6803
6804		rq = cpu_rq(i);
6805		raw_spin_lock_init(&rq->lock);
6806		rq->nr_running = 0;
6807		rq->calc_load_active = 0;
6808		rq->calc_load_update = jiffies + LOAD_FREQ;
6809		init_cfs_rq(&rq->cfs);
6810		init_rt_rq(&rq->rt, rq);
6811#ifdef CONFIG_FAIR_GROUP_SCHED
6812		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6813		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6814		/*
6815		 * How much cpu bandwidth does root_task_group get?
6816		 *
6817		 * In case of task-groups formed thr' the cgroup filesystem, it
6818		 * gets 100% of the cpu resources in the system. This overall
6819		 * system cpu resource is divided among the tasks of
6820		 * root_task_group and its child task-groups in a fair manner,
6821		 * based on each entity's (task or task-group's) weight
6822		 * (se->load.weight).
6823		 *
6824		 * In other words, if root_task_group has 10 tasks of weight
6825		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6826		 * then A0's share of the cpu resource is:
6827		 *
6828		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6829		 *
6830		 * We achieve this by letting root_task_group's tasks sit
6831		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6832		 */
6833		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6834		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6835#endif /* CONFIG_FAIR_GROUP_SCHED */
6836
6837		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6838#ifdef CONFIG_RT_GROUP_SCHED
6839		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6840		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6841#endif
6842
6843		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6844			rq->cpu_load[j] = 0;
6845
6846		rq->last_load_update_tick = jiffies;
6847
6848#ifdef CONFIG_SMP
6849		rq->sd = NULL;
6850		rq->rd = NULL;
6851		rq->cpu_power = SCHED_POWER_SCALE;
6852		rq->post_schedule = 0;
6853		rq->active_balance = 0;
6854		rq->next_balance = jiffies;
6855		rq->push_cpu = 0;
6856		rq->cpu = i;
6857		rq->online = 0;
6858		rq->idle_stamp = 0;
6859		rq->avg_idle = 2*sysctl_sched_migration_cost;
6860
6861		INIT_LIST_HEAD(&rq->cfs_tasks);
6862
6863		rq_attach_root(rq, &def_root_domain);
6864#ifdef CONFIG_NO_HZ
6865		rq->nohz_flags = 0;
6866#endif
6867#endif
6868		init_rq_hrtick(rq);
6869		atomic_set(&rq->nr_iowait, 0);
6870	}
6871
6872	set_load_weight(&init_task);
6873
6874#ifdef CONFIG_PREEMPT_NOTIFIERS
6875	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6876#endif
6877
6878#ifdef CONFIG_RT_MUTEXES
6879	plist_head_init(&init_task.pi_waiters);
6880#endif
6881
6882	/*
6883	 * The boot idle thread does lazy MMU switching as well:
6884	 */
6885	atomic_inc(&init_mm.mm_count);
6886	enter_lazy_tlb(&init_mm, current);
6887
6888	/*
6889	 * Make us the idle thread. Technically, schedule() should not be
6890	 * called from this thread, however somewhere below it might be,
6891	 * but because we are the idle thread, we just pick up running again
6892	 * when this runqueue becomes "idle".
6893	 */
6894	init_idle(current, smp_processor_id());
6895
6896	calc_load_update = jiffies + LOAD_FREQ;
6897
6898	/*
6899	 * During early bootup we pretend to be a normal task:
6900	 */
6901	current->sched_class = &fair_sched_class;
6902
6903#ifdef CONFIG_SMP
6904	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6905	/* May be allocated at isolcpus cmdline parse time */
6906	if (cpu_isolated_map == NULL)
6907		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6908	idle_thread_set_boot_cpu();
6909#endif
6910	init_sched_fair_class();
6911
6912	scheduler_running = 1;
6913}
6914
6915#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6916static inline int preempt_count_equals(int preempt_offset)
6917{
6918	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6919
6920	return (nested == preempt_offset);
6921}
6922
6923void __might_sleep(const char *file, int line, int preempt_offset)
6924{
6925	static unsigned long prev_jiffy;	/* ratelimiting */
6926
6927	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6928	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6929	    system_state != SYSTEM_RUNNING || oops_in_progress)
6930		return;
6931	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6932		return;
6933	prev_jiffy = jiffies;
6934
6935	printk(KERN_ERR
6936		"BUG: sleeping function called from invalid context at %s:%d\n",
6937			file, line);
6938	printk(KERN_ERR
6939		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6940			in_atomic(), irqs_disabled(),
6941			current->pid, current->comm);
6942
6943	debug_show_held_locks(current);
6944	if (irqs_disabled())
6945		print_irqtrace_events(current);
6946	dump_stack();
6947}
6948EXPORT_SYMBOL(__might_sleep);
6949#endif
6950
6951#ifdef CONFIG_MAGIC_SYSRQ
6952static void normalize_task(struct rq *rq, struct task_struct *p)
6953{
6954	const struct sched_class *prev_class = p->sched_class;
6955	int old_prio = p->prio;
6956	int on_rq;
6957
6958	on_rq = p->on_rq;
6959	if (on_rq)
6960		dequeue_task(rq, p, 0);
6961	__setscheduler(rq, p, SCHED_NORMAL, 0);
6962	if (on_rq) {
6963		enqueue_task(rq, p, 0);
6964		resched_task(rq->curr);
6965	}
6966
6967	check_class_changed(rq, p, prev_class, old_prio);
6968}
6969
6970void normalize_rt_tasks(void)
6971{
6972	struct task_struct *g, *p;
6973	unsigned long flags;
6974	struct rq *rq;
6975
6976	read_lock_irqsave(&tasklist_lock, flags);
6977	do_each_thread(g, p) {
6978		/*
6979		 * Only normalize user tasks:
6980		 */
6981		if (!p->mm)
6982			continue;
6983
6984		p->se.exec_start		= 0;
6985#ifdef CONFIG_SCHEDSTATS
6986		p->se.statistics.wait_start	= 0;
6987		p->se.statistics.sleep_start	= 0;
6988		p->se.statistics.block_start	= 0;
6989#endif
6990
6991		if (!rt_task(p)) {
6992			/*
6993			 * Renice negative nice level userspace
6994			 * tasks back to 0:
6995			 */
6996			if (TASK_NICE(p) < 0 && p->mm)
6997				set_user_nice(p, 0);
6998			continue;
6999		}
7000
7001		raw_spin_lock(&p->pi_lock);
7002		rq = __task_rq_lock(p);
7003
7004		normalize_task(rq, p);
7005
7006		__task_rq_unlock(rq);
7007		raw_spin_unlock(&p->pi_lock);
7008	} while_each_thread(g, p);
7009
7010	read_unlock_irqrestore(&tasklist_lock, flags);
7011}
7012
7013#endif /* CONFIG_MAGIC_SYSRQ */
7014
7015#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7016/*
7017 * These functions are only useful for the IA64 MCA handling, or kdb.
7018 *
7019 * They can only be called when the whole system has been
7020 * stopped - every CPU needs to be quiescent, and no scheduling
7021 * activity can take place. Using them for anything else would
7022 * be a serious bug, and as a result, they aren't even visible
7023 * under any other configuration.
7024 */
7025
7026/**
7027 * curr_task - return the current task for a given cpu.
7028 * @cpu: the processor in question.
7029 *
7030 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7031 */
7032struct task_struct *curr_task(int cpu)
7033{
7034	return cpu_curr(cpu);
7035}
7036
7037#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7038
7039#ifdef CONFIG_IA64
7040/**
7041 * set_curr_task - set the current task for a given cpu.
7042 * @cpu: the processor in question.
7043 * @p: the task pointer to set.
7044 *
7045 * Description: This function must only be used when non-maskable interrupts
7046 * are serviced on a separate stack. It allows the architecture to switch the
7047 * notion of the current task on a cpu in a non-blocking manner. This function
7048 * must be called with all CPU's synchronized, and interrupts disabled, the
7049 * and caller must save the original value of the current task (see
7050 * curr_task() above) and restore that value before reenabling interrupts and
7051 * re-starting the system.
7052 *
7053 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7054 */
7055void set_curr_task(int cpu, struct task_struct *p)
7056{
7057	cpu_curr(cpu) = p;
7058}
7059
7060#endif
7061
7062#ifdef CONFIG_CGROUP_SCHED
7063/* task_group_lock serializes the addition/removal of task groups */
7064static DEFINE_SPINLOCK(task_group_lock);
7065
7066static void free_sched_group(struct task_group *tg)
7067{
7068	free_fair_sched_group(tg);
7069	free_rt_sched_group(tg);
7070	autogroup_free(tg);
7071	kfree(tg);
7072}
7073
7074/* allocate runqueue etc for a new task group */
7075struct task_group *sched_create_group(struct task_group *parent)
7076{
7077	struct task_group *tg;
7078	unsigned long flags;
7079
7080	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7081	if (!tg)
7082		return ERR_PTR(-ENOMEM);
7083
7084	if (!alloc_fair_sched_group(tg, parent))
7085		goto err;
7086
7087	if (!alloc_rt_sched_group(tg, parent))
7088		goto err;
7089
7090	spin_lock_irqsave(&task_group_lock, flags);
7091	list_add_rcu(&tg->list, &task_groups);
7092
7093	WARN_ON(!parent); /* root should already exist */
7094
7095	tg->parent = parent;
7096	INIT_LIST_HEAD(&tg->children);
7097	list_add_rcu(&tg->siblings, &parent->children);
7098	spin_unlock_irqrestore(&task_group_lock, flags);
7099
7100	return tg;
7101
7102err:
7103	free_sched_group(tg);
7104	return ERR_PTR(-ENOMEM);
7105}
7106
7107/* rcu callback to free various structures associated with a task group */
7108static void free_sched_group_rcu(struct rcu_head *rhp)
7109{
7110	/* now it should be safe to free those cfs_rqs */
7111	free_sched_group(container_of(rhp, struct task_group, rcu));
7112}
7113
7114/* Destroy runqueue etc associated with a task group */
7115void sched_destroy_group(struct task_group *tg)
7116{
7117	unsigned long flags;
7118	int i;
7119
7120	/* end participation in shares distribution */
7121	for_each_possible_cpu(i)
7122		unregister_fair_sched_group(tg, i);
7123
7124	spin_lock_irqsave(&task_group_lock, flags);
7125	list_del_rcu(&tg->list);
7126	list_del_rcu(&tg->siblings);
7127	spin_unlock_irqrestore(&task_group_lock, flags);
7128
7129	/* wait for possible concurrent references to cfs_rqs complete */
7130	call_rcu(&tg->rcu, free_sched_group_rcu);
7131}
7132
7133/* change task's runqueue when it moves between groups.
7134 *	The caller of this function should have put the task in its new group
7135 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7136 *	reflect its new group.
7137 */
7138void sched_move_task(struct task_struct *tsk)
7139{
7140	struct task_group *tg;
7141	int on_rq, running;
7142	unsigned long flags;
7143	struct rq *rq;
7144
7145	rq = task_rq_lock(tsk, &flags);
7146
7147	running = task_current(rq, tsk);
7148	on_rq = tsk->on_rq;
7149
7150	if (on_rq)
7151		dequeue_task(rq, tsk, 0);
7152	if (unlikely(running))
7153		tsk->sched_class->put_prev_task(rq, tsk);
7154
7155	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7156				lockdep_is_held(&tsk->sighand->siglock)),
7157			  struct task_group, css);
7158	tg = autogroup_task_group(tsk, tg);
7159	tsk->sched_task_group = tg;
7160
7161#ifdef CONFIG_FAIR_GROUP_SCHED
7162	if (tsk->sched_class->task_move_group)
7163		tsk->sched_class->task_move_group(tsk, on_rq);
7164	else
7165#endif
7166		set_task_rq(tsk, task_cpu(tsk));
7167
7168	if (unlikely(running))
7169		tsk->sched_class->set_curr_task(rq);
7170	if (on_rq)
7171		enqueue_task(rq, tsk, 0);
7172
7173	task_rq_unlock(rq, tsk, &flags);
7174}
7175#endif /* CONFIG_CGROUP_SCHED */
7176
7177#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7178static unsigned long to_ratio(u64 period, u64 runtime)
7179{
7180	if (runtime == RUNTIME_INF)
7181		return 1ULL << 20;
7182
7183	return div64_u64(runtime << 20, period);
7184}
7185#endif
7186
7187#ifdef CONFIG_RT_GROUP_SCHED
7188/*
7189 * Ensure that the real time constraints are schedulable.
7190 */
7191static DEFINE_MUTEX(rt_constraints_mutex);
7192
7193/* Must be called with tasklist_lock held */
7194static inline int tg_has_rt_tasks(struct task_group *tg)
7195{
7196	struct task_struct *g, *p;
7197
7198	do_each_thread(g, p) {
7199		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7200			return 1;
7201	} while_each_thread(g, p);
7202
7203	return 0;
7204}
7205
7206struct rt_schedulable_data {
7207	struct task_group *tg;
7208	u64 rt_period;
7209	u64 rt_runtime;
7210};
7211
7212static int tg_rt_schedulable(struct task_group *tg, void *data)
7213{
7214	struct rt_schedulable_data *d = data;
7215	struct task_group *child;
7216	unsigned long total, sum = 0;
7217	u64 period, runtime;
7218
7219	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7220	runtime = tg->rt_bandwidth.rt_runtime;
7221
7222	if (tg == d->tg) {
7223		period = d->rt_period;
7224		runtime = d->rt_runtime;
7225	}
7226
7227	/*
7228	 * Cannot have more runtime than the period.
7229	 */
7230	if (runtime > period && runtime != RUNTIME_INF)
7231		return -EINVAL;
7232
7233	/*
7234	 * Ensure we don't starve existing RT tasks.
7235	 */
7236	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7237		return -EBUSY;
7238
7239	total = to_ratio(period, runtime);
7240
7241	/*
7242	 * Nobody can have more than the global setting allows.
7243	 */
7244	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7245		return -EINVAL;
7246
7247	/*
7248	 * The sum of our children's runtime should not exceed our own.
7249	 */
7250	list_for_each_entry_rcu(child, &tg->children, siblings) {
7251		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7252		runtime = child->rt_bandwidth.rt_runtime;
7253
7254		if (child == d->tg) {
7255			period = d->rt_period;
7256			runtime = d->rt_runtime;
7257		}
7258
7259		sum += to_ratio(period, runtime);
7260	}
7261
7262	if (sum > total)
7263		return -EINVAL;
7264
7265	return 0;
7266}
7267
7268static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7269{
7270	int ret;
7271
7272	struct rt_schedulable_data data = {
7273		.tg = tg,
7274		.rt_period = period,
7275		.rt_runtime = runtime,
7276	};
7277
7278	rcu_read_lock();
7279	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7280	rcu_read_unlock();
7281
7282	return ret;
7283}
7284
7285static int tg_set_rt_bandwidth(struct task_group *tg,
7286		u64 rt_period, u64 rt_runtime)
7287{
7288	int i, err = 0;
7289
7290	mutex_lock(&rt_constraints_mutex);
7291	read_lock(&tasklist_lock);
7292	err = __rt_schedulable(tg, rt_period, rt_runtime);
7293	if (err)
7294		goto unlock;
7295
7296	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7297	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7298	tg->rt_bandwidth.rt_runtime = rt_runtime;
7299
7300	for_each_possible_cpu(i) {
7301		struct rt_rq *rt_rq = tg->rt_rq[i];
7302
7303		raw_spin_lock(&rt_rq->rt_runtime_lock);
7304		rt_rq->rt_runtime = rt_runtime;
7305		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7306	}
7307	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7308unlock:
7309	read_unlock(&tasklist_lock);
7310	mutex_unlock(&rt_constraints_mutex);
7311
7312	return err;
7313}
7314
7315int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7316{
7317	u64 rt_runtime, rt_period;
7318
7319	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7320	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7321	if (rt_runtime_us < 0)
7322		rt_runtime = RUNTIME_INF;
7323
7324	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7325}
7326
7327long sched_group_rt_runtime(struct task_group *tg)
7328{
7329	u64 rt_runtime_us;
7330
7331	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7332		return -1;
7333
7334	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7335	do_div(rt_runtime_us, NSEC_PER_USEC);
7336	return rt_runtime_us;
7337}
7338
7339int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7340{
7341	u64 rt_runtime, rt_period;
7342
7343	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7344	rt_runtime = tg->rt_bandwidth.rt_runtime;
7345
7346	if (rt_period == 0)
7347		return -EINVAL;
7348
7349	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7350}
7351
7352long sched_group_rt_period(struct task_group *tg)
7353{
7354	u64 rt_period_us;
7355
7356	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7357	do_div(rt_period_us, NSEC_PER_USEC);
7358	return rt_period_us;
7359}
7360
7361static int sched_rt_global_constraints(void)
7362{
7363	u64 runtime, period;
7364	int ret = 0;
7365
7366	if (sysctl_sched_rt_period <= 0)
7367		return -EINVAL;
7368
7369	runtime = global_rt_runtime();
7370	period = global_rt_period();
7371
7372	/*
7373	 * Sanity check on the sysctl variables.
7374	 */
7375	if (runtime > period && runtime != RUNTIME_INF)
7376		return -EINVAL;
7377
7378	mutex_lock(&rt_constraints_mutex);
7379	read_lock(&tasklist_lock);
7380	ret = __rt_schedulable(NULL, 0, 0);
7381	read_unlock(&tasklist_lock);
7382	mutex_unlock(&rt_constraints_mutex);
7383
7384	return ret;
7385}
7386
7387int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7388{
7389	/* Don't accept realtime tasks when there is no way for them to run */
7390	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7391		return 0;
7392
7393	return 1;
7394}
7395
7396#else /* !CONFIG_RT_GROUP_SCHED */
7397static int sched_rt_global_constraints(void)
7398{
7399	unsigned long flags;
7400	int i;
7401
7402	if (sysctl_sched_rt_period <= 0)
7403		return -EINVAL;
7404
7405	/*
7406	 * There's always some RT tasks in the root group
7407	 * -- migration, kstopmachine etc..
7408	 */
7409	if (sysctl_sched_rt_runtime == 0)
7410		return -EBUSY;
7411
7412	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7413	for_each_possible_cpu(i) {
7414		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7415
7416		raw_spin_lock(&rt_rq->rt_runtime_lock);
7417		rt_rq->rt_runtime = global_rt_runtime();
7418		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7419	}
7420	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7421
7422	return 0;
7423}
7424#endif /* CONFIG_RT_GROUP_SCHED */
7425
7426int sched_rt_handler(struct ctl_table *table, int write,
7427		void __user *buffer, size_t *lenp,
7428		loff_t *ppos)
7429{
7430	int ret;
7431	int old_period, old_runtime;
7432	static DEFINE_MUTEX(mutex);
7433
7434	mutex_lock(&mutex);
7435	old_period = sysctl_sched_rt_period;
7436	old_runtime = sysctl_sched_rt_runtime;
7437
7438	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7439
7440	if (!ret && write) {
7441		ret = sched_rt_global_constraints();
7442		if (ret) {
7443			sysctl_sched_rt_period = old_period;
7444			sysctl_sched_rt_runtime = old_runtime;
7445		} else {
7446			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7447			def_rt_bandwidth.rt_period =
7448				ns_to_ktime(global_rt_period());
7449		}
7450	}
7451	mutex_unlock(&mutex);
7452
7453	return ret;
7454}
7455
7456#ifdef CONFIG_CGROUP_SCHED
7457
7458/* return corresponding task_group object of a cgroup */
7459static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7460{
7461	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7462			    struct task_group, css);
7463}
7464
7465static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7466{
7467	struct task_group *tg, *parent;
7468
7469	if (!cgrp->parent) {
7470		/* This is early initialization for the top cgroup */
7471		return &root_task_group.css;
7472	}
7473
7474	parent = cgroup_tg(cgrp->parent);
7475	tg = sched_create_group(parent);
7476	if (IS_ERR(tg))
7477		return ERR_PTR(-ENOMEM);
7478
7479	return &tg->css;
7480}
7481
7482static void cpu_cgroup_destroy(struct cgroup *cgrp)
7483{
7484	struct task_group *tg = cgroup_tg(cgrp);
7485
7486	sched_destroy_group(tg);
7487}
7488
7489static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7490				 struct cgroup_taskset *tset)
7491{
7492	struct task_struct *task;
7493
7494	cgroup_taskset_for_each(task, cgrp, tset) {
7495#ifdef CONFIG_RT_GROUP_SCHED
7496		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7497			return -EINVAL;
7498#else
7499		/* We don't support RT-tasks being in separate groups */
7500		if (task->sched_class != &fair_sched_class)
7501			return -EINVAL;
7502#endif
7503	}
7504	return 0;
7505}
7506
7507static void cpu_cgroup_attach(struct cgroup *cgrp,
7508			      struct cgroup_taskset *tset)
7509{
7510	struct task_struct *task;
7511
7512	cgroup_taskset_for_each(task, cgrp, tset)
7513		sched_move_task(task);
7514}
7515
7516static void
7517cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7518		struct task_struct *task)
7519{
7520	/*
7521	 * cgroup_exit() is called in the copy_process() failure path.
7522	 * Ignore this case since the task hasn't ran yet, this avoids
7523	 * trying to poke a half freed task state from generic code.
7524	 */
7525	if (!(task->flags & PF_EXITING))
7526		return;
7527
7528	sched_move_task(task);
7529}
7530
7531#ifdef CONFIG_FAIR_GROUP_SCHED
7532static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7533				u64 shareval)
7534{
7535	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7536}
7537
7538static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7539{
7540	struct task_group *tg = cgroup_tg(cgrp);
7541
7542	return (u64) scale_load_down(tg->shares);
7543}
7544
7545#ifdef CONFIG_CFS_BANDWIDTH
7546static DEFINE_MUTEX(cfs_constraints_mutex);
7547
7548const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7549const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7550
7551static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7552
7553static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7554{
7555	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7556	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7557
7558	if (tg == &root_task_group)
7559		return -EINVAL;
7560
7561	/*
7562	 * Ensure we have at some amount of bandwidth every period.  This is
7563	 * to prevent reaching a state of large arrears when throttled via
7564	 * entity_tick() resulting in prolonged exit starvation.
7565	 */
7566	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7567		return -EINVAL;
7568
7569	/*
7570	 * Likewise, bound things on the otherside by preventing insane quota
7571	 * periods.  This also allows us to normalize in computing quota
7572	 * feasibility.
7573	 */
7574	if (period > max_cfs_quota_period)
7575		return -EINVAL;
7576
7577	mutex_lock(&cfs_constraints_mutex);
7578	ret = __cfs_schedulable(tg, period, quota);
7579	if (ret)
7580		goto out_unlock;
7581
7582	runtime_enabled = quota != RUNTIME_INF;
7583	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7584	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7585	raw_spin_lock_irq(&cfs_b->lock);
7586	cfs_b->period = ns_to_ktime(period);
7587	cfs_b->quota = quota;
7588
7589	__refill_cfs_bandwidth_runtime(cfs_b);
7590	/* restart the period timer (if active) to handle new period expiry */
7591	if (runtime_enabled && cfs_b->timer_active) {
7592		/* force a reprogram */
7593		cfs_b->timer_active = 0;
7594		__start_cfs_bandwidth(cfs_b);
7595	}
7596	raw_spin_unlock_irq(&cfs_b->lock);
7597
7598	for_each_possible_cpu(i) {
7599		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7600		struct rq *rq = cfs_rq->rq;
7601
7602		raw_spin_lock_irq(&rq->lock);
7603		cfs_rq->runtime_enabled = runtime_enabled;
7604		cfs_rq->runtime_remaining = 0;
7605
7606		if (cfs_rq->throttled)
7607			unthrottle_cfs_rq(cfs_rq);
7608		raw_spin_unlock_irq(&rq->lock);
7609	}
7610out_unlock:
7611	mutex_unlock(&cfs_constraints_mutex);
7612
7613	return ret;
7614}
7615
7616int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7617{
7618	u64 quota, period;
7619
7620	period = ktime_to_ns(tg->cfs_bandwidth.period);
7621	if (cfs_quota_us < 0)
7622		quota = RUNTIME_INF;
7623	else
7624		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7625
7626	return tg_set_cfs_bandwidth(tg, period, quota);
7627}
7628
7629long tg_get_cfs_quota(struct task_group *tg)
7630{
7631	u64 quota_us;
7632
7633	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7634		return -1;
7635
7636	quota_us = tg->cfs_bandwidth.quota;
7637	do_div(quota_us, NSEC_PER_USEC);
7638
7639	return quota_us;
7640}
7641
7642int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7643{
7644	u64 quota, period;
7645
7646	period = (u64)cfs_period_us * NSEC_PER_USEC;
7647	quota = tg->cfs_bandwidth.quota;
7648
7649	return tg_set_cfs_bandwidth(tg, period, quota);
7650}
7651
7652long tg_get_cfs_period(struct task_group *tg)
7653{
7654	u64 cfs_period_us;
7655
7656	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7657	do_div(cfs_period_us, NSEC_PER_USEC);
7658
7659	return cfs_period_us;
7660}
7661
7662static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7663{
7664	return tg_get_cfs_quota(cgroup_tg(cgrp));
7665}
7666
7667static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7668				s64 cfs_quota_us)
7669{
7670	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7671}
7672
7673static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7674{
7675	return tg_get_cfs_period(cgroup_tg(cgrp));
7676}
7677
7678static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7679				u64 cfs_period_us)
7680{
7681	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7682}
7683
7684struct cfs_schedulable_data {
7685	struct task_group *tg;
7686	u64 period, quota;
7687};
7688
7689/*
7690 * normalize group quota/period to be quota/max_period
7691 * note: units are usecs
7692 */
7693static u64 normalize_cfs_quota(struct task_group *tg,
7694			       struct cfs_schedulable_data *d)
7695{
7696	u64 quota, period;
7697
7698	if (tg == d->tg) {
7699		period = d->period;
7700		quota = d->quota;
7701	} else {
7702		period = tg_get_cfs_period(tg);
7703		quota = tg_get_cfs_quota(tg);
7704	}
7705
7706	/* note: these should typically be equivalent */
7707	if (quota == RUNTIME_INF || quota == -1)
7708		return RUNTIME_INF;
7709
7710	return to_ratio(period, quota);
7711}
7712
7713static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7714{
7715	struct cfs_schedulable_data *d = data;
7716	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7717	s64 quota = 0, parent_quota = -1;
7718
7719	if (!tg->parent) {
7720		quota = RUNTIME_INF;
7721	} else {
7722		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7723
7724		quota = normalize_cfs_quota(tg, d);
7725		parent_quota = parent_b->hierarchal_quota;
7726
7727		/*
7728		 * ensure max(child_quota) <= parent_quota, inherit when no
7729		 * limit is set
7730		 */
7731		if (quota == RUNTIME_INF)
7732			quota = parent_quota;
7733		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7734			return -EINVAL;
7735	}
7736	cfs_b->hierarchal_quota = quota;
7737
7738	return 0;
7739}
7740
7741static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7742{
7743	int ret;
7744	struct cfs_schedulable_data data = {
7745		.tg = tg,
7746		.period = period,
7747		.quota = quota,
7748	};
7749
7750	if (quota != RUNTIME_INF) {
7751		do_div(data.period, NSEC_PER_USEC);
7752		do_div(data.quota, NSEC_PER_USEC);
7753	}
7754
7755	rcu_read_lock();
7756	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7757	rcu_read_unlock();
7758
7759	return ret;
7760}
7761
7762static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7763		struct cgroup_map_cb *cb)
7764{
7765	struct task_group *tg = cgroup_tg(cgrp);
7766	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7767
7768	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7769	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7770	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7771
7772	return 0;
7773}
7774#endif /* CONFIG_CFS_BANDWIDTH */
7775#endif /* CONFIG_FAIR_GROUP_SCHED */
7776
7777#ifdef CONFIG_RT_GROUP_SCHED
7778static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7779				s64 val)
7780{
7781	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7782}
7783
7784static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7785{
7786	return sched_group_rt_runtime(cgroup_tg(cgrp));
7787}
7788
7789static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7790		u64 rt_period_us)
7791{
7792	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7793}
7794
7795static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7796{
7797	return sched_group_rt_period(cgroup_tg(cgrp));
7798}
7799#endif /* CONFIG_RT_GROUP_SCHED */
7800
7801static struct cftype cpu_files[] = {
7802#ifdef CONFIG_FAIR_GROUP_SCHED
7803	{
7804		.name = "shares",
7805		.read_u64 = cpu_shares_read_u64,
7806		.write_u64 = cpu_shares_write_u64,
7807	},
7808#endif
7809#ifdef CONFIG_CFS_BANDWIDTH
7810	{
7811		.name = "cfs_quota_us",
7812		.read_s64 = cpu_cfs_quota_read_s64,
7813		.write_s64 = cpu_cfs_quota_write_s64,
7814	},
7815	{
7816		.name = "cfs_period_us",
7817		.read_u64 = cpu_cfs_period_read_u64,
7818		.write_u64 = cpu_cfs_period_write_u64,
7819	},
7820	{
7821		.name = "stat",
7822		.read_map = cpu_stats_show,
7823	},
7824#endif
7825#ifdef CONFIG_RT_GROUP_SCHED
7826	{
7827		.name = "rt_runtime_us",
7828		.read_s64 = cpu_rt_runtime_read,
7829		.write_s64 = cpu_rt_runtime_write,
7830	},
7831	{
7832		.name = "rt_period_us",
7833		.read_u64 = cpu_rt_period_read_uint,
7834		.write_u64 = cpu_rt_period_write_uint,
7835	},
7836#endif
7837	{ }	/* terminate */
7838};
7839
7840struct cgroup_subsys cpu_cgroup_subsys = {
7841	.name		= "cpu",
7842	.create		= cpu_cgroup_create,
7843	.destroy	= cpu_cgroup_destroy,
7844	.can_attach	= cpu_cgroup_can_attach,
7845	.attach		= cpu_cgroup_attach,
7846	.exit		= cpu_cgroup_exit,
7847	.subsys_id	= cpu_cgroup_subsys_id,
7848	.base_cftypes	= cpu_files,
7849	.early_init	= 1,
7850};
7851
7852#endif	/* CONFIG_CGROUP_SCHED */
7853
7854#ifdef CONFIG_CGROUP_CPUACCT
7855
7856/*
7857 * CPU accounting code for task groups.
7858 *
7859 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7860 * (balbir@in.ibm.com).
7861 */
7862
7863struct cpuacct root_cpuacct;
7864
7865/* create a new cpu accounting group */
7866static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7867{
7868	struct cpuacct *ca;
7869
7870	if (!cgrp->parent)
7871		return &root_cpuacct.css;
7872
7873	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7874	if (!ca)
7875		goto out;
7876
7877	ca->cpuusage = alloc_percpu(u64);
7878	if (!ca->cpuusage)
7879		goto out_free_ca;
7880
7881	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7882	if (!ca->cpustat)
7883		goto out_free_cpuusage;
7884
7885	return &ca->css;
7886
7887out_free_cpuusage:
7888	free_percpu(ca->cpuusage);
7889out_free_ca:
7890	kfree(ca);
7891out:
7892	return ERR_PTR(-ENOMEM);
7893}
7894
7895/* destroy an existing cpu accounting group */
7896static void cpuacct_destroy(struct cgroup *cgrp)
7897{
7898	struct cpuacct *ca = cgroup_ca(cgrp);
7899
7900	free_percpu(ca->cpustat);
7901	free_percpu(ca->cpuusage);
7902	kfree(ca);
7903}
7904
7905static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7906{
7907	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7908	u64 data;
7909
7910#ifndef CONFIG_64BIT
7911	/*
7912	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7913	 */
7914	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7915	data = *cpuusage;
7916	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7917#else
7918	data = *cpuusage;
7919#endif
7920
7921	return data;
7922}
7923
7924static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7925{
7926	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7927
7928#ifndef CONFIG_64BIT
7929	/*
7930	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7931	 */
7932	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7933	*cpuusage = val;
7934	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7935#else
7936	*cpuusage = val;
7937#endif
7938}
7939
7940/* return total cpu usage (in nanoseconds) of a group */
7941static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7942{
7943	struct cpuacct *ca = cgroup_ca(cgrp);
7944	u64 totalcpuusage = 0;
7945	int i;
7946
7947	for_each_present_cpu(i)
7948		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7949
7950	return totalcpuusage;
7951}
7952
7953static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7954								u64 reset)
7955{
7956	struct cpuacct *ca = cgroup_ca(cgrp);
7957	int err = 0;
7958	int i;
7959
7960	if (reset) {
7961		err = -EINVAL;
7962		goto out;
7963	}
7964
7965	for_each_present_cpu(i)
7966		cpuacct_cpuusage_write(ca, i, 0);
7967
7968out:
7969	return err;
7970}
7971
7972static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7973				   struct seq_file *m)
7974{
7975	struct cpuacct *ca = cgroup_ca(cgroup);
7976	u64 percpu;
7977	int i;
7978
7979	for_each_present_cpu(i) {
7980		percpu = cpuacct_cpuusage_read(ca, i);
7981		seq_printf(m, "%llu ", (unsigned long long) percpu);
7982	}
7983	seq_printf(m, "\n");
7984	return 0;
7985}
7986
7987static const char *cpuacct_stat_desc[] = {
7988	[CPUACCT_STAT_USER] = "user",
7989	[CPUACCT_STAT_SYSTEM] = "system",
7990};
7991
7992static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7993			      struct cgroup_map_cb *cb)
7994{
7995	struct cpuacct *ca = cgroup_ca(cgrp);
7996	int cpu;
7997	s64 val = 0;
7998
7999	for_each_online_cpu(cpu) {
8000		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8001		val += kcpustat->cpustat[CPUTIME_USER];
8002		val += kcpustat->cpustat[CPUTIME_NICE];
8003	}
8004	val = cputime64_to_clock_t(val);
8005	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8006
8007	val = 0;
8008	for_each_online_cpu(cpu) {
8009		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8010		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8011		val += kcpustat->cpustat[CPUTIME_IRQ];
8012		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8013	}
8014
8015	val = cputime64_to_clock_t(val);
8016	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8017
8018	return 0;
8019}
8020
8021static struct cftype files[] = {
8022	{
8023		.name = "usage",
8024		.read_u64 = cpuusage_read,
8025		.write_u64 = cpuusage_write,
8026	},
8027	{
8028		.name = "usage_percpu",
8029		.read_seq_string = cpuacct_percpu_seq_read,
8030	},
8031	{
8032		.name = "stat",
8033		.read_map = cpuacct_stats_show,
8034	},
8035	{ }	/* terminate */
8036};
8037
8038/*
8039 * charge this task's execution time to its accounting group.
8040 *
8041 * called with rq->lock held.
8042 */
8043void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8044{
8045	struct cpuacct *ca;
8046	int cpu;
8047
8048	if (unlikely(!cpuacct_subsys.active))
8049		return;
8050
8051	cpu = task_cpu(tsk);
8052
8053	rcu_read_lock();
8054
8055	ca = task_ca(tsk);
8056
8057	for (; ca; ca = parent_ca(ca)) {
8058		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8059		*cpuusage += cputime;
8060	}
8061
8062	rcu_read_unlock();
8063}
8064
8065struct cgroup_subsys cpuacct_subsys = {
8066	.name = "cpuacct",
8067	.create = cpuacct_create,
8068	.destroy = cpuacct_destroy,
8069	.subsys_id = cpuacct_subsys_id,
8070	.base_cftypes = files,
8071};
8072#endif	/* CONFIG_CGROUP_CPUACCT */
8073