core.c revision 20ab65e33f469c35f3dabde3445b668aa9c943ee
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695static void set_load_weight(struct task_struct *p)
696{
697	int prio = p->static_prio - MAX_RT_PRIO;
698	struct load_weight *load = &p->se.load;
699
700	/*
701	 * SCHED_IDLE tasks get minimal weight:
702	 */
703	if (p->policy == SCHED_IDLE) {
704		load->weight = scale_load(WEIGHT_IDLEPRIO);
705		load->inv_weight = WMULT_IDLEPRIO;
706		return;
707	}
708
709	load->weight = scale_load(prio_to_weight[prio]);
710	load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715	update_rq_clock(rq);
716	sched_info_queued(p);
717	p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722	update_rq_clock(rq);
723	sched_info_dequeued(p);
724	p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729	if (task_contributes_to_load(p))
730		rq->nr_uninterruptible--;
731
732	enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible++;
739
740	dequeue_task(rq, p, flags);
741}
742
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764	sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769	sched_clock_irqtime = 0;
770}
771
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777	__this_cpu_inc(irq_time_seq.sequence);
778	smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783	smp_wmb();
784	__this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789	u64 irq_time;
790	unsigned seq;
791
792	do {
793		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794		irq_time = per_cpu(cpu_softirq_time, cpu) +
795			   per_cpu(cpu_hardirq_time, cpu);
796	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798	return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
810{
811	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
813#endif /* CONFIG_64BIT */
814
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819void account_system_vtime(struct task_struct *curr)
820{
821	unsigned long flags;
822	s64 delta;
823	int cpu;
824
825	if (!sched_clock_irqtime)
826		return;
827
828	local_irq_save(flags);
829
830	cpu = smp_processor_id();
831	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832	__this_cpu_add(irq_start_time, delta);
833
834	irq_time_write_begin();
835	/*
836	 * We do not account for softirq time from ksoftirqd here.
837	 * We want to continue accounting softirq time to ksoftirqd thread
838	 * in that case, so as not to confuse scheduler with a special task
839	 * that do not consume any time, but still wants to run.
840	 */
841	if (hardirq_count())
842		__this_cpu_add(cpu_hardirq_time, delta);
843	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844		__this_cpu_add(cpu_softirq_time, delta);
845
846	irq_time_write_end();
847	local_irq_restore(flags);
848}
849EXPORT_SYMBOL_GPL(account_system_vtime);
850
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
855{
856	if (unlikely(steal > NSEC_PER_SEC))
857		return div_u64(steal, TICK_NSEC);
858
859	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
863static void update_rq_clock_task(struct rq *rq, s64 delta)
864{
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870	s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875	/*
876	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877	 * this case when a previous update_rq_clock() happened inside a
878	 * {soft,}irq region.
879	 *
880	 * When this happens, we stop ->clock_task and only update the
881	 * prev_irq_time stamp to account for the part that fit, so that a next
882	 * update will consume the rest. This ensures ->clock_task is
883	 * monotonic.
884	 *
885	 * It does however cause some slight miss-attribution of {soft,}irq
886	 * time, a more accurate solution would be to update the irq_time using
887	 * the current rq->clock timestamp, except that would require using
888	 * atomic ops.
889	 */
890	if (irq_delta > delta)
891		irq_delta = delta;
892
893	rq->prev_irq_time += irq_delta;
894	delta -= irq_delta;
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897	if (static_key_false((&paravirt_steal_rq_enabled))) {
898		u64 st;
899
900		steal = paravirt_steal_clock(cpu_of(rq));
901		steal -= rq->prev_steal_time_rq;
902
903		if (unlikely(steal > delta))
904			steal = delta;
905
906		st = steal_ticks(steal);
907		steal = st * TICK_NSEC;
908
909		rq->prev_steal_time_rq += steal;
910
911		delta -= steal;
912	}
913#endif
914
915	rq->clock_task += delta;
916
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919		sched_rt_avg_update(rq, irq_delta + steal);
920#endif
921}
922
923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
924static int irqtime_account_hi_update(void)
925{
926	u64 *cpustat = kcpustat_this_cpu->cpustat;
927	unsigned long flags;
928	u64 latest_ns;
929	int ret = 0;
930
931	local_irq_save(flags);
932	latest_ns = this_cpu_read(cpu_hardirq_time);
933	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934		ret = 1;
935	local_irq_restore(flags);
936	return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
941	u64 *cpustat = kcpustat_this_cpu->cpustat;
942	unsigned long flags;
943	u64 latest_ns;
944	int ret = 0;
945
946	local_irq_save(flags);
947	latest_ns = this_cpu_read(cpu_softirq_time);
948	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949		ret = 1;
950	local_irq_restore(flags);
951	return ret;
952}
953
954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956#define sched_clock_irqtime	(0)
957
958#endif
959
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965	if (stop) {
966		/*
967		 * Make it appear like a SCHED_FIFO task, its something
968		 * userspace knows about and won't get confused about.
969		 *
970		 * Also, it will make PI more or less work without too
971		 * much confusion -- but then, stop work should not
972		 * rely on PI working anyway.
973		 */
974		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976		stop->sched_class = &stop_sched_class;
977	}
978
979	cpu_rq(cpu)->stop = stop;
980
981	if (old_stop) {
982		/*
983		 * Reset it back to a normal scheduling class so that
984		 * it can die in pieces.
985		 */
986		old_stop->sched_class = &rt_sched_class;
987	}
988}
989
990/*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993static inline int __normal_prio(struct task_struct *p)
994{
995	return p->static_prio;
996}
997
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005static inline int normal_prio(struct task_struct *p)
1006{
1007	int prio;
1008
1009	if (task_has_rt_policy(p))
1010		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011	else
1012		prio = __normal_prio(p);
1013	return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023static int effective_prio(struct task_struct *p)
1024{
1025	p->normal_prio = normal_prio(p);
1026	/*
1027	 * If we are RT tasks or we were boosted to RT priority,
1028	 * keep the priority unchanged. Otherwise, update priority
1029	 * to the normal priority:
1030	 */
1031	if (!rt_prio(p->prio))
1032		return p->normal_prio;
1033	return p->prio;
1034}
1035
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040inline int task_curr(const struct task_struct *p)
1041{
1042	return cpu_curr(task_cpu(p)) == p;
1043}
1044
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046				       const struct sched_class *prev_class,
1047				       int oldprio)
1048{
1049	if (prev_class != p->sched_class) {
1050		if (prev_class->switched_from)
1051			prev_class->switched_from(rq, p);
1052		p->sched_class->switched_to(rq, p);
1053	} else if (oldprio != p->prio)
1054		p->sched_class->prio_changed(rq, p, oldprio);
1055}
1056
1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058{
1059	const struct sched_class *class;
1060
1061	if (p->sched_class == rq->curr->sched_class) {
1062		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063	} else {
1064		for_each_class(class) {
1065			if (class == rq->curr->sched_class)
1066				break;
1067			if (class == p->sched_class) {
1068				resched_task(rq->curr);
1069				break;
1070			}
1071		}
1072	}
1073
1074	/*
1075	 * A queue event has occurred, and we're going to schedule.  In
1076	 * this case, we can save a useless back to back clock update.
1077	 */
1078	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079		rq->skip_clock_update = 1;
1080}
1081
1082#ifdef CONFIG_SMP
1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084{
1085#ifdef CONFIG_SCHED_DEBUG
1086	/*
1087	 * We should never call set_task_cpu() on a blocked task,
1088	 * ttwu() will sort out the placement.
1089	 */
1090	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093#ifdef CONFIG_LOCKDEP
1094	/*
1095	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097	 *
1098	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099	 * see task_group().
1100	 *
1101	 * Furthermore, all task_rq users should acquire both locks, see
1102	 * task_rq_lock().
1103	 */
1104	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105				      lockdep_is_held(&task_rq(p)->lock)));
1106#endif
1107#endif
1108
1109	trace_sched_migrate_task(p, new_cpu);
1110
1111	if (task_cpu(p) != new_cpu) {
1112		p->se.nr_migrations++;
1113		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114	}
1115
1116	__set_task_cpu(p, new_cpu);
1117}
1118
1119struct migration_arg {
1120	struct task_struct *task;
1121	int dest_cpu;
1122};
1123
1124static int migration_cpu_stop(void *data);
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change.  If it changes, i.e. @p might have woken up,
1131 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count).  If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143{
1144	unsigned long flags;
1145	int running, on_rq;
1146	unsigned long ncsw;
1147	struct rq *rq;
1148
1149	for (;;) {
1150		/*
1151		 * We do the initial early heuristics without holding
1152		 * any task-queue locks at all. We'll only try to get
1153		 * the runqueue lock when things look like they will
1154		 * work out!
1155		 */
1156		rq = task_rq(p);
1157
1158		/*
1159		 * If the task is actively running on another CPU
1160		 * still, just relax and busy-wait without holding
1161		 * any locks.
1162		 *
1163		 * NOTE! Since we don't hold any locks, it's not
1164		 * even sure that "rq" stays as the right runqueue!
1165		 * But we don't care, since "task_running()" will
1166		 * return false if the runqueue has changed and p
1167		 * is actually now running somewhere else!
1168		 */
1169		while (task_running(rq, p)) {
1170			if (match_state && unlikely(p->state != match_state))
1171				return 0;
1172			cpu_relax();
1173		}
1174
1175		/*
1176		 * Ok, time to look more closely! We need the rq
1177		 * lock now, to be *sure*. If we're wrong, we'll
1178		 * just go back and repeat.
1179		 */
1180		rq = task_rq_lock(p, &flags);
1181		trace_sched_wait_task(p);
1182		running = task_running(rq, p);
1183		on_rq = p->on_rq;
1184		ncsw = 0;
1185		if (!match_state || p->state == match_state)
1186			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187		task_rq_unlock(rq, p, &flags);
1188
1189		/*
1190		 * If it changed from the expected state, bail out now.
1191		 */
1192		if (unlikely(!ncsw))
1193			break;
1194
1195		/*
1196		 * Was it really running after all now that we
1197		 * checked with the proper locks actually held?
1198		 *
1199		 * Oops. Go back and try again..
1200		 */
1201		if (unlikely(running)) {
1202			cpu_relax();
1203			continue;
1204		}
1205
1206		/*
1207		 * It's not enough that it's not actively running,
1208		 * it must be off the runqueue _entirely_, and not
1209		 * preempted!
1210		 *
1211		 * So if it was still runnable (but just not actively
1212		 * running right now), it's preempted, and we should
1213		 * yield - it could be a while.
1214		 */
1215		if (unlikely(on_rq)) {
1216			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218			set_current_state(TASK_UNINTERRUPTIBLE);
1219			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220			continue;
1221		}
1222
1223		/*
1224		 * Ahh, all good. It wasn't running, and it wasn't
1225		 * runnable, which means that it will never become
1226		 * running in the future either. We're all done!
1227		 */
1228		break;
1229	}
1230
1231	return ncsw;
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247void kick_process(struct task_struct *p)
1248{
1249	int cpu;
1250
1251	preempt_disable();
1252	cpu = task_cpu(p);
1253	if ((cpu != smp_processor_id()) && task_curr(p))
1254		smp_send_reschedule(cpu);
1255	preempt_enable();
1256}
1257EXPORT_SYMBOL_GPL(kick_process);
1258#endif /* CONFIG_SMP */
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/* Look for allowed, online CPU in same node. */
1271	for_each_cpu(dest_cpu, nodemask) {
1272		if (!cpu_online(dest_cpu))
1273			continue;
1274		if (!cpu_active(dest_cpu))
1275			continue;
1276		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277			return dest_cpu;
1278	}
1279
1280	for (;;) {
1281		/* Any allowed, online CPU? */
1282		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1283			if (!cpu_online(dest_cpu))
1284				continue;
1285			if (!cpu_active(dest_cpu))
1286				continue;
1287			goto out;
1288		}
1289
1290		switch (state) {
1291		case cpuset:
1292			/* No more Mr. Nice Guy. */
1293			cpuset_cpus_allowed_fallback(p);
1294			state = possible;
1295			break;
1296
1297		case possible:
1298			do_set_cpus_allowed(p, cpu_possible_mask);
1299			state = fail;
1300			break;
1301
1302		case fail:
1303			BUG();
1304			break;
1305		}
1306	}
1307
1308out:
1309	if (state != cpuset) {
1310		/*
1311		 * Don't tell them about moving exiting tasks or
1312		 * kernel threads (both mm NULL), since they never
1313		 * leave kernel.
1314		 */
1315		if (p->mm && printk_ratelimit()) {
1316			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317					task_pid_nr(p), p->comm, cpu);
1318		}
1319	}
1320
1321	return dest_cpu;
1322}
1323
1324/*
1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1326 */
1327static inline
1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1329{
1330	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1331
1332	/*
1333	 * In order not to call set_task_cpu() on a blocking task we need
1334	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335	 * cpu.
1336	 *
1337	 * Since this is common to all placement strategies, this lives here.
1338	 *
1339	 * [ this allows ->select_task() to simply return task_cpu(p) and
1340	 *   not worry about this generic constraint ]
1341	 */
1342	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1343		     !cpu_online(cpu)))
1344		cpu = select_fallback_rq(task_cpu(p), p);
1345
1346	return cpu;
1347}
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351	s64 diff = sample - *avg;
1352	*avg += diff >> 3;
1353}
1354#endif
1355
1356static void
1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1358{
1359#ifdef CONFIG_SCHEDSTATS
1360	struct rq *rq = this_rq();
1361
1362#ifdef CONFIG_SMP
1363	int this_cpu = smp_processor_id();
1364
1365	if (cpu == this_cpu) {
1366		schedstat_inc(rq, ttwu_local);
1367		schedstat_inc(p, se.statistics.nr_wakeups_local);
1368	} else {
1369		struct sched_domain *sd;
1370
1371		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1372		rcu_read_lock();
1373		for_each_domain(this_cpu, sd) {
1374			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375				schedstat_inc(sd, ttwu_wake_remote);
1376				break;
1377			}
1378		}
1379		rcu_read_unlock();
1380	}
1381
1382	if (wake_flags & WF_MIGRATED)
1383		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
1385#endif /* CONFIG_SMP */
1386
1387	schedstat_inc(rq, ttwu_count);
1388	schedstat_inc(p, se.statistics.nr_wakeups);
1389
1390	if (wake_flags & WF_SYNC)
1391		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1392
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
1398	activate_task(rq, p, en_flags);
1399	p->on_rq = 1;
1400
1401	/* if a worker is waking up, notify workqueue */
1402	if (p->flags & PF_WQ_WORKER)
1403		wq_worker_waking_up(p, cpu_of(rq));
1404}
1405
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
1409static void
1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1411{
1412	trace_sched_wakeup(p, true);
1413	check_preempt_curr(rq, p, wake_flags);
1414
1415	p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417	if (p->sched_class->task_woken)
1418		p->sched_class->task_woken(rq, p);
1419
1420	if (rq->idle_stamp) {
1421		u64 delta = rq->clock - rq->idle_stamp;
1422		u64 max = 2*sysctl_sched_migration_cost;
1423
1424		if (delta > max)
1425			rq->avg_idle = max;
1426		else
1427			update_avg(&rq->avg_idle, delta);
1428		rq->idle_stamp = 0;
1429	}
1430#endif
1431}
1432
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437	if (p->sched_contributes_to_load)
1438		rq->nr_uninterruptible--;
1439#endif
1440
1441	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442	ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453	struct rq *rq;
1454	int ret = 0;
1455
1456	rq = __task_rq_lock(p);
1457	if (p->on_rq) {
1458		ttwu_do_wakeup(rq, p, wake_flags);
1459		ret = 1;
1460	}
1461	__task_rq_unlock(rq);
1462
1463	return ret;
1464}
1465
1466#ifdef CONFIG_SMP
1467static void sched_ttwu_pending(void)
1468{
1469	struct rq *rq = this_rq();
1470	struct llist_node *llist = llist_del_all(&rq->wake_list);
1471	struct task_struct *p;
1472
1473	raw_spin_lock(&rq->lock);
1474
1475	while (llist) {
1476		p = llist_entry(llist, struct task_struct, wake_entry);
1477		llist = llist_next(llist);
1478		ttwu_do_activate(rq, p, 0);
1479	}
1480
1481	raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
1486	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1487		return;
1488
1489	/*
1490	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491	 * traditionally all their work was done from the interrupt return
1492	 * path. Now that we actually do some work, we need to make sure
1493	 * we do call them.
1494	 *
1495	 * Some archs already do call them, luckily irq_enter/exit nest
1496	 * properly.
1497	 *
1498	 * Arguably we should visit all archs and update all handlers,
1499	 * however a fair share of IPIs are still resched only so this would
1500	 * somewhat pessimize the simple resched case.
1501	 */
1502	irq_enter();
1503	sched_ttwu_pending();
1504
1505	/*
1506	 * Check if someone kicked us for doing the nohz idle load balance.
1507	 */
1508	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509		this_rq()->idle_balance = 1;
1510		raise_softirq_irqoff(SCHED_SOFTIRQ);
1511	}
1512	irq_exit();
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
1517	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1518		smp_send_reschedule(cpu);
1519}
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524	struct rq *rq;
1525	int ret = 0;
1526
1527	rq = __task_rq_lock(p);
1528	if (p->on_cpu) {
1529		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530		ttwu_do_wakeup(rq, p, wake_flags);
1531		ret = 1;
1532	}
1533	__task_rq_unlock(rq);
1534
1535	return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1539
1540bool cpus_share_cache(int this_cpu, int that_cpu)
1541{
1542	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
1544#endif /* CONFIG_SMP */
1545
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548	struct rq *rq = cpu_rq(cpu);
1549
1550#if defined(CONFIG_SMP)
1551	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553		ttwu_queue_remote(p, cpu);
1554		return;
1555	}
1556#endif
1557
1558	raw_spin_lock(&rq->lock);
1559	ttwu_do_activate(rq, p, 0);
1560	raw_spin_unlock(&rq->lock);
1561}
1562
1563/**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1577 */
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580{
1581	unsigned long flags;
1582	int cpu, success = 0;
1583
1584	smp_wmb();
1585	raw_spin_lock_irqsave(&p->pi_lock, flags);
1586	if (!(p->state & state))
1587		goto out;
1588
1589	success = 1; /* we're going to change ->state */
1590	cpu = task_cpu(p);
1591
1592	if (p->on_rq && ttwu_remote(p, wake_flags))
1593		goto stat;
1594
1595#ifdef CONFIG_SMP
1596	/*
1597	 * If the owning (remote) cpu is still in the middle of schedule() with
1598	 * this task as prev, wait until its done referencing the task.
1599	 */
1600	while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602		/*
1603		 * In case the architecture enables interrupts in
1604		 * context_switch(), we cannot busy wait, since that
1605		 * would lead to deadlocks when an interrupt hits and
1606		 * tries to wake up @prev. So bail and do a complete
1607		 * remote wakeup.
1608		 */
1609		if (ttwu_activate_remote(p, wake_flags))
1610			goto stat;
1611#else
1612		cpu_relax();
1613#endif
1614	}
1615	/*
1616	 * Pairs with the smp_wmb() in finish_lock_switch().
1617	 */
1618	smp_rmb();
1619
1620	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1621	p->state = TASK_WAKING;
1622
1623	if (p->sched_class->task_waking)
1624		p->sched_class->task_waking(p);
1625
1626	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1627	if (task_cpu(p) != cpu) {
1628		wake_flags |= WF_MIGRATED;
1629		set_task_cpu(p, cpu);
1630	}
1631#endif /* CONFIG_SMP */
1632
1633	ttwu_queue(p, cpu);
1634stat:
1635	ttwu_stat(p, cpu, wake_flags);
1636out:
1637	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1638
1639	return success;
1640}
1641
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
1646 * Put @p on the run-queue if it's not already there. The caller must
1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1648 * the current task.
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652	struct rq *rq = task_rq(p);
1653
1654	BUG_ON(rq != this_rq());
1655	BUG_ON(p == current);
1656	lockdep_assert_held(&rq->lock);
1657
1658	if (!raw_spin_trylock(&p->pi_lock)) {
1659		raw_spin_unlock(&rq->lock);
1660		raw_spin_lock(&p->pi_lock);
1661		raw_spin_lock(&rq->lock);
1662	}
1663
1664	if (!(p->state & TASK_NORMAL))
1665		goto out;
1666
1667	if (!p->on_rq)
1668		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670	ttwu_do_wakeup(rq, p, 0);
1671	ttwu_stat(p, smp_processor_id(), 0);
1672out:
1673	raw_spin_unlock(&p->pi_lock);
1674}
1675
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes.  Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
1687int wake_up_process(struct task_struct *p)
1688{
1689	return try_to_wake_up(p, TASK_ALL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	INIT_LIST_HEAD(&p->rt.run_list);
1721
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
1730void sched_fork(struct task_struct *p)
1731{
1732	unsigned long flags;
1733	int cpu = get_cpu();
1734
1735	__sched_fork(p);
1736	/*
1737	 * We mark the process as running here. This guarantees that
1738	 * nobody will actually run it, and a signal or other external
1739	 * event cannot wake it up and insert it on the runqueue either.
1740	 */
1741	p->state = TASK_RUNNING;
1742
1743	/*
1744	 * Make sure we do not leak PI boosting priority to the child.
1745	 */
1746	p->prio = current->normal_prio;
1747
1748	/*
1749	 * Revert to default priority/policy on fork if requested.
1750	 */
1751	if (unlikely(p->sched_reset_on_fork)) {
1752		if (task_has_rt_policy(p)) {
1753			p->policy = SCHED_NORMAL;
1754			p->static_prio = NICE_TO_PRIO(0);
1755			p->rt_priority = 0;
1756		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1757			p->static_prio = NICE_TO_PRIO(0);
1758
1759		p->prio = p->normal_prio = __normal_prio(p);
1760		set_load_weight(p);
1761
1762		/*
1763		 * We don't need the reset flag anymore after the fork. It has
1764		 * fulfilled its duty:
1765		 */
1766		p->sched_reset_on_fork = 0;
1767	}
1768
1769	if (!rt_prio(p->prio))
1770		p->sched_class = &fair_sched_class;
1771
1772	if (p->sched_class->task_fork)
1773		p->sched_class->task_fork(p);
1774
1775	/*
1776	 * The child is not yet in the pid-hash so no cgroup attach races,
1777	 * and the cgroup is pinned to this child due to cgroup_fork()
1778	 * is ran before sched_fork().
1779	 *
1780	 * Silence PROVE_RCU.
1781	 */
1782	raw_spin_lock_irqsave(&p->pi_lock, flags);
1783	set_task_cpu(p, cpu);
1784	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1785
1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1787	if (likely(sched_info_on()))
1788		memset(&p->sched_info, 0, sizeof(p->sched_info));
1789#endif
1790#if defined(CONFIG_SMP)
1791	p->on_cpu = 0;
1792#endif
1793#ifdef CONFIG_PREEMPT_COUNT
1794	/* Want to start with kernel preemption disabled. */
1795	task_thread_info(p)->preempt_count = 1;
1796#endif
1797#ifdef CONFIG_SMP
1798	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1799#endif
1800
1801	put_cpu();
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
1811void wake_up_new_task(struct task_struct *p)
1812{
1813	unsigned long flags;
1814	struct rq *rq;
1815
1816	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817#ifdef CONFIG_SMP
1818	/*
1819	 * Fork balancing, do it here and not earlier because:
1820	 *  - cpus_allowed can change in the fork path
1821	 *  - any previously selected cpu might disappear through hotplug
1822	 */
1823	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1824#endif
1825
1826	rq = __task_rq_lock(p);
1827	activate_task(rq, p, 0);
1828	p->on_rq = 1;
1829	trace_sched_wakeup_new(p, true);
1830	check_preempt_curr(rq, p, WF_FORK);
1831#ifdef CONFIG_SMP
1832	if (p->sched_class->task_woken)
1833		p->sched_class->task_woken(rq, p);
1834#endif
1835	task_rq_unlock(rq, p, &flags);
1836}
1837
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1842 * @notifier: notifier struct to register
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
1852 * @notifier: notifier struct to unregister
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858	hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864	struct preempt_notifier *notifier;
1865	struct hlist_node *node;
1866
1867	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873				 struct task_struct *next)
1874{
1875	struct preempt_notifier *notifier;
1876	struct hlist_node *node;
1877
1878	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879		notifier->ops->sched_out(notifier, next);
1880}
1881
1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890				 struct task_struct *next)
1891{
1892}
1893
1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
1895
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
1899 * @prev: the current task that is being switched out
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911		    struct task_struct *next)
1912{
1913	trace_sched_switch(prev, next);
1914	sched_info_switch(prev, next);
1915	perf_event_task_sched_out(prev, next);
1916	fire_sched_out_preempt_notifiers(prev, next);
1917	prepare_lock_switch(rq, next);
1918	prepare_arch_switch(next);
1919}
1920
1921/**
1922 * finish_task_switch - clean up after a task-switch
1923 * @rq: runqueue associated with task-switch
1924 * @prev: the thread we just switched away from.
1925 *
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
1932 * so, we finish that here outside of the runqueue lock. (Doing it
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1937	__releases(rq->lock)
1938{
1939	struct mm_struct *mm = rq->prev_mm;
1940	long prev_state;
1941
1942	rq->prev_mm = NULL;
1943
1944	/*
1945	 * A task struct has one reference for the use as "current".
1946	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1947	 * schedule one last time. The schedule call will never return, and
1948	 * the scheduled task must drop that reference.
1949	 * The test for TASK_DEAD must occur while the runqueue locks are
1950	 * still held, otherwise prev could be scheduled on another cpu, die
1951	 * there before we look at prev->state, and then the reference would
1952	 * be dropped twice.
1953	 *		Manfred Spraul <manfred@colorfullife.com>
1954	 */
1955	prev_state = prev->state;
1956	finish_arch_switch(prev);
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958	local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1960	perf_event_task_sched_in(prev, current);
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962	local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1964	finish_lock_switch(rq, prev);
1965	finish_arch_post_lock_switch();
1966
1967	fire_sched_in_preempt_notifiers(current);
1968	if (mm)
1969		mmdrop(mm);
1970	if (unlikely(prev_state == TASK_DEAD)) {
1971		/*
1972		 * Remove function-return probe instances associated with this
1973		 * task and put them back on the free list.
1974		 */
1975		kprobe_flush_task(prev);
1976		put_task_struct(prev);
1977	}
1978}
1979
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985	if (prev->sched_class->pre_schedule)
1986		prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992	if (rq->post_schedule) {
1993		unsigned long flags;
1994
1995		raw_spin_lock_irqsave(&rq->lock, flags);
1996		if (rq->curr->sched_class->post_schedule)
1997			rq->curr->sched_class->post_schedule(rq);
1998		raw_spin_unlock_irqrestore(&rq->lock, flags);
1999
2000		rq->post_schedule = 0;
2001	}
2002}
2003
2004#else
2005
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
2012}
2013
2014#endif
2015
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
2020asmlinkage void schedule_tail(struct task_struct *prev)
2021	__releases(rq->lock)
2022{
2023	struct rq *rq = this_rq();
2024
2025	finish_task_switch(rq, prev);
2026
2027	/*
2028	 * FIXME: do we need to worry about rq being invalidated by the
2029	 * task_switch?
2030	 */
2031	post_schedule(rq);
2032
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034	/* In this case, finish_task_switch does not reenable preemption */
2035	preempt_enable();
2036#endif
2037	if (current->set_child_tid)
2038		put_user(task_pid_vnr(current), current->set_child_tid);
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
2045static inline void
2046context_switch(struct rq *rq, struct task_struct *prev,
2047	       struct task_struct *next)
2048{
2049	struct mm_struct *mm, *oldmm;
2050
2051	prepare_task_switch(rq, prev, next);
2052
2053	mm = next->mm;
2054	oldmm = prev->active_mm;
2055	/*
2056	 * For paravirt, this is coupled with an exit in switch_to to
2057	 * combine the page table reload and the switch backend into
2058	 * one hypercall.
2059	 */
2060	arch_start_context_switch(prev);
2061
2062	if (!mm) {
2063		next->active_mm = oldmm;
2064		atomic_inc(&oldmm->mm_count);
2065		enter_lazy_tlb(oldmm, next);
2066	} else
2067		switch_mm(oldmm, mm, next);
2068
2069	if (!prev->mm) {
2070		prev->active_mm = NULL;
2071		rq->prev_mm = oldmm;
2072	}
2073	/*
2074	 * Since the runqueue lock will be released by the next
2075	 * task (which is an invalid locking op but in the case
2076	 * of the scheduler it's an obvious special-case), so we
2077	 * do an early lockdep release here:
2078	 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2080	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2081#endif
2082
2083	/* Here we just switch the register state and the stack. */
2084	rcu_switch(prev, next);
2085	switch_to(prev, next, prev);
2086
2087	barrier();
2088	/*
2089	 * this_rq must be evaluated again because prev may have moved
2090	 * CPUs since it called schedule(), thus the 'rq' on its stack
2091	 * frame will be invalid.
2092	 */
2093	finish_task_switch(this_rq(), prev);
2094}
2095
2096/*
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2098 *
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2102 */
2103unsigned long nr_running(void)
2104{
2105	unsigned long i, sum = 0;
2106
2107	for_each_online_cpu(i)
2108		sum += cpu_rq(i)->nr_running;
2109
2110	return sum;
2111}
2112
2113unsigned long nr_uninterruptible(void)
2114{
2115	unsigned long i, sum = 0;
2116
2117	for_each_possible_cpu(i)
2118		sum += cpu_rq(i)->nr_uninterruptible;
2119
2120	/*
2121	 * Since we read the counters lockless, it might be slightly
2122	 * inaccurate. Do not allow it to go below zero though:
2123	 */
2124	if (unlikely((long)sum < 0))
2125		sum = 0;
2126
2127	return sum;
2128}
2129
2130unsigned long long nr_context_switches(void)
2131{
2132	int i;
2133	unsigned long long sum = 0;
2134
2135	for_each_possible_cpu(i)
2136		sum += cpu_rq(i)->nr_switches;
2137
2138	return sum;
2139}
2140
2141unsigned long nr_iowait(void)
2142{
2143	unsigned long i, sum = 0;
2144
2145	for_each_possible_cpu(i)
2146		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147
2148	return sum;
2149}
2150
2151unsigned long nr_iowait_cpu(int cpu)
2152{
2153	struct rq *this = cpu_rq(cpu);
2154	return atomic_read(&this->nr_iowait);
2155}
2156
2157unsigned long this_cpu_load(void)
2158{
2159	struct rq *this = this_rq();
2160	return this->cpu_load[0];
2161}
2162
2163
2164/*
2165 * Global load-average calculations
2166 *
2167 * We take a distributed and async approach to calculating the global load-avg
2168 * in order to minimize overhead.
2169 *
2170 * The global load average is an exponentially decaying average of nr_running +
2171 * nr_uninterruptible.
2172 *
2173 * Once every LOAD_FREQ:
2174 *
2175 *   nr_active = 0;
2176 *   for_each_possible_cpu(cpu)
2177 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2178 *
2179 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2180 *
2181 * Due to a number of reasons the above turns in the mess below:
2182 *
2183 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2184 *    serious number of cpus, therefore we need to take a distributed approach
2185 *    to calculating nr_active.
2186 *
2187 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2188 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2189 *
2190 *    So assuming nr_active := 0 when we start out -- true per definition, we
2191 *    can simply take per-cpu deltas and fold those into a global accumulate
2192 *    to obtain the same result. See calc_load_fold_active().
2193 *
2194 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2195 *    across the machine, we assume 10 ticks is sufficient time for every
2196 *    cpu to have completed this task.
2197 *
2198 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2199 *    again, being late doesn't loose the delta, just wrecks the sample.
2200 *
2201 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2202 *    this would add another cross-cpu cacheline miss and atomic operation
2203 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2204 *    when it went into uninterruptible state and decrement on whatever cpu
2205 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2206 *    all cpus yields the correct result.
2207 *
2208 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2209 */
2210
2211/* Variables and functions for calc_load */
2212static atomic_long_t calc_load_tasks;
2213static unsigned long calc_load_update;
2214unsigned long avenrun[3];
2215EXPORT_SYMBOL(avenrun); /* should be removed */
2216
2217/**
2218 * get_avenrun - get the load average array
2219 * @loads:	pointer to dest load array
2220 * @offset:	offset to add
2221 * @shift:	shift count to shift the result left
2222 *
2223 * These values are estimates at best, so no need for locking.
2224 */
2225void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2226{
2227	loads[0] = (avenrun[0] + offset) << shift;
2228	loads[1] = (avenrun[1] + offset) << shift;
2229	loads[2] = (avenrun[2] + offset) << shift;
2230}
2231
2232static long calc_load_fold_active(struct rq *this_rq)
2233{
2234	long nr_active, delta = 0;
2235
2236	nr_active = this_rq->nr_running;
2237	nr_active += (long) this_rq->nr_uninterruptible;
2238
2239	if (nr_active != this_rq->calc_load_active) {
2240		delta = nr_active - this_rq->calc_load_active;
2241		this_rq->calc_load_active = nr_active;
2242	}
2243
2244	return delta;
2245}
2246
2247/*
2248 * a1 = a0 * e + a * (1 - e)
2249 */
2250static unsigned long
2251calc_load(unsigned long load, unsigned long exp, unsigned long active)
2252{
2253	load *= exp;
2254	load += active * (FIXED_1 - exp);
2255	load += 1UL << (FSHIFT - 1);
2256	return load >> FSHIFT;
2257}
2258
2259#ifdef CONFIG_NO_HZ
2260/*
2261 * Handle NO_HZ for the global load-average.
2262 *
2263 * Since the above described distributed algorithm to compute the global
2264 * load-average relies on per-cpu sampling from the tick, it is affected by
2265 * NO_HZ.
2266 *
2267 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2268 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2269 * when we read the global state.
2270 *
2271 * Obviously reality has to ruin such a delightfully simple scheme:
2272 *
2273 *  - When we go NO_HZ idle during the window, we can negate our sample
2274 *    contribution, causing under-accounting.
2275 *
2276 *    We avoid this by keeping two idle-delta counters and flipping them
2277 *    when the window starts, thus separating old and new NO_HZ load.
2278 *
2279 *    The only trick is the slight shift in index flip for read vs write.
2280 *
2281 *        0s            5s            10s           15s
2282 *          +10           +10           +10           +10
2283 *        |-|-----------|-|-----------|-|-----------|-|
2284 *    r:0 0 1           1 0           0 1           1 0
2285 *    w:0 1 1           0 0           1 1           0 0
2286 *
2287 *    This ensures we'll fold the old idle contribution in this window while
2288 *    accumlating the new one.
2289 *
2290 *  - When we wake up from NO_HZ idle during the window, we push up our
2291 *    contribution, since we effectively move our sample point to a known
2292 *    busy state.
2293 *
2294 *    This is solved by pushing the window forward, and thus skipping the
2295 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2296 *    was in effect at the time the window opened). This also solves the issue
2297 *    of having to deal with a cpu having been in NOHZ idle for multiple
2298 *    LOAD_FREQ intervals.
2299 *
2300 * When making the ILB scale, we should try to pull this in as well.
2301 */
2302static atomic_long_t calc_load_idle[2];
2303static int calc_load_idx;
2304
2305static inline int calc_load_write_idx(void)
2306{
2307	int idx = calc_load_idx;
2308
2309	/*
2310	 * See calc_global_nohz(), if we observe the new index, we also
2311	 * need to observe the new update time.
2312	 */
2313	smp_rmb();
2314
2315	/*
2316	 * If the folding window started, make sure we start writing in the
2317	 * next idle-delta.
2318	 */
2319	if (!time_before(jiffies, calc_load_update))
2320		idx++;
2321
2322	return idx & 1;
2323}
2324
2325static inline int calc_load_read_idx(void)
2326{
2327	return calc_load_idx & 1;
2328}
2329
2330void calc_load_enter_idle(void)
2331{
2332	struct rq *this_rq = this_rq();
2333	long delta;
2334
2335	/*
2336	 * We're going into NOHZ mode, if there's any pending delta, fold it
2337	 * into the pending idle delta.
2338	 */
2339	delta = calc_load_fold_active(this_rq);
2340	if (delta) {
2341		int idx = calc_load_write_idx();
2342		atomic_long_add(delta, &calc_load_idle[idx]);
2343	}
2344}
2345
2346void calc_load_exit_idle(void)
2347{
2348	struct rq *this_rq = this_rq();
2349
2350	/*
2351	 * If we're still before the sample window, we're done.
2352	 */
2353	if (time_before(jiffies, this_rq->calc_load_update))
2354		return;
2355
2356	/*
2357	 * We woke inside or after the sample window, this means we're already
2358	 * accounted through the nohz accounting, so skip the entire deal and
2359	 * sync up for the next window.
2360	 */
2361	this_rq->calc_load_update = calc_load_update;
2362	if (time_before(jiffies, this_rq->calc_load_update + 10))
2363		this_rq->calc_load_update += LOAD_FREQ;
2364}
2365
2366static long calc_load_fold_idle(void)
2367{
2368	int idx = calc_load_read_idx();
2369	long delta = 0;
2370
2371	if (atomic_long_read(&calc_load_idle[idx]))
2372		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2373
2374	return delta;
2375}
2376
2377/**
2378 * fixed_power_int - compute: x^n, in O(log n) time
2379 *
2380 * @x:         base of the power
2381 * @frac_bits: fractional bits of @x
2382 * @n:         power to raise @x to.
2383 *
2384 * By exploiting the relation between the definition of the natural power
2385 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2386 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2387 * (where: n_i \elem {0, 1}, the binary vector representing n),
2388 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2389 * of course trivially computable in O(log_2 n), the length of our binary
2390 * vector.
2391 */
2392static unsigned long
2393fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2394{
2395	unsigned long result = 1UL << frac_bits;
2396
2397	if (n) for (;;) {
2398		if (n & 1) {
2399			result *= x;
2400			result += 1UL << (frac_bits - 1);
2401			result >>= frac_bits;
2402		}
2403		n >>= 1;
2404		if (!n)
2405			break;
2406		x *= x;
2407		x += 1UL << (frac_bits - 1);
2408		x >>= frac_bits;
2409	}
2410
2411	return result;
2412}
2413
2414/*
2415 * a1 = a0 * e + a * (1 - e)
2416 *
2417 * a2 = a1 * e + a * (1 - e)
2418 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2419 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2420 *
2421 * a3 = a2 * e + a * (1 - e)
2422 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2423 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2424 *
2425 *  ...
2426 *
2427 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2428 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2429 *    = a0 * e^n + a * (1 - e^n)
2430 *
2431 * [1] application of the geometric series:
2432 *
2433 *              n         1 - x^(n+1)
2434 *     S_n := \Sum x^i = -------------
2435 *             i=0          1 - x
2436 */
2437static unsigned long
2438calc_load_n(unsigned long load, unsigned long exp,
2439	    unsigned long active, unsigned int n)
2440{
2441
2442	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2443}
2444
2445/*
2446 * NO_HZ can leave us missing all per-cpu ticks calling
2447 * calc_load_account_active(), but since an idle CPU folds its delta into
2448 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2449 * in the pending idle delta if our idle period crossed a load cycle boundary.
2450 *
2451 * Once we've updated the global active value, we need to apply the exponential
2452 * weights adjusted to the number of cycles missed.
2453 */
2454static void calc_global_nohz(void)
2455{
2456	long delta, active, n;
2457
2458	if (!time_before(jiffies, calc_load_update + 10)) {
2459		/*
2460		 * Catch-up, fold however many we are behind still
2461		 */
2462		delta = jiffies - calc_load_update - 10;
2463		n = 1 + (delta / LOAD_FREQ);
2464
2465		active = atomic_long_read(&calc_load_tasks);
2466		active = active > 0 ? active * FIXED_1 : 0;
2467
2468		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2469		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2470		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2471
2472		calc_load_update += n * LOAD_FREQ;
2473	}
2474
2475	/*
2476	 * Flip the idle index...
2477	 *
2478	 * Make sure we first write the new time then flip the index, so that
2479	 * calc_load_write_idx() will see the new time when it reads the new
2480	 * index, this avoids a double flip messing things up.
2481	 */
2482	smp_wmb();
2483	calc_load_idx++;
2484}
2485#else /* !CONFIG_NO_HZ */
2486
2487static inline long calc_load_fold_idle(void) { return 0; }
2488static inline void calc_global_nohz(void) { }
2489
2490#endif /* CONFIG_NO_HZ */
2491
2492/*
2493 * calc_load - update the avenrun load estimates 10 ticks after the
2494 * CPUs have updated calc_load_tasks.
2495 */
2496void calc_global_load(unsigned long ticks)
2497{
2498	long active, delta;
2499
2500	if (time_before(jiffies, calc_load_update + 10))
2501		return;
2502
2503	/*
2504	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2505	 */
2506	delta = calc_load_fold_idle();
2507	if (delta)
2508		atomic_long_add(delta, &calc_load_tasks);
2509
2510	active = atomic_long_read(&calc_load_tasks);
2511	active = active > 0 ? active * FIXED_1 : 0;
2512
2513	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2514	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2515	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2516
2517	calc_load_update += LOAD_FREQ;
2518
2519	/*
2520	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2521	 */
2522	calc_global_nohz();
2523}
2524
2525/*
2526 * Called from update_cpu_load() to periodically update this CPU's
2527 * active count.
2528 */
2529static void calc_load_account_active(struct rq *this_rq)
2530{
2531	long delta;
2532
2533	if (time_before(jiffies, this_rq->calc_load_update))
2534		return;
2535
2536	delta  = calc_load_fold_active(this_rq);
2537	if (delta)
2538		atomic_long_add(delta, &calc_load_tasks);
2539
2540	this_rq->calc_load_update += LOAD_FREQ;
2541}
2542
2543/*
2544 * End of global load-average stuff
2545 */
2546
2547/*
2548 * The exact cpuload at various idx values, calculated at every tick would be
2549 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2550 *
2551 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2552 * on nth tick when cpu may be busy, then we have:
2553 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2554 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2555 *
2556 * decay_load_missed() below does efficient calculation of
2557 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2558 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2559 *
2560 * The calculation is approximated on a 128 point scale.
2561 * degrade_zero_ticks is the number of ticks after which load at any
2562 * particular idx is approximated to be zero.
2563 * degrade_factor is a precomputed table, a row for each load idx.
2564 * Each column corresponds to degradation factor for a power of two ticks,
2565 * based on 128 point scale.
2566 * Example:
2567 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2568 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2569 *
2570 * With this power of 2 load factors, we can degrade the load n times
2571 * by looking at 1 bits in n and doing as many mult/shift instead of
2572 * n mult/shifts needed by the exact degradation.
2573 */
2574#define DEGRADE_SHIFT		7
2575static const unsigned char
2576		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2577static const unsigned char
2578		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2579					{0, 0, 0, 0, 0, 0, 0, 0},
2580					{64, 32, 8, 0, 0, 0, 0, 0},
2581					{96, 72, 40, 12, 1, 0, 0},
2582					{112, 98, 75, 43, 15, 1, 0},
2583					{120, 112, 98, 76, 45, 16, 2} };
2584
2585/*
2586 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2587 * would be when CPU is idle and so we just decay the old load without
2588 * adding any new load.
2589 */
2590static unsigned long
2591decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2592{
2593	int j = 0;
2594
2595	if (!missed_updates)
2596		return load;
2597
2598	if (missed_updates >= degrade_zero_ticks[idx])
2599		return 0;
2600
2601	if (idx == 1)
2602		return load >> missed_updates;
2603
2604	while (missed_updates) {
2605		if (missed_updates % 2)
2606			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2607
2608		missed_updates >>= 1;
2609		j++;
2610	}
2611	return load;
2612}
2613
2614/*
2615 * Update rq->cpu_load[] statistics. This function is usually called every
2616 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2617 * every tick. We fix it up based on jiffies.
2618 */
2619static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2620			      unsigned long pending_updates)
2621{
2622	int i, scale;
2623
2624	this_rq->nr_load_updates++;
2625
2626	/* Update our load: */
2627	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2628	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2629		unsigned long old_load, new_load;
2630
2631		/* scale is effectively 1 << i now, and >> i divides by scale */
2632
2633		old_load = this_rq->cpu_load[i];
2634		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2635		new_load = this_load;
2636		/*
2637		 * Round up the averaging division if load is increasing. This
2638		 * prevents us from getting stuck on 9 if the load is 10, for
2639		 * example.
2640		 */
2641		if (new_load > old_load)
2642			new_load += scale - 1;
2643
2644		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2645	}
2646
2647	sched_avg_update(this_rq);
2648}
2649
2650#ifdef CONFIG_NO_HZ
2651/*
2652 * There is no sane way to deal with nohz on smp when using jiffies because the
2653 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2654 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2655 *
2656 * Therefore we cannot use the delta approach from the regular tick since that
2657 * would seriously skew the load calculation. However we'll make do for those
2658 * updates happening while idle (nohz_idle_balance) or coming out of idle
2659 * (tick_nohz_idle_exit).
2660 *
2661 * This means we might still be one tick off for nohz periods.
2662 */
2663
2664/*
2665 * Called from nohz_idle_balance() to update the load ratings before doing the
2666 * idle balance.
2667 */
2668void update_idle_cpu_load(struct rq *this_rq)
2669{
2670	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2671	unsigned long load = this_rq->load.weight;
2672	unsigned long pending_updates;
2673
2674	/*
2675	 * bail if there's load or we're actually up-to-date.
2676	 */
2677	if (load || curr_jiffies == this_rq->last_load_update_tick)
2678		return;
2679
2680	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2681	this_rq->last_load_update_tick = curr_jiffies;
2682
2683	__update_cpu_load(this_rq, load, pending_updates);
2684}
2685
2686/*
2687 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2688 */
2689void update_cpu_load_nohz(void)
2690{
2691	struct rq *this_rq = this_rq();
2692	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2693	unsigned long pending_updates;
2694
2695	if (curr_jiffies == this_rq->last_load_update_tick)
2696		return;
2697
2698	raw_spin_lock(&this_rq->lock);
2699	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2700	if (pending_updates) {
2701		this_rq->last_load_update_tick = curr_jiffies;
2702		/*
2703		 * We were idle, this means load 0, the current load might be
2704		 * !0 due to remote wakeups and the sort.
2705		 */
2706		__update_cpu_load(this_rq, 0, pending_updates);
2707	}
2708	raw_spin_unlock(&this_rq->lock);
2709}
2710#endif /* CONFIG_NO_HZ */
2711
2712/*
2713 * Called from scheduler_tick()
2714 */
2715static void update_cpu_load_active(struct rq *this_rq)
2716{
2717	/*
2718	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2719	 */
2720	this_rq->last_load_update_tick = jiffies;
2721	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2722
2723	calc_load_account_active(this_rq);
2724}
2725
2726#ifdef CONFIG_SMP
2727
2728/*
2729 * sched_exec - execve() is a valuable balancing opportunity, because at
2730 * this point the task has the smallest effective memory and cache footprint.
2731 */
2732void sched_exec(void)
2733{
2734	struct task_struct *p = current;
2735	unsigned long flags;
2736	int dest_cpu;
2737
2738	raw_spin_lock_irqsave(&p->pi_lock, flags);
2739	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2740	if (dest_cpu == smp_processor_id())
2741		goto unlock;
2742
2743	if (likely(cpu_active(dest_cpu))) {
2744		struct migration_arg arg = { p, dest_cpu };
2745
2746		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2747		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2748		return;
2749	}
2750unlock:
2751	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2752}
2753
2754#endif
2755
2756DEFINE_PER_CPU(struct kernel_stat, kstat);
2757DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2758
2759EXPORT_PER_CPU_SYMBOL(kstat);
2760EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2761
2762/*
2763 * Return any ns on the sched_clock that have not yet been accounted in
2764 * @p in case that task is currently running.
2765 *
2766 * Called with task_rq_lock() held on @rq.
2767 */
2768static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2769{
2770	u64 ns = 0;
2771
2772	if (task_current(rq, p)) {
2773		update_rq_clock(rq);
2774		ns = rq->clock_task - p->se.exec_start;
2775		if ((s64)ns < 0)
2776			ns = 0;
2777	}
2778
2779	return ns;
2780}
2781
2782unsigned long long task_delta_exec(struct task_struct *p)
2783{
2784	unsigned long flags;
2785	struct rq *rq;
2786	u64 ns = 0;
2787
2788	rq = task_rq_lock(p, &flags);
2789	ns = do_task_delta_exec(p, rq);
2790	task_rq_unlock(rq, p, &flags);
2791
2792	return ns;
2793}
2794
2795/*
2796 * Return accounted runtime for the task.
2797 * In case the task is currently running, return the runtime plus current's
2798 * pending runtime that have not been accounted yet.
2799 */
2800unsigned long long task_sched_runtime(struct task_struct *p)
2801{
2802	unsigned long flags;
2803	struct rq *rq;
2804	u64 ns = 0;
2805
2806	rq = task_rq_lock(p, &flags);
2807	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2808	task_rq_unlock(rq, p, &flags);
2809
2810	return ns;
2811}
2812
2813#ifdef CONFIG_CGROUP_CPUACCT
2814struct cgroup_subsys cpuacct_subsys;
2815struct cpuacct root_cpuacct;
2816#endif
2817
2818static inline void task_group_account_field(struct task_struct *p, int index,
2819					    u64 tmp)
2820{
2821#ifdef CONFIG_CGROUP_CPUACCT
2822	struct kernel_cpustat *kcpustat;
2823	struct cpuacct *ca;
2824#endif
2825	/*
2826	 * Since all updates are sure to touch the root cgroup, we
2827	 * get ourselves ahead and touch it first. If the root cgroup
2828	 * is the only cgroup, then nothing else should be necessary.
2829	 *
2830	 */
2831	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2832
2833#ifdef CONFIG_CGROUP_CPUACCT
2834	if (unlikely(!cpuacct_subsys.active))
2835		return;
2836
2837	rcu_read_lock();
2838	ca = task_ca(p);
2839	while (ca && (ca != &root_cpuacct)) {
2840		kcpustat = this_cpu_ptr(ca->cpustat);
2841		kcpustat->cpustat[index] += tmp;
2842		ca = parent_ca(ca);
2843	}
2844	rcu_read_unlock();
2845#endif
2846}
2847
2848
2849/*
2850 * Account user cpu time to a process.
2851 * @p: the process that the cpu time gets accounted to
2852 * @cputime: the cpu time spent in user space since the last update
2853 * @cputime_scaled: cputime scaled by cpu frequency
2854 */
2855void account_user_time(struct task_struct *p, cputime_t cputime,
2856		       cputime_t cputime_scaled)
2857{
2858	int index;
2859
2860	/* Add user time to process. */
2861	p->utime += cputime;
2862	p->utimescaled += cputime_scaled;
2863	account_group_user_time(p, cputime);
2864
2865	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2866
2867	/* Add user time to cpustat. */
2868	task_group_account_field(p, index, (__force u64) cputime);
2869
2870	/* Account for user time used */
2871	acct_update_integrals(p);
2872}
2873
2874/*
2875 * Account guest cpu time to a process.
2876 * @p: the process that the cpu time gets accounted to
2877 * @cputime: the cpu time spent in virtual machine since the last update
2878 * @cputime_scaled: cputime scaled by cpu frequency
2879 */
2880static void account_guest_time(struct task_struct *p, cputime_t cputime,
2881			       cputime_t cputime_scaled)
2882{
2883	u64 *cpustat = kcpustat_this_cpu->cpustat;
2884
2885	/* Add guest time to process. */
2886	p->utime += cputime;
2887	p->utimescaled += cputime_scaled;
2888	account_group_user_time(p, cputime);
2889	p->gtime += cputime;
2890
2891	/* Add guest time to cpustat. */
2892	if (TASK_NICE(p) > 0) {
2893		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2894		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2895	} else {
2896		cpustat[CPUTIME_USER] += (__force u64) cputime;
2897		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2898	}
2899}
2900
2901/*
2902 * Account system cpu time to a process and desired cpustat field
2903 * @p: the process that the cpu time gets accounted to
2904 * @cputime: the cpu time spent in kernel space since the last update
2905 * @cputime_scaled: cputime scaled by cpu frequency
2906 * @target_cputime64: pointer to cpustat field that has to be updated
2907 */
2908static inline
2909void __account_system_time(struct task_struct *p, cputime_t cputime,
2910			cputime_t cputime_scaled, int index)
2911{
2912	/* Add system time to process. */
2913	p->stime += cputime;
2914	p->stimescaled += cputime_scaled;
2915	account_group_system_time(p, cputime);
2916
2917	/* Add system time to cpustat. */
2918	task_group_account_field(p, index, (__force u64) cputime);
2919
2920	/* Account for system time used */
2921	acct_update_integrals(p);
2922}
2923
2924/*
2925 * Account system cpu time to a process.
2926 * @p: the process that the cpu time gets accounted to
2927 * @hardirq_offset: the offset to subtract from hardirq_count()
2928 * @cputime: the cpu time spent in kernel space since the last update
2929 * @cputime_scaled: cputime scaled by cpu frequency
2930 */
2931void account_system_time(struct task_struct *p, int hardirq_offset,
2932			 cputime_t cputime, cputime_t cputime_scaled)
2933{
2934	int index;
2935
2936	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2937		account_guest_time(p, cputime, cputime_scaled);
2938		return;
2939	}
2940
2941	if (hardirq_count() - hardirq_offset)
2942		index = CPUTIME_IRQ;
2943	else if (in_serving_softirq())
2944		index = CPUTIME_SOFTIRQ;
2945	else
2946		index = CPUTIME_SYSTEM;
2947
2948	__account_system_time(p, cputime, cputime_scaled, index);
2949}
2950
2951/*
2952 * Account for involuntary wait time.
2953 * @cputime: the cpu time spent in involuntary wait
2954 */
2955void account_steal_time(cputime_t cputime)
2956{
2957	u64 *cpustat = kcpustat_this_cpu->cpustat;
2958
2959	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2960}
2961
2962/*
2963 * Account for idle time.
2964 * @cputime: the cpu time spent in idle wait
2965 */
2966void account_idle_time(cputime_t cputime)
2967{
2968	u64 *cpustat = kcpustat_this_cpu->cpustat;
2969	struct rq *rq = this_rq();
2970
2971	if (atomic_read(&rq->nr_iowait) > 0)
2972		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2973	else
2974		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2975}
2976
2977static __always_inline bool steal_account_process_tick(void)
2978{
2979#ifdef CONFIG_PARAVIRT
2980	if (static_key_false(&paravirt_steal_enabled)) {
2981		u64 steal, st = 0;
2982
2983		steal = paravirt_steal_clock(smp_processor_id());
2984		steal -= this_rq()->prev_steal_time;
2985
2986		st = steal_ticks(steal);
2987		this_rq()->prev_steal_time += st * TICK_NSEC;
2988
2989		account_steal_time(st);
2990		return st;
2991	}
2992#endif
2993	return false;
2994}
2995
2996#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2997
2998#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2999/*
3000 * Account a tick to a process and cpustat
3001 * @p: the process that the cpu time gets accounted to
3002 * @user_tick: is the tick from userspace
3003 * @rq: the pointer to rq
3004 *
3005 * Tick demultiplexing follows the order
3006 * - pending hardirq update
3007 * - pending softirq update
3008 * - user_time
3009 * - idle_time
3010 * - system time
3011 *   - check for guest_time
3012 *   - else account as system_time
3013 *
3014 * Check for hardirq is done both for system and user time as there is
3015 * no timer going off while we are on hardirq and hence we may never get an
3016 * opportunity to update it solely in system time.
3017 * p->stime and friends are only updated on system time and not on irq
3018 * softirq as those do not count in task exec_runtime any more.
3019 */
3020static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3021						struct rq *rq)
3022{
3023	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3024	u64 *cpustat = kcpustat_this_cpu->cpustat;
3025
3026	if (steal_account_process_tick())
3027		return;
3028
3029	if (irqtime_account_hi_update()) {
3030		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
3031	} else if (irqtime_account_si_update()) {
3032		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
3033	} else if (this_cpu_ksoftirqd() == p) {
3034		/*
3035		 * ksoftirqd time do not get accounted in cpu_softirq_time.
3036		 * So, we have to handle it separately here.
3037		 * Also, p->stime needs to be updated for ksoftirqd.
3038		 */
3039		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3040					CPUTIME_SOFTIRQ);
3041	} else if (user_tick) {
3042		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3043	} else if (p == rq->idle) {
3044		account_idle_time(cputime_one_jiffy);
3045	} else if (p->flags & PF_VCPU) { /* System time or guest time */
3046		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3047	} else {
3048		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3049					CPUTIME_SYSTEM);
3050	}
3051}
3052
3053static void irqtime_account_idle_ticks(int ticks)
3054{
3055	int i;
3056	struct rq *rq = this_rq();
3057
3058	for (i = 0; i < ticks; i++)
3059		irqtime_account_process_tick(current, 0, rq);
3060}
3061#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3062static void irqtime_account_idle_ticks(int ticks) {}
3063static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3064						struct rq *rq) {}
3065#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3066
3067/*
3068 * Account a single tick of cpu time.
3069 * @p: the process that the cpu time gets accounted to
3070 * @user_tick: indicates if the tick is a user or a system tick
3071 */
3072void account_process_tick(struct task_struct *p, int user_tick)
3073{
3074	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3075	struct rq *rq = this_rq();
3076
3077	if (sched_clock_irqtime) {
3078		irqtime_account_process_tick(p, user_tick, rq);
3079		return;
3080	}
3081
3082	if (steal_account_process_tick())
3083		return;
3084
3085	if (user_tick)
3086		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3087	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3088		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3089				    one_jiffy_scaled);
3090	else
3091		account_idle_time(cputime_one_jiffy);
3092}
3093
3094/*
3095 * Account multiple ticks of steal time.
3096 * @p: the process from which the cpu time has been stolen
3097 * @ticks: number of stolen ticks
3098 */
3099void account_steal_ticks(unsigned long ticks)
3100{
3101	account_steal_time(jiffies_to_cputime(ticks));
3102}
3103
3104/*
3105 * Account multiple ticks of idle time.
3106 * @ticks: number of stolen ticks
3107 */
3108void account_idle_ticks(unsigned long ticks)
3109{
3110
3111	if (sched_clock_irqtime) {
3112		irqtime_account_idle_ticks(ticks);
3113		return;
3114	}
3115
3116	account_idle_time(jiffies_to_cputime(ticks));
3117}
3118
3119#endif
3120
3121/*
3122 * Use precise platform statistics if available:
3123 */
3124#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3125void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3126{
3127	*ut = p->utime;
3128	*st = p->stime;
3129}
3130
3131void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3132{
3133	struct task_cputime cputime;
3134
3135	thread_group_cputime(p, &cputime);
3136
3137	*ut = cputime.utime;
3138	*st = cputime.stime;
3139}
3140#else
3141
3142#ifndef nsecs_to_cputime
3143# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3144#endif
3145
3146static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
3147{
3148	u64 temp = (__force u64) rtime;
3149
3150	temp *= (__force u64) utime;
3151
3152	if (sizeof(cputime_t) == 4)
3153		temp = div_u64(temp, (__force u32) total);
3154	else
3155		temp = div64_u64(temp, (__force u64) total);
3156
3157	return (__force cputime_t) temp;
3158}
3159
3160void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3161{
3162	cputime_t rtime, utime = p->utime, total = utime + p->stime;
3163
3164	/*
3165	 * Use CFS's precise accounting:
3166	 */
3167	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3168
3169	if (total)
3170		utime = scale_utime(utime, rtime, total);
3171	else
3172		utime = rtime;
3173
3174	/*
3175	 * Compare with previous values, to keep monotonicity:
3176	 */
3177	p->prev_utime = max(p->prev_utime, utime);
3178	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
3179
3180	*ut = p->prev_utime;
3181	*st = p->prev_stime;
3182}
3183
3184/*
3185 * Must be called with siglock held.
3186 */
3187void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3188{
3189	struct signal_struct *sig = p->signal;
3190	struct task_cputime cputime;
3191	cputime_t rtime, utime, total;
3192
3193	thread_group_cputime(p, &cputime);
3194
3195	total = cputime.utime + cputime.stime;
3196	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3197
3198	if (total)
3199		utime = scale_utime(cputime.utime, rtime, total);
3200	else
3201		utime = rtime;
3202
3203	sig->prev_utime = max(sig->prev_utime, utime);
3204	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3205
3206	*ut = sig->prev_utime;
3207	*st = sig->prev_stime;
3208}
3209#endif
3210
3211/*
3212 * This function gets called by the timer code, with HZ frequency.
3213 * We call it with interrupts disabled.
3214 */
3215void scheduler_tick(void)
3216{
3217	int cpu = smp_processor_id();
3218	struct rq *rq = cpu_rq(cpu);
3219	struct task_struct *curr = rq->curr;
3220
3221	sched_clock_tick();
3222
3223	raw_spin_lock(&rq->lock);
3224	update_rq_clock(rq);
3225	update_cpu_load_active(rq);
3226	curr->sched_class->task_tick(rq, curr, 0);
3227	raw_spin_unlock(&rq->lock);
3228
3229	perf_event_task_tick();
3230
3231#ifdef CONFIG_SMP
3232	rq->idle_balance = idle_cpu(cpu);
3233	trigger_load_balance(rq, cpu);
3234#endif
3235}
3236
3237notrace unsigned long get_parent_ip(unsigned long addr)
3238{
3239	if (in_lock_functions(addr)) {
3240		addr = CALLER_ADDR2;
3241		if (in_lock_functions(addr))
3242			addr = CALLER_ADDR3;
3243	}
3244	return addr;
3245}
3246
3247#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3248				defined(CONFIG_PREEMPT_TRACER))
3249
3250void __kprobes add_preempt_count(int val)
3251{
3252#ifdef CONFIG_DEBUG_PREEMPT
3253	/*
3254	 * Underflow?
3255	 */
3256	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3257		return;
3258#endif
3259	preempt_count() += val;
3260#ifdef CONFIG_DEBUG_PREEMPT
3261	/*
3262	 * Spinlock count overflowing soon?
3263	 */
3264	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3265				PREEMPT_MASK - 10);
3266#endif
3267	if (preempt_count() == val)
3268		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3269}
3270EXPORT_SYMBOL(add_preempt_count);
3271
3272void __kprobes sub_preempt_count(int val)
3273{
3274#ifdef CONFIG_DEBUG_PREEMPT
3275	/*
3276	 * Underflow?
3277	 */
3278	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3279		return;
3280	/*
3281	 * Is the spinlock portion underflowing?
3282	 */
3283	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3284			!(preempt_count() & PREEMPT_MASK)))
3285		return;
3286#endif
3287
3288	if (preempt_count() == val)
3289		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3290	preempt_count() -= val;
3291}
3292EXPORT_SYMBOL(sub_preempt_count);
3293
3294#endif
3295
3296/*
3297 * Print scheduling while atomic bug:
3298 */
3299static noinline void __schedule_bug(struct task_struct *prev)
3300{
3301	if (oops_in_progress)
3302		return;
3303
3304	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305		prev->comm, prev->pid, preempt_count());
3306
3307	debug_show_held_locks(prev);
3308	print_modules();
3309	if (irqs_disabled())
3310		print_irqtrace_events(prev);
3311	dump_stack();
3312	add_taint(TAINT_WARN);
3313}
3314
3315/*
3316 * Various schedule()-time debugging checks and statistics:
3317 */
3318static inline void schedule_debug(struct task_struct *prev)
3319{
3320	/*
3321	 * Test if we are atomic. Since do_exit() needs to call into
3322	 * schedule() atomically, we ignore that path for now.
3323	 * Otherwise, whine if we are scheduling when we should not be.
3324	 */
3325	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3326		__schedule_bug(prev);
3327	rcu_sleep_check();
3328
3329	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3330
3331	schedstat_inc(this_rq(), sched_count);
3332}
3333
3334static void put_prev_task(struct rq *rq, struct task_struct *prev)
3335{
3336	if (prev->on_rq || rq->skip_clock_update < 0)
3337		update_rq_clock(rq);
3338	prev->sched_class->put_prev_task(rq, prev);
3339}
3340
3341/*
3342 * Pick up the highest-prio task:
3343 */
3344static inline struct task_struct *
3345pick_next_task(struct rq *rq)
3346{
3347	const struct sched_class *class;
3348	struct task_struct *p;
3349
3350	/*
3351	 * Optimization: we know that if all tasks are in
3352	 * the fair class we can call that function directly:
3353	 */
3354	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3355		p = fair_sched_class.pick_next_task(rq);
3356		if (likely(p))
3357			return p;
3358	}
3359
3360	for_each_class(class) {
3361		p = class->pick_next_task(rq);
3362		if (p)
3363			return p;
3364	}
3365
3366	BUG(); /* the idle class will always have a runnable task */
3367}
3368
3369/*
3370 * __schedule() is the main scheduler function.
3371 */
3372static void __sched __schedule(void)
3373{
3374	struct task_struct *prev, *next;
3375	unsigned long *switch_count;
3376	struct rq *rq;
3377	int cpu;
3378
3379need_resched:
3380	preempt_disable();
3381	cpu = smp_processor_id();
3382	rq = cpu_rq(cpu);
3383	rcu_note_context_switch(cpu);
3384	prev = rq->curr;
3385
3386	schedule_debug(prev);
3387
3388	if (sched_feat(HRTICK))
3389		hrtick_clear(rq);
3390
3391	raw_spin_lock_irq(&rq->lock);
3392
3393	switch_count = &prev->nivcsw;
3394	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3395		if (unlikely(signal_pending_state(prev->state, prev))) {
3396			prev->state = TASK_RUNNING;
3397		} else {
3398			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3399			prev->on_rq = 0;
3400
3401			/*
3402			 * If a worker went to sleep, notify and ask workqueue
3403			 * whether it wants to wake up a task to maintain
3404			 * concurrency.
3405			 */
3406			if (prev->flags & PF_WQ_WORKER) {
3407				struct task_struct *to_wakeup;
3408
3409				to_wakeup = wq_worker_sleeping(prev, cpu);
3410				if (to_wakeup)
3411					try_to_wake_up_local(to_wakeup);
3412			}
3413		}
3414		switch_count = &prev->nvcsw;
3415	}
3416
3417	pre_schedule(rq, prev);
3418
3419	if (unlikely(!rq->nr_running))
3420		idle_balance(cpu, rq);
3421
3422	put_prev_task(rq, prev);
3423	next = pick_next_task(rq);
3424	clear_tsk_need_resched(prev);
3425	rq->skip_clock_update = 0;
3426
3427	if (likely(prev != next)) {
3428		rq->nr_switches++;
3429		rq->curr = next;
3430		++*switch_count;
3431
3432		context_switch(rq, prev, next); /* unlocks the rq */
3433		/*
3434		 * The context switch have flipped the stack from under us
3435		 * and restored the local variables which were saved when
3436		 * this task called schedule() in the past. prev == current
3437		 * is still correct, but it can be moved to another cpu/rq.
3438		 */
3439		cpu = smp_processor_id();
3440		rq = cpu_rq(cpu);
3441	} else
3442		raw_spin_unlock_irq(&rq->lock);
3443
3444	post_schedule(rq);
3445
3446	sched_preempt_enable_no_resched();
3447	if (need_resched())
3448		goto need_resched;
3449}
3450
3451static inline void sched_submit_work(struct task_struct *tsk)
3452{
3453	if (!tsk->state || tsk_is_pi_blocked(tsk))
3454		return;
3455	/*
3456	 * If we are going to sleep and we have plugged IO queued,
3457	 * make sure to submit it to avoid deadlocks.
3458	 */
3459	if (blk_needs_flush_plug(tsk))
3460		blk_schedule_flush_plug(tsk);
3461}
3462
3463asmlinkage void __sched schedule(void)
3464{
3465	struct task_struct *tsk = current;
3466
3467	sched_submit_work(tsk);
3468	__schedule();
3469}
3470EXPORT_SYMBOL(schedule);
3471
3472#ifdef CONFIG_RCU_USER_QS
3473asmlinkage void __sched schedule_user(void)
3474{
3475	/*
3476	 * If we come here after a random call to set_need_resched(),
3477	 * or we have been woken up remotely but the IPI has not yet arrived,
3478	 * we haven't yet exited the RCU idle mode. Do it here manually until
3479	 * we find a better solution.
3480	 */
3481	rcu_user_exit();
3482	schedule();
3483	rcu_user_enter();
3484}
3485#endif
3486
3487/**
3488 * schedule_preempt_disabled - called with preemption disabled
3489 *
3490 * Returns with preemption disabled. Note: preempt_count must be 1
3491 */
3492void __sched schedule_preempt_disabled(void)
3493{
3494	sched_preempt_enable_no_resched();
3495	schedule();
3496	preempt_disable();
3497}
3498
3499#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3500
3501static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3502{
3503	if (lock->owner != owner)
3504		return false;
3505
3506	/*
3507	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3508	 * lock->owner still matches owner, if that fails, owner might
3509	 * point to free()d memory, if it still matches, the rcu_read_lock()
3510	 * ensures the memory stays valid.
3511	 */
3512	barrier();
3513
3514	return owner->on_cpu;
3515}
3516
3517/*
3518 * Look out! "owner" is an entirely speculative pointer
3519 * access and not reliable.
3520 */
3521int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3522{
3523	if (!sched_feat(OWNER_SPIN))
3524		return 0;
3525
3526	rcu_read_lock();
3527	while (owner_running(lock, owner)) {
3528		if (need_resched())
3529			break;
3530
3531		arch_mutex_cpu_relax();
3532	}
3533	rcu_read_unlock();
3534
3535	/*
3536	 * We break out the loop above on need_resched() and when the
3537	 * owner changed, which is a sign for heavy contention. Return
3538	 * success only when lock->owner is NULL.
3539	 */
3540	return lock->owner == NULL;
3541}
3542#endif
3543
3544#ifdef CONFIG_PREEMPT
3545/*
3546 * this is the entry point to schedule() from in-kernel preemption
3547 * off of preempt_enable. Kernel preemptions off return from interrupt
3548 * occur there and call schedule directly.
3549 */
3550asmlinkage void __sched notrace preempt_schedule(void)
3551{
3552	struct thread_info *ti = current_thread_info();
3553
3554	/*
3555	 * If there is a non-zero preempt_count or interrupts are disabled,
3556	 * we do not want to preempt the current task. Just return..
3557	 */
3558	if (likely(ti->preempt_count || irqs_disabled()))
3559		return;
3560
3561	do {
3562		add_preempt_count_notrace(PREEMPT_ACTIVE);
3563		__schedule();
3564		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3565
3566		/*
3567		 * Check again in case we missed a preemption opportunity
3568		 * between schedule and now.
3569		 */
3570		barrier();
3571	} while (need_resched());
3572}
3573EXPORT_SYMBOL(preempt_schedule);
3574
3575/*
3576 * this is the entry point to schedule() from kernel preemption
3577 * off of irq context.
3578 * Note, that this is called and return with irqs disabled. This will
3579 * protect us against recursive calling from irq.
3580 */
3581asmlinkage void __sched preempt_schedule_irq(void)
3582{
3583	struct thread_info *ti = current_thread_info();
3584
3585	/* Catch callers which need to be fixed */
3586	BUG_ON(ti->preempt_count || !irqs_disabled());
3587
3588	rcu_user_exit();
3589	do {
3590		add_preempt_count(PREEMPT_ACTIVE);
3591		local_irq_enable();
3592		__schedule();
3593		local_irq_disable();
3594		sub_preempt_count(PREEMPT_ACTIVE);
3595
3596		/*
3597		 * Check again in case we missed a preemption opportunity
3598		 * between schedule and now.
3599		 */
3600		barrier();
3601	} while (need_resched());
3602}
3603
3604#endif /* CONFIG_PREEMPT */
3605
3606int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3607			  void *key)
3608{
3609	return try_to_wake_up(curr->private, mode, wake_flags);
3610}
3611EXPORT_SYMBOL(default_wake_function);
3612
3613/*
3614 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3615 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3616 * number) then we wake all the non-exclusive tasks and one exclusive task.
3617 *
3618 * There are circumstances in which we can try to wake a task which has already
3619 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3620 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3621 */
3622static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3623			int nr_exclusive, int wake_flags, void *key)
3624{
3625	wait_queue_t *curr, *next;
3626
3627	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3628		unsigned flags = curr->flags;
3629
3630		if (curr->func(curr, mode, wake_flags, key) &&
3631				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3632			break;
3633	}
3634}
3635
3636/**
3637 * __wake_up - wake up threads blocked on a waitqueue.
3638 * @q: the waitqueue
3639 * @mode: which threads
3640 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3641 * @key: is directly passed to the wakeup function
3642 *
3643 * It may be assumed that this function implies a write memory barrier before
3644 * changing the task state if and only if any tasks are woken up.
3645 */
3646void __wake_up(wait_queue_head_t *q, unsigned int mode,
3647			int nr_exclusive, void *key)
3648{
3649	unsigned long flags;
3650
3651	spin_lock_irqsave(&q->lock, flags);
3652	__wake_up_common(q, mode, nr_exclusive, 0, key);
3653	spin_unlock_irqrestore(&q->lock, flags);
3654}
3655EXPORT_SYMBOL(__wake_up);
3656
3657/*
3658 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3659 */
3660void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3661{
3662	__wake_up_common(q, mode, nr, 0, NULL);
3663}
3664EXPORT_SYMBOL_GPL(__wake_up_locked);
3665
3666void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3667{
3668	__wake_up_common(q, mode, 1, 0, key);
3669}
3670EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3671
3672/**
3673 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3674 * @q: the waitqueue
3675 * @mode: which threads
3676 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3677 * @key: opaque value to be passed to wakeup targets
3678 *
3679 * The sync wakeup differs that the waker knows that it will schedule
3680 * away soon, so while the target thread will be woken up, it will not
3681 * be migrated to another CPU - ie. the two threads are 'synchronized'
3682 * with each other. This can prevent needless bouncing between CPUs.
3683 *
3684 * On UP it can prevent extra preemption.
3685 *
3686 * It may be assumed that this function implies a write memory barrier before
3687 * changing the task state if and only if any tasks are woken up.
3688 */
3689void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3690			int nr_exclusive, void *key)
3691{
3692	unsigned long flags;
3693	int wake_flags = WF_SYNC;
3694
3695	if (unlikely(!q))
3696		return;
3697
3698	if (unlikely(!nr_exclusive))
3699		wake_flags = 0;
3700
3701	spin_lock_irqsave(&q->lock, flags);
3702	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3703	spin_unlock_irqrestore(&q->lock, flags);
3704}
3705EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3706
3707/*
3708 * __wake_up_sync - see __wake_up_sync_key()
3709 */
3710void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3711{
3712	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3713}
3714EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3715
3716/**
3717 * complete: - signals a single thread waiting on this completion
3718 * @x:  holds the state of this particular completion
3719 *
3720 * This will wake up a single thread waiting on this completion. Threads will be
3721 * awakened in the same order in which they were queued.
3722 *
3723 * See also complete_all(), wait_for_completion() and related routines.
3724 *
3725 * It may be assumed that this function implies a write memory barrier before
3726 * changing the task state if and only if any tasks are woken up.
3727 */
3728void complete(struct completion *x)
3729{
3730	unsigned long flags;
3731
3732	spin_lock_irqsave(&x->wait.lock, flags);
3733	x->done++;
3734	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3735	spin_unlock_irqrestore(&x->wait.lock, flags);
3736}
3737EXPORT_SYMBOL(complete);
3738
3739/**
3740 * complete_all: - signals all threads waiting on this completion
3741 * @x:  holds the state of this particular completion
3742 *
3743 * This will wake up all threads waiting on this particular completion event.
3744 *
3745 * It may be assumed that this function implies a write memory barrier before
3746 * changing the task state if and only if any tasks are woken up.
3747 */
3748void complete_all(struct completion *x)
3749{
3750	unsigned long flags;
3751
3752	spin_lock_irqsave(&x->wait.lock, flags);
3753	x->done += UINT_MAX/2;
3754	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3755	spin_unlock_irqrestore(&x->wait.lock, flags);
3756}
3757EXPORT_SYMBOL(complete_all);
3758
3759static inline long __sched
3760do_wait_for_common(struct completion *x, long timeout, int state)
3761{
3762	if (!x->done) {
3763		DECLARE_WAITQUEUE(wait, current);
3764
3765		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3766		do {
3767			if (signal_pending_state(state, current)) {
3768				timeout = -ERESTARTSYS;
3769				break;
3770			}
3771			__set_current_state(state);
3772			spin_unlock_irq(&x->wait.lock);
3773			timeout = schedule_timeout(timeout);
3774			spin_lock_irq(&x->wait.lock);
3775		} while (!x->done && timeout);
3776		__remove_wait_queue(&x->wait, &wait);
3777		if (!x->done)
3778			return timeout;
3779	}
3780	x->done--;
3781	return timeout ?: 1;
3782}
3783
3784static long __sched
3785wait_for_common(struct completion *x, long timeout, int state)
3786{
3787	might_sleep();
3788
3789	spin_lock_irq(&x->wait.lock);
3790	timeout = do_wait_for_common(x, timeout, state);
3791	spin_unlock_irq(&x->wait.lock);
3792	return timeout;
3793}
3794
3795/**
3796 * wait_for_completion: - waits for completion of a task
3797 * @x:  holds the state of this particular completion
3798 *
3799 * This waits to be signaled for completion of a specific task. It is NOT
3800 * interruptible and there is no timeout.
3801 *
3802 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3803 * and interrupt capability. Also see complete().
3804 */
3805void __sched wait_for_completion(struct completion *x)
3806{
3807	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3808}
3809EXPORT_SYMBOL(wait_for_completion);
3810
3811/**
3812 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3813 * @x:  holds the state of this particular completion
3814 * @timeout:  timeout value in jiffies
3815 *
3816 * This waits for either a completion of a specific task to be signaled or for a
3817 * specified timeout to expire. The timeout is in jiffies. It is not
3818 * interruptible.
3819 *
3820 * The return value is 0 if timed out, and positive (at least 1, or number of
3821 * jiffies left till timeout) if completed.
3822 */
3823unsigned long __sched
3824wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3825{
3826	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3827}
3828EXPORT_SYMBOL(wait_for_completion_timeout);
3829
3830/**
3831 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3832 * @x:  holds the state of this particular completion
3833 *
3834 * This waits for completion of a specific task to be signaled. It is
3835 * interruptible.
3836 *
3837 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3838 */
3839int __sched wait_for_completion_interruptible(struct completion *x)
3840{
3841	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3842	if (t == -ERESTARTSYS)
3843		return t;
3844	return 0;
3845}
3846EXPORT_SYMBOL(wait_for_completion_interruptible);
3847
3848/**
3849 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3850 * @x:  holds the state of this particular completion
3851 * @timeout:  timeout value in jiffies
3852 *
3853 * This waits for either a completion of a specific task to be signaled or for a
3854 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3855 *
3856 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3857 * positive (at least 1, or number of jiffies left till timeout) if completed.
3858 */
3859long __sched
3860wait_for_completion_interruptible_timeout(struct completion *x,
3861					  unsigned long timeout)
3862{
3863	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3864}
3865EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3866
3867/**
3868 * wait_for_completion_killable: - waits for completion of a task (killable)
3869 * @x:  holds the state of this particular completion
3870 *
3871 * This waits to be signaled for completion of a specific task. It can be
3872 * interrupted by a kill signal.
3873 *
3874 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3875 */
3876int __sched wait_for_completion_killable(struct completion *x)
3877{
3878	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3879	if (t == -ERESTARTSYS)
3880		return t;
3881	return 0;
3882}
3883EXPORT_SYMBOL(wait_for_completion_killable);
3884
3885/**
3886 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3887 * @x:  holds the state of this particular completion
3888 * @timeout:  timeout value in jiffies
3889 *
3890 * This waits for either a completion of a specific task to be
3891 * signaled or for a specified timeout to expire. It can be
3892 * interrupted by a kill signal. The timeout is in jiffies.
3893 *
3894 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3895 * positive (at least 1, or number of jiffies left till timeout) if completed.
3896 */
3897long __sched
3898wait_for_completion_killable_timeout(struct completion *x,
3899				     unsigned long timeout)
3900{
3901	return wait_for_common(x, timeout, TASK_KILLABLE);
3902}
3903EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3904
3905/**
3906 *	try_wait_for_completion - try to decrement a completion without blocking
3907 *	@x:	completion structure
3908 *
3909 *	Returns: 0 if a decrement cannot be done without blocking
3910 *		 1 if a decrement succeeded.
3911 *
3912 *	If a completion is being used as a counting completion,
3913 *	attempt to decrement the counter without blocking. This
3914 *	enables us to avoid waiting if the resource the completion
3915 *	is protecting is not available.
3916 */
3917bool try_wait_for_completion(struct completion *x)
3918{
3919	unsigned long flags;
3920	int ret = 1;
3921
3922	spin_lock_irqsave(&x->wait.lock, flags);
3923	if (!x->done)
3924		ret = 0;
3925	else
3926		x->done--;
3927	spin_unlock_irqrestore(&x->wait.lock, flags);
3928	return ret;
3929}
3930EXPORT_SYMBOL(try_wait_for_completion);
3931
3932/**
3933 *	completion_done - Test to see if a completion has any waiters
3934 *	@x:	completion structure
3935 *
3936 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3937 *		 1 if there are no waiters.
3938 *
3939 */
3940bool completion_done(struct completion *x)
3941{
3942	unsigned long flags;
3943	int ret = 1;
3944
3945	spin_lock_irqsave(&x->wait.lock, flags);
3946	if (!x->done)
3947		ret = 0;
3948	spin_unlock_irqrestore(&x->wait.lock, flags);
3949	return ret;
3950}
3951EXPORT_SYMBOL(completion_done);
3952
3953static long __sched
3954sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3955{
3956	unsigned long flags;
3957	wait_queue_t wait;
3958
3959	init_waitqueue_entry(&wait, current);
3960
3961	__set_current_state(state);
3962
3963	spin_lock_irqsave(&q->lock, flags);
3964	__add_wait_queue(q, &wait);
3965	spin_unlock(&q->lock);
3966	timeout = schedule_timeout(timeout);
3967	spin_lock_irq(&q->lock);
3968	__remove_wait_queue(q, &wait);
3969	spin_unlock_irqrestore(&q->lock, flags);
3970
3971	return timeout;
3972}
3973
3974void __sched interruptible_sleep_on(wait_queue_head_t *q)
3975{
3976	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3977}
3978EXPORT_SYMBOL(interruptible_sleep_on);
3979
3980long __sched
3981interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3982{
3983	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3984}
3985EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3986
3987void __sched sleep_on(wait_queue_head_t *q)
3988{
3989	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3990}
3991EXPORT_SYMBOL(sleep_on);
3992
3993long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3994{
3995	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3996}
3997EXPORT_SYMBOL(sleep_on_timeout);
3998
3999#ifdef CONFIG_RT_MUTEXES
4000
4001/*
4002 * rt_mutex_setprio - set the current priority of a task
4003 * @p: task
4004 * @prio: prio value (kernel-internal form)
4005 *
4006 * This function changes the 'effective' priority of a task. It does
4007 * not touch ->normal_prio like __setscheduler().
4008 *
4009 * Used by the rt_mutex code to implement priority inheritance logic.
4010 */
4011void rt_mutex_setprio(struct task_struct *p, int prio)
4012{
4013	int oldprio, on_rq, running;
4014	struct rq *rq;
4015	const struct sched_class *prev_class;
4016
4017	BUG_ON(prio < 0 || prio > MAX_PRIO);
4018
4019	rq = __task_rq_lock(p);
4020
4021	/*
4022	 * Idle task boosting is a nono in general. There is one
4023	 * exception, when PREEMPT_RT and NOHZ is active:
4024	 *
4025	 * The idle task calls get_next_timer_interrupt() and holds
4026	 * the timer wheel base->lock on the CPU and another CPU wants
4027	 * to access the timer (probably to cancel it). We can safely
4028	 * ignore the boosting request, as the idle CPU runs this code
4029	 * with interrupts disabled and will complete the lock
4030	 * protected section without being interrupted. So there is no
4031	 * real need to boost.
4032	 */
4033	if (unlikely(p == rq->idle)) {
4034		WARN_ON(p != rq->curr);
4035		WARN_ON(p->pi_blocked_on);
4036		goto out_unlock;
4037	}
4038
4039	trace_sched_pi_setprio(p, prio);
4040	oldprio = p->prio;
4041	prev_class = p->sched_class;
4042	on_rq = p->on_rq;
4043	running = task_current(rq, p);
4044	if (on_rq)
4045		dequeue_task(rq, p, 0);
4046	if (running)
4047		p->sched_class->put_prev_task(rq, p);
4048
4049	if (rt_prio(prio))
4050		p->sched_class = &rt_sched_class;
4051	else
4052		p->sched_class = &fair_sched_class;
4053
4054	p->prio = prio;
4055
4056	if (running)
4057		p->sched_class->set_curr_task(rq);
4058	if (on_rq)
4059		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4060
4061	check_class_changed(rq, p, prev_class, oldprio);
4062out_unlock:
4063	__task_rq_unlock(rq);
4064}
4065#endif
4066void set_user_nice(struct task_struct *p, long nice)
4067{
4068	int old_prio, delta, on_rq;
4069	unsigned long flags;
4070	struct rq *rq;
4071
4072	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4073		return;
4074	/*
4075	 * We have to be careful, if called from sys_setpriority(),
4076	 * the task might be in the middle of scheduling on another CPU.
4077	 */
4078	rq = task_rq_lock(p, &flags);
4079	/*
4080	 * The RT priorities are set via sched_setscheduler(), but we still
4081	 * allow the 'normal' nice value to be set - but as expected
4082	 * it wont have any effect on scheduling until the task is
4083	 * SCHED_FIFO/SCHED_RR:
4084	 */
4085	if (task_has_rt_policy(p)) {
4086		p->static_prio = NICE_TO_PRIO(nice);
4087		goto out_unlock;
4088	}
4089	on_rq = p->on_rq;
4090	if (on_rq)
4091		dequeue_task(rq, p, 0);
4092
4093	p->static_prio = NICE_TO_PRIO(nice);
4094	set_load_weight(p);
4095	old_prio = p->prio;
4096	p->prio = effective_prio(p);
4097	delta = p->prio - old_prio;
4098
4099	if (on_rq) {
4100		enqueue_task(rq, p, 0);
4101		/*
4102		 * If the task increased its priority or is running and
4103		 * lowered its priority, then reschedule its CPU:
4104		 */
4105		if (delta < 0 || (delta > 0 && task_running(rq, p)))
4106			resched_task(rq->curr);
4107	}
4108out_unlock:
4109	task_rq_unlock(rq, p, &flags);
4110}
4111EXPORT_SYMBOL(set_user_nice);
4112
4113/*
4114 * can_nice - check if a task can reduce its nice value
4115 * @p: task
4116 * @nice: nice value
4117 */
4118int can_nice(const struct task_struct *p, const int nice)
4119{
4120	/* convert nice value [19,-20] to rlimit style value [1,40] */
4121	int nice_rlim = 20 - nice;
4122
4123	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4124		capable(CAP_SYS_NICE));
4125}
4126
4127#ifdef __ARCH_WANT_SYS_NICE
4128
4129/*
4130 * sys_nice - change the priority of the current process.
4131 * @increment: priority increment
4132 *
4133 * sys_setpriority is a more generic, but much slower function that
4134 * does similar things.
4135 */
4136SYSCALL_DEFINE1(nice, int, increment)
4137{
4138	long nice, retval;
4139
4140	/*
4141	 * Setpriority might change our priority at the same moment.
4142	 * We don't have to worry. Conceptually one call occurs first
4143	 * and we have a single winner.
4144	 */
4145	if (increment < -40)
4146		increment = -40;
4147	if (increment > 40)
4148		increment = 40;
4149
4150	nice = TASK_NICE(current) + increment;
4151	if (nice < -20)
4152		nice = -20;
4153	if (nice > 19)
4154		nice = 19;
4155
4156	if (increment < 0 && !can_nice(current, nice))
4157		return -EPERM;
4158
4159	retval = security_task_setnice(current, nice);
4160	if (retval)
4161		return retval;
4162
4163	set_user_nice(current, nice);
4164	return 0;
4165}
4166
4167#endif
4168
4169/**
4170 * task_prio - return the priority value of a given task.
4171 * @p: the task in question.
4172 *
4173 * This is the priority value as seen by users in /proc.
4174 * RT tasks are offset by -200. Normal tasks are centered
4175 * around 0, value goes from -16 to +15.
4176 */
4177int task_prio(const struct task_struct *p)
4178{
4179	return p->prio - MAX_RT_PRIO;
4180}
4181
4182/**
4183 * task_nice - return the nice value of a given task.
4184 * @p: the task in question.
4185 */
4186int task_nice(const struct task_struct *p)
4187{
4188	return TASK_NICE(p);
4189}
4190EXPORT_SYMBOL(task_nice);
4191
4192/**
4193 * idle_cpu - is a given cpu idle currently?
4194 * @cpu: the processor in question.
4195 */
4196int idle_cpu(int cpu)
4197{
4198	struct rq *rq = cpu_rq(cpu);
4199
4200	if (rq->curr != rq->idle)
4201		return 0;
4202
4203	if (rq->nr_running)
4204		return 0;
4205
4206#ifdef CONFIG_SMP
4207	if (!llist_empty(&rq->wake_list))
4208		return 0;
4209#endif
4210
4211	return 1;
4212}
4213
4214/**
4215 * idle_task - return the idle task for a given cpu.
4216 * @cpu: the processor in question.
4217 */
4218struct task_struct *idle_task(int cpu)
4219{
4220	return cpu_rq(cpu)->idle;
4221}
4222
4223/**
4224 * find_process_by_pid - find a process with a matching PID value.
4225 * @pid: the pid in question.
4226 */
4227static struct task_struct *find_process_by_pid(pid_t pid)
4228{
4229	return pid ? find_task_by_vpid(pid) : current;
4230}
4231
4232/* Actually do priority change: must hold rq lock. */
4233static void
4234__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4235{
4236	p->policy = policy;
4237	p->rt_priority = prio;
4238	p->normal_prio = normal_prio(p);
4239	/* we are holding p->pi_lock already */
4240	p->prio = rt_mutex_getprio(p);
4241	if (rt_prio(p->prio))
4242		p->sched_class = &rt_sched_class;
4243	else
4244		p->sched_class = &fair_sched_class;
4245	set_load_weight(p);
4246}
4247
4248/*
4249 * check the target process has a UID that matches the current process's
4250 */
4251static bool check_same_owner(struct task_struct *p)
4252{
4253	const struct cred *cred = current_cred(), *pcred;
4254	bool match;
4255
4256	rcu_read_lock();
4257	pcred = __task_cred(p);
4258	match = (uid_eq(cred->euid, pcred->euid) ||
4259		 uid_eq(cred->euid, pcred->uid));
4260	rcu_read_unlock();
4261	return match;
4262}
4263
4264static int __sched_setscheduler(struct task_struct *p, int policy,
4265				const struct sched_param *param, bool user)
4266{
4267	int retval, oldprio, oldpolicy = -1, on_rq, running;
4268	unsigned long flags;
4269	const struct sched_class *prev_class;
4270	struct rq *rq;
4271	int reset_on_fork;
4272
4273	/* may grab non-irq protected spin_locks */
4274	BUG_ON(in_interrupt());
4275recheck:
4276	/* double check policy once rq lock held */
4277	if (policy < 0) {
4278		reset_on_fork = p->sched_reset_on_fork;
4279		policy = oldpolicy = p->policy;
4280	} else {
4281		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4282		policy &= ~SCHED_RESET_ON_FORK;
4283
4284		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4285				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4286				policy != SCHED_IDLE)
4287			return -EINVAL;
4288	}
4289
4290	/*
4291	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4292	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4293	 * SCHED_BATCH and SCHED_IDLE is 0.
4294	 */
4295	if (param->sched_priority < 0 ||
4296	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4297	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4298		return -EINVAL;
4299	if (rt_policy(policy) != (param->sched_priority != 0))
4300		return -EINVAL;
4301
4302	/*
4303	 * Allow unprivileged RT tasks to decrease priority:
4304	 */
4305	if (user && !capable(CAP_SYS_NICE)) {
4306		if (rt_policy(policy)) {
4307			unsigned long rlim_rtprio =
4308					task_rlimit(p, RLIMIT_RTPRIO);
4309
4310			/* can't set/change the rt policy */
4311			if (policy != p->policy && !rlim_rtprio)
4312				return -EPERM;
4313
4314			/* can't increase priority */
4315			if (param->sched_priority > p->rt_priority &&
4316			    param->sched_priority > rlim_rtprio)
4317				return -EPERM;
4318		}
4319
4320		/*
4321		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4322		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4323		 */
4324		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4325			if (!can_nice(p, TASK_NICE(p)))
4326				return -EPERM;
4327		}
4328
4329		/* can't change other user's priorities */
4330		if (!check_same_owner(p))
4331			return -EPERM;
4332
4333		/* Normal users shall not reset the sched_reset_on_fork flag */
4334		if (p->sched_reset_on_fork && !reset_on_fork)
4335			return -EPERM;
4336	}
4337
4338	if (user) {
4339		retval = security_task_setscheduler(p);
4340		if (retval)
4341			return retval;
4342	}
4343
4344	/*
4345	 * make sure no PI-waiters arrive (or leave) while we are
4346	 * changing the priority of the task:
4347	 *
4348	 * To be able to change p->policy safely, the appropriate
4349	 * runqueue lock must be held.
4350	 */
4351	rq = task_rq_lock(p, &flags);
4352
4353	/*
4354	 * Changing the policy of the stop threads its a very bad idea
4355	 */
4356	if (p == rq->stop) {
4357		task_rq_unlock(rq, p, &flags);
4358		return -EINVAL;
4359	}
4360
4361	/*
4362	 * If not changing anything there's no need to proceed further:
4363	 */
4364	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4365			param->sched_priority == p->rt_priority))) {
4366		task_rq_unlock(rq, p, &flags);
4367		return 0;
4368	}
4369
4370#ifdef CONFIG_RT_GROUP_SCHED
4371	if (user) {
4372		/*
4373		 * Do not allow realtime tasks into groups that have no runtime
4374		 * assigned.
4375		 */
4376		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4377				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4378				!task_group_is_autogroup(task_group(p))) {
4379			task_rq_unlock(rq, p, &flags);
4380			return -EPERM;
4381		}
4382	}
4383#endif
4384
4385	/* recheck policy now with rq lock held */
4386	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4387		policy = oldpolicy = -1;
4388		task_rq_unlock(rq, p, &flags);
4389		goto recheck;
4390	}
4391	on_rq = p->on_rq;
4392	running = task_current(rq, p);
4393	if (on_rq)
4394		dequeue_task(rq, p, 0);
4395	if (running)
4396		p->sched_class->put_prev_task(rq, p);
4397
4398	p->sched_reset_on_fork = reset_on_fork;
4399
4400	oldprio = p->prio;
4401	prev_class = p->sched_class;
4402	__setscheduler(rq, p, policy, param->sched_priority);
4403
4404	if (running)
4405		p->sched_class->set_curr_task(rq);
4406	if (on_rq)
4407		enqueue_task(rq, p, 0);
4408
4409	check_class_changed(rq, p, prev_class, oldprio);
4410	task_rq_unlock(rq, p, &flags);
4411
4412	rt_mutex_adjust_pi(p);
4413
4414	return 0;
4415}
4416
4417/**
4418 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4419 * @p: the task in question.
4420 * @policy: new policy.
4421 * @param: structure containing the new RT priority.
4422 *
4423 * NOTE that the task may be already dead.
4424 */
4425int sched_setscheduler(struct task_struct *p, int policy,
4426		       const struct sched_param *param)
4427{
4428	return __sched_setscheduler(p, policy, param, true);
4429}
4430EXPORT_SYMBOL_GPL(sched_setscheduler);
4431
4432/**
4433 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4434 * @p: the task in question.
4435 * @policy: new policy.
4436 * @param: structure containing the new RT priority.
4437 *
4438 * Just like sched_setscheduler, only don't bother checking if the
4439 * current context has permission.  For example, this is needed in
4440 * stop_machine(): we create temporary high priority worker threads,
4441 * but our caller might not have that capability.
4442 */
4443int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4444			       const struct sched_param *param)
4445{
4446	return __sched_setscheduler(p, policy, param, false);
4447}
4448
4449static int
4450do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4451{
4452	struct sched_param lparam;
4453	struct task_struct *p;
4454	int retval;
4455
4456	if (!param || pid < 0)
4457		return -EINVAL;
4458	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4459		return -EFAULT;
4460
4461	rcu_read_lock();
4462	retval = -ESRCH;
4463	p = find_process_by_pid(pid);
4464	if (p != NULL)
4465		retval = sched_setscheduler(p, policy, &lparam);
4466	rcu_read_unlock();
4467
4468	return retval;
4469}
4470
4471/**
4472 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4473 * @pid: the pid in question.
4474 * @policy: new policy.
4475 * @param: structure containing the new RT priority.
4476 */
4477SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4478		struct sched_param __user *, param)
4479{
4480	/* negative values for policy are not valid */
4481	if (policy < 0)
4482		return -EINVAL;
4483
4484	return do_sched_setscheduler(pid, policy, param);
4485}
4486
4487/**
4488 * sys_sched_setparam - set/change the RT priority of a thread
4489 * @pid: the pid in question.
4490 * @param: structure containing the new RT priority.
4491 */
4492SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4493{
4494	return do_sched_setscheduler(pid, -1, param);
4495}
4496
4497/**
4498 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4499 * @pid: the pid in question.
4500 */
4501SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4502{
4503	struct task_struct *p;
4504	int retval;
4505
4506	if (pid < 0)
4507		return -EINVAL;
4508
4509	retval = -ESRCH;
4510	rcu_read_lock();
4511	p = find_process_by_pid(pid);
4512	if (p) {
4513		retval = security_task_getscheduler(p);
4514		if (!retval)
4515			retval = p->policy
4516				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4517	}
4518	rcu_read_unlock();
4519	return retval;
4520}
4521
4522/**
4523 * sys_sched_getparam - get the RT priority of a thread
4524 * @pid: the pid in question.
4525 * @param: structure containing the RT priority.
4526 */
4527SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4528{
4529	struct sched_param lp;
4530	struct task_struct *p;
4531	int retval;
4532
4533	if (!param || pid < 0)
4534		return -EINVAL;
4535
4536	rcu_read_lock();
4537	p = find_process_by_pid(pid);
4538	retval = -ESRCH;
4539	if (!p)
4540		goto out_unlock;
4541
4542	retval = security_task_getscheduler(p);
4543	if (retval)
4544		goto out_unlock;
4545
4546	lp.sched_priority = p->rt_priority;
4547	rcu_read_unlock();
4548
4549	/*
4550	 * This one might sleep, we cannot do it with a spinlock held ...
4551	 */
4552	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4553
4554	return retval;
4555
4556out_unlock:
4557	rcu_read_unlock();
4558	return retval;
4559}
4560
4561long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4562{
4563	cpumask_var_t cpus_allowed, new_mask;
4564	struct task_struct *p;
4565	int retval;
4566
4567	get_online_cpus();
4568	rcu_read_lock();
4569
4570	p = find_process_by_pid(pid);
4571	if (!p) {
4572		rcu_read_unlock();
4573		put_online_cpus();
4574		return -ESRCH;
4575	}
4576
4577	/* Prevent p going away */
4578	get_task_struct(p);
4579	rcu_read_unlock();
4580
4581	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4582		retval = -ENOMEM;
4583		goto out_put_task;
4584	}
4585	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4586		retval = -ENOMEM;
4587		goto out_free_cpus_allowed;
4588	}
4589	retval = -EPERM;
4590	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4591		goto out_unlock;
4592
4593	retval = security_task_setscheduler(p);
4594	if (retval)
4595		goto out_unlock;
4596
4597	cpuset_cpus_allowed(p, cpus_allowed);
4598	cpumask_and(new_mask, in_mask, cpus_allowed);
4599again:
4600	retval = set_cpus_allowed_ptr(p, new_mask);
4601
4602	if (!retval) {
4603		cpuset_cpus_allowed(p, cpus_allowed);
4604		if (!cpumask_subset(new_mask, cpus_allowed)) {
4605			/*
4606			 * We must have raced with a concurrent cpuset
4607			 * update. Just reset the cpus_allowed to the
4608			 * cpuset's cpus_allowed
4609			 */
4610			cpumask_copy(new_mask, cpus_allowed);
4611			goto again;
4612		}
4613	}
4614out_unlock:
4615	free_cpumask_var(new_mask);
4616out_free_cpus_allowed:
4617	free_cpumask_var(cpus_allowed);
4618out_put_task:
4619	put_task_struct(p);
4620	put_online_cpus();
4621	return retval;
4622}
4623
4624static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4625			     struct cpumask *new_mask)
4626{
4627	if (len < cpumask_size())
4628		cpumask_clear(new_mask);
4629	else if (len > cpumask_size())
4630		len = cpumask_size();
4631
4632	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4633}
4634
4635/**
4636 * sys_sched_setaffinity - set the cpu affinity of a process
4637 * @pid: pid of the process
4638 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4639 * @user_mask_ptr: user-space pointer to the new cpu mask
4640 */
4641SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4642		unsigned long __user *, user_mask_ptr)
4643{
4644	cpumask_var_t new_mask;
4645	int retval;
4646
4647	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4648		return -ENOMEM;
4649
4650	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4651	if (retval == 0)
4652		retval = sched_setaffinity(pid, new_mask);
4653	free_cpumask_var(new_mask);
4654	return retval;
4655}
4656
4657long sched_getaffinity(pid_t pid, struct cpumask *mask)
4658{
4659	struct task_struct *p;
4660	unsigned long flags;
4661	int retval;
4662
4663	get_online_cpus();
4664	rcu_read_lock();
4665
4666	retval = -ESRCH;
4667	p = find_process_by_pid(pid);
4668	if (!p)
4669		goto out_unlock;
4670
4671	retval = security_task_getscheduler(p);
4672	if (retval)
4673		goto out_unlock;
4674
4675	raw_spin_lock_irqsave(&p->pi_lock, flags);
4676	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4677	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4678
4679out_unlock:
4680	rcu_read_unlock();
4681	put_online_cpus();
4682
4683	return retval;
4684}
4685
4686/**
4687 * sys_sched_getaffinity - get the cpu affinity of a process
4688 * @pid: pid of the process
4689 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4690 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4691 */
4692SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4693		unsigned long __user *, user_mask_ptr)
4694{
4695	int ret;
4696	cpumask_var_t mask;
4697
4698	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4699		return -EINVAL;
4700	if (len & (sizeof(unsigned long)-1))
4701		return -EINVAL;
4702
4703	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4704		return -ENOMEM;
4705
4706	ret = sched_getaffinity(pid, mask);
4707	if (ret == 0) {
4708		size_t retlen = min_t(size_t, len, cpumask_size());
4709
4710		if (copy_to_user(user_mask_ptr, mask, retlen))
4711			ret = -EFAULT;
4712		else
4713			ret = retlen;
4714	}
4715	free_cpumask_var(mask);
4716
4717	return ret;
4718}
4719
4720/**
4721 * sys_sched_yield - yield the current processor to other threads.
4722 *
4723 * This function yields the current CPU to other tasks. If there are no
4724 * other threads running on this CPU then this function will return.
4725 */
4726SYSCALL_DEFINE0(sched_yield)
4727{
4728	struct rq *rq = this_rq_lock();
4729
4730	schedstat_inc(rq, yld_count);
4731	current->sched_class->yield_task(rq);
4732
4733	/*
4734	 * Since we are going to call schedule() anyway, there's
4735	 * no need to preempt or enable interrupts:
4736	 */
4737	__release(rq->lock);
4738	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4739	do_raw_spin_unlock(&rq->lock);
4740	sched_preempt_enable_no_resched();
4741
4742	schedule();
4743
4744	return 0;
4745}
4746
4747static inline int should_resched(void)
4748{
4749	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4750}
4751
4752static void __cond_resched(void)
4753{
4754	add_preempt_count(PREEMPT_ACTIVE);
4755	__schedule();
4756	sub_preempt_count(PREEMPT_ACTIVE);
4757}
4758
4759int __sched _cond_resched(void)
4760{
4761	if (should_resched()) {
4762		__cond_resched();
4763		return 1;
4764	}
4765	return 0;
4766}
4767EXPORT_SYMBOL(_cond_resched);
4768
4769/*
4770 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4771 * call schedule, and on return reacquire the lock.
4772 *
4773 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4774 * operations here to prevent schedule() from being called twice (once via
4775 * spin_unlock(), once by hand).
4776 */
4777int __cond_resched_lock(spinlock_t *lock)
4778{
4779	int resched = should_resched();
4780	int ret = 0;
4781
4782	lockdep_assert_held(lock);
4783
4784	if (spin_needbreak(lock) || resched) {
4785		spin_unlock(lock);
4786		if (resched)
4787			__cond_resched();
4788		else
4789			cpu_relax();
4790		ret = 1;
4791		spin_lock(lock);
4792	}
4793	return ret;
4794}
4795EXPORT_SYMBOL(__cond_resched_lock);
4796
4797int __sched __cond_resched_softirq(void)
4798{
4799	BUG_ON(!in_softirq());
4800
4801	if (should_resched()) {
4802		local_bh_enable();
4803		__cond_resched();
4804		local_bh_disable();
4805		return 1;
4806	}
4807	return 0;
4808}
4809EXPORT_SYMBOL(__cond_resched_softirq);
4810
4811/**
4812 * yield - yield the current processor to other threads.
4813 *
4814 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4815 *
4816 * The scheduler is at all times free to pick the calling task as the most
4817 * eligible task to run, if removing the yield() call from your code breaks
4818 * it, its already broken.
4819 *
4820 * Typical broken usage is:
4821 *
4822 * while (!event)
4823 * 	yield();
4824 *
4825 * where one assumes that yield() will let 'the other' process run that will
4826 * make event true. If the current task is a SCHED_FIFO task that will never
4827 * happen. Never use yield() as a progress guarantee!!
4828 *
4829 * If you want to use yield() to wait for something, use wait_event().
4830 * If you want to use yield() to be 'nice' for others, use cond_resched().
4831 * If you still want to use yield(), do not!
4832 */
4833void __sched yield(void)
4834{
4835	set_current_state(TASK_RUNNING);
4836	sys_sched_yield();
4837}
4838EXPORT_SYMBOL(yield);
4839
4840/**
4841 * yield_to - yield the current processor to another thread in
4842 * your thread group, or accelerate that thread toward the
4843 * processor it's on.
4844 * @p: target task
4845 * @preempt: whether task preemption is allowed or not
4846 *
4847 * It's the caller's job to ensure that the target task struct
4848 * can't go away on us before we can do any checks.
4849 *
4850 * Returns true if we indeed boosted the target task.
4851 */
4852bool __sched yield_to(struct task_struct *p, bool preempt)
4853{
4854	struct task_struct *curr = current;
4855	struct rq *rq, *p_rq;
4856	unsigned long flags;
4857	bool yielded = 0;
4858
4859	local_irq_save(flags);
4860	rq = this_rq();
4861
4862again:
4863	p_rq = task_rq(p);
4864	double_rq_lock(rq, p_rq);
4865	while (task_rq(p) != p_rq) {
4866		double_rq_unlock(rq, p_rq);
4867		goto again;
4868	}
4869
4870	if (!curr->sched_class->yield_to_task)
4871		goto out;
4872
4873	if (curr->sched_class != p->sched_class)
4874		goto out;
4875
4876	if (task_running(p_rq, p) || p->state)
4877		goto out;
4878
4879	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4880	if (yielded) {
4881		schedstat_inc(rq, yld_count);
4882		/*
4883		 * Make p's CPU reschedule; pick_next_entity takes care of
4884		 * fairness.
4885		 */
4886		if (preempt && rq != p_rq)
4887			resched_task(p_rq->curr);
4888	} else {
4889		/*
4890		 * We might have set it in task_yield_fair(), but are
4891		 * not going to schedule(), so don't want to skip
4892		 * the next update.
4893		 */
4894		rq->skip_clock_update = 0;
4895	}
4896
4897out:
4898	double_rq_unlock(rq, p_rq);
4899	local_irq_restore(flags);
4900
4901	if (yielded)
4902		schedule();
4903
4904	return yielded;
4905}
4906EXPORT_SYMBOL_GPL(yield_to);
4907
4908/*
4909 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4910 * that process accounting knows that this is a task in IO wait state.
4911 */
4912void __sched io_schedule(void)
4913{
4914	struct rq *rq = raw_rq();
4915
4916	delayacct_blkio_start();
4917	atomic_inc(&rq->nr_iowait);
4918	blk_flush_plug(current);
4919	current->in_iowait = 1;
4920	schedule();
4921	current->in_iowait = 0;
4922	atomic_dec(&rq->nr_iowait);
4923	delayacct_blkio_end();
4924}
4925EXPORT_SYMBOL(io_schedule);
4926
4927long __sched io_schedule_timeout(long timeout)
4928{
4929	struct rq *rq = raw_rq();
4930	long ret;
4931
4932	delayacct_blkio_start();
4933	atomic_inc(&rq->nr_iowait);
4934	blk_flush_plug(current);
4935	current->in_iowait = 1;
4936	ret = schedule_timeout(timeout);
4937	current->in_iowait = 0;
4938	atomic_dec(&rq->nr_iowait);
4939	delayacct_blkio_end();
4940	return ret;
4941}
4942
4943/**
4944 * sys_sched_get_priority_max - return maximum RT priority.
4945 * @policy: scheduling class.
4946 *
4947 * this syscall returns the maximum rt_priority that can be used
4948 * by a given scheduling class.
4949 */
4950SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4951{
4952	int ret = -EINVAL;
4953
4954	switch (policy) {
4955	case SCHED_FIFO:
4956	case SCHED_RR:
4957		ret = MAX_USER_RT_PRIO-1;
4958		break;
4959	case SCHED_NORMAL:
4960	case SCHED_BATCH:
4961	case SCHED_IDLE:
4962		ret = 0;
4963		break;
4964	}
4965	return ret;
4966}
4967
4968/**
4969 * sys_sched_get_priority_min - return minimum RT priority.
4970 * @policy: scheduling class.
4971 *
4972 * this syscall returns the minimum rt_priority that can be used
4973 * by a given scheduling class.
4974 */
4975SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4976{
4977	int ret = -EINVAL;
4978
4979	switch (policy) {
4980	case SCHED_FIFO:
4981	case SCHED_RR:
4982		ret = 1;
4983		break;
4984	case SCHED_NORMAL:
4985	case SCHED_BATCH:
4986	case SCHED_IDLE:
4987		ret = 0;
4988	}
4989	return ret;
4990}
4991
4992/**
4993 * sys_sched_rr_get_interval - return the default timeslice of a process.
4994 * @pid: pid of the process.
4995 * @interval: userspace pointer to the timeslice value.
4996 *
4997 * this syscall writes the default timeslice value of a given process
4998 * into the user-space timespec buffer. A value of '0' means infinity.
4999 */
5000SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5001		struct timespec __user *, interval)
5002{
5003	struct task_struct *p;
5004	unsigned int time_slice;
5005	unsigned long flags;
5006	struct rq *rq;
5007	int retval;
5008	struct timespec t;
5009
5010	if (pid < 0)
5011		return -EINVAL;
5012
5013	retval = -ESRCH;
5014	rcu_read_lock();
5015	p = find_process_by_pid(pid);
5016	if (!p)
5017		goto out_unlock;
5018
5019	retval = security_task_getscheduler(p);
5020	if (retval)
5021		goto out_unlock;
5022
5023	rq = task_rq_lock(p, &flags);
5024	time_slice = p->sched_class->get_rr_interval(rq, p);
5025	task_rq_unlock(rq, p, &flags);
5026
5027	rcu_read_unlock();
5028	jiffies_to_timespec(time_slice, &t);
5029	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5030	return retval;
5031
5032out_unlock:
5033	rcu_read_unlock();
5034	return retval;
5035}
5036
5037static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5038
5039void sched_show_task(struct task_struct *p)
5040{
5041	unsigned long free = 0;
5042	unsigned state;
5043
5044	state = p->state ? __ffs(p->state) + 1 : 0;
5045	printk(KERN_INFO "%-15.15s %c", p->comm,
5046		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5047#if BITS_PER_LONG == 32
5048	if (state == TASK_RUNNING)
5049		printk(KERN_CONT " running  ");
5050	else
5051		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5052#else
5053	if (state == TASK_RUNNING)
5054		printk(KERN_CONT "  running task    ");
5055	else
5056		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5057#endif
5058#ifdef CONFIG_DEBUG_STACK_USAGE
5059	free = stack_not_used(p);
5060#endif
5061	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5062		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
5063		(unsigned long)task_thread_info(p)->flags);
5064
5065	show_stack(p, NULL);
5066}
5067
5068void show_state_filter(unsigned long state_filter)
5069{
5070	struct task_struct *g, *p;
5071
5072#if BITS_PER_LONG == 32
5073	printk(KERN_INFO
5074		"  task                PC stack   pid father\n");
5075#else
5076	printk(KERN_INFO
5077		"  task                        PC stack   pid father\n");
5078#endif
5079	rcu_read_lock();
5080	do_each_thread(g, p) {
5081		/*
5082		 * reset the NMI-timeout, listing all files on a slow
5083		 * console might take a lot of time:
5084		 */
5085		touch_nmi_watchdog();
5086		if (!state_filter || (p->state & state_filter))
5087			sched_show_task(p);
5088	} while_each_thread(g, p);
5089
5090	touch_all_softlockup_watchdogs();
5091
5092#ifdef CONFIG_SCHED_DEBUG
5093	sysrq_sched_debug_show();
5094#endif
5095	rcu_read_unlock();
5096	/*
5097	 * Only show locks if all tasks are dumped:
5098	 */
5099	if (!state_filter)
5100		debug_show_all_locks();
5101}
5102
5103void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5104{
5105	idle->sched_class = &idle_sched_class;
5106}
5107
5108/**
5109 * init_idle - set up an idle thread for a given CPU
5110 * @idle: task in question
5111 * @cpu: cpu the idle task belongs to
5112 *
5113 * NOTE: this function does not set the idle thread's NEED_RESCHED
5114 * flag, to make booting more robust.
5115 */
5116void __cpuinit init_idle(struct task_struct *idle, int cpu)
5117{
5118	struct rq *rq = cpu_rq(cpu);
5119	unsigned long flags;
5120
5121	raw_spin_lock_irqsave(&rq->lock, flags);
5122
5123	__sched_fork(idle);
5124	idle->state = TASK_RUNNING;
5125	idle->se.exec_start = sched_clock();
5126
5127	do_set_cpus_allowed(idle, cpumask_of(cpu));
5128	/*
5129	 * We're having a chicken and egg problem, even though we are
5130	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5131	 * lockdep check in task_group() will fail.
5132	 *
5133	 * Similar case to sched_fork(). / Alternatively we could
5134	 * use task_rq_lock() here and obtain the other rq->lock.
5135	 *
5136	 * Silence PROVE_RCU
5137	 */
5138	rcu_read_lock();
5139	__set_task_cpu(idle, cpu);
5140	rcu_read_unlock();
5141
5142	rq->curr = rq->idle = idle;
5143#if defined(CONFIG_SMP)
5144	idle->on_cpu = 1;
5145#endif
5146	raw_spin_unlock_irqrestore(&rq->lock, flags);
5147
5148	/* Set the preempt count _outside_ the spinlocks! */
5149	task_thread_info(idle)->preempt_count = 0;
5150
5151	/*
5152	 * The idle tasks have their own, simple scheduling class:
5153	 */
5154	idle->sched_class = &idle_sched_class;
5155	ftrace_graph_init_idle_task(idle, cpu);
5156#if defined(CONFIG_SMP)
5157	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5158#endif
5159}
5160
5161#ifdef CONFIG_SMP
5162void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5163{
5164	if (p->sched_class && p->sched_class->set_cpus_allowed)
5165		p->sched_class->set_cpus_allowed(p, new_mask);
5166
5167	cpumask_copy(&p->cpus_allowed, new_mask);
5168	p->nr_cpus_allowed = cpumask_weight(new_mask);
5169}
5170
5171/*
5172 * This is how migration works:
5173 *
5174 * 1) we invoke migration_cpu_stop() on the target CPU using
5175 *    stop_one_cpu().
5176 * 2) stopper starts to run (implicitly forcing the migrated thread
5177 *    off the CPU)
5178 * 3) it checks whether the migrated task is still in the wrong runqueue.
5179 * 4) if it's in the wrong runqueue then the migration thread removes
5180 *    it and puts it into the right queue.
5181 * 5) stopper completes and stop_one_cpu() returns and the migration
5182 *    is done.
5183 */
5184
5185/*
5186 * Change a given task's CPU affinity. Migrate the thread to a
5187 * proper CPU and schedule it away if the CPU it's executing on
5188 * is removed from the allowed bitmask.
5189 *
5190 * NOTE: the caller must have a valid reference to the task, the
5191 * task must not exit() & deallocate itself prematurely. The
5192 * call is not atomic; no spinlocks may be held.
5193 */
5194int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5195{
5196	unsigned long flags;
5197	struct rq *rq;
5198	unsigned int dest_cpu;
5199	int ret = 0;
5200
5201	rq = task_rq_lock(p, &flags);
5202
5203	if (cpumask_equal(&p->cpus_allowed, new_mask))
5204		goto out;
5205
5206	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5207		ret = -EINVAL;
5208		goto out;
5209	}
5210
5211	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5212		ret = -EINVAL;
5213		goto out;
5214	}
5215
5216	do_set_cpus_allowed(p, new_mask);
5217
5218	/* Can the task run on the task's current CPU? If so, we're done */
5219	if (cpumask_test_cpu(task_cpu(p), new_mask))
5220		goto out;
5221
5222	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5223	if (p->on_rq) {
5224		struct migration_arg arg = { p, dest_cpu };
5225		/* Need help from migration thread: drop lock and wait. */
5226		task_rq_unlock(rq, p, &flags);
5227		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5228		tlb_migrate_finish(p->mm);
5229		return 0;
5230	}
5231out:
5232	task_rq_unlock(rq, p, &flags);
5233
5234	return ret;
5235}
5236EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5237
5238/*
5239 * Move (not current) task off this cpu, onto dest cpu. We're doing
5240 * this because either it can't run here any more (set_cpus_allowed()
5241 * away from this CPU, or CPU going down), or because we're
5242 * attempting to rebalance this task on exec (sched_exec).
5243 *
5244 * So we race with normal scheduler movements, but that's OK, as long
5245 * as the task is no longer on this CPU.
5246 *
5247 * Returns non-zero if task was successfully migrated.
5248 */
5249static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5250{
5251	struct rq *rq_dest, *rq_src;
5252	int ret = 0;
5253
5254	if (unlikely(!cpu_active(dest_cpu)))
5255		return ret;
5256
5257	rq_src = cpu_rq(src_cpu);
5258	rq_dest = cpu_rq(dest_cpu);
5259
5260	raw_spin_lock(&p->pi_lock);
5261	double_rq_lock(rq_src, rq_dest);
5262	/* Already moved. */
5263	if (task_cpu(p) != src_cpu)
5264		goto done;
5265	/* Affinity changed (again). */
5266	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5267		goto fail;
5268
5269	/*
5270	 * If we're not on a rq, the next wake-up will ensure we're
5271	 * placed properly.
5272	 */
5273	if (p->on_rq) {
5274		dequeue_task(rq_src, p, 0);
5275		set_task_cpu(p, dest_cpu);
5276		enqueue_task(rq_dest, p, 0);
5277		check_preempt_curr(rq_dest, p, 0);
5278	}
5279done:
5280	ret = 1;
5281fail:
5282	double_rq_unlock(rq_src, rq_dest);
5283	raw_spin_unlock(&p->pi_lock);
5284	return ret;
5285}
5286
5287/*
5288 * migration_cpu_stop - this will be executed by a highprio stopper thread
5289 * and performs thread migration by bumping thread off CPU then
5290 * 'pushing' onto another runqueue.
5291 */
5292static int migration_cpu_stop(void *data)
5293{
5294	struct migration_arg *arg = data;
5295
5296	/*
5297	 * The original target cpu might have gone down and we might
5298	 * be on another cpu but it doesn't matter.
5299	 */
5300	local_irq_disable();
5301	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5302	local_irq_enable();
5303	return 0;
5304}
5305
5306#ifdef CONFIG_HOTPLUG_CPU
5307
5308/*
5309 * Ensures that the idle task is using init_mm right before its cpu goes
5310 * offline.
5311 */
5312void idle_task_exit(void)
5313{
5314	struct mm_struct *mm = current->active_mm;
5315
5316	BUG_ON(cpu_online(smp_processor_id()));
5317
5318	if (mm != &init_mm)
5319		switch_mm(mm, &init_mm, current);
5320	mmdrop(mm);
5321}
5322
5323/*
5324 * Since this CPU is going 'away' for a while, fold any nr_active delta
5325 * we might have. Assumes we're called after migrate_tasks() so that the
5326 * nr_active count is stable.
5327 *
5328 * Also see the comment "Global load-average calculations".
5329 */
5330static void calc_load_migrate(struct rq *rq)
5331{
5332	long delta = calc_load_fold_active(rq);
5333	if (delta)
5334		atomic_long_add(delta, &calc_load_tasks);
5335}
5336
5337/*
5338 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5339 * try_to_wake_up()->select_task_rq().
5340 *
5341 * Called with rq->lock held even though we'er in stop_machine() and
5342 * there's no concurrency possible, we hold the required locks anyway
5343 * because of lock validation efforts.
5344 */
5345static void migrate_tasks(unsigned int dead_cpu)
5346{
5347	struct rq *rq = cpu_rq(dead_cpu);
5348	struct task_struct *next, *stop = rq->stop;
5349	int dest_cpu;
5350
5351	/*
5352	 * Fudge the rq selection such that the below task selection loop
5353	 * doesn't get stuck on the currently eligible stop task.
5354	 *
5355	 * We're currently inside stop_machine() and the rq is either stuck
5356	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5357	 * either way we should never end up calling schedule() until we're
5358	 * done here.
5359	 */
5360	rq->stop = NULL;
5361
5362	for ( ; ; ) {
5363		/*
5364		 * There's this thread running, bail when that's the only
5365		 * remaining thread.
5366		 */
5367		if (rq->nr_running == 1)
5368			break;
5369
5370		next = pick_next_task(rq);
5371		BUG_ON(!next);
5372		next->sched_class->put_prev_task(rq, next);
5373
5374		/* Find suitable destination for @next, with force if needed. */
5375		dest_cpu = select_fallback_rq(dead_cpu, next);
5376		raw_spin_unlock(&rq->lock);
5377
5378		__migrate_task(next, dead_cpu, dest_cpu);
5379
5380		raw_spin_lock(&rq->lock);
5381	}
5382
5383	rq->stop = stop;
5384}
5385
5386#endif /* CONFIG_HOTPLUG_CPU */
5387
5388#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5389
5390static struct ctl_table sd_ctl_dir[] = {
5391	{
5392		.procname	= "sched_domain",
5393		.mode		= 0555,
5394	},
5395	{}
5396};
5397
5398static struct ctl_table sd_ctl_root[] = {
5399	{
5400		.procname	= "kernel",
5401		.mode		= 0555,
5402		.child		= sd_ctl_dir,
5403	},
5404	{}
5405};
5406
5407static struct ctl_table *sd_alloc_ctl_entry(int n)
5408{
5409	struct ctl_table *entry =
5410		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5411
5412	return entry;
5413}
5414
5415static void sd_free_ctl_entry(struct ctl_table **tablep)
5416{
5417	struct ctl_table *entry;
5418
5419	/*
5420	 * In the intermediate directories, both the child directory and
5421	 * procname are dynamically allocated and could fail but the mode
5422	 * will always be set. In the lowest directory the names are
5423	 * static strings and all have proc handlers.
5424	 */
5425	for (entry = *tablep; entry->mode; entry++) {
5426		if (entry->child)
5427			sd_free_ctl_entry(&entry->child);
5428		if (entry->proc_handler == NULL)
5429			kfree(entry->procname);
5430	}
5431
5432	kfree(*tablep);
5433	*tablep = NULL;
5434}
5435
5436static void
5437set_table_entry(struct ctl_table *entry,
5438		const char *procname, void *data, int maxlen,
5439		umode_t mode, proc_handler *proc_handler)
5440{
5441	entry->procname = procname;
5442	entry->data = data;
5443	entry->maxlen = maxlen;
5444	entry->mode = mode;
5445	entry->proc_handler = proc_handler;
5446}
5447
5448static struct ctl_table *
5449sd_alloc_ctl_domain_table(struct sched_domain *sd)
5450{
5451	struct ctl_table *table = sd_alloc_ctl_entry(13);
5452
5453	if (table == NULL)
5454		return NULL;
5455
5456	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5457		sizeof(long), 0644, proc_doulongvec_minmax);
5458	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5459		sizeof(long), 0644, proc_doulongvec_minmax);
5460	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5461		sizeof(int), 0644, proc_dointvec_minmax);
5462	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5463		sizeof(int), 0644, proc_dointvec_minmax);
5464	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5465		sizeof(int), 0644, proc_dointvec_minmax);
5466	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5467		sizeof(int), 0644, proc_dointvec_minmax);
5468	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5469		sizeof(int), 0644, proc_dointvec_minmax);
5470	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5471		sizeof(int), 0644, proc_dointvec_minmax);
5472	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5473		sizeof(int), 0644, proc_dointvec_minmax);
5474	set_table_entry(&table[9], "cache_nice_tries",
5475		&sd->cache_nice_tries,
5476		sizeof(int), 0644, proc_dointvec_minmax);
5477	set_table_entry(&table[10], "flags", &sd->flags,
5478		sizeof(int), 0644, proc_dointvec_minmax);
5479	set_table_entry(&table[11], "name", sd->name,
5480		CORENAME_MAX_SIZE, 0444, proc_dostring);
5481	/* &table[12] is terminator */
5482
5483	return table;
5484}
5485
5486static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5487{
5488	struct ctl_table *entry, *table;
5489	struct sched_domain *sd;
5490	int domain_num = 0, i;
5491	char buf[32];
5492
5493	for_each_domain(cpu, sd)
5494		domain_num++;
5495	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5496	if (table == NULL)
5497		return NULL;
5498
5499	i = 0;
5500	for_each_domain(cpu, sd) {
5501		snprintf(buf, 32, "domain%d", i);
5502		entry->procname = kstrdup(buf, GFP_KERNEL);
5503		entry->mode = 0555;
5504		entry->child = sd_alloc_ctl_domain_table(sd);
5505		entry++;
5506		i++;
5507	}
5508	return table;
5509}
5510
5511static struct ctl_table_header *sd_sysctl_header;
5512static void register_sched_domain_sysctl(void)
5513{
5514	int i, cpu_num = num_possible_cpus();
5515	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5516	char buf[32];
5517
5518	WARN_ON(sd_ctl_dir[0].child);
5519	sd_ctl_dir[0].child = entry;
5520
5521	if (entry == NULL)
5522		return;
5523
5524	for_each_possible_cpu(i) {
5525		snprintf(buf, 32, "cpu%d", i);
5526		entry->procname = kstrdup(buf, GFP_KERNEL);
5527		entry->mode = 0555;
5528		entry->child = sd_alloc_ctl_cpu_table(i);
5529		entry++;
5530	}
5531
5532	WARN_ON(sd_sysctl_header);
5533	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5534}
5535
5536/* may be called multiple times per register */
5537static void unregister_sched_domain_sysctl(void)
5538{
5539	if (sd_sysctl_header)
5540		unregister_sysctl_table(sd_sysctl_header);
5541	sd_sysctl_header = NULL;
5542	if (sd_ctl_dir[0].child)
5543		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5544}
5545#else
5546static void register_sched_domain_sysctl(void)
5547{
5548}
5549static void unregister_sched_domain_sysctl(void)
5550{
5551}
5552#endif
5553
5554static void set_rq_online(struct rq *rq)
5555{
5556	if (!rq->online) {
5557		const struct sched_class *class;
5558
5559		cpumask_set_cpu(rq->cpu, rq->rd->online);
5560		rq->online = 1;
5561
5562		for_each_class(class) {
5563			if (class->rq_online)
5564				class->rq_online(rq);
5565		}
5566	}
5567}
5568
5569static void set_rq_offline(struct rq *rq)
5570{
5571	if (rq->online) {
5572		const struct sched_class *class;
5573
5574		for_each_class(class) {
5575			if (class->rq_offline)
5576				class->rq_offline(rq);
5577		}
5578
5579		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5580		rq->online = 0;
5581	}
5582}
5583
5584/*
5585 * migration_call - callback that gets triggered when a CPU is added.
5586 * Here we can start up the necessary migration thread for the new CPU.
5587 */
5588static int __cpuinit
5589migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5590{
5591	int cpu = (long)hcpu;
5592	unsigned long flags;
5593	struct rq *rq = cpu_rq(cpu);
5594
5595	switch (action & ~CPU_TASKS_FROZEN) {
5596
5597	case CPU_UP_PREPARE:
5598		rq->calc_load_update = calc_load_update;
5599		break;
5600
5601	case CPU_ONLINE:
5602		/* Update our root-domain */
5603		raw_spin_lock_irqsave(&rq->lock, flags);
5604		if (rq->rd) {
5605			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5606
5607			set_rq_online(rq);
5608		}
5609		raw_spin_unlock_irqrestore(&rq->lock, flags);
5610		break;
5611
5612#ifdef CONFIG_HOTPLUG_CPU
5613	case CPU_DYING:
5614		sched_ttwu_pending();
5615		/* Update our root-domain */
5616		raw_spin_lock_irqsave(&rq->lock, flags);
5617		if (rq->rd) {
5618			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5619			set_rq_offline(rq);
5620		}
5621		migrate_tasks(cpu);
5622		BUG_ON(rq->nr_running != 1); /* the migration thread */
5623		raw_spin_unlock_irqrestore(&rq->lock, flags);
5624		break;
5625
5626	case CPU_DEAD:
5627		calc_load_migrate(rq);
5628		break;
5629#endif
5630	}
5631
5632	update_max_interval();
5633
5634	return NOTIFY_OK;
5635}
5636
5637/*
5638 * Register at high priority so that task migration (migrate_all_tasks)
5639 * happens before everything else.  This has to be lower priority than
5640 * the notifier in the perf_event subsystem, though.
5641 */
5642static struct notifier_block __cpuinitdata migration_notifier = {
5643	.notifier_call = migration_call,
5644	.priority = CPU_PRI_MIGRATION,
5645};
5646
5647static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5648				      unsigned long action, void *hcpu)
5649{
5650	switch (action & ~CPU_TASKS_FROZEN) {
5651	case CPU_STARTING:
5652	case CPU_DOWN_FAILED:
5653		set_cpu_active((long)hcpu, true);
5654		return NOTIFY_OK;
5655	default:
5656		return NOTIFY_DONE;
5657	}
5658}
5659
5660static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5661					unsigned long action, void *hcpu)
5662{
5663	switch (action & ~CPU_TASKS_FROZEN) {
5664	case CPU_DOWN_PREPARE:
5665		set_cpu_active((long)hcpu, false);
5666		return NOTIFY_OK;
5667	default:
5668		return NOTIFY_DONE;
5669	}
5670}
5671
5672static int __init migration_init(void)
5673{
5674	void *cpu = (void *)(long)smp_processor_id();
5675	int err;
5676
5677	/* Initialize migration for the boot CPU */
5678	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5679	BUG_ON(err == NOTIFY_BAD);
5680	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5681	register_cpu_notifier(&migration_notifier);
5682
5683	/* Register cpu active notifiers */
5684	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5685	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5686
5687	return 0;
5688}
5689early_initcall(migration_init);
5690#endif
5691
5692#ifdef CONFIG_SMP
5693
5694static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5695
5696#ifdef CONFIG_SCHED_DEBUG
5697
5698static __read_mostly int sched_debug_enabled;
5699
5700static int __init sched_debug_setup(char *str)
5701{
5702	sched_debug_enabled = 1;
5703
5704	return 0;
5705}
5706early_param("sched_debug", sched_debug_setup);
5707
5708static inline bool sched_debug(void)
5709{
5710	return sched_debug_enabled;
5711}
5712
5713static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5714				  struct cpumask *groupmask)
5715{
5716	struct sched_group *group = sd->groups;
5717	char str[256];
5718
5719	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5720	cpumask_clear(groupmask);
5721
5722	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5723
5724	if (!(sd->flags & SD_LOAD_BALANCE)) {
5725		printk("does not load-balance\n");
5726		if (sd->parent)
5727			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5728					" has parent");
5729		return -1;
5730	}
5731
5732	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5733
5734	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5735		printk(KERN_ERR "ERROR: domain->span does not contain "
5736				"CPU%d\n", cpu);
5737	}
5738	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5739		printk(KERN_ERR "ERROR: domain->groups does not contain"
5740				" CPU%d\n", cpu);
5741	}
5742
5743	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5744	do {
5745		if (!group) {
5746			printk("\n");
5747			printk(KERN_ERR "ERROR: group is NULL\n");
5748			break;
5749		}
5750
5751		/*
5752		 * Even though we initialize ->power to something semi-sane,
5753		 * we leave power_orig unset. This allows us to detect if
5754		 * domain iteration is still funny without causing /0 traps.
5755		 */
5756		if (!group->sgp->power_orig) {
5757			printk(KERN_CONT "\n");
5758			printk(KERN_ERR "ERROR: domain->cpu_power not "
5759					"set\n");
5760			break;
5761		}
5762
5763		if (!cpumask_weight(sched_group_cpus(group))) {
5764			printk(KERN_CONT "\n");
5765			printk(KERN_ERR "ERROR: empty group\n");
5766			break;
5767		}
5768
5769		if (!(sd->flags & SD_OVERLAP) &&
5770		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5771			printk(KERN_CONT "\n");
5772			printk(KERN_ERR "ERROR: repeated CPUs\n");
5773			break;
5774		}
5775
5776		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5777
5778		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5779
5780		printk(KERN_CONT " %s", str);
5781		if (group->sgp->power != SCHED_POWER_SCALE) {
5782			printk(KERN_CONT " (cpu_power = %d)",
5783				group->sgp->power);
5784		}
5785
5786		group = group->next;
5787	} while (group != sd->groups);
5788	printk(KERN_CONT "\n");
5789
5790	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5791		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5792
5793	if (sd->parent &&
5794	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5795		printk(KERN_ERR "ERROR: parent span is not a superset "
5796			"of domain->span\n");
5797	return 0;
5798}
5799
5800static void sched_domain_debug(struct sched_domain *sd, int cpu)
5801{
5802	int level = 0;
5803
5804	if (!sched_debug_enabled)
5805		return;
5806
5807	if (!sd) {
5808		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5809		return;
5810	}
5811
5812	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5813
5814	for (;;) {
5815		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5816			break;
5817		level++;
5818		sd = sd->parent;
5819		if (!sd)
5820			break;
5821	}
5822}
5823#else /* !CONFIG_SCHED_DEBUG */
5824# define sched_domain_debug(sd, cpu) do { } while (0)
5825static inline bool sched_debug(void)
5826{
5827	return false;
5828}
5829#endif /* CONFIG_SCHED_DEBUG */
5830
5831static int sd_degenerate(struct sched_domain *sd)
5832{
5833	if (cpumask_weight(sched_domain_span(sd)) == 1)
5834		return 1;
5835
5836	/* Following flags need at least 2 groups */
5837	if (sd->flags & (SD_LOAD_BALANCE |
5838			 SD_BALANCE_NEWIDLE |
5839			 SD_BALANCE_FORK |
5840			 SD_BALANCE_EXEC |
5841			 SD_SHARE_CPUPOWER |
5842			 SD_SHARE_PKG_RESOURCES)) {
5843		if (sd->groups != sd->groups->next)
5844			return 0;
5845	}
5846
5847	/* Following flags don't use groups */
5848	if (sd->flags & (SD_WAKE_AFFINE))
5849		return 0;
5850
5851	return 1;
5852}
5853
5854static int
5855sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5856{
5857	unsigned long cflags = sd->flags, pflags = parent->flags;
5858
5859	if (sd_degenerate(parent))
5860		return 1;
5861
5862	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5863		return 0;
5864
5865	/* Flags needing groups don't count if only 1 group in parent */
5866	if (parent->groups == parent->groups->next) {
5867		pflags &= ~(SD_LOAD_BALANCE |
5868				SD_BALANCE_NEWIDLE |
5869				SD_BALANCE_FORK |
5870				SD_BALANCE_EXEC |
5871				SD_SHARE_CPUPOWER |
5872				SD_SHARE_PKG_RESOURCES);
5873		if (nr_node_ids == 1)
5874			pflags &= ~SD_SERIALIZE;
5875	}
5876	if (~cflags & pflags)
5877		return 0;
5878
5879	return 1;
5880}
5881
5882static void free_rootdomain(struct rcu_head *rcu)
5883{
5884	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5885
5886	cpupri_cleanup(&rd->cpupri);
5887	free_cpumask_var(rd->rto_mask);
5888	free_cpumask_var(rd->online);
5889	free_cpumask_var(rd->span);
5890	kfree(rd);
5891}
5892
5893static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5894{
5895	struct root_domain *old_rd = NULL;
5896	unsigned long flags;
5897
5898	raw_spin_lock_irqsave(&rq->lock, flags);
5899
5900	if (rq->rd) {
5901		old_rd = rq->rd;
5902
5903		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5904			set_rq_offline(rq);
5905
5906		cpumask_clear_cpu(rq->cpu, old_rd->span);
5907
5908		/*
5909		 * If we dont want to free the old_rt yet then
5910		 * set old_rd to NULL to skip the freeing later
5911		 * in this function:
5912		 */
5913		if (!atomic_dec_and_test(&old_rd->refcount))
5914			old_rd = NULL;
5915	}
5916
5917	atomic_inc(&rd->refcount);
5918	rq->rd = rd;
5919
5920	cpumask_set_cpu(rq->cpu, rd->span);
5921	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5922		set_rq_online(rq);
5923
5924	raw_spin_unlock_irqrestore(&rq->lock, flags);
5925
5926	if (old_rd)
5927		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5928}
5929
5930static int init_rootdomain(struct root_domain *rd)
5931{
5932	memset(rd, 0, sizeof(*rd));
5933
5934	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5935		goto out;
5936	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5937		goto free_span;
5938	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5939		goto free_online;
5940
5941	if (cpupri_init(&rd->cpupri) != 0)
5942		goto free_rto_mask;
5943	return 0;
5944
5945free_rto_mask:
5946	free_cpumask_var(rd->rto_mask);
5947free_online:
5948	free_cpumask_var(rd->online);
5949free_span:
5950	free_cpumask_var(rd->span);
5951out:
5952	return -ENOMEM;
5953}
5954
5955/*
5956 * By default the system creates a single root-domain with all cpus as
5957 * members (mimicking the global state we have today).
5958 */
5959struct root_domain def_root_domain;
5960
5961static void init_defrootdomain(void)
5962{
5963	init_rootdomain(&def_root_domain);
5964
5965	atomic_set(&def_root_domain.refcount, 1);
5966}
5967
5968static struct root_domain *alloc_rootdomain(void)
5969{
5970	struct root_domain *rd;
5971
5972	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5973	if (!rd)
5974		return NULL;
5975
5976	if (init_rootdomain(rd) != 0) {
5977		kfree(rd);
5978		return NULL;
5979	}
5980
5981	return rd;
5982}
5983
5984static void free_sched_groups(struct sched_group *sg, int free_sgp)
5985{
5986	struct sched_group *tmp, *first;
5987
5988	if (!sg)
5989		return;
5990
5991	first = sg;
5992	do {
5993		tmp = sg->next;
5994
5995		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5996			kfree(sg->sgp);
5997
5998		kfree(sg);
5999		sg = tmp;
6000	} while (sg != first);
6001}
6002
6003static void free_sched_domain(struct rcu_head *rcu)
6004{
6005	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6006
6007	/*
6008	 * If its an overlapping domain it has private groups, iterate and
6009	 * nuke them all.
6010	 */
6011	if (sd->flags & SD_OVERLAP) {
6012		free_sched_groups(sd->groups, 1);
6013	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6014		kfree(sd->groups->sgp);
6015		kfree(sd->groups);
6016	}
6017	kfree(sd);
6018}
6019
6020static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6021{
6022	call_rcu(&sd->rcu, free_sched_domain);
6023}
6024
6025static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6026{
6027	for (; sd; sd = sd->parent)
6028		destroy_sched_domain(sd, cpu);
6029}
6030
6031/*
6032 * Keep a special pointer to the highest sched_domain that has
6033 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6034 * allows us to avoid some pointer chasing select_idle_sibling().
6035 *
6036 * Also keep a unique ID per domain (we use the first cpu number in
6037 * the cpumask of the domain), this allows us to quickly tell if
6038 * two cpus are in the same cache domain, see cpus_share_cache().
6039 */
6040DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6041DEFINE_PER_CPU(int, sd_llc_id);
6042
6043static void update_top_cache_domain(int cpu)
6044{
6045	struct sched_domain *sd;
6046	int id = cpu;
6047
6048	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6049	if (sd)
6050		id = cpumask_first(sched_domain_span(sd));
6051
6052	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6053	per_cpu(sd_llc_id, cpu) = id;
6054}
6055
6056/*
6057 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6058 * hold the hotplug lock.
6059 */
6060static void
6061cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6062{
6063	struct rq *rq = cpu_rq(cpu);
6064	struct sched_domain *tmp;
6065
6066	/* Remove the sched domains which do not contribute to scheduling. */
6067	for (tmp = sd; tmp; ) {
6068		struct sched_domain *parent = tmp->parent;
6069		if (!parent)
6070			break;
6071
6072		if (sd_parent_degenerate(tmp, parent)) {
6073			tmp->parent = parent->parent;
6074			if (parent->parent)
6075				parent->parent->child = tmp;
6076			destroy_sched_domain(parent, cpu);
6077		} else
6078			tmp = tmp->parent;
6079	}
6080
6081	if (sd && sd_degenerate(sd)) {
6082		tmp = sd;
6083		sd = sd->parent;
6084		destroy_sched_domain(tmp, cpu);
6085		if (sd)
6086			sd->child = NULL;
6087	}
6088
6089	sched_domain_debug(sd, cpu);
6090
6091	rq_attach_root(rq, rd);
6092	tmp = rq->sd;
6093	rcu_assign_pointer(rq->sd, sd);
6094	destroy_sched_domains(tmp, cpu);
6095
6096	update_top_cache_domain(cpu);
6097}
6098
6099/* cpus with isolated domains */
6100static cpumask_var_t cpu_isolated_map;
6101
6102/* Setup the mask of cpus configured for isolated domains */
6103static int __init isolated_cpu_setup(char *str)
6104{
6105	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6106	cpulist_parse(str, cpu_isolated_map);
6107	return 1;
6108}
6109
6110__setup("isolcpus=", isolated_cpu_setup);
6111
6112static const struct cpumask *cpu_cpu_mask(int cpu)
6113{
6114	return cpumask_of_node(cpu_to_node(cpu));
6115}
6116
6117struct sd_data {
6118	struct sched_domain **__percpu sd;
6119	struct sched_group **__percpu sg;
6120	struct sched_group_power **__percpu sgp;
6121};
6122
6123struct s_data {
6124	struct sched_domain ** __percpu sd;
6125	struct root_domain	*rd;
6126};
6127
6128enum s_alloc {
6129	sa_rootdomain,
6130	sa_sd,
6131	sa_sd_storage,
6132	sa_none,
6133};
6134
6135struct sched_domain_topology_level;
6136
6137typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6138typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6139
6140#define SDTL_OVERLAP	0x01
6141
6142struct sched_domain_topology_level {
6143	sched_domain_init_f init;
6144	sched_domain_mask_f mask;
6145	int		    flags;
6146	int		    numa_level;
6147	struct sd_data      data;
6148};
6149
6150/*
6151 * Build an iteration mask that can exclude certain CPUs from the upwards
6152 * domain traversal.
6153 *
6154 * Asymmetric node setups can result in situations where the domain tree is of
6155 * unequal depth, make sure to skip domains that already cover the entire
6156 * range.
6157 *
6158 * In that case build_sched_domains() will have terminated the iteration early
6159 * and our sibling sd spans will be empty. Domains should always include the
6160 * cpu they're built on, so check that.
6161 *
6162 */
6163static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6164{
6165	const struct cpumask *span = sched_domain_span(sd);
6166	struct sd_data *sdd = sd->private;
6167	struct sched_domain *sibling;
6168	int i;
6169
6170	for_each_cpu(i, span) {
6171		sibling = *per_cpu_ptr(sdd->sd, i);
6172		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6173			continue;
6174
6175		cpumask_set_cpu(i, sched_group_mask(sg));
6176	}
6177}
6178
6179/*
6180 * Return the canonical balance cpu for this group, this is the first cpu
6181 * of this group that's also in the iteration mask.
6182 */
6183int group_balance_cpu(struct sched_group *sg)
6184{
6185	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6186}
6187
6188static int
6189build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6190{
6191	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6192	const struct cpumask *span = sched_domain_span(sd);
6193	struct cpumask *covered = sched_domains_tmpmask;
6194	struct sd_data *sdd = sd->private;
6195	struct sched_domain *child;
6196	int i;
6197
6198	cpumask_clear(covered);
6199
6200	for_each_cpu(i, span) {
6201		struct cpumask *sg_span;
6202
6203		if (cpumask_test_cpu(i, covered))
6204			continue;
6205
6206		child = *per_cpu_ptr(sdd->sd, i);
6207
6208		/* See the comment near build_group_mask(). */
6209		if (!cpumask_test_cpu(i, sched_domain_span(child)))
6210			continue;
6211
6212		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6213				GFP_KERNEL, cpu_to_node(cpu));
6214
6215		if (!sg)
6216			goto fail;
6217
6218		sg_span = sched_group_cpus(sg);
6219		if (child->child) {
6220			child = child->child;
6221			cpumask_copy(sg_span, sched_domain_span(child));
6222		} else
6223			cpumask_set_cpu(i, sg_span);
6224
6225		cpumask_or(covered, covered, sg_span);
6226
6227		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
6228		if (atomic_inc_return(&sg->sgp->ref) == 1)
6229			build_group_mask(sd, sg);
6230
6231		/*
6232		 * Initialize sgp->power such that even if we mess up the
6233		 * domains and no possible iteration will get us here, we won't
6234		 * die on a /0 trap.
6235		 */
6236		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
6237
6238		/*
6239		 * Make sure the first group of this domain contains the
6240		 * canonical balance cpu. Otherwise the sched_domain iteration
6241		 * breaks. See update_sg_lb_stats().
6242		 */
6243		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6244		    group_balance_cpu(sg) == cpu)
6245			groups = sg;
6246
6247		if (!first)
6248			first = sg;
6249		if (last)
6250			last->next = sg;
6251		last = sg;
6252		last->next = first;
6253	}
6254	sd->groups = groups;
6255
6256	return 0;
6257
6258fail:
6259	free_sched_groups(first, 0);
6260
6261	return -ENOMEM;
6262}
6263
6264static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6265{
6266	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6267	struct sched_domain *child = sd->child;
6268
6269	if (child)
6270		cpu = cpumask_first(sched_domain_span(child));
6271
6272	if (sg) {
6273		*sg = *per_cpu_ptr(sdd->sg, cpu);
6274		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6275		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6276	}
6277
6278	return cpu;
6279}
6280
6281/*
6282 * build_sched_groups will build a circular linked list of the groups
6283 * covered by the given span, and will set each group's ->cpumask correctly,
6284 * and ->cpu_power to 0.
6285 *
6286 * Assumes the sched_domain tree is fully constructed
6287 */
6288static int
6289build_sched_groups(struct sched_domain *sd, int cpu)
6290{
6291	struct sched_group *first = NULL, *last = NULL;
6292	struct sd_data *sdd = sd->private;
6293	const struct cpumask *span = sched_domain_span(sd);
6294	struct cpumask *covered;
6295	int i;
6296
6297	get_group(cpu, sdd, &sd->groups);
6298	atomic_inc(&sd->groups->ref);
6299
6300	if (cpu != cpumask_first(sched_domain_span(sd)))
6301		return 0;
6302
6303	lockdep_assert_held(&sched_domains_mutex);
6304	covered = sched_domains_tmpmask;
6305
6306	cpumask_clear(covered);
6307
6308	for_each_cpu(i, span) {
6309		struct sched_group *sg;
6310		int group = get_group(i, sdd, &sg);
6311		int j;
6312
6313		if (cpumask_test_cpu(i, covered))
6314			continue;
6315
6316		cpumask_clear(sched_group_cpus(sg));
6317		sg->sgp->power = 0;
6318		cpumask_setall(sched_group_mask(sg));
6319
6320		for_each_cpu(j, span) {
6321			if (get_group(j, sdd, NULL) != group)
6322				continue;
6323
6324			cpumask_set_cpu(j, covered);
6325			cpumask_set_cpu(j, sched_group_cpus(sg));
6326		}
6327
6328		if (!first)
6329			first = sg;
6330		if (last)
6331			last->next = sg;
6332		last = sg;
6333	}
6334	last->next = first;
6335
6336	return 0;
6337}
6338
6339/*
6340 * Initialize sched groups cpu_power.
6341 *
6342 * cpu_power indicates the capacity of sched group, which is used while
6343 * distributing the load between different sched groups in a sched domain.
6344 * Typically cpu_power for all the groups in a sched domain will be same unless
6345 * there are asymmetries in the topology. If there are asymmetries, group
6346 * having more cpu_power will pickup more load compared to the group having
6347 * less cpu_power.
6348 */
6349static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6350{
6351	struct sched_group *sg = sd->groups;
6352
6353	WARN_ON(!sd || !sg);
6354
6355	do {
6356		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6357		sg = sg->next;
6358	} while (sg != sd->groups);
6359
6360	if (cpu != group_balance_cpu(sg))
6361		return;
6362
6363	update_group_power(sd, cpu);
6364	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6365}
6366
6367int __weak arch_sd_sibling_asym_packing(void)
6368{
6369       return 0*SD_ASYM_PACKING;
6370}
6371
6372/*
6373 * Initializers for schedule domains
6374 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6375 */
6376
6377#ifdef CONFIG_SCHED_DEBUG
6378# define SD_INIT_NAME(sd, type)		sd->name = #type
6379#else
6380# define SD_INIT_NAME(sd, type)		do { } while (0)
6381#endif
6382
6383#define SD_INIT_FUNC(type)						\
6384static noinline struct sched_domain *					\
6385sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6386{									\
6387	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6388	*sd = SD_##type##_INIT;						\
6389	SD_INIT_NAME(sd, type);						\
6390	sd->private = &tl->data;					\
6391	return sd;							\
6392}
6393
6394SD_INIT_FUNC(CPU)
6395#ifdef CONFIG_SCHED_SMT
6396 SD_INIT_FUNC(SIBLING)
6397#endif
6398#ifdef CONFIG_SCHED_MC
6399 SD_INIT_FUNC(MC)
6400#endif
6401#ifdef CONFIG_SCHED_BOOK
6402 SD_INIT_FUNC(BOOK)
6403#endif
6404
6405static int default_relax_domain_level = -1;
6406int sched_domain_level_max;
6407
6408static int __init setup_relax_domain_level(char *str)
6409{
6410	if (kstrtoint(str, 0, &default_relax_domain_level))
6411		pr_warn("Unable to set relax_domain_level\n");
6412
6413	return 1;
6414}
6415__setup("relax_domain_level=", setup_relax_domain_level);
6416
6417static void set_domain_attribute(struct sched_domain *sd,
6418				 struct sched_domain_attr *attr)
6419{
6420	int request;
6421
6422	if (!attr || attr->relax_domain_level < 0) {
6423		if (default_relax_domain_level < 0)
6424			return;
6425		else
6426			request = default_relax_domain_level;
6427	} else
6428		request = attr->relax_domain_level;
6429	if (request < sd->level) {
6430		/* turn off idle balance on this domain */
6431		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6432	} else {
6433		/* turn on idle balance on this domain */
6434		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6435	}
6436}
6437
6438static void __sdt_free(const struct cpumask *cpu_map);
6439static int __sdt_alloc(const struct cpumask *cpu_map);
6440
6441static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6442				 const struct cpumask *cpu_map)
6443{
6444	switch (what) {
6445	case sa_rootdomain:
6446		if (!atomic_read(&d->rd->refcount))
6447			free_rootdomain(&d->rd->rcu); /* fall through */
6448	case sa_sd:
6449		free_percpu(d->sd); /* fall through */
6450	case sa_sd_storage:
6451		__sdt_free(cpu_map); /* fall through */
6452	case sa_none:
6453		break;
6454	}
6455}
6456
6457static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6458						   const struct cpumask *cpu_map)
6459{
6460	memset(d, 0, sizeof(*d));
6461
6462	if (__sdt_alloc(cpu_map))
6463		return sa_sd_storage;
6464	d->sd = alloc_percpu(struct sched_domain *);
6465	if (!d->sd)
6466		return sa_sd_storage;
6467	d->rd = alloc_rootdomain();
6468	if (!d->rd)
6469		return sa_sd;
6470	return sa_rootdomain;
6471}
6472
6473/*
6474 * NULL the sd_data elements we've used to build the sched_domain and
6475 * sched_group structure so that the subsequent __free_domain_allocs()
6476 * will not free the data we're using.
6477 */
6478static void claim_allocations(int cpu, struct sched_domain *sd)
6479{
6480	struct sd_data *sdd = sd->private;
6481
6482	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6483	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6484
6485	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6486		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6487
6488	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6489		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6490}
6491
6492#ifdef CONFIG_SCHED_SMT
6493static const struct cpumask *cpu_smt_mask(int cpu)
6494{
6495	return topology_thread_cpumask(cpu);
6496}
6497#endif
6498
6499/*
6500 * Topology list, bottom-up.
6501 */
6502static struct sched_domain_topology_level default_topology[] = {
6503#ifdef CONFIG_SCHED_SMT
6504	{ sd_init_SIBLING, cpu_smt_mask, },
6505#endif
6506#ifdef CONFIG_SCHED_MC
6507	{ sd_init_MC, cpu_coregroup_mask, },
6508#endif
6509#ifdef CONFIG_SCHED_BOOK
6510	{ sd_init_BOOK, cpu_book_mask, },
6511#endif
6512	{ sd_init_CPU, cpu_cpu_mask, },
6513	{ NULL, },
6514};
6515
6516static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6517
6518#ifdef CONFIG_NUMA
6519
6520static int sched_domains_numa_levels;
6521static int *sched_domains_numa_distance;
6522static struct cpumask ***sched_domains_numa_masks;
6523static int sched_domains_curr_level;
6524
6525static inline int sd_local_flags(int level)
6526{
6527	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6528		return 0;
6529
6530	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6531}
6532
6533static struct sched_domain *
6534sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6535{
6536	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6537	int level = tl->numa_level;
6538	int sd_weight = cpumask_weight(
6539			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6540
6541	*sd = (struct sched_domain){
6542		.min_interval		= sd_weight,
6543		.max_interval		= 2*sd_weight,
6544		.busy_factor		= 32,
6545		.imbalance_pct		= 125,
6546		.cache_nice_tries	= 2,
6547		.busy_idx		= 3,
6548		.idle_idx		= 2,
6549		.newidle_idx		= 0,
6550		.wake_idx		= 0,
6551		.forkexec_idx		= 0,
6552
6553		.flags			= 1*SD_LOAD_BALANCE
6554					| 1*SD_BALANCE_NEWIDLE
6555					| 0*SD_BALANCE_EXEC
6556					| 0*SD_BALANCE_FORK
6557					| 0*SD_BALANCE_WAKE
6558					| 0*SD_WAKE_AFFINE
6559					| 0*SD_PREFER_LOCAL
6560					| 0*SD_SHARE_CPUPOWER
6561					| 0*SD_SHARE_PKG_RESOURCES
6562					| 1*SD_SERIALIZE
6563					| 0*SD_PREFER_SIBLING
6564					| sd_local_flags(level)
6565					,
6566		.last_balance		= jiffies,
6567		.balance_interval	= sd_weight,
6568	};
6569	SD_INIT_NAME(sd, NUMA);
6570	sd->private = &tl->data;
6571
6572	/*
6573	 * Ugly hack to pass state to sd_numa_mask()...
6574	 */
6575	sched_domains_curr_level = tl->numa_level;
6576
6577	return sd;
6578}
6579
6580static const struct cpumask *sd_numa_mask(int cpu)
6581{
6582	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6583}
6584
6585static void sched_numa_warn(const char *str)
6586{
6587	static int done = false;
6588	int i,j;
6589
6590	if (done)
6591		return;
6592
6593	done = true;
6594
6595	printk(KERN_WARNING "ERROR: %s\n\n", str);
6596
6597	for (i = 0; i < nr_node_ids; i++) {
6598		printk(KERN_WARNING "  ");
6599		for (j = 0; j < nr_node_ids; j++)
6600			printk(KERN_CONT "%02d ", node_distance(i,j));
6601		printk(KERN_CONT "\n");
6602	}
6603	printk(KERN_WARNING "\n");
6604}
6605
6606static bool find_numa_distance(int distance)
6607{
6608	int i;
6609
6610	if (distance == node_distance(0, 0))
6611		return true;
6612
6613	for (i = 0; i < sched_domains_numa_levels; i++) {
6614		if (sched_domains_numa_distance[i] == distance)
6615			return true;
6616	}
6617
6618	return false;
6619}
6620
6621static void sched_init_numa(void)
6622{
6623	int next_distance, curr_distance = node_distance(0, 0);
6624	struct sched_domain_topology_level *tl;
6625	int level = 0;
6626	int i, j, k;
6627
6628	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6629	if (!sched_domains_numa_distance)
6630		return;
6631
6632	/*
6633	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6634	 * unique distances in the node_distance() table.
6635	 *
6636	 * Assumes node_distance(0,j) includes all distances in
6637	 * node_distance(i,j) in order to avoid cubic time.
6638	 */
6639	next_distance = curr_distance;
6640	for (i = 0; i < nr_node_ids; i++) {
6641		for (j = 0; j < nr_node_ids; j++) {
6642			for (k = 0; k < nr_node_ids; k++) {
6643				int distance = node_distance(i, k);
6644
6645				if (distance > curr_distance &&
6646				    (distance < next_distance ||
6647				     next_distance == curr_distance))
6648					next_distance = distance;
6649
6650				/*
6651				 * While not a strong assumption it would be nice to know
6652				 * about cases where if node A is connected to B, B is not
6653				 * equally connected to A.
6654				 */
6655				if (sched_debug() && node_distance(k, i) != distance)
6656					sched_numa_warn("Node-distance not symmetric");
6657
6658				if (sched_debug() && i && !find_numa_distance(distance))
6659					sched_numa_warn("Node-0 not representative");
6660			}
6661			if (next_distance != curr_distance) {
6662				sched_domains_numa_distance[level++] = next_distance;
6663				sched_domains_numa_levels = level;
6664				curr_distance = next_distance;
6665			} else break;
6666		}
6667
6668		/*
6669		 * In case of sched_debug() we verify the above assumption.
6670		 */
6671		if (!sched_debug())
6672			break;
6673	}
6674	/*
6675	 * 'level' contains the number of unique distances, excluding the
6676	 * identity distance node_distance(i,i).
6677	 *
6678	 * The sched_domains_nume_distance[] array includes the actual distance
6679	 * numbers.
6680	 */
6681
6682	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6683	if (!sched_domains_numa_masks)
6684		return;
6685
6686	/*
6687	 * Now for each level, construct a mask per node which contains all
6688	 * cpus of nodes that are that many hops away from us.
6689	 */
6690	for (i = 0; i < level; i++) {
6691		sched_domains_numa_masks[i] =
6692			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6693		if (!sched_domains_numa_masks[i])
6694			return;
6695
6696		for (j = 0; j < nr_node_ids; j++) {
6697			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6698			if (!mask)
6699				return;
6700
6701			sched_domains_numa_masks[i][j] = mask;
6702
6703			for (k = 0; k < nr_node_ids; k++) {
6704				if (node_distance(j, k) > sched_domains_numa_distance[i])
6705					continue;
6706
6707				cpumask_or(mask, mask, cpumask_of_node(k));
6708			}
6709		}
6710	}
6711
6712	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6713			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6714	if (!tl)
6715		return;
6716
6717	/*
6718	 * Copy the default topology bits..
6719	 */
6720	for (i = 0; default_topology[i].init; i++)
6721		tl[i] = default_topology[i];
6722
6723	/*
6724	 * .. and append 'j' levels of NUMA goodness.
6725	 */
6726	for (j = 0; j < level; i++, j++) {
6727		tl[i] = (struct sched_domain_topology_level){
6728			.init = sd_numa_init,
6729			.mask = sd_numa_mask,
6730			.flags = SDTL_OVERLAP,
6731			.numa_level = j,
6732		};
6733	}
6734
6735	sched_domain_topology = tl;
6736}
6737#else
6738static inline void sched_init_numa(void)
6739{
6740}
6741#endif /* CONFIG_NUMA */
6742
6743static int __sdt_alloc(const struct cpumask *cpu_map)
6744{
6745	struct sched_domain_topology_level *tl;
6746	int j;
6747
6748	for (tl = sched_domain_topology; tl->init; tl++) {
6749		struct sd_data *sdd = &tl->data;
6750
6751		sdd->sd = alloc_percpu(struct sched_domain *);
6752		if (!sdd->sd)
6753			return -ENOMEM;
6754
6755		sdd->sg = alloc_percpu(struct sched_group *);
6756		if (!sdd->sg)
6757			return -ENOMEM;
6758
6759		sdd->sgp = alloc_percpu(struct sched_group_power *);
6760		if (!sdd->sgp)
6761			return -ENOMEM;
6762
6763		for_each_cpu(j, cpu_map) {
6764			struct sched_domain *sd;
6765			struct sched_group *sg;
6766			struct sched_group_power *sgp;
6767
6768		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6769					GFP_KERNEL, cpu_to_node(j));
6770			if (!sd)
6771				return -ENOMEM;
6772
6773			*per_cpu_ptr(sdd->sd, j) = sd;
6774
6775			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6776					GFP_KERNEL, cpu_to_node(j));
6777			if (!sg)
6778				return -ENOMEM;
6779
6780			sg->next = sg;
6781
6782			*per_cpu_ptr(sdd->sg, j) = sg;
6783
6784			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6785					GFP_KERNEL, cpu_to_node(j));
6786			if (!sgp)
6787				return -ENOMEM;
6788
6789			*per_cpu_ptr(sdd->sgp, j) = sgp;
6790		}
6791	}
6792
6793	return 0;
6794}
6795
6796static void __sdt_free(const struct cpumask *cpu_map)
6797{
6798	struct sched_domain_topology_level *tl;
6799	int j;
6800
6801	for (tl = sched_domain_topology; tl->init; tl++) {
6802		struct sd_data *sdd = &tl->data;
6803
6804		for_each_cpu(j, cpu_map) {
6805			struct sched_domain *sd;
6806
6807			if (sdd->sd) {
6808				sd = *per_cpu_ptr(sdd->sd, j);
6809				if (sd && (sd->flags & SD_OVERLAP))
6810					free_sched_groups(sd->groups, 0);
6811				kfree(*per_cpu_ptr(sdd->sd, j));
6812			}
6813
6814			if (sdd->sg)
6815				kfree(*per_cpu_ptr(sdd->sg, j));
6816			if (sdd->sgp)
6817				kfree(*per_cpu_ptr(sdd->sgp, j));
6818		}
6819		free_percpu(sdd->sd);
6820		sdd->sd = NULL;
6821		free_percpu(sdd->sg);
6822		sdd->sg = NULL;
6823		free_percpu(sdd->sgp);
6824		sdd->sgp = NULL;
6825	}
6826}
6827
6828struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6829		struct s_data *d, const struct cpumask *cpu_map,
6830		struct sched_domain_attr *attr, struct sched_domain *child,
6831		int cpu)
6832{
6833	struct sched_domain *sd = tl->init(tl, cpu);
6834	if (!sd)
6835		return child;
6836
6837	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6838	if (child) {
6839		sd->level = child->level + 1;
6840		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6841		child->parent = sd;
6842	}
6843	sd->child = child;
6844	set_domain_attribute(sd, attr);
6845
6846	return sd;
6847}
6848
6849/*
6850 * Build sched domains for a given set of cpus and attach the sched domains
6851 * to the individual cpus
6852 */
6853static int build_sched_domains(const struct cpumask *cpu_map,
6854			       struct sched_domain_attr *attr)
6855{
6856	enum s_alloc alloc_state = sa_none;
6857	struct sched_domain *sd;
6858	struct s_data d;
6859	int i, ret = -ENOMEM;
6860
6861	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6862	if (alloc_state != sa_rootdomain)
6863		goto error;
6864
6865	/* Set up domains for cpus specified by the cpu_map. */
6866	for_each_cpu(i, cpu_map) {
6867		struct sched_domain_topology_level *tl;
6868
6869		sd = NULL;
6870		for (tl = sched_domain_topology; tl->init; tl++) {
6871			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6872			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6873				sd->flags |= SD_OVERLAP;
6874			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6875				break;
6876		}
6877
6878		while (sd->child)
6879			sd = sd->child;
6880
6881		*per_cpu_ptr(d.sd, i) = sd;
6882	}
6883
6884	/* Build the groups for the domains */
6885	for_each_cpu(i, cpu_map) {
6886		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6887			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6888			if (sd->flags & SD_OVERLAP) {
6889				if (build_overlap_sched_groups(sd, i))
6890					goto error;
6891			} else {
6892				if (build_sched_groups(sd, i))
6893					goto error;
6894			}
6895		}
6896	}
6897
6898	/* Calculate CPU power for physical packages and nodes */
6899	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6900		if (!cpumask_test_cpu(i, cpu_map))
6901			continue;
6902
6903		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6904			claim_allocations(i, sd);
6905			init_sched_groups_power(i, sd);
6906		}
6907	}
6908
6909	/* Attach the domains */
6910	rcu_read_lock();
6911	for_each_cpu(i, cpu_map) {
6912		sd = *per_cpu_ptr(d.sd, i);
6913		cpu_attach_domain(sd, d.rd, i);
6914	}
6915	rcu_read_unlock();
6916
6917	ret = 0;
6918error:
6919	__free_domain_allocs(&d, alloc_state, cpu_map);
6920	return ret;
6921}
6922
6923static cpumask_var_t *doms_cur;	/* current sched domains */
6924static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6925static struct sched_domain_attr *dattr_cur;
6926				/* attribues of custom domains in 'doms_cur' */
6927
6928/*
6929 * Special case: If a kmalloc of a doms_cur partition (array of
6930 * cpumask) fails, then fallback to a single sched domain,
6931 * as determined by the single cpumask fallback_doms.
6932 */
6933static cpumask_var_t fallback_doms;
6934
6935/*
6936 * arch_update_cpu_topology lets virtualized architectures update the
6937 * cpu core maps. It is supposed to return 1 if the topology changed
6938 * or 0 if it stayed the same.
6939 */
6940int __attribute__((weak)) arch_update_cpu_topology(void)
6941{
6942	return 0;
6943}
6944
6945cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6946{
6947	int i;
6948	cpumask_var_t *doms;
6949
6950	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6951	if (!doms)
6952		return NULL;
6953	for (i = 0; i < ndoms; i++) {
6954		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6955			free_sched_domains(doms, i);
6956			return NULL;
6957		}
6958	}
6959	return doms;
6960}
6961
6962void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6963{
6964	unsigned int i;
6965	for (i = 0; i < ndoms; i++)
6966		free_cpumask_var(doms[i]);
6967	kfree(doms);
6968}
6969
6970/*
6971 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6972 * For now this just excludes isolated cpus, but could be used to
6973 * exclude other special cases in the future.
6974 */
6975static int init_sched_domains(const struct cpumask *cpu_map)
6976{
6977	int err;
6978
6979	arch_update_cpu_topology();
6980	ndoms_cur = 1;
6981	doms_cur = alloc_sched_domains(ndoms_cur);
6982	if (!doms_cur)
6983		doms_cur = &fallback_doms;
6984	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6985	err = build_sched_domains(doms_cur[0], NULL);
6986	register_sched_domain_sysctl();
6987
6988	return err;
6989}
6990
6991/*
6992 * Detach sched domains from a group of cpus specified in cpu_map
6993 * These cpus will now be attached to the NULL domain
6994 */
6995static void detach_destroy_domains(const struct cpumask *cpu_map)
6996{
6997	int i;
6998
6999	rcu_read_lock();
7000	for_each_cpu(i, cpu_map)
7001		cpu_attach_domain(NULL, &def_root_domain, i);
7002	rcu_read_unlock();
7003}
7004
7005/* handle null as "default" */
7006static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7007			struct sched_domain_attr *new, int idx_new)
7008{
7009	struct sched_domain_attr tmp;
7010
7011	/* fast path */
7012	if (!new && !cur)
7013		return 1;
7014
7015	tmp = SD_ATTR_INIT;
7016	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7017			new ? (new + idx_new) : &tmp,
7018			sizeof(struct sched_domain_attr));
7019}
7020
7021/*
7022 * Partition sched domains as specified by the 'ndoms_new'
7023 * cpumasks in the array doms_new[] of cpumasks. This compares
7024 * doms_new[] to the current sched domain partitioning, doms_cur[].
7025 * It destroys each deleted domain and builds each new domain.
7026 *
7027 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7028 * The masks don't intersect (don't overlap.) We should setup one
7029 * sched domain for each mask. CPUs not in any of the cpumasks will
7030 * not be load balanced. If the same cpumask appears both in the
7031 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7032 * it as it is.
7033 *
7034 * The passed in 'doms_new' should be allocated using
7035 * alloc_sched_domains.  This routine takes ownership of it and will
7036 * free_sched_domains it when done with it. If the caller failed the
7037 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7038 * and partition_sched_domains() will fallback to the single partition
7039 * 'fallback_doms', it also forces the domains to be rebuilt.
7040 *
7041 * If doms_new == NULL it will be replaced with cpu_online_mask.
7042 * ndoms_new == 0 is a special case for destroying existing domains,
7043 * and it will not create the default domain.
7044 *
7045 * Call with hotplug lock held
7046 */
7047void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7048			     struct sched_domain_attr *dattr_new)
7049{
7050	int i, j, n;
7051	int new_topology;
7052
7053	mutex_lock(&sched_domains_mutex);
7054
7055	/* always unregister in case we don't destroy any domains */
7056	unregister_sched_domain_sysctl();
7057
7058	/* Let architecture update cpu core mappings. */
7059	new_topology = arch_update_cpu_topology();
7060
7061	n = doms_new ? ndoms_new : 0;
7062
7063	/* Destroy deleted domains */
7064	for (i = 0; i < ndoms_cur; i++) {
7065		for (j = 0; j < n && !new_topology; j++) {
7066			if (cpumask_equal(doms_cur[i], doms_new[j])
7067			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7068				goto match1;
7069		}
7070		/* no match - a current sched domain not in new doms_new[] */
7071		detach_destroy_domains(doms_cur[i]);
7072match1:
7073		;
7074	}
7075
7076	if (doms_new == NULL) {
7077		ndoms_cur = 0;
7078		doms_new = &fallback_doms;
7079		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7080		WARN_ON_ONCE(dattr_new);
7081	}
7082
7083	/* Build new domains */
7084	for (i = 0; i < ndoms_new; i++) {
7085		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7086			if (cpumask_equal(doms_new[i], doms_cur[j])
7087			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7088				goto match2;
7089		}
7090		/* no match - add a new doms_new */
7091		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7092match2:
7093		;
7094	}
7095
7096	/* Remember the new sched domains */
7097	if (doms_cur != &fallback_doms)
7098		free_sched_domains(doms_cur, ndoms_cur);
7099	kfree(dattr_cur);	/* kfree(NULL) is safe */
7100	doms_cur = doms_new;
7101	dattr_cur = dattr_new;
7102	ndoms_cur = ndoms_new;
7103
7104	register_sched_domain_sysctl();
7105
7106	mutex_unlock(&sched_domains_mutex);
7107}
7108
7109static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7110
7111/*
7112 * Update cpusets according to cpu_active mask.  If cpusets are
7113 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7114 * around partition_sched_domains().
7115 *
7116 * If we come here as part of a suspend/resume, don't touch cpusets because we
7117 * want to restore it back to its original state upon resume anyway.
7118 */
7119static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7120			     void *hcpu)
7121{
7122	switch (action) {
7123	case CPU_ONLINE_FROZEN:
7124	case CPU_DOWN_FAILED_FROZEN:
7125
7126		/*
7127		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7128		 * resume sequence. As long as this is not the last online
7129		 * operation in the resume sequence, just build a single sched
7130		 * domain, ignoring cpusets.
7131		 */
7132		num_cpus_frozen--;
7133		if (likely(num_cpus_frozen)) {
7134			partition_sched_domains(1, NULL, NULL);
7135			break;
7136		}
7137
7138		/*
7139		 * This is the last CPU online operation. So fall through and
7140		 * restore the original sched domains by considering the
7141		 * cpuset configurations.
7142		 */
7143
7144	case CPU_ONLINE:
7145	case CPU_DOWN_FAILED:
7146		cpuset_update_active_cpus(true);
7147		break;
7148	default:
7149		return NOTIFY_DONE;
7150	}
7151	return NOTIFY_OK;
7152}
7153
7154static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7155			       void *hcpu)
7156{
7157	switch (action) {
7158	case CPU_DOWN_PREPARE:
7159		cpuset_update_active_cpus(false);
7160		break;
7161	case CPU_DOWN_PREPARE_FROZEN:
7162		num_cpus_frozen++;
7163		partition_sched_domains(1, NULL, NULL);
7164		break;
7165	default:
7166		return NOTIFY_DONE;
7167	}
7168	return NOTIFY_OK;
7169}
7170
7171void __init sched_init_smp(void)
7172{
7173	cpumask_var_t non_isolated_cpus;
7174
7175	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7176	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7177
7178	sched_init_numa();
7179
7180	get_online_cpus();
7181	mutex_lock(&sched_domains_mutex);
7182	init_sched_domains(cpu_active_mask);
7183	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7184	if (cpumask_empty(non_isolated_cpus))
7185		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7186	mutex_unlock(&sched_domains_mutex);
7187	put_online_cpus();
7188
7189	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7190	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7191
7192	/* RT runtime code needs to handle some hotplug events */
7193	hotcpu_notifier(update_runtime, 0);
7194
7195	init_hrtick();
7196
7197	/* Move init over to a non-isolated CPU */
7198	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7199		BUG();
7200	sched_init_granularity();
7201	free_cpumask_var(non_isolated_cpus);
7202
7203	init_sched_rt_class();
7204}
7205#else
7206void __init sched_init_smp(void)
7207{
7208	sched_init_granularity();
7209}
7210#endif /* CONFIG_SMP */
7211
7212const_debug unsigned int sysctl_timer_migration = 1;
7213
7214int in_sched_functions(unsigned long addr)
7215{
7216	return in_lock_functions(addr) ||
7217		(addr >= (unsigned long)__sched_text_start
7218		&& addr < (unsigned long)__sched_text_end);
7219}
7220
7221#ifdef CONFIG_CGROUP_SCHED
7222struct task_group root_task_group;
7223LIST_HEAD(task_groups);
7224#endif
7225
7226DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
7227
7228void __init sched_init(void)
7229{
7230	int i, j;
7231	unsigned long alloc_size = 0, ptr;
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239#ifdef CONFIG_CPUMASK_OFFSTACK
7240	alloc_size += num_possible_cpus() * cpumask_size();
7241#endif
7242	if (alloc_size) {
7243		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7244
7245#ifdef CONFIG_FAIR_GROUP_SCHED
7246		root_task_group.se = (struct sched_entity **)ptr;
7247		ptr += nr_cpu_ids * sizeof(void **);
7248
7249		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7250		ptr += nr_cpu_ids * sizeof(void **);
7251
7252#endif /* CONFIG_FAIR_GROUP_SCHED */
7253#ifdef CONFIG_RT_GROUP_SCHED
7254		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7255		ptr += nr_cpu_ids * sizeof(void **);
7256
7257		root_task_group.rt_rq = (struct rt_rq **)ptr;
7258		ptr += nr_cpu_ids * sizeof(void **);
7259
7260#endif /* CONFIG_RT_GROUP_SCHED */
7261#ifdef CONFIG_CPUMASK_OFFSTACK
7262		for_each_possible_cpu(i) {
7263			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7264			ptr += cpumask_size();
7265		}
7266#endif /* CONFIG_CPUMASK_OFFSTACK */
7267	}
7268
7269#ifdef CONFIG_SMP
7270	init_defrootdomain();
7271#endif
7272
7273	init_rt_bandwidth(&def_rt_bandwidth,
7274			global_rt_period(), global_rt_runtime());
7275
7276#ifdef CONFIG_RT_GROUP_SCHED
7277	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7278			global_rt_period(), global_rt_runtime());
7279#endif /* CONFIG_RT_GROUP_SCHED */
7280
7281#ifdef CONFIG_CGROUP_SCHED
7282	list_add(&root_task_group.list, &task_groups);
7283	INIT_LIST_HEAD(&root_task_group.children);
7284	INIT_LIST_HEAD(&root_task_group.siblings);
7285	autogroup_init(&init_task);
7286
7287#endif /* CONFIG_CGROUP_SCHED */
7288
7289#ifdef CONFIG_CGROUP_CPUACCT
7290	root_cpuacct.cpustat = &kernel_cpustat;
7291	root_cpuacct.cpuusage = alloc_percpu(u64);
7292	/* Too early, not expected to fail */
7293	BUG_ON(!root_cpuacct.cpuusage);
7294#endif
7295	for_each_possible_cpu(i) {
7296		struct rq *rq;
7297
7298		rq = cpu_rq(i);
7299		raw_spin_lock_init(&rq->lock);
7300		rq->nr_running = 0;
7301		rq->calc_load_active = 0;
7302		rq->calc_load_update = jiffies + LOAD_FREQ;
7303		init_cfs_rq(&rq->cfs);
7304		init_rt_rq(&rq->rt, rq);
7305#ifdef CONFIG_FAIR_GROUP_SCHED
7306		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7307		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7308		/*
7309		 * How much cpu bandwidth does root_task_group get?
7310		 *
7311		 * In case of task-groups formed thr' the cgroup filesystem, it
7312		 * gets 100% of the cpu resources in the system. This overall
7313		 * system cpu resource is divided among the tasks of
7314		 * root_task_group and its child task-groups in a fair manner,
7315		 * based on each entity's (task or task-group's) weight
7316		 * (se->load.weight).
7317		 *
7318		 * In other words, if root_task_group has 10 tasks of weight
7319		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7320		 * then A0's share of the cpu resource is:
7321		 *
7322		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7323		 *
7324		 * We achieve this by letting root_task_group's tasks sit
7325		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7326		 */
7327		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7328		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7329#endif /* CONFIG_FAIR_GROUP_SCHED */
7330
7331		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7332#ifdef CONFIG_RT_GROUP_SCHED
7333		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7334		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7335#endif
7336
7337		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7338			rq->cpu_load[j] = 0;
7339
7340		rq->last_load_update_tick = jiffies;
7341
7342#ifdef CONFIG_SMP
7343		rq->sd = NULL;
7344		rq->rd = NULL;
7345		rq->cpu_power = SCHED_POWER_SCALE;
7346		rq->post_schedule = 0;
7347		rq->active_balance = 0;
7348		rq->next_balance = jiffies;
7349		rq->push_cpu = 0;
7350		rq->cpu = i;
7351		rq->online = 0;
7352		rq->idle_stamp = 0;
7353		rq->avg_idle = 2*sysctl_sched_migration_cost;
7354
7355		INIT_LIST_HEAD(&rq->cfs_tasks);
7356
7357		rq_attach_root(rq, &def_root_domain);
7358#ifdef CONFIG_NO_HZ
7359		rq->nohz_flags = 0;
7360#endif
7361#endif
7362		init_rq_hrtick(rq);
7363		atomic_set(&rq->nr_iowait, 0);
7364	}
7365
7366	set_load_weight(&init_task);
7367
7368#ifdef CONFIG_PREEMPT_NOTIFIERS
7369	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7370#endif
7371
7372#ifdef CONFIG_RT_MUTEXES
7373	plist_head_init(&init_task.pi_waiters);
7374#endif
7375
7376	/*
7377	 * The boot idle thread does lazy MMU switching as well:
7378	 */
7379	atomic_inc(&init_mm.mm_count);
7380	enter_lazy_tlb(&init_mm, current);
7381
7382	/*
7383	 * Make us the idle thread. Technically, schedule() should not be
7384	 * called from this thread, however somewhere below it might be,
7385	 * but because we are the idle thread, we just pick up running again
7386	 * when this runqueue becomes "idle".
7387	 */
7388	init_idle(current, smp_processor_id());
7389
7390	calc_load_update = jiffies + LOAD_FREQ;
7391
7392	/*
7393	 * During early bootup we pretend to be a normal task:
7394	 */
7395	current->sched_class = &fair_sched_class;
7396
7397#ifdef CONFIG_SMP
7398	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7399	/* May be allocated at isolcpus cmdline parse time */
7400	if (cpu_isolated_map == NULL)
7401		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7402	idle_thread_set_boot_cpu();
7403#endif
7404	init_sched_fair_class();
7405
7406	scheduler_running = 1;
7407}
7408
7409#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7410static inline int preempt_count_equals(int preempt_offset)
7411{
7412	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7413
7414	return (nested == preempt_offset);
7415}
7416
7417void __might_sleep(const char *file, int line, int preempt_offset)
7418{
7419	static unsigned long prev_jiffy;	/* ratelimiting */
7420
7421	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7422	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7423	    system_state != SYSTEM_RUNNING || oops_in_progress)
7424		return;
7425	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7426		return;
7427	prev_jiffy = jiffies;
7428
7429	printk(KERN_ERR
7430		"BUG: sleeping function called from invalid context at %s:%d\n",
7431			file, line);
7432	printk(KERN_ERR
7433		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7434			in_atomic(), irqs_disabled(),
7435			current->pid, current->comm);
7436
7437	debug_show_held_locks(current);
7438	if (irqs_disabled())
7439		print_irqtrace_events(current);
7440	dump_stack();
7441}
7442EXPORT_SYMBOL(__might_sleep);
7443#endif
7444
7445#ifdef CONFIG_MAGIC_SYSRQ
7446static void normalize_task(struct rq *rq, struct task_struct *p)
7447{
7448	const struct sched_class *prev_class = p->sched_class;
7449	int old_prio = p->prio;
7450	int on_rq;
7451
7452	on_rq = p->on_rq;
7453	if (on_rq)
7454		dequeue_task(rq, p, 0);
7455	__setscheduler(rq, p, SCHED_NORMAL, 0);
7456	if (on_rq) {
7457		enqueue_task(rq, p, 0);
7458		resched_task(rq->curr);
7459	}
7460
7461	check_class_changed(rq, p, prev_class, old_prio);
7462}
7463
7464void normalize_rt_tasks(void)
7465{
7466	struct task_struct *g, *p;
7467	unsigned long flags;
7468	struct rq *rq;
7469
7470	read_lock_irqsave(&tasklist_lock, flags);
7471	do_each_thread(g, p) {
7472		/*
7473		 * Only normalize user tasks:
7474		 */
7475		if (!p->mm)
7476			continue;
7477
7478		p->se.exec_start		= 0;
7479#ifdef CONFIG_SCHEDSTATS
7480		p->se.statistics.wait_start	= 0;
7481		p->se.statistics.sleep_start	= 0;
7482		p->se.statistics.block_start	= 0;
7483#endif
7484
7485		if (!rt_task(p)) {
7486			/*
7487			 * Renice negative nice level userspace
7488			 * tasks back to 0:
7489			 */
7490			if (TASK_NICE(p) < 0 && p->mm)
7491				set_user_nice(p, 0);
7492			continue;
7493		}
7494
7495		raw_spin_lock(&p->pi_lock);
7496		rq = __task_rq_lock(p);
7497
7498		normalize_task(rq, p);
7499
7500		__task_rq_unlock(rq);
7501		raw_spin_unlock(&p->pi_lock);
7502	} while_each_thread(g, p);
7503
7504	read_unlock_irqrestore(&tasklist_lock, flags);
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
7508
7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510/*
7511 * These functions are only useful for the IA64 MCA handling, or kdb.
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525 */
7526struct task_struct *curr_task(int cpu)
7527{
7528	return cpu_curr(cpu);
7529}
7530
7531#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7532
7533#ifdef CONFIG_IA64
7534/**
7535 * set_curr_task - set the current task for a given cpu.
7536 * @cpu: the processor in question.
7537 * @p: the task pointer to set.
7538 *
7539 * Description: This function must only be used when non-maskable interrupts
7540 * are serviced on a separate stack. It allows the architecture to switch the
7541 * notion of the current task on a cpu in a non-blocking manner. This function
7542 * must be called with all CPU's synchronized, and interrupts disabled, the
7543 * and caller must save the original value of the current task (see
7544 * curr_task() above) and restore that value before reenabling interrupts and
7545 * re-starting the system.
7546 *
7547 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7548 */
7549void set_curr_task(int cpu, struct task_struct *p)
7550{
7551	cpu_curr(cpu) = p;
7552}
7553
7554#endif
7555
7556#ifdef CONFIG_CGROUP_SCHED
7557/* task_group_lock serializes the addition/removal of task groups */
7558static DEFINE_SPINLOCK(task_group_lock);
7559
7560static void free_sched_group(struct task_group *tg)
7561{
7562	free_fair_sched_group(tg);
7563	free_rt_sched_group(tg);
7564	autogroup_free(tg);
7565	kfree(tg);
7566}
7567
7568/* allocate runqueue etc for a new task group */
7569struct task_group *sched_create_group(struct task_group *parent)
7570{
7571	struct task_group *tg;
7572	unsigned long flags;
7573
7574	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7575	if (!tg)
7576		return ERR_PTR(-ENOMEM);
7577
7578	if (!alloc_fair_sched_group(tg, parent))
7579		goto err;
7580
7581	if (!alloc_rt_sched_group(tg, parent))
7582		goto err;
7583
7584	spin_lock_irqsave(&task_group_lock, flags);
7585	list_add_rcu(&tg->list, &task_groups);
7586
7587	WARN_ON(!parent); /* root should already exist */
7588
7589	tg->parent = parent;
7590	INIT_LIST_HEAD(&tg->children);
7591	list_add_rcu(&tg->siblings, &parent->children);
7592	spin_unlock_irqrestore(&task_group_lock, flags);
7593
7594	return tg;
7595
7596err:
7597	free_sched_group(tg);
7598	return ERR_PTR(-ENOMEM);
7599}
7600
7601/* rcu callback to free various structures associated with a task group */
7602static void free_sched_group_rcu(struct rcu_head *rhp)
7603{
7604	/* now it should be safe to free those cfs_rqs */
7605	free_sched_group(container_of(rhp, struct task_group, rcu));
7606}
7607
7608/* Destroy runqueue etc associated with a task group */
7609void sched_destroy_group(struct task_group *tg)
7610{
7611	unsigned long flags;
7612	int i;
7613
7614	/* end participation in shares distribution */
7615	for_each_possible_cpu(i)
7616		unregister_fair_sched_group(tg, i);
7617
7618	spin_lock_irqsave(&task_group_lock, flags);
7619	list_del_rcu(&tg->list);
7620	list_del_rcu(&tg->siblings);
7621	spin_unlock_irqrestore(&task_group_lock, flags);
7622
7623	/* wait for possible concurrent references to cfs_rqs complete */
7624	call_rcu(&tg->rcu, free_sched_group_rcu);
7625}
7626
7627/* change task's runqueue when it moves between groups.
7628 *	The caller of this function should have put the task in its new group
7629 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7630 *	reflect its new group.
7631 */
7632void sched_move_task(struct task_struct *tsk)
7633{
7634	struct task_group *tg;
7635	int on_rq, running;
7636	unsigned long flags;
7637	struct rq *rq;
7638
7639	rq = task_rq_lock(tsk, &flags);
7640
7641	running = task_current(rq, tsk);
7642	on_rq = tsk->on_rq;
7643
7644	if (on_rq)
7645		dequeue_task(rq, tsk, 0);
7646	if (unlikely(running))
7647		tsk->sched_class->put_prev_task(rq, tsk);
7648
7649	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7650				lockdep_is_held(&tsk->sighand->siglock)),
7651			  struct task_group, css);
7652	tg = autogroup_task_group(tsk, tg);
7653	tsk->sched_task_group = tg;
7654
7655#ifdef CONFIG_FAIR_GROUP_SCHED
7656	if (tsk->sched_class->task_move_group)
7657		tsk->sched_class->task_move_group(tsk, on_rq);
7658	else
7659#endif
7660		set_task_rq(tsk, task_cpu(tsk));
7661
7662	if (unlikely(running))
7663		tsk->sched_class->set_curr_task(rq);
7664	if (on_rq)
7665		enqueue_task(rq, tsk, 0);
7666
7667	task_rq_unlock(rq, tsk, &flags);
7668}
7669#endif /* CONFIG_CGROUP_SCHED */
7670
7671#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7672static unsigned long to_ratio(u64 period, u64 runtime)
7673{
7674	if (runtime == RUNTIME_INF)
7675		return 1ULL << 20;
7676
7677	return div64_u64(runtime << 20, period);
7678}
7679#endif
7680
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
7686
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
7689{
7690	struct task_struct *g, *p;
7691
7692	do_each_thread(g, p) {
7693		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7694			return 1;
7695	} while_each_thread(g, p);
7696
7697	return 0;
7698}
7699
7700struct rt_schedulable_data {
7701	struct task_group *tg;
7702	u64 rt_period;
7703	u64 rt_runtime;
7704};
7705
7706static int tg_rt_schedulable(struct task_group *tg, void *data)
7707{
7708	struct rt_schedulable_data *d = data;
7709	struct task_group *child;
7710	unsigned long total, sum = 0;
7711	u64 period, runtime;
7712
7713	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7714	runtime = tg->rt_bandwidth.rt_runtime;
7715
7716	if (tg == d->tg) {
7717		period = d->rt_period;
7718		runtime = d->rt_runtime;
7719	}
7720
7721	/*
7722	 * Cannot have more runtime than the period.
7723	 */
7724	if (runtime > period && runtime != RUNTIME_INF)
7725		return -EINVAL;
7726
7727	/*
7728	 * Ensure we don't starve existing RT tasks.
7729	 */
7730	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7731		return -EBUSY;
7732
7733	total = to_ratio(period, runtime);
7734
7735	/*
7736	 * Nobody can have more than the global setting allows.
7737	 */
7738	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7739		return -EINVAL;
7740
7741	/*
7742	 * The sum of our children's runtime should not exceed our own.
7743	 */
7744	list_for_each_entry_rcu(child, &tg->children, siblings) {
7745		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7746		runtime = child->rt_bandwidth.rt_runtime;
7747
7748		if (child == d->tg) {
7749			period = d->rt_period;
7750			runtime = d->rt_runtime;
7751		}
7752
7753		sum += to_ratio(period, runtime);
7754	}
7755
7756	if (sum > total)
7757		return -EINVAL;
7758
7759	return 0;
7760}
7761
7762static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7763{
7764	int ret;
7765
7766	struct rt_schedulable_data data = {
7767		.tg = tg,
7768		.rt_period = period,
7769		.rt_runtime = runtime,
7770	};
7771
7772	rcu_read_lock();
7773	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7774	rcu_read_unlock();
7775
7776	return ret;
7777}
7778
7779static int tg_set_rt_bandwidth(struct task_group *tg,
7780		u64 rt_period, u64 rt_runtime)
7781{
7782	int i, err = 0;
7783
7784	mutex_lock(&rt_constraints_mutex);
7785	read_lock(&tasklist_lock);
7786	err = __rt_schedulable(tg, rt_period, rt_runtime);
7787	if (err)
7788		goto unlock;
7789
7790	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7791	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7792	tg->rt_bandwidth.rt_runtime = rt_runtime;
7793
7794	for_each_possible_cpu(i) {
7795		struct rt_rq *rt_rq = tg->rt_rq[i];
7796
7797		raw_spin_lock(&rt_rq->rt_runtime_lock);
7798		rt_rq->rt_runtime = rt_runtime;
7799		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7800	}
7801	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7802unlock:
7803	read_unlock(&tasklist_lock);
7804	mutex_unlock(&rt_constraints_mutex);
7805
7806	return err;
7807}
7808
7809int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7810{
7811	u64 rt_runtime, rt_period;
7812
7813	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7814	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7815	if (rt_runtime_us < 0)
7816		rt_runtime = RUNTIME_INF;
7817
7818	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7819}
7820
7821long sched_group_rt_runtime(struct task_group *tg)
7822{
7823	u64 rt_runtime_us;
7824
7825	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7826		return -1;
7827
7828	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7829	do_div(rt_runtime_us, NSEC_PER_USEC);
7830	return rt_runtime_us;
7831}
7832
7833int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7834{
7835	u64 rt_runtime, rt_period;
7836
7837	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7838	rt_runtime = tg->rt_bandwidth.rt_runtime;
7839
7840	if (rt_period == 0)
7841		return -EINVAL;
7842
7843	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7844}
7845
7846long sched_group_rt_period(struct task_group *tg)
7847{
7848	u64 rt_period_us;
7849
7850	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7851	do_div(rt_period_us, NSEC_PER_USEC);
7852	return rt_period_us;
7853}
7854
7855static int sched_rt_global_constraints(void)
7856{
7857	u64 runtime, period;
7858	int ret = 0;
7859
7860	if (sysctl_sched_rt_period <= 0)
7861		return -EINVAL;
7862
7863	runtime = global_rt_runtime();
7864	period = global_rt_period();
7865
7866	/*
7867	 * Sanity check on the sysctl variables.
7868	 */
7869	if (runtime > period && runtime != RUNTIME_INF)
7870		return -EINVAL;
7871
7872	mutex_lock(&rt_constraints_mutex);
7873	read_lock(&tasklist_lock);
7874	ret = __rt_schedulable(NULL, 0, 0);
7875	read_unlock(&tasklist_lock);
7876	mutex_unlock(&rt_constraints_mutex);
7877
7878	return ret;
7879}
7880
7881int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7882{
7883	/* Don't accept realtime tasks when there is no way for them to run */
7884	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7885		return 0;
7886
7887	return 1;
7888}
7889
7890#else /* !CONFIG_RT_GROUP_SCHED */
7891static int sched_rt_global_constraints(void)
7892{
7893	unsigned long flags;
7894	int i;
7895
7896	if (sysctl_sched_rt_period <= 0)
7897		return -EINVAL;
7898
7899	/*
7900	 * There's always some RT tasks in the root group
7901	 * -- migration, kstopmachine etc..
7902	 */
7903	if (sysctl_sched_rt_runtime == 0)
7904		return -EBUSY;
7905
7906	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7907	for_each_possible_cpu(i) {
7908		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7909
7910		raw_spin_lock(&rt_rq->rt_runtime_lock);
7911		rt_rq->rt_runtime = global_rt_runtime();
7912		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7913	}
7914	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7915
7916	return 0;
7917}
7918#endif /* CONFIG_RT_GROUP_SCHED */
7919
7920int sched_rt_handler(struct ctl_table *table, int write,
7921		void __user *buffer, size_t *lenp,
7922		loff_t *ppos)
7923{
7924	int ret;
7925	int old_period, old_runtime;
7926	static DEFINE_MUTEX(mutex);
7927
7928	mutex_lock(&mutex);
7929	old_period = sysctl_sched_rt_period;
7930	old_runtime = sysctl_sched_rt_runtime;
7931
7932	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7933
7934	if (!ret && write) {
7935		ret = sched_rt_global_constraints();
7936		if (ret) {
7937			sysctl_sched_rt_period = old_period;
7938			sysctl_sched_rt_runtime = old_runtime;
7939		} else {
7940			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7941			def_rt_bandwidth.rt_period =
7942				ns_to_ktime(global_rt_period());
7943		}
7944	}
7945	mutex_unlock(&mutex);
7946
7947	return ret;
7948}
7949
7950#ifdef CONFIG_CGROUP_SCHED
7951
7952/* return corresponding task_group object of a cgroup */
7953static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7954{
7955	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7956			    struct task_group, css);
7957}
7958
7959static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7960{
7961	struct task_group *tg, *parent;
7962
7963	if (!cgrp->parent) {
7964		/* This is early initialization for the top cgroup */
7965		return &root_task_group.css;
7966	}
7967
7968	parent = cgroup_tg(cgrp->parent);
7969	tg = sched_create_group(parent);
7970	if (IS_ERR(tg))
7971		return ERR_PTR(-ENOMEM);
7972
7973	return &tg->css;
7974}
7975
7976static void cpu_cgroup_destroy(struct cgroup *cgrp)
7977{
7978	struct task_group *tg = cgroup_tg(cgrp);
7979
7980	sched_destroy_group(tg);
7981}
7982
7983static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7984				 struct cgroup_taskset *tset)
7985{
7986	struct task_struct *task;
7987
7988	cgroup_taskset_for_each(task, cgrp, tset) {
7989#ifdef CONFIG_RT_GROUP_SCHED
7990		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7991			return -EINVAL;
7992#else
7993		/* We don't support RT-tasks being in separate groups */
7994		if (task->sched_class != &fair_sched_class)
7995			return -EINVAL;
7996#endif
7997	}
7998	return 0;
7999}
8000
8001static void cpu_cgroup_attach(struct cgroup *cgrp,
8002			      struct cgroup_taskset *tset)
8003{
8004	struct task_struct *task;
8005
8006	cgroup_taskset_for_each(task, cgrp, tset)
8007		sched_move_task(task);
8008}
8009
8010static void
8011cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
8012		struct task_struct *task)
8013{
8014	/*
8015	 * cgroup_exit() is called in the copy_process() failure path.
8016	 * Ignore this case since the task hasn't ran yet, this avoids
8017	 * trying to poke a half freed task state from generic code.
8018	 */
8019	if (!(task->flags & PF_EXITING))
8020		return;
8021
8022	sched_move_task(task);
8023}
8024
8025#ifdef CONFIG_FAIR_GROUP_SCHED
8026static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8027				u64 shareval)
8028{
8029	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8030}
8031
8032static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8033{
8034	struct task_group *tg = cgroup_tg(cgrp);
8035
8036	return (u64) scale_load_down(tg->shares);
8037}
8038
8039#ifdef CONFIG_CFS_BANDWIDTH
8040static DEFINE_MUTEX(cfs_constraints_mutex);
8041
8042const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8043const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8044
8045static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8046
8047static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8048{
8049	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8050	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8051
8052	if (tg == &root_task_group)
8053		return -EINVAL;
8054
8055	/*
8056	 * Ensure we have at some amount of bandwidth every period.  This is
8057	 * to prevent reaching a state of large arrears when throttled via
8058	 * entity_tick() resulting in prolonged exit starvation.
8059	 */
8060	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8061		return -EINVAL;
8062
8063	/*
8064	 * Likewise, bound things on the otherside by preventing insane quota
8065	 * periods.  This also allows us to normalize in computing quota
8066	 * feasibility.
8067	 */
8068	if (period > max_cfs_quota_period)
8069		return -EINVAL;
8070
8071	mutex_lock(&cfs_constraints_mutex);
8072	ret = __cfs_schedulable(tg, period, quota);
8073	if (ret)
8074		goto out_unlock;
8075
8076	runtime_enabled = quota != RUNTIME_INF;
8077	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8078	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
8079	raw_spin_lock_irq(&cfs_b->lock);
8080	cfs_b->period = ns_to_ktime(period);
8081	cfs_b->quota = quota;
8082
8083	__refill_cfs_bandwidth_runtime(cfs_b);
8084	/* restart the period timer (if active) to handle new period expiry */
8085	if (runtime_enabled && cfs_b->timer_active) {
8086		/* force a reprogram */
8087		cfs_b->timer_active = 0;
8088		__start_cfs_bandwidth(cfs_b);
8089	}
8090	raw_spin_unlock_irq(&cfs_b->lock);
8091
8092	for_each_possible_cpu(i) {
8093		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8094		struct rq *rq = cfs_rq->rq;
8095
8096		raw_spin_lock_irq(&rq->lock);
8097		cfs_rq->runtime_enabled = runtime_enabled;
8098		cfs_rq->runtime_remaining = 0;
8099
8100		if (cfs_rq->throttled)
8101			unthrottle_cfs_rq(cfs_rq);
8102		raw_spin_unlock_irq(&rq->lock);
8103	}
8104out_unlock:
8105	mutex_unlock(&cfs_constraints_mutex);
8106
8107	return ret;
8108}
8109
8110int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8111{
8112	u64 quota, period;
8113
8114	period = ktime_to_ns(tg->cfs_bandwidth.period);
8115	if (cfs_quota_us < 0)
8116		quota = RUNTIME_INF;
8117	else
8118		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8119
8120	return tg_set_cfs_bandwidth(tg, period, quota);
8121}
8122
8123long tg_get_cfs_quota(struct task_group *tg)
8124{
8125	u64 quota_us;
8126
8127	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8128		return -1;
8129
8130	quota_us = tg->cfs_bandwidth.quota;
8131	do_div(quota_us, NSEC_PER_USEC);
8132
8133	return quota_us;
8134}
8135
8136int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8137{
8138	u64 quota, period;
8139
8140	period = (u64)cfs_period_us * NSEC_PER_USEC;
8141	quota = tg->cfs_bandwidth.quota;
8142
8143	return tg_set_cfs_bandwidth(tg, period, quota);
8144}
8145
8146long tg_get_cfs_period(struct task_group *tg)
8147{
8148	u64 cfs_period_us;
8149
8150	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8151	do_div(cfs_period_us, NSEC_PER_USEC);
8152
8153	return cfs_period_us;
8154}
8155
8156static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8157{
8158	return tg_get_cfs_quota(cgroup_tg(cgrp));
8159}
8160
8161static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8162				s64 cfs_quota_us)
8163{
8164	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8165}
8166
8167static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8168{
8169	return tg_get_cfs_period(cgroup_tg(cgrp));
8170}
8171
8172static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8173				u64 cfs_period_us)
8174{
8175	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8176}
8177
8178struct cfs_schedulable_data {
8179	struct task_group *tg;
8180	u64 period, quota;
8181};
8182
8183/*
8184 * normalize group quota/period to be quota/max_period
8185 * note: units are usecs
8186 */
8187static u64 normalize_cfs_quota(struct task_group *tg,
8188			       struct cfs_schedulable_data *d)
8189{
8190	u64 quota, period;
8191
8192	if (tg == d->tg) {
8193		period = d->period;
8194		quota = d->quota;
8195	} else {
8196		period = tg_get_cfs_period(tg);
8197		quota = tg_get_cfs_quota(tg);
8198	}
8199
8200	/* note: these should typically be equivalent */
8201	if (quota == RUNTIME_INF || quota == -1)
8202		return RUNTIME_INF;
8203
8204	return to_ratio(period, quota);
8205}
8206
8207static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8208{
8209	struct cfs_schedulable_data *d = data;
8210	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8211	s64 quota = 0, parent_quota = -1;
8212
8213	if (!tg->parent) {
8214		quota = RUNTIME_INF;
8215	} else {
8216		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8217
8218		quota = normalize_cfs_quota(tg, d);
8219		parent_quota = parent_b->hierarchal_quota;
8220
8221		/*
8222		 * ensure max(child_quota) <= parent_quota, inherit when no
8223		 * limit is set
8224		 */
8225		if (quota == RUNTIME_INF)
8226			quota = parent_quota;
8227		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8228			return -EINVAL;
8229	}
8230	cfs_b->hierarchal_quota = quota;
8231
8232	return 0;
8233}
8234
8235static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8236{
8237	int ret;
8238	struct cfs_schedulable_data data = {
8239		.tg = tg,
8240		.period = period,
8241		.quota = quota,
8242	};
8243
8244	if (quota != RUNTIME_INF) {
8245		do_div(data.period, NSEC_PER_USEC);
8246		do_div(data.quota, NSEC_PER_USEC);
8247	}
8248
8249	rcu_read_lock();
8250	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8251	rcu_read_unlock();
8252
8253	return ret;
8254}
8255
8256static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8257		struct cgroup_map_cb *cb)
8258{
8259	struct task_group *tg = cgroup_tg(cgrp);
8260	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8261
8262	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8263	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8264	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8265
8266	return 0;
8267}
8268#endif /* CONFIG_CFS_BANDWIDTH */
8269#endif /* CONFIG_FAIR_GROUP_SCHED */
8270
8271#ifdef CONFIG_RT_GROUP_SCHED
8272static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8273				s64 val)
8274{
8275	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8276}
8277
8278static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8279{
8280	return sched_group_rt_runtime(cgroup_tg(cgrp));
8281}
8282
8283static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8284		u64 rt_period_us)
8285{
8286	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8287}
8288
8289static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8290{
8291	return sched_group_rt_period(cgroup_tg(cgrp));
8292}
8293#endif /* CONFIG_RT_GROUP_SCHED */
8294
8295static struct cftype cpu_files[] = {
8296#ifdef CONFIG_FAIR_GROUP_SCHED
8297	{
8298		.name = "shares",
8299		.read_u64 = cpu_shares_read_u64,
8300		.write_u64 = cpu_shares_write_u64,
8301	},
8302#endif
8303#ifdef CONFIG_CFS_BANDWIDTH
8304	{
8305		.name = "cfs_quota_us",
8306		.read_s64 = cpu_cfs_quota_read_s64,
8307		.write_s64 = cpu_cfs_quota_write_s64,
8308	},
8309	{
8310		.name = "cfs_period_us",
8311		.read_u64 = cpu_cfs_period_read_u64,
8312		.write_u64 = cpu_cfs_period_write_u64,
8313	},
8314	{
8315		.name = "stat",
8316		.read_map = cpu_stats_show,
8317	},
8318#endif
8319#ifdef CONFIG_RT_GROUP_SCHED
8320	{
8321		.name = "rt_runtime_us",
8322		.read_s64 = cpu_rt_runtime_read,
8323		.write_s64 = cpu_rt_runtime_write,
8324	},
8325	{
8326		.name = "rt_period_us",
8327		.read_u64 = cpu_rt_period_read_uint,
8328		.write_u64 = cpu_rt_period_write_uint,
8329	},
8330#endif
8331	{ }	/* terminate */
8332};
8333
8334struct cgroup_subsys cpu_cgroup_subsys = {
8335	.name		= "cpu",
8336	.create		= cpu_cgroup_create,
8337	.destroy	= cpu_cgroup_destroy,
8338	.can_attach	= cpu_cgroup_can_attach,
8339	.attach		= cpu_cgroup_attach,
8340	.exit		= cpu_cgroup_exit,
8341	.subsys_id	= cpu_cgroup_subsys_id,
8342	.base_cftypes	= cpu_files,
8343	.early_init	= 1,
8344};
8345
8346#endif	/* CONFIG_CGROUP_SCHED */
8347
8348#ifdef CONFIG_CGROUP_CPUACCT
8349
8350/*
8351 * CPU accounting code for task groups.
8352 *
8353 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8354 * (balbir@in.ibm.com).
8355 */
8356
8357/* create a new cpu accounting group */
8358static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8359{
8360	struct cpuacct *ca;
8361
8362	if (!cgrp->parent)
8363		return &root_cpuacct.css;
8364
8365	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8366	if (!ca)
8367		goto out;
8368
8369	ca->cpuusage = alloc_percpu(u64);
8370	if (!ca->cpuusage)
8371		goto out_free_ca;
8372
8373	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8374	if (!ca->cpustat)
8375		goto out_free_cpuusage;
8376
8377	return &ca->css;
8378
8379out_free_cpuusage:
8380	free_percpu(ca->cpuusage);
8381out_free_ca:
8382	kfree(ca);
8383out:
8384	return ERR_PTR(-ENOMEM);
8385}
8386
8387/* destroy an existing cpu accounting group */
8388static void cpuacct_destroy(struct cgroup *cgrp)
8389{
8390	struct cpuacct *ca = cgroup_ca(cgrp);
8391
8392	free_percpu(ca->cpustat);
8393	free_percpu(ca->cpuusage);
8394	kfree(ca);
8395}
8396
8397static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8398{
8399	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8400	u64 data;
8401
8402#ifndef CONFIG_64BIT
8403	/*
8404	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8405	 */
8406	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8407	data = *cpuusage;
8408	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8409#else
8410	data = *cpuusage;
8411#endif
8412
8413	return data;
8414}
8415
8416static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8417{
8418	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8419
8420#ifndef CONFIG_64BIT
8421	/*
8422	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8423	 */
8424	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8425	*cpuusage = val;
8426	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8427#else
8428	*cpuusage = val;
8429#endif
8430}
8431
8432/* return total cpu usage (in nanoseconds) of a group */
8433static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8434{
8435	struct cpuacct *ca = cgroup_ca(cgrp);
8436	u64 totalcpuusage = 0;
8437	int i;
8438
8439	for_each_present_cpu(i)
8440		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8441
8442	return totalcpuusage;
8443}
8444
8445static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8446								u64 reset)
8447{
8448	struct cpuacct *ca = cgroup_ca(cgrp);
8449	int err = 0;
8450	int i;
8451
8452	if (reset) {
8453		err = -EINVAL;
8454		goto out;
8455	}
8456
8457	for_each_present_cpu(i)
8458		cpuacct_cpuusage_write(ca, i, 0);
8459
8460out:
8461	return err;
8462}
8463
8464static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8465				   struct seq_file *m)
8466{
8467	struct cpuacct *ca = cgroup_ca(cgroup);
8468	u64 percpu;
8469	int i;
8470
8471	for_each_present_cpu(i) {
8472		percpu = cpuacct_cpuusage_read(ca, i);
8473		seq_printf(m, "%llu ", (unsigned long long) percpu);
8474	}
8475	seq_printf(m, "\n");
8476	return 0;
8477}
8478
8479static const char *cpuacct_stat_desc[] = {
8480	[CPUACCT_STAT_USER] = "user",
8481	[CPUACCT_STAT_SYSTEM] = "system",
8482};
8483
8484static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8485			      struct cgroup_map_cb *cb)
8486{
8487	struct cpuacct *ca = cgroup_ca(cgrp);
8488	int cpu;
8489	s64 val = 0;
8490
8491	for_each_online_cpu(cpu) {
8492		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8493		val += kcpustat->cpustat[CPUTIME_USER];
8494		val += kcpustat->cpustat[CPUTIME_NICE];
8495	}
8496	val = cputime64_to_clock_t(val);
8497	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8498
8499	val = 0;
8500	for_each_online_cpu(cpu) {
8501		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8502		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8503		val += kcpustat->cpustat[CPUTIME_IRQ];
8504		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8505	}
8506
8507	val = cputime64_to_clock_t(val);
8508	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8509
8510	return 0;
8511}
8512
8513static struct cftype files[] = {
8514	{
8515		.name = "usage",
8516		.read_u64 = cpuusage_read,
8517		.write_u64 = cpuusage_write,
8518	},
8519	{
8520		.name = "usage_percpu",
8521		.read_seq_string = cpuacct_percpu_seq_read,
8522	},
8523	{
8524		.name = "stat",
8525		.read_map = cpuacct_stats_show,
8526	},
8527	{ }	/* terminate */
8528};
8529
8530/*
8531 * charge this task's execution time to its accounting group.
8532 *
8533 * called with rq->lock held.
8534 */
8535void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8536{
8537	struct cpuacct *ca;
8538	int cpu;
8539
8540	if (unlikely(!cpuacct_subsys.active))
8541		return;
8542
8543	cpu = task_cpu(tsk);
8544
8545	rcu_read_lock();
8546
8547	ca = task_ca(tsk);
8548
8549	for (; ca; ca = parent_ca(ca)) {
8550		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8551		*cpuusage += cputime;
8552	}
8553
8554	rcu_read_unlock();
8555}
8556
8557struct cgroup_subsys cpuacct_subsys = {
8558	.name = "cpuacct",
8559	.create = cpuacct_create,
8560	.destroy = cpuacct_destroy,
8561	.subsys_id = cpuacct_subsys_id,
8562	.base_cftypes = files,
8563};
8564#endif	/* CONFIG_CGROUP_CPUACCT */
8565