core.c revision 28b4a521f618d9722bc780ea38b44718ce0fe283
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
517#define tsk_is_polling(t) 0
518#endif
519
520void resched_task(struct task_struct *p)
521{
522	int cpu;
523
524	assert_raw_spin_locked(&task_rq(p)->lock);
525
526	if (test_tsk_need_resched(p))
527		return;
528
529	set_tsk_need_resched(p);
530
531	cpu = task_cpu(p);
532	if (cpu == smp_processor_id())
533		return;
534
535	/* NEED_RESCHED must be visible before we test polling */
536	smp_mb();
537	if (!tsk_is_polling(p))
538		smp_send_reschedule(cpu);
539}
540
541void resched_cpu(int cpu)
542{
543	struct rq *rq = cpu_rq(cpu);
544	unsigned long flags;
545
546	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547		return;
548	resched_task(cpu_curr(cpu));
549	raw_spin_unlock_irqrestore(&rq->lock, flags);
550}
551
552#ifdef CONFIG_NO_HZ
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu.  This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563	int cpu = smp_processor_id();
564	int i;
565	struct sched_domain *sd;
566
567	rcu_read_lock();
568	for_each_domain(cpu, sd) {
569		for_each_cpu(i, sched_domain_span(sd)) {
570			if (!idle_cpu(i)) {
571				cpu = i;
572				goto unlock;
573			}
574		}
575	}
576unlock:
577	rcu_read_unlock();
578	return cpu;
579}
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592	struct rq *rq = cpu_rq(cpu);
593
594	if (cpu == smp_processor_id())
595		return;
596
597	/*
598	 * This is safe, as this function is called with the timer
599	 * wheel base lock of (cpu) held. When the CPU is on the way
600	 * to idle and has not yet set rq->curr to idle then it will
601	 * be serialized on the timer wheel base lock and take the new
602	 * timer into account automatically.
603	 */
604	if (rq->curr != rq->idle)
605		return;
606
607	/*
608	 * We can set TIF_RESCHED on the idle task of the other CPU
609	 * lockless. The worst case is that the other CPU runs the
610	 * idle task through an additional NOOP schedule()
611	 */
612	set_tsk_need_resched(rq->idle);
613
614	/* NEED_RESCHED must be visible before we test polling */
615	smp_mb();
616	if (!tsk_is_polling(rq->idle))
617		smp_send_reschedule(cpu);
618}
619
620static inline bool got_nohz_idle_kick(void)
621{
622	int cpu = smp_processor_id();
623	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624}
625
626#else /* CONFIG_NO_HZ */
627
628static inline bool got_nohz_idle_kick(void)
629{
630	return false;
631}
632
633#endif /* CONFIG_NO_HZ */
634
635void sched_avg_update(struct rq *rq)
636{
637	s64 period = sched_avg_period();
638
639	while ((s64)(rq->clock - rq->age_stamp) > period) {
640		/*
641		 * Inline assembly required to prevent the compiler
642		 * optimising this loop into a divmod call.
643		 * See __iter_div_u64_rem() for another example of this.
644		 */
645		asm("" : "+rm" (rq->age_stamp));
646		rq->age_stamp += period;
647		rq->rt_avg /= 2;
648	}
649}
650
651#else /* !CONFIG_SMP */
652void resched_task(struct task_struct *p)
653{
654	assert_raw_spin_locked(&task_rq(p)->lock);
655	set_tsk_need_resched(p);
656}
657#endif /* CONFIG_SMP */
658
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661/*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667int walk_tg_tree_from(struct task_group *from,
668			     tg_visitor down, tg_visitor up, void *data)
669{
670	struct task_group *parent, *child;
671	int ret;
672
673	parent = from;
674
675down:
676	ret = (*down)(parent, data);
677	if (ret)
678		goto out;
679	list_for_each_entry_rcu(child, &parent->children, siblings) {
680		parent = child;
681		goto down;
682
683up:
684		continue;
685	}
686	ret = (*up)(parent, data);
687	if (ret || parent == from)
688		goto out;
689
690	child = parent;
691	parent = parent->parent;
692	if (parent)
693		goto up;
694out:
695	return ret;
696}
697
698int tg_nop(struct task_group *tg, void *data)
699{
700	return 0;
701}
702#endif
703
704static void set_load_weight(struct task_struct *p)
705{
706	int prio = p->static_prio - MAX_RT_PRIO;
707	struct load_weight *load = &p->se.load;
708
709	/*
710	 * SCHED_IDLE tasks get minimal weight:
711	 */
712	if (p->policy == SCHED_IDLE) {
713		load->weight = scale_load(WEIGHT_IDLEPRIO);
714		load->inv_weight = WMULT_IDLEPRIO;
715		return;
716	}
717
718	load->weight = scale_load(prio_to_weight[prio]);
719	load->inv_weight = prio_to_wmult[prio];
720}
721
722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_queued(p);
726	p->sched_class->enqueue_task(rq, p, flags);
727}
728
729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	update_rq_clock(rq);
732	sched_info_dequeued(p);
733	p->sched_class->dequeue_task(rq, p, flags);
734}
735
736void activate_task(struct rq *rq, struct task_struct *p, int flags)
737{
738	if (task_contributes_to_load(p))
739		rq->nr_uninterruptible--;
740
741	enqueue_task(rq, p, flags);
742}
743
744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745{
746	if (task_contributes_to_load(p))
747		rq->nr_uninterruptible++;
748
749	dequeue_task(rq, p, flags);
750}
751
752static void update_rq_clock_task(struct rq *rq, s64 delta)
753{
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759	s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764	/*
765	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766	 * this case when a previous update_rq_clock() happened inside a
767	 * {soft,}irq region.
768	 *
769	 * When this happens, we stop ->clock_task and only update the
770	 * prev_irq_time stamp to account for the part that fit, so that a next
771	 * update will consume the rest. This ensures ->clock_task is
772	 * monotonic.
773	 *
774	 * It does however cause some slight miss-attribution of {soft,}irq
775	 * time, a more accurate solution would be to update the irq_time using
776	 * the current rq->clock timestamp, except that would require using
777	 * atomic ops.
778	 */
779	if (irq_delta > delta)
780		irq_delta = delta;
781
782	rq->prev_irq_time += irq_delta;
783	delta -= irq_delta;
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786	if (static_key_false((&paravirt_steal_rq_enabled))) {
787		u64 st;
788
789		steal = paravirt_steal_clock(cpu_of(rq));
790		steal -= rq->prev_steal_time_rq;
791
792		if (unlikely(steal > delta))
793			steal = delta;
794
795		st = steal_ticks(steal);
796		steal = st * TICK_NSEC;
797
798		rq->prev_steal_time_rq += steal;
799
800		delta -= steal;
801	}
802#endif
803
804	rq->clock_task += delta;
805
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808		sched_rt_avg_update(rq, irq_delta + steal);
809#endif
810}
811
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817	if (stop) {
818		/*
819		 * Make it appear like a SCHED_FIFO task, its something
820		 * userspace knows about and won't get confused about.
821		 *
822		 * Also, it will make PI more or less work without too
823		 * much confusion -- but then, stop work should not
824		 * rely on PI working anyway.
825		 */
826		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828		stop->sched_class = &stop_sched_class;
829	}
830
831	cpu_rq(cpu)->stop = stop;
832
833	if (old_stop) {
834		/*
835		 * Reset it back to a normal scheduling class so that
836		 * it can die in pieces.
837		 */
838		old_stop->sched_class = &rt_sched_class;
839	}
840}
841
842/*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845static inline int __normal_prio(struct task_struct *p)
846{
847	return p->static_prio;
848}
849
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857static inline int normal_prio(struct task_struct *p)
858{
859	int prio;
860
861	if (task_has_rt_policy(p))
862		prio = MAX_RT_PRIO-1 - p->rt_priority;
863	else
864		prio = __normal_prio(p);
865	return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875static int effective_prio(struct task_struct *p)
876{
877	p->normal_prio = normal_prio(p);
878	/*
879	 * If we are RT tasks or we were boosted to RT priority,
880	 * keep the priority unchanged. Otherwise, update priority
881	 * to the normal priority:
882	 */
883	if (!rt_prio(p->prio))
884		return p->normal_prio;
885	return p->prio;
886}
887
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892inline int task_curr(const struct task_struct *p)
893{
894	return cpu_curr(task_cpu(p)) == p;
895}
896
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898				       const struct sched_class *prev_class,
899				       int oldprio)
900{
901	if (prev_class != p->sched_class) {
902		if (prev_class->switched_from)
903			prev_class->switched_from(rq, p);
904		p->sched_class->switched_to(rq, p);
905	} else if (oldprio != p->prio)
906		p->sched_class->prio_changed(rq, p, oldprio);
907}
908
909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910{
911	const struct sched_class *class;
912
913	if (p->sched_class == rq->curr->sched_class) {
914		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915	} else {
916		for_each_class(class) {
917			if (class == rq->curr->sched_class)
918				break;
919			if (class == p->sched_class) {
920				resched_task(rq->curr);
921				break;
922			}
923		}
924	}
925
926	/*
927	 * A queue event has occurred, and we're going to schedule.  In
928	 * this case, we can save a useless back to back clock update.
929	 */
930	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931		rq->skip_clock_update = 1;
932}
933
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938	atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
941#ifdef CONFIG_SMP
942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943{
944#ifdef CONFIG_SCHED_DEBUG
945	/*
946	 * We should never call set_task_cpu() on a blocked task,
947	 * ttwu() will sort out the placement.
948	 */
949	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952#ifdef CONFIG_LOCKDEP
953	/*
954	 * The caller should hold either p->pi_lock or rq->lock, when changing
955	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956	 *
957	 * sched_move_task() holds both and thus holding either pins the cgroup,
958	 * see task_group().
959	 *
960	 * Furthermore, all task_rq users should acquire both locks, see
961	 * task_rq_lock().
962	 */
963	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964				      lockdep_is_held(&task_rq(p)->lock)));
965#endif
966#endif
967
968	trace_sched_migrate_task(p, new_cpu);
969
970	if (task_cpu(p) != new_cpu) {
971		struct task_migration_notifier tmn;
972
973		if (p->sched_class->migrate_task_rq)
974			p->sched_class->migrate_task_rq(p, new_cpu);
975		p->se.nr_migrations++;
976		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978		tmn.task = p;
979		tmn.from_cpu = task_cpu(p);
980		tmn.to_cpu = new_cpu;
981
982		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983	}
984
985	__set_task_cpu(p, new_cpu);
986}
987
988struct migration_arg {
989	struct task_struct *task;
990	int dest_cpu;
991};
992
993static int migration_cpu_stop(void *data);
994
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change.  If it changes, i.e. @p might have woken up,
1000 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count).  If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012{
1013	unsigned long flags;
1014	int running, on_rq;
1015	unsigned long ncsw;
1016	struct rq *rq;
1017
1018	for (;;) {
1019		/*
1020		 * We do the initial early heuristics without holding
1021		 * any task-queue locks at all. We'll only try to get
1022		 * the runqueue lock when things look like they will
1023		 * work out!
1024		 */
1025		rq = task_rq(p);
1026
1027		/*
1028		 * If the task is actively running on another CPU
1029		 * still, just relax and busy-wait without holding
1030		 * any locks.
1031		 *
1032		 * NOTE! Since we don't hold any locks, it's not
1033		 * even sure that "rq" stays as the right runqueue!
1034		 * But we don't care, since "task_running()" will
1035		 * return false if the runqueue has changed and p
1036		 * is actually now running somewhere else!
1037		 */
1038		while (task_running(rq, p)) {
1039			if (match_state && unlikely(p->state != match_state))
1040				return 0;
1041			cpu_relax();
1042		}
1043
1044		/*
1045		 * Ok, time to look more closely! We need the rq
1046		 * lock now, to be *sure*. If we're wrong, we'll
1047		 * just go back and repeat.
1048		 */
1049		rq = task_rq_lock(p, &flags);
1050		trace_sched_wait_task(p);
1051		running = task_running(rq, p);
1052		on_rq = p->on_rq;
1053		ncsw = 0;
1054		if (!match_state || p->state == match_state)
1055			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056		task_rq_unlock(rq, p, &flags);
1057
1058		/*
1059		 * If it changed from the expected state, bail out now.
1060		 */
1061		if (unlikely(!ncsw))
1062			break;
1063
1064		/*
1065		 * Was it really running after all now that we
1066		 * checked with the proper locks actually held?
1067		 *
1068		 * Oops. Go back and try again..
1069		 */
1070		if (unlikely(running)) {
1071			cpu_relax();
1072			continue;
1073		}
1074
1075		/*
1076		 * It's not enough that it's not actively running,
1077		 * it must be off the runqueue _entirely_, and not
1078		 * preempted!
1079		 *
1080		 * So if it was still runnable (but just not actively
1081		 * running right now), it's preempted, and we should
1082		 * yield - it could be a while.
1083		 */
1084		if (unlikely(on_rq)) {
1085			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087			set_current_state(TASK_UNINTERRUPTIBLE);
1088			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089			continue;
1090		}
1091
1092		/*
1093		 * Ahh, all good. It wasn't running, and it wasn't
1094		 * runnable, which means that it will never become
1095		 * running in the future either. We're all done!
1096		 */
1097		break;
1098	}
1099
1100	return ncsw;
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116void kick_process(struct task_struct *p)
1117{
1118	int cpu;
1119
1120	preempt_disable();
1121	cpu = task_cpu(p);
1122	if ((cpu != smp_processor_id()) && task_curr(p))
1123		smp_send_reschedule(cpu);
1124	preempt_enable();
1125}
1126EXPORT_SYMBOL_GPL(kick_process);
1127#endif /* CONFIG_SMP */
1128
1129#ifdef CONFIG_SMP
1130/*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
1135	int nid = cpu_to_node(cpu);
1136	const struct cpumask *nodemask = NULL;
1137	enum { cpuset, possible, fail } state = cpuset;
1138	int dest_cpu;
1139
1140	/*
1141	 * If the node that the cpu is on has been offlined, cpu_to_node()
1142	 * will return -1. There is no cpu on the node, and we should
1143	 * select the cpu on the other node.
1144	 */
1145	if (nid != -1) {
1146		nodemask = cpumask_of_node(nid);
1147
1148		/* Look for allowed, online CPU in same node. */
1149		for_each_cpu(dest_cpu, nodemask) {
1150			if (!cpu_online(dest_cpu))
1151				continue;
1152			if (!cpu_active(dest_cpu))
1153				continue;
1154			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155				return dest_cpu;
1156		}
1157	}
1158
1159	for (;;) {
1160		/* Any allowed, online CPU? */
1161		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162			if (!cpu_online(dest_cpu))
1163				continue;
1164			if (!cpu_active(dest_cpu))
1165				continue;
1166			goto out;
1167		}
1168
1169		switch (state) {
1170		case cpuset:
1171			/* No more Mr. Nice Guy. */
1172			cpuset_cpus_allowed_fallback(p);
1173			state = possible;
1174			break;
1175
1176		case possible:
1177			do_set_cpus_allowed(p, cpu_possible_mask);
1178			state = fail;
1179			break;
1180
1181		case fail:
1182			BUG();
1183			break;
1184		}
1185	}
1186
1187out:
1188	if (state != cpuset) {
1189		/*
1190		 * Don't tell them about moving exiting tasks or
1191		 * kernel threads (both mm NULL), since they never
1192		 * leave kernel.
1193		 */
1194		if (p->mm && printk_ratelimit()) {
1195			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196					task_pid_nr(p), p->comm, cpu);
1197		}
1198	}
1199
1200	return dest_cpu;
1201}
1202
1203/*
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205 */
1206static inline
1207int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208{
1209	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210
1211	/*
1212	 * In order not to call set_task_cpu() on a blocking task we need
1213	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214	 * cpu.
1215	 *
1216	 * Since this is common to all placement strategies, this lives here.
1217	 *
1218	 * [ this allows ->select_task() to simply return task_cpu(p) and
1219	 *   not worry about this generic constraint ]
1220	 */
1221	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222		     !cpu_online(cpu)))
1223		cpu = select_fallback_rq(task_cpu(p), p);
1224
1225	return cpu;
1226}
1227
1228static void update_avg(u64 *avg, u64 sample)
1229{
1230	s64 diff = sample - *avg;
1231	*avg += diff >> 3;
1232}
1233#endif
1234
1235static void
1236ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237{
1238#ifdef CONFIG_SCHEDSTATS
1239	struct rq *rq = this_rq();
1240
1241#ifdef CONFIG_SMP
1242	int this_cpu = smp_processor_id();
1243
1244	if (cpu == this_cpu) {
1245		schedstat_inc(rq, ttwu_local);
1246		schedstat_inc(p, se.statistics.nr_wakeups_local);
1247	} else {
1248		struct sched_domain *sd;
1249
1250		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251		rcu_read_lock();
1252		for_each_domain(this_cpu, sd) {
1253			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254				schedstat_inc(sd, ttwu_wake_remote);
1255				break;
1256			}
1257		}
1258		rcu_read_unlock();
1259	}
1260
1261	if (wake_flags & WF_MIGRATED)
1262		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
1264#endif /* CONFIG_SMP */
1265
1266	schedstat_inc(rq, ttwu_count);
1267	schedstat_inc(p, se.statistics.nr_wakeups);
1268
1269	if (wake_flags & WF_SYNC)
1270		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271
1272#endif /* CONFIG_SCHEDSTATS */
1273}
1274
1275static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276{
1277	activate_task(rq, p, en_flags);
1278	p->on_rq = 1;
1279
1280	/* if a worker is waking up, notify workqueue */
1281	if (p->flags & PF_WQ_WORKER)
1282		wq_worker_waking_up(p, cpu_of(rq));
1283}
1284
1285/*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
1288static void
1289ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290{
1291	check_preempt_curr(rq, p, wake_flags);
1292	trace_sched_wakeup(p, true);
1293
1294	p->state = TASK_RUNNING;
1295#ifdef CONFIG_SMP
1296	if (p->sched_class->task_woken)
1297		p->sched_class->task_woken(rq, p);
1298
1299	if (rq->idle_stamp) {
1300		u64 delta = rq->clock - rq->idle_stamp;
1301		u64 max = 2*sysctl_sched_migration_cost;
1302
1303		if (delta > max)
1304			rq->avg_idle = max;
1305		else
1306			update_avg(&rq->avg_idle, delta);
1307		rq->idle_stamp = 0;
1308	}
1309#endif
1310}
1311
1312static void
1313ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314{
1315#ifdef CONFIG_SMP
1316	if (p->sched_contributes_to_load)
1317		rq->nr_uninterruptible--;
1318#endif
1319
1320	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321	ttwu_do_wakeup(rq, p, wake_flags);
1322}
1323
1324/*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330static int ttwu_remote(struct task_struct *p, int wake_flags)
1331{
1332	struct rq *rq;
1333	int ret = 0;
1334
1335	rq = __task_rq_lock(p);
1336	if (p->on_rq) {
1337		ttwu_do_wakeup(rq, p, wake_flags);
1338		ret = 1;
1339	}
1340	__task_rq_unlock(rq);
1341
1342	return ret;
1343}
1344
1345#ifdef CONFIG_SMP
1346static void sched_ttwu_pending(void)
1347{
1348	struct rq *rq = this_rq();
1349	struct llist_node *llist = llist_del_all(&rq->wake_list);
1350	struct task_struct *p;
1351
1352	raw_spin_lock(&rq->lock);
1353
1354	while (llist) {
1355		p = llist_entry(llist, struct task_struct, wake_entry);
1356		llist = llist_next(llist);
1357		ttwu_do_activate(rq, p, 0);
1358	}
1359
1360	raw_spin_unlock(&rq->lock);
1361}
1362
1363void scheduler_ipi(void)
1364{
1365	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366		return;
1367
1368	/*
1369	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370	 * traditionally all their work was done from the interrupt return
1371	 * path. Now that we actually do some work, we need to make sure
1372	 * we do call them.
1373	 *
1374	 * Some archs already do call them, luckily irq_enter/exit nest
1375	 * properly.
1376	 *
1377	 * Arguably we should visit all archs and update all handlers,
1378	 * however a fair share of IPIs are still resched only so this would
1379	 * somewhat pessimize the simple resched case.
1380	 */
1381	irq_enter();
1382	sched_ttwu_pending();
1383
1384	/*
1385	 * Check if someone kicked us for doing the nohz idle load balance.
1386	 */
1387	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388		this_rq()->idle_balance = 1;
1389		raise_softirq_irqoff(SCHED_SOFTIRQ);
1390	}
1391	irq_exit();
1392}
1393
1394static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395{
1396	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397		smp_send_reschedule(cpu);
1398}
1399
1400bool cpus_share_cache(int this_cpu, int that_cpu)
1401{
1402	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403}
1404#endif /* CONFIG_SMP */
1405
1406static void ttwu_queue(struct task_struct *p, int cpu)
1407{
1408	struct rq *rq = cpu_rq(cpu);
1409
1410#if defined(CONFIG_SMP)
1411	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413		ttwu_queue_remote(p, cpu);
1414		return;
1415	}
1416#endif
1417
1418	raw_spin_lock(&rq->lock);
1419	ttwu_do_activate(rq, p, 0);
1420	raw_spin_unlock(&rq->lock);
1421}
1422
1423/**
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1437 */
1438static int
1439try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440{
1441	unsigned long flags;
1442	int cpu, success = 0;
1443
1444	smp_wmb();
1445	raw_spin_lock_irqsave(&p->pi_lock, flags);
1446	if (!(p->state & state))
1447		goto out;
1448
1449	success = 1; /* we're going to change ->state */
1450	cpu = task_cpu(p);
1451
1452	if (p->on_rq && ttwu_remote(p, wake_flags))
1453		goto stat;
1454
1455#ifdef CONFIG_SMP
1456	/*
1457	 * If the owning (remote) cpu is still in the middle of schedule() with
1458	 * this task as prev, wait until its done referencing the task.
1459	 */
1460	while (p->on_cpu)
1461		cpu_relax();
1462	/*
1463	 * Pairs with the smp_wmb() in finish_lock_switch().
1464	 */
1465	smp_rmb();
1466
1467	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468	p->state = TASK_WAKING;
1469
1470	if (p->sched_class->task_waking)
1471		p->sched_class->task_waking(p);
1472
1473	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474	if (task_cpu(p) != cpu) {
1475		wake_flags |= WF_MIGRATED;
1476		set_task_cpu(p, cpu);
1477	}
1478#endif /* CONFIG_SMP */
1479
1480	ttwu_queue(p, cpu);
1481stat:
1482	ttwu_stat(p, cpu, wake_flags);
1483out:
1484	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485
1486	return success;
1487}
1488
1489/**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495 * the current task.
1496 */
1497static void try_to_wake_up_local(struct task_struct *p)
1498{
1499	struct rq *rq = task_rq(p);
1500
1501	BUG_ON(rq != this_rq());
1502	BUG_ON(p == current);
1503	lockdep_assert_held(&rq->lock);
1504
1505	if (!raw_spin_trylock(&p->pi_lock)) {
1506		raw_spin_unlock(&rq->lock);
1507		raw_spin_lock(&p->pi_lock);
1508		raw_spin_lock(&rq->lock);
1509	}
1510
1511	if (!(p->state & TASK_NORMAL))
1512		goto out;
1513
1514	if (!p->on_rq)
1515		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
1517	ttwu_do_wakeup(rq, p, 0);
1518	ttwu_stat(p, smp_processor_id(), 0);
1519out:
1520	raw_spin_unlock(&p->pi_lock);
1521}
1522
1523/**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes.  Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
1534int wake_up_process(struct task_struct *p)
1535{
1536	WARN_ON(task_is_stopped_or_traced(p));
1537	return try_to_wake_up(p, TASK_NORMAL, 0);
1538}
1539EXPORT_SYMBOL(wake_up_process);
1540
1541int wake_up_state(struct task_struct *p, unsigned int state)
1542{
1543	return try_to_wake_up(p, state, 0);
1544}
1545
1546/*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552static void __sched_fork(struct task_struct *p)
1553{
1554	p->on_rq			= 0;
1555
1556	p->se.on_rq			= 0;
1557	p->se.exec_start		= 0;
1558	p->se.sum_exec_runtime		= 0;
1559	p->se.prev_sum_exec_runtime	= 0;
1560	p->se.nr_migrations		= 0;
1561	p->se.vruntime			= 0;
1562	INIT_LIST_HEAD(&p->se.group_node);
1563
1564/*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570	p->se.avg.runnable_avg_period = 0;
1571	p->se.avg.runnable_avg_sum = 0;
1572#endif
1573#ifdef CONFIG_SCHEDSTATS
1574	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1575#endif
1576
1577	INIT_LIST_HEAD(&p->rt.run_list);
1578
1579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580	INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
1582
1583#ifdef CONFIG_NUMA_BALANCING
1584	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585		p->mm->numa_next_scan = jiffies;
1586		p->mm->numa_next_reset = jiffies;
1587		p->mm->numa_scan_seq = 0;
1588	}
1589
1590	p->node_stamp = 0ULL;
1591	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594	p->numa_work.next = &p->numa_work;
1595#endif /* CONFIG_NUMA_BALANCING */
1596}
1597
1598#ifdef CONFIG_NUMA_BALANCING
1599#ifdef CONFIG_SCHED_DEBUG
1600void set_numabalancing_state(bool enabled)
1601{
1602	if (enabled)
1603		sched_feat_set("NUMA");
1604	else
1605		sched_feat_set("NO_NUMA");
1606}
1607#else
1608__read_mostly bool numabalancing_enabled;
1609
1610void set_numabalancing_state(bool enabled)
1611{
1612	numabalancing_enabled = enabled;
1613}
1614#endif /* CONFIG_SCHED_DEBUG */
1615#endif /* CONFIG_NUMA_BALANCING */
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
1620void sched_fork(struct task_struct *p)
1621{
1622	unsigned long flags;
1623	int cpu = get_cpu();
1624
1625	__sched_fork(p);
1626	/*
1627	 * We mark the process as running here. This guarantees that
1628	 * nobody will actually run it, and a signal or other external
1629	 * event cannot wake it up and insert it on the runqueue either.
1630	 */
1631	p->state = TASK_RUNNING;
1632
1633	/*
1634	 * Make sure we do not leak PI boosting priority to the child.
1635	 */
1636	p->prio = current->normal_prio;
1637
1638	/*
1639	 * Revert to default priority/policy on fork if requested.
1640	 */
1641	if (unlikely(p->sched_reset_on_fork)) {
1642		if (task_has_rt_policy(p)) {
1643			p->policy = SCHED_NORMAL;
1644			p->static_prio = NICE_TO_PRIO(0);
1645			p->rt_priority = 0;
1646		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1647			p->static_prio = NICE_TO_PRIO(0);
1648
1649		p->prio = p->normal_prio = __normal_prio(p);
1650		set_load_weight(p);
1651
1652		/*
1653		 * We don't need the reset flag anymore after the fork. It has
1654		 * fulfilled its duty:
1655		 */
1656		p->sched_reset_on_fork = 0;
1657	}
1658
1659	if (!rt_prio(p->prio))
1660		p->sched_class = &fair_sched_class;
1661
1662	if (p->sched_class->task_fork)
1663		p->sched_class->task_fork(p);
1664
1665	/*
1666	 * The child is not yet in the pid-hash so no cgroup attach races,
1667	 * and the cgroup is pinned to this child due to cgroup_fork()
1668	 * is ran before sched_fork().
1669	 *
1670	 * Silence PROVE_RCU.
1671	 */
1672	raw_spin_lock_irqsave(&p->pi_lock, flags);
1673	set_task_cpu(p, cpu);
1674	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675
1676#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1677	if (likely(sched_info_on()))
1678		memset(&p->sched_info, 0, sizeof(p->sched_info));
1679#endif
1680#if defined(CONFIG_SMP)
1681	p->on_cpu = 0;
1682#endif
1683#ifdef CONFIG_PREEMPT_COUNT
1684	/* Want to start with kernel preemption disabled. */
1685	task_thread_info(p)->preempt_count = 1;
1686#endif
1687#ifdef CONFIG_SMP
1688	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689#endif
1690
1691	put_cpu();
1692}
1693
1694/*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
1701void wake_up_new_task(struct task_struct *p)
1702{
1703	unsigned long flags;
1704	struct rq *rq;
1705
1706	raw_spin_lock_irqsave(&p->pi_lock, flags);
1707#ifdef CONFIG_SMP
1708	/*
1709	 * Fork balancing, do it here and not earlier because:
1710	 *  - cpus_allowed can change in the fork path
1711	 *  - any previously selected cpu might disappear through hotplug
1712	 */
1713	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714#endif
1715
1716	rq = __task_rq_lock(p);
1717	activate_task(rq, p, 0);
1718	p->on_rq = 1;
1719	trace_sched_wakeup_new(p, true);
1720	check_preempt_curr(rq, p, WF_FORK);
1721#ifdef CONFIG_SMP
1722	if (p->sched_class->task_woken)
1723		p->sched_class->task_woken(rq, p);
1724#endif
1725	task_rq_unlock(rq, p, &flags);
1726}
1727
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730/**
1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1732 * @notifier: notifier struct to register
1733 */
1734void preempt_notifier_register(struct preempt_notifier *notifier)
1735{
1736	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737}
1738EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740/**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
1742 * @notifier: notifier struct to unregister
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747{
1748	hlist_del(&notifier->link);
1749}
1750EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753{
1754	struct preempt_notifier *notifier;
1755
1756	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758}
1759
1760static void
1761fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762				 struct task_struct *next)
1763{
1764	struct preempt_notifier *notifier;
1765
1766	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767		notifier->ops->sched_out(notifier, next);
1768}
1769
1770#else /* !CONFIG_PREEMPT_NOTIFIERS */
1771
1772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773{
1774}
1775
1776static void
1777fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778				 struct task_struct *next)
1779{
1780}
1781
1782#endif /* CONFIG_PREEMPT_NOTIFIERS */
1783
1784/**
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
1787 * @prev: the current task that is being switched out
1788 * @next: the task we are going to switch to.
1789 *
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1792 * switch.
1793 *
1794 * prepare_task_switch sets up locking and calls architecture specific
1795 * hooks.
1796 */
1797static inline void
1798prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799		    struct task_struct *next)
1800{
1801	trace_sched_switch(prev, next);
1802	sched_info_switch(prev, next);
1803	perf_event_task_sched_out(prev, next);
1804	fire_sched_out_preempt_notifiers(prev, next);
1805	prepare_lock_switch(rq, next);
1806	prepare_arch_switch(next);
1807}
1808
1809/**
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1813 *
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
1824static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825	__releases(rq->lock)
1826{
1827	struct mm_struct *mm = rq->prev_mm;
1828	long prev_state;
1829
1830	rq->prev_mm = NULL;
1831
1832	/*
1833	 * A task struct has one reference for the use as "current".
1834	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835	 * schedule one last time. The schedule call will never return, and
1836	 * the scheduled task must drop that reference.
1837	 * The test for TASK_DEAD must occur while the runqueue locks are
1838	 * still held, otherwise prev could be scheduled on another cpu, die
1839	 * there before we look at prev->state, and then the reference would
1840	 * be dropped twice.
1841	 *		Manfred Spraul <manfred@colorfullife.com>
1842	 */
1843	prev_state = prev->state;
1844	vtime_task_switch(prev);
1845	finish_arch_switch(prev);
1846	perf_event_task_sched_in(prev, current);
1847	finish_lock_switch(rq, prev);
1848	finish_arch_post_lock_switch();
1849
1850	fire_sched_in_preempt_notifiers(current);
1851	if (mm)
1852		mmdrop(mm);
1853	if (unlikely(prev_state == TASK_DEAD)) {
1854		/*
1855		 * Remove function-return probe instances associated with this
1856		 * task and put them back on the free list.
1857		 */
1858		kprobe_flush_task(prev);
1859		put_task_struct(prev);
1860	}
1861}
1862
1863#ifdef CONFIG_SMP
1864
1865/* assumes rq->lock is held */
1866static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867{
1868	if (prev->sched_class->pre_schedule)
1869		prev->sched_class->pre_schedule(rq, prev);
1870}
1871
1872/* rq->lock is NOT held, but preemption is disabled */
1873static inline void post_schedule(struct rq *rq)
1874{
1875	if (rq->post_schedule) {
1876		unsigned long flags;
1877
1878		raw_spin_lock_irqsave(&rq->lock, flags);
1879		if (rq->curr->sched_class->post_schedule)
1880			rq->curr->sched_class->post_schedule(rq);
1881		raw_spin_unlock_irqrestore(&rq->lock, flags);
1882
1883		rq->post_schedule = 0;
1884	}
1885}
1886
1887#else
1888
1889static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890{
1891}
1892
1893static inline void post_schedule(struct rq *rq)
1894{
1895}
1896
1897#endif
1898
1899/**
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1902 */
1903asmlinkage void schedule_tail(struct task_struct *prev)
1904	__releases(rq->lock)
1905{
1906	struct rq *rq = this_rq();
1907
1908	finish_task_switch(rq, prev);
1909
1910	/*
1911	 * FIXME: do we need to worry about rq being invalidated by the
1912	 * task_switch?
1913	 */
1914	post_schedule(rq);
1915
1916#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917	/* In this case, finish_task_switch does not reenable preemption */
1918	preempt_enable();
1919#endif
1920	if (current->set_child_tid)
1921		put_user(task_pid_vnr(current), current->set_child_tid);
1922}
1923
1924/*
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1927 */
1928static inline void
1929context_switch(struct rq *rq, struct task_struct *prev,
1930	       struct task_struct *next)
1931{
1932	struct mm_struct *mm, *oldmm;
1933
1934	prepare_task_switch(rq, prev, next);
1935
1936	mm = next->mm;
1937	oldmm = prev->active_mm;
1938	/*
1939	 * For paravirt, this is coupled with an exit in switch_to to
1940	 * combine the page table reload and the switch backend into
1941	 * one hypercall.
1942	 */
1943	arch_start_context_switch(prev);
1944
1945	if (!mm) {
1946		next->active_mm = oldmm;
1947		atomic_inc(&oldmm->mm_count);
1948		enter_lazy_tlb(oldmm, next);
1949	} else
1950		switch_mm(oldmm, mm, next);
1951
1952	if (!prev->mm) {
1953		prev->active_mm = NULL;
1954		rq->prev_mm = oldmm;
1955	}
1956	/*
1957	 * Since the runqueue lock will be released by the next
1958	 * task (which is an invalid locking op but in the case
1959	 * of the scheduler it's an obvious special-case), so we
1960	 * do an early lockdep release here:
1961	 */
1962#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964#endif
1965
1966	context_tracking_task_switch(prev, next);
1967	/* Here we just switch the register state and the stack. */
1968	switch_to(prev, next, prev);
1969
1970	barrier();
1971	/*
1972	 * this_rq must be evaluated again because prev may have moved
1973	 * CPUs since it called schedule(), thus the 'rq' on its stack
1974	 * frame will be invalid.
1975	 */
1976	finish_task_switch(this_rq(), prev);
1977}
1978
1979/*
1980 * nr_running and nr_context_switches:
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1983 * threads, total number of context switches performed since bootup.
1984 */
1985unsigned long nr_running(void)
1986{
1987	unsigned long i, sum = 0;
1988
1989	for_each_online_cpu(i)
1990		sum += cpu_rq(i)->nr_running;
1991
1992	return sum;
1993}
1994
1995unsigned long long nr_context_switches(void)
1996{
1997	int i;
1998	unsigned long long sum = 0;
1999
2000	for_each_possible_cpu(i)
2001		sum += cpu_rq(i)->nr_switches;
2002
2003	return sum;
2004}
2005
2006unsigned long nr_iowait(void)
2007{
2008	unsigned long i, sum = 0;
2009
2010	for_each_possible_cpu(i)
2011		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012
2013	return sum;
2014}
2015
2016unsigned long nr_iowait_cpu(int cpu)
2017{
2018	struct rq *this = cpu_rq(cpu);
2019	return atomic_read(&this->nr_iowait);
2020}
2021
2022unsigned long this_cpu_load(void)
2023{
2024	struct rq *this = this_rq();
2025	return this->cpu_load[0];
2026}
2027
2028
2029/*
2030 * Global load-average calculations
2031 *
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2034 *
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2037 *
2038 * Once every LOAD_FREQ:
2039 *
2040 *   nr_active = 0;
2041 *   for_each_possible_cpu(cpu)
2042 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043 *
2044 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045 *
2046 * Due to a number of reasons the above turns in the mess below:
2047 *
2048 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2049 *    serious number of cpus, therefore we need to take a distributed approach
2050 *    to calculating nr_active.
2051 *
2052 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054 *
2055 *    So assuming nr_active := 0 when we start out -- true per definition, we
2056 *    can simply take per-cpu deltas and fold those into a global accumulate
2057 *    to obtain the same result. See calc_load_fold_active().
2058 *
2059 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 *    across the machine, we assume 10 ticks is sufficient time for every
2061 *    cpu to have completed this task.
2062 *
2063 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2064 *    again, being late doesn't loose the delta, just wrecks the sample.
2065 *
2066 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 *    this would add another cross-cpu cacheline miss and atomic operation
2068 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2069 *    when it went into uninterruptible state and decrement on whatever cpu
2070 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2071 *    all cpus yields the correct result.
2072 *
2073 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074 */
2075
2076/* Variables and functions for calc_load */
2077static atomic_long_t calc_load_tasks;
2078static unsigned long calc_load_update;
2079unsigned long avenrun[3];
2080EXPORT_SYMBOL(avenrun); /* should be removed */
2081
2082/**
2083 * get_avenrun - get the load average array
2084 * @loads:	pointer to dest load array
2085 * @offset:	offset to add
2086 * @shift:	shift count to shift the result left
2087 *
2088 * These values are estimates at best, so no need for locking.
2089 */
2090void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091{
2092	loads[0] = (avenrun[0] + offset) << shift;
2093	loads[1] = (avenrun[1] + offset) << shift;
2094	loads[2] = (avenrun[2] + offset) << shift;
2095}
2096
2097static long calc_load_fold_active(struct rq *this_rq)
2098{
2099	long nr_active, delta = 0;
2100
2101	nr_active = this_rq->nr_running;
2102	nr_active += (long) this_rq->nr_uninterruptible;
2103
2104	if (nr_active != this_rq->calc_load_active) {
2105		delta = nr_active - this_rq->calc_load_active;
2106		this_rq->calc_load_active = nr_active;
2107	}
2108
2109	return delta;
2110}
2111
2112/*
2113 * a1 = a0 * e + a * (1 - e)
2114 */
2115static unsigned long
2116calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117{
2118	load *= exp;
2119	load += active * (FIXED_1 - exp);
2120	load += 1UL << (FSHIFT - 1);
2121	return load >> FSHIFT;
2122}
2123
2124#ifdef CONFIG_NO_HZ
2125/*
2126 * Handle NO_HZ for the global load-average.
2127 *
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2130 * NO_HZ.
2131 *
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2135 *
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2137 *
2138 *  - When we go NO_HZ idle during the window, we can negate our sample
2139 *    contribution, causing under-accounting.
2140 *
2141 *    We avoid this by keeping two idle-delta counters and flipping them
2142 *    when the window starts, thus separating old and new NO_HZ load.
2143 *
2144 *    The only trick is the slight shift in index flip for read vs write.
2145 *
2146 *        0s            5s            10s           15s
2147 *          +10           +10           +10           +10
2148 *        |-|-----------|-|-----------|-|-----------|-|
2149 *    r:0 0 1           1 0           0 1           1 0
2150 *    w:0 1 1           0 0           1 1           0 0
2151 *
2152 *    This ensures we'll fold the old idle contribution in this window while
2153 *    accumlating the new one.
2154 *
2155 *  - When we wake up from NO_HZ idle during the window, we push up our
2156 *    contribution, since we effectively move our sample point to a known
2157 *    busy state.
2158 *
2159 *    This is solved by pushing the window forward, and thus skipping the
2160 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2161 *    was in effect at the time the window opened). This also solves the issue
2162 *    of having to deal with a cpu having been in NOHZ idle for multiple
2163 *    LOAD_FREQ intervals.
2164 *
2165 * When making the ILB scale, we should try to pull this in as well.
2166 */
2167static atomic_long_t calc_load_idle[2];
2168static int calc_load_idx;
2169
2170static inline int calc_load_write_idx(void)
2171{
2172	int idx = calc_load_idx;
2173
2174	/*
2175	 * See calc_global_nohz(), if we observe the new index, we also
2176	 * need to observe the new update time.
2177	 */
2178	smp_rmb();
2179
2180	/*
2181	 * If the folding window started, make sure we start writing in the
2182	 * next idle-delta.
2183	 */
2184	if (!time_before(jiffies, calc_load_update))
2185		idx++;
2186
2187	return idx & 1;
2188}
2189
2190static inline int calc_load_read_idx(void)
2191{
2192	return calc_load_idx & 1;
2193}
2194
2195void calc_load_enter_idle(void)
2196{
2197	struct rq *this_rq = this_rq();
2198	long delta;
2199
2200	/*
2201	 * We're going into NOHZ mode, if there's any pending delta, fold it
2202	 * into the pending idle delta.
2203	 */
2204	delta = calc_load_fold_active(this_rq);
2205	if (delta) {
2206		int idx = calc_load_write_idx();
2207		atomic_long_add(delta, &calc_load_idle[idx]);
2208	}
2209}
2210
2211void calc_load_exit_idle(void)
2212{
2213	struct rq *this_rq = this_rq();
2214
2215	/*
2216	 * If we're still before the sample window, we're done.
2217	 */
2218	if (time_before(jiffies, this_rq->calc_load_update))
2219		return;
2220
2221	/*
2222	 * We woke inside or after the sample window, this means we're already
2223	 * accounted through the nohz accounting, so skip the entire deal and
2224	 * sync up for the next window.
2225	 */
2226	this_rq->calc_load_update = calc_load_update;
2227	if (time_before(jiffies, this_rq->calc_load_update + 10))
2228		this_rq->calc_load_update += LOAD_FREQ;
2229}
2230
2231static long calc_load_fold_idle(void)
2232{
2233	int idx = calc_load_read_idx();
2234	long delta = 0;
2235
2236	if (atomic_long_read(&calc_load_idle[idx]))
2237		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2238
2239	return delta;
2240}
2241
2242/**
2243 * fixed_power_int - compute: x^n, in O(log n) time
2244 *
2245 * @x:         base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n:         power to raise @x to.
2248 *
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2255 * vector.
2256 */
2257static unsigned long
2258fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259{
2260	unsigned long result = 1UL << frac_bits;
2261
2262	if (n) for (;;) {
2263		if (n & 1) {
2264			result *= x;
2265			result += 1UL << (frac_bits - 1);
2266			result >>= frac_bits;
2267		}
2268		n >>= 1;
2269		if (!n)
2270			break;
2271		x *= x;
2272		x += 1UL << (frac_bits - 1);
2273		x >>= frac_bits;
2274	}
2275
2276	return result;
2277}
2278
2279/*
2280 * a1 = a0 * e + a * (1 - e)
2281 *
2282 * a2 = a1 * e + a * (1 - e)
2283 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2285 *
2286 * a3 = a2 * e + a * (1 - e)
2287 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289 *
2290 *  ...
2291 *
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 *    = a0 * e^n + a * (1 - e^n)
2295 *
2296 * [1] application of the geometric series:
2297 *
2298 *              n         1 - x^(n+1)
2299 *     S_n := \Sum x^i = -------------
2300 *             i=0          1 - x
2301 */
2302static unsigned long
2303calc_load_n(unsigned long load, unsigned long exp,
2304	    unsigned long active, unsigned int n)
2305{
2306
2307	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308}
2309
2310/*
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2315 *
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2318 */
2319static void calc_global_nohz(void)
2320{
2321	long delta, active, n;
2322
2323	if (!time_before(jiffies, calc_load_update + 10)) {
2324		/*
2325		 * Catch-up, fold however many we are behind still
2326		 */
2327		delta = jiffies - calc_load_update - 10;
2328		n = 1 + (delta / LOAD_FREQ);
2329
2330		active = atomic_long_read(&calc_load_tasks);
2331		active = active > 0 ? active * FIXED_1 : 0;
2332
2333		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2336
2337		calc_load_update += n * LOAD_FREQ;
2338	}
2339
2340	/*
2341	 * Flip the idle index...
2342	 *
2343	 * Make sure we first write the new time then flip the index, so that
2344	 * calc_load_write_idx() will see the new time when it reads the new
2345	 * index, this avoids a double flip messing things up.
2346	 */
2347	smp_wmb();
2348	calc_load_idx++;
2349}
2350#else /* !CONFIG_NO_HZ */
2351
2352static inline long calc_load_fold_idle(void) { return 0; }
2353static inline void calc_global_nohz(void) { }
2354
2355#endif /* CONFIG_NO_HZ */
2356
2357/*
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
2360 */
2361void calc_global_load(unsigned long ticks)
2362{
2363	long active, delta;
2364
2365	if (time_before(jiffies, calc_load_update + 10))
2366		return;
2367
2368	/*
2369	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370	 */
2371	delta = calc_load_fold_idle();
2372	if (delta)
2373		atomic_long_add(delta, &calc_load_tasks);
2374
2375	active = atomic_long_read(&calc_load_tasks);
2376	active = active > 0 ? active * FIXED_1 : 0;
2377
2378	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2381
2382	calc_load_update += LOAD_FREQ;
2383
2384	/*
2385	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2386	 */
2387	calc_global_nohz();
2388}
2389
2390/*
2391 * Called from update_cpu_load() to periodically update this CPU's
2392 * active count.
2393 */
2394static void calc_load_account_active(struct rq *this_rq)
2395{
2396	long delta;
2397
2398	if (time_before(jiffies, this_rq->calc_load_update))
2399		return;
2400
2401	delta  = calc_load_fold_active(this_rq);
2402	if (delta)
2403		atomic_long_add(delta, &calc_load_tasks);
2404
2405	this_rq->calc_load_update += LOAD_FREQ;
2406}
2407
2408/*
2409 * End of global load-average stuff
2410 */
2411
2412/*
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415 *
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420 *
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424 *
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2431 * Example:
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434 *
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2438 */
2439#define DEGRADE_SHIFT		7
2440static const unsigned char
2441		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442static const unsigned char
2443		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444					{0, 0, 0, 0, 0, 0, 0, 0},
2445					{64, 32, 8, 0, 0, 0, 0, 0},
2446					{96, 72, 40, 12, 1, 0, 0},
2447					{112, 98, 75, 43, 15, 1, 0},
2448					{120, 112, 98, 76, 45, 16, 2} };
2449
2450/*
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2454 */
2455static unsigned long
2456decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457{
2458	int j = 0;
2459
2460	if (!missed_updates)
2461		return load;
2462
2463	if (missed_updates >= degrade_zero_ticks[idx])
2464		return 0;
2465
2466	if (idx == 1)
2467		return load >> missed_updates;
2468
2469	while (missed_updates) {
2470		if (missed_updates % 2)
2471			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472
2473		missed_updates >>= 1;
2474		j++;
2475	}
2476	return load;
2477}
2478
2479/*
2480 * Update rq->cpu_load[] statistics. This function is usually called every
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
2483 */
2484static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485			      unsigned long pending_updates)
2486{
2487	int i, scale;
2488
2489	this_rq->nr_load_updates++;
2490
2491	/* Update our load: */
2492	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2494		unsigned long old_load, new_load;
2495
2496		/* scale is effectively 1 << i now, and >> i divides by scale */
2497
2498		old_load = this_rq->cpu_load[i];
2499		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2500		new_load = this_load;
2501		/*
2502		 * Round up the averaging division if load is increasing. This
2503		 * prevents us from getting stuck on 9 if the load is 10, for
2504		 * example.
2505		 */
2506		if (new_load > old_load)
2507			new_load += scale - 1;
2508
2509		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2510	}
2511
2512	sched_avg_update(this_rq);
2513}
2514
2515#ifdef CONFIG_NO_HZ
2516/*
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520 *
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2525 *
2526 * This means we might still be one tick off for nohz periods.
2527 */
2528
2529/*
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2531 * idle balance.
2532 */
2533void update_idle_cpu_load(struct rq *this_rq)
2534{
2535	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536	unsigned long load = this_rq->load.weight;
2537	unsigned long pending_updates;
2538
2539	/*
2540	 * bail if there's load or we're actually up-to-date.
2541	 */
2542	if (load || curr_jiffies == this_rq->last_load_update_tick)
2543		return;
2544
2545	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546	this_rq->last_load_update_tick = curr_jiffies;
2547
2548	__update_cpu_load(this_rq, load, pending_updates);
2549}
2550
2551/*
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553 */
2554void update_cpu_load_nohz(void)
2555{
2556	struct rq *this_rq = this_rq();
2557	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558	unsigned long pending_updates;
2559
2560	if (curr_jiffies == this_rq->last_load_update_tick)
2561		return;
2562
2563	raw_spin_lock(&this_rq->lock);
2564	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565	if (pending_updates) {
2566		this_rq->last_load_update_tick = curr_jiffies;
2567		/*
2568		 * We were idle, this means load 0, the current load might be
2569		 * !0 due to remote wakeups and the sort.
2570		 */
2571		__update_cpu_load(this_rq, 0, pending_updates);
2572	}
2573	raw_spin_unlock(&this_rq->lock);
2574}
2575#endif /* CONFIG_NO_HZ */
2576
2577/*
2578 * Called from scheduler_tick()
2579 */
2580static void update_cpu_load_active(struct rq *this_rq)
2581{
2582	/*
2583	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2584	 */
2585	this_rq->last_load_update_tick = jiffies;
2586	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2587
2588	calc_load_account_active(this_rq);
2589}
2590
2591#ifdef CONFIG_SMP
2592
2593/*
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
2596 */
2597void sched_exec(void)
2598{
2599	struct task_struct *p = current;
2600	unsigned long flags;
2601	int dest_cpu;
2602
2603	raw_spin_lock_irqsave(&p->pi_lock, flags);
2604	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605	if (dest_cpu == smp_processor_id())
2606		goto unlock;
2607
2608	if (likely(cpu_active(dest_cpu))) {
2609		struct migration_arg arg = { p, dest_cpu };
2610
2611		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2613		return;
2614	}
2615unlock:
2616	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617}
2618
2619#endif
2620
2621DEFINE_PER_CPU(struct kernel_stat, kstat);
2622DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2623
2624EXPORT_PER_CPU_SYMBOL(kstat);
2625EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2626
2627/*
2628 * Return any ns on the sched_clock that have not yet been accounted in
2629 * @p in case that task is currently running.
2630 *
2631 * Called with task_rq_lock() held on @rq.
2632 */
2633static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634{
2635	u64 ns = 0;
2636
2637	if (task_current(rq, p)) {
2638		update_rq_clock(rq);
2639		ns = rq->clock_task - p->se.exec_start;
2640		if ((s64)ns < 0)
2641			ns = 0;
2642	}
2643
2644	return ns;
2645}
2646
2647unsigned long long task_delta_exec(struct task_struct *p)
2648{
2649	unsigned long flags;
2650	struct rq *rq;
2651	u64 ns = 0;
2652
2653	rq = task_rq_lock(p, &flags);
2654	ns = do_task_delta_exec(p, rq);
2655	task_rq_unlock(rq, p, &flags);
2656
2657	return ns;
2658}
2659
2660/*
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2664 */
2665unsigned long long task_sched_runtime(struct task_struct *p)
2666{
2667	unsigned long flags;
2668	struct rq *rq;
2669	u64 ns = 0;
2670
2671	rq = task_rq_lock(p, &flags);
2672	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673	task_rq_unlock(rq, p, &flags);
2674
2675	return ns;
2676}
2677
2678/*
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
2681 */
2682void scheduler_tick(void)
2683{
2684	int cpu = smp_processor_id();
2685	struct rq *rq = cpu_rq(cpu);
2686	struct task_struct *curr = rq->curr;
2687
2688	sched_clock_tick();
2689
2690	raw_spin_lock(&rq->lock);
2691	update_rq_clock(rq);
2692	update_cpu_load_active(rq);
2693	curr->sched_class->task_tick(rq, curr, 0);
2694	raw_spin_unlock(&rq->lock);
2695
2696	perf_event_task_tick();
2697
2698#ifdef CONFIG_SMP
2699	rq->idle_balance = idle_cpu(cpu);
2700	trigger_load_balance(rq, cpu);
2701#endif
2702}
2703
2704notrace unsigned long get_parent_ip(unsigned long addr)
2705{
2706	if (in_lock_functions(addr)) {
2707		addr = CALLER_ADDR2;
2708		if (in_lock_functions(addr))
2709			addr = CALLER_ADDR3;
2710	}
2711	return addr;
2712}
2713
2714#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715				defined(CONFIG_PREEMPT_TRACER))
2716
2717void __kprobes add_preempt_count(int val)
2718{
2719#ifdef CONFIG_DEBUG_PREEMPT
2720	/*
2721	 * Underflow?
2722	 */
2723	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724		return;
2725#endif
2726	preempt_count() += val;
2727#ifdef CONFIG_DEBUG_PREEMPT
2728	/*
2729	 * Spinlock count overflowing soon?
2730	 */
2731	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732				PREEMPT_MASK - 10);
2733#endif
2734	if (preempt_count() == val)
2735		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2736}
2737EXPORT_SYMBOL(add_preempt_count);
2738
2739void __kprobes sub_preempt_count(int val)
2740{
2741#ifdef CONFIG_DEBUG_PREEMPT
2742	/*
2743	 * Underflow?
2744	 */
2745	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2746		return;
2747	/*
2748	 * Is the spinlock portion underflowing?
2749	 */
2750	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751			!(preempt_count() & PREEMPT_MASK)))
2752		return;
2753#endif
2754
2755	if (preempt_count() == val)
2756		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2757	preempt_count() -= val;
2758}
2759EXPORT_SYMBOL(sub_preempt_count);
2760
2761#endif
2762
2763/*
2764 * Print scheduling while atomic bug:
2765 */
2766static noinline void __schedule_bug(struct task_struct *prev)
2767{
2768	if (oops_in_progress)
2769		return;
2770
2771	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772		prev->comm, prev->pid, preempt_count());
2773
2774	debug_show_held_locks(prev);
2775	print_modules();
2776	if (irqs_disabled())
2777		print_irqtrace_events(prev);
2778	dump_stack();
2779	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2780}
2781
2782/*
2783 * Various schedule()-time debugging checks and statistics:
2784 */
2785static inline void schedule_debug(struct task_struct *prev)
2786{
2787	/*
2788	 * Test if we are atomic. Since do_exit() needs to call into
2789	 * schedule() atomically, we ignore that path for now.
2790	 * Otherwise, whine if we are scheduling when we should not be.
2791	 */
2792	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2793		__schedule_bug(prev);
2794	rcu_sleep_check();
2795
2796	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797
2798	schedstat_inc(this_rq(), sched_count);
2799}
2800
2801static void put_prev_task(struct rq *rq, struct task_struct *prev)
2802{
2803	if (prev->on_rq || rq->skip_clock_update < 0)
2804		update_rq_clock(rq);
2805	prev->sched_class->put_prev_task(rq, prev);
2806}
2807
2808/*
2809 * Pick up the highest-prio task:
2810 */
2811static inline struct task_struct *
2812pick_next_task(struct rq *rq)
2813{
2814	const struct sched_class *class;
2815	struct task_struct *p;
2816
2817	/*
2818	 * Optimization: we know that if all tasks are in
2819	 * the fair class we can call that function directly:
2820	 */
2821	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822		p = fair_sched_class.pick_next_task(rq);
2823		if (likely(p))
2824			return p;
2825	}
2826
2827	for_each_class(class) {
2828		p = class->pick_next_task(rq);
2829		if (p)
2830			return p;
2831	}
2832
2833	BUG(); /* the idle class will always have a runnable task */
2834}
2835
2836/*
2837 * __schedule() is the main scheduler function.
2838 *
2839 * The main means of driving the scheduler and thus entering this function are:
2840 *
2841 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842 *
2843 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 *      paths. For example, see arch/x86/entry_64.S.
2845 *
2846 *      To drive preemption between tasks, the scheduler sets the flag in timer
2847 *      interrupt handler scheduler_tick().
2848 *
2849 *   3. Wakeups don't really cause entry into schedule(). They add a
2850 *      task to the run-queue and that's it.
2851 *
2852 *      Now, if the new task added to the run-queue preempts the current
2853 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 *      called on the nearest possible occasion:
2855 *
2856 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857 *
2858 *         - in syscall or exception context, at the next outmost
2859 *           preempt_enable(). (this might be as soon as the wake_up()'s
2860 *           spin_unlock()!)
2861 *
2862 *         - in IRQ context, return from interrupt-handler to
2863 *           preemptible context
2864 *
2865 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866 *         then at the next:
2867 *
2868 *          - cond_resched() call
2869 *          - explicit schedule() call
2870 *          - return from syscall or exception to user-space
2871 *          - return from interrupt-handler to user-space
2872 */
2873static void __sched __schedule(void)
2874{
2875	struct task_struct *prev, *next;
2876	unsigned long *switch_count;
2877	struct rq *rq;
2878	int cpu;
2879
2880need_resched:
2881	preempt_disable();
2882	cpu = smp_processor_id();
2883	rq = cpu_rq(cpu);
2884	rcu_note_context_switch(cpu);
2885	prev = rq->curr;
2886
2887	schedule_debug(prev);
2888
2889	if (sched_feat(HRTICK))
2890		hrtick_clear(rq);
2891
2892	raw_spin_lock_irq(&rq->lock);
2893
2894	switch_count = &prev->nivcsw;
2895	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2896		if (unlikely(signal_pending_state(prev->state, prev))) {
2897			prev->state = TASK_RUNNING;
2898		} else {
2899			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900			prev->on_rq = 0;
2901
2902			/*
2903			 * If a worker went to sleep, notify and ask workqueue
2904			 * whether it wants to wake up a task to maintain
2905			 * concurrency.
2906			 */
2907			if (prev->flags & PF_WQ_WORKER) {
2908				struct task_struct *to_wakeup;
2909
2910				to_wakeup = wq_worker_sleeping(prev, cpu);
2911				if (to_wakeup)
2912					try_to_wake_up_local(to_wakeup);
2913			}
2914		}
2915		switch_count = &prev->nvcsw;
2916	}
2917
2918	pre_schedule(rq, prev);
2919
2920	if (unlikely(!rq->nr_running))
2921		idle_balance(cpu, rq);
2922
2923	put_prev_task(rq, prev);
2924	next = pick_next_task(rq);
2925	clear_tsk_need_resched(prev);
2926	rq->skip_clock_update = 0;
2927
2928	if (likely(prev != next)) {
2929		rq->nr_switches++;
2930		rq->curr = next;
2931		++*switch_count;
2932
2933		context_switch(rq, prev, next); /* unlocks the rq */
2934		/*
2935		 * The context switch have flipped the stack from under us
2936		 * and restored the local variables which were saved when
2937		 * this task called schedule() in the past. prev == current
2938		 * is still correct, but it can be moved to another cpu/rq.
2939		 */
2940		cpu = smp_processor_id();
2941		rq = cpu_rq(cpu);
2942	} else
2943		raw_spin_unlock_irq(&rq->lock);
2944
2945	post_schedule(rq);
2946
2947	sched_preempt_enable_no_resched();
2948	if (need_resched())
2949		goto need_resched;
2950}
2951
2952static inline void sched_submit_work(struct task_struct *tsk)
2953{
2954	if (!tsk->state || tsk_is_pi_blocked(tsk))
2955		return;
2956	/*
2957	 * If we are going to sleep and we have plugged IO queued,
2958	 * make sure to submit it to avoid deadlocks.
2959	 */
2960	if (blk_needs_flush_plug(tsk))
2961		blk_schedule_flush_plug(tsk);
2962}
2963
2964asmlinkage void __sched schedule(void)
2965{
2966	struct task_struct *tsk = current;
2967
2968	sched_submit_work(tsk);
2969	__schedule();
2970}
2971EXPORT_SYMBOL(schedule);
2972
2973#ifdef CONFIG_CONTEXT_TRACKING
2974asmlinkage void __sched schedule_user(void)
2975{
2976	/*
2977	 * If we come here after a random call to set_need_resched(),
2978	 * or we have been woken up remotely but the IPI has not yet arrived,
2979	 * we haven't yet exited the RCU idle mode. Do it here manually until
2980	 * we find a better solution.
2981	 */
2982	user_exit();
2983	schedule();
2984	user_enter();
2985}
2986#endif
2987
2988/**
2989 * schedule_preempt_disabled - called with preemption disabled
2990 *
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2992 */
2993void __sched schedule_preempt_disabled(void)
2994{
2995	sched_preempt_enable_no_resched();
2996	schedule();
2997	preempt_disable();
2998}
2999
3000#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3001
3002static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003{
3004	if (lock->owner != owner)
3005		return false;
3006
3007	/*
3008	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009	 * lock->owner still matches owner, if that fails, owner might
3010	 * point to free()d memory, if it still matches, the rcu_read_lock()
3011	 * ensures the memory stays valid.
3012	 */
3013	barrier();
3014
3015	return owner->on_cpu;
3016}
3017
3018/*
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3021 */
3022int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023{
3024	if (!sched_feat(OWNER_SPIN))
3025		return 0;
3026
3027	rcu_read_lock();
3028	while (owner_running(lock, owner)) {
3029		if (need_resched())
3030			break;
3031
3032		arch_mutex_cpu_relax();
3033	}
3034	rcu_read_unlock();
3035
3036	/*
3037	 * We break out the loop above on need_resched() and when the
3038	 * owner changed, which is a sign for heavy contention. Return
3039	 * success only when lock->owner is NULL.
3040	 */
3041	return lock->owner == NULL;
3042}
3043#endif
3044
3045#ifdef CONFIG_PREEMPT
3046/*
3047 * this is the entry point to schedule() from in-kernel preemption
3048 * off of preempt_enable. Kernel preemptions off return from interrupt
3049 * occur there and call schedule directly.
3050 */
3051asmlinkage void __sched notrace preempt_schedule(void)
3052{
3053	struct thread_info *ti = current_thread_info();
3054
3055	/*
3056	 * If there is a non-zero preempt_count or interrupts are disabled,
3057	 * we do not want to preempt the current task. Just return..
3058	 */
3059	if (likely(ti->preempt_count || irqs_disabled()))
3060		return;
3061
3062	do {
3063		add_preempt_count_notrace(PREEMPT_ACTIVE);
3064		__schedule();
3065		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3066
3067		/*
3068		 * Check again in case we missed a preemption opportunity
3069		 * between schedule and now.
3070		 */
3071		barrier();
3072	} while (need_resched());
3073}
3074EXPORT_SYMBOL(preempt_schedule);
3075
3076/*
3077 * this is the entry point to schedule() from kernel preemption
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3081 */
3082asmlinkage void __sched preempt_schedule_irq(void)
3083{
3084	struct thread_info *ti = current_thread_info();
3085	enum ctx_state prev_state;
3086
3087	/* Catch callers which need to be fixed */
3088	BUG_ON(ti->preempt_count || !irqs_disabled());
3089
3090	prev_state = exception_enter();
3091
3092	do {
3093		add_preempt_count(PREEMPT_ACTIVE);
3094		local_irq_enable();
3095		__schedule();
3096		local_irq_disable();
3097		sub_preempt_count(PREEMPT_ACTIVE);
3098
3099		/*
3100		 * Check again in case we missed a preemption opportunity
3101		 * between schedule and now.
3102		 */
3103		barrier();
3104	} while (need_resched());
3105
3106	exception_exit(prev_state);
3107}
3108
3109#endif /* CONFIG_PREEMPT */
3110
3111int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3112			  void *key)
3113{
3114	return try_to_wake_up(curr->private, mode, wake_flags);
3115}
3116EXPORT_SYMBOL(default_wake_function);
3117
3118/*
3119 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3120 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3121 * number) then we wake all the non-exclusive tasks and one exclusive task.
3122 *
3123 * There are circumstances in which we can try to wake a task which has already
3124 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3125 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3126 */
3127static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3128			int nr_exclusive, int wake_flags, void *key)
3129{
3130	wait_queue_t *curr, *next;
3131
3132	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3133		unsigned flags = curr->flags;
3134
3135		if (curr->func(curr, mode, wake_flags, key) &&
3136				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3137			break;
3138	}
3139}
3140
3141/**
3142 * __wake_up - wake up threads blocked on a waitqueue.
3143 * @q: the waitqueue
3144 * @mode: which threads
3145 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3146 * @key: is directly passed to the wakeup function
3147 *
3148 * It may be assumed that this function implies a write memory barrier before
3149 * changing the task state if and only if any tasks are woken up.
3150 */
3151void __wake_up(wait_queue_head_t *q, unsigned int mode,
3152			int nr_exclusive, void *key)
3153{
3154	unsigned long flags;
3155
3156	spin_lock_irqsave(&q->lock, flags);
3157	__wake_up_common(q, mode, nr_exclusive, 0, key);
3158	spin_unlock_irqrestore(&q->lock, flags);
3159}
3160EXPORT_SYMBOL(__wake_up);
3161
3162/*
3163 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3164 */
3165void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3166{
3167	__wake_up_common(q, mode, nr, 0, NULL);
3168}
3169EXPORT_SYMBOL_GPL(__wake_up_locked);
3170
3171void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3172{
3173	__wake_up_common(q, mode, 1, 0, key);
3174}
3175EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3176
3177/**
3178 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3179 * @q: the waitqueue
3180 * @mode: which threads
3181 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3182 * @key: opaque value to be passed to wakeup targets
3183 *
3184 * The sync wakeup differs that the waker knows that it will schedule
3185 * away soon, so while the target thread will be woken up, it will not
3186 * be migrated to another CPU - ie. the two threads are 'synchronized'
3187 * with each other. This can prevent needless bouncing between CPUs.
3188 *
3189 * On UP it can prevent extra preemption.
3190 *
3191 * It may be assumed that this function implies a write memory barrier before
3192 * changing the task state if and only if any tasks are woken up.
3193 */
3194void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3195			int nr_exclusive, void *key)
3196{
3197	unsigned long flags;
3198	int wake_flags = WF_SYNC;
3199
3200	if (unlikely(!q))
3201		return;
3202
3203	if (unlikely(!nr_exclusive))
3204		wake_flags = 0;
3205
3206	spin_lock_irqsave(&q->lock, flags);
3207	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3208	spin_unlock_irqrestore(&q->lock, flags);
3209}
3210EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3211
3212/*
3213 * __wake_up_sync - see __wake_up_sync_key()
3214 */
3215void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3216{
3217	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3218}
3219EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3220
3221/**
3222 * complete: - signals a single thread waiting on this completion
3223 * @x:  holds the state of this particular completion
3224 *
3225 * This will wake up a single thread waiting on this completion. Threads will be
3226 * awakened in the same order in which they were queued.
3227 *
3228 * See also complete_all(), wait_for_completion() and related routines.
3229 *
3230 * It may be assumed that this function implies a write memory barrier before
3231 * changing the task state if and only if any tasks are woken up.
3232 */
3233void complete(struct completion *x)
3234{
3235	unsigned long flags;
3236
3237	spin_lock_irqsave(&x->wait.lock, flags);
3238	x->done++;
3239	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3240	spin_unlock_irqrestore(&x->wait.lock, flags);
3241}
3242EXPORT_SYMBOL(complete);
3243
3244/**
3245 * complete_all: - signals all threads waiting on this completion
3246 * @x:  holds the state of this particular completion
3247 *
3248 * This will wake up all threads waiting on this particular completion event.
3249 *
3250 * It may be assumed that this function implies a write memory barrier before
3251 * changing the task state if and only if any tasks are woken up.
3252 */
3253void complete_all(struct completion *x)
3254{
3255	unsigned long flags;
3256
3257	spin_lock_irqsave(&x->wait.lock, flags);
3258	x->done += UINT_MAX/2;
3259	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3260	spin_unlock_irqrestore(&x->wait.lock, flags);
3261}
3262EXPORT_SYMBOL(complete_all);
3263
3264static inline long __sched
3265do_wait_for_common(struct completion *x,
3266		   long (*action)(long), long timeout, int state)
3267{
3268	if (!x->done) {
3269		DECLARE_WAITQUEUE(wait, current);
3270
3271		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3272		do {
3273			if (signal_pending_state(state, current)) {
3274				timeout = -ERESTARTSYS;
3275				break;
3276			}
3277			__set_current_state(state);
3278			spin_unlock_irq(&x->wait.lock);
3279			timeout = action(timeout);
3280			spin_lock_irq(&x->wait.lock);
3281		} while (!x->done && timeout);
3282		__remove_wait_queue(&x->wait, &wait);
3283		if (!x->done)
3284			return timeout;
3285	}
3286	x->done--;
3287	return timeout ?: 1;
3288}
3289
3290static inline long __sched
3291__wait_for_common(struct completion *x,
3292		  long (*action)(long), long timeout, int state)
3293{
3294	might_sleep();
3295
3296	spin_lock_irq(&x->wait.lock);
3297	timeout = do_wait_for_common(x, action, timeout, state);
3298	spin_unlock_irq(&x->wait.lock);
3299	return timeout;
3300}
3301
3302static long __sched
3303wait_for_common(struct completion *x, long timeout, int state)
3304{
3305	return __wait_for_common(x, schedule_timeout, timeout, state);
3306}
3307
3308static long __sched
3309wait_for_common_io(struct completion *x, long timeout, int state)
3310{
3311	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3312}
3313
3314/**
3315 * wait_for_completion: - waits for completion of a task
3316 * @x:  holds the state of this particular completion
3317 *
3318 * This waits to be signaled for completion of a specific task. It is NOT
3319 * interruptible and there is no timeout.
3320 *
3321 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3322 * and interrupt capability. Also see complete().
3323 */
3324void __sched wait_for_completion(struct completion *x)
3325{
3326	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3327}
3328EXPORT_SYMBOL(wait_for_completion);
3329
3330/**
3331 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3332 * @x:  holds the state of this particular completion
3333 * @timeout:  timeout value in jiffies
3334 *
3335 * This waits for either a completion of a specific task to be signaled or for a
3336 * specified timeout to expire. The timeout is in jiffies. It is not
3337 * interruptible.
3338 *
3339 * The return value is 0 if timed out, and positive (at least 1, or number of
3340 * jiffies left till timeout) if completed.
3341 */
3342unsigned long __sched
3343wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3344{
3345	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3346}
3347EXPORT_SYMBOL(wait_for_completion_timeout);
3348
3349/**
3350 * wait_for_completion_io: - waits for completion of a task
3351 * @x:  holds the state of this particular completion
3352 *
3353 * This waits to be signaled for completion of a specific task. It is NOT
3354 * interruptible and there is no timeout. The caller is accounted as waiting
3355 * for IO.
3356 */
3357void __sched wait_for_completion_io(struct completion *x)
3358{
3359	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3360}
3361EXPORT_SYMBOL(wait_for_completion_io);
3362
3363/**
3364 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3365 * @x:  holds the state of this particular completion
3366 * @timeout:  timeout value in jiffies
3367 *
3368 * This waits for either a completion of a specific task to be signaled or for a
3369 * specified timeout to expire. The timeout is in jiffies. It is not
3370 * interruptible. The caller is accounted as waiting for IO.
3371 *
3372 * The return value is 0 if timed out, and positive (at least 1, or number of
3373 * jiffies left till timeout) if completed.
3374 */
3375unsigned long __sched
3376wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3377{
3378	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3379}
3380EXPORT_SYMBOL(wait_for_completion_io_timeout);
3381
3382/**
3383 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3384 * @x:  holds the state of this particular completion
3385 *
3386 * This waits for completion of a specific task to be signaled. It is
3387 * interruptible.
3388 *
3389 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3390 */
3391int __sched wait_for_completion_interruptible(struct completion *x)
3392{
3393	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3394	if (t == -ERESTARTSYS)
3395		return t;
3396	return 0;
3397}
3398EXPORT_SYMBOL(wait_for_completion_interruptible);
3399
3400/**
3401 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3402 * @x:  holds the state of this particular completion
3403 * @timeout:  timeout value in jiffies
3404 *
3405 * This waits for either a completion of a specific task to be signaled or for a
3406 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3407 *
3408 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3409 * positive (at least 1, or number of jiffies left till timeout) if completed.
3410 */
3411long __sched
3412wait_for_completion_interruptible_timeout(struct completion *x,
3413					  unsigned long timeout)
3414{
3415	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3416}
3417EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3418
3419/**
3420 * wait_for_completion_killable: - waits for completion of a task (killable)
3421 * @x:  holds the state of this particular completion
3422 *
3423 * This waits to be signaled for completion of a specific task. It can be
3424 * interrupted by a kill signal.
3425 *
3426 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3427 */
3428int __sched wait_for_completion_killable(struct completion *x)
3429{
3430	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3431	if (t == -ERESTARTSYS)
3432		return t;
3433	return 0;
3434}
3435EXPORT_SYMBOL(wait_for_completion_killable);
3436
3437/**
3438 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3439 * @x:  holds the state of this particular completion
3440 * @timeout:  timeout value in jiffies
3441 *
3442 * This waits for either a completion of a specific task to be
3443 * signaled or for a specified timeout to expire. It can be
3444 * interrupted by a kill signal. The timeout is in jiffies.
3445 *
3446 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3447 * positive (at least 1, or number of jiffies left till timeout) if completed.
3448 */
3449long __sched
3450wait_for_completion_killable_timeout(struct completion *x,
3451				     unsigned long timeout)
3452{
3453	return wait_for_common(x, timeout, TASK_KILLABLE);
3454}
3455EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3456
3457/**
3458 *	try_wait_for_completion - try to decrement a completion without blocking
3459 *	@x:	completion structure
3460 *
3461 *	Returns: 0 if a decrement cannot be done without blocking
3462 *		 1 if a decrement succeeded.
3463 *
3464 *	If a completion is being used as a counting completion,
3465 *	attempt to decrement the counter without blocking. This
3466 *	enables us to avoid waiting if the resource the completion
3467 *	is protecting is not available.
3468 */
3469bool try_wait_for_completion(struct completion *x)
3470{
3471	unsigned long flags;
3472	int ret = 1;
3473
3474	spin_lock_irqsave(&x->wait.lock, flags);
3475	if (!x->done)
3476		ret = 0;
3477	else
3478		x->done--;
3479	spin_unlock_irqrestore(&x->wait.lock, flags);
3480	return ret;
3481}
3482EXPORT_SYMBOL(try_wait_for_completion);
3483
3484/**
3485 *	completion_done - Test to see if a completion has any waiters
3486 *	@x:	completion structure
3487 *
3488 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3489 *		 1 if there are no waiters.
3490 *
3491 */
3492bool completion_done(struct completion *x)
3493{
3494	unsigned long flags;
3495	int ret = 1;
3496
3497	spin_lock_irqsave(&x->wait.lock, flags);
3498	if (!x->done)
3499		ret = 0;
3500	spin_unlock_irqrestore(&x->wait.lock, flags);
3501	return ret;
3502}
3503EXPORT_SYMBOL(completion_done);
3504
3505static long __sched
3506sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3507{
3508	unsigned long flags;
3509	wait_queue_t wait;
3510
3511	init_waitqueue_entry(&wait, current);
3512
3513	__set_current_state(state);
3514
3515	spin_lock_irqsave(&q->lock, flags);
3516	__add_wait_queue(q, &wait);
3517	spin_unlock(&q->lock);
3518	timeout = schedule_timeout(timeout);
3519	spin_lock_irq(&q->lock);
3520	__remove_wait_queue(q, &wait);
3521	spin_unlock_irqrestore(&q->lock, flags);
3522
3523	return timeout;
3524}
3525
3526void __sched interruptible_sleep_on(wait_queue_head_t *q)
3527{
3528	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3529}
3530EXPORT_SYMBOL(interruptible_sleep_on);
3531
3532long __sched
3533interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3534{
3535	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3536}
3537EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3538
3539void __sched sleep_on(wait_queue_head_t *q)
3540{
3541	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3542}
3543EXPORT_SYMBOL(sleep_on);
3544
3545long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3546{
3547	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3548}
3549EXPORT_SYMBOL(sleep_on_timeout);
3550
3551#ifdef CONFIG_RT_MUTEXES
3552
3553/*
3554 * rt_mutex_setprio - set the current priority of a task
3555 * @p: task
3556 * @prio: prio value (kernel-internal form)
3557 *
3558 * This function changes the 'effective' priority of a task. It does
3559 * not touch ->normal_prio like __setscheduler().
3560 *
3561 * Used by the rt_mutex code to implement priority inheritance logic.
3562 */
3563void rt_mutex_setprio(struct task_struct *p, int prio)
3564{
3565	int oldprio, on_rq, running;
3566	struct rq *rq;
3567	const struct sched_class *prev_class;
3568
3569	BUG_ON(prio < 0 || prio > MAX_PRIO);
3570
3571	rq = __task_rq_lock(p);
3572
3573	/*
3574	 * Idle task boosting is a nono in general. There is one
3575	 * exception, when PREEMPT_RT and NOHZ is active:
3576	 *
3577	 * The idle task calls get_next_timer_interrupt() and holds
3578	 * the timer wheel base->lock on the CPU and another CPU wants
3579	 * to access the timer (probably to cancel it). We can safely
3580	 * ignore the boosting request, as the idle CPU runs this code
3581	 * with interrupts disabled and will complete the lock
3582	 * protected section without being interrupted. So there is no
3583	 * real need to boost.
3584	 */
3585	if (unlikely(p == rq->idle)) {
3586		WARN_ON(p != rq->curr);
3587		WARN_ON(p->pi_blocked_on);
3588		goto out_unlock;
3589	}
3590
3591	trace_sched_pi_setprio(p, prio);
3592	oldprio = p->prio;
3593	prev_class = p->sched_class;
3594	on_rq = p->on_rq;
3595	running = task_current(rq, p);
3596	if (on_rq)
3597		dequeue_task(rq, p, 0);
3598	if (running)
3599		p->sched_class->put_prev_task(rq, p);
3600
3601	if (rt_prio(prio))
3602		p->sched_class = &rt_sched_class;
3603	else
3604		p->sched_class = &fair_sched_class;
3605
3606	p->prio = prio;
3607
3608	if (running)
3609		p->sched_class->set_curr_task(rq);
3610	if (on_rq)
3611		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3612
3613	check_class_changed(rq, p, prev_class, oldprio);
3614out_unlock:
3615	__task_rq_unlock(rq);
3616}
3617#endif
3618void set_user_nice(struct task_struct *p, long nice)
3619{
3620	int old_prio, delta, on_rq;
3621	unsigned long flags;
3622	struct rq *rq;
3623
3624	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3625		return;
3626	/*
3627	 * We have to be careful, if called from sys_setpriority(),
3628	 * the task might be in the middle of scheduling on another CPU.
3629	 */
3630	rq = task_rq_lock(p, &flags);
3631	/*
3632	 * The RT priorities are set via sched_setscheduler(), but we still
3633	 * allow the 'normal' nice value to be set - but as expected
3634	 * it wont have any effect on scheduling until the task is
3635	 * SCHED_FIFO/SCHED_RR:
3636	 */
3637	if (task_has_rt_policy(p)) {
3638		p->static_prio = NICE_TO_PRIO(nice);
3639		goto out_unlock;
3640	}
3641	on_rq = p->on_rq;
3642	if (on_rq)
3643		dequeue_task(rq, p, 0);
3644
3645	p->static_prio = NICE_TO_PRIO(nice);
3646	set_load_weight(p);
3647	old_prio = p->prio;
3648	p->prio = effective_prio(p);
3649	delta = p->prio - old_prio;
3650
3651	if (on_rq) {
3652		enqueue_task(rq, p, 0);
3653		/*
3654		 * If the task increased its priority or is running and
3655		 * lowered its priority, then reschedule its CPU:
3656		 */
3657		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3658			resched_task(rq->curr);
3659	}
3660out_unlock:
3661	task_rq_unlock(rq, p, &flags);
3662}
3663EXPORT_SYMBOL(set_user_nice);
3664
3665/*
3666 * can_nice - check if a task can reduce its nice value
3667 * @p: task
3668 * @nice: nice value
3669 */
3670int can_nice(const struct task_struct *p, const int nice)
3671{
3672	/* convert nice value [19,-20] to rlimit style value [1,40] */
3673	int nice_rlim = 20 - nice;
3674
3675	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3676		capable(CAP_SYS_NICE));
3677}
3678
3679#ifdef __ARCH_WANT_SYS_NICE
3680
3681/*
3682 * sys_nice - change the priority of the current process.
3683 * @increment: priority increment
3684 *
3685 * sys_setpriority is a more generic, but much slower function that
3686 * does similar things.
3687 */
3688SYSCALL_DEFINE1(nice, int, increment)
3689{
3690	long nice, retval;
3691
3692	/*
3693	 * Setpriority might change our priority at the same moment.
3694	 * We don't have to worry. Conceptually one call occurs first
3695	 * and we have a single winner.
3696	 */
3697	if (increment < -40)
3698		increment = -40;
3699	if (increment > 40)
3700		increment = 40;
3701
3702	nice = TASK_NICE(current) + increment;
3703	if (nice < -20)
3704		nice = -20;
3705	if (nice > 19)
3706		nice = 19;
3707
3708	if (increment < 0 && !can_nice(current, nice))
3709		return -EPERM;
3710
3711	retval = security_task_setnice(current, nice);
3712	if (retval)
3713		return retval;
3714
3715	set_user_nice(current, nice);
3716	return 0;
3717}
3718
3719#endif
3720
3721/**
3722 * task_prio - return the priority value of a given task.
3723 * @p: the task in question.
3724 *
3725 * This is the priority value as seen by users in /proc.
3726 * RT tasks are offset by -200. Normal tasks are centered
3727 * around 0, value goes from -16 to +15.
3728 */
3729int task_prio(const struct task_struct *p)
3730{
3731	return p->prio - MAX_RT_PRIO;
3732}
3733
3734/**
3735 * task_nice - return the nice value of a given task.
3736 * @p: the task in question.
3737 */
3738int task_nice(const struct task_struct *p)
3739{
3740	return TASK_NICE(p);
3741}
3742EXPORT_SYMBOL(task_nice);
3743
3744/**
3745 * idle_cpu - is a given cpu idle currently?
3746 * @cpu: the processor in question.
3747 */
3748int idle_cpu(int cpu)
3749{
3750	struct rq *rq = cpu_rq(cpu);
3751
3752	if (rq->curr != rq->idle)
3753		return 0;
3754
3755	if (rq->nr_running)
3756		return 0;
3757
3758#ifdef CONFIG_SMP
3759	if (!llist_empty(&rq->wake_list))
3760		return 0;
3761#endif
3762
3763	return 1;
3764}
3765
3766/**
3767 * idle_task - return the idle task for a given cpu.
3768 * @cpu: the processor in question.
3769 */
3770struct task_struct *idle_task(int cpu)
3771{
3772	return cpu_rq(cpu)->idle;
3773}
3774
3775/**
3776 * find_process_by_pid - find a process with a matching PID value.
3777 * @pid: the pid in question.
3778 */
3779static struct task_struct *find_process_by_pid(pid_t pid)
3780{
3781	return pid ? find_task_by_vpid(pid) : current;
3782}
3783
3784/* Actually do priority change: must hold rq lock. */
3785static void
3786__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3787{
3788	p->policy = policy;
3789	p->rt_priority = prio;
3790	p->normal_prio = normal_prio(p);
3791	/* we are holding p->pi_lock already */
3792	p->prio = rt_mutex_getprio(p);
3793	if (rt_prio(p->prio))
3794		p->sched_class = &rt_sched_class;
3795	else
3796		p->sched_class = &fair_sched_class;
3797	set_load_weight(p);
3798}
3799
3800/*
3801 * check the target process has a UID that matches the current process's
3802 */
3803static bool check_same_owner(struct task_struct *p)
3804{
3805	const struct cred *cred = current_cred(), *pcred;
3806	bool match;
3807
3808	rcu_read_lock();
3809	pcred = __task_cred(p);
3810	match = (uid_eq(cred->euid, pcred->euid) ||
3811		 uid_eq(cred->euid, pcred->uid));
3812	rcu_read_unlock();
3813	return match;
3814}
3815
3816static int __sched_setscheduler(struct task_struct *p, int policy,
3817				const struct sched_param *param, bool user)
3818{
3819	int retval, oldprio, oldpolicy = -1, on_rq, running;
3820	unsigned long flags;
3821	const struct sched_class *prev_class;
3822	struct rq *rq;
3823	int reset_on_fork;
3824
3825	/* may grab non-irq protected spin_locks */
3826	BUG_ON(in_interrupt());
3827recheck:
3828	/* double check policy once rq lock held */
3829	if (policy < 0) {
3830		reset_on_fork = p->sched_reset_on_fork;
3831		policy = oldpolicy = p->policy;
3832	} else {
3833		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3834		policy &= ~SCHED_RESET_ON_FORK;
3835
3836		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3837				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3838				policy != SCHED_IDLE)
3839			return -EINVAL;
3840	}
3841
3842	/*
3843	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3844	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3845	 * SCHED_BATCH and SCHED_IDLE is 0.
3846	 */
3847	if (param->sched_priority < 0 ||
3848	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3849	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3850		return -EINVAL;
3851	if (rt_policy(policy) != (param->sched_priority != 0))
3852		return -EINVAL;
3853
3854	/*
3855	 * Allow unprivileged RT tasks to decrease priority:
3856	 */
3857	if (user && !capable(CAP_SYS_NICE)) {
3858		if (rt_policy(policy)) {
3859			unsigned long rlim_rtprio =
3860					task_rlimit(p, RLIMIT_RTPRIO);
3861
3862			/* can't set/change the rt policy */
3863			if (policy != p->policy && !rlim_rtprio)
3864				return -EPERM;
3865
3866			/* can't increase priority */
3867			if (param->sched_priority > p->rt_priority &&
3868			    param->sched_priority > rlim_rtprio)
3869				return -EPERM;
3870		}
3871
3872		/*
3873		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3874		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3875		 */
3876		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3877			if (!can_nice(p, TASK_NICE(p)))
3878				return -EPERM;
3879		}
3880
3881		/* can't change other user's priorities */
3882		if (!check_same_owner(p))
3883			return -EPERM;
3884
3885		/* Normal users shall not reset the sched_reset_on_fork flag */
3886		if (p->sched_reset_on_fork && !reset_on_fork)
3887			return -EPERM;
3888	}
3889
3890	if (user) {
3891		retval = security_task_setscheduler(p);
3892		if (retval)
3893			return retval;
3894	}
3895
3896	/*
3897	 * make sure no PI-waiters arrive (or leave) while we are
3898	 * changing the priority of the task:
3899	 *
3900	 * To be able to change p->policy safely, the appropriate
3901	 * runqueue lock must be held.
3902	 */
3903	rq = task_rq_lock(p, &flags);
3904
3905	/*
3906	 * Changing the policy of the stop threads its a very bad idea
3907	 */
3908	if (p == rq->stop) {
3909		task_rq_unlock(rq, p, &flags);
3910		return -EINVAL;
3911	}
3912
3913	/*
3914	 * If not changing anything there's no need to proceed further:
3915	 */
3916	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3917			param->sched_priority == p->rt_priority))) {
3918		task_rq_unlock(rq, p, &flags);
3919		return 0;
3920	}
3921
3922#ifdef CONFIG_RT_GROUP_SCHED
3923	if (user) {
3924		/*
3925		 * Do not allow realtime tasks into groups that have no runtime
3926		 * assigned.
3927		 */
3928		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3929				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3930				!task_group_is_autogroup(task_group(p))) {
3931			task_rq_unlock(rq, p, &flags);
3932			return -EPERM;
3933		}
3934	}
3935#endif
3936
3937	/* recheck policy now with rq lock held */
3938	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3939		policy = oldpolicy = -1;
3940		task_rq_unlock(rq, p, &flags);
3941		goto recheck;
3942	}
3943	on_rq = p->on_rq;
3944	running = task_current(rq, p);
3945	if (on_rq)
3946		dequeue_task(rq, p, 0);
3947	if (running)
3948		p->sched_class->put_prev_task(rq, p);
3949
3950	p->sched_reset_on_fork = reset_on_fork;
3951
3952	oldprio = p->prio;
3953	prev_class = p->sched_class;
3954	__setscheduler(rq, p, policy, param->sched_priority);
3955
3956	if (running)
3957		p->sched_class->set_curr_task(rq);
3958	if (on_rq)
3959		enqueue_task(rq, p, 0);
3960
3961	check_class_changed(rq, p, prev_class, oldprio);
3962	task_rq_unlock(rq, p, &flags);
3963
3964	rt_mutex_adjust_pi(p);
3965
3966	return 0;
3967}
3968
3969/**
3970 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3971 * @p: the task in question.
3972 * @policy: new policy.
3973 * @param: structure containing the new RT priority.
3974 *
3975 * NOTE that the task may be already dead.
3976 */
3977int sched_setscheduler(struct task_struct *p, int policy,
3978		       const struct sched_param *param)
3979{
3980	return __sched_setscheduler(p, policy, param, true);
3981}
3982EXPORT_SYMBOL_GPL(sched_setscheduler);
3983
3984/**
3985 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3986 * @p: the task in question.
3987 * @policy: new policy.
3988 * @param: structure containing the new RT priority.
3989 *
3990 * Just like sched_setscheduler, only don't bother checking if the
3991 * current context has permission.  For example, this is needed in
3992 * stop_machine(): we create temporary high priority worker threads,
3993 * but our caller might not have that capability.
3994 */
3995int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3996			       const struct sched_param *param)
3997{
3998	return __sched_setscheduler(p, policy, param, false);
3999}
4000
4001static int
4002do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4003{
4004	struct sched_param lparam;
4005	struct task_struct *p;
4006	int retval;
4007
4008	if (!param || pid < 0)
4009		return -EINVAL;
4010	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4011		return -EFAULT;
4012
4013	rcu_read_lock();
4014	retval = -ESRCH;
4015	p = find_process_by_pid(pid);
4016	if (p != NULL)
4017		retval = sched_setscheduler(p, policy, &lparam);
4018	rcu_read_unlock();
4019
4020	return retval;
4021}
4022
4023/**
4024 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4025 * @pid: the pid in question.
4026 * @policy: new policy.
4027 * @param: structure containing the new RT priority.
4028 */
4029SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4030		struct sched_param __user *, param)
4031{
4032	/* negative values for policy are not valid */
4033	if (policy < 0)
4034		return -EINVAL;
4035
4036	return do_sched_setscheduler(pid, policy, param);
4037}
4038
4039/**
4040 * sys_sched_setparam - set/change the RT priority of a thread
4041 * @pid: the pid in question.
4042 * @param: structure containing the new RT priority.
4043 */
4044SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4045{
4046	return do_sched_setscheduler(pid, -1, param);
4047}
4048
4049/**
4050 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4051 * @pid: the pid in question.
4052 */
4053SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4054{
4055	struct task_struct *p;
4056	int retval;
4057
4058	if (pid < 0)
4059		return -EINVAL;
4060
4061	retval = -ESRCH;
4062	rcu_read_lock();
4063	p = find_process_by_pid(pid);
4064	if (p) {
4065		retval = security_task_getscheduler(p);
4066		if (!retval)
4067			retval = p->policy
4068				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4069	}
4070	rcu_read_unlock();
4071	return retval;
4072}
4073
4074/**
4075 * sys_sched_getparam - get the RT priority of a thread
4076 * @pid: the pid in question.
4077 * @param: structure containing the RT priority.
4078 */
4079SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4080{
4081	struct sched_param lp;
4082	struct task_struct *p;
4083	int retval;
4084
4085	if (!param || pid < 0)
4086		return -EINVAL;
4087
4088	rcu_read_lock();
4089	p = find_process_by_pid(pid);
4090	retval = -ESRCH;
4091	if (!p)
4092		goto out_unlock;
4093
4094	retval = security_task_getscheduler(p);
4095	if (retval)
4096		goto out_unlock;
4097
4098	lp.sched_priority = p->rt_priority;
4099	rcu_read_unlock();
4100
4101	/*
4102	 * This one might sleep, we cannot do it with a spinlock held ...
4103	 */
4104	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4105
4106	return retval;
4107
4108out_unlock:
4109	rcu_read_unlock();
4110	return retval;
4111}
4112
4113long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4114{
4115	cpumask_var_t cpus_allowed, new_mask;
4116	struct task_struct *p;
4117	int retval;
4118
4119	get_online_cpus();
4120	rcu_read_lock();
4121
4122	p = find_process_by_pid(pid);
4123	if (!p) {
4124		rcu_read_unlock();
4125		put_online_cpus();
4126		return -ESRCH;
4127	}
4128
4129	/* Prevent p going away */
4130	get_task_struct(p);
4131	rcu_read_unlock();
4132
4133	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4134		retval = -ENOMEM;
4135		goto out_put_task;
4136	}
4137	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4138		retval = -ENOMEM;
4139		goto out_free_cpus_allowed;
4140	}
4141	retval = -EPERM;
4142	if (!check_same_owner(p)) {
4143		rcu_read_lock();
4144		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4145			rcu_read_unlock();
4146			goto out_unlock;
4147		}
4148		rcu_read_unlock();
4149	}
4150
4151	retval = security_task_setscheduler(p);
4152	if (retval)
4153		goto out_unlock;
4154
4155	cpuset_cpus_allowed(p, cpus_allowed);
4156	cpumask_and(new_mask, in_mask, cpus_allowed);
4157again:
4158	retval = set_cpus_allowed_ptr(p, new_mask);
4159
4160	if (!retval) {
4161		cpuset_cpus_allowed(p, cpus_allowed);
4162		if (!cpumask_subset(new_mask, cpus_allowed)) {
4163			/*
4164			 * We must have raced with a concurrent cpuset
4165			 * update. Just reset the cpus_allowed to the
4166			 * cpuset's cpus_allowed
4167			 */
4168			cpumask_copy(new_mask, cpus_allowed);
4169			goto again;
4170		}
4171	}
4172out_unlock:
4173	free_cpumask_var(new_mask);
4174out_free_cpus_allowed:
4175	free_cpumask_var(cpus_allowed);
4176out_put_task:
4177	put_task_struct(p);
4178	put_online_cpus();
4179	return retval;
4180}
4181
4182static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4183			     struct cpumask *new_mask)
4184{
4185	if (len < cpumask_size())
4186		cpumask_clear(new_mask);
4187	else if (len > cpumask_size())
4188		len = cpumask_size();
4189
4190	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4191}
4192
4193/**
4194 * sys_sched_setaffinity - set the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to the new cpu mask
4198 */
4199SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4200		unsigned long __user *, user_mask_ptr)
4201{
4202	cpumask_var_t new_mask;
4203	int retval;
4204
4205	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4206		return -ENOMEM;
4207
4208	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4209	if (retval == 0)
4210		retval = sched_setaffinity(pid, new_mask);
4211	free_cpumask_var(new_mask);
4212	return retval;
4213}
4214
4215long sched_getaffinity(pid_t pid, struct cpumask *mask)
4216{
4217	struct task_struct *p;
4218	unsigned long flags;
4219	int retval;
4220
4221	get_online_cpus();
4222	rcu_read_lock();
4223
4224	retval = -ESRCH;
4225	p = find_process_by_pid(pid);
4226	if (!p)
4227		goto out_unlock;
4228
4229	retval = security_task_getscheduler(p);
4230	if (retval)
4231		goto out_unlock;
4232
4233	raw_spin_lock_irqsave(&p->pi_lock, flags);
4234	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4235	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4236
4237out_unlock:
4238	rcu_read_unlock();
4239	put_online_cpus();
4240
4241	return retval;
4242}
4243
4244/**
4245 * sys_sched_getaffinity - get the cpu affinity of a process
4246 * @pid: pid of the process
4247 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4248 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4249 */
4250SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4251		unsigned long __user *, user_mask_ptr)
4252{
4253	int ret;
4254	cpumask_var_t mask;
4255
4256	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4257		return -EINVAL;
4258	if (len & (sizeof(unsigned long)-1))
4259		return -EINVAL;
4260
4261	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4262		return -ENOMEM;
4263
4264	ret = sched_getaffinity(pid, mask);
4265	if (ret == 0) {
4266		size_t retlen = min_t(size_t, len, cpumask_size());
4267
4268		if (copy_to_user(user_mask_ptr, mask, retlen))
4269			ret = -EFAULT;
4270		else
4271			ret = retlen;
4272	}
4273	free_cpumask_var(mask);
4274
4275	return ret;
4276}
4277
4278/**
4279 * sys_sched_yield - yield the current processor to other threads.
4280 *
4281 * This function yields the current CPU to other tasks. If there are no
4282 * other threads running on this CPU then this function will return.
4283 */
4284SYSCALL_DEFINE0(sched_yield)
4285{
4286	struct rq *rq = this_rq_lock();
4287
4288	schedstat_inc(rq, yld_count);
4289	current->sched_class->yield_task(rq);
4290
4291	/*
4292	 * Since we are going to call schedule() anyway, there's
4293	 * no need to preempt or enable interrupts:
4294	 */
4295	__release(rq->lock);
4296	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4297	do_raw_spin_unlock(&rq->lock);
4298	sched_preempt_enable_no_resched();
4299
4300	schedule();
4301
4302	return 0;
4303}
4304
4305static inline int should_resched(void)
4306{
4307	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4308}
4309
4310static void __cond_resched(void)
4311{
4312	add_preempt_count(PREEMPT_ACTIVE);
4313	__schedule();
4314	sub_preempt_count(PREEMPT_ACTIVE);
4315}
4316
4317int __sched _cond_resched(void)
4318{
4319	if (should_resched()) {
4320		__cond_resched();
4321		return 1;
4322	}
4323	return 0;
4324}
4325EXPORT_SYMBOL(_cond_resched);
4326
4327/*
4328 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4329 * call schedule, and on return reacquire the lock.
4330 *
4331 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4332 * operations here to prevent schedule() from being called twice (once via
4333 * spin_unlock(), once by hand).
4334 */
4335int __cond_resched_lock(spinlock_t *lock)
4336{
4337	int resched = should_resched();
4338	int ret = 0;
4339
4340	lockdep_assert_held(lock);
4341
4342	if (spin_needbreak(lock) || resched) {
4343		spin_unlock(lock);
4344		if (resched)
4345			__cond_resched();
4346		else
4347			cpu_relax();
4348		ret = 1;
4349		spin_lock(lock);
4350	}
4351	return ret;
4352}
4353EXPORT_SYMBOL(__cond_resched_lock);
4354
4355int __sched __cond_resched_softirq(void)
4356{
4357	BUG_ON(!in_softirq());
4358
4359	if (should_resched()) {
4360		local_bh_enable();
4361		__cond_resched();
4362		local_bh_disable();
4363		return 1;
4364	}
4365	return 0;
4366}
4367EXPORT_SYMBOL(__cond_resched_softirq);
4368
4369/**
4370 * yield - yield the current processor to other threads.
4371 *
4372 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4373 *
4374 * The scheduler is at all times free to pick the calling task as the most
4375 * eligible task to run, if removing the yield() call from your code breaks
4376 * it, its already broken.
4377 *
4378 * Typical broken usage is:
4379 *
4380 * while (!event)
4381 * 	yield();
4382 *
4383 * where one assumes that yield() will let 'the other' process run that will
4384 * make event true. If the current task is a SCHED_FIFO task that will never
4385 * happen. Never use yield() as a progress guarantee!!
4386 *
4387 * If you want to use yield() to wait for something, use wait_event().
4388 * If you want to use yield() to be 'nice' for others, use cond_resched().
4389 * If you still want to use yield(), do not!
4390 */
4391void __sched yield(void)
4392{
4393	set_current_state(TASK_RUNNING);
4394	sys_sched_yield();
4395}
4396EXPORT_SYMBOL(yield);
4397
4398/**
4399 * yield_to - yield the current processor to another thread in
4400 * your thread group, or accelerate that thread toward the
4401 * processor it's on.
4402 * @p: target task
4403 * @preempt: whether task preemption is allowed or not
4404 *
4405 * It's the caller's job to ensure that the target task struct
4406 * can't go away on us before we can do any checks.
4407 *
4408 * Returns:
4409 *	true (>0) if we indeed boosted the target task.
4410 *	false (0) if we failed to boost the target.
4411 *	-ESRCH if there's no task to yield to.
4412 */
4413bool __sched yield_to(struct task_struct *p, bool preempt)
4414{
4415	struct task_struct *curr = current;
4416	struct rq *rq, *p_rq;
4417	unsigned long flags;
4418	int yielded = 0;
4419
4420	local_irq_save(flags);
4421	rq = this_rq();
4422
4423again:
4424	p_rq = task_rq(p);
4425	/*
4426	 * If we're the only runnable task on the rq and target rq also
4427	 * has only one task, there's absolutely no point in yielding.
4428	 */
4429	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4430		yielded = -ESRCH;
4431		goto out_irq;
4432	}
4433
4434	double_rq_lock(rq, p_rq);
4435	while (task_rq(p) != p_rq) {
4436		double_rq_unlock(rq, p_rq);
4437		goto again;
4438	}
4439
4440	if (!curr->sched_class->yield_to_task)
4441		goto out_unlock;
4442
4443	if (curr->sched_class != p->sched_class)
4444		goto out_unlock;
4445
4446	if (task_running(p_rq, p) || p->state)
4447		goto out_unlock;
4448
4449	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4450	if (yielded) {
4451		schedstat_inc(rq, yld_count);
4452		/*
4453		 * Make p's CPU reschedule; pick_next_entity takes care of
4454		 * fairness.
4455		 */
4456		if (preempt && rq != p_rq)
4457			resched_task(p_rq->curr);
4458	}
4459
4460out_unlock:
4461	double_rq_unlock(rq, p_rq);
4462out_irq:
4463	local_irq_restore(flags);
4464
4465	if (yielded > 0)
4466		schedule();
4467
4468	return yielded;
4469}
4470EXPORT_SYMBOL_GPL(yield_to);
4471
4472/*
4473 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4474 * that process accounting knows that this is a task in IO wait state.
4475 */
4476void __sched io_schedule(void)
4477{
4478	struct rq *rq = raw_rq();
4479
4480	delayacct_blkio_start();
4481	atomic_inc(&rq->nr_iowait);
4482	blk_flush_plug(current);
4483	current->in_iowait = 1;
4484	schedule();
4485	current->in_iowait = 0;
4486	atomic_dec(&rq->nr_iowait);
4487	delayacct_blkio_end();
4488}
4489EXPORT_SYMBOL(io_schedule);
4490
4491long __sched io_schedule_timeout(long timeout)
4492{
4493	struct rq *rq = raw_rq();
4494	long ret;
4495
4496	delayacct_blkio_start();
4497	atomic_inc(&rq->nr_iowait);
4498	blk_flush_plug(current);
4499	current->in_iowait = 1;
4500	ret = schedule_timeout(timeout);
4501	current->in_iowait = 0;
4502	atomic_dec(&rq->nr_iowait);
4503	delayacct_blkio_end();
4504	return ret;
4505}
4506
4507/**
4508 * sys_sched_get_priority_max - return maximum RT priority.
4509 * @policy: scheduling class.
4510 *
4511 * this syscall returns the maximum rt_priority that can be used
4512 * by a given scheduling class.
4513 */
4514SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4515{
4516	int ret = -EINVAL;
4517
4518	switch (policy) {
4519	case SCHED_FIFO:
4520	case SCHED_RR:
4521		ret = MAX_USER_RT_PRIO-1;
4522		break;
4523	case SCHED_NORMAL:
4524	case SCHED_BATCH:
4525	case SCHED_IDLE:
4526		ret = 0;
4527		break;
4528	}
4529	return ret;
4530}
4531
4532/**
4533 * sys_sched_get_priority_min - return minimum RT priority.
4534 * @policy: scheduling class.
4535 *
4536 * this syscall returns the minimum rt_priority that can be used
4537 * by a given scheduling class.
4538 */
4539SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4540{
4541	int ret = -EINVAL;
4542
4543	switch (policy) {
4544	case SCHED_FIFO:
4545	case SCHED_RR:
4546		ret = 1;
4547		break;
4548	case SCHED_NORMAL:
4549	case SCHED_BATCH:
4550	case SCHED_IDLE:
4551		ret = 0;
4552	}
4553	return ret;
4554}
4555
4556/**
4557 * sys_sched_rr_get_interval - return the default timeslice of a process.
4558 * @pid: pid of the process.
4559 * @interval: userspace pointer to the timeslice value.
4560 *
4561 * this syscall writes the default timeslice value of a given process
4562 * into the user-space timespec buffer. A value of '0' means infinity.
4563 */
4564SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4565		struct timespec __user *, interval)
4566{
4567	struct task_struct *p;
4568	unsigned int time_slice;
4569	unsigned long flags;
4570	struct rq *rq;
4571	int retval;
4572	struct timespec t;
4573
4574	if (pid < 0)
4575		return -EINVAL;
4576
4577	retval = -ESRCH;
4578	rcu_read_lock();
4579	p = find_process_by_pid(pid);
4580	if (!p)
4581		goto out_unlock;
4582
4583	retval = security_task_getscheduler(p);
4584	if (retval)
4585		goto out_unlock;
4586
4587	rq = task_rq_lock(p, &flags);
4588	time_slice = p->sched_class->get_rr_interval(rq, p);
4589	task_rq_unlock(rq, p, &flags);
4590
4591	rcu_read_unlock();
4592	jiffies_to_timespec(time_slice, &t);
4593	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4594	return retval;
4595
4596out_unlock:
4597	rcu_read_unlock();
4598	return retval;
4599}
4600
4601static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4602
4603void sched_show_task(struct task_struct *p)
4604{
4605	unsigned long free = 0;
4606	int ppid;
4607	unsigned state;
4608
4609	state = p->state ? __ffs(p->state) + 1 : 0;
4610	printk(KERN_INFO "%-15.15s %c", p->comm,
4611		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4612#if BITS_PER_LONG == 32
4613	if (state == TASK_RUNNING)
4614		printk(KERN_CONT " running  ");
4615	else
4616		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4617#else
4618	if (state == TASK_RUNNING)
4619		printk(KERN_CONT "  running task    ");
4620	else
4621		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4622#endif
4623#ifdef CONFIG_DEBUG_STACK_USAGE
4624	free = stack_not_used(p);
4625#endif
4626	rcu_read_lock();
4627	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4628	rcu_read_unlock();
4629	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4630		task_pid_nr(p), ppid,
4631		(unsigned long)task_thread_info(p)->flags);
4632
4633	show_stack(p, NULL);
4634}
4635
4636void show_state_filter(unsigned long state_filter)
4637{
4638	struct task_struct *g, *p;
4639
4640#if BITS_PER_LONG == 32
4641	printk(KERN_INFO
4642		"  task                PC stack   pid father\n");
4643#else
4644	printk(KERN_INFO
4645		"  task                        PC stack   pid father\n");
4646#endif
4647	rcu_read_lock();
4648	do_each_thread(g, p) {
4649		/*
4650		 * reset the NMI-timeout, listing all files on a slow
4651		 * console might take a lot of time:
4652		 */
4653		touch_nmi_watchdog();
4654		if (!state_filter || (p->state & state_filter))
4655			sched_show_task(p);
4656	} while_each_thread(g, p);
4657
4658	touch_all_softlockup_watchdogs();
4659
4660#ifdef CONFIG_SCHED_DEBUG
4661	sysrq_sched_debug_show();
4662#endif
4663	rcu_read_unlock();
4664	/*
4665	 * Only show locks if all tasks are dumped:
4666	 */
4667	if (!state_filter)
4668		debug_show_all_locks();
4669}
4670
4671void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4672{
4673	idle->sched_class = &idle_sched_class;
4674}
4675
4676/**
4677 * init_idle - set up an idle thread for a given CPU
4678 * @idle: task in question
4679 * @cpu: cpu the idle task belongs to
4680 *
4681 * NOTE: this function does not set the idle thread's NEED_RESCHED
4682 * flag, to make booting more robust.
4683 */
4684void __cpuinit init_idle(struct task_struct *idle, int cpu)
4685{
4686	struct rq *rq = cpu_rq(cpu);
4687	unsigned long flags;
4688
4689	raw_spin_lock_irqsave(&rq->lock, flags);
4690
4691	__sched_fork(idle);
4692	idle->state = TASK_RUNNING;
4693	idle->se.exec_start = sched_clock();
4694
4695	do_set_cpus_allowed(idle, cpumask_of(cpu));
4696	/*
4697	 * We're having a chicken and egg problem, even though we are
4698	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4699	 * lockdep check in task_group() will fail.
4700	 *
4701	 * Similar case to sched_fork(). / Alternatively we could
4702	 * use task_rq_lock() here and obtain the other rq->lock.
4703	 *
4704	 * Silence PROVE_RCU
4705	 */
4706	rcu_read_lock();
4707	__set_task_cpu(idle, cpu);
4708	rcu_read_unlock();
4709
4710	rq->curr = rq->idle = idle;
4711#if defined(CONFIG_SMP)
4712	idle->on_cpu = 1;
4713#endif
4714	raw_spin_unlock_irqrestore(&rq->lock, flags);
4715
4716	/* Set the preempt count _outside_ the spinlocks! */
4717	task_thread_info(idle)->preempt_count = 0;
4718
4719	/*
4720	 * The idle tasks have their own, simple scheduling class:
4721	 */
4722	idle->sched_class = &idle_sched_class;
4723	ftrace_graph_init_idle_task(idle, cpu);
4724	vtime_init_idle(idle);
4725#if defined(CONFIG_SMP)
4726	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4727#endif
4728}
4729
4730#ifdef CONFIG_SMP
4731void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4732{
4733	if (p->sched_class && p->sched_class->set_cpus_allowed)
4734		p->sched_class->set_cpus_allowed(p, new_mask);
4735
4736	cpumask_copy(&p->cpus_allowed, new_mask);
4737	p->nr_cpus_allowed = cpumask_weight(new_mask);
4738}
4739
4740/*
4741 * This is how migration works:
4742 *
4743 * 1) we invoke migration_cpu_stop() on the target CPU using
4744 *    stop_one_cpu().
4745 * 2) stopper starts to run (implicitly forcing the migrated thread
4746 *    off the CPU)
4747 * 3) it checks whether the migrated task is still in the wrong runqueue.
4748 * 4) if it's in the wrong runqueue then the migration thread removes
4749 *    it and puts it into the right queue.
4750 * 5) stopper completes and stop_one_cpu() returns and the migration
4751 *    is done.
4752 */
4753
4754/*
4755 * Change a given task's CPU affinity. Migrate the thread to a
4756 * proper CPU and schedule it away if the CPU it's executing on
4757 * is removed from the allowed bitmask.
4758 *
4759 * NOTE: the caller must have a valid reference to the task, the
4760 * task must not exit() & deallocate itself prematurely. The
4761 * call is not atomic; no spinlocks may be held.
4762 */
4763int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4764{
4765	unsigned long flags;
4766	struct rq *rq;
4767	unsigned int dest_cpu;
4768	int ret = 0;
4769
4770	rq = task_rq_lock(p, &flags);
4771
4772	if (cpumask_equal(&p->cpus_allowed, new_mask))
4773		goto out;
4774
4775	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4776		ret = -EINVAL;
4777		goto out;
4778	}
4779
4780	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4781		ret = -EINVAL;
4782		goto out;
4783	}
4784
4785	do_set_cpus_allowed(p, new_mask);
4786
4787	/* Can the task run on the task's current CPU? If so, we're done */
4788	if (cpumask_test_cpu(task_cpu(p), new_mask))
4789		goto out;
4790
4791	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4792	if (p->on_rq) {
4793		struct migration_arg arg = { p, dest_cpu };
4794		/* Need help from migration thread: drop lock and wait. */
4795		task_rq_unlock(rq, p, &flags);
4796		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4797		tlb_migrate_finish(p->mm);
4798		return 0;
4799	}
4800out:
4801	task_rq_unlock(rq, p, &flags);
4802
4803	return ret;
4804}
4805EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4806
4807/*
4808 * Move (not current) task off this cpu, onto dest cpu. We're doing
4809 * this because either it can't run here any more (set_cpus_allowed()
4810 * away from this CPU, or CPU going down), or because we're
4811 * attempting to rebalance this task on exec (sched_exec).
4812 *
4813 * So we race with normal scheduler movements, but that's OK, as long
4814 * as the task is no longer on this CPU.
4815 *
4816 * Returns non-zero if task was successfully migrated.
4817 */
4818static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4819{
4820	struct rq *rq_dest, *rq_src;
4821	int ret = 0;
4822
4823	if (unlikely(!cpu_active(dest_cpu)))
4824		return ret;
4825
4826	rq_src = cpu_rq(src_cpu);
4827	rq_dest = cpu_rq(dest_cpu);
4828
4829	raw_spin_lock(&p->pi_lock);
4830	double_rq_lock(rq_src, rq_dest);
4831	/* Already moved. */
4832	if (task_cpu(p) != src_cpu)
4833		goto done;
4834	/* Affinity changed (again). */
4835	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4836		goto fail;
4837
4838	/*
4839	 * If we're not on a rq, the next wake-up will ensure we're
4840	 * placed properly.
4841	 */
4842	if (p->on_rq) {
4843		dequeue_task(rq_src, p, 0);
4844		set_task_cpu(p, dest_cpu);
4845		enqueue_task(rq_dest, p, 0);
4846		check_preempt_curr(rq_dest, p, 0);
4847	}
4848done:
4849	ret = 1;
4850fail:
4851	double_rq_unlock(rq_src, rq_dest);
4852	raw_spin_unlock(&p->pi_lock);
4853	return ret;
4854}
4855
4856/*
4857 * migration_cpu_stop - this will be executed by a highprio stopper thread
4858 * and performs thread migration by bumping thread off CPU then
4859 * 'pushing' onto another runqueue.
4860 */
4861static int migration_cpu_stop(void *data)
4862{
4863	struct migration_arg *arg = data;
4864
4865	/*
4866	 * The original target cpu might have gone down and we might
4867	 * be on another cpu but it doesn't matter.
4868	 */
4869	local_irq_disable();
4870	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4871	local_irq_enable();
4872	return 0;
4873}
4874
4875#ifdef CONFIG_HOTPLUG_CPU
4876
4877/*
4878 * Ensures that the idle task is using init_mm right before its cpu goes
4879 * offline.
4880 */
4881void idle_task_exit(void)
4882{
4883	struct mm_struct *mm = current->active_mm;
4884
4885	BUG_ON(cpu_online(smp_processor_id()));
4886
4887	if (mm != &init_mm)
4888		switch_mm(mm, &init_mm, current);
4889	mmdrop(mm);
4890}
4891
4892/*
4893 * Since this CPU is going 'away' for a while, fold any nr_active delta
4894 * we might have. Assumes we're called after migrate_tasks() so that the
4895 * nr_active count is stable.
4896 *
4897 * Also see the comment "Global load-average calculations".
4898 */
4899static void calc_load_migrate(struct rq *rq)
4900{
4901	long delta = calc_load_fold_active(rq);
4902	if (delta)
4903		atomic_long_add(delta, &calc_load_tasks);
4904}
4905
4906/*
4907 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4908 * try_to_wake_up()->select_task_rq().
4909 *
4910 * Called with rq->lock held even though we'er in stop_machine() and
4911 * there's no concurrency possible, we hold the required locks anyway
4912 * because of lock validation efforts.
4913 */
4914static void migrate_tasks(unsigned int dead_cpu)
4915{
4916	struct rq *rq = cpu_rq(dead_cpu);
4917	struct task_struct *next, *stop = rq->stop;
4918	int dest_cpu;
4919
4920	/*
4921	 * Fudge the rq selection such that the below task selection loop
4922	 * doesn't get stuck on the currently eligible stop task.
4923	 *
4924	 * We're currently inside stop_machine() and the rq is either stuck
4925	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4926	 * either way we should never end up calling schedule() until we're
4927	 * done here.
4928	 */
4929	rq->stop = NULL;
4930
4931	for ( ; ; ) {
4932		/*
4933		 * There's this thread running, bail when that's the only
4934		 * remaining thread.
4935		 */
4936		if (rq->nr_running == 1)
4937			break;
4938
4939		next = pick_next_task(rq);
4940		BUG_ON(!next);
4941		next->sched_class->put_prev_task(rq, next);
4942
4943		/* Find suitable destination for @next, with force if needed. */
4944		dest_cpu = select_fallback_rq(dead_cpu, next);
4945		raw_spin_unlock(&rq->lock);
4946
4947		__migrate_task(next, dead_cpu, dest_cpu);
4948
4949		raw_spin_lock(&rq->lock);
4950	}
4951
4952	rq->stop = stop;
4953}
4954
4955#endif /* CONFIG_HOTPLUG_CPU */
4956
4957#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4958
4959static struct ctl_table sd_ctl_dir[] = {
4960	{
4961		.procname	= "sched_domain",
4962		.mode		= 0555,
4963	},
4964	{}
4965};
4966
4967static struct ctl_table sd_ctl_root[] = {
4968	{
4969		.procname	= "kernel",
4970		.mode		= 0555,
4971		.child		= sd_ctl_dir,
4972	},
4973	{}
4974};
4975
4976static struct ctl_table *sd_alloc_ctl_entry(int n)
4977{
4978	struct ctl_table *entry =
4979		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4980
4981	return entry;
4982}
4983
4984static void sd_free_ctl_entry(struct ctl_table **tablep)
4985{
4986	struct ctl_table *entry;
4987
4988	/*
4989	 * In the intermediate directories, both the child directory and
4990	 * procname are dynamically allocated and could fail but the mode
4991	 * will always be set. In the lowest directory the names are
4992	 * static strings and all have proc handlers.
4993	 */
4994	for (entry = *tablep; entry->mode; entry++) {
4995		if (entry->child)
4996			sd_free_ctl_entry(&entry->child);
4997		if (entry->proc_handler == NULL)
4998			kfree(entry->procname);
4999	}
5000
5001	kfree(*tablep);
5002	*tablep = NULL;
5003}
5004
5005static int min_load_idx = 0;
5006static int max_load_idx = CPU_LOAD_IDX_MAX;
5007
5008static void
5009set_table_entry(struct ctl_table *entry,
5010		const char *procname, void *data, int maxlen,
5011		umode_t mode, proc_handler *proc_handler,
5012		bool load_idx)
5013{
5014	entry->procname = procname;
5015	entry->data = data;
5016	entry->maxlen = maxlen;
5017	entry->mode = mode;
5018	entry->proc_handler = proc_handler;
5019
5020	if (load_idx) {
5021		entry->extra1 = &min_load_idx;
5022		entry->extra2 = &max_load_idx;
5023	}
5024}
5025
5026static struct ctl_table *
5027sd_alloc_ctl_domain_table(struct sched_domain *sd)
5028{
5029	struct ctl_table *table = sd_alloc_ctl_entry(13);
5030
5031	if (table == NULL)
5032		return NULL;
5033
5034	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5035		sizeof(long), 0644, proc_doulongvec_minmax, false);
5036	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5037		sizeof(long), 0644, proc_doulongvec_minmax, false);
5038	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5039		sizeof(int), 0644, proc_dointvec_minmax, true);
5040	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5041		sizeof(int), 0644, proc_dointvec_minmax, true);
5042	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5043		sizeof(int), 0644, proc_dointvec_minmax, true);
5044	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5045		sizeof(int), 0644, proc_dointvec_minmax, true);
5046	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5047		sizeof(int), 0644, proc_dointvec_minmax, true);
5048	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5049		sizeof(int), 0644, proc_dointvec_minmax, false);
5050	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5051		sizeof(int), 0644, proc_dointvec_minmax, false);
5052	set_table_entry(&table[9], "cache_nice_tries",
5053		&sd->cache_nice_tries,
5054		sizeof(int), 0644, proc_dointvec_minmax, false);
5055	set_table_entry(&table[10], "flags", &sd->flags,
5056		sizeof(int), 0644, proc_dointvec_minmax, false);
5057	set_table_entry(&table[11], "name", sd->name,
5058		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5059	/* &table[12] is terminator */
5060
5061	return table;
5062}
5063
5064static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5065{
5066	struct ctl_table *entry, *table;
5067	struct sched_domain *sd;
5068	int domain_num = 0, i;
5069	char buf[32];
5070
5071	for_each_domain(cpu, sd)
5072		domain_num++;
5073	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5074	if (table == NULL)
5075		return NULL;
5076
5077	i = 0;
5078	for_each_domain(cpu, sd) {
5079		snprintf(buf, 32, "domain%d", i);
5080		entry->procname = kstrdup(buf, GFP_KERNEL);
5081		entry->mode = 0555;
5082		entry->child = sd_alloc_ctl_domain_table(sd);
5083		entry++;
5084		i++;
5085	}
5086	return table;
5087}
5088
5089static struct ctl_table_header *sd_sysctl_header;
5090static void register_sched_domain_sysctl(void)
5091{
5092	int i, cpu_num = num_possible_cpus();
5093	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5094	char buf[32];
5095
5096	WARN_ON(sd_ctl_dir[0].child);
5097	sd_ctl_dir[0].child = entry;
5098
5099	if (entry == NULL)
5100		return;
5101
5102	for_each_possible_cpu(i) {
5103		snprintf(buf, 32, "cpu%d", i);
5104		entry->procname = kstrdup(buf, GFP_KERNEL);
5105		entry->mode = 0555;
5106		entry->child = sd_alloc_ctl_cpu_table(i);
5107		entry++;
5108	}
5109
5110	WARN_ON(sd_sysctl_header);
5111	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5112}
5113
5114/* may be called multiple times per register */
5115static void unregister_sched_domain_sysctl(void)
5116{
5117	if (sd_sysctl_header)
5118		unregister_sysctl_table(sd_sysctl_header);
5119	sd_sysctl_header = NULL;
5120	if (sd_ctl_dir[0].child)
5121		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5122}
5123#else
5124static void register_sched_domain_sysctl(void)
5125{
5126}
5127static void unregister_sched_domain_sysctl(void)
5128{
5129}
5130#endif
5131
5132static void set_rq_online(struct rq *rq)
5133{
5134	if (!rq->online) {
5135		const struct sched_class *class;
5136
5137		cpumask_set_cpu(rq->cpu, rq->rd->online);
5138		rq->online = 1;
5139
5140		for_each_class(class) {
5141			if (class->rq_online)
5142				class->rq_online(rq);
5143		}
5144	}
5145}
5146
5147static void set_rq_offline(struct rq *rq)
5148{
5149	if (rq->online) {
5150		const struct sched_class *class;
5151
5152		for_each_class(class) {
5153			if (class->rq_offline)
5154				class->rq_offline(rq);
5155		}
5156
5157		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5158		rq->online = 0;
5159	}
5160}
5161
5162/*
5163 * migration_call - callback that gets triggered when a CPU is added.
5164 * Here we can start up the necessary migration thread for the new CPU.
5165 */
5166static int __cpuinit
5167migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5168{
5169	int cpu = (long)hcpu;
5170	unsigned long flags;
5171	struct rq *rq = cpu_rq(cpu);
5172
5173	switch (action & ~CPU_TASKS_FROZEN) {
5174
5175	case CPU_UP_PREPARE:
5176		rq->calc_load_update = calc_load_update;
5177		break;
5178
5179	case CPU_ONLINE:
5180		/* Update our root-domain */
5181		raw_spin_lock_irqsave(&rq->lock, flags);
5182		if (rq->rd) {
5183			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5184
5185			set_rq_online(rq);
5186		}
5187		raw_spin_unlock_irqrestore(&rq->lock, flags);
5188		break;
5189
5190#ifdef CONFIG_HOTPLUG_CPU
5191	case CPU_DYING:
5192		sched_ttwu_pending();
5193		/* Update our root-domain */
5194		raw_spin_lock_irqsave(&rq->lock, flags);
5195		if (rq->rd) {
5196			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5197			set_rq_offline(rq);
5198		}
5199		migrate_tasks(cpu);
5200		BUG_ON(rq->nr_running != 1); /* the migration thread */
5201		raw_spin_unlock_irqrestore(&rq->lock, flags);
5202		break;
5203
5204	case CPU_DEAD:
5205		calc_load_migrate(rq);
5206		break;
5207#endif
5208	}
5209
5210	update_max_interval();
5211
5212	return NOTIFY_OK;
5213}
5214
5215/*
5216 * Register at high priority so that task migration (migrate_all_tasks)
5217 * happens before everything else.  This has to be lower priority than
5218 * the notifier in the perf_event subsystem, though.
5219 */
5220static struct notifier_block __cpuinitdata migration_notifier = {
5221	.notifier_call = migration_call,
5222	.priority = CPU_PRI_MIGRATION,
5223};
5224
5225static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5226				      unsigned long action, void *hcpu)
5227{
5228	switch (action & ~CPU_TASKS_FROZEN) {
5229	case CPU_STARTING:
5230	case CPU_DOWN_FAILED:
5231		set_cpu_active((long)hcpu, true);
5232		return NOTIFY_OK;
5233	default:
5234		return NOTIFY_DONE;
5235	}
5236}
5237
5238static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5239					unsigned long action, void *hcpu)
5240{
5241	switch (action & ~CPU_TASKS_FROZEN) {
5242	case CPU_DOWN_PREPARE:
5243		set_cpu_active((long)hcpu, false);
5244		return NOTIFY_OK;
5245	default:
5246		return NOTIFY_DONE;
5247	}
5248}
5249
5250static int __init migration_init(void)
5251{
5252	void *cpu = (void *)(long)smp_processor_id();
5253	int err;
5254
5255	/* Initialize migration for the boot CPU */
5256	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5257	BUG_ON(err == NOTIFY_BAD);
5258	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5259	register_cpu_notifier(&migration_notifier);
5260
5261	/* Register cpu active notifiers */
5262	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5263	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5264
5265	return 0;
5266}
5267early_initcall(migration_init);
5268#endif
5269
5270#ifdef CONFIG_SMP
5271
5272static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5273
5274#ifdef CONFIG_SCHED_DEBUG
5275
5276static __read_mostly int sched_debug_enabled;
5277
5278static int __init sched_debug_setup(char *str)
5279{
5280	sched_debug_enabled = 1;
5281
5282	return 0;
5283}
5284early_param("sched_debug", sched_debug_setup);
5285
5286static inline bool sched_debug(void)
5287{
5288	return sched_debug_enabled;
5289}
5290
5291static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5292				  struct cpumask *groupmask)
5293{
5294	struct sched_group *group = sd->groups;
5295	char str[256];
5296
5297	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5298	cpumask_clear(groupmask);
5299
5300	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5301
5302	if (!(sd->flags & SD_LOAD_BALANCE)) {
5303		printk("does not load-balance\n");
5304		if (sd->parent)
5305			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5306					" has parent");
5307		return -1;
5308	}
5309
5310	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5311
5312	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5313		printk(KERN_ERR "ERROR: domain->span does not contain "
5314				"CPU%d\n", cpu);
5315	}
5316	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5317		printk(KERN_ERR "ERROR: domain->groups does not contain"
5318				" CPU%d\n", cpu);
5319	}
5320
5321	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5322	do {
5323		if (!group) {
5324			printk("\n");
5325			printk(KERN_ERR "ERROR: group is NULL\n");
5326			break;
5327		}
5328
5329		/*
5330		 * Even though we initialize ->power to something semi-sane,
5331		 * we leave power_orig unset. This allows us to detect if
5332		 * domain iteration is still funny without causing /0 traps.
5333		 */
5334		if (!group->sgp->power_orig) {
5335			printk(KERN_CONT "\n");
5336			printk(KERN_ERR "ERROR: domain->cpu_power not "
5337					"set\n");
5338			break;
5339		}
5340
5341		if (!cpumask_weight(sched_group_cpus(group))) {
5342			printk(KERN_CONT "\n");
5343			printk(KERN_ERR "ERROR: empty group\n");
5344			break;
5345		}
5346
5347		if (!(sd->flags & SD_OVERLAP) &&
5348		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5349			printk(KERN_CONT "\n");
5350			printk(KERN_ERR "ERROR: repeated CPUs\n");
5351			break;
5352		}
5353
5354		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5355
5356		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5357
5358		printk(KERN_CONT " %s", str);
5359		if (group->sgp->power != SCHED_POWER_SCALE) {
5360			printk(KERN_CONT " (cpu_power = %d)",
5361				group->sgp->power);
5362		}
5363
5364		group = group->next;
5365	} while (group != sd->groups);
5366	printk(KERN_CONT "\n");
5367
5368	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5369		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5370
5371	if (sd->parent &&
5372	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5373		printk(KERN_ERR "ERROR: parent span is not a superset "
5374			"of domain->span\n");
5375	return 0;
5376}
5377
5378static void sched_domain_debug(struct sched_domain *sd, int cpu)
5379{
5380	int level = 0;
5381
5382	if (!sched_debug_enabled)
5383		return;
5384
5385	if (!sd) {
5386		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5387		return;
5388	}
5389
5390	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5391
5392	for (;;) {
5393		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5394			break;
5395		level++;
5396		sd = sd->parent;
5397		if (!sd)
5398			break;
5399	}
5400}
5401#else /* !CONFIG_SCHED_DEBUG */
5402# define sched_domain_debug(sd, cpu) do { } while (0)
5403static inline bool sched_debug(void)
5404{
5405	return false;
5406}
5407#endif /* CONFIG_SCHED_DEBUG */
5408
5409static int sd_degenerate(struct sched_domain *sd)
5410{
5411	if (cpumask_weight(sched_domain_span(sd)) == 1)
5412		return 1;
5413
5414	/* Following flags need at least 2 groups */
5415	if (sd->flags & (SD_LOAD_BALANCE |
5416			 SD_BALANCE_NEWIDLE |
5417			 SD_BALANCE_FORK |
5418			 SD_BALANCE_EXEC |
5419			 SD_SHARE_CPUPOWER |
5420			 SD_SHARE_PKG_RESOURCES)) {
5421		if (sd->groups != sd->groups->next)
5422			return 0;
5423	}
5424
5425	/* Following flags don't use groups */
5426	if (sd->flags & (SD_WAKE_AFFINE))
5427		return 0;
5428
5429	return 1;
5430}
5431
5432static int
5433sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5434{
5435	unsigned long cflags = sd->flags, pflags = parent->flags;
5436
5437	if (sd_degenerate(parent))
5438		return 1;
5439
5440	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5441		return 0;
5442
5443	/* Flags needing groups don't count if only 1 group in parent */
5444	if (parent->groups == parent->groups->next) {
5445		pflags &= ~(SD_LOAD_BALANCE |
5446				SD_BALANCE_NEWIDLE |
5447				SD_BALANCE_FORK |
5448				SD_BALANCE_EXEC |
5449				SD_SHARE_CPUPOWER |
5450				SD_SHARE_PKG_RESOURCES);
5451		if (nr_node_ids == 1)
5452			pflags &= ~SD_SERIALIZE;
5453	}
5454	if (~cflags & pflags)
5455		return 0;
5456
5457	return 1;
5458}
5459
5460static void free_rootdomain(struct rcu_head *rcu)
5461{
5462	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5463
5464	cpupri_cleanup(&rd->cpupri);
5465	free_cpumask_var(rd->rto_mask);
5466	free_cpumask_var(rd->online);
5467	free_cpumask_var(rd->span);
5468	kfree(rd);
5469}
5470
5471static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5472{
5473	struct root_domain *old_rd = NULL;
5474	unsigned long flags;
5475
5476	raw_spin_lock_irqsave(&rq->lock, flags);
5477
5478	if (rq->rd) {
5479		old_rd = rq->rd;
5480
5481		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5482			set_rq_offline(rq);
5483
5484		cpumask_clear_cpu(rq->cpu, old_rd->span);
5485
5486		/*
5487		 * If we dont want to free the old_rt yet then
5488		 * set old_rd to NULL to skip the freeing later
5489		 * in this function:
5490		 */
5491		if (!atomic_dec_and_test(&old_rd->refcount))
5492			old_rd = NULL;
5493	}
5494
5495	atomic_inc(&rd->refcount);
5496	rq->rd = rd;
5497
5498	cpumask_set_cpu(rq->cpu, rd->span);
5499	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5500		set_rq_online(rq);
5501
5502	raw_spin_unlock_irqrestore(&rq->lock, flags);
5503
5504	if (old_rd)
5505		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5506}
5507
5508static int init_rootdomain(struct root_domain *rd)
5509{
5510	memset(rd, 0, sizeof(*rd));
5511
5512	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5513		goto out;
5514	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5515		goto free_span;
5516	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5517		goto free_online;
5518
5519	if (cpupri_init(&rd->cpupri) != 0)
5520		goto free_rto_mask;
5521	return 0;
5522
5523free_rto_mask:
5524	free_cpumask_var(rd->rto_mask);
5525free_online:
5526	free_cpumask_var(rd->online);
5527free_span:
5528	free_cpumask_var(rd->span);
5529out:
5530	return -ENOMEM;
5531}
5532
5533/*
5534 * By default the system creates a single root-domain with all cpus as
5535 * members (mimicking the global state we have today).
5536 */
5537struct root_domain def_root_domain;
5538
5539static void init_defrootdomain(void)
5540{
5541	init_rootdomain(&def_root_domain);
5542
5543	atomic_set(&def_root_domain.refcount, 1);
5544}
5545
5546static struct root_domain *alloc_rootdomain(void)
5547{
5548	struct root_domain *rd;
5549
5550	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5551	if (!rd)
5552		return NULL;
5553
5554	if (init_rootdomain(rd) != 0) {
5555		kfree(rd);
5556		return NULL;
5557	}
5558
5559	return rd;
5560}
5561
5562static void free_sched_groups(struct sched_group *sg, int free_sgp)
5563{
5564	struct sched_group *tmp, *first;
5565
5566	if (!sg)
5567		return;
5568
5569	first = sg;
5570	do {
5571		tmp = sg->next;
5572
5573		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5574			kfree(sg->sgp);
5575
5576		kfree(sg);
5577		sg = tmp;
5578	} while (sg != first);
5579}
5580
5581static void free_sched_domain(struct rcu_head *rcu)
5582{
5583	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5584
5585	/*
5586	 * If its an overlapping domain it has private groups, iterate and
5587	 * nuke them all.
5588	 */
5589	if (sd->flags & SD_OVERLAP) {
5590		free_sched_groups(sd->groups, 1);
5591	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5592		kfree(sd->groups->sgp);
5593		kfree(sd->groups);
5594	}
5595	kfree(sd);
5596}
5597
5598static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5599{
5600	call_rcu(&sd->rcu, free_sched_domain);
5601}
5602
5603static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5604{
5605	for (; sd; sd = sd->parent)
5606		destroy_sched_domain(sd, cpu);
5607}
5608
5609/*
5610 * Keep a special pointer to the highest sched_domain that has
5611 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5612 * allows us to avoid some pointer chasing select_idle_sibling().
5613 *
5614 * Also keep a unique ID per domain (we use the first cpu number in
5615 * the cpumask of the domain), this allows us to quickly tell if
5616 * two cpus are in the same cache domain, see cpus_share_cache().
5617 */
5618DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5619DEFINE_PER_CPU(int, sd_llc_id);
5620
5621static void update_top_cache_domain(int cpu)
5622{
5623	struct sched_domain *sd;
5624	int id = cpu;
5625
5626	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5627	if (sd)
5628		id = cpumask_first(sched_domain_span(sd));
5629
5630	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5631	per_cpu(sd_llc_id, cpu) = id;
5632}
5633
5634/*
5635 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5636 * hold the hotplug lock.
5637 */
5638static void
5639cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5640{
5641	struct rq *rq = cpu_rq(cpu);
5642	struct sched_domain *tmp;
5643
5644	/* Remove the sched domains which do not contribute to scheduling. */
5645	for (tmp = sd; tmp; ) {
5646		struct sched_domain *parent = tmp->parent;
5647		if (!parent)
5648			break;
5649
5650		if (sd_parent_degenerate(tmp, parent)) {
5651			tmp->parent = parent->parent;
5652			if (parent->parent)
5653				parent->parent->child = tmp;
5654			destroy_sched_domain(parent, cpu);
5655		} else
5656			tmp = tmp->parent;
5657	}
5658
5659	if (sd && sd_degenerate(sd)) {
5660		tmp = sd;
5661		sd = sd->parent;
5662		destroy_sched_domain(tmp, cpu);
5663		if (sd)
5664			sd->child = NULL;
5665	}
5666
5667	sched_domain_debug(sd, cpu);
5668
5669	rq_attach_root(rq, rd);
5670	tmp = rq->sd;
5671	rcu_assign_pointer(rq->sd, sd);
5672	destroy_sched_domains(tmp, cpu);
5673
5674	update_top_cache_domain(cpu);
5675}
5676
5677/* cpus with isolated domains */
5678static cpumask_var_t cpu_isolated_map;
5679
5680/* Setup the mask of cpus configured for isolated domains */
5681static int __init isolated_cpu_setup(char *str)
5682{
5683	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5684	cpulist_parse(str, cpu_isolated_map);
5685	return 1;
5686}
5687
5688__setup("isolcpus=", isolated_cpu_setup);
5689
5690static const struct cpumask *cpu_cpu_mask(int cpu)
5691{
5692	return cpumask_of_node(cpu_to_node(cpu));
5693}
5694
5695struct sd_data {
5696	struct sched_domain **__percpu sd;
5697	struct sched_group **__percpu sg;
5698	struct sched_group_power **__percpu sgp;
5699};
5700
5701struct s_data {
5702	struct sched_domain ** __percpu sd;
5703	struct root_domain	*rd;
5704};
5705
5706enum s_alloc {
5707	sa_rootdomain,
5708	sa_sd,
5709	sa_sd_storage,
5710	sa_none,
5711};
5712
5713struct sched_domain_topology_level;
5714
5715typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5716typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5717
5718#define SDTL_OVERLAP	0x01
5719
5720struct sched_domain_topology_level {
5721	sched_domain_init_f init;
5722	sched_domain_mask_f mask;
5723	int		    flags;
5724	int		    numa_level;
5725	struct sd_data      data;
5726};
5727
5728/*
5729 * Build an iteration mask that can exclude certain CPUs from the upwards
5730 * domain traversal.
5731 *
5732 * Asymmetric node setups can result in situations where the domain tree is of
5733 * unequal depth, make sure to skip domains that already cover the entire
5734 * range.
5735 *
5736 * In that case build_sched_domains() will have terminated the iteration early
5737 * and our sibling sd spans will be empty. Domains should always include the
5738 * cpu they're built on, so check that.
5739 *
5740 */
5741static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5742{
5743	const struct cpumask *span = sched_domain_span(sd);
5744	struct sd_data *sdd = sd->private;
5745	struct sched_domain *sibling;
5746	int i;
5747
5748	for_each_cpu(i, span) {
5749		sibling = *per_cpu_ptr(sdd->sd, i);
5750		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5751			continue;
5752
5753		cpumask_set_cpu(i, sched_group_mask(sg));
5754	}
5755}
5756
5757/*
5758 * Return the canonical balance cpu for this group, this is the first cpu
5759 * of this group that's also in the iteration mask.
5760 */
5761int group_balance_cpu(struct sched_group *sg)
5762{
5763	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5764}
5765
5766static int
5767build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5768{
5769	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5770	const struct cpumask *span = sched_domain_span(sd);
5771	struct cpumask *covered = sched_domains_tmpmask;
5772	struct sd_data *sdd = sd->private;
5773	struct sched_domain *child;
5774	int i;
5775
5776	cpumask_clear(covered);
5777
5778	for_each_cpu(i, span) {
5779		struct cpumask *sg_span;
5780
5781		if (cpumask_test_cpu(i, covered))
5782			continue;
5783
5784		child = *per_cpu_ptr(sdd->sd, i);
5785
5786		/* See the comment near build_group_mask(). */
5787		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5788			continue;
5789
5790		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5791				GFP_KERNEL, cpu_to_node(cpu));
5792
5793		if (!sg)
5794			goto fail;
5795
5796		sg_span = sched_group_cpus(sg);
5797		if (child->child) {
5798			child = child->child;
5799			cpumask_copy(sg_span, sched_domain_span(child));
5800		} else
5801			cpumask_set_cpu(i, sg_span);
5802
5803		cpumask_or(covered, covered, sg_span);
5804
5805		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5806		if (atomic_inc_return(&sg->sgp->ref) == 1)
5807			build_group_mask(sd, sg);
5808
5809		/*
5810		 * Initialize sgp->power such that even if we mess up the
5811		 * domains and no possible iteration will get us here, we won't
5812		 * die on a /0 trap.
5813		 */
5814		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5815
5816		/*
5817		 * Make sure the first group of this domain contains the
5818		 * canonical balance cpu. Otherwise the sched_domain iteration
5819		 * breaks. See update_sg_lb_stats().
5820		 */
5821		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5822		    group_balance_cpu(sg) == cpu)
5823			groups = sg;
5824
5825		if (!first)
5826			first = sg;
5827		if (last)
5828			last->next = sg;
5829		last = sg;
5830		last->next = first;
5831	}
5832	sd->groups = groups;
5833
5834	return 0;
5835
5836fail:
5837	free_sched_groups(first, 0);
5838
5839	return -ENOMEM;
5840}
5841
5842static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5843{
5844	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5845	struct sched_domain *child = sd->child;
5846
5847	if (child)
5848		cpu = cpumask_first(sched_domain_span(child));
5849
5850	if (sg) {
5851		*sg = *per_cpu_ptr(sdd->sg, cpu);
5852		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5853		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5854	}
5855
5856	return cpu;
5857}
5858
5859/*
5860 * build_sched_groups will build a circular linked list of the groups
5861 * covered by the given span, and will set each group's ->cpumask correctly,
5862 * and ->cpu_power to 0.
5863 *
5864 * Assumes the sched_domain tree is fully constructed
5865 */
5866static int
5867build_sched_groups(struct sched_domain *sd, int cpu)
5868{
5869	struct sched_group *first = NULL, *last = NULL;
5870	struct sd_data *sdd = sd->private;
5871	const struct cpumask *span = sched_domain_span(sd);
5872	struct cpumask *covered;
5873	int i;
5874
5875	get_group(cpu, sdd, &sd->groups);
5876	atomic_inc(&sd->groups->ref);
5877
5878	if (cpu != cpumask_first(sched_domain_span(sd)))
5879		return 0;
5880
5881	lockdep_assert_held(&sched_domains_mutex);
5882	covered = sched_domains_tmpmask;
5883
5884	cpumask_clear(covered);
5885
5886	for_each_cpu(i, span) {
5887		struct sched_group *sg;
5888		int group = get_group(i, sdd, &sg);
5889		int j;
5890
5891		if (cpumask_test_cpu(i, covered))
5892			continue;
5893
5894		cpumask_clear(sched_group_cpus(sg));
5895		sg->sgp->power = 0;
5896		cpumask_setall(sched_group_mask(sg));
5897
5898		for_each_cpu(j, span) {
5899			if (get_group(j, sdd, NULL) != group)
5900				continue;
5901
5902			cpumask_set_cpu(j, covered);
5903			cpumask_set_cpu(j, sched_group_cpus(sg));
5904		}
5905
5906		if (!first)
5907			first = sg;
5908		if (last)
5909			last->next = sg;
5910		last = sg;
5911	}
5912	last->next = first;
5913
5914	return 0;
5915}
5916
5917/*
5918 * Initialize sched groups cpu_power.
5919 *
5920 * cpu_power indicates the capacity of sched group, which is used while
5921 * distributing the load between different sched groups in a sched domain.
5922 * Typically cpu_power for all the groups in a sched domain will be same unless
5923 * there are asymmetries in the topology. If there are asymmetries, group
5924 * having more cpu_power will pickup more load compared to the group having
5925 * less cpu_power.
5926 */
5927static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5928{
5929	struct sched_group *sg = sd->groups;
5930
5931	WARN_ON(!sd || !sg);
5932
5933	do {
5934		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5935		sg = sg->next;
5936	} while (sg != sd->groups);
5937
5938	if (cpu != group_balance_cpu(sg))
5939		return;
5940
5941	update_group_power(sd, cpu);
5942	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5943}
5944
5945int __weak arch_sd_sibling_asym_packing(void)
5946{
5947       return 0*SD_ASYM_PACKING;
5948}
5949
5950/*
5951 * Initializers for schedule domains
5952 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5953 */
5954
5955#ifdef CONFIG_SCHED_DEBUG
5956# define SD_INIT_NAME(sd, type)		sd->name = #type
5957#else
5958# define SD_INIT_NAME(sd, type)		do { } while (0)
5959#endif
5960
5961#define SD_INIT_FUNC(type)						\
5962static noinline struct sched_domain *					\
5963sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5964{									\
5965	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5966	*sd = SD_##type##_INIT;						\
5967	SD_INIT_NAME(sd, type);						\
5968	sd->private = &tl->data;					\
5969	return sd;							\
5970}
5971
5972SD_INIT_FUNC(CPU)
5973#ifdef CONFIG_SCHED_SMT
5974 SD_INIT_FUNC(SIBLING)
5975#endif
5976#ifdef CONFIG_SCHED_MC
5977 SD_INIT_FUNC(MC)
5978#endif
5979#ifdef CONFIG_SCHED_BOOK
5980 SD_INIT_FUNC(BOOK)
5981#endif
5982
5983static int default_relax_domain_level = -1;
5984int sched_domain_level_max;
5985
5986static int __init setup_relax_domain_level(char *str)
5987{
5988	if (kstrtoint(str, 0, &default_relax_domain_level))
5989		pr_warn("Unable to set relax_domain_level\n");
5990
5991	return 1;
5992}
5993__setup("relax_domain_level=", setup_relax_domain_level);
5994
5995static void set_domain_attribute(struct sched_domain *sd,
5996				 struct sched_domain_attr *attr)
5997{
5998	int request;
5999
6000	if (!attr || attr->relax_domain_level < 0) {
6001		if (default_relax_domain_level < 0)
6002			return;
6003		else
6004			request = default_relax_domain_level;
6005	} else
6006		request = attr->relax_domain_level;
6007	if (request < sd->level) {
6008		/* turn off idle balance on this domain */
6009		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6010	} else {
6011		/* turn on idle balance on this domain */
6012		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6013	}
6014}
6015
6016static void __sdt_free(const struct cpumask *cpu_map);
6017static int __sdt_alloc(const struct cpumask *cpu_map);
6018
6019static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6020				 const struct cpumask *cpu_map)
6021{
6022	switch (what) {
6023	case sa_rootdomain:
6024		if (!atomic_read(&d->rd->refcount))
6025			free_rootdomain(&d->rd->rcu); /* fall through */
6026	case sa_sd:
6027		free_percpu(d->sd); /* fall through */
6028	case sa_sd_storage:
6029		__sdt_free(cpu_map); /* fall through */
6030	case sa_none:
6031		break;
6032	}
6033}
6034
6035static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6036						   const struct cpumask *cpu_map)
6037{
6038	memset(d, 0, sizeof(*d));
6039
6040	if (__sdt_alloc(cpu_map))
6041		return sa_sd_storage;
6042	d->sd = alloc_percpu(struct sched_domain *);
6043	if (!d->sd)
6044		return sa_sd_storage;
6045	d->rd = alloc_rootdomain();
6046	if (!d->rd)
6047		return sa_sd;
6048	return sa_rootdomain;
6049}
6050
6051/*
6052 * NULL the sd_data elements we've used to build the sched_domain and
6053 * sched_group structure so that the subsequent __free_domain_allocs()
6054 * will not free the data we're using.
6055 */
6056static void claim_allocations(int cpu, struct sched_domain *sd)
6057{
6058	struct sd_data *sdd = sd->private;
6059
6060	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6061	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6062
6063	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6064		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6065
6066	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6067		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6068}
6069
6070#ifdef CONFIG_SCHED_SMT
6071static const struct cpumask *cpu_smt_mask(int cpu)
6072{
6073	return topology_thread_cpumask(cpu);
6074}
6075#endif
6076
6077/*
6078 * Topology list, bottom-up.
6079 */
6080static struct sched_domain_topology_level default_topology[] = {
6081#ifdef CONFIG_SCHED_SMT
6082	{ sd_init_SIBLING, cpu_smt_mask, },
6083#endif
6084#ifdef CONFIG_SCHED_MC
6085	{ sd_init_MC, cpu_coregroup_mask, },
6086#endif
6087#ifdef CONFIG_SCHED_BOOK
6088	{ sd_init_BOOK, cpu_book_mask, },
6089#endif
6090	{ sd_init_CPU, cpu_cpu_mask, },
6091	{ NULL, },
6092};
6093
6094static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6095
6096#ifdef CONFIG_NUMA
6097
6098static int sched_domains_numa_levels;
6099static int *sched_domains_numa_distance;
6100static struct cpumask ***sched_domains_numa_masks;
6101static int sched_domains_curr_level;
6102
6103static inline int sd_local_flags(int level)
6104{
6105	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6106		return 0;
6107
6108	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6109}
6110
6111static struct sched_domain *
6112sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6113{
6114	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6115	int level = tl->numa_level;
6116	int sd_weight = cpumask_weight(
6117			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6118
6119	*sd = (struct sched_domain){
6120		.min_interval		= sd_weight,
6121		.max_interval		= 2*sd_weight,
6122		.busy_factor		= 32,
6123		.imbalance_pct		= 125,
6124		.cache_nice_tries	= 2,
6125		.busy_idx		= 3,
6126		.idle_idx		= 2,
6127		.newidle_idx		= 0,
6128		.wake_idx		= 0,
6129		.forkexec_idx		= 0,
6130
6131		.flags			= 1*SD_LOAD_BALANCE
6132					| 1*SD_BALANCE_NEWIDLE
6133					| 0*SD_BALANCE_EXEC
6134					| 0*SD_BALANCE_FORK
6135					| 0*SD_BALANCE_WAKE
6136					| 0*SD_WAKE_AFFINE
6137					| 0*SD_SHARE_CPUPOWER
6138					| 0*SD_SHARE_PKG_RESOURCES
6139					| 1*SD_SERIALIZE
6140					| 0*SD_PREFER_SIBLING
6141					| sd_local_flags(level)
6142					,
6143		.last_balance		= jiffies,
6144		.balance_interval	= sd_weight,
6145	};
6146	SD_INIT_NAME(sd, NUMA);
6147	sd->private = &tl->data;
6148
6149	/*
6150	 * Ugly hack to pass state to sd_numa_mask()...
6151	 */
6152	sched_domains_curr_level = tl->numa_level;
6153
6154	return sd;
6155}
6156
6157static const struct cpumask *sd_numa_mask(int cpu)
6158{
6159	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6160}
6161
6162static void sched_numa_warn(const char *str)
6163{
6164	static int done = false;
6165	int i,j;
6166
6167	if (done)
6168		return;
6169
6170	done = true;
6171
6172	printk(KERN_WARNING "ERROR: %s\n\n", str);
6173
6174	for (i = 0; i < nr_node_ids; i++) {
6175		printk(KERN_WARNING "  ");
6176		for (j = 0; j < nr_node_ids; j++)
6177			printk(KERN_CONT "%02d ", node_distance(i,j));
6178		printk(KERN_CONT "\n");
6179	}
6180	printk(KERN_WARNING "\n");
6181}
6182
6183static bool find_numa_distance(int distance)
6184{
6185	int i;
6186
6187	if (distance == node_distance(0, 0))
6188		return true;
6189
6190	for (i = 0; i < sched_domains_numa_levels; i++) {
6191		if (sched_domains_numa_distance[i] == distance)
6192			return true;
6193	}
6194
6195	return false;
6196}
6197
6198static void sched_init_numa(void)
6199{
6200	int next_distance, curr_distance = node_distance(0, 0);
6201	struct sched_domain_topology_level *tl;
6202	int level = 0;
6203	int i, j, k;
6204
6205	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6206	if (!sched_domains_numa_distance)
6207		return;
6208
6209	/*
6210	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6211	 * unique distances in the node_distance() table.
6212	 *
6213	 * Assumes node_distance(0,j) includes all distances in
6214	 * node_distance(i,j) in order to avoid cubic time.
6215	 */
6216	next_distance = curr_distance;
6217	for (i = 0; i < nr_node_ids; i++) {
6218		for (j = 0; j < nr_node_ids; j++) {
6219			for (k = 0; k < nr_node_ids; k++) {
6220				int distance = node_distance(i, k);
6221
6222				if (distance > curr_distance &&
6223				    (distance < next_distance ||
6224				     next_distance == curr_distance))
6225					next_distance = distance;
6226
6227				/*
6228				 * While not a strong assumption it would be nice to know
6229				 * about cases where if node A is connected to B, B is not
6230				 * equally connected to A.
6231				 */
6232				if (sched_debug() && node_distance(k, i) != distance)
6233					sched_numa_warn("Node-distance not symmetric");
6234
6235				if (sched_debug() && i && !find_numa_distance(distance))
6236					sched_numa_warn("Node-0 not representative");
6237			}
6238			if (next_distance != curr_distance) {
6239				sched_domains_numa_distance[level++] = next_distance;
6240				sched_domains_numa_levels = level;
6241				curr_distance = next_distance;
6242			} else break;
6243		}
6244
6245		/*
6246		 * In case of sched_debug() we verify the above assumption.
6247		 */
6248		if (!sched_debug())
6249			break;
6250	}
6251	/*
6252	 * 'level' contains the number of unique distances, excluding the
6253	 * identity distance node_distance(i,i).
6254	 *
6255	 * The sched_domains_numa_distance[] array includes the actual distance
6256	 * numbers.
6257	 */
6258
6259	/*
6260	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6261	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6262	 * the array will contain less then 'level' members. This could be
6263	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6264	 * in other functions.
6265	 *
6266	 * We reset it to 'level' at the end of this function.
6267	 */
6268	sched_domains_numa_levels = 0;
6269
6270	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6271	if (!sched_domains_numa_masks)
6272		return;
6273
6274	/*
6275	 * Now for each level, construct a mask per node which contains all
6276	 * cpus of nodes that are that many hops away from us.
6277	 */
6278	for (i = 0; i < level; i++) {
6279		sched_domains_numa_masks[i] =
6280			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6281		if (!sched_domains_numa_masks[i])
6282			return;
6283
6284		for (j = 0; j < nr_node_ids; j++) {
6285			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6286			if (!mask)
6287				return;
6288
6289			sched_domains_numa_masks[i][j] = mask;
6290
6291			for (k = 0; k < nr_node_ids; k++) {
6292				if (node_distance(j, k) > sched_domains_numa_distance[i])
6293					continue;
6294
6295				cpumask_or(mask, mask, cpumask_of_node(k));
6296			}
6297		}
6298	}
6299
6300	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6301			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6302	if (!tl)
6303		return;
6304
6305	/*
6306	 * Copy the default topology bits..
6307	 */
6308	for (i = 0; default_topology[i].init; i++)
6309		tl[i] = default_topology[i];
6310
6311	/*
6312	 * .. and append 'j' levels of NUMA goodness.
6313	 */
6314	for (j = 0; j < level; i++, j++) {
6315		tl[i] = (struct sched_domain_topology_level){
6316			.init = sd_numa_init,
6317			.mask = sd_numa_mask,
6318			.flags = SDTL_OVERLAP,
6319			.numa_level = j,
6320		};
6321	}
6322
6323	sched_domain_topology = tl;
6324
6325	sched_domains_numa_levels = level;
6326}
6327
6328static void sched_domains_numa_masks_set(int cpu)
6329{
6330	int i, j;
6331	int node = cpu_to_node(cpu);
6332
6333	for (i = 0; i < sched_domains_numa_levels; i++) {
6334		for (j = 0; j < nr_node_ids; j++) {
6335			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6336				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6337		}
6338	}
6339}
6340
6341static void sched_domains_numa_masks_clear(int cpu)
6342{
6343	int i, j;
6344	for (i = 0; i < sched_domains_numa_levels; i++) {
6345		for (j = 0; j < nr_node_ids; j++)
6346			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6347	}
6348}
6349
6350/*
6351 * Update sched_domains_numa_masks[level][node] array when new cpus
6352 * are onlined.
6353 */
6354static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6355					   unsigned long action,
6356					   void *hcpu)
6357{
6358	int cpu = (long)hcpu;
6359
6360	switch (action & ~CPU_TASKS_FROZEN) {
6361	case CPU_ONLINE:
6362		sched_domains_numa_masks_set(cpu);
6363		break;
6364
6365	case CPU_DEAD:
6366		sched_domains_numa_masks_clear(cpu);
6367		break;
6368
6369	default:
6370		return NOTIFY_DONE;
6371	}
6372
6373	return NOTIFY_OK;
6374}
6375#else
6376static inline void sched_init_numa(void)
6377{
6378}
6379
6380static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6381					   unsigned long action,
6382					   void *hcpu)
6383{
6384	return 0;
6385}
6386#endif /* CONFIG_NUMA */
6387
6388static int __sdt_alloc(const struct cpumask *cpu_map)
6389{
6390	struct sched_domain_topology_level *tl;
6391	int j;
6392
6393	for (tl = sched_domain_topology; tl->init; tl++) {
6394		struct sd_data *sdd = &tl->data;
6395
6396		sdd->sd = alloc_percpu(struct sched_domain *);
6397		if (!sdd->sd)
6398			return -ENOMEM;
6399
6400		sdd->sg = alloc_percpu(struct sched_group *);
6401		if (!sdd->sg)
6402			return -ENOMEM;
6403
6404		sdd->sgp = alloc_percpu(struct sched_group_power *);
6405		if (!sdd->sgp)
6406			return -ENOMEM;
6407
6408		for_each_cpu(j, cpu_map) {
6409			struct sched_domain *sd;
6410			struct sched_group *sg;
6411			struct sched_group_power *sgp;
6412
6413		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6414					GFP_KERNEL, cpu_to_node(j));
6415			if (!sd)
6416				return -ENOMEM;
6417
6418			*per_cpu_ptr(sdd->sd, j) = sd;
6419
6420			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6421					GFP_KERNEL, cpu_to_node(j));
6422			if (!sg)
6423				return -ENOMEM;
6424
6425			sg->next = sg;
6426
6427			*per_cpu_ptr(sdd->sg, j) = sg;
6428
6429			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6430					GFP_KERNEL, cpu_to_node(j));
6431			if (!sgp)
6432				return -ENOMEM;
6433
6434			*per_cpu_ptr(sdd->sgp, j) = sgp;
6435		}
6436	}
6437
6438	return 0;
6439}
6440
6441static void __sdt_free(const struct cpumask *cpu_map)
6442{
6443	struct sched_domain_topology_level *tl;
6444	int j;
6445
6446	for (tl = sched_domain_topology; tl->init; tl++) {
6447		struct sd_data *sdd = &tl->data;
6448
6449		for_each_cpu(j, cpu_map) {
6450			struct sched_domain *sd;
6451
6452			if (sdd->sd) {
6453				sd = *per_cpu_ptr(sdd->sd, j);
6454				if (sd && (sd->flags & SD_OVERLAP))
6455					free_sched_groups(sd->groups, 0);
6456				kfree(*per_cpu_ptr(sdd->sd, j));
6457			}
6458
6459			if (sdd->sg)
6460				kfree(*per_cpu_ptr(sdd->sg, j));
6461			if (sdd->sgp)
6462				kfree(*per_cpu_ptr(sdd->sgp, j));
6463		}
6464		free_percpu(sdd->sd);
6465		sdd->sd = NULL;
6466		free_percpu(sdd->sg);
6467		sdd->sg = NULL;
6468		free_percpu(sdd->sgp);
6469		sdd->sgp = NULL;
6470	}
6471}
6472
6473struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6474		struct s_data *d, const struct cpumask *cpu_map,
6475		struct sched_domain_attr *attr, struct sched_domain *child,
6476		int cpu)
6477{
6478	struct sched_domain *sd = tl->init(tl, cpu);
6479	if (!sd)
6480		return child;
6481
6482	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6483	if (child) {
6484		sd->level = child->level + 1;
6485		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6486		child->parent = sd;
6487	}
6488	sd->child = child;
6489	set_domain_attribute(sd, attr);
6490
6491	return sd;
6492}
6493
6494/*
6495 * Build sched domains for a given set of cpus and attach the sched domains
6496 * to the individual cpus
6497 */
6498static int build_sched_domains(const struct cpumask *cpu_map,
6499			       struct sched_domain_attr *attr)
6500{
6501	enum s_alloc alloc_state = sa_none;
6502	struct sched_domain *sd;
6503	struct s_data d;
6504	int i, ret = -ENOMEM;
6505
6506	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6507	if (alloc_state != sa_rootdomain)
6508		goto error;
6509
6510	/* Set up domains for cpus specified by the cpu_map. */
6511	for_each_cpu(i, cpu_map) {
6512		struct sched_domain_topology_level *tl;
6513
6514		sd = NULL;
6515		for (tl = sched_domain_topology; tl->init; tl++) {
6516			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6517			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6518				sd->flags |= SD_OVERLAP;
6519			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6520				break;
6521		}
6522
6523		while (sd->child)
6524			sd = sd->child;
6525
6526		*per_cpu_ptr(d.sd, i) = sd;
6527	}
6528
6529	/* Build the groups for the domains */
6530	for_each_cpu(i, cpu_map) {
6531		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6532			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6533			if (sd->flags & SD_OVERLAP) {
6534				if (build_overlap_sched_groups(sd, i))
6535					goto error;
6536			} else {
6537				if (build_sched_groups(sd, i))
6538					goto error;
6539			}
6540		}
6541	}
6542
6543	/* Calculate CPU power for physical packages and nodes */
6544	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6545		if (!cpumask_test_cpu(i, cpu_map))
6546			continue;
6547
6548		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6549			claim_allocations(i, sd);
6550			init_sched_groups_power(i, sd);
6551		}
6552	}
6553
6554	/* Attach the domains */
6555	rcu_read_lock();
6556	for_each_cpu(i, cpu_map) {
6557		sd = *per_cpu_ptr(d.sd, i);
6558		cpu_attach_domain(sd, d.rd, i);
6559	}
6560	rcu_read_unlock();
6561
6562	ret = 0;
6563error:
6564	__free_domain_allocs(&d, alloc_state, cpu_map);
6565	return ret;
6566}
6567
6568static cpumask_var_t *doms_cur;	/* current sched domains */
6569static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6570static struct sched_domain_attr *dattr_cur;
6571				/* attribues of custom domains in 'doms_cur' */
6572
6573/*
6574 * Special case: If a kmalloc of a doms_cur partition (array of
6575 * cpumask) fails, then fallback to a single sched domain,
6576 * as determined by the single cpumask fallback_doms.
6577 */
6578static cpumask_var_t fallback_doms;
6579
6580/*
6581 * arch_update_cpu_topology lets virtualized architectures update the
6582 * cpu core maps. It is supposed to return 1 if the topology changed
6583 * or 0 if it stayed the same.
6584 */
6585int __attribute__((weak)) arch_update_cpu_topology(void)
6586{
6587	return 0;
6588}
6589
6590cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6591{
6592	int i;
6593	cpumask_var_t *doms;
6594
6595	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6596	if (!doms)
6597		return NULL;
6598	for (i = 0; i < ndoms; i++) {
6599		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6600			free_sched_domains(doms, i);
6601			return NULL;
6602		}
6603	}
6604	return doms;
6605}
6606
6607void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6608{
6609	unsigned int i;
6610	for (i = 0; i < ndoms; i++)
6611		free_cpumask_var(doms[i]);
6612	kfree(doms);
6613}
6614
6615/*
6616 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6617 * For now this just excludes isolated cpus, but could be used to
6618 * exclude other special cases in the future.
6619 */
6620static int init_sched_domains(const struct cpumask *cpu_map)
6621{
6622	int err;
6623
6624	arch_update_cpu_topology();
6625	ndoms_cur = 1;
6626	doms_cur = alloc_sched_domains(ndoms_cur);
6627	if (!doms_cur)
6628		doms_cur = &fallback_doms;
6629	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6630	err = build_sched_domains(doms_cur[0], NULL);
6631	register_sched_domain_sysctl();
6632
6633	return err;
6634}
6635
6636/*
6637 * Detach sched domains from a group of cpus specified in cpu_map
6638 * These cpus will now be attached to the NULL domain
6639 */
6640static void detach_destroy_domains(const struct cpumask *cpu_map)
6641{
6642	int i;
6643
6644	rcu_read_lock();
6645	for_each_cpu(i, cpu_map)
6646		cpu_attach_domain(NULL, &def_root_domain, i);
6647	rcu_read_unlock();
6648}
6649
6650/* handle null as "default" */
6651static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6652			struct sched_domain_attr *new, int idx_new)
6653{
6654	struct sched_domain_attr tmp;
6655
6656	/* fast path */
6657	if (!new && !cur)
6658		return 1;
6659
6660	tmp = SD_ATTR_INIT;
6661	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6662			new ? (new + idx_new) : &tmp,
6663			sizeof(struct sched_domain_attr));
6664}
6665
6666/*
6667 * Partition sched domains as specified by the 'ndoms_new'
6668 * cpumasks in the array doms_new[] of cpumasks. This compares
6669 * doms_new[] to the current sched domain partitioning, doms_cur[].
6670 * It destroys each deleted domain and builds each new domain.
6671 *
6672 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6673 * The masks don't intersect (don't overlap.) We should setup one
6674 * sched domain for each mask. CPUs not in any of the cpumasks will
6675 * not be load balanced. If the same cpumask appears both in the
6676 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6677 * it as it is.
6678 *
6679 * The passed in 'doms_new' should be allocated using
6680 * alloc_sched_domains.  This routine takes ownership of it and will
6681 * free_sched_domains it when done with it. If the caller failed the
6682 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6683 * and partition_sched_domains() will fallback to the single partition
6684 * 'fallback_doms', it also forces the domains to be rebuilt.
6685 *
6686 * If doms_new == NULL it will be replaced with cpu_online_mask.
6687 * ndoms_new == 0 is a special case for destroying existing domains,
6688 * and it will not create the default domain.
6689 *
6690 * Call with hotplug lock held
6691 */
6692void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6693			     struct sched_domain_attr *dattr_new)
6694{
6695	int i, j, n;
6696	int new_topology;
6697
6698	mutex_lock(&sched_domains_mutex);
6699
6700	/* always unregister in case we don't destroy any domains */
6701	unregister_sched_domain_sysctl();
6702
6703	/* Let architecture update cpu core mappings. */
6704	new_topology = arch_update_cpu_topology();
6705
6706	n = doms_new ? ndoms_new : 0;
6707
6708	/* Destroy deleted domains */
6709	for (i = 0; i < ndoms_cur; i++) {
6710		for (j = 0; j < n && !new_topology; j++) {
6711			if (cpumask_equal(doms_cur[i], doms_new[j])
6712			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6713				goto match1;
6714		}
6715		/* no match - a current sched domain not in new doms_new[] */
6716		detach_destroy_domains(doms_cur[i]);
6717match1:
6718		;
6719	}
6720
6721	if (doms_new == NULL) {
6722		ndoms_cur = 0;
6723		doms_new = &fallback_doms;
6724		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6725		WARN_ON_ONCE(dattr_new);
6726	}
6727
6728	/* Build new domains */
6729	for (i = 0; i < ndoms_new; i++) {
6730		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6731			if (cpumask_equal(doms_new[i], doms_cur[j])
6732			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6733				goto match2;
6734		}
6735		/* no match - add a new doms_new */
6736		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6737match2:
6738		;
6739	}
6740
6741	/* Remember the new sched domains */
6742	if (doms_cur != &fallback_doms)
6743		free_sched_domains(doms_cur, ndoms_cur);
6744	kfree(dattr_cur);	/* kfree(NULL) is safe */
6745	doms_cur = doms_new;
6746	dattr_cur = dattr_new;
6747	ndoms_cur = ndoms_new;
6748
6749	register_sched_domain_sysctl();
6750
6751	mutex_unlock(&sched_domains_mutex);
6752}
6753
6754static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6755
6756/*
6757 * Update cpusets according to cpu_active mask.  If cpusets are
6758 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6759 * around partition_sched_domains().
6760 *
6761 * If we come here as part of a suspend/resume, don't touch cpusets because we
6762 * want to restore it back to its original state upon resume anyway.
6763 */
6764static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6765			     void *hcpu)
6766{
6767	switch (action) {
6768	case CPU_ONLINE_FROZEN:
6769	case CPU_DOWN_FAILED_FROZEN:
6770
6771		/*
6772		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6773		 * resume sequence. As long as this is not the last online
6774		 * operation in the resume sequence, just build a single sched
6775		 * domain, ignoring cpusets.
6776		 */
6777		num_cpus_frozen--;
6778		if (likely(num_cpus_frozen)) {
6779			partition_sched_domains(1, NULL, NULL);
6780			break;
6781		}
6782
6783		/*
6784		 * This is the last CPU online operation. So fall through and
6785		 * restore the original sched domains by considering the
6786		 * cpuset configurations.
6787		 */
6788
6789	case CPU_ONLINE:
6790	case CPU_DOWN_FAILED:
6791		cpuset_update_active_cpus(true);
6792		break;
6793	default:
6794		return NOTIFY_DONE;
6795	}
6796	return NOTIFY_OK;
6797}
6798
6799static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6800			       void *hcpu)
6801{
6802	switch (action) {
6803	case CPU_DOWN_PREPARE:
6804		cpuset_update_active_cpus(false);
6805		break;
6806	case CPU_DOWN_PREPARE_FROZEN:
6807		num_cpus_frozen++;
6808		partition_sched_domains(1, NULL, NULL);
6809		break;
6810	default:
6811		return NOTIFY_DONE;
6812	}
6813	return NOTIFY_OK;
6814}
6815
6816void __init sched_init_smp(void)
6817{
6818	cpumask_var_t non_isolated_cpus;
6819
6820	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6821	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6822
6823	sched_init_numa();
6824
6825	get_online_cpus();
6826	mutex_lock(&sched_domains_mutex);
6827	init_sched_domains(cpu_active_mask);
6828	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6829	if (cpumask_empty(non_isolated_cpus))
6830		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6831	mutex_unlock(&sched_domains_mutex);
6832	put_online_cpus();
6833
6834	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6835	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6836	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6837
6838	/* RT runtime code needs to handle some hotplug events */
6839	hotcpu_notifier(update_runtime, 0);
6840
6841	init_hrtick();
6842
6843	/* Move init over to a non-isolated CPU */
6844	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6845		BUG();
6846	sched_init_granularity();
6847	free_cpumask_var(non_isolated_cpus);
6848
6849	init_sched_rt_class();
6850}
6851#else
6852void __init sched_init_smp(void)
6853{
6854	sched_init_granularity();
6855}
6856#endif /* CONFIG_SMP */
6857
6858const_debug unsigned int sysctl_timer_migration = 1;
6859
6860int in_sched_functions(unsigned long addr)
6861{
6862	return in_lock_functions(addr) ||
6863		(addr >= (unsigned long)__sched_text_start
6864		&& addr < (unsigned long)__sched_text_end);
6865}
6866
6867#ifdef CONFIG_CGROUP_SCHED
6868/*
6869 * Default task group.
6870 * Every task in system belongs to this group at bootup.
6871 */
6872struct task_group root_task_group;
6873LIST_HEAD(task_groups);
6874#endif
6875
6876DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6877
6878void __init sched_init(void)
6879{
6880	int i, j;
6881	unsigned long alloc_size = 0, ptr;
6882
6883#ifdef CONFIG_FAIR_GROUP_SCHED
6884	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6885#endif
6886#ifdef CONFIG_RT_GROUP_SCHED
6887	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6888#endif
6889#ifdef CONFIG_CPUMASK_OFFSTACK
6890	alloc_size += num_possible_cpus() * cpumask_size();
6891#endif
6892	if (alloc_size) {
6893		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6894
6895#ifdef CONFIG_FAIR_GROUP_SCHED
6896		root_task_group.se = (struct sched_entity **)ptr;
6897		ptr += nr_cpu_ids * sizeof(void **);
6898
6899		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6900		ptr += nr_cpu_ids * sizeof(void **);
6901
6902#endif /* CONFIG_FAIR_GROUP_SCHED */
6903#ifdef CONFIG_RT_GROUP_SCHED
6904		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6905		ptr += nr_cpu_ids * sizeof(void **);
6906
6907		root_task_group.rt_rq = (struct rt_rq **)ptr;
6908		ptr += nr_cpu_ids * sizeof(void **);
6909
6910#endif /* CONFIG_RT_GROUP_SCHED */
6911#ifdef CONFIG_CPUMASK_OFFSTACK
6912		for_each_possible_cpu(i) {
6913			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6914			ptr += cpumask_size();
6915		}
6916#endif /* CONFIG_CPUMASK_OFFSTACK */
6917	}
6918
6919#ifdef CONFIG_SMP
6920	init_defrootdomain();
6921#endif
6922
6923	init_rt_bandwidth(&def_rt_bandwidth,
6924			global_rt_period(), global_rt_runtime());
6925
6926#ifdef CONFIG_RT_GROUP_SCHED
6927	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6928			global_rt_period(), global_rt_runtime());
6929#endif /* CONFIG_RT_GROUP_SCHED */
6930
6931#ifdef CONFIG_CGROUP_SCHED
6932	list_add(&root_task_group.list, &task_groups);
6933	INIT_LIST_HEAD(&root_task_group.children);
6934	INIT_LIST_HEAD(&root_task_group.siblings);
6935	autogroup_init(&init_task);
6936
6937#endif /* CONFIG_CGROUP_SCHED */
6938
6939#ifdef CONFIG_CGROUP_CPUACCT
6940	root_cpuacct.cpustat = &kernel_cpustat;
6941	root_cpuacct.cpuusage = alloc_percpu(u64);
6942	/* Too early, not expected to fail */
6943	BUG_ON(!root_cpuacct.cpuusage);
6944#endif
6945	for_each_possible_cpu(i) {
6946		struct rq *rq;
6947
6948		rq = cpu_rq(i);
6949		raw_spin_lock_init(&rq->lock);
6950		rq->nr_running = 0;
6951		rq->calc_load_active = 0;
6952		rq->calc_load_update = jiffies + LOAD_FREQ;
6953		init_cfs_rq(&rq->cfs);
6954		init_rt_rq(&rq->rt, rq);
6955#ifdef CONFIG_FAIR_GROUP_SCHED
6956		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6957		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6958		/*
6959		 * How much cpu bandwidth does root_task_group get?
6960		 *
6961		 * In case of task-groups formed thr' the cgroup filesystem, it
6962		 * gets 100% of the cpu resources in the system. This overall
6963		 * system cpu resource is divided among the tasks of
6964		 * root_task_group and its child task-groups in a fair manner,
6965		 * based on each entity's (task or task-group's) weight
6966		 * (se->load.weight).
6967		 *
6968		 * In other words, if root_task_group has 10 tasks of weight
6969		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6970		 * then A0's share of the cpu resource is:
6971		 *
6972		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6973		 *
6974		 * We achieve this by letting root_task_group's tasks sit
6975		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6976		 */
6977		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6978		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6979#endif /* CONFIG_FAIR_GROUP_SCHED */
6980
6981		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6982#ifdef CONFIG_RT_GROUP_SCHED
6983		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6984		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6985#endif
6986
6987		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6988			rq->cpu_load[j] = 0;
6989
6990		rq->last_load_update_tick = jiffies;
6991
6992#ifdef CONFIG_SMP
6993		rq->sd = NULL;
6994		rq->rd = NULL;
6995		rq->cpu_power = SCHED_POWER_SCALE;
6996		rq->post_schedule = 0;
6997		rq->active_balance = 0;
6998		rq->next_balance = jiffies;
6999		rq->push_cpu = 0;
7000		rq->cpu = i;
7001		rq->online = 0;
7002		rq->idle_stamp = 0;
7003		rq->avg_idle = 2*sysctl_sched_migration_cost;
7004
7005		INIT_LIST_HEAD(&rq->cfs_tasks);
7006
7007		rq_attach_root(rq, &def_root_domain);
7008#ifdef CONFIG_NO_HZ
7009		rq->nohz_flags = 0;
7010#endif
7011#endif
7012		init_rq_hrtick(rq);
7013		atomic_set(&rq->nr_iowait, 0);
7014	}
7015
7016	set_load_weight(&init_task);
7017
7018#ifdef CONFIG_PREEMPT_NOTIFIERS
7019	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7020#endif
7021
7022#ifdef CONFIG_RT_MUTEXES
7023	plist_head_init(&init_task.pi_waiters);
7024#endif
7025
7026	/*
7027	 * The boot idle thread does lazy MMU switching as well:
7028	 */
7029	atomic_inc(&init_mm.mm_count);
7030	enter_lazy_tlb(&init_mm, current);
7031
7032	/*
7033	 * Make us the idle thread. Technically, schedule() should not be
7034	 * called from this thread, however somewhere below it might be,
7035	 * but because we are the idle thread, we just pick up running again
7036	 * when this runqueue becomes "idle".
7037	 */
7038	init_idle(current, smp_processor_id());
7039
7040	calc_load_update = jiffies + LOAD_FREQ;
7041
7042	/*
7043	 * During early bootup we pretend to be a normal task:
7044	 */
7045	current->sched_class = &fair_sched_class;
7046
7047#ifdef CONFIG_SMP
7048	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7049	/* May be allocated at isolcpus cmdline parse time */
7050	if (cpu_isolated_map == NULL)
7051		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7052	idle_thread_set_boot_cpu();
7053#endif
7054	init_sched_fair_class();
7055
7056	scheduler_running = 1;
7057}
7058
7059#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7060static inline int preempt_count_equals(int preempt_offset)
7061{
7062	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7063
7064	return (nested == preempt_offset);
7065}
7066
7067void __might_sleep(const char *file, int line, int preempt_offset)
7068{
7069	static unsigned long prev_jiffy;	/* ratelimiting */
7070
7071	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7072	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7073	    system_state != SYSTEM_RUNNING || oops_in_progress)
7074		return;
7075	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7076		return;
7077	prev_jiffy = jiffies;
7078
7079	printk(KERN_ERR
7080		"BUG: sleeping function called from invalid context at %s:%d\n",
7081			file, line);
7082	printk(KERN_ERR
7083		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7084			in_atomic(), irqs_disabled(),
7085			current->pid, current->comm);
7086
7087	debug_show_held_locks(current);
7088	if (irqs_disabled())
7089		print_irqtrace_events(current);
7090	dump_stack();
7091}
7092EXPORT_SYMBOL(__might_sleep);
7093#endif
7094
7095#ifdef CONFIG_MAGIC_SYSRQ
7096static void normalize_task(struct rq *rq, struct task_struct *p)
7097{
7098	const struct sched_class *prev_class = p->sched_class;
7099	int old_prio = p->prio;
7100	int on_rq;
7101
7102	on_rq = p->on_rq;
7103	if (on_rq)
7104		dequeue_task(rq, p, 0);
7105	__setscheduler(rq, p, SCHED_NORMAL, 0);
7106	if (on_rq) {
7107		enqueue_task(rq, p, 0);
7108		resched_task(rq->curr);
7109	}
7110
7111	check_class_changed(rq, p, prev_class, old_prio);
7112}
7113
7114void normalize_rt_tasks(void)
7115{
7116	struct task_struct *g, *p;
7117	unsigned long flags;
7118	struct rq *rq;
7119
7120	read_lock_irqsave(&tasklist_lock, flags);
7121	do_each_thread(g, p) {
7122		/*
7123		 * Only normalize user tasks:
7124		 */
7125		if (!p->mm)
7126			continue;
7127
7128		p->se.exec_start		= 0;
7129#ifdef CONFIG_SCHEDSTATS
7130		p->se.statistics.wait_start	= 0;
7131		p->se.statistics.sleep_start	= 0;
7132		p->se.statistics.block_start	= 0;
7133#endif
7134
7135		if (!rt_task(p)) {
7136			/*
7137			 * Renice negative nice level userspace
7138			 * tasks back to 0:
7139			 */
7140			if (TASK_NICE(p) < 0 && p->mm)
7141				set_user_nice(p, 0);
7142			continue;
7143		}
7144
7145		raw_spin_lock(&p->pi_lock);
7146		rq = __task_rq_lock(p);
7147
7148		normalize_task(rq, p);
7149
7150		__task_rq_unlock(rq);
7151		raw_spin_unlock(&p->pi_lock);
7152	} while_each_thread(g, p);
7153
7154	read_unlock_irqrestore(&tasklist_lock, flags);
7155}
7156
7157#endif /* CONFIG_MAGIC_SYSRQ */
7158
7159#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7160/*
7161 * These functions are only useful for the IA64 MCA handling, or kdb.
7162 *
7163 * They can only be called when the whole system has been
7164 * stopped - every CPU needs to be quiescent, and no scheduling
7165 * activity can take place. Using them for anything else would
7166 * be a serious bug, and as a result, they aren't even visible
7167 * under any other configuration.
7168 */
7169
7170/**
7171 * curr_task - return the current task for a given cpu.
7172 * @cpu: the processor in question.
7173 *
7174 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7175 */
7176struct task_struct *curr_task(int cpu)
7177{
7178	return cpu_curr(cpu);
7179}
7180
7181#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7182
7183#ifdef CONFIG_IA64
7184/**
7185 * set_curr_task - set the current task for a given cpu.
7186 * @cpu: the processor in question.
7187 * @p: the task pointer to set.
7188 *
7189 * Description: This function must only be used when non-maskable interrupts
7190 * are serviced on a separate stack. It allows the architecture to switch the
7191 * notion of the current task on a cpu in a non-blocking manner. This function
7192 * must be called with all CPU's synchronized, and interrupts disabled, the
7193 * and caller must save the original value of the current task (see
7194 * curr_task() above) and restore that value before reenabling interrupts and
7195 * re-starting the system.
7196 *
7197 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7198 */
7199void set_curr_task(int cpu, struct task_struct *p)
7200{
7201	cpu_curr(cpu) = p;
7202}
7203
7204#endif
7205
7206#ifdef CONFIG_CGROUP_SCHED
7207/* task_group_lock serializes the addition/removal of task groups */
7208static DEFINE_SPINLOCK(task_group_lock);
7209
7210static void free_sched_group(struct task_group *tg)
7211{
7212	free_fair_sched_group(tg);
7213	free_rt_sched_group(tg);
7214	autogroup_free(tg);
7215	kfree(tg);
7216}
7217
7218/* allocate runqueue etc for a new task group */
7219struct task_group *sched_create_group(struct task_group *parent)
7220{
7221	struct task_group *tg;
7222
7223	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7224	if (!tg)
7225		return ERR_PTR(-ENOMEM);
7226
7227	if (!alloc_fair_sched_group(tg, parent))
7228		goto err;
7229
7230	if (!alloc_rt_sched_group(tg, parent))
7231		goto err;
7232
7233	return tg;
7234
7235err:
7236	free_sched_group(tg);
7237	return ERR_PTR(-ENOMEM);
7238}
7239
7240void sched_online_group(struct task_group *tg, struct task_group *parent)
7241{
7242	unsigned long flags;
7243
7244	spin_lock_irqsave(&task_group_lock, flags);
7245	list_add_rcu(&tg->list, &task_groups);
7246
7247	WARN_ON(!parent); /* root should already exist */
7248
7249	tg->parent = parent;
7250	INIT_LIST_HEAD(&tg->children);
7251	list_add_rcu(&tg->siblings, &parent->children);
7252	spin_unlock_irqrestore(&task_group_lock, flags);
7253}
7254
7255/* rcu callback to free various structures associated with a task group */
7256static void free_sched_group_rcu(struct rcu_head *rhp)
7257{
7258	/* now it should be safe to free those cfs_rqs */
7259	free_sched_group(container_of(rhp, struct task_group, rcu));
7260}
7261
7262/* Destroy runqueue etc associated with a task group */
7263void sched_destroy_group(struct task_group *tg)
7264{
7265	/* wait for possible concurrent references to cfs_rqs complete */
7266	call_rcu(&tg->rcu, free_sched_group_rcu);
7267}
7268
7269void sched_offline_group(struct task_group *tg)
7270{
7271	unsigned long flags;
7272	int i;
7273
7274	/* end participation in shares distribution */
7275	for_each_possible_cpu(i)
7276		unregister_fair_sched_group(tg, i);
7277
7278	spin_lock_irqsave(&task_group_lock, flags);
7279	list_del_rcu(&tg->list);
7280	list_del_rcu(&tg->siblings);
7281	spin_unlock_irqrestore(&task_group_lock, flags);
7282}
7283
7284/* change task's runqueue when it moves between groups.
7285 *	The caller of this function should have put the task in its new group
7286 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7287 *	reflect its new group.
7288 */
7289void sched_move_task(struct task_struct *tsk)
7290{
7291	struct task_group *tg;
7292	int on_rq, running;
7293	unsigned long flags;
7294	struct rq *rq;
7295
7296	rq = task_rq_lock(tsk, &flags);
7297
7298	running = task_current(rq, tsk);
7299	on_rq = tsk->on_rq;
7300
7301	if (on_rq)
7302		dequeue_task(rq, tsk, 0);
7303	if (unlikely(running))
7304		tsk->sched_class->put_prev_task(rq, tsk);
7305
7306	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7307				lockdep_is_held(&tsk->sighand->siglock)),
7308			  struct task_group, css);
7309	tg = autogroup_task_group(tsk, tg);
7310	tsk->sched_task_group = tg;
7311
7312#ifdef CONFIG_FAIR_GROUP_SCHED
7313	if (tsk->sched_class->task_move_group)
7314		tsk->sched_class->task_move_group(tsk, on_rq);
7315	else
7316#endif
7317		set_task_rq(tsk, task_cpu(tsk));
7318
7319	if (unlikely(running))
7320		tsk->sched_class->set_curr_task(rq);
7321	if (on_rq)
7322		enqueue_task(rq, tsk, 0);
7323
7324	task_rq_unlock(rq, tsk, &flags);
7325}
7326#endif /* CONFIG_CGROUP_SCHED */
7327
7328#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7329static unsigned long to_ratio(u64 period, u64 runtime)
7330{
7331	if (runtime == RUNTIME_INF)
7332		return 1ULL << 20;
7333
7334	return div64_u64(runtime << 20, period);
7335}
7336#endif
7337
7338#ifdef CONFIG_RT_GROUP_SCHED
7339/*
7340 * Ensure that the real time constraints are schedulable.
7341 */
7342static DEFINE_MUTEX(rt_constraints_mutex);
7343
7344/* Must be called with tasklist_lock held */
7345static inline int tg_has_rt_tasks(struct task_group *tg)
7346{
7347	struct task_struct *g, *p;
7348
7349	do_each_thread(g, p) {
7350		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7351			return 1;
7352	} while_each_thread(g, p);
7353
7354	return 0;
7355}
7356
7357struct rt_schedulable_data {
7358	struct task_group *tg;
7359	u64 rt_period;
7360	u64 rt_runtime;
7361};
7362
7363static int tg_rt_schedulable(struct task_group *tg, void *data)
7364{
7365	struct rt_schedulable_data *d = data;
7366	struct task_group *child;
7367	unsigned long total, sum = 0;
7368	u64 period, runtime;
7369
7370	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7371	runtime = tg->rt_bandwidth.rt_runtime;
7372
7373	if (tg == d->tg) {
7374		period = d->rt_period;
7375		runtime = d->rt_runtime;
7376	}
7377
7378	/*
7379	 * Cannot have more runtime than the period.
7380	 */
7381	if (runtime > period && runtime != RUNTIME_INF)
7382		return -EINVAL;
7383
7384	/*
7385	 * Ensure we don't starve existing RT tasks.
7386	 */
7387	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7388		return -EBUSY;
7389
7390	total = to_ratio(period, runtime);
7391
7392	/*
7393	 * Nobody can have more than the global setting allows.
7394	 */
7395	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7396		return -EINVAL;
7397
7398	/*
7399	 * The sum of our children's runtime should not exceed our own.
7400	 */
7401	list_for_each_entry_rcu(child, &tg->children, siblings) {
7402		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7403		runtime = child->rt_bandwidth.rt_runtime;
7404
7405		if (child == d->tg) {
7406			period = d->rt_period;
7407			runtime = d->rt_runtime;
7408		}
7409
7410		sum += to_ratio(period, runtime);
7411	}
7412
7413	if (sum > total)
7414		return -EINVAL;
7415
7416	return 0;
7417}
7418
7419static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7420{
7421	int ret;
7422
7423	struct rt_schedulable_data data = {
7424		.tg = tg,
7425		.rt_period = period,
7426		.rt_runtime = runtime,
7427	};
7428
7429	rcu_read_lock();
7430	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7431	rcu_read_unlock();
7432
7433	return ret;
7434}
7435
7436static int tg_set_rt_bandwidth(struct task_group *tg,
7437		u64 rt_period, u64 rt_runtime)
7438{
7439	int i, err = 0;
7440
7441	mutex_lock(&rt_constraints_mutex);
7442	read_lock(&tasklist_lock);
7443	err = __rt_schedulable(tg, rt_period, rt_runtime);
7444	if (err)
7445		goto unlock;
7446
7447	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7448	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7449	tg->rt_bandwidth.rt_runtime = rt_runtime;
7450
7451	for_each_possible_cpu(i) {
7452		struct rt_rq *rt_rq = tg->rt_rq[i];
7453
7454		raw_spin_lock(&rt_rq->rt_runtime_lock);
7455		rt_rq->rt_runtime = rt_runtime;
7456		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7457	}
7458	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7459unlock:
7460	read_unlock(&tasklist_lock);
7461	mutex_unlock(&rt_constraints_mutex);
7462
7463	return err;
7464}
7465
7466static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7467{
7468	u64 rt_runtime, rt_period;
7469
7470	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7471	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7472	if (rt_runtime_us < 0)
7473		rt_runtime = RUNTIME_INF;
7474
7475	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7476}
7477
7478static long sched_group_rt_runtime(struct task_group *tg)
7479{
7480	u64 rt_runtime_us;
7481
7482	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7483		return -1;
7484
7485	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7486	do_div(rt_runtime_us, NSEC_PER_USEC);
7487	return rt_runtime_us;
7488}
7489
7490static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7491{
7492	u64 rt_runtime, rt_period;
7493
7494	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7495	rt_runtime = tg->rt_bandwidth.rt_runtime;
7496
7497	if (rt_period == 0)
7498		return -EINVAL;
7499
7500	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7501}
7502
7503static long sched_group_rt_period(struct task_group *tg)
7504{
7505	u64 rt_period_us;
7506
7507	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7508	do_div(rt_period_us, NSEC_PER_USEC);
7509	return rt_period_us;
7510}
7511
7512static int sched_rt_global_constraints(void)
7513{
7514	u64 runtime, period;
7515	int ret = 0;
7516
7517	if (sysctl_sched_rt_period <= 0)
7518		return -EINVAL;
7519
7520	runtime = global_rt_runtime();
7521	period = global_rt_period();
7522
7523	/*
7524	 * Sanity check on the sysctl variables.
7525	 */
7526	if (runtime > period && runtime != RUNTIME_INF)
7527		return -EINVAL;
7528
7529	mutex_lock(&rt_constraints_mutex);
7530	read_lock(&tasklist_lock);
7531	ret = __rt_schedulable(NULL, 0, 0);
7532	read_unlock(&tasklist_lock);
7533	mutex_unlock(&rt_constraints_mutex);
7534
7535	return ret;
7536}
7537
7538static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7539{
7540	/* Don't accept realtime tasks when there is no way for them to run */
7541	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7542		return 0;
7543
7544	return 1;
7545}
7546
7547#else /* !CONFIG_RT_GROUP_SCHED */
7548static int sched_rt_global_constraints(void)
7549{
7550	unsigned long flags;
7551	int i;
7552
7553	if (sysctl_sched_rt_period <= 0)
7554		return -EINVAL;
7555
7556	/*
7557	 * There's always some RT tasks in the root group
7558	 * -- migration, kstopmachine etc..
7559	 */
7560	if (sysctl_sched_rt_runtime == 0)
7561		return -EBUSY;
7562
7563	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7564	for_each_possible_cpu(i) {
7565		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7566
7567		raw_spin_lock(&rt_rq->rt_runtime_lock);
7568		rt_rq->rt_runtime = global_rt_runtime();
7569		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7570	}
7571	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7572
7573	return 0;
7574}
7575#endif /* CONFIG_RT_GROUP_SCHED */
7576
7577int sched_rr_handler(struct ctl_table *table, int write,
7578		void __user *buffer, size_t *lenp,
7579		loff_t *ppos)
7580{
7581	int ret;
7582	static DEFINE_MUTEX(mutex);
7583
7584	mutex_lock(&mutex);
7585	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7586	/* make sure that internally we keep jiffies */
7587	/* also, writing zero resets timeslice to default */
7588	if (!ret && write) {
7589		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7590			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7591	}
7592	mutex_unlock(&mutex);
7593	return ret;
7594}
7595
7596int sched_rt_handler(struct ctl_table *table, int write,
7597		void __user *buffer, size_t *lenp,
7598		loff_t *ppos)
7599{
7600	int ret;
7601	int old_period, old_runtime;
7602	static DEFINE_MUTEX(mutex);
7603
7604	mutex_lock(&mutex);
7605	old_period = sysctl_sched_rt_period;
7606	old_runtime = sysctl_sched_rt_runtime;
7607
7608	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7609
7610	if (!ret && write) {
7611		ret = sched_rt_global_constraints();
7612		if (ret) {
7613			sysctl_sched_rt_period = old_period;
7614			sysctl_sched_rt_runtime = old_runtime;
7615		} else {
7616			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7617			def_rt_bandwidth.rt_period =
7618				ns_to_ktime(global_rt_period());
7619		}
7620	}
7621	mutex_unlock(&mutex);
7622
7623	return ret;
7624}
7625
7626#ifdef CONFIG_CGROUP_SCHED
7627
7628/* return corresponding task_group object of a cgroup */
7629static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7630{
7631	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7632			    struct task_group, css);
7633}
7634
7635static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7636{
7637	struct task_group *tg, *parent;
7638
7639	if (!cgrp->parent) {
7640		/* This is early initialization for the top cgroup */
7641		return &root_task_group.css;
7642	}
7643
7644	parent = cgroup_tg(cgrp->parent);
7645	tg = sched_create_group(parent);
7646	if (IS_ERR(tg))
7647		return ERR_PTR(-ENOMEM);
7648
7649	return &tg->css;
7650}
7651
7652static int cpu_cgroup_css_online(struct cgroup *cgrp)
7653{
7654	struct task_group *tg = cgroup_tg(cgrp);
7655	struct task_group *parent;
7656
7657	if (!cgrp->parent)
7658		return 0;
7659
7660	parent = cgroup_tg(cgrp->parent);
7661	sched_online_group(tg, parent);
7662	return 0;
7663}
7664
7665static void cpu_cgroup_css_free(struct cgroup *cgrp)
7666{
7667	struct task_group *tg = cgroup_tg(cgrp);
7668
7669	sched_destroy_group(tg);
7670}
7671
7672static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7673{
7674	struct task_group *tg = cgroup_tg(cgrp);
7675
7676	sched_offline_group(tg);
7677}
7678
7679static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7680				 struct cgroup_taskset *tset)
7681{
7682	struct task_struct *task;
7683
7684	cgroup_taskset_for_each(task, cgrp, tset) {
7685#ifdef CONFIG_RT_GROUP_SCHED
7686		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7687			return -EINVAL;
7688#else
7689		/* We don't support RT-tasks being in separate groups */
7690		if (task->sched_class != &fair_sched_class)
7691			return -EINVAL;
7692#endif
7693	}
7694	return 0;
7695}
7696
7697static void cpu_cgroup_attach(struct cgroup *cgrp,
7698			      struct cgroup_taskset *tset)
7699{
7700	struct task_struct *task;
7701
7702	cgroup_taskset_for_each(task, cgrp, tset)
7703		sched_move_task(task);
7704}
7705
7706static void
7707cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7708		struct task_struct *task)
7709{
7710	/*
7711	 * cgroup_exit() is called in the copy_process() failure path.
7712	 * Ignore this case since the task hasn't ran yet, this avoids
7713	 * trying to poke a half freed task state from generic code.
7714	 */
7715	if (!(task->flags & PF_EXITING))
7716		return;
7717
7718	sched_move_task(task);
7719}
7720
7721#ifdef CONFIG_FAIR_GROUP_SCHED
7722static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7723				u64 shareval)
7724{
7725	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7726}
7727
7728static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7729{
7730	struct task_group *tg = cgroup_tg(cgrp);
7731
7732	return (u64) scale_load_down(tg->shares);
7733}
7734
7735#ifdef CONFIG_CFS_BANDWIDTH
7736static DEFINE_MUTEX(cfs_constraints_mutex);
7737
7738const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7739const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7740
7741static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7742
7743static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7744{
7745	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7746	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7747
7748	if (tg == &root_task_group)
7749		return -EINVAL;
7750
7751	/*
7752	 * Ensure we have at some amount of bandwidth every period.  This is
7753	 * to prevent reaching a state of large arrears when throttled via
7754	 * entity_tick() resulting in prolonged exit starvation.
7755	 */
7756	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7757		return -EINVAL;
7758
7759	/*
7760	 * Likewise, bound things on the otherside by preventing insane quota
7761	 * periods.  This also allows us to normalize in computing quota
7762	 * feasibility.
7763	 */
7764	if (period > max_cfs_quota_period)
7765		return -EINVAL;
7766
7767	mutex_lock(&cfs_constraints_mutex);
7768	ret = __cfs_schedulable(tg, period, quota);
7769	if (ret)
7770		goto out_unlock;
7771
7772	runtime_enabled = quota != RUNTIME_INF;
7773	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7774	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7775	raw_spin_lock_irq(&cfs_b->lock);
7776	cfs_b->period = ns_to_ktime(period);
7777	cfs_b->quota = quota;
7778
7779	__refill_cfs_bandwidth_runtime(cfs_b);
7780	/* restart the period timer (if active) to handle new period expiry */
7781	if (runtime_enabled && cfs_b->timer_active) {
7782		/* force a reprogram */
7783		cfs_b->timer_active = 0;
7784		__start_cfs_bandwidth(cfs_b);
7785	}
7786	raw_spin_unlock_irq(&cfs_b->lock);
7787
7788	for_each_possible_cpu(i) {
7789		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7790		struct rq *rq = cfs_rq->rq;
7791
7792		raw_spin_lock_irq(&rq->lock);
7793		cfs_rq->runtime_enabled = runtime_enabled;
7794		cfs_rq->runtime_remaining = 0;
7795
7796		if (cfs_rq->throttled)
7797			unthrottle_cfs_rq(cfs_rq);
7798		raw_spin_unlock_irq(&rq->lock);
7799	}
7800out_unlock:
7801	mutex_unlock(&cfs_constraints_mutex);
7802
7803	return ret;
7804}
7805
7806int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7807{
7808	u64 quota, period;
7809
7810	period = ktime_to_ns(tg->cfs_bandwidth.period);
7811	if (cfs_quota_us < 0)
7812		quota = RUNTIME_INF;
7813	else
7814		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7815
7816	return tg_set_cfs_bandwidth(tg, period, quota);
7817}
7818
7819long tg_get_cfs_quota(struct task_group *tg)
7820{
7821	u64 quota_us;
7822
7823	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7824		return -1;
7825
7826	quota_us = tg->cfs_bandwidth.quota;
7827	do_div(quota_us, NSEC_PER_USEC);
7828
7829	return quota_us;
7830}
7831
7832int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7833{
7834	u64 quota, period;
7835
7836	period = (u64)cfs_period_us * NSEC_PER_USEC;
7837	quota = tg->cfs_bandwidth.quota;
7838
7839	return tg_set_cfs_bandwidth(tg, period, quota);
7840}
7841
7842long tg_get_cfs_period(struct task_group *tg)
7843{
7844	u64 cfs_period_us;
7845
7846	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7847	do_div(cfs_period_us, NSEC_PER_USEC);
7848
7849	return cfs_period_us;
7850}
7851
7852static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7853{
7854	return tg_get_cfs_quota(cgroup_tg(cgrp));
7855}
7856
7857static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7858				s64 cfs_quota_us)
7859{
7860	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7861}
7862
7863static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7864{
7865	return tg_get_cfs_period(cgroup_tg(cgrp));
7866}
7867
7868static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7869				u64 cfs_period_us)
7870{
7871	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7872}
7873
7874struct cfs_schedulable_data {
7875	struct task_group *tg;
7876	u64 period, quota;
7877};
7878
7879/*
7880 * normalize group quota/period to be quota/max_period
7881 * note: units are usecs
7882 */
7883static u64 normalize_cfs_quota(struct task_group *tg,
7884			       struct cfs_schedulable_data *d)
7885{
7886	u64 quota, period;
7887
7888	if (tg == d->tg) {
7889		period = d->period;
7890		quota = d->quota;
7891	} else {
7892		period = tg_get_cfs_period(tg);
7893		quota = tg_get_cfs_quota(tg);
7894	}
7895
7896	/* note: these should typically be equivalent */
7897	if (quota == RUNTIME_INF || quota == -1)
7898		return RUNTIME_INF;
7899
7900	return to_ratio(period, quota);
7901}
7902
7903static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7904{
7905	struct cfs_schedulable_data *d = data;
7906	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7907	s64 quota = 0, parent_quota = -1;
7908
7909	if (!tg->parent) {
7910		quota = RUNTIME_INF;
7911	} else {
7912		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7913
7914		quota = normalize_cfs_quota(tg, d);
7915		parent_quota = parent_b->hierarchal_quota;
7916
7917		/*
7918		 * ensure max(child_quota) <= parent_quota, inherit when no
7919		 * limit is set
7920		 */
7921		if (quota == RUNTIME_INF)
7922			quota = parent_quota;
7923		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7924			return -EINVAL;
7925	}
7926	cfs_b->hierarchal_quota = quota;
7927
7928	return 0;
7929}
7930
7931static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7932{
7933	int ret;
7934	struct cfs_schedulable_data data = {
7935		.tg = tg,
7936		.period = period,
7937		.quota = quota,
7938	};
7939
7940	if (quota != RUNTIME_INF) {
7941		do_div(data.period, NSEC_PER_USEC);
7942		do_div(data.quota, NSEC_PER_USEC);
7943	}
7944
7945	rcu_read_lock();
7946	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7947	rcu_read_unlock();
7948
7949	return ret;
7950}
7951
7952static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7953		struct cgroup_map_cb *cb)
7954{
7955	struct task_group *tg = cgroup_tg(cgrp);
7956	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7957
7958	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7959	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7960	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7961
7962	return 0;
7963}
7964#endif /* CONFIG_CFS_BANDWIDTH */
7965#endif /* CONFIG_FAIR_GROUP_SCHED */
7966
7967#ifdef CONFIG_RT_GROUP_SCHED
7968static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7969				s64 val)
7970{
7971	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7972}
7973
7974static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7975{
7976	return sched_group_rt_runtime(cgroup_tg(cgrp));
7977}
7978
7979static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7980		u64 rt_period_us)
7981{
7982	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7983}
7984
7985static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7986{
7987	return sched_group_rt_period(cgroup_tg(cgrp));
7988}
7989#endif /* CONFIG_RT_GROUP_SCHED */
7990
7991static struct cftype cpu_files[] = {
7992#ifdef CONFIG_FAIR_GROUP_SCHED
7993	{
7994		.name = "shares",
7995		.read_u64 = cpu_shares_read_u64,
7996		.write_u64 = cpu_shares_write_u64,
7997	},
7998#endif
7999#ifdef CONFIG_CFS_BANDWIDTH
8000	{
8001		.name = "cfs_quota_us",
8002		.read_s64 = cpu_cfs_quota_read_s64,
8003		.write_s64 = cpu_cfs_quota_write_s64,
8004	},
8005	{
8006		.name = "cfs_period_us",
8007		.read_u64 = cpu_cfs_period_read_u64,
8008		.write_u64 = cpu_cfs_period_write_u64,
8009	},
8010	{
8011		.name = "stat",
8012		.read_map = cpu_stats_show,
8013	},
8014#endif
8015#ifdef CONFIG_RT_GROUP_SCHED
8016	{
8017		.name = "rt_runtime_us",
8018		.read_s64 = cpu_rt_runtime_read,
8019		.write_s64 = cpu_rt_runtime_write,
8020	},
8021	{
8022		.name = "rt_period_us",
8023		.read_u64 = cpu_rt_period_read_uint,
8024		.write_u64 = cpu_rt_period_write_uint,
8025	},
8026#endif
8027	{ }	/* terminate */
8028};
8029
8030struct cgroup_subsys cpu_cgroup_subsys = {
8031	.name		= "cpu",
8032	.css_alloc	= cpu_cgroup_css_alloc,
8033	.css_free	= cpu_cgroup_css_free,
8034	.css_online	= cpu_cgroup_css_online,
8035	.css_offline	= cpu_cgroup_css_offline,
8036	.can_attach	= cpu_cgroup_can_attach,
8037	.attach		= cpu_cgroup_attach,
8038	.exit		= cpu_cgroup_exit,
8039	.subsys_id	= cpu_cgroup_subsys_id,
8040	.base_cftypes	= cpu_files,
8041	.early_init	= 1,
8042};
8043
8044#endif	/* CONFIG_CGROUP_SCHED */
8045
8046#ifdef CONFIG_CGROUP_CPUACCT
8047
8048/*
8049 * CPU accounting code for task groups.
8050 *
8051 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8052 * (balbir@in.ibm.com).
8053 */
8054
8055struct cpuacct root_cpuacct;
8056
8057/* create a new cpu accounting group */
8058static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8059{
8060	struct cpuacct *ca;
8061
8062	if (!cgrp->parent)
8063		return &root_cpuacct.css;
8064
8065	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8066	if (!ca)
8067		goto out;
8068
8069	ca->cpuusage = alloc_percpu(u64);
8070	if (!ca->cpuusage)
8071		goto out_free_ca;
8072
8073	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8074	if (!ca->cpustat)
8075		goto out_free_cpuusage;
8076
8077	return &ca->css;
8078
8079out_free_cpuusage:
8080	free_percpu(ca->cpuusage);
8081out_free_ca:
8082	kfree(ca);
8083out:
8084	return ERR_PTR(-ENOMEM);
8085}
8086
8087/* destroy an existing cpu accounting group */
8088static void cpuacct_css_free(struct cgroup *cgrp)
8089{
8090	struct cpuacct *ca = cgroup_ca(cgrp);
8091
8092	free_percpu(ca->cpustat);
8093	free_percpu(ca->cpuusage);
8094	kfree(ca);
8095}
8096
8097static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8098{
8099	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8100	u64 data;
8101
8102#ifndef CONFIG_64BIT
8103	/*
8104	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8105	 */
8106	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8107	data = *cpuusage;
8108	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8109#else
8110	data = *cpuusage;
8111#endif
8112
8113	return data;
8114}
8115
8116static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8117{
8118	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8119
8120#ifndef CONFIG_64BIT
8121	/*
8122	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8123	 */
8124	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8125	*cpuusage = val;
8126	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8127#else
8128	*cpuusage = val;
8129#endif
8130}
8131
8132/* return total cpu usage (in nanoseconds) of a group */
8133static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8134{
8135	struct cpuacct *ca = cgroup_ca(cgrp);
8136	u64 totalcpuusage = 0;
8137	int i;
8138
8139	for_each_present_cpu(i)
8140		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8141
8142	return totalcpuusage;
8143}
8144
8145static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8146								u64 reset)
8147{
8148	struct cpuacct *ca = cgroup_ca(cgrp);
8149	int err = 0;
8150	int i;
8151
8152	if (reset) {
8153		err = -EINVAL;
8154		goto out;
8155	}
8156
8157	for_each_present_cpu(i)
8158		cpuacct_cpuusage_write(ca, i, 0);
8159
8160out:
8161	return err;
8162}
8163
8164static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8165				   struct seq_file *m)
8166{
8167	struct cpuacct *ca = cgroup_ca(cgroup);
8168	u64 percpu;
8169	int i;
8170
8171	for_each_present_cpu(i) {
8172		percpu = cpuacct_cpuusage_read(ca, i);
8173		seq_printf(m, "%llu ", (unsigned long long) percpu);
8174	}
8175	seq_printf(m, "\n");
8176	return 0;
8177}
8178
8179static const char *cpuacct_stat_desc[] = {
8180	[CPUACCT_STAT_USER] = "user",
8181	[CPUACCT_STAT_SYSTEM] = "system",
8182};
8183
8184static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8185			      struct cgroup_map_cb *cb)
8186{
8187	struct cpuacct *ca = cgroup_ca(cgrp);
8188	int cpu;
8189	s64 val = 0;
8190
8191	for_each_online_cpu(cpu) {
8192		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8193		val += kcpustat->cpustat[CPUTIME_USER];
8194		val += kcpustat->cpustat[CPUTIME_NICE];
8195	}
8196	val = cputime64_to_clock_t(val);
8197	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8198
8199	val = 0;
8200	for_each_online_cpu(cpu) {
8201		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8202		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8203		val += kcpustat->cpustat[CPUTIME_IRQ];
8204		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8205	}
8206
8207	val = cputime64_to_clock_t(val);
8208	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8209
8210	return 0;
8211}
8212
8213static struct cftype files[] = {
8214	{
8215		.name = "usage",
8216		.read_u64 = cpuusage_read,
8217		.write_u64 = cpuusage_write,
8218	},
8219	{
8220		.name = "usage_percpu",
8221		.read_seq_string = cpuacct_percpu_seq_read,
8222	},
8223	{
8224		.name = "stat",
8225		.read_map = cpuacct_stats_show,
8226	},
8227	{ }	/* terminate */
8228};
8229
8230/*
8231 * charge this task's execution time to its accounting group.
8232 *
8233 * called with rq->lock held.
8234 */
8235void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8236{
8237	struct cpuacct *ca;
8238	int cpu;
8239
8240	if (unlikely(!cpuacct_subsys.active))
8241		return;
8242
8243	cpu = task_cpu(tsk);
8244
8245	rcu_read_lock();
8246
8247	ca = task_ca(tsk);
8248
8249	for (; ca; ca = parent_ca(ca)) {
8250		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8251		*cpuusage += cputime;
8252	}
8253
8254	rcu_read_unlock();
8255}
8256
8257struct cgroup_subsys cpuacct_subsys = {
8258	.name = "cpuacct",
8259	.css_alloc = cpuacct_css_alloc,
8260	.css_free = cpuacct_css_free,
8261	.subsys_id = cpuacct_subsys_id,
8262	.base_cftypes = files,
8263};
8264#endif	/* CONFIG_CGROUP_CPUACCT */
8265
8266void dump_cpu_task(int cpu)
8267{
8268	pr_info("Task dump for CPU %d:\n", cpu);
8269	sched_show_task(cpu_curr(cpu));
8270}
8271