core.c revision 2b4cfe64dee0d84506b951d81bf55d9891744d25
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	rq->clock += delta;
127	update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled)	\
135	(1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139	0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled)	\
145	#name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155	int i;
156
157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158		if (!(sysctl_sched_features & (1UL << i)))
159			seq_puts(m, "NO_");
160		seq_printf(m, "%s ", sched_feat_names[i]);
161	}
162	seq_puts(m, "\n");
163
164	return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled)	\
173	jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183	if (static_key_enabled(&sched_feat_keys[i]))
184		static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189	if (!static_key_enabled(&sched_feat_keys[i]))
190		static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199	int i;
200	int neg = 0;
201
202	if (strncmp(cmp, "NO_", 3) == 0) {
203		neg = 1;
204		cmp += 3;
205	}
206
207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209			if (neg) {
210				sysctl_sched_features &= ~(1UL << i);
211				sched_feat_disable(i);
212			} else {
213				sysctl_sched_features |= (1UL << i);
214				sched_feat_enable(i);
215			}
216			break;
217		}
218	}
219
220	return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225		size_t cnt, loff_t *ppos)
226{
227	char buf[64];
228	char *cmp;
229	int i;
230
231	if (cnt > 63)
232		cnt = 63;
233
234	if (copy_from_user(&buf, ubuf, cnt))
235		return -EFAULT;
236
237	buf[cnt] = 0;
238	cmp = strstrip(buf);
239
240	i = sched_feat_set(cmp);
241	if (i == __SCHED_FEAT_NR)
242		return -EINVAL;
243
244	*ppos += cnt;
245
246	return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251	return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255	.open		= sched_feat_open,
256	.write		= sched_feat_write,
257	.read		= seq_read,
258	.llseek		= seq_lseek,
259	.release	= single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264	debugfs_create_file("sched_features", 0644, NULL, NULL,
265			&sched_feat_fops);
266
267	return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402	struct hrtimer *timer = &rq->hrtick_timer;
403	ktime_t time = hrtimer_get_softexpires(timer);
404
405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413	struct rq *rq = arg;
414
415	raw_spin_lock(&rq->lock);
416	__hrtick_restart(rq);
417	rq->hrtick_csd_pending = 0;
418	raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428	struct hrtimer *timer = &rq->hrtick_timer;
429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431	hrtimer_set_expires(timer, time);
432
433	if (rq == this_rq()) {
434		__hrtick_restart(rq);
435	} else if (!rq->hrtick_csd_pending) {
436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437		rq->hrtick_csd_pending = 1;
438	}
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444	int cpu = (int)(long)hcpu;
445
446	switch (action) {
447	case CPU_UP_CANCELED:
448	case CPU_UP_CANCELED_FROZEN:
449	case CPU_DOWN_PREPARE:
450	case CPU_DOWN_PREPARE_FROZEN:
451	case CPU_DEAD:
452	case CPU_DEAD_FROZEN:
453		hrtick_clear(cpu_rq(cpu));
454		return NOTIFY_OK;
455	}
456
457	return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462	hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473			HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484	rq->hrtick_csd_pending = 0;
485
486	rq->hrtick_csd.flags = 0;
487	rq->hrtick_csd.func = __hrtick_start;
488	rq->hrtick_csd.info = rq;
489#endif
490
491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492	rq->hrtick_timer.function = hrtick;
493}
494#else	/* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif	/* CONFIG_SCHED_HRTICK */
507
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	lockdep_assert_held(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id()) {
528		set_preempt_need_resched();
529		return;
530	}
531
532	/* NEED_RESCHED must be visible before we test polling */
533	smp_mb();
534	if (!tsk_is_polling(p))
535		smp_send_reschedule(cpu);
536}
537
538void resched_cpu(int cpu)
539{
540	struct rq *rq = cpu_rq(cpu);
541	unsigned long flags;
542
543	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544		return;
545	resched_task(cpu_curr(cpu));
546	raw_spin_unlock_irqrestore(&rq->lock, flags);
547}
548
549#ifdef CONFIG_SMP
550#ifdef CONFIG_NO_HZ_COMMON
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu.  This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559int get_nohz_timer_target(int pinned)
560{
561	int cpu = smp_processor_id();
562	int i;
563	struct sched_domain *sd;
564
565	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566		return cpu;
567
568	rcu_read_lock();
569	for_each_domain(cpu, sd) {
570		for_each_cpu(i, sched_domain_span(sd)) {
571			if (!idle_cpu(i)) {
572				cpu = i;
573				goto unlock;
574			}
575		}
576	}
577unlock:
578	rcu_read_unlock();
579	return cpu;
580}
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591static void wake_up_idle_cpu(int cpu)
592{
593	struct rq *rq = cpu_rq(cpu);
594
595	if (cpu == smp_processor_id())
596		return;
597
598	/*
599	 * This is safe, as this function is called with the timer
600	 * wheel base lock of (cpu) held. When the CPU is on the way
601	 * to idle and has not yet set rq->curr to idle then it will
602	 * be serialized on the timer wheel base lock and take the new
603	 * timer into account automatically.
604	 */
605	if (rq->curr != rq->idle)
606		return;
607
608	/*
609	 * We can set TIF_RESCHED on the idle task of the other CPU
610	 * lockless. The worst case is that the other CPU runs the
611	 * idle task through an additional NOOP schedule()
612	 */
613	set_tsk_need_resched(rq->idle);
614
615	/* NEED_RESCHED must be visible before we test polling */
616	smp_mb();
617	if (!tsk_is_polling(rq->idle))
618		smp_send_reschedule(cpu);
619}
620
621static bool wake_up_full_nohz_cpu(int cpu)
622{
623	if (tick_nohz_full_cpu(cpu)) {
624		if (cpu != smp_processor_id() ||
625		    tick_nohz_tick_stopped())
626			smp_send_reschedule(cpu);
627		return true;
628	}
629
630	return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
635	if (!wake_up_full_nohz_cpu(cpu))
636		wake_up_idle_cpu(cpu);
637}
638
639static inline bool got_nohz_idle_kick(void)
640{
641	int cpu = smp_processor_id();
642
643	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644		return false;
645
646	if (idle_cpu(cpu) && !need_resched())
647		return true;
648
649	/*
650	 * We can't run Idle Load Balance on this CPU for this time so we
651	 * cancel it and clear NOHZ_BALANCE_KICK
652	 */
653	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654	return false;
655}
656
657#else /* CONFIG_NO_HZ_COMMON */
658
659static inline bool got_nohz_idle_kick(void)
660{
661	return false;
662}
663
664#endif /* CONFIG_NO_HZ_COMMON */
665
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669       struct rq *rq;
670
671       rq = this_rq();
672
673       /* Make sure rq->nr_running update is visible after the IPI */
674       smp_rmb();
675
676       /* More than one running task need preemption */
677       if (rq->nr_running > 1)
678               return false;
679
680       return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
683
684void sched_avg_update(struct rq *rq)
685{
686	s64 period = sched_avg_period();
687
688	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689		/*
690		 * Inline assembly required to prevent the compiler
691		 * optimising this loop into a divmod call.
692		 * See __iter_div_u64_rem() for another example of this.
693		 */
694		asm("" : "+rm" (rq->age_stamp));
695		rq->age_stamp += period;
696		rq->rt_avg /= 2;
697	}
698}
699
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711			     tg_visitor down, tg_visitor up, void *data)
712{
713	struct task_group *parent, *child;
714	int ret;
715
716	parent = from;
717
718down:
719	ret = (*down)(parent, data);
720	if (ret)
721		goto out;
722	list_for_each_entry_rcu(child, &parent->children, siblings) {
723		parent = child;
724		goto down;
725
726up:
727		continue;
728	}
729	ret = (*up)(parent, data);
730	if (ret || parent == from)
731		goto out;
732
733	child = parent;
734	parent = parent->parent;
735	if (parent)
736		goto up;
737out:
738	return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743	return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749	int prio = p->static_prio - MAX_RT_PRIO;
750	struct load_weight *load = &p->se.load;
751
752	/*
753	 * SCHED_IDLE tasks get minimal weight:
754	 */
755	if (p->policy == SCHED_IDLE) {
756		load->weight = scale_load(WEIGHT_IDLEPRIO);
757		load->inv_weight = WMULT_IDLEPRIO;
758		return;
759	}
760
761	load->weight = scale_load(prio_to_weight[prio]);
762	load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767	update_rq_clock(rq);
768	sched_info_queued(rq, p);
769	p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_dequeued(rq, p);
776	p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	if (task_contributes_to_load(p))
782		rq->nr_uninterruptible--;
783
784	enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789	if (task_contributes_to_load(p))
790		rq->nr_uninterruptible++;
791
792	dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802	s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807	/*
808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809	 * this case when a previous update_rq_clock() happened inside a
810	 * {soft,}irq region.
811	 *
812	 * When this happens, we stop ->clock_task and only update the
813	 * prev_irq_time stamp to account for the part that fit, so that a next
814	 * update will consume the rest. This ensures ->clock_task is
815	 * monotonic.
816	 *
817	 * It does however cause some slight miss-attribution of {soft,}irq
818	 * time, a more accurate solution would be to update the irq_time using
819	 * the current rq->clock timestamp, except that would require using
820	 * atomic ops.
821	 */
822	if (irq_delta > delta)
823		irq_delta = delta;
824
825	rq->prev_irq_time += irq_delta;
826	delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829	if (static_key_false((&paravirt_steal_rq_enabled))) {
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		rq->prev_steal_time_rq += steal;
837		delta -= steal;
838	}
839#endif
840
841	rq->clock_task += delta;
842
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845		sched_rt_avg_update(rq, irq_delta + steal);
846#endif
847}
848
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852	struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854	if (stop) {
855		/*
856		 * Make it appear like a SCHED_FIFO task, its something
857		 * userspace knows about and won't get confused about.
858		 *
859		 * Also, it will make PI more or less work without too
860		 * much confusion -- but then, stop work should not
861		 * rely on PI working anyway.
862		 */
863		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865		stop->sched_class = &stop_sched_class;
866	}
867
868	cpu_rq(cpu)->stop = stop;
869
870	if (old_stop) {
871		/*
872		 * Reset it back to a normal scheduling class so that
873		 * it can die in pieces.
874		 */
875		old_stop->sched_class = &rt_sched_class;
876	}
877}
878
879/*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882static inline int __normal_prio(struct task_struct *p)
883{
884	return p->static_prio;
885}
886
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894static inline int normal_prio(struct task_struct *p)
895{
896	int prio;
897
898	if (task_has_dl_policy(p))
899		prio = MAX_DL_PRIO-1;
900	else if (task_has_rt_policy(p))
901		prio = MAX_RT_PRIO-1 - p->rt_priority;
902	else
903		prio = __normal_prio(p);
904	return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914static int effective_prio(struct task_struct *p)
915{
916	p->normal_prio = normal_prio(p);
917	/*
918	 * If we are RT tasks or we were boosted to RT priority,
919	 * keep the priority unchanged. Otherwise, update priority
920	 * to the normal priority:
921	 */
922	if (!rt_prio(p->prio))
923		return p->normal_prio;
924	return p->prio;
925}
926
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933inline int task_curr(const struct task_struct *p)
934{
935	return cpu_curr(task_cpu(p)) == p;
936}
937
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939				       const struct sched_class *prev_class,
940				       int oldprio)
941{
942	if (prev_class != p->sched_class) {
943		if (prev_class->switched_from)
944			prev_class->switched_from(rq, p);
945		p->sched_class->switched_to(rq, p);
946	} else if (oldprio != p->prio || dl_task(p))
947		p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952	const struct sched_class *class;
953
954	if (p->sched_class == rq->curr->sched_class) {
955		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956	} else {
957		for_each_class(class) {
958			if (class == rq->curr->sched_class)
959				break;
960			if (class == p->sched_class) {
961				resched_task(rq->curr);
962				break;
963			}
964		}
965	}
966
967	/*
968	 * A queue event has occurred, and we're going to schedule.  In
969	 * this case, we can save a useless back to back clock update.
970	 */
971	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972		rq->skip_clock_update = 1;
973}
974
975#ifdef CONFIG_SMP
976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977{
978#ifdef CONFIG_SCHED_DEBUG
979	/*
980	 * We should never call set_task_cpu() on a blocked task,
981	 * ttwu() will sort out the placement.
982	 */
983	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984			!(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986#ifdef CONFIG_LOCKDEP
987	/*
988	 * The caller should hold either p->pi_lock or rq->lock, when changing
989	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990	 *
991	 * sched_move_task() holds both and thus holding either pins the cgroup,
992	 * see task_group().
993	 *
994	 * Furthermore, all task_rq users should acquire both locks, see
995	 * task_rq_lock().
996	 */
997	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998				      lockdep_is_held(&task_rq(p)->lock)));
999#endif
1000#endif
1001
1002	trace_sched_migrate_task(p, new_cpu);
1003
1004	if (task_cpu(p) != new_cpu) {
1005		if (p->sched_class->migrate_task_rq)
1006			p->sched_class->migrate_task_rq(p, new_cpu);
1007		p->se.nr_migrations++;
1008		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009	}
1010
1011	__set_task_cpu(p, new_cpu);
1012}
1013
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016	if (p->on_rq) {
1017		struct rq *src_rq, *dst_rq;
1018
1019		src_rq = task_rq(p);
1020		dst_rq = cpu_rq(cpu);
1021
1022		deactivate_task(src_rq, p, 0);
1023		set_task_cpu(p, cpu);
1024		activate_task(dst_rq, p, 0);
1025		check_preempt_curr(dst_rq, p, 0);
1026	} else {
1027		/*
1028		 * Task isn't running anymore; make it appear like we migrated
1029		 * it before it went to sleep. This means on wakeup we make the
1030		 * previous cpu our targer instead of where it really is.
1031		 */
1032		p->wake_cpu = cpu;
1033	}
1034}
1035
1036struct migration_swap_arg {
1037	struct task_struct *src_task, *dst_task;
1038	int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043	struct migration_swap_arg *arg = data;
1044	struct rq *src_rq, *dst_rq;
1045	int ret = -EAGAIN;
1046
1047	src_rq = cpu_rq(arg->src_cpu);
1048	dst_rq = cpu_rq(arg->dst_cpu);
1049
1050	double_raw_lock(&arg->src_task->pi_lock,
1051			&arg->dst_task->pi_lock);
1052	double_rq_lock(src_rq, dst_rq);
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072	raw_spin_unlock(&arg->dst_task->pi_lock);
1073	raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075	return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083	struct migration_swap_arg arg;
1084	int ret = -EINVAL;
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	/*
1097	 * These three tests are all lockless; this is OK since all of them
1098	 * will be re-checked with proper locks held further down the line.
1099	 */
1100	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101		goto out;
1102
1103	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104		goto out;
1105
1106	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107		goto out;
1108
1109	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
1113	return ret;
1114}
1115
1116struct migration_arg {
1117	struct task_struct *task;
1118	int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change.  If it changes, i.e. @p might have woken up,
1128 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count).  If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141	unsigned long flags;
1142	int running, on_rq;
1143	unsigned long ncsw;
1144	struct rq *rq;
1145
1146	for (;;) {
1147		/*
1148		 * We do the initial early heuristics without holding
1149		 * any task-queue locks at all. We'll only try to get
1150		 * the runqueue lock when things look like they will
1151		 * work out!
1152		 */
1153		rq = task_rq(p);
1154
1155		/*
1156		 * If the task is actively running on another CPU
1157		 * still, just relax and busy-wait without holding
1158		 * any locks.
1159		 *
1160		 * NOTE! Since we don't hold any locks, it's not
1161		 * even sure that "rq" stays as the right runqueue!
1162		 * But we don't care, since "task_running()" will
1163		 * return false if the runqueue has changed and p
1164		 * is actually now running somewhere else!
1165		 */
1166		while (task_running(rq, p)) {
1167			if (match_state && unlikely(p->state != match_state))
1168				return 0;
1169			cpu_relax();
1170		}
1171
1172		/*
1173		 * Ok, time to look more closely! We need the rq
1174		 * lock now, to be *sure*. If we're wrong, we'll
1175		 * just go back and repeat.
1176		 */
1177		rq = task_rq_lock(p, &flags);
1178		trace_sched_wait_task(p);
1179		running = task_running(rq, p);
1180		on_rq = p->on_rq;
1181		ncsw = 0;
1182		if (!match_state || p->state == match_state)
1183			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184		task_rq_unlock(rq, p, &flags);
1185
1186		/*
1187		 * If it changed from the expected state, bail out now.
1188		 */
1189		if (unlikely(!ncsw))
1190			break;
1191
1192		/*
1193		 * Was it really running after all now that we
1194		 * checked with the proper locks actually held?
1195		 *
1196		 * Oops. Go back and try again..
1197		 */
1198		if (unlikely(running)) {
1199			cpu_relax();
1200			continue;
1201		}
1202
1203		/*
1204		 * It's not enough that it's not actively running,
1205		 * it must be off the runqueue _entirely_, and not
1206		 * preempted!
1207		 *
1208		 * So if it was still runnable (but just not actively
1209		 * running right now), it's preempted, and we should
1210		 * yield - it could be a while.
1211		 */
1212		if (unlikely(on_rq)) {
1213			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215			set_current_state(TASK_UNINTERRUPTIBLE);
1216			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217			continue;
1218		}
1219
1220		/*
1221		 * Ahh, all good. It wasn't running, and it wasn't
1222		 * runnable, which means that it will never become
1223		 * running in the future either. We're all done!
1224		 */
1225		break;
1226	}
1227
1228	return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246	int cpu;
1247
1248	preempt_disable();
1249	cpu = task_cpu(p);
1250	if ((cpu != smp_processor_id()) && task_curr(p))
1251		smp_send_reschedule(cpu);
1252	preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263	int nid = cpu_to_node(cpu);
1264	const struct cpumask *nodemask = NULL;
1265	enum { cpuset, possible, fail } state = cpuset;
1266	int dest_cpu;
1267
1268	/*
1269	 * If the node that the cpu is on has been offlined, cpu_to_node()
1270	 * will return -1. There is no cpu on the node, and we should
1271	 * select the cpu on the other node.
1272	 */
1273	if (nid != -1) {
1274		nodemask = cpumask_of_node(nid);
1275
1276		/* Look for allowed, online CPU in same node. */
1277		for_each_cpu(dest_cpu, nodemask) {
1278			if (!cpu_online(dest_cpu))
1279				continue;
1280			if (!cpu_active(dest_cpu))
1281				continue;
1282			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283				return dest_cpu;
1284		}
1285	}
1286
1287	for (;;) {
1288		/* Any allowed, online CPU? */
1289		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
1294			goto out;
1295		}
1296
1297		switch (state) {
1298		case cpuset:
1299			/* No more Mr. Nice Guy. */
1300			cpuset_cpus_allowed_fallback(p);
1301			state = possible;
1302			break;
1303
1304		case possible:
1305			do_set_cpus_allowed(p, cpu_possible_mask);
1306			state = fail;
1307			break;
1308
1309		case fail:
1310			BUG();
1311			break;
1312		}
1313	}
1314
1315out:
1316	if (state != cpuset) {
1317		/*
1318		 * Don't tell them about moving exiting tasks or
1319		 * kernel threads (both mm NULL), since they never
1320		 * leave kernel.
1321		 */
1322		if (p->mm && printk_ratelimit()) {
1323			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324					task_pid_nr(p), p->comm, cpu);
1325		}
1326	}
1327
1328	return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339	/*
1340	 * In order not to call set_task_cpu() on a blocking task we need
1341	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342	 * cpu.
1343	 *
1344	 * Since this is common to all placement strategies, this lives here.
1345	 *
1346	 * [ this allows ->select_task() to simply return task_cpu(p) and
1347	 *   not worry about this generic constraint ]
1348	 */
1349	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350		     !cpu_online(cpu)))
1351		cpu = select_fallback_rq(task_cpu(p), p);
1352
1353	return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358	s64 diff = sample - *avg;
1359	*avg += diff >> 3;
1360}
1361#endif
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367	struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370	int this_cpu = smp_processor_id();
1371
1372	if (cpu == this_cpu) {
1373		schedstat_inc(rq, ttwu_local);
1374		schedstat_inc(p, se.statistics.nr_wakeups_local);
1375	} else {
1376		struct sched_domain *sd;
1377
1378		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379		rcu_read_lock();
1380		for_each_domain(this_cpu, sd) {
1381			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382				schedstat_inc(sd, ttwu_wake_remote);
1383				break;
1384			}
1385		}
1386		rcu_read_unlock();
1387	}
1388
1389	if (wake_flags & WF_MIGRATED)
1390		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394	schedstat_inc(rq, ttwu_count);
1395	schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397	if (wake_flags & WF_SYNC)
1398		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405	activate_task(rq, p, en_flags);
1406	p->on_rq = 1;
1407
1408	/* if a worker is waking up, notify workqueue */
1409	if (p->flags & PF_WQ_WORKER)
1410		wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419	check_preempt_curr(rq, p, wake_flags);
1420	trace_sched_wakeup(p, true);
1421
1422	p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424	if (p->sched_class->task_woken)
1425		p->sched_class->task_woken(rq, p);
1426
1427	if (rq->idle_stamp) {
1428		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429		u64 max = 2*rq->max_idle_balance_cost;
1430
1431		update_avg(&rq->avg_idle, delta);
1432
1433		if (rq->avg_idle > max)
1434			rq->avg_idle = max;
1435
1436		rq->idle_stamp = 0;
1437	}
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445	if (p->sched_contributes_to_load)
1446		rq->nr_uninterruptible--;
1447#endif
1448
1449	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450	ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461	struct rq *rq;
1462	int ret = 0;
1463
1464	rq = __task_rq_lock(p);
1465	if (p->on_rq) {
1466		/* check_preempt_curr() may use rq clock */
1467		update_rq_clock(rq);
1468		ttwu_do_wakeup(rq, p, wake_flags);
1469		ret = 1;
1470	}
1471	__task_rq_unlock(rq);
1472
1473	return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
1479	struct rq *rq = this_rq();
1480	struct llist_node *llist = llist_del_all(&rq->wake_list);
1481	struct task_struct *p;
1482
1483	raw_spin_lock(&rq->lock);
1484
1485	while (llist) {
1486		p = llist_entry(llist, struct task_struct, wake_entry);
1487		llist = llist_next(llist);
1488		ttwu_do_activate(rq, p, 0);
1489	}
1490
1491	raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
1496	/*
1497	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499	 * this IPI.
1500	 */
1501	preempt_fold_need_resched();
1502
1503	if (llist_empty(&this_rq()->wake_list)
1504			&& !tick_nohz_full_cpu(smp_processor_id())
1505			&& !got_nohz_idle_kick())
1506		return;
1507
1508	/*
1509	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510	 * traditionally all their work was done from the interrupt return
1511	 * path. Now that we actually do some work, we need to make sure
1512	 * we do call them.
1513	 *
1514	 * Some archs already do call them, luckily irq_enter/exit nest
1515	 * properly.
1516	 *
1517	 * Arguably we should visit all archs and update all handlers,
1518	 * however a fair share of IPIs are still resched only so this would
1519	 * somewhat pessimize the simple resched case.
1520	 */
1521	irq_enter();
1522	tick_nohz_full_check();
1523	sched_ttwu_pending();
1524
1525	/*
1526	 * Check if someone kicked us for doing the nohz idle load balance.
1527	 */
1528	if (unlikely(got_nohz_idle_kick())) {
1529		this_rq()->idle_balance = 1;
1530		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531	}
1532	irq_exit();
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
1537	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538		smp_send_reschedule(cpu);
1539}
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
1542{
1543	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549	struct rq *rq = cpu_rq(cpu);
1550
1551#if defined(CONFIG_SMP)
1552	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554		ttwu_queue_remote(p, cpu);
1555		return;
1556	}
1557#endif
1558
1559	raw_spin_lock(&rq->lock);
1560	ttwu_do_activate(rq, p, 0);
1561	raw_spin_unlock(&rq->lock);
1562}
1563
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582	unsigned long flags;
1583	int cpu, success = 0;
1584
1585	/*
1586	 * If we are going to wake up a thread waiting for CONDITION we
1587	 * need to ensure that CONDITION=1 done by the caller can not be
1588	 * reordered with p->state check below. This pairs with mb() in
1589	 * set_current_state() the waiting thread does.
1590	 */
1591	smp_mb__before_spinlock();
1592	raw_spin_lock_irqsave(&p->pi_lock, flags);
1593	if (!(p->state & state))
1594		goto out;
1595
1596	success = 1; /* we're going to change ->state */
1597	cpu = task_cpu(p);
1598
1599	if (p->on_rq && ttwu_remote(p, wake_flags))
1600		goto stat;
1601
1602#ifdef CONFIG_SMP
1603	/*
1604	 * If the owning (remote) cpu is still in the middle of schedule() with
1605	 * this task as prev, wait until its done referencing the task.
1606	 */
1607	while (p->on_cpu)
1608		cpu_relax();
1609	/*
1610	 * Pairs with the smp_wmb() in finish_lock_switch().
1611	 */
1612	smp_rmb();
1613
1614	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615	p->state = TASK_WAKING;
1616
1617	if (p->sched_class->task_waking)
1618		p->sched_class->task_waking(p);
1619
1620	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621	if (task_cpu(p) != cpu) {
1622		wake_flags |= WF_MIGRATED;
1623		set_task_cpu(p, cpu);
1624	}
1625#endif /* CONFIG_SMP */
1626
1627	ttwu_queue(p, cpu);
1628stat:
1629	ttwu_stat(p, cpu, wake_flags);
1630out:
1631	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633	return success;
1634}
1635
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646	struct rq *rq = task_rq(p);
1647
1648	if (WARN_ON_ONCE(rq != this_rq()) ||
1649	    WARN_ON_ONCE(p == current))
1650		return;
1651
1652	lockdep_assert_held(&rq->lock);
1653
1654	if (!raw_spin_trylock(&p->pi_lock)) {
1655		raw_spin_unlock(&rq->lock);
1656		raw_spin_lock(&p->pi_lock);
1657		raw_spin_lock(&rq->lock);
1658	}
1659
1660	if (!(p->state & TASK_NORMAL))
1661		goto out;
1662
1663	if (!p->on_rq)
1664		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666	ttwu_do_wakeup(rq, p, 0);
1667	ttwu_stat(p, smp_processor_id(), 0);
1668out:
1669	raw_spin_unlock(&p->pi_lock);
1670}
1671
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684int wake_up_process(struct task_struct *p)
1685{
1686	WARN_ON(task_is_stopped_or_traced(p));
1687	return try_to_wake_up(p, TASK_NORMAL, 0);
1688}
1689EXPORT_SYMBOL(wake_up_process);
1690
1691int wake_up_state(struct task_struct *p, unsigned int state)
1692{
1693	return try_to_wake_up(p, state, 0);
1694}
1695
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703{
1704	p->on_rq			= 0;
1705
1706	p->se.on_rq			= 0;
1707	p->se.exec_start		= 0;
1708	p->se.sum_exec_runtime		= 0;
1709	p->se.prev_sum_exec_runtime	= 0;
1710	p->se.nr_migrations		= 0;
1711	p->se.vruntime			= 0;
1712	INIT_LIST_HEAD(&p->se.group_node);
1713
1714#ifdef CONFIG_SCHEDSTATS
1715	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716#endif
1717
1718	RB_CLEAR_NODE(&p->dl.rb_node);
1719	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720	p->dl.dl_runtime = p->dl.runtime = 0;
1721	p->dl.dl_deadline = p->dl.deadline = 0;
1722	p->dl.dl_period = 0;
1723	p->dl.flags = 0;
1724
1725	INIT_LIST_HEAD(&p->rt.run_list);
1726
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728	INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734		p->mm->numa_scan_seq = 0;
1735	}
1736
1737	if (clone_flags & CLONE_VM)
1738		p->numa_preferred_nid = current->numa_preferred_nid;
1739	else
1740		p->numa_preferred_nid = -1;
1741
1742	p->node_stamp = 0ULL;
1743	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745	p->numa_work.next = &p->numa_work;
1746	p->numa_faults_memory = NULL;
1747	p->numa_faults_buffer_memory = NULL;
1748	p->last_task_numa_placement = 0;
1749	p->last_sum_exec_runtime = 0;
1750
1751	INIT_LIST_HEAD(&p->numa_entry);
1752	p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760	if (enabled)
1761		sched_feat_set("NUMA");
1762	else
1763		sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770	numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778	struct ctl_table t;
1779	int err;
1780	int state = numabalancing_enabled;
1781
1782	if (write && !capable(CAP_SYS_ADMIN))
1783		return -EPERM;
1784
1785	t = *table;
1786	t.data = &state;
1787	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788	if (err < 0)
1789		return err;
1790	if (write)
1791		set_numabalancing_state(state);
1792	return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802	unsigned long flags;
1803	int cpu = get_cpu();
1804
1805	__sched_fork(clone_flags, p);
1806	/*
1807	 * We mark the process as running here. This guarantees that
1808	 * nobody will actually run it, and a signal or other external
1809	 * event cannot wake it up and insert it on the runqueue either.
1810	 */
1811	p->state = TASK_RUNNING;
1812
1813	/*
1814	 * Make sure we do not leak PI boosting priority to the child.
1815	 */
1816	p->prio = current->normal_prio;
1817
1818	/*
1819	 * Revert to default priority/policy on fork if requested.
1820	 */
1821	if (unlikely(p->sched_reset_on_fork)) {
1822		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823			p->policy = SCHED_NORMAL;
1824			p->static_prio = NICE_TO_PRIO(0);
1825			p->rt_priority = 0;
1826		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827			p->static_prio = NICE_TO_PRIO(0);
1828
1829		p->prio = p->normal_prio = __normal_prio(p);
1830		set_load_weight(p);
1831
1832		/*
1833		 * We don't need the reset flag anymore after the fork. It has
1834		 * fulfilled its duty:
1835		 */
1836		p->sched_reset_on_fork = 0;
1837	}
1838
1839	if (dl_prio(p->prio)) {
1840		put_cpu();
1841		return -EAGAIN;
1842	} else if (rt_prio(p->prio)) {
1843		p->sched_class = &rt_sched_class;
1844	} else {
1845		p->sched_class = &fair_sched_class;
1846	}
1847
1848	if (p->sched_class->task_fork)
1849		p->sched_class->task_fork(p);
1850
1851	/*
1852	 * The child is not yet in the pid-hash so no cgroup attach races,
1853	 * and the cgroup is pinned to this child due to cgroup_fork()
1854	 * is ran before sched_fork().
1855	 *
1856	 * Silence PROVE_RCU.
1857	 */
1858	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859	set_task_cpu(p, cpu);
1860	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863	if (likely(sched_info_on()))
1864		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867	p->on_cpu = 0;
1868#endif
1869	init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875	put_cpu();
1876	return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881	if (runtime == RUNTIME_INF)
1882		return 1ULL << 20;
1883
1884	/*
1885	 * Doing this here saves a lot of checks in all
1886	 * the calling paths, and returning zero seems
1887	 * safe for them anyway.
1888	 */
1889	if (period == 0)
1890		return 0;
1891
1892	return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898	return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903	struct root_domain *rd = cpu_rq(i)->rd;
1904	int cpus = 0;
1905
1906	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907		cpus++;
1908
1909	return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914	return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919	return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926	dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932	dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938	return dl_b->bw != -1 &&
1939	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951		       const struct sched_attr *attr)
1952{
1953
1954	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955	u64 period = attr->sched_period ?: attr->sched_deadline;
1956	u64 runtime = attr->sched_runtime;
1957	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958	int cpus, err = -1;
1959
1960	if (new_bw == p->dl.dl_bw)
1961		return 0;
1962
1963	/*
1964	 * Either if a task, enters, leave, or stays -deadline but changes
1965	 * its parameters, we may need to update accordingly the total
1966	 * allocated bandwidth of the container.
1967	 */
1968	raw_spin_lock(&dl_b->lock);
1969	cpus = dl_bw_cpus(task_cpu(p));
1970	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972		__dl_add(dl_b, new_bw);
1973		err = 0;
1974	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976		__dl_clear(dl_b, p->dl.dl_bw);
1977		__dl_add(dl_b, new_bw);
1978		err = 0;
1979	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980		__dl_clear(dl_b, p->dl.dl_bw);
1981		err = 0;
1982	}
1983	raw_spin_unlock(&dl_b->lock);
1984
1985	return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999	unsigned long flags;
2000	struct rq *rq;
2001
2002	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004	/*
2005	 * Fork balancing, do it here and not earlier because:
2006	 *  - cpus_allowed can change in the fork path
2007	 *  - any previously selected cpu might disappear through hotplug
2008	 */
2009	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012	/* Initialize new task's runnable average */
2013	init_task_runnable_average(p);
2014	rq = __task_rq_lock(p);
2015	activate_task(rq, p, 0);
2016	p->on_rq = 1;
2017	trace_sched_wakeup_new(p, true);
2018	check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020	if (p->sched_class->task_woken)
2021		p->sched_class->task_woken(rq, p);
2022#endif
2023	task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046	hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052	struct preempt_notifier *notifier;
2053
2054	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060				 struct task_struct *next)
2061{
2062	struct preempt_notifier *notifier;
2063
2064	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065		notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076				 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097		    struct task_struct *next)
2098{
2099	trace_sched_switch(prev, next);
2100	sched_info_switch(rq, prev, next);
2101	perf_event_task_sched_out(prev, next);
2102	fire_sched_out_preempt_notifiers(prev, next);
2103	prepare_lock_switch(rq, next);
2104	prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123	__releases(rq->lock)
2124{
2125	struct mm_struct *mm = rq->prev_mm;
2126	long prev_state;
2127
2128	rq->prev_mm = NULL;
2129
2130	/*
2131	 * A task struct has one reference for the use as "current".
2132	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133	 * schedule one last time. The schedule call will never return, and
2134	 * the scheduled task must drop that reference.
2135	 * The test for TASK_DEAD must occur while the runqueue locks are
2136	 * still held, otherwise prev could be scheduled on another cpu, die
2137	 * there before we look at prev->state, and then the reference would
2138	 * be dropped twice.
2139	 *		Manfred Spraul <manfred@colorfullife.com>
2140	 */
2141	prev_state = prev->state;
2142	vtime_task_switch(prev);
2143	finish_arch_switch(prev);
2144	perf_event_task_sched_in(prev, current);
2145	finish_lock_switch(rq, prev);
2146	finish_arch_post_lock_switch();
2147
2148	fire_sched_in_preempt_notifiers(current);
2149	if (mm)
2150		mmdrop(mm);
2151	if (unlikely(prev_state == TASK_DEAD)) {
2152		if (prev->sched_class->task_dead)
2153			prev->sched_class->task_dead(prev);
2154
2155		/*
2156		 * Remove function-return probe instances associated with this
2157		 * task and put them back on the free list.
2158		 */
2159		kprobe_flush_task(prev);
2160		put_task_struct(prev);
2161	}
2162
2163	tick_nohz_task_switch(current);
2164}
2165
2166#ifdef CONFIG_SMP
2167
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171	if (rq->post_schedule) {
2172		unsigned long flags;
2173
2174		raw_spin_lock_irqsave(&rq->lock, flags);
2175		if (rq->curr->sched_class->post_schedule)
2176			rq->curr->sched_class->post_schedule(rq);
2177		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179		rq->post_schedule = 0;
2180	}
2181}
2182
2183#else
2184
2185static inline void post_schedule(struct rq *rq)
2186{
2187}
2188
2189#endif
2190
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195asmlinkage void schedule_tail(struct task_struct *prev)
2196	__releases(rq->lock)
2197{
2198	struct rq *rq = this_rq();
2199
2200	finish_task_switch(rq, prev);
2201
2202	/*
2203	 * FIXME: do we need to worry about rq being invalidated by the
2204	 * task_switch?
2205	 */
2206	post_schedule(rq);
2207
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209	/* In this case, finish_task_switch does not reenable preemption */
2210	preempt_enable();
2211#endif
2212	if (current->set_child_tid)
2213		put_user(task_pid_vnr(current), current->set_child_tid);
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220static inline void
2221context_switch(struct rq *rq, struct task_struct *prev,
2222	       struct task_struct *next)
2223{
2224	struct mm_struct *mm, *oldmm;
2225
2226	prepare_task_switch(rq, prev, next);
2227
2228	mm = next->mm;
2229	oldmm = prev->active_mm;
2230	/*
2231	 * For paravirt, this is coupled with an exit in switch_to to
2232	 * combine the page table reload and the switch backend into
2233	 * one hypercall.
2234	 */
2235	arch_start_context_switch(prev);
2236
2237	if (!mm) {
2238		next->active_mm = oldmm;
2239		atomic_inc(&oldmm->mm_count);
2240		enter_lazy_tlb(oldmm, next);
2241	} else
2242		switch_mm(oldmm, mm, next);
2243
2244	if (!prev->mm) {
2245		prev->active_mm = NULL;
2246		rq->prev_mm = oldmm;
2247	}
2248	/*
2249	 * Since the runqueue lock will be released by the next
2250	 * task (which is an invalid locking op but in the case
2251	 * of the scheduler it's an obvious special-case), so we
2252	 * do an early lockdep release here:
2253	 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256#endif
2257
2258	context_tracking_task_switch(prev, next);
2259	/* Here we just switch the register state and the stack. */
2260	switch_to(prev, next, prev);
2261
2262	barrier();
2263	/*
2264	 * this_rq must be evaluated again because prev may have moved
2265	 * CPUs since it called schedule(), thus the 'rq' on its stack
2266	 * frame will be invalid.
2267	 */
2268	finish_task_switch(this_rq(), prev);
2269}
2270
2271/*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277unsigned long nr_running(void)
2278{
2279	unsigned long i, sum = 0;
2280
2281	for_each_online_cpu(i)
2282		sum += cpu_rq(i)->nr_running;
2283
2284	return sum;
2285}
2286
2287unsigned long long nr_context_switches(void)
2288{
2289	int i;
2290	unsigned long long sum = 0;
2291
2292	for_each_possible_cpu(i)
2293		sum += cpu_rq(i)->nr_switches;
2294
2295	return sum;
2296}
2297
2298unsigned long nr_iowait(void)
2299{
2300	unsigned long i, sum = 0;
2301
2302	for_each_possible_cpu(i)
2303		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305	return sum;
2306}
2307
2308unsigned long nr_iowait_cpu(int cpu)
2309{
2310	struct rq *this = cpu_rq(cpu);
2311	return atomic_read(&this->nr_iowait);
2312}
2313
2314#ifdef CONFIG_SMP
2315
2316/*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320void sched_exec(void)
2321{
2322	struct task_struct *p = current;
2323	unsigned long flags;
2324	int dest_cpu;
2325
2326	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328	if (dest_cpu == smp_processor_id())
2329		goto unlock;
2330
2331	if (likely(cpu_active(dest_cpu))) {
2332		struct migration_arg arg = { p, dest_cpu };
2333
2334		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336		return;
2337	}
2338unlock:
2339	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340}
2341
2342#endif
2343
2344DEFINE_PER_CPU(struct kernel_stat, kstat);
2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350/*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358	u64 ns = 0;
2359
2360	if (task_current(rq, p)) {
2361		update_rq_clock(rq);
2362		ns = rq_clock_task(rq) - p->se.exec_start;
2363		if ((s64)ns < 0)
2364			ns = 0;
2365	}
2366
2367	return ns;
2368}
2369
2370unsigned long long task_delta_exec(struct task_struct *p)
2371{
2372	unsigned long flags;
2373	struct rq *rq;
2374	u64 ns = 0;
2375
2376	rq = task_rq_lock(p, &flags);
2377	ns = do_task_delta_exec(p, rq);
2378	task_rq_unlock(rq, p, &flags);
2379
2380	return ns;
2381}
2382
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390	unsigned long flags;
2391	struct rq *rq;
2392	u64 ns = 0;
2393
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395	/*
2396	 * 64-bit doesn't need locks to atomically read a 64bit value.
2397	 * So we have a optimization chance when the task's delta_exec is 0.
2398	 * Reading ->on_cpu is racy, but this is ok.
2399	 *
2400	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401	 * If we race with it entering cpu, unaccounted time is 0. This is
2402	 * indistinguishable from the read occurring a few cycles earlier.
2403	 */
2404	if (!p->on_cpu)
2405		return p->se.sum_exec_runtime;
2406#endif
2407
2408	rq = task_rq_lock(p, &flags);
2409	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410	task_rq_unlock(rq, p, &flags);
2411
2412	return ns;
2413}
2414
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419void scheduler_tick(void)
2420{
2421	int cpu = smp_processor_id();
2422	struct rq *rq = cpu_rq(cpu);
2423	struct task_struct *curr = rq->curr;
2424
2425	sched_clock_tick();
2426
2427	raw_spin_lock(&rq->lock);
2428	update_rq_clock(rq);
2429	curr->sched_class->task_tick(rq, curr, 0);
2430	update_cpu_load_active(rq);
2431	raw_spin_unlock(&rq->lock);
2432
2433	perf_event_task_tick();
2434
2435#ifdef CONFIG_SMP
2436	rq->idle_balance = idle_cpu(cpu);
2437	trigger_load_balance(rq);
2438#endif
2439	rq_last_tick_reset(rq);
2440}
2441
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458	struct rq *rq = this_rq();
2459	unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461	next = rq->last_sched_tick + HZ;
2462
2463	if (time_before_eq(next, now))
2464		return 0;
2465
2466	return jiffies_to_nsecs(next - now);
2467}
2468#endif
2469
2470notrace unsigned long get_parent_ip(unsigned long addr)
2471{
2472	if (in_lock_functions(addr)) {
2473		addr = CALLER_ADDR2;
2474		if (in_lock_functions(addr))
2475			addr = CALLER_ADDR3;
2476	}
2477	return addr;
2478}
2479
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481				defined(CONFIG_PREEMPT_TRACER))
2482
2483void __kprobes preempt_count_add(int val)
2484{
2485#ifdef CONFIG_DEBUG_PREEMPT
2486	/*
2487	 * Underflow?
2488	 */
2489	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490		return;
2491#endif
2492	__preempt_count_add(val);
2493#ifdef CONFIG_DEBUG_PREEMPT
2494	/*
2495	 * Spinlock count overflowing soon?
2496	 */
2497	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498				PREEMPT_MASK - 10);
2499#endif
2500	if (preempt_count() == val) {
2501		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503		current->preempt_disable_ip = ip;
2504#endif
2505		trace_preempt_off(CALLER_ADDR0, ip);
2506	}
2507}
2508EXPORT_SYMBOL(preempt_count_add);
2509
2510void __kprobes preempt_count_sub(int val)
2511{
2512#ifdef CONFIG_DEBUG_PREEMPT
2513	/*
2514	 * Underflow?
2515	 */
2516	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517		return;
2518	/*
2519	 * Is the spinlock portion underflowing?
2520	 */
2521	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522			!(preempt_count() & PREEMPT_MASK)))
2523		return;
2524#endif
2525
2526	if (preempt_count() == val)
2527		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528	__preempt_count_sub(val);
2529}
2530EXPORT_SYMBOL(preempt_count_sub);
2531
2532#endif
2533
2534/*
2535 * Print scheduling while atomic bug:
2536 */
2537static noinline void __schedule_bug(struct task_struct *prev)
2538{
2539	if (oops_in_progress)
2540		return;
2541
2542	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543		prev->comm, prev->pid, preempt_count());
2544
2545	debug_show_held_locks(prev);
2546	print_modules();
2547	if (irqs_disabled())
2548		print_irqtrace_events(prev);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550	if (in_atomic_preempt_off()) {
2551		pr_err("Preemption disabled at:");
2552		print_ip_sym(current->preempt_disable_ip);
2553		pr_cont("\n");
2554	}
2555#endif
2556	dump_stack();
2557	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558}
2559
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
2565	/*
2566	 * Test if we are atomic. Since do_exit() needs to call into
2567	 * schedule() atomically, we ignore that path. Otherwise whine
2568	 * if we are scheduling when we should not.
2569	 */
2570	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571		__schedule_bug(prev);
2572	rcu_sleep_check();
2573
2574	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576	schedstat_inc(this_rq(), sched_count);
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
2583pick_next_task(struct rq *rq, struct task_struct *prev)
2584{
2585	const struct sched_class *class = &fair_sched_class;
2586	struct task_struct *p;
2587
2588	/*
2589	 * Optimization: we know that if all tasks are in
2590	 * the fair class we can call that function directly:
2591	 */
2592	if (likely(prev->sched_class == class &&
2593		   rq->nr_running == rq->cfs.h_nr_running)) {
2594		p = fair_sched_class.pick_next_task(rq, prev);
2595		if (unlikely(p == RETRY_TASK))
2596			goto again;
2597
2598		/* assumes fair_sched_class->next == idle_sched_class */
2599		if (unlikely(!p))
2600			p = idle_sched_class.pick_next_task(rq, prev);
2601
2602		return p;
2603	}
2604
2605again:
2606	for_each_class(class) {
2607		p = class->pick_next_task(rq, prev);
2608		if (p) {
2609			if (unlikely(p == RETRY_TASK))
2610				goto again;
2611			return p;
2612		}
2613	}
2614
2615	BUG(); /* the idle class will always have a runnable task */
2616}
2617
2618/*
2619 * __schedule() is the main scheduler function.
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 *      paths. For example, see arch/x86/entry_64.S.
2627 *
2628 *      To drive preemption between tasks, the scheduler sets the flag in timer
2629 *      interrupt handler scheduler_tick().
2630 *
2631 *   3. Wakeups don't really cause entry into schedule(). They add a
2632 *      task to the run-queue and that's it.
2633 *
2634 *      Now, if the new task added to the run-queue preempts the current
2635 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 *      called on the nearest possible occasion:
2637 *
2638 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 *         - in syscall or exception context, at the next outmost
2641 *           preempt_enable(). (this might be as soon as the wake_up()'s
2642 *           spin_unlock()!)
2643 *
2644 *         - in IRQ context, return from interrupt-handler to
2645 *           preemptible context
2646 *
2647 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 *         then at the next:
2649 *
2650 *          - cond_resched() call
2651 *          - explicit schedule() call
2652 *          - return from syscall or exception to user-space
2653 *          - return from interrupt-handler to user-space
2654 */
2655static void __sched __schedule(void)
2656{
2657	struct task_struct *prev, *next;
2658	unsigned long *switch_count;
2659	struct rq *rq;
2660	int cpu;
2661
2662need_resched:
2663	preempt_disable();
2664	cpu = smp_processor_id();
2665	rq = cpu_rq(cpu);
2666	rcu_note_context_switch(cpu);
2667	prev = rq->curr;
2668
2669	schedule_debug(prev);
2670
2671	if (sched_feat(HRTICK))
2672		hrtick_clear(rq);
2673
2674	/*
2675	 * Make sure that signal_pending_state()->signal_pending() below
2676	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677	 * done by the caller to avoid the race with signal_wake_up().
2678	 */
2679	smp_mb__before_spinlock();
2680	raw_spin_lock_irq(&rq->lock);
2681
2682	switch_count = &prev->nivcsw;
2683	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684		if (unlikely(signal_pending_state(prev->state, prev))) {
2685			prev->state = TASK_RUNNING;
2686		} else {
2687			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688			prev->on_rq = 0;
2689
2690			/*
2691			 * If a worker went to sleep, notify and ask workqueue
2692			 * whether it wants to wake up a task to maintain
2693			 * concurrency.
2694			 */
2695			if (prev->flags & PF_WQ_WORKER) {
2696				struct task_struct *to_wakeup;
2697
2698				to_wakeup = wq_worker_sleeping(prev, cpu);
2699				if (to_wakeup)
2700					try_to_wake_up_local(to_wakeup);
2701			}
2702		}
2703		switch_count = &prev->nvcsw;
2704	}
2705
2706	if (prev->on_rq || rq->skip_clock_update < 0)
2707		update_rq_clock(rq);
2708
2709	next = pick_next_task(rq, prev);
2710	clear_tsk_need_resched(prev);
2711	clear_preempt_need_resched();
2712	rq->skip_clock_update = 0;
2713
2714	if (likely(prev != next)) {
2715		rq->nr_switches++;
2716		rq->curr = next;
2717		++*switch_count;
2718
2719		context_switch(rq, prev, next); /* unlocks the rq */
2720		/*
2721		 * The context switch have flipped the stack from under us
2722		 * and restored the local variables which were saved when
2723		 * this task called schedule() in the past. prev == current
2724		 * is still correct, but it can be moved to another cpu/rq.
2725		 */
2726		cpu = smp_processor_id();
2727		rq = cpu_rq(cpu);
2728	} else
2729		raw_spin_unlock_irq(&rq->lock);
2730
2731	post_schedule(rq);
2732
2733	sched_preempt_enable_no_resched();
2734	if (need_resched())
2735		goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740	if (!tsk->state || tsk_is_pi_blocked(tsk))
2741		return;
2742	/*
2743	 * If we are going to sleep and we have plugged IO queued,
2744	 * make sure to submit it to avoid deadlocks.
2745	 */
2746	if (blk_needs_flush_plug(tsk))
2747		blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage void __sched schedule(void)
2751{
2752	struct task_struct *tsk = current;
2753
2754	sched_submit_work(tsk);
2755	__schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage void __sched schedule_user(void)
2761{
2762	/*
2763	 * If we come here after a random call to set_need_resched(),
2764	 * or we have been woken up remotely but the IPI has not yet arrived,
2765	 * we haven't yet exited the RCU idle mode. Do it here manually until
2766	 * we find a better solution.
2767	 */
2768	user_exit();
2769	schedule();
2770	user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781	sched_preempt_enable_no_resched();
2782	schedule();
2783	preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage void __sched notrace preempt_schedule(void)
2793{
2794	/*
2795	 * If there is a non-zero preempt_count or interrupts are disabled,
2796	 * we do not want to preempt the current task. Just return..
2797	 */
2798	if (likely(!preemptible()))
2799		return;
2800
2801	do {
2802		__preempt_count_add(PREEMPT_ACTIVE);
2803		__schedule();
2804		__preempt_count_sub(PREEMPT_ACTIVE);
2805
2806		/*
2807		 * Check again in case we missed a preemption opportunity
2808		 * between schedule and now.
2809		 */
2810		barrier();
2811	} while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
2824	enum ctx_state prev_state;
2825
2826	/* Catch callers which need to be fixed */
2827	BUG_ON(preempt_count() || !irqs_disabled());
2828
2829	prev_state = exception_enter();
2830
2831	do {
2832		__preempt_count_add(PREEMPT_ACTIVE);
2833		local_irq_enable();
2834		__schedule();
2835		local_irq_disable();
2836		__preempt_count_sub(PREEMPT_ACTIVE);
2837
2838		/*
2839		 * Check again in case we missed a preemption opportunity
2840		 * between schedule and now.
2841		 */
2842		barrier();
2843	} while (need_resched());
2844
2845	exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849			  void *key)
2850{
2851	return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855#ifdef CONFIG_RT_MUTEXES
2856
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
2867 */
2868void rt_mutex_setprio(struct task_struct *p, int prio)
2869{
2870	int oldprio, on_rq, running, enqueue_flag = 0;
2871	struct rq *rq;
2872	const struct sched_class *prev_class;
2873
2874	BUG_ON(prio > MAX_PRIO);
2875
2876	rq = __task_rq_lock(p);
2877
2878	/*
2879	 * Idle task boosting is a nono in general. There is one
2880	 * exception, when PREEMPT_RT and NOHZ is active:
2881	 *
2882	 * The idle task calls get_next_timer_interrupt() and holds
2883	 * the timer wheel base->lock on the CPU and another CPU wants
2884	 * to access the timer (probably to cancel it). We can safely
2885	 * ignore the boosting request, as the idle CPU runs this code
2886	 * with interrupts disabled and will complete the lock
2887	 * protected section without being interrupted. So there is no
2888	 * real need to boost.
2889	 */
2890	if (unlikely(p == rq->idle)) {
2891		WARN_ON(p != rq->curr);
2892		WARN_ON(p->pi_blocked_on);
2893		goto out_unlock;
2894	}
2895
2896	trace_sched_pi_setprio(p, prio);
2897	p->pi_top_task = rt_mutex_get_top_task(p);
2898	oldprio = p->prio;
2899	prev_class = p->sched_class;
2900	on_rq = p->on_rq;
2901	running = task_current(rq, p);
2902	if (on_rq)
2903		dequeue_task(rq, p, 0);
2904	if (running)
2905		p->sched_class->put_prev_task(rq, p);
2906
2907	/*
2908	 * Boosting condition are:
2909	 * 1. -rt task is running and holds mutex A
2910	 *      --> -dl task blocks on mutex A
2911	 *
2912	 * 2. -dl task is running and holds mutex A
2913	 *      --> -dl task blocks on mutex A and could preempt the
2914	 *          running task
2915	 */
2916	if (dl_prio(prio)) {
2917		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919			p->dl.dl_boosted = 1;
2920			p->dl.dl_throttled = 0;
2921			enqueue_flag = ENQUEUE_REPLENISH;
2922		} else
2923			p->dl.dl_boosted = 0;
2924		p->sched_class = &dl_sched_class;
2925	} else if (rt_prio(prio)) {
2926		if (dl_prio(oldprio))
2927			p->dl.dl_boosted = 0;
2928		if (oldprio < prio)
2929			enqueue_flag = ENQUEUE_HEAD;
2930		p->sched_class = &rt_sched_class;
2931	} else {
2932		if (dl_prio(oldprio))
2933			p->dl.dl_boosted = 0;
2934		p->sched_class = &fair_sched_class;
2935	}
2936
2937	p->prio = prio;
2938
2939	if (running)
2940		p->sched_class->set_curr_task(rq);
2941	if (on_rq)
2942		enqueue_task(rq, p, enqueue_flag);
2943
2944	check_class_changed(rq, p, prev_class, oldprio);
2945out_unlock:
2946	__task_rq_unlock(rq);
2947}
2948#endif
2949
2950void set_user_nice(struct task_struct *p, long nice)
2951{
2952	int old_prio, delta, on_rq;
2953	unsigned long flags;
2954	struct rq *rq;
2955
2956	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957		return;
2958	/*
2959	 * We have to be careful, if called from sys_setpriority(),
2960	 * the task might be in the middle of scheduling on another CPU.
2961	 */
2962	rq = task_rq_lock(p, &flags);
2963	/*
2964	 * The RT priorities are set via sched_setscheduler(), but we still
2965	 * allow the 'normal' nice value to be set - but as expected
2966	 * it wont have any effect on scheduling until the task is
2967	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968	 */
2969	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970		p->static_prio = NICE_TO_PRIO(nice);
2971		goto out_unlock;
2972	}
2973	on_rq = p->on_rq;
2974	if (on_rq)
2975		dequeue_task(rq, p, 0);
2976
2977	p->static_prio = NICE_TO_PRIO(nice);
2978	set_load_weight(p);
2979	old_prio = p->prio;
2980	p->prio = effective_prio(p);
2981	delta = p->prio - old_prio;
2982
2983	if (on_rq) {
2984		enqueue_task(rq, p, 0);
2985		/*
2986		 * If the task increased its priority or is running and
2987		 * lowered its priority, then reschedule its CPU:
2988		 */
2989		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990			resched_task(rq->curr);
2991	}
2992out_unlock:
2993	task_rq_unlock(rq, p, &flags);
2994}
2995EXPORT_SYMBOL(set_user_nice);
2996
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
3002int can_nice(const struct task_struct *p, const int nice)
3003{
3004	/* convert nice value [19,-20] to rlimit style value [1,40] */
3005	int nice_rlim = 20 - nice;
3006
3007	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008		capable(CAP_SYS_NICE));
3009}
3010
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
3020SYSCALL_DEFINE1(nice, int, increment)
3021{
3022	long nice, retval;
3023
3024	/*
3025	 * Setpriority might change our priority at the same moment.
3026	 * We don't have to worry. Conceptually one call occurs first
3027	 * and we have a single winner.
3028	 */
3029	if (increment < -40)
3030		increment = -40;
3031	if (increment > 40)
3032		increment = 40;
3033
3034	nice = task_nice(current) + increment;
3035	if (nice < MIN_NICE)
3036		nice = MIN_NICE;
3037	if (nice > MAX_NICE)
3038		nice = MAX_NICE;
3039
3040	if (increment < 0 && !can_nice(current, nice))
3041		return -EPERM;
3042
3043	retval = security_task_setnice(current, nice);
3044	if (retval)
3045		return retval;
3046
3047	set_user_nice(current, nice);
3048	return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
3061int task_prio(const struct task_struct *p)
3062{
3063	return p->prio - MAX_RT_PRIO;
3064}
3065
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */
3072int idle_cpu(int cpu)
3073{
3074	struct rq *rq = cpu_rq(cpu);
3075
3076	if (rq->curr != rq->idle)
3077		return 0;
3078
3079	if (rq->nr_running)
3080		return 0;
3081
3082#ifdef CONFIG_SMP
3083	if (!llist_empty(&rq->wake_list))
3084		return 0;
3085#endif
3086
3087	return 1;
3088}
3089
3090/**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
3093 *
3094 * Return: The idle task for the cpu @cpu.
3095 */
3096struct task_struct *idle_task(int cpu)
3097{
3098	return cpu_rq(cpu)->idle;
3099}
3100
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
3106 */
3107static struct task_struct *find_process_by_pid(pid_t pid)
3108{
3109	return pid ? find_task_by_vpid(pid) : current;
3110}
3111
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123	struct sched_dl_entity *dl_se = &p->dl;
3124
3125	init_dl_task_timer(dl_se);
3126	dl_se->dl_runtime = attr->sched_runtime;
3127	dl_se->dl_deadline = attr->sched_deadline;
3128	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129	dl_se->flags = attr->sched_flags;
3130	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131	dl_se->dl_throttled = 0;
3132	dl_se->dl_new = 1;
3133	dl_se->dl_yielded = 0;
3134}
3135
3136static void __setscheduler_params(struct task_struct *p,
3137		const struct sched_attr *attr)
3138{
3139	int policy = attr->sched_policy;
3140
3141	if (policy == -1) /* setparam */
3142		policy = p->policy;
3143
3144	p->policy = policy;
3145
3146	if (dl_policy(policy))
3147		__setparam_dl(p, attr);
3148	else if (fair_policy(policy))
3149		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
3151	/*
3152	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153	 * !rt_policy. Always setting this ensures that things like
3154	 * getparam()/getattr() don't report silly values for !rt tasks.
3155	 */
3156	p->rt_priority = attr->sched_priority;
3157	p->normal_prio = normal_prio(p);
3158	set_load_weight(p);
3159}
3160
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163			   const struct sched_attr *attr)
3164{
3165	__setscheduler_params(p, attr);
3166
3167	/*
3168	 * If we get here, there was no pi waiters boosting the
3169	 * task. It is safe to use the normal prio.
3170	 */
3171	p->prio = normal_prio(p);
3172
3173	if (dl_prio(p->prio))
3174		p->sched_class = &dl_sched_class;
3175	else if (rt_prio(p->prio))
3176		p->sched_class = &rt_sched_class;
3177	else
3178		p->sched_class = &fair_sched_class;
3179}
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184	struct sched_dl_entity *dl_se = &p->dl;
3185
3186	attr->sched_priority = p->rt_priority;
3187	attr->sched_runtime = dl_se->dl_runtime;
3188	attr->sched_deadline = dl_se->dl_deadline;
3189	attr->sched_period = dl_se->dl_period;
3190	attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution (1us); we
3199 * check sched_runtime only since it is always the smaller one.
3200 */
3201static bool
3202__checkparam_dl(const struct sched_attr *attr)
3203{
3204	return attr && attr->sched_deadline != 0 &&
3205		(attr->sched_period == 0 ||
3206		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3207		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3208		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3209}
3210
3211/*
3212 * check the target process has a UID that matches the current process's
3213 */
3214static bool check_same_owner(struct task_struct *p)
3215{
3216	const struct cred *cred = current_cred(), *pcred;
3217	bool match;
3218
3219	rcu_read_lock();
3220	pcred = __task_cred(p);
3221	match = (uid_eq(cred->euid, pcred->euid) ||
3222		 uid_eq(cred->euid, pcred->uid));
3223	rcu_read_unlock();
3224	return match;
3225}
3226
3227static int __sched_setscheduler(struct task_struct *p,
3228				const struct sched_attr *attr,
3229				bool user)
3230{
3231	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3232		      MAX_RT_PRIO - 1 - attr->sched_priority;
3233	int retval, oldprio, oldpolicy = -1, on_rq, running;
3234	int policy = attr->sched_policy;
3235	unsigned long flags;
3236	const struct sched_class *prev_class;
3237	struct rq *rq;
3238	int reset_on_fork;
3239
3240	/* may grab non-irq protected spin_locks */
3241	BUG_ON(in_interrupt());
3242recheck:
3243	/* double check policy once rq lock held */
3244	if (policy < 0) {
3245		reset_on_fork = p->sched_reset_on_fork;
3246		policy = oldpolicy = p->policy;
3247	} else {
3248		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3249
3250		if (policy != SCHED_DEADLINE &&
3251				policy != SCHED_FIFO && policy != SCHED_RR &&
3252				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3253				policy != SCHED_IDLE)
3254			return -EINVAL;
3255	}
3256
3257	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3258		return -EINVAL;
3259
3260	/*
3261	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3262	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3263	 * SCHED_BATCH and SCHED_IDLE is 0.
3264	 */
3265	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3266	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3267		return -EINVAL;
3268	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3269	    (rt_policy(policy) != (attr->sched_priority != 0)))
3270		return -EINVAL;
3271
3272	/*
3273	 * Allow unprivileged RT tasks to decrease priority:
3274	 */
3275	if (user && !capable(CAP_SYS_NICE)) {
3276		if (fair_policy(policy)) {
3277			if (attr->sched_nice < task_nice(p) &&
3278			    !can_nice(p, attr->sched_nice))
3279				return -EPERM;
3280		}
3281
3282		if (rt_policy(policy)) {
3283			unsigned long rlim_rtprio =
3284					task_rlimit(p, RLIMIT_RTPRIO);
3285
3286			/* can't set/change the rt policy */
3287			if (policy != p->policy && !rlim_rtprio)
3288				return -EPERM;
3289
3290			/* can't increase priority */
3291			if (attr->sched_priority > p->rt_priority &&
3292			    attr->sched_priority > rlim_rtprio)
3293				return -EPERM;
3294		}
3295
3296		 /*
3297		  * Can't set/change SCHED_DEADLINE policy at all for now
3298		  * (safest behavior); in the future we would like to allow
3299		  * unprivileged DL tasks to increase their relative deadline
3300		  * or reduce their runtime (both ways reducing utilization)
3301		  */
3302		if (dl_policy(policy))
3303			return -EPERM;
3304
3305		/*
3306		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3307		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3308		 */
3309		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3310			if (!can_nice(p, task_nice(p)))
3311				return -EPERM;
3312		}
3313
3314		/* can't change other user's priorities */
3315		if (!check_same_owner(p))
3316			return -EPERM;
3317
3318		/* Normal users shall not reset the sched_reset_on_fork flag */
3319		if (p->sched_reset_on_fork && !reset_on_fork)
3320			return -EPERM;
3321	}
3322
3323	if (user) {
3324		retval = security_task_setscheduler(p);
3325		if (retval)
3326			return retval;
3327	}
3328
3329	/*
3330	 * make sure no PI-waiters arrive (or leave) while we are
3331	 * changing the priority of the task:
3332	 *
3333	 * To be able to change p->policy safely, the appropriate
3334	 * runqueue lock must be held.
3335	 */
3336	rq = task_rq_lock(p, &flags);
3337
3338	/*
3339	 * Changing the policy of the stop threads its a very bad idea
3340	 */
3341	if (p == rq->stop) {
3342		task_rq_unlock(rq, p, &flags);
3343		return -EINVAL;
3344	}
3345
3346	/*
3347	 * If not changing anything there's no need to proceed further,
3348	 * but store a possible modification of reset_on_fork.
3349	 */
3350	if (unlikely(policy == p->policy)) {
3351		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3352			goto change;
3353		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3354			goto change;
3355		if (dl_policy(policy))
3356			goto change;
3357
3358		p->sched_reset_on_fork = reset_on_fork;
3359		task_rq_unlock(rq, p, &flags);
3360		return 0;
3361	}
3362change:
3363
3364	if (user) {
3365#ifdef CONFIG_RT_GROUP_SCHED
3366		/*
3367		 * Do not allow realtime tasks into groups that have no runtime
3368		 * assigned.
3369		 */
3370		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3371				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3372				!task_group_is_autogroup(task_group(p))) {
3373			task_rq_unlock(rq, p, &flags);
3374			return -EPERM;
3375		}
3376#endif
3377#ifdef CONFIG_SMP
3378		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3379			cpumask_t *span = rq->rd->span;
3380
3381			/*
3382			 * Don't allow tasks with an affinity mask smaller than
3383			 * the entire root_domain to become SCHED_DEADLINE. We
3384			 * will also fail if there's no bandwidth available.
3385			 */
3386			if (!cpumask_subset(span, &p->cpus_allowed) ||
3387			    rq->rd->dl_bw.bw == 0) {
3388				task_rq_unlock(rq, p, &flags);
3389				return -EPERM;
3390			}
3391		}
3392#endif
3393	}
3394
3395	/* recheck policy now with rq lock held */
3396	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397		policy = oldpolicy = -1;
3398		task_rq_unlock(rq, p, &flags);
3399		goto recheck;
3400	}
3401
3402	/*
3403	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3404	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3405	 * is available.
3406	 */
3407	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3408		task_rq_unlock(rq, p, &flags);
3409		return -EBUSY;
3410	}
3411
3412	p->sched_reset_on_fork = reset_on_fork;
3413	oldprio = p->prio;
3414
3415	/*
3416	 * Special case for priority boosted tasks.
3417	 *
3418	 * If the new priority is lower or equal (user space view)
3419	 * than the current (boosted) priority, we just store the new
3420	 * normal parameters and do not touch the scheduler class and
3421	 * the runqueue. This will be done when the task deboost
3422	 * itself.
3423	 */
3424	if (rt_mutex_check_prio(p, newprio)) {
3425		__setscheduler_params(p, attr);
3426		task_rq_unlock(rq, p, &flags);
3427		return 0;
3428	}
3429
3430	on_rq = p->on_rq;
3431	running = task_current(rq, p);
3432	if (on_rq)
3433		dequeue_task(rq, p, 0);
3434	if (running)
3435		p->sched_class->put_prev_task(rq, p);
3436
3437	prev_class = p->sched_class;
3438	__setscheduler(rq, p, attr);
3439
3440	if (running)
3441		p->sched_class->set_curr_task(rq);
3442	if (on_rq) {
3443		/*
3444		 * We enqueue to tail when the priority of a task is
3445		 * increased (user space view).
3446		 */
3447		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3448	}
3449
3450	check_class_changed(rq, p, prev_class, oldprio);
3451	task_rq_unlock(rq, p, &flags);
3452
3453	rt_mutex_adjust_pi(p);
3454
3455	return 0;
3456}
3457
3458static int _sched_setscheduler(struct task_struct *p, int policy,
3459			       const struct sched_param *param, bool check)
3460{
3461	struct sched_attr attr = {
3462		.sched_policy   = policy,
3463		.sched_priority = param->sched_priority,
3464		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3465	};
3466
3467	/*
3468	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3469	 */
3470	if (policy & SCHED_RESET_ON_FORK) {
3471		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3472		policy &= ~SCHED_RESET_ON_FORK;
3473		attr.sched_policy = policy;
3474	}
3475
3476	return __sched_setscheduler(p, &attr, check);
3477}
3478/**
3479 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3480 * @p: the task in question.
3481 * @policy: new policy.
3482 * @param: structure containing the new RT priority.
3483 *
3484 * Return: 0 on success. An error code otherwise.
3485 *
3486 * NOTE that the task may be already dead.
3487 */
3488int sched_setscheduler(struct task_struct *p, int policy,
3489		       const struct sched_param *param)
3490{
3491	return _sched_setscheduler(p, policy, param, true);
3492}
3493EXPORT_SYMBOL_GPL(sched_setscheduler);
3494
3495int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3496{
3497	return __sched_setscheduler(p, attr, true);
3498}
3499EXPORT_SYMBOL_GPL(sched_setattr);
3500
3501/**
3502 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Just like sched_setscheduler, only don't bother checking if the
3508 * current context has permission.  For example, this is needed in
3509 * stop_machine(): we create temporary high priority worker threads,
3510 * but our caller might not have that capability.
3511 *
3512 * Return: 0 on success. An error code otherwise.
3513 */
3514int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3515			       const struct sched_param *param)
3516{
3517	return _sched_setscheduler(p, policy, param, false);
3518}
3519
3520static int
3521do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3522{
3523	struct sched_param lparam;
3524	struct task_struct *p;
3525	int retval;
3526
3527	if (!param || pid < 0)
3528		return -EINVAL;
3529	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3530		return -EFAULT;
3531
3532	rcu_read_lock();
3533	retval = -ESRCH;
3534	p = find_process_by_pid(pid);
3535	if (p != NULL)
3536		retval = sched_setscheduler(p, policy, &lparam);
3537	rcu_read_unlock();
3538
3539	return retval;
3540}
3541
3542/*
3543 * Mimics kernel/events/core.c perf_copy_attr().
3544 */
3545static int sched_copy_attr(struct sched_attr __user *uattr,
3546			   struct sched_attr *attr)
3547{
3548	u32 size;
3549	int ret;
3550
3551	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3552		return -EFAULT;
3553
3554	/*
3555	 * zero the full structure, so that a short copy will be nice.
3556	 */
3557	memset(attr, 0, sizeof(*attr));
3558
3559	ret = get_user(size, &uattr->size);
3560	if (ret)
3561		return ret;
3562
3563	if (size > PAGE_SIZE)	/* silly large */
3564		goto err_size;
3565
3566	if (!size)		/* abi compat */
3567		size = SCHED_ATTR_SIZE_VER0;
3568
3569	if (size < SCHED_ATTR_SIZE_VER0)
3570		goto err_size;
3571
3572	/*
3573	 * If we're handed a bigger struct than we know of,
3574	 * ensure all the unknown bits are 0 - i.e. new
3575	 * user-space does not rely on any kernel feature
3576	 * extensions we dont know about yet.
3577	 */
3578	if (size > sizeof(*attr)) {
3579		unsigned char __user *addr;
3580		unsigned char __user *end;
3581		unsigned char val;
3582
3583		addr = (void __user *)uattr + sizeof(*attr);
3584		end  = (void __user *)uattr + size;
3585
3586		for (; addr < end; addr++) {
3587			ret = get_user(val, addr);
3588			if (ret)
3589				return ret;
3590			if (val)
3591				goto err_size;
3592		}
3593		size = sizeof(*attr);
3594	}
3595
3596	ret = copy_from_user(attr, uattr, size);
3597	if (ret)
3598		return -EFAULT;
3599
3600	/*
3601	 * XXX: do we want to be lenient like existing syscalls; or do we want
3602	 * to be strict and return an error on out-of-bounds values?
3603	 */
3604	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3605
3606out:
3607	return ret;
3608
3609err_size:
3610	put_user(sizeof(*attr), &uattr->size);
3611	ret = -E2BIG;
3612	goto out;
3613}
3614
3615/**
3616 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3617 * @pid: the pid in question.
3618 * @policy: new policy.
3619 * @param: structure containing the new RT priority.
3620 *
3621 * Return: 0 on success. An error code otherwise.
3622 */
3623SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3624		struct sched_param __user *, param)
3625{
3626	/* negative values for policy are not valid */
3627	if (policy < 0)
3628		return -EINVAL;
3629
3630	return do_sched_setscheduler(pid, policy, param);
3631}
3632
3633/**
3634 * sys_sched_setparam - set/change the RT priority of a thread
3635 * @pid: the pid in question.
3636 * @param: structure containing the new RT priority.
3637 *
3638 * Return: 0 on success. An error code otherwise.
3639 */
3640SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3641{
3642	return do_sched_setscheduler(pid, -1, param);
3643}
3644
3645/**
3646 * sys_sched_setattr - same as above, but with extended sched_attr
3647 * @pid: the pid in question.
3648 * @uattr: structure containing the extended parameters.
3649 * @flags: for future extension.
3650 */
3651SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3652			       unsigned int, flags)
3653{
3654	struct sched_attr attr;
3655	struct task_struct *p;
3656	int retval;
3657
3658	if (!uattr || pid < 0 || flags)
3659		return -EINVAL;
3660
3661	if (sched_copy_attr(uattr, &attr))
3662		return -EFAULT;
3663
3664	rcu_read_lock();
3665	retval = -ESRCH;
3666	p = find_process_by_pid(pid);
3667	if (p != NULL)
3668		retval = sched_setattr(p, &attr);
3669	rcu_read_unlock();
3670
3671	return retval;
3672}
3673
3674/**
3675 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3676 * @pid: the pid in question.
3677 *
3678 * Return: On success, the policy of the thread. Otherwise, a negative error
3679 * code.
3680 */
3681SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3682{
3683	struct task_struct *p;
3684	int retval;
3685
3686	if (pid < 0)
3687		return -EINVAL;
3688
3689	retval = -ESRCH;
3690	rcu_read_lock();
3691	p = find_process_by_pid(pid);
3692	if (p) {
3693		retval = security_task_getscheduler(p);
3694		if (!retval)
3695			retval = p->policy
3696				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3697	}
3698	rcu_read_unlock();
3699	return retval;
3700}
3701
3702/**
3703 * sys_sched_getparam - get the RT priority of a thread
3704 * @pid: the pid in question.
3705 * @param: structure containing the RT priority.
3706 *
3707 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3708 * code.
3709 */
3710SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3711{
3712	struct sched_param lp;
3713	struct task_struct *p;
3714	int retval;
3715
3716	if (!param || pid < 0)
3717		return -EINVAL;
3718
3719	rcu_read_lock();
3720	p = find_process_by_pid(pid);
3721	retval = -ESRCH;
3722	if (!p)
3723		goto out_unlock;
3724
3725	retval = security_task_getscheduler(p);
3726	if (retval)
3727		goto out_unlock;
3728
3729	if (task_has_dl_policy(p)) {
3730		retval = -EINVAL;
3731		goto out_unlock;
3732	}
3733	lp.sched_priority = p->rt_priority;
3734	rcu_read_unlock();
3735
3736	/*
3737	 * This one might sleep, we cannot do it with a spinlock held ...
3738	 */
3739	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3740
3741	return retval;
3742
3743out_unlock:
3744	rcu_read_unlock();
3745	return retval;
3746}
3747
3748static int sched_read_attr(struct sched_attr __user *uattr,
3749			   struct sched_attr *attr,
3750			   unsigned int usize)
3751{
3752	int ret;
3753
3754	if (!access_ok(VERIFY_WRITE, uattr, usize))
3755		return -EFAULT;
3756
3757	/*
3758	 * If we're handed a smaller struct than we know of,
3759	 * ensure all the unknown bits are 0 - i.e. old
3760	 * user-space does not get uncomplete information.
3761	 */
3762	if (usize < sizeof(*attr)) {
3763		unsigned char *addr;
3764		unsigned char *end;
3765
3766		addr = (void *)attr + usize;
3767		end  = (void *)attr + sizeof(*attr);
3768
3769		for (; addr < end; addr++) {
3770			if (*addr)
3771				goto err_size;
3772		}
3773
3774		attr->size = usize;
3775	}
3776
3777	ret = copy_to_user(uattr, attr, attr->size);
3778	if (ret)
3779		return -EFAULT;
3780
3781out:
3782	return ret;
3783
3784err_size:
3785	ret = -E2BIG;
3786	goto out;
3787}
3788
3789/**
3790 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3791 * @pid: the pid in question.
3792 * @uattr: structure containing the extended parameters.
3793 * @size: sizeof(attr) for fwd/bwd comp.
3794 * @flags: for future extension.
3795 */
3796SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3797		unsigned int, size, unsigned int, flags)
3798{
3799	struct sched_attr attr = {
3800		.size = sizeof(struct sched_attr),
3801	};
3802	struct task_struct *p;
3803	int retval;
3804
3805	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3806	    size < SCHED_ATTR_SIZE_VER0 || flags)
3807		return -EINVAL;
3808
3809	rcu_read_lock();
3810	p = find_process_by_pid(pid);
3811	retval = -ESRCH;
3812	if (!p)
3813		goto out_unlock;
3814
3815	retval = security_task_getscheduler(p);
3816	if (retval)
3817		goto out_unlock;
3818
3819	attr.sched_policy = p->policy;
3820	if (p->sched_reset_on_fork)
3821		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3822	if (task_has_dl_policy(p))
3823		__getparam_dl(p, &attr);
3824	else if (task_has_rt_policy(p))
3825		attr.sched_priority = p->rt_priority;
3826	else
3827		attr.sched_nice = task_nice(p);
3828
3829	rcu_read_unlock();
3830
3831	retval = sched_read_attr(uattr, &attr, size);
3832	return retval;
3833
3834out_unlock:
3835	rcu_read_unlock();
3836	return retval;
3837}
3838
3839long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3840{
3841	cpumask_var_t cpus_allowed, new_mask;
3842	struct task_struct *p;
3843	int retval;
3844
3845	rcu_read_lock();
3846
3847	p = find_process_by_pid(pid);
3848	if (!p) {
3849		rcu_read_unlock();
3850		return -ESRCH;
3851	}
3852
3853	/* Prevent p going away */
3854	get_task_struct(p);
3855	rcu_read_unlock();
3856
3857	if (p->flags & PF_NO_SETAFFINITY) {
3858		retval = -EINVAL;
3859		goto out_put_task;
3860	}
3861	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3862		retval = -ENOMEM;
3863		goto out_put_task;
3864	}
3865	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3866		retval = -ENOMEM;
3867		goto out_free_cpus_allowed;
3868	}
3869	retval = -EPERM;
3870	if (!check_same_owner(p)) {
3871		rcu_read_lock();
3872		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3873			rcu_read_unlock();
3874			goto out_unlock;
3875		}
3876		rcu_read_unlock();
3877	}
3878
3879	retval = security_task_setscheduler(p);
3880	if (retval)
3881		goto out_unlock;
3882
3883
3884	cpuset_cpus_allowed(p, cpus_allowed);
3885	cpumask_and(new_mask, in_mask, cpus_allowed);
3886
3887	/*
3888	 * Since bandwidth control happens on root_domain basis,
3889	 * if admission test is enabled, we only admit -deadline
3890	 * tasks allowed to run on all the CPUs in the task's
3891	 * root_domain.
3892	 */
3893#ifdef CONFIG_SMP
3894	if (task_has_dl_policy(p)) {
3895		const struct cpumask *span = task_rq(p)->rd->span;
3896
3897		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3898			retval = -EBUSY;
3899			goto out_unlock;
3900		}
3901	}
3902#endif
3903again:
3904	retval = set_cpus_allowed_ptr(p, new_mask);
3905
3906	if (!retval) {
3907		cpuset_cpus_allowed(p, cpus_allowed);
3908		if (!cpumask_subset(new_mask, cpus_allowed)) {
3909			/*
3910			 * We must have raced with a concurrent cpuset
3911			 * update. Just reset the cpus_allowed to the
3912			 * cpuset's cpus_allowed
3913			 */
3914			cpumask_copy(new_mask, cpus_allowed);
3915			goto again;
3916		}
3917	}
3918out_unlock:
3919	free_cpumask_var(new_mask);
3920out_free_cpus_allowed:
3921	free_cpumask_var(cpus_allowed);
3922out_put_task:
3923	put_task_struct(p);
3924	return retval;
3925}
3926
3927static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3928			     struct cpumask *new_mask)
3929{
3930	if (len < cpumask_size())
3931		cpumask_clear(new_mask);
3932	else if (len > cpumask_size())
3933		len = cpumask_size();
3934
3935	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3936}
3937
3938/**
3939 * sys_sched_setaffinity - set the cpu affinity of a process
3940 * @pid: pid of the process
3941 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3942 * @user_mask_ptr: user-space pointer to the new cpu mask
3943 *
3944 * Return: 0 on success. An error code otherwise.
3945 */
3946SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3947		unsigned long __user *, user_mask_ptr)
3948{
3949	cpumask_var_t new_mask;
3950	int retval;
3951
3952	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3953		return -ENOMEM;
3954
3955	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3956	if (retval == 0)
3957		retval = sched_setaffinity(pid, new_mask);
3958	free_cpumask_var(new_mask);
3959	return retval;
3960}
3961
3962long sched_getaffinity(pid_t pid, struct cpumask *mask)
3963{
3964	struct task_struct *p;
3965	unsigned long flags;
3966	int retval;
3967
3968	rcu_read_lock();
3969
3970	retval = -ESRCH;
3971	p = find_process_by_pid(pid);
3972	if (!p)
3973		goto out_unlock;
3974
3975	retval = security_task_getscheduler(p);
3976	if (retval)
3977		goto out_unlock;
3978
3979	raw_spin_lock_irqsave(&p->pi_lock, flags);
3980	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3981	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3982
3983out_unlock:
3984	rcu_read_unlock();
3985
3986	return retval;
3987}
3988
3989/**
3990 * sys_sched_getaffinity - get the cpu affinity of a process
3991 * @pid: pid of the process
3992 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3993 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3994 *
3995 * Return: 0 on success. An error code otherwise.
3996 */
3997SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3998		unsigned long __user *, user_mask_ptr)
3999{
4000	int ret;
4001	cpumask_var_t mask;
4002
4003	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4004		return -EINVAL;
4005	if (len & (sizeof(unsigned long)-1))
4006		return -EINVAL;
4007
4008	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4009		return -ENOMEM;
4010
4011	ret = sched_getaffinity(pid, mask);
4012	if (ret == 0) {
4013		size_t retlen = min_t(size_t, len, cpumask_size());
4014
4015		if (copy_to_user(user_mask_ptr, mask, retlen))
4016			ret = -EFAULT;
4017		else
4018			ret = retlen;
4019	}
4020	free_cpumask_var(mask);
4021
4022	return ret;
4023}
4024
4025/**
4026 * sys_sched_yield - yield the current processor to other threads.
4027 *
4028 * This function yields the current CPU to other tasks. If there are no
4029 * other threads running on this CPU then this function will return.
4030 *
4031 * Return: 0.
4032 */
4033SYSCALL_DEFINE0(sched_yield)
4034{
4035	struct rq *rq = this_rq_lock();
4036
4037	schedstat_inc(rq, yld_count);
4038	current->sched_class->yield_task(rq);
4039
4040	/*
4041	 * Since we are going to call schedule() anyway, there's
4042	 * no need to preempt or enable interrupts:
4043	 */
4044	__release(rq->lock);
4045	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4046	do_raw_spin_unlock(&rq->lock);
4047	sched_preempt_enable_no_resched();
4048
4049	schedule();
4050
4051	return 0;
4052}
4053
4054static void __cond_resched(void)
4055{
4056	__preempt_count_add(PREEMPT_ACTIVE);
4057	__schedule();
4058	__preempt_count_sub(PREEMPT_ACTIVE);
4059}
4060
4061int __sched _cond_resched(void)
4062{
4063	if (should_resched()) {
4064		__cond_resched();
4065		return 1;
4066	}
4067	return 0;
4068}
4069EXPORT_SYMBOL(_cond_resched);
4070
4071/*
4072 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4073 * call schedule, and on return reacquire the lock.
4074 *
4075 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4076 * operations here to prevent schedule() from being called twice (once via
4077 * spin_unlock(), once by hand).
4078 */
4079int __cond_resched_lock(spinlock_t *lock)
4080{
4081	int resched = should_resched();
4082	int ret = 0;
4083
4084	lockdep_assert_held(lock);
4085
4086	if (spin_needbreak(lock) || resched) {
4087		spin_unlock(lock);
4088		if (resched)
4089			__cond_resched();
4090		else
4091			cpu_relax();
4092		ret = 1;
4093		spin_lock(lock);
4094	}
4095	return ret;
4096}
4097EXPORT_SYMBOL(__cond_resched_lock);
4098
4099int __sched __cond_resched_softirq(void)
4100{
4101	BUG_ON(!in_softirq());
4102
4103	if (should_resched()) {
4104		local_bh_enable();
4105		__cond_resched();
4106		local_bh_disable();
4107		return 1;
4108	}
4109	return 0;
4110}
4111EXPORT_SYMBOL(__cond_resched_softirq);
4112
4113/**
4114 * yield - yield the current processor to other threads.
4115 *
4116 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4117 *
4118 * The scheduler is at all times free to pick the calling task as the most
4119 * eligible task to run, if removing the yield() call from your code breaks
4120 * it, its already broken.
4121 *
4122 * Typical broken usage is:
4123 *
4124 * while (!event)
4125 * 	yield();
4126 *
4127 * where one assumes that yield() will let 'the other' process run that will
4128 * make event true. If the current task is a SCHED_FIFO task that will never
4129 * happen. Never use yield() as a progress guarantee!!
4130 *
4131 * If you want to use yield() to wait for something, use wait_event().
4132 * If you want to use yield() to be 'nice' for others, use cond_resched().
4133 * If you still want to use yield(), do not!
4134 */
4135void __sched yield(void)
4136{
4137	set_current_state(TASK_RUNNING);
4138	sys_sched_yield();
4139}
4140EXPORT_SYMBOL(yield);
4141
4142/**
4143 * yield_to - yield the current processor to another thread in
4144 * your thread group, or accelerate that thread toward the
4145 * processor it's on.
4146 * @p: target task
4147 * @preempt: whether task preemption is allowed or not
4148 *
4149 * It's the caller's job to ensure that the target task struct
4150 * can't go away on us before we can do any checks.
4151 *
4152 * Return:
4153 *	true (>0) if we indeed boosted the target task.
4154 *	false (0) if we failed to boost the target.
4155 *	-ESRCH if there's no task to yield to.
4156 */
4157bool __sched yield_to(struct task_struct *p, bool preempt)
4158{
4159	struct task_struct *curr = current;
4160	struct rq *rq, *p_rq;
4161	unsigned long flags;
4162	int yielded = 0;
4163
4164	local_irq_save(flags);
4165	rq = this_rq();
4166
4167again:
4168	p_rq = task_rq(p);
4169	/*
4170	 * If we're the only runnable task on the rq and target rq also
4171	 * has only one task, there's absolutely no point in yielding.
4172	 */
4173	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4174		yielded = -ESRCH;
4175		goto out_irq;
4176	}
4177
4178	double_rq_lock(rq, p_rq);
4179	if (task_rq(p) != p_rq) {
4180		double_rq_unlock(rq, p_rq);
4181		goto again;
4182	}
4183
4184	if (!curr->sched_class->yield_to_task)
4185		goto out_unlock;
4186
4187	if (curr->sched_class != p->sched_class)
4188		goto out_unlock;
4189
4190	if (task_running(p_rq, p) || p->state)
4191		goto out_unlock;
4192
4193	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4194	if (yielded) {
4195		schedstat_inc(rq, yld_count);
4196		/*
4197		 * Make p's CPU reschedule; pick_next_entity takes care of
4198		 * fairness.
4199		 */
4200		if (preempt && rq != p_rq)
4201			resched_task(p_rq->curr);
4202	}
4203
4204out_unlock:
4205	double_rq_unlock(rq, p_rq);
4206out_irq:
4207	local_irq_restore(flags);
4208
4209	if (yielded > 0)
4210		schedule();
4211
4212	return yielded;
4213}
4214EXPORT_SYMBOL_GPL(yield_to);
4215
4216/*
4217 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4218 * that process accounting knows that this is a task in IO wait state.
4219 */
4220void __sched io_schedule(void)
4221{
4222	struct rq *rq = raw_rq();
4223
4224	delayacct_blkio_start();
4225	atomic_inc(&rq->nr_iowait);
4226	blk_flush_plug(current);
4227	current->in_iowait = 1;
4228	schedule();
4229	current->in_iowait = 0;
4230	atomic_dec(&rq->nr_iowait);
4231	delayacct_blkio_end();
4232}
4233EXPORT_SYMBOL(io_schedule);
4234
4235long __sched io_schedule_timeout(long timeout)
4236{
4237	struct rq *rq = raw_rq();
4238	long ret;
4239
4240	delayacct_blkio_start();
4241	atomic_inc(&rq->nr_iowait);
4242	blk_flush_plug(current);
4243	current->in_iowait = 1;
4244	ret = schedule_timeout(timeout);
4245	current->in_iowait = 0;
4246	atomic_dec(&rq->nr_iowait);
4247	delayacct_blkio_end();
4248	return ret;
4249}
4250
4251/**
4252 * sys_sched_get_priority_max - return maximum RT priority.
4253 * @policy: scheduling class.
4254 *
4255 * Return: On success, this syscall returns the maximum
4256 * rt_priority that can be used by a given scheduling class.
4257 * On failure, a negative error code is returned.
4258 */
4259SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4260{
4261	int ret = -EINVAL;
4262
4263	switch (policy) {
4264	case SCHED_FIFO:
4265	case SCHED_RR:
4266		ret = MAX_USER_RT_PRIO-1;
4267		break;
4268	case SCHED_DEADLINE:
4269	case SCHED_NORMAL:
4270	case SCHED_BATCH:
4271	case SCHED_IDLE:
4272		ret = 0;
4273		break;
4274	}
4275	return ret;
4276}
4277
4278/**
4279 * sys_sched_get_priority_min - return minimum RT priority.
4280 * @policy: scheduling class.
4281 *
4282 * Return: On success, this syscall returns the minimum
4283 * rt_priority that can be used by a given scheduling class.
4284 * On failure, a negative error code is returned.
4285 */
4286SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4287{
4288	int ret = -EINVAL;
4289
4290	switch (policy) {
4291	case SCHED_FIFO:
4292	case SCHED_RR:
4293		ret = 1;
4294		break;
4295	case SCHED_DEADLINE:
4296	case SCHED_NORMAL:
4297	case SCHED_BATCH:
4298	case SCHED_IDLE:
4299		ret = 0;
4300	}
4301	return ret;
4302}
4303
4304/**
4305 * sys_sched_rr_get_interval - return the default timeslice of a process.
4306 * @pid: pid of the process.
4307 * @interval: userspace pointer to the timeslice value.
4308 *
4309 * this syscall writes the default timeslice value of a given process
4310 * into the user-space timespec buffer. A value of '0' means infinity.
4311 *
4312 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4313 * an error code.
4314 */
4315SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4316		struct timespec __user *, interval)
4317{
4318	struct task_struct *p;
4319	unsigned int time_slice;
4320	unsigned long flags;
4321	struct rq *rq;
4322	int retval;
4323	struct timespec t;
4324
4325	if (pid < 0)
4326		return -EINVAL;
4327
4328	retval = -ESRCH;
4329	rcu_read_lock();
4330	p = find_process_by_pid(pid);
4331	if (!p)
4332		goto out_unlock;
4333
4334	retval = security_task_getscheduler(p);
4335	if (retval)
4336		goto out_unlock;
4337
4338	rq = task_rq_lock(p, &flags);
4339	time_slice = 0;
4340	if (p->sched_class->get_rr_interval)
4341		time_slice = p->sched_class->get_rr_interval(rq, p);
4342	task_rq_unlock(rq, p, &flags);
4343
4344	rcu_read_unlock();
4345	jiffies_to_timespec(time_slice, &t);
4346	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4347	return retval;
4348
4349out_unlock:
4350	rcu_read_unlock();
4351	return retval;
4352}
4353
4354static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4355
4356void sched_show_task(struct task_struct *p)
4357{
4358	unsigned long free = 0;
4359	int ppid;
4360	unsigned state;
4361
4362	state = p->state ? __ffs(p->state) + 1 : 0;
4363	printk(KERN_INFO "%-15.15s %c", p->comm,
4364		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4365#if BITS_PER_LONG == 32
4366	if (state == TASK_RUNNING)
4367		printk(KERN_CONT " running  ");
4368	else
4369		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4370#else
4371	if (state == TASK_RUNNING)
4372		printk(KERN_CONT "  running task    ");
4373	else
4374		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4375#endif
4376#ifdef CONFIG_DEBUG_STACK_USAGE
4377	free = stack_not_used(p);
4378#endif
4379	rcu_read_lock();
4380	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4381	rcu_read_unlock();
4382	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4383		task_pid_nr(p), ppid,
4384		(unsigned long)task_thread_info(p)->flags);
4385
4386	print_worker_info(KERN_INFO, p);
4387	show_stack(p, NULL);
4388}
4389
4390void show_state_filter(unsigned long state_filter)
4391{
4392	struct task_struct *g, *p;
4393
4394#if BITS_PER_LONG == 32
4395	printk(KERN_INFO
4396		"  task                PC stack   pid father\n");
4397#else
4398	printk(KERN_INFO
4399		"  task                        PC stack   pid father\n");
4400#endif
4401	rcu_read_lock();
4402	do_each_thread(g, p) {
4403		/*
4404		 * reset the NMI-timeout, listing all files on a slow
4405		 * console might take a lot of time:
4406		 */
4407		touch_nmi_watchdog();
4408		if (!state_filter || (p->state & state_filter))
4409			sched_show_task(p);
4410	} while_each_thread(g, p);
4411
4412	touch_all_softlockup_watchdogs();
4413
4414#ifdef CONFIG_SCHED_DEBUG
4415	sysrq_sched_debug_show();
4416#endif
4417	rcu_read_unlock();
4418	/*
4419	 * Only show locks if all tasks are dumped:
4420	 */
4421	if (!state_filter)
4422		debug_show_all_locks();
4423}
4424
4425void init_idle_bootup_task(struct task_struct *idle)
4426{
4427	idle->sched_class = &idle_sched_class;
4428}
4429
4430/**
4431 * init_idle - set up an idle thread for a given CPU
4432 * @idle: task in question
4433 * @cpu: cpu the idle task belongs to
4434 *
4435 * NOTE: this function does not set the idle thread's NEED_RESCHED
4436 * flag, to make booting more robust.
4437 */
4438void init_idle(struct task_struct *idle, int cpu)
4439{
4440	struct rq *rq = cpu_rq(cpu);
4441	unsigned long flags;
4442
4443	raw_spin_lock_irqsave(&rq->lock, flags);
4444
4445	__sched_fork(0, idle);
4446	idle->state = TASK_RUNNING;
4447	idle->se.exec_start = sched_clock();
4448
4449	do_set_cpus_allowed(idle, cpumask_of(cpu));
4450	/*
4451	 * We're having a chicken and egg problem, even though we are
4452	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4453	 * lockdep check in task_group() will fail.
4454	 *
4455	 * Similar case to sched_fork(). / Alternatively we could
4456	 * use task_rq_lock() here and obtain the other rq->lock.
4457	 *
4458	 * Silence PROVE_RCU
4459	 */
4460	rcu_read_lock();
4461	__set_task_cpu(idle, cpu);
4462	rcu_read_unlock();
4463
4464	rq->curr = rq->idle = idle;
4465	idle->on_rq = 1;
4466#if defined(CONFIG_SMP)
4467	idle->on_cpu = 1;
4468#endif
4469	raw_spin_unlock_irqrestore(&rq->lock, flags);
4470
4471	/* Set the preempt count _outside_ the spinlocks! */
4472	init_idle_preempt_count(idle, cpu);
4473
4474	/*
4475	 * The idle tasks have their own, simple scheduling class:
4476	 */
4477	idle->sched_class = &idle_sched_class;
4478	ftrace_graph_init_idle_task(idle, cpu);
4479	vtime_init_idle(idle, cpu);
4480#if defined(CONFIG_SMP)
4481	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4482#endif
4483}
4484
4485#ifdef CONFIG_SMP
4486void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4487{
4488	if (p->sched_class && p->sched_class->set_cpus_allowed)
4489		p->sched_class->set_cpus_allowed(p, new_mask);
4490
4491	cpumask_copy(&p->cpus_allowed, new_mask);
4492	p->nr_cpus_allowed = cpumask_weight(new_mask);
4493}
4494
4495/*
4496 * This is how migration works:
4497 *
4498 * 1) we invoke migration_cpu_stop() on the target CPU using
4499 *    stop_one_cpu().
4500 * 2) stopper starts to run (implicitly forcing the migrated thread
4501 *    off the CPU)
4502 * 3) it checks whether the migrated task is still in the wrong runqueue.
4503 * 4) if it's in the wrong runqueue then the migration thread removes
4504 *    it and puts it into the right queue.
4505 * 5) stopper completes and stop_one_cpu() returns and the migration
4506 *    is done.
4507 */
4508
4509/*
4510 * Change a given task's CPU affinity. Migrate the thread to a
4511 * proper CPU and schedule it away if the CPU it's executing on
4512 * is removed from the allowed bitmask.
4513 *
4514 * NOTE: the caller must have a valid reference to the task, the
4515 * task must not exit() & deallocate itself prematurely. The
4516 * call is not atomic; no spinlocks may be held.
4517 */
4518int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4519{
4520	unsigned long flags;
4521	struct rq *rq;
4522	unsigned int dest_cpu;
4523	int ret = 0;
4524
4525	rq = task_rq_lock(p, &flags);
4526
4527	if (cpumask_equal(&p->cpus_allowed, new_mask))
4528		goto out;
4529
4530	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4531		ret = -EINVAL;
4532		goto out;
4533	}
4534
4535	do_set_cpus_allowed(p, new_mask);
4536
4537	/* Can the task run on the task's current CPU? If so, we're done */
4538	if (cpumask_test_cpu(task_cpu(p), new_mask))
4539		goto out;
4540
4541	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4542	if (p->on_rq) {
4543		struct migration_arg arg = { p, dest_cpu };
4544		/* Need help from migration thread: drop lock and wait. */
4545		task_rq_unlock(rq, p, &flags);
4546		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4547		tlb_migrate_finish(p->mm);
4548		return 0;
4549	}
4550out:
4551	task_rq_unlock(rq, p, &flags);
4552
4553	return ret;
4554}
4555EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4556
4557/*
4558 * Move (not current) task off this cpu, onto dest cpu. We're doing
4559 * this because either it can't run here any more (set_cpus_allowed()
4560 * away from this CPU, or CPU going down), or because we're
4561 * attempting to rebalance this task on exec (sched_exec).
4562 *
4563 * So we race with normal scheduler movements, but that's OK, as long
4564 * as the task is no longer on this CPU.
4565 *
4566 * Returns non-zero if task was successfully migrated.
4567 */
4568static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4569{
4570	struct rq *rq_dest, *rq_src;
4571	int ret = 0;
4572
4573	if (unlikely(!cpu_active(dest_cpu)))
4574		return ret;
4575
4576	rq_src = cpu_rq(src_cpu);
4577	rq_dest = cpu_rq(dest_cpu);
4578
4579	raw_spin_lock(&p->pi_lock);
4580	double_rq_lock(rq_src, rq_dest);
4581	/* Already moved. */
4582	if (task_cpu(p) != src_cpu)
4583		goto done;
4584	/* Affinity changed (again). */
4585	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4586		goto fail;
4587
4588	/*
4589	 * If we're not on a rq, the next wake-up will ensure we're
4590	 * placed properly.
4591	 */
4592	if (p->on_rq) {
4593		dequeue_task(rq_src, p, 0);
4594		set_task_cpu(p, dest_cpu);
4595		enqueue_task(rq_dest, p, 0);
4596		check_preempt_curr(rq_dest, p, 0);
4597	}
4598done:
4599	ret = 1;
4600fail:
4601	double_rq_unlock(rq_src, rq_dest);
4602	raw_spin_unlock(&p->pi_lock);
4603	return ret;
4604}
4605
4606#ifdef CONFIG_NUMA_BALANCING
4607/* Migrate current task p to target_cpu */
4608int migrate_task_to(struct task_struct *p, int target_cpu)
4609{
4610	struct migration_arg arg = { p, target_cpu };
4611	int curr_cpu = task_cpu(p);
4612
4613	if (curr_cpu == target_cpu)
4614		return 0;
4615
4616	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4617		return -EINVAL;
4618
4619	/* TODO: This is not properly updating schedstats */
4620
4621	trace_sched_move_numa(p, curr_cpu, target_cpu);
4622	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4623}
4624
4625/*
4626 * Requeue a task on a given node and accurately track the number of NUMA
4627 * tasks on the runqueues
4628 */
4629void sched_setnuma(struct task_struct *p, int nid)
4630{
4631	struct rq *rq;
4632	unsigned long flags;
4633	bool on_rq, running;
4634
4635	rq = task_rq_lock(p, &flags);
4636	on_rq = p->on_rq;
4637	running = task_current(rq, p);
4638
4639	if (on_rq)
4640		dequeue_task(rq, p, 0);
4641	if (running)
4642		p->sched_class->put_prev_task(rq, p);
4643
4644	p->numa_preferred_nid = nid;
4645
4646	if (running)
4647		p->sched_class->set_curr_task(rq);
4648	if (on_rq)
4649		enqueue_task(rq, p, 0);
4650	task_rq_unlock(rq, p, &flags);
4651}
4652#endif
4653
4654/*
4655 * migration_cpu_stop - this will be executed by a highprio stopper thread
4656 * and performs thread migration by bumping thread off CPU then
4657 * 'pushing' onto another runqueue.
4658 */
4659static int migration_cpu_stop(void *data)
4660{
4661	struct migration_arg *arg = data;
4662
4663	/*
4664	 * The original target cpu might have gone down and we might
4665	 * be on another cpu but it doesn't matter.
4666	 */
4667	local_irq_disable();
4668	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4669	local_irq_enable();
4670	return 0;
4671}
4672
4673#ifdef CONFIG_HOTPLUG_CPU
4674
4675/*
4676 * Ensures that the idle task is using init_mm right before its cpu goes
4677 * offline.
4678 */
4679void idle_task_exit(void)
4680{
4681	struct mm_struct *mm = current->active_mm;
4682
4683	BUG_ON(cpu_online(smp_processor_id()));
4684
4685	if (mm != &init_mm) {
4686		switch_mm(mm, &init_mm, current);
4687		finish_arch_post_lock_switch();
4688	}
4689	mmdrop(mm);
4690}
4691
4692/*
4693 * Since this CPU is going 'away' for a while, fold any nr_active delta
4694 * we might have. Assumes we're called after migrate_tasks() so that the
4695 * nr_active count is stable.
4696 *
4697 * Also see the comment "Global load-average calculations".
4698 */
4699static void calc_load_migrate(struct rq *rq)
4700{
4701	long delta = calc_load_fold_active(rq);
4702	if (delta)
4703		atomic_long_add(delta, &calc_load_tasks);
4704}
4705
4706static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4707{
4708}
4709
4710static const struct sched_class fake_sched_class = {
4711	.put_prev_task = put_prev_task_fake,
4712};
4713
4714static struct task_struct fake_task = {
4715	/*
4716	 * Avoid pull_{rt,dl}_task()
4717	 */
4718	.prio = MAX_PRIO + 1,
4719	.sched_class = &fake_sched_class,
4720};
4721
4722/*
4723 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4724 * try_to_wake_up()->select_task_rq().
4725 *
4726 * Called with rq->lock held even though we'er in stop_machine() and
4727 * there's no concurrency possible, we hold the required locks anyway
4728 * because of lock validation efforts.
4729 */
4730static void migrate_tasks(unsigned int dead_cpu)
4731{
4732	struct rq *rq = cpu_rq(dead_cpu);
4733	struct task_struct *next, *stop = rq->stop;
4734	int dest_cpu;
4735
4736	/*
4737	 * Fudge the rq selection such that the below task selection loop
4738	 * doesn't get stuck on the currently eligible stop task.
4739	 *
4740	 * We're currently inside stop_machine() and the rq is either stuck
4741	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4742	 * either way we should never end up calling schedule() until we're
4743	 * done here.
4744	 */
4745	rq->stop = NULL;
4746
4747	/*
4748	 * put_prev_task() and pick_next_task() sched
4749	 * class method both need to have an up-to-date
4750	 * value of rq->clock[_task]
4751	 */
4752	update_rq_clock(rq);
4753
4754	for ( ; ; ) {
4755		/*
4756		 * There's this thread running, bail when that's the only
4757		 * remaining thread.
4758		 */
4759		if (rq->nr_running == 1)
4760			break;
4761
4762		next = pick_next_task(rq, &fake_task);
4763		BUG_ON(!next);
4764		next->sched_class->put_prev_task(rq, next);
4765
4766		/* Find suitable destination for @next, with force if needed. */
4767		dest_cpu = select_fallback_rq(dead_cpu, next);
4768		raw_spin_unlock(&rq->lock);
4769
4770		__migrate_task(next, dead_cpu, dest_cpu);
4771
4772		raw_spin_lock(&rq->lock);
4773	}
4774
4775	rq->stop = stop;
4776}
4777
4778#endif /* CONFIG_HOTPLUG_CPU */
4779
4780#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4781
4782static struct ctl_table sd_ctl_dir[] = {
4783	{
4784		.procname	= "sched_domain",
4785		.mode		= 0555,
4786	},
4787	{}
4788};
4789
4790static struct ctl_table sd_ctl_root[] = {
4791	{
4792		.procname	= "kernel",
4793		.mode		= 0555,
4794		.child		= sd_ctl_dir,
4795	},
4796	{}
4797};
4798
4799static struct ctl_table *sd_alloc_ctl_entry(int n)
4800{
4801	struct ctl_table *entry =
4802		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4803
4804	return entry;
4805}
4806
4807static void sd_free_ctl_entry(struct ctl_table **tablep)
4808{
4809	struct ctl_table *entry;
4810
4811	/*
4812	 * In the intermediate directories, both the child directory and
4813	 * procname are dynamically allocated and could fail but the mode
4814	 * will always be set. In the lowest directory the names are
4815	 * static strings and all have proc handlers.
4816	 */
4817	for (entry = *tablep; entry->mode; entry++) {
4818		if (entry->child)
4819			sd_free_ctl_entry(&entry->child);
4820		if (entry->proc_handler == NULL)
4821			kfree(entry->procname);
4822	}
4823
4824	kfree(*tablep);
4825	*tablep = NULL;
4826}
4827
4828static int min_load_idx = 0;
4829static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4830
4831static void
4832set_table_entry(struct ctl_table *entry,
4833		const char *procname, void *data, int maxlen,
4834		umode_t mode, proc_handler *proc_handler,
4835		bool load_idx)
4836{
4837	entry->procname = procname;
4838	entry->data = data;
4839	entry->maxlen = maxlen;
4840	entry->mode = mode;
4841	entry->proc_handler = proc_handler;
4842
4843	if (load_idx) {
4844		entry->extra1 = &min_load_idx;
4845		entry->extra2 = &max_load_idx;
4846	}
4847}
4848
4849static struct ctl_table *
4850sd_alloc_ctl_domain_table(struct sched_domain *sd)
4851{
4852	struct ctl_table *table = sd_alloc_ctl_entry(14);
4853
4854	if (table == NULL)
4855		return NULL;
4856
4857	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4858		sizeof(long), 0644, proc_doulongvec_minmax, false);
4859	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4860		sizeof(long), 0644, proc_doulongvec_minmax, false);
4861	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4862		sizeof(int), 0644, proc_dointvec_minmax, true);
4863	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4864		sizeof(int), 0644, proc_dointvec_minmax, true);
4865	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4866		sizeof(int), 0644, proc_dointvec_minmax, true);
4867	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4868		sizeof(int), 0644, proc_dointvec_minmax, true);
4869	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4870		sizeof(int), 0644, proc_dointvec_minmax, true);
4871	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4872		sizeof(int), 0644, proc_dointvec_minmax, false);
4873	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4874		sizeof(int), 0644, proc_dointvec_minmax, false);
4875	set_table_entry(&table[9], "cache_nice_tries",
4876		&sd->cache_nice_tries,
4877		sizeof(int), 0644, proc_dointvec_minmax, false);
4878	set_table_entry(&table[10], "flags", &sd->flags,
4879		sizeof(int), 0644, proc_dointvec_minmax, false);
4880	set_table_entry(&table[11], "max_newidle_lb_cost",
4881		&sd->max_newidle_lb_cost,
4882		sizeof(long), 0644, proc_doulongvec_minmax, false);
4883	set_table_entry(&table[12], "name", sd->name,
4884		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4885	/* &table[13] is terminator */
4886
4887	return table;
4888}
4889
4890static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4891{
4892	struct ctl_table *entry, *table;
4893	struct sched_domain *sd;
4894	int domain_num = 0, i;
4895	char buf[32];
4896
4897	for_each_domain(cpu, sd)
4898		domain_num++;
4899	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4900	if (table == NULL)
4901		return NULL;
4902
4903	i = 0;
4904	for_each_domain(cpu, sd) {
4905		snprintf(buf, 32, "domain%d", i);
4906		entry->procname = kstrdup(buf, GFP_KERNEL);
4907		entry->mode = 0555;
4908		entry->child = sd_alloc_ctl_domain_table(sd);
4909		entry++;
4910		i++;
4911	}
4912	return table;
4913}
4914
4915static struct ctl_table_header *sd_sysctl_header;
4916static void register_sched_domain_sysctl(void)
4917{
4918	int i, cpu_num = num_possible_cpus();
4919	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4920	char buf[32];
4921
4922	WARN_ON(sd_ctl_dir[0].child);
4923	sd_ctl_dir[0].child = entry;
4924
4925	if (entry == NULL)
4926		return;
4927
4928	for_each_possible_cpu(i) {
4929		snprintf(buf, 32, "cpu%d", i);
4930		entry->procname = kstrdup(buf, GFP_KERNEL);
4931		entry->mode = 0555;
4932		entry->child = sd_alloc_ctl_cpu_table(i);
4933		entry++;
4934	}
4935
4936	WARN_ON(sd_sysctl_header);
4937	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4938}
4939
4940/* may be called multiple times per register */
4941static void unregister_sched_domain_sysctl(void)
4942{
4943	if (sd_sysctl_header)
4944		unregister_sysctl_table(sd_sysctl_header);
4945	sd_sysctl_header = NULL;
4946	if (sd_ctl_dir[0].child)
4947		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4948}
4949#else
4950static void register_sched_domain_sysctl(void)
4951{
4952}
4953static void unregister_sched_domain_sysctl(void)
4954{
4955}
4956#endif
4957
4958static void set_rq_online(struct rq *rq)
4959{
4960	if (!rq->online) {
4961		const struct sched_class *class;
4962
4963		cpumask_set_cpu(rq->cpu, rq->rd->online);
4964		rq->online = 1;
4965
4966		for_each_class(class) {
4967			if (class->rq_online)
4968				class->rq_online(rq);
4969		}
4970	}
4971}
4972
4973static void set_rq_offline(struct rq *rq)
4974{
4975	if (rq->online) {
4976		const struct sched_class *class;
4977
4978		for_each_class(class) {
4979			if (class->rq_offline)
4980				class->rq_offline(rq);
4981		}
4982
4983		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4984		rq->online = 0;
4985	}
4986}
4987
4988/*
4989 * migration_call - callback that gets triggered when a CPU is added.
4990 * Here we can start up the necessary migration thread for the new CPU.
4991 */
4992static int
4993migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4994{
4995	int cpu = (long)hcpu;
4996	unsigned long flags;
4997	struct rq *rq = cpu_rq(cpu);
4998
4999	switch (action & ~CPU_TASKS_FROZEN) {
5000
5001	case CPU_UP_PREPARE:
5002		rq->calc_load_update = calc_load_update;
5003		break;
5004
5005	case CPU_ONLINE:
5006		/* Update our root-domain */
5007		raw_spin_lock_irqsave(&rq->lock, flags);
5008		if (rq->rd) {
5009			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5010
5011			set_rq_online(rq);
5012		}
5013		raw_spin_unlock_irqrestore(&rq->lock, flags);
5014		break;
5015
5016#ifdef CONFIG_HOTPLUG_CPU
5017	case CPU_DYING:
5018		sched_ttwu_pending();
5019		/* Update our root-domain */
5020		raw_spin_lock_irqsave(&rq->lock, flags);
5021		if (rq->rd) {
5022			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5023			set_rq_offline(rq);
5024		}
5025		migrate_tasks(cpu);
5026		BUG_ON(rq->nr_running != 1); /* the migration thread */
5027		raw_spin_unlock_irqrestore(&rq->lock, flags);
5028		break;
5029
5030	case CPU_DEAD:
5031		calc_load_migrate(rq);
5032		break;
5033#endif
5034	}
5035
5036	update_max_interval();
5037
5038	return NOTIFY_OK;
5039}
5040
5041/*
5042 * Register at high priority so that task migration (migrate_all_tasks)
5043 * happens before everything else.  This has to be lower priority than
5044 * the notifier in the perf_event subsystem, though.
5045 */
5046static struct notifier_block migration_notifier = {
5047	.notifier_call = migration_call,
5048	.priority = CPU_PRI_MIGRATION,
5049};
5050
5051static int sched_cpu_active(struct notifier_block *nfb,
5052				      unsigned long action, void *hcpu)
5053{
5054	switch (action & ~CPU_TASKS_FROZEN) {
5055	case CPU_STARTING:
5056	case CPU_DOWN_FAILED:
5057		set_cpu_active((long)hcpu, true);
5058		return NOTIFY_OK;
5059	default:
5060		return NOTIFY_DONE;
5061	}
5062}
5063
5064static int sched_cpu_inactive(struct notifier_block *nfb,
5065					unsigned long action, void *hcpu)
5066{
5067	unsigned long flags;
5068	long cpu = (long)hcpu;
5069
5070	switch (action & ~CPU_TASKS_FROZEN) {
5071	case CPU_DOWN_PREPARE:
5072		set_cpu_active(cpu, false);
5073
5074		/* explicitly allow suspend */
5075		if (!(action & CPU_TASKS_FROZEN)) {
5076			struct dl_bw *dl_b = dl_bw_of(cpu);
5077			bool overflow;
5078			int cpus;
5079
5080			raw_spin_lock_irqsave(&dl_b->lock, flags);
5081			cpus = dl_bw_cpus(cpu);
5082			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5083			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5084
5085			if (overflow)
5086				return notifier_from_errno(-EBUSY);
5087		}
5088		return NOTIFY_OK;
5089	}
5090
5091	return NOTIFY_DONE;
5092}
5093
5094static int __init migration_init(void)
5095{
5096	void *cpu = (void *)(long)smp_processor_id();
5097	int err;
5098
5099	/* Initialize migration for the boot CPU */
5100	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5101	BUG_ON(err == NOTIFY_BAD);
5102	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5103	register_cpu_notifier(&migration_notifier);
5104
5105	/* Register cpu active notifiers */
5106	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5107	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5108
5109	return 0;
5110}
5111early_initcall(migration_init);
5112#endif
5113
5114#ifdef CONFIG_SMP
5115
5116static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5117
5118#ifdef CONFIG_SCHED_DEBUG
5119
5120static __read_mostly int sched_debug_enabled;
5121
5122static int __init sched_debug_setup(char *str)
5123{
5124	sched_debug_enabled = 1;
5125
5126	return 0;
5127}
5128early_param("sched_debug", sched_debug_setup);
5129
5130static inline bool sched_debug(void)
5131{
5132	return sched_debug_enabled;
5133}
5134
5135static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5136				  struct cpumask *groupmask)
5137{
5138	struct sched_group *group = sd->groups;
5139	char str[256];
5140
5141	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5142	cpumask_clear(groupmask);
5143
5144	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5145
5146	if (!(sd->flags & SD_LOAD_BALANCE)) {
5147		printk("does not load-balance\n");
5148		if (sd->parent)
5149			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5150					" has parent");
5151		return -1;
5152	}
5153
5154	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5155
5156	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5157		printk(KERN_ERR "ERROR: domain->span does not contain "
5158				"CPU%d\n", cpu);
5159	}
5160	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5161		printk(KERN_ERR "ERROR: domain->groups does not contain"
5162				" CPU%d\n", cpu);
5163	}
5164
5165	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5166	do {
5167		if (!group) {
5168			printk("\n");
5169			printk(KERN_ERR "ERROR: group is NULL\n");
5170			break;
5171		}
5172
5173		/*
5174		 * Even though we initialize ->power to something semi-sane,
5175		 * we leave power_orig unset. This allows us to detect if
5176		 * domain iteration is still funny without causing /0 traps.
5177		 */
5178		if (!group->sgp->power_orig) {
5179			printk(KERN_CONT "\n");
5180			printk(KERN_ERR "ERROR: domain->cpu_power not "
5181					"set\n");
5182			break;
5183		}
5184
5185		if (!cpumask_weight(sched_group_cpus(group))) {
5186			printk(KERN_CONT "\n");
5187			printk(KERN_ERR "ERROR: empty group\n");
5188			break;
5189		}
5190
5191		if (!(sd->flags & SD_OVERLAP) &&
5192		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5193			printk(KERN_CONT "\n");
5194			printk(KERN_ERR "ERROR: repeated CPUs\n");
5195			break;
5196		}
5197
5198		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5199
5200		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5201
5202		printk(KERN_CONT " %s", str);
5203		if (group->sgp->power != SCHED_POWER_SCALE) {
5204			printk(KERN_CONT " (cpu_power = %d)",
5205				group->sgp->power);
5206		}
5207
5208		group = group->next;
5209	} while (group != sd->groups);
5210	printk(KERN_CONT "\n");
5211
5212	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5213		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5214
5215	if (sd->parent &&
5216	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5217		printk(KERN_ERR "ERROR: parent span is not a superset "
5218			"of domain->span\n");
5219	return 0;
5220}
5221
5222static void sched_domain_debug(struct sched_domain *sd, int cpu)
5223{
5224	int level = 0;
5225
5226	if (!sched_debug_enabled)
5227		return;
5228
5229	if (!sd) {
5230		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5231		return;
5232	}
5233
5234	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5235
5236	for (;;) {
5237		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5238			break;
5239		level++;
5240		sd = sd->parent;
5241		if (!sd)
5242			break;
5243	}
5244}
5245#else /* !CONFIG_SCHED_DEBUG */
5246# define sched_domain_debug(sd, cpu) do { } while (0)
5247static inline bool sched_debug(void)
5248{
5249	return false;
5250}
5251#endif /* CONFIG_SCHED_DEBUG */
5252
5253static int sd_degenerate(struct sched_domain *sd)
5254{
5255	if (cpumask_weight(sched_domain_span(sd)) == 1)
5256		return 1;
5257
5258	/* Following flags need at least 2 groups */
5259	if (sd->flags & (SD_LOAD_BALANCE |
5260			 SD_BALANCE_NEWIDLE |
5261			 SD_BALANCE_FORK |
5262			 SD_BALANCE_EXEC |
5263			 SD_SHARE_CPUPOWER |
5264			 SD_SHARE_PKG_RESOURCES)) {
5265		if (sd->groups != sd->groups->next)
5266			return 0;
5267	}
5268
5269	/* Following flags don't use groups */
5270	if (sd->flags & (SD_WAKE_AFFINE))
5271		return 0;
5272
5273	return 1;
5274}
5275
5276static int
5277sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5278{
5279	unsigned long cflags = sd->flags, pflags = parent->flags;
5280
5281	if (sd_degenerate(parent))
5282		return 1;
5283
5284	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5285		return 0;
5286
5287	/* Flags needing groups don't count if only 1 group in parent */
5288	if (parent->groups == parent->groups->next) {
5289		pflags &= ~(SD_LOAD_BALANCE |
5290				SD_BALANCE_NEWIDLE |
5291				SD_BALANCE_FORK |
5292				SD_BALANCE_EXEC |
5293				SD_SHARE_CPUPOWER |
5294				SD_SHARE_PKG_RESOURCES |
5295				SD_PREFER_SIBLING);
5296		if (nr_node_ids == 1)
5297			pflags &= ~SD_SERIALIZE;
5298	}
5299	if (~cflags & pflags)
5300		return 0;
5301
5302	return 1;
5303}
5304
5305static void free_rootdomain(struct rcu_head *rcu)
5306{
5307	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5308
5309	cpupri_cleanup(&rd->cpupri);
5310	cpudl_cleanup(&rd->cpudl);
5311	free_cpumask_var(rd->dlo_mask);
5312	free_cpumask_var(rd->rto_mask);
5313	free_cpumask_var(rd->online);
5314	free_cpumask_var(rd->span);
5315	kfree(rd);
5316}
5317
5318static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5319{
5320	struct root_domain *old_rd = NULL;
5321	unsigned long flags;
5322
5323	raw_spin_lock_irqsave(&rq->lock, flags);
5324
5325	if (rq->rd) {
5326		old_rd = rq->rd;
5327
5328		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5329			set_rq_offline(rq);
5330
5331		cpumask_clear_cpu(rq->cpu, old_rd->span);
5332
5333		/*
5334		 * If we dont want to free the old_rd yet then
5335		 * set old_rd to NULL to skip the freeing later
5336		 * in this function:
5337		 */
5338		if (!atomic_dec_and_test(&old_rd->refcount))
5339			old_rd = NULL;
5340	}
5341
5342	atomic_inc(&rd->refcount);
5343	rq->rd = rd;
5344
5345	cpumask_set_cpu(rq->cpu, rd->span);
5346	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5347		set_rq_online(rq);
5348
5349	raw_spin_unlock_irqrestore(&rq->lock, flags);
5350
5351	if (old_rd)
5352		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5353}
5354
5355static int init_rootdomain(struct root_domain *rd)
5356{
5357	memset(rd, 0, sizeof(*rd));
5358
5359	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5360		goto out;
5361	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5362		goto free_span;
5363	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5364		goto free_online;
5365	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5366		goto free_dlo_mask;
5367
5368	init_dl_bw(&rd->dl_bw);
5369	if (cpudl_init(&rd->cpudl) != 0)
5370		goto free_dlo_mask;
5371
5372	if (cpupri_init(&rd->cpupri) != 0)
5373		goto free_rto_mask;
5374	return 0;
5375
5376free_rto_mask:
5377	free_cpumask_var(rd->rto_mask);
5378free_dlo_mask:
5379	free_cpumask_var(rd->dlo_mask);
5380free_online:
5381	free_cpumask_var(rd->online);
5382free_span:
5383	free_cpumask_var(rd->span);
5384out:
5385	return -ENOMEM;
5386}
5387
5388/*
5389 * By default the system creates a single root-domain with all cpus as
5390 * members (mimicking the global state we have today).
5391 */
5392struct root_domain def_root_domain;
5393
5394static void init_defrootdomain(void)
5395{
5396	init_rootdomain(&def_root_domain);
5397
5398	atomic_set(&def_root_domain.refcount, 1);
5399}
5400
5401static struct root_domain *alloc_rootdomain(void)
5402{
5403	struct root_domain *rd;
5404
5405	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5406	if (!rd)
5407		return NULL;
5408
5409	if (init_rootdomain(rd) != 0) {
5410		kfree(rd);
5411		return NULL;
5412	}
5413
5414	return rd;
5415}
5416
5417static void free_sched_groups(struct sched_group *sg, int free_sgp)
5418{
5419	struct sched_group *tmp, *first;
5420
5421	if (!sg)
5422		return;
5423
5424	first = sg;
5425	do {
5426		tmp = sg->next;
5427
5428		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5429			kfree(sg->sgp);
5430
5431		kfree(sg);
5432		sg = tmp;
5433	} while (sg != first);
5434}
5435
5436static void free_sched_domain(struct rcu_head *rcu)
5437{
5438	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5439
5440	/*
5441	 * If its an overlapping domain it has private groups, iterate and
5442	 * nuke them all.
5443	 */
5444	if (sd->flags & SD_OVERLAP) {
5445		free_sched_groups(sd->groups, 1);
5446	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5447		kfree(sd->groups->sgp);
5448		kfree(sd->groups);
5449	}
5450	kfree(sd);
5451}
5452
5453static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5454{
5455	call_rcu(&sd->rcu, free_sched_domain);
5456}
5457
5458static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5459{
5460	for (; sd; sd = sd->parent)
5461		destroy_sched_domain(sd, cpu);
5462}
5463
5464/*
5465 * Keep a special pointer to the highest sched_domain that has
5466 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5467 * allows us to avoid some pointer chasing select_idle_sibling().
5468 *
5469 * Also keep a unique ID per domain (we use the first cpu number in
5470 * the cpumask of the domain), this allows us to quickly tell if
5471 * two cpus are in the same cache domain, see cpus_share_cache().
5472 */
5473DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5474DEFINE_PER_CPU(int, sd_llc_size);
5475DEFINE_PER_CPU(int, sd_llc_id);
5476DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5477DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5478DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5479
5480static void update_top_cache_domain(int cpu)
5481{
5482	struct sched_domain *sd;
5483	struct sched_domain *busy_sd = NULL;
5484	int id = cpu;
5485	int size = 1;
5486
5487	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5488	if (sd) {
5489		id = cpumask_first(sched_domain_span(sd));
5490		size = cpumask_weight(sched_domain_span(sd));
5491		busy_sd = sd->parent; /* sd_busy */
5492	}
5493	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5494
5495	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5496	per_cpu(sd_llc_size, cpu) = size;
5497	per_cpu(sd_llc_id, cpu) = id;
5498
5499	sd = lowest_flag_domain(cpu, SD_NUMA);
5500	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5501
5502	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5503	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5504}
5505
5506/*
5507 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5508 * hold the hotplug lock.
5509 */
5510static void
5511cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5512{
5513	struct rq *rq = cpu_rq(cpu);
5514	struct sched_domain *tmp;
5515
5516	/* Remove the sched domains which do not contribute to scheduling. */
5517	for (tmp = sd; tmp; ) {
5518		struct sched_domain *parent = tmp->parent;
5519		if (!parent)
5520			break;
5521
5522		if (sd_parent_degenerate(tmp, parent)) {
5523			tmp->parent = parent->parent;
5524			if (parent->parent)
5525				parent->parent->child = tmp;
5526			/*
5527			 * Transfer SD_PREFER_SIBLING down in case of a
5528			 * degenerate parent; the spans match for this
5529			 * so the property transfers.
5530			 */
5531			if (parent->flags & SD_PREFER_SIBLING)
5532				tmp->flags |= SD_PREFER_SIBLING;
5533			destroy_sched_domain(parent, cpu);
5534		} else
5535			tmp = tmp->parent;
5536	}
5537
5538	if (sd && sd_degenerate(sd)) {
5539		tmp = sd;
5540		sd = sd->parent;
5541		destroy_sched_domain(tmp, cpu);
5542		if (sd)
5543			sd->child = NULL;
5544	}
5545
5546	sched_domain_debug(sd, cpu);
5547
5548	rq_attach_root(rq, rd);
5549	tmp = rq->sd;
5550	rcu_assign_pointer(rq->sd, sd);
5551	destroy_sched_domains(tmp, cpu);
5552
5553	update_top_cache_domain(cpu);
5554}
5555
5556/* cpus with isolated domains */
5557static cpumask_var_t cpu_isolated_map;
5558
5559/* Setup the mask of cpus configured for isolated domains */
5560static int __init isolated_cpu_setup(char *str)
5561{
5562	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5563	cpulist_parse(str, cpu_isolated_map);
5564	return 1;
5565}
5566
5567__setup("isolcpus=", isolated_cpu_setup);
5568
5569static const struct cpumask *cpu_cpu_mask(int cpu)
5570{
5571	return cpumask_of_node(cpu_to_node(cpu));
5572}
5573
5574struct sd_data {
5575	struct sched_domain **__percpu sd;
5576	struct sched_group **__percpu sg;
5577	struct sched_group_power **__percpu sgp;
5578};
5579
5580struct s_data {
5581	struct sched_domain ** __percpu sd;
5582	struct root_domain	*rd;
5583};
5584
5585enum s_alloc {
5586	sa_rootdomain,
5587	sa_sd,
5588	sa_sd_storage,
5589	sa_none,
5590};
5591
5592struct sched_domain_topology_level;
5593
5594typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5595typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5596
5597#define SDTL_OVERLAP	0x01
5598
5599struct sched_domain_topology_level {
5600	sched_domain_init_f init;
5601	sched_domain_mask_f mask;
5602	int		    flags;
5603	int		    numa_level;
5604	struct sd_data      data;
5605};
5606
5607/*
5608 * Build an iteration mask that can exclude certain CPUs from the upwards
5609 * domain traversal.
5610 *
5611 * Asymmetric node setups can result in situations where the domain tree is of
5612 * unequal depth, make sure to skip domains that already cover the entire
5613 * range.
5614 *
5615 * In that case build_sched_domains() will have terminated the iteration early
5616 * and our sibling sd spans will be empty. Domains should always include the
5617 * cpu they're built on, so check that.
5618 *
5619 */
5620static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5621{
5622	const struct cpumask *span = sched_domain_span(sd);
5623	struct sd_data *sdd = sd->private;
5624	struct sched_domain *sibling;
5625	int i;
5626
5627	for_each_cpu(i, span) {
5628		sibling = *per_cpu_ptr(sdd->sd, i);
5629		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5630			continue;
5631
5632		cpumask_set_cpu(i, sched_group_mask(sg));
5633	}
5634}
5635
5636/*
5637 * Return the canonical balance cpu for this group, this is the first cpu
5638 * of this group that's also in the iteration mask.
5639 */
5640int group_balance_cpu(struct sched_group *sg)
5641{
5642	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5643}
5644
5645static int
5646build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5647{
5648	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5649	const struct cpumask *span = sched_domain_span(sd);
5650	struct cpumask *covered = sched_domains_tmpmask;
5651	struct sd_data *sdd = sd->private;
5652	struct sched_domain *child;
5653	int i;
5654
5655	cpumask_clear(covered);
5656
5657	for_each_cpu(i, span) {
5658		struct cpumask *sg_span;
5659
5660		if (cpumask_test_cpu(i, covered))
5661			continue;
5662
5663		child = *per_cpu_ptr(sdd->sd, i);
5664
5665		/* See the comment near build_group_mask(). */
5666		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5667			continue;
5668
5669		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5670				GFP_KERNEL, cpu_to_node(cpu));
5671
5672		if (!sg)
5673			goto fail;
5674
5675		sg_span = sched_group_cpus(sg);
5676		if (child->child) {
5677			child = child->child;
5678			cpumask_copy(sg_span, sched_domain_span(child));
5679		} else
5680			cpumask_set_cpu(i, sg_span);
5681
5682		cpumask_or(covered, covered, sg_span);
5683
5684		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5685		if (atomic_inc_return(&sg->sgp->ref) == 1)
5686			build_group_mask(sd, sg);
5687
5688		/*
5689		 * Initialize sgp->power such that even if we mess up the
5690		 * domains and no possible iteration will get us here, we won't
5691		 * die on a /0 trap.
5692		 */
5693		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5694		sg->sgp->power_orig = sg->sgp->power;
5695
5696		/*
5697		 * Make sure the first group of this domain contains the
5698		 * canonical balance cpu. Otherwise the sched_domain iteration
5699		 * breaks. See update_sg_lb_stats().
5700		 */
5701		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5702		    group_balance_cpu(sg) == cpu)
5703			groups = sg;
5704
5705		if (!first)
5706			first = sg;
5707		if (last)
5708			last->next = sg;
5709		last = sg;
5710		last->next = first;
5711	}
5712	sd->groups = groups;
5713
5714	return 0;
5715
5716fail:
5717	free_sched_groups(first, 0);
5718
5719	return -ENOMEM;
5720}
5721
5722static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5723{
5724	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5725	struct sched_domain *child = sd->child;
5726
5727	if (child)
5728		cpu = cpumask_first(sched_domain_span(child));
5729
5730	if (sg) {
5731		*sg = *per_cpu_ptr(sdd->sg, cpu);
5732		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5733		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5734	}
5735
5736	return cpu;
5737}
5738
5739/*
5740 * build_sched_groups will build a circular linked list of the groups
5741 * covered by the given span, and will set each group's ->cpumask correctly,
5742 * and ->cpu_power to 0.
5743 *
5744 * Assumes the sched_domain tree is fully constructed
5745 */
5746static int
5747build_sched_groups(struct sched_domain *sd, int cpu)
5748{
5749	struct sched_group *first = NULL, *last = NULL;
5750	struct sd_data *sdd = sd->private;
5751	const struct cpumask *span = sched_domain_span(sd);
5752	struct cpumask *covered;
5753	int i;
5754
5755	get_group(cpu, sdd, &sd->groups);
5756	atomic_inc(&sd->groups->ref);
5757
5758	if (cpu != cpumask_first(span))
5759		return 0;
5760
5761	lockdep_assert_held(&sched_domains_mutex);
5762	covered = sched_domains_tmpmask;
5763
5764	cpumask_clear(covered);
5765
5766	for_each_cpu(i, span) {
5767		struct sched_group *sg;
5768		int group, j;
5769
5770		if (cpumask_test_cpu(i, covered))
5771			continue;
5772
5773		group = get_group(i, sdd, &sg);
5774		cpumask_clear(sched_group_cpus(sg));
5775		sg->sgp->power = 0;
5776		cpumask_setall(sched_group_mask(sg));
5777
5778		for_each_cpu(j, span) {
5779			if (get_group(j, sdd, NULL) != group)
5780				continue;
5781
5782			cpumask_set_cpu(j, covered);
5783			cpumask_set_cpu(j, sched_group_cpus(sg));
5784		}
5785
5786		if (!first)
5787			first = sg;
5788		if (last)
5789			last->next = sg;
5790		last = sg;
5791	}
5792	last->next = first;
5793
5794	return 0;
5795}
5796
5797/*
5798 * Initialize sched groups cpu_power.
5799 *
5800 * cpu_power indicates the capacity of sched group, which is used while
5801 * distributing the load between different sched groups in a sched domain.
5802 * Typically cpu_power for all the groups in a sched domain will be same unless
5803 * there are asymmetries in the topology. If there are asymmetries, group
5804 * having more cpu_power will pickup more load compared to the group having
5805 * less cpu_power.
5806 */
5807static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5808{
5809	struct sched_group *sg = sd->groups;
5810
5811	WARN_ON(!sg);
5812
5813	do {
5814		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5815		sg = sg->next;
5816	} while (sg != sd->groups);
5817
5818	if (cpu != group_balance_cpu(sg))
5819		return;
5820
5821	update_group_power(sd, cpu);
5822	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5823}
5824
5825int __weak arch_sd_sibling_asym_packing(void)
5826{
5827       return 0*SD_ASYM_PACKING;
5828}
5829
5830/*
5831 * Initializers for schedule domains
5832 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5833 */
5834
5835#ifdef CONFIG_SCHED_DEBUG
5836# define SD_INIT_NAME(sd, type)		sd->name = #type
5837#else
5838# define SD_INIT_NAME(sd, type)		do { } while (0)
5839#endif
5840
5841#define SD_INIT_FUNC(type)						\
5842static noinline struct sched_domain *					\
5843sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5844{									\
5845	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5846	*sd = SD_##type##_INIT;						\
5847	SD_INIT_NAME(sd, type);						\
5848	sd->private = &tl->data;					\
5849	return sd;							\
5850}
5851
5852SD_INIT_FUNC(CPU)
5853#ifdef CONFIG_SCHED_SMT
5854 SD_INIT_FUNC(SIBLING)
5855#endif
5856#ifdef CONFIG_SCHED_MC
5857 SD_INIT_FUNC(MC)
5858#endif
5859#ifdef CONFIG_SCHED_BOOK
5860 SD_INIT_FUNC(BOOK)
5861#endif
5862
5863static int default_relax_domain_level = -1;
5864int sched_domain_level_max;
5865
5866static int __init setup_relax_domain_level(char *str)
5867{
5868	if (kstrtoint(str, 0, &default_relax_domain_level))
5869		pr_warn("Unable to set relax_domain_level\n");
5870
5871	return 1;
5872}
5873__setup("relax_domain_level=", setup_relax_domain_level);
5874
5875static void set_domain_attribute(struct sched_domain *sd,
5876				 struct sched_domain_attr *attr)
5877{
5878	int request;
5879
5880	if (!attr || attr->relax_domain_level < 0) {
5881		if (default_relax_domain_level < 0)
5882			return;
5883		else
5884			request = default_relax_domain_level;
5885	} else
5886		request = attr->relax_domain_level;
5887	if (request < sd->level) {
5888		/* turn off idle balance on this domain */
5889		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5890	} else {
5891		/* turn on idle balance on this domain */
5892		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5893	}
5894}
5895
5896static void __sdt_free(const struct cpumask *cpu_map);
5897static int __sdt_alloc(const struct cpumask *cpu_map);
5898
5899static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5900				 const struct cpumask *cpu_map)
5901{
5902	switch (what) {
5903	case sa_rootdomain:
5904		if (!atomic_read(&d->rd->refcount))
5905			free_rootdomain(&d->rd->rcu); /* fall through */
5906	case sa_sd:
5907		free_percpu(d->sd); /* fall through */
5908	case sa_sd_storage:
5909		__sdt_free(cpu_map); /* fall through */
5910	case sa_none:
5911		break;
5912	}
5913}
5914
5915static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5916						   const struct cpumask *cpu_map)
5917{
5918	memset(d, 0, sizeof(*d));
5919
5920	if (__sdt_alloc(cpu_map))
5921		return sa_sd_storage;
5922	d->sd = alloc_percpu(struct sched_domain *);
5923	if (!d->sd)
5924		return sa_sd_storage;
5925	d->rd = alloc_rootdomain();
5926	if (!d->rd)
5927		return sa_sd;
5928	return sa_rootdomain;
5929}
5930
5931/*
5932 * NULL the sd_data elements we've used to build the sched_domain and
5933 * sched_group structure so that the subsequent __free_domain_allocs()
5934 * will not free the data we're using.
5935 */
5936static void claim_allocations(int cpu, struct sched_domain *sd)
5937{
5938	struct sd_data *sdd = sd->private;
5939
5940	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5941	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5942
5943	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5944		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5945
5946	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5947		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5948}
5949
5950#ifdef CONFIG_SCHED_SMT
5951static const struct cpumask *cpu_smt_mask(int cpu)
5952{
5953	return topology_thread_cpumask(cpu);
5954}
5955#endif
5956
5957/*
5958 * Topology list, bottom-up.
5959 */
5960static struct sched_domain_topology_level default_topology[] = {
5961#ifdef CONFIG_SCHED_SMT
5962	{ sd_init_SIBLING, cpu_smt_mask, },
5963#endif
5964#ifdef CONFIG_SCHED_MC
5965	{ sd_init_MC, cpu_coregroup_mask, },
5966#endif
5967#ifdef CONFIG_SCHED_BOOK
5968	{ sd_init_BOOK, cpu_book_mask, },
5969#endif
5970	{ sd_init_CPU, cpu_cpu_mask, },
5971	{ NULL, },
5972};
5973
5974static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5975
5976#define for_each_sd_topology(tl)			\
5977	for (tl = sched_domain_topology; tl->init; tl++)
5978
5979#ifdef CONFIG_NUMA
5980
5981static int sched_domains_numa_levels;
5982static int *sched_domains_numa_distance;
5983static struct cpumask ***sched_domains_numa_masks;
5984static int sched_domains_curr_level;
5985
5986static inline int sd_local_flags(int level)
5987{
5988	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5989		return 0;
5990
5991	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5992}
5993
5994static struct sched_domain *
5995sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5996{
5997	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5998	int level = tl->numa_level;
5999	int sd_weight = cpumask_weight(
6000			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6001
6002	*sd = (struct sched_domain){
6003		.min_interval		= sd_weight,
6004		.max_interval		= 2*sd_weight,
6005		.busy_factor		= 32,
6006		.imbalance_pct		= 125,
6007		.cache_nice_tries	= 2,
6008		.busy_idx		= 3,
6009		.idle_idx		= 2,
6010		.newidle_idx		= 0,
6011		.wake_idx		= 0,
6012		.forkexec_idx		= 0,
6013
6014		.flags			= 1*SD_LOAD_BALANCE
6015					| 1*SD_BALANCE_NEWIDLE
6016					| 0*SD_BALANCE_EXEC
6017					| 0*SD_BALANCE_FORK
6018					| 0*SD_BALANCE_WAKE
6019					| 0*SD_WAKE_AFFINE
6020					| 0*SD_SHARE_CPUPOWER
6021					| 0*SD_SHARE_PKG_RESOURCES
6022					| 1*SD_SERIALIZE
6023					| 0*SD_PREFER_SIBLING
6024					| 1*SD_NUMA
6025					| sd_local_flags(level)
6026					,
6027		.last_balance		= jiffies,
6028		.balance_interval	= sd_weight,
6029		.max_newidle_lb_cost	= 0,
6030		.next_decay_max_lb_cost	= jiffies,
6031	};
6032	SD_INIT_NAME(sd, NUMA);
6033	sd->private = &tl->data;
6034
6035	/*
6036	 * Ugly hack to pass state to sd_numa_mask()...
6037	 */
6038	sched_domains_curr_level = tl->numa_level;
6039
6040	return sd;
6041}
6042
6043static const struct cpumask *sd_numa_mask(int cpu)
6044{
6045	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6046}
6047
6048static void sched_numa_warn(const char *str)
6049{
6050	static int done = false;
6051	int i,j;
6052
6053	if (done)
6054		return;
6055
6056	done = true;
6057
6058	printk(KERN_WARNING "ERROR: %s\n\n", str);
6059
6060	for (i = 0; i < nr_node_ids; i++) {
6061		printk(KERN_WARNING "  ");
6062		for (j = 0; j < nr_node_ids; j++)
6063			printk(KERN_CONT "%02d ", node_distance(i,j));
6064		printk(KERN_CONT "\n");
6065	}
6066	printk(KERN_WARNING "\n");
6067}
6068
6069static bool find_numa_distance(int distance)
6070{
6071	int i;
6072
6073	if (distance == node_distance(0, 0))
6074		return true;
6075
6076	for (i = 0; i < sched_domains_numa_levels; i++) {
6077		if (sched_domains_numa_distance[i] == distance)
6078			return true;
6079	}
6080
6081	return false;
6082}
6083
6084static void sched_init_numa(void)
6085{
6086	int next_distance, curr_distance = node_distance(0, 0);
6087	struct sched_domain_topology_level *tl;
6088	int level = 0;
6089	int i, j, k;
6090
6091	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6092	if (!sched_domains_numa_distance)
6093		return;
6094
6095	/*
6096	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6097	 * unique distances in the node_distance() table.
6098	 *
6099	 * Assumes node_distance(0,j) includes all distances in
6100	 * node_distance(i,j) in order to avoid cubic time.
6101	 */
6102	next_distance = curr_distance;
6103	for (i = 0; i < nr_node_ids; i++) {
6104		for (j = 0; j < nr_node_ids; j++) {
6105			for (k = 0; k < nr_node_ids; k++) {
6106				int distance = node_distance(i, k);
6107
6108				if (distance > curr_distance &&
6109				    (distance < next_distance ||
6110				     next_distance == curr_distance))
6111					next_distance = distance;
6112
6113				/*
6114				 * While not a strong assumption it would be nice to know
6115				 * about cases where if node A is connected to B, B is not
6116				 * equally connected to A.
6117				 */
6118				if (sched_debug() && node_distance(k, i) != distance)
6119					sched_numa_warn("Node-distance not symmetric");
6120
6121				if (sched_debug() && i && !find_numa_distance(distance))
6122					sched_numa_warn("Node-0 not representative");
6123			}
6124			if (next_distance != curr_distance) {
6125				sched_domains_numa_distance[level++] = next_distance;
6126				sched_domains_numa_levels = level;
6127				curr_distance = next_distance;
6128			} else break;
6129		}
6130
6131		/*
6132		 * In case of sched_debug() we verify the above assumption.
6133		 */
6134		if (!sched_debug())
6135			break;
6136	}
6137	/*
6138	 * 'level' contains the number of unique distances, excluding the
6139	 * identity distance node_distance(i,i).
6140	 *
6141	 * The sched_domains_numa_distance[] array includes the actual distance
6142	 * numbers.
6143	 */
6144
6145	/*
6146	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6147	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6148	 * the array will contain less then 'level' members. This could be
6149	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6150	 * in other functions.
6151	 *
6152	 * We reset it to 'level' at the end of this function.
6153	 */
6154	sched_domains_numa_levels = 0;
6155
6156	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6157	if (!sched_domains_numa_masks)
6158		return;
6159
6160	/*
6161	 * Now for each level, construct a mask per node which contains all
6162	 * cpus of nodes that are that many hops away from us.
6163	 */
6164	for (i = 0; i < level; i++) {
6165		sched_domains_numa_masks[i] =
6166			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6167		if (!sched_domains_numa_masks[i])
6168			return;
6169
6170		for (j = 0; j < nr_node_ids; j++) {
6171			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6172			if (!mask)
6173				return;
6174
6175			sched_domains_numa_masks[i][j] = mask;
6176
6177			for (k = 0; k < nr_node_ids; k++) {
6178				if (node_distance(j, k) > sched_domains_numa_distance[i])
6179					continue;
6180
6181				cpumask_or(mask, mask, cpumask_of_node(k));
6182			}
6183		}
6184	}
6185
6186	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6187			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6188	if (!tl)
6189		return;
6190
6191	/*
6192	 * Copy the default topology bits..
6193	 */
6194	for (i = 0; default_topology[i].init; i++)
6195		tl[i] = default_topology[i];
6196
6197	/*
6198	 * .. and append 'j' levels of NUMA goodness.
6199	 */
6200	for (j = 0; j < level; i++, j++) {
6201		tl[i] = (struct sched_domain_topology_level){
6202			.init = sd_numa_init,
6203			.mask = sd_numa_mask,
6204			.flags = SDTL_OVERLAP,
6205			.numa_level = j,
6206		};
6207	}
6208
6209	sched_domain_topology = tl;
6210
6211	sched_domains_numa_levels = level;
6212}
6213
6214static void sched_domains_numa_masks_set(int cpu)
6215{
6216	int i, j;
6217	int node = cpu_to_node(cpu);
6218
6219	for (i = 0; i < sched_domains_numa_levels; i++) {
6220		for (j = 0; j < nr_node_ids; j++) {
6221			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6222				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6223		}
6224	}
6225}
6226
6227static void sched_domains_numa_masks_clear(int cpu)
6228{
6229	int i, j;
6230	for (i = 0; i < sched_domains_numa_levels; i++) {
6231		for (j = 0; j < nr_node_ids; j++)
6232			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6233	}
6234}
6235
6236/*
6237 * Update sched_domains_numa_masks[level][node] array when new cpus
6238 * are onlined.
6239 */
6240static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6241					   unsigned long action,
6242					   void *hcpu)
6243{
6244	int cpu = (long)hcpu;
6245
6246	switch (action & ~CPU_TASKS_FROZEN) {
6247	case CPU_ONLINE:
6248		sched_domains_numa_masks_set(cpu);
6249		break;
6250
6251	case CPU_DEAD:
6252		sched_domains_numa_masks_clear(cpu);
6253		break;
6254
6255	default:
6256		return NOTIFY_DONE;
6257	}
6258
6259	return NOTIFY_OK;
6260}
6261#else
6262static inline void sched_init_numa(void)
6263{
6264}
6265
6266static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6267					   unsigned long action,
6268					   void *hcpu)
6269{
6270	return 0;
6271}
6272#endif /* CONFIG_NUMA */
6273
6274static int __sdt_alloc(const struct cpumask *cpu_map)
6275{
6276	struct sched_domain_topology_level *tl;
6277	int j;
6278
6279	for_each_sd_topology(tl) {
6280		struct sd_data *sdd = &tl->data;
6281
6282		sdd->sd = alloc_percpu(struct sched_domain *);
6283		if (!sdd->sd)
6284			return -ENOMEM;
6285
6286		sdd->sg = alloc_percpu(struct sched_group *);
6287		if (!sdd->sg)
6288			return -ENOMEM;
6289
6290		sdd->sgp = alloc_percpu(struct sched_group_power *);
6291		if (!sdd->sgp)
6292			return -ENOMEM;
6293
6294		for_each_cpu(j, cpu_map) {
6295			struct sched_domain *sd;
6296			struct sched_group *sg;
6297			struct sched_group_power *sgp;
6298
6299		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6300					GFP_KERNEL, cpu_to_node(j));
6301			if (!sd)
6302				return -ENOMEM;
6303
6304			*per_cpu_ptr(sdd->sd, j) = sd;
6305
6306			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6307					GFP_KERNEL, cpu_to_node(j));
6308			if (!sg)
6309				return -ENOMEM;
6310
6311			sg->next = sg;
6312
6313			*per_cpu_ptr(sdd->sg, j) = sg;
6314
6315			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6316					GFP_KERNEL, cpu_to_node(j));
6317			if (!sgp)
6318				return -ENOMEM;
6319
6320			*per_cpu_ptr(sdd->sgp, j) = sgp;
6321		}
6322	}
6323
6324	return 0;
6325}
6326
6327static void __sdt_free(const struct cpumask *cpu_map)
6328{
6329	struct sched_domain_topology_level *tl;
6330	int j;
6331
6332	for_each_sd_topology(tl) {
6333		struct sd_data *sdd = &tl->data;
6334
6335		for_each_cpu(j, cpu_map) {
6336			struct sched_domain *sd;
6337
6338			if (sdd->sd) {
6339				sd = *per_cpu_ptr(sdd->sd, j);
6340				if (sd && (sd->flags & SD_OVERLAP))
6341					free_sched_groups(sd->groups, 0);
6342				kfree(*per_cpu_ptr(sdd->sd, j));
6343			}
6344
6345			if (sdd->sg)
6346				kfree(*per_cpu_ptr(sdd->sg, j));
6347			if (sdd->sgp)
6348				kfree(*per_cpu_ptr(sdd->sgp, j));
6349		}
6350		free_percpu(sdd->sd);
6351		sdd->sd = NULL;
6352		free_percpu(sdd->sg);
6353		sdd->sg = NULL;
6354		free_percpu(sdd->sgp);
6355		sdd->sgp = NULL;
6356	}
6357}
6358
6359struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6360		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6361		struct sched_domain *child, int cpu)
6362{
6363	struct sched_domain *sd = tl->init(tl, cpu);
6364	if (!sd)
6365		return child;
6366
6367	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6368	if (child) {
6369		sd->level = child->level + 1;
6370		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6371		child->parent = sd;
6372		sd->child = child;
6373	}
6374	set_domain_attribute(sd, attr);
6375
6376	return sd;
6377}
6378
6379/*
6380 * Build sched domains for a given set of cpus and attach the sched domains
6381 * to the individual cpus
6382 */
6383static int build_sched_domains(const struct cpumask *cpu_map,
6384			       struct sched_domain_attr *attr)
6385{
6386	enum s_alloc alloc_state;
6387	struct sched_domain *sd;
6388	struct s_data d;
6389	int i, ret = -ENOMEM;
6390
6391	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6392	if (alloc_state != sa_rootdomain)
6393		goto error;
6394
6395	/* Set up domains for cpus specified by the cpu_map. */
6396	for_each_cpu(i, cpu_map) {
6397		struct sched_domain_topology_level *tl;
6398
6399		sd = NULL;
6400		for_each_sd_topology(tl) {
6401			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6402			if (tl == sched_domain_topology)
6403				*per_cpu_ptr(d.sd, i) = sd;
6404			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6405				sd->flags |= SD_OVERLAP;
6406			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6407				break;
6408		}
6409	}
6410
6411	/* Build the groups for the domains */
6412	for_each_cpu(i, cpu_map) {
6413		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6414			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6415			if (sd->flags & SD_OVERLAP) {
6416				if (build_overlap_sched_groups(sd, i))
6417					goto error;
6418			} else {
6419				if (build_sched_groups(sd, i))
6420					goto error;
6421			}
6422		}
6423	}
6424
6425	/* Calculate CPU power for physical packages and nodes */
6426	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6427		if (!cpumask_test_cpu(i, cpu_map))
6428			continue;
6429
6430		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6431			claim_allocations(i, sd);
6432			init_sched_groups_power(i, sd);
6433		}
6434	}
6435
6436	/* Attach the domains */
6437	rcu_read_lock();
6438	for_each_cpu(i, cpu_map) {
6439		sd = *per_cpu_ptr(d.sd, i);
6440		cpu_attach_domain(sd, d.rd, i);
6441	}
6442	rcu_read_unlock();
6443
6444	ret = 0;
6445error:
6446	__free_domain_allocs(&d, alloc_state, cpu_map);
6447	return ret;
6448}
6449
6450static cpumask_var_t *doms_cur;	/* current sched domains */
6451static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6452static struct sched_domain_attr *dattr_cur;
6453				/* attribues of custom domains in 'doms_cur' */
6454
6455/*
6456 * Special case: If a kmalloc of a doms_cur partition (array of
6457 * cpumask) fails, then fallback to a single sched domain,
6458 * as determined by the single cpumask fallback_doms.
6459 */
6460static cpumask_var_t fallback_doms;
6461
6462/*
6463 * arch_update_cpu_topology lets virtualized architectures update the
6464 * cpu core maps. It is supposed to return 1 if the topology changed
6465 * or 0 if it stayed the same.
6466 */
6467int __weak arch_update_cpu_topology(void)
6468{
6469	return 0;
6470}
6471
6472cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6473{
6474	int i;
6475	cpumask_var_t *doms;
6476
6477	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6478	if (!doms)
6479		return NULL;
6480	for (i = 0; i < ndoms; i++) {
6481		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6482			free_sched_domains(doms, i);
6483			return NULL;
6484		}
6485	}
6486	return doms;
6487}
6488
6489void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6490{
6491	unsigned int i;
6492	for (i = 0; i < ndoms; i++)
6493		free_cpumask_var(doms[i]);
6494	kfree(doms);
6495}
6496
6497/*
6498 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6499 * For now this just excludes isolated cpus, but could be used to
6500 * exclude other special cases in the future.
6501 */
6502static int init_sched_domains(const struct cpumask *cpu_map)
6503{
6504	int err;
6505
6506	arch_update_cpu_topology();
6507	ndoms_cur = 1;
6508	doms_cur = alloc_sched_domains(ndoms_cur);
6509	if (!doms_cur)
6510		doms_cur = &fallback_doms;
6511	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6512	err = build_sched_domains(doms_cur[0], NULL);
6513	register_sched_domain_sysctl();
6514
6515	return err;
6516}
6517
6518/*
6519 * Detach sched domains from a group of cpus specified in cpu_map
6520 * These cpus will now be attached to the NULL domain
6521 */
6522static void detach_destroy_domains(const struct cpumask *cpu_map)
6523{
6524	int i;
6525
6526	rcu_read_lock();
6527	for_each_cpu(i, cpu_map)
6528		cpu_attach_domain(NULL, &def_root_domain, i);
6529	rcu_read_unlock();
6530}
6531
6532/* handle null as "default" */
6533static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6534			struct sched_domain_attr *new, int idx_new)
6535{
6536	struct sched_domain_attr tmp;
6537
6538	/* fast path */
6539	if (!new && !cur)
6540		return 1;
6541
6542	tmp = SD_ATTR_INIT;
6543	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6544			new ? (new + idx_new) : &tmp,
6545			sizeof(struct sched_domain_attr));
6546}
6547
6548/*
6549 * Partition sched domains as specified by the 'ndoms_new'
6550 * cpumasks in the array doms_new[] of cpumasks. This compares
6551 * doms_new[] to the current sched domain partitioning, doms_cur[].
6552 * It destroys each deleted domain and builds each new domain.
6553 *
6554 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6555 * The masks don't intersect (don't overlap.) We should setup one
6556 * sched domain for each mask. CPUs not in any of the cpumasks will
6557 * not be load balanced. If the same cpumask appears both in the
6558 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6559 * it as it is.
6560 *
6561 * The passed in 'doms_new' should be allocated using
6562 * alloc_sched_domains.  This routine takes ownership of it and will
6563 * free_sched_domains it when done with it. If the caller failed the
6564 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6565 * and partition_sched_domains() will fallback to the single partition
6566 * 'fallback_doms', it also forces the domains to be rebuilt.
6567 *
6568 * If doms_new == NULL it will be replaced with cpu_online_mask.
6569 * ndoms_new == 0 is a special case for destroying existing domains,
6570 * and it will not create the default domain.
6571 *
6572 * Call with hotplug lock held
6573 */
6574void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6575			     struct sched_domain_attr *dattr_new)
6576{
6577	int i, j, n;
6578	int new_topology;
6579
6580	mutex_lock(&sched_domains_mutex);
6581
6582	/* always unregister in case we don't destroy any domains */
6583	unregister_sched_domain_sysctl();
6584
6585	/* Let architecture update cpu core mappings. */
6586	new_topology = arch_update_cpu_topology();
6587
6588	n = doms_new ? ndoms_new : 0;
6589
6590	/* Destroy deleted domains */
6591	for (i = 0; i < ndoms_cur; i++) {
6592		for (j = 0; j < n && !new_topology; j++) {
6593			if (cpumask_equal(doms_cur[i], doms_new[j])
6594			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6595				goto match1;
6596		}
6597		/* no match - a current sched domain not in new doms_new[] */
6598		detach_destroy_domains(doms_cur[i]);
6599match1:
6600		;
6601	}
6602
6603	n = ndoms_cur;
6604	if (doms_new == NULL) {
6605		n = 0;
6606		doms_new = &fallback_doms;
6607		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6608		WARN_ON_ONCE(dattr_new);
6609	}
6610
6611	/* Build new domains */
6612	for (i = 0; i < ndoms_new; i++) {
6613		for (j = 0; j < n && !new_topology; j++) {
6614			if (cpumask_equal(doms_new[i], doms_cur[j])
6615			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6616				goto match2;
6617		}
6618		/* no match - add a new doms_new */
6619		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6620match2:
6621		;
6622	}
6623
6624	/* Remember the new sched domains */
6625	if (doms_cur != &fallback_doms)
6626		free_sched_domains(doms_cur, ndoms_cur);
6627	kfree(dattr_cur);	/* kfree(NULL) is safe */
6628	doms_cur = doms_new;
6629	dattr_cur = dattr_new;
6630	ndoms_cur = ndoms_new;
6631
6632	register_sched_domain_sysctl();
6633
6634	mutex_unlock(&sched_domains_mutex);
6635}
6636
6637static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6638
6639/*
6640 * Update cpusets according to cpu_active mask.  If cpusets are
6641 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6642 * around partition_sched_domains().
6643 *
6644 * If we come here as part of a suspend/resume, don't touch cpusets because we
6645 * want to restore it back to its original state upon resume anyway.
6646 */
6647static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6648			     void *hcpu)
6649{
6650	switch (action) {
6651	case CPU_ONLINE_FROZEN:
6652	case CPU_DOWN_FAILED_FROZEN:
6653
6654		/*
6655		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6656		 * resume sequence. As long as this is not the last online
6657		 * operation in the resume sequence, just build a single sched
6658		 * domain, ignoring cpusets.
6659		 */
6660		num_cpus_frozen--;
6661		if (likely(num_cpus_frozen)) {
6662			partition_sched_domains(1, NULL, NULL);
6663			break;
6664		}
6665
6666		/*
6667		 * This is the last CPU online operation. So fall through and
6668		 * restore the original sched domains by considering the
6669		 * cpuset configurations.
6670		 */
6671
6672	case CPU_ONLINE:
6673	case CPU_DOWN_FAILED:
6674		cpuset_update_active_cpus(true);
6675		break;
6676	default:
6677		return NOTIFY_DONE;
6678	}
6679	return NOTIFY_OK;
6680}
6681
6682static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6683			       void *hcpu)
6684{
6685	switch (action) {
6686	case CPU_DOWN_PREPARE:
6687		cpuset_update_active_cpus(false);
6688		break;
6689	case CPU_DOWN_PREPARE_FROZEN:
6690		num_cpus_frozen++;
6691		partition_sched_domains(1, NULL, NULL);
6692		break;
6693	default:
6694		return NOTIFY_DONE;
6695	}
6696	return NOTIFY_OK;
6697}
6698
6699void __init sched_init_smp(void)
6700{
6701	cpumask_var_t non_isolated_cpus;
6702
6703	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6704	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6705
6706	sched_init_numa();
6707
6708	/*
6709	 * There's no userspace yet to cause hotplug operations; hence all the
6710	 * cpu masks are stable and all blatant races in the below code cannot
6711	 * happen.
6712	 */
6713	mutex_lock(&sched_domains_mutex);
6714	init_sched_domains(cpu_active_mask);
6715	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6716	if (cpumask_empty(non_isolated_cpus))
6717		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6718	mutex_unlock(&sched_domains_mutex);
6719
6720	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6721	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6722	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6723
6724	init_hrtick();
6725
6726	/* Move init over to a non-isolated CPU */
6727	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6728		BUG();
6729	sched_init_granularity();
6730	free_cpumask_var(non_isolated_cpus);
6731
6732	init_sched_rt_class();
6733	init_sched_dl_class();
6734}
6735#else
6736void __init sched_init_smp(void)
6737{
6738	sched_init_granularity();
6739}
6740#endif /* CONFIG_SMP */
6741
6742const_debug unsigned int sysctl_timer_migration = 1;
6743
6744int in_sched_functions(unsigned long addr)
6745{
6746	return in_lock_functions(addr) ||
6747		(addr >= (unsigned long)__sched_text_start
6748		&& addr < (unsigned long)__sched_text_end);
6749}
6750
6751#ifdef CONFIG_CGROUP_SCHED
6752/*
6753 * Default task group.
6754 * Every task in system belongs to this group at bootup.
6755 */
6756struct task_group root_task_group;
6757LIST_HEAD(task_groups);
6758#endif
6759
6760DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6761
6762void __init sched_init(void)
6763{
6764	int i, j;
6765	unsigned long alloc_size = 0, ptr;
6766
6767#ifdef CONFIG_FAIR_GROUP_SCHED
6768	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6769#endif
6770#ifdef CONFIG_RT_GROUP_SCHED
6771	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6772#endif
6773#ifdef CONFIG_CPUMASK_OFFSTACK
6774	alloc_size += num_possible_cpus() * cpumask_size();
6775#endif
6776	if (alloc_size) {
6777		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6778
6779#ifdef CONFIG_FAIR_GROUP_SCHED
6780		root_task_group.se = (struct sched_entity **)ptr;
6781		ptr += nr_cpu_ids * sizeof(void **);
6782
6783		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6784		ptr += nr_cpu_ids * sizeof(void **);
6785
6786#endif /* CONFIG_FAIR_GROUP_SCHED */
6787#ifdef CONFIG_RT_GROUP_SCHED
6788		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6789		ptr += nr_cpu_ids * sizeof(void **);
6790
6791		root_task_group.rt_rq = (struct rt_rq **)ptr;
6792		ptr += nr_cpu_ids * sizeof(void **);
6793
6794#endif /* CONFIG_RT_GROUP_SCHED */
6795#ifdef CONFIG_CPUMASK_OFFSTACK
6796		for_each_possible_cpu(i) {
6797			per_cpu(load_balance_mask, i) = (void *)ptr;
6798			ptr += cpumask_size();
6799		}
6800#endif /* CONFIG_CPUMASK_OFFSTACK */
6801	}
6802
6803	init_rt_bandwidth(&def_rt_bandwidth,
6804			global_rt_period(), global_rt_runtime());
6805	init_dl_bandwidth(&def_dl_bandwidth,
6806			global_rt_period(), global_rt_runtime());
6807
6808#ifdef CONFIG_SMP
6809	init_defrootdomain();
6810#endif
6811
6812#ifdef CONFIG_RT_GROUP_SCHED
6813	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6814			global_rt_period(), global_rt_runtime());
6815#endif /* CONFIG_RT_GROUP_SCHED */
6816
6817#ifdef CONFIG_CGROUP_SCHED
6818	list_add(&root_task_group.list, &task_groups);
6819	INIT_LIST_HEAD(&root_task_group.children);
6820	INIT_LIST_HEAD(&root_task_group.siblings);
6821	autogroup_init(&init_task);
6822
6823#endif /* CONFIG_CGROUP_SCHED */
6824
6825	for_each_possible_cpu(i) {
6826		struct rq *rq;
6827
6828		rq = cpu_rq(i);
6829		raw_spin_lock_init(&rq->lock);
6830		rq->nr_running = 0;
6831		rq->calc_load_active = 0;
6832		rq->calc_load_update = jiffies + LOAD_FREQ;
6833		init_cfs_rq(&rq->cfs);
6834		init_rt_rq(&rq->rt, rq);
6835		init_dl_rq(&rq->dl, rq);
6836#ifdef CONFIG_FAIR_GROUP_SCHED
6837		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6838		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6839		/*
6840		 * How much cpu bandwidth does root_task_group get?
6841		 *
6842		 * In case of task-groups formed thr' the cgroup filesystem, it
6843		 * gets 100% of the cpu resources in the system. This overall
6844		 * system cpu resource is divided among the tasks of
6845		 * root_task_group and its child task-groups in a fair manner,
6846		 * based on each entity's (task or task-group's) weight
6847		 * (se->load.weight).
6848		 *
6849		 * In other words, if root_task_group has 10 tasks of weight
6850		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6851		 * then A0's share of the cpu resource is:
6852		 *
6853		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6854		 *
6855		 * We achieve this by letting root_task_group's tasks sit
6856		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6857		 */
6858		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6859		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6860#endif /* CONFIG_FAIR_GROUP_SCHED */
6861
6862		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6863#ifdef CONFIG_RT_GROUP_SCHED
6864		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6865#endif
6866
6867		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6868			rq->cpu_load[j] = 0;
6869
6870		rq->last_load_update_tick = jiffies;
6871
6872#ifdef CONFIG_SMP
6873		rq->sd = NULL;
6874		rq->rd = NULL;
6875		rq->cpu_power = SCHED_POWER_SCALE;
6876		rq->post_schedule = 0;
6877		rq->active_balance = 0;
6878		rq->next_balance = jiffies;
6879		rq->push_cpu = 0;
6880		rq->cpu = i;
6881		rq->online = 0;
6882		rq->idle_stamp = 0;
6883		rq->avg_idle = 2*sysctl_sched_migration_cost;
6884		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6885
6886		INIT_LIST_HEAD(&rq->cfs_tasks);
6887
6888		rq_attach_root(rq, &def_root_domain);
6889#ifdef CONFIG_NO_HZ_COMMON
6890		rq->nohz_flags = 0;
6891#endif
6892#ifdef CONFIG_NO_HZ_FULL
6893		rq->last_sched_tick = 0;
6894#endif
6895#endif
6896		init_rq_hrtick(rq);
6897		atomic_set(&rq->nr_iowait, 0);
6898	}
6899
6900	set_load_weight(&init_task);
6901
6902#ifdef CONFIG_PREEMPT_NOTIFIERS
6903	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6904#endif
6905
6906	/*
6907	 * The boot idle thread does lazy MMU switching as well:
6908	 */
6909	atomic_inc(&init_mm.mm_count);
6910	enter_lazy_tlb(&init_mm, current);
6911
6912	/*
6913	 * Make us the idle thread. Technically, schedule() should not be
6914	 * called from this thread, however somewhere below it might be,
6915	 * but because we are the idle thread, we just pick up running again
6916	 * when this runqueue becomes "idle".
6917	 */
6918	init_idle(current, smp_processor_id());
6919
6920	calc_load_update = jiffies + LOAD_FREQ;
6921
6922	/*
6923	 * During early bootup we pretend to be a normal task:
6924	 */
6925	current->sched_class = &fair_sched_class;
6926
6927#ifdef CONFIG_SMP
6928	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6929	/* May be allocated at isolcpus cmdline parse time */
6930	if (cpu_isolated_map == NULL)
6931		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6932	idle_thread_set_boot_cpu();
6933#endif
6934	init_sched_fair_class();
6935
6936	scheduler_running = 1;
6937}
6938
6939#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6940static inline int preempt_count_equals(int preempt_offset)
6941{
6942	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6943
6944	return (nested == preempt_offset);
6945}
6946
6947void __might_sleep(const char *file, int line, int preempt_offset)
6948{
6949	static unsigned long prev_jiffy;	/* ratelimiting */
6950
6951	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6952	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6953	     !is_idle_task(current)) ||
6954	    system_state != SYSTEM_RUNNING || oops_in_progress)
6955		return;
6956	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6957		return;
6958	prev_jiffy = jiffies;
6959
6960	printk(KERN_ERR
6961		"BUG: sleeping function called from invalid context at %s:%d\n",
6962			file, line);
6963	printk(KERN_ERR
6964		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6965			in_atomic(), irqs_disabled(),
6966			current->pid, current->comm);
6967
6968	debug_show_held_locks(current);
6969	if (irqs_disabled())
6970		print_irqtrace_events(current);
6971#ifdef CONFIG_DEBUG_PREEMPT
6972	if (!preempt_count_equals(preempt_offset)) {
6973		pr_err("Preemption disabled at:");
6974		print_ip_sym(current->preempt_disable_ip);
6975		pr_cont("\n");
6976	}
6977#endif
6978	dump_stack();
6979}
6980EXPORT_SYMBOL(__might_sleep);
6981#endif
6982
6983#ifdef CONFIG_MAGIC_SYSRQ
6984static void normalize_task(struct rq *rq, struct task_struct *p)
6985{
6986	const struct sched_class *prev_class = p->sched_class;
6987	struct sched_attr attr = {
6988		.sched_policy = SCHED_NORMAL,
6989	};
6990	int old_prio = p->prio;
6991	int on_rq;
6992
6993	on_rq = p->on_rq;
6994	if (on_rq)
6995		dequeue_task(rq, p, 0);
6996	__setscheduler(rq, p, &attr);
6997	if (on_rq) {
6998		enqueue_task(rq, p, 0);
6999		resched_task(rq->curr);
7000	}
7001
7002	check_class_changed(rq, p, prev_class, old_prio);
7003}
7004
7005void normalize_rt_tasks(void)
7006{
7007	struct task_struct *g, *p;
7008	unsigned long flags;
7009	struct rq *rq;
7010
7011	read_lock_irqsave(&tasklist_lock, flags);
7012	do_each_thread(g, p) {
7013		/*
7014		 * Only normalize user tasks:
7015		 */
7016		if (!p->mm)
7017			continue;
7018
7019		p->se.exec_start		= 0;
7020#ifdef CONFIG_SCHEDSTATS
7021		p->se.statistics.wait_start	= 0;
7022		p->se.statistics.sleep_start	= 0;
7023		p->se.statistics.block_start	= 0;
7024#endif
7025
7026		if (!dl_task(p) && !rt_task(p)) {
7027			/*
7028			 * Renice negative nice level userspace
7029			 * tasks back to 0:
7030			 */
7031			if (task_nice(p) < 0 && p->mm)
7032				set_user_nice(p, 0);
7033			continue;
7034		}
7035
7036		raw_spin_lock(&p->pi_lock);
7037		rq = __task_rq_lock(p);
7038
7039		normalize_task(rq, p);
7040
7041		__task_rq_unlock(rq);
7042		raw_spin_unlock(&p->pi_lock);
7043	} while_each_thread(g, p);
7044
7045	read_unlock_irqrestore(&tasklist_lock, flags);
7046}
7047
7048#endif /* CONFIG_MAGIC_SYSRQ */
7049
7050#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7051/*
7052 * These functions are only useful for the IA64 MCA handling, or kdb.
7053 *
7054 * They can only be called when the whole system has been
7055 * stopped - every CPU needs to be quiescent, and no scheduling
7056 * activity can take place. Using them for anything else would
7057 * be a serious bug, and as a result, they aren't even visible
7058 * under any other configuration.
7059 */
7060
7061/**
7062 * curr_task - return the current task for a given cpu.
7063 * @cpu: the processor in question.
7064 *
7065 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7066 *
7067 * Return: The current task for @cpu.
7068 */
7069struct task_struct *curr_task(int cpu)
7070{
7071	return cpu_curr(cpu);
7072}
7073
7074#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7075
7076#ifdef CONFIG_IA64
7077/**
7078 * set_curr_task - set the current task for a given cpu.
7079 * @cpu: the processor in question.
7080 * @p: the task pointer to set.
7081 *
7082 * Description: This function must only be used when non-maskable interrupts
7083 * are serviced on a separate stack. It allows the architecture to switch the
7084 * notion of the current task on a cpu in a non-blocking manner. This function
7085 * must be called with all CPU's synchronized, and interrupts disabled, the
7086 * and caller must save the original value of the current task (see
7087 * curr_task() above) and restore that value before reenabling interrupts and
7088 * re-starting the system.
7089 *
7090 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7091 */
7092void set_curr_task(int cpu, struct task_struct *p)
7093{
7094	cpu_curr(cpu) = p;
7095}
7096
7097#endif
7098
7099#ifdef CONFIG_CGROUP_SCHED
7100/* task_group_lock serializes the addition/removal of task groups */
7101static DEFINE_SPINLOCK(task_group_lock);
7102
7103static void free_sched_group(struct task_group *tg)
7104{
7105	free_fair_sched_group(tg);
7106	free_rt_sched_group(tg);
7107	autogroup_free(tg);
7108	kfree(tg);
7109}
7110
7111/* allocate runqueue etc for a new task group */
7112struct task_group *sched_create_group(struct task_group *parent)
7113{
7114	struct task_group *tg;
7115
7116	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7117	if (!tg)
7118		return ERR_PTR(-ENOMEM);
7119
7120	if (!alloc_fair_sched_group(tg, parent))
7121		goto err;
7122
7123	if (!alloc_rt_sched_group(tg, parent))
7124		goto err;
7125
7126	return tg;
7127
7128err:
7129	free_sched_group(tg);
7130	return ERR_PTR(-ENOMEM);
7131}
7132
7133void sched_online_group(struct task_group *tg, struct task_group *parent)
7134{
7135	unsigned long flags;
7136
7137	spin_lock_irqsave(&task_group_lock, flags);
7138	list_add_rcu(&tg->list, &task_groups);
7139
7140	WARN_ON(!parent); /* root should already exist */
7141
7142	tg->parent = parent;
7143	INIT_LIST_HEAD(&tg->children);
7144	list_add_rcu(&tg->siblings, &parent->children);
7145	spin_unlock_irqrestore(&task_group_lock, flags);
7146}
7147
7148/* rcu callback to free various structures associated with a task group */
7149static void free_sched_group_rcu(struct rcu_head *rhp)
7150{
7151	/* now it should be safe to free those cfs_rqs */
7152	free_sched_group(container_of(rhp, struct task_group, rcu));
7153}
7154
7155/* Destroy runqueue etc associated with a task group */
7156void sched_destroy_group(struct task_group *tg)
7157{
7158	/* wait for possible concurrent references to cfs_rqs complete */
7159	call_rcu(&tg->rcu, free_sched_group_rcu);
7160}
7161
7162void sched_offline_group(struct task_group *tg)
7163{
7164	unsigned long flags;
7165	int i;
7166
7167	/* end participation in shares distribution */
7168	for_each_possible_cpu(i)
7169		unregister_fair_sched_group(tg, i);
7170
7171	spin_lock_irqsave(&task_group_lock, flags);
7172	list_del_rcu(&tg->list);
7173	list_del_rcu(&tg->siblings);
7174	spin_unlock_irqrestore(&task_group_lock, flags);
7175}
7176
7177/* change task's runqueue when it moves between groups.
7178 *	The caller of this function should have put the task in its new group
7179 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7180 *	reflect its new group.
7181 */
7182void sched_move_task(struct task_struct *tsk)
7183{
7184	struct task_group *tg;
7185	int on_rq, running;
7186	unsigned long flags;
7187	struct rq *rq;
7188
7189	rq = task_rq_lock(tsk, &flags);
7190
7191	running = task_current(rq, tsk);
7192	on_rq = tsk->on_rq;
7193
7194	if (on_rq)
7195		dequeue_task(rq, tsk, 0);
7196	if (unlikely(running))
7197		tsk->sched_class->put_prev_task(rq, tsk);
7198
7199	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7200				lockdep_is_held(&tsk->sighand->siglock)),
7201			  struct task_group, css);
7202	tg = autogroup_task_group(tsk, tg);
7203	tsk->sched_task_group = tg;
7204
7205#ifdef CONFIG_FAIR_GROUP_SCHED
7206	if (tsk->sched_class->task_move_group)
7207		tsk->sched_class->task_move_group(tsk, on_rq);
7208	else
7209#endif
7210		set_task_rq(tsk, task_cpu(tsk));
7211
7212	if (unlikely(running))
7213		tsk->sched_class->set_curr_task(rq);
7214	if (on_rq)
7215		enqueue_task(rq, tsk, 0);
7216
7217	task_rq_unlock(rq, tsk, &flags);
7218}
7219#endif /* CONFIG_CGROUP_SCHED */
7220
7221#ifdef CONFIG_RT_GROUP_SCHED
7222/*
7223 * Ensure that the real time constraints are schedulable.
7224 */
7225static DEFINE_MUTEX(rt_constraints_mutex);
7226
7227/* Must be called with tasklist_lock held */
7228static inline int tg_has_rt_tasks(struct task_group *tg)
7229{
7230	struct task_struct *g, *p;
7231
7232	do_each_thread(g, p) {
7233		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7234			return 1;
7235	} while_each_thread(g, p);
7236
7237	return 0;
7238}
7239
7240struct rt_schedulable_data {
7241	struct task_group *tg;
7242	u64 rt_period;
7243	u64 rt_runtime;
7244};
7245
7246static int tg_rt_schedulable(struct task_group *tg, void *data)
7247{
7248	struct rt_schedulable_data *d = data;
7249	struct task_group *child;
7250	unsigned long total, sum = 0;
7251	u64 period, runtime;
7252
7253	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7254	runtime = tg->rt_bandwidth.rt_runtime;
7255
7256	if (tg == d->tg) {
7257		period = d->rt_period;
7258		runtime = d->rt_runtime;
7259	}
7260
7261	/*
7262	 * Cannot have more runtime than the period.
7263	 */
7264	if (runtime > period && runtime != RUNTIME_INF)
7265		return -EINVAL;
7266
7267	/*
7268	 * Ensure we don't starve existing RT tasks.
7269	 */
7270	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7271		return -EBUSY;
7272
7273	total = to_ratio(period, runtime);
7274
7275	/*
7276	 * Nobody can have more than the global setting allows.
7277	 */
7278	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7279		return -EINVAL;
7280
7281	/*
7282	 * The sum of our children's runtime should not exceed our own.
7283	 */
7284	list_for_each_entry_rcu(child, &tg->children, siblings) {
7285		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7286		runtime = child->rt_bandwidth.rt_runtime;
7287
7288		if (child == d->tg) {
7289			period = d->rt_period;
7290			runtime = d->rt_runtime;
7291		}
7292
7293		sum += to_ratio(period, runtime);
7294	}
7295
7296	if (sum > total)
7297		return -EINVAL;
7298
7299	return 0;
7300}
7301
7302static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7303{
7304	int ret;
7305
7306	struct rt_schedulable_data data = {
7307		.tg = tg,
7308		.rt_period = period,
7309		.rt_runtime = runtime,
7310	};
7311
7312	rcu_read_lock();
7313	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7314	rcu_read_unlock();
7315
7316	return ret;
7317}
7318
7319static int tg_set_rt_bandwidth(struct task_group *tg,
7320		u64 rt_period, u64 rt_runtime)
7321{
7322	int i, err = 0;
7323
7324	mutex_lock(&rt_constraints_mutex);
7325	read_lock(&tasklist_lock);
7326	err = __rt_schedulable(tg, rt_period, rt_runtime);
7327	if (err)
7328		goto unlock;
7329
7330	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7331	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7332	tg->rt_bandwidth.rt_runtime = rt_runtime;
7333
7334	for_each_possible_cpu(i) {
7335		struct rt_rq *rt_rq = tg->rt_rq[i];
7336
7337		raw_spin_lock(&rt_rq->rt_runtime_lock);
7338		rt_rq->rt_runtime = rt_runtime;
7339		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7340	}
7341	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7342unlock:
7343	read_unlock(&tasklist_lock);
7344	mutex_unlock(&rt_constraints_mutex);
7345
7346	return err;
7347}
7348
7349static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7350{
7351	u64 rt_runtime, rt_period;
7352
7353	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7354	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7355	if (rt_runtime_us < 0)
7356		rt_runtime = RUNTIME_INF;
7357
7358	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7359}
7360
7361static long sched_group_rt_runtime(struct task_group *tg)
7362{
7363	u64 rt_runtime_us;
7364
7365	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7366		return -1;
7367
7368	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7369	do_div(rt_runtime_us, NSEC_PER_USEC);
7370	return rt_runtime_us;
7371}
7372
7373static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7374{
7375	u64 rt_runtime, rt_period;
7376
7377	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7378	rt_runtime = tg->rt_bandwidth.rt_runtime;
7379
7380	if (rt_period == 0)
7381		return -EINVAL;
7382
7383	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7384}
7385
7386static long sched_group_rt_period(struct task_group *tg)
7387{
7388	u64 rt_period_us;
7389
7390	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7391	do_div(rt_period_us, NSEC_PER_USEC);
7392	return rt_period_us;
7393}
7394#endif /* CONFIG_RT_GROUP_SCHED */
7395
7396#ifdef CONFIG_RT_GROUP_SCHED
7397static int sched_rt_global_constraints(void)
7398{
7399	int ret = 0;
7400
7401	mutex_lock(&rt_constraints_mutex);
7402	read_lock(&tasklist_lock);
7403	ret = __rt_schedulable(NULL, 0, 0);
7404	read_unlock(&tasklist_lock);
7405	mutex_unlock(&rt_constraints_mutex);
7406
7407	return ret;
7408}
7409
7410static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7411{
7412	/* Don't accept realtime tasks when there is no way for them to run */
7413	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7414		return 0;
7415
7416	return 1;
7417}
7418
7419#else /* !CONFIG_RT_GROUP_SCHED */
7420static int sched_rt_global_constraints(void)
7421{
7422	unsigned long flags;
7423	int i, ret = 0;
7424
7425	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7426	for_each_possible_cpu(i) {
7427		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7428
7429		raw_spin_lock(&rt_rq->rt_runtime_lock);
7430		rt_rq->rt_runtime = global_rt_runtime();
7431		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7432	}
7433	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7434
7435	return ret;
7436}
7437#endif /* CONFIG_RT_GROUP_SCHED */
7438
7439static int sched_dl_global_constraints(void)
7440{
7441	u64 runtime = global_rt_runtime();
7442	u64 period = global_rt_period();
7443	u64 new_bw = to_ratio(period, runtime);
7444	int cpu, ret = 0;
7445	unsigned long flags;
7446
7447	/*
7448	 * Here we want to check the bandwidth not being set to some
7449	 * value smaller than the currently allocated bandwidth in
7450	 * any of the root_domains.
7451	 *
7452	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7453	 * cycling on root_domains... Discussion on different/better
7454	 * solutions is welcome!
7455	 */
7456	for_each_possible_cpu(cpu) {
7457		struct dl_bw *dl_b = dl_bw_of(cpu);
7458
7459		raw_spin_lock_irqsave(&dl_b->lock, flags);
7460		if (new_bw < dl_b->total_bw)
7461			ret = -EBUSY;
7462		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7463
7464		if (ret)
7465			break;
7466	}
7467
7468	return ret;
7469}
7470
7471static void sched_dl_do_global(void)
7472{
7473	u64 new_bw = -1;
7474	int cpu;
7475	unsigned long flags;
7476
7477	def_dl_bandwidth.dl_period = global_rt_period();
7478	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7479
7480	if (global_rt_runtime() != RUNTIME_INF)
7481		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7482
7483	/*
7484	 * FIXME: As above...
7485	 */
7486	for_each_possible_cpu(cpu) {
7487		struct dl_bw *dl_b = dl_bw_of(cpu);
7488
7489		raw_spin_lock_irqsave(&dl_b->lock, flags);
7490		dl_b->bw = new_bw;
7491		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7492	}
7493}
7494
7495static int sched_rt_global_validate(void)
7496{
7497	if (sysctl_sched_rt_period <= 0)
7498		return -EINVAL;
7499
7500	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7501		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7502		return -EINVAL;
7503
7504	return 0;
7505}
7506
7507static void sched_rt_do_global(void)
7508{
7509	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7510	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7511}
7512
7513int sched_rt_handler(struct ctl_table *table, int write,
7514		void __user *buffer, size_t *lenp,
7515		loff_t *ppos)
7516{
7517	int old_period, old_runtime;
7518	static DEFINE_MUTEX(mutex);
7519	int ret;
7520
7521	mutex_lock(&mutex);
7522	old_period = sysctl_sched_rt_period;
7523	old_runtime = sysctl_sched_rt_runtime;
7524
7525	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7526
7527	if (!ret && write) {
7528		ret = sched_rt_global_validate();
7529		if (ret)
7530			goto undo;
7531
7532		ret = sched_rt_global_constraints();
7533		if (ret)
7534			goto undo;
7535
7536		ret = sched_dl_global_constraints();
7537		if (ret)
7538			goto undo;
7539
7540		sched_rt_do_global();
7541		sched_dl_do_global();
7542	}
7543	if (0) {
7544undo:
7545		sysctl_sched_rt_period = old_period;
7546		sysctl_sched_rt_runtime = old_runtime;
7547	}
7548	mutex_unlock(&mutex);
7549
7550	return ret;
7551}
7552
7553int sched_rr_handler(struct ctl_table *table, int write,
7554		void __user *buffer, size_t *lenp,
7555		loff_t *ppos)
7556{
7557	int ret;
7558	static DEFINE_MUTEX(mutex);
7559
7560	mutex_lock(&mutex);
7561	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7562	/* make sure that internally we keep jiffies */
7563	/* also, writing zero resets timeslice to default */
7564	if (!ret && write) {
7565		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7566			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7567	}
7568	mutex_unlock(&mutex);
7569	return ret;
7570}
7571
7572#ifdef CONFIG_CGROUP_SCHED
7573
7574static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7575{
7576	return css ? container_of(css, struct task_group, css) : NULL;
7577}
7578
7579static struct cgroup_subsys_state *
7580cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7581{
7582	struct task_group *parent = css_tg(parent_css);
7583	struct task_group *tg;
7584
7585	if (!parent) {
7586		/* This is early initialization for the top cgroup */
7587		return &root_task_group.css;
7588	}
7589
7590	tg = sched_create_group(parent);
7591	if (IS_ERR(tg))
7592		return ERR_PTR(-ENOMEM);
7593
7594	return &tg->css;
7595}
7596
7597static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7598{
7599	struct task_group *tg = css_tg(css);
7600	struct task_group *parent = css_tg(css_parent(css));
7601
7602	if (parent)
7603		sched_online_group(tg, parent);
7604	return 0;
7605}
7606
7607static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7608{
7609	struct task_group *tg = css_tg(css);
7610
7611	sched_destroy_group(tg);
7612}
7613
7614static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7615{
7616	struct task_group *tg = css_tg(css);
7617
7618	sched_offline_group(tg);
7619}
7620
7621static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7622				 struct cgroup_taskset *tset)
7623{
7624	struct task_struct *task;
7625
7626	cgroup_taskset_for_each(task, tset) {
7627#ifdef CONFIG_RT_GROUP_SCHED
7628		if (!sched_rt_can_attach(css_tg(css), task))
7629			return -EINVAL;
7630#else
7631		/* We don't support RT-tasks being in separate groups */
7632		if (task->sched_class != &fair_sched_class)
7633			return -EINVAL;
7634#endif
7635	}
7636	return 0;
7637}
7638
7639static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7640			      struct cgroup_taskset *tset)
7641{
7642	struct task_struct *task;
7643
7644	cgroup_taskset_for_each(task, tset)
7645		sched_move_task(task);
7646}
7647
7648static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7649			    struct cgroup_subsys_state *old_css,
7650			    struct task_struct *task)
7651{
7652	/*
7653	 * cgroup_exit() is called in the copy_process() failure path.
7654	 * Ignore this case since the task hasn't ran yet, this avoids
7655	 * trying to poke a half freed task state from generic code.
7656	 */
7657	if (!(task->flags & PF_EXITING))
7658		return;
7659
7660	sched_move_task(task);
7661}
7662
7663#ifdef CONFIG_FAIR_GROUP_SCHED
7664static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7665				struct cftype *cftype, u64 shareval)
7666{
7667	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7668}
7669
7670static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7671			       struct cftype *cft)
7672{
7673	struct task_group *tg = css_tg(css);
7674
7675	return (u64) scale_load_down(tg->shares);
7676}
7677
7678#ifdef CONFIG_CFS_BANDWIDTH
7679static DEFINE_MUTEX(cfs_constraints_mutex);
7680
7681const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7682const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7683
7684static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7685
7686static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7687{
7688	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7689	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7690
7691	if (tg == &root_task_group)
7692		return -EINVAL;
7693
7694	/*
7695	 * Ensure we have at some amount of bandwidth every period.  This is
7696	 * to prevent reaching a state of large arrears when throttled via
7697	 * entity_tick() resulting in prolonged exit starvation.
7698	 */
7699	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7700		return -EINVAL;
7701
7702	/*
7703	 * Likewise, bound things on the otherside by preventing insane quota
7704	 * periods.  This also allows us to normalize in computing quota
7705	 * feasibility.
7706	 */
7707	if (period > max_cfs_quota_period)
7708		return -EINVAL;
7709
7710	mutex_lock(&cfs_constraints_mutex);
7711	ret = __cfs_schedulable(tg, period, quota);
7712	if (ret)
7713		goto out_unlock;
7714
7715	runtime_enabled = quota != RUNTIME_INF;
7716	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7717	/*
7718	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7719	 * before making related changes, and on->off must occur afterwards
7720	 */
7721	if (runtime_enabled && !runtime_was_enabled)
7722		cfs_bandwidth_usage_inc();
7723	raw_spin_lock_irq(&cfs_b->lock);
7724	cfs_b->period = ns_to_ktime(period);
7725	cfs_b->quota = quota;
7726
7727	__refill_cfs_bandwidth_runtime(cfs_b);
7728	/* restart the period timer (if active) to handle new period expiry */
7729	if (runtime_enabled && cfs_b->timer_active) {
7730		/* force a reprogram */
7731		cfs_b->timer_active = 0;
7732		__start_cfs_bandwidth(cfs_b);
7733	}
7734	raw_spin_unlock_irq(&cfs_b->lock);
7735
7736	for_each_possible_cpu(i) {
7737		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7738		struct rq *rq = cfs_rq->rq;
7739
7740		raw_spin_lock_irq(&rq->lock);
7741		cfs_rq->runtime_enabled = runtime_enabled;
7742		cfs_rq->runtime_remaining = 0;
7743
7744		if (cfs_rq->throttled)
7745			unthrottle_cfs_rq(cfs_rq);
7746		raw_spin_unlock_irq(&rq->lock);
7747	}
7748	if (runtime_was_enabled && !runtime_enabled)
7749		cfs_bandwidth_usage_dec();
7750out_unlock:
7751	mutex_unlock(&cfs_constraints_mutex);
7752
7753	return ret;
7754}
7755
7756int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7757{
7758	u64 quota, period;
7759
7760	period = ktime_to_ns(tg->cfs_bandwidth.period);
7761	if (cfs_quota_us < 0)
7762		quota = RUNTIME_INF;
7763	else
7764		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7765
7766	return tg_set_cfs_bandwidth(tg, period, quota);
7767}
7768
7769long tg_get_cfs_quota(struct task_group *tg)
7770{
7771	u64 quota_us;
7772
7773	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7774		return -1;
7775
7776	quota_us = tg->cfs_bandwidth.quota;
7777	do_div(quota_us, NSEC_PER_USEC);
7778
7779	return quota_us;
7780}
7781
7782int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7783{
7784	u64 quota, period;
7785
7786	period = (u64)cfs_period_us * NSEC_PER_USEC;
7787	quota = tg->cfs_bandwidth.quota;
7788
7789	return tg_set_cfs_bandwidth(tg, period, quota);
7790}
7791
7792long tg_get_cfs_period(struct task_group *tg)
7793{
7794	u64 cfs_period_us;
7795
7796	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7797	do_div(cfs_period_us, NSEC_PER_USEC);
7798
7799	return cfs_period_us;
7800}
7801
7802static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7803				  struct cftype *cft)
7804{
7805	return tg_get_cfs_quota(css_tg(css));
7806}
7807
7808static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7809				   struct cftype *cftype, s64 cfs_quota_us)
7810{
7811	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7812}
7813
7814static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7815				   struct cftype *cft)
7816{
7817	return tg_get_cfs_period(css_tg(css));
7818}
7819
7820static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7821				    struct cftype *cftype, u64 cfs_period_us)
7822{
7823	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7824}
7825
7826struct cfs_schedulable_data {
7827	struct task_group *tg;
7828	u64 period, quota;
7829};
7830
7831/*
7832 * normalize group quota/period to be quota/max_period
7833 * note: units are usecs
7834 */
7835static u64 normalize_cfs_quota(struct task_group *tg,
7836			       struct cfs_schedulable_data *d)
7837{
7838	u64 quota, period;
7839
7840	if (tg == d->tg) {
7841		period = d->period;
7842		quota = d->quota;
7843	} else {
7844		period = tg_get_cfs_period(tg);
7845		quota = tg_get_cfs_quota(tg);
7846	}
7847
7848	/* note: these should typically be equivalent */
7849	if (quota == RUNTIME_INF || quota == -1)
7850		return RUNTIME_INF;
7851
7852	return to_ratio(period, quota);
7853}
7854
7855static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7856{
7857	struct cfs_schedulable_data *d = data;
7858	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7859	s64 quota = 0, parent_quota = -1;
7860
7861	if (!tg->parent) {
7862		quota = RUNTIME_INF;
7863	} else {
7864		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7865
7866		quota = normalize_cfs_quota(tg, d);
7867		parent_quota = parent_b->hierarchal_quota;
7868
7869		/*
7870		 * ensure max(child_quota) <= parent_quota, inherit when no
7871		 * limit is set
7872		 */
7873		if (quota == RUNTIME_INF)
7874			quota = parent_quota;
7875		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7876			return -EINVAL;
7877	}
7878	cfs_b->hierarchal_quota = quota;
7879
7880	return 0;
7881}
7882
7883static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7884{
7885	int ret;
7886	struct cfs_schedulable_data data = {
7887		.tg = tg,
7888		.period = period,
7889		.quota = quota,
7890	};
7891
7892	if (quota != RUNTIME_INF) {
7893		do_div(data.period, NSEC_PER_USEC);
7894		do_div(data.quota, NSEC_PER_USEC);
7895	}
7896
7897	rcu_read_lock();
7898	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7899	rcu_read_unlock();
7900
7901	return ret;
7902}
7903
7904static int cpu_stats_show(struct seq_file *sf, void *v)
7905{
7906	struct task_group *tg = css_tg(seq_css(sf));
7907	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7908
7909	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7910	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7911	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7912
7913	return 0;
7914}
7915#endif /* CONFIG_CFS_BANDWIDTH */
7916#endif /* CONFIG_FAIR_GROUP_SCHED */
7917
7918#ifdef CONFIG_RT_GROUP_SCHED
7919static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7920				struct cftype *cft, s64 val)
7921{
7922	return sched_group_set_rt_runtime(css_tg(css), val);
7923}
7924
7925static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7926			       struct cftype *cft)
7927{
7928	return sched_group_rt_runtime(css_tg(css));
7929}
7930
7931static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7932				    struct cftype *cftype, u64 rt_period_us)
7933{
7934	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7935}
7936
7937static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7938				   struct cftype *cft)
7939{
7940	return sched_group_rt_period(css_tg(css));
7941}
7942#endif /* CONFIG_RT_GROUP_SCHED */
7943
7944static struct cftype cpu_files[] = {
7945#ifdef CONFIG_FAIR_GROUP_SCHED
7946	{
7947		.name = "shares",
7948		.read_u64 = cpu_shares_read_u64,
7949		.write_u64 = cpu_shares_write_u64,
7950	},
7951#endif
7952#ifdef CONFIG_CFS_BANDWIDTH
7953	{
7954		.name = "cfs_quota_us",
7955		.read_s64 = cpu_cfs_quota_read_s64,
7956		.write_s64 = cpu_cfs_quota_write_s64,
7957	},
7958	{
7959		.name = "cfs_period_us",
7960		.read_u64 = cpu_cfs_period_read_u64,
7961		.write_u64 = cpu_cfs_period_write_u64,
7962	},
7963	{
7964		.name = "stat",
7965		.seq_show = cpu_stats_show,
7966	},
7967#endif
7968#ifdef CONFIG_RT_GROUP_SCHED
7969	{
7970		.name = "rt_runtime_us",
7971		.read_s64 = cpu_rt_runtime_read,
7972		.write_s64 = cpu_rt_runtime_write,
7973	},
7974	{
7975		.name = "rt_period_us",
7976		.read_u64 = cpu_rt_period_read_uint,
7977		.write_u64 = cpu_rt_period_write_uint,
7978	},
7979#endif
7980	{ }	/* terminate */
7981};
7982
7983struct cgroup_subsys cpu_cgrp_subsys = {
7984	.css_alloc	= cpu_cgroup_css_alloc,
7985	.css_free	= cpu_cgroup_css_free,
7986	.css_online	= cpu_cgroup_css_online,
7987	.css_offline	= cpu_cgroup_css_offline,
7988	.can_attach	= cpu_cgroup_can_attach,
7989	.attach		= cpu_cgroup_attach,
7990	.exit		= cpu_cgroup_exit,
7991	.base_cftypes	= cpu_files,
7992	.early_init	= 1,
7993};
7994
7995#endif	/* CONFIG_CGROUP_SCHED */
7996
7997void dump_cpu_task(int cpu)
7998{
7999	pr_info("Task dump for CPU %d:\n", cpu);
8000	sched_show_task(cpu_curr(cpu));
8001}
8002