core.c revision 2d3d891d3344159d5b452a645e355bbe29591e8b
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_dl_policy(p))
903		prio = MAX_DL_PRIO-1;
904	else if (task_has_rt_policy(p))
905		prio = MAX_RT_PRIO-1 - p->rt_priority;
906	else
907		prio = __normal_prio(p);
908	return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
918static int effective_prio(struct task_struct *p)
919{
920	p->normal_prio = normal_prio(p);
921	/*
922	 * If we are RT tasks or we were boosted to RT priority,
923	 * keep the priority unchanged. Otherwise, update priority
924	 * to the normal priority:
925	 */
926	if (!rt_prio(p->prio))
927		return p->normal_prio;
928	return p->prio;
929}
930
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 *
935 * Return: 1 if the task is currently executing. 0 otherwise.
936 */
937inline int task_curr(const struct task_struct *p)
938{
939	return cpu_curr(task_cpu(p)) == p;
940}
941
942static inline void check_class_changed(struct rq *rq, struct task_struct *p,
943				       const struct sched_class *prev_class,
944				       int oldprio)
945{
946	if (prev_class != p->sched_class) {
947		if (prev_class->switched_from)
948			prev_class->switched_from(rq, p);
949		p->sched_class->switched_to(rq, p);
950	} else if (oldprio != p->prio || dl_task(p))
951		p->sched_class->prio_changed(rq, p, oldprio);
952}
953
954void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
955{
956	const struct sched_class *class;
957
958	if (p->sched_class == rq->curr->sched_class) {
959		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
960	} else {
961		for_each_class(class) {
962			if (class == rq->curr->sched_class)
963				break;
964			if (class == p->sched_class) {
965				resched_task(rq->curr);
966				break;
967			}
968		}
969	}
970
971	/*
972	 * A queue event has occurred, and we're going to schedule.  In
973	 * this case, we can save a useless back to back clock update.
974	 */
975	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
976		rq->skip_clock_update = 1;
977}
978
979#ifdef CONFIG_SMP
980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
981{
982#ifdef CONFIG_SCHED_DEBUG
983	/*
984	 * We should never call set_task_cpu() on a blocked task,
985	 * ttwu() will sort out the placement.
986	 */
987	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
988			!(task_preempt_count(p) & PREEMPT_ACTIVE));
989
990#ifdef CONFIG_LOCKDEP
991	/*
992	 * The caller should hold either p->pi_lock or rq->lock, when changing
993	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
994	 *
995	 * sched_move_task() holds both and thus holding either pins the cgroup,
996	 * see task_group().
997	 *
998	 * Furthermore, all task_rq users should acquire both locks, see
999	 * task_rq_lock().
1000	 */
1001	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1002				      lockdep_is_held(&task_rq(p)->lock)));
1003#endif
1004#endif
1005
1006	trace_sched_migrate_task(p, new_cpu);
1007
1008	if (task_cpu(p) != new_cpu) {
1009		if (p->sched_class->migrate_task_rq)
1010			p->sched_class->migrate_task_rq(p, new_cpu);
1011		p->se.nr_migrations++;
1012		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1013	}
1014
1015	__set_task_cpu(p, new_cpu);
1016}
1017
1018static void __migrate_swap_task(struct task_struct *p, int cpu)
1019{
1020	if (p->on_rq) {
1021		struct rq *src_rq, *dst_rq;
1022
1023		src_rq = task_rq(p);
1024		dst_rq = cpu_rq(cpu);
1025
1026		deactivate_task(src_rq, p, 0);
1027		set_task_cpu(p, cpu);
1028		activate_task(dst_rq, p, 0);
1029		check_preempt_curr(dst_rq, p, 0);
1030	} else {
1031		/*
1032		 * Task isn't running anymore; make it appear like we migrated
1033		 * it before it went to sleep. This means on wakeup we make the
1034		 * previous cpu our targer instead of where it really is.
1035		 */
1036		p->wake_cpu = cpu;
1037	}
1038}
1039
1040struct migration_swap_arg {
1041	struct task_struct *src_task, *dst_task;
1042	int src_cpu, dst_cpu;
1043};
1044
1045static int migrate_swap_stop(void *data)
1046{
1047	struct migration_swap_arg *arg = data;
1048	struct rq *src_rq, *dst_rq;
1049	int ret = -EAGAIN;
1050
1051	src_rq = cpu_rq(arg->src_cpu);
1052	dst_rq = cpu_rq(arg->dst_cpu);
1053
1054	double_raw_lock(&arg->src_task->pi_lock,
1055			&arg->dst_task->pi_lock);
1056	double_rq_lock(src_rq, dst_rq);
1057	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1058		goto unlock;
1059
1060	if (task_cpu(arg->src_task) != arg->src_cpu)
1061		goto unlock;
1062
1063	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1064		goto unlock;
1065
1066	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1067		goto unlock;
1068
1069	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1070	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1071
1072	ret = 0;
1073
1074unlock:
1075	double_rq_unlock(src_rq, dst_rq);
1076	raw_spin_unlock(&arg->dst_task->pi_lock);
1077	raw_spin_unlock(&arg->src_task->pi_lock);
1078
1079	return ret;
1080}
1081
1082/*
1083 * Cross migrate two tasks
1084 */
1085int migrate_swap(struct task_struct *cur, struct task_struct *p)
1086{
1087	struct migration_swap_arg arg;
1088	int ret = -EINVAL;
1089
1090	arg = (struct migration_swap_arg){
1091		.src_task = cur,
1092		.src_cpu = task_cpu(cur),
1093		.dst_task = p,
1094		.dst_cpu = task_cpu(p),
1095	};
1096
1097	if (arg.src_cpu == arg.dst_cpu)
1098		goto out;
1099
1100	/*
1101	 * These three tests are all lockless; this is OK since all of them
1102	 * will be re-checked with proper locks held further down the line.
1103	 */
1104	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1105		goto out;
1106
1107	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1108		goto out;
1109
1110	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1111		goto out;
1112
1113	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1114
1115out:
1116	return ret;
1117}
1118
1119struct migration_arg {
1120	struct task_struct *task;
1121	int dest_cpu;
1122};
1123
1124static int migration_cpu_stop(void *data);
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change.  If it changes, i.e. @p might have woken up,
1131 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count).  If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143{
1144	unsigned long flags;
1145	int running, on_rq;
1146	unsigned long ncsw;
1147	struct rq *rq;
1148
1149	for (;;) {
1150		/*
1151		 * We do the initial early heuristics without holding
1152		 * any task-queue locks at all. We'll only try to get
1153		 * the runqueue lock when things look like they will
1154		 * work out!
1155		 */
1156		rq = task_rq(p);
1157
1158		/*
1159		 * If the task is actively running on another CPU
1160		 * still, just relax and busy-wait without holding
1161		 * any locks.
1162		 *
1163		 * NOTE! Since we don't hold any locks, it's not
1164		 * even sure that "rq" stays as the right runqueue!
1165		 * But we don't care, since "task_running()" will
1166		 * return false if the runqueue has changed and p
1167		 * is actually now running somewhere else!
1168		 */
1169		while (task_running(rq, p)) {
1170			if (match_state && unlikely(p->state != match_state))
1171				return 0;
1172			cpu_relax();
1173		}
1174
1175		/*
1176		 * Ok, time to look more closely! We need the rq
1177		 * lock now, to be *sure*. If we're wrong, we'll
1178		 * just go back and repeat.
1179		 */
1180		rq = task_rq_lock(p, &flags);
1181		trace_sched_wait_task(p);
1182		running = task_running(rq, p);
1183		on_rq = p->on_rq;
1184		ncsw = 0;
1185		if (!match_state || p->state == match_state)
1186			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187		task_rq_unlock(rq, p, &flags);
1188
1189		/*
1190		 * If it changed from the expected state, bail out now.
1191		 */
1192		if (unlikely(!ncsw))
1193			break;
1194
1195		/*
1196		 * Was it really running after all now that we
1197		 * checked with the proper locks actually held?
1198		 *
1199		 * Oops. Go back and try again..
1200		 */
1201		if (unlikely(running)) {
1202			cpu_relax();
1203			continue;
1204		}
1205
1206		/*
1207		 * It's not enough that it's not actively running,
1208		 * it must be off the runqueue _entirely_, and not
1209		 * preempted!
1210		 *
1211		 * So if it was still runnable (but just not actively
1212		 * running right now), it's preempted, and we should
1213		 * yield - it could be a while.
1214		 */
1215		if (unlikely(on_rq)) {
1216			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218			set_current_state(TASK_UNINTERRUPTIBLE);
1219			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220			continue;
1221		}
1222
1223		/*
1224		 * Ahh, all good. It wasn't running, and it wasn't
1225		 * runnable, which means that it will never become
1226		 * running in the future either. We're all done!
1227		 */
1228		break;
1229	}
1230
1231	return ncsw;
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247void kick_process(struct task_struct *p)
1248{
1249	int cpu;
1250
1251	preempt_disable();
1252	cpu = task_cpu(p);
1253	if ((cpu != smp_processor_id()) && task_curr(p))
1254		smp_send_reschedule(cpu);
1255	preempt_enable();
1256}
1257EXPORT_SYMBOL_GPL(kick_process);
1258#endif /* CONFIG_SMP */
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266	int nid = cpu_to_node(cpu);
1267	const struct cpumask *nodemask = NULL;
1268	enum { cpuset, possible, fail } state = cpuset;
1269	int dest_cpu;
1270
1271	/*
1272	 * If the node that the cpu is on has been offlined, cpu_to_node()
1273	 * will return -1. There is no cpu on the node, and we should
1274	 * select the cpu on the other node.
1275	 */
1276	if (nid != -1) {
1277		nodemask = cpumask_of_node(nid);
1278
1279		/* Look for allowed, online CPU in same node. */
1280		for_each_cpu(dest_cpu, nodemask) {
1281			if (!cpu_online(dest_cpu))
1282				continue;
1283			if (!cpu_active(dest_cpu))
1284				continue;
1285			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1286				return dest_cpu;
1287		}
1288	}
1289
1290	for (;;) {
1291		/* Any allowed, online CPU? */
1292		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1293			if (!cpu_online(dest_cpu))
1294				continue;
1295			if (!cpu_active(dest_cpu))
1296				continue;
1297			goto out;
1298		}
1299
1300		switch (state) {
1301		case cpuset:
1302			/* No more Mr. Nice Guy. */
1303			cpuset_cpus_allowed_fallback(p);
1304			state = possible;
1305			break;
1306
1307		case possible:
1308			do_set_cpus_allowed(p, cpu_possible_mask);
1309			state = fail;
1310			break;
1311
1312		case fail:
1313			BUG();
1314			break;
1315		}
1316	}
1317
1318out:
1319	if (state != cpuset) {
1320		/*
1321		 * Don't tell them about moving exiting tasks or
1322		 * kernel threads (both mm NULL), since they never
1323		 * leave kernel.
1324		 */
1325		if (p->mm && printk_ratelimit()) {
1326			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1327					task_pid_nr(p), p->comm, cpu);
1328		}
1329	}
1330
1331	return dest_cpu;
1332}
1333
1334/*
1335 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1336 */
1337static inline
1338int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1339{
1340	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1341
1342	/*
1343	 * In order not to call set_task_cpu() on a blocking task we need
1344	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1345	 * cpu.
1346	 *
1347	 * Since this is common to all placement strategies, this lives here.
1348	 *
1349	 * [ this allows ->select_task() to simply return task_cpu(p) and
1350	 *   not worry about this generic constraint ]
1351	 */
1352	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1353		     !cpu_online(cpu)))
1354		cpu = select_fallback_rq(task_cpu(p), p);
1355
1356	return cpu;
1357}
1358
1359static void update_avg(u64 *avg, u64 sample)
1360{
1361	s64 diff = sample - *avg;
1362	*avg += diff >> 3;
1363}
1364#endif
1365
1366static void
1367ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1368{
1369#ifdef CONFIG_SCHEDSTATS
1370	struct rq *rq = this_rq();
1371
1372#ifdef CONFIG_SMP
1373	int this_cpu = smp_processor_id();
1374
1375	if (cpu == this_cpu) {
1376		schedstat_inc(rq, ttwu_local);
1377		schedstat_inc(p, se.statistics.nr_wakeups_local);
1378	} else {
1379		struct sched_domain *sd;
1380
1381		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1382		rcu_read_lock();
1383		for_each_domain(this_cpu, sd) {
1384			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1385				schedstat_inc(sd, ttwu_wake_remote);
1386				break;
1387			}
1388		}
1389		rcu_read_unlock();
1390	}
1391
1392	if (wake_flags & WF_MIGRATED)
1393		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1394
1395#endif /* CONFIG_SMP */
1396
1397	schedstat_inc(rq, ttwu_count);
1398	schedstat_inc(p, se.statistics.nr_wakeups);
1399
1400	if (wake_flags & WF_SYNC)
1401		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1402
1403#endif /* CONFIG_SCHEDSTATS */
1404}
1405
1406static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1407{
1408	activate_task(rq, p, en_flags);
1409	p->on_rq = 1;
1410
1411	/* if a worker is waking up, notify workqueue */
1412	if (p->flags & PF_WQ_WORKER)
1413		wq_worker_waking_up(p, cpu_of(rq));
1414}
1415
1416/*
1417 * Mark the task runnable and perform wakeup-preemption.
1418 */
1419static void
1420ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1421{
1422	check_preempt_curr(rq, p, wake_flags);
1423	trace_sched_wakeup(p, true);
1424
1425	p->state = TASK_RUNNING;
1426#ifdef CONFIG_SMP
1427	if (p->sched_class->task_woken)
1428		p->sched_class->task_woken(rq, p);
1429
1430	if (rq->idle_stamp) {
1431		u64 delta = rq_clock(rq) - rq->idle_stamp;
1432		u64 max = 2*rq->max_idle_balance_cost;
1433
1434		update_avg(&rq->avg_idle, delta);
1435
1436		if (rq->avg_idle > max)
1437			rq->avg_idle = max;
1438
1439		rq->idle_stamp = 0;
1440	}
1441#endif
1442}
1443
1444static void
1445ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1446{
1447#ifdef CONFIG_SMP
1448	if (p->sched_contributes_to_load)
1449		rq->nr_uninterruptible--;
1450#endif
1451
1452	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1453	ttwu_do_wakeup(rq, p, wake_flags);
1454}
1455
1456/*
1457 * Called in case the task @p isn't fully descheduled from its runqueue,
1458 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1459 * since all we need to do is flip p->state to TASK_RUNNING, since
1460 * the task is still ->on_rq.
1461 */
1462static int ttwu_remote(struct task_struct *p, int wake_flags)
1463{
1464	struct rq *rq;
1465	int ret = 0;
1466
1467	rq = __task_rq_lock(p);
1468	if (p->on_rq) {
1469		/* check_preempt_curr() may use rq clock */
1470		update_rq_clock(rq);
1471		ttwu_do_wakeup(rq, p, wake_flags);
1472		ret = 1;
1473	}
1474	__task_rq_unlock(rq);
1475
1476	return ret;
1477}
1478
1479#ifdef CONFIG_SMP
1480static void sched_ttwu_pending(void)
1481{
1482	struct rq *rq = this_rq();
1483	struct llist_node *llist = llist_del_all(&rq->wake_list);
1484	struct task_struct *p;
1485
1486	raw_spin_lock(&rq->lock);
1487
1488	while (llist) {
1489		p = llist_entry(llist, struct task_struct, wake_entry);
1490		llist = llist_next(llist);
1491		ttwu_do_activate(rq, p, 0);
1492	}
1493
1494	raw_spin_unlock(&rq->lock);
1495}
1496
1497void scheduler_ipi(void)
1498{
1499	/*
1500	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1501	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1502	 * this IPI.
1503	 */
1504	if (tif_need_resched())
1505		set_preempt_need_resched();
1506
1507	if (llist_empty(&this_rq()->wake_list)
1508			&& !tick_nohz_full_cpu(smp_processor_id())
1509			&& !got_nohz_idle_kick())
1510		return;
1511
1512	/*
1513	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1514	 * traditionally all their work was done from the interrupt return
1515	 * path. Now that we actually do some work, we need to make sure
1516	 * we do call them.
1517	 *
1518	 * Some archs already do call them, luckily irq_enter/exit nest
1519	 * properly.
1520	 *
1521	 * Arguably we should visit all archs and update all handlers,
1522	 * however a fair share of IPIs are still resched only so this would
1523	 * somewhat pessimize the simple resched case.
1524	 */
1525	irq_enter();
1526	tick_nohz_full_check();
1527	sched_ttwu_pending();
1528
1529	/*
1530	 * Check if someone kicked us for doing the nohz idle load balance.
1531	 */
1532	if (unlikely(got_nohz_idle_kick())) {
1533		this_rq()->idle_balance = 1;
1534		raise_softirq_irqoff(SCHED_SOFTIRQ);
1535	}
1536	irq_exit();
1537}
1538
1539static void ttwu_queue_remote(struct task_struct *p, int cpu)
1540{
1541	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1542		smp_send_reschedule(cpu);
1543}
1544
1545bool cpus_share_cache(int this_cpu, int that_cpu)
1546{
1547	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1548}
1549#endif /* CONFIG_SMP */
1550
1551static void ttwu_queue(struct task_struct *p, int cpu)
1552{
1553	struct rq *rq = cpu_rq(cpu);
1554
1555#if defined(CONFIG_SMP)
1556	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1557		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1558		ttwu_queue_remote(p, cpu);
1559		return;
1560	}
1561#endif
1562
1563	raw_spin_lock(&rq->lock);
1564	ttwu_do_activate(rq, p, 0);
1565	raw_spin_unlock(&rq->lock);
1566}
1567
1568/**
1569 * try_to_wake_up - wake up a thread
1570 * @p: the thread to be awakened
1571 * @state: the mask of task states that can be woken
1572 * @wake_flags: wake modifier flags (WF_*)
1573 *
1574 * Put it on the run-queue if it's not already there. The "current"
1575 * thread is always on the run-queue (except when the actual
1576 * re-schedule is in progress), and as such you're allowed to do
1577 * the simpler "current->state = TASK_RUNNING" to mark yourself
1578 * runnable without the overhead of this.
1579 *
1580 * Return: %true if @p was woken up, %false if it was already running.
1581 * or @state didn't match @p's state.
1582 */
1583static int
1584try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1585{
1586	unsigned long flags;
1587	int cpu, success = 0;
1588
1589	/*
1590	 * If we are going to wake up a thread waiting for CONDITION we
1591	 * need to ensure that CONDITION=1 done by the caller can not be
1592	 * reordered with p->state check below. This pairs with mb() in
1593	 * set_current_state() the waiting thread does.
1594	 */
1595	smp_mb__before_spinlock();
1596	raw_spin_lock_irqsave(&p->pi_lock, flags);
1597	if (!(p->state & state))
1598		goto out;
1599
1600	success = 1; /* we're going to change ->state */
1601	cpu = task_cpu(p);
1602
1603	if (p->on_rq && ttwu_remote(p, wake_flags))
1604		goto stat;
1605
1606#ifdef CONFIG_SMP
1607	/*
1608	 * If the owning (remote) cpu is still in the middle of schedule() with
1609	 * this task as prev, wait until its done referencing the task.
1610	 */
1611	while (p->on_cpu)
1612		cpu_relax();
1613	/*
1614	 * Pairs with the smp_wmb() in finish_lock_switch().
1615	 */
1616	smp_rmb();
1617
1618	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1619	p->state = TASK_WAKING;
1620
1621	if (p->sched_class->task_waking)
1622		p->sched_class->task_waking(p);
1623
1624	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1625	if (task_cpu(p) != cpu) {
1626		wake_flags |= WF_MIGRATED;
1627		set_task_cpu(p, cpu);
1628	}
1629#endif /* CONFIG_SMP */
1630
1631	ttwu_queue(p, cpu);
1632stat:
1633	ttwu_stat(p, cpu, wake_flags);
1634out:
1635	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1636
1637	return success;
1638}
1639
1640/**
1641 * try_to_wake_up_local - try to wake up a local task with rq lock held
1642 * @p: the thread to be awakened
1643 *
1644 * Put @p on the run-queue if it's not already there. The caller must
1645 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1646 * the current task.
1647 */
1648static void try_to_wake_up_local(struct task_struct *p)
1649{
1650	struct rq *rq = task_rq(p);
1651
1652	if (WARN_ON_ONCE(rq != this_rq()) ||
1653	    WARN_ON_ONCE(p == current))
1654		return;
1655
1656	lockdep_assert_held(&rq->lock);
1657
1658	if (!raw_spin_trylock(&p->pi_lock)) {
1659		raw_spin_unlock(&rq->lock);
1660		raw_spin_lock(&p->pi_lock);
1661		raw_spin_lock(&rq->lock);
1662	}
1663
1664	if (!(p->state & TASK_NORMAL))
1665		goto out;
1666
1667	if (!p->on_rq)
1668		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
1670	ttwu_do_wakeup(rq, p, 0);
1671	ttwu_stat(p, smp_processor_id(), 0);
1672out:
1673	raw_spin_unlock(&p->pi_lock);
1674}
1675
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes.
1682 *
1683 * Return: 1 if the process was woken up, 0 if it was already running.
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
1688int wake_up_process(struct task_struct *p)
1689{
1690	WARN_ON(task_is_stopped_or_traced(p));
1691	return try_to_wake_up(p, TASK_NORMAL, 0);
1692}
1693EXPORT_SYMBOL(wake_up_process);
1694
1695int wake_up_state(struct task_struct *p, unsigned int state)
1696{
1697	return try_to_wake_up(p, state, 0);
1698}
1699
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
1706static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1707{
1708	p->on_rq			= 0;
1709
1710	p->se.on_rq			= 0;
1711	p->se.exec_start		= 0;
1712	p->se.sum_exec_runtime		= 0;
1713	p->se.prev_sum_exec_runtime	= 0;
1714	p->se.nr_migrations		= 0;
1715	p->se.vruntime			= 0;
1716	INIT_LIST_HEAD(&p->se.group_node);
1717
1718#ifdef CONFIG_SCHEDSTATS
1719	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720#endif
1721
1722	RB_CLEAR_NODE(&p->dl.rb_node);
1723	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1724	p->dl.dl_runtime = p->dl.runtime = 0;
1725	p->dl.dl_deadline = p->dl.deadline = 0;
1726	p->dl.dl_period = 0;
1727	p->dl.flags = 0;
1728
1729	INIT_LIST_HEAD(&p->rt.run_list);
1730
1731#ifdef CONFIG_PREEMPT_NOTIFIERS
1732	INIT_HLIST_HEAD(&p->preempt_notifiers);
1733#endif
1734
1735#ifdef CONFIG_NUMA_BALANCING
1736	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1737		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1738		p->mm->numa_scan_seq = 0;
1739	}
1740
1741	if (clone_flags & CLONE_VM)
1742		p->numa_preferred_nid = current->numa_preferred_nid;
1743	else
1744		p->numa_preferred_nid = -1;
1745
1746	p->node_stamp = 0ULL;
1747	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1748	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1749	p->numa_work.next = &p->numa_work;
1750	p->numa_faults = NULL;
1751	p->numa_faults_buffer = NULL;
1752
1753	INIT_LIST_HEAD(&p->numa_entry);
1754	p->numa_group = NULL;
1755#endif /* CONFIG_NUMA_BALANCING */
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759#ifdef CONFIG_SCHED_DEBUG
1760void set_numabalancing_state(bool enabled)
1761{
1762	if (enabled)
1763		sched_feat_set("NUMA");
1764	else
1765		sched_feat_set("NO_NUMA");
1766}
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772	numabalancing_enabled = enabled;
1773}
1774#endif /* CONFIG_SCHED_DEBUG */
1775#endif /* CONFIG_NUMA_BALANCING */
1776
1777/*
1778 * fork()/clone()-time setup:
1779 */
1780int sched_fork(unsigned long clone_flags, struct task_struct *p)
1781{
1782	unsigned long flags;
1783	int cpu = get_cpu();
1784
1785	__sched_fork(clone_flags, p);
1786	/*
1787	 * We mark the process as running here. This guarantees that
1788	 * nobody will actually run it, and a signal or other external
1789	 * event cannot wake it up and insert it on the runqueue either.
1790	 */
1791	p->state = TASK_RUNNING;
1792
1793	/*
1794	 * Make sure we do not leak PI boosting priority to the child.
1795	 */
1796	p->prio = current->normal_prio;
1797
1798	/*
1799	 * Revert to default priority/policy on fork if requested.
1800	 */
1801	if (unlikely(p->sched_reset_on_fork)) {
1802		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1803			p->policy = SCHED_NORMAL;
1804			p->static_prio = NICE_TO_PRIO(0);
1805			p->rt_priority = 0;
1806		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1807			p->static_prio = NICE_TO_PRIO(0);
1808
1809		p->prio = p->normal_prio = __normal_prio(p);
1810		set_load_weight(p);
1811
1812		/*
1813		 * We don't need the reset flag anymore after the fork. It has
1814		 * fulfilled its duty:
1815		 */
1816		p->sched_reset_on_fork = 0;
1817	}
1818
1819	if (dl_prio(p->prio)) {
1820		put_cpu();
1821		return -EAGAIN;
1822	} else if (rt_prio(p->prio)) {
1823		p->sched_class = &rt_sched_class;
1824	} else {
1825		p->sched_class = &fair_sched_class;
1826	}
1827
1828	if (p->sched_class->task_fork)
1829		p->sched_class->task_fork(p);
1830
1831	/*
1832	 * The child is not yet in the pid-hash so no cgroup attach races,
1833	 * and the cgroup is pinned to this child due to cgroup_fork()
1834	 * is ran before sched_fork().
1835	 *
1836	 * Silence PROVE_RCU.
1837	 */
1838	raw_spin_lock_irqsave(&p->pi_lock, flags);
1839	set_task_cpu(p, cpu);
1840	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1841
1842#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1843	if (likely(sched_info_on()))
1844		memset(&p->sched_info, 0, sizeof(p->sched_info));
1845#endif
1846#if defined(CONFIG_SMP)
1847	p->on_cpu = 0;
1848#endif
1849	init_task_preempt_count(p);
1850#ifdef CONFIG_SMP
1851	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1852	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1853#endif
1854
1855	put_cpu();
1856	return 0;
1857}
1858
1859/*
1860 * wake_up_new_task - wake up a newly created task for the first time.
1861 *
1862 * This function will do some initial scheduler statistics housekeeping
1863 * that must be done for every newly created context, then puts the task
1864 * on the runqueue and wakes it.
1865 */
1866void wake_up_new_task(struct task_struct *p)
1867{
1868	unsigned long flags;
1869	struct rq *rq;
1870
1871	raw_spin_lock_irqsave(&p->pi_lock, flags);
1872#ifdef CONFIG_SMP
1873	/*
1874	 * Fork balancing, do it here and not earlier because:
1875	 *  - cpus_allowed can change in the fork path
1876	 *  - any previously selected cpu might disappear through hotplug
1877	 */
1878	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1879#endif
1880
1881	/* Initialize new task's runnable average */
1882	init_task_runnable_average(p);
1883	rq = __task_rq_lock(p);
1884	activate_task(rq, p, 0);
1885	p->on_rq = 1;
1886	trace_sched_wakeup_new(p, true);
1887	check_preempt_curr(rq, p, WF_FORK);
1888#ifdef CONFIG_SMP
1889	if (p->sched_class->task_woken)
1890		p->sched_class->task_woken(rq, p);
1891#endif
1892	task_rq_unlock(rq, p, &flags);
1893}
1894
1895#ifdef CONFIG_PREEMPT_NOTIFIERS
1896
1897/**
1898 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1899 * @notifier: notifier struct to register
1900 */
1901void preempt_notifier_register(struct preempt_notifier *notifier)
1902{
1903	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1904}
1905EXPORT_SYMBOL_GPL(preempt_notifier_register);
1906
1907/**
1908 * preempt_notifier_unregister - no longer interested in preemption notifications
1909 * @notifier: notifier struct to unregister
1910 *
1911 * This is safe to call from within a preemption notifier.
1912 */
1913void preempt_notifier_unregister(struct preempt_notifier *notifier)
1914{
1915	hlist_del(&notifier->link);
1916}
1917EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1918
1919static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1920{
1921	struct preempt_notifier *notifier;
1922
1923	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1924		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1925}
1926
1927static void
1928fire_sched_out_preempt_notifiers(struct task_struct *curr,
1929				 struct task_struct *next)
1930{
1931	struct preempt_notifier *notifier;
1932
1933	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1934		notifier->ops->sched_out(notifier, next);
1935}
1936
1937#else /* !CONFIG_PREEMPT_NOTIFIERS */
1938
1939static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1940{
1941}
1942
1943static void
1944fire_sched_out_preempt_notifiers(struct task_struct *curr,
1945				 struct task_struct *next)
1946{
1947}
1948
1949#endif /* CONFIG_PREEMPT_NOTIFIERS */
1950
1951/**
1952 * prepare_task_switch - prepare to switch tasks
1953 * @rq: the runqueue preparing to switch
1954 * @prev: the current task that is being switched out
1955 * @next: the task we are going to switch to.
1956 *
1957 * This is called with the rq lock held and interrupts off. It must
1958 * be paired with a subsequent finish_task_switch after the context
1959 * switch.
1960 *
1961 * prepare_task_switch sets up locking and calls architecture specific
1962 * hooks.
1963 */
1964static inline void
1965prepare_task_switch(struct rq *rq, struct task_struct *prev,
1966		    struct task_struct *next)
1967{
1968	trace_sched_switch(prev, next);
1969	sched_info_switch(rq, prev, next);
1970	perf_event_task_sched_out(prev, next);
1971	fire_sched_out_preempt_notifiers(prev, next);
1972	prepare_lock_switch(rq, next);
1973	prepare_arch_switch(next);
1974}
1975
1976/**
1977 * finish_task_switch - clean up after a task-switch
1978 * @rq: runqueue associated with task-switch
1979 * @prev: the thread we just switched away from.
1980 *
1981 * finish_task_switch must be called after the context switch, paired
1982 * with a prepare_task_switch call before the context switch.
1983 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1984 * and do any other architecture-specific cleanup actions.
1985 *
1986 * Note that we may have delayed dropping an mm in context_switch(). If
1987 * so, we finish that here outside of the runqueue lock. (Doing it
1988 * with the lock held can cause deadlocks; see schedule() for
1989 * details.)
1990 */
1991static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1992	__releases(rq->lock)
1993{
1994	struct mm_struct *mm = rq->prev_mm;
1995	long prev_state;
1996
1997	rq->prev_mm = NULL;
1998
1999	/*
2000	 * A task struct has one reference for the use as "current".
2001	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2002	 * schedule one last time. The schedule call will never return, and
2003	 * the scheduled task must drop that reference.
2004	 * The test for TASK_DEAD must occur while the runqueue locks are
2005	 * still held, otherwise prev could be scheduled on another cpu, die
2006	 * there before we look at prev->state, and then the reference would
2007	 * be dropped twice.
2008	 *		Manfred Spraul <manfred@colorfullife.com>
2009	 */
2010	prev_state = prev->state;
2011	vtime_task_switch(prev);
2012	finish_arch_switch(prev);
2013	perf_event_task_sched_in(prev, current);
2014	finish_lock_switch(rq, prev);
2015	finish_arch_post_lock_switch();
2016
2017	fire_sched_in_preempt_notifiers(current);
2018	if (mm)
2019		mmdrop(mm);
2020	if (unlikely(prev_state == TASK_DEAD)) {
2021		task_numa_free(prev);
2022
2023		if (prev->sched_class->task_dead)
2024			prev->sched_class->task_dead(prev);
2025
2026		/*
2027		 * Remove function-return probe instances associated with this
2028		 * task and put them back on the free list.
2029		 */
2030		kprobe_flush_task(prev);
2031		put_task_struct(prev);
2032	}
2033
2034	tick_nohz_task_switch(current);
2035}
2036
2037#ifdef CONFIG_SMP
2038
2039/* assumes rq->lock is held */
2040static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2041{
2042	if (prev->sched_class->pre_schedule)
2043		prev->sched_class->pre_schedule(rq, prev);
2044}
2045
2046/* rq->lock is NOT held, but preemption is disabled */
2047static inline void post_schedule(struct rq *rq)
2048{
2049	if (rq->post_schedule) {
2050		unsigned long flags;
2051
2052		raw_spin_lock_irqsave(&rq->lock, flags);
2053		if (rq->curr->sched_class->post_schedule)
2054			rq->curr->sched_class->post_schedule(rq);
2055		raw_spin_unlock_irqrestore(&rq->lock, flags);
2056
2057		rq->post_schedule = 0;
2058	}
2059}
2060
2061#else
2062
2063static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2064{
2065}
2066
2067static inline void post_schedule(struct rq *rq)
2068{
2069}
2070
2071#endif
2072
2073/**
2074 * schedule_tail - first thing a freshly forked thread must call.
2075 * @prev: the thread we just switched away from.
2076 */
2077asmlinkage void schedule_tail(struct task_struct *prev)
2078	__releases(rq->lock)
2079{
2080	struct rq *rq = this_rq();
2081
2082	finish_task_switch(rq, prev);
2083
2084	/*
2085	 * FIXME: do we need to worry about rq being invalidated by the
2086	 * task_switch?
2087	 */
2088	post_schedule(rq);
2089
2090#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2091	/* In this case, finish_task_switch does not reenable preemption */
2092	preempt_enable();
2093#endif
2094	if (current->set_child_tid)
2095		put_user(task_pid_vnr(current), current->set_child_tid);
2096}
2097
2098/*
2099 * context_switch - switch to the new MM and the new
2100 * thread's register state.
2101 */
2102static inline void
2103context_switch(struct rq *rq, struct task_struct *prev,
2104	       struct task_struct *next)
2105{
2106	struct mm_struct *mm, *oldmm;
2107
2108	prepare_task_switch(rq, prev, next);
2109
2110	mm = next->mm;
2111	oldmm = prev->active_mm;
2112	/*
2113	 * For paravirt, this is coupled with an exit in switch_to to
2114	 * combine the page table reload and the switch backend into
2115	 * one hypercall.
2116	 */
2117	arch_start_context_switch(prev);
2118
2119	if (!mm) {
2120		next->active_mm = oldmm;
2121		atomic_inc(&oldmm->mm_count);
2122		enter_lazy_tlb(oldmm, next);
2123	} else
2124		switch_mm(oldmm, mm, next);
2125
2126	if (!prev->mm) {
2127		prev->active_mm = NULL;
2128		rq->prev_mm = oldmm;
2129	}
2130	/*
2131	 * Since the runqueue lock will be released by the next
2132	 * task (which is an invalid locking op but in the case
2133	 * of the scheduler it's an obvious special-case), so we
2134	 * do an early lockdep release here:
2135	 */
2136#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2137	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2138#endif
2139
2140	context_tracking_task_switch(prev, next);
2141	/* Here we just switch the register state and the stack. */
2142	switch_to(prev, next, prev);
2143
2144	barrier();
2145	/*
2146	 * this_rq must be evaluated again because prev may have moved
2147	 * CPUs since it called schedule(), thus the 'rq' on its stack
2148	 * frame will be invalid.
2149	 */
2150	finish_task_switch(this_rq(), prev);
2151}
2152
2153/*
2154 * nr_running and nr_context_switches:
2155 *
2156 * externally visible scheduler statistics: current number of runnable
2157 * threads, total number of context switches performed since bootup.
2158 */
2159unsigned long nr_running(void)
2160{
2161	unsigned long i, sum = 0;
2162
2163	for_each_online_cpu(i)
2164		sum += cpu_rq(i)->nr_running;
2165
2166	return sum;
2167}
2168
2169unsigned long long nr_context_switches(void)
2170{
2171	int i;
2172	unsigned long long sum = 0;
2173
2174	for_each_possible_cpu(i)
2175		sum += cpu_rq(i)->nr_switches;
2176
2177	return sum;
2178}
2179
2180unsigned long nr_iowait(void)
2181{
2182	unsigned long i, sum = 0;
2183
2184	for_each_possible_cpu(i)
2185		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2186
2187	return sum;
2188}
2189
2190unsigned long nr_iowait_cpu(int cpu)
2191{
2192	struct rq *this = cpu_rq(cpu);
2193	return atomic_read(&this->nr_iowait);
2194}
2195
2196#ifdef CONFIG_SMP
2197
2198/*
2199 * sched_exec - execve() is a valuable balancing opportunity, because at
2200 * this point the task has the smallest effective memory and cache footprint.
2201 */
2202void sched_exec(void)
2203{
2204	struct task_struct *p = current;
2205	unsigned long flags;
2206	int dest_cpu;
2207
2208	raw_spin_lock_irqsave(&p->pi_lock, flags);
2209	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2210	if (dest_cpu == smp_processor_id())
2211		goto unlock;
2212
2213	if (likely(cpu_active(dest_cpu))) {
2214		struct migration_arg arg = { p, dest_cpu };
2215
2216		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2217		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2218		return;
2219	}
2220unlock:
2221	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222}
2223
2224#endif
2225
2226DEFINE_PER_CPU(struct kernel_stat, kstat);
2227DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2228
2229EXPORT_PER_CPU_SYMBOL(kstat);
2230EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2231
2232/*
2233 * Return any ns on the sched_clock that have not yet been accounted in
2234 * @p in case that task is currently running.
2235 *
2236 * Called with task_rq_lock() held on @rq.
2237 */
2238static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2239{
2240	u64 ns = 0;
2241
2242	if (task_current(rq, p)) {
2243		update_rq_clock(rq);
2244		ns = rq_clock_task(rq) - p->se.exec_start;
2245		if ((s64)ns < 0)
2246			ns = 0;
2247	}
2248
2249	return ns;
2250}
2251
2252unsigned long long task_delta_exec(struct task_struct *p)
2253{
2254	unsigned long flags;
2255	struct rq *rq;
2256	u64 ns = 0;
2257
2258	rq = task_rq_lock(p, &flags);
2259	ns = do_task_delta_exec(p, rq);
2260	task_rq_unlock(rq, p, &flags);
2261
2262	return ns;
2263}
2264
2265/*
2266 * Return accounted runtime for the task.
2267 * In case the task is currently running, return the runtime plus current's
2268 * pending runtime that have not been accounted yet.
2269 */
2270unsigned long long task_sched_runtime(struct task_struct *p)
2271{
2272	unsigned long flags;
2273	struct rq *rq;
2274	u64 ns = 0;
2275
2276#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2277	/*
2278	 * 64-bit doesn't need locks to atomically read a 64bit value.
2279	 * So we have a optimization chance when the task's delta_exec is 0.
2280	 * Reading ->on_cpu is racy, but this is ok.
2281	 *
2282	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2283	 * If we race with it entering cpu, unaccounted time is 0. This is
2284	 * indistinguishable from the read occurring a few cycles earlier.
2285	 */
2286	if (!p->on_cpu)
2287		return p->se.sum_exec_runtime;
2288#endif
2289
2290	rq = task_rq_lock(p, &flags);
2291	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2292	task_rq_unlock(rq, p, &flags);
2293
2294	return ns;
2295}
2296
2297/*
2298 * This function gets called by the timer code, with HZ frequency.
2299 * We call it with interrupts disabled.
2300 */
2301void scheduler_tick(void)
2302{
2303	int cpu = smp_processor_id();
2304	struct rq *rq = cpu_rq(cpu);
2305	struct task_struct *curr = rq->curr;
2306
2307	sched_clock_tick();
2308
2309	raw_spin_lock(&rq->lock);
2310	update_rq_clock(rq);
2311	curr->sched_class->task_tick(rq, curr, 0);
2312	update_cpu_load_active(rq);
2313	raw_spin_unlock(&rq->lock);
2314
2315	perf_event_task_tick();
2316
2317#ifdef CONFIG_SMP
2318	rq->idle_balance = idle_cpu(cpu);
2319	trigger_load_balance(rq, cpu);
2320#endif
2321	rq_last_tick_reset(rq);
2322}
2323
2324#ifdef CONFIG_NO_HZ_FULL
2325/**
2326 * scheduler_tick_max_deferment
2327 *
2328 * Keep at least one tick per second when a single
2329 * active task is running because the scheduler doesn't
2330 * yet completely support full dynticks environment.
2331 *
2332 * This makes sure that uptime, CFS vruntime, load
2333 * balancing, etc... continue to move forward, even
2334 * with a very low granularity.
2335 *
2336 * Return: Maximum deferment in nanoseconds.
2337 */
2338u64 scheduler_tick_max_deferment(void)
2339{
2340	struct rq *rq = this_rq();
2341	unsigned long next, now = ACCESS_ONCE(jiffies);
2342
2343	next = rq->last_sched_tick + HZ;
2344
2345	if (time_before_eq(next, now))
2346		return 0;
2347
2348	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2349}
2350#endif
2351
2352notrace unsigned long get_parent_ip(unsigned long addr)
2353{
2354	if (in_lock_functions(addr)) {
2355		addr = CALLER_ADDR2;
2356		if (in_lock_functions(addr))
2357			addr = CALLER_ADDR3;
2358	}
2359	return addr;
2360}
2361
2362#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2363				defined(CONFIG_PREEMPT_TRACER))
2364
2365void __kprobes preempt_count_add(int val)
2366{
2367#ifdef CONFIG_DEBUG_PREEMPT
2368	/*
2369	 * Underflow?
2370	 */
2371	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2372		return;
2373#endif
2374	__preempt_count_add(val);
2375#ifdef CONFIG_DEBUG_PREEMPT
2376	/*
2377	 * Spinlock count overflowing soon?
2378	 */
2379	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2380				PREEMPT_MASK - 10);
2381#endif
2382	if (preempt_count() == val)
2383		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2384}
2385EXPORT_SYMBOL(preempt_count_add);
2386
2387void __kprobes preempt_count_sub(int val)
2388{
2389#ifdef CONFIG_DEBUG_PREEMPT
2390	/*
2391	 * Underflow?
2392	 */
2393	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2394		return;
2395	/*
2396	 * Is the spinlock portion underflowing?
2397	 */
2398	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2399			!(preempt_count() & PREEMPT_MASK)))
2400		return;
2401#endif
2402
2403	if (preempt_count() == val)
2404		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2405	__preempt_count_sub(val);
2406}
2407EXPORT_SYMBOL(preempt_count_sub);
2408
2409#endif
2410
2411/*
2412 * Print scheduling while atomic bug:
2413 */
2414static noinline void __schedule_bug(struct task_struct *prev)
2415{
2416	if (oops_in_progress)
2417		return;
2418
2419	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2420		prev->comm, prev->pid, preempt_count());
2421
2422	debug_show_held_locks(prev);
2423	print_modules();
2424	if (irqs_disabled())
2425		print_irqtrace_events(prev);
2426	dump_stack();
2427	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2428}
2429
2430/*
2431 * Various schedule()-time debugging checks and statistics:
2432 */
2433static inline void schedule_debug(struct task_struct *prev)
2434{
2435	/*
2436	 * Test if we are atomic. Since do_exit() needs to call into
2437	 * schedule() atomically, we ignore that path. Otherwise whine
2438	 * if we are scheduling when we should not.
2439	 */
2440	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2441		__schedule_bug(prev);
2442	rcu_sleep_check();
2443
2444	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2445
2446	schedstat_inc(this_rq(), sched_count);
2447}
2448
2449static void put_prev_task(struct rq *rq, struct task_struct *prev)
2450{
2451	if (prev->on_rq || rq->skip_clock_update < 0)
2452		update_rq_clock(rq);
2453	prev->sched_class->put_prev_task(rq, prev);
2454}
2455
2456/*
2457 * Pick up the highest-prio task:
2458 */
2459static inline struct task_struct *
2460pick_next_task(struct rq *rq)
2461{
2462	const struct sched_class *class;
2463	struct task_struct *p;
2464
2465	/*
2466	 * Optimization: we know that if all tasks are in
2467	 * the fair class we can call that function directly:
2468	 */
2469	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2470		p = fair_sched_class.pick_next_task(rq);
2471		if (likely(p))
2472			return p;
2473	}
2474
2475	for_each_class(class) {
2476		p = class->pick_next_task(rq);
2477		if (p)
2478			return p;
2479	}
2480
2481	BUG(); /* the idle class will always have a runnable task */
2482}
2483
2484/*
2485 * __schedule() is the main scheduler function.
2486 *
2487 * The main means of driving the scheduler and thus entering this function are:
2488 *
2489 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2490 *
2491 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2492 *      paths. For example, see arch/x86/entry_64.S.
2493 *
2494 *      To drive preemption between tasks, the scheduler sets the flag in timer
2495 *      interrupt handler scheduler_tick().
2496 *
2497 *   3. Wakeups don't really cause entry into schedule(). They add a
2498 *      task to the run-queue and that's it.
2499 *
2500 *      Now, if the new task added to the run-queue preempts the current
2501 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2502 *      called on the nearest possible occasion:
2503 *
2504 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2505 *
2506 *         - in syscall or exception context, at the next outmost
2507 *           preempt_enable(). (this might be as soon as the wake_up()'s
2508 *           spin_unlock()!)
2509 *
2510 *         - in IRQ context, return from interrupt-handler to
2511 *           preemptible context
2512 *
2513 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2514 *         then at the next:
2515 *
2516 *          - cond_resched() call
2517 *          - explicit schedule() call
2518 *          - return from syscall or exception to user-space
2519 *          - return from interrupt-handler to user-space
2520 */
2521static void __sched __schedule(void)
2522{
2523	struct task_struct *prev, *next;
2524	unsigned long *switch_count;
2525	struct rq *rq;
2526	int cpu;
2527
2528need_resched:
2529	preempt_disable();
2530	cpu = smp_processor_id();
2531	rq = cpu_rq(cpu);
2532	rcu_note_context_switch(cpu);
2533	prev = rq->curr;
2534
2535	schedule_debug(prev);
2536
2537	if (sched_feat(HRTICK))
2538		hrtick_clear(rq);
2539
2540	/*
2541	 * Make sure that signal_pending_state()->signal_pending() below
2542	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2543	 * done by the caller to avoid the race with signal_wake_up().
2544	 */
2545	smp_mb__before_spinlock();
2546	raw_spin_lock_irq(&rq->lock);
2547
2548	switch_count = &prev->nivcsw;
2549	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2550		if (unlikely(signal_pending_state(prev->state, prev))) {
2551			prev->state = TASK_RUNNING;
2552		} else {
2553			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2554			prev->on_rq = 0;
2555
2556			/*
2557			 * If a worker went to sleep, notify and ask workqueue
2558			 * whether it wants to wake up a task to maintain
2559			 * concurrency.
2560			 */
2561			if (prev->flags & PF_WQ_WORKER) {
2562				struct task_struct *to_wakeup;
2563
2564				to_wakeup = wq_worker_sleeping(prev, cpu);
2565				if (to_wakeup)
2566					try_to_wake_up_local(to_wakeup);
2567			}
2568		}
2569		switch_count = &prev->nvcsw;
2570	}
2571
2572	pre_schedule(rq, prev);
2573
2574	if (unlikely(!rq->nr_running))
2575		idle_balance(cpu, rq);
2576
2577	put_prev_task(rq, prev);
2578	next = pick_next_task(rq);
2579	clear_tsk_need_resched(prev);
2580	clear_preempt_need_resched();
2581	rq->skip_clock_update = 0;
2582
2583	if (likely(prev != next)) {
2584		rq->nr_switches++;
2585		rq->curr = next;
2586		++*switch_count;
2587
2588		context_switch(rq, prev, next); /* unlocks the rq */
2589		/*
2590		 * The context switch have flipped the stack from under us
2591		 * and restored the local variables which were saved when
2592		 * this task called schedule() in the past. prev == current
2593		 * is still correct, but it can be moved to another cpu/rq.
2594		 */
2595		cpu = smp_processor_id();
2596		rq = cpu_rq(cpu);
2597	} else
2598		raw_spin_unlock_irq(&rq->lock);
2599
2600	post_schedule(rq);
2601
2602	sched_preempt_enable_no_resched();
2603	if (need_resched())
2604		goto need_resched;
2605}
2606
2607static inline void sched_submit_work(struct task_struct *tsk)
2608{
2609	if (!tsk->state || tsk_is_pi_blocked(tsk))
2610		return;
2611	/*
2612	 * If we are going to sleep and we have plugged IO queued,
2613	 * make sure to submit it to avoid deadlocks.
2614	 */
2615	if (blk_needs_flush_plug(tsk))
2616		blk_schedule_flush_plug(tsk);
2617}
2618
2619asmlinkage void __sched schedule(void)
2620{
2621	struct task_struct *tsk = current;
2622
2623	sched_submit_work(tsk);
2624	__schedule();
2625}
2626EXPORT_SYMBOL(schedule);
2627
2628#ifdef CONFIG_CONTEXT_TRACKING
2629asmlinkage void __sched schedule_user(void)
2630{
2631	/*
2632	 * If we come here after a random call to set_need_resched(),
2633	 * or we have been woken up remotely but the IPI has not yet arrived,
2634	 * we haven't yet exited the RCU idle mode. Do it here manually until
2635	 * we find a better solution.
2636	 */
2637	user_exit();
2638	schedule();
2639	user_enter();
2640}
2641#endif
2642
2643/**
2644 * schedule_preempt_disabled - called with preemption disabled
2645 *
2646 * Returns with preemption disabled. Note: preempt_count must be 1
2647 */
2648void __sched schedule_preempt_disabled(void)
2649{
2650	sched_preempt_enable_no_resched();
2651	schedule();
2652	preempt_disable();
2653}
2654
2655#ifdef CONFIG_PREEMPT
2656/*
2657 * this is the entry point to schedule() from in-kernel preemption
2658 * off of preempt_enable. Kernel preemptions off return from interrupt
2659 * occur there and call schedule directly.
2660 */
2661asmlinkage void __sched notrace preempt_schedule(void)
2662{
2663	/*
2664	 * If there is a non-zero preempt_count or interrupts are disabled,
2665	 * we do not want to preempt the current task. Just return..
2666	 */
2667	if (likely(!preemptible()))
2668		return;
2669
2670	do {
2671		__preempt_count_add(PREEMPT_ACTIVE);
2672		__schedule();
2673		__preempt_count_sub(PREEMPT_ACTIVE);
2674
2675		/*
2676		 * Check again in case we missed a preemption opportunity
2677		 * between schedule and now.
2678		 */
2679		barrier();
2680	} while (need_resched());
2681}
2682EXPORT_SYMBOL(preempt_schedule);
2683#endif /* CONFIG_PREEMPT */
2684
2685/*
2686 * this is the entry point to schedule() from kernel preemption
2687 * off of irq context.
2688 * Note, that this is called and return with irqs disabled. This will
2689 * protect us against recursive calling from irq.
2690 */
2691asmlinkage void __sched preempt_schedule_irq(void)
2692{
2693	enum ctx_state prev_state;
2694
2695	/* Catch callers which need to be fixed */
2696	BUG_ON(preempt_count() || !irqs_disabled());
2697
2698	prev_state = exception_enter();
2699
2700	do {
2701		__preempt_count_add(PREEMPT_ACTIVE);
2702		local_irq_enable();
2703		__schedule();
2704		local_irq_disable();
2705		__preempt_count_sub(PREEMPT_ACTIVE);
2706
2707		/*
2708		 * Check again in case we missed a preemption opportunity
2709		 * between schedule and now.
2710		 */
2711		barrier();
2712	} while (need_resched());
2713
2714	exception_exit(prev_state);
2715}
2716
2717int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2718			  void *key)
2719{
2720	return try_to_wake_up(curr->private, mode, wake_flags);
2721}
2722EXPORT_SYMBOL(default_wake_function);
2723
2724static long __sched
2725sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2726{
2727	unsigned long flags;
2728	wait_queue_t wait;
2729
2730	init_waitqueue_entry(&wait, current);
2731
2732	__set_current_state(state);
2733
2734	spin_lock_irqsave(&q->lock, flags);
2735	__add_wait_queue(q, &wait);
2736	spin_unlock(&q->lock);
2737	timeout = schedule_timeout(timeout);
2738	spin_lock_irq(&q->lock);
2739	__remove_wait_queue(q, &wait);
2740	spin_unlock_irqrestore(&q->lock, flags);
2741
2742	return timeout;
2743}
2744
2745void __sched interruptible_sleep_on(wait_queue_head_t *q)
2746{
2747	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2748}
2749EXPORT_SYMBOL(interruptible_sleep_on);
2750
2751long __sched
2752interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2753{
2754	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2755}
2756EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2757
2758void __sched sleep_on(wait_queue_head_t *q)
2759{
2760	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2761}
2762EXPORT_SYMBOL(sleep_on);
2763
2764long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2765{
2766	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2767}
2768EXPORT_SYMBOL(sleep_on_timeout);
2769
2770#ifdef CONFIG_RT_MUTEXES
2771
2772/*
2773 * rt_mutex_setprio - set the current priority of a task
2774 * @p: task
2775 * @prio: prio value (kernel-internal form)
2776 *
2777 * This function changes the 'effective' priority of a task. It does
2778 * not touch ->normal_prio like __setscheduler().
2779 *
2780 * Used by the rt_mutex code to implement priority inheritance logic.
2781 */
2782void rt_mutex_setprio(struct task_struct *p, int prio)
2783{
2784	int oldprio, on_rq, running, enqueue_flag = 0;
2785	struct rq *rq;
2786	const struct sched_class *prev_class;
2787
2788	BUG_ON(prio > MAX_PRIO);
2789
2790	rq = __task_rq_lock(p);
2791
2792	/*
2793	 * Idle task boosting is a nono in general. There is one
2794	 * exception, when PREEMPT_RT and NOHZ is active:
2795	 *
2796	 * The idle task calls get_next_timer_interrupt() and holds
2797	 * the timer wheel base->lock on the CPU and another CPU wants
2798	 * to access the timer (probably to cancel it). We can safely
2799	 * ignore the boosting request, as the idle CPU runs this code
2800	 * with interrupts disabled and will complete the lock
2801	 * protected section without being interrupted. So there is no
2802	 * real need to boost.
2803	 */
2804	if (unlikely(p == rq->idle)) {
2805		WARN_ON(p != rq->curr);
2806		WARN_ON(p->pi_blocked_on);
2807		goto out_unlock;
2808	}
2809
2810	trace_sched_pi_setprio(p, prio);
2811	p->pi_top_task = rt_mutex_get_top_task(p);
2812	oldprio = p->prio;
2813	prev_class = p->sched_class;
2814	on_rq = p->on_rq;
2815	running = task_current(rq, p);
2816	if (on_rq)
2817		dequeue_task(rq, p, 0);
2818	if (running)
2819		p->sched_class->put_prev_task(rq, p);
2820
2821	/*
2822	 * Boosting condition are:
2823	 * 1. -rt task is running and holds mutex A
2824	 *      --> -dl task blocks on mutex A
2825	 *
2826	 * 2. -dl task is running and holds mutex A
2827	 *      --> -dl task blocks on mutex A and could preempt the
2828	 *          running task
2829	 */
2830	if (dl_prio(prio)) {
2831		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2832			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2833			p->dl.dl_boosted = 1;
2834			p->dl.dl_throttled = 0;
2835			enqueue_flag = ENQUEUE_REPLENISH;
2836		} else
2837			p->dl.dl_boosted = 0;
2838		p->sched_class = &dl_sched_class;
2839	} else if (rt_prio(prio)) {
2840		if (dl_prio(oldprio))
2841			p->dl.dl_boosted = 0;
2842		if (oldprio < prio)
2843			enqueue_flag = ENQUEUE_HEAD;
2844		p->sched_class = &rt_sched_class;
2845	} else {
2846		if (dl_prio(oldprio))
2847			p->dl.dl_boosted = 0;
2848		p->sched_class = &fair_sched_class;
2849	}
2850
2851	p->prio = prio;
2852
2853	if (running)
2854		p->sched_class->set_curr_task(rq);
2855	if (on_rq)
2856		enqueue_task(rq, p, enqueue_flag);
2857
2858	check_class_changed(rq, p, prev_class, oldprio);
2859out_unlock:
2860	__task_rq_unlock(rq);
2861}
2862#endif
2863
2864void set_user_nice(struct task_struct *p, long nice)
2865{
2866	int old_prio, delta, on_rq;
2867	unsigned long flags;
2868	struct rq *rq;
2869
2870	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2871		return;
2872	/*
2873	 * We have to be careful, if called from sys_setpriority(),
2874	 * the task might be in the middle of scheduling on another CPU.
2875	 */
2876	rq = task_rq_lock(p, &flags);
2877	/*
2878	 * The RT priorities are set via sched_setscheduler(), but we still
2879	 * allow the 'normal' nice value to be set - but as expected
2880	 * it wont have any effect on scheduling until the task is
2881	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2882	 */
2883	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2884		p->static_prio = NICE_TO_PRIO(nice);
2885		goto out_unlock;
2886	}
2887	on_rq = p->on_rq;
2888	if (on_rq)
2889		dequeue_task(rq, p, 0);
2890
2891	p->static_prio = NICE_TO_PRIO(nice);
2892	set_load_weight(p);
2893	old_prio = p->prio;
2894	p->prio = effective_prio(p);
2895	delta = p->prio - old_prio;
2896
2897	if (on_rq) {
2898		enqueue_task(rq, p, 0);
2899		/*
2900		 * If the task increased its priority or is running and
2901		 * lowered its priority, then reschedule its CPU:
2902		 */
2903		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2904			resched_task(rq->curr);
2905	}
2906out_unlock:
2907	task_rq_unlock(rq, p, &flags);
2908}
2909EXPORT_SYMBOL(set_user_nice);
2910
2911/*
2912 * can_nice - check if a task can reduce its nice value
2913 * @p: task
2914 * @nice: nice value
2915 */
2916int can_nice(const struct task_struct *p, const int nice)
2917{
2918	/* convert nice value [19,-20] to rlimit style value [1,40] */
2919	int nice_rlim = 20 - nice;
2920
2921	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
2922		capable(CAP_SYS_NICE));
2923}
2924
2925#ifdef __ARCH_WANT_SYS_NICE
2926
2927/*
2928 * sys_nice - change the priority of the current process.
2929 * @increment: priority increment
2930 *
2931 * sys_setpriority is a more generic, but much slower function that
2932 * does similar things.
2933 */
2934SYSCALL_DEFINE1(nice, int, increment)
2935{
2936	long nice, retval;
2937
2938	/*
2939	 * Setpriority might change our priority at the same moment.
2940	 * We don't have to worry. Conceptually one call occurs first
2941	 * and we have a single winner.
2942	 */
2943	if (increment < -40)
2944		increment = -40;
2945	if (increment > 40)
2946		increment = 40;
2947
2948	nice = TASK_NICE(current) + increment;
2949	if (nice < -20)
2950		nice = -20;
2951	if (nice > 19)
2952		nice = 19;
2953
2954	if (increment < 0 && !can_nice(current, nice))
2955		return -EPERM;
2956
2957	retval = security_task_setnice(current, nice);
2958	if (retval)
2959		return retval;
2960
2961	set_user_nice(current, nice);
2962	return 0;
2963}
2964
2965#endif
2966
2967/**
2968 * task_prio - return the priority value of a given task.
2969 * @p: the task in question.
2970 *
2971 * Return: The priority value as seen by users in /proc.
2972 * RT tasks are offset by -200. Normal tasks are centered
2973 * around 0, value goes from -16 to +15.
2974 */
2975int task_prio(const struct task_struct *p)
2976{
2977	return p->prio - MAX_RT_PRIO;
2978}
2979
2980/**
2981 * task_nice - return the nice value of a given task.
2982 * @p: the task in question.
2983 *
2984 * Return: The nice value [ -20 ... 0 ... 19 ].
2985 */
2986int task_nice(const struct task_struct *p)
2987{
2988	return TASK_NICE(p);
2989}
2990EXPORT_SYMBOL(task_nice);
2991
2992/**
2993 * idle_cpu - is a given cpu idle currently?
2994 * @cpu: the processor in question.
2995 *
2996 * Return: 1 if the CPU is currently idle. 0 otherwise.
2997 */
2998int idle_cpu(int cpu)
2999{
3000	struct rq *rq = cpu_rq(cpu);
3001
3002	if (rq->curr != rq->idle)
3003		return 0;
3004
3005	if (rq->nr_running)
3006		return 0;
3007
3008#ifdef CONFIG_SMP
3009	if (!llist_empty(&rq->wake_list))
3010		return 0;
3011#endif
3012
3013	return 1;
3014}
3015
3016/**
3017 * idle_task - return the idle task for a given cpu.
3018 * @cpu: the processor in question.
3019 *
3020 * Return: The idle task for the cpu @cpu.
3021 */
3022struct task_struct *idle_task(int cpu)
3023{
3024	return cpu_rq(cpu)->idle;
3025}
3026
3027/**
3028 * find_process_by_pid - find a process with a matching PID value.
3029 * @pid: the pid in question.
3030 *
3031 * The task of @pid, if found. %NULL otherwise.
3032 */
3033static struct task_struct *find_process_by_pid(pid_t pid)
3034{
3035	return pid ? find_task_by_vpid(pid) : current;
3036}
3037
3038/*
3039 * This function initializes the sched_dl_entity of a newly becoming
3040 * SCHED_DEADLINE task.
3041 *
3042 * Only the static values are considered here, the actual runtime and the
3043 * absolute deadline will be properly calculated when the task is enqueued
3044 * for the first time with its new policy.
3045 */
3046static void
3047__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3048{
3049	struct sched_dl_entity *dl_se = &p->dl;
3050
3051	init_dl_task_timer(dl_se);
3052	dl_se->dl_runtime = attr->sched_runtime;
3053	dl_se->dl_deadline = attr->sched_deadline;
3054	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3055	dl_se->flags = attr->sched_flags;
3056	dl_se->dl_throttled = 0;
3057	dl_se->dl_new = 1;
3058}
3059
3060/* Actually do priority change: must hold pi & rq lock. */
3061static void __setscheduler(struct rq *rq, struct task_struct *p,
3062			   const struct sched_attr *attr)
3063{
3064	int policy = attr->sched_policy;
3065
3066	p->policy = policy;
3067
3068	if (dl_policy(policy))
3069		__setparam_dl(p, attr);
3070	else if (rt_policy(policy))
3071		p->rt_priority = attr->sched_priority;
3072	else
3073		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3074
3075	p->normal_prio = normal_prio(p);
3076	p->prio = rt_mutex_getprio(p);
3077
3078	if (dl_prio(p->prio))
3079		p->sched_class = &dl_sched_class;
3080	else if (rt_prio(p->prio))
3081		p->sched_class = &rt_sched_class;
3082	else
3083		p->sched_class = &fair_sched_class;
3084
3085	set_load_weight(p);
3086}
3087
3088static void
3089__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3090{
3091	struct sched_dl_entity *dl_se = &p->dl;
3092
3093	attr->sched_priority = p->rt_priority;
3094	attr->sched_runtime = dl_se->dl_runtime;
3095	attr->sched_deadline = dl_se->dl_deadline;
3096	attr->sched_period = dl_se->dl_period;
3097	attr->sched_flags = dl_se->flags;
3098}
3099
3100/*
3101 * This function validates the new parameters of a -deadline task.
3102 * We ask for the deadline not being zero, and greater or equal
3103 * than the runtime, as well as the period of being zero or
3104 * greater than deadline.
3105 */
3106static bool
3107__checkparam_dl(const struct sched_attr *attr)
3108{
3109	return attr && attr->sched_deadline != 0 &&
3110		(attr->sched_period == 0 ||
3111		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3112		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0;
3113}
3114
3115/*
3116 * check the target process has a UID that matches the current process's
3117 */
3118static bool check_same_owner(struct task_struct *p)
3119{
3120	const struct cred *cred = current_cred(), *pcred;
3121	bool match;
3122
3123	rcu_read_lock();
3124	pcred = __task_cred(p);
3125	match = (uid_eq(cred->euid, pcred->euid) ||
3126		 uid_eq(cred->euid, pcred->uid));
3127	rcu_read_unlock();
3128	return match;
3129}
3130
3131static int __sched_setscheduler(struct task_struct *p,
3132				const struct sched_attr *attr,
3133				bool user)
3134{
3135	int retval, oldprio, oldpolicy = -1, on_rq, running;
3136	int policy = attr->sched_policy;
3137	unsigned long flags;
3138	const struct sched_class *prev_class;
3139	struct rq *rq;
3140	int reset_on_fork;
3141
3142	/* may grab non-irq protected spin_locks */
3143	BUG_ON(in_interrupt());
3144recheck:
3145	/* double check policy once rq lock held */
3146	if (policy < 0) {
3147		reset_on_fork = p->sched_reset_on_fork;
3148		policy = oldpolicy = p->policy;
3149	} else {
3150		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3151		policy &= ~SCHED_RESET_ON_FORK;
3152
3153		if (policy != SCHED_DEADLINE &&
3154				policy != SCHED_FIFO && policy != SCHED_RR &&
3155				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3156				policy != SCHED_IDLE)
3157			return -EINVAL;
3158	}
3159
3160	/*
3161	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3162	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3163	 * SCHED_BATCH and SCHED_IDLE is 0.
3164	 */
3165	if (attr->sched_priority < 0 ||
3166	    (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3167	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3168		return -EINVAL;
3169	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3170	    (rt_policy(policy) != (attr->sched_priority != 0)))
3171		return -EINVAL;
3172
3173	/*
3174	 * Allow unprivileged RT tasks to decrease priority:
3175	 */
3176	if (user && !capable(CAP_SYS_NICE)) {
3177		if (fair_policy(policy)) {
3178			if (!can_nice(p, attr->sched_nice))
3179				return -EPERM;
3180		}
3181
3182		if (rt_policy(policy)) {
3183			unsigned long rlim_rtprio =
3184					task_rlimit(p, RLIMIT_RTPRIO);
3185
3186			/* can't set/change the rt policy */
3187			if (policy != p->policy && !rlim_rtprio)
3188				return -EPERM;
3189
3190			/* can't increase priority */
3191			if (attr->sched_priority > p->rt_priority &&
3192			    attr->sched_priority > rlim_rtprio)
3193				return -EPERM;
3194		}
3195
3196		/*
3197		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3198		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3199		 */
3200		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3201			if (!can_nice(p, TASK_NICE(p)))
3202				return -EPERM;
3203		}
3204
3205		/* can't change other user's priorities */
3206		if (!check_same_owner(p))
3207			return -EPERM;
3208
3209		/* Normal users shall not reset the sched_reset_on_fork flag */
3210		if (p->sched_reset_on_fork && !reset_on_fork)
3211			return -EPERM;
3212	}
3213
3214	if (user) {
3215		retval = security_task_setscheduler(p);
3216		if (retval)
3217			return retval;
3218	}
3219
3220	/*
3221	 * make sure no PI-waiters arrive (or leave) while we are
3222	 * changing the priority of the task:
3223	 *
3224	 * To be able to change p->policy safely, the appropriate
3225	 * runqueue lock must be held.
3226	 */
3227	rq = task_rq_lock(p, &flags);
3228
3229	/*
3230	 * Changing the policy of the stop threads its a very bad idea
3231	 */
3232	if (p == rq->stop) {
3233		task_rq_unlock(rq, p, &flags);
3234		return -EINVAL;
3235	}
3236
3237	/*
3238	 * If not changing anything there's no need to proceed further:
3239	 */
3240	if (unlikely(policy == p->policy)) {
3241		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3242			goto change;
3243		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3244			goto change;
3245		if (dl_policy(policy))
3246			goto change;
3247
3248		task_rq_unlock(rq, p, &flags);
3249		return 0;
3250	}
3251change:
3252
3253#ifdef CONFIG_RT_GROUP_SCHED
3254	if (user) {
3255		/*
3256		 * Do not allow realtime tasks into groups that have no runtime
3257		 * assigned.
3258		 */
3259		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3260				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3261				!task_group_is_autogroup(task_group(p))) {
3262			task_rq_unlock(rq, p, &flags);
3263			return -EPERM;
3264		}
3265	}
3266#endif
3267
3268	/* recheck policy now with rq lock held */
3269	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3270		policy = oldpolicy = -1;
3271		task_rq_unlock(rq, p, &flags);
3272		goto recheck;
3273	}
3274	on_rq = p->on_rq;
3275	running = task_current(rq, p);
3276	if (on_rq)
3277		dequeue_task(rq, p, 0);
3278	if (running)
3279		p->sched_class->put_prev_task(rq, p);
3280
3281	p->sched_reset_on_fork = reset_on_fork;
3282
3283	oldprio = p->prio;
3284	prev_class = p->sched_class;
3285	__setscheduler(rq, p, attr);
3286
3287	if (running)
3288		p->sched_class->set_curr_task(rq);
3289	if (on_rq)
3290		enqueue_task(rq, p, 0);
3291
3292	check_class_changed(rq, p, prev_class, oldprio);
3293	task_rq_unlock(rq, p, &flags);
3294
3295	rt_mutex_adjust_pi(p);
3296
3297	return 0;
3298}
3299
3300/**
3301 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3302 * @p: the task in question.
3303 * @policy: new policy.
3304 * @param: structure containing the new RT priority.
3305 *
3306 * Return: 0 on success. An error code otherwise.
3307 *
3308 * NOTE that the task may be already dead.
3309 */
3310int sched_setscheduler(struct task_struct *p, int policy,
3311		       const struct sched_param *param)
3312{
3313	struct sched_attr attr = {
3314		.sched_policy   = policy,
3315		.sched_priority = param->sched_priority
3316	};
3317	return __sched_setscheduler(p, &attr, true);
3318}
3319EXPORT_SYMBOL_GPL(sched_setscheduler);
3320
3321int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3322{
3323	return __sched_setscheduler(p, attr, true);
3324}
3325EXPORT_SYMBOL_GPL(sched_setattr);
3326
3327/**
3328 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3329 * @p: the task in question.
3330 * @policy: new policy.
3331 * @param: structure containing the new RT priority.
3332 *
3333 * Just like sched_setscheduler, only don't bother checking if the
3334 * current context has permission.  For example, this is needed in
3335 * stop_machine(): we create temporary high priority worker threads,
3336 * but our caller might not have that capability.
3337 *
3338 * Return: 0 on success. An error code otherwise.
3339 */
3340int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3341			       const struct sched_param *param)
3342{
3343	struct sched_attr attr = {
3344		.sched_policy   = policy,
3345		.sched_priority = param->sched_priority
3346	};
3347	return __sched_setscheduler(p, &attr, false);
3348}
3349
3350static int
3351do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3352{
3353	struct sched_param lparam;
3354	struct task_struct *p;
3355	int retval;
3356
3357	if (!param || pid < 0)
3358		return -EINVAL;
3359	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3360		return -EFAULT;
3361
3362	rcu_read_lock();
3363	retval = -ESRCH;
3364	p = find_process_by_pid(pid);
3365	if (p != NULL)
3366		retval = sched_setscheduler(p, policy, &lparam);
3367	rcu_read_unlock();
3368
3369	return retval;
3370}
3371
3372/*
3373 * Mimics kernel/events/core.c perf_copy_attr().
3374 */
3375static int sched_copy_attr(struct sched_attr __user *uattr,
3376			   struct sched_attr *attr)
3377{
3378	u32 size;
3379	int ret;
3380
3381	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3382		return -EFAULT;
3383
3384	/*
3385	 * zero the full structure, so that a short copy will be nice.
3386	 */
3387	memset(attr, 0, sizeof(*attr));
3388
3389	ret = get_user(size, &uattr->size);
3390	if (ret)
3391		return ret;
3392
3393	if (size > PAGE_SIZE)	/* silly large */
3394		goto err_size;
3395
3396	if (!size)		/* abi compat */
3397		size = SCHED_ATTR_SIZE_VER0;
3398
3399	if (size < SCHED_ATTR_SIZE_VER0)
3400		goto err_size;
3401
3402	/*
3403	 * If we're handed a bigger struct than we know of,
3404	 * ensure all the unknown bits are 0 - i.e. new
3405	 * user-space does not rely on any kernel feature
3406	 * extensions we dont know about yet.
3407	 */
3408	if (size > sizeof(*attr)) {
3409		unsigned char __user *addr;
3410		unsigned char __user *end;
3411		unsigned char val;
3412
3413		addr = (void __user *)uattr + sizeof(*attr);
3414		end  = (void __user *)uattr + size;
3415
3416		for (; addr < end; addr++) {
3417			ret = get_user(val, addr);
3418			if (ret)
3419				return ret;
3420			if (val)
3421				goto err_size;
3422		}
3423		size = sizeof(*attr);
3424	}
3425
3426	ret = copy_from_user(attr, uattr, size);
3427	if (ret)
3428		return -EFAULT;
3429
3430	/*
3431	 * XXX: do we want to be lenient like existing syscalls; or do we want
3432	 * to be strict and return an error on out-of-bounds values?
3433	 */
3434	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3435
3436out:
3437	return ret;
3438
3439err_size:
3440	put_user(sizeof(*attr), &uattr->size);
3441	ret = -E2BIG;
3442	goto out;
3443}
3444
3445/**
3446 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3447 * @pid: the pid in question.
3448 * @policy: new policy.
3449 * @param: structure containing the new RT priority.
3450 *
3451 * Return: 0 on success. An error code otherwise.
3452 */
3453SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3454		struct sched_param __user *, param)
3455{
3456	/* negative values for policy are not valid */
3457	if (policy < 0)
3458		return -EINVAL;
3459
3460	return do_sched_setscheduler(pid, policy, param);
3461}
3462
3463/**
3464 * sys_sched_setparam - set/change the RT priority of a thread
3465 * @pid: the pid in question.
3466 * @param: structure containing the new RT priority.
3467 *
3468 * Return: 0 on success. An error code otherwise.
3469 */
3470SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3471{
3472	return do_sched_setscheduler(pid, -1, param);
3473}
3474
3475/**
3476 * sys_sched_setattr - same as above, but with extended sched_attr
3477 * @pid: the pid in question.
3478 * @attr: structure containing the extended parameters.
3479 */
3480SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3481{
3482	struct sched_attr attr;
3483	struct task_struct *p;
3484	int retval;
3485
3486	if (!uattr || pid < 0)
3487		return -EINVAL;
3488
3489	if (sched_copy_attr(uattr, &attr))
3490		return -EFAULT;
3491
3492	rcu_read_lock();
3493	retval = -ESRCH;
3494	p = find_process_by_pid(pid);
3495	if (p != NULL)
3496		retval = sched_setattr(p, &attr);
3497	rcu_read_unlock();
3498
3499	return retval;
3500}
3501
3502/**
3503 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3504 * @pid: the pid in question.
3505 *
3506 * Return: On success, the policy of the thread. Otherwise, a negative error
3507 * code.
3508 */
3509SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3510{
3511	struct task_struct *p;
3512	int retval;
3513
3514	if (pid < 0)
3515		return -EINVAL;
3516
3517	retval = -ESRCH;
3518	rcu_read_lock();
3519	p = find_process_by_pid(pid);
3520	if (p) {
3521		retval = security_task_getscheduler(p);
3522		if (!retval)
3523			retval = p->policy
3524				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3525	}
3526	rcu_read_unlock();
3527	return retval;
3528}
3529
3530/**
3531 * sys_sched_getparam - get the RT priority of a thread
3532 * @pid: the pid in question.
3533 * @param: structure containing the RT priority.
3534 *
3535 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3536 * code.
3537 */
3538SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3539{
3540	struct sched_param lp;
3541	struct task_struct *p;
3542	int retval;
3543
3544	if (!param || pid < 0)
3545		return -EINVAL;
3546
3547	rcu_read_lock();
3548	p = find_process_by_pid(pid);
3549	retval = -ESRCH;
3550	if (!p)
3551		goto out_unlock;
3552
3553	retval = security_task_getscheduler(p);
3554	if (retval)
3555		goto out_unlock;
3556
3557	if (task_has_dl_policy(p)) {
3558		retval = -EINVAL;
3559		goto out_unlock;
3560	}
3561	lp.sched_priority = p->rt_priority;
3562	rcu_read_unlock();
3563
3564	/*
3565	 * This one might sleep, we cannot do it with a spinlock held ...
3566	 */
3567	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3568
3569	return retval;
3570
3571out_unlock:
3572	rcu_read_unlock();
3573	return retval;
3574}
3575
3576static int sched_read_attr(struct sched_attr __user *uattr,
3577			   struct sched_attr *attr,
3578			   unsigned int usize)
3579{
3580	int ret;
3581
3582	if (!access_ok(VERIFY_WRITE, uattr, usize))
3583		return -EFAULT;
3584
3585	/*
3586	 * If we're handed a smaller struct than we know of,
3587	 * ensure all the unknown bits are 0 - i.e. old
3588	 * user-space does not get uncomplete information.
3589	 */
3590	if (usize < sizeof(*attr)) {
3591		unsigned char *addr;
3592		unsigned char *end;
3593
3594		addr = (void *)attr + usize;
3595		end  = (void *)attr + sizeof(*attr);
3596
3597		for (; addr < end; addr++) {
3598			if (*addr)
3599				goto err_size;
3600		}
3601
3602		attr->size = usize;
3603	}
3604
3605	ret = copy_to_user(uattr, attr, usize);
3606	if (ret)
3607		return -EFAULT;
3608
3609out:
3610	return ret;
3611
3612err_size:
3613	ret = -E2BIG;
3614	goto out;
3615}
3616
3617/**
3618 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3619 * @pid: the pid in question.
3620 * @attr: structure containing the extended parameters.
3621 * @size: sizeof(attr) for fwd/bwd comp.
3622 */
3623SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3624		unsigned int, size)
3625{
3626	struct sched_attr attr = {
3627		.size = sizeof(struct sched_attr),
3628	};
3629	struct task_struct *p;
3630	int retval;
3631
3632	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3633	    size < SCHED_ATTR_SIZE_VER0)
3634		return -EINVAL;
3635
3636	rcu_read_lock();
3637	p = find_process_by_pid(pid);
3638	retval = -ESRCH;
3639	if (!p)
3640		goto out_unlock;
3641
3642	retval = security_task_getscheduler(p);
3643	if (retval)
3644		goto out_unlock;
3645
3646	attr.sched_policy = p->policy;
3647	if (task_has_dl_policy(p))
3648		__getparam_dl(p, &attr);
3649	else if (task_has_rt_policy(p))
3650		attr.sched_priority = p->rt_priority;
3651	else
3652		attr.sched_nice = TASK_NICE(p);
3653
3654	rcu_read_unlock();
3655
3656	retval = sched_read_attr(uattr, &attr, size);
3657	return retval;
3658
3659out_unlock:
3660	rcu_read_unlock();
3661	return retval;
3662}
3663
3664long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3665{
3666	cpumask_var_t cpus_allowed, new_mask;
3667	struct task_struct *p;
3668	int retval;
3669
3670	rcu_read_lock();
3671
3672	p = find_process_by_pid(pid);
3673	if (!p) {
3674		rcu_read_unlock();
3675		return -ESRCH;
3676	}
3677
3678	/* Prevent p going away */
3679	get_task_struct(p);
3680	rcu_read_unlock();
3681
3682	if (p->flags & PF_NO_SETAFFINITY) {
3683		retval = -EINVAL;
3684		goto out_put_task;
3685	}
3686	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3687		retval = -ENOMEM;
3688		goto out_put_task;
3689	}
3690	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3691		retval = -ENOMEM;
3692		goto out_free_cpus_allowed;
3693	}
3694	retval = -EPERM;
3695	if (!check_same_owner(p)) {
3696		rcu_read_lock();
3697		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3698			rcu_read_unlock();
3699			goto out_unlock;
3700		}
3701		rcu_read_unlock();
3702	}
3703
3704	retval = security_task_setscheduler(p);
3705	if (retval)
3706		goto out_unlock;
3707
3708	cpuset_cpus_allowed(p, cpus_allowed);
3709	cpumask_and(new_mask, in_mask, cpus_allowed);
3710again:
3711	retval = set_cpus_allowed_ptr(p, new_mask);
3712
3713	if (!retval) {
3714		cpuset_cpus_allowed(p, cpus_allowed);
3715		if (!cpumask_subset(new_mask, cpus_allowed)) {
3716			/*
3717			 * We must have raced with a concurrent cpuset
3718			 * update. Just reset the cpus_allowed to the
3719			 * cpuset's cpus_allowed
3720			 */
3721			cpumask_copy(new_mask, cpus_allowed);
3722			goto again;
3723		}
3724	}
3725out_unlock:
3726	free_cpumask_var(new_mask);
3727out_free_cpus_allowed:
3728	free_cpumask_var(cpus_allowed);
3729out_put_task:
3730	put_task_struct(p);
3731	return retval;
3732}
3733
3734static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3735			     struct cpumask *new_mask)
3736{
3737	if (len < cpumask_size())
3738		cpumask_clear(new_mask);
3739	else if (len > cpumask_size())
3740		len = cpumask_size();
3741
3742	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3743}
3744
3745/**
3746 * sys_sched_setaffinity - set the cpu affinity of a process
3747 * @pid: pid of the process
3748 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3749 * @user_mask_ptr: user-space pointer to the new cpu mask
3750 *
3751 * Return: 0 on success. An error code otherwise.
3752 */
3753SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3754		unsigned long __user *, user_mask_ptr)
3755{
3756	cpumask_var_t new_mask;
3757	int retval;
3758
3759	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3760		return -ENOMEM;
3761
3762	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3763	if (retval == 0)
3764		retval = sched_setaffinity(pid, new_mask);
3765	free_cpumask_var(new_mask);
3766	return retval;
3767}
3768
3769long sched_getaffinity(pid_t pid, struct cpumask *mask)
3770{
3771	struct task_struct *p;
3772	unsigned long flags;
3773	int retval;
3774
3775	rcu_read_lock();
3776
3777	retval = -ESRCH;
3778	p = find_process_by_pid(pid);
3779	if (!p)
3780		goto out_unlock;
3781
3782	retval = security_task_getscheduler(p);
3783	if (retval)
3784		goto out_unlock;
3785
3786	raw_spin_lock_irqsave(&p->pi_lock, flags);
3787	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3788	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3789
3790out_unlock:
3791	rcu_read_unlock();
3792
3793	return retval;
3794}
3795
3796/**
3797 * sys_sched_getaffinity - get the cpu affinity of a process
3798 * @pid: pid of the process
3799 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3800 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3801 *
3802 * Return: 0 on success. An error code otherwise.
3803 */
3804SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3805		unsigned long __user *, user_mask_ptr)
3806{
3807	int ret;
3808	cpumask_var_t mask;
3809
3810	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3811		return -EINVAL;
3812	if (len & (sizeof(unsigned long)-1))
3813		return -EINVAL;
3814
3815	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3816		return -ENOMEM;
3817
3818	ret = sched_getaffinity(pid, mask);
3819	if (ret == 0) {
3820		size_t retlen = min_t(size_t, len, cpumask_size());
3821
3822		if (copy_to_user(user_mask_ptr, mask, retlen))
3823			ret = -EFAULT;
3824		else
3825			ret = retlen;
3826	}
3827	free_cpumask_var(mask);
3828
3829	return ret;
3830}
3831
3832/**
3833 * sys_sched_yield - yield the current processor to other threads.
3834 *
3835 * This function yields the current CPU to other tasks. If there are no
3836 * other threads running on this CPU then this function will return.
3837 *
3838 * Return: 0.
3839 */
3840SYSCALL_DEFINE0(sched_yield)
3841{
3842	struct rq *rq = this_rq_lock();
3843
3844	schedstat_inc(rq, yld_count);
3845	current->sched_class->yield_task(rq);
3846
3847	/*
3848	 * Since we are going to call schedule() anyway, there's
3849	 * no need to preempt or enable interrupts:
3850	 */
3851	__release(rq->lock);
3852	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3853	do_raw_spin_unlock(&rq->lock);
3854	sched_preempt_enable_no_resched();
3855
3856	schedule();
3857
3858	return 0;
3859}
3860
3861static void __cond_resched(void)
3862{
3863	__preempt_count_add(PREEMPT_ACTIVE);
3864	__schedule();
3865	__preempt_count_sub(PREEMPT_ACTIVE);
3866}
3867
3868int __sched _cond_resched(void)
3869{
3870	if (should_resched()) {
3871		__cond_resched();
3872		return 1;
3873	}
3874	return 0;
3875}
3876EXPORT_SYMBOL(_cond_resched);
3877
3878/*
3879 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3880 * call schedule, and on return reacquire the lock.
3881 *
3882 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3883 * operations here to prevent schedule() from being called twice (once via
3884 * spin_unlock(), once by hand).
3885 */
3886int __cond_resched_lock(spinlock_t *lock)
3887{
3888	int resched = should_resched();
3889	int ret = 0;
3890
3891	lockdep_assert_held(lock);
3892
3893	if (spin_needbreak(lock) || resched) {
3894		spin_unlock(lock);
3895		if (resched)
3896			__cond_resched();
3897		else
3898			cpu_relax();
3899		ret = 1;
3900		spin_lock(lock);
3901	}
3902	return ret;
3903}
3904EXPORT_SYMBOL(__cond_resched_lock);
3905
3906int __sched __cond_resched_softirq(void)
3907{
3908	BUG_ON(!in_softirq());
3909
3910	if (should_resched()) {
3911		local_bh_enable();
3912		__cond_resched();
3913		local_bh_disable();
3914		return 1;
3915	}
3916	return 0;
3917}
3918EXPORT_SYMBOL(__cond_resched_softirq);
3919
3920/**
3921 * yield - yield the current processor to other threads.
3922 *
3923 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3924 *
3925 * The scheduler is at all times free to pick the calling task as the most
3926 * eligible task to run, if removing the yield() call from your code breaks
3927 * it, its already broken.
3928 *
3929 * Typical broken usage is:
3930 *
3931 * while (!event)
3932 * 	yield();
3933 *
3934 * where one assumes that yield() will let 'the other' process run that will
3935 * make event true. If the current task is a SCHED_FIFO task that will never
3936 * happen. Never use yield() as a progress guarantee!!
3937 *
3938 * If you want to use yield() to wait for something, use wait_event().
3939 * If you want to use yield() to be 'nice' for others, use cond_resched().
3940 * If you still want to use yield(), do not!
3941 */
3942void __sched yield(void)
3943{
3944	set_current_state(TASK_RUNNING);
3945	sys_sched_yield();
3946}
3947EXPORT_SYMBOL(yield);
3948
3949/**
3950 * yield_to - yield the current processor to another thread in
3951 * your thread group, or accelerate that thread toward the
3952 * processor it's on.
3953 * @p: target task
3954 * @preempt: whether task preemption is allowed or not
3955 *
3956 * It's the caller's job to ensure that the target task struct
3957 * can't go away on us before we can do any checks.
3958 *
3959 * Return:
3960 *	true (>0) if we indeed boosted the target task.
3961 *	false (0) if we failed to boost the target.
3962 *	-ESRCH if there's no task to yield to.
3963 */
3964bool __sched yield_to(struct task_struct *p, bool preempt)
3965{
3966	struct task_struct *curr = current;
3967	struct rq *rq, *p_rq;
3968	unsigned long flags;
3969	int yielded = 0;
3970
3971	local_irq_save(flags);
3972	rq = this_rq();
3973
3974again:
3975	p_rq = task_rq(p);
3976	/*
3977	 * If we're the only runnable task on the rq and target rq also
3978	 * has only one task, there's absolutely no point in yielding.
3979	 */
3980	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3981		yielded = -ESRCH;
3982		goto out_irq;
3983	}
3984
3985	double_rq_lock(rq, p_rq);
3986	if (task_rq(p) != p_rq) {
3987		double_rq_unlock(rq, p_rq);
3988		goto again;
3989	}
3990
3991	if (!curr->sched_class->yield_to_task)
3992		goto out_unlock;
3993
3994	if (curr->sched_class != p->sched_class)
3995		goto out_unlock;
3996
3997	if (task_running(p_rq, p) || p->state)
3998		goto out_unlock;
3999
4000	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4001	if (yielded) {
4002		schedstat_inc(rq, yld_count);
4003		/*
4004		 * Make p's CPU reschedule; pick_next_entity takes care of
4005		 * fairness.
4006		 */
4007		if (preempt && rq != p_rq)
4008			resched_task(p_rq->curr);
4009	}
4010
4011out_unlock:
4012	double_rq_unlock(rq, p_rq);
4013out_irq:
4014	local_irq_restore(flags);
4015
4016	if (yielded > 0)
4017		schedule();
4018
4019	return yielded;
4020}
4021EXPORT_SYMBOL_GPL(yield_to);
4022
4023/*
4024 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4025 * that process accounting knows that this is a task in IO wait state.
4026 */
4027void __sched io_schedule(void)
4028{
4029	struct rq *rq = raw_rq();
4030
4031	delayacct_blkio_start();
4032	atomic_inc(&rq->nr_iowait);
4033	blk_flush_plug(current);
4034	current->in_iowait = 1;
4035	schedule();
4036	current->in_iowait = 0;
4037	atomic_dec(&rq->nr_iowait);
4038	delayacct_blkio_end();
4039}
4040EXPORT_SYMBOL(io_schedule);
4041
4042long __sched io_schedule_timeout(long timeout)
4043{
4044	struct rq *rq = raw_rq();
4045	long ret;
4046
4047	delayacct_blkio_start();
4048	atomic_inc(&rq->nr_iowait);
4049	blk_flush_plug(current);
4050	current->in_iowait = 1;
4051	ret = schedule_timeout(timeout);
4052	current->in_iowait = 0;
4053	atomic_dec(&rq->nr_iowait);
4054	delayacct_blkio_end();
4055	return ret;
4056}
4057
4058/**
4059 * sys_sched_get_priority_max - return maximum RT priority.
4060 * @policy: scheduling class.
4061 *
4062 * Return: On success, this syscall returns the maximum
4063 * rt_priority that can be used by a given scheduling class.
4064 * On failure, a negative error code is returned.
4065 */
4066SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4067{
4068	int ret = -EINVAL;
4069
4070	switch (policy) {
4071	case SCHED_FIFO:
4072	case SCHED_RR:
4073		ret = MAX_USER_RT_PRIO-1;
4074		break;
4075	case SCHED_DEADLINE:
4076	case SCHED_NORMAL:
4077	case SCHED_BATCH:
4078	case SCHED_IDLE:
4079		ret = 0;
4080		break;
4081	}
4082	return ret;
4083}
4084
4085/**
4086 * sys_sched_get_priority_min - return minimum RT priority.
4087 * @policy: scheduling class.
4088 *
4089 * Return: On success, this syscall returns the minimum
4090 * rt_priority that can be used by a given scheduling class.
4091 * On failure, a negative error code is returned.
4092 */
4093SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4094{
4095	int ret = -EINVAL;
4096
4097	switch (policy) {
4098	case SCHED_FIFO:
4099	case SCHED_RR:
4100		ret = 1;
4101		break;
4102	case SCHED_DEADLINE:
4103	case SCHED_NORMAL:
4104	case SCHED_BATCH:
4105	case SCHED_IDLE:
4106		ret = 0;
4107	}
4108	return ret;
4109}
4110
4111/**
4112 * sys_sched_rr_get_interval - return the default timeslice of a process.
4113 * @pid: pid of the process.
4114 * @interval: userspace pointer to the timeslice value.
4115 *
4116 * this syscall writes the default timeslice value of a given process
4117 * into the user-space timespec buffer. A value of '0' means infinity.
4118 *
4119 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4120 * an error code.
4121 */
4122SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4123		struct timespec __user *, interval)
4124{
4125	struct task_struct *p;
4126	unsigned int time_slice;
4127	unsigned long flags;
4128	struct rq *rq;
4129	int retval;
4130	struct timespec t;
4131
4132	if (pid < 0)
4133		return -EINVAL;
4134
4135	retval = -ESRCH;
4136	rcu_read_lock();
4137	p = find_process_by_pid(pid);
4138	if (!p)
4139		goto out_unlock;
4140
4141	retval = security_task_getscheduler(p);
4142	if (retval)
4143		goto out_unlock;
4144
4145	rq = task_rq_lock(p, &flags);
4146	time_slice = p->sched_class->get_rr_interval(rq, p);
4147	task_rq_unlock(rq, p, &flags);
4148
4149	rcu_read_unlock();
4150	jiffies_to_timespec(time_slice, &t);
4151	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4152	return retval;
4153
4154out_unlock:
4155	rcu_read_unlock();
4156	return retval;
4157}
4158
4159static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4160
4161void sched_show_task(struct task_struct *p)
4162{
4163	unsigned long free = 0;
4164	int ppid;
4165	unsigned state;
4166
4167	state = p->state ? __ffs(p->state) + 1 : 0;
4168	printk(KERN_INFO "%-15.15s %c", p->comm,
4169		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4170#if BITS_PER_LONG == 32
4171	if (state == TASK_RUNNING)
4172		printk(KERN_CONT " running  ");
4173	else
4174		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4175#else
4176	if (state == TASK_RUNNING)
4177		printk(KERN_CONT "  running task    ");
4178	else
4179		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4180#endif
4181#ifdef CONFIG_DEBUG_STACK_USAGE
4182	free = stack_not_used(p);
4183#endif
4184	rcu_read_lock();
4185	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4186	rcu_read_unlock();
4187	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4188		task_pid_nr(p), ppid,
4189		(unsigned long)task_thread_info(p)->flags);
4190
4191	print_worker_info(KERN_INFO, p);
4192	show_stack(p, NULL);
4193}
4194
4195void show_state_filter(unsigned long state_filter)
4196{
4197	struct task_struct *g, *p;
4198
4199#if BITS_PER_LONG == 32
4200	printk(KERN_INFO
4201		"  task                PC stack   pid father\n");
4202#else
4203	printk(KERN_INFO
4204		"  task                        PC stack   pid father\n");
4205#endif
4206	rcu_read_lock();
4207	do_each_thread(g, p) {
4208		/*
4209		 * reset the NMI-timeout, listing all files on a slow
4210		 * console might take a lot of time:
4211		 */
4212		touch_nmi_watchdog();
4213		if (!state_filter || (p->state & state_filter))
4214			sched_show_task(p);
4215	} while_each_thread(g, p);
4216
4217	touch_all_softlockup_watchdogs();
4218
4219#ifdef CONFIG_SCHED_DEBUG
4220	sysrq_sched_debug_show();
4221#endif
4222	rcu_read_unlock();
4223	/*
4224	 * Only show locks if all tasks are dumped:
4225	 */
4226	if (!state_filter)
4227		debug_show_all_locks();
4228}
4229
4230void init_idle_bootup_task(struct task_struct *idle)
4231{
4232	idle->sched_class = &idle_sched_class;
4233}
4234
4235/**
4236 * init_idle - set up an idle thread for a given CPU
4237 * @idle: task in question
4238 * @cpu: cpu the idle task belongs to
4239 *
4240 * NOTE: this function does not set the idle thread's NEED_RESCHED
4241 * flag, to make booting more robust.
4242 */
4243void init_idle(struct task_struct *idle, int cpu)
4244{
4245	struct rq *rq = cpu_rq(cpu);
4246	unsigned long flags;
4247
4248	raw_spin_lock_irqsave(&rq->lock, flags);
4249
4250	__sched_fork(0, idle);
4251	idle->state = TASK_RUNNING;
4252	idle->se.exec_start = sched_clock();
4253
4254	do_set_cpus_allowed(idle, cpumask_of(cpu));
4255	/*
4256	 * We're having a chicken and egg problem, even though we are
4257	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4258	 * lockdep check in task_group() will fail.
4259	 *
4260	 * Similar case to sched_fork(). / Alternatively we could
4261	 * use task_rq_lock() here and obtain the other rq->lock.
4262	 *
4263	 * Silence PROVE_RCU
4264	 */
4265	rcu_read_lock();
4266	__set_task_cpu(idle, cpu);
4267	rcu_read_unlock();
4268
4269	rq->curr = rq->idle = idle;
4270#if defined(CONFIG_SMP)
4271	idle->on_cpu = 1;
4272#endif
4273	raw_spin_unlock_irqrestore(&rq->lock, flags);
4274
4275	/* Set the preempt count _outside_ the spinlocks! */
4276	init_idle_preempt_count(idle, cpu);
4277
4278	/*
4279	 * The idle tasks have their own, simple scheduling class:
4280	 */
4281	idle->sched_class = &idle_sched_class;
4282	ftrace_graph_init_idle_task(idle, cpu);
4283	vtime_init_idle(idle, cpu);
4284#if defined(CONFIG_SMP)
4285	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4286#endif
4287}
4288
4289#ifdef CONFIG_SMP
4290void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4291{
4292	if (p->sched_class && p->sched_class->set_cpus_allowed)
4293		p->sched_class->set_cpus_allowed(p, new_mask);
4294
4295	cpumask_copy(&p->cpus_allowed, new_mask);
4296	p->nr_cpus_allowed = cpumask_weight(new_mask);
4297}
4298
4299/*
4300 * This is how migration works:
4301 *
4302 * 1) we invoke migration_cpu_stop() on the target CPU using
4303 *    stop_one_cpu().
4304 * 2) stopper starts to run (implicitly forcing the migrated thread
4305 *    off the CPU)
4306 * 3) it checks whether the migrated task is still in the wrong runqueue.
4307 * 4) if it's in the wrong runqueue then the migration thread removes
4308 *    it and puts it into the right queue.
4309 * 5) stopper completes and stop_one_cpu() returns and the migration
4310 *    is done.
4311 */
4312
4313/*
4314 * Change a given task's CPU affinity. Migrate the thread to a
4315 * proper CPU and schedule it away if the CPU it's executing on
4316 * is removed from the allowed bitmask.
4317 *
4318 * NOTE: the caller must have a valid reference to the task, the
4319 * task must not exit() & deallocate itself prematurely. The
4320 * call is not atomic; no spinlocks may be held.
4321 */
4322int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4323{
4324	unsigned long flags;
4325	struct rq *rq;
4326	unsigned int dest_cpu;
4327	int ret = 0;
4328
4329	rq = task_rq_lock(p, &flags);
4330
4331	if (cpumask_equal(&p->cpus_allowed, new_mask))
4332		goto out;
4333
4334	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4335		ret = -EINVAL;
4336		goto out;
4337	}
4338
4339	do_set_cpus_allowed(p, new_mask);
4340
4341	/* Can the task run on the task's current CPU? If so, we're done */
4342	if (cpumask_test_cpu(task_cpu(p), new_mask))
4343		goto out;
4344
4345	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4346	if (p->on_rq) {
4347		struct migration_arg arg = { p, dest_cpu };
4348		/* Need help from migration thread: drop lock and wait. */
4349		task_rq_unlock(rq, p, &flags);
4350		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4351		tlb_migrate_finish(p->mm);
4352		return 0;
4353	}
4354out:
4355	task_rq_unlock(rq, p, &flags);
4356
4357	return ret;
4358}
4359EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4360
4361/*
4362 * Move (not current) task off this cpu, onto dest cpu. We're doing
4363 * this because either it can't run here any more (set_cpus_allowed()
4364 * away from this CPU, or CPU going down), or because we're
4365 * attempting to rebalance this task on exec (sched_exec).
4366 *
4367 * So we race with normal scheduler movements, but that's OK, as long
4368 * as the task is no longer on this CPU.
4369 *
4370 * Returns non-zero if task was successfully migrated.
4371 */
4372static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4373{
4374	struct rq *rq_dest, *rq_src;
4375	int ret = 0;
4376
4377	if (unlikely(!cpu_active(dest_cpu)))
4378		return ret;
4379
4380	rq_src = cpu_rq(src_cpu);
4381	rq_dest = cpu_rq(dest_cpu);
4382
4383	raw_spin_lock(&p->pi_lock);
4384	double_rq_lock(rq_src, rq_dest);
4385	/* Already moved. */
4386	if (task_cpu(p) != src_cpu)
4387		goto done;
4388	/* Affinity changed (again). */
4389	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4390		goto fail;
4391
4392	/*
4393	 * If we're not on a rq, the next wake-up will ensure we're
4394	 * placed properly.
4395	 */
4396	if (p->on_rq) {
4397		dequeue_task(rq_src, p, 0);
4398		set_task_cpu(p, dest_cpu);
4399		enqueue_task(rq_dest, p, 0);
4400		check_preempt_curr(rq_dest, p, 0);
4401	}
4402done:
4403	ret = 1;
4404fail:
4405	double_rq_unlock(rq_src, rq_dest);
4406	raw_spin_unlock(&p->pi_lock);
4407	return ret;
4408}
4409
4410#ifdef CONFIG_NUMA_BALANCING
4411/* Migrate current task p to target_cpu */
4412int migrate_task_to(struct task_struct *p, int target_cpu)
4413{
4414	struct migration_arg arg = { p, target_cpu };
4415	int curr_cpu = task_cpu(p);
4416
4417	if (curr_cpu == target_cpu)
4418		return 0;
4419
4420	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4421		return -EINVAL;
4422
4423	/* TODO: This is not properly updating schedstats */
4424
4425	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4426}
4427
4428/*
4429 * Requeue a task on a given node and accurately track the number of NUMA
4430 * tasks on the runqueues
4431 */
4432void sched_setnuma(struct task_struct *p, int nid)
4433{
4434	struct rq *rq;
4435	unsigned long flags;
4436	bool on_rq, running;
4437
4438	rq = task_rq_lock(p, &flags);
4439	on_rq = p->on_rq;
4440	running = task_current(rq, p);
4441
4442	if (on_rq)
4443		dequeue_task(rq, p, 0);
4444	if (running)
4445		p->sched_class->put_prev_task(rq, p);
4446
4447	p->numa_preferred_nid = nid;
4448
4449	if (running)
4450		p->sched_class->set_curr_task(rq);
4451	if (on_rq)
4452		enqueue_task(rq, p, 0);
4453	task_rq_unlock(rq, p, &flags);
4454}
4455#endif
4456
4457/*
4458 * migration_cpu_stop - this will be executed by a highprio stopper thread
4459 * and performs thread migration by bumping thread off CPU then
4460 * 'pushing' onto another runqueue.
4461 */
4462static int migration_cpu_stop(void *data)
4463{
4464	struct migration_arg *arg = data;
4465
4466	/*
4467	 * The original target cpu might have gone down and we might
4468	 * be on another cpu but it doesn't matter.
4469	 */
4470	local_irq_disable();
4471	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4472	local_irq_enable();
4473	return 0;
4474}
4475
4476#ifdef CONFIG_HOTPLUG_CPU
4477
4478/*
4479 * Ensures that the idle task is using init_mm right before its cpu goes
4480 * offline.
4481 */
4482void idle_task_exit(void)
4483{
4484	struct mm_struct *mm = current->active_mm;
4485
4486	BUG_ON(cpu_online(smp_processor_id()));
4487
4488	if (mm != &init_mm)
4489		switch_mm(mm, &init_mm, current);
4490	mmdrop(mm);
4491}
4492
4493/*
4494 * Since this CPU is going 'away' for a while, fold any nr_active delta
4495 * we might have. Assumes we're called after migrate_tasks() so that the
4496 * nr_active count is stable.
4497 *
4498 * Also see the comment "Global load-average calculations".
4499 */
4500static void calc_load_migrate(struct rq *rq)
4501{
4502	long delta = calc_load_fold_active(rq);
4503	if (delta)
4504		atomic_long_add(delta, &calc_load_tasks);
4505}
4506
4507/*
4508 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4509 * try_to_wake_up()->select_task_rq().
4510 *
4511 * Called with rq->lock held even though we'er in stop_machine() and
4512 * there's no concurrency possible, we hold the required locks anyway
4513 * because of lock validation efforts.
4514 */
4515static void migrate_tasks(unsigned int dead_cpu)
4516{
4517	struct rq *rq = cpu_rq(dead_cpu);
4518	struct task_struct *next, *stop = rq->stop;
4519	int dest_cpu;
4520
4521	/*
4522	 * Fudge the rq selection such that the below task selection loop
4523	 * doesn't get stuck on the currently eligible stop task.
4524	 *
4525	 * We're currently inside stop_machine() and the rq is either stuck
4526	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4527	 * either way we should never end up calling schedule() until we're
4528	 * done here.
4529	 */
4530	rq->stop = NULL;
4531
4532	/*
4533	 * put_prev_task() and pick_next_task() sched
4534	 * class method both need to have an up-to-date
4535	 * value of rq->clock[_task]
4536	 */
4537	update_rq_clock(rq);
4538
4539	for ( ; ; ) {
4540		/*
4541		 * There's this thread running, bail when that's the only
4542		 * remaining thread.
4543		 */
4544		if (rq->nr_running == 1)
4545			break;
4546
4547		next = pick_next_task(rq);
4548		BUG_ON(!next);
4549		next->sched_class->put_prev_task(rq, next);
4550
4551		/* Find suitable destination for @next, with force if needed. */
4552		dest_cpu = select_fallback_rq(dead_cpu, next);
4553		raw_spin_unlock(&rq->lock);
4554
4555		__migrate_task(next, dead_cpu, dest_cpu);
4556
4557		raw_spin_lock(&rq->lock);
4558	}
4559
4560	rq->stop = stop;
4561}
4562
4563#endif /* CONFIG_HOTPLUG_CPU */
4564
4565#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4566
4567static struct ctl_table sd_ctl_dir[] = {
4568	{
4569		.procname	= "sched_domain",
4570		.mode		= 0555,
4571	},
4572	{}
4573};
4574
4575static struct ctl_table sd_ctl_root[] = {
4576	{
4577		.procname	= "kernel",
4578		.mode		= 0555,
4579		.child		= sd_ctl_dir,
4580	},
4581	{}
4582};
4583
4584static struct ctl_table *sd_alloc_ctl_entry(int n)
4585{
4586	struct ctl_table *entry =
4587		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4588
4589	return entry;
4590}
4591
4592static void sd_free_ctl_entry(struct ctl_table **tablep)
4593{
4594	struct ctl_table *entry;
4595
4596	/*
4597	 * In the intermediate directories, both the child directory and
4598	 * procname are dynamically allocated and could fail but the mode
4599	 * will always be set. In the lowest directory the names are
4600	 * static strings and all have proc handlers.
4601	 */
4602	for (entry = *tablep; entry->mode; entry++) {
4603		if (entry->child)
4604			sd_free_ctl_entry(&entry->child);
4605		if (entry->proc_handler == NULL)
4606			kfree(entry->procname);
4607	}
4608
4609	kfree(*tablep);
4610	*tablep = NULL;
4611}
4612
4613static int min_load_idx = 0;
4614static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4615
4616static void
4617set_table_entry(struct ctl_table *entry,
4618		const char *procname, void *data, int maxlen,
4619		umode_t mode, proc_handler *proc_handler,
4620		bool load_idx)
4621{
4622	entry->procname = procname;
4623	entry->data = data;
4624	entry->maxlen = maxlen;
4625	entry->mode = mode;
4626	entry->proc_handler = proc_handler;
4627
4628	if (load_idx) {
4629		entry->extra1 = &min_load_idx;
4630		entry->extra2 = &max_load_idx;
4631	}
4632}
4633
4634static struct ctl_table *
4635sd_alloc_ctl_domain_table(struct sched_domain *sd)
4636{
4637	struct ctl_table *table = sd_alloc_ctl_entry(13);
4638
4639	if (table == NULL)
4640		return NULL;
4641
4642	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4643		sizeof(long), 0644, proc_doulongvec_minmax, false);
4644	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4645		sizeof(long), 0644, proc_doulongvec_minmax, false);
4646	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4647		sizeof(int), 0644, proc_dointvec_minmax, true);
4648	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4649		sizeof(int), 0644, proc_dointvec_minmax, true);
4650	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4651		sizeof(int), 0644, proc_dointvec_minmax, true);
4652	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4653		sizeof(int), 0644, proc_dointvec_minmax, true);
4654	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4655		sizeof(int), 0644, proc_dointvec_minmax, true);
4656	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4657		sizeof(int), 0644, proc_dointvec_minmax, false);
4658	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4659		sizeof(int), 0644, proc_dointvec_minmax, false);
4660	set_table_entry(&table[9], "cache_nice_tries",
4661		&sd->cache_nice_tries,
4662		sizeof(int), 0644, proc_dointvec_minmax, false);
4663	set_table_entry(&table[10], "flags", &sd->flags,
4664		sizeof(int), 0644, proc_dointvec_minmax, false);
4665	set_table_entry(&table[11], "name", sd->name,
4666		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4667	/* &table[12] is terminator */
4668
4669	return table;
4670}
4671
4672static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4673{
4674	struct ctl_table *entry, *table;
4675	struct sched_domain *sd;
4676	int domain_num = 0, i;
4677	char buf[32];
4678
4679	for_each_domain(cpu, sd)
4680		domain_num++;
4681	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4682	if (table == NULL)
4683		return NULL;
4684
4685	i = 0;
4686	for_each_domain(cpu, sd) {
4687		snprintf(buf, 32, "domain%d", i);
4688		entry->procname = kstrdup(buf, GFP_KERNEL);
4689		entry->mode = 0555;
4690		entry->child = sd_alloc_ctl_domain_table(sd);
4691		entry++;
4692		i++;
4693	}
4694	return table;
4695}
4696
4697static struct ctl_table_header *sd_sysctl_header;
4698static void register_sched_domain_sysctl(void)
4699{
4700	int i, cpu_num = num_possible_cpus();
4701	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4702	char buf[32];
4703
4704	WARN_ON(sd_ctl_dir[0].child);
4705	sd_ctl_dir[0].child = entry;
4706
4707	if (entry == NULL)
4708		return;
4709
4710	for_each_possible_cpu(i) {
4711		snprintf(buf, 32, "cpu%d", i);
4712		entry->procname = kstrdup(buf, GFP_KERNEL);
4713		entry->mode = 0555;
4714		entry->child = sd_alloc_ctl_cpu_table(i);
4715		entry++;
4716	}
4717
4718	WARN_ON(sd_sysctl_header);
4719	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4720}
4721
4722/* may be called multiple times per register */
4723static void unregister_sched_domain_sysctl(void)
4724{
4725	if (sd_sysctl_header)
4726		unregister_sysctl_table(sd_sysctl_header);
4727	sd_sysctl_header = NULL;
4728	if (sd_ctl_dir[0].child)
4729		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4730}
4731#else
4732static void register_sched_domain_sysctl(void)
4733{
4734}
4735static void unregister_sched_domain_sysctl(void)
4736{
4737}
4738#endif
4739
4740static void set_rq_online(struct rq *rq)
4741{
4742	if (!rq->online) {
4743		const struct sched_class *class;
4744
4745		cpumask_set_cpu(rq->cpu, rq->rd->online);
4746		rq->online = 1;
4747
4748		for_each_class(class) {
4749			if (class->rq_online)
4750				class->rq_online(rq);
4751		}
4752	}
4753}
4754
4755static void set_rq_offline(struct rq *rq)
4756{
4757	if (rq->online) {
4758		const struct sched_class *class;
4759
4760		for_each_class(class) {
4761			if (class->rq_offline)
4762				class->rq_offline(rq);
4763		}
4764
4765		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4766		rq->online = 0;
4767	}
4768}
4769
4770/*
4771 * migration_call - callback that gets triggered when a CPU is added.
4772 * Here we can start up the necessary migration thread for the new CPU.
4773 */
4774static int
4775migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4776{
4777	int cpu = (long)hcpu;
4778	unsigned long flags;
4779	struct rq *rq = cpu_rq(cpu);
4780
4781	switch (action & ~CPU_TASKS_FROZEN) {
4782
4783	case CPU_UP_PREPARE:
4784		rq->calc_load_update = calc_load_update;
4785		break;
4786
4787	case CPU_ONLINE:
4788		/* Update our root-domain */
4789		raw_spin_lock_irqsave(&rq->lock, flags);
4790		if (rq->rd) {
4791			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4792
4793			set_rq_online(rq);
4794		}
4795		raw_spin_unlock_irqrestore(&rq->lock, flags);
4796		break;
4797
4798#ifdef CONFIG_HOTPLUG_CPU
4799	case CPU_DYING:
4800		sched_ttwu_pending();
4801		/* Update our root-domain */
4802		raw_spin_lock_irqsave(&rq->lock, flags);
4803		if (rq->rd) {
4804			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4805			set_rq_offline(rq);
4806		}
4807		migrate_tasks(cpu);
4808		BUG_ON(rq->nr_running != 1); /* the migration thread */
4809		raw_spin_unlock_irqrestore(&rq->lock, flags);
4810		break;
4811
4812	case CPU_DEAD:
4813		calc_load_migrate(rq);
4814		break;
4815#endif
4816	}
4817
4818	update_max_interval();
4819
4820	return NOTIFY_OK;
4821}
4822
4823/*
4824 * Register at high priority so that task migration (migrate_all_tasks)
4825 * happens before everything else.  This has to be lower priority than
4826 * the notifier in the perf_event subsystem, though.
4827 */
4828static struct notifier_block migration_notifier = {
4829	.notifier_call = migration_call,
4830	.priority = CPU_PRI_MIGRATION,
4831};
4832
4833static int sched_cpu_active(struct notifier_block *nfb,
4834				      unsigned long action, void *hcpu)
4835{
4836	switch (action & ~CPU_TASKS_FROZEN) {
4837	case CPU_STARTING:
4838	case CPU_DOWN_FAILED:
4839		set_cpu_active((long)hcpu, true);
4840		return NOTIFY_OK;
4841	default:
4842		return NOTIFY_DONE;
4843	}
4844}
4845
4846static int sched_cpu_inactive(struct notifier_block *nfb,
4847					unsigned long action, void *hcpu)
4848{
4849	switch (action & ~CPU_TASKS_FROZEN) {
4850	case CPU_DOWN_PREPARE:
4851		set_cpu_active((long)hcpu, false);
4852		return NOTIFY_OK;
4853	default:
4854		return NOTIFY_DONE;
4855	}
4856}
4857
4858static int __init migration_init(void)
4859{
4860	void *cpu = (void *)(long)smp_processor_id();
4861	int err;
4862
4863	/* Initialize migration for the boot CPU */
4864	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4865	BUG_ON(err == NOTIFY_BAD);
4866	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4867	register_cpu_notifier(&migration_notifier);
4868
4869	/* Register cpu active notifiers */
4870	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4871	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4872
4873	return 0;
4874}
4875early_initcall(migration_init);
4876#endif
4877
4878#ifdef CONFIG_SMP
4879
4880static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4881
4882#ifdef CONFIG_SCHED_DEBUG
4883
4884static __read_mostly int sched_debug_enabled;
4885
4886static int __init sched_debug_setup(char *str)
4887{
4888	sched_debug_enabled = 1;
4889
4890	return 0;
4891}
4892early_param("sched_debug", sched_debug_setup);
4893
4894static inline bool sched_debug(void)
4895{
4896	return sched_debug_enabled;
4897}
4898
4899static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4900				  struct cpumask *groupmask)
4901{
4902	struct sched_group *group = sd->groups;
4903	char str[256];
4904
4905	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4906	cpumask_clear(groupmask);
4907
4908	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4909
4910	if (!(sd->flags & SD_LOAD_BALANCE)) {
4911		printk("does not load-balance\n");
4912		if (sd->parent)
4913			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4914					" has parent");
4915		return -1;
4916	}
4917
4918	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4919
4920	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4921		printk(KERN_ERR "ERROR: domain->span does not contain "
4922				"CPU%d\n", cpu);
4923	}
4924	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4925		printk(KERN_ERR "ERROR: domain->groups does not contain"
4926				" CPU%d\n", cpu);
4927	}
4928
4929	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4930	do {
4931		if (!group) {
4932			printk("\n");
4933			printk(KERN_ERR "ERROR: group is NULL\n");
4934			break;
4935		}
4936
4937		/*
4938		 * Even though we initialize ->power to something semi-sane,
4939		 * we leave power_orig unset. This allows us to detect if
4940		 * domain iteration is still funny without causing /0 traps.
4941		 */
4942		if (!group->sgp->power_orig) {
4943			printk(KERN_CONT "\n");
4944			printk(KERN_ERR "ERROR: domain->cpu_power not "
4945					"set\n");
4946			break;
4947		}
4948
4949		if (!cpumask_weight(sched_group_cpus(group))) {
4950			printk(KERN_CONT "\n");
4951			printk(KERN_ERR "ERROR: empty group\n");
4952			break;
4953		}
4954
4955		if (!(sd->flags & SD_OVERLAP) &&
4956		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4957			printk(KERN_CONT "\n");
4958			printk(KERN_ERR "ERROR: repeated CPUs\n");
4959			break;
4960		}
4961
4962		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4963
4964		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4965
4966		printk(KERN_CONT " %s", str);
4967		if (group->sgp->power != SCHED_POWER_SCALE) {
4968			printk(KERN_CONT " (cpu_power = %d)",
4969				group->sgp->power);
4970		}
4971
4972		group = group->next;
4973	} while (group != sd->groups);
4974	printk(KERN_CONT "\n");
4975
4976	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4977		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4978
4979	if (sd->parent &&
4980	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4981		printk(KERN_ERR "ERROR: parent span is not a superset "
4982			"of domain->span\n");
4983	return 0;
4984}
4985
4986static void sched_domain_debug(struct sched_domain *sd, int cpu)
4987{
4988	int level = 0;
4989
4990	if (!sched_debug_enabled)
4991		return;
4992
4993	if (!sd) {
4994		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4995		return;
4996	}
4997
4998	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4999
5000	for (;;) {
5001		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5002			break;
5003		level++;
5004		sd = sd->parent;
5005		if (!sd)
5006			break;
5007	}
5008}
5009#else /* !CONFIG_SCHED_DEBUG */
5010# define sched_domain_debug(sd, cpu) do { } while (0)
5011static inline bool sched_debug(void)
5012{
5013	return false;
5014}
5015#endif /* CONFIG_SCHED_DEBUG */
5016
5017static int sd_degenerate(struct sched_domain *sd)
5018{
5019	if (cpumask_weight(sched_domain_span(sd)) == 1)
5020		return 1;
5021
5022	/* Following flags need at least 2 groups */
5023	if (sd->flags & (SD_LOAD_BALANCE |
5024			 SD_BALANCE_NEWIDLE |
5025			 SD_BALANCE_FORK |
5026			 SD_BALANCE_EXEC |
5027			 SD_SHARE_CPUPOWER |
5028			 SD_SHARE_PKG_RESOURCES)) {
5029		if (sd->groups != sd->groups->next)
5030			return 0;
5031	}
5032
5033	/* Following flags don't use groups */
5034	if (sd->flags & (SD_WAKE_AFFINE))
5035		return 0;
5036
5037	return 1;
5038}
5039
5040static int
5041sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5042{
5043	unsigned long cflags = sd->flags, pflags = parent->flags;
5044
5045	if (sd_degenerate(parent))
5046		return 1;
5047
5048	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5049		return 0;
5050
5051	/* Flags needing groups don't count if only 1 group in parent */
5052	if (parent->groups == parent->groups->next) {
5053		pflags &= ~(SD_LOAD_BALANCE |
5054				SD_BALANCE_NEWIDLE |
5055				SD_BALANCE_FORK |
5056				SD_BALANCE_EXEC |
5057				SD_SHARE_CPUPOWER |
5058				SD_SHARE_PKG_RESOURCES |
5059				SD_PREFER_SIBLING);
5060		if (nr_node_ids == 1)
5061			pflags &= ~SD_SERIALIZE;
5062	}
5063	if (~cflags & pflags)
5064		return 0;
5065
5066	return 1;
5067}
5068
5069static void free_rootdomain(struct rcu_head *rcu)
5070{
5071	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5072
5073	cpupri_cleanup(&rd->cpupri);
5074	free_cpumask_var(rd->dlo_mask);
5075	free_cpumask_var(rd->rto_mask);
5076	free_cpumask_var(rd->online);
5077	free_cpumask_var(rd->span);
5078	kfree(rd);
5079}
5080
5081static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5082{
5083	struct root_domain *old_rd = NULL;
5084	unsigned long flags;
5085
5086	raw_spin_lock_irqsave(&rq->lock, flags);
5087
5088	if (rq->rd) {
5089		old_rd = rq->rd;
5090
5091		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5092			set_rq_offline(rq);
5093
5094		cpumask_clear_cpu(rq->cpu, old_rd->span);
5095
5096		/*
5097		 * If we dont want to free the old_rd yet then
5098		 * set old_rd to NULL to skip the freeing later
5099		 * in this function:
5100		 */
5101		if (!atomic_dec_and_test(&old_rd->refcount))
5102			old_rd = NULL;
5103	}
5104
5105	atomic_inc(&rd->refcount);
5106	rq->rd = rd;
5107
5108	cpumask_set_cpu(rq->cpu, rd->span);
5109	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5110		set_rq_online(rq);
5111
5112	raw_spin_unlock_irqrestore(&rq->lock, flags);
5113
5114	if (old_rd)
5115		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5116}
5117
5118static int init_rootdomain(struct root_domain *rd)
5119{
5120	memset(rd, 0, sizeof(*rd));
5121
5122	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5123		goto out;
5124	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5125		goto free_span;
5126	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5127		goto free_online;
5128	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5129		goto free_dlo_mask;
5130
5131	if (cpupri_init(&rd->cpupri) != 0)
5132		goto free_rto_mask;
5133	return 0;
5134
5135free_rto_mask:
5136	free_cpumask_var(rd->rto_mask);
5137free_dlo_mask:
5138	free_cpumask_var(rd->dlo_mask);
5139free_online:
5140	free_cpumask_var(rd->online);
5141free_span:
5142	free_cpumask_var(rd->span);
5143out:
5144	return -ENOMEM;
5145}
5146
5147/*
5148 * By default the system creates a single root-domain with all cpus as
5149 * members (mimicking the global state we have today).
5150 */
5151struct root_domain def_root_domain;
5152
5153static void init_defrootdomain(void)
5154{
5155	init_rootdomain(&def_root_domain);
5156
5157	atomic_set(&def_root_domain.refcount, 1);
5158}
5159
5160static struct root_domain *alloc_rootdomain(void)
5161{
5162	struct root_domain *rd;
5163
5164	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5165	if (!rd)
5166		return NULL;
5167
5168	if (init_rootdomain(rd) != 0) {
5169		kfree(rd);
5170		return NULL;
5171	}
5172
5173	return rd;
5174}
5175
5176static void free_sched_groups(struct sched_group *sg, int free_sgp)
5177{
5178	struct sched_group *tmp, *first;
5179
5180	if (!sg)
5181		return;
5182
5183	first = sg;
5184	do {
5185		tmp = sg->next;
5186
5187		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5188			kfree(sg->sgp);
5189
5190		kfree(sg);
5191		sg = tmp;
5192	} while (sg != first);
5193}
5194
5195static void free_sched_domain(struct rcu_head *rcu)
5196{
5197	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5198
5199	/*
5200	 * If its an overlapping domain it has private groups, iterate and
5201	 * nuke them all.
5202	 */
5203	if (sd->flags & SD_OVERLAP) {
5204		free_sched_groups(sd->groups, 1);
5205	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5206		kfree(sd->groups->sgp);
5207		kfree(sd->groups);
5208	}
5209	kfree(sd);
5210}
5211
5212static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5213{
5214	call_rcu(&sd->rcu, free_sched_domain);
5215}
5216
5217static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5218{
5219	for (; sd; sd = sd->parent)
5220		destroy_sched_domain(sd, cpu);
5221}
5222
5223/*
5224 * Keep a special pointer to the highest sched_domain that has
5225 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5226 * allows us to avoid some pointer chasing select_idle_sibling().
5227 *
5228 * Also keep a unique ID per domain (we use the first cpu number in
5229 * the cpumask of the domain), this allows us to quickly tell if
5230 * two cpus are in the same cache domain, see cpus_share_cache().
5231 */
5232DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5233DEFINE_PER_CPU(int, sd_llc_size);
5234DEFINE_PER_CPU(int, sd_llc_id);
5235DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5236DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5237DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5238
5239static void update_top_cache_domain(int cpu)
5240{
5241	struct sched_domain *sd;
5242	struct sched_domain *busy_sd = NULL;
5243	int id = cpu;
5244	int size = 1;
5245
5246	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5247	if (sd) {
5248		id = cpumask_first(sched_domain_span(sd));
5249		size = cpumask_weight(sched_domain_span(sd));
5250		busy_sd = sd->parent; /* sd_busy */
5251	}
5252	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5253
5254	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5255	per_cpu(sd_llc_size, cpu) = size;
5256	per_cpu(sd_llc_id, cpu) = id;
5257
5258	sd = lowest_flag_domain(cpu, SD_NUMA);
5259	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5260
5261	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5262	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5263}
5264
5265/*
5266 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5267 * hold the hotplug lock.
5268 */
5269static void
5270cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5271{
5272	struct rq *rq = cpu_rq(cpu);
5273	struct sched_domain *tmp;
5274
5275	/* Remove the sched domains which do not contribute to scheduling. */
5276	for (tmp = sd; tmp; ) {
5277		struct sched_domain *parent = tmp->parent;
5278		if (!parent)
5279			break;
5280
5281		if (sd_parent_degenerate(tmp, parent)) {
5282			tmp->parent = parent->parent;
5283			if (parent->parent)
5284				parent->parent->child = tmp;
5285			/*
5286			 * Transfer SD_PREFER_SIBLING down in case of a
5287			 * degenerate parent; the spans match for this
5288			 * so the property transfers.
5289			 */
5290			if (parent->flags & SD_PREFER_SIBLING)
5291				tmp->flags |= SD_PREFER_SIBLING;
5292			destroy_sched_domain(parent, cpu);
5293		} else
5294			tmp = tmp->parent;
5295	}
5296
5297	if (sd && sd_degenerate(sd)) {
5298		tmp = sd;
5299		sd = sd->parent;
5300		destroy_sched_domain(tmp, cpu);
5301		if (sd)
5302			sd->child = NULL;
5303	}
5304
5305	sched_domain_debug(sd, cpu);
5306
5307	rq_attach_root(rq, rd);
5308	tmp = rq->sd;
5309	rcu_assign_pointer(rq->sd, sd);
5310	destroy_sched_domains(tmp, cpu);
5311
5312	update_top_cache_domain(cpu);
5313}
5314
5315/* cpus with isolated domains */
5316static cpumask_var_t cpu_isolated_map;
5317
5318/* Setup the mask of cpus configured for isolated domains */
5319static int __init isolated_cpu_setup(char *str)
5320{
5321	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5322	cpulist_parse(str, cpu_isolated_map);
5323	return 1;
5324}
5325
5326__setup("isolcpus=", isolated_cpu_setup);
5327
5328static const struct cpumask *cpu_cpu_mask(int cpu)
5329{
5330	return cpumask_of_node(cpu_to_node(cpu));
5331}
5332
5333struct sd_data {
5334	struct sched_domain **__percpu sd;
5335	struct sched_group **__percpu sg;
5336	struct sched_group_power **__percpu sgp;
5337};
5338
5339struct s_data {
5340	struct sched_domain ** __percpu sd;
5341	struct root_domain	*rd;
5342};
5343
5344enum s_alloc {
5345	sa_rootdomain,
5346	sa_sd,
5347	sa_sd_storage,
5348	sa_none,
5349};
5350
5351struct sched_domain_topology_level;
5352
5353typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5354typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5355
5356#define SDTL_OVERLAP	0x01
5357
5358struct sched_domain_topology_level {
5359	sched_domain_init_f init;
5360	sched_domain_mask_f mask;
5361	int		    flags;
5362	int		    numa_level;
5363	struct sd_data      data;
5364};
5365
5366/*
5367 * Build an iteration mask that can exclude certain CPUs from the upwards
5368 * domain traversal.
5369 *
5370 * Asymmetric node setups can result in situations where the domain tree is of
5371 * unequal depth, make sure to skip domains that already cover the entire
5372 * range.
5373 *
5374 * In that case build_sched_domains() will have terminated the iteration early
5375 * and our sibling sd spans will be empty. Domains should always include the
5376 * cpu they're built on, so check that.
5377 *
5378 */
5379static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5380{
5381	const struct cpumask *span = sched_domain_span(sd);
5382	struct sd_data *sdd = sd->private;
5383	struct sched_domain *sibling;
5384	int i;
5385
5386	for_each_cpu(i, span) {
5387		sibling = *per_cpu_ptr(sdd->sd, i);
5388		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5389			continue;
5390
5391		cpumask_set_cpu(i, sched_group_mask(sg));
5392	}
5393}
5394
5395/*
5396 * Return the canonical balance cpu for this group, this is the first cpu
5397 * of this group that's also in the iteration mask.
5398 */
5399int group_balance_cpu(struct sched_group *sg)
5400{
5401	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5402}
5403
5404static int
5405build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5406{
5407	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5408	const struct cpumask *span = sched_domain_span(sd);
5409	struct cpumask *covered = sched_domains_tmpmask;
5410	struct sd_data *sdd = sd->private;
5411	struct sched_domain *child;
5412	int i;
5413
5414	cpumask_clear(covered);
5415
5416	for_each_cpu(i, span) {
5417		struct cpumask *sg_span;
5418
5419		if (cpumask_test_cpu(i, covered))
5420			continue;
5421
5422		child = *per_cpu_ptr(sdd->sd, i);
5423
5424		/* See the comment near build_group_mask(). */
5425		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5426			continue;
5427
5428		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5429				GFP_KERNEL, cpu_to_node(cpu));
5430
5431		if (!sg)
5432			goto fail;
5433
5434		sg_span = sched_group_cpus(sg);
5435		if (child->child) {
5436			child = child->child;
5437			cpumask_copy(sg_span, sched_domain_span(child));
5438		} else
5439			cpumask_set_cpu(i, sg_span);
5440
5441		cpumask_or(covered, covered, sg_span);
5442
5443		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5444		if (atomic_inc_return(&sg->sgp->ref) == 1)
5445			build_group_mask(sd, sg);
5446
5447		/*
5448		 * Initialize sgp->power such that even if we mess up the
5449		 * domains and no possible iteration will get us here, we won't
5450		 * die on a /0 trap.
5451		 */
5452		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5453		sg->sgp->power_orig = sg->sgp->power;
5454
5455		/*
5456		 * Make sure the first group of this domain contains the
5457		 * canonical balance cpu. Otherwise the sched_domain iteration
5458		 * breaks. See update_sg_lb_stats().
5459		 */
5460		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5461		    group_balance_cpu(sg) == cpu)
5462			groups = sg;
5463
5464		if (!first)
5465			first = sg;
5466		if (last)
5467			last->next = sg;
5468		last = sg;
5469		last->next = first;
5470	}
5471	sd->groups = groups;
5472
5473	return 0;
5474
5475fail:
5476	free_sched_groups(first, 0);
5477
5478	return -ENOMEM;
5479}
5480
5481static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5482{
5483	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5484	struct sched_domain *child = sd->child;
5485
5486	if (child)
5487		cpu = cpumask_first(sched_domain_span(child));
5488
5489	if (sg) {
5490		*sg = *per_cpu_ptr(sdd->sg, cpu);
5491		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5492		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5493	}
5494
5495	return cpu;
5496}
5497
5498/*
5499 * build_sched_groups will build a circular linked list of the groups
5500 * covered by the given span, and will set each group's ->cpumask correctly,
5501 * and ->cpu_power to 0.
5502 *
5503 * Assumes the sched_domain tree is fully constructed
5504 */
5505static int
5506build_sched_groups(struct sched_domain *sd, int cpu)
5507{
5508	struct sched_group *first = NULL, *last = NULL;
5509	struct sd_data *sdd = sd->private;
5510	const struct cpumask *span = sched_domain_span(sd);
5511	struct cpumask *covered;
5512	int i;
5513
5514	get_group(cpu, sdd, &sd->groups);
5515	atomic_inc(&sd->groups->ref);
5516
5517	if (cpu != cpumask_first(span))
5518		return 0;
5519
5520	lockdep_assert_held(&sched_domains_mutex);
5521	covered = sched_domains_tmpmask;
5522
5523	cpumask_clear(covered);
5524
5525	for_each_cpu(i, span) {
5526		struct sched_group *sg;
5527		int group, j;
5528
5529		if (cpumask_test_cpu(i, covered))
5530			continue;
5531
5532		group = get_group(i, sdd, &sg);
5533		cpumask_clear(sched_group_cpus(sg));
5534		sg->sgp->power = 0;
5535		cpumask_setall(sched_group_mask(sg));
5536
5537		for_each_cpu(j, span) {
5538			if (get_group(j, sdd, NULL) != group)
5539				continue;
5540
5541			cpumask_set_cpu(j, covered);
5542			cpumask_set_cpu(j, sched_group_cpus(sg));
5543		}
5544
5545		if (!first)
5546			first = sg;
5547		if (last)
5548			last->next = sg;
5549		last = sg;
5550	}
5551	last->next = first;
5552
5553	return 0;
5554}
5555
5556/*
5557 * Initialize sched groups cpu_power.
5558 *
5559 * cpu_power indicates the capacity of sched group, which is used while
5560 * distributing the load between different sched groups in a sched domain.
5561 * Typically cpu_power for all the groups in a sched domain will be same unless
5562 * there are asymmetries in the topology. If there are asymmetries, group
5563 * having more cpu_power will pickup more load compared to the group having
5564 * less cpu_power.
5565 */
5566static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5567{
5568	struct sched_group *sg = sd->groups;
5569
5570	WARN_ON(!sg);
5571
5572	do {
5573		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5574		sg = sg->next;
5575	} while (sg != sd->groups);
5576
5577	if (cpu != group_balance_cpu(sg))
5578		return;
5579
5580	update_group_power(sd, cpu);
5581	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5582}
5583
5584int __weak arch_sd_sibling_asym_packing(void)
5585{
5586       return 0*SD_ASYM_PACKING;
5587}
5588
5589/*
5590 * Initializers for schedule domains
5591 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5592 */
5593
5594#ifdef CONFIG_SCHED_DEBUG
5595# define SD_INIT_NAME(sd, type)		sd->name = #type
5596#else
5597# define SD_INIT_NAME(sd, type)		do { } while (0)
5598#endif
5599
5600#define SD_INIT_FUNC(type)						\
5601static noinline struct sched_domain *					\
5602sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5603{									\
5604	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5605	*sd = SD_##type##_INIT;						\
5606	SD_INIT_NAME(sd, type);						\
5607	sd->private = &tl->data;					\
5608	return sd;							\
5609}
5610
5611SD_INIT_FUNC(CPU)
5612#ifdef CONFIG_SCHED_SMT
5613 SD_INIT_FUNC(SIBLING)
5614#endif
5615#ifdef CONFIG_SCHED_MC
5616 SD_INIT_FUNC(MC)
5617#endif
5618#ifdef CONFIG_SCHED_BOOK
5619 SD_INIT_FUNC(BOOK)
5620#endif
5621
5622static int default_relax_domain_level = -1;
5623int sched_domain_level_max;
5624
5625static int __init setup_relax_domain_level(char *str)
5626{
5627	if (kstrtoint(str, 0, &default_relax_domain_level))
5628		pr_warn("Unable to set relax_domain_level\n");
5629
5630	return 1;
5631}
5632__setup("relax_domain_level=", setup_relax_domain_level);
5633
5634static void set_domain_attribute(struct sched_domain *sd,
5635				 struct sched_domain_attr *attr)
5636{
5637	int request;
5638
5639	if (!attr || attr->relax_domain_level < 0) {
5640		if (default_relax_domain_level < 0)
5641			return;
5642		else
5643			request = default_relax_domain_level;
5644	} else
5645		request = attr->relax_domain_level;
5646	if (request < sd->level) {
5647		/* turn off idle balance on this domain */
5648		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5649	} else {
5650		/* turn on idle balance on this domain */
5651		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5652	}
5653}
5654
5655static void __sdt_free(const struct cpumask *cpu_map);
5656static int __sdt_alloc(const struct cpumask *cpu_map);
5657
5658static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5659				 const struct cpumask *cpu_map)
5660{
5661	switch (what) {
5662	case sa_rootdomain:
5663		if (!atomic_read(&d->rd->refcount))
5664			free_rootdomain(&d->rd->rcu); /* fall through */
5665	case sa_sd:
5666		free_percpu(d->sd); /* fall through */
5667	case sa_sd_storage:
5668		__sdt_free(cpu_map); /* fall through */
5669	case sa_none:
5670		break;
5671	}
5672}
5673
5674static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5675						   const struct cpumask *cpu_map)
5676{
5677	memset(d, 0, sizeof(*d));
5678
5679	if (__sdt_alloc(cpu_map))
5680		return sa_sd_storage;
5681	d->sd = alloc_percpu(struct sched_domain *);
5682	if (!d->sd)
5683		return sa_sd_storage;
5684	d->rd = alloc_rootdomain();
5685	if (!d->rd)
5686		return sa_sd;
5687	return sa_rootdomain;
5688}
5689
5690/*
5691 * NULL the sd_data elements we've used to build the sched_domain and
5692 * sched_group structure so that the subsequent __free_domain_allocs()
5693 * will not free the data we're using.
5694 */
5695static void claim_allocations(int cpu, struct sched_domain *sd)
5696{
5697	struct sd_data *sdd = sd->private;
5698
5699	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5700	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5701
5702	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5703		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5704
5705	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5706		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5707}
5708
5709#ifdef CONFIG_SCHED_SMT
5710static const struct cpumask *cpu_smt_mask(int cpu)
5711{
5712	return topology_thread_cpumask(cpu);
5713}
5714#endif
5715
5716/*
5717 * Topology list, bottom-up.
5718 */
5719static struct sched_domain_topology_level default_topology[] = {
5720#ifdef CONFIG_SCHED_SMT
5721	{ sd_init_SIBLING, cpu_smt_mask, },
5722#endif
5723#ifdef CONFIG_SCHED_MC
5724	{ sd_init_MC, cpu_coregroup_mask, },
5725#endif
5726#ifdef CONFIG_SCHED_BOOK
5727	{ sd_init_BOOK, cpu_book_mask, },
5728#endif
5729	{ sd_init_CPU, cpu_cpu_mask, },
5730	{ NULL, },
5731};
5732
5733static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5734
5735#define for_each_sd_topology(tl)			\
5736	for (tl = sched_domain_topology; tl->init; tl++)
5737
5738#ifdef CONFIG_NUMA
5739
5740static int sched_domains_numa_levels;
5741static int *sched_domains_numa_distance;
5742static struct cpumask ***sched_domains_numa_masks;
5743static int sched_domains_curr_level;
5744
5745static inline int sd_local_flags(int level)
5746{
5747	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5748		return 0;
5749
5750	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5751}
5752
5753static struct sched_domain *
5754sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5755{
5756	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5757	int level = tl->numa_level;
5758	int sd_weight = cpumask_weight(
5759			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5760
5761	*sd = (struct sched_domain){
5762		.min_interval		= sd_weight,
5763		.max_interval		= 2*sd_weight,
5764		.busy_factor		= 32,
5765		.imbalance_pct		= 125,
5766		.cache_nice_tries	= 2,
5767		.busy_idx		= 3,
5768		.idle_idx		= 2,
5769		.newidle_idx		= 0,
5770		.wake_idx		= 0,
5771		.forkexec_idx		= 0,
5772
5773		.flags			= 1*SD_LOAD_BALANCE
5774					| 1*SD_BALANCE_NEWIDLE
5775					| 0*SD_BALANCE_EXEC
5776					| 0*SD_BALANCE_FORK
5777					| 0*SD_BALANCE_WAKE
5778					| 0*SD_WAKE_AFFINE
5779					| 0*SD_SHARE_CPUPOWER
5780					| 0*SD_SHARE_PKG_RESOURCES
5781					| 1*SD_SERIALIZE
5782					| 0*SD_PREFER_SIBLING
5783					| 1*SD_NUMA
5784					| sd_local_flags(level)
5785					,
5786		.last_balance		= jiffies,
5787		.balance_interval	= sd_weight,
5788	};
5789	SD_INIT_NAME(sd, NUMA);
5790	sd->private = &tl->data;
5791
5792	/*
5793	 * Ugly hack to pass state to sd_numa_mask()...
5794	 */
5795	sched_domains_curr_level = tl->numa_level;
5796
5797	return sd;
5798}
5799
5800static const struct cpumask *sd_numa_mask(int cpu)
5801{
5802	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5803}
5804
5805static void sched_numa_warn(const char *str)
5806{
5807	static int done = false;
5808	int i,j;
5809
5810	if (done)
5811		return;
5812
5813	done = true;
5814
5815	printk(KERN_WARNING "ERROR: %s\n\n", str);
5816
5817	for (i = 0; i < nr_node_ids; i++) {
5818		printk(KERN_WARNING "  ");
5819		for (j = 0; j < nr_node_ids; j++)
5820			printk(KERN_CONT "%02d ", node_distance(i,j));
5821		printk(KERN_CONT "\n");
5822	}
5823	printk(KERN_WARNING "\n");
5824}
5825
5826static bool find_numa_distance(int distance)
5827{
5828	int i;
5829
5830	if (distance == node_distance(0, 0))
5831		return true;
5832
5833	for (i = 0; i < sched_domains_numa_levels; i++) {
5834		if (sched_domains_numa_distance[i] == distance)
5835			return true;
5836	}
5837
5838	return false;
5839}
5840
5841static void sched_init_numa(void)
5842{
5843	int next_distance, curr_distance = node_distance(0, 0);
5844	struct sched_domain_topology_level *tl;
5845	int level = 0;
5846	int i, j, k;
5847
5848	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5849	if (!sched_domains_numa_distance)
5850		return;
5851
5852	/*
5853	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5854	 * unique distances in the node_distance() table.
5855	 *
5856	 * Assumes node_distance(0,j) includes all distances in
5857	 * node_distance(i,j) in order to avoid cubic time.
5858	 */
5859	next_distance = curr_distance;
5860	for (i = 0; i < nr_node_ids; i++) {
5861		for (j = 0; j < nr_node_ids; j++) {
5862			for (k = 0; k < nr_node_ids; k++) {
5863				int distance = node_distance(i, k);
5864
5865				if (distance > curr_distance &&
5866				    (distance < next_distance ||
5867				     next_distance == curr_distance))
5868					next_distance = distance;
5869
5870				/*
5871				 * While not a strong assumption it would be nice to know
5872				 * about cases where if node A is connected to B, B is not
5873				 * equally connected to A.
5874				 */
5875				if (sched_debug() && node_distance(k, i) != distance)
5876					sched_numa_warn("Node-distance not symmetric");
5877
5878				if (sched_debug() && i && !find_numa_distance(distance))
5879					sched_numa_warn("Node-0 not representative");
5880			}
5881			if (next_distance != curr_distance) {
5882				sched_domains_numa_distance[level++] = next_distance;
5883				sched_domains_numa_levels = level;
5884				curr_distance = next_distance;
5885			} else break;
5886		}
5887
5888		/*
5889		 * In case of sched_debug() we verify the above assumption.
5890		 */
5891		if (!sched_debug())
5892			break;
5893	}
5894	/*
5895	 * 'level' contains the number of unique distances, excluding the
5896	 * identity distance node_distance(i,i).
5897	 *
5898	 * The sched_domains_numa_distance[] array includes the actual distance
5899	 * numbers.
5900	 */
5901
5902	/*
5903	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5904	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5905	 * the array will contain less then 'level' members. This could be
5906	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5907	 * in other functions.
5908	 *
5909	 * We reset it to 'level' at the end of this function.
5910	 */
5911	sched_domains_numa_levels = 0;
5912
5913	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5914	if (!sched_domains_numa_masks)
5915		return;
5916
5917	/*
5918	 * Now for each level, construct a mask per node which contains all
5919	 * cpus of nodes that are that many hops away from us.
5920	 */
5921	for (i = 0; i < level; i++) {
5922		sched_domains_numa_masks[i] =
5923			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5924		if (!sched_domains_numa_masks[i])
5925			return;
5926
5927		for (j = 0; j < nr_node_ids; j++) {
5928			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5929			if (!mask)
5930				return;
5931
5932			sched_domains_numa_masks[i][j] = mask;
5933
5934			for (k = 0; k < nr_node_ids; k++) {
5935				if (node_distance(j, k) > sched_domains_numa_distance[i])
5936					continue;
5937
5938				cpumask_or(mask, mask, cpumask_of_node(k));
5939			}
5940		}
5941	}
5942
5943	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5944			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5945	if (!tl)
5946		return;
5947
5948	/*
5949	 * Copy the default topology bits..
5950	 */
5951	for (i = 0; default_topology[i].init; i++)
5952		tl[i] = default_topology[i];
5953
5954	/*
5955	 * .. and append 'j' levels of NUMA goodness.
5956	 */
5957	for (j = 0; j < level; i++, j++) {
5958		tl[i] = (struct sched_domain_topology_level){
5959			.init = sd_numa_init,
5960			.mask = sd_numa_mask,
5961			.flags = SDTL_OVERLAP,
5962			.numa_level = j,
5963		};
5964	}
5965
5966	sched_domain_topology = tl;
5967
5968	sched_domains_numa_levels = level;
5969}
5970
5971static void sched_domains_numa_masks_set(int cpu)
5972{
5973	int i, j;
5974	int node = cpu_to_node(cpu);
5975
5976	for (i = 0; i < sched_domains_numa_levels; i++) {
5977		for (j = 0; j < nr_node_ids; j++) {
5978			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5979				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5980		}
5981	}
5982}
5983
5984static void sched_domains_numa_masks_clear(int cpu)
5985{
5986	int i, j;
5987	for (i = 0; i < sched_domains_numa_levels; i++) {
5988		for (j = 0; j < nr_node_ids; j++)
5989			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5990	}
5991}
5992
5993/*
5994 * Update sched_domains_numa_masks[level][node] array when new cpus
5995 * are onlined.
5996 */
5997static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5998					   unsigned long action,
5999					   void *hcpu)
6000{
6001	int cpu = (long)hcpu;
6002
6003	switch (action & ~CPU_TASKS_FROZEN) {
6004	case CPU_ONLINE:
6005		sched_domains_numa_masks_set(cpu);
6006		break;
6007
6008	case CPU_DEAD:
6009		sched_domains_numa_masks_clear(cpu);
6010		break;
6011
6012	default:
6013		return NOTIFY_DONE;
6014	}
6015
6016	return NOTIFY_OK;
6017}
6018#else
6019static inline void sched_init_numa(void)
6020{
6021}
6022
6023static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6024					   unsigned long action,
6025					   void *hcpu)
6026{
6027	return 0;
6028}
6029#endif /* CONFIG_NUMA */
6030
6031static int __sdt_alloc(const struct cpumask *cpu_map)
6032{
6033	struct sched_domain_topology_level *tl;
6034	int j;
6035
6036	for_each_sd_topology(tl) {
6037		struct sd_data *sdd = &tl->data;
6038
6039		sdd->sd = alloc_percpu(struct sched_domain *);
6040		if (!sdd->sd)
6041			return -ENOMEM;
6042
6043		sdd->sg = alloc_percpu(struct sched_group *);
6044		if (!sdd->sg)
6045			return -ENOMEM;
6046
6047		sdd->sgp = alloc_percpu(struct sched_group_power *);
6048		if (!sdd->sgp)
6049			return -ENOMEM;
6050
6051		for_each_cpu(j, cpu_map) {
6052			struct sched_domain *sd;
6053			struct sched_group *sg;
6054			struct sched_group_power *sgp;
6055
6056		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6057					GFP_KERNEL, cpu_to_node(j));
6058			if (!sd)
6059				return -ENOMEM;
6060
6061			*per_cpu_ptr(sdd->sd, j) = sd;
6062
6063			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6064					GFP_KERNEL, cpu_to_node(j));
6065			if (!sg)
6066				return -ENOMEM;
6067
6068			sg->next = sg;
6069
6070			*per_cpu_ptr(sdd->sg, j) = sg;
6071
6072			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6073					GFP_KERNEL, cpu_to_node(j));
6074			if (!sgp)
6075				return -ENOMEM;
6076
6077			*per_cpu_ptr(sdd->sgp, j) = sgp;
6078		}
6079	}
6080
6081	return 0;
6082}
6083
6084static void __sdt_free(const struct cpumask *cpu_map)
6085{
6086	struct sched_domain_topology_level *tl;
6087	int j;
6088
6089	for_each_sd_topology(tl) {
6090		struct sd_data *sdd = &tl->data;
6091
6092		for_each_cpu(j, cpu_map) {
6093			struct sched_domain *sd;
6094
6095			if (sdd->sd) {
6096				sd = *per_cpu_ptr(sdd->sd, j);
6097				if (sd && (sd->flags & SD_OVERLAP))
6098					free_sched_groups(sd->groups, 0);
6099				kfree(*per_cpu_ptr(sdd->sd, j));
6100			}
6101
6102			if (sdd->sg)
6103				kfree(*per_cpu_ptr(sdd->sg, j));
6104			if (sdd->sgp)
6105				kfree(*per_cpu_ptr(sdd->sgp, j));
6106		}
6107		free_percpu(sdd->sd);
6108		sdd->sd = NULL;
6109		free_percpu(sdd->sg);
6110		sdd->sg = NULL;
6111		free_percpu(sdd->sgp);
6112		sdd->sgp = NULL;
6113	}
6114}
6115
6116struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6117		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6118		struct sched_domain *child, int cpu)
6119{
6120	struct sched_domain *sd = tl->init(tl, cpu);
6121	if (!sd)
6122		return child;
6123
6124	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6125	if (child) {
6126		sd->level = child->level + 1;
6127		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6128		child->parent = sd;
6129		sd->child = child;
6130	}
6131	set_domain_attribute(sd, attr);
6132
6133	return sd;
6134}
6135
6136/*
6137 * Build sched domains for a given set of cpus and attach the sched domains
6138 * to the individual cpus
6139 */
6140static int build_sched_domains(const struct cpumask *cpu_map,
6141			       struct sched_domain_attr *attr)
6142{
6143	enum s_alloc alloc_state;
6144	struct sched_domain *sd;
6145	struct s_data d;
6146	int i, ret = -ENOMEM;
6147
6148	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6149	if (alloc_state != sa_rootdomain)
6150		goto error;
6151
6152	/* Set up domains for cpus specified by the cpu_map. */
6153	for_each_cpu(i, cpu_map) {
6154		struct sched_domain_topology_level *tl;
6155
6156		sd = NULL;
6157		for_each_sd_topology(tl) {
6158			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6159			if (tl == sched_domain_topology)
6160				*per_cpu_ptr(d.sd, i) = sd;
6161			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6162				sd->flags |= SD_OVERLAP;
6163			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6164				break;
6165		}
6166	}
6167
6168	/* Build the groups for the domains */
6169	for_each_cpu(i, cpu_map) {
6170		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6171			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6172			if (sd->flags & SD_OVERLAP) {
6173				if (build_overlap_sched_groups(sd, i))
6174					goto error;
6175			} else {
6176				if (build_sched_groups(sd, i))
6177					goto error;
6178			}
6179		}
6180	}
6181
6182	/* Calculate CPU power for physical packages and nodes */
6183	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6184		if (!cpumask_test_cpu(i, cpu_map))
6185			continue;
6186
6187		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6188			claim_allocations(i, sd);
6189			init_sched_groups_power(i, sd);
6190		}
6191	}
6192
6193	/* Attach the domains */
6194	rcu_read_lock();
6195	for_each_cpu(i, cpu_map) {
6196		sd = *per_cpu_ptr(d.sd, i);
6197		cpu_attach_domain(sd, d.rd, i);
6198	}
6199	rcu_read_unlock();
6200
6201	ret = 0;
6202error:
6203	__free_domain_allocs(&d, alloc_state, cpu_map);
6204	return ret;
6205}
6206
6207static cpumask_var_t *doms_cur;	/* current sched domains */
6208static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6209static struct sched_domain_attr *dattr_cur;
6210				/* attribues of custom domains in 'doms_cur' */
6211
6212/*
6213 * Special case: If a kmalloc of a doms_cur partition (array of
6214 * cpumask) fails, then fallback to a single sched domain,
6215 * as determined by the single cpumask fallback_doms.
6216 */
6217static cpumask_var_t fallback_doms;
6218
6219/*
6220 * arch_update_cpu_topology lets virtualized architectures update the
6221 * cpu core maps. It is supposed to return 1 if the topology changed
6222 * or 0 if it stayed the same.
6223 */
6224int __attribute__((weak)) arch_update_cpu_topology(void)
6225{
6226	return 0;
6227}
6228
6229cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6230{
6231	int i;
6232	cpumask_var_t *doms;
6233
6234	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6235	if (!doms)
6236		return NULL;
6237	for (i = 0; i < ndoms; i++) {
6238		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6239			free_sched_domains(doms, i);
6240			return NULL;
6241		}
6242	}
6243	return doms;
6244}
6245
6246void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6247{
6248	unsigned int i;
6249	for (i = 0; i < ndoms; i++)
6250		free_cpumask_var(doms[i]);
6251	kfree(doms);
6252}
6253
6254/*
6255 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6256 * For now this just excludes isolated cpus, but could be used to
6257 * exclude other special cases in the future.
6258 */
6259static int init_sched_domains(const struct cpumask *cpu_map)
6260{
6261	int err;
6262
6263	arch_update_cpu_topology();
6264	ndoms_cur = 1;
6265	doms_cur = alloc_sched_domains(ndoms_cur);
6266	if (!doms_cur)
6267		doms_cur = &fallback_doms;
6268	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6269	err = build_sched_domains(doms_cur[0], NULL);
6270	register_sched_domain_sysctl();
6271
6272	return err;
6273}
6274
6275/*
6276 * Detach sched domains from a group of cpus specified in cpu_map
6277 * These cpus will now be attached to the NULL domain
6278 */
6279static void detach_destroy_domains(const struct cpumask *cpu_map)
6280{
6281	int i;
6282
6283	rcu_read_lock();
6284	for_each_cpu(i, cpu_map)
6285		cpu_attach_domain(NULL, &def_root_domain, i);
6286	rcu_read_unlock();
6287}
6288
6289/* handle null as "default" */
6290static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6291			struct sched_domain_attr *new, int idx_new)
6292{
6293	struct sched_domain_attr tmp;
6294
6295	/* fast path */
6296	if (!new && !cur)
6297		return 1;
6298
6299	tmp = SD_ATTR_INIT;
6300	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6301			new ? (new + idx_new) : &tmp,
6302			sizeof(struct sched_domain_attr));
6303}
6304
6305/*
6306 * Partition sched domains as specified by the 'ndoms_new'
6307 * cpumasks in the array doms_new[] of cpumasks. This compares
6308 * doms_new[] to the current sched domain partitioning, doms_cur[].
6309 * It destroys each deleted domain and builds each new domain.
6310 *
6311 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6312 * The masks don't intersect (don't overlap.) We should setup one
6313 * sched domain for each mask. CPUs not in any of the cpumasks will
6314 * not be load balanced. If the same cpumask appears both in the
6315 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6316 * it as it is.
6317 *
6318 * The passed in 'doms_new' should be allocated using
6319 * alloc_sched_domains.  This routine takes ownership of it and will
6320 * free_sched_domains it when done with it. If the caller failed the
6321 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6322 * and partition_sched_domains() will fallback to the single partition
6323 * 'fallback_doms', it also forces the domains to be rebuilt.
6324 *
6325 * If doms_new == NULL it will be replaced with cpu_online_mask.
6326 * ndoms_new == 0 is a special case for destroying existing domains,
6327 * and it will not create the default domain.
6328 *
6329 * Call with hotplug lock held
6330 */
6331void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6332			     struct sched_domain_attr *dattr_new)
6333{
6334	int i, j, n;
6335	int new_topology;
6336
6337	mutex_lock(&sched_domains_mutex);
6338
6339	/* always unregister in case we don't destroy any domains */
6340	unregister_sched_domain_sysctl();
6341
6342	/* Let architecture update cpu core mappings. */
6343	new_topology = arch_update_cpu_topology();
6344
6345	n = doms_new ? ndoms_new : 0;
6346
6347	/* Destroy deleted domains */
6348	for (i = 0; i < ndoms_cur; i++) {
6349		for (j = 0; j < n && !new_topology; j++) {
6350			if (cpumask_equal(doms_cur[i], doms_new[j])
6351			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6352				goto match1;
6353		}
6354		/* no match - a current sched domain not in new doms_new[] */
6355		detach_destroy_domains(doms_cur[i]);
6356match1:
6357		;
6358	}
6359
6360	n = ndoms_cur;
6361	if (doms_new == NULL) {
6362		n = 0;
6363		doms_new = &fallback_doms;
6364		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6365		WARN_ON_ONCE(dattr_new);
6366	}
6367
6368	/* Build new domains */
6369	for (i = 0; i < ndoms_new; i++) {
6370		for (j = 0; j < n && !new_topology; j++) {
6371			if (cpumask_equal(doms_new[i], doms_cur[j])
6372			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6373				goto match2;
6374		}
6375		/* no match - add a new doms_new */
6376		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6377match2:
6378		;
6379	}
6380
6381	/* Remember the new sched domains */
6382	if (doms_cur != &fallback_doms)
6383		free_sched_domains(doms_cur, ndoms_cur);
6384	kfree(dattr_cur);	/* kfree(NULL) is safe */
6385	doms_cur = doms_new;
6386	dattr_cur = dattr_new;
6387	ndoms_cur = ndoms_new;
6388
6389	register_sched_domain_sysctl();
6390
6391	mutex_unlock(&sched_domains_mutex);
6392}
6393
6394static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6395
6396/*
6397 * Update cpusets according to cpu_active mask.  If cpusets are
6398 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6399 * around partition_sched_domains().
6400 *
6401 * If we come here as part of a suspend/resume, don't touch cpusets because we
6402 * want to restore it back to its original state upon resume anyway.
6403 */
6404static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6405			     void *hcpu)
6406{
6407	switch (action) {
6408	case CPU_ONLINE_FROZEN:
6409	case CPU_DOWN_FAILED_FROZEN:
6410
6411		/*
6412		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6413		 * resume sequence. As long as this is not the last online
6414		 * operation in the resume sequence, just build a single sched
6415		 * domain, ignoring cpusets.
6416		 */
6417		num_cpus_frozen--;
6418		if (likely(num_cpus_frozen)) {
6419			partition_sched_domains(1, NULL, NULL);
6420			break;
6421		}
6422
6423		/*
6424		 * This is the last CPU online operation. So fall through and
6425		 * restore the original sched domains by considering the
6426		 * cpuset configurations.
6427		 */
6428
6429	case CPU_ONLINE:
6430	case CPU_DOWN_FAILED:
6431		cpuset_update_active_cpus(true);
6432		break;
6433	default:
6434		return NOTIFY_DONE;
6435	}
6436	return NOTIFY_OK;
6437}
6438
6439static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6440			       void *hcpu)
6441{
6442	switch (action) {
6443	case CPU_DOWN_PREPARE:
6444		cpuset_update_active_cpus(false);
6445		break;
6446	case CPU_DOWN_PREPARE_FROZEN:
6447		num_cpus_frozen++;
6448		partition_sched_domains(1, NULL, NULL);
6449		break;
6450	default:
6451		return NOTIFY_DONE;
6452	}
6453	return NOTIFY_OK;
6454}
6455
6456void __init sched_init_smp(void)
6457{
6458	cpumask_var_t non_isolated_cpus;
6459
6460	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6461	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6462
6463	sched_init_numa();
6464
6465	/*
6466	 * There's no userspace yet to cause hotplug operations; hence all the
6467	 * cpu masks are stable and all blatant races in the below code cannot
6468	 * happen.
6469	 */
6470	mutex_lock(&sched_domains_mutex);
6471	init_sched_domains(cpu_active_mask);
6472	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6473	if (cpumask_empty(non_isolated_cpus))
6474		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6475	mutex_unlock(&sched_domains_mutex);
6476
6477	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6478	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6479	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6480
6481	init_hrtick();
6482
6483	/* Move init over to a non-isolated CPU */
6484	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6485		BUG();
6486	sched_init_granularity();
6487	free_cpumask_var(non_isolated_cpus);
6488
6489	init_sched_rt_class();
6490	init_sched_dl_class();
6491}
6492#else
6493void __init sched_init_smp(void)
6494{
6495	sched_init_granularity();
6496}
6497#endif /* CONFIG_SMP */
6498
6499const_debug unsigned int sysctl_timer_migration = 1;
6500
6501int in_sched_functions(unsigned long addr)
6502{
6503	return in_lock_functions(addr) ||
6504		(addr >= (unsigned long)__sched_text_start
6505		&& addr < (unsigned long)__sched_text_end);
6506}
6507
6508#ifdef CONFIG_CGROUP_SCHED
6509/*
6510 * Default task group.
6511 * Every task in system belongs to this group at bootup.
6512 */
6513struct task_group root_task_group;
6514LIST_HEAD(task_groups);
6515#endif
6516
6517DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6518
6519void __init sched_init(void)
6520{
6521	int i, j;
6522	unsigned long alloc_size = 0, ptr;
6523
6524#ifdef CONFIG_FAIR_GROUP_SCHED
6525	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6526#endif
6527#ifdef CONFIG_RT_GROUP_SCHED
6528	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6529#endif
6530#ifdef CONFIG_CPUMASK_OFFSTACK
6531	alloc_size += num_possible_cpus() * cpumask_size();
6532#endif
6533	if (alloc_size) {
6534		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6535
6536#ifdef CONFIG_FAIR_GROUP_SCHED
6537		root_task_group.se = (struct sched_entity **)ptr;
6538		ptr += nr_cpu_ids * sizeof(void **);
6539
6540		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6541		ptr += nr_cpu_ids * sizeof(void **);
6542
6543#endif /* CONFIG_FAIR_GROUP_SCHED */
6544#ifdef CONFIG_RT_GROUP_SCHED
6545		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6546		ptr += nr_cpu_ids * sizeof(void **);
6547
6548		root_task_group.rt_rq = (struct rt_rq **)ptr;
6549		ptr += nr_cpu_ids * sizeof(void **);
6550
6551#endif /* CONFIG_RT_GROUP_SCHED */
6552#ifdef CONFIG_CPUMASK_OFFSTACK
6553		for_each_possible_cpu(i) {
6554			per_cpu(load_balance_mask, i) = (void *)ptr;
6555			ptr += cpumask_size();
6556		}
6557#endif /* CONFIG_CPUMASK_OFFSTACK */
6558	}
6559
6560#ifdef CONFIG_SMP
6561	init_defrootdomain();
6562#endif
6563
6564	init_rt_bandwidth(&def_rt_bandwidth,
6565			global_rt_period(), global_rt_runtime());
6566
6567#ifdef CONFIG_RT_GROUP_SCHED
6568	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6569			global_rt_period(), global_rt_runtime());
6570#endif /* CONFIG_RT_GROUP_SCHED */
6571
6572#ifdef CONFIG_CGROUP_SCHED
6573	list_add(&root_task_group.list, &task_groups);
6574	INIT_LIST_HEAD(&root_task_group.children);
6575	INIT_LIST_HEAD(&root_task_group.siblings);
6576	autogroup_init(&init_task);
6577
6578#endif /* CONFIG_CGROUP_SCHED */
6579
6580	for_each_possible_cpu(i) {
6581		struct rq *rq;
6582
6583		rq = cpu_rq(i);
6584		raw_spin_lock_init(&rq->lock);
6585		rq->nr_running = 0;
6586		rq->calc_load_active = 0;
6587		rq->calc_load_update = jiffies + LOAD_FREQ;
6588		init_cfs_rq(&rq->cfs);
6589		init_rt_rq(&rq->rt, rq);
6590		init_dl_rq(&rq->dl, rq);
6591#ifdef CONFIG_FAIR_GROUP_SCHED
6592		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6593		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6594		/*
6595		 * How much cpu bandwidth does root_task_group get?
6596		 *
6597		 * In case of task-groups formed thr' the cgroup filesystem, it
6598		 * gets 100% of the cpu resources in the system. This overall
6599		 * system cpu resource is divided among the tasks of
6600		 * root_task_group and its child task-groups in a fair manner,
6601		 * based on each entity's (task or task-group's) weight
6602		 * (se->load.weight).
6603		 *
6604		 * In other words, if root_task_group has 10 tasks of weight
6605		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6606		 * then A0's share of the cpu resource is:
6607		 *
6608		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6609		 *
6610		 * We achieve this by letting root_task_group's tasks sit
6611		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6612		 */
6613		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6614		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6615#endif /* CONFIG_FAIR_GROUP_SCHED */
6616
6617		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6618#ifdef CONFIG_RT_GROUP_SCHED
6619		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6620		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6621#endif
6622
6623		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6624			rq->cpu_load[j] = 0;
6625
6626		rq->last_load_update_tick = jiffies;
6627
6628#ifdef CONFIG_SMP
6629		rq->sd = NULL;
6630		rq->rd = NULL;
6631		rq->cpu_power = SCHED_POWER_SCALE;
6632		rq->post_schedule = 0;
6633		rq->active_balance = 0;
6634		rq->next_balance = jiffies;
6635		rq->push_cpu = 0;
6636		rq->cpu = i;
6637		rq->online = 0;
6638		rq->idle_stamp = 0;
6639		rq->avg_idle = 2*sysctl_sched_migration_cost;
6640		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6641
6642		INIT_LIST_HEAD(&rq->cfs_tasks);
6643
6644		rq_attach_root(rq, &def_root_domain);
6645#ifdef CONFIG_NO_HZ_COMMON
6646		rq->nohz_flags = 0;
6647#endif
6648#ifdef CONFIG_NO_HZ_FULL
6649		rq->last_sched_tick = 0;
6650#endif
6651#endif
6652		init_rq_hrtick(rq);
6653		atomic_set(&rq->nr_iowait, 0);
6654	}
6655
6656	set_load_weight(&init_task);
6657
6658#ifdef CONFIG_PREEMPT_NOTIFIERS
6659	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6660#endif
6661
6662	/*
6663	 * The boot idle thread does lazy MMU switching as well:
6664	 */
6665	atomic_inc(&init_mm.mm_count);
6666	enter_lazy_tlb(&init_mm, current);
6667
6668	/*
6669	 * Make us the idle thread. Technically, schedule() should not be
6670	 * called from this thread, however somewhere below it might be,
6671	 * but because we are the idle thread, we just pick up running again
6672	 * when this runqueue becomes "idle".
6673	 */
6674	init_idle(current, smp_processor_id());
6675
6676	calc_load_update = jiffies + LOAD_FREQ;
6677
6678	/*
6679	 * During early bootup we pretend to be a normal task:
6680	 */
6681	current->sched_class = &fair_sched_class;
6682
6683#ifdef CONFIG_SMP
6684	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6685	/* May be allocated at isolcpus cmdline parse time */
6686	if (cpu_isolated_map == NULL)
6687		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6688	idle_thread_set_boot_cpu();
6689#endif
6690	init_sched_fair_class();
6691
6692	scheduler_running = 1;
6693}
6694
6695#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6696static inline int preempt_count_equals(int preempt_offset)
6697{
6698	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6699
6700	return (nested == preempt_offset);
6701}
6702
6703void __might_sleep(const char *file, int line, int preempt_offset)
6704{
6705	static unsigned long prev_jiffy;	/* ratelimiting */
6706
6707	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6708	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6709	    system_state != SYSTEM_RUNNING || oops_in_progress)
6710		return;
6711	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6712		return;
6713	prev_jiffy = jiffies;
6714
6715	printk(KERN_ERR
6716		"BUG: sleeping function called from invalid context at %s:%d\n",
6717			file, line);
6718	printk(KERN_ERR
6719		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6720			in_atomic(), irqs_disabled(),
6721			current->pid, current->comm);
6722
6723	debug_show_held_locks(current);
6724	if (irqs_disabled())
6725		print_irqtrace_events(current);
6726	dump_stack();
6727}
6728EXPORT_SYMBOL(__might_sleep);
6729#endif
6730
6731#ifdef CONFIG_MAGIC_SYSRQ
6732static void normalize_task(struct rq *rq, struct task_struct *p)
6733{
6734	const struct sched_class *prev_class = p->sched_class;
6735	struct sched_attr attr = {
6736		.sched_policy = SCHED_NORMAL,
6737	};
6738	int old_prio = p->prio;
6739	int on_rq;
6740
6741	on_rq = p->on_rq;
6742	if (on_rq)
6743		dequeue_task(rq, p, 0);
6744	__setscheduler(rq, p, &attr);
6745	if (on_rq) {
6746		enqueue_task(rq, p, 0);
6747		resched_task(rq->curr);
6748	}
6749
6750	check_class_changed(rq, p, prev_class, old_prio);
6751}
6752
6753void normalize_rt_tasks(void)
6754{
6755	struct task_struct *g, *p;
6756	unsigned long flags;
6757	struct rq *rq;
6758
6759	read_lock_irqsave(&tasklist_lock, flags);
6760	do_each_thread(g, p) {
6761		/*
6762		 * Only normalize user tasks:
6763		 */
6764		if (!p->mm)
6765			continue;
6766
6767		p->se.exec_start		= 0;
6768#ifdef CONFIG_SCHEDSTATS
6769		p->se.statistics.wait_start	= 0;
6770		p->se.statistics.sleep_start	= 0;
6771		p->se.statistics.block_start	= 0;
6772#endif
6773
6774		if (!dl_task(p) && !rt_task(p)) {
6775			/*
6776			 * Renice negative nice level userspace
6777			 * tasks back to 0:
6778			 */
6779			if (TASK_NICE(p) < 0 && p->mm)
6780				set_user_nice(p, 0);
6781			continue;
6782		}
6783
6784		raw_spin_lock(&p->pi_lock);
6785		rq = __task_rq_lock(p);
6786
6787		normalize_task(rq, p);
6788
6789		__task_rq_unlock(rq);
6790		raw_spin_unlock(&p->pi_lock);
6791	} while_each_thread(g, p);
6792
6793	read_unlock_irqrestore(&tasklist_lock, flags);
6794}
6795
6796#endif /* CONFIG_MAGIC_SYSRQ */
6797
6798#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6799/*
6800 * These functions are only useful for the IA64 MCA handling, or kdb.
6801 *
6802 * They can only be called when the whole system has been
6803 * stopped - every CPU needs to be quiescent, and no scheduling
6804 * activity can take place. Using them for anything else would
6805 * be a serious bug, and as a result, they aren't even visible
6806 * under any other configuration.
6807 */
6808
6809/**
6810 * curr_task - return the current task for a given cpu.
6811 * @cpu: the processor in question.
6812 *
6813 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6814 *
6815 * Return: The current task for @cpu.
6816 */
6817struct task_struct *curr_task(int cpu)
6818{
6819	return cpu_curr(cpu);
6820}
6821
6822#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6823
6824#ifdef CONFIG_IA64
6825/**
6826 * set_curr_task - set the current task for a given cpu.
6827 * @cpu: the processor in question.
6828 * @p: the task pointer to set.
6829 *
6830 * Description: This function must only be used when non-maskable interrupts
6831 * are serviced on a separate stack. It allows the architecture to switch the
6832 * notion of the current task on a cpu in a non-blocking manner. This function
6833 * must be called with all CPU's synchronized, and interrupts disabled, the
6834 * and caller must save the original value of the current task (see
6835 * curr_task() above) and restore that value before reenabling interrupts and
6836 * re-starting the system.
6837 *
6838 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6839 */
6840void set_curr_task(int cpu, struct task_struct *p)
6841{
6842	cpu_curr(cpu) = p;
6843}
6844
6845#endif
6846
6847#ifdef CONFIG_CGROUP_SCHED
6848/* task_group_lock serializes the addition/removal of task groups */
6849static DEFINE_SPINLOCK(task_group_lock);
6850
6851static void free_sched_group(struct task_group *tg)
6852{
6853	free_fair_sched_group(tg);
6854	free_rt_sched_group(tg);
6855	autogroup_free(tg);
6856	kfree(tg);
6857}
6858
6859/* allocate runqueue etc for a new task group */
6860struct task_group *sched_create_group(struct task_group *parent)
6861{
6862	struct task_group *tg;
6863
6864	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6865	if (!tg)
6866		return ERR_PTR(-ENOMEM);
6867
6868	if (!alloc_fair_sched_group(tg, parent))
6869		goto err;
6870
6871	if (!alloc_rt_sched_group(tg, parent))
6872		goto err;
6873
6874	return tg;
6875
6876err:
6877	free_sched_group(tg);
6878	return ERR_PTR(-ENOMEM);
6879}
6880
6881void sched_online_group(struct task_group *tg, struct task_group *parent)
6882{
6883	unsigned long flags;
6884
6885	spin_lock_irqsave(&task_group_lock, flags);
6886	list_add_rcu(&tg->list, &task_groups);
6887
6888	WARN_ON(!parent); /* root should already exist */
6889
6890	tg->parent = parent;
6891	INIT_LIST_HEAD(&tg->children);
6892	list_add_rcu(&tg->siblings, &parent->children);
6893	spin_unlock_irqrestore(&task_group_lock, flags);
6894}
6895
6896/* rcu callback to free various structures associated with a task group */
6897static void free_sched_group_rcu(struct rcu_head *rhp)
6898{
6899	/* now it should be safe to free those cfs_rqs */
6900	free_sched_group(container_of(rhp, struct task_group, rcu));
6901}
6902
6903/* Destroy runqueue etc associated with a task group */
6904void sched_destroy_group(struct task_group *tg)
6905{
6906	/* wait for possible concurrent references to cfs_rqs complete */
6907	call_rcu(&tg->rcu, free_sched_group_rcu);
6908}
6909
6910void sched_offline_group(struct task_group *tg)
6911{
6912	unsigned long flags;
6913	int i;
6914
6915	/* end participation in shares distribution */
6916	for_each_possible_cpu(i)
6917		unregister_fair_sched_group(tg, i);
6918
6919	spin_lock_irqsave(&task_group_lock, flags);
6920	list_del_rcu(&tg->list);
6921	list_del_rcu(&tg->siblings);
6922	spin_unlock_irqrestore(&task_group_lock, flags);
6923}
6924
6925/* change task's runqueue when it moves between groups.
6926 *	The caller of this function should have put the task in its new group
6927 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6928 *	reflect its new group.
6929 */
6930void sched_move_task(struct task_struct *tsk)
6931{
6932	struct task_group *tg;
6933	int on_rq, running;
6934	unsigned long flags;
6935	struct rq *rq;
6936
6937	rq = task_rq_lock(tsk, &flags);
6938
6939	running = task_current(rq, tsk);
6940	on_rq = tsk->on_rq;
6941
6942	if (on_rq)
6943		dequeue_task(rq, tsk, 0);
6944	if (unlikely(running))
6945		tsk->sched_class->put_prev_task(rq, tsk);
6946
6947	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6948				lockdep_is_held(&tsk->sighand->siglock)),
6949			  struct task_group, css);
6950	tg = autogroup_task_group(tsk, tg);
6951	tsk->sched_task_group = tg;
6952
6953#ifdef CONFIG_FAIR_GROUP_SCHED
6954	if (tsk->sched_class->task_move_group)
6955		tsk->sched_class->task_move_group(tsk, on_rq);
6956	else
6957#endif
6958		set_task_rq(tsk, task_cpu(tsk));
6959
6960	if (unlikely(running))
6961		tsk->sched_class->set_curr_task(rq);
6962	if (on_rq)
6963		enqueue_task(rq, tsk, 0);
6964
6965	task_rq_unlock(rq, tsk, &flags);
6966}
6967#endif /* CONFIG_CGROUP_SCHED */
6968
6969#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6970static unsigned long to_ratio(u64 period, u64 runtime)
6971{
6972	if (runtime == RUNTIME_INF)
6973		return 1ULL << 20;
6974
6975	return div64_u64(runtime << 20, period);
6976}
6977#endif
6978
6979#ifdef CONFIG_RT_GROUP_SCHED
6980/*
6981 * Ensure that the real time constraints are schedulable.
6982 */
6983static DEFINE_MUTEX(rt_constraints_mutex);
6984
6985/* Must be called with tasklist_lock held */
6986static inline int tg_has_rt_tasks(struct task_group *tg)
6987{
6988	struct task_struct *g, *p;
6989
6990	do_each_thread(g, p) {
6991		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6992			return 1;
6993	} while_each_thread(g, p);
6994
6995	return 0;
6996}
6997
6998struct rt_schedulable_data {
6999	struct task_group *tg;
7000	u64 rt_period;
7001	u64 rt_runtime;
7002};
7003
7004static int tg_rt_schedulable(struct task_group *tg, void *data)
7005{
7006	struct rt_schedulable_data *d = data;
7007	struct task_group *child;
7008	unsigned long total, sum = 0;
7009	u64 period, runtime;
7010
7011	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7012	runtime = tg->rt_bandwidth.rt_runtime;
7013
7014	if (tg == d->tg) {
7015		period = d->rt_period;
7016		runtime = d->rt_runtime;
7017	}
7018
7019	/*
7020	 * Cannot have more runtime than the period.
7021	 */
7022	if (runtime > period && runtime != RUNTIME_INF)
7023		return -EINVAL;
7024
7025	/*
7026	 * Ensure we don't starve existing RT tasks.
7027	 */
7028	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7029		return -EBUSY;
7030
7031	total = to_ratio(period, runtime);
7032
7033	/*
7034	 * Nobody can have more than the global setting allows.
7035	 */
7036	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7037		return -EINVAL;
7038
7039	/*
7040	 * The sum of our children's runtime should not exceed our own.
7041	 */
7042	list_for_each_entry_rcu(child, &tg->children, siblings) {
7043		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7044		runtime = child->rt_bandwidth.rt_runtime;
7045
7046		if (child == d->tg) {
7047			period = d->rt_period;
7048			runtime = d->rt_runtime;
7049		}
7050
7051		sum += to_ratio(period, runtime);
7052	}
7053
7054	if (sum > total)
7055		return -EINVAL;
7056
7057	return 0;
7058}
7059
7060static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7061{
7062	int ret;
7063
7064	struct rt_schedulable_data data = {
7065		.tg = tg,
7066		.rt_period = period,
7067		.rt_runtime = runtime,
7068	};
7069
7070	rcu_read_lock();
7071	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7072	rcu_read_unlock();
7073
7074	return ret;
7075}
7076
7077static int tg_set_rt_bandwidth(struct task_group *tg,
7078		u64 rt_period, u64 rt_runtime)
7079{
7080	int i, err = 0;
7081
7082	mutex_lock(&rt_constraints_mutex);
7083	read_lock(&tasklist_lock);
7084	err = __rt_schedulable(tg, rt_period, rt_runtime);
7085	if (err)
7086		goto unlock;
7087
7088	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7089	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7090	tg->rt_bandwidth.rt_runtime = rt_runtime;
7091
7092	for_each_possible_cpu(i) {
7093		struct rt_rq *rt_rq = tg->rt_rq[i];
7094
7095		raw_spin_lock(&rt_rq->rt_runtime_lock);
7096		rt_rq->rt_runtime = rt_runtime;
7097		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7098	}
7099	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7100unlock:
7101	read_unlock(&tasklist_lock);
7102	mutex_unlock(&rt_constraints_mutex);
7103
7104	return err;
7105}
7106
7107static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7108{
7109	u64 rt_runtime, rt_period;
7110
7111	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7112	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7113	if (rt_runtime_us < 0)
7114		rt_runtime = RUNTIME_INF;
7115
7116	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7117}
7118
7119static long sched_group_rt_runtime(struct task_group *tg)
7120{
7121	u64 rt_runtime_us;
7122
7123	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7124		return -1;
7125
7126	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7127	do_div(rt_runtime_us, NSEC_PER_USEC);
7128	return rt_runtime_us;
7129}
7130
7131static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7132{
7133	u64 rt_runtime, rt_period;
7134
7135	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7136	rt_runtime = tg->rt_bandwidth.rt_runtime;
7137
7138	if (rt_period == 0)
7139		return -EINVAL;
7140
7141	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7142}
7143
7144static long sched_group_rt_period(struct task_group *tg)
7145{
7146	u64 rt_period_us;
7147
7148	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7149	do_div(rt_period_us, NSEC_PER_USEC);
7150	return rt_period_us;
7151}
7152
7153static int sched_rt_global_constraints(void)
7154{
7155	u64 runtime, period;
7156	int ret = 0;
7157
7158	if (sysctl_sched_rt_period <= 0)
7159		return -EINVAL;
7160
7161	runtime = global_rt_runtime();
7162	period = global_rt_period();
7163
7164	/*
7165	 * Sanity check on the sysctl variables.
7166	 */
7167	if (runtime > period && runtime != RUNTIME_INF)
7168		return -EINVAL;
7169
7170	mutex_lock(&rt_constraints_mutex);
7171	read_lock(&tasklist_lock);
7172	ret = __rt_schedulable(NULL, 0, 0);
7173	read_unlock(&tasklist_lock);
7174	mutex_unlock(&rt_constraints_mutex);
7175
7176	return ret;
7177}
7178
7179static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7180{
7181	/* Don't accept realtime tasks when there is no way for them to run */
7182	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7183		return 0;
7184
7185	return 1;
7186}
7187
7188#else /* !CONFIG_RT_GROUP_SCHED */
7189static int sched_rt_global_constraints(void)
7190{
7191	unsigned long flags;
7192	int i;
7193
7194	if (sysctl_sched_rt_period <= 0)
7195		return -EINVAL;
7196
7197	/*
7198	 * There's always some RT tasks in the root group
7199	 * -- migration, kstopmachine etc..
7200	 */
7201	if (sysctl_sched_rt_runtime == 0)
7202		return -EBUSY;
7203
7204	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7205	for_each_possible_cpu(i) {
7206		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7207
7208		raw_spin_lock(&rt_rq->rt_runtime_lock);
7209		rt_rq->rt_runtime = global_rt_runtime();
7210		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7211	}
7212	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7213
7214	return 0;
7215}
7216#endif /* CONFIG_RT_GROUP_SCHED */
7217
7218int sched_rr_handler(struct ctl_table *table, int write,
7219		void __user *buffer, size_t *lenp,
7220		loff_t *ppos)
7221{
7222	int ret;
7223	static DEFINE_MUTEX(mutex);
7224
7225	mutex_lock(&mutex);
7226	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7227	/* make sure that internally we keep jiffies */
7228	/* also, writing zero resets timeslice to default */
7229	if (!ret && write) {
7230		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7231			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7232	}
7233	mutex_unlock(&mutex);
7234	return ret;
7235}
7236
7237int sched_rt_handler(struct ctl_table *table, int write,
7238		void __user *buffer, size_t *lenp,
7239		loff_t *ppos)
7240{
7241	int ret;
7242	int old_period, old_runtime;
7243	static DEFINE_MUTEX(mutex);
7244
7245	mutex_lock(&mutex);
7246	old_period = sysctl_sched_rt_period;
7247	old_runtime = sysctl_sched_rt_runtime;
7248
7249	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7250
7251	if (!ret && write) {
7252		ret = sched_rt_global_constraints();
7253		if (ret) {
7254			sysctl_sched_rt_period = old_period;
7255			sysctl_sched_rt_runtime = old_runtime;
7256		} else {
7257			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7258			def_rt_bandwidth.rt_period =
7259				ns_to_ktime(global_rt_period());
7260		}
7261	}
7262	mutex_unlock(&mutex);
7263
7264	return ret;
7265}
7266
7267#ifdef CONFIG_CGROUP_SCHED
7268
7269static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7270{
7271	return css ? container_of(css, struct task_group, css) : NULL;
7272}
7273
7274static struct cgroup_subsys_state *
7275cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7276{
7277	struct task_group *parent = css_tg(parent_css);
7278	struct task_group *tg;
7279
7280	if (!parent) {
7281		/* This is early initialization for the top cgroup */
7282		return &root_task_group.css;
7283	}
7284
7285	tg = sched_create_group(parent);
7286	if (IS_ERR(tg))
7287		return ERR_PTR(-ENOMEM);
7288
7289	return &tg->css;
7290}
7291
7292static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7293{
7294	struct task_group *tg = css_tg(css);
7295	struct task_group *parent = css_tg(css_parent(css));
7296
7297	if (parent)
7298		sched_online_group(tg, parent);
7299	return 0;
7300}
7301
7302static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7303{
7304	struct task_group *tg = css_tg(css);
7305
7306	sched_destroy_group(tg);
7307}
7308
7309static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7310{
7311	struct task_group *tg = css_tg(css);
7312
7313	sched_offline_group(tg);
7314}
7315
7316static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7317				 struct cgroup_taskset *tset)
7318{
7319	struct task_struct *task;
7320
7321	cgroup_taskset_for_each(task, css, tset) {
7322#ifdef CONFIG_RT_GROUP_SCHED
7323		if (!sched_rt_can_attach(css_tg(css), task))
7324			return -EINVAL;
7325#else
7326		/* We don't support RT-tasks being in separate groups */
7327		if (task->sched_class != &fair_sched_class)
7328			return -EINVAL;
7329#endif
7330	}
7331	return 0;
7332}
7333
7334static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7335			      struct cgroup_taskset *tset)
7336{
7337	struct task_struct *task;
7338
7339	cgroup_taskset_for_each(task, css, tset)
7340		sched_move_task(task);
7341}
7342
7343static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7344			    struct cgroup_subsys_state *old_css,
7345			    struct task_struct *task)
7346{
7347	/*
7348	 * cgroup_exit() is called in the copy_process() failure path.
7349	 * Ignore this case since the task hasn't ran yet, this avoids
7350	 * trying to poke a half freed task state from generic code.
7351	 */
7352	if (!(task->flags & PF_EXITING))
7353		return;
7354
7355	sched_move_task(task);
7356}
7357
7358#ifdef CONFIG_FAIR_GROUP_SCHED
7359static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7360				struct cftype *cftype, u64 shareval)
7361{
7362	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7363}
7364
7365static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7366			       struct cftype *cft)
7367{
7368	struct task_group *tg = css_tg(css);
7369
7370	return (u64) scale_load_down(tg->shares);
7371}
7372
7373#ifdef CONFIG_CFS_BANDWIDTH
7374static DEFINE_MUTEX(cfs_constraints_mutex);
7375
7376const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7377const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7378
7379static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7380
7381static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7382{
7383	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7384	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7385
7386	if (tg == &root_task_group)
7387		return -EINVAL;
7388
7389	/*
7390	 * Ensure we have at some amount of bandwidth every period.  This is
7391	 * to prevent reaching a state of large arrears when throttled via
7392	 * entity_tick() resulting in prolonged exit starvation.
7393	 */
7394	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7395		return -EINVAL;
7396
7397	/*
7398	 * Likewise, bound things on the otherside by preventing insane quota
7399	 * periods.  This also allows us to normalize in computing quota
7400	 * feasibility.
7401	 */
7402	if (period > max_cfs_quota_period)
7403		return -EINVAL;
7404
7405	mutex_lock(&cfs_constraints_mutex);
7406	ret = __cfs_schedulable(tg, period, quota);
7407	if (ret)
7408		goto out_unlock;
7409
7410	runtime_enabled = quota != RUNTIME_INF;
7411	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7412	/*
7413	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7414	 * before making related changes, and on->off must occur afterwards
7415	 */
7416	if (runtime_enabled && !runtime_was_enabled)
7417		cfs_bandwidth_usage_inc();
7418	raw_spin_lock_irq(&cfs_b->lock);
7419	cfs_b->period = ns_to_ktime(period);
7420	cfs_b->quota = quota;
7421
7422	__refill_cfs_bandwidth_runtime(cfs_b);
7423	/* restart the period timer (if active) to handle new period expiry */
7424	if (runtime_enabled && cfs_b->timer_active) {
7425		/* force a reprogram */
7426		cfs_b->timer_active = 0;
7427		__start_cfs_bandwidth(cfs_b);
7428	}
7429	raw_spin_unlock_irq(&cfs_b->lock);
7430
7431	for_each_possible_cpu(i) {
7432		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7433		struct rq *rq = cfs_rq->rq;
7434
7435		raw_spin_lock_irq(&rq->lock);
7436		cfs_rq->runtime_enabled = runtime_enabled;
7437		cfs_rq->runtime_remaining = 0;
7438
7439		if (cfs_rq->throttled)
7440			unthrottle_cfs_rq(cfs_rq);
7441		raw_spin_unlock_irq(&rq->lock);
7442	}
7443	if (runtime_was_enabled && !runtime_enabled)
7444		cfs_bandwidth_usage_dec();
7445out_unlock:
7446	mutex_unlock(&cfs_constraints_mutex);
7447
7448	return ret;
7449}
7450
7451int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7452{
7453	u64 quota, period;
7454
7455	period = ktime_to_ns(tg->cfs_bandwidth.period);
7456	if (cfs_quota_us < 0)
7457		quota = RUNTIME_INF;
7458	else
7459		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7460
7461	return tg_set_cfs_bandwidth(tg, period, quota);
7462}
7463
7464long tg_get_cfs_quota(struct task_group *tg)
7465{
7466	u64 quota_us;
7467
7468	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7469		return -1;
7470
7471	quota_us = tg->cfs_bandwidth.quota;
7472	do_div(quota_us, NSEC_PER_USEC);
7473
7474	return quota_us;
7475}
7476
7477int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7478{
7479	u64 quota, period;
7480
7481	period = (u64)cfs_period_us * NSEC_PER_USEC;
7482	quota = tg->cfs_bandwidth.quota;
7483
7484	return tg_set_cfs_bandwidth(tg, period, quota);
7485}
7486
7487long tg_get_cfs_period(struct task_group *tg)
7488{
7489	u64 cfs_period_us;
7490
7491	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7492	do_div(cfs_period_us, NSEC_PER_USEC);
7493
7494	return cfs_period_us;
7495}
7496
7497static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7498				  struct cftype *cft)
7499{
7500	return tg_get_cfs_quota(css_tg(css));
7501}
7502
7503static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7504				   struct cftype *cftype, s64 cfs_quota_us)
7505{
7506	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7507}
7508
7509static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7510				   struct cftype *cft)
7511{
7512	return tg_get_cfs_period(css_tg(css));
7513}
7514
7515static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7516				    struct cftype *cftype, u64 cfs_period_us)
7517{
7518	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7519}
7520
7521struct cfs_schedulable_data {
7522	struct task_group *tg;
7523	u64 period, quota;
7524};
7525
7526/*
7527 * normalize group quota/period to be quota/max_period
7528 * note: units are usecs
7529 */
7530static u64 normalize_cfs_quota(struct task_group *tg,
7531			       struct cfs_schedulable_data *d)
7532{
7533	u64 quota, period;
7534
7535	if (tg == d->tg) {
7536		period = d->period;
7537		quota = d->quota;
7538	} else {
7539		period = tg_get_cfs_period(tg);
7540		quota = tg_get_cfs_quota(tg);
7541	}
7542
7543	/* note: these should typically be equivalent */
7544	if (quota == RUNTIME_INF || quota == -1)
7545		return RUNTIME_INF;
7546
7547	return to_ratio(period, quota);
7548}
7549
7550static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7551{
7552	struct cfs_schedulable_data *d = data;
7553	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7554	s64 quota = 0, parent_quota = -1;
7555
7556	if (!tg->parent) {
7557		quota = RUNTIME_INF;
7558	} else {
7559		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7560
7561		quota = normalize_cfs_quota(tg, d);
7562		parent_quota = parent_b->hierarchal_quota;
7563
7564		/*
7565		 * ensure max(child_quota) <= parent_quota, inherit when no
7566		 * limit is set
7567		 */
7568		if (quota == RUNTIME_INF)
7569			quota = parent_quota;
7570		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7571			return -EINVAL;
7572	}
7573	cfs_b->hierarchal_quota = quota;
7574
7575	return 0;
7576}
7577
7578static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7579{
7580	int ret;
7581	struct cfs_schedulable_data data = {
7582		.tg = tg,
7583		.period = period,
7584		.quota = quota,
7585	};
7586
7587	if (quota != RUNTIME_INF) {
7588		do_div(data.period, NSEC_PER_USEC);
7589		do_div(data.quota, NSEC_PER_USEC);
7590	}
7591
7592	rcu_read_lock();
7593	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7594	rcu_read_unlock();
7595
7596	return ret;
7597}
7598
7599static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7600		struct cgroup_map_cb *cb)
7601{
7602	struct task_group *tg = css_tg(css);
7603	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7604
7605	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7606	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7607	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7608
7609	return 0;
7610}
7611#endif /* CONFIG_CFS_BANDWIDTH */
7612#endif /* CONFIG_FAIR_GROUP_SCHED */
7613
7614#ifdef CONFIG_RT_GROUP_SCHED
7615static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7616				struct cftype *cft, s64 val)
7617{
7618	return sched_group_set_rt_runtime(css_tg(css), val);
7619}
7620
7621static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7622			       struct cftype *cft)
7623{
7624	return sched_group_rt_runtime(css_tg(css));
7625}
7626
7627static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7628				    struct cftype *cftype, u64 rt_period_us)
7629{
7630	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7631}
7632
7633static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7634				   struct cftype *cft)
7635{
7636	return sched_group_rt_period(css_tg(css));
7637}
7638#endif /* CONFIG_RT_GROUP_SCHED */
7639
7640static struct cftype cpu_files[] = {
7641#ifdef CONFIG_FAIR_GROUP_SCHED
7642	{
7643		.name = "shares",
7644		.read_u64 = cpu_shares_read_u64,
7645		.write_u64 = cpu_shares_write_u64,
7646	},
7647#endif
7648#ifdef CONFIG_CFS_BANDWIDTH
7649	{
7650		.name = "cfs_quota_us",
7651		.read_s64 = cpu_cfs_quota_read_s64,
7652		.write_s64 = cpu_cfs_quota_write_s64,
7653	},
7654	{
7655		.name = "cfs_period_us",
7656		.read_u64 = cpu_cfs_period_read_u64,
7657		.write_u64 = cpu_cfs_period_write_u64,
7658	},
7659	{
7660		.name = "stat",
7661		.read_map = cpu_stats_show,
7662	},
7663#endif
7664#ifdef CONFIG_RT_GROUP_SCHED
7665	{
7666		.name = "rt_runtime_us",
7667		.read_s64 = cpu_rt_runtime_read,
7668		.write_s64 = cpu_rt_runtime_write,
7669	},
7670	{
7671		.name = "rt_period_us",
7672		.read_u64 = cpu_rt_period_read_uint,
7673		.write_u64 = cpu_rt_period_write_uint,
7674	},
7675#endif
7676	{ }	/* terminate */
7677};
7678
7679struct cgroup_subsys cpu_cgroup_subsys = {
7680	.name		= "cpu",
7681	.css_alloc	= cpu_cgroup_css_alloc,
7682	.css_free	= cpu_cgroup_css_free,
7683	.css_online	= cpu_cgroup_css_online,
7684	.css_offline	= cpu_cgroup_css_offline,
7685	.can_attach	= cpu_cgroup_can_attach,
7686	.attach		= cpu_cgroup_attach,
7687	.exit		= cpu_cgroup_exit,
7688	.subsys_id	= cpu_cgroup_subsys_id,
7689	.base_cftypes	= cpu_files,
7690	.early_init	= 1,
7691};
7692
7693#endif	/* CONFIG_CGROUP_SCHED */
7694
7695void dump_cpu_task(int cpu)
7696{
7697	pr_info("Task dump for CPU %d:\n", cpu);
7698	sched_show_task(cpu_curr(cpu));
7699}
7700