core.c revision 3105b86a9fee7d2c2e76edb53bbbc4027599628f
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static int sched_feat_set(char *cmp)
196{
197	int i;
198	int neg = 0;
199
200	if (strncmp(cmp, "NO_", 3) == 0) {
201		neg = 1;
202		cmp += 3;
203	}
204
205	for (i = 0; i < __SCHED_FEAT_NR; i++) {
206		if (strcmp(cmp, sched_feat_names[i]) == 0) {
207			if (neg) {
208				sysctl_sched_features &= ~(1UL << i);
209				sched_feat_disable(i);
210			} else {
211				sysctl_sched_features |= (1UL << i);
212				sched_feat_enable(i);
213			}
214			break;
215		}
216	}
217
218	return i;
219}
220
221static ssize_t
222sched_feat_write(struct file *filp, const char __user *ubuf,
223		size_t cnt, loff_t *ppos)
224{
225	char buf[64];
226	char *cmp;
227	int i;
228
229	if (cnt > 63)
230		cnt = 63;
231
232	if (copy_from_user(&buf, ubuf, cnt))
233		return -EFAULT;
234
235	buf[cnt] = 0;
236	cmp = strstrip(buf);
237
238	i = sched_feat_set(cmp);
239	if (i == __SCHED_FEAT_NR)
240		return -EINVAL;
241
242	*ppos += cnt;
243
244	return cnt;
245}
246
247static int sched_feat_open(struct inode *inode, struct file *filp)
248{
249	return single_open(filp, sched_feat_show, NULL);
250}
251
252static const struct file_operations sched_feat_fops = {
253	.open		= sched_feat_open,
254	.write		= sched_feat_write,
255	.read		= seq_read,
256	.llseek		= seq_lseek,
257	.release	= single_release,
258};
259
260static __init int sched_init_debug(void)
261{
262	debugfs_create_file("sched_features", 0644, NULL, NULL,
263			&sched_feat_fops);
264
265	return 0;
266}
267late_initcall(sched_init_debug);
268#endif /* CONFIG_SCHED_DEBUG */
269
270/*
271 * Number of tasks to iterate in a single balance run.
272 * Limited because this is done with IRQs disabled.
273 */
274const_debug unsigned int sysctl_sched_nr_migrate = 32;
275
276/*
277 * period over which we average the RT time consumption, measured
278 * in ms.
279 *
280 * default: 1s
281 */
282const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
283
284/*
285 * period over which we measure -rt task cpu usage in us.
286 * default: 1s
287 */
288unsigned int sysctl_sched_rt_period = 1000000;
289
290__read_mostly int scheduler_running;
291
292/*
293 * part of the period that we allow rt tasks to run in us.
294 * default: 0.95s
295 */
296int sysctl_sched_rt_runtime = 950000;
297
298
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 *
373 * Its all a bit involved since we cannot program an hrt while holding the
374 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
375 * reschedule event.
376 *
377 * When we get rescheduled we reprogram the hrtick_timer outside of the
378 * rq->lock.
379 */
380
381static void hrtick_clear(struct rq *rq)
382{
383	if (hrtimer_active(&rq->hrtick_timer))
384		hrtimer_cancel(&rq->hrtick_timer);
385}
386
387/*
388 * High-resolution timer tick.
389 * Runs from hardirq context with interrupts disabled.
390 */
391static enum hrtimer_restart hrtick(struct hrtimer *timer)
392{
393	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
394
395	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396
397	raw_spin_lock(&rq->lock);
398	update_rq_clock(rq);
399	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
400	raw_spin_unlock(&rq->lock);
401
402	return HRTIMER_NORESTART;
403}
404
405#ifdef CONFIG_SMP
406/*
407 * called from hardirq (IPI) context
408 */
409static void __hrtick_start(void *arg)
410{
411	struct rq *rq = arg;
412
413	raw_spin_lock(&rq->lock);
414	hrtimer_restart(&rq->hrtick_timer);
415	rq->hrtick_csd_pending = 0;
416	raw_spin_unlock(&rq->lock);
417}
418
419/*
420 * Called to set the hrtick timer state.
421 *
422 * called with rq->lock held and irqs disabled
423 */
424void hrtick_start(struct rq *rq, u64 delay)
425{
426	struct hrtimer *timer = &rq->hrtick_timer;
427	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
428
429	hrtimer_set_expires(timer, time);
430
431	if (rq == this_rq()) {
432		hrtimer_restart(timer);
433	} else if (!rq->hrtick_csd_pending) {
434		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
435		rq->hrtick_csd_pending = 1;
436	}
437}
438
439static int
440hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
441{
442	int cpu = (int)(long)hcpu;
443
444	switch (action) {
445	case CPU_UP_CANCELED:
446	case CPU_UP_CANCELED_FROZEN:
447	case CPU_DOWN_PREPARE:
448	case CPU_DOWN_PREPARE_FROZEN:
449	case CPU_DEAD:
450	case CPU_DEAD_FROZEN:
451		hrtick_clear(cpu_rq(cpu));
452		return NOTIFY_OK;
453	}
454
455	return NOTIFY_DONE;
456}
457
458static __init void init_hrtick(void)
459{
460	hotcpu_notifier(hotplug_hrtick, 0);
461}
462#else
463/*
464 * Called to set the hrtick timer state.
465 *
466 * called with rq->lock held and irqs disabled
467 */
468void hrtick_start(struct rq *rq, u64 delay)
469{
470	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
471			HRTIMER_MODE_REL_PINNED, 0);
472}
473
474static inline void init_hrtick(void)
475{
476}
477#endif /* CONFIG_SMP */
478
479static void init_rq_hrtick(struct rq *rq)
480{
481#ifdef CONFIG_SMP
482	rq->hrtick_csd_pending = 0;
483
484	rq->hrtick_csd.flags = 0;
485	rq->hrtick_csd.func = __hrtick_start;
486	rq->hrtick_csd.info = rq;
487#endif
488
489	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
490	rq->hrtick_timer.function = hrtick;
491}
492#else	/* CONFIG_SCHED_HRTICK */
493static inline void hrtick_clear(struct rq *rq)
494{
495}
496
497static inline void init_rq_hrtick(struct rq *rq)
498{
499}
500
501static inline void init_hrtick(void)
502{
503}
504#endif	/* CONFIG_SCHED_HRTICK */
505
506/*
507 * resched_task - mark a task 'to be rescheduled now'.
508 *
509 * On UP this means the setting of the need_resched flag, on SMP it
510 * might also involve a cross-CPU call to trigger the scheduler on
511 * the target CPU.
512 */
513#ifdef CONFIG_SMP
514
515#ifndef tsk_is_polling
516#define tsk_is_polling(t) 0
517#endif
518
519void resched_task(struct task_struct *p)
520{
521	int cpu;
522
523	assert_raw_spin_locked(&task_rq(p)->lock);
524
525	if (test_tsk_need_resched(p))
526		return;
527
528	set_tsk_need_resched(p);
529
530	cpu = task_cpu(p);
531	if (cpu == smp_processor_id())
532		return;
533
534	/* NEED_RESCHED must be visible before we test polling */
535	smp_mb();
536	if (!tsk_is_polling(p))
537		smp_send_reschedule(cpu);
538}
539
540void resched_cpu(int cpu)
541{
542	struct rq *rq = cpu_rq(cpu);
543	unsigned long flags;
544
545	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
546		return;
547	resched_task(cpu_curr(cpu));
548	raw_spin_unlock_irqrestore(&rq->lock, flags);
549}
550
551#ifdef CONFIG_NO_HZ
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static inline bool got_nohz_idle_kick(void)
620{
621	int cpu = smp_processor_id();
622	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623}
624
625#else /* CONFIG_NO_HZ */
626
627static inline bool got_nohz_idle_kick(void)
628{
629	return false;
630}
631
632#endif /* CONFIG_NO_HZ */
633
634void sched_avg_update(struct rq *rq)
635{
636	s64 period = sched_avg_period();
637
638	while ((s64)(rq->clock - rq->age_stamp) > period) {
639		/*
640		 * Inline assembly required to prevent the compiler
641		 * optimising this loop into a divmod call.
642		 * See __iter_div_u64_rem() for another example of this.
643		 */
644		asm("" : "+rm" (rq->age_stamp));
645		rq->age_stamp += period;
646		rq->rt_avg /= 2;
647	}
648}
649
650#else /* !CONFIG_SMP */
651void resched_task(struct task_struct *p)
652{
653	assert_raw_spin_locked(&task_rq(p)->lock);
654	set_tsk_need_resched(p);
655}
656#endif /* CONFIG_SMP */
657
658#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
659			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
660/*
661 * Iterate task_group tree rooted at *from, calling @down when first entering a
662 * node and @up when leaving it for the final time.
663 *
664 * Caller must hold rcu_lock or sufficient equivalent.
665 */
666int walk_tg_tree_from(struct task_group *from,
667			     tg_visitor down, tg_visitor up, void *data)
668{
669	struct task_group *parent, *child;
670	int ret;
671
672	parent = from;
673
674down:
675	ret = (*down)(parent, data);
676	if (ret)
677		goto out;
678	list_for_each_entry_rcu(child, &parent->children, siblings) {
679		parent = child;
680		goto down;
681
682up:
683		continue;
684	}
685	ret = (*up)(parent, data);
686	if (ret || parent == from)
687		goto out;
688
689	child = parent;
690	parent = parent->parent;
691	if (parent)
692		goto up;
693out:
694	return ret;
695}
696
697int tg_nop(struct task_group *tg, void *data)
698{
699	return 0;
700}
701#endif
702
703static void set_load_weight(struct task_struct *p)
704{
705	int prio = p->static_prio - MAX_RT_PRIO;
706	struct load_weight *load = &p->se.load;
707
708	/*
709	 * SCHED_IDLE tasks get minimal weight:
710	 */
711	if (p->policy == SCHED_IDLE) {
712		load->weight = scale_load(WEIGHT_IDLEPRIO);
713		load->inv_weight = WMULT_IDLEPRIO;
714		return;
715	}
716
717	load->weight = scale_load(prio_to_weight[prio]);
718	load->inv_weight = prio_to_wmult[prio];
719}
720
721static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722{
723	update_rq_clock(rq);
724	sched_info_queued(p);
725	p->sched_class->enqueue_task(rq, p, flags);
726}
727
728static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
729{
730	update_rq_clock(rq);
731	sched_info_dequeued(p);
732	p->sched_class->dequeue_task(rq, p, flags);
733}
734
735void activate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible--;
739
740	enqueue_task(rq, p, flags);
741}
742
743void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
744{
745	if (task_contributes_to_load(p))
746		rq->nr_uninterruptible++;
747
748	dequeue_task(rq, p, flags);
749}
750
751static void update_rq_clock_task(struct rq *rq, s64 delta)
752{
753/*
754 * In theory, the compile should just see 0 here, and optimize out the call
755 * to sched_rt_avg_update. But I don't trust it...
756 */
757#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
758	s64 steal = 0, irq_delta = 0;
759#endif
760#ifdef CONFIG_IRQ_TIME_ACCOUNTING
761	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
762
763	/*
764	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
765	 * this case when a previous update_rq_clock() happened inside a
766	 * {soft,}irq region.
767	 *
768	 * When this happens, we stop ->clock_task and only update the
769	 * prev_irq_time stamp to account for the part that fit, so that a next
770	 * update will consume the rest. This ensures ->clock_task is
771	 * monotonic.
772	 *
773	 * It does however cause some slight miss-attribution of {soft,}irq
774	 * time, a more accurate solution would be to update the irq_time using
775	 * the current rq->clock timestamp, except that would require using
776	 * atomic ops.
777	 */
778	if (irq_delta > delta)
779		irq_delta = delta;
780
781	rq->prev_irq_time += irq_delta;
782	delta -= irq_delta;
783#endif
784#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
785	if (static_key_false((&paravirt_steal_rq_enabled))) {
786		u64 st;
787
788		steal = paravirt_steal_clock(cpu_of(rq));
789		steal -= rq->prev_steal_time_rq;
790
791		if (unlikely(steal > delta))
792			steal = delta;
793
794		st = steal_ticks(steal);
795		steal = st * TICK_NSEC;
796
797		rq->prev_steal_time_rq += steal;
798
799		delta -= steal;
800	}
801#endif
802
803	rq->clock_task += delta;
804
805#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
806	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
807		sched_rt_avg_update(rq, irq_delta + steal);
808#endif
809}
810
811void sched_set_stop_task(int cpu, struct task_struct *stop)
812{
813	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
814	struct task_struct *old_stop = cpu_rq(cpu)->stop;
815
816	if (stop) {
817		/*
818		 * Make it appear like a SCHED_FIFO task, its something
819		 * userspace knows about and won't get confused about.
820		 *
821		 * Also, it will make PI more or less work without too
822		 * much confusion -- but then, stop work should not
823		 * rely on PI working anyway.
824		 */
825		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
826
827		stop->sched_class = &stop_sched_class;
828	}
829
830	cpu_rq(cpu)->stop = stop;
831
832	if (old_stop) {
833		/*
834		 * Reset it back to a normal scheduling class so that
835		 * it can die in pieces.
836		 */
837		old_stop->sched_class = &rt_sched_class;
838	}
839}
840
841/*
842 * __normal_prio - return the priority that is based on the static prio
843 */
844static inline int __normal_prio(struct task_struct *p)
845{
846	return p->static_prio;
847}
848
849/*
850 * Calculate the expected normal priority: i.e. priority
851 * without taking RT-inheritance into account. Might be
852 * boosted by interactivity modifiers. Changes upon fork,
853 * setprio syscalls, and whenever the interactivity
854 * estimator recalculates.
855 */
856static inline int normal_prio(struct task_struct *p)
857{
858	int prio;
859
860	if (task_has_rt_policy(p))
861		prio = MAX_RT_PRIO-1 - p->rt_priority;
862	else
863		prio = __normal_prio(p);
864	return prio;
865}
866
867/*
868 * Calculate the current priority, i.e. the priority
869 * taken into account by the scheduler. This value might
870 * be boosted by RT tasks, or might be boosted by
871 * interactivity modifiers. Will be RT if the task got
872 * RT-boosted. If not then it returns p->normal_prio.
873 */
874static int effective_prio(struct task_struct *p)
875{
876	p->normal_prio = normal_prio(p);
877	/*
878	 * If we are RT tasks or we were boosted to RT priority,
879	 * keep the priority unchanged. Otherwise, update priority
880	 * to the normal priority:
881	 */
882	if (!rt_prio(p->prio))
883		return p->normal_prio;
884	return p->prio;
885}
886
887/**
888 * task_curr - is this task currently executing on a CPU?
889 * @p: the task in question.
890 */
891inline int task_curr(const struct task_struct *p)
892{
893	return cpu_curr(task_cpu(p)) == p;
894}
895
896static inline void check_class_changed(struct rq *rq, struct task_struct *p,
897				       const struct sched_class *prev_class,
898				       int oldprio)
899{
900	if (prev_class != p->sched_class) {
901		if (prev_class->switched_from)
902			prev_class->switched_from(rq, p);
903		p->sched_class->switched_to(rq, p);
904	} else if (oldprio != p->prio)
905		p->sched_class->prio_changed(rq, p, oldprio);
906}
907
908void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
909{
910	const struct sched_class *class;
911
912	if (p->sched_class == rq->curr->sched_class) {
913		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
914	} else {
915		for_each_class(class) {
916			if (class == rq->curr->sched_class)
917				break;
918			if (class == p->sched_class) {
919				resched_task(rq->curr);
920				break;
921			}
922		}
923	}
924
925	/*
926	 * A queue event has occurred, and we're going to schedule.  In
927	 * this case, we can save a useless back to back clock update.
928	 */
929	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
930		rq->skip_clock_update = 1;
931}
932
933#ifdef CONFIG_SMP
934void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
935{
936#ifdef CONFIG_SCHED_DEBUG
937	/*
938	 * We should never call set_task_cpu() on a blocked task,
939	 * ttwu() will sort out the placement.
940	 */
941	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
942			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
943
944#ifdef CONFIG_LOCKDEP
945	/*
946	 * The caller should hold either p->pi_lock or rq->lock, when changing
947	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
948	 *
949	 * sched_move_task() holds both and thus holding either pins the cgroup,
950	 * see task_group().
951	 *
952	 * Furthermore, all task_rq users should acquire both locks, see
953	 * task_rq_lock().
954	 */
955	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
956				      lockdep_is_held(&task_rq(p)->lock)));
957#endif
958#endif
959
960	trace_sched_migrate_task(p, new_cpu);
961
962	if (task_cpu(p) != new_cpu) {
963		p->se.nr_migrations++;
964		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
965	}
966
967	__set_task_cpu(p, new_cpu);
968}
969
970struct migration_arg {
971	struct task_struct *task;
972	int dest_cpu;
973};
974
975static int migration_cpu_stop(void *data);
976
977/*
978 * wait_task_inactive - wait for a thread to unschedule.
979 *
980 * If @match_state is nonzero, it's the @p->state value just checked and
981 * not expected to change.  If it changes, i.e. @p might have woken up,
982 * then return zero.  When we succeed in waiting for @p to be off its CPU,
983 * we return a positive number (its total switch count).  If a second call
984 * a short while later returns the same number, the caller can be sure that
985 * @p has remained unscheduled the whole time.
986 *
987 * The caller must ensure that the task *will* unschedule sometime soon,
988 * else this function might spin for a *long* time. This function can't
989 * be called with interrupts off, or it may introduce deadlock with
990 * smp_call_function() if an IPI is sent by the same process we are
991 * waiting to become inactive.
992 */
993unsigned long wait_task_inactive(struct task_struct *p, long match_state)
994{
995	unsigned long flags;
996	int running, on_rq;
997	unsigned long ncsw;
998	struct rq *rq;
999
1000	for (;;) {
1001		/*
1002		 * We do the initial early heuristics without holding
1003		 * any task-queue locks at all. We'll only try to get
1004		 * the runqueue lock when things look like they will
1005		 * work out!
1006		 */
1007		rq = task_rq(p);
1008
1009		/*
1010		 * If the task is actively running on another CPU
1011		 * still, just relax and busy-wait without holding
1012		 * any locks.
1013		 *
1014		 * NOTE! Since we don't hold any locks, it's not
1015		 * even sure that "rq" stays as the right runqueue!
1016		 * But we don't care, since "task_running()" will
1017		 * return false if the runqueue has changed and p
1018		 * is actually now running somewhere else!
1019		 */
1020		while (task_running(rq, p)) {
1021			if (match_state && unlikely(p->state != match_state))
1022				return 0;
1023			cpu_relax();
1024		}
1025
1026		/*
1027		 * Ok, time to look more closely! We need the rq
1028		 * lock now, to be *sure*. If we're wrong, we'll
1029		 * just go back and repeat.
1030		 */
1031		rq = task_rq_lock(p, &flags);
1032		trace_sched_wait_task(p);
1033		running = task_running(rq, p);
1034		on_rq = p->on_rq;
1035		ncsw = 0;
1036		if (!match_state || p->state == match_state)
1037			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1038		task_rq_unlock(rq, p, &flags);
1039
1040		/*
1041		 * If it changed from the expected state, bail out now.
1042		 */
1043		if (unlikely(!ncsw))
1044			break;
1045
1046		/*
1047		 * Was it really running after all now that we
1048		 * checked with the proper locks actually held?
1049		 *
1050		 * Oops. Go back and try again..
1051		 */
1052		if (unlikely(running)) {
1053			cpu_relax();
1054			continue;
1055		}
1056
1057		/*
1058		 * It's not enough that it's not actively running,
1059		 * it must be off the runqueue _entirely_, and not
1060		 * preempted!
1061		 *
1062		 * So if it was still runnable (but just not actively
1063		 * running right now), it's preempted, and we should
1064		 * yield - it could be a while.
1065		 */
1066		if (unlikely(on_rq)) {
1067			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1068
1069			set_current_state(TASK_UNINTERRUPTIBLE);
1070			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1071			continue;
1072		}
1073
1074		/*
1075		 * Ahh, all good. It wasn't running, and it wasn't
1076		 * runnable, which means that it will never become
1077		 * running in the future either. We're all done!
1078		 */
1079		break;
1080	}
1081
1082	return ncsw;
1083}
1084
1085/***
1086 * kick_process - kick a running thread to enter/exit the kernel
1087 * @p: the to-be-kicked thread
1088 *
1089 * Cause a process which is running on another CPU to enter
1090 * kernel-mode, without any delay. (to get signals handled.)
1091 *
1092 * NOTE: this function doesn't have to take the runqueue lock,
1093 * because all it wants to ensure is that the remote task enters
1094 * the kernel. If the IPI races and the task has been migrated
1095 * to another CPU then no harm is done and the purpose has been
1096 * achieved as well.
1097 */
1098void kick_process(struct task_struct *p)
1099{
1100	int cpu;
1101
1102	preempt_disable();
1103	cpu = task_cpu(p);
1104	if ((cpu != smp_processor_id()) && task_curr(p))
1105		smp_send_reschedule(cpu);
1106	preempt_enable();
1107}
1108EXPORT_SYMBOL_GPL(kick_process);
1109#endif /* CONFIG_SMP */
1110
1111#ifdef CONFIG_SMP
1112/*
1113 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1114 */
1115static int select_fallback_rq(int cpu, struct task_struct *p)
1116{
1117	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1118	enum { cpuset, possible, fail } state = cpuset;
1119	int dest_cpu;
1120
1121	/* Look for allowed, online CPU in same node. */
1122	for_each_cpu(dest_cpu, nodemask) {
1123		if (!cpu_online(dest_cpu))
1124			continue;
1125		if (!cpu_active(dest_cpu))
1126			continue;
1127		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1128			return dest_cpu;
1129	}
1130
1131	for (;;) {
1132		/* Any allowed, online CPU? */
1133		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1134			if (!cpu_online(dest_cpu))
1135				continue;
1136			if (!cpu_active(dest_cpu))
1137				continue;
1138			goto out;
1139		}
1140
1141		switch (state) {
1142		case cpuset:
1143			/* No more Mr. Nice Guy. */
1144			cpuset_cpus_allowed_fallback(p);
1145			state = possible;
1146			break;
1147
1148		case possible:
1149			do_set_cpus_allowed(p, cpu_possible_mask);
1150			state = fail;
1151			break;
1152
1153		case fail:
1154			BUG();
1155			break;
1156		}
1157	}
1158
1159out:
1160	if (state != cpuset) {
1161		/*
1162		 * Don't tell them about moving exiting tasks or
1163		 * kernel threads (both mm NULL), since they never
1164		 * leave kernel.
1165		 */
1166		if (p->mm && printk_ratelimit()) {
1167			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1168					task_pid_nr(p), p->comm, cpu);
1169		}
1170	}
1171
1172	return dest_cpu;
1173}
1174
1175/*
1176 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1177 */
1178static inline
1179int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1180{
1181	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1182
1183	/*
1184	 * In order not to call set_task_cpu() on a blocking task we need
1185	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1186	 * cpu.
1187	 *
1188	 * Since this is common to all placement strategies, this lives here.
1189	 *
1190	 * [ this allows ->select_task() to simply return task_cpu(p) and
1191	 *   not worry about this generic constraint ]
1192	 */
1193	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1194		     !cpu_online(cpu)))
1195		cpu = select_fallback_rq(task_cpu(p), p);
1196
1197	return cpu;
1198}
1199
1200static void update_avg(u64 *avg, u64 sample)
1201{
1202	s64 diff = sample - *avg;
1203	*avg += diff >> 3;
1204}
1205#endif
1206
1207static void
1208ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1209{
1210#ifdef CONFIG_SCHEDSTATS
1211	struct rq *rq = this_rq();
1212
1213#ifdef CONFIG_SMP
1214	int this_cpu = smp_processor_id();
1215
1216	if (cpu == this_cpu) {
1217		schedstat_inc(rq, ttwu_local);
1218		schedstat_inc(p, se.statistics.nr_wakeups_local);
1219	} else {
1220		struct sched_domain *sd;
1221
1222		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1223		rcu_read_lock();
1224		for_each_domain(this_cpu, sd) {
1225			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1226				schedstat_inc(sd, ttwu_wake_remote);
1227				break;
1228			}
1229		}
1230		rcu_read_unlock();
1231	}
1232
1233	if (wake_flags & WF_MIGRATED)
1234		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1235
1236#endif /* CONFIG_SMP */
1237
1238	schedstat_inc(rq, ttwu_count);
1239	schedstat_inc(p, se.statistics.nr_wakeups);
1240
1241	if (wake_flags & WF_SYNC)
1242		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1243
1244#endif /* CONFIG_SCHEDSTATS */
1245}
1246
1247static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1248{
1249	activate_task(rq, p, en_flags);
1250	p->on_rq = 1;
1251
1252	/* if a worker is waking up, notify workqueue */
1253	if (p->flags & PF_WQ_WORKER)
1254		wq_worker_waking_up(p, cpu_of(rq));
1255}
1256
1257/*
1258 * Mark the task runnable and perform wakeup-preemption.
1259 */
1260static void
1261ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1262{
1263	trace_sched_wakeup(p, true);
1264	check_preempt_curr(rq, p, wake_flags);
1265
1266	p->state = TASK_RUNNING;
1267#ifdef CONFIG_SMP
1268	if (p->sched_class->task_woken)
1269		p->sched_class->task_woken(rq, p);
1270
1271	if (rq->idle_stamp) {
1272		u64 delta = rq->clock - rq->idle_stamp;
1273		u64 max = 2*sysctl_sched_migration_cost;
1274
1275		if (delta > max)
1276			rq->avg_idle = max;
1277		else
1278			update_avg(&rq->avg_idle, delta);
1279		rq->idle_stamp = 0;
1280	}
1281#endif
1282}
1283
1284static void
1285ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1286{
1287#ifdef CONFIG_SMP
1288	if (p->sched_contributes_to_load)
1289		rq->nr_uninterruptible--;
1290#endif
1291
1292	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1293	ttwu_do_wakeup(rq, p, wake_flags);
1294}
1295
1296/*
1297 * Called in case the task @p isn't fully descheduled from its runqueue,
1298 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1299 * since all we need to do is flip p->state to TASK_RUNNING, since
1300 * the task is still ->on_rq.
1301 */
1302static int ttwu_remote(struct task_struct *p, int wake_flags)
1303{
1304	struct rq *rq;
1305	int ret = 0;
1306
1307	rq = __task_rq_lock(p);
1308	if (p->on_rq) {
1309		ttwu_do_wakeup(rq, p, wake_flags);
1310		ret = 1;
1311	}
1312	__task_rq_unlock(rq);
1313
1314	return ret;
1315}
1316
1317#ifdef CONFIG_SMP
1318static void sched_ttwu_pending(void)
1319{
1320	struct rq *rq = this_rq();
1321	struct llist_node *llist = llist_del_all(&rq->wake_list);
1322	struct task_struct *p;
1323
1324	raw_spin_lock(&rq->lock);
1325
1326	while (llist) {
1327		p = llist_entry(llist, struct task_struct, wake_entry);
1328		llist = llist_next(llist);
1329		ttwu_do_activate(rq, p, 0);
1330	}
1331
1332	raw_spin_unlock(&rq->lock);
1333}
1334
1335void scheduler_ipi(void)
1336{
1337	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1338		return;
1339
1340	/*
1341	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1342	 * traditionally all their work was done from the interrupt return
1343	 * path. Now that we actually do some work, we need to make sure
1344	 * we do call them.
1345	 *
1346	 * Some archs already do call them, luckily irq_enter/exit nest
1347	 * properly.
1348	 *
1349	 * Arguably we should visit all archs and update all handlers,
1350	 * however a fair share of IPIs are still resched only so this would
1351	 * somewhat pessimize the simple resched case.
1352	 */
1353	irq_enter();
1354	sched_ttwu_pending();
1355
1356	/*
1357	 * Check if someone kicked us for doing the nohz idle load balance.
1358	 */
1359	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1360		this_rq()->idle_balance = 1;
1361		raise_softirq_irqoff(SCHED_SOFTIRQ);
1362	}
1363	irq_exit();
1364}
1365
1366static void ttwu_queue_remote(struct task_struct *p, int cpu)
1367{
1368	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1369		smp_send_reschedule(cpu);
1370}
1371
1372bool cpus_share_cache(int this_cpu, int that_cpu)
1373{
1374	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1375}
1376#endif /* CONFIG_SMP */
1377
1378static void ttwu_queue(struct task_struct *p, int cpu)
1379{
1380	struct rq *rq = cpu_rq(cpu);
1381
1382#if defined(CONFIG_SMP)
1383	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1384		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1385		ttwu_queue_remote(p, cpu);
1386		return;
1387	}
1388#endif
1389
1390	raw_spin_lock(&rq->lock);
1391	ttwu_do_activate(rq, p, 0);
1392	raw_spin_unlock(&rq->lock);
1393}
1394
1395/**
1396 * try_to_wake_up - wake up a thread
1397 * @p: the thread to be awakened
1398 * @state: the mask of task states that can be woken
1399 * @wake_flags: wake modifier flags (WF_*)
1400 *
1401 * Put it on the run-queue if it's not already there. The "current"
1402 * thread is always on the run-queue (except when the actual
1403 * re-schedule is in progress), and as such you're allowed to do
1404 * the simpler "current->state = TASK_RUNNING" to mark yourself
1405 * runnable without the overhead of this.
1406 *
1407 * Returns %true if @p was woken up, %false if it was already running
1408 * or @state didn't match @p's state.
1409 */
1410static int
1411try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1412{
1413	unsigned long flags;
1414	int cpu, success = 0;
1415
1416	smp_wmb();
1417	raw_spin_lock_irqsave(&p->pi_lock, flags);
1418	if (!(p->state & state))
1419		goto out;
1420
1421	success = 1; /* we're going to change ->state */
1422	cpu = task_cpu(p);
1423
1424	if (p->on_rq && ttwu_remote(p, wake_flags))
1425		goto stat;
1426
1427#ifdef CONFIG_SMP
1428	/*
1429	 * If the owning (remote) cpu is still in the middle of schedule() with
1430	 * this task as prev, wait until its done referencing the task.
1431	 */
1432	while (p->on_cpu)
1433		cpu_relax();
1434	/*
1435	 * Pairs with the smp_wmb() in finish_lock_switch().
1436	 */
1437	smp_rmb();
1438
1439	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1440	p->state = TASK_WAKING;
1441
1442	if (p->sched_class->task_waking)
1443		p->sched_class->task_waking(p);
1444
1445	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1446	if (task_cpu(p) != cpu) {
1447		wake_flags |= WF_MIGRATED;
1448		set_task_cpu(p, cpu);
1449	}
1450#endif /* CONFIG_SMP */
1451
1452	ttwu_queue(p, cpu);
1453stat:
1454	ttwu_stat(p, cpu, wake_flags);
1455out:
1456	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1457
1458	return success;
1459}
1460
1461/**
1462 * try_to_wake_up_local - try to wake up a local task with rq lock held
1463 * @p: the thread to be awakened
1464 *
1465 * Put @p on the run-queue if it's not already there. The caller must
1466 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1467 * the current task.
1468 */
1469static void try_to_wake_up_local(struct task_struct *p)
1470{
1471	struct rq *rq = task_rq(p);
1472
1473	BUG_ON(rq != this_rq());
1474	BUG_ON(p == current);
1475	lockdep_assert_held(&rq->lock);
1476
1477	if (!raw_spin_trylock(&p->pi_lock)) {
1478		raw_spin_unlock(&rq->lock);
1479		raw_spin_lock(&p->pi_lock);
1480		raw_spin_lock(&rq->lock);
1481	}
1482
1483	if (!(p->state & TASK_NORMAL))
1484		goto out;
1485
1486	if (!p->on_rq)
1487		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1488
1489	ttwu_do_wakeup(rq, p, 0);
1490	ttwu_stat(p, smp_processor_id(), 0);
1491out:
1492	raw_spin_unlock(&p->pi_lock);
1493}
1494
1495/**
1496 * wake_up_process - Wake up a specific process
1497 * @p: The process to be woken up.
1498 *
1499 * Attempt to wake up the nominated process and move it to the set of runnable
1500 * processes.  Returns 1 if the process was woken up, 0 if it was already
1501 * running.
1502 *
1503 * It may be assumed that this function implies a write memory barrier before
1504 * changing the task state if and only if any tasks are woken up.
1505 */
1506int wake_up_process(struct task_struct *p)
1507{
1508	return try_to_wake_up(p, TASK_ALL, 0);
1509}
1510EXPORT_SYMBOL(wake_up_process);
1511
1512int wake_up_state(struct task_struct *p, unsigned int state)
1513{
1514	return try_to_wake_up(p, state, 0);
1515}
1516
1517/*
1518 * Perform scheduler related setup for a newly forked process p.
1519 * p is forked by current.
1520 *
1521 * __sched_fork() is basic setup used by init_idle() too:
1522 */
1523static void __sched_fork(struct task_struct *p)
1524{
1525	p->on_rq			= 0;
1526
1527	p->se.on_rq			= 0;
1528	p->se.exec_start		= 0;
1529	p->se.sum_exec_runtime		= 0;
1530	p->se.prev_sum_exec_runtime	= 0;
1531	p->se.nr_migrations		= 0;
1532	p->se.vruntime			= 0;
1533	INIT_LIST_HEAD(&p->se.group_node);
1534
1535#ifdef CONFIG_SCHEDSTATS
1536	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1537#endif
1538
1539	INIT_LIST_HEAD(&p->rt.run_list);
1540
1541#ifdef CONFIG_PREEMPT_NOTIFIERS
1542	INIT_HLIST_HEAD(&p->preempt_notifiers);
1543#endif
1544
1545#ifdef CONFIG_NUMA_BALANCING
1546	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1547		p->mm->numa_next_scan = jiffies;
1548		p->mm->numa_next_reset = jiffies;
1549		p->mm->numa_scan_seq = 0;
1550	}
1551
1552	p->node_stamp = 0ULL;
1553	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1554	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1555	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1556	p->numa_work.next = &p->numa_work;
1557#endif /* CONFIG_NUMA_BALANCING */
1558}
1559
1560#ifdef CONFIG_NUMA_BALANCING
1561#ifdef CONFIG_SCHED_DEBUG
1562void set_numabalancing_state(bool enabled)
1563{
1564	if (enabled)
1565		sched_feat_set("NUMA");
1566	else
1567		sched_feat_set("NO_NUMA");
1568}
1569#else
1570__read_mostly bool numabalancing_enabled;
1571
1572void set_numabalancing_state(bool enabled)
1573{
1574	numabalancing_enabled = enabled;
1575}
1576#endif /* CONFIG_SCHED_DEBUG */
1577#endif /* CONFIG_NUMA_BALANCING */
1578
1579/*
1580 * fork()/clone()-time setup:
1581 */
1582void sched_fork(struct task_struct *p)
1583{
1584	unsigned long flags;
1585	int cpu = get_cpu();
1586
1587	__sched_fork(p);
1588	/*
1589	 * We mark the process as running here. This guarantees that
1590	 * nobody will actually run it, and a signal or other external
1591	 * event cannot wake it up and insert it on the runqueue either.
1592	 */
1593	p->state = TASK_RUNNING;
1594
1595	/*
1596	 * Make sure we do not leak PI boosting priority to the child.
1597	 */
1598	p->prio = current->normal_prio;
1599
1600	/*
1601	 * Revert to default priority/policy on fork if requested.
1602	 */
1603	if (unlikely(p->sched_reset_on_fork)) {
1604		if (task_has_rt_policy(p)) {
1605			p->policy = SCHED_NORMAL;
1606			p->static_prio = NICE_TO_PRIO(0);
1607			p->rt_priority = 0;
1608		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1609			p->static_prio = NICE_TO_PRIO(0);
1610
1611		p->prio = p->normal_prio = __normal_prio(p);
1612		set_load_weight(p);
1613
1614		/*
1615		 * We don't need the reset flag anymore after the fork. It has
1616		 * fulfilled its duty:
1617		 */
1618		p->sched_reset_on_fork = 0;
1619	}
1620
1621	if (!rt_prio(p->prio))
1622		p->sched_class = &fair_sched_class;
1623
1624	if (p->sched_class->task_fork)
1625		p->sched_class->task_fork(p);
1626
1627	/*
1628	 * The child is not yet in the pid-hash so no cgroup attach races,
1629	 * and the cgroup is pinned to this child due to cgroup_fork()
1630	 * is ran before sched_fork().
1631	 *
1632	 * Silence PROVE_RCU.
1633	 */
1634	raw_spin_lock_irqsave(&p->pi_lock, flags);
1635	set_task_cpu(p, cpu);
1636	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1637
1638#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1639	if (likely(sched_info_on()))
1640		memset(&p->sched_info, 0, sizeof(p->sched_info));
1641#endif
1642#if defined(CONFIG_SMP)
1643	p->on_cpu = 0;
1644#endif
1645#ifdef CONFIG_PREEMPT_COUNT
1646	/* Want to start with kernel preemption disabled. */
1647	task_thread_info(p)->preempt_count = 1;
1648#endif
1649#ifdef CONFIG_SMP
1650	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1651#endif
1652
1653	put_cpu();
1654}
1655
1656/*
1657 * wake_up_new_task - wake up a newly created task for the first time.
1658 *
1659 * This function will do some initial scheduler statistics housekeeping
1660 * that must be done for every newly created context, then puts the task
1661 * on the runqueue and wakes it.
1662 */
1663void wake_up_new_task(struct task_struct *p)
1664{
1665	unsigned long flags;
1666	struct rq *rq;
1667
1668	raw_spin_lock_irqsave(&p->pi_lock, flags);
1669#ifdef CONFIG_SMP
1670	/*
1671	 * Fork balancing, do it here and not earlier because:
1672	 *  - cpus_allowed can change in the fork path
1673	 *  - any previously selected cpu might disappear through hotplug
1674	 */
1675	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1676#endif
1677
1678	rq = __task_rq_lock(p);
1679	activate_task(rq, p, 0);
1680	p->on_rq = 1;
1681	trace_sched_wakeup_new(p, true);
1682	check_preempt_curr(rq, p, WF_FORK);
1683#ifdef CONFIG_SMP
1684	if (p->sched_class->task_woken)
1685		p->sched_class->task_woken(rq, p);
1686#endif
1687	task_rq_unlock(rq, p, &flags);
1688}
1689
1690#ifdef CONFIG_PREEMPT_NOTIFIERS
1691
1692/**
1693 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1694 * @notifier: notifier struct to register
1695 */
1696void preempt_notifier_register(struct preempt_notifier *notifier)
1697{
1698	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1699}
1700EXPORT_SYMBOL_GPL(preempt_notifier_register);
1701
1702/**
1703 * preempt_notifier_unregister - no longer interested in preemption notifications
1704 * @notifier: notifier struct to unregister
1705 *
1706 * This is safe to call from within a preemption notifier.
1707 */
1708void preempt_notifier_unregister(struct preempt_notifier *notifier)
1709{
1710	hlist_del(&notifier->link);
1711}
1712EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1713
1714static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1715{
1716	struct preempt_notifier *notifier;
1717	struct hlist_node *node;
1718
1719	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1720		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1721}
1722
1723static void
1724fire_sched_out_preempt_notifiers(struct task_struct *curr,
1725				 struct task_struct *next)
1726{
1727	struct preempt_notifier *notifier;
1728	struct hlist_node *node;
1729
1730	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1731		notifier->ops->sched_out(notifier, next);
1732}
1733
1734#else /* !CONFIG_PREEMPT_NOTIFIERS */
1735
1736static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1737{
1738}
1739
1740static void
1741fire_sched_out_preempt_notifiers(struct task_struct *curr,
1742				 struct task_struct *next)
1743{
1744}
1745
1746#endif /* CONFIG_PREEMPT_NOTIFIERS */
1747
1748/**
1749 * prepare_task_switch - prepare to switch tasks
1750 * @rq: the runqueue preparing to switch
1751 * @prev: the current task that is being switched out
1752 * @next: the task we are going to switch to.
1753 *
1754 * This is called with the rq lock held and interrupts off. It must
1755 * be paired with a subsequent finish_task_switch after the context
1756 * switch.
1757 *
1758 * prepare_task_switch sets up locking and calls architecture specific
1759 * hooks.
1760 */
1761static inline void
1762prepare_task_switch(struct rq *rq, struct task_struct *prev,
1763		    struct task_struct *next)
1764{
1765	trace_sched_switch(prev, next);
1766	sched_info_switch(prev, next);
1767	perf_event_task_sched_out(prev, next);
1768	fire_sched_out_preempt_notifiers(prev, next);
1769	prepare_lock_switch(rq, next);
1770	prepare_arch_switch(next);
1771}
1772
1773/**
1774 * finish_task_switch - clean up after a task-switch
1775 * @rq: runqueue associated with task-switch
1776 * @prev: the thread we just switched away from.
1777 *
1778 * finish_task_switch must be called after the context switch, paired
1779 * with a prepare_task_switch call before the context switch.
1780 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1781 * and do any other architecture-specific cleanup actions.
1782 *
1783 * Note that we may have delayed dropping an mm in context_switch(). If
1784 * so, we finish that here outside of the runqueue lock. (Doing it
1785 * with the lock held can cause deadlocks; see schedule() for
1786 * details.)
1787 */
1788static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1789	__releases(rq->lock)
1790{
1791	struct mm_struct *mm = rq->prev_mm;
1792	long prev_state;
1793
1794	rq->prev_mm = NULL;
1795
1796	/*
1797	 * A task struct has one reference for the use as "current".
1798	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1799	 * schedule one last time. The schedule call will never return, and
1800	 * the scheduled task must drop that reference.
1801	 * The test for TASK_DEAD must occur while the runqueue locks are
1802	 * still held, otherwise prev could be scheduled on another cpu, die
1803	 * there before we look at prev->state, and then the reference would
1804	 * be dropped twice.
1805	 *		Manfred Spraul <manfred@colorfullife.com>
1806	 */
1807	prev_state = prev->state;
1808	vtime_task_switch(prev);
1809	finish_arch_switch(prev);
1810	perf_event_task_sched_in(prev, current);
1811	finish_lock_switch(rq, prev);
1812	finish_arch_post_lock_switch();
1813
1814	fire_sched_in_preempt_notifiers(current);
1815	if (mm)
1816		mmdrop(mm);
1817	if (unlikely(prev_state == TASK_DEAD)) {
1818		/*
1819		 * Remove function-return probe instances associated with this
1820		 * task and put them back on the free list.
1821		 */
1822		kprobe_flush_task(prev);
1823		put_task_struct(prev);
1824	}
1825}
1826
1827#ifdef CONFIG_SMP
1828
1829/* assumes rq->lock is held */
1830static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1831{
1832	if (prev->sched_class->pre_schedule)
1833		prev->sched_class->pre_schedule(rq, prev);
1834}
1835
1836/* rq->lock is NOT held, but preemption is disabled */
1837static inline void post_schedule(struct rq *rq)
1838{
1839	if (rq->post_schedule) {
1840		unsigned long flags;
1841
1842		raw_spin_lock_irqsave(&rq->lock, flags);
1843		if (rq->curr->sched_class->post_schedule)
1844			rq->curr->sched_class->post_schedule(rq);
1845		raw_spin_unlock_irqrestore(&rq->lock, flags);
1846
1847		rq->post_schedule = 0;
1848	}
1849}
1850
1851#else
1852
1853static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1854{
1855}
1856
1857static inline void post_schedule(struct rq *rq)
1858{
1859}
1860
1861#endif
1862
1863/**
1864 * schedule_tail - first thing a freshly forked thread must call.
1865 * @prev: the thread we just switched away from.
1866 */
1867asmlinkage void schedule_tail(struct task_struct *prev)
1868	__releases(rq->lock)
1869{
1870	struct rq *rq = this_rq();
1871
1872	finish_task_switch(rq, prev);
1873
1874	/*
1875	 * FIXME: do we need to worry about rq being invalidated by the
1876	 * task_switch?
1877	 */
1878	post_schedule(rq);
1879
1880#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1881	/* In this case, finish_task_switch does not reenable preemption */
1882	preempt_enable();
1883#endif
1884	if (current->set_child_tid)
1885		put_user(task_pid_vnr(current), current->set_child_tid);
1886}
1887
1888/*
1889 * context_switch - switch to the new MM and the new
1890 * thread's register state.
1891 */
1892static inline void
1893context_switch(struct rq *rq, struct task_struct *prev,
1894	       struct task_struct *next)
1895{
1896	struct mm_struct *mm, *oldmm;
1897
1898	prepare_task_switch(rq, prev, next);
1899
1900	mm = next->mm;
1901	oldmm = prev->active_mm;
1902	/*
1903	 * For paravirt, this is coupled with an exit in switch_to to
1904	 * combine the page table reload and the switch backend into
1905	 * one hypercall.
1906	 */
1907	arch_start_context_switch(prev);
1908
1909	if (!mm) {
1910		next->active_mm = oldmm;
1911		atomic_inc(&oldmm->mm_count);
1912		enter_lazy_tlb(oldmm, next);
1913	} else
1914		switch_mm(oldmm, mm, next);
1915
1916	if (!prev->mm) {
1917		prev->active_mm = NULL;
1918		rq->prev_mm = oldmm;
1919	}
1920	/*
1921	 * Since the runqueue lock will be released by the next
1922	 * task (which is an invalid locking op but in the case
1923	 * of the scheduler it's an obvious special-case), so we
1924	 * do an early lockdep release here:
1925	 */
1926#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1927	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1928#endif
1929
1930	/* Here we just switch the register state and the stack. */
1931	rcu_switch(prev, next);
1932	switch_to(prev, next, prev);
1933
1934	barrier();
1935	/*
1936	 * this_rq must be evaluated again because prev may have moved
1937	 * CPUs since it called schedule(), thus the 'rq' on its stack
1938	 * frame will be invalid.
1939	 */
1940	finish_task_switch(this_rq(), prev);
1941}
1942
1943/*
1944 * nr_running, nr_uninterruptible and nr_context_switches:
1945 *
1946 * externally visible scheduler statistics: current number of runnable
1947 * threads, current number of uninterruptible-sleeping threads, total
1948 * number of context switches performed since bootup.
1949 */
1950unsigned long nr_running(void)
1951{
1952	unsigned long i, sum = 0;
1953
1954	for_each_online_cpu(i)
1955		sum += cpu_rq(i)->nr_running;
1956
1957	return sum;
1958}
1959
1960unsigned long nr_uninterruptible(void)
1961{
1962	unsigned long i, sum = 0;
1963
1964	for_each_possible_cpu(i)
1965		sum += cpu_rq(i)->nr_uninterruptible;
1966
1967	/*
1968	 * Since we read the counters lockless, it might be slightly
1969	 * inaccurate. Do not allow it to go below zero though:
1970	 */
1971	if (unlikely((long)sum < 0))
1972		sum = 0;
1973
1974	return sum;
1975}
1976
1977unsigned long long nr_context_switches(void)
1978{
1979	int i;
1980	unsigned long long sum = 0;
1981
1982	for_each_possible_cpu(i)
1983		sum += cpu_rq(i)->nr_switches;
1984
1985	return sum;
1986}
1987
1988unsigned long nr_iowait(void)
1989{
1990	unsigned long i, sum = 0;
1991
1992	for_each_possible_cpu(i)
1993		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1994
1995	return sum;
1996}
1997
1998unsigned long nr_iowait_cpu(int cpu)
1999{
2000	struct rq *this = cpu_rq(cpu);
2001	return atomic_read(&this->nr_iowait);
2002}
2003
2004unsigned long this_cpu_load(void)
2005{
2006	struct rq *this = this_rq();
2007	return this->cpu_load[0];
2008}
2009
2010
2011/*
2012 * Global load-average calculations
2013 *
2014 * We take a distributed and async approach to calculating the global load-avg
2015 * in order to minimize overhead.
2016 *
2017 * The global load average is an exponentially decaying average of nr_running +
2018 * nr_uninterruptible.
2019 *
2020 * Once every LOAD_FREQ:
2021 *
2022 *   nr_active = 0;
2023 *   for_each_possible_cpu(cpu)
2024 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2025 *
2026 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2027 *
2028 * Due to a number of reasons the above turns in the mess below:
2029 *
2030 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2031 *    serious number of cpus, therefore we need to take a distributed approach
2032 *    to calculating nr_active.
2033 *
2034 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2035 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2036 *
2037 *    So assuming nr_active := 0 when we start out -- true per definition, we
2038 *    can simply take per-cpu deltas and fold those into a global accumulate
2039 *    to obtain the same result. See calc_load_fold_active().
2040 *
2041 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2042 *    across the machine, we assume 10 ticks is sufficient time for every
2043 *    cpu to have completed this task.
2044 *
2045 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2046 *    again, being late doesn't loose the delta, just wrecks the sample.
2047 *
2048 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2049 *    this would add another cross-cpu cacheline miss and atomic operation
2050 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2051 *    when it went into uninterruptible state and decrement on whatever cpu
2052 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2053 *    all cpus yields the correct result.
2054 *
2055 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2056 */
2057
2058/* Variables and functions for calc_load */
2059static atomic_long_t calc_load_tasks;
2060static unsigned long calc_load_update;
2061unsigned long avenrun[3];
2062EXPORT_SYMBOL(avenrun); /* should be removed */
2063
2064/**
2065 * get_avenrun - get the load average array
2066 * @loads:	pointer to dest load array
2067 * @offset:	offset to add
2068 * @shift:	shift count to shift the result left
2069 *
2070 * These values are estimates at best, so no need for locking.
2071 */
2072void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2073{
2074	loads[0] = (avenrun[0] + offset) << shift;
2075	loads[1] = (avenrun[1] + offset) << shift;
2076	loads[2] = (avenrun[2] + offset) << shift;
2077}
2078
2079static long calc_load_fold_active(struct rq *this_rq)
2080{
2081	long nr_active, delta = 0;
2082
2083	nr_active = this_rq->nr_running;
2084	nr_active += (long) this_rq->nr_uninterruptible;
2085
2086	if (nr_active != this_rq->calc_load_active) {
2087		delta = nr_active - this_rq->calc_load_active;
2088		this_rq->calc_load_active = nr_active;
2089	}
2090
2091	return delta;
2092}
2093
2094/*
2095 * a1 = a0 * e + a * (1 - e)
2096 */
2097static unsigned long
2098calc_load(unsigned long load, unsigned long exp, unsigned long active)
2099{
2100	load *= exp;
2101	load += active * (FIXED_1 - exp);
2102	load += 1UL << (FSHIFT - 1);
2103	return load >> FSHIFT;
2104}
2105
2106#ifdef CONFIG_NO_HZ
2107/*
2108 * Handle NO_HZ for the global load-average.
2109 *
2110 * Since the above described distributed algorithm to compute the global
2111 * load-average relies on per-cpu sampling from the tick, it is affected by
2112 * NO_HZ.
2113 *
2114 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2115 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2116 * when we read the global state.
2117 *
2118 * Obviously reality has to ruin such a delightfully simple scheme:
2119 *
2120 *  - When we go NO_HZ idle during the window, we can negate our sample
2121 *    contribution, causing under-accounting.
2122 *
2123 *    We avoid this by keeping two idle-delta counters and flipping them
2124 *    when the window starts, thus separating old and new NO_HZ load.
2125 *
2126 *    The only trick is the slight shift in index flip for read vs write.
2127 *
2128 *        0s            5s            10s           15s
2129 *          +10           +10           +10           +10
2130 *        |-|-----------|-|-----------|-|-----------|-|
2131 *    r:0 0 1           1 0           0 1           1 0
2132 *    w:0 1 1           0 0           1 1           0 0
2133 *
2134 *    This ensures we'll fold the old idle contribution in this window while
2135 *    accumlating the new one.
2136 *
2137 *  - When we wake up from NO_HZ idle during the window, we push up our
2138 *    contribution, since we effectively move our sample point to a known
2139 *    busy state.
2140 *
2141 *    This is solved by pushing the window forward, and thus skipping the
2142 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2143 *    was in effect at the time the window opened). This also solves the issue
2144 *    of having to deal with a cpu having been in NOHZ idle for multiple
2145 *    LOAD_FREQ intervals.
2146 *
2147 * When making the ILB scale, we should try to pull this in as well.
2148 */
2149static atomic_long_t calc_load_idle[2];
2150static int calc_load_idx;
2151
2152static inline int calc_load_write_idx(void)
2153{
2154	int idx = calc_load_idx;
2155
2156	/*
2157	 * See calc_global_nohz(), if we observe the new index, we also
2158	 * need to observe the new update time.
2159	 */
2160	smp_rmb();
2161
2162	/*
2163	 * If the folding window started, make sure we start writing in the
2164	 * next idle-delta.
2165	 */
2166	if (!time_before(jiffies, calc_load_update))
2167		idx++;
2168
2169	return idx & 1;
2170}
2171
2172static inline int calc_load_read_idx(void)
2173{
2174	return calc_load_idx & 1;
2175}
2176
2177void calc_load_enter_idle(void)
2178{
2179	struct rq *this_rq = this_rq();
2180	long delta;
2181
2182	/*
2183	 * We're going into NOHZ mode, if there's any pending delta, fold it
2184	 * into the pending idle delta.
2185	 */
2186	delta = calc_load_fold_active(this_rq);
2187	if (delta) {
2188		int idx = calc_load_write_idx();
2189		atomic_long_add(delta, &calc_load_idle[idx]);
2190	}
2191}
2192
2193void calc_load_exit_idle(void)
2194{
2195	struct rq *this_rq = this_rq();
2196
2197	/*
2198	 * If we're still before the sample window, we're done.
2199	 */
2200	if (time_before(jiffies, this_rq->calc_load_update))
2201		return;
2202
2203	/*
2204	 * We woke inside or after the sample window, this means we're already
2205	 * accounted through the nohz accounting, so skip the entire deal and
2206	 * sync up for the next window.
2207	 */
2208	this_rq->calc_load_update = calc_load_update;
2209	if (time_before(jiffies, this_rq->calc_load_update + 10))
2210		this_rq->calc_load_update += LOAD_FREQ;
2211}
2212
2213static long calc_load_fold_idle(void)
2214{
2215	int idx = calc_load_read_idx();
2216	long delta = 0;
2217
2218	if (atomic_long_read(&calc_load_idle[idx]))
2219		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2220
2221	return delta;
2222}
2223
2224/**
2225 * fixed_power_int - compute: x^n, in O(log n) time
2226 *
2227 * @x:         base of the power
2228 * @frac_bits: fractional bits of @x
2229 * @n:         power to raise @x to.
2230 *
2231 * By exploiting the relation between the definition of the natural power
2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234 * (where: n_i \elem {0, 1}, the binary vector representing n),
2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236 * of course trivially computable in O(log_2 n), the length of our binary
2237 * vector.
2238 */
2239static unsigned long
2240fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241{
2242	unsigned long result = 1UL << frac_bits;
2243
2244	if (n) for (;;) {
2245		if (n & 1) {
2246			result *= x;
2247			result += 1UL << (frac_bits - 1);
2248			result >>= frac_bits;
2249		}
2250		n >>= 1;
2251		if (!n)
2252			break;
2253		x *= x;
2254		x += 1UL << (frac_bits - 1);
2255		x >>= frac_bits;
2256	}
2257
2258	return result;
2259}
2260
2261/*
2262 * a1 = a0 * e + a * (1 - e)
2263 *
2264 * a2 = a1 * e + a * (1 - e)
2265 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2267 *
2268 * a3 = a2 * e + a * (1 - e)
2269 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271 *
2272 *  ...
2273 *
2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276 *    = a0 * e^n + a * (1 - e^n)
2277 *
2278 * [1] application of the geometric series:
2279 *
2280 *              n         1 - x^(n+1)
2281 *     S_n := \Sum x^i = -------------
2282 *             i=0          1 - x
2283 */
2284static unsigned long
2285calc_load_n(unsigned long load, unsigned long exp,
2286	    unsigned long active, unsigned int n)
2287{
2288
2289	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290}
2291
2292/*
2293 * NO_HZ can leave us missing all per-cpu ticks calling
2294 * calc_load_account_active(), but since an idle CPU folds its delta into
2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296 * in the pending idle delta if our idle period crossed a load cycle boundary.
2297 *
2298 * Once we've updated the global active value, we need to apply the exponential
2299 * weights adjusted to the number of cycles missed.
2300 */
2301static void calc_global_nohz(void)
2302{
2303	long delta, active, n;
2304
2305	if (!time_before(jiffies, calc_load_update + 10)) {
2306		/*
2307		 * Catch-up, fold however many we are behind still
2308		 */
2309		delta = jiffies - calc_load_update - 10;
2310		n = 1 + (delta / LOAD_FREQ);
2311
2312		active = atomic_long_read(&calc_load_tasks);
2313		active = active > 0 ? active * FIXED_1 : 0;
2314
2315		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2316		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2317		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2318
2319		calc_load_update += n * LOAD_FREQ;
2320	}
2321
2322	/*
2323	 * Flip the idle index...
2324	 *
2325	 * Make sure we first write the new time then flip the index, so that
2326	 * calc_load_write_idx() will see the new time when it reads the new
2327	 * index, this avoids a double flip messing things up.
2328	 */
2329	smp_wmb();
2330	calc_load_idx++;
2331}
2332#else /* !CONFIG_NO_HZ */
2333
2334static inline long calc_load_fold_idle(void) { return 0; }
2335static inline void calc_global_nohz(void) { }
2336
2337#endif /* CONFIG_NO_HZ */
2338
2339/*
2340 * calc_load - update the avenrun load estimates 10 ticks after the
2341 * CPUs have updated calc_load_tasks.
2342 */
2343void calc_global_load(unsigned long ticks)
2344{
2345	long active, delta;
2346
2347	if (time_before(jiffies, calc_load_update + 10))
2348		return;
2349
2350	/*
2351	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2352	 */
2353	delta = calc_load_fold_idle();
2354	if (delta)
2355		atomic_long_add(delta, &calc_load_tasks);
2356
2357	active = atomic_long_read(&calc_load_tasks);
2358	active = active > 0 ? active * FIXED_1 : 0;
2359
2360	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2361	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2362	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2363
2364	calc_load_update += LOAD_FREQ;
2365
2366	/*
2367	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2368	 */
2369	calc_global_nohz();
2370}
2371
2372/*
2373 * Called from update_cpu_load() to periodically update this CPU's
2374 * active count.
2375 */
2376static void calc_load_account_active(struct rq *this_rq)
2377{
2378	long delta;
2379
2380	if (time_before(jiffies, this_rq->calc_load_update))
2381		return;
2382
2383	delta  = calc_load_fold_active(this_rq);
2384	if (delta)
2385		atomic_long_add(delta, &calc_load_tasks);
2386
2387	this_rq->calc_load_update += LOAD_FREQ;
2388}
2389
2390/*
2391 * End of global load-average stuff
2392 */
2393
2394/*
2395 * The exact cpuload at various idx values, calculated at every tick would be
2396 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2397 *
2398 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2399 * on nth tick when cpu may be busy, then we have:
2400 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2401 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2402 *
2403 * decay_load_missed() below does efficient calculation of
2404 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2405 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2406 *
2407 * The calculation is approximated on a 128 point scale.
2408 * degrade_zero_ticks is the number of ticks after which load at any
2409 * particular idx is approximated to be zero.
2410 * degrade_factor is a precomputed table, a row for each load idx.
2411 * Each column corresponds to degradation factor for a power of two ticks,
2412 * based on 128 point scale.
2413 * Example:
2414 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2415 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2416 *
2417 * With this power of 2 load factors, we can degrade the load n times
2418 * by looking at 1 bits in n and doing as many mult/shift instead of
2419 * n mult/shifts needed by the exact degradation.
2420 */
2421#define DEGRADE_SHIFT		7
2422static const unsigned char
2423		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2424static const unsigned char
2425		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2426					{0, 0, 0, 0, 0, 0, 0, 0},
2427					{64, 32, 8, 0, 0, 0, 0, 0},
2428					{96, 72, 40, 12, 1, 0, 0},
2429					{112, 98, 75, 43, 15, 1, 0},
2430					{120, 112, 98, 76, 45, 16, 2} };
2431
2432/*
2433 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2434 * would be when CPU is idle and so we just decay the old load without
2435 * adding any new load.
2436 */
2437static unsigned long
2438decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2439{
2440	int j = 0;
2441
2442	if (!missed_updates)
2443		return load;
2444
2445	if (missed_updates >= degrade_zero_ticks[idx])
2446		return 0;
2447
2448	if (idx == 1)
2449		return load >> missed_updates;
2450
2451	while (missed_updates) {
2452		if (missed_updates % 2)
2453			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2454
2455		missed_updates >>= 1;
2456		j++;
2457	}
2458	return load;
2459}
2460
2461/*
2462 * Update rq->cpu_load[] statistics. This function is usually called every
2463 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2464 * every tick. We fix it up based on jiffies.
2465 */
2466static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2467			      unsigned long pending_updates)
2468{
2469	int i, scale;
2470
2471	this_rq->nr_load_updates++;
2472
2473	/* Update our load: */
2474	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476		unsigned long old_load, new_load;
2477
2478		/* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480		old_load = this_rq->cpu_load[i];
2481		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482		new_load = this_load;
2483		/*
2484		 * Round up the averaging division if load is increasing. This
2485		 * prevents us from getting stuck on 9 if the load is 10, for
2486		 * example.
2487		 */
2488		if (new_load > old_load)
2489			new_load += scale - 1;
2490
2491		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492	}
2493
2494	sched_avg_update(this_rq);
2495}
2496
2497#ifdef CONFIG_NO_HZ
2498/*
2499 * There is no sane way to deal with nohz on smp when using jiffies because the
2500 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2501 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2502 *
2503 * Therefore we cannot use the delta approach from the regular tick since that
2504 * would seriously skew the load calculation. However we'll make do for those
2505 * updates happening while idle (nohz_idle_balance) or coming out of idle
2506 * (tick_nohz_idle_exit).
2507 *
2508 * This means we might still be one tick off for nohz periods.
2509 */
2510
2511/*
2512 * Called from nohz_idle_balance() to update the load ratings before doing the
2513 * idle balance.
2514 */
2515void update_idle_cpu_load(struct rq *this_rq)
2516{
2517	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2518	unsigned long load = this_rq->load.weight;
2519	unsigned long pending_updates;
2520
2521	/*
2522	 * bail if there's load or we're actually up-to-date.
2523	 */
2524	if (load || curr_jiffies == this_rq->last_load_update_tick)
2525		return;
2526
2527	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2528	this_rq->last_load_update_tick = curr_jiffies;
2529
2530	__update_cpu_load(this_rq, load, pending_updates);
2531}
2532
2533/*
2534 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2535 */
2536void update_cpu_load_nohz(void)
2537{
2538	struct rq *this_rq = this_rq();
2539	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2540	unsigned long pending_updates;
2541
2542	if (curr_jiffies == this_rq->last_load_update_tick)
2543		return;
2544
2545	raw_spin_lock(&this_rq->lock);
2546	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2547	if (pending_updates) {
2548		this_rq->last_load_update_tick = curr_jiffies;
2549		/*
2550		 * We were idle, this means load 0, the current load might be
2551		 * !0 due to remote wakeups and the sort.
2552		 */
2553		__update_cpu_load(this_rq, 0, pending_updates);
2554	}
2555	raw_spin_unlock(&this_rq->lock);
2556}
2557#endif /* CONFIG_NO_HZ */
2558
2559/*
2560 * Called from scheduler_tick()
2561 */
2562static void update_cpu_load_active(struct rq *this_rq)
2563{
2564	/*
2565	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2566	 */
2567	this_rq->last_load_update_tick = jiffies;
2568	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2569
2570	calc_load_account_active(this_rq);
2571}
2572
2573#ifdef CONFIG_SMP
2574
2575/*
2576 * sched_exec - execve() is a valuable balancing opportunity, because at
2577 * this point the task has the smallest effective memory and cache footprint.
2578 */
2579void sched_exec(void)
2580{
2581	struct task_struct *p = current;
2582	unsigned long flags;
2583	int dest_cpu;
2584
2585	raw_spin_lock_irqsave(&p->pi_lock, flags);
2586	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2587	if (dest_cpu == smp_processor_id())
2588		goto unlock;
2589
2590	if (likely(cpu_active(dest_cpu))) {
2591		struct migration_arg arg = { p, dest_cpu };
2592
2593		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2594		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2595		return;
2596	}
2597unlock:
2598	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2599}
2600
2601#endif
2602
2603DEFINE_PER_CPU(struct kernel_stat, kstat);
2604DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2605
2606EXPORT_PER_CPU_SYMBOL(kstat);
2607EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2608
2609/*
2610 * Return any ns on the sched_clock that have not yet been accounted in
2611 * @p in case that task is currently running.
2612 *
2613 * Called with task_rq_lock() held on @rq.
2614 */
2615static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2616{
2617	u64 ns = 0;
2618
2619	if (task_current(rq, p)) {
2620		update_rq_clock(rq);
2621		ns = rq->clock_task - p->se.exec_start;
2622		if ((s64)ns < 0)
2623			ns = 0;
2624	}
2625
2626	return ns;
2627}
2628
2629unsigned long long task_delta_exec(struct task_struct *p)
2630{
2631	unsigned long flags;
2632	struct rq *rq;
2633	u64 ns = 0;
2634
2635	rq = task_rq_lock(p, &flags);
2636	ns = do_task_delta_exec(p, rq);
2637	task_rq_unlock(rq, p, &flags);
2638
2639	return ns;
2640}
2641
2642/*
2643 * Return accounted runtime for the task.
2644 * In case the task is currently running, return the runtime plus current's
2645 * pending runtime that have not been accounted yet.
2646 */
2647unsigned long long task_sched_runtime(struct task_struct *p)
2648{
2649	unsigned long flags;
2650	struct rq *rq;
2651	u64 ns = 0;
2652
2653	rq = task_rq_lock(p, &flags);
2654	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2655	task_rq_unlock(rq, p, &flags);
2656
2657	return ns;
2658}
2659
2660/*
2661 * This function gets called by the timer code, with HZ frequency.
2662 * We call it with interrupts disabled.
2663 */
2664void scheduler_tick(void)
2665{
2666	int cpu = smp_processor_id();
2667	struct rq *rq = cpu_rq(cpu);
2668	struct task_struct *curr = rq->curr;
2669
2670	sched_clock_tick();
2671
2672	raw_spin_lock(&rq->lock);
2673	update_rq_clock(rq);
2674	update_cpu_load_active(rq);
2675	curr->sched_class->task_tick(rq, curr, 0);
2676	raw_spin_unlock(&rq->lock);
2677
2678	perf_event_task_tick();
2679
2680#ifdef CONFIG_SMP
2681	rq->idle_balance = idle_cpu(cpu);
2682	trigger_load_balance(rq, cpu);
2683#endif
2684}
2685
2686notrace unsigned long get_parent_ip(unsigned long addr)
2687{
2688	if (in_lock_functions(addr)) {
2689		addr = CALLER_ADDR2;
2690		if (in_lock_functions(addr))
2691			addr = CALLER_ADDR3;
2692	}
2693	return addr;
2694}
2695
2696#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2697				defined(CONFIG_PREEMPT_TRACER))
2698
2699void __kprobes add_preempt_count(int val)
2700{
2701#ifdef CONFIG_DEBUG_PREEMPT
2702	/*
2703	 * Underflow?
2704	 */
2705	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2706		return;
2707#endif
2708	preempt_count() += val;
2709#ifdef CONFIG_DEBUG_PREEMPT
2710	/*
2711	 * Spinlock count overflowing soon?
2712	 */
2713	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2714				PREEMPT_MASK - 10);
2715#endif
2716	if (preempt_count() == val)
2717		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2718}
2719EXPORT_SYMBOL(add_preempt_count);
2720
2721void __kprobes sub_preempt_count(int val)
2722{
2723#ifdef CONFIG_DEBUG_PREEMPT
2724	/*
2725	 * Underflow?
2726	 */
2727	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2728		return;
2729	/*
2730	 * Is the spinlock portion underflowing?
2731	 */
2732	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2733			!(preempt_count() & PREEMPT_MASK)))
2734		return;
2735#endif
2736
2737	if (preempt_count() == val)
2738		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2739	preempt_count() -= val;
2740}
2741EXPORT_SYMBOL(sub_preempt_count);
2742
2743#endif
2744
2745/*
2746 * Print scheduling while atomic bug:
2747 */
2748static noinline void __schedule_bug(struct task_struct *prev)
2749{
2750	if (oops_in_progress)
2751		return;
2752
2753	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2754		prev->comm, prev->pid, preempt_count());
2755
2756	debug_show_held_locks(prev);
2757	print_modules();
2758	if (irqs_disabled())
2759		print_irqtrace_events(prev);
2760	dump_stack();
2761	add_taint(TAINT_WARN);
2762}
2763
2764/*
2765 * Various schedule()-time debugging checks and statistics:
2766 */
2767static inline void schedule_debug(struct task_struct *prev)
2768{
2769	/*
2770	 * Test if we are atomic. Since do_exit() needs to call into
2771	 * schedule() atomically, we ignore that path for now.
2772	 * Otherwise, whine if we are scheduling when we should not be.
2773	 */
2774	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2775		__schedule_bug(prev);
2776	rcu_sleep_check();
2777
2778	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2779
2780	schedstat_inc(this_rq(), sched_count);
2781}
2782
2783static void put_prev_task(struct rq *rq, struct task_struct *prev)
2784{
2785	if (prev->on_rq || rq->skip_clock_update < 0)
2786		update_rq_clock(rq);
2787	prev->sched_class->put_prev_task(rq, prev);
2788}
2789
2790/*
2791 * Pick up the highest-prio task:
2792 */
2793static inline struct task_struct *
2794pick_next_task(struct rq *rq)
2795{
2796	const struct sched_class *class;
2797	struct task_struct *p;
2798
2799	/*
2800	 * Optimization: we know that if all tasks are in
2801	 * the fair class we can call that function directly:
2802	 */
2803	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2804		p = fair_sched_class.pick_next_task(rq);
2805		if (likely(p))
2806			return p;
2807	}
2808
2809	for_each_class(class) {
2810		p = class->pick_next_task(rq);
2811		if (p)
2812			return p;
2813	}
2814
2815	BUG(); /* the idle class will always have a runnable task */
2816}
2817
2818/*
2819 * __schedule() is the main scheduler function.
2820 *
2821 * The main means of driving the scheduler and thus entering this function are:
2822 *
2823 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2824 *
2825 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2826 *      paths. For example, see arch/x86/entry_64.S.
2827 *
2828 *      To drive preemption between tasks, the scheduler sets the flag in timer
2829 *      interrupt handler scheduler_tick().
2830 *
2831 *   3. Wakeups don't really cause entry into schedule(). They add a
2832 *      task to the run-queue and that's it.
2833 *
2834 *      Now, if the new task added to the run-queue preempts the current
2835 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2836 *      called on the nearest possible occasion:
2837 *
2838 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2839 *
2840 *         - in syscall or exception context, at the next outmost
2841 *           preempt_enable(). (this might be as soon as the wake_up()'s
2842 *           spin_unlock()!)
2843 *
2844 *         - in IRQ context, return from interrupt-handler to
2845 *           preemptible context
2846 *
2847 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2848 *         then at the next:
2849 *
2850 *          - cond_resched() call
2851 *          - explicit schedule() call
2852 *          - return from syscall or exception to user-space
2853 *          - return from interrupt-handler to user-space
2854 */
2855static void __sched __schedule(void)
2856{
2857	struct task_struct *prev, *next;
2858	unsigned long *switch_count;
2859	struct rq *rq;
2860	int cpu;
2861
2862need_resched:
2863	preempt_disable();
2864	cpu = smp_processor_id();
2865	rq = cpu_rq(cpu);
2866	rcu_note_context_switch(cpu);
2867	prev = rq->curr;
2868
2869	schedule_debug(prev);
2870
2871	if (sched_feat(HRTICK))
2872		hrtick_clear(rq);
2873
2874	raw_spin_lock_irq(&rq->lock);
2875
2876	switch_count = &prev->nivcsw;
2877	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2878		if (unlikely(signal_pending_state(prev->state, prev))) {
2879			prev->state = TASK_RUNNING;
2880		} else {
2881			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2882			prev->on_rq = 0;
2883
2884			/*
2885			 * If a worker went to sleep, notify and ask workqueue
2886			 * whether it wants to wake up a task to maintain
2887			 * concurrency.
2888			 */
2889			if (prev->flags & PF_WQ_WORKER) {
2890				struct task_struct *to_wakeup;
2891
2892				to_wakeup = wq_worker_sleeping(prev, cpu);
2893				if (to_wakeup)
2894					try_to_wake_up_local(to_wakeup);
2895			}
2896		}
2897		switch_count = &prev->nvcsw;
2898	}
2899
2900	pre_schedule(rq, prev);
2901
2902	if (unlikely(!rq->nr_running))
2903		idle_balance(cpu, rq);
2904
2905	put_prev_task(rq, prev);
2906	next = pick_next_task(rq);
2907	clear_tsk_need_resched(prev);
2908	rq->skip_clock_update = 0;
2909
2910	if (likely(prev != next)) {
2911		rq->nr_switches++;
2912		rq->curr = next;
2913		++*switch_count;
2914
2915		context_switch(rq, prev, next); /* unlocks the rq */
2916		/*
2917		 * The context switch have flipped the stack from under us
2918		 * and restored the local variables which were saved when
2919		 * this task called schedule() in the past. prev == current
2920		 * is still correct, but it can be moved to another cpu/rq.
2921		 */
2922		cpu = smp_processor_id();
2923		rq = cpu_rq(cpu);
2924	} else
2925		raw_spin_unlock_irq(&rq->lock);
2926
2927	post_schedule(rq);
2928
2929	sched_preempt_enable_no_resched();
2930	if (need_resched())
2931		goto need_resched;
2932}
2933
2934static inline void sched_submit_work(struct task_struct *tsk)
2935{
2936	if (!tsk->state || tsk_is_pi_blocked(tsk))
2937		return;
2938	/*
2939	 * If we are going to sleep and we have plugged IO queued,
2940	 * make sure to submit it to avoid deadlocks.
2941	 */
2942	if (blk_needs_flush_plug(tsk))
2943		blk_schedule_flush_plug(tsk);
2944}
2945
2946asmlinkage void __sched schedule(void)
2947{
2948	struct task_struct *tsk = current;
2949
2950	sched_submit_work(tsk);
2951	__schedule();
2952}
2953EXPORT_SYMBOL(schedule);
2954
2955#ifdef CONFIG_RCU_USER_QS
2956asmlinkage void __sched schedule_user(void)
2957{
2958	/*
2959	 * If we come here after a random call to set_need_resched(),
2960	 * or we have been woken up remotely but the IPI has not yet arrived,
2961	 * we haven't yet exited the RCU idle mode. Do it here manually until
2962	 * we find a better solution.
2963	 */
2964	rcu_user_exit();
2965	schedule();
2966	rcu_user_enter();
2967}
2968#endif
2969
2970/**
2971 * schedule_preempt_disabled - called with preemption disabled
2972 *
2973 * Returns with preemption disabled. Note: preempt_count must be 1
2974 */
2975void __sched schedule_preempt_disabled(void)
2976{
2977	sched_preempt_enable_no_resched();
2978	schedule();
2979	preempt_disable();
2980}
2981
2982#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2983
2984static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2985{
2986	if (lock->owner != owner)
2987		return false;
2988
2989	/*
2990	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2991	 * lock->owner still matches owner, if that fails, owner might
2992	 * point to free()d memory, if it still matches, the rcu_read_lock()
2993	 * ensures the memory stays valid.
2994	 */
2995	barrier();
2996
2997	return owner->on_cpu;
2998}
2999
3000/*
3001 * Look out! "owner" is an entirely speculative pointer
3002 * access and not reliable.
3003 */
3004int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3005{
3006	if (!sched_feat(OWNER_SPIN))
3007		return 0;
3008
3009	rcu_read_lock();
3010	while (owner_running(lock, owner)) {
3011		if (need_resched())
3012			break;
3013
3014		arch_mutex_cpu_relax();
3015	}
3016	rcu_read_unlock();
3017
3018	/*
3019	 * We break out the loop above on need_resched() and when the
3020	 * owner changed, which is a sign for heavy contention. Return
3021	 * success only when lock->owner is NULL.
3022	 */
3023	return lock->owner == NULL;
3024}
3025#endif
3026
3027#ifdef CONFIG_PREEMPT
3028/*
3029 * this is the entry point to schedule() from in-kernel preemption
3030 * off of preempt_enable. Kernel preemptions off return from interrupt
3031 * occur there and call schedule directly.
3032 */
3033asmlinkage void __sched notrace preempt_schedule(void)
3034{
3035	struct thread_info *ti = current_thread_info();
3036
3037	/*
3038	 * If there is a non-zero preempt_count or interrupts are disabled,
3039	 * we do not want to preempt the current task. Just return..
3040	 */
3041	if (likely(ti->preempt_count || irqs_disabled()))
3042		return;
3043
3044	do {
3045		add_preempt_count_notrace(PREEMPT_ACTIVE);
3046		__schedule();
3047		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3048
3049		/*
3050		 * Check again in case we missed a preemption opportunity
3051		 * between schedule and now.
3052		 */
3053		barrier();
3054	} while (need_resched());
3055}
3056EXPORT_SYMBOL(preempt_schedule);
3057
3058/*
3059 * this is the entry point to schedule() from kernel preemption
3060 * off of irq context.
3061 * Note, that this is called and return with irqs disabled. This will
3062 * protect us against recursive calling from irq.
3063 */
3064asmlinkage void __sched preempt_schedule_irq(void)
3065{
3066	struct thread_info *ti = current_thread_info();
3067
3068	/* Catch callers which need to be fixed */
3069	BUG_ON(ti->preempt_count || !irqs_disabled());
3070
3071	rcu_user_exit();
3072	do {
3073		add_preempt_count(PREEMPT_ACTIVE);
3074		local_irq_enable();
3075		__schedule();
3076		local_irq_disable();
3077		sub_preempt_count(PREEMPT_ACTIVE);
3078
3079		/*
3080		 * Check again in case we missed a preemption opportunity
3081		 * between schedule and now.
3082		 */
3083		barrier();
3084	} while (need_resched());
3085}
3086
3087#endif /* CONFIG_PREEMPT */
3088
3089int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3090			  void *key)
3091{
3092	return try_to_wake_up(curr->private, mode, wake_flags);
3093}
3094EXPORT_SYMBOL(default_wake_function);
3095
3096/*
3097 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3098 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3099 * number) then we wake all the non-exclusive tasks and one exclusive task.
3100 *
3101 * There are circumstances in which we can try to wake a task which has already
3102 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3103 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3104 */
3105static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3106			int nr_exclusive, int wake_flags, void *key)
3107{
3108	wait_queue_t *curr, *next;
3109
3110	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3111		unsigned flags = curr->flags;
3112
3113		if (curr->func(curr, mode, wake_flags, key) &&
3114				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3115			break;
3116	}
3117}
3118
3119/**
3120 * __wake_up - wake up threads blocked on a waitqueue.
3121 * @q: the waitqueue
3122 * @mode: which threads
3123 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3124 * @key: is directly passed to the wakeup function
3125 *
3126 * It may be assumed that this function implies a write memory barrier before
3127 * changing the task state if and only if any tasks are woken up.
3128 */
3129void __wake_up(wait_queue_head_t *q, unsigned int mode,
3130			int nr_exclusive, void *key)
3131{
3132	unsigned long flags;
3133
3134	spin_lock_irqsave(&q->lock, flags);
3135	__wake_up_common(q, mode, nr_exclusive, 0, key);
3136	spin_unlock_irqrestore(&q->lock, flags);
3137}
3138EXPORT_SYMBOL(__wake_up);
3139
3140/*
3141 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3142 */
3143void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3144{
3145	__wake_up_common(q, mode, nr, 0, NULL);
3146}
3147EXPORT_SYMBOL_GPL(__wake_up_locked);
3148
3149void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3150{
3151	__wake_up_common(q, mode, 1, 0, key);
3152}
3153EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3154
3155/**
3156 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3157 * @q: the waitqueue
3158 * @mode: which threads
3159 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3160 * @key: opaque value to be passed to wakeup targets
3161 *
3162 * The sync wakeup differs that the waker knows that it will schedule
3163 * away soon, so while the target thread will be woken up, it will not
3164 * be migrated to another CPU - ie. the two threads are 'synchronized'
3165 * with each other. This can prevent needless bouncing between CPUs.
3166 *
3167 * On UP it can prevent extra preemption.
3168 *
3169 * It may be assumed that this function implies a write memory barrier before
3170 * changing the task state if and only if any tasks are woken up.
3171 */
3172void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3173			int nr_exclusive, void *key)
3174{
3175	unsigned long flags;
3176	int wake_flags = WF_SYNC;
3177
3178	if (unlikely(!q))
3179		return;
3180
3181	if (unlikely(!nr_exclusive))
3182		wake_flags = 0;
3183
3184	spin_lock_irqsave(&q->lock, flags);
3185	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3186	spin_unlock_irqrestore(&q->lock, flags);
3187}
3188EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3189
3190/*
3191 * __wake_up_sync - see __wake_up_sync_key()
3192 */
3193void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3194{
3195	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3196}
3197EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3198
3199/**
3200 * complete: - signals a single thread waiting on this completion
3201 * @x:  holds the state of this particular completion
3202 *
3203 * This will wake up a single thread waiting on this completion. Threads will be
3204 * awakened in the same order in which they were queued.
3205 *
3206 * See also complete_all(), wait_for_completion() and related routines.
3207 *
3208 * It may be assumed that this function implies a write memory barrier before
3209 * changing the task state if and only if any tasks are woken up.
3210 */
3211void complete(struct completion *x)
3212{
3213	unsigned long flags;
3214
3215	spin_lock_irqsave(&x->wait.lock, flags);
3216	x->done++;
3217	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3218	spin_unlock_irqrestore(&x->wait.lock, flags);
3219}
3220EXPORT_SYMBOL(complete);
3221
3222/**
3223 * complete_all: - signals all threads waiting on this completion
3224 * @x:  holds the state of this particular completion
3225 *
3226 * This will wake up all threads waiting on this particular completion event.
3227 *
3228 * It may be assumed that this function implies a write memory barrier before
3229 * changing the task state if and only if any tasks are woken up.
3230 */
3231void complete_all(struct completion *x)
3232{
3233	unsigned long flags;
3234
3235	spin_lock_irqsave(&x->wait.lock, flags);
3236	x->done += UINT_MAX/2;
3237	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3238	spin_unlock_irqrestore(&x->wait.lock, flags);
3239}
3240EXPORT_SYMBOL(complete_all);
3241
3242static inline long __sched
3243do_wait_for_common(struct completion *x, long timeout, int state)
3244{
3245	if (!x->done) {
3246		DECLARE_WAITQUEUE(wait, current);
3247
3248		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3249		do {
3250			if (signal_pending_state(state, current)) {
3251				timeout = -ERESTARTSYS;
3252				break;
3253			}
3254			__set_current_state(state);
3255			spin_unlock_irq(&x->wait.lock);
3256			timeout = schedule_timeout(timeout);
3257			spin_lock_irq(&x->wait.lock);
3258		} while (!x->done && timeout);
3259		__remove_wait_queue(&x->wait, &wait);
3260		if (!x->done)
3261			return timeout;
3262	}
3263	x->done--;
3264	return timeout ?: 1;
3265}
3266
3267static long __sched
3268wait_for_common(struct completion *x, long timeout, int state)
3269{
3270	might_sleep();
3271
3272	spin_lock_irq(&x->wait.lock);
3273	timeout = do_wait_for_common(x, timeout, state);
3274	spin_unlock_irq(&x->wait.lock);
3275	return timeout;
3276}
3277
3278/**
3279 * wait_for_completion: - waits for completion of a task
3280 * @x:  holds the state of this particular completion
3281 *
3282 * This waits to be signaled for completion of a specific task. It is NOT
3283 * interruptible and there is no timeout.
3284 *
3285 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3286 * and interrupt capability. Also see complete().
3287 */
3288void __sched wait_for_completion(struct completion *x)
3289{
3290	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3291}
3292EXPORT_SYMBOL(wait_for_completion);
3293
3294/**
3295 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3296 * @x:  holds the state of this particular completion
3297 * @timeout:  timeout value in jiffies
3298 *
3299 * This waits for either a completion of a specific task to be signaled or for a
3300 * specified timeout to expire. The timeout is in jiffies. It is not
3301 * interruptible.
3302 *
3303 * The return value is 0 if timed out, and positive (at least 1, or number of
3304 * jiffies left till timeout) if completed.
3305 */
3306unsigned long __sched
3307wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3308{
3309	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3310}
3311EXPORT_SYMBOL(wait_for_completion_timeout);
3312
3313/**
3314 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3315 * @x:  holds the state of this particular completion
3316 *
3317 * This waits for completion of a specific task to be signaled. It is
3318 * interruptible.
3319 *
3320 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3321 */
3322int __sched wait_for_completion_interruptible(struct completion *x)
3323{
3324	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3325	if (t == -ERESTARTSYS)
3326		return t;
3327	return 0;
3328}
3329EXPORT_SYMBOL(wait_for_completion_interruptible);
3330
3331/**
3332 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3333 * @x:  holds the state of this particular completion
3334 * @timeout:  timeout value in jiffies
3335 *
3336 * This waits for either a completion of a specific task to be signaled or for a
3337 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3338 *
3339 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3340 * positive (at least 1, or number of jiffies left till timeout) if completed.
3341 */
3342long __sched
3343wait_for_completion_interruptible_timeout(struct completion *x,
3344					  unsigned long timeout)
3345{
3346	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3347}
3348EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3349
3350/**
3351 * wait_for_completion_killable: - waits for completion of a task (killable)
3352 * @x:  holds the state of this particular completion
3353 *
3354 * This waits to be signaled for completion of a specific task. It can be
3355 * interrupted by a kill signal.
3356 *
3357 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3358 */
3359int __sched wait_for_completion_killable(struct completion *x)
3360{
3361	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3362	if (t == -ERESTARTSYS)
3363		return t;
3364	return 0;
3365}
3366EXPORT_SYMBOL(wait_for_completion_killable);
3367
3368/**
3369 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3370 * @x:  holds the state of this particular completion
3371 * @timeout:  timeout value in jiffies
3372 *
3373 * This waits for either a completion of a specific task to be
3374 * signaled or for a specified timeout to expire. It can be
3375 * interrupted by a kill signal. The timeout is in jiffies.
3376 *
3377 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3378 * positive (at least 1, or number of jiffies left till timeout) if completed.
3379 */
3380long __sched
3381wait_for_completion_killable_timeout(struct completion *x,
3382				     unsigned long timeout)
3383{
3384	return wait_for_common(x, timeout, TASK_KILLABLE);
3385}
3386EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3387
3388/**
3389 *	try_wait_for_completion - try to decrement a completion without blocking
3390 *	@x:	completion structure
3391 *
3392 *	Returns: 0 if a decrement cannot be done without blocking
3393 *		 1 if a decrement succeeded.
3394 *
3395 *	If a completion is being used as a counting completion,
3396 *	attempt to decrement the counter without blocking. This
3397 *	enables us to avoid waiting if the resource the completion
3398 *	is protecting is not available.
3399 */
3400bool try_wait_for_completion(struct completion *x)
3401{
3402	unsigned long flags;
3403	int ret = 1;
3404
3405	spin_lock_irqsave(&x->wait.lock, flags);
3406	if (!x->done)
3407		ret = 0;
3408	else
3409		x->done--;
3410	spin_unlock_irqrestore(&x->wait.lock, flags);
3411	return ret;
3412}
3413EXPORT_SYMBOL(try_wait_for_completion);
3414
3415/**
3416 *	completion_done - Test to see if a completion has any waiters
3417 *	@x:	completion structure
3418 *
3419 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3420 *		 1 if there are no waiters.
3421 *
3422 */
3423bool completion_done(struct completion *x)
3424{
3425	unsigned long flags;
3426	int ret = 1;
3427
3428	spin_lock_irqsave(&x->wait.lock, flags);
3429	if (!x->done)
3430		ret = 0;
3431	spin_unlock_irqrestore(&x->wait.lock, flags);
3432	return ret;
3433}
3434EXPORT_SYMBOL(completion_done);
3435
3436static long __sched
3437sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3438{
3439	unsigned long flags;
3440	wait_queue_t wait;
3441
3442	init_waitqueue_entry(&wait, current);
3443
3444	__set_current_state(state);
3445
3446	spin_lock_irqsave(&q->lock, flags);
3447	__add_wait_queue(q, &wait);
3448	spin_unlock(&q->lock);
3449	timeout = schedule_timeout(timeout);
3450	spin_lock_irq(&q->lock);
3451	__remove_wait_queue(q, &wait);
3452	spin_unlock_irqrestore(&q->lock, flags);
3453
3454	return timeout;
3455}
3456
3457void __sched interruptible_sleep_on(wait_queue_head_t *q)
3458{
3459	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3460}
3461EXPORT_SYMBOL(interruptible_sleep_on);
3462
3463long __sched
3464interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3465{
3466	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3467}
3468EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3469
3470void __sched sleep_on(wait_queue_head_t *q)
3471{
3472	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3473}
3474EXPORT_SYMBOL(sleep_on);
3475
3476long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3477{
3478	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3479}
3480EXPORT_SYMBOL(sleep_on_timeout);
3481
3482#ifdef CONFIG_RT_MUTEXES
3483
3484/*
3485 * rt_mutex_setprio - set the current priority of a task
3486 * @p: task
3487 * @prio: prio value (kernel-internal form)
3488 *
3489 * This function changes the 'effective' priority of a task. It does
3490 * not touch ->normal_prio like __setscheduler().
3491 *
3492 * Used by the rt_mutex code to implement priority inheritance logic.
3493 */
3494void rt_mutex_setprio(struct task_struct *p, int prio)
3495{
3496	int oldprio, on_rq, running;
3497	struct rq *rq;
3498	const struct sched_class *prev_class;
3499
3500	BUG_ON(prio < 0 || prio > MAX_PRIO);
3501
3502	rq = __task_rq_lock(p);
3503
3504	/*
3505	 * Idle task boosting is a nono in general. There is one
3506	 * exception, when PREEMPT_RT and NOHZ is active:
3507	 *
3508	 * The idle task calls get_next_timer_interrupt() and holds
3509	 * the timer wheel base->lock on the CPU and another CPU wants
3510	 * to access the timer (probably to cancel it). We can safely
3511	 * ignore the boosting request, as the idle CPU runs this code
3512	 * with interrupts disabled and will complete the lock
3513	 * protected section without being interrupted. So there is no
3514	 * real need to boost.
3515	 */
3516	if (unlikely(p == rq->idle)) {
3517		WARN_ON(p != rq->curr);
3518		WARN_ON(p->pi_blocked_on);
3519		goto out_unlock;
3520	}
3521
3522	trace_sched_pi_setprio(p, prio);
3523	oldprio = p->prio;
3524	prev_class = p->sched_class;
3525	on_rq = p->on_rq;
3526	running = task_current(rq, p);
3527	if (on_rq)
3528		dequeue_task(rq, p, 0);
3529	if (running)
3530		p->sched_class->put_prev_task(rq, p);
3531
3532	if (rt_prio(prio))
3533		p->sched_class = &rt_sched_class;
3534	else
3535		p->sched_class = &fair_sched_class;
3536
3537	p->prio = prio;
3538
3539	if (running)
3540		p->sched_class->set_curr_task(rq);
3541	if (on_rq)
3542		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3543
3544	check_class_changed(rq, p, prev_class, oldprio);
3545out_unlock:
3546	__task_rq_unlock(rq);
3547}
3548#endif
3549void set_user_nice(struct task_struct *p, long nice)
3550{
3551	int old_prio, delta, on_rq;
3552	unsigned long flags;
3553	struct rq *rq;
3554
3555	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3556		return;
3557	/*
3558	 * We have to be careful, if called from sys_setpriority(),
3559	 * the task might be in the middle of scheduling on another CPU.
3560	 */
3561	rq = task_rq_lock(p, &flags);
3562	/*
3563	 * The RT priorities are set via sched_setscheduler(), but we still
3564	 * allow the 'normal' nice value to be set - but as expected
3565	 * it wont have any effect on scheduling until the task is
3566	 * SCHED_FIFO/SCHED_RR:
3567	 */
3568	if (task_has_rt_policy(p)) {
3569		p->static_prio = NICE_TO_PRIO(nice);
3570		goto out_unlock;
3571	}
3572	on_rq = p->on_rq;
3573	if (on_rq)
3574		dequeue_task(rq, p, 0);
3575
3576	p->static_prio = NICE_TO_PRIO(nice);
3577	set_load_weight(p);
3578	old_prio = p->prio;
3579	p->prio = effective_prio(p);
3580	delta = p->prio - old_prio;
3581
3582	if (on_rq) {
3583		enqueue_task(rq, p, 0);
3584		/*
3585		 * If the task increased its priority or is running and
3586		 * lowered its priority, then reschedule its CPU:
3587		 */
3588		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3589			resched_task(rq->curr);
3590	}
3591out_unlock:
3592	task_rq_unlock(rq, p, &flags);
3593}
3594EXPORT_SYMBOL(set_user_nice);
3595
3596/*
3597 * can_nice - check if a task can reduce its nice value
3598 * @p: task
3599 * @nice: nice value
3600 */
3601int can_nice(const struct task_struct *p, const int nice)
3602{
3603	/* convert nice value [19,-20] to rlimit style value [1,40] */
3604	int nice_rlim = 20 - nice;
3605
3606	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3607		capable(CAP_SYS_NICE));
3608}
3609
3610#ifdef __ARCH_WANT_SYS_NICE
3611
3612/*
3613 * sys_nice - change the priority of the current process.
3614 * @increment: priority increment
3615 *
3616 * sys_setpriority is a more generic, but much slower function that
3617 * does similar things.
3618 */
3619SYSCALL_DEFINE1(nice, int, increment)
3620{
3621	long nice, retval;
3622
3623	/*
3624	 * Setpriority might change our priority at the same moment.
3625	 * We don't have to worry. Conceptually one call occurs first
3626	 * and we have a single winner.
3627	 */
3628	if (increment < -40)
3629		increment = -40;
3630	if (increment > 40)
3631		increment = 40;
3632
3633	nice = TASK_NICE(current) + increment;
3634	if (nice < -20)
3635		nice = -20;
3636	if (nice > 19)
3637		nice = 19;
3638
3639	if (increment < 0 && !can_nice(current, nice))
3640		return -EPERM;
3641
3642	retval = security_task_setnice(current, nice);
3643	if (retval)
3644		return retval;
3645
3646	set_user_nice(current, nice);
3647	return 0;
3648}
3649
3650#endif
3651
3652/**
3653 * task_prio - return the priority value of a given task.
3654 * @p: the task in question.
3655 *
3656 * This is the priority value as seen by users in /proc.
3657 * RT tasks are offset by -200. Normal tasks are centered
3658 * around 0, value goes from -16 to +15.
3659 */
3660int task_prio(const struct task_struct *p)
3661{
3662	return p->prio - MAX_RT_PRIO;
3663}
3664
3665/**
3666 * task_nice - return the nice value of a given task.
3667 * @p: the task in question.
3668 */
3669int task_nice(const struct task_struct *p)
3670{
3671	return TASK_NICE(p);
3672}
3673EXPORT_SYMBOL(task_nice);
3674
3675/**
3676 * idle_cpu - is a given cpu idle currently?
3677 * @cpu: the processor in question.
3678 */
3679int idle_cpu(int cpu)
3680{
3681	struct rq *rq = cpu_rq(cpu);
3682
3683	if (rq->curr != rq->idle)
3684		return 0;
3685
3686	if (rq->nr_running)
3687		return 0;
3688
3689#ifdef CONFIG_SMP
3690	if (!llist_empty(&rq->wake_list))
3691		return 0;
3692#endif
3693
3694	return 1;
3695}
3696
3697/**
3698 * idle_task - return the idle task for a given cpu.
3699 * @cpu: the processor in question.
3700 */
3701struct task_struct *idle_task(int cpu)
3702{
3703	return cpu_rq(cpu)->idle;
3704}
3705
3706/**
3707 * find_process_by_pid - find a process with a matching PID value.
3708 * @pid: the pid in question.
3709 */
3710static struct task_struct *find_process_by_pid(pid_t pid)
3711{
3712	return pid ? find_task_by_vpid(pid) : current;
3713}
3714
3715/* Actually do priority change: must hold rq lock. */
3716static void
3717__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3718{
3719	p->policy = policy;
3720	p->rt_priority = prio;
3721	p->normal_prio = normal_prio(p);
3722	/* we are holding p->pi_lock already */
3723	p->prio = rt_mutex_getprio(p);
3724	if (rt_prio(p->prio))
3725		p->sched_class = &rt_sched_class;
3726	else
3727		p->sched_class = &fair_sched_class;
3728	set_load_weight(p);
3729}
3730
3731/*
3732 * check the target process has a UID that matches the current process's
3733 */
3734static bool check_same_owner(struct task_struct *p)
3735{
3736	const struct cred *cred = current_cred(), *pcred;
3737	bool match;
3738
3739	rcu_read_lock();
3740	pcred = __task_cred(p);
3741	match = (uid_eq(cred->euid, pcred->euid) ||
3742		 uid_eq(cred->euid, pcred->uid));
3743	rcu_read_unlock();
3744	return match;
3745}
3746
3747static int __sched_setscheduler(struct task_struct *p, int policy,
3748				const struct sched_param *param, bool user)
3749{
3750	int retval, oldprio, oldpolicy = -1, on_rq, running;
3751	unsigned long flags;
3752	const struct sched_class *prev_class;
3753	struct rq *rq;
3754	int reset_on_fork;
3755
3756	/* may grab non-irq protected spin_locks */
3757	BUG_ON(in_interrupt());
3758recheck:
3759	/* double check policy once rq lock held */
3760	if (policy < 0) {
3761		reset_on_fork = p->sched_reset_on_fork;
3762		policy = oldpolicy = p->policy;
3763	} else {
3764		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3765		policy &= ~SCHED_RESET_ON_FORK;
3766
3767		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3768				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3769				policy != SCHED_IDLE)
3770			return -EINVAL;
3771	}
3772
3773	/*
3774	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3775	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3776	 * SCHED_BATCH and SCHED_IDLE is 0.
3777	 */
3778	if (param->sched_priority < 0 ||
3779	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3780	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3781		return -EINVAL;
3782	if (rt_policy(policy) != (param->sched_priority != 0))
3783		return -EINVAL;
3784
3785	/*
3786	 * Allow unprivileged RT tasks to decrease priority:
3787	 */
3788	if (user && !capable(CAP_SYS_NICE)) {
3789		if (rt_policy(policy)) {
3790			unsigned long rlim_rtprio =
3791					task_rlimit(p, RLIMIT_RTPRIO);
3792
3793			/* can't set/change the rt policy */
3794			if (policy != p->policy && !rlim_rtprio)
3795				return -EPERM;
3796
3797			/* can't increase priority */
3798			if (param->sched_priority > p->rt_priority &&
3799			    param->sched_priority > rlim_rtprio)
3800				return -EPERM;
3801		}
3802
3803		/*
3804		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3805		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3806		 */
3807		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3808			if (!can_nice(p, TASK_NICE(p)))
3809				return -EPERM;
3810		}
3811
3812		/* can't change other user's priorities */
3813		if (!check_same_owner(p))
3814			return -EPERM;
3815
3816		/* Normal users shall not reset the sched_reset_on_fork flag */
3817		if (p->sched_reset_on_fork && !reset_on_fork)
3818			return -EPERM;
3819	}
3820
3821	if (user) {
3822		retval = security_task_setscheduler(p);
3823		if (retval)
3824			return retval;
3825	}
3826
3827	/*
3828	 * make sure no PI-waiters arrive (or leave) while we are
3829	 * changing the priority of the task:
3830	 *
3831	 * To be able to change p->policy safely, the appropriate
3832	 * runqueue lock must be held.
3833	 */
3834	rq = task_rq_lock(p, &flags);
3835
3836	/*
3837	 * Changing the policy of the stop threads its a very bad idea
3838	 */
3839	if (p == rq->stop) {
3840		task_rq_unlock(rq, p, &flags);
3841		return -EINVAL;
3842	}
3843
3844	/*
3845	 * If not changing anything there's no need to proceed further:
3846	 */
3847	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3848			param->sched_priority == p->rt_priority))) {
3849		task_rq_unlock(rq, p, &flags);
3850		return 0;
3851	}
3852
3853#ifdef CONFIG_RT_GROUP_SCHED
3854	if (user) {
3855		/*
3856		 * Do not allow realtime tasks into groups that have no runtime
3857		 * assigned.
3858		 */
3859		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3860				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3861				!task_group_is_autogroup(task_group(p))) {
3862			task_rq_unlock(rq, p, &flags);
3863			return -EPERM;
3864		}
3865	}
3866#endif
3867
3868	/* recheck policy now with rq lock held */
3869	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3870		policy = oldpolicy = -1;
3871		task_rq_unlock(rq, p, &flags);
3872		goto recheck;
3873	}
3874	on_rq = p->on_rq;
3875	running = task_current(rq, p);
3876	if (on_rq)
3877		dequeue_task(rq, p, 0);
3878	if (running)
3879		p->sched_class->put_prev_task(rq, p);
3880
3881	p->sched_reset_on_fork = reset_on_fork;
3882
3883	oldprio = p->prio;
3884	prev_class = p->sched_class;
3885	__setscheduler(rq, p, policy, param->sched_priority);
3886
3887	if (running)
3888		p->sched_class->set_curr_task(rq);
3889	if (on_rq)
3890		enqueue_task(rq, p, 0);
3891
3892	check_class_changed(rq, p, prev_class, oldprio);
3893	task_rq_unlock(rq, p, &flags);
3894
3895	rt_mutex_adjust_pi(p);
3896
3897	return 0;
3898}
3899
3900/**
3901 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3902 * @p: the task in question.
3903 * @policy: new policy.
3904 * @param: structure containing the new RT priority.
3905 *
3906 * NOTE that the task may be already dead.
3907 */
3908int sched_setscheduler(struct task_struct *p, int policy,
3909		       const struct sched_param *param)
3910{
3911	return __sched_setscheduler(p, policy, param, true);
3912}
3913EXPORT_SYMBOL_GPL(sched_setscheduler);
3914
3915/**
3916 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3917 * @p: the task in question.
3918 * @policy: new policy.
3919 * @param: structure containing the new RT priority.
3920 *
3921 * Just like sched_setscheduler, only don't bother checking if the
3922 * current context has permission.  For example, this is needed in
3923 * stop_machine(): we create temporary high priority worker threads,
3924 * but our caller might not have that capability.
3925 */
3926int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3927			       const struct sched_param *param)
3928{
3929	return __sched_setscheduler(p, policy, param, false);
3930}
3931
3932static int
3933do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3934{
3935	struct sched_param lparam;
3936	struct task_struct *p;
3937	int retval;
3938
3939	if (!param || pid < 0)
3940		return -EINVAL;
3941	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3942		return -EFAULT;
3943
3944	rcu_read_lock();
3945	retval = -ESRCH;
3946	p = find_process_by_pid(pid);
3947	if (p != NULL)
3948		retval = sched_setscheduler(p, policy, &lparam);
3949	rcu_read_unlock();
3950
3951	return retval;
3952}
3953
3954/**
3955 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3956 * @pid: the pid in question.
3957 * @policy: new policy.
3958 * @param: structure containing the new RT priority.
3959 */
3960SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3961		struct sched_param __user *, param)
3962{
3963	/* negative values for policy are not valid */
3964	if (policy < 0)
3965		return -EINVAL;
3966
3967	return do_sched_setscheduler(pid, policy, param);
3968}
3969
3970/**
3971 * sys_sched_setparam - set/change the RT priority of a thread
3972 * @pid: the pid in question.
3973 * @param: structure containing the new RT priority.
3974 */
3975SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3976{
3977	return do_sched_setscheduler(pid, -1, param);
3978}
3979
3980/**
3981 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3982 * @pid: the pid in question.
3983 */
3984SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3985{
3986	struct task_struct *p;
3987	int retval;
3988
3989	if (pid < 0)
3990		return -EINVAL;
3991
3992	retval = -ESRCH;
3993	rcu_read_lock();
3994	p = find_process_by_pid(pid);
3995	if (p) {
3996		retval = security_task_getscheduler(p);
3997		if (!retval)
3998			retval = p->policy
3999				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4000	}
4001	rcu_read_unlock();
4002	return retval;
4003}
4004
4005/**
4006 * sys_sched_getparam - get the RT priority of a thread
4007 * @pid: the pid in question.
4008 * @param: structure containing the RT priority.
4009 */
4010SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4011{
4012	struct sched_param lp;
4013	struct task_struct *p;
4014	int retval;
4015
4016	if (!param || pid < 0)
4017		return -EINVAL;
4018
4019	rcu_read_lock();
4020	p = find_process_by_pid(pid);
4021	retval = -ESRCH;
4022	if (!p)
4023		goto out_unlock;
4024
4025	retval = security_task_getscheduler(p);
4026	if (retval)
4027		goto out_unlock;
4028
4029	lp.sched_priority = p->rt_priority;
4030	rcu_read_unlock();
4031
4032	/*
4033	 * This one might sleep, we cannot do it with a spinlock held ...
4034	 */
4035	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4036
4037	return retval;
4038
4039out_unlock:
4040	rcu_read_unlock();
4041	return retval;
4042}
4043
4044long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4045{
4046	cpumask_var_t cpus_allowed, new_mask;
4047	struct task_struct *p;
4048	int retval;
4049
4050	get_online_cpus();
4051	rcu_read_lock();
4052
4053	p = find_process_by_pid(pid);
4054	if (!p) {
4055		rcu_read_unlock();
4056		put_online_cpus();
4057		return -ESRCH;
4058	}
4059
4060	/* Prevent p going away */
4061	get_task_struct(p);
4062	rcu_read_unlock();
4063
4064	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4065		retval = -ENOMEM;
4066		goto out_put_task;
4067	}
4068	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4069		retval = -ENOMEM;
4070		goto out_free_cpus_allowed;
4071	}
4072	retval = -EPERM;
4073	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4074		goto out_unlock;
4075
4076	retval = security_task_setscheduler(p);
4077	if (retval)
4078		goto out_unlock;
4079
4080	cpuset_cpus_allowed(p, cpus_allowed);
4081	cpumask_and(new_mask, in_mask, cpus_allowed);
4082again:
4083	retval = set_cpus_allowed_ptr(p, new_mask);
4084
4085	if (!retval) {
4086		cpuset_cpus_allowed(p, cpus_allowed);
4087		if (!cpumask_subset(new_mask, cpus_allowed)) {
4088			/*
4089			 * We must have raced with a concurrent cpuset
4090			 * update. Just reset the cpus_allowed to the
4091			 * cpuset's cpus_allowed
4092			 */
4093			cpumask_copy(new_mask, cpus_allowed);
4094			goto again;
4095		}
4096	}
4097out_unlock:
4098	free_cpumask_var(new_mask);
4099out_free_cpus_allowed:
4100	free_cpumask_var(cpus_allowed);
4101out_put_task:
4102	put_task_struct(p);
4103	put_online_cpus();
4104	return retval;
4105}
4106
4107static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4108			     struct cpumask *new_mask)
4109{
4110	if (len < cpumask_size())
4111		cpumask_clear(new_mask);
4112	else if (len > cpumask_size())
4113		len = cpumask_size();
4114
4115	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4116}
4117
4118/**
4119 * sys_sched_setaffinity - set the cpu affinity of a process
4120 * @pid: pid of the process
4121 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4122 * @user_mask_ptr: user-space pointer to the new cpu mask
4123 */
4124SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4125		unsigned long __user *, user_mask_ptr)
4126{
4127	cpumask_var_t new_mask;
4128	int retval;
4129
4130	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4131		return -ENOMEM;
4132
4133	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4134	if (retval == 0)
4135		retval = sched_setaffinity(pid, new_mask);
4136	free_cpumask_var(new_mask);
4137	return retval;
4138}
4139
4140long sched_getaffinity(pid_t pid, struct cpumask *mask)
4141{
4142	struct task_struct *p;
4143	unsigned long flags;
4144	int retval;
4145
4146	get_online_cpus();
4147	rcu_read_lock();
4148
4149	retval = -ESRCH;
4150	p = find_process_by_pid(pid);
4151	if (!p)
4152		goto out_unlock;
4153
4154	retval = security_task_getscheduler(p);
4155	if (retval)
4156		goto out_unlock;
4157
4158	raw_spin_lock_irqsave(&p->pi_lock, flags);
4159	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4160	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4161
4162out_unlock:
4163	rcu_read_unlock();
4164	put_online_cpus();
4165
4166	return retval;
4167}
4168
4169/**
4170 * sys_sched_getaffinity - get the cpu affinity of a process
4171 * @pid: pid of the process
4172 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4173 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4174 */
4175SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4176		unsigned long __user *, user_mask_ptr)
4177{
4178	int ret;
4179	cpumask_var_t mask;
4180
4181	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4182		return -EINVAL;
4183	if (len & (sizeof(unsigned long)-1))
4184		return -EINVAL;
4185
4186	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4187		return -ENOMEM;
4188
4189	ret = sched_getaffinity(pid, mask);
4190	if (ret == 0) {
4191		size_t retlen = min_t(size_t, len, cpumask_size());
4192
4193		if (copy_to_user(user_mask_ptr, mask, retlen))
4194			ret = -EFAULT;
4195		else
4196			ret = retlen;
4197	}
4198	free_cpumask_var(mask);
4199
4200	return ret;
4201}
4202
4203/**
4204 * sys_sched_yield - yield the current processor to other threads.
4205 *
4206 * This function yields the current CPU to other tasks. If there are no
4207 * other threads running on this CPU then this function will return.
4208 */
4209SYSCALL_DEFINE0(sched_yield)
4210{
4211	struct rq *rq = this_rq_lock();
4212
4213	schedstat_inc(rq, yld_count);
4214	current->sched_class->yield_task(rq);
4215
4216	/*
4217	 * Since we are going to call schedule() anyway, there's
4218	 * no need to preempt or enable interrupts:
4219	 */
4220	__release(rq->lock);
4221	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4222	do_raw_spin_unlock(&rq->lock);
4223	sched_preempt_enable_no_resched();
4224
4225	schedule();
4226
4227	return 0;
4228}
4229
4230static inline int should_resched(void)
4231{
4232	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4233}
4234
4235static void __cond_resched(void)
4236{
4237	add_preempt_count(PREEMPT_ACTIVE);
4238	__schedule();
4239	sub_preempt_count(PREEMPT_ACTIVE);
4240}
4241
4242int __sched _cond_resched(void)
4243{
4244	if (should_resched()) {
4245		__cond_resched();
4246		return 1;
4247	}
4248	return 0;
4249}
4250EXPORT_SYMBOL(_cond_resched);
4251
4252/*
4253 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4254 * call schedule, and on return reacquire the lock.
4255 *
4256 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4257 * operations here to prevent schedule() from being called twice (once via
4258 * spin_unlock(), once by hand).
4259 */
4260int __cond_resched_lock(spinlock_t *lock)
4261{
4262	int resched = should_resched();
4263	int ret = 0;
4264
4265	lockdep_assert_held(lock);
4266
4267	if (spin_needbreak(lock) || resched) {
4268		spin_unlock(lock);
4269		if (resched)
4270			__cond_resched();
4271		else
4272			cpu_relax();
4273		ret = 1;
4274		spin_lock(lock);
4275	}
4276	return ret;
4277}
4278EXPORT_SYMBOL(__cond_resched_lock);
4279
4280int __sched __cond_resched_softirq(void)
4281{
4282	BUG_ON(!in_softirq());
4283
4284	if (should_resched()) {
4285		local_bh_enable();
4286		__cond_resched();
4287		local_bh_disable();
4288		return 1;
4289	}
4290	return 0;
4291}
4292EXPORT_SYMBOL(__cond_resched_softirq);
4293
4294/**
4295 * yield - yield the current processor to other threads.
4296 *
4297 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4298 *
4299 * The scheduler is at all times free to pick the calling task as the most
4300 * eligible task to run, if removing the yield() call from your code breaks
4301 * it, its already broken.
4302 *
4303 * Typical broken usage is:
4304 *
4305 * while (!event)
4306 * 	yield();
4307 *
4308 * where one assumes that yield() will let 'the other' process run that will
4309 * make event true. If the current task is a SCHED_FIFO task that will never
4310 * happen. Never use yield() as a progress guarantee!!
4311 *
4312 * If you want to use yield() to wait for something, use wait_event().
4313 * If you want to use yield() to be 'nice' for others, use cond_resched().
4314 * If you still want to use yield(), do not!
4315 */
4316void __sched yield(void)
4317{
4318	set_current_state(TASK_RUNNING);
4319	sys_sched_yield();
4320}
4321EXPORT_SYMBOL(yield);
4322
4323/**
4324 * yield_to - yield the current processor to another thread in
4325 * your thread group, or accelerate that thread toward the
4326 * processor it's on.
4327 * @p: target task
4328 * @preempt: whether task preemption is allowed or not
4329 *
4330 * It's the caller's job to ensure that the target task struct
4331 * can't go away on us before we can do any checks.
4332 *
4333 * Returns true if we indeed boosted the target task.
4334 */
4335bool __sched yield_to(struct task_struct *p, bool preempt)
4336{
4337	struct task_struct *curr = current;
4338	struct rq *rq, *p_rq;
4339	unsigned long flags;
4340	bool yielded = 0;
4341
4342	local_irq_save(flags);
4343	rq = this_rq();
4344
4345again:
4346	p_rq = task_rq(p);
4347	double_rq_lock(rq, p_rq);
4348	while (task_rq(p) != p_rq) {
4349		double_rq_unlock(rq, p_rq);
4350		goto again;
4351	}
4352
4353	if (!curr->sched_class->yield_to_task)
4354		goto out;
4355
4356	if (curr->sched_class != p->sched_class)
4357		goto out;
4358
4359	if (task_running(p_rq, p) || p->state)
4360		goto out;
4361
4362	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4363	if (yielded) {
4364		schedstat_inc(rq, yld_count);
4365		/*
4366		 * Make p's CPU reschedule; pick_next_entity takes care of
4367		 * fairness.
4368		 */
4369		if (preempt && rq != p_rq)
4370			resched_task(p_rq->curr);
4371	}
4372
4373out:
4374	double_rq_unlock(rq, p_rq);
4375	local_irq_restore(flags);
4376
4377	if (yielded)
4378		schedule();
4379
4380	return yielded;
4381}
4382EXPORT_SYMBOL_GPL(yield_to);
4383
4384/*
4385 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4386 * that process accounting knows that this is a task in IO wait state.
4387 */
4388void __sched io_schedule(void)
4389{
4390	struct rq *rq = raw_rq();
4391
4392	delayacct_blkio_start();
4393	atomic_inc(&rq->nr_iowait);
4394	blk_flush_plug(current);
4395	current->in_iowait = 1;
4396	schedule();
4397	current->in_iowait = 0;
4398	atomic_dec(&rq->nr_iowait);
4399	delayacct_blkio_end();
4400}
4401EXPORT_SYMBOL(io_schedule);
4402
4403long __sched io_schedule_timeout(long timeout)
4404{
4405	struct rq *rq = raw_rq();
4406	long ret;
4407
4408	delayacct_blkio_start();
4409	atomic_inc(&rq->nr_iowait);
4410	blk_flush_plug(current);
4411	current->in_iowait = 1;
4412	ret = schedule_timeout(timeout);
4413	current->in_iowait = 0;
4414	atomic_dec(&rq->nr_iowait);
4415	delayacct_blkio_end();
4416	return ret;
4417}
4418
4419/**
4420 * sys_sched_get_priority_max - return maximum RT priority.
4421 * @policy: scheduling class.
4422 *
4423 * this syscall returns the maximum rt_priority that can be used
4424 * by a given scheduling class.
4425 */
4426SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4427{
4428	int ret = -EINVAL;
4429
4430	switch (policy) {
4431	case SCHED_FIFO:
4432	case SCHED_RR:
4433		ret = MAX_USER_RT_PRIO-1;
4434		break;
4435	case SCHED_NORMAL:
4436	case SCHED_BATCH:
4437	case SCHED_IDLE:
4438		ret = 0;
4439		break;
4440	}
4441	return ret;
4442}
4443
4444/**
4445 * sys_sched_get_priority_min - return minimum RT priority.
4446 * @policy: scheduling class.
4447 *
4448 * this syscall returns the minimum rt_priority that can be used
4449 * by a given scheduling class.
4450 */
4451SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4452{
4453	int ret = -EINVAL;
4454
4455	switch (policy) {
4456	case SCHED_FIFO:
4457	case SCHED_RR:
4458		ret = 1;
4459		break;
4460	case SCHED_NORMAL:
4461	case SCHED_BATCH:
4462	case SCHED_IDLE:
4463		ret = 0;
4464	}
4465	return ret;
4466}
4467
4468/**
4469 * sys_sched_rr_get_interval - return the default timeslice of a process.
4470 * @pid: pid of the process.
4471 * @interval: userspace pointer to the timeslice value.
4472 *
4473 * this syscall writes the default timeslice value of a given process
4474 * into the user-space timespec buffer. A value of '0' means infinity.
4475 */
4476SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4477		struct timespec __user *, interval)
4478{
4479	struct task_struct *p;
4480	unsigned int time_slice;
4481	unsigned long flags;
4482	struct rq *rq;
4483	int retval;
4484	struct timespec t;
4485
4486	if (pid < 0)
4487		return -EINVAL;
4488
4489	retval = -ESRCH;
4490	rcu_read_lock();
4491	p = find_process_by_pid(pid);
4492	if (!p)
4493		goto out_unlock;
4494
4495	retval = security_task_getscheduler(p);
4496	if (retval)
4497		goto out_unlock;
4498
4499	rq = task_rq_lock(p, &flags);
4500	time_slice = p->sched_class->get_rr_interval(rq, p);
4501	task_rq_unlock(rq, p, &flags);
4502
4503	rcu_read_unlock();
4504	jiffies_to_timespec(time_slice, &t);
4505	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4506	return retval;
4507
4508out_unlock:
4509	rcu_read_unlock();
4510	return retval;
4511}
4512
4513static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4514
4515void sched_show_task(struct task_struct *p)
4516{
4517	unsigned long free = 0;
4518	unsigned state;
4519
4520	state = p->state ? __ffs(p->state) + 1 : 0;
4521	printk(KERN_INFO "%-15.15s %c", p->comm,
4522		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4523#if BITS_PER_LONG == 32
4524	if (state == TASK_RUNNING)
4525		printk(KERN_CONT " running  ");
4526	else
4527		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4528#else
4529	if (state == TASK_RUNNING)
4530		printk(KERN_CONT "  running task    ");
4531	else
4532		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4533#endif
4534#ifdef CONFIG_DEBUG_STACK_USAGE
4535	free = stack_not_used(p);
4536#endif
4537	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4538		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4539		(unsigned long)task_thread_info(p)->flags);
4540
4541	show_stack(p, NULL);
4542}
4543
4544void show_state_filter(unsigned long state_filter)
4545{
4546	struct task_struct *g, *p;
4547
4548#if BITS_PER_LONG == 32
4549	printk(KERN_INFO
4550		"  task                PC stack   pid father\n");
4551#else
4552	printk(KERN_INFO
4553		"  task                        PC stack   pid father\n");
4554#endif
4555	rcu_read_lock();
4556	do_each_thread(g, p) {
4557		/*
4558		 * reset the NMI-timeout, listing all files on a slow
4559		 * console might take a lot of time:
4560		 */
4561		touch_nmi_watchdog();
4562		if (!state_filter || (p->state & state_filter))
4563			sched_show_task(p);
4564	} while_each_thread(g, p);
4565
4566	touch_all_softlockup_watchdogs();
4567
4568#ifdef CONFIG_SCHED_DEBUG
4569	sysrq_sched_debug_show();
4570#endif
4571	rcu_read_unlock();
4572	/*
4573	 * Only show locks if all tasks are dumped:
4574	 */
4575	if (!state_filter)
4576		debug_show_all_locks();
4577}
4578
4579void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4580{
4581	idle->sched_class = &idle_sched_class;
4582}
4583
4584/**
4585 * init_idle - set up an idle thread for a given CPU
4586 * @idle: task in question
4587 * @cpu: cpu the idle task belongs to
4588 *
4589 * NOTE: this function does not set the idle thread's NEED_RESCHED
4590 * flag, to make booting more robust.
4591 */
4592void __cpuinit init_idle(struct task_struct *idle, int cpu)
4593{
4594	struct rq *rq = cpu_rq(cpu);
4595	unsigned long flags;
4596
4597	raw_spin_lock_irqsave(&rq->lock, flags);
4598
4599	__sched_fork(idle);
4600	idle->state = TASK_RUNNING;
4601	idle->se.exec_start = sched_clock();
4602
4603	do_set_cpus_allowed(idle, cpumask_of(cpu));
4604	/*
4605	 * We're having a chicken and egg problem, even though we are
4606	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4607	 * lockdep check in task_group() will fail.
4608	 *
4609	 * Similar case to sched_fork(). / Alternatively we could
4610	 * use task_rq_lock() here and obtain the other rq->lock.
4611	 *
4612	 * Silence PROVE_RCU
4613	 */
4614	rcu_read_lock();
4615	__set_task_cpu(idle, cpu);
4616	rcu_read_unlock();
4617
4618	rq->curr = rq->idle = idle;
4619#if defined(CONFIG_SMP)
4620	idle->on_cpu = 1;
4621#endif
4622	raw_spin_unlock_irqrestore(&rq->lock, flags);
4623
4624	/* Set the preempt count _outside_ the spinlocks! */
4625	task_thread_info(idle)->preempt_count = 0;
4626
4627	/*
4628	 * The idle tasks have their own, simple scheduling class:
4629	 */
4630	idle->sched_class = &idle_sched_class;
4631	ftrace_graph_init_idle_task(idle, cpu);
4632#if defined(CONFIG_SMP)
4633	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4634#endif
4635}
4636
4637#ifdef CONFIG_SMP
4638void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4639{
4640	if (p->sched_class && p->sched_class->set_cpus_allowed)
4641		p->sched_class->set_cpus_allowed(p, new_mask);
4642
4643	cpumask_copy(&p->cpus_allowed, new_mask);
4644	p->nr_cpus_allowed = cpumask_weight(new_mask);
4645}
4646
4647/*
4648 * This is how migration works:
4649 *
4650 * 1) we invoke migration_cpu_stop() on the target CPU using
4651 *    stop_one_cpu().
4652 * 2) stopper starts to run (implicitly forcing the migrated thread
4653 *    off the CPU)
4654 * 3) it checks whether the migrated task is still in the wrong runqueue.
4655 * 4) if it's in the wrong runqueue then the migration thread removes
4656 *    it and puts it into the right queue.
4657 * 5) stopper completes and stop_one_cpu() returns and the migration
4658 *    is done.
4659 */
4660
4661/*
4662 * Change a given task's CPU affinity. Migrate the thread to a
4663 * proper CPU and schedule it away if the CPU it's executing on
4664 * is removed from the allowed bitmask.
4665 *
4666 * NOTE: the caller must have a valid reference to the task, the
4667 * task must not exit() & deallocate itself prematurely. The
4668 * call is not atomic; no spinlocks may be held.
4669 */
4670int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4671{
4672	unsigned long flags;
4673	struct rq *rq;
4674	unsigned int dest_cpu;
4675	int ret = 0;
4676
4677	rq = task_rq_lock(p, &flags);
4678
4679	if (cpumask_equal(&p->cpus_allowed, new_mask))
4680		goto out;
4681
4682	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4683		ret = -EINVAL;
4684		goto out;
4685	}
4686
4687	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4688		ret = -EINVAL;
4689		goto out;
4690	}
4691
4692	do_set_cpus_allowed(p, new_mask);
4693
4694	/* Can the task run on the task's current CPU? If so, we're done */
4695	if (cpumask_test_cpu(task_cpu(p), new_mask))
4696		goto out;
4697
4698	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4699	if (p->on_rq) {
4700		struct migration_arg arg = { p, dest_cpu };
4701		/* Need help from migration thread: drop lock and wait. */
4702		task_rq_unlock(rq, p, &flags);
4703		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4704		tlb_migrate_finish(p->mm);
4705		return 0;
4706	}
4707out:
4708	task_rq_unlock(rq, p, &flags);
4709
4710	return ret;
4711}
4712EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4713
4714/*
4715 * Move (not current) task off this cpu, onto dest cpu. We're doing
4716 * this because either it can't run here any more (set_cpus_allowed()
4717 * away from this CPU, or CPU going down), or because we're
4718 * attempting to rebalance this task on exec (sched_exec).
4719 *
4720 * So we race with normal scheduler movements, but that's OK, as long
4721 * as the task is no longer on this CPU.
4722 *
4723 * Returns non-zero if task was successfully migrated.
4724 */
4725static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4726{
4727	struct rq *rq_dest, *rq_src;
4728	int ret = 0;
4729
4730	if (unlikely(!cpu_active(dest_cpu)))
4731		return ret;
4732
4733	rq_src = cpu_rq(src_cpu);
4734	rq_dest = cpu_rq(dest_cpu);
4735
4736	raw_spin_lock(&p->pi_lock);
4737	double_rq_lock(rq_src, rq_dest);
4738	/* Already moved. */
4739	if (task_cpu(p) != src_cpu)
4740		goto done;
4741	/* Affinity changed (again). */
4742	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4743		goto fail;
4744
4745	/*
4746	 * If we're not on a rq, the next wake-up will ensure we're
4747	 * placed properly.
4748	 */
4749	if (p->on_rq) {
4750		dequeue_task(rq_src, p, 0);
4751		set_task_cpu(p, dest_cpu);
4752		enqueue_task(rq_dest, p, 0);
4753		check_preempt_curr(rq_dest, p, 0);
4754	}
4755done:
4756	ret = 1;
4757fail:
4758	double_rq_unlock(rq_src, rq_dest);
4759	raw_spin_unlock(&p->pi_lock);
4760	return ret;
4761}
4762
4763/*
4764 * migration_cpu_stop - this will be executed by a highprio stopper thread
4765 * and performs thread migration by bumping thread off CPU then
4766 * 'pushing' onto another runqueue.
4767 */
4768static int migration_cpu_stop(void *data)
4769{
4770	struct migration_arg *arg = data;
4771
4772	/*
4773	 * The original target cpu might have gone down and we might
4774	 * be on another cpu but it doesn't matter.
4775	 */
4776	local_irq_disable();
4777	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4778	local_irq_enable();
4779	return 0;
4780}
4781
4782#ifdef CONFIG_HOTPLUG_CPU
4783
4784/*
4785 * Ensures that the idle task is using init_mm right before its cpu goes
4786 * offline.
4787 */
4788void idle_task_exit(void)
4789{
4790	struct mm_struct *mm = current->active_mm;
4791
4792	BUG_ON(cpu_online(smp_processor_id()));
4793
4794	if (mm != &init_mm)
4795		switch_mm(mm, &init_mm, current);
4796	mmdrop(mm);
4797}
4798
4799/*
4800 * Since this CPU is going 'away' for a while, fold any nr_active delta
4801 * we might have. Assumes we're called after migrate_tasks() so that the
4802 * nr_active count is stable.
4803 *
4804 * Also see the comment "Global load-average calculations".
4805 */
4806static void calc_load_migrate(struct rq *rq)
4807{
4808	long delta = calc_load_fold_active(rq);
4809	if (delta)
4810		atomic_long_add(delta, &calc_load_tasks);
4811}
4812
4813/*
4814 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4815 * try_to_wake_up()->select_task_rq().
4816 *
4817 * Called with rq->lock held even though we'er in stop_machine() and
4818 * there's no concurrency possible, we hold the required locks anyway
4819 * because of lock validation efforts.
4820 */
4821static void migrate_tasks(unsigned int dead_cpu)
4822{
4823	struct rq *rq = cpu_rq(dead_cpu);
4824	struct task_struct *next, *stop = rq->stop;
4825	int dest_cpu;
4826
4827	/*
4828	 * Fudge the rq selection such that the below task selection loop
4829	 * doesn't get stuck on the currently eligible stop task.
4830	 *
4831	 * We're currently inside stop_machine() and the rq is either stuck
4832	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4833	 * either way we should never end up calling schedule() until we're
4834	 * done here.
4835	 */
4836	rq->stop = NULL;
4837
4838	for ( ; ; ) {
4839		/*
4840		 * There's this thread running, bail when that's the only
4841		 * remaining thread.
4842		 */
4843		if (rq->nr_running == 1)
4844			break;
4845
4846		next = pick_next_task(rq);
4847		BUG_ON(!next);
4848		next->sched_class->put_prev_task(rq, next);
4849
4850		/* Find suitable destination for @next, with force if needed. */
4851		dest_cpu = select_fallback_rq(dead_cpu, next);
4852		raw_spin_unlock(&rq->lock);
4853
4854		__migrate_task(next, dead_cpu, dest_cpu);
4855
4856		raw_spin_lock(&rq->lock);
4857	}
4858
4859	rq->stop = stop;
4860}
4861
4862#endif /* CONFIG_HOTPLUG_CPU */
4863
4864#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4865
4866static struct ctl_table sd_ctl_dir[] = {
4867	{
4868		.procname	= "sched_domain",
4869		.mode		= 0555,
4870	},
4871	{}
4872};
4873
4874static struct ctl_table sd_ctl_root[] = {
4875	{
4876		.procname	= "kernel",
4877		.mode		= 0555,
4878		.child		= sd_ctl_dir,
4879	},
4880	{}
4881};
4882
4883static struct ctl_table *sd_alloc_ctl_entry(int n)
4884{
4885	struct ctl_table *entry =
4886		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4887
4888	return entry;
4889}
4890
4891static void sd_free_ctl_entry(struct ctl_table **tablep)
4892{
4893	struct ctl_table *entry;
4894
4895	/*
4896	 * In the intermediate directories, both the child directory and
4897	 * procname are dynamically allocated and could fail but the mode
4898	 * will always be set. In the lowest directory the names are
4899	 * static strings and all have proc handlers.
4900	 */
4901	for (entry = *tablep; entry->mode; entry++) {
4902		if (entry->child)
4903			sd_free_ctl_entry(&entry->child);
4904		if (entry->proc_handler == NULL)
4905			kfree(entry->procname);
4906	}
4907
4908	kfree(*tablep);
4909	*tablep = NULL;
4910}
4911
4912static int min_load_idx = 0;
4913static int max_load_idx = CPU_LOAD_IDX_MAX;
4914
4915static void
4916set_table_entry(struct ctl_table *entry,
4917		const char *procname, void *data, int maxlen,
4918		umode_t mode, proc_handler *proc_handler,
4919		bool load_idx)
4920{
4921	entry->procname = procname;
4922	entry->data = data;
4923	entry->maxlen = maxlen;
4924	entry->mode = mode;
4925	entry->proc_handler = proc_handler;
4926
4927	if (load_idx) {
4928		entry->extra1 = &min_load_idx;
4929		entry->extra2 = &max_load_idx;
4930	}
4931}
4932
4933static struct ctl_table *
4934sd_alloc_ctl_domain_table(struct sched_domain *sd)
4935{
4936	struct ctl_table *table = sd_alloc_ctl_entry(13);
4937
4938	if (table == NULL)
4939		return NULL;
4940
4941	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4942		sizeof(long), 0644, proc_doulongvec_minmax, false);
4943	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4944		sizeof(long), 0644, proc_doulongvec_minmax, false);
4945	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4946		sizeof(int), 0644, proc_dointvec_minmax, true);
4947	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4948		sizeof(int), 0644, proc_dointvec_minmax, true);
4949	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4950		sizeof(int), 0644, proc_dointvec_minmax, true);
4951	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4952		sizeof(int), 0644, proc_dointvec_minmax, true);
4953	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4954		sizeof(int), 0644, proc_dointvec_minmax, true);
4955	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4956		sizeof(int), 0644, proc_dointvec_minmax, false);
4957	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4958		sizeof(int), 0644, proc_dointvec_minmax, false);
4959	set_table_entry(&table[9], "cache_nice_tries",
4960		&sd->cache_nice_tries,
4961		sizeof(int), 0644, proc_dointvec_minmax, false);
4962	set_table_entry(&table[10], "flags", &sd->flags,
4963		sizeof(int), 0644, proc_dointvec_minmax, false);
4964	set_table_entry(&table[11], "name", sd->name,
4965		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4966	/* &table[12] is terminator */
4967
4968	return table;
4969}
4970
4971static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4972{
4973	struct ctl_table *entry, *table;
4974	struct sched_domain *sd;
4975	int domain_num = 0, i;
4976	char buf[32];
4977
4978	for_each_domain(cpu, sd)
4979		domain_num++;
4980	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4981	if (table == NULL)
4982		return NULL;
4983
4984	i = 0;
4985	for_each_domain(cpu, sd) {
4986		snprintf(buf, 32, "domain%d", i);
4987		entry->procname = kstrdup(buf, GFP_KERNEL);
4988		entry->mode = 0555;
4989		entry->child = sd_alloc_ctl_domain_table(sd);
4990		entry++;
4991		i++;
4992	}
4993	return table;
4994}
4995
4996static struct ctl_table_header *sd_sysctl_header;
4997static void register_sched_domain_sysctl(void)
4998{
4999	int i, cpu_num = num_possible_cpus();
5000	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5001	char buf[32];
5002
5003	WARN_ON(sd_ctl_dir[0].child);
5004	sd_ctl_dir[0].child = entry;
5005
5006	if (entry == NULL)
5007		return;
5008
5009	for_each_possible_cpu(i) {
5010		snprintf(buf, 32, "cpu%d", i);
5011		entry->procname = kstrdup(buf, GFP_KERNEL);
5012		entry->mode = 0555;
5013		entry->child = sd_alloc_ctl_cpu_table(i);
5014		entry++;
5015	}
5016
5017	WARN_ON(sd_sysctl_header);
5018	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5019}
5020
5021/* may be called multiple times per register */
5022static void unregister_sched_domain_sysctl(void)
5023{
5024	if (sd_sysctl_header)
5025		unregister_sysctl_table(sd_sysctl_header);
5026	sd_sysctl_header = NULL;
5027	if (sd_ctl_dir[0].child)
5028		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5029}
5030#else
5031static void register_sched_domain_sysctl(void)
5032{
5033}
5034static void unregister_sched_domain_sysctl(void)
5035{
5036}
5037#endif
5038
5039static void set_rq_online(struct rq *rq)
5040{
5041	if (!rq->online) {
5042		const struct sched_class *class;
5043
5044		cpumask_set_cpu(rq->cpu, rq->rd->online);
5045		rq->online = 1;
5046
5047		for_each_class(class) {
5048			if (class->rq_online)
5049				class->rq_online(rq);
5050		}
5051	}
5052}
5053
5054static void set_rq_offline(struct rq *rq)
5055{
5056	if (rq->online) {
5057		const struct sched_class *class;
5058
5059		for_each_class(class) {
5060			if (class->rq_offline)
5061				class->rq_offline(rq);
5062		}
5063
5064		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5065		rq->online = 0;
5066	}
5067}
5068
5069/*
5070 * migration_call - callback that gets triggered when a CPU is added.
5071 * Here we can start up the necessary migration thread for the new CPU.
5072 */
5073static int __cpuinit
5074migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5075{
5076	int cpu = (long)hcpu;
5077	unsigned long flags;
5078	struct rq *rq = cpu_rq(cpu);
5079
5080	switch (action & ~CPU_TASKS_FROZEN) {
5081
5082	case CPU_UP_PREPARE:
5083		rq->calc_load_update = calc_load_update;
5084		break;
5085
5086	case CPU_ONLINE:
5087		/* Update our root-domain */
5088		raw_spin_lock_irqsave(&rq->lock, flags);
5089		if (rq->rd) {
5090			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5091
5092			set_rq_online(rq);
5093		}
5094		raw_spin_unlock_irqrestore(&rq->lock, flags);
5095		break;
5096
5097#ifdef CONFIG_HOTPLUG_CPU
5098	case CPU_DYING:
5099		sched_ttwu_pending();
5100		/* Update our root-domain */
5101		raw_spin_lock_irqsave(&rq->lock, flags);
5102		if (rq->rd) {
5103			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5104			set_rq_offline(rq);
5105		}
5106		migrate_tasks(cpu);
5107		BUG_ON(rq->nr_running != 1); /* the migration thread */
5108		raw_spin_unlock_irqrestore(&rq->lock, flags);
5109		break;
5110
5111	case CPU_DEAD:
5112		calc_load_migrate(rq);
5113		break;
5114#endif
5115	}
5116
5117	update_max_interval();
5118
5119	return NOTIFY_OK;
5120}
5121
5122/*
5123 * Register at high priority so that task migration (migrate_all_tasks)
5124 * happens before everything else.  This has to be lower priority than
5125 * the notifier in the perf_event subsystem, though.
5126 */
5127static struct notifier_block __cpuinitdata migration_notifier = {
5128	.notifier_call = migration_call,
5129	.priority = CPU_PRI_MIGRATION,
5130};
5131
5132static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5133				      unsigned long action, void *hcpu)
5134{
5135	switch (action & ~CPU_TASKS_FROZEN) {
5136	case CPU_STARTING:
5137	case CPU_DOWN_FAILED:
5138		set_cpu_active((long)hcpu, true);
5139		return NOTIFY_OK;
5140	default:
5141		return NOTIFY_DONE;
5142	}
5143}
5144
5145static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5146					unsigned long action, void *hcpu)
5147{
5148	switch (action & ~CPU_TASKS_FROZEN) {
5149	case CPU_DOWN_PREPARE:
5150		set_cpu_active((long)hcpu, false);
5151		return NOTIFY_OK;
5152	default:
5153		return NOTIFY_DONE;
5154	}
5155}
5156
5157static int __init migration_init(void)
5158{
5159	void *cpu = (void *)(long)smp_processor_id();
5160	int err;
5161
5162	/* Initialize migration for the boot CPU */
5163	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5164	BUG_ON(err == NOTIFY_BAD);
5165	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5166	register_cpu_notifier(&migration_notifier);
5167
5168	/* Register cpu active notifiers */
5169	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5170	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5171
5172	return 0;
5173}
5174early_initcall(migration_init);
5175#endif
5176
5177#ifdef CONFIG_SMP
5178
5179static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5180
5181#ifdef CONFIG_SCHED_DEBUG
5182
5183static __read_mostly int sched_debug_enabled;
5184
5185static int __init sched_debug_setup(char *str)
5186{
5187	sched_debug_enabled = 1;
5188
5189	return 0;
5190}
5191early_param("sched_debug", sched_debug_setup);
5192
5193static inline bool sched_debug(void)
5194{
5195	return sched_debug_enabled;
5196}
5197
5198static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5199				  struct cpumask *groupmask)
5200{
5201	struct sched_group *group = sd->groups;
5202	char str[256];
5203
5204	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5205	cpumask_clear(groupmask);
5206
5207	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5208
5209	if (!(sd->flags & SD_LOAD_BALANCE)) {
5210		printk("does not load-balance\n");
5211		if (sd->parent)
5212			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5213					" has parent");
5214		return -1;
5215	}
5216
5217	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5218
5219	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5220		printk(KERN_ERR "ERROR: domain->span does not contain "
5221				"CPU%d\n", cpu);
5222	}
5223	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5224		printk(KERN_ERR "ERROR: domain->groups does not contain"
5225				" CPU%d\n", cpu);
5226	}
5227
5228	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5229	do {
5230		if (!group) {
5231			printk("\n");
5232			printk(KERN_ERR "ERROR: group is NULL\n");
5233			break;
5234		}
5235
5236		/*
5237		 * Even though we initialize ->power to something semi-sane,
5238		 * we leave power_orig unset. This allows us to detect if
5239		 * domain iteration is still funny without causing /0 traps.
5240		 */
5241		if (!group->sgp->power_orig) {
5242			printk(KERN_CONT "\n");
5243			printk(KERN_ERR "ERROR: domain->cpu_power not "
5244					"set\n");
5245			break;
5246		}
5247
5248		if (!cpumask_weight(sched_group_cpus(group))) {
5249			printk(KERN_CONT "\n");
5250			printk(KERN_ERR "ERROR: empty group\n");
5251			break;
5252		}
5253
5254		if (!(sd->flags & SD_OVERLAP) &&
5255		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5256			printk(KERN_CONT "\n");
5257			printk(KERN_ERR "ERROR: repeated CPUs\n");
5258			break;
5259		}
5260
5261		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5262
5263		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5264
5265		printk(KERN_CONT " %s", str);
5266		if (group->sgp->power != SCHED_POWER_SCALE) {
5267			printk(KERN_CONT " (cpu_power = %d)",
5268				group->sgp->power);
5269		}
5270
5271		group = group->next;
5272	} while (group != sd->groups);
5273	printk(KERN_CONT "\n");
5274
5275	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5276		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5277
5278	if (sd->parent &&
5279	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5280		printk(KERN_ERR "ERROR: parent span is not a superset "
5281			"of domain->span\n");
5282	return 0;
5283}
5284
5285static void sched_domain_debug(struct sched_domain *sd, int cpu)
5286{
5287	int level = 0;
5288
5289	if (!sched_debug_enabled)
5290		return;
5291
5292	if (!sd) {
5293		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5294		return;
5295	}
5296
5297	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5298
5299	for (;;) {
5300		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5301			break;
5302		level++;
5303		sd = sd->parent;
5304		if (!sd)
5305			break;
5306	}
5307}
5308#else /* !CONFIG_SCHED_DEBUG */
5309# define sched_domain_debug(sd, cpu) do { } while (0)
5310static inline bool sched_debug(void)
5311{
5312	return false;
5313}
5314#endif /* CONFIG_SCHED_DEBUG */
5315
5316static int sd_degenerate(struct sched_domain *sd)
5317{
5318	if (cpumask_weight(sched_domain_span(sd)) == 1)
5319		return 1;
5320
5321	/* Following flags need at least 2 groups */
5322	if (sd->flags & (SD_LOAD_BALANCE |
5323			 SD_BALANCE_NEWIDLE |
5324			 SD_BALANCE_FORK |
5325			 SD_BALANCE_EXEC |
5326			 SD_SHARE_CPUPOWER |
5327			 SD_SHARE_PKG_RESOURCES)) {
5328		if (sd->groups != sd->groups->next)
5329			return 0;
5330	}
5331
5332	/* Following flags don't use groups */
5333	if (sd->flags & (SD_WAKE_AFFINE))
5334		return 0;
5335
5336	return 1;
5337}
5338
5339static int
5340sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5341{
5342	unsigned long cflags = sd->flags, pflags = parent->flags;
5343
5344	if (sd_degenerate(parent))
5345		return 1;
5346
5347	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5348		return 0;
5349
5350	/* Flags needing groups don't count if only 1 group in parent */
5351	if (parent->groups == parent->groups->next) {
5352		pflags &= ~(SD_LOAD_BALANCE |
5353				SD_BALANCE_NEWIDLE |
5354				SD_BALANCE_FORK |
5355				SD_BALANCE_EXEC |
5356				SD_SHARE_CPUPOWER |
5357				SD_SHARE_PKG_RESOURCES);
5358		if (nr_node_ids == 1)
5359			pflags &= ~SD_SERIALIZE;
5360	}
5361	if (~cflags & pflags)
5362		return 0;
5363
5364	return 1;
5365}
5366
5367static void free_rootdomain(struct rcu_head *rcu)
5368{
5369	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5370
5371	cpupri_cleanup(&rd->cpupri);
5372	free_cpumask_var(rd->rto_mask);
5373	free_cpumask_var(rd->online);
5374	free_cpumask_var(rd->span);
5375	kfree(rd);
5376}
5377
5378static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5379{
5380	struct root_domain *old_rd = NULL;
5381	unsigned long flags;
5382
5383	raw_spin_lock_irqsave(&rq->lock, flags);
5384
5385	if (rq->rd) {
5386		old_rd = rq->rd;
5387
5388		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5389			set_rq_offline(rq);
5390
5391		cpumask_clear_cpu(rq->cpu, old_rd->span);
5392
5393		/*
5394		 * If we dont want to free the old_rt yet then
5395		 * set old_rd to NULL to skip the freeing later
5396		 * in this function:
5397		 */
5398		if (!atomic_dec_and_test(&old_rd->refcount))
5399			old_rd = NULL;
5400	}
5401
5402	atomic_inc(&rd->refcount);
5403	rq->rd = rd;
5404
5405	cpumask_set_cpu(rq->cpu, rd->span);
5406	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5407		set_rq_online(rq);
5408
5409	raw_spin_unlock_irqrestore(&rq->lock, flags);
5410
5411	if (old_rd)
5412		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5413}
5414
5415static int init_rootdomain(struct root_domain *rd)
5416{
5417	memset(rd, 0, sizeof(*rd));
5418
5419	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5420		goto out;
5421	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5422		goto free_span;
5423	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5424		goto free_online;
5425
5426	if (cpupri_init(&rd->cpupri) != 0)
5427		goto free_rto_mask;
5428	return 0;
5429
5430free_rto_mask:
5431	free_cpumask_var(rd->rto_mask);
5432free_online:
5433	free_cpumask_var(rd->online);
5434free_span:
5435	free_cpumask_var(rd->span);
5436out:
5437	return -ENOMEM;
5438}
5439
5440/*
5441 * By default the system creates a single root-domain with all cpus as
5442 * members (mimicking the global state we have today).
5443 */
5444struct root_domain def_root_domain;
5445
5446static void init_defrootdomain(void)
5447{
5448	init_rootdomain(&def_root_domain);
5449
5450	atomic_set(&def_root_domain.refcount, 1);
5451}
5452
5453static struct root_domain *alloc_rootdomain(void)
5454{
5455	struct root_domain *rd;
5456
5457	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5458	if (!rd)
5459		return NULL;
5460
5461	if (init_rootdomain(rd) != 0) {
5462		kfree(rd);
5463		return NULL;
5464	}
5465
5466	return rd;
5467}
5468
5469static void free_sched_groups(struct sched_group *sg, int free_sgp)
5470{
5471	struct sched_group *tmp, *first;
5472
5473	if (!sg)
5474		return;
5475
5476	first = sg;
5477	do {
5478		tmp = sg->next;
5479
5480		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5481			kfree(sg->sgp);
5482
5483		kfree(sg);
5484		sg = tmp;
5485	} while (sg != first);
5486}
5487
5488static void free_sched_domain(struct rcu_head *rcu)
5489{
5490	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5491
5492	/*
5493	 * If its an overlapping domain it has private groups, iterate and
5494	 * nuke them all.
5495	 */
5496	if (sd->flags & SD_OVERLAP) {
5497		free_sched_groups(sd->groups, 1);
5498	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5499		kfree(sd->groups->sgp);
5500		kfree(sd->groups);
5501	}
5502	kfree(sd);
5503}
5504
5505static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5506{
5507	call_rcu(&sd->rcu, free_sched_domain);
5508}
5509
5510static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5511{
5512	for (; sd; sd = sd->parent)
5513		destroy_sched_domain(sd, cpu);
5514}
5515
5516/*
5517 * Keep a special pointer to the highest sched_domain that has
5518 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5519 * allows us to avoid some pointer chasing select_idle_sibling().
5520 *
5521 * Also keep a unique ID per domain (we use the first cpu number in
5522 * the cpumask of the domain), this allows us to quickly tell if
5523 * two cpus are in the same cache domain, see cpus_share_cache().
5524 */
5525DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5526DEFINE_PER_CPU(int, sd_llc_id);
5527
5528static void update_top_cache_domain(int cpu)
5529{
5530	struct sched_domain *sd;
5531	int id = cpu;
5532
5533	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5534	if (sd)
5535		id = cpumask_first(sched_domain_span(sd));
5536
5537	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5538	per_cpu(sd_llc_id, cpu) = id;
5539}
5540
5541/*
5542 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5543 * hold the hotplug lock.
5544 */
5545static void
5546cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5547{
5548	struct rq *rq = cpu_rq(cpu);
5549	struct sched_domain *tmp;
5550
5551	/* Remove the sched domains which do not contribute to scheduling. */
5552	for (tmp = sd; tmp; ) {
5553		struct sched_domain *parent = tmp->parent;
5554		if (!parent)
5555			break;
5556
5557		if (sd_parent_degenerate(tmp, parent)) {
5558			tmp->parent = parent->parent;
5559			if (parent->parent)
5560				parent->parent->child = tmp;
5561			destroy_sched_domain(parent, cpu);
5562		} else
5563			tmp = tmp->parent;
5564	}
5565
5566	if (sd && sd_degenerate(sd)) {
5567		tmp = sd;
5568		sd = sd->parent;
5569		destroy_sched_domain(tmp, cpu);
5570		if (sd)
5571			sd->child = NULL;
5572	}
5573
5574	sched_domain_debug(sd, cpu);
5575
5576	rq_attach_root(rq, rd);
5577	tmp = rq->sd;
5578	rcu_assign_pointer(rq->sd, sd);
5579	destroy_sched_domains(tmp, cpu);
5580
5581	update_top_cache_domain(cpu);
5582}
5583
5584/* cpus with isolated domains */
5585static cpumask_var_t cpu_isolated_map;
5586
5587/* Setup the mask of cpus configured for isolated domains */
5588static int __init isolated_cpu_setup(char *str)
5589{
5590	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5591	cpulist_parse(str, cpu_isolated_map);
5592	return 1;
5593}
5594
5595__setup("isolcpus=", isolated_cpu_setup);
5596
5597static const struct cpumask *cpu_cpu_mask(int cpu)
5598{
5599	return cpumask_of_node(cpu_to_node(cpu));
5600}
5601
5602struct sd_data {
5603	struct sched_domain **__percpu sd;
5604	struct sched_group **__percpu sg;
5605	struct sched_group_power **__percpu sgp;
5606};
5607
5608struct s_data {
5609	struct sched_domain ** __percpu sd;
5610	struct root_domain	*rd;
5611};
5612
5613enum s_alloc {
5614	sa_rootdomain,
5615	sa_sd,
5616	sa_sd_storage,
5617	sa_none,
5618};
5619
5620struct sched_domain_topology_level;
5621
5622typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5623typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5624
5625#define SDTL_OVERLAP	0x01
5626
5627struct sched_domain_topology_level {
5628	sched_domain_init_f init;
5629	sched_domain_mask_f mask;
5630	int		    flags;
5631	int		    numa_level;
5632	struct sd_data      data;
5633};
5634
5635/*
5636 * Build an iteration mask that can exclude certain CPUs from the upwards
5637 * domain traversal.
5638 *
5639 * Asymmetric node setups can result in situations where the domain tree is of
5640 * unequal depth, make sure to skip domains that already cover the entire
5641 * range.
5642 *
5643 * In that case build_sched_domains() will have terminated the iteration early
5644 * and our sibling sd spans will be empty. Domains should always include the
5645 * cpu they're built on, so check that.
5646 *
5647 */
5648static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5649{
5650	const struct cpumask *span = sched_domain_span(sd);
5651	struct sd_data *sdd = sd->private;
5652	struct sched_domain *sibling;
5653	int i;
5654
5655	for_each_cpu(i, span) {
5656		sibling = *per_cpu_ptr(sdd->sd, i);
5657		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5658			continue;
5659
5660		cpumask_set_cpu(i, sched_group_mask(sg));
5661	}
5662}
5663
5664/*
5665 * Return the canonical balance cpu for this group, this is the first cpu
5666 * of this group that's also in the iteration mask.
5667 */
5668int group_balance_cpu(struct sched_group *sg)
5669{
5670	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5671}
5672
5673static int
5674build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5675{
5676	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5677	const struct cpumask *span = sched_domain_span(sd);
5678	struct cpumask *covered = sched_domains_tmpmask;
5679	struct sd_data *sdd = sd->private;
5680	struct sched_domain *child;
5681	int i;
5682
5683	cpumask_clear(covered);
5684
5685	for_each_cpu(i, span) {
5686		struct cpumask *sg_span;
5687
5688		if (cpumask_test_cpu(i, covered))
5689			continue;
5690
5691		child = *per_cpu_ptr(sdd->sd, i);
5692
5693		/* See the comment near build_group_mask(). */
5694		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5695			continue;
5696
5697		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5698				GFP_KERNEL, cpu_to_node(cpu));
5699
5700		if (!sg)
5701			goto fail;
5702
5703		sg_span = sched_group_cpus(sg);
5704		if (child->child) {
5705			child = child->child;
5706			cpumask_copy(sg_span, sched_domain_span(child));
5707		} else
5708			cpumask_set_cpu(i, sg_span);
5709
5710		cpumask_or(covered, covered, sg_span);
5711
5712		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5713		if (atomic_inc_return(&sg->sgp->ref) == 1)
5714			build_group_mask(sd, sg);
5715
5716		/*
5717		 * Initialize sgp->power such that even if we mess up the
5718		 * domains and no possible iteration will get us here, we won't
5719		 * die on a /0 trap.
5720		 */
5721		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5722
5723		/*
5724		 * Make sure the first group of this domain contains the
5725		 * canonical balance cpu. Otherwise the sched_domain iteration
5726		 * breaks. See update_sg_lb_stats().
5727		 */
5728		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5729		    group_balance_cpu(sg) == cpu)
5730			groups = sg;
5731
5732		if (!first)
5733			first = sg;
5734		if (last)
5735			last->next = sg;
5736		last = sg;
5737		last->next = first;
5738	}
5739	sd->groups = groups;
5740
5741	return 0;
5742
5743fail:
5744	free_sched_groups(first, 0);
5745
5746	return -ENOMEM;
5747}
5748
5749static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5750{
5751	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5752	struct sched_domain *child = sd->child;
5753
5754	if (child)
5755		cpu = cpumask_first(sched_domain_span(child));
5756
5757	if (sg) {
5758		*sg = *per_cpu_ptr(sdd->sg, cpu);
5759		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5760		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5761	}
5762
5763	return cpu;
5764}
5765
5766/*
5767 * build_sched_groups will build a circular linked list of the groups
5768 * covered by the given span, and will set each group's ->cpumask correctly,
5769 * and ->cpu_power to 0.
5770 *
5771 * Assumes the sched_domain tree is fully constructed
5772 */
5773static int
5774build_sched_groups(struct sched_domain *sd, int cpu)
5775{
5776	struct sched_group *first = NULL, *last = NULL;
5777	struct sd_data *sdd = sd->private;
5778	const struct cpumask *span = sched_domain_span(sd);
5779	struct cpumask *covered;
5780	int i;
5781
5782	get_group(cpu, sdd, &sd->groups);
5783	atomic_inc(&sd->groups->ref);
5784
5785	if (cpu != cpumask_first(sched_domain_span(sd)))
5786		return 0;
5787
5788	lockdep_assert_held(&sched_domains_mutex);
5789	covered = sched_domains_tmpmask;
5790
5791	cpumask_clear(covered);
5792
5793	for_each_cpu(i, span) {
5794		struct sched_group *sg;
5795		int group = get_group(i, sdd, &sg);
5796		int j;
5797
5798		if (cpumask_test_cpu(i, covered))
5799			continue;
5800
5801		cpumask_clear(sched_group_cpus(sg));
5802		sg->sgp->power = 0;
5803		cpumask_setall(sched_group_mask(sg));
5804
5805		for_each_cpu(j, span) {
5806			if (get_group(j, sdd, NULL) != group)
5807				continue;
5808
5809			cpumask_set_cpu(j, covered);
5810			cpumask_set_cpu(j, sched_group_cpus(sg));
5811		}
5812
5813		if (!first)
5814			first = sg;
5815		if (last)
5816			last->next = sg;
5817		last = sg;
5818	}
5819	last->next = first;
5820
5821	return 0;
5822}
5823
5824/*
5825 * Initialize sched groups cpu_power.
5826 *
5827 * cpu_power indicates the capacity of sched group, which is used while
5828 * distributing the load between different sched groups in a sched domain.
5829 * Typically cpu_power for all the groups in a sched domain will be same unless
5830 * there are asymmetries in the topology. If there are asymmetries, group
5831 * having more cpu_power will pickup more load compared to the group having
5832 * less cpu_power.
5833 */
5834static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5835{
5836	struct sched_group *sg = sd->groups;
5837
5838	WARN_ON(!sd || !sg);
5839
5840	do {
5841		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5842		sg = sg->next;
5843	} while (sg != sd->groups);
5844
5845	if (cpu != group_balance_cpu(sg))
5846		return;
5847
5848	update_group_power(sd, cpu);
5849	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5850}
5851
5852int __weak arch_sd_sibling_asym_packing(void)
5853{
5854       return 0*SD_ASYM_PACKING;
5855}
5856
5857/*
5858 * Initializers for schedule domains
5859 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5860 */
5861
5862#ifdef CONFIG_SCHED_DEBUG
5863# define SD_INIT_NAME(sd, type)		sd->name = #type
5864#else
5865# define SD_INIT_NAME(sd, type)		do { } while (0)
5866#endif
5867
5868#define SD_INIT_FUNC(type)						\
5869static noinline struct sched_domain *					\
5870sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5871{									\
5872	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5873	*sd = SD_##type##_INIT;						\
5874	SD_INIT_NAME(sd, type);						\
5875	sd->private = &tl->data;					\
5876	return sd;							\
5877}
5878
5879SD_INIT_FUNC(CPU)
5880#ifdef CONFIG_SCHED_SMT
5881 SD_INIT_FUNC(SIBLING)
5882#endif
5883#ifdef CONFIG_SCHED_MC
5884 SD_INIT_FUNC(MC)
5885#endif
5886#ifdef CONFIG_SCHED_BOOK
5887 SD_INIT_FUNC(BOOK)
5888#endif
5889
5890static int default_relax_domain_level = -1;
5891int sched_domain_level_max;
5892
5893static int __init setup_relax_domain_level(char *str)
5894{
5895	if (kstrtoint(str, 0, &default_relax_domain_level))
5896		pr_warn("Unable to set relax_domain_level\n");
5897
5898	return 1;
5899}
5900__setup("relax_domain_level=", setup_relax_domain_level);
5901
5902static void set_domain_attribute(struct sched_domain *sd,
5903				 struct sched_domain_attr *attr)
5904{
5905	int request;
5906
5907	if (!attr || attr->relax_domain_level < 0) {
5908		if (default_relax_domain_level < 0)
5909			return;
5910		else
5911			request = default_relax_domain_level;
5912	} else
5913		request = attr->relax_domain_level;
5914	if (request < sd->level) {
5915		/* turn off idle balance on this domain */
5916		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5917	} else {
5918		/* turn on idle balance on this domain */
5919		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5920	}
5921}
5922
5923static void __sdt_free(const struct cpumask *cpu_map);
5924static int __sdt_alloc(const struct cpumask *cpu_map);
5925
5926static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5927				 const struct cpumask *cpu_map)
5928{
5929	switch (what) {
5930	case sa_rootdomain:
5931		if (!atomic_read(&d->rd->refcount))
5932			free_rootdomain(&d->rd->rcu); /* fall through */
5933	case sa_sd:
5934		free_percpu(d->sd); /* fall through */
5935	case sa_sd_storage:
5936		__sdt_free(cpu_map); /* fall through */
5937	case sa_none:
5938		break;
5939	}
5940}
5941
5942static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5943						   const struct cpumask *cpu_map)
5944{
5945	memset(d, 0, sizeof(*d));
5946
5947	if (__sdt_alloc(cpu_map))
5948		return sa_sd_storage;
5949	d->sd = alloc_percpu(struct sched_domain *);
5950	if (!d->sd)
5951		return sa_sd_storage;
5952	d->rd = alloc_rootdomain();
5953	if (!d->rd)
5954		return sa_sd;
5955	return sa_rootdomain;
5956}
5957
5958/*
5959 * NULL the sd_data elements we've used to build the sched_domain and
5960 * sched_group structure so that the subsequent __free_domain_allocs()
5961 * will not free the data we're using.
5962 */
5963static void claim_allocations(int cpu, struct sched_domain *sd)
5964{
5965	struct sd_data *sdd = sd->private;
5966
5967	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5968	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5969
5970	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5971		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5972
5973	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5974		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5975}
5976
5977#ifdef CONFIG_SCHED_SMT
5978static const struct cpumask *cpu_smt_mask(int cpu)
5979{
5980	return topology_thread_cpumask(cpu);
5981}
5982#endif
5983
5984/*
5985 * Topology list, bottom-up.
5986 */
5987static struct sched_domain_topology_level default_topology[] = {
5988#ifdef CONFIG_SCHED_SMT
5989	{ sd_init_SIBLING, cpu_smt_mask, },
5990#endif
5991#ifdef CONFIG_SCHED_MC
5992	{ sd_init_MC, cpu_coregroup_mask, },
5993#endif
5994#ifdef CONFIG_SCHED_BOOK
5995	{ sd_init_BOOK, cpu_book_mask, },
5996#endif
5997	{ sd_init_CPU, cpu_cpu_mask, },
5998	{ NULL, },
5999};
6000
6001static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6002
6003#ifdef CONFIG_NUMA
6004
6005static int sched_domains_numa_levels;
6006static int *sched_domains_numa_distance;
6007static struct cpumask ***sched_domains_numa_masks;
6008static int sched_domains_curr_level;
6009
6010static inline int sd_local_flags(int level)
6011{
6012	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6013		return 0;
6014
6015	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6016}
6017
6018static struct sched_domain *
6019sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6020{
6021	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6022	int level = tl->numa_level;
6023	int sd_weight = cpumask_weight(
6024			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6025
6026	*sd = (struct sched_domain){
6027		.min_interval		= sd_weight,
6028		.max_interval		= 2*sd_weight,
6029		.busy_factor		= 32,
6030		.imbalance_pct		= 125,
6031		.cache_nice_tries	= 2,
6032		.busy_idx		= 3,
6033		.idle_idx		= 2,
6034		.newidle_idx		= 0,
6035		.wake_idx		= 0,
6036		.forkexec_idx		= 0,
6037
6038		.flags			= 1*SD_LOAD_BALANCE
6039					| 1*SD_BALANCE_NEWIDLE
6040					| 0*SD_BALANCE_EXEC
6041					| 0*SD_BALANCE_FORK
6042					| 0*SD_BALANCE_WAKE
6043					| 0*SD_WAKE_AFFINE
6044					| 0*SD_SHARE_CPUPOWER
6045					| 0*SD_SHARE_PKG_RESOURCES
6046					| 1*SD_SERIALIZE
6047					| 0*SD_PREFER_SIBLING
6048					| sd_local_flags(level)
6049					,
6050		.last_balance		= jiffies,
6051		.balance_interval	= sd_weight,
6052	};
6053	SD_INIT_NAME(sd, NUMA);
6054	sd->private = &tl->data;
6055
6056	/*
6057	 * Ugly hack to pass state to sd_numa_mask()...
6058	 */
6059	sched_domains_curr_level = tl->numa_level;
6060
6061	return sd;
6062}
6063
6064static const struct cpumask *sd_numa_mask(int cpu)
6065{
6066	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6067}
6068
6069static void sched_numa_warn(const char *str)
6070{
6071	static int done = false;
6072	int i,j;
6073
6074	if (done)
6075		return;
6076
6077	done = true;
6078
6079	printk(KERN_WARNING "ERROR: %s\n\n", str);
6080
6081	for (i = 0; i < nr_node_ids; i++) {
6082		printk(KERN_WARNING "  ");
6083		for (j = 0; j < nr_node_ids; j++)
6084			printk(KERN_CONT "%02d ", node_distance(i,j));
6085		printk(KERN_CONT "\n");
6086	}
6087	printk(KERN_WARNING "\n");
6088}
6089
6090static bool find_numa_distance(int distance)
6091{
6092	int i;
6093
6094	if (distance == node_distance(0, 0))
6095		return true;
6096
6097	for (i = 0; i < sched_domains_numa_levels; i++) {
6098		if (sched_domains_numa_distance[i] == distance)
6099			return true;
6100	}
6101
6102	return false;
6103}
6104
6105static void sched_init_numa(void)
6106{
6107	int next_distance, curr_distance = node_distance(0, 0);
6108	struct sched_domain_topology_level *tl;
6109	int level = 0;
6110	int i, j, k;
6111
6112	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6113	if (!sched_domains_numa_distance)
6114		return;
6115
6116	/*
6117	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6118	 * unique distances in the node_distance() table.
6119	 *
6120	 * Assumes node_distance(0,j) includes all distances in
6121	 * node_distance(i,j) in order to avoid cubic time.
6122	 */
6123	next_distance = curr_distance;
6124	for (i = 0; i < nr_node_ids; i++) {
6125		for (j = 0; j < nr_node_ids; j++) {
6126			for (k = 0; k < nr_node_ids; k++) {
6127				int distance = node_distance(i, k);
6128
6129				if (distance > curr_distance &&
6130				    (distance < next_distance ||
6131				     next_distance == curr_distance))
6132					next_distance = distance;
6133
6134				/*
6135				 * While not a strong assumption it would be nice to know
6136				 * about cases where if node A is connected to B, B is not
6137				 * equally connected to A.
6138				 */
6139				if (sched_debug() && node_distance(k, i) != distance)
6140					sched_numa_warn("Node-distance not symmetric");
6141
6142				if (sched_debug() && i && !find_numa_distance(distance))
6143					sched_numa_warn("Node-0 not representative");
6144			}
6145			if (next_distance != curr_distance) {
6146				sched_domains_numa_distance[level++] = next_distance;
6147				sched_domains_numa_levels = level;
6148				curr_distance = next_distance;
6149			} else break;
6150		}
6151
6152		/*
6153		 * In case of sched_debug() we verify the above assumption.
6154		 */
6155		if (!sched_debug())
6156			break;
6157	}
6158	/*
6159	 * 'level' contains the number of unique distances, excluding the
6160	 * identity distance node_distance(i,i).
6161	 *
6162	 * The sched_domains_nume_distance[] array includes the actual distance
6163	 * numbers.
6164	 */
6165
6166	/*
6167	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6168	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6169	 * the array will contain less then 'level' members. This could be
6170	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6171	 * in other functions.
6172	 *
6173	 * We reset it to 'level' at the end of this function.
6174	 */
6175	sched_domains_numa_levels = 0;
6176
6177	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6178	if (!sched_domains_numa_masks)
6179		return;
6180
6181	/*
6182	 * Now for each level, construct a mask per node which contains all
6183	 * cpus of nodes that are that many hops away from us.
6184	 */
6185	for (i = 0; i < level; i++) {
6186		sched_domains_numa_masks[i] =
6187			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6188		if (!sched_domains_numa_masks[i])
6189			return;
6190
6191		for (j = 0; j < nr_node_ids; j++) {
6192			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6193			if (!mask)
6194				return;
6195
6196			sched_domains_numa_masks[i][j] = mask;
6197
6198			for (k = 0; k < nr_node_ids; k++) {
6199				if (node_distance(j, k) > sched_domains_numa_distance[i])
6200					continue;
6201
6202				cpumask_or(mask, mask, cpumask_of_node(k));
6203			}
6204		}
6205	}
6206
6207	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6208			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6209	if (!tl)
6210		return;
6211
6212	/*
6213	 * Copy the default topology bits..
6214	 */
6215	for (i = 0; default_topology[i].init; i++)
6216		tl[i] = default_topology[i];
6217
6218	/*
6219	 * .. and append 'j' levels of NUMA goodness.
6220	 */
6221	for (j = 0; j < level; i++, j++) {
6222		tl[i] = (struct sched_domain_topology_level){
6223			.init = sd_numa_init,
6224			.mask = sd_numa_mask,
6225			.flags = SDTL_OVERLAP,
6226			.numa_level = j,
6227		};
6228	}
6229
6230	sched_domain_topology = tl;
6231
6232	sched_domains_numa_levels = level;
6233}
6234
6235static void sched_domains_numa_masks_set(int cpu)
6236{
6237	int i, j;
6238	int node = cpu_to_node(cpu);
6239
6240	for (i = 0; i < sched_domains_numa_levels; i++) {
6241		for (j = 0; j < nr_node_ids; j++) {
6242			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6243				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6244		}
6245	}
6246}
6247
6248static void sched_domains_numa_masks_clear(int cpu)
6249{
6250	int i, j;
6251	for (i = 0; i < sched_domains_numa_levels; i++) {
6252		for (j = 0; j < nr_node_ids; j++)
6253			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6254	}
6255}
6256
6257/*
6258 * Update sched_domains_numa_masks[level][node] array when new cpus
6259 * are onlined.
6260 */
6261static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6262					   unsigned long action,
6263					   void *hcpu)
6264{
6265	int cpu = (long)hcpu;
6266
6267	switch (action & ~CPU_TASKS_FROZEN) {
6268	case CPU_ONLINE:
6269		sched_domains_numa_masks_set(cpu);
6270		break;
6271
6272	case CPU_DEAD:
6273		sched_domains_numa_masks_clear(cpu);
6274		break;
6275
6276	default:
6277		return NOTIFY_DONE;
6278	}
6279
6280	return NOTIFY_OK;
6281}
6282#else
6283static inline void sched_init_numa(void)
6284{
6285}
6286
6287static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6288					   unsigned long action,
6289					   void *hcpu)
6290{
6291	return 0;
6292}
6293#endif /* CONFIG_NUMA */
6294
6295static int __sdt_alloc(const struct cpumask *cpu_map)
6296{
6297	struct sched_domain_topology_level *tl;
6298	int j;
6299
6300	for (tl = sched_domain_topology; tl->init; tl++) {
6301		struct sd_data *sdd = &tl->data;
6302
6303		sdd->sd = alloc_percpu(struct sched_domain *);
6304		if (!sdd->sd)
6305			return -ENOMEM;
6306
6307		sdd->sg = alloc_percpu(struct sched_group *);
6308		if (!sdd->sg)
6309			return -ENOMEM;
6310
6311		sdd->sgp = alloc_percpu(struct sched_group_power *);
6312		if (!sdd->sgp)
6313			return -ENOMEM;
6314
6315		for_each_cpu(j, cpu_map) {
6316			struct sched_domain *sd;
6317			struct sched_group *sg;
6318			struct sched_group_power *sgp;
6319
6320		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6321					GFP_KERNEL, cpu_to_node(j));
6322			if (!sd)
6323				return -ENOMEM;
6324
6325			*per_cpu_ptr(sdd->sd, j) = sd;
6326
6327			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6328					GFP_KERNEL, cpu_to_node(j));
6329			if (!sg)
6330				return -ENOMEM;
6331
6332			sg->next = sg;
6333
6334			*per_cpu_ptr(sdd->sg, j) = sg;
6335
6336			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6337					GFP_KERNEL, cpu_to_node(j));
6338			if (!sgp)
6339				return -ENOMEM;
6340
6341			*per_cpu_ptr(sdd->sgp, j) = sgp;
6342		}
6343	}
6344
6345	return 0;
6346}
6347
6348static void __sdt_free(const struct cpumask *cpu_map)
6349{
6350	struct sched_domain_topology_level *tl;
6351	int j;
6352
6353	for (tl = sched_domain_topology; tl->init; tl++) {
6354		struct sd_data *sdd = &tl->data;
6355
6356		for_each_cpu(j, cpu_map) {
6357			struct sched_domain *sd;
6358
6359			if (sdd->sd) {
6360				sd = *per_cpu_ptr(sdd->sd, j);
6361				if (sd && (sd->flags & SD_OVERLAP))
6362					free_sched_groups(sd->groups, 0);
6363				kfree(*per_cpu_ptr(sdd->sd, j));
6364			}
6365
6366			if (sdd->sg)
6367				kfree(*per_cpu_ptr(sdd->sg, j));
6368			if (sdd->sgp)
6369				kfree(*per_cpu_ptr(sdd->sgp, j));
6370		}
6371		free_percpu(sdd->sd);
6372		sdd->sd = NULL;
6373		free_percpu(sdd->sg);
6374		sdd->sg = NULL;
6375		free_percpu(sdd->sgp);
6376		sdd->sgp = NULL;
6377	}
6378}
6379
6380struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6381		struct s_data *d, const struct cpumask *cpu_map,
6382		struct sched_domain_attr *attr, struct sched_domain *child,
6383		int cpu)
6384{
6385	struct sched_domain *sd = tl->init(tl, cpu);
6386	if (!sd)
6387		return child;
6388
6389	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6390	if (child) {
6391		sd->level = child->level + 1;
6392		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6393		child->parent = sd;
6394	}
6395	sd->child = child;
6396	set_domain_attribute(sd, attr);
6397
6398	return sd;
6399}
6400
6401/*
6402 * Build sched domains for a given set of cpus and attach the sched domains
6403 * to the individual cpus
6404 */
6405static int build_sched_domains(const struct cpumask *cpu_map,
6406			       struct sched_domain_attr *attr)
6407{
6408	enum s_alloc alloc_state = sa_none;
6409	struct sched_domain *sd;
6410	struct s_data d;
6411	int i, ret = -ENOMEM;
6412
6413	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6414	if (alloc_state != sa_rootdomain)
6415		goto error;
6416
6417	/* Set up domains for cpus specified by the cpu_map. */
6418	for_each_cpu(i, cpu_map) {
6419		struct sched_domain_topology_level *tl;
6420
6421		sd = NULL;
6422		for (tl = sched_domain_topology; tl->init; tl++) {
6423			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6424			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6425				sd->flags |= SD_OVERLAP;
6426			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6427				break;
6428		}
6429
6430		while (sd->child)
6431			sd = sd->child;
6432
6433		*per_cpu_ptr(d.sd, i) = sd;
6434	}
6435
6436	/* Build the groups for the domains */
6437	for_each_cpu(i, cpu_map) {
6438		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6439			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6440			if (sd->flags & SD_OVERLAP) {
6441				if (build_overlap_sched_groups(sd, i))
6442					goto error;
6443			} else {
6444				if (build_sched_groups(sd, i))
6445					goto error;
6446			}
6447		}
6448	}
6449
6450	/* Calculate CPU power for physical packages and nodes */
6451	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6452		if (!cpumask_test_cpu(i, cpu_map))
6453			continue;
6454
6455		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6456			claim_allocations(i, sd);
6457			init_sched_groups_power(i, sd);
6458		}
6459	}
6460
6461	/* Attach the domains */
6462	rcu_read_lock();
6463	for_each_cpu(i, cpu_map) {
6464		sd = *per_cpu_ptr(d.sd, i);
6465		cpu_attach_domain(sd, d.rd, i);
6466	}
6467	rcu_read_unlock();
6468
6469	ret = 0;
6470error:
6471	__free_domain_allocs(&d, alloc_state, cpu_map);
6472	return ret;
6473}
6474
6475static cpumask_var_t *doms_cur;	/* current sched domains */
6476static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6477static struct sched_domain_attr *dattr_cur;
6478				/* attribues of custom domains in 'doms_cur' */
6479
6480/*
6481 * Special case: If a kmalloc of a doms_cur partition (array of
6482 * cpumask) fails, then fallback to a single sched domain,
6483 * as determined by the single cpumask fallback_doms.
6484 */
6485static cpumask_var_t fallback_doms;
6486
6487/*
6488 * arch_update_cpu_topology lets virtualized architectures update the
6489 * cpu core maps. It is supposed to return 1 if the topology changed
6490 * or 0 if it stayed the same.
6491 */
6492int __attribute__((weak)) arch_update_cpu_topology(void)
6493{
6494	return 0;
6495}
6496
6497cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6498{
6499	int i;
6500	cpumask_var_t *doms;
6501
6502	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6503	if (!doms)
6504		return NULL;
6505	for (i = 0; i < ndoms; i++) {
6506		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6507			free_sched_domains(doms, i);
6508			return NULL;
6509		}
6510	}
6511	return doms;
6512}
6513
6514void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6515{
6516	unsigned int i;
6517	for (i = 0; i < ndoms; i++)
6518		free_cpumask_var(doms[i]);
6519	kfree(doms);
6520}
6521
6522/*
6523 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6524 * For now this just excludes isolated cpus, but could be used to
6525 * exclude other special cases in the future.
6526 */
6527static int init_sched_domains(const struct cpumask *cpu_map)
6528{
6529	int err;
6530
6531	arch_update_cpu_topology();
6532	ndoms_cur = 1;
6533	doms_cur = alloc_sched_domains(ndoms_cur);
6534	if (!doms_cur)
6535		doms_cur = &fallback_doms;
6536	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6537	err = build_sched_domains(doms_cur[0], NULL);
6538	register_sched_domain_sysctl();
6539
6540	return err;
6541}
6542
6543/*
6544 * Detach sched domains from a group of cpus specified in cpu_map
6545 * These cpus will now be attached to the NULL domain
6546 */
6547static void detach_destroy_domains(const struct cpumask *cpu_map)
6548{
6549	int i;
6550
6551	rcu_read_lock();
6552	for_each_cpu(i, cpu_map)
6553		cpu_attach_domain(NULL, &def_root_domain, i);
6554	rcu_read_unlock();
6555}
6556
6557/* handle null as "default" */
6558static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6559			struct sched_domain_attr *new, int idx_new)
6560{
6561	struct sched_domain_attr tmp;
6562
6563	/* fast path */
6564	if (!new && !cur)
6565		return 1;
6566
6567	tmp = SD_ATTR_INIT;
6568	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6569			new ? (new + idx_new) : &tmp,
6570			sizeof(struct sched_domain_attr));
6571}
6572
6573/*
6574 * Partition sched domains as specified by the 'ndoms_new'
6575 * cpumasks in the array doms_new[] of cpumasks. This compares
6576 * doms_new[] to the current sched domain partitioning, doms_cur[].
6577 * It destroys each deleted domain and builds each new domain.
6578 *
6579 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6580 * The masks don't intersect (don't overlap.) We should setup one
6581 * sched domain for each mask. CPUs not in any of the cpumasks will
6582 * not be load balanced. If the same cpumask appears both in the
6583 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6584 * it as it is.
6585 *
6586 * The passed in 'doms_new' should be allocated using
6587 * alloc_sched_domains.  This routine takes ownership of it and will
6588 * free_sched_domains it when done with it. If the caller failed the
6589 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6590 * and partition_sched_domains() will fallback to the single partition
6591 * 'fallback_doms', it also forces the domains to be rebuilt.
6592 *
6593 * If doms_new == NULL it will be replaced with cpu_online_mask.
6594 * ndoms_new == 0 is a special case for destroying existing domains,
6595 * and it will not create the default domain.
6596 *
6597 * Call with hotplug lock held
6598 */
6599void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6600			     struct sched_domain_attr *dattr_new)
6601{
6602	int i, j, n;
6603	int new_topology;
6604
6605	mutex_lock(&sched_domains_mutex);
6606
6607	/* always unregister in case we don't destroy any domains */
6608	unregister_sched_domain_sysctl();
6609
6610	/* Let architecture update cpu core mappings. */
6611	new_topology = arch_update_cpu_topology();
6612
6613	n = doms_new ? ndoms_new : 0;
6614
6615	/* Destroy deleted domains */
6616	for (i = 0; i < ndoms_cur; i++) {
6617		for (j = 0; j < n && !new_topology; j++) {
6618			if (cpumask_equal(doms_cur[i], doms_new[j])
6619			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6620				goto match1;
6621		}
6622		/* no match - a current sched domain not in new doms_new[] */
6623		detach_destroy_domains(doms_cur[i]);
6624match1:
6625		;
6626	}
6627
6628	if (doms_new == NULL) {
6629		ndoms_cur = 0;
6630		doms_new = &fallback_doms;
6631		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6632		WARN_ON_ONCE(dattr_new);
6633	}
6634
6635	/* Build new domains */
6636	for (i = 0; i < ndoms_new; i++) {
6637		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6638			if (cpumask_equal(doms_new[i], doms_cur[j])
6639			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6640				goto match2;
6641		}
6642		/* no match - add a new doms_new */
6643		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6644match2:
6645		;
6646	}
6647
6648	/* Remember the new sched domains */
6649	if (doms_cur != &fallback_doms)
6650		free_sched_domains(doms_cur, ndoms_cur);
6651	kfree(dattr_cur);	/* kfree(NULL) is safe */
6652	doms_cur = doms_new;
6653	dattr_cur = dattr_new;
6654	ndoms_cur = ndoms_new;
6655
6656	register_sched_domain_sysctl();
6657
6658	mutex_unlock(&sched_domains_mutex);
6659}
6660
6661static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6662
6663/*
6664 * Update cpusets according to cpu_active mask.  If cpusets are
6665 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6666 * around partition_sched_domains().
6667 *
6668 * If we come here as part of a suspend/resume, don't touch cpusets because we
6669 * want to restore it back to its original state upon resume anyway.
6670 */
6671static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6672			     void *hcpu)
6673{
6674	switch (action) {
6675	case CPU_ONLINE_FROZEN:
6676	case CPU_DOWN_FAILED_FROZEN:
6677
6678		/*
6679		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6680		 * resume sequence. As long as this is not the last online
6681		 * operation in the resume sequence, just build a single sched
6682		 * domain, ignoring cpusets.
6683		 */
6684		num_cpus_frozen--;
6685		if (likely(num_cpus_frozen)) {
6686			partition_sched_domains(1, NULL, NULL);
6687			break;
6688		}
6689
6690		/*
6691		 * This is the last CPU online operation. So fall through and
6692		 * restore the original sched domains by considering the
6693		 * cpuset configurations.
6694		 */
6695
6696	case CPU_ONLINE:
6697	case CPU_DOWN_FAILED:
6698		cpuset_update_active_cpus(true);
6699		break;
6700	default:
6701		return NOTIFY_DONE;
6702	}
6703	return NOTIFY_OK;
6704}
6705
6706static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6707			       void *hcpu)
6708{
6709	switch (action) {
6710	case CPU_DOWN_PREPARE:
6711		cpuset_update_active_cpus(false);
6712		break;
6713	case CPU_DOWN_PREPARE_FROZEN:
6714		num_cpus_frozen++;
6715		partition_sched_domains(1, NULL, NULL);
6716		break;
6717	default:
6718		return NOTIFY_DONE;
6719	}
6720	return NOTIFY_OK;
6721}
6722
6723void __init sched_init_smp(void)
6724{
6725	cpumask_var_t non_isolated_cpus;
6726
6727	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6728	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6729
6730	sched_init_numa();
6731
6732	get_online_cpus();
6733	mutex_lock(&sched_domains_mutex);
6734	init_sched_domains(cpu_active_mask);
6735	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6736	if (cpumask_empty(non_isolated_cpus))
6737		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6738	mutex_unlock(&sched_domains_mutex);
6739	put_online_cpus();
6740
6741	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6742	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6743	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6744
6745	/* RT runtime code needs to handle some hotplug events */
6746	hotcpu_notifier(update_runtime, 0);
6747
6748	init_hrtick();
6749
6750	/* Move init over to a non-isolated CPU */
6751	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6752		BUG();
6753	sched_init_granularity();
6754	free_cpumask_var(non_isolated_cpus);
6755
6756	init_sched_rt_class();
6757}
6758#else
6759void __init sched_init_smp(void)
6760{
6761	sched_init_granularity();
6762}
6763#endif /* CONFIG_SMP */
6764
6765const_debug unsigned int sysctl_timer_migration = 1;
6766
6767int in_sched_functions(unsigned long addr)
6768{
6769	return in_lock_functions(addr) ||
6770		(addr >= (unsigned long)__sched_text_start
6771		&& addr < (unsigned long)__sched_text_end);
6772}
6773
6774#ifdef CONFIG_CGROUP_SCHED
6775struct task_group root_task_group;
6776LIST_HEAD(task_groups);
6777#endif
6778
6779DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6780
6781void __init sched_init(void)
6782{
6783	int i, j;
6784	unsigned long alloc_size = 0, ptr;
6785
6786#ifdef CONFIG_FAIR_GROUP_SCHED
6787	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6788#endif
6789#ifdef CONFIG_RT_GROUP_SCHED
6790	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6791#endif
6792#ifdef CONFIG_CPUMASK_OFFSTACK
6793	alloc_size += num_possible_cpus() * cpumask_size();
6794#endif
6795	if (alloc_size) {
6796		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6797
6798#ifdef CONFIG_FAIR_GROUP_SCHED
6799		root_task_group.se = (struct sched_entity **)ptr;
6800		ptr += nr_cpu_ids * sizeof(void **);
6801
6802		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6803		ptr += nr_cpu_ids * sizeof(void **);
6804
6805#endif /* CONFIG_FAIR_GROUP_SCHED */
6806#ifdef CONFIG_RT_GROUP_SCHED
6807		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6808		ptr += nr_cpu_ids * sizeof(void **);
6809
6810		root_task_group.rt_rq = (struct rt_rq **)ptr;
6811		ptr += nr_cpu_ids * sizeof(void **);
6812
6813#endif /* CONFIG_RT_GROUP_SCHED */
6814#ifdef CONFIG_CPUMASK_OFFSTACK
6815		for_each_possible_cpu(i) {
6816			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6817			ptr += cpumask_size();
6818		}
6819#endif /* CONFIG_CPUMASK_OFFSTACK */
6820	}
6821
6822#ifdef CONFIG_SMP
6823	init_defrootdomain();
6824#endif
6825
6826	init_rt_bandwidth(&def_rt_bandwidth,
6827			global_rt_period(), global_rt_runtime());
6828
6829#ifdef CONFIG_RT_GROUP_SCHED
6830	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6831			global_rt_period(), global_rt_runtime());
6832#endif /* CONFIG_RT_GROUP_SCHED */
6833
6834#ifdef CONFIG_CGROUP_SCHED
6835	list_add(&root_task_group.list, &task_groups);
6836	INIT_LIST_HEAD(&root_task_group.children);
6837	INIT_LIST_HEAD(&root_task_group.siblings);
6838	autogroup_init(&init_task);
6839
6840#endif /* CONFIG_CGROUP_SCHED */
6841
6842#ifdef CONFIG_CGROUP_CPUACCT
6843	root_cpuacct.cpustat = &kernel_cpustat;
6844	root_cpuacct.cpuusage = alloc_percpu(u64);
6845	/* Too early, not expected to fail */
6846	BUG_ON(!root_cpuacct.cpuusage);
6847#endif
6848	for_each_possible_cpu(i) {
6849		struct rq *rq;
6850
6851		rq = cpu_rq(i);
6852		raw_spin_lock_init(&rq->lock);
6853		rq->nr_running = 0;
6854		rq->calc_load_active = 0;
6855		rq->calc_load_update = jiffies + LOAD_FREQ;
6856		init_cfs_rq(&rq->cfs);
6857		init_rt_rq(&rq->rt, rq);
6858#ifdef CONFIG_FAIR_GROUP_SCHED
6859		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6860		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6861		/*
6862		 * How much cpu bandwidth does root_task_group get?
6863		 *
6864		 * In case of task-groups formed thr' the cgroup filesystem, it
6865		 * gets 100% of the cpu resources in the system. This overall
6866		 * system cpu resource is divided among the tasks of
6867		 * root_task_group and its child task-groups in a fair manner,
6868		 * based on each entity's (task or task-group's) weight
6869		 * (se->load.weight).
6870		 *
6871		 * In other words, if root_task_group has 10 tasks of weight
6872		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6873		 * then A0's share of the cpu resource is:
6874		 *
6875		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6876		 *
6877		 * We achieve this by letting root_task_group's tasks sit
6878		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6879		 */
6880		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6881		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6882#endif /* CONFIG_FAIR_GROUP_SCHED */
6883
6884		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6885#ifdef CONFIG_RT_GROUP_SCHED
6886		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6887		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6888#endif
6889
6890		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6891			rq->cpu_load[j] = 0;
6892
6893		rq->last_load_update_tick = jiffies;
6894
6895#ifdef CONFIG_SMP
6896		rq->sd = NULL;
6897		rq->rd = NULL;
6898		rq->cpu_power = SCHED_POWER_SCALE;
6899		rq->post_schedule = 0;
6900		rq->active_balance = 0;
6901		rq->next_balance = jiffies;
6902		rq->push_cpu = 0;
6903		rq->cpu = i;
6904		rq->online = 0;
6905		rq->idle_stamp = 0;
6906		rq->avg_idle = 2*sysctl_sched_migration_cost;
6907
6908		INIT_LIST_HEAD(&rq->cfs_tasks);
6909
6910		rq_attach_root(rq, &def_root_domain);
6911#ifdef CONFIG_NO_HZ
6912		rq->nohz_flags = 0;
6913#endif
6914#endif
6915		init_rq_hrtick(rq);
6916		atomic_set(&rq->nr_iowait, 0);
6917	}
6918
6919	set_load_weight(&init_task);
6920
6921#ifdef CONFIG_PREEMPT_NOTIFIERS
6922	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6923#endif
6924
6925#ifdef CONFIG_RT_MUTEXES
6926	plist_head_init(&init_task.pi_waiters);
6927#endif
6928
6929	/*
6930	 * The boot idle thread does lazy MMU switching as well:
6931	 */
6932	atomic_inc(&init_mm.mm_count);
6933	enter_lazy_tlb(&init_mm, current);
6934
6935	/*
6936	 * Make us the idle thread. Technically, schedule() should not be
6937	 * called from this thread, however somewhere below it might be,
6938	 * but because we are the idle thread, we just pick up running again
6939	 * when this runqueue becomes "idle".
6940	 */
6941	init_idle(current, smp_processor_id());
6942
6943	calc_load_update = jiffies + LOAD_FREQ;
6944
6945	/*
6946	 * During early bootup we pretend to be a normal task:
6947	 */
6948	current->sched_class = &fair_sched_class;
6949
6950#ifdef CONFIG_SMP
6951	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6952	/* May be allocated at isolcpus cmdline parse time */
6953	if (cpu_isolated_map == NULL)
6954		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6955	idle_thread_set_boot_cpu();
6956#endif
6957	init_sched_fair_class();
6958
6959	scheduler_running = 1;
6960}
6961
6962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6963static inline int preempt_count_equals(int preempt_offset)
6964{
6965	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6966
6967	return (nested == preempt_offset);
6968}
6969
6970void __might_sleep(const char *file, int line, int preempt_offset)
6971{
6972	static unsigned long prev_jiffy;	/* ratelimiting */
6973
6974	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6975	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6976	    system_state != SYSTEM_RUNNING || oops_in_progress)
6977		return;
6978	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6979		return;
6980	prev_jiffy = jiffies;
6981
6982	printk(KERN_ERR
6983		"BUG: sleeping function called from invalid context at %s:%d\n",
6984			file, line);
6985	printk(KERN_ERR
6986		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6987			in_atomic(), irqs_disabled(),
6988			current->pid, current->comm);
6989
6990	debug_show_held_locks(current);
6991	if (irqs_disabled())
6992		print_irqtrace_events(current);
6993	dump_stack();
6994}
6995EXPORT_SYMBOL(__might_sleep);
6996#endif
6997
6998#ifdef CONFIG_MAGIC_SYSRQ
6999static void normalize_task(struct rq *rq, struct task_struct *p)
7000{
7001	const struct sched_class *prev_class = p->sched_class;
7002	int old_prio = p->prio;
7003	int on_rq;
7004
7005	on_rq = p->on_rq;
7006	if (on_rq)
7007		dequeue_task(rq, p, 0);
7008	__setscheduler(rq, p, SCHED_NORMAL, 0);
7009	if (on_rq) {
7010		enqueue_task(rq, p, 0);
7011		resched_task(rq->curr);
7012	}
7013
7014	check_class_changed(rq, p, prev_class, old_prio);
7015}
7016
7017void normalize_rt_tasks(void)
7018{
7019	struct task_struct *g, *p;
7020	unsigned long flags;
7021	struct rq *rq;
7022
7023	read_lock_irqsave(&tasklist_lock, flags);
7024	do_each_thread(g, p) {
7025		/*
7026		 * Only normalize user tasks:
7027		 */
7028		if (!p->mm)
7029			continue;
7030
7031		p->se.exec_start		= 0;
7032#ifdef CONFIG_SCHEDSTATS
7033		p->se.statistics.wait_start	= 0;
7034		p->se.statistics.sleep_start	= 0;
7035		p->se.statistics.block_start	= 0;
7036#endif
7037
7038		if (!rt_task(p)) {
7039			/*
7040			 * Renice negative nice level userspace
7041			 * tasks back to 0:
7042			 */
7043			if (TASK_NICE(p) < 0 && p->mm)
7044				set_user_nice(p, 0);
7045			continue;
7046		}
7047
7048		raw_spin_lock(&p->pi_lock);
7049		rq = __task_rq_lock(p);
7050
7051		normalize_task(rq, p);
7052
7053		__task_rq_unlock(rq);
7054		raw_spin_unlock(&p->pi_lock);
7055	} while_each_thread(g, p);
7056
7057	read_unlock_irqrestore(&tasklist_lock, flags);
7058}
7059
7060#endif /* CONFIG_MAGIC_SYSRQ */
7061
7062#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7063/*
7064 * These functions are only useful for the IA64 MCA handling, or kdb.
7065 *
7066 * They can only be called when the whole system has been
7067 * stopped - every CPU needs to be quiescent, and no scheduling
7068 * activity can take place. Using them for anything else would
7069 * be a serious bug, and as a result, they aren't even visible
7070 * under any other configuration.
7071 */
7072
7073/**
7074 * curr_task - return the current task for a given cpu.
7075 * @cpu: the processor in question.
7076 *
7077 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7078 */
7079struct task_struct *curr_task(int cpu)
7080{
7081	return cpu_curr(cpu);
7082}
7083
7084#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7085
7086#ifdef CONFIG_IA64
7087/**
7088 * set_curr_task - set the current task for a given cpu.
7089 * @cpu: the processor in question.
7090 * @p: the task pointer to set.
7091 *
7092 * Description: This function must only be used when non-maskable interrupts
7093 * are serviced on a separate stack. It allows the architecture to switch the
7094 * notion of the current task on a cpu in a non-blocking manner. This function
7095 * must be called with all CPU's synchronized, and interrupts disabled, the
7096 * and caller must save the original value of the current task (see
7097 * curr_task() above) and restore that value before reenabling interrupts and
7098 * re-starting the system.
7099 *
7100 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7101 */
7102void set_curr_task(int cpu, struct task_struct *p)
7103{
7104	cpu_curr(cpu) = p;
7105}
7106
7107#endif
7108
7109#ifdef CONFIG_CGROUP_SCHED
7110/* task_group_lock serializes the addition/removal of task groups */
7111static DEFINE_SPINLOCK(task_group_lock);
7112
7113static void free_sched_group(struct task_group *tg)
7114{
7115	free_fair_sched_group(tg);
7116	free_rt_sched_group(tg);
7117	autogroup_free(tg);
7118	kfree(tg);
7119}
7120
7121/* allocate runqueue etc for a new task group */
7122struct task_group *sched_create_group(struct task_group *parent)
7123{
7124	struct task_group *tg;
7125	unsigned long flags;
7126
7127	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7128	if (!tg)
7129		return ERR_PTR(-ENOMEM);
7130
7131	if (!alloc_fair_sched_group(tg, parent))
7132		goto err;
7133
7134	if (!alloc_rt_sched_group(tg, parent))
7135		goto err;
7136
7137	spin_lock_irqsave(&task_group_lock, flags);
7138	list_add_rcu(&tg->list, &task_groups);
7139
7140	WARN_ON(!parent); /* root should already exist */
7141
7142	tg->parent = parent;
7143	INIT_LIST_HEAD(&tg->children);
7144	list_add_rcu(&tg->siblings, &parent->children);
7145	spin_unlock_irqrestore(&task_group_lock, flags);
7146
7147	return tg;
7148
7149err:
7150	free_sched_group(tg);
7151	return ERR_PTR(-ENOMEM);
7152}
7153
7154/* rcu callback to free various structures associated with a task group */
7155static void free_sched_group_rcu(struct rcu_head *rhp)
7156{
7157	/* now it should be safe to free those cfs_rqs */
7158	free_sched_group(container_of(rhp, struct task_group, rcu));
7159}
7160
7161/* Destroy runqueue etc associated with a task group */
7162void sched_destroy_group(struct task_group *tg)
7163{
7164	unsigned long flags;
7165	int i;
7166
7167	/* end participation in shares distribution */
7168	for_each_possible_cpu(i)
7169		unregister_fair_sched_group(tg, i);
7170
7171	spin_lock_irqsave(&task_group_lock, flags);
7172	list_del_rcu(&tg->list);
7173	list_del_rcu(&tg->siblings);
7174	spin_unlock_irqrestore(&task_group_lock, flags);
7175
7176	/* wait for possible concurrent references to cfs_rqs complete */
7177	call_rcu(&tg->rcu, free_sched_group_rcu);
7178}
7179
7180/* change task's runqueue when it moves between groups.
7181 *	The caller of this function should have put the task in its new group
7182 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7183 *	reflect its new group.
7184 */
7185void sched_move_task(struct task_struct *tsk)
7186{
7187	struct task_group *tg;
7188	int on_rq, running;
7189	unsigned long flags;
7190	struct rq *rq;
7191
7192	rq = task_rq_lock(tsk, &flags);
7193
7194	running = task_current(rq, tsk);
7195	on_rq = tsk->on_rq;
7196
7197	if (on_rq)
7198		dequeue_task(rq, tsk, 0);
7199	if (unlikely(running))
7200		tsk->sched_class->put_prev_task(rq, tsk);
7201
7202	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7203				lockdep_is_held(&tsk->sighand->siglock)),
7204			  struct task_group, css);
7205	tg = autogroup_task_group(tsk, tg);
7206	tsk->sched_task_group = tg;
7207
7208#ifdef CONFIG_FAIR_GROUP_SCHED
7209	if (tsk->sched_class->task_move_group)
7210		tsk->sched_class->task_move_group(tsk, on_rq);
7211	else
7212#endif
7213		set_task_rq(tsk, task_cpu(tsk));
7214
7215	if (unlikely(running))
7216		tsk->sched_class->set_curr_task(rq);
7217	if (on_rq)
7218		enqueue_task(rq, tsk, 0);
7219
7220	task_rq_unlock(rq, tsk, &flags);
7221}
7222#endif /* CONFIG_CGROUP_SCHED */
7223
7224#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7225static unsigned long to_ratio(u64 period, u64 runtime)
7226{
7227	if (runtime == RUNTIME_INF)
7228		return 1ULL << 20;
7229
7230	return div64_u64(runtime << 20, period);
7231}
7232#endif
7233
7234#ifdef CONFIG_RT_GROUP_SCHED
7235/*
7236 * Ensure that the real time constraints are schedulable.
7237 */
7238static DEFINE_MUTEX(rt_constraints_mutex);
7239
7240/* Must be called with tasklist_lock held */
7241static inline int tg_has_rt_tasks(struct task_group *tg)
7242{
7243	struct task_struct *g, *p;
7244
7245	do_each_thread(g, p) {
7246		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7247			return 1;
7248	} while_each_thread(g, p);
7249
7250	return 0;
7251}
7252
7253struct rt_schedulable_data {
7254	struct task_group *tg;
7255	u64 rt_period;
7256	u64 rt_runtime;
7257};
7258
7259static int tg_rt_schedulable(struct task_group *tg, void *data)
7260{
7261	struct rt_schedulable_data *d = data;
7262	struct task_group *child;
7263	unsigned long total, sum = 0;
7264	u64 period, runtime;
7265
7266	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7267	runtime = tg->rt_bandwidth.rt_runtime;
7268
7269	if (tg == d->tg) {
7270		period = d->rt_period;
7271		runtime = d->rt_runtime;
7272	}
7273
7274	/*
7275	 * Cannot have more runtime than the period.
7276	 */
7277	if (runtime > period && runtime != RUNTIME_INF)
7278		return -EINVAL;
7279
7280	/*
7281	 * Ensure we don't starve existing RT tasks.
7282	 */
7283	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7284		return -EBUSY;
7285
7286	total = to_ratio(period, runtime);
7287
7288	/*
7289	 * Nobody can have more than the global setting allows.
7290	 */
7291	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7292		return -EINVAL;
7293
7294	/*
7295	 * The sum of our children's runtime should not exceed our own.
7296	 */
7297	list_for_each_entry_rcu(child, &tg->children, siblings) {
7298		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7299		runtime = child->rt_bandwidth.rt_runtime;
7300
7301		if (child == d->tg) {
7302			period = d->rt_period;
7303			runtime = d->rt_runtime;
7304		}
7305
7306		sum += to_ratio(period, runtime);
7307	}
7308
7309	if (sum > total)
7310		return -EINVAL;
7311
7312	return 0;
7313}
7314
7315static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7316{
7317	int ret;
7318
7319	struct rt_schedulable_data data = {
7320		.tg = tg,
7321		.rt_period = period,
7322		.rt_runtime = runtime,
7323	};
7324
7325	rcu_read_lock();
7326	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7327	rcu_read_unlock();
7328
7329	return ret;
7330}
7331
7332static int tg_set_rt_bandwidth(struct task_group *tg,
7333		u64 rt_period, u64 rt_runtime)
7334{
7335	int i, err = 0;
7336
7337	mutex_lock(&rt_constraints_mutex);
7338	read_lock(&tasklist_lock);
7339	err = __rt_schedulable(tg, rt_period, rt_runtime);
7340	if (err)
7341		goto unlock;
7342
7343	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7344	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7345	tg->rt_bandwidth.rt_runtime = rt_runtime;
7346
7347	for_each_possible_cpu(i) {
7348		struct rt_rq *rt_rq = tg->rt_rq[i];
7349
7350		raw_spin_lock(&rt_rq->rt_runtime_lock);
7351		rt_rq->rt_runtime = rt_runtime;
7352		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7353	}
7354	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7355unlock:
7356	read_unlock(&tasklist_lock);
7357	mutex_unlock(&rt_constraints_mutex);
7358
7359	return err;
7360}
7361
7362int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7363{
7364	u64 rt_runtime, rt_period;
7365
7366	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7367	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7368	if (rt_runtime_us < 0)
7369		rt_runtime = RUNTIME_INF;
7370
7371	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7372}
7373
7374long sched_group_rt_runtime(struct task_group *tg)
7375{
7376	u64 rt_runtime_us;
7377
7378	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7379		return -1;
7380
7381	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7382	do_div(rt_runtime_us, NSEC_PER_USEC);
7383	return rt_runtime_us;
7384}
7385
7386int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7387{
7388	u64 rt_runtime, rt_period;
7389
7390	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7391	rt_runtime = tg->rt_bandwidth.rt_runtime;
7392
7393	if (rt_period == 0)
7394		return -EINVAL;
7395
7396	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7397}
7398
7399long sched_group_rt_period(struct task_group *tg)
7400{
7401	u64 rt_period_us;
7402
7403	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7404	do_div(rt_period_us, NSEC_PER_USEC);
7405	return rt_period_us;
7406}
7407
7408static int sched_rt_global_constraints(void)
7409{
7410	u64 runtime, period;
7411	int ret = 0;
7412
7413	if (sysctl_sched_rt_period <= 0)
7414		return -EINVAL;
7415
7416	runtime = global_rt_runtime();
7417	period = global_rt_period();
7418
7419	/*
7420	 * Sanity check on the sysctl variables.
7421	 */
7422	if (runtime > period && runtime != RUNTIME_INF)
7423		return -EINVAL;
7424
7425	mutex_lock(&rt_constraints_mutex);
7426	read_lock(&tasklist_lock);
7427	ret = __rt_schedulable(NULL, 0, 0);
7428	read_unlock(&tasklist_lock);
7429	mutex_unlock(&rt_constraints_mutex);
7430
7431	return ret;
7432}
7433
7434int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7435{
7436	/* Don't accept realtime tasks when there is no way for them to run */
7437	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7438		return 0;
7439
7440	return 1;
7441}
7442
7443#else /* !CONFIG_RT_GROUP_SCHED */
7444static int sched_rt_global_constraints(void)
7445{
7446	unsigned long flags;
7447	int i;
7448
7449	if (sysctl_sched_rt_period <= 0)
7450		return -EINVAL;
7451
7452	/*
7453	 * There's always some RT tasks in the root group
7454	 * -- migration, kstopmachine etc..
7455	 */
7456	if (sysctl_sched_rt_runtime == 0)
7457		return -EBUSY;
7458
7459	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7460	for_each_possible_cpu(i) {
7461		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7462
7463		raw_spin_lock(&rt_rq->rt_runtime_lock);
7464		rt_rq->rt_runtime = global_rt_runtime();
7465		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7466	}
7467	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7468
7469	return 0;
7470}
7471#endif /* CONFIG_RT_GROUP_SCHED */
7472
7473int sched_rt_handler(struct ctl_table *table, int write,
7474		void __user *buffer, size_t *lenp,
7475		loff_t *ppos)
7476{
7477	int ret;
7478	int old_period, old_runtime;
7479	static DEFINE_MUTEX(mutex);
7480
7481	mutex_lock(&mutex);
7482	old_period = sysctl_sched_rt_period;
7483	old_runtime = sysctl_sched_rt_runtime;
7484
7485	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7486
7487	if (!ret && write) {
7488		ret = sched_rt_global_constraints();
7489		if (ret) {
7490			sysctl_sched_rt_period = old_period;
7491			sysctl_sched_rt_runtime = old_runtime;
7492		} else {
7493			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7494			def_rt_bandwidth.rt_period =
7495				ns_to_ktime(global_rt_period());
7496		}
7497	}
7498	mutex_unlock(&mutex);
7499
7500	return ret;
7501}
7502
7503#ifdef CONFIG_CGROUP_SCHED
7504
7505/* return corresponding task_group object of a cgroup */
7506static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7507{
7508	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7509			    struct task_group, css);
7510}
7511
7512static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7513{
7514	struct task_group *tg, *parent;
7515
7516	if (!cgrp->parent) {
7517		/* This is early initialization for the top cgroup */
7518		return &root_task_group.css;
7519	}
7520
7521	parent = cgroup_tg(cgrp->parent);
7522	tg = sched_create_group(parent);
7523	if (IS_ERR(tg))
7524		return ERR_PTR(-ENOMEM);
7525
7526	return &tg->css;
7527}
7528
7529static void cpu_cgroup_destroy(struct cgroup *cgrp)
7530{
7531	struct task_group *tg = cgroup_tg(cgrp);
7532
7533	sched_destroy_group(tg);
7534}
7535
7536static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7537				 struct cgroup_taskset *tset)
7538{
7539	struct task_struct *task;
7540
7541	cgroup_taskset_for_each(task, cgrp, tset) {
7542#ifdef CONFIG_RT_GROUP_SCHED
7543		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7544			return -EINVAL;
7545#else
7546		/* We don't support RT-tasks being in separate groups */
7547		if (task->sched_class != &fair_sched_class)
7548			return -EINVAL;
7549#endif
7550	}
7551	return 0;
7552}
7553
7554static void cpu_cgroup_attach(struct cgroup *cgrp,
7555			      struct cgroup_taskset *tset)
7556{
7557	struct task_struct *task;
7558
7559	cgroup_taskset_for_each(task, cgrp, tset)
7560		sched_move_task(task);
7561}
7562
7563static void
7564cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7565		struct task_struct *task)
7566{
7567	/*
7568	 * cgroup_exit() is called in the copy_process() failure path.
7569	 * Ignore this case since the task hasn't ran yet, this avoids
7570	 * trying to poke a half freed task state from generic code.
7571	 */
7572	if (!(task->flags & PF_EXITING))
7573		return;
7574
7575	sched_move_task(task);
7576}
7577
7578#ifdef CONFIG_FAIR_GROUP_SCHED
7579static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7580				u64 shareval)
7581{
7582	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7583}
7584
7585static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7586{
7587	struct task_group *tg = cgroup_tg(cgrp);
7588
7589	return (u64) scale_load_down(tg->shares);
7590}
7591
7592#ifdef CONFIG_CFS_BANDWIDTH
7593static DEFINE_MUTEX(cfs_constraints_mutex);
7594
7595const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7596const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7597
7598static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7599
7600static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7601{
7602	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7603	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7604
7605	if (tg == &root_task_group)
7606		return -EINVAL;
7607
7608	/*
7609	 * Ensure we have at some amount of bandwidth every period.  This is
7610	 * to prevent reaching a state of large arrears when throttled via
7611	 * entity_tick() resulting in prolonged exit starvation.
7612	 */
7613	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7614		return -EINVAL;
7615
7616	/*
7617	 * Likewise, bound things on the otherside by preventing insane quota
7618	 * periods.  This also allows us to normalize in computing quota
7619	 * feasibility.
7620	 */
7621	if (period > max_cfs_quota_period)
7622		return -EINVAL;
7623
7624	mutex_lock(&cfs_constraints_mutex);
7625	ret = __cfs_schedulable(tg, period, quota);
7626	if (ret)
7627		goto out_unlock;
7628
7629	runtime_enabled = quota != RUNTIME_INF;
7630	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7631	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7632	raw_spin_lock_irq(&cfs_b->lock);
7633	cfs_b->period = ns_to_ktime(period);
7634	cfs_b->quota = quota;
7635
7636	__refill_cfs_bandwidth_runtime(cfs_b);
7637	/* restart the period timer (if active) to handle new period expiry */
7638	if (runtime_enabled && cfs_b->timer_active) {
7639		/* force a reprogram */
7640		cfs_b->timer_active = 0;
7641		__start_cfs_bandwidth(cfs_b);
7642	}
7643	raw_spin_unlock_irq(&cfs_b->lock);
7644
7645	for_each_possible_cpu(i) {
7646		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7647		struct rq *rq = cfs_rq->rq;
7648
7649		raw_spin_lock_irq(&rq->lock);
7650		cfs_rq->runtime_enabled = runtime_enabled;
7651		cfs_rq->runtime_remaining = 0;
7652
7653		if (cfs_rq->throttled)
7654			unthrottle_cfs_rq(cfs_rq);
7655		raw_spin_unlock_irq(&rq->lock);
7656	}
7657out_unlock:
7658	mutex_unlock(&cfs_constraints_mutex);
7659
7660	return ret;
7661}
7662
7663int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7664{
7665	u64 quota, period;
7666
7667	period = ktime_to_ns(tg->cfs_bandwidth.period);
7668	if (cfs_quota_us < 0)
7669		quota = RUNTIME_INF;
7670	else
7671		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7672
7673	return tg_set_cfs_bandwidth(tg, period, quota);
7674}
7675
7676long tg_get_cfs_quota(struct task_group *tg)
7677{
7678	u64 quota_us;
7679
7680	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7681		return -1;
7682
7683	quota_us = tg->cfs_bandwidth.quota;
7684	do_div(quota_us, NSEC_PER_USEC);
7685
7686	return quota_us;
7687}
7688
7689int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7690{
7691	u64 quota, period;
7692
7693	period = (u64)cfs_period_us * NSEC_PER_USEC;
7694	quota = tg->cfs_bandwidth.quota;
7695
7696	return tg_set_cfs_bandwidth(tg, period, quota);
7697}
7698
7699long tg_get_cfs_period(struct task_group *tg)
7700{
7701	u64 cfs_period_us;
7702
7703	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7704	do_div(cfs_period_us, NSEC_PER_USEC);
7705
7706	return cfs_period_us;
7707}
7708
7709static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7710{
7711	return tg_get_cfs_quota(cgroup_tg(cgrp));
7712}
7713
7714static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7715				s64 cfs_quota_us)
7716{
7717	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7718}
7719
7720static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7721{
7722	return tg_get_cfs_period(cgroup_tg(cgrp));
7723}
7724
7725static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7726				u64 cfs_period_us)
7727{
7728	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7729}
7730
7731struct cfs_schedulable_data {
7732	struct task_group *tg;
7733	u64 period, quota;
7734};
7735
7736/*
7737 * normalize group quota/period to be quota/max_period
7738 * note: units are usecs
7739 */
7740static u64 normalize_cfs_quota(struct task_group *tg,
7741			       struct cfs_schedulable_data *d)
7742{
7743	u64 quota, period;
7744
7745	if (tg == d->tg) {
7746		period = d->period;
7747		quota = d->quota;
7748	} else {
7749		period = tg_get_cfs_period(tg);
7750		quota = tg_get_cfs_quota(tg);
7751	}
7752
7753	/* note: these should typically be equivalent */
7754	if (quota == RUNTIME_INF || quota == -1)
7755		return RUNTIME_INF;
7756
7757	return to_ratio(period, quota);
7758}
7759
7760static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7761{
7762	struct cfs_schedulable_data *d = data;
7763	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7764	s64 quota = 0, parent_quota = -1;
7765
7766	if (!tg->parent) {
7767		quota = RUNTIME_INF;
7768	} else {
7769		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7770
7771		quota = normalize_cfs_quota(tg, d);
7772		parent_quota = parent_b->hierarchal_quota;
7773
7774		/*
7775		 * ensure max(child_quota) <= parent_quota, inherit when no
7776		 * limit is set
7777		 */
7778		if (quota == RUNTIME_INF)
7779			quota = parent_quota;
7780		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7781			return -EINVAL;
7782	}
7783	cfs_b->hierarchal_quota = quota;
7784
7785	return 0;
7786}
7787
7788static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7789{
7790	int ret;
7791	struct cfs_schedulable_data data = {
7792		.tg = tg,
7793		.period = period,
7794		.quota = quota,
7795	};
7796
7797	if (quota != RUNTIME_INF) {
7798		do_div(data.period, NSEC_PER_USEC);
7799		do_div(data.quota, NSEC_PER_USEC);
7800	}
7801
7802	rcu_read_lock();
7803	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7804	rcu_read_unlock();
7805
7806	return ret;
7807}
7808
7809static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7810		struct cgroup_map_cb *cb)
7811{
7812	struct task_group *tg = cgroup_tg(cgrp);
7813	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7814
7815	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7816	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7817	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7818
7819	return 0;
7820}
7821#endif /* CONFIG_CFS_BANDWIDTH */
7822#endif /* CONFIG_FAIR_GROUP_SCHED */
7823
7824#ifdef CONFIG_RT_GROUP_SCHED
7825static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7826				s64 val)
7827{
7828	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7829}
7830
7831static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7832{
7833	return sched_group_rt_runtime(cgroup_tg(cgrp));
7834}
7835
7836static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7837		u64 rt_period_us)
7838{
7839	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7840}
7841
7842static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7843{
7844	return sched_group_rt_period(cgroup_tg(cgrp));
7845}
7846#endif /* CONFIG_RT_GROUP_SCHED */
7847
7848static struct cftype cpu_files[] = {
7849#ifdef CONFIG_FAIR_GROUP_SCHED
7850	{
7851		.name = "shares",
7852		.read_u64 = cpu_shares_read_u64,
7853		.write_u64 = cpu_shares_write_u64,
7854	},
7855#endif
7856#ifdef CONFIG_CFS_BANDWIDTH
7857	{
7858		.name = "cfs_quota_us",
7859		.read_s64 = cpu_cfs_quota_read_s64,
7860		.write_s64 = cpu_cfs_quota_write_s64,
7861	},
7862	{
7863		.name = "cfs_period_us",
7864		.read_u64 = cpu_cfs_period_read_u64,
7865		.write_u64 = cpu_cfs_period_write_u64,
7866	},
7867	{
7868		.name = "stat",
7869		.read_map = cpu_stats_show,
7870	},
7871#endif
7872#ifdef CONFIG_RT_GROUP_SCHED
7873	{
7874		.name = "rt_runtime_us",
7875		.read_s64 = cpu_rt_runtime_read,
7876		.write_s64 = cpu_rt_runtime_write,
7877	},
7878	{
7879		.name = "rt_period_us",
7880		.read_u64 = cpu_rt_period_read_uint,
7881		.write_u64 = cpu_rt_period_write_uint,
7882	},
7883#endif
7884	{ }	/* terminate */
7885};
7886
7887struct cgroup_subsys cpu_cgroup_subsys = {
7888	.name		= "cpu",
7889	.create		= cpu_cgroup_create,
7890	.destroy	= cpu_cgroup_destroy,
7891	.can_attach	= cpu_cgroup_can_attach,
7892	.attach		= cpu_cgroup_attach,
7893	.exit		= cpu_cgroup_exit,
7894	.subsys_id	= cpu_cgroup_subsys_id,
7895	.base_cftypes	= cpu_files,
7896	.early_init	= 1,
7897};
7898
7899#endif	/* CONFIG_CGROUP_SCHED */
7900
7901#ifdef CONFIG_CGROUP_CPUACCT
7902
7903/*
7904 * CPU accounting code for task groups.
7905 *
7906 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7907 * (balbir@in.ibm.com).
7908 */
7909
7910struct cpuacct root_cpuacct;
7911
7912/* create a new cpu accounting group */
7913static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7914{
7915	struct cpuacct *ca;
7916
7917	if (!cgrp->parent)
7918		return &root_cpuacct.css;
7919
7920	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7921	if (!ca)
7922		goto out;
7923
7924	ca->cpuusage = alloc_percpu(u64);
7925	if (!ca->cpuusage)
7926		goto out_free_ca;
7927
7928	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7929	if (!ca->cpustat)
7930		goto out_free_cpuusage;
7931
7932	return &ca->css;
7933
7934out_free_cpuusage:
7935	free_percpu(ca->cpuusage);
7936out_free_ca:
7937	kfree(ca);
7938out:
7939	return ERR_PTR(-ENOMEM);
7940}
7941
7942/* destroy an existing cpu accounting group */
7943static void cpuacct_destroy(struct cgroup *cgrp)
7944{
7945	struct cpuacct *ca = cgroup_ca(cgrp);
7946
7947	free_percpu(ca->cpustat);
7948	free_percpu(ca->cpuusage);
7949	kfree(ca);
7950}
7951
7952static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7953{
7954	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7955	u64 data;
7956
7957#ifndef CONFIG_64BIT
7958	/*
7959	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7960	 */
7961	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7962	data = *cpuusage;
7963	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7964#else
7965	data = *cpuusage;
7966#endif
7967
7968	return data;
7969}
7970
7971static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7972{
7973	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7974
7975#ifndef CONFIG_64BIT
7976	/*
7977	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7978	 */
7979	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7980	*cpuusage = val;
7981	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7982#else
7983	*cpuusage = val;
7984#endif
7985}
7986
7987/* return total cpu usage (in nanoseconds) of a group */
7988static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7989{
7990	struct cpuacct *ca = cgroup_ca(cgrp);
7991	u64 totalcpuusage = 0;
7992	int i;
7993
7994	for_each_present_cpu(i)
7995		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7996
7997	return totalcpuusage;
7998}
7999
8000static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8001								u64 reset)
8002{
8003	struct cpuacct *ca = cgroup_ca(cgrp);
8004	int err = 0;
8005	int i;
8006
8007	if (reset) {
8008		err = -EINVAL;
8009		goto out;
8010	}
8011
8012	for_each_present_cpu(i)
8013		cpuacct_cpuusage_write(ca, i, 0);
8014
8015out:
8016	return err;
8017}
8018
8019static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8020				   struct seq_file *m)
8021{
8022	struct cpuacct *ca = cgroup_ca(cgroup);
8023	u64 percpu;
8024	int i;
8025
8026	for_each_present_cpu(i) {
8027		percpu = cpuacct_cpuusage_read(ca, i);
8028		seq_printf(m, "%llu ", (unsigned long long) percpu);
8029	}
8030	seq_printf(m, "\n");
8031	return 0;
8032}
8033
8034static const char *cpuacct_stat_desc[] = {
8035	[CPUACCT_STAT_USER] = "user",
8036	[CPUACCT_STAT_SYSTEM] = "system",
8037};
8038
8039static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8040			      struct cgroup_map_cb *cb)
8041{
8042	struct cpuacct *ca = cgroup_ca(cgrp);
8043	int cpu;
8044	s64 val = 0;
8045
8046	for_each_online_cpu(cpu) {
8047		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8048		val += kcpustat->cpustat[CPUTIME_USER];
8049		val += kcpustat->cpustat[CPUTIME_NICE];
8050	}
8051	val = cputime64_to_clock_t(val);
8052	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8053
8054	val = 0;
8055	for_each_online_cpu(cpu) {
8056		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8057		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8058		val += kcpustat->cpustat[CPUTIME_IRQ];
8059		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8060	}
8061
8062	val = cputime64_to_clock_t(val);
8063	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8064
8065	return 0;
8066}
8067
8068static struct cftype files[] = {
8069	{
8070		.name = "usage",
8071		.read_u64 = cpuusage_read,
8072		.write_u64 = cpuusage_write,
8073	},
8074	{
8075		.name = "usage_percpu",
8076		.read_seq_string = cpuacct_percpu_seq_read,
8077	},
8078	{
8079		.name = "stat",
8080		.read_map = cpuacct_stats_show,
8081	},
8082	{ }	/* terminate */
8083};
8084
8085/*
8086 * charge this task's execution time to its accounting group.
8087 *
8088 * called with rq->lock held.
8089 */
8090void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8091{
8092	struct cpuacct *ca;
8093	int cpu;
8094
8095	if (unlikely(!cpuacct_subsys.active))
8096		return;
8097
8098	cpu = task_cpu(tsk);
8099
8100	rcu_read_lock();
8101
8102	ca = task_ca(tsk);
8103
8104	for (; ca; ca = parent_ca(ca)) {
8105		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8106		*cpuusage += cputime;
8107	}
8108
8109	rcu_read_unlock();
8110}
8111
8112struct cgroup_subsys cpuacct_subsys = {
8113	.name = "cpuacct",
8114	.create = cpuacct_create,
8115	.destroy = cpuacct_destroy,
8116	.subsys_id = cpuacct_subsys_id,
8117	.base_cftypes = files,
8118};
8119#endif	/* CONFIG_CGROUP_CPUACCT */
8120