core.c revision 3472eaa1f12e217e2b8b0ef658ff861b2308cbbd
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	if (delta < 0)
143		return;
144	rq->clock += delta;
145	update_rq_clock_task(rq, delta);
146}
147
148/*
149 * Debugging: various feature bits
150 */
151
152#define SCHED_FEAT(name, enabled)	\
153	(1UL << __SCHED_FEAT_##name) * enabled |
154
155const_debug unsigned int sysctl_sched_features =
156#include "features.h"
157	0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled)	\
163	#name ,
164
165static const char * const sched_feat_names[] = {
166#include "features.h"
167};
168
169#undef SCHED_FEAT
170
171static int sched_feat_show(struct seq_file *m, void *v)
172{
173	int i;
174
175	for (i = 0; i < __SCHED_FEAT_NR; i++) {
176		if (!(sysctl_sched_features & (1UL << i)))
177			seq_puts(m, "NO_");
178		seq_printf(m, "%s ", sched_feat_names[i]);
179	}
180	seq_puts(m, "\n");
181
182	return 0;
183}
184
185#ifdef HAVE_JUMP_LABEL
186
187#define jump_label_key__true  STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
189
190#define SCHED_FEAT(name, enabled)	\
191	jump_label_key__##enabled ,
192
193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
201	if (static_key_enabled(&sched_feat_keys[i]))
202		static_key_slow_dec(&sched_feat_keys[i]);
203}
204
205static void sched_feat_enable(int i)
206{
207	if (!static_key_enabled(&sched_feat_keys[i]))
208		static_key_slow_inc(&sched_feat_keys[i]);
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
215static int sched_feat_set(char *cmp)
216{
217	int i;
218	int neg = 0;
219
220	if (strncmp(cmp, "NO_", 3) == 0) {
221		neg = 1;
222		cmp += 3;
223	}
224
225	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227			if (neg) {
228				sysctl_sched_features &= ~(1UL << i);
229				sched_feat_disable(i);
230			} else {
231				sysctl_sched_features |= (1UL << i);
232				sched_feat_enable(i);
233			}
234			break;
235		}
236	}
237
238	return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243		size_t cnt, loff_t *ppos)
244{
245	char buf[64];
246	char *cmp;
247	int i;
248	struct inode *inode;
249
250	if (cnt > 63)
251		cnt = 63;
252
253	if (copy_from_user(&buf, ubuf, cnt))
254		return -EFAULT;
255
256	buf[cnt] = 0;
257	cmp = strstrip(buf);
258
259	/* Ensure the static_key remains in a consistent state */
260	inode = file_inode(filp);
261	mutex_lock(&inode->i_mutex);
262	i = sched_feat_set(cmp);
263	mutex_unlock(&inode->i_mutex);
264	if (i == __SCHED_FEAT_NR)
265		return -EINVAL;
266
267	*ppos += cnt;
268
269	return cnt;
270}
271
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274	return single_open(filp, sched_feat_show, NULL);
275}
276
277static const struct file_operations sched_feat_fops = {
278	.open		= sched_feat_open,
279	.write		= sched_feat_write,
280	.read		= seq_read,
281	.llseek		= seq_lseek,
282	.release	= single_release,
283};
284
285static __init int sched_init_debug(void)
286{
287	debugfs_create_file("sched_features", 0644, NULL, NULL,
288			&sched_feat_fops);
289
290	return 0;
291}
292late_initcall(sched_init_debug);
293#endif /* CONFIG_SCHED_DEBUG */
294
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
309/*
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
312 */
313unsigned int sysctl_sched_rt_period = 1000000;
314
315__read_mostly int scheduler_running;
316
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
322
323/*
324 * __task_rq_lock - lock the rq @p resides on.
325 */
326static inline struct rq *__task_rq_lock(struct task_struct *p)
327	__acquires(rq->lock)
328{
329	struct rq *rq;
330
331	lockdep_assert_held(&p->pi_lock);
332
333	for (;;) {
334		rq = task_rq(p);
335		raw_spin_lock(&rq->lock);
336		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
337			return rq;
338		raw_spin_unlock(&rq->lock);
339
340		while (unlikely(task_on_rq_migrating(p)))
341			cpu_relax();
342	}
343}
344
345/*
346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
347 */
348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
349	__acquires(p->pi_lock)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	for (;;) {
355		raw_spin_lock_irqsave(&p->pi_lock, *flags);
356		rq = task_rq(p);
357		raw_spin_lock(&rq->lock);
358		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
359			return rq;
360		raw_spin_unlock(&rq->lock);
361		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362
363		while (unlikely(task_on_rq_migrating(p)))
364			cpu_relax();
365	}
366}
367
368static void __task_rq_unlock(struct rq *rq)
369	__releases(rq->lock)
370{
371	raw_spin_unlock(&rq->lock);
372}
373
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
376	__releases(rq->lock)
377	__releases(p->pi_lock)
378{
379	raw_spin_unlock(&rq->lock);
380	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
381}
382
383/*
384 * this_rq_lock - lock this runqueue and disable interrupts.
385 */
386static struct rq *this_rq_lock(void)
387	__acquires(rq->lock)
388{
389	struct rq *rq;
390
391	local_irq_disable();
392	rq = this_rq();
393	raw_spin_lock(&rq->lock);
394
395	return rq;
396}
397
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
401 */
402
403static void hrtick_clear(struct rq *rq)
404{
405	if (hrtimer_active(&rq->hrtick_timer))
406		hrtimer_cancel(&rq->hrtick_timer);
407}
408
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
419	raw_spin_lock(&rq->lock);
420	update_rq_clock(rq);
421	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
422	raw_spin_unlock(&rq->lock);
423
424	return HRTIMER_NORESTART;
425}
426
427#ifdef CONFIG_SMP
428
429static int __hrtick_restart(struct rq *rq)
430{
431	struct hrtimer *timer = &rq->hrtick_timer;
432	ktime_t time = hrtimer_get_softexpires(timer);
433
434	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
441{
442	struct rq *rq = arg;
443
444	raw_spin_lock(&rq->lock);
445	__hrtick_restart(rq);
446	rq->hrtick_csd_pending = 0;
447	raw_spin_unlock(&rq->lock);
448}
449
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
455void hrtick_start(struct rq *rq, u64 delay)
456{
457	struct hrtimer *timer = &rq->hrtick_timer;
458	ktime_t time;
459	s64 delta;
460
461	/*
462	 * Don't schedule slices shorter than 10000ns, that just
463	 * doesn't make sense and can cause timer DoS.
464	 */
465	delta = max_t(s64, delay, 10000LL);
466	time = ktime_add_ns(timer->base->get_time(), delta);
467
468	hrtimer_set_expires(timer, time);
469
470	if (rq == this_rq()) {
471		__hrtick_restart(rq);
472	} else if (!rq->hrtick_csd_pending) {
473		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
474		rq->hrtick_csd_pending = 1;
475	}
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481	int cpu = (int)(long)hcpu;
482
483	switch (action) {
484	case CPU_UP_CANCELED:
485	case CPU_UP_CANCELED_FROZEN:
486	case CPU_DOWN_PREPARE:
487	case CPU_DOWN_PREPARE_FROZEN:
488	case CPU_DEAD:
489	case CPU_DEAD_FROZEN:
490		hrtick_clear(cpu_rq(cpu));
491		return NOTIFY_OK;
492	}
493
494	return NOTIFY_DONE;
495}
496
497static __init void init_hrtick(void)
498{
499	hotcpu_notifier(hotplug_hrtick, 0);
500}
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
507void hrtick_start(struct rq *rq, u64 delay)
508{
509	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
510			HRTIMER_MODE_REL_PINNED, 0);
511}
512
513static inline void init_hrtick(void)
514{
515}
516#endif /* CONFIG_SMP */
517
518static void init_rq_hrtick(struct rq *rq)
519{
520#ifdef CONFIG_SMP
521	rq->hrtick_csd_pending = 0;
522
523	rq->hrtick_csd.flags = 0;
524	rq->hrtick_csd.func = __hrtick_start;
525	rq->hrtick_csd.info = rq;
526#endif
527
528	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529	rq->hrtick_timer.function = hrtick;
530}
531#else	/* CONFIG_SCHED_HRTICK */
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
540static inline void init_hrtick(void)
541{
542}
543#endif	/* CONFIG_SCHED_HRTICK */
544
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val)						\
549({	typeof(*(ptr)) __old, __val = *(ptr);				\
550 	for (;;) {							\
551 		__old = cmpxchg((ptr), __val, __val | (val));		\
552 		if (__old == __val)					\
553 			break;						\
554 		__val = __old;						\
555 	}								\
556 	__old;								\
557})
558
559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567	struct thread_info *ti = task_thread_info(p);
568	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579	struct thread_info *ti = task_thread_info(p);
580	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582	for (;;) {
583		if (!(val & _TIF_POLLING_NRFLAG))
584			return false;
585		if (val & _TIF_NEED_RESCHED)
586			return true;
587		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588		if (old == val)
589			break;
590		val = old;
591	}
592	return true;
593}
594
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598	set_tsk_need_resched(p);
599	return true;
600}
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605	return false;
606}
607#endif
608#endif
609
610/*
611 * resched_curr - mark rq's current task 'to be rescheduled now'.
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
617void resched_curr(struct rq *rq)
618{
619	struct task_struct *curr = rq->curr;
620	int cpu;
621
622	lockdep_assert_held(&rq->lock);
623
624	if (test_tsk_need_resched(curr))
625		return;
626
627	cpu = cpu_of(rq);
628
629	if (cpu == smp_processor_id()) {
630		set_tsk_need_resched(curr);
631		set_preempt_need_resched();
632		return;
633	}
634
635	if (set_nr_and_not_polling(curr))
636		smp_send_reschedule(cpu);
637	else
638		trace_sched_wake_idle_without_ipi(cpu);
639}
640
641void resched_cpu(int cpu)
642{
643	struct rq *rq = cpu_rq(cpu);
644	unsigned long flags;
645
646	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
647		return;
648	resched_curr(rq);
649	raw_spin_unlock_irqrestore(&rq->lock, flags);
650}
651
652#ifdef CONFIG_SMP
653#ifdef CONFIG_NO_HZ_COMMON
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu.  This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
662int get_nohz_timer_target(int pinned)
663{
664	int cpu = smp_processor_id();
665	int i;
666	struct sched_domain *sd;
667
668	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669		return cpu;
670
671	rcu_read_lock();
672	for_each_domain(cpu, sd) {
673		for_each_cpu(i, sched_domain_span(sd)) {
674			if (!idle_cpu(i)) {
675				cpu = i;
676				goto unlock;
677			}
678		}
679	}
680unlock:
681	rcu_read_unlock();
682	return cpu;
683}
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
694static void wake_up_idle_cpu(int cpu)
695{
696	struct rq *rq = cpu_rq(cpu);
697
698	if (cpu == smp_processor_id())
699		return;
700
701	if (set_nr_and_not_polling(rq->idle))
702		smp_send_reschedule(cpu);
703	else
704		trace_sched_wake_idle_without_ipi(cpu);
705}
706
707static bool wake_up_full_nohz_cpu(int cpu)
708{
709	/*
710	 * We just need the target to call irq_exit() and re-evaluate
711	 * the next tick. The nohz full kick at least implies that.
712	 * If needed we can still optimize that later with an
713	 * empty IRQ.
714	 */
715	if (tick_nohz_full_cpu(cpu)) {
716		if (cpu != smp_processor_id() ||
717		    tick_nohz_tick_stopped())
718			tick_nohz_full_kick_cpu(cpu);
719		return true;
720	}
721
722	return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
727	if (!wake_up_full_nohz_cpu(cpu))
728		wake_up_idle_cpu(cpu);
729}
730
731static inline bool got_nohz_idle_kick(void)
732{
733	int cpu = smp_processor_id();
734
735	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736		return false;
737
738	if (idle_cpu(cpu) && !need_resched())
739		return true;
740
741	/*
742	 * We can't run Idle Load Balance on this CPU for this time so we
743	 * cancel it and clear NOHZ_BALANCE_KICK
744	 */
745	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746	return false;
747}
748
749#else /* CONFIG_NO_HZ_COMMON */
750
751static inline bool got_nohz_idle_kick(void)
752{
753	return false;
754}
755
756#endif /* CONFIG_NO_HZ_COMMON */
757
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
761	/*
762	 * More than one running task need preemption.
763	 * nr_running update is assumed to be visible
764	 * after IPI is sent from wakers.
765	 */
766	if (this_rq()->nr_running > 1)
767		return false;
768
769	return true;
770}
771#endif /* CONFIG_NO_HZ_FULL */
772
773void sched_avg_update(struct rq *rq)
774{
775	s64 period = sched_avg_period();
776
777	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
778		/*
779		 * Inline assembly required to prevent the compiler
780		 * optimising this loop into a divmod call.
781		 * See __iter_div_u64_rem() for another example of this.
782		 */
783		asm("" : "+rm" (rq->age_stamp));
784		rq->age_stamp += period;
785		rq->rt_avg /= 2;
786	}
787}
788
789#endif /* CONFIG_SMP */
790
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
793/*
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
798 */
799int walk_tg_tree_from(struct task_group *from,
800			     tg_visitor down, tg_visitor up, void *data)
801{
802	struct task_group *parent, *child;
803	int ret;
804
805	parent = from;
806
807down:
808	ret = (*down)(parent, data);
809	if (ret)
810		goto out;
811	list_for_each_entry_rcu(child, &parent->children, siblings) {
812		parent = child;
813		goto down;
814
815up:
816		continue;
817	}
818	ret = (*up)(parent, data);
819	if (ret || parent == from)
820		goto out;
821
822	child = parent;
823	parent = parent->parent;
824	if (parent)
825		goto up;
826out:
827	return ret;
828}
829
830int tg_nop(struct task_group *tg, void *data)
831{
832	return 0;
833}
834#endif
835
836static void set_load_weight(struct task_struct *p)
837{
838	int prio = p->static_prio - MAX_RT_PRIO;
839	struct load_weight *load = &p->se.load;
840
841	/*
842	 * SCHED_IDLE tasks get minimal weight:
843	 */
844	if (p->policy == SCHED_IDLE) {
845		load->weight = scale_load(WEIGHT_IDLEPRIO);
846		load->inv_weight = WMULT_IDLEPRIO;
847		return;
848	}
849
850	load->weight = scale_load(prio_to_weight[prio]);
851	load->inv_weight = prio_to_wmult[prio];
852}
853
854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
855{
856	update_rq_clock(rq);
857	sched_info_queued(rq, p);
858	p->sched_class->enqueue_task(rq, p, flags);
859}
860
861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862{
863	update_rq_clock(rq);
864	sched_info_dequeued(rq, p);
865	p->sched_class->dequeue_task(rq, p, flags);
866}
867
868void activate_task(struct rq *rq, struct task_struct *p, int flags)
869{
870	if (task_contributes_to_load(p))
871		rq->nr_uninterruptible--;
872
873	enqueue_task(rq, p, flags);
874}
875
876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
877{
878	if (task_contributes_to_load(p))
879		rq->nr_uninterruptible++;
880
881	dequeue_task(rq, p, flags);
882}
883
884static void update_rq_clock_task(struct rq *rq, s64 delta)
885{
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891	s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
894	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
895
896	/*
897	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898	 * this case when a previous update_rq_clock() happened inside a
899	 * {soft,}irq region.
900	 *
901	 * When this happens, we stop ->clock_task and only update the
902	 * prev_irq_time stamp to account for the part that fit, so that a next
903	 * update will consume the rest. This ensures ->clock_task is
904	 * monotonic.
905	 *
906	 * It does however cause some slight miss-attribution of {soft,}irq
907	 * time, a more accurate solution would be to update the irq_time using
908	 * the current rq->clock timestamp, except that would require using
909	 * atomic ops.
910	 */
911	if (irq_delta > delta)
912		irq_delta = delta;
913
914	rq->prev_irq_time += irq_delta;
915	delta -= irq_delta;
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
918	if (static_key_false((&paravirt_steal_rq_enabled))) {
919		steal = paravirt_steal_clock(cpu_of(rq));
920		steal -= rq->prev_steal_time_rq;
921
922		if (unlikely(steal > delta))
923			steal = delta;
924
925		rq->prev_steal_time_rq += steal;
926		delta -= steal;
927	}
928#endif
929
930	rq->clock_task += delta;
931
932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
933	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
934		sched_rt_avg_update(rq, irq_delta + steal);
935#endif
936}
937
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941	struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943	if (stop) {
944		/*
945		 * Make it appear like a SCHED_FIFO task, its something
946		 * userspace knows about and won't get confused about.
947		 *
948		 * Also, it will make PI more or less work without too
949		 * much confusion -- but then, stop work should not
950		 * rely on PI working anyway.
951		 */
952		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954		stop->sched_class = &stop_sched_class;
955	}
956
957	cpu_rq(cpu)->stop = stop;
958
959	if (old_stop) {
960		/*
961		 * Reset it back to a normal scheduling class so that
962		 * it can die in pieces.
963		 */
964		old_stop->sched_class = &rt_sched_class;
965	}
966}
967
968/*
969 * __normal_prio - return the priority that is based on the static prio
970 */
971static inline int __normal_prio(struct task_struct *p)
972{
973	return p->static_prio;
974}
975
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
983static inline int normal_prio(struct task_struct *p)
984{
985	int prio;
986
987	if (task_has_dl_policy(p))
988		prio = MAX_DL_PRIO-1;
989	else if (task_has_rt_policy(p))
990		prio = MAX_RT_PRIO-1 - p->rt_priority;
991	else
992		prio = __normal_prio(p);
993	return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
1003static int effective_prio(struct task_struct *p)
1004{
1005	p->normal_prio = normal_prio(p);
1006	/*
1007	 * If we are RT tasks or we were boosted to RT priority,
1008	 * keep the priority unchanged. Otherwise, update priority
1009	 * to the normal priority:
1010	 */
1011	if (!rt_prio(p->prio))
1012		return p->normal_prio;
1013	return p->prio;
1014}
1015
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1021 */
1022inline int task_curr(const struct task_struct *p)
1023{
1024	return cpu_curr(task_cpu(p)) == p;
1025}
1026
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028				       const struct sched_class *prev_class,
1029				       int oldprio)
1030{
1031	if (prev_class != p->sched_class) {
1032		if (prev_class->switched_from)
1033			prev_class->switched_from(rq, p);
1034		p->sched_class->switched_to(rq, p);
1035	} else if (oldprio != p->prio || dl_task(p))
1036		p->sched_class->prio_changed(rq, p, oldprio);
1037}
1038
1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1040{
1041	const struct sched_class *class;
1042
1043	if (p->sched_class == rq->curr->sched_class) {
1044		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045	} else {
1046		for_each_class(class) {
1047			if (class == rq->curr->sched_class)
1048				break;
1049			if (class == p->sched_class) {
1050				resched_curr(rq);
1051				break;
1052			}
1053		}
1054	}
1055
1056	/*
1057	 * A queue event has occurred, and we're going to schedule.  In
1058	 * this case, we can save a useless back to back clock update.
1059	 */
1060	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1061		rq->skip_clock_update = 1;
1062}
1063
1064#ifdef CONFIG_SMP
1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1066{
1067#ifdef CONFIG_SCHED_DEBUG
1068	/*
1069	 * We should never call set_task_cpu() on a blocked task,
1070	 * ttwu() will sort out the placement.
1071	 */
1072	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1073			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1074
1075#ifdef CONFIG_LOCKDEP
1076	/*
1077	 * The caller should hold either p->pi_lock or rq->lock, when changing
1078	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079	 *
1080	 * sched_move_task() holds both and thus holding either pins the cgroup,
1081	 * see task_group().
1082	 *
1083	 * Furthermore, all task_rq users should acquire both locks, see
1084	 * task_rq_lock().
1085	 */
1086	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087				      lockdep_is_held(&task_rq(p)->lock)));
1088#endif
1089#endif
1090
1091	trace_sched_migrate_task(p, new_cpu);
1092
1093	if (task_cpu(p) != new_cpu) {
1094		if (p->sched_class->migrate_task_rq)
1095			p->sched_class->migrate_task_rq(p, new_cpu);
1096		p->se.nr_migrations++;
1097		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1098	}
1099
1100	__set_task_cpu(p, new_cpu);
1101}
1102
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
1105	if (task_on_rq_queued(p)) {
1106		struct rq *src_rq, *dst_rq;
1107
1108		src_rq = task_rq(p);
1109		dst_rq = cpu_rq(cpu);
1110
1111		deactivate_task(src_rq, p, 0);
1112		set_task_cpu(p, cpu);
1113		activate_task(dst_rq, p, 0);
1114		check_preempt_curr(dst_rq, p, 0);
1115	} else {
1116		/*
1117		 * Task isn't running anymore; make it appear like we migrated
1118		 * it before it went to sleep. This means on wakeup we make the
1119		 * previous cpu our targer instead of where it really is.
1120		 */
1121		p->wake_cpu = cpu;
1122	}
1123}
1124
1125struct migration_swap_arg {
1126	struct task_struct *src_task, *dst_task;
1127	int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132	struct migration_swap_arg *arg = data;
1133	struct rq *src_rq, *dst_rq;
1134	int ret = -EAGAIN;
1135
1136	src_rq = cpu_rq(arg->src_cpu);
1137	dst_rq = cpu_rq(arg->dst_cpu);
1138
1139	double_raw_lock(&arg->src_task->pi_lock,
1140			&arg->dst_task->pi_lock);
1141	double_rq_lock(src_rq, dst_rq);
1142	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143		goto unlock;
1144
1145	if (task_cpu(arg->src_task) != arg->src_cpu)
1146		goto unlock;
1147
1148	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149		goto unlock;
1150
1151	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152		goto unlock;
1153
1154	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1155	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157	ret = 0;
1158
1159unlock:
1160	double_rq_unlock(src_rq, dst_rq);
1161	raw_spin_unlock(&arg->dst_task->pi_lock);
1162	raw_spin_unlock(&arg->src_task->pi_lock);
1163
1164	return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172	struct migration_swap_arg arg;
1173	int ret = -EINVAL;
1174
1175	arg = (struct migration_swap_arg){
1176		.src_task = cur,
1177		.src_cpu = task_cpu(cur),
1178		.dst_task = p,
1179		.dst_cpu = task_cpu(p),
1180	};
1181
1182	if (arg.src_cpu == arg.dst_cpu)
1183		goto out;
1184
1185	/*
1186	 * These three tests are all lockless; this is OK since all of them
1187	 * will be re-checked with proper locks held further down the line.
1188	 */
1189	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190		goto out;
1191
1192	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193		goto out;
1194
1195	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196		goto out;
1197
1198	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1199	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
1202	return ret;
1203}
1204
1205struct migration_arg {
1206	struct task_struct *task;
1207	int dest_cpu;
1208};
1209
1210static int migration_cpu_stop(void *data);
1211
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change.  If it changes, i.e. @p might have woken up,
1217 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count).  If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1229{
1230	unsigned long flags;
1231	int running, queued;
1232	unsigned long ncsw;
1233	struct rq *rq;
1234
1235	for (;;) {
1236		/*
1237		 * We do the initial early heuristics without holding
1238		 * any task-queue locks at all. We'll only try to get
1239		 * the runqueue lock when things look like they will
1240		 * work out!
1241		 */
1242		rq = task_rq(p);
1243
1244		/*
1245		 * If the task is actively running on another CPU
1246		 * still, just relax and busy-wait without holding
1247		 * any locks.
1248		 *
1249		 * NOTE! Since we don't hold any locks, it's not
1250		 * even sure that "rq" stays as the right runqueue!
1251		 * But we don't care, since "task_running()" will
1252		 * return false if the runqueue has changed and p
1253		 * is actually now running somewhere else!
1254		 */
1255		while (task_running(rq, p)) {
1256			if (match_state && unlikely(p->state != match_state))
1257				return 0;
1258			cpu_relax();
1259		}
1260
1261		/*
1262		 * Ok, time to look more closely! We need the rq
1263		 * lock now, to be *sure*. If we're wrong, we'll
1264		 * just go back and repeat.
1265		 */
1266		rq = task_rq_lock(p, &flags);
1267		trace_sched_wait_task(p);
1268		running = task_running(rq, p);
1269		queued = task_on_rq_queued(p);
1270		ncsw = 0;
1271		if (!match_state || p->state == match_state)
1272			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1273		task_rq_unlock(rq, p, &flags);
1274
1275		/*
1276		 * If it changed from the expected state, bail out now.
1277		 */
1278		if (unlikely(!ncsw))
1279			break;
1280
1281		/*
1282		 * Was it really running after all now that we
1283		 * checked with the proper locks actually held?
1284		 *
1285		 * Oops. Go back and try again..
1286		 */
1287		if (unlikely(running)) {
1288			cpu_relax();
1289			continue;
1290		}
1291
1292		/*
1293		 * It's not enough that it's not actively running,
1294		 * it must be off the runqueue _entirely_, and not
1295		 * preempted!
1296		 *
1297		 * So if it was still runnable (but just not actively
1298		 * running right now), it's preempted, and we should
1299		 * yield - it could be a while.
1300		 */
1301		if (unlikely(queued)) {
1302			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304			set_current_state(TASK_UNINTERRUPTIBLE);
1305			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1306			continue;
1307		}
1308
1309		/*
1310		 * Ahh, all good. It wasn't running, and it wasn't
1311		 * runnable, which means that it will never become
1312		 * running in the future either. We're all done!
1313		 */
1314		break;
1315	}
1316
1317	return ncsw;
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
1327 * NOTE: this function doesn't have to take the runqueue lock,
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
1333void kick_process(struct task_struct *p)
1334{
1335	int cpu;
1336
1337	preempt_disable();
1338	cpu = task_cpu(p);
1339	if ((cpu != smp_processor_id()) && task_curr(p))
1340		smp_send_reschedule(cpu);
1341	preempt_enable();
1342}
1343EXPORT_SYMBOL_GPL(kick_process);
1344#endif /* CONFIG_SMP */
1345
1346#ifdef CONFIG_SMP
1347/*
1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1349 */
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
1352	int nid = cpu_to_node(cpu);
1353	const struct cpumask *nodemask = NULL;
1354	enum { cpuset, possible, fail } state = cpuset;
1355	int dest_cpu;
1356
1357	/*
1358	 * If the node that the cpu is on has been offlined, cpu_to_node()
1359	 * will return -1. There is no cpu on the node, and we should
1360	 * select the cpu on the other node.
1361	 */
1362	if (nid != -1) {
1363		nodemask = cpumask_of_node(nid);
1364
1365		/* Look for allowed, online CPU in same node. */
1366		for_each_cpu(dest_cpu, nodemask) {
1367			if (!cpu_online(dest_cpu))
1368				continue;
1369			if (!cpu_active(dest_cpu))
1370				continue;
1371			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372				return dest_cpu;
1373		}
1374	}
1375
1376	for (;;) {
1377		/* Any allowed, online CPU? */
1378		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1379			if (!cpu_online(dest_cpu))
1380				continue;
1381			if (!cpu_active(dest_cpu))
1382				continue;
1383			goto out;
1384		}
1385
1386		switch (state) {
1387		case cpuset:
1388			/* No more Mr. Nice Guy. */
1389			cpuset_cpus_allowed_fallback(p);
1390			state = possible;
1391			break;
1392
1393		case possible:
1394			do_set_cpus_allowed(p, cpu_possible_mask);
1395			state = fail;
1396			break;
1397
1398		case fail:
1399			BUG();
1400			break;
1401		}
1402	}
1403
1404out:
1405	if (state != cpuset) {
1406		/*
1407		 * Don't tell them about moving exiting tasks or
1408		 * kernel threads (both mm NULL), since they never
1409		 * leave kernel.
1410		 */
1411		if (p->mm && printk_ratelimit()) {
1412			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1413					task_pid_nr(p), p->comm, cpu);
1414		}
1415	}
1416
1417	return dest_cpu;
1418}
1419
1420/*
1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1422 */
1423static inline
1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1425{
1426	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1427
1428	/*
1429	 * In order not to call set_task_cpu() on a blocking task we need
1430	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431	 * cpu.
1432	 *
1433	 * Since this is common to all placement strategies, this lives here.
1434	 *
1435	 * [ this allows ->select_task() to simply return task_cpu(p) and
1436	 *   not worry about this generic constraint ]
1437	 */
1438	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1439		     !cpu_online(cpu)))
1440		cpu = select_fallback_rq(task_cpu(p), p);
1441
1442	return cpu;
1443}
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447	s64 diff = sample - *avg;
1448	*avg += diff >> 3;
1449}
1450#endif
1451
1452static void
1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1454{
1455#ifdef CONFIG_SCHEDSTATS
1456	struct rq *rq = this_rq();
1457
1458#ifdef CONFIG_SMP
1459	int this_cpu = smp_processor_id();
1460
1461	if (cpu == this_cpu) {
1462		schedstat_inc(rq, ttwu_local);
1463		schedstat_inc(p, se.statistics.nr_wakeups_local);
1464	} else {
1465		struct sched_domain *sd;
1466
1467		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1468		rcu_read_lock();
1469		for_each_domain(this_cpu, sd) {
1470			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471				schedstat_inc(sd, ttwu_wake_remote);
1472				break;
1473			}
1474		}
1475		rcu_read_unlock();
1476	}
1477
1478	if (wake_flags & WF_MIGRATED)
1479		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
1481#endif /* CONFIG_SMP */
1482
1483	schedstat_inc(rq, ttwu_count);
1484	schedstat_inc(p, se.statistics.nr_wakeups);
1485
1486	if (wake_flags & WF_SYNC)
1487		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1488
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
1494	activate_task(rq, p, en_flags);
1495	p->on_rq = TASK_ON_RQ_QUEUED;
1496
1497	/* if a worker is waking up, notify workqueue */
1498	if (p->flags & PF_WQ_WORKER)
1499		wq_worker_waking_up(p, cpu_of(rq));
1500}
1501
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
1505static void
1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1507{
1508	check_preempt_curr(rq, p, wake_flags);
1509	trace_sched_wakeup(p, true);
1510
1511	p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513	if (p->sched_class->task_woken)
1514		p->sched_class->task_woken(rq, p);
1515
1516	if (rq->idle_stamp) {
1517		u64 delta = rq_clock(rq) - rq->idle_stamp;
1518		u64 max = 2*rq->max_idle_balance_cost;
1519
1520		update_avg(&rq->avg_idle, delta);
1521
1522		if (rq->avg_idle > max)
1523			rq->avg_idle = max;
1524
1525		rq->idle_stamp = 0;
1526	}
1527#endif
1528}
1529
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534	if (p->sched_contributes_to_load)
1535		rq->nr_uninterruptible--;
1536#endif
1537
1538	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539	ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550	struct rq *rq;
1551	int ret = 0;
1552
1553	rq = __task_rq_lock(p);
1554	if (task_on_rq_queued(p)) {
1555		/* check_preempt_curr() may use rq clock */
1556		update_rq_clock(rq);
1557		ttwu_do_wakeup(rq, p, wake_flags);
1558		ret = 1;
1559	}
1560	__task_rq_unlock(rq);
1561
1562	return ret;
1563}
1564
1565#ifdef CONFIG_SMP
1566void sched_ttwu_pending(void)
1567{
1568	struct rq *rq = this_rq();
1569	struct llist_node *llist = llist_del_all(&rq->wake_list);
1570	struct task_struct *p;
1571	unsigned long flags;
1572
1573	if (!llist)
1574		return;
1575
1576	raw_spin_lock_irqsave(&rq->lock, flags);
1577
1578	while (llist) {
1579		p = llist_entry(llist, struct task_struct, wake_entry);
1580		llist = llist_next(llist);
1581		ttwu_do_activate(rq, p, 0);
1582	}
1583
1584	raw_spin_unlock_irqrestore(&rq->lock, flags);
1585}
1586
1587void scheduler_ipi(void)
1588{
1589	/*
1590	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592	 * this IPI.
1593	 */
1594	preempt_fold_need_resched();
1595
1596	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1597		return;
1598
1599	/*
1600	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601	 * traditionally all their work was done from the interrupt return
1602	 * path. Now that we actually do some work, we need to make sure
1603	 * we do call them.
1604	 *
1605	 * Some archs already do call them, luckily irq_enter/exit nest
1606	 * properly.
1607	 *
1608	 * Arguably we should visit all archs and update all handlers,
1609	 * however a fair share of IPIs are still resched only so this would
1610	 * somewhat pessimize the simple resched case.
1611	 */
1612	irq_enter();
1613	sched_ttwu_pending();
1614
1615	/*
1616	 * Check if someone kicked us for doing the nohz idle load balance.
1617	 */
1618	if (unlikely(got_nohz_idle_kick())) {
1619		this_rq()->idle_balance = 1;
1620		raise_softirq_irqoff(SCHED_SOFTIRQ);
1621	}
1622	irq_exit();
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
1627	struct rq *rq = cpu_rq(cpu);
1628
1629	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630		if (!set_nr_if_polling(rq->idle))
1631			smp_send_reschedule(cpu);
1632		else
1633			trace_sched_wake_idle_without_ipi(cpu);
1634	}
1635}
1636
1637void wake_up_if_idle(int cpu)
1638{
1639	struct rq *rq = cpu_rq(cpu);
1640	unsigned long flags;
1641
1642	if (!is_idle_task(rq->curr))
1643		return;
1644
1645	if (set_nr_if_polling(rq->idle)) {
1646		trace_sched_wake_idle_without_ipi(cpu);
1647	} else {
1648		raw_spin_lock_irqsave(&rq->lock, flags);
1649		if (is_idle_task(rq->curr))
1650			smp_send_reschedule(cpu);
1651		/* Else cpu is not in idle, do nothing here */
1652		raw_spin_unlock_irqrestore(&rq->lock, flags);
1653	}
1654}
1655
1656bool cpus_share_cache(int this_cpu, int that_cpu)
1657{
1658	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1659}
1660#endif /* CONFIG_SMP */
1661
1662static void ttwu_queue(struct task_struct *p, int cpu)
1663{
1664	struct rq *rq = cpu_rq(cpu);
1665
1666#if defined(CONFIG_SMP)
1667	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1668		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1669		ttwu_queue_remote(p, cpu);
1670		return;
1671	}
1672#endif
1673
1674	raw_spin_lock(&rq->lock);
1675	ttwu_do_activate(rq, p, 0);
1676	raw_spin_unlock(&rq->lock);
1677}
1678
1679/**
1680 * try_to_wake_up - wake up a thread
1681 * @p: the thread to be awakened
1682 * @state: the mask of task states that can be woken
1683 * @wake_flags: wake modifier flags (WF_*)
1684 *
1685 * Put it on the run-queue if it's not already there. The "current"
1686 * thread is always on the run-queue (except when the actual
1687 * re-schedule is in progress), and as such you're allowed to do
1688 * the simpler "current->state = TASK_RUNNING" to mark yourself
1689 * runnable without the overhead of this.
1690 *
1691 * Return: %true if @p was woken up, %false if it was already running.
1692 * or @state didn't match @p's state.
1693 */
1694static int
1695try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1696{
1697	unsigned long flags;
1698	int cpu, success = 0;
1699
1700	/*
1701	 * If we are going to wake up a thread waiting for CONDITION we
1702	 * need to ensure that CONDITION=1 done by the caller can not be
1703	 * reordered with p->state check below. This pairs with mb() in
1704	 * set_current_state() the waiting thread does.
1705	 */
1706	smp_mb__before_spinlock();
1707	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708	if (!(p->state & state))
1709		goto out;
1710
1711	success = 1; /* we're going to change ->state */
1712	cpu = task_cpu(p);
1713
1714	if (p->on_rq && ttwu_remote(p, wake_flags))
1715		goto stat;
1716
1717#ifdef CONFIG_SMP
1718	/*
1719	 * If the owning (remote) cpu is still in the middle of schedule() with
1720	 * this task as prev, wait until its done referencing the task.
1721	 */
1722	while (p->on_cpu)
1723		cpu_relax();
1724	/*
1725	 * Pairs with the smp_wmb() in finish_lock_switch().
1726	 */
1727	smp_rmb();
1728
1729	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1730	p->state = TASK_WAKING;
1731
1732	if (p->sched_class->task_waking)
1733		p->sched_class->task_waking(p);
1734
1735	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1736	if (task_cpu(p) != cpu) {
1737		wake_flags |= WF_MIGRATED;
1738		set_task_cpu(p, cpu);
1739	}
1740#endif /* CONFIG_SMP */
1741
1742	ttwu_queue(p, cpu);
1743stat:
1744	ttwu_stat(p, cpu, wake_flags);
1745out:
1746	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1747
1748	return success;
1749}
1750
1751/**
1752 * try_to_wake_up_local - try to wake up a local task with rq lock held
1753 * @p: the thread to be awakened
1754 *
1755 * Put @p on the run-queue if it's not already there. The caller must
1756 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1757 * the current task.
1758 */
1759static void try_to_wake_up_local(struct task_struct *p)
1760{
1761	struct rq *rq = task_rq(p);
1762
1763	if (WARN_ON_ONCE(rq != this_rq()) ||
1764	    WARN_ON_ONCE(p == current))
1765		return;
1766
1767	lockdep_assert_held(&rq->lock);
1768
1769	if (!raw_spin_trylock(&p->pi_lock)) {
1770		raw_spin_unlock(&rq->lock);
1771		raw_spin_lock(&p->pi_lock);
1772		raw_spin_lock(&rq->lock);
1773	}
1774
1775	if (!(p->state & TASK_NORMAL))
1776		goto out;
1777
1778	if (!task_on_rq_queued(p))
1779		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1780
1781	ttwu_do_wakeup(rq, p, 0);
1782	ttwu_stat(p, smp_processor_id(), 0);
1783out:
1784	raw_spin_unlock(&p->pi_lock);
1785}
1786
1787/**
1788 * wake_up_process - Wake up a specific process
1789 * @p: The process to be woken up.
1790 *
1791 * Attempt to wake up the nominated process and move it to the set of runnable
1792 * processes.
1793 *
1794 * Return: 1 if the process was woken up, 0 if it was already running.
1795 *
1796 * It may be assumed that this function implies a write memory barrier before
1797 * changing the task state if and only if any tasks are woken up.
1798 */
1799int wake_up_process(struct task_struct *p)
1800{
1801	WARN_ON(task_is_stopped_or_traced(p));
1802	return try_to_wake_up(p, TASK_NORMAL, 0);
1803}
1804EXPORT_SYMBOL(wake_up_process);
1805
1806int wake_up_state(struct task_struct *p, unsigned int state)
1807{
1808	return try_to_wake_up(p, state, 0);
1809}
1810
1811/*
1812 * This function clears the sched_dl_entity static params.
1813 */
1814void __dl_clear_params(struct task_struct *p)
1815{
1816	struct sched_dl_entity *dl_se = &p->dl;
1817
1818	dl_se->dl_runtime = 0;
1819	dl_se->dl_deadline = 0;
1820	dl_se->dl_period = 0;
1821	dl_se->flags = 0;
1822	dl_se->dl_bw = 0;
1823}
1824
1825/*
1826 * Perform scheduler related setup for a newly forked process p.
1827 * p is forked by current.
1828 *
1829 * __sched_fork() is basic setup used by init_idle() too:
1830 */
1831static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1832{
1833	p->on_rq			= 0;
1834
1835	p->se.on_rq			= 0;
1836	p->se.exec_start		= 0;
1837	p->se.sum_exec_runtime		= 0;
1838	p->se.prev_sum_exec_runtime	= 0;
1839	p->se.nr_migrations		= 0;
1840	p->se.vruntime			= 0;
1841	INIT_LIST_HEAD(&p->se.group_node);
1842
1843#ifdef CONFIG_SCHEDSTATS
1844	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1845#endif
1846
1847	RB_CLEAR_NODE(&p->dl.rb_node);
1848	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1849	__dl_clear_params(p);
1850
1851	INIT_LIST_HEAD(&p->rt.run_list);
1852
1853#ifdef CONFIG_PREEMPT_NOTIFIERS
1854	INIT_HLIST_HEAD(&p->preempt_notifiers);
1855#endif
1856
1857#ifdef CONFIG_NUMA_BALANCING
1858	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1859		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1860		p->mm->numa_scan_seq = 0;
1861	}
1862
1863	if (clone_flags & CLONE_VM)
1864		p->numa_preferred_nid = current->numa_preferred_nid;
1865	else
1866		p->numa_preferred_nid = -1;
1867
1868	p->node_stamp = 0ULL;
1869	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1870	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1871	p->numa_work.next = &p->numa_work;
1872	p->numa_faults_memory = NULL;
1873	p->numa_faults_buffer_memory = NULL;
1874	p->last_task_numa_placement = 0;
1875	p->last_sum_exec_runtime = 0;
1876
1877	INIT_LIST_HEAD(&p->numa_entry);
1878	p->numa_group = NULL;
1879#endif /* CONFIG_NUMA_BALANCING */
1880}
1881
1882#ifdef CONFIG_NUMA_BALANCING
1883#ifdef CONFIG_SCHED_DEBUG
1884void set_numabalancing_state(bool enabled)
1885{
1886	if (enabled)
1887		sched_feat_set("NUMA");
1888	else
1889		sched_feat_set("NO_NUMA");
1890}
1891#else
1892__read_mostly bool numabalancing_enabled;
1893
1894void set_numabalancing_state(bool enabled)
1895{
1896	numabalancing_enabled = enabled;
1897}
1898#endif /* CONFIG_SCHED_DEBUG */
1899
1900#ifdef CONFIG_PROC_SYSCTL
1901int sysctl_numa_balancing(struct ctl_table *table, int write,
1902			 void __user *buffer, size_t *lenp, loff_t *ppos)
1903{
1904	struct ctl_table t;
1905	int err;
1906	int state = numabalancing_enabled;
1907
1908	if (write && !capable(CAP_SYS_ADMIN))
1909		return -EPERM;
1910
1911	t = *table;
1912	t.data = &state;
1913	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1914	if (err < 0)
1915		return err;
1916	if (write)
1917		set_numabalancing_state(state);
1918	return err;
1919}
1920#endif
1921#endif
1922
1923/*
1924 * fork()/clone()-time setup:
1925 */
1926int sched_fork(unsigned long clone_flags, struct task_struct *p)
1927{
1928	unsigned long flags;
1929	int cpu = get_cpu();
1930
1931	__sched_fork(clone_flags, p);
1932	/*
1933	 * We mark the process as running here. This guarantees that
1934	 * nobody will actually run it, and a signal or other external
1935	 * event cannot wake it up and insert it on the runqueue either.
1936	 */
1937	p->state = TASK_RUNNING;
1938
1939	/*
1940	 * Make sure we do not leak PI boosting priority to the child.
1941	 */
1942	p->prio = current->normal_prio;
1943
1944	/*
1945	 * Revert to default priority/policy on fork if requested.
1946	 */
1947	if (unlikely(p->sched_reset_on_fork)) {
1948		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1949			p->policy = SCHED_NORMAL;
1950			p->static_prio = NICE_TO_PRIO(0);
1951			p->rt_priority = 0;
1952		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1953			p->static_prio = NICE_TO_PRIO(0);
1954
1955		p->prio = p->normal_prio = __normal_prio(p);
1956		set_load_weight(p);
1957
1958		/*
1959		 * We don't need the reset flag anymore after the fork. It has
1960		 * fulfilled its duty:
1961		 */
1962		p->sched_reset_on_fork = 0;
1963	}
1964
1965	if (dl_prio(p->prio)) {
1966		put_cpu();
1967		return -EAGAIN;
1968	} else if (rt_prio(p->prio)) {
1969		p->sched_class = &rt_sched_class;
1970	} else {
1971		p->sched_class = &fair_sched_class;
1972	}
1973
1974	if (p->sched_class->task_fork)
1975		p->sched_class->task_fork(p);
1976
1977	/*
1978	 * The child is not yet in the pid-hash so no cgroup attach races,
1979	 * and the cgroup is pinned to this child due to cgroup_fork()
1980	 * is ran before sched_fork().
1981	 *
1982	 * Silence PROVE_RCU.
1983	 */
1984	raw_spin_lock_irqsave(&p->pi_lock, flags);
1985	set_task_cpu(p, cpu);
1986	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1987
1988#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1989	if (likely(sched_info_on()))
1990		memset(&p->sched_info, 0, sizeof(p->sched_info));
1991#endif
1992#if defined(CONFIG_SMP)
1993	p->on_cpu = 0;
1994#endif
1995	init_task_preempt_count(p);
1996#ifdef CONFIG_SMP
1997	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1998	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1999#endif
2000
2001	put_cpu();
2002	return 0;
2003}
2004
2005unsigned long to_ratio(u64 period, u64 runtime)
2006{
2007	if (runtime == RUNTIME_INF)
2008		return 1ULL << 20;
2009
2010	/*
2011	 * Doing this here saves a lot of checks in all
2012	 * the calling paths, and returning zero seems
2013	 * safe for them anyway.
2014	 */
2015	if (period == 0)
2016		return 0;
2017
2018	return div64_u64(runtime << 20, period);
2019}
2020
2021#ifdef CONFIG_SMP
2022inline struct dl_bw *dl_bw_of(int i)
2023{
2024	return &cpu_rq(i)->rd->dl_bw;
2025}
2026
2027static inline int dl_bw_cpus(int i)
2028{
2029	struct root_domain *rd = cpu_rq(i)->rd;
2030	int cpus = 0;
2031
2032	for_each_cpu_and(i, rd->span, cpu_active_mask)
2033		cpus++;
2034
2035	return cpus;
2036}
2037#else
2038inline struct dl_bw *dl_bw_of(int i)
2039{
2040	return &cpu_rq(i)->dl.dl_bw;
2041}
2042
2043static inline int dl_bw_cpus(int i)
2044{
2045	return 1;
2046}
2047#endif
2048
2049static inline
2050void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2051{
2052	dl_b->total_bw -= tsk_bw;
2053}
2054
2055static inline
2056void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2057{
2058	dl_b->total_bw += tsk_bw;
2059}
2060
2061static inline
2062bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2063{
2064	return dl_b->bw != -1 &&
2065	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2066}
2067
2068/*
2069 * We must be sure that accepting a new task (or allowing changing the
2070 * parameters of an existing one) is consistent with the bandwidth
2071 * constraints. If yes, this function also accordingly updates the currently
2072 * allocated bandwidth to reflect the new situation.
2073 *
2074 * This function is called while holding p's rq->lock.
2075 */
2076static int dl_overflow(struct task_struct *p, int policy,
2077		       const struct sched_attr *attr)
2078{
2079
2080	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2081	u64 period = attr->sched_period ?: attr->sched_deadline;
2082	u64 runtime = attr->sched_runtime;
2083	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2084	int cpus, err = -1;
2085
2086	if (new_bw == p->dl.dl_bw)
2087		return 0;
2088
2089	/*
2090	 * Either if a task, enters, leave, or stays -deadline but changes
2091	 * its parameters, we may need to update accordingly the total
2092	 * allocated bandwidth of the container.
2093	 */
2094	raw_spin_lock(&dl_b->lock);
2095	cpus = dl_bw_cpus(task_cpu(p));
2096	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2097	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2098		__dl_add(dl_b, new_bw);
2099		err = 0;
2100	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2101		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2102		__dl_clear(dl_b, p->dl.dl_bw);
2103		__dl_add(dl_b, new_bw);
2104		err = 0;
2105	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2106		__dl_clear(dl_b, p->dl.dl_bw);
2107		err = 0;
2108	}
2109	raw_spin_unlock(&dl_b->lock);
2110
2111	return err;
2112}
2113
2114extern void init_dl_bw(struct dl_bw *dl_b);
2115
2116/*
2117 * wake_up_new_task - wake up a newly created task for the first time.
2118 *
2119 * This function will do some initial scheduler statistics housekeeping
2120 * that must be done for every newly created context, then puts the task
2121 * on the runqueue and wakes it.
2122 */
2123void wake_up_new_task(struct task_struct *p)
2124{
2125	unsigned long flags;
2126	struct rq *rq;
2127
2128	raw_spin_lock_irqsave(&p->pi_lock, flags);
2129#ifdef CONFIG_SMP
2130	/*
2131	 * Fork balancing, do it here and not earlier because:
2132	 *  - cpus_allowed can change in the fork path
2133	 *  - any previously selected cpu might disappear through hotplug
2134	 */
2135	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2136#endif
2137
2138	/* Initialize new task's runnable average */
2139	init_task_runnable_average(p);
2140	rq = __task_rq_lock(p);
2141	activate_task(rq, p, 0);
2142	p->on_rq = TASK_ON_RQ_QUEUED;
2143	trace_sched_wakeup_new(p, true);
2144	check_preempt_curr(rq, p, WF_FORK);
2145#ifdef CONFIG_SMP
2146	if (p->sched_class->task_woken)
2147		p->sched_class->task_woken(rq, p);
2148#endif
2149	task_rq_unlock(rq, p, &flags);
2150}
2151
2152#ifdef CONFIG_PREEMPT_NOTIFIERS
2153
2154/**
2155 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2156 * @notifier: notifier struct to register
2157 */
2158void preempt_notifier_register(struct preempt_notifier *notifier)
2159{
2160	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2161}
2162EXPORT_SYMBOL_GPL(preempt_notifier_register);
2163
2164/**
2165 * preempt_notifier_unregister - no longer interested in preemption notifications
2166 * @notifier: notifier struct to unregister
2167 *
2168 * This is safe to call from within a preemption notifier.
2169 */
2170void preempt_notifier_unregister(struct preempt_notifier *notifier)
2171{
2172	hlist_del(&notifier->link);
2173}
2174EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2175
2176static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2177{
2178	struct preempt_notifier *notifier;
2179
2180	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2181		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2182}
2183
2184static void
2185fire_sched_out_preempt_notifiers(struct task_struct *curr,
2186				 struct task_struct *next)
2187{
2188	struct preempt_notifier *notifier;
2189
2190	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2191		notifier->ops->sched_out(notifier, next);
2192}
2193
2194#else /* !CONFIG_PREEMPT_NOTIFIERS */
2195
2196static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2197{
2198}
2199
2200static void
2201fire_sched_out_preempt_notifiers(struct task_struct *curr,
2202				 struct task_struct *next)
2203{
2204}
2205
2206#endif /* CONFIG_PREEMPT_NOTIFIERS */
2207
2208/**
2209 * prepare_task_switch - prepare to switch tasks
2210 * @rq: the runqueue preparing to switch
2211 * @prev: the current task that is being switched out
2212 * @next: the task we are going to switch to.
2213 *
2214 * This is called with the rq lock held and interrupts off. It must
2215 * be paired with a subsequent finish_task_switch after the context
2216 * switch.
2217 *
2218 * prepare_task_switch sets up locking and calls architecture specific
2219 * hooks.
2220 */
2221static inline void
2222prepare_task_switch(struct rq *rq, struct task_struct *prev,
2223		    struct task_struct *next)
2224{
2225	trace_sched_switch(prev, next);
2226	sched_info_switch(rq, prev, next);
2227	perf_event_task_sched_out(prev, next);
2228	fire_sched_out_preempt_notifiers(prev, next);
2229	prepare_lock_switch(rq, next);
2230	prepare_arch_switch(next);
2231}
2232
2233/**
2234 * finish_task_switch - clean up after a task-switch
2235 * @rq: runqueue associated with task-switch
2236 * @prev: the thread we just switched away from.
2237 *
2238 * finish_task_switch must be called after the context switch, paired
2239 * with a prepare_task_switch call before the context switch.
2240 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2241 * and do any other architecture-specific cleanup actions.
2242 *
2243 * Note that we may have delayed dropping an mm in context_switch(). If
2244 * so, we finish that here outside of the runqueue lock. (Doing it
2245 * with the lock held can cause deadlocks; see schedule() for
2246 * details.)
2247 */
2248static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2249	__releases(rq->lock)
2250{
2251	struct mm_struct *mm = rq->prev_mm;
2252	long prev_state;
2253
2254	rq->prev_mm = NULL;
2255
2256	/*
2257	 * A task struct has one reference for the use as "current".
2258	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2259	 * schedule one last time. The schedule call will never return, and
2260	 * the scheduled task must drop that reference.
2261	 * The test for TASK_DEAD must occur while the runqueue locks are
2262	 * still held, otherwise prev could be scheduled on another cpu, die
2263	 * there before we look at prev->state, and then the reference would
2264	 * be dropped twice.
2265	 *		Manfred Spraul <manfred@colorfullife.com>
2266	 */
2267	prev_state = prev->state;
2268	vtime_task_switch(prev);
2269	finish_arch_switch(prev);
2270	perf_event_task_sched_in(prev, current);
2271	finish_lock_switch(rq, prev);
2272	finish_arch_post_lock_switch();
2273
2274	fire_sched_in_preempt_notifiers(current);
2275	if (mm)
2276		mmdrop(mm);
2277	if (unlikely(prev_state == TASK_DEAD)) {
2278		if (prev->sched_class->task_dead)
2279			prev->sched_class->task_dead(prev);
2280
2281		/*
2282		 * Remove function-return probe instances associated with this
2283		 * task and put them back on the free list.
2284		 */
2285		kprobe_flush_task(prev);
2286		put_task_struct(prev);
2287	}
2288
2289	tick_nohz_task_switch(current);
2290}
2291
2292#ifdef CONFIG_SMP
2293
2294/* rq->lock is NOT held, but preemption is disabled */
2295static inline void post_schedule(struct rq *rq)
2296{
2297	if (rq->post_schedule) {
2298		unsigned long flags;
2299
2300		raw_spin_lock_irqsave(&rq->lock, flags);
2301		if (rq->curr->sched_class->post_schedule)
2302			rq->curr->sched_class->post_schedule(rq);
2303		raw_spin_unlock_irqrestore(&rq->lock, flags);
2304
2305		rq->post_schedule = 0;
2306	}
2307}
2308
2309#else
2310
2311static inline void post_schedule(struct rq *rq)
2312{
2313}
2314
2315#endif
2316
2317/**
2318 * schedule_tail - first thing a freshly forked thread must call.
2319 * @prev: the thread we just switched away from.
2320 */
2321asmlinkage __visible void schedule_tail(struct task_struct *prev)
2322	__releases(rq->lock)
2323{
2324	struct rq *rq = this_rq();
2325
2326	finish_task_switch(rq, prev);
2327
2328	/*
2329	 * FIXME: do we need to worry about rq being invalidated by the
2330	 * task_switch?
2331	 */
2332	post_schedule(rq);
2333
2334#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2335	/* In this case, finish_task_switch does not reenable preemption */
2336	preempt_enable();
2337#endif
2338	if (current->set_child_tid)
2339		put_user(task_pid_vnr(current), current->set_child_tid);
2340}
2341
2342/*
2343 * context_switch - switch to the new MM and the new
2344 * thread's register state.
2345 */
2346static inline void
2347context_switch(struct rq *rq, struct task_struct *prev,
2348	       struct task_struct *next)
2349{
2350	struct mm_struct *mm, *oldmm;
2351
2352	prepare_task_switch(rq, prev, next);
2353
2354	mm = next->mm;
2355	oldmm = prev->active_mm;
2356	/*
2357	 * For paravirt, this is coupled with an exit in switch_to to
2358	 * combine the page table reload and the switch backend into
2359	 * one hypercall.
2360	 */
2361	arch_start_context_switch(prev);
2362
2363	if (!mm) {
2364		next->active_mm = oldmm;
2365		atomic_inc(&oldmm->mm_count);
2366		enter_lazy_tlb(oldmm, next);
2367	} else
2368		switch_mm(oldmm, mm, next);
2369
2370	if (!prev->mm) {
2371		prev->active_mm = NULL;
2372		rq->prev_mm = oldmm;
2373	}
2374	/*
2375	 * Since the runqueue lock will be released by the next
2376	 * task (which is an invalid locking op but in the case
2377	 * of the scheduler it's an obvious special-case), so we
2378	 * do an early lockdep release here:
2379	 */
2380#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2381	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2382#endif
2383
2384	context_tracking_task_switch(prev, next);
2385	/* Here we just switch the register state and the stack. */
2386	switch_to(prev, next, prev);
2387
2388	barrier();
2389	/*
2390	 * this_rq must be evaluated again because prev may have moved
2391	 * CPUs since it called schedule(), thus the 'rq' on its stack
2392	 * frame will be invalid.
2393	 */
2394	finish_task_switch(this_rq(), prev);
2395}
2396
2397/*
2398 * nr_running and nr_context_switches:
2399 *
2400 * externally visible scheduler statistics: current number of runnable
2401 * threads, total number of context switches performed since bootup.
2402 */
2403unsigned long nr_running(void)
2404{
2405	unsigned long i, sum = 0;
2406
2407	for_each_online_cpu(i)
2408		sum += cpu_rq(i)->nr_running;
2409
2410	return sum;
2411}
2412
2413unsigned long long nr_context_switches(void)
2414{
2415	int i;
2416	unsigned long long sum = 0;
2417
2418	for_each_possible_cpu(i)
2419		sum += cpu_rq(i)->nr_switches;
2420
2421	return sum;
2422}
2423
2424unsigned long nr_iowait(void)
2425{
2426	unsigned long i, sum = 0;
2427
2428	for_each_possible_cpu(i)
2429		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2430
2431	return sum;
2432}
2433
2434unsigned long nr_iowait_cpu(int cpu)
2435{
2436	struct rq *this = cpu_rq(cpu);
2437	return atomic_read(&this->nr_iowait);
2438}
2439
2440void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2441{
2442	struct rq *this = this_rq();
2443	*nr_waiters = atomic_read(&this->nr_iowait);
2444	*load = this->cpu_load[0];
2445}
2446
2447#ifdef CONFIG_SMP
2448
2449/*
2450 * sched_exec - execve() is a valuable balancing opportunity, because at
2451 * this point the task has the smallest effective memory and cache footprint.
2452 */
2453void sched_exec(void)
2454{
2455	struct task_struct *p = current;
2456	unsigned long flags;
2457	int dest_cpu;
2458
2459	raw_spin_lock_irqsave(&p->pi_lock, flags);
2460	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2461	if (dest_cpu == smp_processor_id())
2462		goto unlock;
2463
2464	if (likely(cpu_active(dest_cpu))) {
2465		struct migration_arg arg = { p, dest_cpu };
2466
2467		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2468		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2469		return;
2470	}
2471unlock:
2472	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2473}
2474
2475#endif
2476
2477DEFINE_PER_CPU(struct kernel_stat, kstat);
2478DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2479
2480EXPORT_PER_CPU_SYMBOL(kstat);
2481EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2482
2483/*
2484 * Return any ns on the sched_clock that have not yet been accounted in
2485 * @p in case that task is currently running.
2486 *
2487 * Called with task_rq_lock() held on @rq.
2488 */
2489static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2490{
2491	u64 ns = 0;
2492
2493	/*
2494	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2495	 * project cycles that may never be accounted to this
2496	 * thread, breaking clock_gettime().
2497	 */
2498	if (task_current(rq, p) && task_on_rq_queued(p)) {
2499		update_rq_clock(rq);
2500		ns = rq_clock_task(rq) - p->se.exec_start;
2501		if ((s64)ns < 0)
2502			ns = 0;
2503	}
2504
2505	return ns;
2506}
2507
2508unsigned long long task_delta_exec(struct task_struct *p)
2509{
2510	unsigned long flags;
2511	struct rq *rq;
2512	u64 ns = 0;
2513
2514	rq = task_rq_lock(p, &flags);
2515	ns = do_task_delta_exec(p, rq);
2516	task_rq_unlock(rq, p, &flags);
2517
2518	return ns;
2519}
2520
2521/*
2522 * Return accounted runtime for the task.
2523 * In case the task is currently running, return the runtime plus current's
2524 * pending runtime that have not been accounted yet.
2525 */
2526unsigned long long task_sched_runtime(struct task_struct *p)
2527{
2528	unsigned long flags;
2529	struct rq *rq;
2530	u64 ns = 0;
2531
2532#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2533	/*
2534	 * 64-bit doesn't need locks to atomically read a 64bit value.
2535	 * So we have a optimization chance when the task's delta_exec is 0.
2536	 * Reading ->on_cpu is racy, but this is ok.
2537	 *
2538	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2539	 * If we race with it entering cpu, unaccounted time is 0. This is
2540	 * indistinguishable from the read occurring a few cycles earlier.
2541	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2542	 * been accounted, so we're correct here as well.
2543	 */
2544	if (!p->on_cpu || !task_on_rq_queued(p))
2545		return p->se.sum_exec_runtime;
2546#endif
2547
2548	rq = task_rq_lock(p, &flags);
2549	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2550	task_rq_unlock(rq, p, &flags);
2551
2552	return ns;
2553}
2554
2555/*
2556 * This function gets called by the timer code, with HZ frequency.
2557 * We call it with interrupts disabled.
2558 */
2559void scheduler_tick(void)
2560{
2561	int cpu = smp_processor_id();
2562	struct rq *rq = cpu_rq(cpu);
2563	struct task_struct *curr = rq->curr;
2564
2565	sched_clock_tick();
2566
2567	raw_spin_lock(&rq->lock);
2568	update_rq_clock(rq);
2569	curr->sched_class->task_tick(rq, curr, 0);
2570	update_cpu_load_active(rq);
2571	raw_spin_unlock(&rq->lock);
2572
2573	perf_event_task_tick();
2574
2575#ifdef CONFIG_SMP
2576	rq->idle_balance = idle_cpu(cpu);
2577	trigger_load_balance(rq);
2578#endif
2579	rq_last_tick_reset(rq);
2580}
2581
2582#ifdef CONFIG_NO_HZ_FULL
2583/**
2584 * scheduler_tick_max_deferment
2585 *
2586 * Keep at least one tick per second when a single
2587 * active task is running because the scheduler doesn't
2588 * yet completely support full dynticks environment.
2589 *
2590 * This makes sure that uptime, CFS vruntime, load
2591 * balancing, etc... continue to move forward, even
2592 * with a very low granularity.
2593 *
2594 * Return: Maximum deferment in nanoseconds.
2595 */
2596u64 scheduler_tick_max_deferment(void)
2597{
2598	struct rq *rq = this_rq();
2599	unsigned long next, now = ACCESS_ONCE(jiffies);
2600
2601	next = rq->last_sched_tick + HZ;
2602
2603	if (time_before_eq(next, now))
2604		return 0;
2605
2606	return jiffies_to_nsecs(next - now);
2607}
2608#endif
2609
2610notrace unsigned long get_parent_ip(unsigned long addr)
2611{
2612	if (in_lock_functions(addr)) {
2613		addr = CALLER_ADDR2;
2614		if (in_lock_functions(addr))
2615			addr = CALLER_ADDR3;
2616	}
2617	return addr;
2618}
2619
2620#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2621				defined(CONFIG_PREEMPT_TRACER))
2622
2623void preempt_count_add(int val)
2624{
2625#ifdef CONFIG_DEBUG_PREEMPT
2626	/*
2627	 * Underflow?
2628	 */
2629	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2630		return;
2631#endif
2632	__preempt_count_add(val);
2633#ifdef CONFIG_DEBUG_PREEMPT
2634	/*
2635	 * Spinlock count overflowing soon?
2636	 */
2637	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2638				PREEMPT_MASK - 10);
2639#endif
2640	if (preempt_count() == val) {
2641		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2642#ifdef CONFIG_DEBUG_PREEMPT
2643		current->preempt_disable_ip = ip;
2644#endif
2645		trace_preempt_off(CALLER_ADDR0, ip);
2646	}
2647}
2648EXPORT_SYMBOL(preempt_count_add);
2649NOKPROBE_SYMBOL(preempt_count_add);
2650
2651void preempt_count_sub(int val)
2652{
2653#ifdef CONFIG_DEBUG_PREEMPT
2654	/*
2655	 * Underflow?
2656	 */
2657	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2658		return;
2659	/*
2660	 * Is the spinlock portion underflowing?
2661	 */
2662	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2663			!(preempt_count() & PREEMPT_MASK)))
2664		return;
2665#endif
2666
2667	if (preempt_count() == val)
2668		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2669	__preempt_count_sub(val);
2670}
2671EXPORT_SYMBOL(preempt_count_sub);
2672NOKPROBE_SYMBOL(preempt_count_sub);
2673
2674#endif
2675
2676/*
2677 * Print scheduling while atomic bug:
2678 */
2679static noinline void __schedule_bug(struct task_struct *prev)
2680{
2681	if (oops_in_progress)
2682		return;
2683
2684	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2685		prev->comm, prev->pid, preempt_count());
2686
2687	debug_show_held_locks(prev);
2688	print_modules();
2689	if (irqs_disabled())
2690		print_irqtrace_events(prev);
2691#ifdef CONFIG_DEBUG_PREEMPT
2692	if (in_atomic_preempt_off()) {
2693		pr_err("Preemption disabled at:");
2694		print_ip_sym(current->preempt_disable_ip);
2695		pr_cont("\n");
2696	}
2697#endif
2698	dump_stack();
2699	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2700}
2701
2702/*
2703 * Various schedule()-time debugging checks and statistics:
2704 */
2705static inline void schedule_debug(struct task_struct *prev)
2706{
2707#ifdef CONFIG_SCHED_STACK_END_CHECK
2708	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2709#endif
2710	/*
2711	 * Test if we are atomic. Since do_exit() needs to call into
2712	 * schedule() atomically, we ignore that path. Otherwise whine
2713	 * if we are scheduling when we should not.
2714	 */
2715	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2716		__schedule_bug(prev);
2717	rcu_sleep_check();
2718
2719	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2720
2721	schedstat_inc(this_rq(), sched_count);
2722}
2723
2724/*
2725 * Pick up the highest-prio task:
2726 */
2727static inline struct task_struct *
2728pick_next_task(struct rq *rq, struct task_struct *prev)
2729{
2730	const struct sched_class *class = &fair_sched_class;
2731	struct task_struct *p;
2732
2733	/*
2734	 * Optimization: we know that if all tasks are in
2735	 * the fair class we can call that function directly:
2736	 */
2737	if (likely(prev->sched_class == class &&
2738		   rq->nr_running == rq->cfs.h_nr_running)) {
2739		p = fair_sched_class.pick_next_task(rq, prev);
2740		if (unlikely(p == RETRY_TASK))
2741			goto again;
2742
2743		/* assumes fair_sched_class->next == idle_sched_class */
2744		if (unlikely(!p))
2745			p = idle_sched_class.pick_next_task(rq, prev);
2746
2747		return p;
2748	}
2749
2750again:
2751	for_each_class(class) {
2752		p = class->pick_next_task(rq, prev);
2753		if (p) {
2754			if (unlikely(p == RETRY_TASK))
2755				goto again;
2756			return p;
2757		}
2758	}
2759
2760	BUG(); /* the idle class will always have a runnable task */
2761}
2762
2763/*
2764 * __schedule() is the main scheduler function.
2765 *
2766 * The main means of driving the scheduler and thus entering this function are:
2767 *
2768 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2769 *
2770 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2771 *      paths. For example, see arch/x86/entry_64.S.
2772 *
2773 *      To drive preemption between tasks, the scheduler sets the flag in timer
2774 *      interrupt handler scheduler_tick().
2775 *
2776 *   3. Wakeups don't really cause entry into schedule(). They add a
2777 *      task to the run-queue and that's it.
2778 *
2779 *      Now, if the new task added to the run-queue preempts the current
2780 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2781 *      called on the nearest possible occasion:
2782 *
2783 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2784 *
2785 *         - in syscall or exception context, at the next outmost
2786 *           preempt_enable(). (this might be as soon as the wake_up()'s
2787 *           spin_unlock()!)
2788 *
2789 *         - in IRQ context, return from interrupt-handler to
2790 *           preemptible context
2791 *
2792 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2793 *         then at the next:
2794 *
2795 *          - cond_resched() call
2796 *          - explicit schedule() call
2797 *          - return from syscall or exception to user-space
2798 *          - return from interrupt-handler to user-space
2799 */
2800static void __sched __schedule(void)
2801{
2802	struct task_struct *prev, *next;
2803	unsigned long *switch_count;
2804	struct rq *rq;
2805	int cpu;
2806
2807need_resched:
2808	preempt_disable();
2809	cpu = smp_processor_id();
2810	rq = cpu_rq(cpu);
2811	rcu_note_context_switch(cpu);
2812	prev = rq->curr;
2813
2814	schedule_debug(prev);
2815
2816	if (sched_feat(HRTICK))
2817		hrtick_clear(rq);
2818
2819	/*
2820	 * Make sure that signal_pending_state()->signal_pending() below
2821	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2822	 * done by the caller to avoid the race with signal_wake_up().
2823	 */
2824	smp_mb__before_spinlock();
2825	raw_spin_lock_irq(&rq->lock);
2826
2827	switch_count = &prev->nivcsw;
2828	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2829		if (unlikely(signal_pending_state(prev->state, prev))) {
2830			prev->state = TASK_RUNNING;
2831		} else {
2832			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2833			prev->on_rq = 0;
2834
2835			/*
2836			 * If a worker went to sleep, notify and ask workqueue
2837			 * whether it wants to wake up a task to maintain
2838			 * concurrency.
2839			 */
2840			if (prev->flags & PF_WQ_WORKER) {
2841				struct task_struct *to_wakeup;
2842
2843				to_wakeup = wq_worker_sleeping(prev, cpu);
2844				if (to_wakeup)
2845					try_to_wake_up_local(to_wakeup);
2846			}
2847		}
2848		switch_count = &prev->nvcsw;
2849	}
2850
2851	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2852		update_rq_clock(rq);
2853
2854	next = pick_next_task(rq, prev);
2855	clear_tsk_need_resched(prev);
2856	clear_preempt_need_resched();
2857	rq->skip_clock_update = 0;
2858
2859	if (likely(prev != next)) {
2860		rq->nr_switches++;
2861		rq->curr = next;
2862		++*switch_count;
2863
2864		context_switch(rq, prev, next); /* unlocks the rq */
2865		/*
2866		 * The context switch have flipped the stack from under us
2867		 * and restored the local variables which were saved when
2868		 * this task called schedule() in the past. prev == current
2869		 * is still correct, but it can be moved to another cpu/rq.
2870		 */
2871		cpu = smp_processor_id();
2872		rq = cpu_rq(cpu);
2873	} else
2874		raw_spin_unlock_irq(&rq->lock);
2875
2876	post_schedule(rq);
2877
2878	sched_preempt_enable_no_resched();
2879	if (need_resched())
2880		goto need_resched;
2881}
2882
2883static inline void sched_submit_work(struct task_struct *tsk)
2884{
2885	if (!tsk->state || tsk_is_pi_blocked(tsk))
2886		return;
2887	/*
2888	 * If we are going to sleep and we have plugged IO queued,
2889	 * make sure to submit it to avoid deadlocks.
2890	 */
2891	if (blk_needs_flush_plug(tsk))
2892		blk_schedule_flush_plug(tsk);
2893}
2894
2895asmlinkage __visible void __sched schedule(void)
2896{
2897	struct task_struct *tsk = current;
2898
2899	sched_submit_work(tsk);
2900	__schedule();
2901}
2902EXPORT_SYMBOL(schedule);
2903
2904#ifdef CONFIG_CONTEXT_TRACKING
2905asmlinkage __visible void __sched schedule_user(void)
2906{
2907	/*
2908	 * If we come here after a random call to set_need_resched(),
2909	 * or we have been woken up remotely but the IPI has not yet arrived,
2910	 * we haven't yet exited the RCU idle mode. Do it here manually until
2911	 * we find a better solution.
2912	 */
2913	user_exit();
2914	schedule();
2915	user_enter();
2916}
2917#endif
2918
2919/**
2920 * schedule_preempt_disabled - called with preemption disabled
2921 *
2922 * Returns with preemption disabled. Note: preempt_count must be 1
2923 */
2924void __sched schedule_preempt_disabled(void)
2925{
2926	sched_preempt_enable_no_resched();
2927	schedule();
2928	preempt_disable();
2929}
2930
2931#ifdef CONFIG_PREEMPT
2932/*
2933 * this is the entry point to schedule() from in-kernel preemption
2934 * off of preempt_enable. Kernel preemptions off return from interrupt
2935 * occur there and call schedule directly.
2936 */
2937asmlinkage __visible void __sched notrace preempt_schedule(void)
2938{
2939	/*
2940	 * If there is a non-zero preempt_count or interrupts are disabled,
2941	 * we do not want to preempt the current task. Just return..
2942	 */
2943	if (likely(!preemptible()))
2944		return;
2945
2946	do {
2947		__preempt_count_add(PREEMPT_ACTIVE);
2948		__schedule();
2949		__preempt_count_sub(PREEMPT_ACTIVE);
2950
2951		/*
2952		 * Check again in case we missed a preemption opportunity
2953		 * between schedule and now.
2954		 */
2955		barrier();
2956	} while (need_resched());
2957}
2958NOKPROBE_SYMBOL(preempt_schedule);
2959EXPORT_SYMBOL(preempt_schedule);
2960#endif /* CONFIG_PREEMPT */
2961
2962/*
2963 * this is the entry point to schedule() from kernel preemption
2964 * off of irq context.
2965 * Note, that this is called and return with irqs disabled. This will
2966 * protect us against recursive calling from irq.
2967 */
2968asmlinkage __visible void __sched preempt_schedule_irq(void)
2969{
2970	enum ctx_state prev_state;
2971
2972	/* Catch callers which need to be fixed */
2973	BUG_ON(preempt_count() || !irqs_disabled());
2974
2975	prev_state = exception_enter();
2976
2977	do {
2978		__preempt_count_add(PREEMPT_ACTIVE);
2979		local_irq_enable();
2980		__schedule();
2981		local_irq_disable();
2982		__preempt_count_sub(PREEMPT_ACTIVE);
2983
2984		/*
2985		 * Check again in case we missed a preemption opportunity
2986		 * between schedule and now.
2987		 */
2988		barrier();
2989	} while (need_resched());
2990
2991	exception_exit(prev_state);
2992}
2993
2994int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2995			  void *key)
2996{
2997	return try_to_wake_up(curr->private, mode, wake_flags);
2998}
2999EXPORT_SYMBOL(default_wake_function);
3000
3001#ifdef CONFIG_RT_MUTEXES
3002
3003/*
3004 * rt_mutex_setprio - set the current priority of a task
3005 * @p: task
3006 * @prio: prio value (kernel-internal form)
3007 *
3008 * This function changes the 'effective' priority of a task. It does
3009 * not touch ->normal_prio like __setscheduler().
3010 *
3011 * Used by the rt_mutex code to implement priority inheritance
3012 * logic. Call site only calls if the priority of the task changed.
3013 */
3014void rt_mutex_setprio(struct task_struct *p, int prio)
3015{
3016	int oldprio, queued, running, enqueue_flag = 0;
3017	struct rq *rq;
3018	const struct sched_class *prev_class;
3019
3020	BUG_ON(prio > MAX_PRIO);
3021
3022	rq = __task_rq_lock(p);
3023
3024	/*
3025	 * Idle task boosting is a nono in general. There is one
3026	 * exception, when PREEMPT_RT and NOHZ is active:
3027	 *
3028	 * The idle task calls get_next_timer_interrupt() and holds
3029	 * the timer wheel base->lock on the CPU and another CPU wants
3030	 * to access the timer (probably to cancel it). We can safely
3031	 * ignore the boosting request, as the idle CPU runs this code
3032	 * with interrupts disabled and will complete the lock
3033	 * protected section without being interrupted. So there is no
3034	 * real need to boost.
3035	 */
3036	if (unlikely(p == rq->idle)) {
3037		WARN_ON(p != rq->curr);
3038		WARN_ON(p->pi_blocked_on);
3039		goto out_unlock;
3040	}
3041
3042	trace_sched_pi_setprio(p, prio);
3043	oldprio = p->prio;
3044	prev_class = p->sched_class;
3045	queued = task_on_rq_queued(p);
3046	running = task_current(rq, p);
3047	if (queued)
3048		dequeue_task(rq, p, 0);
3049	if (running)
3050		put_prev_task(rq, p);
3051
3052	/*
3053	 * Boosting condition are:
3054	 * 1. -rt task is running and holds mutex A
3055	 *      --> -dl task blocks on mutex A
3056	 *
3057	 * 2. -dl task is running and holds mutex A
3058	 *      --> -dl task blocks on mutex A and could preempt the
3059	 *          running task
3060	 */
3061	if (dl_prio(prio)) {
3062		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3063		if (!dl_prio(p->normal_prio) ||
3064		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3065			p->dl.dl_boosted = 1;
3066			p->dl.dl_throttled = 0;
3067			enqueue_flag = ENQUEUE_REPLENISH;
3068		} else
3069			p->dl.dl_boosted = 0;
3070		p->sched_class = &dl_sched_class;
3071	} else if (rt_prio(prio)) {
3072		if (dl_prio(oldprio))
3073			p->dl.dl_boosted = 0;
3074		if (oldprio < prio)
3075			enqueue_flag = ENQUEUE_HEAD;
3076		p->sched_class = &rt_sched_class;
3077	} else {
3078		if (dl_prio(oldprio))
3079			p->dl.dl_boosted = 0;
3080		p->sched_class = &fair_sched_class;
3081	}
3082
3083	p->prio = prio;
3084
3085	if (running)
3086		p->sched_class->set_curr_task(rq);
3087	if (queued)
3088		enqueue_task(rq, p, enqueue_flag);
3089
3090	check_class_changed(rq, p, prev_class, oldprio);
3091out_unlock:
3092	__task_rq_unlock(rq);
3093}
3094#endif
3095
3096void set_user_nice(struct task_struct *p, long nice)
3097{
3098	int old_prio, delta, queued;
3099	unsigned long flags;
3100	struct rq *rq;
3101
3102	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3103		return;
3104	/*
3105	 * We have to be careful, if called from sys_setpriority(),
3106	 * the task might be in the middle of scheduling on another CPU.
3107	 */
3108	rq = task_rq_lock(p, &flags);
3109	/*
3110	 * The RT priorities are set via sched_setscheduler(), but we still
3111	 * allow the 'normal' nice value to be set - but as expected
3112	 * it wont have any effect on scheduling until the task is
3113	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3114	 */
3115	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3116		p->static_prio = NICE_TO_PRIO(nice);
3117		goto out_unlock;
3118	}
3119	queued = task_on_rq_queued(p);
3120	if (queued)
3121		dequeue_task(rq, p, 0);
3122
3123	p->static_prio = NICE_TO_PRIO(nice);
3124	set_load_weight(p);
3125	old_prio = p->prio;
3126	p->prio = effective_prio(p);
3127	delta = p->prio - old_prio;
3128
3129	if (queued) {
3130		enqueue_task(rq, p, 0);
3131		/*
3132		 * If the task increased its priority or is running and
3133		 * lowered its priority, then reschedule its CPU:
3134		 */
3135		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3136			resched_curr(rq);
3137	}
3138out_unlock:
3139	task_rq_unlock(rq, p, &flags);
3140}
3141EXPORT_SYMBOL(set_user_nice);
3142
3143/*
3144 * can_nice - check if a task can reduce its nice value
3145 * @p: task
3146 * @nice: nice value
3147 */
3148int can_nice(const struct task_struct *p, const int nice)
3149{
3150	/* convert nice value [19,-20] to rlimit style value [1,40] */
3151	int nice_rlim = nice_to_rlimit(nice);
3152
3153	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3154		capable(CAP_SYS_NICE));
3155}
3156
3157#ifdef __ARCH_WANT_SYS_NICE
3158
3159/*
3160 * sys_nice - change the priority of the current process.
3161 * @increment: priority increment
3162 *
3163 * sys_setpriority is a more generic, but much slower function that
3164 * does similar things.
3165 */
3166SYSCALL_DEFINE1(nice, int, increment)
3167{
3168	long nice, retval;
3169
3170	/*
3171	 * Setpriority might change our priority at the same moment.
3172	 * We don't have to worry. Conceptually one call occurs first
3173	 * and we have a single winner.
3174	 */
3175	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3176	nice = task_nice(current) + increment;
3177
3178	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3179	if (increment < 0 && !can_nice(current, nice))
3180		return -EPERM;
3181
3182	retval = security_task_setnice(current, nice);
3183	if (retval)
3184		return retval;
3185
3186	set_user_nice(current, nice);
3187	return 0;
3188}
3189
3190#endif
3191
3192/**
3193 * task_prio - return the priority value of a given task.
3194 * @p: the task in question.
3195 *
3196 * Return: The priority value as seen by users in /proc.
3197 * RT tasks are offset by -200. Normal tasks are centered
3198 * around 0, value goes from -16 to +15.
3199 */
3200int task_prio(const struct task_struct *p)
3201{
3202	return p->prio - MAX_RT_PRIO;
3203}
3204
3205/**
3206 * idle_cpu - is a given cpu idle currently?
3207 * @cpu: the processor in question.
3208 *
3209 * Return: 1 if the CPU is currently idle. 0 otherwise.
3210 */
3211int idle_cpu(int cpu)
3212{
3213	struct rq *rq = cpu_rq(cpu);
3214
3215	if (rq->curr != rq->idle)
3216		return 0;
3217
3218	if (rq->nr_running)
3219		return 0;
3220
3221#ifdef CONFIG_SMP
3222	if (!llist_empty(&rq->wake_list))
3223		return 0;
3224#endif
3225
3226	return 1;
3227}
3228
3229/**
3230 * idle_task - return the idle task for a given cpu.
3231 * @cpu: the processor in question.
3232 *
3233 * Return: The idle task for the cpu @cpu.
3234 */
3235struct task_struct *idle_task(int cpu)
3236{
3237	return cpu_rq(cpu)->idle;
3238}
3239
3240/**
3241 * find_process_by_pid - find a process with a matching PID value.
3242 * @pid: the pid in question.
3243 *
3244 * The task of @pid, if found. %NULL otherwise.
3245 */
3246static struct task_struct *find_process_by_pid(pid_t pid)
3247{
3248	return pid ? find_task_by_vpid(pid) : current;
3249}
3250
3251/*
3252 * This function initializes the sched_dl_entity of a newly becoming
3253 * SCHED_DEADLINE task.
3254 *
3255 * Only the static values are considered here, the actual runtime and the
3256 * absolute deadline will be properly calculated when the task is enqueued
3257 * for the first time with its new policy.
3258 */
3259static void
3260__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3261{
3262	struct sched_dl_entity *dl_se = &p->dl;
3263
3264	init_dl_task_timer(dl_se);
3265	dl_se->dl_runtime = attr->sched_runtime;
3266	dl_se->dl_deadline = attr->sched_deadline;
3267	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3268	dl_se->flags = attr->sched_flags;
3269	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3270	dl_se->dl_throttled = 0;
3271	dl_se->dl_new = 1;
3272	dl_se->dl_yielded = 0;
3273}
3274
3275/*
3276 * sched_setparam() passes in -1 for its policy, to let the functions
3277 * it calls know not to change it.
3278 */
3279#define SETPARAM_POLICY	-1
3280
3281static void __setscheduler_params(struct task_struct *p,
3282		const struct sched_attr *attr)
3283{
3284	int policy = attr->sched_policy;
3285
3286	if (policy == SETPARAM_POLICY)
3287		policy = p->policy;
3288
3289	p->policy = policy;
3290
3291	if (dl_policy(policy))
3292		__setparam_dl(p, attr);
3293	else if (fair_policy(policy))
3294		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3295
3296	/*
3297	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3298	 * !rt_policy. Always setting this ensures that things like
3299	 * getparam()/getattr() don't report silly values for !rt tasks.
3300	 */
3301	p->rt_priority = attr->sched_priority;
3302	p->normal_prio = normal_prio(p);
3303	set_load_weight(p);
3304}
3305
3306/* Actually do priority change: must hold pi & rq lock. */
3307static void __setscheduler(struct rq *rq, struct task_struct *p,
3308			   const struct sched_attr *attr)
3309{
3310	__setscheduler_params(p, attr);
3311
3312	/*
3313	 * If we get here, there was no pi waiters boosting the
3314	 * task. It is safe to use the normal prio.
3315	 */
3316	p->prio = normal_prio(p);
3317
3318	if (dl_prio(p->prio))
3319		p->sched_class = &dl_sched_class;
3320	else if (rt_prio(p->prio))
3321		p->sched_class = &rt_sched_class;
3322	else
3323		p->sched_class = &fair_sched_class;
3324}
3325
3326static void
3327__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3328{
3329	struct sched_dl_entity *dl_se = &p->dl;
3330
3331	attr->sched_priority = p->rt_priority;
3332	attr->sched_runtime = dl_se->dl_runtime;
3333	attr->sched_deadline = dl_se->dl_deadline;
3334	attr->sched_period = dl_se->dl_period;
3335	attr->sched_flags = dl_se->flags;
3336}
3337
3338/*
3339 * This function validates the new parameters of a -deadline task.
3340 * We ask for the deadline not being zero, and greater or equal
3341 * than the runtime, as well as the period of being zero or
3342 * greater than deadline. Furthermore, we have to be sure that
3343 * user parameters are above the internal resolution of 1us (we
3344 * check sched_runtime only since it is always the smaller one) and
3345 * below 2^63 ns (we have to check both sched_deadline and
3346 * sched_period, as the latter can be zero).
3347 */
3348static bool
3349__checkparam_dl(const struct sched_attr *attr)
3350{
3351	/* deadline != 0 */
3352	if (attr->sched_deadline == 0)
3353		return false;
3354
3355	/*
3356	 * Since we truncate DL_SCALE bits, make sure we're at least
3357	 * that big.
3358	 */
3359	if (attr->sched_runtime < (1ULL << DL_SCALE))
3360		return false;
3361
3362	/*
3363	 * Since we use the MSB for wrap-around and sign issues, make
3364	 * sure it's not set (mind that period can be equal to zero).
3365	 */
3366	if (attr->sched_deadline & (1ULL << 63) ||
3367	    attr->sched_period & (1ULL << 63))
3368		return false;
3369
3370	/* runtime <= deadline <= period (if period != 0) */
3371	if ((attr->sched_period != 0 &&
3372	     attr->sched_period < attr->sched_deadline) ||
3373	    attr->sched_deadline < attr->sched_runtime)
3374		return false;
3375
3376	return true;
3377}
3378
3379/*
3380 * check the target process has a UID that matches the current process's
3381 */
3382static bool check_same_owner(struct task_struct *p)
3383{
3384	const struct cred *cred = current_cred(), *pcred;
3385	bool match;
3386
3387	rcu_read_lock();
3388	pcred = __task_cred(p);
3389	match = (uid_eq(cred->euid, pcred->euid) ||
3390		 uid_eq(cred->euid, pcred->uid));
3391	rcu_read_unlock();
3392	return match;
3393}
3394
3395static int __sched_setscheduler(struct task_struct *p,
3396				const struct sched_attr *attr,
3397				bool user)
3398{
3399	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3400		      MAX_RT_PRIO - 1 - attr->sched_priority;
3401	int retval, oldprio, oldpolicy = -1, queued, running;
3402	int policy = attr->sched_policy;
3403	unsigned long flags;
3404	const struct sched_class *prev_class;
3405	struct rq *rq;
3406	int reset_on_fork;
3407
3408	/* may grab non-irq protected spin_locks */
3409	BUG_ON(in_interrupt());
3410recheck:
3411	/* double check policy once rq lock held */
3412	if (policy < 0) {
3413		reset_on_fork = p->sched_reset_on_fork;
3414		policy = oldpolicy = p->policy;
3415	} else {
3416		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3417
3418		if (policy != SCHED_DEADLINE &&
3419				policy != SCHED_FIFO && policy != SCHED_RR &&
3420				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3421				policy != SCHED_IDLE)
3422			return -EINVAL;
3423	}
3424
3425	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3426		return -EINVAL;
3427
3428	/*
3429	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3430	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3431	 * SCHED_BATCH and SCHED_IDLE is 0.
3432	 */
3433	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3434	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3435		return -EINVAL;
3436	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3437	    (rt_policy(policy) != (attr->sched_priority != 0)))
3438		return -EINVAL;
3439
3440	/*
3441	 * Allow unprivileged RT tasks to decrease priority:
3442	 */
3443	if (user && !capable(CAP_SYS_NICE)) {
3444		if (fair_policy(policy)) {
3445			if (attr->sched_nice < task_nice(p) &&
3446			    !can_nice(p, attr->sched_nice))
3447				return -EPERM;
3448		}
3449
3450		if (rt_policy(policy)) {
3451			unsigned long rlim_rtprio =
3452					task_rlimit(p, RLIMIT_RTPRIO);
3453
3454			/* can't set/change the rt policy */
3455			if (policy != p->policy && !rlim_rtprio)
3456				return -EPERM;
3457
3458			/* can't increase priority */
3459			if (attr->sched_priority > p->rt_priority &&
3460			    attr->sched_priority > rlim_rtprio)
3461				return -EPERM;
3462		}
3463
3464		 /*
3465		  * Can't set/change SCHED_DEADLINE policy at all for now
3466		  * (safest behavior); in the future we would like to allow
3467		  * unprivileged DL tasks to increase their relative deadline
3468		  * or reduce their runtime (both ways reducing utilization)
3469		  */
3470		if (dl_policy(policy))
3471			return -EPERM;
3472
3473		/*
3474		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3475		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3476		 */
3477		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3478			if (!can_nice(p, task_nice(p)))
3479				return -EPERM;
3480		}
3481
3482		/* can't change other user's priorities */
3483		if (!check_same_owner(p))
3484			return -EPERM;
3485
3486		/* Normal users shall not reset the sched_reset_on_fork flag */
3487		if (p->sched_reset_on_fork && !reset_on_fork)
3488			return -EPERM;
3489	}
3490
3491	if (user) {
3492		retval = security_task_setscheduler(p);
3493		if (retval)
3494			return retval;
3495	}
3496
3497	/*
3498	 * make sure no PI-waiters arrive (or leave) while we are
3499	 * changing the priority of the task:
3500	 *
3501	 * To be able to change p->policy safely, the appropriate
3502	 * runqueue lock must be held.
3503	 */
3504	rq = task_rq_lock(p, &flags);
3505
3506	/*
3507	 * Changing the policy of the stop threads its a very bad idea
3508	 */
3509	if (p == rq->stop) {
3510		task_rq_unlock(rq, p, &flags);
3511		return -EINVAL;
3512	}
3513
3514	/*
3515	 * If not changing anything there's no need to proceed further,
3516	 * but store a possible modification of reset_on_fork.
3517	 */
3518	if (unlikely(policy == p->policy)) {
3519		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3520			goto change;
3521		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3522			goto change;
3523		if (dl_policy(policy))
3524			goto change;
3525
3526		p->sched_reset_on_fork = reset_on_fork;
3527		task_rq_unlock(rq, p, &flags);
3528		return 0;
3529	}
3530change:
3531
3532	if (user) {
3533#ifdef CONFIG_RT_GROUP_SCHED
3534		/*
3535		 * Do not allow realtime tasks into groups that have no runtime
3536		 * assigned.
3537		 */
3538		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3539				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3540				!task_group_is_autogroup(task_group(p))) {
3541			task_rq_unlock(rq, p, &flags);
3542			return -EPERM;
3543		}
3544#endif
3545#ifdef CONFIG_SMP
3546		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3547			cpumask_t *span = rq->rd->span;
3548
3549			/*
3550			 * Don't allow tasks with an affinity mask smaller than
3551			 * the entire root_domain to become SCHED_DEADLINE. We
3552			 * will also fail if there's no bandwidth available.
3553			 */
3554			if (!cpumask_subset(span, &p->cpus_allowed) ||
3555			    rq->rd->dl_bw.bw == 0) {
3556				task_rq_unlock(rq, p, &flags);
3557				return -EPERM;
3558			}
3559		}
3560#endif
3561	}
3562
3563	/* recheck policy now with rq lock held */
3564	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3565		policy = oldpolicy = -1;
3566		task_rq_unlock(rq, p, &flags);
3567		goto recheck;
3568	}
3569
3570	/*
3571	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3572	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3573	 * is available.
3574	 */
3575	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3576		task_rq_unlock(rq, p, &flags);
3577		return -EBUSY;
3578	}
3579
3580	p->sched_reset_on_fork = reset_on_fork;
3581	oldprio = p->prio;
3582
3583	/*
3584	 * Special case for priority boosted tasks.
3585	 *
3586	 * If the new priority is lower or equal (user space view)
3587	 * than the current (boosted) priority, we just store the new
3588	 * normal parameters and do not touch the scheduler class and
3589	 * the runqueue. This will be done when the task deboost
3590	 * itself.
3591	 */
3592	if (rt_mutex_check_prio(p, newprio)) {
3593		__setscheduler_params(p, attr);
3594		task_rq_unlock(rq, p, &flags);
3595		return 0;
3596	}
3597
3598	queued = task_on_rq_queued(p);
3599	running = task_current(rq, p);
3600	if (queued)
3601		dequeue_task(rq, p, 0);
3602	if (running)
3603		put_prev_task(rq, p);
3604
3605	prev_class = p->sched_class;
3606	__setscheduler(rq, p, attr);
3607
3608	if (running)
3609		p->sched_class->set_curr_task(rq);
3610	if (queued) {
3611		/*
3612		 * We enqueue to tail when the priority of a task is
3613		 * increased (user space view).
3614		 */
3615		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3616	}
3617
3618	check_class_changed(rq, p, prev_class, oldprio);
3619	task_rq_unlock(rq, p, &flags);
3620
3621	rt_mutex_adjust_pi(p);
3622
3623	return 0;
3624}
3625
3626static int _sched_setscheduler(struct task_struct *p, int policy,
3627			       const struct sched_param *param, bool check)
3628{
3629	struct sched_attr attr = {
3630		.sched_policy   = policy,
3631		.sched_priority = param->sched_priority,
3632		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3633	};
3634
3635	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3636	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3637		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3638		policy &= ~SCHED_RESET_ON_FORK;
3639		attr.sched_policy = policy;
3640	}
3641
3642	return __sched_setscheduler(p, &attr, check);
3643}
3644/**
3645 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3646 * @p: the task in question.
3647 * @policy: new policy.
3648 * @param: structure containing the new RT priority.
3649 *
3650 * Return: 0 on success. An error code otherwise.
3651 *
3652 * NOTE that the task may be already dead.
3653 */
3654int sched_setscheduler(struct task_struct *p, int policy,
3655		       const struct sched_param *param)
3656{
3657	return _sched_setscheduler(p, policy, param, true);
3658}
3659EXPORT_SYMBOL_GPL(sched_setscheduler);
3660
3661int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3662{
3663	return __sched_setscheduler(p, attr, true);
3664}
3665EXPORT_SYMBOL_GPL(sched_setattr);
3666
3667/**
3668 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3669 * @p: the task in question.
3670 * @policy: new policy.
3671 * @param: structure containing the new RT priority.
3672 *
3673 * Just like sched_setscheduler, only don't bother checking if the
3674 * current context has permission.  For example, this is needed in
3675 * stop_machine(): we create temporary high priority worker threads,
3676 * but our caller might not have that capability.
3677 *
3678 * Return: 0 on success. An error code otherwise.
3679 */
3680int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3681			       const struct sched_param *param)
3682{
3683	return _sched_setscheduler(p, policy, param, false);
3684}
3685
3686static int
3687do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3688{
3689	struct sched_param lparam;
3690	struct task_struct *p;
3691	int retval;
3692
3693	if (!param || pid < 0)
3694		return -EINVAL;
3695	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3696		return -EFAULT;
3697
3698	rcu_read_lock();
3699	retval = -ESRCH;
3700	p = find_process_by_pid(pid);
3701	if (p != NULL)
3702		retval = sched_setscheduler(p, policy, &lparam);
3703	rcu_read_unlock();
3704
3705	return retval;
3706}
3707
3708/*
3709 * Mimics kernel/events/core.c perf_copy_attr().
3710 */
3711static int sched_copy_attr(struct sched_attr __user *uattr,
3712			   struct sched_attr *attr)
3713{
3714	u32 size;
3715	int ret;
3716
3717	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3718		return -EFAULT;
3719
3720	/*
3721	 * zero the full structure, so that a short copy will be nice.
3722	 */
3723	memset(attr, 0, sizeof(*attr));
3724
3725	ret = get_user(size, &uattr->size);
3726	if (ret)
3727		return ret;
3728
3729	if (size > PAGE_SIZE)	/* silly large */
3730		goto err_size;
3731
3732	if (!size)		/* abi compat */
3733		size = SCHED_ATTR_SIZE_VER0;
3734
3735	if (size < SCHED_ATTR_SIZE_VER0)
3736		goto err_size;
3737
3738	/*
3739	 * If we're handed a bigger struct than we know of,
3740	 * ensure all the unknown bits are 0 - i.e. new
3741	 * user-space does not rely on any kernel feature
3742	 * extensions we dont know about yet.
3743	 */
3744	if (size > sizeof(*attr)) {
3745		unsigned char __user *addr;
3746		unsigned char __user *end;
3747		unsigned char val;
3748
3749		addr = (void __user *)uattr + sizeof(*attr);
3750		end  = (void __user *)uattr + size;
3751
3752		for (; addr < end; addr++) {
3753			ret = get_user(val, addr);
3754			if (ret)
3755				return ret;
3756			if (val)
3757				goto err_size;
3758		}
3759		size = sizeof(*attr);
3760	}
3761
3762	ret = copy_from_user(attr, uattr, size);
3763	if (ret)
3764		return -EFAULT;
3765
3766	/*
3767	 * XXX: do we want to be lenient like existing syscalls; or do we want
3768	 * to be strict and return an error on out-of-bounds values?
3769	 */
3770	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3771
3772	return 0;
3773
3774err_size:
3775	put_user(sizeof(*attr), &uattr->size);
3776	return -E2BIG;
3777}
3778
3779/**
3780 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3781 * @pid: the pid in question.
3782 * @policy: new policy.
3783 * @param: structure containing the new RT priority.
3784 *
3785 * Return: 0 on success. An error code otherwise.
3786 */
3787SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3788		struct sched_param __user *, param)
3789{
3790	/* negative values for policy are not valid */
3791	if (policy < 0)
3792		return -EINVAL;
3793
3794	return do_sched_setscheduler(pid, policy, param);
3795}
3796
3797/**
3798 * sys_sched_setparam - set/change the RT priority of a thread
3799 * @pid: the pid in question.
3800 * @param: structure containing the new RT priority.
3801 *
3802 * Return: 0 on success. An error code otherwise.
3803 */
3804SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3805{
3806	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3807}
3808
3809/**
3810 * sys_sched_setattr - same as above, but with extended sched_attr
3811 * @pid: the pid in question.
3812 * @uattr: structure containing the extended parameters.
3813 * @flags: for future extension.
3814 */
3815SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3816			       unsigned int, flags)
3817{
3818	struct sched_attr attr;
3819	struct task_struct *p;
3820	int retval;
3821
3822	if (!uattr || pid < 0 || flags)
3823		return -EINVAL;
3824
3825	retval = sched_copy_attr(uattr, &attr);
3826	if (retval)
3827		return retval;
3828
3829	if ((int)attr.sched_policy < 0)
3830		return -EINVAL;
3831
3832	rcu_read_lock();
3833	retval = -ESRCH;
3834	p = find_process_by_pid(pid);
3835	if (p != NULL)
3836		retval = sched_setattr(p, &attr);
3837	rcu_read_unlock();
3838
3839	return retval;
3840}
3841
3842/**
3843 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3844 * @pid: the pid in question.
3845 *
3846 * Return: On success, the policy of the thread. Otherwise, a negative error
3847 * code.
3848 */
3849SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3850{
3851	struct task_struct *p;
3852	int retval;
3853
3854	if (pid < 0)
3855		return -EINVAL;
3856
3857	retval = -ESRCH;
3858	rcu_read_lock();
3859	p = find_process_by_pid(pid);
3860	if (p) {
3861		retval = security_task_getscheduler(p);
3862		if (!retval)
3863			retval = p->policy
3864				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3865	}
3866	rcu_read_unlock();
3867	return retval;
3868}
3869
3870/**
3871 * sys_sched_getparam - get the RT priority of a thread
3872 * @pid: the pid in question.
3873 * @param: structure containing the RT priority.
3874 *
3875 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3876 * code.
3877 */
3878SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3879{
3880	struct sched_param lp = { .sched_priority = 0 };
3881	struct task_struct *p;
3882	int retval;
3883
3884	if (!param || pid < 0)
3885		return -EINVAL;
3886
3887	rcu_read_lock();
3888	p = find_process_by_pid(pid);
3889	retval = -ESRCH;
3890	if (!p)
3891		goto out_unlock;
3892
3893	retval = security_task_getscheduler(p);
3894	if (retval)
3895		goto out_unlock;
3896
3897	if (task_has_rt_policy(p))
3898		lp.sched_priority = p->rt_priority;
3899	rcu_read_unlock();
3900
3901	/*
3902	 * This one might sleep, we cannot do it with a spinlock held ...
3903	 */
3904	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3905
3906	return retval;
3907
3908out_unlock:
3909	rcu_read_unlock();
3910	return retval;
3911}
3912
3913static int sched_read_attr(struct sched_attr __user *uattr,
3914			   struct sched_attr *attr,
3915			   unsigned int usize)
3916{
3917	int ret;
3918
3919	if (!access_ok(VERIFY_WRITE, uattr, usize))
3920		return -EFAULT;
3921
3922	/*
3923	 * If we're handed a smaller struct than we know of,
3924	 * ensure all the unknown bits are 0 - i.e. old
3925	 * user-space does not get uncomplete information.
3926	 */
3927	if (usize < sizeof(*attr)) {
3928		unsigned char *addr;
3929		unsigned char *end;
3930
3931		addr = (void *)attr + usize;
3932		end  = (void *)attr + sizeof(*attr);
3933
3934		for (; addr < end; addr++) {
3935			if (*addr)
3936				return -EFBIG;
3937		}
3938
3939		attr->size = usize;
3940	}
3941
3942	ret = copy_to_user(uattr, attr, attr->size);
3943	if (ret)
3944		return -EFAULT;
3945
3946	return 0;
3947}
3948
3949/**
3950 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3951 * @pid: the pid in question.
3952 * @uattr: structure containing the extended parameters.
3953 * @size: sizeof(attr) for fwd/bwd comp.
3954 * @flags: for future extension.
3955 */
3956SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3957		unsigned int, size, unsigned int, flags)
3958{
3959	struct sched_attr attr = {
3960		.size = sizeof(struct sched_attr),
3961	};
3962	struct task_struct *p;
3963	int retval;
3964
3965	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3966	    size < SCHED_ATTR_SIZE_VER0 || flags)
3967		return -EINVAL;
3968
3969	rcu_read_lock();
3970	p = find_process_by_pid(pid);
3971	retval = -ESRCH;
3972	if (!p)
3973		goto out_unlock;
3974
3975	retval = security_task_getscheduler(p);
3976	if (retval)
3977		goto out_unlock;
3978
3979	attr.sched_policy = p->policy;
3980	if (p->sched_reset_on_fork)
3981		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3982	if (task_has_dl_policy(p))
3983		__getparam_dl(p, &attr);
3984	else if (task_has_rt_policy(p))
3985		attr.sched_priority = p->rt_priority;
3986	else
3987		attr.sched_nice = task_nice(p);
3988
3989	rcu_read_unlock();
3990
3991	retval = sched_read_attr(uattr, &attr, size);
3992	return retval;
3993
3994out_unlock:
3995	rcu_read_unlock();
3996	return retval;
3997}
3998
3999long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4000{
4001	cpumask_var_t cpus_allowed, new_mask;
4002	struct task_struct *p;
4003	int retval;
4004
4005	rcu_read_lock();
4006
4007	p = find_process_by_pid(pid);
4008	if (!p) {
4009		rcu_read_unlock();
4010		return -ESRCH;
4011	}
4012
4013	/* Prevent p going away */
4014	get_task_struct(p);
4015	rcu_read_unlock();
4016
4017	if (p->flags & PF_NO_SETAFFINITY) {
4018		retval = -EINVAL;
4019		goto out_put_task;
4020	}
4021	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4022		retval = -ENOMEM;
4023		goto out_put_task;
4024	}
4025	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4026		retval = -ENOMEM;
4027		goto out_free_cpus_allowed;
4028	}
4029	retval = -EPERM;
4030	if (!check_same_owner(p)) {
4031		rcu_read_lock();
4032		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4033			rcu_read_unlock();
4034			goto out_unlock;
4035		}
4036		rcu_read_unlock();
4037	}
4038
4039	retval = security_task_setscheduler(p);
4040	if (retval)
4041		goto out_unlock;
4042
4043
4044	cpuset_cpus_allowed(p, cpus_allowed);
4045	cpumask_and(new_mask, in_mask, cpus_allowed);
4046
4047	/*
4048	 * Since bandwidth control happens on root_domain basis,
4049	 * if admission test is enabled, we only admit -deadline
4050	 * tasks allowed to run on all the CPUs in the task's
4051	 * root_domain.
4052	 */
4053#ifdef CONFIG_SMP
4054	if (task_has_dl_policy(p)) {
4055		const struct cpumask *span = task_rq(p)->rd->span;
4056
4057		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4058			retval = -EBUSY;
4059			goto out_unlock;
4060		}
4061	}
4062#endif
4063again:
4064	retval = set_cpus_allowed_ptr(p, new_mask);
4065
4066	if (!retval) {
4067		cpuset_cpus_allowed(p, cpus_allowed);
4068		if (!cpumask_subset(new_mask, cpus_allowed)) {
4069			/*
4070			 * We must have raced with a concurrent cpuset
4071			 * update. Just reset the cpus_allowed to the
4072			 * cpuset's cpus_allowed
4073			 */
4074			cpumask_copy(new_mask, cpus_allowed);
4075			goto again;
4076		}
4077	}
4078out_unlock:
4079	free_cpumask_var(new_mask);
4080out_free_cpus_allowed:
4081	free_cpumask_var(cpus_allowed);
4082out_put_task:
4083	put_task_struct(p);
4084	return retval;
4085}
4086
4087static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4088			     struct cpumask *new_mask)
4089{
4090	if (len < cpumask_size())
4091		cpumask_clear(new_mask);
4092	else if (len > cpumask_size())
4093		len = cpumask_size();
4094
4095	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4096}
4097
4098/**
4099 * sys_sched_setaffinity - set the cpu affinity of a process
4100 * @pid: pid of the process
4101 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4102 * @user_mask_ptr: user-space pointer to the new cpu mask
4103 *
4104 * Return: 0 on success. An error code otherwise.
4105 */
4106SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4107		unsigned long __user *, user_mask_ptr)
4108{
4109	cpumask_var_t new_mask;
4110	int retval;
4111
4112	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4113		return -ENOMEM;
4114
4115	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4116	if (retval == 0)
4117		retval = sched_setaffinity(pid, new_mask);
4118	free_cpumask_var(new_mask);
4119	return retval;
4120}
4121
4122long sched_getaffinity(pid_t pid, struct cpumask *mask)
4123{
4124	struct task_struct *p;
4125	unsigned long flags;
4126	int retval;
4127
4128	rcu_read_lock();
4129
4130	retval = -ESRCH;
4131	p = find_process_by_pid(pid);
4132	if (!p)
4133		goto out_unlock;
4134
4135	retval = security_task_getscheduler(p);
4136	if (retval)
4137		goto out_unlock;
4138
4139	raw_spin_lock_irqsave(&p->pi_lock, flags);
4140	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4141	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4142
4143out_unlock:
4144	rcu_read_unlock();
4145
4146	return retval;
4147}
4148
4149/**
4150 * sys_sched_getaffinity - get the cpu affinity of a process
4151 * @pid: pid of the process
4152 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4153 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4154 *
4155 * Return: 0 on success. An error code otherwise.
4156 */
4157SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4158		unsigned long __user *, user_mask_ptr)
4159{
4160	int ret;
4161	cpumask_var_t mask;
4162
4163	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4164		return -EINVAL;
4165	if (len & (sizeof(unsigned long)-1))
4166		return -EINVAL;
4167
4168	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4169		return -ENOMEM;
4170
4171	ret = sched_getaffinity(pid, mask);
4172	if (ret == 0) {
4173		size_t retlen = min_t(size_t, len, cpumask_size());
4174
4175		if (copy_to_user(user_mask_ptr, mask, retlen))
4176			ret = -EFAULT;
4177		else
4178			ret = retlen;
4179	}
4180	free_cpumask_var(mask);
4181
4182	return ret;
4183}
4184
4185/**
4186 * sys_sched_yield - yield the current processor to other threads.
4187 *
4188 * This function yields the current CPU to other tasks. If there are no
4189 * other threads running on this CPU then this function will return.
4190 *
4191 * Return: 0.
4192 */
4193SYSCALL_DEFINE0(sched_yield)
4194{
4195	struct rq *rq = this_rq_lock();
4196
4197	schedstat_inc(rq, yld_count);
4198	current->sched_class->yield_task(rq);
4199
4200	/*
4201	 * Since we are going to call schedule() anyway, there's
4202	 * no need to preempt or enable interrupts:
4203	 */
4204	__release(rq->lock);
4205	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4206	do_raw_spin_unlock(&rq->lock);
4207	sched_preempt_enable_no_resched();
4208
4209	schedule();
4210
4211	return 0;
4212}
4213
4214static void __cond_resched(void)
4215{
4216	__preempt_count_add(PREEMPT_ACTIVE);
4217	__schedule();
4218	__preempt_count_sub(PREEMPT_ACTIVE);
4219}
4220
4221int __sched _cond_resched(void)
4222{
4223	if (should_resched()) {
4224		__cond_resched();
4225		return 1;
4226	}
4227	return 0;
4228}
4229EXPORT_SYMBOL(_cond_resched);
4230
4231/*
4232 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4233 * call schedule, and on return reacquire the lock.
4234 *
4235 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4236 * operations here to prevent schedule() from being called twice (once via
4237 * spin_unlock(), once by hand).
4238 */
4239int __cond_resched_lock(spinlock_t *lock)
4240{
4241	int resched = should_resched();
4242	int ret = 0;
4243
4244	lockdep_assert_held(lock);
4245
4246	if (spin_needbreak(lock) || resched) {
4247		spin_unlock(lock);
4248		if (resched)
4249			__cond_resched();
4250		else
4251			cpu_relax();
4252		ret = 1;
4253		spin_lock(lock);
4254	}
4255	return ret;
4256}
4257EXPORT_SYMBOL(__cond_resched_lock);
4258
4259int __sched __cond_resched_softirq(void)
4260{
4261	BUG_ON(!in_softirq());
4262
4263	if (should_resched()) {
4264		local_bh_enable();
4265		__cond_resched();
4266		local_bh_disable();
4267		return 1;
4268	}
4269	return 0;
4270}
4271EXPORT_SYMBOL(__cond_resched_softirq);
4272
4273/**
4274 * yield - yield the current processor to other threads.
4275 *
4276 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4277 *
4278 * The scheduler is at all times free to pick the calling task as the most
4279 * eligible task to run, if removing the yield() call from your code breaks
4280 * it, its already broken.
4281 *
4282 * Typical broken usage is:
4283 *
4284 * while (!event)
4285 * 	yield();
4286 *
4287 * where one assumes that yield() will let 'the other' process run that will
4288 * make event true. If the current task is a SCHED_FIFO task that will never
4289 * happen. Never use yield() as a progress guarantee!!
4290 *
4291 * If you want to use yield() to wait for something, use wait_event().
4292 * If you want to use yield() to be 'nice' for others, use cond_resched().
4293 * If you still want to use yield(), do not!
4294 */
4295void __sched yield(void)
4296{
4297	set_current_state(TASK_RUNNING);
4298	sys_sched_yield();
4299}
4300EXPORT_SYMBOL(yield);
4301
4302/**
4303 * yield_to - yield the current processor to another thread in
4304 * your thread group, or accelerate that thread toward the
4305 * processor it's on.
4306 * @p: target task
4307 * @preempt: whether task preemption is allowed or not
4308 *
4309 * It's the caller's job to ensure that the target task struct
4310 * can't go away on us before we can do any checks.
4311 *
4312 * Return:
4313 *	true (>0) if we indeed boosted the target task.
4314 *	false (0) if we failed to boost the target.
4315 *	-ESRCH if there's no task to yield to.
4316 */
4317int __sched yield_to(struct task_struct *p, bool preempt)
4318{
4319	struct task_struct *curr = current;
4320	struct rq *rq, *p_rq;
4321	unsigned long flags;
4322	int yielded = 0;
4323
4324	local_irq_save(flags);
4325	rq = this_rq();
4326
4327again:
4328	p_rq = task_rq(p);
4329	/*
4330	 * If we're the only runnable task on the rq and target rq also
4331	 * has only one task, there's absolutely no point in yielding.
4332	 */
4333	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4334		yielded = -ESRCH;
4335		goto out_irq;
4336	}
4337
4338	double_rq_lock(rq, p_rq);
4339	if (task_rq(p) != p_rq) {
4340		double_rq_unlock(rq, p_rq);
4341		goto again;
4342	}
4343
4344	if (!curr->sched_class->yield_to_task)
4345		goto out_unlock;
4346
4347	if (curr->sched_class != p->sched_class)
4348		goto out_unlock;
4349
4350	if (task_running(p_rq, p) || p->state)
4351		goto out_unlock;
4352
4353	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4354	if (yielded) {
4355		schedstat_inc(rq, yld_count);
4356		/*
4357		 * Make p's CPU reschedule; pick_next_entity takes care of
4358		 * fairness.
4359		 */
4360		if (preempt && rq != p_rq)
4361			resched_curr(p_rq);
4362	}
4363
4364out_unlock:
4365	double_rq_unlock(rq, p_rq);
4366out_irq:
4367	local_irq_restore(flags);
4368
4369	if (yielded > 0)
4370		schedule();
4371
4372	return yielded;
4373}
4374EXPORT_SYMBOL_GPL(yield_to);
4375
4376/*
4377 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4378 * that process accounting knows that this is a task in IO wait state.
4379 */
4380void __sched io_schedule(void)
4381{
4382	struct rq *rq = raw_rq();
4383
4384	delayacct_blkio_start();
4385	atomic_inc(&rq->nr_iowait);
4386	blk_flush_plug(current);
4387	current->in_iowait = 1;
4388	schedule();
4389	current->in_iowait = 0;
4390	atomic_dec(&rq->nr_iowait);
4391	delayacct_blkio_end();
4392}
4393EXPORT_SYMBOL(io_schedule);
4394
4395long __sched io_schedule_timeout(long timeout)
4396{
4397	struct rq *rq = raw_rq();
4398	long ret;
4399
4400	delayacct_blkio_start();
4401	atomic_inc(&rq->nr_iowait);
4402	blk_flush_plug(current);
4403	current->in_iowait = 1;
4404	ret = schedule_timeout(timeout);
4405	current->in_iowait = 0;
4406	atomic_dec(&rq->nr_iowait);
4407	delayacct_blkio_end();
4408	return ret;
4409}
4410
4411/**
4412 * sys_sched_get_priority_max - return maximum RT priority.
4413 * @policy: scheduling class.
4414 *
4415 * Return: On success, this syscall returns the maximum
4416 * rt_priority that can be used by a given scheduling class.
4417 * On failure, a negative error code is returned.
4418 */
4419SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4420{
4421	int ret = -EINVAL;
4422
4423	switch (policy) {
4424	case SCHED_FIFO:
4425	case SCHED_RR:
4426		ret = MAX_USER_RT_PRIO-1;
4427		break;
4428	case SCHED_DEADLINE:
4429	case SCHED_NORMAL:
4430	case SCHED_BATCH:
4431	case SCHED_IDLE:
4432		ret = 0;
4433		break;
4434	}
4435	return ret;
4436}
4437
4438/**
4439 * sys_sched_get_priority_min - return minimum RT priority.
4440 * @policy: scheduling class.
4441 *
4442 * Return: On success, this syscall returns the minimum
4443 * rt_priority that can be used by a given scheduling class.
4444 * On failure, a negative error code is returned.
4445 */
4446SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4447{
4448	int ret = -EINVAL;
4449
4450	switch (policy) {
4451	case SCHED_FIFO:
4452	case SCHED_RR:
4453		ret = 1;
4454		break;
4455	case SCHED_DEADLINE:
4456	case SCHED_NORMAL:
4457	case SCHED_BATCH:
4458	case SCHED_IDLE:
4459		ret = 0;
4460	}
4461	return ret;
4462}
4463
4464/**
4465 * sys_sched_rr_get_interval - return the default timeslice of a process.
4466 * @pid: pid of the process.
4467 * @interval: userspace pointer to the timeslice value.
4468 *
4469 * this syscall writes the default timeslice value of a given process
4470 * into the user-space timespec buffer. A value of '0' means infinity.
4471 *
4472 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4473 * an error code.
4474 */
4475SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4476		struct timespec __user *, interval)
4477{
4478	struct task_struct *p;
4479	unsigned int time_slice;
4480	unsigned long flags;
4481	struct rq *rq;
4482	int retval;
4483	struct timespec t;
4484
4485	if (pid < 0)
4486		return -EINVAL;
4487
4488	retval = -ESRCH;
4489	rcu_read_lock();
4490	p = find_process_by_pid(pid);
4491	if (!p)
4492		goto out_unlock;
4493
4494	retval = security_task_getscheduler(p);
4495	if (retval)
4496		goto out_unlock;
4497
4498	rq = task_rq_lock(p, &flags);
4499	time_slice = 0;
4500	if (p->sched_class->get_rr_interval)
4501		time_slice = p->sched_class->get_rr_interval(rq, p);
4502	task_rq_unlock(rq, p, &flags);
4503
4504	rcu_read_unlock();
4505	jiffies_to_timespec(time_slice, &t);
4506	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4507	return retval;
4508
4509out_unlock:
4510	rcu_read_unlock();
4511	return retval;
4512}
4513
4514static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4515
4516void sched_show_task(struct task_struct *p)
4517{
4518	unsigned long free = 0;
4519	int ppid;
4520	unsigned state;
4521
4522	state = p->state ? __ffs(p->state) + 1 : 0;
4523	printk(KERN_INFO "%-15.15s %c", p->comm,
4524		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4525#if BITS_PER_LONG == 32
4526	if (state == TASK_RUNNING)
4527		printk(KERN_CONT " running  ");
4528	else
4529		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4530#else
4531	if (state == TASK_RUNNING)
4532		printk(KERN_CONT "  running task    ");
4533	else
4534		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4535#endif
4536#ifdef CONFIG_DEBUG_STACK_USAGE
4537	free = stack_not_used(p);
4538#endif
4539	rcu_read_lock();
4540	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4541	rcu_read_unlock();
4542	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4543		task_pid_nr(p), ppid,
4544		(unsigned long)task_thread_info(p)->flags);
4545
4546	print_worker_info(KERN_INFO, p);
4547	show_stack(p, NULL);
4548}
4549
4550void show_state_filter(unsigned long state_filter)
4551{
4552	struct task_struct *g, *p;
4553
4554#if BITS_PER_LONG == 32
4555	printk(KERN_INFO
4556		"  task                PC stack   pid father\n");
4557#else
4558	printk(KERN_INFO
4559		"  task                        PC stack   pid father\n");
4560#endif
4561	rcu_read_lock();
4562	for_each_process_thread(g, p) {
4563		/*
4564		 * reset the NMI-timeout, listing all files on a slow
4565		 * console might take a lot of time:
4566		 */
4567		touch_nmi_watchdog();
4568		if (!state_filter || (p->state & state_filter))
4569			sched_show_task(p);
4570	}
4571
4572	touch_all_softlockup_watchdogs();
4573
4574#ifdef CONFIG_SCHED_DEBUG
4575	sysrq_sched_debug_show();
4576#endif
4577	rcu_read_unlock();
4578	/*
4579	 * Only show locks if all tasks are dumped:
4580	 */
4581	if (!state_filter)
4582		debug_show_all_locks();
4583}
4584
4585void init_idle_bootup_task(struct task_struct *idle)
4586{
4587	idle->sched_class = &idle_sched_class;
4588}
4589
4590/**
4591 * init_idle - set up an idle thread for a given CPU
4592 * @idle: task in question
4593 * @cpu: cpu the idle task belongs to
4594 *
4595 * NOTE: this function does not set the idle thread's NEED_RESCHED
4596 * flag, to make booting more robust.
4597 */
4598void init_idle(struct task_struct *idle, int cpu)
4599{
4600	struct rq *rq = cpu_rq(cpu);
4601	unsigned long flags;
4602
4603	raw_spin_lock_irqsave(&rq->lock, flags);
4604
4605	__sched_fork(0, idle);
4606	idle->state = TASK_RUNNING;
4607	idle->se.exec_start = sched_clock();
4608
4609	do_set_cpus_allowed(idle, cpumask_of(cpu));
4610	/*
4611	 * We're having a chicken and egg problem, even though we are
4612	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4613	 * lockdep check in task_group() will fail.
4614	 *
4615	 * Similar case to sched_fork(). / Alternatively we could
4616	 * use task_rq_lock() here and obtain the other rq->lock.
4617	 *
4618	 * Silence PROVE_RCU
4619	 */
4620	rcu_read_lock();
4621	__set_task_cpu(idle, cpu);
4622	rcu_read_unlock();
4623
4624	rq->curr = rq->idle = idle;
4625	idle->on_rq = TASK_ON_RQ_QUEUED;
4626#if defined(CONFIG_SMP)
4627	idle->on_cpu = 1;
4628#endif
4629	raw_spin_unlock_irqrestore(&rq->lock, flags);
4630
4631	/* Set the preempt count _outside_ the spinlocks! */
4632	init_idle_preempt_count(idle, cpu);
4633
4634	/*
4635	 * The idle tasks have their own, simple scheduling class:
4636	 */
4637	idle->sched_class = &idle_sched_class;
4638	ftrace_graph_init_idle_task(idle, cpu);
4639	vtime_init_idle(idle, cpu);
4640#if defined(CONFIG_SMP)
4641	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4642#endif
4643}
4644
4645#ifdef CONFIG_SMP
4646/*
4647 * move_queued_task - move a queued task to new rq.
4648 *
4649 * Returns (locked) new rq. Old rq's lock is released.
4650 */
4651static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4652{
4653	struct rq *rq = task_rq(p);
4654
4655	lockdep_assert_held(&rq->lock);
4656
4657	dequeue_task(rq, p, 0);
4658	p->on_rq = TASK_ON_RQ_MIGRATING;
4659	set_task_cpu(p, new_cpu);
4660	raw_spin_unlock(&rq->lock);
4661
4662	rq = cpu_rq(new_cpu);
4663
4664	raw_spin_lock(&rq->lock);
4665	BUG_ON(task_cpu(p) != new_cpu);
4666	p->on_rq = TASK_ON_RQ_QUEUED;
4667	enqueue_task(rq, p, 0);
4668	check_preempt_curr(rq, p, 0);
4669
4670	return rq;
4671}
4672
4673void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4674{
4675	if (p->sched_class && p->sched_class->set_cpus_allowed)
4676		p->sched_class->set_cpus_allowed(p, new_mask);
4677
4678	cpumask_copy(&p->cpus_allowed, new_mask);
4679	p->nr_cpus_allowed = cpumask_weight(new_mask);
4680}
4681
4682/*
4683 * This is how migration works:
4684 *
4685 * 1) we invoke migration_cpu_stop() on the target CPU using
4686 *    stop_one_cpu().
4687 * 2) stopper starts to run (implicitly forcing the migrated thread
4688 *    off the CPU)
4689 * 3) it checks whether the migrated task is still in the wrong runqueue.
4690 * 4) if it's in the wrong runqueue then the migration thread removes
4691 *    it and puts it into the right queue.
4692 * 5) stopper completes and stop_one_cpu() returns and the migration
4693 *    is done.
4694 */
4695
4696/*
4697 * Change a given task's CPU affinity. Migrate the thread to a
4698 * proper CPU and schedule it away if the CPU it's executing on
4699 * is removed from the allowed bitmask.
4700 *
4701 * NOTE: the caller must have a valid reference to the task, the
4702 * task must not exit() & deallocate itself prematurely. The
4703 * call is not atomic; no spinlocks may be held.
4704 */
4705int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4706{
4707	unsigned long flags;
4708	struct rq *rq;
4709	unsigned int dest_cpu;
4710	int ret = 0;
4711
4712	rq = task_rq_lock(p, &flags);
4713
4714	if (cpumask_equal(&p->cpus_allowed, new_mask))
4715		goto out;
4716
4717	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4718		ret = -EINVAL;
4719		goto out;
4720	}
4721
4722	do_set_cpus_allowed(p, new_mask);
4723
4724	/* Can the task run on the task's current CPU? If so, we're done */
4725	if (cpumask_test_cpu(task_cpu(p), new_mask))
4726		goto out;
4727
4728	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4729	if (task_running(rq, p) || p->state == TASK_WAKING) {
4730		struct migration_arg arg = { p, dest_cpu };
4731		/* Need help from migration thread: drop lock and wait. */
4732		task_rq_unlock(rq, p, &flags);
4733		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4734		tlb_migrate_finish(p->mm);
4735		return 0;
4736	} else if (task_on_rq_queued(p))
4737		rq = move_queued_task(p, dest_cpu);
4738out:
4739	task_rq_unlock(rq, p, &flags);
4740
4741	return ret;
4742}
4743EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4744
4745/*
4746 * Move (not current) task off this cpu, onto dest cpu. We're doing
4747 * this because either it can't run here any more (set_cpus_allowed()
4748 * away from this CPU, or CPU going down), or because we're
4749 * attempting to rebalance this task on exec (sched_exec).
4750 *
4751 * So we race with normal scheduler movements, but that's OK, as long
4752 * as the task is no longer on this CPU.
4753 *
4754 * Returns non-zero if task was successfully migrated.
4755 */
4756static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4757{
4758	struct rq *rq;
4759	int ret = 0;
4760
4761	if (unlikely(!cpu_active(dest_cpu)))
4762		return ret;
4763
4764	rq = cpu_rq(src_cpu);
4765
4766	raw_spin_lock(&p->pi_lock);
4767	raw_spin_lock(&rq->lock);
4768	/* Already moved. */
4769	if (task_cpu(p) != src_cpu)
4770		goto done;
4771
4772	/* Affinity changed (again). */
4773	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4774		goto fail;
4775
4776	/*
4777	 * If we're not on a rq, the next wake-up will ensure we're
4778	 * placed properly.
4779	 */
4780	if (task_on_rq_queued(p))
4781		rq = move_queued_task(p, dest_cpu);
4782done:
4783	ret = 1;
4784fail:
4785	raw_spin_unlock(&rq->lock);
4786	raw_spin_unlock(&p->pi_lock);
4787	return ret;
4788}
4789
4790#ifdef CONFIG_NUMA_BALANCING
4791/* Migrate current task p to target_cpu */
4792int migrate_task_to(struct task_struct *p, int target_cpu)
4793{
4794	struct migration_arg arg = { p, target_cpu };
4795	int curr_cpu = task_cpu(p);
4796
4797	if (curr_cpu == target_cpu)
4798		return 0;
4799
4800	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4801		return -EINVAL;
4802
4803	/* TODO: This is not properly updating schedstats */
4804
4805	trace_sched_move_numa(p, curr_cpu, target_cpu);
4806	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4807}
4808
4809/*
4810 * Requeue a task on a given node and accurately track the number of NUMA
4811 * tasks on the runqueues
4812 */
4813void sched_setnuma(struct task_struct *p, int nid)
4814{
4815	struct rq *rq;
4816	unsigned long flags;
4817	bool queued, running;
4818
4819	rq = task_rq_lock(p, &flags);
4820	queued = task_on_rq_queued(p);
4821	running = task_current(rq, p);
4822
4823	if (queued)
4824		dequeue_task(rq, p, 0);
4825	if (running)
4826		put_prev_task(rq, p);
4827
4828	p->numa_preferred_nid = nid;
4829
4830	if (running)
4831		p->sched_class->set_curr_task(rq);
4832	if (queued)
4833		enqueue_task(rq, p, 0);
4834	task_rq_unlock(rq, p, &flags);
4835}
4836#endif
4837
4838/*
4839 * migration_cpu_stop - this will be executed by a highprio stopper thread
4840 * and performs thread migration by bumping thread off CPU then
4841 * 'pushing' onto another runqueue.
4842 */
4843static int migration_cpu_stop(void *data)
4844{
4845	struct migration_arg *arg = data;
4846
4847	/*
4848	 * The original target cpu might have gone down and we might
4849	 * be on another cpu but it doesn't matter.
4850	 */
4851	local_irq_disable();
4852	/*
4853	 * We need to explicitly wake pending tasks before running
4854	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4855	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4856	 */
4857	sched_ttwu_pending();
4858	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4859	local_irq_enable();
4860	return 0;
4861}
4862
4863#ifdef CONFIG_HOTPLUG_CPU
4864
4865/*
4866 * Ensures that the idle task is using init_mm right before its cpu goes
4867 * offline.
4868 */
4869void idle_task_exit(void)
4870{
4871	struct mm_struct *mm = current->active_mm;
4872
4873	BUG_ON(cpu_online(smp_processor_id()));
4874
4875	if (mm != &init_mm) {
4876		switch_mm(mm, &init_mm, current);
4877		finish_arch_post_lock_switch();
4878	}
4879	mmdrop(mm);
4880}
4881
4882/*
4883 * Since this CPU is going 'away' for a while, fold any nr_active delta
4884 * we might have. Assumes we're called after migrate_tasks() so that the
4885 * nr_active count is stable.
4886 *
4887 * Also see the comment "Global load-average calculations".
4888 */
4889static void calc_load_migrate(struct rq *rq)
4890{
4891	long delta = calc_load_fold_active(rq);
4892	if (delta)
4893		atomic_long_add(delta, &calc_load_tasks);
4894}
4895
4896static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4897{
4898}
4899
4900static const struct sched_class fake_sched_class = {
4901	.put_prev_task = put_prev_task_fake,
4902};
4903
4904static struct task_struct fake_task = {
4905	/*
4906	 * Avoid pull_{rt,dl}_task()
4907	 */
4908	.prio = MAX_PRIO + 1,
4909	.sched_class = &fake_sched_class,
4910};
4911
4912/*
4913 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4914 * try_to_wake_up()->select_task_rq().
4915 *
4916 * Called with rq->lock held even though we'er in stop_machine() and
4917 * there's no concurrency possible, we hold the required locks anyway
4918 * because of lock validation efforts.
4919 */
4920static void migrate_tasks(unsigned int dead_cpu)
4921{
4922	struct rq *rq = cpu_rq(dead_cpu);
4923	struct task_struct *next, *stop = rq->stop;
4924	int dest_cpu;
4925
4926	/*
4927	 * Fudge the rq selection such that the below task selection loop
4928	 * doesn't get stuck on the currently eligible stop task.
4929	 *
4930	 * We're currently inside stop_machine() and the rq is either stuck
4931	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4932	 * either way we should never end up calling schedule() until we're
4933	 * done here.
4934	 */
4935	rq->stop = NULL;
4936
4937	/*
4938	 * put_prev_task() and pick_next_task() sched
4939	 * class method both need to have an up-to-date
4940	 * value of rq->clock[_task]
4941	 */
4942	update_rq_clock(rq);
4943
4944	for ( ; ; ) {
4945		/*
4946		 * There's this thread running, bail when that's the only
4947		 * remaining thread.
4948		 */
4949		if (rq->nr_running == 1)
4950			break;
4951
4952		next = pick_next_task(rq, &fake_task);
4953		BUG_ON(!next);
4954		next->sched_class->put_prev_task(rq, next);
4955
4956		/* Find suitable destination for @next, with force if needed. */
4957		dest_cpu = select_fallback_rq(dead_cpu, next);
4958		raw_spin_unlock(&rq->lock);
4959
4960		__migrate_task(next, dead_cpu, dest_cpu);
4961
4962		raw_spin_lock(&rq->lock);
4963	}
4964
4965	rq->stop = stop;
4966}
4967
4968#endif /* CONFIG_HOTPLUG_CPU */
4969
4970#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4971
4972static struct ctl_table sd_ctl_dir[] = {
4973	{
4974		.procname	= "sched_domain",
4975		.mode		= 0555,
4976	},
4977	{}
4978};
4979
4980static struct ctl_table sd_ctl_root[] = {
4981	{
4982		.procname	= "kernel",
4983		.mode		= 0555,
4984		.child		= sd_ctl_dir,
4985	},
4986	{}
4987};
4988
4989static struct ctl_table *sd_alloc_ctl_entry(int n)
4990{
4991	struct ctl_table *entry =
4992		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4993
4994	return entry;
4995}
4996
4997static void sd_free_ctl_entry(struct ctl_table **tablep)
4998{
4999	struct ctl_table *entry;
5000
5001	/*
5002	 * In the intermediate directories, both the child directory and
5003	 * procname are dynamically allocated and could fail but the mode
5004	 * will always be set. In the lowest directory the names are
5005	 * static strings and all have proc handlers.
5006	 */
5007	for (entry = *tablep; entry->mode; entry++) {
5008		if (entry->child)
5009			sd_free_ctl_entry(&entry->child);
5010		if (entry->proc_handler == NULL)
5011			kfree(entry->procname);
5012	}
5013
5014	kfree(*tablep);
5015	*tablep = NULL;
5016}
5017
5018static int min_load_idx = 0;
5019static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5020
5021static void
5022set_table_entry(struct ctl_table *entry,
5023		const char *procname, void *data, int maxlen,
5024		umode_t mode, proc_handler *proc_handler,
5025		bool load_idx)
5026{
5027	entry->procname = procname;
5028	entry->data = data;
5029	entry->maxlen = maxlen;
5030	entry->mode = mode;
5031	entry->proc_handler = proc_handler;
5032
5033	if (load_idx) {
5034		entry->extra1 = &min_load_idx;
5035		entry->extra2 = &max_load_idx;
5036	}
5037}
5038
5039static struct ctl_table *
5040sd_alloc_ctl_domain_table(struct sched_domain *sd)
5041{
5042	struct ctl_table *table = sd_alloc_ctl_entry(14);
5043
5044	if (table == NULL)
5045		return NULL;
5046
5047	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5048		sizeof(long), 0644, proc_doulongvec_minmax, false);
5049	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5050		sizeof(long), 0644, proc_doulongvec_minmax, false);
5051	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5052		sizeof(int), 0644, proc_dointvec_minmax, true);
5053	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5054		sizeof(int), 0644, proc_dointvec_minmax, true);
5055	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5056		sizeof(int), 0644, proc_dointvec_minmax, true);
5057	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5058		sizeof(int), 0644, proc_dointvec_minmax, true);
5059	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5060		sizeof(int), 0644, proc_dointvec_minmax, true);
5061	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5062		sizeof(int), 0644, proc_dointvec_minmax, false);
5063	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5064		sizeof(int), 0644, proc_dointvec_minmax, false);
5065	set_table_entry(&table[9], "cache_nice_tries",
5066		&sd->cache_nice_tries,
5067		sizeof(int), 0644, proc_dointvec_minmax, false);
5068	set_table_entry(&table[10], "flags", &sd->flags,
5069		sizeof(int), 0644, proc_dointvec_minmax, false);
5070	set_table_entry(&table[11], "max_newidle_lb_cost",
5071		&sd->max_newidle_lb_cost,
5072		sizeof(long), 0644, proc_doulongvec_minmax, false);
5073	set_table_entry(&table[12], "name", sd->name,
5074		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5075	/* &table[13] is terminator */
5076
5077	return table;
5078}
5079
5080static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5081{
5082	struct ctl_table *entry, *table;
5083	struct sched_domain *sd;
5084	int domain_num = 0, i;
5085	char buf[32];
5086
5087	for_each_domain(cpu, sd)
5088		domain_num++;
5089	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5090	if (table == NULL)
5091		return NULL;
5092
5093	i = 0;
5094	for_each_domain(cpu, sd) {
5095		snprintf(buf, 32, "domain%d", i);
5096		entry->procname = kstrdup(buf, GFP_KERNEL);
5097		entry->mode = 0555;
5098		entry->child = sd_alloc_ctl_domain_table(sd);
5099		entry++;
5100		i++;
5101	}
5102	return table;
5103}
5104
5105static struct ctl_table_header *sd_sysctl_header;
5106static void register_sched_domain_sysctl(void)
5107{
5108	int i, cpu_num = num_possible_cpus();
5109	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5110	char buf[32];
5111
5112	WARN_ON(sd_ctl_dir[0].child);
5113	sd_ctl_dir[0].child = entry;
5114
5115	if (entry == NULL)
5116		return;
5117
5118	for_each_possible_cpu(i) {
5119		snprintf(buf, 32, "cpu%d", i);
5120		entry->procname = kstrdup(buf, GFP_KERNEL);
5121		entry->mode = 0555;
5122		entry->child = sd_alloc_ctl_cpu_table(i);
5123		entry++;
5124	}
5125
5126	WARN_ON(sd_sysctl_header);
5127	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5128}
5129
5130/* may be called multiple times per register */
5131static void unregister_sched_domain_sysctl(void)
5132{
5133	if (sd_sysctl_header)
5134		unregister_sysctl_table(sd_sysctl_header);
5135	sd_sysctl_header = NULL;
5136	if (sd_ctl_dir[0].child)
5137		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5138}
5139#else
5140static void register_sched_domain_sysctl(void)
5141{
5142}
5143static void unregister_sched_domain_sysctl(void)
5144{
5145}
5146#endif
5147
5148static void set_rq_online(struct rq *rq)
5149{
5150	if (!rq->online) {
5151		const struct sched_class *class;
5152
5153		cpumask_set_cpu(rq->cpu, rq->rd->online);
5154		rq->online = 1;
5155
5156		for_each_class(class) {
5157			if (class->rq_online)
5158				class->rq_online(rq);
5159		}
5160	}
5161}
5162
5163static void set_rq_offline(struct rq *rq)
5164{
5165	if (rq->online) {
5166		const struct sched_class *class;
5167
5168		for_each_class(class) {
5169			if (class->rq_offline)
5170				class->rq_offline(rq);
5171		}
5172
5173		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5174		rq->online = 0;
5175	}
5176}
5177
5178/*
5179 * migration_call - callback that gets triggered when a CPU is added.
5180 * Here we can start up the necessary migration thread for the new CPU.
5181 */
5182static int
5183migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5184{
5185	int cpu = (long)hcpu;
5186	unsigned long flags;
5187	struct rq *rq = cpu_rq(cpu);
5188
5189	switch (action & ~CPU_TASKS_FROZEN) {
5190
5191	case CPU_UP_PREPARE:
5192		rq->calc_load_update = calc_load_update;
5193		break;
5194
5195	case CPU_ONLINE:
5196		/* Update our root-domain */
5197		raw_spin_lock_irqsave(&rq->lock, flags);
5198		if (rq->rd) {
5199			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5200
5201			set_rq_online(rq);
5202		}
5203		raw_spin_unlock_irqrestore(&rq->lock, flags);
5204		break;
5205
5206#ifdef CONFIG_HOTPLUG_CPU
5207	case CPU_DYING:
5208		sched_ttwu_pending();
5209		/* Update our root-domain */
5210		raw_spin_lock_irqsave(&rq->lock, flags);
5211		if (rq->rd) {
5212			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5213			set_rq_offline(rq);
5214		}
5215		migrate_tasks(cpu);
5216		BUG_ON(rq->nr_running != 1); /* the migration thread */
5217		raw_spin_unlock_irqrestore(&rq->lock, flags);
5218		break;
5219
5220	case CPU_DEAD:
5221		calc_load_migrate(rq);
5222		break;
5223#endif
5224	}
5225
5226	update_max_interval();
5227
5228	return NOTIFY_OK;
5229}
5230
5231/*
5232 * Register at high priority so that task migration (migrate_all_tasks)
5233 * happens before everything else.  This has to be lower priority than
5234 * the notifier in the perf_event subsystem, though.
5235 */
5236static struct notifier_block migration_notifier = {
5237	.notifier_call = migration_call,
5238	.priority = CPU_PRI_MIGRATION,
5239};
5240
5241static void __cpuinit set_cpu_rq_start_time(void)
5242{
5243	int cpu = smp_processor_id();
5244	struct rq *rq = cpu_rq(cpu);
5245	rq->age_stamp = sched_clock_cpu(cpu);
5246}
5247
5248static int sched_cpu_active(struct notifier_block *nfb,
5249				      unsigned long action, void *hcpu)
5250{
5251	switch (action & ~CPU_TASKS_FROZEN) {
5252	case CPU_STARTING:
5253		set_cpu_rq_start_time();
5254		return NOTIFY_OK;
5255	case CPU_DOWN_FAILED:
5256		set_cpu_active((long)hcpu, true);
5257		return NOTIFY_OK;
5258	default:
5259		return NOTIFY_DONE;
5260	}
5261}
5262
5263static int sched_cpu_inactive(struct notifier_block *nfb,
5264					unsigned long action, void *hcpu)
5265{
5266	unsigned long flags;
5267	long cpu = (long)hcpu;
5268
5269	switch (action & ~CPU_TASKS_FROZEN) {
5270	case CPU_DOWN_PREPARE:
5271		set_cpu_active(cpu, false);
5272
5273		/* explicitly allow suspend */
5274		if (!(action & CPU_TASKS_FROZEN)) {
5275			struct dl_bw *dl_b = dl_bw_of(cpu);
5276			bool overflow;
5277			int cpus;
5278
5279			raw_spin_lock_irqsave(&dl_b->lock, flags);
5280			cpus = dl_bw_cpus(cpu);
5281			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5282			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5283
5284			if (overflow)
5285				return notifier_from_errno(-EBUSY);
5286		}
5287		return NOTIFY_OK;
5288	}
5289
5290	return NOTIFY_DONE;
5291}
5292
5293static int __init migration_init(void)
5294{
5295	void *cpu = (void *)(long)smp_processor_id();
5296	int err;
5297
5298	/* Initialize migration for the boot CPU */
5299	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5300	BUG_ON(err == NOTIFY_BAD);
5301	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5302	register_cpu_notifier(&migration_notifier);
5303
5304	/* Register cpu active notifiers */
5305	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5306	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5307
5308	return 0;
5309}
5310early_initcall(migration_init);
5311#endif
5312
5313#ifdef CONFIG_SMP
5314
5315static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5316
5317#ifdef CONFIG_SCHED_DEBUG
5318
5319static __read_mostly int sched_debug_enabled;
5320
5321static int __init sched_debug_setup(char *str)
5322{
5323	sched_debug_enabled = 1;
5324
5325	return 0;
5326}
5327early_param("sched_debug", sched_debug_setup);
5328
5329static inline bool sched_debug(void)
5330{
5331	return sched_debug_enabled;
5332}
5333
5334static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5335				  struct cpumask *groupmask)
5336{
5337	struct sched_group *group = sd->groups;
5338	char str[256];
5339
5340	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5341	cpumask_clear(groupmask);
5342
5343	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5344
5345	if (!(sd->flags & SD_LOAD_BALANCE)) {
5346		printk("does not load-balance\n");
5347		if (sd->parent)
5348			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5349					" has parent");
5350		return -1;
5351	}
5352
5353	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5354
5355	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5356		printk(KERN_ERR "ERROR: domain->span does not contain "
5357				"CPU%d\n", cpu);
5358	}
5359	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5360		printk(KERN_ERR "ERROR: domain->groups does not contain"
5361				" CPU%d\n", cpu);
5362	}
5363
5364	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5365	do {
5366		if (!group) {
5367			printk("\n");
5368			printk(KERN_ERR "ERROR: group is NULL\n");
5369			break;
5370		}
5371
5372		/*
5373		 * Even though we initialize ->capacity to something semi-sane,
5374		 * we leave capacity_orig unset. This allows us to detect if
5375		 * domain iteration is still funny without causing /0 traps.
5376		 */
5377		if (!group->sgc->capacity_orig) {
5378			printk(KERN_CONT "\n");
5379			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5380			break;
5381		}
5382
5383		if (!cpumask_weight(sched_group_cpus(group))) {
5384			printk(KERN_CONT "\n");
5385			printk(KERN_ERR "ERROR: empty group\n");
5386			break;
5387		}
5388
5389		if (!(sd->flags & SD_OVERLAP) &&
5390		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5391			printk(KERN_CONT "\n");
5392			printk(KERN_ERR "ERROR: repeated CPUs\n");
5393			break;
5394		}
5395
5396		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5397
5398		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5399
5400		printk(KERN_CONT " %s", str);
5401		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5402			printk(KERN_CONT " (cpu_capacity = %d)",
5403				group->sgc->capacity);
5404		}
5405
5406		group = group->next;
5407	} while (group != sd->groups);
5408	printk(KERN_CONT "\n");
5409
5410	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5411		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5412
5413	if (sd->parent &&
5414	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5415		printk(KERN_ERR "ERROR: parent span is not a superset "
5416			"of domain->span\n");
5417	return 0;
5418}
5419
5420static void sched_domain_debug(struct sched_domain *sd, int cpu)
5421{
5422	int level = 0;
5423
5424	if (!sched_debug_enabled)
5425		return;
5426
5427	if (!sd) {
5428		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5429		return;
5430	}
5431
5432	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5433
5434	for (;;) {
5435		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5436			break;
5437		level++;
5438		sd = sd->parent;
5439		if (!sd)
5440			break;
5441	}
5442}
5443#else /* !CONFIG_SCHED_DEBUG */
5444# define sched_domain_debug(sd, cpu) do { } while (0)
5445static inline bool sched_debug(void)
5446{
5447	return false;
5448}
5449#endif /* CONFIG_SCHED_DEBUG */
5450
5451static int sd_degenerate(struct sched_domain *sd)
5452{
5453	if (cpumask_weight(sched_domain_span(sd)) == 1)
5454		return 1;
5455
5456	/* Following flags need at least 2 groups */
5457	if (sd->flags & (SD_LOAD_BALANCE |
5458			 SD_BALANCE_NEWIDLE |
5459			 SD_BALANCE_FORK |
5460			 SD_BALANCE_EXEC |
5461			 SD_SHARE_CPUCAPACITY |
5462			 SD_SHARE_PKG_RESOURCES |
5463			 SD_SHARE_POWERDOMAIN)) {
5464		if (sd->groups != sd->groups->next)
5465			return 0;
5466	}
5467
5468	/* Following flags don't use groups */
5469	if (sd->flags & (SD_WAKE_AFFINE))
5470		return 0;
5471
5472	return 1;
5473}
5474
5475static int
5476sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5477{
5478	unsigned long cflags = sd->flags, pflags = parent->flags;
5479
5480	if (sd_degenerate(parent))
5481		return 1;
5482
5483	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5484		return 0;
5485
5486	/* Flags needing groups don't count if only 1 group in parent */
5487	if (parent->groups == parent->groups->next) {
5488		pflags &= ~(SD_LOAD_BALANCE |
5489				SD_BALANCE_NEWIDLE |
5490				SD_BALANCE_FORK |
5491				SD_BALANCE_EXEC |
5492				SD_SHARE_CPUCAPACITY |
5493				SD_SHARE_PKG_RESOURCES |
5494				SD_PREFER_SIBLING |
5495				SD_SHARE_POWERDOMAIN);
5496		if (nr_node_ids == 1)
5497			pflags &= ~SD_SERIALIZE;
5498	}
5499	if (~cflags & pflags)
5500		return 0;
5501
5502	return 1;
5503}
5504
5505static void free_rootdomain(struct rcu_head *rcu)
5506{
5507	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5508
5509	cpupri_cleanup(&rd->cpupri);
5510	cpudl_cleanup(&rd->cpudl);
5511	free_cpumask_var(rd->dlo_mask);
5512	free_cpumask_var(rd->rto_mask);
5513	free_cpumask_var(rd->online);
5514	free_cpumask_var(rd->span);
5515	kfree(rd);
5516}
5517
5518static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5519{
5520	struct root_domain *old_rd = NULL;
5521	unsigned long flags;
5522
5523	raw_spin_lock_irqsave(&rq->lock, flags);
5524
5525	if (rq->rd) {
5526		old_rd = rq->rd;
5527
5528		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5529			set_rq_offline(rq);
5530
5531		cpumask_clear_cpu(rq->cpu, old_rd->span);
5532
5533		/*
5534		 * If we dont want to free the old_rd yet then
5535		 * set old_rd to NULL to skip the freeing later
5536		 * in this function:
5537		 */
5538		if (!atomic_dec_and_test(&old_rd->refcount))
5539			old_rd = NULL;
5540	}
5541
5542	atomic_inc(&rd->refcount);
5543	rq->rd = rd;
5544
5545	cpumask_set_cpu(rq->cpu, rd->span);
5546	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5547		set_rq_online(rq);
5548
5549	raw_spin_unlock_irqrestore(&rq->lock, flags);
5550
5551	if (old_rd)
5552		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5553}
5554
5555static int init_rootdomain(struct root_domain *rd)
5556{
5557	memset(rd, 0, sizeof(*rd));
5558
5559	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5560		goto out;
5561	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5562		goto free_span;
5563	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5564		goto free_online;
5565	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5566		goto free_dlo_mask;
5567
5568	init_dl_bw(&rd->dl_bw);
5569	if (cpudl_init(&rd->cpudl) != 0)
5570		goto free_dlo_mask;
5571
5572	if (cpupri_init(&rd->cpupri) != 0)
5573		goto free_rto_mask;
5574	return 0;
5575
5576free_rto_mask:
5577	free_cpumask_var(rd->rto_mask);
5578free_dlo_mask:
5579	free_cpumask_var(rd->dlo_mask);
5580free_online:
5581	free_cpumask_var(rd->online);
5582free_span:
5583	free_cpumask_var(rd->span);
5584out:
5585	return -ENOMEM;
5586}
5587
5588/*
5589 * By default the system creates a single root-domain with all cpus as
5590 * members (mimicking the global state we have today).
5591 */
5592struct root_domain def_root_domain;
5593
5594static void init_defrootdomain(void)
5595{
5596	init_rootdomain(&def_root_domain);
5597
5598	atomic_set(&def_root_domain.refcount, 1);
5599}
5600
5601static struct root_domain *alloc_rootdomain(void)
5602{
5603	struct root_domain *rd;
5604
5605	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5606	if (!rd)
5607		return NULL;
5608
5609	if (init_rootdomain(rd) != 0) {
5610		kfree(rd);
5611		return NULL;
5612	}
5613
5614	return rd;
5615}
5616
5617static void free_sched_groups(struct sched_group *sg, int free_sgc)
5618{
5619	struct sched_group *tmp, *first;
5620
5621	if (!sg)
5622		return;
5623
5624	first = sg;
5625	do {
5626		tmp = sg->next;
5627
5628		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5629			kfree(sg->sgc);
5630
5631		kfree(sg);
5632		sg = tmp;
5633	} while (sg != first);
5634}
5635
5636static void free_sched_domain(struct rcu_head *rcu)
5637{
5638	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5639
5640	/*
5641	 * If its an overlapping domain it has private groups, iterate and
5642	 * nuke them all.
5643	 */
5644	if (sd->flags & SD_OVERLAP) {
5645		free_sched_groups(sd->groups, 1);
5646	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5647		kfree(sd->groups->sgc);
5648		kfree(sd->groups);
5649	}
5650	kfree(sd);
5651}
5652
5653static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5654{
5655	call_rcu(&sd->rcu, free_sched_domain);
5656}
5657
5658static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5659{
5660	for (; sd; sd = sd->parent)
5661		destroy_sched_domain(sd, cpu);
5662}
5663
5664/*
5665 * Keep a special pointer to the highest sched_domain that has
5666 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5667 * allows us to avoid some pointer chasing select_idle_sibling().
5668 *
5669 * Also keep a unique ID per domain (we use the first cpu number in
5670 * the cpumask of the domain), this allows us to quickly tell if
5671 * two cpus are in the same cache domain, see cpus_share_cache().
5672 */
5673DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5674DEFINE_PER_CPU(int, sd_llc_size);
5675DEFINE_PER_CPU(int, sd_llc_id);
5676DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5677DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5678DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5679
5680static void update_top_cache_domain(int cpu)
5681{
5682	struct sched_domain *sd;
5683	struct sched_domain *busy_sd = NULL;
5684	int id = cpu;
5685	int size = 1;
5686
5687	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5688	if (sd) {
5689		id = cpumask_first(sched_domain_span(sd));
5690		size = cpumask_weight(sched_domain_span(sd));
5691		busy_sd = sd->parent; /* sd_busy */
5692	}
5693	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5694
5695	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5696	per_cpu(sd_llc_size, cpu) = size;
5697	per_cpu(sd_llc_id, cpu) = id;
5698
5699	sd = lowest_flag_domain(cpu, SD_NUMA);
5700	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5701
5702	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5703	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5704}
5705
5706/*
5707 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5708 * hold the hotplug lock.
5709 */
5710static void
5711cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5712{
5713	struct rq *rq = cpu_rq(cpu);
5714	struct sched_domain *tmp;
5715
5716	/* Remove the sched domains which do not contribute to scheduling. */
5717	for (tmp = sd; tmp; ) {
5718		struct sched_domain *parent = tmp->parent;
5719		if (!parent)
5720			break;
5721
5722		if (sd_parent_degenerate(tmp, parent)) {
5723			tmp->parent = parent->parent;
5724			if (parent->parent)
5725				parent->parent->child = tmp;
5726			/*
5727			 * Transfer SD_PREFER_SIBLING down in case of a
5728			 * degenerate parent; the spans match for this
5729			 * so the property transfers.
5730			 */
5731			if (parent->flags & SD_PREFER_SIBLING)
5732				tmp->flags |= SD_PREFER_SIBLING;
5733			destroy_sched_domain(parent, cpu);
5734		} else
5735			tmp = tmp->parent;
5736	}
5737
5738	if (sd && sd_degenerate(sd)) {
5739		tmp = sd;
5740		sd = sd->parent;
5741		destroy_sched_domain(tmp, cpu);
5742		if (sd)
5743			sd->child = NULL;
5744	}
5745
5746	sched_domain_debug(sd, cpu);
5747
5748	rq_attach_root(rq, rd);
5749	tmp = rq->sd;
5750	rcu_assign_pointer(rq->sd, sd);
5751	destroy_sched_domains(tmp, cpu);
5752
5753	update_top_cache_domain(cpu);
5754}
5755
5756/* cpus with isolated domains */
5757static cpumask_var_t cpu_isolated_map;
5758
5759/* Setup the mask of cpus configured for isolated domains */
5760static int __init isolated_cpu_setup(char *str)
5761{
5762	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5763	cpulist_parse(str, cpu_isolated_map);
5764	return 1;
5765}
5766
5767__setup("isolcpus=", isolated_cpu_setup);
5768
5769struct s_data {
5770	struct sched_domain ** __percpu sd;
5771	struct root_domain	*rd;
5772};
5773
5774enum s_alloc {
5775	sa_rootdomain,
5776	sa_sd,
5777	sa_sd_storage,
5778	sa_none,
5779};
5780
5781/*
5782 * Build an iteration mask that can exclude certain CPUs from the upwards
5783 * domain traversal.
5784 *
5785 * Asymmetric node setups can result in situations where the domain tree is of
5786 * unequal depth, make sure to skip domains that already cover the entire
5787 * range.
5788 *
5789 * In that case build_sched_domains() will have terminated the iteration early
5790 * and our sibling sd spans will be empty. Domains should always include the
5791 * cpu they're built on, so check that.
5792 *
5793 */
5794static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5795{
5796	const struct cpumask *span = sched_domain_span(sd);
5797	struct sd_data *sdd = sd->private;
5798	struct sched_domain *sibling;
5799	int i;
5800
5801	for_each_cpu(i, span) {
5802		sibling = *per_cpu_ptr(sdd->sd, i);
5803		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5804			continue;
5805
5806		cpumask_set_cpu(i, sched_group_mask(sg));
5807	}
5808}
5809
5810/*
5811 * Return the canonical balance cpu for this group, this is the first cpu
5812 * of this group that's also in the iteration mask.
5813 */
5814int group_balance_cpu(struct sched_group *sg)
5815{
5816	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5817}
5818
5819static int
5820build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5821{
5822	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5823	const struct cpumask *span = sched_domain_span(sd);
5824	struct cpumask *covered = sched_domains_tmpmask;
5825	struct sd_data *sdd = sd->private;
5826	struct sched_domain *sibling;
5827	int i;
5828
5829	cpumask_clear(covered);
5830
5831	for_each_cpu(i, span) {
5832		struct cpumask *sg_span;
5833
5834		if (cpumask_test_cpu(i, covered))
5835			continue;
5836
5837		sibling = *per_cpu_ptr(sdd->sd, i);
5838
5839		/* See the comment near build_group_mask(). */
5840		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5841			continue;
5842
5843		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5844				GFP_KERNEL, cpu_to_node(cpu));
5845
5846		if (!sg)
5847			goto fail;
5848
5849		sg_span = sched_group_cpus(sg);
5850		if (sibling->child)
5851			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5852		else
5853			cpumask_set_cpu(i, sg_span);
5854
5855		cpumask_or(covered, covered, sg_span);
5856
5857		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5858		if (atomic_inc_return(&sg->sgc->ref) == 1)
5859			build_group_mask(sd, sg);
5860
5861		/*
5862		 * Initialize sgc->capacity such that even if we mess up the
5863		 * domains and no possible iteration will get us here, we won't
5864		 * die on a /0 trap.
5865		 */
5866		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5867		sg->sgc->capacity_orig = sg->sgc->capacity;
5868
5869		/*
5870		 * Make sure the first group of this domain contains the
5871		 * canonical balance cpu. Otherwise the sched_domain iteration
5872		 * breaks. See update_sg_lb_stats().
5873		 */
5874		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5875		    group_balance_cpu(sg) == cpu)
5876			groups = sg;
5877
5878		if (!first)
5879			first = sg;
5880		if (last)
5881			last->next = sg;
5882		last = sg;
5883		last->next = first;
5884	}
5885	sd->groups = groups;
5886
5887	return 0;
5888
5889fail:
5890	free_sched_groups(first, 0);
5891
5892	return -ENOMEM;
5893}
5894
5895static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5896{
5897	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5898	struct sched_domain *child = sd->child;
5899
5900	if (child)
5901		cpu = cpumask_first(sched_domain_span(child));
5902
5903	if (sg) {
5904		*sg = *per_cpu_ptr(sdd->sg, cpu);
5905		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5906		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5907	}
5908
5909	return cpu;
5910}
5911
5912/*
5913 * build_sched_groups will build a circular linked list of the groups
5914 * covered by the given span, and will set each group's ->cpumask correctly,
5915 * and ->cpu_capacity to 0.
5916 *
5917 * Assumes the sched_domain tree is fully constructed
5918 */
5919static int
5920build_sched_groups(struct sched_domain *sd, int cpu)
5921{
5922	struct sched_group *first = NULL, *last = NULL;
5923	struct sd_data *sdd = sd->private;
5924	const struct cpumask *span = sched_domain_span(sd);
5925	struct cpumask *covered;
5926	int i;
5927
5928	get_group(cpu, sdd, &sd->groups);
5929	atomic_inc(&sd->groups->ref);
5930
5931	if (cpu != cpumask_first(span))
5932		return 0;
5933
5934	lockdep_assert_held(&sched_domains_mutex);
5935	covered = sched_domains_tmpmask;
5936
5937	cpumask_clear(covered);
5938
5939	for_each_cpu(i, span) {
5940		struct sched_group *sg;
5941		int group, j;
5942
5943		if (cpumask_test_cpu(i, covered))
5944			continue;
5945
5946		group = get_group(i, sdd, &sg);
5947		cpumask_setall(sched_group_mask(sg));
5948
5949		for_each_cpu(j, span) {
5950			if (get_group(j, sdd, NULL) != group)
5951				continue;
5952
5953			cpumask_set_cpu(j, covered);
5954			cpumask_set_cpu(j, sched_group_cpus(sg));
5955		}
5956
5957		if (!first)
5958			first = sg;
5959		if (last)
5960			last->next = sg;
5961		last = sg;
5962	}
5963	last->next = first;
5964
5965	return 0;
5966}
5967
5968/*
5969 * Initialize sched groups cpu_capacity.
5970 *
5971 * cpu_capacity indicates the capacity of sched group, which is used while
5972 * distributing the load between different sched groups in a sched domain.
5973 * Typically cpu_capacity for all the groups in a sched domain will be same
5974 * unless there are asymmetries in the topology. If there are asymmetries,
5975 * group having more cpu_capacity will pickup more load compared to the
5976 * group having less cpu_capacity.
5977 */
5978static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5979{
5980	struct sched_group *sg = sd->groups;
5981
5982	WARN_ON(!sg);
5983
5984	do {
5985		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5986		sg = sg->next;
5987	} while (sg != sd->groups);
5988
5989	if (cpu != group_balance_cpu(sg))
5990		return;
5991
5992	update_group_capacity(sd, cpu);
5993	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5994}
5995
5996/*
5997 * Initializers for schedule domains
5998 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5999 */
6000
6001static int default_relax_domain_level = -1;
6002int sched_domain_level_max;
6003
6004static int __init setup_relax_domain_level(char *str)
6005{
6006	if (kstrtoint(str, 0, &default_relax_domain_level))
6007		pr_warn("Unable to set relax_domain_level\n");
6008
6009	return 1;
6010}
6011__setup("relax_domain_level=", setup_relax_domain_level);
6012
6013static void set_domain_attribute(struct sched_domain *sd,
6014				 struct sched_domain_attr *attr)
6015{
6016	int request;
6017
6018	if (!attr || attr->relax_domain_level < 0) {
6019		if (default_relax_domain_level < 0)
6020			return;
6021		else
6022			request = default_relax_domain_level;
6023	} else
6024		request = attr->relax_domain_level;
6025	if (request < sd->level) {
6026		/* turn off idle balance on this domain */
6027		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6028	} else {
6029		/* turn on idle balance on this domain */
6030		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6031	}
6032}
6033
6034static void __sdt_free(const struct cpumask *cpu_map);
6035static int __sdt_alloc(const struct cpumask *cpu_map);
6036
6037static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6038				 const struct cpumask *cpu_map)
6039{
6040	switch (what) {
6041	case sa_rootdomain:
6042		if (!atomic_read(&d->rd->refcount))
6043			free_rootdomain(&d->rd->rcu); /* fall through */
6044	case sa_sd:
6045		free_percpu(d->sd); /* fall through */
6046	case sa_sd_storage:
6047		__sdt_free(cpu_map); /* fall through */
6048	case sa_none:
6049		break;
6050	}
6051}
6052
6053static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6054						   const struct cpumask *cpu_map)
6055{
6056	memset(d, 0, sizeof(*d));
6057
6058	if (__sdt_alloc(cpu_map))
6059		return sa_sd_storage;
6060	d->sd = alloc_percpu(struct sched_domain *);
6061	if (!d->sd)
6062		return sa_sd_storage;
6063	d->rd = alloc_rootdomain();
6064	if (!d->rd)
6065		return sa_sd;
6066	return sa_rootdomain;
6067}
6068
6069/*
6070 * NULL the sd_data elements we've used to build the sched_domain and
6071 * sched_group structure so that the subsequent __free_domain_allocs()
6072 * will not free the data we're using.
6073 */
6074static void claim_allocations(int cpu, struct sched_domain *sd)
6075{
6076	struct sd_data *sdd = sd->private;
6077
6078	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6079	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6080
6081	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6082		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6083
6084	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6085		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6086}
6087
6088#ifdef CONFIG_NUMA
6089static int sched_domains_numa_levels;
6090static int *sched_domains_numa_distance;
6091static struct cpumask ***sched_domains_numa_masks;
6092static int sched_domains_curr_level;
6093#endif
6094
6095/*
6096 * SD_flags allowed in topology descriptions.
6097 *
6098 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6099 * SD_SHARE_PKG_RESOURCES - describes shared caches
6100 * SD_NUMA                - describes NUMA topologies
6101 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6102 *
6103 * Odd one out:
6104 * SD_ASYM_PACKING        - describes SMT quirks
6105 */
6106#define TOPOLOGY_SD_FLAGS		\
6107	(SD_SHARE_CPUCAPACITY |		\
6108	 SD_SHARE_PKG_RESOURCES |	\
6109	 SD_NUMA |			\
6110	 SD_ASYM_PACKING |		\
6111	 SD_SHARE_POWERDOMAIN)
6112
6113static struct sched_domain *
6114sd_init(struct sched_domain_topology_level *tl, int cpu)
6115{
6116	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6117	int sd_weight, sd_flags = 0;
6118
6119#ifdef CONFIG_NUMA
6120	/*
6121	 * Ugly hack to pass state to sd_numa_mask()...
6122	 */
6123	sched_domains_curr_level = tl->numa_level;
6124#endif
6125
6126	sd_weight = cpumask_weight(tl->mask(cpu));
6127
6128	if (tl->sd_flags)
6129		sd_flags = (*tl->sd_flags)();
6130	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6131			"wrong sd_flags in topology description\n"))
6132		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6133
6134	*sd = (struct sched_domain){
6135		.min_interval		= sd_weight,
6136		.max_interval		= 2*sd_weight,
6137		.busy_factor		= 32,
6138		.imbalance_pct		= 125,
6139
6140		.cache_nice_tries	= 0,
6141		.busy_idx		= 0,
6142		.idle_idx		= 0,
6143		.newidle_idx		= 0,
6144		.wake_idx		= 0,
6145		.forkexec_idx		= 0,
6146
6147		.flags			= 1*SD_LOAD_BALANCE
6148					| 1*SD_BALANCE_NEWIDLE
6149					| 1*SD_BALANCE_EXEC
6150					| 1*SD_BALANCE_FORK
6151					| 0*SD_BALANCE_WAKE
6152					| 1*SD_WAKE_AFFINE
6153					| 0*SD_SHARE_CPUCAPACITY
6154					| 0*SD_SHARE_PKG_RESOURCES
6155					| 0*SD_SERIALIZE
6156					| 0*SD_PREFER_SIBLING
6157					| 0*SD_NUMA
6158					| sd_flags
6159					,
6160
6161		.last_balance		= jiffies,
6162		.balance_interval	= sd_weight,
6163		.smt_gain		= 0,
6164		.max_newidle_lb_cost	= 0,
6165		.next_decay_max_lb_cost	= jiffies,
6166#ifdef CONFIG_SCHED_DEBUG
6167		.name			= tl->name,
6168#endif
6169	};
6170
6171	/*
6172	 * Convert topological properties into behaviour.
6173	 */
6174
6175	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6176		sd->imbalance_pct = 110;
6177		sd->smt_gain = 1178; /* ~15% */
6178
6179	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6180		sd->imbalance_pct = 117;
6181		sd->cache_nice_tries = 1;
6182		sd->busy_idx = 2;
6183
6184#ifdef CONFIG_NUMA
6185	} else if (sd->flags & SD_NUMA) {
6186		sd->cache_nice_tries = 2;
6187		sd->busy_idx = 3;
6188		sd->idle_idx = 2;
6189
6190		sd->flags |= SD_SERIALIZE;
6191		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6192			sd->flags &= ~(SD_BALANCE_EXEC |
6193				       SD_BALANCE_FORK |
6194				       SD_WAKE_AFFINE);
6195		}
6196
6197#endif
6198	} else {
6199		sd->flags |= SD_PREFER_SIBLING;
6200		sd->cache_nice_tries = 1;
6201		sd->busy_idx = 2;
6202		sd->idle_idx = 1;
6203	}
6204
6205	sd->private = &tl->data;
6206
6207	return sd;
6208}
6209
6210/*
6211 * Topology list, bottom-up.
6212 */
6213static struct sched_domain_topology_level default_topology[] = {
6214#ifdef CONFIG_SCHED_SMT
6215	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6216#endif
6217#ifdef CONFIG_SCHED_MC
6218	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6219#endif
6220	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6221	{ NULL, },
6222};
6223
6224struct sched_domain_topology_level *sched_domain_topology = default_topology;
6225
6226#define for_each_sd_topology(tl)			\
6227	for (tl = sched_domain_topology; tl->mask; tl++)
6228
6229void set_sched_topology(struct sched_domain_topology_level *tl)
6230{
6231	sched_domain_topology = tl;
6232}
6233
6234#ifdef CONFIG_NUMA
6235
6236static const struct cpumask *sd_numa_mask(int cpu)
6237{
6238	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6239}
6240
6241static void sched_numa_warn(const char *str)
6242{
6243	static int done = false;
6244	int i,j;
6245
6246	if (done)
6247		return;
6248
6249	done = true;
6250
6251	printk(KERN_WARNING "ERROR: %s\n\n", str);
6252
6253	for (i = 0; i < nr_node_ids; i++) {
6254		printk(KERN_WARNING "  ");
6255		for (j = 0; j < nr_node_ids; j++)
6256			printk(KERN_CONT "%02d ", node_distance(i,j));
6257		printk(KERN_CONT "\n");
6258	}
6259	printk(KERN_WARNING "\n");
6260}
6261
6262static bool find_numa_distance(int distance)
6263{
6264	int i;
6265
6266	if (distance == node_distance(0, 0))
6267		return true;
6268
6269	for (i = 0; i < sched_domains_numa_levels; i++) {
6270		if (sched_domains_numa_distance[i] == distance)
6271			return true;
6272	}
6273
6274	return false;
6275}
6276
6277static void sched_init_numa(void)
6278{
6279	int next_distance, curr_distance = node_distance(0, 0);
6280	struct sched_domain_topology_level *tl;
6281	int level = 0;
6282	int i, j, k;
6283
6284	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6285	if (!sched_domains_numa_distance)
6286		return;
6287
6288	/*
6289	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6290	 * unique distances in the node_distance() table.
6291	 *
6292	 * Assumes node_distance(0,j) includes all distances in
6293	 * node_distance(i,j) in order to avoid cubic time.
6294	 */
6295	next_distance = curr_distance;
6296	for (i = 0; i < nr_node_ids; i++) {
6297		for (j = 0; j < nr_node_ids; j++) {
6298			for (k = 0; k < nr_node_ids; k++) {
6299				int distance = node_distance(i, k);
6300
6301				if (distance > curr_distance &&
6302				    (distance < next_distance ||
6303				     next_distance == curr_distance))
6304					next_distance = distance;
6305
6306				/*
6307				 * While not a strong assumption it would be nice to know
6308				 * about cases where if node A is connected to B, B is not
6309				 * equally connected to A.
6310				 */
6311				if (sched_debug() && node_distance(k, i) != distance)
6312					sched_numa_warn("Node-distance not symmetric");
6313
6314				if (sched_debug() && i && !find_numa_distance(distance))
6315					sched_numa_warn("Node-0 not representative");
6316			}
6317			if (next_distance != curr_distance) {
6318				sched_domains_numa_distance[level++] = next_distance;
6319				sched_domains_numa_levels = level;
6320				curr_distance = next_distance;
6321			} else break;
6322		}
6323
6324		/*
6325		 * In case of sched_debug() we verify the above assumption.
6326		 */
6327		if (!sched_debug())
6328			break;
6329	}
6330	/*
6331	 * 'level' contains the number of unique distances, excluding the
6332	 * identity distance node_distance(i,i).
6333	 *
6334	 * The sched_domains_numa_distance[] array includes the actual distance
6335	 * numbers.
6336	 */
6337
6338	/*
6339	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6340	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6341	 * the array will contain less then 'level' members. This could be
6342	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6343	 * in other functions.
6344	 *
6345	 * We reset it to 'level' at the end of this function.
6346	 */
6347	sched_domains_numa_levels = 0;
6348
6349	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6350	if (!sched_domains_numa_masks)
6351		return;
6352
6353	/*
6354	 * Now for each level, construct a mask per node which contains all
6355	 * cpus of nodes that are that many hops away from us.
6356	 */
6357	for (i = 0; i < level; i++) {
6358		sched_domains_numa_masks[i] =
6359			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6360		if (!sched_domains_numa_masks[i])
6361			return;
6362
6363		for (j = 0; j < nr_node_ids; j++) {
6364			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6365			if (!mask)
6366				return;
6367
6368			sched_domains_numa_masks[i][j] = mask;
6369
6370			for (k = 0; k < nr_node_ids; k++) {
6371				if (node_distance(j, k) > sched_domains_numa_distance[i])
6372					continue;
6373
6374				cpumask_or(mask, mask, cpumask_of_node(k));
6375			}
6376		}
6377	}
6378
6379	/* Compute default topology size */
6380	for (i = 0; sched_domain_topology[i].mask; i++);
6381
6382	tl = kzalloc((i + level + 1) *
6383			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6384	if (!tl)
6385		return;
6386
6387	/*
6388	 * Copy the default topology bits..
6389	 */
6390	for (i = 0; sched_domain_topology[i].mask; i++)
6391		tl[i] = sched_domain_topology[i];
6392
6393	/*
6394	 * .. and append 'j' levels of NUMA goodness.
6395	 */
6396	for (j = 0; j < level; i++, j++) {
6397		tl[i] = (struct sched_domain_topology_level){
6398			.mask = sd_numa_mask,
6399			.sd_flags = cpu_numa_flags,
6400			.flags = SDTL_OVERLAP,
6401			.numa_level = j,
6402			SD_INIT_NAME(NUMA)
6403		};
6404	}
6405
6406	sched_domain_topology = tl;
6407
6408	sched_domains_numa_levels = level;
6409}
6410
6411static void sched_domains_numa_masks_set(int cpu)
6412{
6413	int i, j;
6414	int node = cpu_to_node(cpu);
6415
6416	for (i = 0; i < sched_domains_numa_levels; i++) {
6417		for (j = 0; j < nr_node_ids; j++) {
6418			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6419				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6420		}
6421	}
6422}
6423
6424static void sched_domains_numa_masks_clear(int cpu)
6425{
6426	int i, j;
6427	for (i = 0; i < sched_domains_numa_levels; i++) {
6428		for (j = 0; j < nr_node_ids; j++)
6429			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6430	}
6431}
6432
6433/*
6434 * Update sched_domains_numa_masks[level][node] array when new cpus
6435 * are onlined.
6436 */
6437static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6438					   unsigned long action,
6439					   void *hcpu)
6440{
6441	int cpu = (long)hcpu;
6442
6443	switch (action & ~CPU_TASKS_FROZEN) {
6444	case CPU_ONLINE:
6445		sched_domains_numa_masks_set(cpu);
6446		break;
6447
6448	case CPU_DEAD:
6449		sched_domains_numa_masks_clear(cpu);
6450		break;
6451
6452	default:
6453		return NOTIFY_DONE;
6454	}
6455
6456	return NOTIFY_OK;
6457}
6458#else
6459static inline void sched_init_numa(void)
6460{
6461}
6462
6463static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6464					   unsigned long action,
6465					   void *hcpu)
6466{
6467	return 0;
6468}
6469#endif /* CONFIG_NUMA */
6470
6471static int __sdt_alloc(const struct cpumask *cpu_map)
6472{
6473	struct sched_domain_topology_level *tl;
6474	int j;
6475
6476	for_each_sd_topology(tl) {
6477		struct sd_data *sdd = &tl->data;
6478
6479		sdd->sd = alloc_percpu(struct sched_domain *);
6480		if (!sdd->sd)
6481			return -ENOMEM;
6482
6483		sdd->sg = alloc_percpu(struct sched_group *);
6484		if (!sdd->sg)
6485			return -ENOMEM;
6486
6487		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6488		if (!sdd->sgc)
6489			return -ENOMEM;
6490
6491		for_each_cpu(j, cpu_map) {
6492			struct sched_domain *sd;
6493			struct sched_group *sg;
6494			struct sched_group_capacity *sgc;
6495
6496		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6497					GFP_KERNEL, cpu_to_node(j));
6498			if (!sd)
6499				return -ENOMEM;
6500
6501			*per_cpu_ptr(sdd->sd, j) = sd;
6502
6503			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504					GFP_KERNEL, cpu_to_node(j));
6505			if (!sg)
6506				return -ENOMEM;
6507
6508			sg->next = sg;
6509
6510			*per_cpu_ptr(sdd->sg, j) = sg;
6511
6512			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6513					GFP_KERNEL, cpu_to_node(j));
6514			if (!sgc)
6515				return -ENOMEM;
6516
6517			*per_cpu_ptr(sdd->sgc, j) = sgc;
6518		}
6519	}
6520
6521	return 0;
6522}
6523
6524static void __sdt_free(const struct cpumask *cpu_map)
6525{
6526	struct sched_domain_topology_level *tl;
6527	int j;
6528
6529	for_each_sd_topology(tl) {
6530		struct sd_data *sdd = &tl->data;
6531
6532		for_each_cpu(j, cpu_map) {
6533			struct sched_domain *sd;
6534
6535			if (sdd->sd) {
6536				sd = *per_cpu_ptr(sdd->sd, j);
6537				if (sd && (sd->flags & SD_OVERLAP))
6538					free_sched_groups(sd->groups, 0);
6539				kfree(*per_cpu_ptr(sdd->sd, j));
6540			}
6541
6542			if (sdd->sg)
6543				kfree(*per_cpu_ptr(sdd->sg, j));
6544			if (sdd->sgc)
6545				kfree(*per_cpu_ptr(sdd->sgc, j));
6546		}
6547		free_percpu(sdd->sd);
6548		sdd->sd = NULL;
6549		free_percpu(sdd->sg);
6550		sdd->sg = NULL;
6551		free_percpu(sdd->sgc);
6552		sdd->sgc = NULL;
6553	}
6554}
6555
6556struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6557		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6558		struct sched_domain *child, int cpu)
6559{
6560	struct sched_domain *sd = sd_init(tl, cpu);
6561	if (!sd)
6562		return child;
6563
6564	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6565	if (child) {
6566		sd->level = child->level + 1;
6567		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6568		child->parent = sd;
6569		sd->child = child;
6570
6571		if (!cpumask_subset(sched_domain_span(child),
6572				    sched_domain_span(sd))) {
6573			pr_err("BUG: arch topology borken\n");
6574#ifdef CONFIG_SCHED_DEBUG
6575			pr_err("     the %s domain not a subset of the %s domain\n",
6576					child->name, sd->name);
6577#endif
6578			/* Fixup, ensure @sd has at least @child cpus. */
6579			cpumask_or(sched_domain_span(sd),
6580				   sched_domain_span(sd),
6581				   sched_domain_span(child));
6582		}
6583
6584	}
6585	set_domain_attribute(sd, attr);
6586
6587	return sd;
6588}
6589
6590/*
6591 * Build sched domains for a given set of cpus and attach the sched domains
6592 * to the individual cpus
6593 */
6594static int build_sched_domains(const struct cpumask *cpu_map,
6595			       struct sched_domain_attr *attr)
6596{
6597	enum s_alloc alloc_state;
6598	struct sched_domain *sd;
6599	struct s_data d;
6600	int i, ret = -ENOMEM;
6601
6602	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6603	if (alloc_state != sa_rootdomain)
6604		goto error;
6605
6606	/* Set up domains for cpus specified by the cpu_map. */
6607	for_each_cpu(i, cpu_map) {
6608		struct sched_domain_topology_level *tl;
6609
6610		sd = NULL;
6611		for_each_sd_topology(tl) {
6612			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6613			if (tl == sched_domain_topology)
6614				*per_cpu_ptr(d.sd, i) = sd;
6615			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6616				sd->flags |= SD_OVERLAP;
6617			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6618				break;
6619		}
6620	}
6621
6622	/* Build the groups for the domains */
6623	for_each_cpu(i, cpu_map) {
6624		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6625			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6626			if (sd->flags & SD_OVERLAP) {
6627				if (build_overlap_sched_groups(sd, i))
6628					goto error;
6629			} else {
6630				if (build_sched_groups(sd, i))
6631					goto error;
6632			}
6633		}
6634	}
6635
6636	/* Calculate CPU capacity for physical packages and nodes */
6637	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6638		if (!cpumask_test_cpu(i, cpu_map))
6639			continue;
6640
6641		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6642			claim_allocations(i, sd);
6643			init_sched_groups_capacity(i, sd);
6644		}
6645	}
6646
6647	/* Attach the domains */
6648	rcu_read_lock();
6649	for_each_cpu(i, cpu_map) {
6650		sd = *per_cpu_ptr(d.sd, i);
6651		cpu_attach_domain(sd, d.rd, i);
6652	}
6653	rcu_read_unlock();
6654
6655	ret = 0;
6656error:
6657	__free_domain_allocs(&d, alloc_state, cpu_map);
6658	return ret;
6659}
6660
6661static cpumask_var_t *doms_cur;	/* current sched domains */
6662static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6663static struct sched_domain_attr *dattr_cur;
6664				/* attribues of custom domains in 'doms_cur' */
6665
6666/*
6667 * Special case: If a kmalloc of a doms_cur partition (array of
6668 * cpumask) fails, then fallback to a single sched domain,
6669 * as determined by the single cpumask fallback_doms.
6670 */
6671static cpumask_var_t fallback_doms;
6672
6673/*
6674 * arch_update_cpu_topology lets virtualized architectures update the
6675 * cpu core maps. It is supposed to return 1 if the topology changed
6676 * or 0 if it stayed the same.
6677 */
6678int __weak arch_update_cpu_topology(void)
6679{
6680	return 0;
6681}
6682
6683cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6684{
6685	int i;
6686	cpumask_var_t *doms;
6687
6688	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6689	if (!doms)
6690		return NULL;
6691	for (i = 0; i < ndoms; i++) {
6692		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6693			free_sched_domains(doms, i);
6694			return NULL;
6695		}
6696	}
6697	return doms;
6698}
6699
6700void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6701{
6702	unsigned int i;
6703	for (i = 0; i < ndoms; i++)
6704		free_cpumask_var(doms[i]);
6705	kfree(doms);
6706}
6707
6708/*
6709 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6710 * For now this just excludes isolated cpus, but could be used to
6711 * exclude other special cases in the future.
6712 */
6713static int init_sched_domains(const struct cpumask *cpu_map)
6714{
6715	int err;
6716
6717	arch_update_cpu_topology();
6718	ndoms_cur = 1;
6719	doms_cur = alloc_sched_domains(ndoms_cur);
6720	if (!doms_cur)
6721		doms_cur = &fallback_doms;
6722	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6723	err = build_sched_domains(doms_cur[0], NULL);
6724	register_sched_domain_sysctl();
6725
6726	return err;
6727}
6728
6729/*
6730 * Detach sched domains from a group of cpus specified in cpu_map
6731 * These cpus will now be attached to the NULL domain
6732 */
6733static void detach_destroy_domains(const struct cpumask *cpu_map)
6734{
6735	int i;
6736
6737	rcu_read_lock();
6738	for_each_cpu(i, cpu_map)
6739		cpu_attach_domain(NULL, &def_root_domain, i);
6740	rcu_read_unlock();
6741}
6742
6743/* handle null as "default" */
6744static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6745			struct sched_domain_attr *new, int idx_new)
6746{
6747	struct sched_domain_attr tmp;
6748
6749	/* fast path */
6750	if (!new && !cur)
6751		return 1;
6752
6753	tmp = SD_ATTR_INIT;
6754	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6755			new ? (new + idx_new) : &tmp,
6756			sizeof(struct sched_domain_attr));
6757}
6758
6759/*
6760 * Partition sched domains as specified by the 'ndoms_new'
6761 * cpumasks in the array doms_new[] of cpumasks. This compares
6762 * doms_new[] to the current sched domain partitioning, doms_cur[].
6763 * It destroys each deleted domain and builds each new domain.
6764 *
6765 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6766 * The masks don't intersect (don't overlap.) We should setup one
6767 * sched domain for each mask. CPUs not in any of the cpumasks will
6768 * not be load balanced. If the same cpumask appears both in the
6769 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6770 * it as it is.
6771 *
6772 * The passed in 'doms_new' should be allocated using
6773 * alloc_sched_domains.  This routine takes ownership of it and will
6774 * free_sched_domains it when done with it. If the caller failed the
6775 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6776 * and partition_sched_domains() will fallback to the single partition
6777 * 'fallback_doms', it also forces the domains to be rebuilt.
6778 *
6779 * If doms_new == NULL it will be replaced with cpu_online_mask.
6780 * ndoms_new == 0 is a special case for destroying existing domains,
6781 * and it will not create the default domain.
6782 *
6783 * Call with hotplug lock held
6784 */
6785void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6786			     struct sched_domain_attr *dattr_new)
6787{
6788	int i, j, n;
6789	int new_topology;
6790
6791	mutex_lock(&sched_domains_mutex);
6792
6793	/* always unregister in case we don't destroy any domains */
6794	unregister_sched_domain_sysctl();
6795
6796	/* Let architecture update cpu core mappings. */
6797	new_topology = arch_update_cpu_topology();
6798
6799	n = doms_new ? ndoms_new : 0;
6800
6801	/* Destroy deleted domains */
6802	for (i = 0; i < ndoms_cur; i++) {
6803		for (j = 0; j < n && !new_topology; j++) {
6804			if (cpumask_equal(doms_cur[i], doms_new[j])
6805			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6806				goto match1;
6807		}
6808		/* no match - a current sched domain not in new doms_new[] */
6809		detach_destroy_domains(doms_cur[i]);
6810match1:
6811		;
6812	}
6813
6814	n = ndoms_cur;
6815	if (doms_new == NULL) {
6816		n = 0;
6817		doms_new = &fallback_doms;
6818		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6819		WARN_ON_ONCE(dattr_new);
6820	}
6821
6822	/* Build new domains */
6823	for (i = 0; i < ndoms_new; i++) {
6824		for (j = 0; j < n && !new_topology; j++) {
6825			if (cpumask_equal(doms_new[i], doms_cur[j])
6826			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6827				goto match2;
6828		}
6829		/* no match - add a new doms_new */
6830		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6831match2:
6832		;
6833	}
6834
6835	/* Remember the new sched domains */
6836	if (doms_cur != &fallback_doms)
6837		free_sched_domains(doms_cur, ndoms_cur);
6838	kfree(dattr_cur);	/* kfree(NULL) is safe */
6839	doms_cur = doms_new;
6840	dattr_cur = dattr_new;
6841	ndoms_cur = ndoms_new;
6842
6843	register_sched_domain_sysctl();
6844
6845	mutex_unlock(&sched_domains_mutex);
6846}
6847
6848static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6849
6850/*
6851 * Update cpusets according to cpu_active mask.  If cpusets are
6852 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6853 * around partition_sched_domains().
6854 *
6855 * If we come here as part of a suspend/resume, don't touch cpusets because we
6856 * want to restore it back to its original state upon resume anyway.
6857 */
6858static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6859			     void *hcpu)
6860{
6861	switch (action) {
6862	case CPU_ONLINE_FROZEN:
6863	case CPU_DOWN_FAILED_FROZEN:
6864
6865		/*
6866		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6867		 * resume sequence. As long as this is not the last online
6868		 * operation in the resume sequence, just build a single sched
6869		 * domain, ignoring cpusets.
6870		 */
6871		num_cpus_frozen--;
6872		if (likely(num_cpus_frozen)) {
6873			partition_sched_domains(1, NULL, NULL);
6874			break;
6875		}
6876
6877		/*
6878		 * This is the last CPU online operation. So fall through and
6879		 * restore the original sched domains by considering the
6880		 * cpuset configurations.
6881		 */
6882
6883	case CPU_ONLINE:
6884	case CPU_DOWN_FAILED:
6885		cpuset_update_active_cpus(true);
6886		break;
6887	default:
6888		return NOTIFY_DONE;
6889	}
6890	return NOTIFY_OK;
6891}
6892
6893static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6894			       void *hcpu)
6895{
6896	switch (action) {
6897	case CPU_DOWN_PREPARE:
6898		cpuset_update_active_cpus(false);
6899		break;
6900	case CPU_DOWN_PREPARE_FROZEN:
6901		num_cpus_frozen++;
6902		partition_sched_domains(1, NULL, NULL);
6903		break;
6904	default:
6905		return NOTIFY_DONE;
6906	}
6907	return NOTIFY_OK;
6908}
6909
6910void __init sched_init_smp(void)
6911{
6912	cpumask_var_t non_isolated_cpus;
6913
6914	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6915	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6916
6917	sched_init_numa();
6918
6919	/*
6920	 * There's no userspace yet to cause hotplug operations; hence all the
6921	 * cpu masks are stable and all blatant races in the below code cannot
6922	 * happen.
6923	 */
6924	mutex_lock(&sched_domains_mutex);
6925	init_sched_domains(cpu_active_mask);
6926	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6927	if (cpumask_empty(non_isolated_cpus))
6928		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6929	mutex_unlock(&sched_domains_mutex);
6930
6931	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6932	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6933	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6934
6935	init_hrtick();
6936
6937	/* Move init over to a non-isolated CPU */
6938	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6939		BUG();
6940	sched_init_granularity();
6941	free_cpumask_var(non_isolated_cpus);
6942
6943	init_sched_rt_class();
6944	init_sched_dl_class();
6945}
6946#else
6947void __init sched_init_smp(void)
6948{
6949	sched_init_granularity();
6950}
6951#endif /* CONFIG_SMP */
6952
6953const_debug unsigned int sysctl_timer_migration = 1;
6954
6955int in_sched_functions(unsigned long addr)
6956{
6957	return in_lock_functions(addr) ||
6958		(addr >= (unsigned long)__sched_text_start
6959		&& addr < (unsigned long)__sched_text_end);
6960}
6961
6962#ifdef CONFIG_CGROUP_SCHED
6963/*
6964 * Default task group.
6965 * Every task in system belongs to this group at bootup.
6966 */
6967struct task_group root_task_group;
6968LIST_HEAD(task_groups);
6969#endif
6970
6971DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6972
6973void __init sched_init(void)
6974{
6975	int i, j;
6976	unsigned long alloc_size = 0, ptr;
6977
6978#ifdef CONFIG_FAIR_GROUP_SCHED
6979	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6980#endif
6981#ifdef CONFIG_RT_GROUP_SCHED
6982	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6983#endif
6984#ifdef CONFIG_CPUMASK_OFFSTACK
6985	alloc_size += num_possible_cpus() * cpumask_size();
6986#endif
6987	if (alloc_size) {
6988		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6989
6990#ifdef CONFIG_FAIR_GROUP_SCHED
6991		root_task_group.se = (struct sched_entity **)ptr;
6992		ptr += nr_cpu_ids * sizeof(void **);
6993
6994		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6995		ptr += nr_cpu_ids * sizeof(void **);
6996
6997#endif /* CONFIG_FAIR_GROUP_SCHED */
6998#ifdef CONFIG_RT_GROUP_SCHED
6999		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7000		ptr += nr_cpu_ids * sizeof(void **);
7001
7002		root_task_group.rt_rq = (struct rt_rq **)ptr;
7003		ptr += nr_cpu_ids * sizeof(void **);
7004
7005#endif /* CONFIG_RT_GROUP_SCHED */
7006#ifdef CONFIG_CPUMASK_OFFSTACK
7007		for_each_possible_cpu(i) {
7008			per_cpu(load_balance_mask, i) = (void *)ptr;
7009			ptr += cpumask_size();
7010		}
7011#endif /* CONFIG_CPUMASK_OFFSTACK */
7012	}
7013
7014	init_rt_bandwidth(&def_rt_bandwidth,
7015			global_rt_period(), global_rt_runtime());
7016	init_dl_bandwidth(&def_dl_bandwidth,
7017			global_rt_period(), global_rt_runtime());
7018
7019#ifdef CONFIG_SMP
7020	init_defrootdomain();
7021#endif
7022
7023#ifdef CONFIG_RT_GROUP_SCHED
7024	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7025			global_rt_period(), global_rt_runtime());
7026#endif /* CONFIG_RT_GROUP_SCHED */
7027
7028#ifdef CONFIG_CGROUP_SCHED
7029	list_add(&root_task_group.list, &task_groups);
7030	INIT_LIST_HEAD(&root_task_group.children);
7031	INIT_LIST_HEAD(&root_task_group.siblings);
7032	autogroup_init(&init_task);
7033
7034#endif /* CONFIG_CGROUP_SCHED */
7035
7036	for_each_possible_cpu(i) {
7037		struct rq *rq;
7038
7039		rq = cpu_rq(i);
7040		raw_spin_lock_init(&rq->lock);
7041		rq->nr_running = 0;
7042		rq->calc_load_active = 0;
7043		rq->calc_load_update = jiffies + LOAD_FREQ;
7044		init_cfs_rq(&rq->cfs);
7045		init_rt_rq(&rq->rt, rq);
7046		init_dl_rq(&rq->dl, rq);
7047#ifdef CONFIG_FAIR_GROUP_SCHED
7048		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7049		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7050		/*
7051		 * How much cpu bandwidth does root_task_group get?
7052		 *
7053		 * In case of task-groups formed thr' the cgroup filesystem, it
7054		 * gets 100% of the cpu resources in the system. This overall
7055		 * system cpu resource is divided among the tasks of
7056		 * root_task_group and its child task-groups in a fair manner,
7057		 * based on each entity's (task or task-group's) weight
7058		 * (se->load.weight).
7059		 *
7060		 * In other words, if root_task_group has 10 tasks of weight
7061		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7062		 * then A0's share of the cpu resource is:
7063		 *
7064		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7065		 *
7066		 * We achieve this by letting root_task_group's tasks sit
7067		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7068		 */
7069		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7070		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7071#endif /* CONFIG_FAIR_GROUP_SCHED */
7072
7073		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7074#ifdef CONFIG_RT_GROUP_SCHED
7075		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7076#endif
7077
7078		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7079			rq->cpu_load[j] = 0;
7080
7081		rq->last_load_update_tick = jiffies;
7082
7083#ifdef CONFIG_SMP
7084		rq->sd = NULL;
7085		rq->rd = NULL;
7086		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7087		rq->post_schedule = 0;
7088		rq->active_balance = 0;
7089		rq->next_balance = jiffies;
7090		rq->push_cpu = 0;
7091		rq->cpu = i;
7092		rq->online = 0;
7093		rq->idle_stamp = 0;
7094		rq->avg_idle = 2*sysctl_sched_migration_cost;
7095		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7096
7097		INIT_LIST_HEAD(&rq->cfs_tasks);
7098
7099		rq_attach_root(rq, &def_root_domain);
7100#ifdef CONFIG_NO_HZ_COMMON
7101		rq->nohz_flags = 0;
7102#endif
7103#ifdef CONFIG_NO_HZ_FULL
7104		rq->last_sched_tick = 0;
7105#endif
7106#endif
7107		init_rq_hrtick(rq);
7108		atomic_set(&rq->nr_iowait, 0);
7109	}
7110
7111	set_load_weight(&init_task);
7112
7113#ifdef CONFIG_PREEMPT_NOTIFIERS
7114	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7115#endif
7116
7117	/*
7118	 * The boot idle thread does lazy MMU switching as well:
7119	 */
7120	atomic_inc(&init_mm.mm_count);
7121	enter_lazy_tlb(&init_mm, current);
7122
7123	/*
7124	 * Make us the idle thread. Technically, schedule() should not be
7125	 * called from this thread, however somewhere below it might be,
7126	 * but because we are the idle thread, we just pick up running again
7127	 * when this runqueue becomes "idle".
7128	 */
7129	init_idle(current, smp_processor_id());
7130
7131	calc_load_update = jiffies + LOAD_FREQ;
7132
7133	/*
7134	 * During early bootup we pretend to be a normal task:
7135	 */
7136	current->sched_class = &fair_sched_class;
7137
7138#ifdef CONFIG_SMP
7139	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7140	/* May be allocated at isolcpus cmdline parse time */
7141	if (cpu_isolated_map == NULL)
7142		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7143	idle_thread_set_boot_cpu();
7144	set_cpu_rq_start_time();
7145#endif
7146	init_sched_fair_class();
7147
7148	scheduler_running = 1;
7149}
7150
7151#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7152static inline int preempt_count_equals(int preempt_offset)
7153{
7154	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7155
7156	return (nested == preempt_offset);
7157}
7158
7159void __might_sleep(const char *file, int line, int preempt_offset)
7160{
7161	static unsigned long prev_jiffy;	/* ratelimiting */
7162
7163	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7164	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7165	     !is_idle_task(current)) ||
7166	    system_state != SYSTEM_RUNNING || oops_in_progress)
7167		return;
7168	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7169		return;
7170	prev_jiffy = jiffies;
7171
7172	printk(KERN_ERR
7173		"BUG: sleeping function called from invalid context at %s:%d\n",
7174			file, line);
7175	printk(KERN_ERR
7176		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7177			in_atomic(), irqs_disabled(),
7178			current->pid, current->comm);
7179
7180	debug_show_held_locks(current);
7181	if (irqs_disabled())
7182		print_irqtrace_events(current);
7183#ifdef CONFIG_DEBUG_PREEMPT
7184	if (!preempt_count_equals(preempt_offset)) {
7185		pr_err("Preemption disabled at:");
7186		print_ip_sym(current->preempt_disable_ip);
7187		pr_cont("\n");
7188	}
7189#endif
7190	dump_stack();
7191}
7192EXPORT_SYMBOL(__might_sleep);
7193#endif
7194
7195#ifdef CONFIG_MAGIC_SYSRQ
7196static void normalize_task(struct rq *rq, struct task_struct *p)
7197{
7198	const struct sched_class *prev_class = p->sched_class;
7199	struct sched_attr attr = {
7200		.sched_policy = SCHED_NORMAL,
7201	};
7202	int old_prio = p->prio;
7203	int queued;
7204
7205	queued = task_on_rq_queued(p);
7206	if (queued)
7207		dequeue_task(rq, p, 0);
7208	__setscheduler(rq, p, &attr);
7209	if (queued) {
7210		enqueue_task(rq, p, 0);
7211		resched_curr(rq);
7212	}
7213
7214	check_class_changed(rq, p, prev_class, old_prio);
7215}
7216
7217void normalize_rt_tasks(void)
7218{
7219	struct task_struct *g, *p;
7220	unsigned long flags;
7221	struct rq *rq;
7222
7223	read_lock(&tasklist_lock);
7224	for_each_process_thread(g, p) {
7225		/*
7226		 * Only normalize user tasks:
7227		 */
7228		if (p->flags & PF_KTHREAD)
7229			continue;
7230
7231		p->se.exec_start		= 0;
7232#ifdef CONFIG_SCHEDSTATS
7233		p->se.statistics.wait_start	= 0;
7234		p->se.statistics.sleep_start	= 0;
7235		p->se.statistics.block_start	= 0;
7236#endif
7237
7238		if (!dl_task(p) && !rt_task(p)) {
7239			/*
7240			 * Renice negative nice level userspace
7241			 * tasks back to 0:
7242			 */
7243			if (task_nice(p) < 0)
7244				set_user_nice(p, 0);
7245			continue;
7246		}
7247
7248		rq = task_rq_lock(p, &flags);
7249		normalize_task(rq, p);
7250		task_rq_unlock(rq, p, &flags);
7251	}
7252	read_unlock(&tasklist_lock);
7253}
7254
7255#endif /* CONFIG_MAGIC_SYSRQ */
7256
7257#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7258/*
7259 * These functions are only useful for the IA64 MCA handling, or kdb.
7260 *
7261 * They can only be called when the whole system has been
7262 * stopped - every CPU needs to be quiescent, and no scheduling
7263 * activity can take place. Using them for anything else would
7264 * be a serious bug, and as a result, they aren't even visible
7265 * under any other configuration.
7266 */
7267
7268/**
7269 * curr_task - return the current task for a given cpu.
7270 * @cpu: the processor in question.
7271 *
7272 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7273 *
7274 * Return: The current task for @cpu.
7275 */
7276struct task_struct *curr_task(int cpu)
7277{
7278	return cpu_curr(cpu);
7279}
7280
7281#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7282
7283#ifdef CONFIG_IA64
7284/**
7285 * set_curr_task - set the current task for a given cpu.
7286 * @cpu: the processor in question.
7287 * @p: the task pointer to set.
7288 *
7289 * Description: This function must only be used when non-maskable interrupts
7290 * are serviced on a separate stack. It allows the architecture to switch the
7291 * notion of the current task on a cpu in a non-blocking manner. This function
7292 * must be called with all CPU's synchronized, and interrupts disabled, the
7293 * and caller must save the original value of the current task (see
7294 * curr_task() above) and restore that value before reenabling interrupts and
7295 * re-starting the system.
7296 *
7297 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7298 */
7299void set_curr_task(int cpu, struct task_struct *p)
7300{
7301	cpu_curr(cpu) = p;
7302}
7303
7304#endif
7305
7306#ifdef CONFIG_CGROUP_SCHED
7307/* task_group_lock serializes the addition/removal of task groups */
7308static DEFINE_SPINLOCK(task_group_lock);
7309
7310static void free_sched_group(struct task_group *tg)
7311{
7312	free_fair_sched_group(tg);
7313	free_rt_sched_group(tg);
7314	autogroup_free(tg);
7315	kfree(tg);
7316}
7317
7318/* allocate runqueue etc for a new task group */
7319struct task_group *sched_create_group(struct task_group *parent)
7320{
7321	struct task_group *tg;
7322
7323	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7324	if (!tg)
7325		return ERR_PTR(-ENOMEM);
7326
7327	if (!alloc_fair_sched_group(tg, parent))
7328		goto err;
7329
7330	if (!alloc_rt_sched_group(tg, parent))
7331		goto err;
7332
7333	return tg;
7334
7335err:
7336	free_sched_group(tg);
7337	return ERR_PTR(-ENOMEM);
7338}
7339
7340void sched_online_group(struct task_group *tg, struct task_group *parent)
7341{
7342	unsigned long flags;
7343
7344	spin_lock_irqsave(&task_group_lock, flags);
7345	list_add_rcu(&tg->list, &task_groups);
7346
7347	WARN_ON(!parent); /* root should already exist */
7348
7349	tg->parent = parent;
7350	INIT_LIST_HEAD(&tg->children);
7351	list_add_rcu(&tg->siblings, &parent->children);
7352	spin_unlock_irqrestore(&task_group_lock, flags);
7353}
7354
7355/* rcu callback to free various structures associated with a task group */
7356static void free_sched_group_rcu(struct rcu_head *rhp)
7357{
7358	/* now it should be safe to free those cfs_rqs */
7359	free_sched_group(container_of(rhp, struct task_group, rcu));
7360}
7361
7362/* Destroy runqueue etc associated with a task group */
7363void sched_destroy_group(struct task_group *tg)
7364{
7365	/* wait for possible concurrent references to cfs_rqs complete */
7366	call_rcu(&tg->rcu, free_sched_group_rcu);
7367}
7368
7369void sched_offline_group(struct task_group *tg)
7370{
7371	unsigned long flags;
7372	int i;
7373
7374	/* end participation in shares distribution */
7375	for_each_possible_cpu(i)
7376		unregister_fair_sched_group(tg, i);
7377
7378	spin_lock_irqsave(&task_group_lock, flags);
7379	list_del_rcu(&tg->list);
7380	list_del_rcu(&tg->siblings);
7381	spin_unlock_irqrestore(&task_group_lock, flags);
7382}
7383
7384/* change task's runqueue when it moves between groups.
7385 *	The caller of this function should have put the task in its new group
7386 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7387 *	reflect its new group.
7388 */
7389void sched_move_task(struct task_struct *tsk)
7390{
7391	struct task_group *tg;
7392	int queued, running;
7393	unsigned long flags;
7394	struct rq *rq;
7395
7396	rq = task_rq_lock(tsk, &flags);
7397
7398	running = task_current(rq, tsk);
7399	queued = task_on_rq_queued(tsk);
7400
7401	if (queued)
7402		dequeue_task(rq, tsk, 0);
7403	if (unlikely(running))
7404		put_prev_task(rq, tsk);
7405
7406	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7407				lockdep_is_held(&tsk->sighand->siglock)),
7408			  struct task_group, css);
7409	tg = autogroup_task_group(tsk, tg);
7410	tsk->sched_task_group = tg;
7411
7412#ifdef CONFIG_FAIR_GROUP_SCHED
7413	if (tsk->sched_class->task_move_group)
7414		tsk->sched_class->task_move_group(tsk, queued);
7415	else
7416#endif
7417		set_task_rq(tsk, task_cpu(tsk));
7418
7419	if (unlikely(running))
7420		tsk->sched_class->set_curr_task(rq);
7421	if (queued)
7422		enqueue_task(rq, tsk, 0);
7423
7424	task_rq_unlock(rq, tsk, &flags);
7425}
7426#endif /* CONFIG_CGROUP_SCHED */
7427
7428#ifdef CONFIG_RT_GROUP_SCHED
7429/*
7430 * Ensure that the real time constraints are schedulable.
7431 */
7432static DEFINE_MUTEX(rt_constraints_mutex);
7433
7434/* Must be called with tasklist_lock held */
7435static inline int tg_has_rt_tasks(struct task_group *tg)
7436{
7437	struct task_struct *g, *p;
7438
7439	for_each_process_thread(g, p) {
7440		if (rt_task(p) && task_group(p) == tg)
7441			return 1;
7442	}
7443
7444	return 0;
7445}
7446
7447struct rt_schedulable_data {
7448	struct task_group *tg;
7449	u64 rt_period;
7450	u64 rt_runtime;
7451};
7452
7453static int tg_rt_schedulable(struct task_group *tg, void *data)
7454{
7455	struct rt_schedulable_data *d = data;
7456	struct task_group *child;
7457	unsigned long total, sum = 0;
7458	u64 period, runtime;
7459
7460	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7461	runtime = tg->rt_bandwidth.rt_runtime;
7462
7463	if (tg == d->tg) {
7464		period = d->rt_period;
7465		runtime = d->rt_runtime;
7466	}
7467
7468	/*
7469	 * Cannot have more runtime than the period.
7470	 */
7471	if (runtime > period && runtime != RUNTIME_INF)
7472		return -EINVAL;
7473
7474	/*
7475	 * Ensure we don't starve existing RT tasks.
7476	 */
7477	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7478		return -EBUSY;
7479
7480	total = to_ratio(period, runtime);
7481
7482	/*
7483	 * Nobody can have more than the global setting allows.
7484	 */
7485	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7486		return -EINVAL;
7487
7488	/*
7489	 * The sum of our children's runtime should not exceed our own.
7490	 */
7491	list_for_each_entry_rcu(child, &tg->children, siblings) {
7492		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7493		runtime = child->rt_bandwidth.rt_runtime;
7494
7495		if (child == d->tg) {
7496			period = d->rt_period;
7497			runtime = d->rt_runtime;
7498		}
7499
7500		sum += to_ratio(period, runtime);
7501	}
7502
7503	if (sum > total)
7504		return -EINVAL;
7505
7506	return 0;
7507}
7508
7509static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7510{
7511	int ret;
7512
7513	struct rt_schedulable_data data = {
7514		.tg = tg,
7515		.rt_period = period,
7516		.rt_runtime = runtime,
7517	};
7518
7519	rcu_read_lock();
7520	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7521	rcu_read_unlock();
7522
7523	return ret;
7524}
7525
7526static int tg_set_rt_bandwidth(struct task_group *tg,
7527		u64 rt_period, u64 rt_runtime)
7528{
7529	int i, err = 0;
7530
7531	mutex_lock(&rt_constraints_mutex);
7532	read_lock(&tasklist_lock);
7533	err = __rt_schedulable(tg, rt_period, rt_runtime);
7534	if (err)
7535		goto unlock;
7536
7537	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7538	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7539	tg->rt_bandwidth.rt_runtime = rt_runtime;
7540
7541	for_each_possible_cpu(i) {
7542		struct rt_rq *rt_rq = tg->rt_rq[i];
7543
7544		raw_spin_lock(&rt_rq->rt_runtime_lock);
7545		rt_rq->rt_runtime = rt_runtime;
7546		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7547	}
7548	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7549unlock:
7550	read_unlock(&tasklist_lock);
7551	mutex_unlock(&rt_constraints_mutex);
7552
7553	return err;
7554}
7555
7556static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7557{
7558	u64 rt_runtime, rt_period;
7559
7560	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7561	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7562	if (rt_runtime_us < 0)
7563		rt_runtime = RUNTIME_INF;
7564
7565	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7566}
7567
7568static long sched_group_rt_runtime(struct task_group *tg)
7569{
7570	u64 rt_runtime_us;
7571
7572	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7573		return -1;
7574
7575	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7576	do_div(rt_runtime_us, NSEC_PER_USEC);
7577	return rt_runtime_us;
7578}
7579
7580static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7581{
7582	u64 rt_runtime, rt_period;
7583
7584	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7585	rt_runtime = tg->rt_bandwidth.rt_runtime;
7586
7587	if (rt_period == 0)
7588		return -EINVAL;
7589
7590	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7591}
7592
7593static long sched_group_rt_period(struct task_group *tg)
7594{
7595	u64 rt_period_us;
7596
7597	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7598	do_div(rt_period_us, NSEC_PER_USEC);
7599	return rt_period_us;
7600}
7601#endif /* CONFIG_RT_GROUP_SCHED */
7602
7603#ifdef CONFIG_RT_GROUP_SCHED
7604static int sched_rt_global_constraints(void)
7605{
7606	int ret = 0;
7607
7608	mutex_lock(&rt_constraints_mutex);
7609	read_lock(&tasklist_lock);
7610	ret = __rt_schedulable(NULL, 0, 0);
7611	read_unlock(&tasklist_lock);
7612	mutex_unlock(&rt_constraints_mutex);
7613
7614	return ret;
7615}
7616
7617static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7618{
7619	/* Don't accept realtime tasks when there is no way for them to run */
7620	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7621		return 0;
7622
7623	return 1;
7624}
7625
7626#else /* !CONFIG_RT_GROUP_SCHED */
7627static int sched_rt_global_constraints(void)
7628{
7629	unsigned long flags;
7630	int i, ret = 0;
7631
7632	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7633	for_each_possible_cpu(i) {
7634		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7635
7636		raw_spin_lock(&rt_rq->rt_runtime_lock);
7637		rt_rq->rt_runtime = global_rt_runtime();
7638		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7639	}
7640	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7641
7642	return ret;
7643}
7644#endif /* CONFIG_RT_GROUP_SCHED */
7645
7646static int sched_dl_global_constraints(void)
7647{
7648	u64 runtime = global_rt_runtime();
7649	u64 period = global_rt_period();
7650	u64 new_bw = to_ratio(period, runtime);
7651	int cpu, ret = 0;
7652	unsigned long flags;
7653
7654	/*
7655	 * Here we want to check the bandwidth not being set to some
7656	 * value smaller than the currently allocated bandwidth in
7657	 * any of the root_domains.
7658	 *
7659	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7660	 * cycling on root_domains... Discussion on different/better
7661	 * solutions is welcome!
7662	 */
7663	for_each_possible_cpu(cpu) {
7664		struct dl_bw *dl_b = dl_bw_of(cpu);
7665
7666		raw_spin_lock_irqsave(&dl_b->lock, flags);
7667		if (new_bw < dl_b->total_bw)
7668			ret = -EBUSY;
7669		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7670
7671		if (ret)
7672			break;
7673	}
7674
7675	return ret;
7676}
7677
7678static void sched_dl_do_global(void)
7679{
7680	u64 new_bw = -1;
7681	int cpu;
7682	unsigned long flags;
7683
7684	def_dl_bandwidth.dl_period = global_rt_period();
7685	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7686
7687	if (global_rt_runtime() != RUNTIME_INF)
7688		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7689
7690	/*
7691	 * FIXME: As above...
7692	 */
7693	for_each_possible_cpu(cpu) {
7694		struct dl_bw *dl_b = dl_bw_of(cpu);
7695
7696		raw_spin_lock_irqsave(&dl_b->lock, flags);
7697		dl_b->bw = new_bw;
7698		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7699	}
7700}
7701
7702static int sched_rt_global_validate(void)
7703{
7704	if (sysctl_sched_rt_period <= 0)
7705		return -EINVAL;
7706
7707	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7708		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7709		return -EINVAL;
7710
7711	return 0;
7712}
7713
7714static void sched_rt_do_global(void)
7715{
7716	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7717	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7718}
7719
7720int sched_rt_handler(struct ctl_table *table, int write,
7721		void __user *buffer, size_t *lenp,
7722		loff_t *ppos)
7723{
7724	int old_period, old_runtime;
7725	static DEFINE_MUTEX(mutex);
7726	int ret;
7727
7728	mutex_lock(&mutex);
7729	old_period = sysctl_sched_rt_period;
7730	old_runtime = sysctl_sched_rt_runtime;
7731
7732	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7733
7734	if (!ret && write) {
7735		ret = sched_rt_global_validate();
7736		if (ret)
7737			goto undo;
7738
7739		ret = sched_rt_global_constraints();
7740		if (ret)
7741			goto undo;
7742
7743		ret = sched_dl_global_constraints();
7744		if (ret)
7745			goto undo;
7746
7747		sched_rt_do_global();
7748		sched_dl_do_global();
7749	}
7750	if (0) {
7751undo:
7752		sysctl_sched_rt_period = old_period;
7753		sysctl_sched_rt_runtime = old_runtime;
7754	}
7755	mutex_unlock(&mutex);
7756
7757	return ret;
7758}
7759
7760int sched_rr_handler(struct ctl_table *table, int write,
7761		void __user *buffer, size_t *lenp,
7762		loff_t *ppos)
7763{
7764	int ret;
7765	static DEFINE_MUTEX(mutex);
7766
7767	mutex_lock(&mutex);
7768	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7769	/* make sure that internally we keep jiffies */
7770	/* also, writing zero resets timeslice to default */
7771	if (!ret && write) {
7772		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7773			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7774	}
7775	mutex_unlock(&mutex);
7776	return ret;
7777}
7778
7779#ifdef CONFIG_CGROUP_SCHED
7780
7781static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7782{
7783	return css ? container_of(css, struct task_group, css) : NULL;
7784}
7785
7786static struct cgroup_subsys_state *
7787cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7788{
7789	struct task_group *parent = css_tg(parent_css);
7790	struct task_group *tg;
7791
7792	if (!parent) {
7793		/* This is early initialization for the top cgroup */
7794		return &root_task_group.css;
7795	}
7796
7797	tg = sched_create_group(parent);
7798	if (IS_ERR(tg))
7799		return ERR_PTR(-ENOMEM);
7800
7801	return &tg->css;
7802}
7803
7804static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7805{
7806	struct task_group *tg = css_tg(css);
7807	struct task_group *parent = css_tg(css->parent);
7808
7809	if (parent)
7810		sched_online_group(tg, parent);
7811	return 0;
7812}
7813
7814static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7815{
7816	struct task_group *tg = css_tg(css);
7817
7818	sched_destroy_group(tg);
7819}
7820
7821static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7822{
7823	struct task_group *tg = css_tg(css);
7824
7825	sched_offline_group(tg);
7826}
7827
7828static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7829				 struct cgroup_taskset *tset)
7830{
7831	struct task_struct *task;
7832
7833	cgroup_taskset_for_each(task, tset) {
7834#ifdef CONFIG_RT_GROUP_SCHED
7835		if (!sched_rt_can_attach(css_tg(css), task))
7836			return -EINVAL;
7837#else
7838		/* We don't support RT-tasks being in separate groups */
7839		if (task->sched_class != &fair_sched_class)
7840			return -EINVAL;
7841#endif
7842	}
7843	return 0;
7844}
7845
7846static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7847			      struct cgroup_taskset *tset)
7848{
7849	struct task_struct *task;
7850
7851	cgroup_taskset_for_each(task, tset)
7852		sched_move_task(task);
7853}
7854
7855static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7856			    struct cgroup_subsys_state *old_css,
7857			    struct task_struct *task)
7858{
7859	/*
7860	 * cgroup_exit() is called in the copy_process() failure path.
7861	 * Ignore this case since the task hasn't ran yet, this avoids
7862	 * trying to poke a half freed task state from generic code.
7863	 */
7864	if (!(task->flags & PF_EXITING))
7865		return;
7866
7867	sched_move_task(task);
7868}
7869
7870#ifdef CONFIG_FAIR_GROUP_SCHED
7871static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7872				struct cftype *cftype, u64 shareval)
7873{
7874	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7875}
7876
7877static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7878			       struct cftype *cft)
7879{
7880	struct task_group *tg = css_tg(css);
7881
7882	return (u64) scale_load_down(tg->shares);
7883}
7884
7885#ifdef CONFIG_CFS_BANDWIDTH
7886static DEFINE_MUTEX(cfs_constraints_mutex);
7887
7888const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7889const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898	if (tg == &root_task_group)
7899		return -EINVAL;
7900
7901	/*
7902	 * Ensure we have at some amount of bandwidth every period.  This is
7903	 * to prevent reaching a state of large arrears when throttled via
7904	 * entity_tick() resulting in prolonged exit starvation.
7905	 */
7906	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907		return -EINVAL;
7908
7909	/*
7910	 * Likewise, bound things on the otherside by preventing insane quota
7911	 * periods.  This also allows us to normalize in computing quota
7912	 * feasibility.
7913	 */
7914	if (period > max_cfs_quota_period)
7915		return -EINVAL;
7916
7917	/*
7918	 * Prevent race between setting of cfs_rq->runtime_enabled and
7919	 * unthrottle_offline_cfs_rqs().
7920	 */
7921	get_online_cpus();
7922	mutex_lock(&cfs_constraints_mutex);
7923	ret = __cfs_schedulable(tg, period, quota);
7924	if (ret)
7925		goto out_unlock;
7926
7927	runtime_enabled = quota != RUNTIME_INF;
7928	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7929	/*
7930	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7931	 * before making related changes, and on->off must occur afterwards
7932	 */
7933	if (runtime_enabled && !runtime_was_enabled)
7934		cfs_bandwidth_usage_inc();
7935	raw_spin_lock_irq(&cfs_b->lock);
7936	cfs_b->period = ns_to_ktime(period);
7937	cfs_b->quota = quota;
7938
7939	__refill_cfs_bandwidth_runtime(cfs_b);
7940	/* restart the period timer (if active) to handle new period expiry */
7941	if (runtime_enabled && cfs_b->timer_active) {
7942		/* force a reprogram */
7943		__start_cfs_bandwidth(cfs_b, true);
7944	}
7945	raw_spin_unlock_irq(&cfs_b->lock);
7946
7947	for_each_online_cpu(i) {
7948		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7949		struct rq *rq = cfs_rq->rq;
7950
7951		raw_spin_lock_irq(&rq->lock);
7952		cfs_rq->runtime_enabled = runtime_enabled;
7953		cfs_rq->runtime_remaining = 0;
7954
7955		if (cfs_rq->throttled)
7956			unthrottle_cfs_rq(cfs_rq);
7957		raw_spin_unlock_irq(&rq->lock);
7958	}
7959	if (runtime_was_enabled && !runtime_enabled)
7960		cfs_bandwidth_usage_dec();
7961out_unlock:
7962	mutex_unlock(&cfs_constraints_mutex);
7963	put_online_cpus();
7964
7965	return ret;
7966}
7967
7968int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7969{
7970	u64 quota, period;
7971
7972	period = ktime_to_ns(tg->cfs_bandwidth.period);
7973	if (cfs_quota_us < 0)
7974		quota = RUNTIME_INF;
7975	else
7976		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7977
7978	return tg_set_cfs_bandwidth(tg, period, quota);
7979}
7980
7981long tg_get_cfs_quota(struct task_group *tg)
7982{
7983	u64 quota_us;
7984
7985	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7986		return -1;
7987
7988	quota_us = tg->cfs_bandwidth.quota;
7989	do_div(quota_us, NSEC_PER_USEC);
7990
7991	return quota_us;
7992}
7993
7994int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7995{
7996	u64 quota, period;
7997
7998	period = (u64)cfs_period_us * NSEC_PER_USEC;
7999	quota = tg->cfs_bandwidth.quota;
8000
8001	return tg_set_cfs_bandwidth(tg, period, quota);
8002}
8003
8004long tg_get_cfs_period(struct task_group *tg)
8005{
8006	u64 cfs_period_us;
8007
8008	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8009	do_div(cfs_period_us, NSEC_PER_USEC);
8010
8011	return cfs_period_us;
8012}
8013
8014static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8015				  struct cftype *cft)
8016{
8017	return tg_get_cfs_quota(css_tg(css));
8018}
8019
8020static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8021				   struct cftype *cftype, s64 cfs_quota_us)
8022{
8023	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8024}
8025
8026static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8027				   struct cftype *cft)
8028{
8029	return tg_get_cfs_period(css_tg(css));
8030}
8031
8032static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8033				    struct cftype *cftype, u64 cfs_period_us)
8034{
8035	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8036}
8037
8038struct cfs_schedulable_data {
8039	struct task_group *tg;
8040	u64 period, quota;
8041};
8042
8043/*
8044 * normalize group quota/period to be quota/max_period
8045 * note: units are usecs
8046 */
8047static u64 normalize_cfs_quota(struct task_group *tg,
8048			       struct cfs_schedulable_data *d)
8049{
8050	u64 quota, period;
8051
8052	if (tg == d->tg) {
8053		period = d->period;
8054		quota = d->quota;
8055	} else {
8056		period = tg_get_cfs_period(tg);
8057		quota = tg_get_cfs_quota(tg);
8058	}
8059
8060	/* note: these should typically be equivalent */
8061	if (quota == RUNTIME_INF || quota == -1)
8062		return RUNTIME_INF;
8063
8064	return to_ratio(period, quota);
8065}
8066
8067static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8068{
8069	struct cfs_schedulable_data *d = data;
8070	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8071	s64 quota = 0, parent_quota = -1;
8072
8073	if (!tg->parent) {
8074		quota = RUNTIME_INF;
8075	} else {
8076		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8077
8078		quota = normalize_cfs_quota(tg, d);
8079		parent_quota = parent_b->hierarchical_quota;
8080
8081		/*
8082		 * ensure max(child_quota) <= parent_quota, inherit when no
8083		 * limit is set
8084		 */
8085		if (quota == RUNTIME_INF)
8086			quota = parent_quota;
8087		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8088			return -EINVAL;
8089	}
8090	cfs_b->hierarchical_quota = quota;
8091
8092	return 0;
8093}
8094
8095static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8096{
8097	int ret;
8098	struct cfs_schedulable_data data = {
8099		.tg = tg,
8100		.period = period,
8101		.quota = quota,
8102	};
8103
8104	if (quota != RUNTIME_INF) {
8105		do_div(data.period, NSEC_PER_USEC);
8106		do_div(data.quota, NSEC_PER_USEC);
8107	}
8108
8109	rcu_read_lock();
8110	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8111	rcu_read_unlock();
8112
8113	return ret;
8114}
8115
8116static int cpu_stats_show(struct seq_file *sf, void *v)
8117{
8118	struct task_group *tg = css_tg(seq_css(sf));
8119	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8120
8121	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8122	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8123	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8124
8125	return 0;
8126}
8127#endif /* CONFIG_CFS_BANDWIDTH */
8128#endif /* CONFIG_FAIR_GROUP_SCHED */
8129
8130#ifdef CONFIG_RT_GROUP_SCHED
8131static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8132				struct cftype *cft, s64 val)
8133{
8134	return sched_group_set_rt_runtime(css_tg(css), val);
8135}
8136
8137static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8138			       struct cftype *cft)
8139{
8140	return sched_group_rt_runtime(css_tg(css));
8141}
8142
8143static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8144				    struct cftype *cftype, u64 rt_period_us)
8145{
8146	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8147}
8148
8149static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8150				   struct cftype *cft)
8151{
8152	return sched_group_rt_period(css_tg(css));
8153}
8154#endif /* CONFIG_RT_GROUP_SCHED */
8155
8156static struct cftype cpu_files[] = {
8157#ifdef CONFIG_FAIR_GROUP_SCHED
8158	{
8159		.name = "shares",
8160		.read_u64 = cpu_shares_read_u64,
8161		.write_u64 = cpu_shares_write_u64,
8162	},
8163#endif
8164#ifdef CONFIG_CFS_BANDWIDTH
8165	{
8166		.name = "cfs_quota_us",
8167		.read_s64 = cpu_cfs_quota_read_s64,
8168		.write_s64 = cpu_cfs_quota_write_s64,
8169	},
8170	{
8171		.name = "cfs_period_us",
8172		.read_u64 = cpu_cfs_period_read_u64,
8173		.write_u64 = cpu_cfs_period_write_u64,
8174	},
8175	{
8176		.name = "stat",
8177		.seq_show = cpu_stats_show,
8178	},
8179#endif
8180#ifdef CONFIG_RT_GROUP_SCHED
8181	{
8182		.name = "rt_runtime_us",
8183		.read_s64 = cpu_rt_runtime_read,
8184		.write_s64 = cpu_rt_runtime_write,
8185	},
8186	{
8187		.name = "rt_period_us",
8188		.read_u64 = cpu_rt_period_read_uint,
8189		.write_u64 = cpu_rt_period_write_uint,
8190	},
8191#endif
8192	{ }	/* terminate */
8193};
8194
8195struct cgroup_subsys cpu_cgrp_subsys = {
8196	.css_alloc	= cpu_cgroup_css_alloc,
8197	.css_free	= cpu_cgroup_css_free,
8198	.css_online	= cpu_cgroup_css_online,
8199	.css_offline	= cpu_cgroup_css_offline,
8200	.can_attach	= cpu_cgroup_can_attach,
8201	.attach		= cpu_cgroup_attach,
8202	.exit		= cpu_cgroup_exit,
8203	.legacy_cftypes	= cpu_files,
8204	.early_init	= 1,
8205};
8206
8207#endif	/* CONFIG_CGROUP_SCHED */
8208
8209void dump_cpu_task(int cpu)
8210{
8211	pr_info("Task dump for CPU %d:\n", cpu);
8212	sched_show_task(cpu_curr(cpu));
8213}
8214