core.c revision 37e117c07b89194aae7062bc63bde1104c03db02
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115	return ret;
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int nid = cpu_to_node(cpu);
1266	const struct cpumask *nodemask = NULL;
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/*
1271	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272	 * will return -1. There is no cpu on the node, and we should
1273	 * select the cpu on the other node.
1274	 */
1275	if (nid != -1) {
1276		nodemask = cpumask_of_node(nid);
1277
1278		/* Look for allowed, online CPU in same node. */
1279		for_each_cpu(dest_cpu, nodemask) {
1280			if (!cpu_online(dest_cpu))
1281				continue;
1282			if (!cpu_active(dest_cpu))
1283				continue;
1284			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285				return dest_cpu;
1286		}
1287	}
1288
1289	for (;;) {
1290		/* Any allowed, online CPU? */
1291		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292			if (!cpu_online(dest_cpu))
1293				continue;
1294			if (!cpu_active(dest_cpu))
1295				continue;
1296			goto out;
1297		}
1298
1299		switch (state) {
1300		case cpuset:
1301			/* No more Mr. Nice Guy. */
1302			cpuset_cpus_allowed_fallback(p);
1303			state = possible;
1304			break;
1305
1306		case possible:
1307			do_set_cpus_allowed(p, cpu_possible_mask);
1308			state = fail;
1309			break;
1310
1311		case fail:
1312			BUG();
1313			break;
1314		}
1315	}
1316
1317out:
1318	if (state != cpuset) {
1319		/*
1320		 * Don't tell them about moving exiting tasks or
1321		 * kernel threads (both mm NULL), since they never
1322		 * leave kernel.
1323		 */
1324		if (p->mm && printk_ratelimit()) {
1325			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326					task_pid_nr(p), p->comm, cpu);
1327		}
1328	}
1329
1330	return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341	/*
1342	 * In order not to call set_task_cpu() on a blocking task we need
1343	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344	 * cpu.
1345	 *
1346	 * Since this is common to all placement strategies, this lives here.
1347	 *
1348	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349	 *   not worry about this generic constraint ]
1350	 */
1351	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352		     !cpu_online(cpu)))
1353		cpu = select_fallback_rq(task_cpu(p), p);
1354
1355	return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360	s64 diff = sample - *avg;
1361	*avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369	struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372	int this_cpu = smp_processor_id();
1373
1374	if (cpu == this_cpu) {
1375		schedstat_inc(rq, ttwu_local);
1376		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377	} else {
1378		struct sched_domain *sd;
1379
1380		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381		rcu_read_lock();
1382		for_each_domain(this_cpu, sd) {
1383			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384				schedstat_inc(sd, ttwu_wake_remote);
1385				break;
1386			}
1387		}
1388		rcu_read_unlock();
1389	}
1390
1391	if (wake_flags & WF_MIGRATED)
1392		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396	schedstat_inc(rq, ttwu_count);
1397	schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399	if (wake_flags & WF_SYNC)
1400		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407	activate_task(rq, p, en_flags);
1408	p->on_rq = 1;
1409
1410	/* if a worker is waking up, notify workqueue */
1411	if (p->flags & PF_WQ_WORKER)
1412		wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421	check_preempt_curr(rq, p, wake_flags);
1422	trace_sched_wakeup(p, true);
1423
1424	p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426	if (p->sched_class->task_woken)
1427		p->sched_class->task_woken(rq, p);
1428
1429	if (rq->idle_stamp) {
1430		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431		u64 max = 2*rq->max_idle_balance_cost;
1432
1433		update_avg(&rq->avg_idle, delta);
1434
1435		if (rq->avg_idle > max)
1436			rq->avg_idle = max;
1437
1438		rq->idle_stamp = 0;
1439	}
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447	if (p->sched_contributes_to_load)
1448		rq->nr_uninterruptible--;
1449#endif
1450
1451	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452	ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463	struct rq *rq;
1464	int ret = 0;
1465
1466	rq = __task_rq_lock(p);
1467	if (p->on_rq) {
1468		/* check_preempt_curr() may use rq clock */
1469		update_rq_clock(rq);
1470		ttwu_do_wakeup(rq, p, wake_flags);
1471		ret = 1;
1472	}
1473	__task_rq_unlock(rq);
1474
1475	return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481	struct rq *rq = this_rq();
1482	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483	struct task_struct *p;
1484
1485	raw_spin_lock(&rq->lock);
1486
1487	while (llist) {
1488		p = llist_entry(llist, struct task_struct, wake_entry);
1489		llist = llist_next(llist);
1490		ttwu_do_activate(rq, p, 0);
1491	}
1492
1493	raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498	/*
1499	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501	 * this IPI.
1502	 */
1503	preempt_fold_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	RB_CLEAR_NODE(&p->dl.rb_node);
1721	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722	p->dl.dl_runtime = p->dl.runtime = 0;
1723	p->dl.dl_deadline = p->dl.deadline = 0;
1724	p->dl.dl_period = 0;
1725	p->dl.flags = 0;
1726
1727	INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736		p->mm->numa_scan_seq = 0;
1737	}
1738
1739	if (clone_flags & CLONE_VM)
1740		p->numa_preferred_nid = current->numa_preferred_nid;
1741	else
1742		p->numa_preferred_nid = -1;
1743
1744	p->node_stamp = 0ULL;
1745	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747	p->numa_work.next = &p->numa_work;
1748	p->numa_faults_memory = NULL;
1749	p->numa_faults_buffer_memory = NULL;
1750	p->last_task_numa_placement = 0;
1751	p->last_sum_exec_runtime = 0;
1752
1753	INIT_LIST_HEAD(&p->numa_entry);
1754	p->numa_group = NULL;
1755#endif /* CONFIG_NUMA_BALANCING */
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759#ifdef CONFIG_SCHED_DEBUG
1760void set_numabalancing_state(bool enabled)
1761{
1762	if (enabled)
1763		sched_feat_set("NUMA");
1764	else
1765		sched_feat_set("NO_NUMA");
1766}
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772	numabalancing_enabled = enabled;
1773}
1774#endif /* CONFIG_SCHED_DEBUG */
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778			 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780	struct ctl_table t;
1781	int err;
1782	int state = numabalancing_enabled;
1783
1784	if (write && !capable(CAP_SYS_ADMIN))
1785		return -EPERM;
1786
1787	t = *table;
1788	t.data = &state;
1789	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790	if (err < 0)
1791		return err;
1792	if (write)
1793		set_numabalancing_state(state);
1794	return err;
1795}
1796#endif
1797#endif
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803{
1804	unsigned long flags;
1805	int cpu = get_cpu();
1806
1807	__sched_fork(clone_flags, p);
1808	/*
1809	 * We mark the process as running here. This guarantees that
1810	 * nobody will actually run it, and a signal or other external
1811	 * event cannot wake it up and insert it on the runqueue either.
1812	 */
1813	p->state = TASK_RUNNING;
1814
1815	/*
1816	 * Make sure we do not leak PI boosting priority to the child.
1817	 */
1818	p->prio = current->normal_prio;
1819
1820	/*
1821	 * Revert to default priority/policy on fork if requested.
1822	 */
1823	if (unlikely(p->sched_reset_on_fork)) {
1824		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825			p->policy = SCHED_NORMAL;
1826			p->static_prio = NICE_TO_PRIO(0);
1827			p->rt_priority = 0;
1828		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1829			p->static_prio = NICE_TO_PRIO(0);
1830
1831		p->prio = p->normal_prio = __normal_prio(p);
1832		set_load_weight(p);
1833
1834		/*
1835		 * We don't need the reset flag anymore after the fork. It has
1836		 * fulfilled its duty:
1837		 */
1838		p->sched_reset_on_fork = 0;
1839	}
1840
1841	if (dl_prio(p->prio)) {
1842		put_cpu();
1843		return -EAGAIN;
1844	} else if (rt_prio(p->prio)) {
1845		p->sched_class = &rt_sched_class;
1846	} else {
1847		p->sched_class = &fair_sched_class;
1848	}
1849
1850	if (p->sched_class->task_fork)
1851		p->sched_class->task_fork(p);
1852
1853	/*
1854	 * The child is not yet in the pid-hash so no cgroup attach races,
1855	 * and the cgroup is pinned to this child due to cgroup_fork()
1856	 * is ran before sched_fork().
1857	 *
1858	 * Silence PROVE_RCU.
1859	 */
1860	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861	set_task_cpu(p, cpu);
1862	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865	if (likely(sched_info_on()))
1866		memset(&p->sched_info, 0, sizeof(p->sched_info));
1867#endif
1868#if defined(CONFIG_SMP)
1869	p->on_cpu = 0;
1870#endif
1871	init_task_preempt_count(p);
1872#ifdef CONFIG_SMP
1873	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875#endif
1876
1877	put_cpu();
1878	return 0;
1879}
1880
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883	if (runtime == RUNTIME_INF)
1884		return 1ULL << 20;
1885
1886	/*
1887	 * Doing this here saves a lot of checks in all
1888	 * the calling paths, and returning zero seems
1889	 * safe for them anyway.
1890	 */
1891	if (period == 0)
1892		return 0;
1893
1894	return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900	return &cpu_rq(i)->rd->dl_bw;
1901}
1902
1903static inline int dl_bw_cpus(int i)
1904{
1905	struct root_domain *rd = cpu_rq(i)->rd;
1906	int cpus = 0;
1907
1908	for_each_cpu_and(i, rd->span, cpu_active_mask)
1909		cpus++;
1910
1911	return cpus;
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916	return &cpu_rq(i)->dl.dl_bw;
1917}
1918
1919static inline int dl_bw_cpus(int i)
1920{
1921	return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928	dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934	dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940	return dl_b->bw != -1 &&
1941	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953		       const struct sched_attr *attr)
1954{
1955
1956	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957	u64 period = attr->sched_period;
1958	u64 runtime = attr->sched_runtime;
1959	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960	int cpus, err = -1;
1961
1962	if (new_bw == p->dl.dl_bw)
1963		return 0;
1964
1965	/*
1966	 * Either if a task, enters, leave, or stays -deadline but changes
1967	 * its parameters, we may need to update accordingly the total
1968	 * allocated bandwidth of the container.
1969	 */
1970	raw_spin_lock(&dl_b->lock);
1971	cpus = dl_bw_cpus(task_cpu(p));
1972	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974		__dl_add(dl_b, new_bw);
1975		err = 0;
1976	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978		__dl_clear(dl_b, p->dl.dl_bw);
1979		__dl_add(dl_b, new_bw);
1980		err = 0;
1981	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982		__dl_clear(dl_b, p->dl.dl_bw);
1983		err = 0;
1984	}
1985	raw_spin_unlock(&dl_b->lock);
1986
1987	return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999void wake_up_new_task(struct task_struct *p)
2000{
2001	unsigned long flags;
2002	struct rq *rq;
2003
2004	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005#ifdef CONFIG_SMP
2006	/*
2007	 * Fork balancing, do it here and not earlier because:
2008	 *  - cpus_allowed can change in the fork path
2009	 *  - any previously selected cpu might disappear through hotplug
2010	 */
2011	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012#endif
2013
2014	/* Initialize new task's runnable average */
2015	init_task_runnable_average(p);
2016	rq = __task_rq_lock(p);
2017	activate_task(rq, p, 0);
2018	p->on_rq = 1;
2019	trace_sched_wakeup_new(p, true);
2020	check_preempt_curr(rq, p, WF_FORK);
2021#ifdef CONFIG_SMP
2022	if (p->sched_class->task_woken)
2023		p->sched_class->task_woken(rq, p);
2024#endif
2025	task_rq_unlock(rq, p, &flags);
2026}
2027
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048	hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054	struct preempt_notifier *notifier;
2055
2056	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062				 struct task_struct *next)
2063{
2064	struct preempt_notifier *notifier;
2065
2066	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067		notifier->ops->sched_out(notifier, next);
2068}
2069
2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078				 struct task_struct *next)
2079{
2080}
2081
2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099		    struct task_struct *next)
2100{
2101	trace_sched_switch(prev, next);
2102	sched_info_switch(rq, prev, next);
2103	perf_event_task_sched_out(prev, next);
2104	fire_sched_out_preempt_notifiers(prev, next);
2105	prepare_lock_switch(rq, next);
2106	prepare_arch_switch(next);
2107}
2108
2109/**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125	__releases(rq->lock)
2126{
2127	struct mm_struct *mm = rq->prev_mm;
2128	long prev_state;
2129
2130	rq->prev_mm = NULL;
2131
2132	/*
2133	 * A task struct has one reference for the use as "current".
2134	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135	 * schedule one last time. The schedule call will never return, and
2136	 * the scheduled task must drop that reference.
2137	 * The test for TASK_DEAD must occur while the runqueue locks are
2138	 * still held, otherwise prev could be scheduled on another cpu, die
2139	 * there before we look at prev->state, and then the reference would
2140	 * be dropped twice.
2141	 *		Manfred Spraul <manfred@colorfullife.com>
2142	 */
2143	prev_state = prev->state;
2144	vtime_task_switch(prev);
2145	finish_arch_switch(prev);
2146	perf_event_task_sched_in(prev, current);
2147	finish_lock_switch(rq, prev);
2148	finish_arch_post_lock_switch();
2149
2150	fire_sched_in_preempt_notifiers(current);
2151	if (mm)
2152		mmdrop(mm);
2153	if (unlikely(prev_state == TASK_DEAD)) {
2154		task_numa_free(prev);
2155
2156		if (prev->sched_class->task_dead)
2157			prev->sched_class->task_dead(prev);
2158
2159		/*
2160		 * Remove function-return probe instances associated with this
2161		 * task and put them back on the free list.
2162		 */
2163		kprobe_flush_task(prev);
2164		put_task_struct(prev);
2165	}
2166
2167	tick_nohz_task_switch(current);
2168}
2169
2170#ifdef CONFIG_SMP
2171
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175	if (rq->post_schedule) {
2176		unsigned long flags;
2177
2178		raw_spin_lock_irqsave(&rq->lock, flags);
2179		if (rq->curr->sched_class->post_schedule)
2180			rq->curr->sched_class->post_schedule(rq);
2181		raw_spin_unlock_irqrestore(&rq->lock, flags);
2182
2183		rq->post_schedule = 0;
2184	}
2185}
2186
2187#else
2188
2189static inline void post_schedule(struct rq *rq)
2190{
2191}
2192
2193#endif
2194
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
2199asmlinkage void schedule_tail(struct task_struct *prev)
2200	__releases(rq->lock)
2201{
2202	struct rq *rq = this_rq();
2203
2204	finish_task_switch(rq, prev);
2205
2206	/*
2207	 * FIXME: do we need to worry about rq being invalidated by the
2208	 * task_switch?
2209	 */
2210	post_schedule(rq);
2211
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213	/* In this case, finish_task_switch does not reenable preemption */
2214	preempt_enable();
2215#endif
2216	if (current->set_child_tid)
2217		put_user(task_pid_vnr(current), current->set_child_tid);
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
2224static inline void
2225context_switch(struct rq *rq, struct task_struct *prev,
2226	       struct task_struct *next)
2227{
2228	struct mm_struct *mm, *oldmm;
2229
2230	prepare_task_switch(rq, prev, next);
2231
2232	mm = next->mm;
2233	oldmm = prev->active_mm;
2234	/*
2235	 * For paravirt, this is coupled with an exit in switch_to to
2236	 * combine the page table reload and the switch backend into
2237	 * one hypercall.
2238	 */
2239	arch_start_context_switch(prev);
2240
2241	if (!mm) {
2242		next->active_mm = oldmm;
2243		atomic_inc(&oldmm->mm_count);
2244		enter_lazy_tlb(oldmm, next);
2245	} else
2246		switch_mm(oldmm, mm, next);
2247
2248	if (!prev->mm) {
2249		prev->active_mm = NULL;
2250		rq->prev_mm = oldmm;
2251	}
2252	/*
2253	 * Since the runqueue lock will be released by the next
2254	 * task (which is an invalid locking op but in the case
2255	 * of the scheduler it's an obvious special-case), so we
2256	 * do an early lockdep release here:
2257	 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2259	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2260#endif
2261
2262	context_tracking_task_switch(prev, next);
2263	/* Here we just switch the register state and the stack. */
2264	switch_to(prev, next, prev);
2265
2266	barrier();
2267	/*
2268	 * this_rq must be evaluated again because prev may have moved
2269	 * CPUs since it called schedule(), thus the 'rq' on its stack
2270	 * frame will be invalid.
2271	 */
2272	finish_task_switch(this_rq(), prev);
2273}
2274
2275/*
2276 * nr_running and nr_context_switches:
2277 *
2278 * externally visible scheduler statistics: current number of runnable
2279 * threads, total number of context switches performed since bootup.
2280 */
2281unsigned long nr_running(void)
2282{
2283	unsigned long i, sum = 0;
2284
2285	for_each_online_cpu(i)
2286		sum += cpu_rq(i)->nr_running;
2287
2288	return sum;
2289}
2290
2291unsigned long long nr_context_switches(void)
2292{
2293	int i;
2294	unsigned long long sum = 0;
2295
2296	for_each_possible_cpu(i)
2297		sum += cpu_rq(i)->nr_switches;
2298
2299	return sum;
2300}
2301
2302unsigned long nr_iowait(void)
2303{
2304	unsigned long i, sum = 0;
2305
2306	for_each_possible_cpu(i)
2307		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2308
2309	return sum;
2310}
2311
2312unsigned long nr_iowait_cpu(int cpu)
2313{
2314	struct rq *this = cpu_rq(cpu);
2315	return atomic_read(&this->nr_iowait);
2316}
2317
2318#ifdef CONFIG_SMP
2319
2320/*
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
2323 */
2324void sched_exec(void)
2325{
2326	struct task_struct *p = current;
2327	unsigned long flags;
2328	int dest_cpu;
2329
2330	raw_spin_lock_irqsave(&p->pi_lock, flags);
2331	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2332	if (dest_cpu == smp_processor_id())
2333		goto unlock;
2334
2335	if (likely(cpu_active(dest_cpu))) {
2336		struct migration_arg arg = { p, dest_cpu };
2337
2338		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2340		return;
2341	}
2342unlock:
2343	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2344}
2345
2346#endif
2347
2348DEFINE_PER_CPU(struct kernel_stat, kstat);
2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2353
2354/*
2355 * Return any ns on the sched_clock that have not yet been accounted in
2356 * @p in case that task is currently running.
2357 *
2358 * Called with task_rq_lock() held on @rq.
2359 */
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362	u64 ns = 0;
2363
2364	if (task_current(rq, p)) {
2365		update_rq_clock(rq);
2366		ns = rq_clock_task(rq) - p->se.exec_start;
2367		if ((s64)ns < 0)
2368			ns = 0;
2369	}
2370
2371	return ns;
2372}
2373
2374unsigned long long task_delta_exec(struct task_struct *p)
2375{
2376	unsigned long flags;
2377	struct rq *rq;
2378	u64 ns = 0;
2379
2380	rq = task_rq_lock(p, &flags);
2381	ns = do_task_delta_exec(p, rq);
2382	task_rq_unlock(rq, p, &flags);
2383
2384	return ns;
2385}
2386
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394	unsigned long flags;
2395	struct rq *rq;
2396	u64 ns = 0;
2397
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399	/*
2400	 * 64-bit doesn't need locks to atomically read a 64bit value.
2401	 * So we have a optimization chance when the task's delta_exec is 0.
2402	 * Reading ->on_cpu is racy, but this is ok.
2403	 *
2404	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405	 * If we race with it entering cpu, unaccounted time is 0. This is
2406	 * indistinguishable from the read occurring a few cycles earlier.
2407	 */
2408	if (!p->on_cpu)
2409		return p->se.sum_exec_runtime;
2410#endif
2411
2412	rq = task_rq_lock(p, &flags);
2413	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2414	task_rq_unlock(rq, p, &flags);
2415
2416	return ns;
2417}
2418
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
2422 */
2423void scheduler_tick(void)
2424{
2425	int cpu = smp_processor_id();
2426	struct rq *rq = cpu_rq(cpu);
2427	struct task_struct *curr = rq->curr;
2428
2429	sched_clock_tick();
2430
2431	raw_spin_lock(&rq->lock);
2432	update_rq_clock(rq);
2433	curr->sched_class->task_tick(rq, curr, 0);
2434	update_cpu_load_active(rq);
2435	raw_spin_unlock(&rq->lock);
2436
2437	perf_event_task_tick();
2438
2439#ifdef CONFIG_SMP
2440	rq->idle_balance = idle_cpu(cpu);
2441	trigger_load_balance(rq);
2442#endif
2443	rq_last_tick_reset(rq);
2444}
2445
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
2457 *
2458 * Return: Maximum deferment in nanoseconds.
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462	struct rq *rq = this_rq();
2463	unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465	next = rq->last_sched_tick + HZ;
2466
2467	if (time_before_eq(next, now))
2468		return 0;
2469
2470	return jiffies_to_nsecs(next - now);
2471}
2472#endif
2473
2474notrace unsigned long get_parent_ip(unsigned long addr)
2475{
2476	if (in_lock_functions(addr)) {
2477		addr = CALLER_ADDR2;
2478		if (in_lock_functions(addr))
2479			addr = CALLER_ADDR3;
2480	}
2481	return addr;
2482}
2483
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485				defined(CONFIG_PREEMPT_TRACER))
2486
2487void __kprobes preempt_count_add(int val)
2488{
2489#ifdef CONFIG_DEBUG_PREEMPT
2490	/*
2491	 * Underflow?
2492	 */
2493	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494		return;
2495#endif
2496	__preempt_count_add(val);
2497#ifdef CONFIG_DEBUG_PREEMPT
2498	/*
2499	 * Spinlock count overflowing soon?
2500	 */
2501	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502				PREEMPT_MASK - 10);
2503#endif
2504	if (preempt_count() == val) {
2505		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507		current->preempt_disable_ip = ip;
2508#endif
2509		trace_preempt_off(CALLER_ADDR0, ip);
2510	}
2511}
2512EXPORT_SYMBOL(preempt_count_add);
2513
2514void __kprobes preempt_count_sub(int val)
2515{
2516#ifdef CONFIG_DEBUG_PREEMPT
2517	/*
2518	 * Underflow?
2519	 */
2520	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2521		return;
2522	/*
2523	 * Is the spinlock portion underflowing?
2524	 */
2525	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2526			!(preempt_count() & PREEMPT_MASK)))
2527		return;
2528#endif
2529
2530	if (preempt_count() == val)
2531		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2532	__preempt_count_sub(val);
2533}
2534EXPORT_SYMBOL(preempt_count_sub);
2535
2536#endif
2537
2538/*
2539 * Print scheduling while atomic bug:
2540 */
2541static noinline void __schedule_bug(struct task_struct *prev)
2542{
2543	if (oops_in_progress)
2544		return;
2545
2546	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2547		prev->comm, prev->pid, preempt_count());
2548
2549	debug_show_held_locks(prev);
2550	print_modules();
2551	if (irqs_disabled())
2552		print_irqtrace_events(prev);
2553#ifdef CONFIG_DEBUG_PREEMPT
2554	if (in_atomic_preempt_off()) {
2555		pr_err("Preemption disabled at:");
2556		print_ip_sym(current->preempt_disable_ip);
2557		pr_cont("\n");
2558	}
2559#endif
2560	dump_stack();
2561	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2562}
2563
2564/*
2565 * Various schedule()-time debugging checks and statistics:
2566 */
2567static inline void schedule_debug(struct task_struct *prev)
2568{
2569	/*
2570	 * Test if we are atomic. Since do_exit() needs to call into
2571	 * schedule() atomically, we ignore that path. Otherwise whine
2572	 * if we are scheduling when we should not.
2573	 */
2574	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2575		__schedule_bug(prev);
2576	rcu_sleep_check();
2577
2578	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2579
2580	schedstat_inc(this_rq(), sched_count);
2581}
2582
2583/*
2584 * Pick up the highest-prio task:
2585 */
2586static inline struct task_struct *
2587pick_next_task(struct rq *rq, struct task_struct *prev)
2588{
2589	const struct sched_class *class = &fair_sched_class;
2590	struct task_struct *p;
2591
2592	/*
2593	 * Optimization: we know that if all tasks are in
2594	 * the fair class we can call that function directly:
2595	 */
2596	if (likely(prev->sched_class == class &&
2597		   rq->nr_running == rq->cfs.h_nr_running)) {
2598		p = fair_sched_class.pick_next_task(rq, prev);
2599		if (likely(p && p != RETRY_TASK))
2600			return p;
2601	}
2602
2603again:
2604	for_each_class(class) {
2605		p = class->pick_next_task(rq, prev);
2606		if (p) {
2607			if (unlikely(p == RETRY_TASK))
2608				goto again;
2609			return p;
2610		}
2611	}
2612
2613	BUG(); /* the idle class will always have a runnable task */
2614}
2615
2616/*
2617 * __schedule() is the main scheduler function.
2618 *
2619 * The main means of driving the scheduler and thus entering this function are:
2620 *
2621 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2622 *
2623 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2624 *      paths. For example, see arch/x86/entry_64.S.
2625 *
2626 *      To drive preemption between tasks, the scheduler sets the flag in timer
2627 *      interrupt handler scheduler_tick().
2628 *
2629 *   3. Wakeups don't really cause entry into schedule(). They add a
2630 *      task to the run-queue and that's it.
2631 *
2632 *      Now, if the new task added to the run-queue preempts the current
2633 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2634 *      called on the nearest possible occasion:
2635 *
2636 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2637 *
2638 *         - in syscall or exception context, at the next outmost
2639 *           preempt_enable(). (this might be as soon as the wake_up()'s
2640 *           spin_unlock()!)
2641 *
2642 *         - in IRQ context, return from interrupt-handler to
2643 *           preemptible context
2644 *
2645 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2646 *         then at the next:
2647 *
2648 *          - cond_resched() call
2649 *          - explicit schedule() call
2650 *          - return from syscall or exception to user-space
2651 *          - return from interrupt-handler to user-space
2652 */
2653static void __sched __schedule(void)
2654{
2655	struct task_struct *prev, *next;
2656	unsigned long *switch_count;
2657	struct rq *rq;
2658	int cpu;
2659
2660need_resched:
2661	preempt_disable();
2662	cpu = smp_processor_id();
2663	rq = cpu_rq(cpu);
2664	rcu_note_context_switch(cpu);
2665	prev = rq->curr;
2666
2667	schedule_debug(prev);
2668
2669	if (sched_feat(HRTICK))
2670		hrtick_clear(rq);
2671
2672	/*
2673	 * Make sure that signal_pending_state()->signal_pending() below
2674	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2675	 * done by the caller to avoid the race with signal_wake_up().
2676	 */
2677	smp_mb__before_spinlock();
2678	raw_spin_lock_irq(&rq->lock);
2679
2680	switch_count = &prev->nivcsw;
2681	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2682		if (unlikely(signal_pending_state(prev->state, prev))) {
2683			prev->state = TASK_RUNNING;
2684		} else {
2685			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2686			prev->on_rq = 0;
2687
2688			/*
2689			 * If a worker went to sleep, notify and ask workqueue
2690			 * whether it wants to wake up a task to maintain
2691			 * concurrency.
2692			 */
2693			if (prev->flags & PF_WQ_WORKER) {
2694				struct task_struct *to_wakeup;
2695
2696				to_wakeup = wq_worker_sleeping(prev, cpu);
2697				if (to_wakeup)
2698					try_to_wake_up_local(to_wakeup);
2699			}
2700		}
2701		switch_count = &prev->nvcsw;
2702	}
2703
2704	if (prev->on_rq || rq->skip_clock_update < 0)
2705		update_rq_clock(rq);
2706
2707	next = pick_next_task(rq, prev);
2708	clear_tsk_need_resched(prev);
2709	clear_preempt_need_resched();
2710	rq->skip_clock_update = 0;
2711
2712	if (likely(prev != next)) {
2713		rq->nr_switches++;
2714		rq->curr = next;
2715		++*switch_count;
2716
2717		context_switch(rq, prev, next); /* unlocks the rq */
2718		/*
2719		 * The context switch have flipped the stack from under us
2720		 * and restored the local variables which were saved when
2721		 * this task called schedule() in the past. prev == current
2722		 * is still correct, but it can be moved to another cpu/rq.
2723		 */
2724		cpu = smp_processor_id();
2725		rq = cpu_rq(cpu);
2726	} else
2727		raw_spin_unlock_irq(&rq->lock);
2728
2729	post_schedule(rq);
2730
2731	sched_preempt_enable_no_resched();
2732	if (need_resched())
2733		goto need_resched;
2734}
2735
2736static inline void sched_submit_work(struct task_struct *tsk)
2737{
2738	if (!tsk->state || tsk_is_pi_blocked(tsk))
2739		return;
2740	/*
2741	 * If we are going to sleep and we have plugged IO queued,
2742	 * make sure to submit it to avoid deadlocks.
2743	 */
2744	if (blk_needs_flush_plug(tsk))
2745		blk_schedule_flush_plug(tsk);
2746}
2747
2748asmlinkage void __sched schedule(void)
2749{
2750	struct task_struct *tsk = current;
2751
2752	sched_submit_work(tsk);
2753	__schedule();
2754}
2755EXPORT_SYMBOL(schedule);
2756
2757#ifdef CONFIG_CONTEXT_TRACKING
2758asmlinkage void __sched schedule_user(void)
2759{
2760	/*
2761	 * If we come here after a random call to set_need_resched(),
2762	 * or we have been woken up remotely but the IPI has not yet arrived,
2763	 * we haven't yet exited the RCU idle mode. Do it here manually until
2764	 * we find a better solution.
2765	 */
2766	user_exit();
2767	schedule();
2768	user_enter();
2769}
2770#endif
2771
2772/**
2773 * schedule_preempt_disabled - called with preemption disabled
2774 *
2775 * Returns with preemption disabled. Note: preempt_count must be 1
2776 */
2777void __sched schedule_preempt_disabled(void)
2778{
2779	sched_preempt_enable_no_resched();
2780	schedule();
2781	preempt_disable();
2782}
2783
2784#ifdef CONFIG_PREEMPT
2785/*
2786 * this is the entry point to schedule() from in-kernel preemption
2787 * off of preempt_enable. Kernel preemptions off return from interrupt
2788 * occur there and call schedule directly.
2789 */
2790asmlinkage void __sched notrace preempt_schedule(void)
2791{
2792	/*
2793	 * If there is a non-zero preempt_count or interrupts are disabled,
2794	 * we do not want to preempt the current task. Just return..
2795	 */
2796	if (likely(!preemptible()))
2797		return;
2798
2799	do {
2800		__preempt_count_add(PREEMPT_ACTIVE);
2801		__schedule();
2802		__preempt_count_sub(PREEMPT_ACTIVE);
2803
2804		/*
2805		 * Check again in case we missed a preemption opportunity
2806		 * between schedule and now.
2807		 */
2808		barrier();
2809	} while (need_resched());
2810}
2811EXPORT_SYMBOL(preempt_schedule);
2812#endif /* CONFIG_PREEMPT */
2813
2814/*
2815 * this is the entry point to schedule() from kernel preemption
2816 * off of irq context.
2817 * Note, that this is called and return with irqs disabled. This will
2818 * protect us against recursive calling from irq.
2819 */
2820asmlinkage void __sched preempt_schedule_irq(void)
2821{
2822	enum ctx_state prev_state;
2823
2824	/* Catch callers which need to be fixed */
2825	BUG_ON(preempt_count() || !irqs_disabled());
2826
2827	prev_state = exception_enter();
2828
2829	do {
2830		__preempt_count_add(PREEMPT_ACTIVE);
2831		local_irq_enable();
2832		__schedule();
2833		local_irq_disable();
2834		__preempt_count_sub(PREEMPT_ACTIVE);
2835
2836		/*
2837		 * Check again in case we missed a preemption opportunity
2838		 * between schedule and now.
2839		 */
2840		barrier();
2841	} while (need_resched());
2842
2843	exception_exit(prev_state);
2844}
2845
2846int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2847			  void *key)
2848{
2849	return try_to_wake_up(curr->private, mode, wake_flags);
2850}
2851EXPORT_SYMBOL(default_wake_function);
2852
2853static long __sched
2854sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2855{
2856	unsigned long flags;
2857	wait_queue_t wait;
2858
2859	init_waitqueue_entry(&wait, current);
2860
2861	__set_current_state(state);
2862
2863	spin_lock_irqsave(&q->lock, flags);
2864	__add_wait_queue(q, &wait);
2865	spin_unlock(&q->lock);
2866	timeout = schedule_timeout(timeout);
2867	spin_lock_irq(&q->lock);
2868	__remove_wait_queue(q, &wait);
2869	spin_unlock_irqrestore(&q->lock, flags);
2870
2871	return timeout;
2872}
2873
2874void __sched interruptible_sleep_on(wait_queue_head_t *q)
2875{
2876	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2877}
2878EXPORT_SYMBOL(interruptible_sleep_on);
2879
2880long __sched
2881interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2882{
2883	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2884}
2885EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2886
2887void __sched sleep_on(wait_queue_head_t *q)
2888{
2889	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2890}
2891EXPORT_SYMBOL(sleep_on);
2892
2893long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2894{
2895	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2896}
2897EXPORT_SYMBOL(sleep_on_timeout);
2898
2899#ifdef CONFIG_RT_MUTEXES
2900
2901/*
2902 * rt_mutex_setprio - set the current priority of a task
2903 * @p: task
2904 * @prio: prio value (kernel-internal form)
2905 *
2906 * This function changes the 'effective' priority of a task. It does
2907 * not touch ->normal_prio like __setscheduler().
2908 *
2909 * Used by the rt_mutex code to implement priority inheritance
2910 * logic. Call site only calls if the priority of the task changed.
2911 */
2912void rt_mutex_setprio(struct task_struct *p, int prio)
2913{
2914	int oldprio, on_rq, running, enqueue_flag = 0;
2915	struct rq *rq;
2916	const struct sched_class *prev_class;
2917
2918	BUG_ON(prio > MAX_PRIO);
2919
2920	rq = __task_rq_lock(p);
2921
2922	/*
2923	 * Idle task boosting is a nono in general. There is one
2924	 * exception, when PREEMPT_RT and NOHZ is active:
2925	 *
2926	 * The idle task calls get_next_timer_interrupt() and holds
2927	 * the timer wheel base->lock on the CPU and another CPU wants
2928	 * to access the timer (probably to cancel it). We can safely
2929	 * ignore the boosting request, as the idle CPU runs this code
2930	 * with interrupts disabled and will complete the lock
2931	 * protected section without being interrupted. So there is no
2932	 * real need to boost.
2933	 */
2934	if (unlikely(p == rq->idle)) {
2935		WARN_ON(p != rq->curr);
2936		WARN_ON(p->pi_blocked_on);
2937		goto out_unlock;
2938	}
2939
2940	trace_sched_pi_setprio(p, prio);
2941	p->pi_top_task = rt_mutex_get_top_task(p);
2942	oldprio = p->prio;
2943	prev_class = p->sched_class;
2944	on_rq = p->on_rq;
2945	running = task_current(rq, p);
2946	if (on_rq)
2947		dequeue_task(rq, p, 0);
2948	if (running)
2949		p->sched_class->put_prev_task(rq, p);
2950
2951	/*
2952	 * Boosting condition are:
2953	 * 1. -rt task is running and holds mutex A
2954	 *      --> -dl task blocks on mutex A
2955	 *
2956	 * 2. -dl task is running and holds mutex A
2957	 *      --> -dl task blocks on mutex A and could preempt the
2958	 *          running task
2959	 */
2960	if (dl_prio(prio)) {
2961		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2962			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2963			p->dl.dl_boosted = 1;
2964			p->dl.dl_throttled = 0;
2965			enqueue_flag = ENQUEUE_REPLENISH;
2966		} else
2967			p->dl.dl_boosted = 0;
2968		p->sched_class = &dl_sched_class;
2969	} else if (rt_prio(prio)) {
2970		if (dl_prio(oldprio))
2971			p->dl.dl_boosted = 0;
2972		if (oldprio < prio)
2973			enqueue_flag = ENQUEUE_HEAD;
2974		p->sched_class = &rt_sched_class;
2975	} else {
2976		if (dl_prio(oldprio))
2977			p->dl.dl_boosted = 0;
2978		p->sched_class = &fair_sched_class;
2979	}
2980
2981	p->prio = prio;
2982
2983	if (running)
2984		p->sched_class->set_curr_task(rq);
2985	if (on_rq)
2986		enqueue_task(rq, p, enqueue_flag);
2987
2988	check_class_changed(rq, p, prev_class, oldprio);
2989out_unlock:
2990	__task_rq_unlock(rq);
2991}
2992#endif
2993
2994void set_user_nice(struct task_struct *p, long nice)
2995{
2996	int old_prio, delta, on_rq;
2997	unsigned long flags;
2998	struct rq *rq;
2999
3000	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3001		return;
3002	/*
3003	 * We have to be careful, if called from sys_setpriority(),
3004	 * the task might be in the middle of scheduling on another CPU.
3005	 */
3006	rq = task_rq_lock(p, &flags);
3007	/*
3008	 * The RT priorities are set via sched_setscheduler(), but we still
3009	 * allow the 'normal' nice value to be set - but as expected
3010	 * it wont have any effect on scheduling until the task is
3011	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3012	 */
3013	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3014		p->static_prio = NICE_TO_PRIO(nice);
3015		goto out_unlock;
3016	}
3017	on_rq = p->on_rq;
3018	if (on_rq)
3019		dequeue_task(rq, p, 0);
3020
3021	p->static_prio = NICE_TO_PRIO(nice);
3022	set_load_weight(p);
3023	old_prio = p->prio;
3024	p->prio = effective_prio(p);
3025	delta = p->prio - old_prio;
3026
3027	if (on_rq) {
3028		enqueue_task(rq, p, 0);
3029		/*
3030		 * If the task increased its priority or is running and
3031		 * lowered its priority, then reschedule its CPU:
3032		 */
3033		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3034			resched_task(rq->curr);
3035	}
3036out_unlock:
3037	task_rq_unlock(rq, p, &flags);
3038}
3039EXPORT_SYMBOL(set_user_nice);
3040
3041/*
3042 * can_nice - check if a task can reduce its nice value
3043 * @p: task
3044 * @nice: nice value
3045 */
3046int can_nice(const struct task_struct *p, const int nice)
3047{
3048	/* convert nice value [19,-20] to rlimit style value [1,40] */
3049	int nice_rlim = 20 - nice;
3050
3051	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3052		capable(CAP_SYS_NICE));
3053}
3054
3055#ifdef __ARCH_WANT_SYS_NICE
3056
3057/*
3058 * sys_nice - change the priority of the current process.
3059 * @increment: priority increment
3060 *
3061 * sys_setpriority is a more generic, but much slower function that
3062 * does similar things.
3063 */
3064SYSCALL_DEFINE1(nice, int, increment)
3065{
3066	long nice, retval;
3067
3068	/*
3069	 * Setpriority might change our priority at the same moment.
3070	 * We don't have to worry. Conceptually one call occurs first
3071	 * and we have a single winner.
3072	 */
3073	if (increment < -40)
3074		increment = -40;
3075	if (increment > 40)
3076		increment = 40;
3077
3078	nice = task_nice(current) + increment;
3079	if (nice < MIN_NICE)
3080		nice = MIN_NICE;
3081	if (nice > MAX_NICE)
3082		nice = MAX_NICE;
3083
3084	if (increment < 0 && !can_nice(current, nice))
3085		return -EPERM;
3086
3087	retval = security_task_setnice(current, nice);
3088	if (retval)
3089		return retval;
3090
3091	set_user_nice(current, nice);
3092	return 0;
3093}
3094
3095#endif
3096
3097/**
3098 * task_prio - return the priority value of a given task.
3099 * @p: the task in question.
3100 *
3101 * Return: The priority value as seen by users in /proc.
3102 * RT tasks are offset by -200. Normal tasks are centered
3103 * around 0, value goes from -16 to +15.
3104 */
3105int task_prio(const struct task_struct *p)
3106{
3107	return p->prio - MAX_RT_PRIO;
3108}
3109
3110/**
3111 * idle_cpu - is a given cpu idle currently?
3112 * @cpu: the processor in question.
3113 *
3114 * Return: 1 if the CPU is currently idle. 0 otherwise.
3115 */
3116int idle_cpu(int cpu)
3117{
3118	struct rq *rq = cpu_rq(cpu);
3119
3120	if (rq->curr != rq->idle)
3121		return 0;
3122
3123	if (rq->nr_running)
3124		return 0;
3125
3126#ifdef CONFIG_SMP
3127	if (!llist_empty(&rq->wake_list))
3128		return 0;
3129#endif
3130
3131	return 1;
3132}
3133
3134/**
3135 * idle_task - return the idle task for a given cpu.
3136 * @cpu: the processor in question.
3137 *
3138 * Return: The idle task for the cpu @cpu.
3139 */
3140struct task_struct *idle_task(int cpu)
3141{
3142	return cpu_rq(cpu)->idle;
3143}
3144
3145/**
3146 * find_process_by_pid - find a process with a matching PID value.
3147 * @pid: the pid in question.
3148 *
3149 * The task of @pid, if found. %NULL otherwise.
3150 */
3151static struct task_struct *find_process_by_pid(pid_t pid)
3152{
3153	return pid ? find_task_by_vpid(pid) : current;
3154}
3155
3156/*
3157 * This function initializes the sched_dl_entity of a newly becoming
3158 * SCHED_DEADLINE task.
3159 *
3160 * Only the static values are considered here, the actual runtime and the
3161 * absolute deadline will be properly calculated when the task is enqueued
3162 * for the first time with its new policy.
3163 */
3164static void
3165__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3166{
3167	struct sched_dl_entity *dl_se = &p->dl;
3168
3169	init_dl_task_timer(dl_se);
3170	dl_se->dl_runtime = attr->sched_runtime;
3171	dl_se->dl_deadline = attr->sched_deadline;
3172	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3173	dl_se->flags = attr->sched_flags;
3174	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3175	dl_se->dl_throttled = 0;
3176	dl_se->dl_new = 1;
3177}
3178
3179static void __setscheduler_params(struct task_struct *p,
3180		const struct sched_attr *attr)
3181{
3182	int policy = attr->sched_policy;
3183
3184	if (policy == -1) /* setparam */
3185		policy = p->policy;
3186
3187	p->policy = policy;
3188
3189	if (dl_policy(policy))
3190		__setparam_dl(p, attr);
3191	else if (fair_policy(policy))
3192		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3193
3194	/*
3195	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3196	 * !rt_policy. Always setting this ensures that things like
3197	 * getparam()/getattr() don't report silly values for !rt tasks.
3198	 */
3199	p->rt_priority = attr->sched_priority;
3200	set_load_weight(p);
3201}
3202
3203/* Actually do priority change: must hold pi & rq lock. */
3204static void __setscheduler(struct rq *rq, struct task_struct *p,
3205			   const struct sched_attr *attr)
3206{
3207	__setscheduler_params(p, attr);
3208
3209	if (dl_prio(p->prio))
3210		p->sched_class = &dl_sched_class;
3211	else if (rt_prio(p->prio))
3212		p->sched_class = &rt_sched_class;
3213	else
3214		p->sched_class = &fair_sched_class;
3215}
3216
3217static void
3218__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3219{
3220	struct sched_dl_entity *dl_se = &p->dl;
3221
3222	attr->sched_priority = p->rt_priority;
3223	attr->sched_runtime = dl_se->dl_runtime;
3224	attr->sched_deadline = dl_se->dl_deadline;
3225	attr->sched_period = dl_se->dl_period;
3226	attr->sched_flags = dl_se->flags;
3227}
3228
3229/*
3230 * This function validates the new parameters of a -deadline task.
3231 * We ask for the deadline not being zero, and greater or equal
3232 * than the runtime, as well as the period of being zero or
3233 * greater than deadline. Furthermore, we have to be sure that
3234 * user parameters are above the internal resolution (1us); we
3235 * check sched_runtime only since it is always the smaller one.
3236 */
3237static bool
3238__checkparam_dl(const struct sched_attr *attr)
3239{
3240	return attr && attr->sched_deadline != 0 &&
3241		(attr->sched_period == 0 ||
3242		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3243		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3244		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3245}
3246
3247/*
3248 * check the target process has a UID that matches the current process's
3249 */
3250static bool check_same_owner(struct task_struct *p)
3251{
3252	const struct cred *cred = current_cred(), *pcred;
3253	bool match;
3254
3255	rcu_read_lock();
3256	pcred = __task_cred(p);
3257	match = (uid_eq(cred->euid, pcred->euid) ||
3258		 uid_eq(cred->euid, pcred->uid));
3259	rcu_read_unlock();
3260	return match;
3261}
3262
3263static int __sched_setscheduler(struct task_struct *p,
3264				const struct sched_attr *attr,
3265				bool user)
3266{
3267	int newprio = MAX_RT_PRIO - 1 - attr->sched_priority;
3268	int retval, oldprio, oldpolicy = -1, on_rq, running;
3269	int policy = attr->sched_policy;
3270	unsigned long flags;
3271	const struct sched_class *prev_class;
3272	struct rq *rq;
3273	int reset_on_fork;
3274
3275	/* may grab non-irq protected spin_locks */
3276	BUG_ON(in_interrupt());
3277recheck:
3278	/* double check policy once rq lock held */
3279	if (policy < 0) {
3280		reset_on_fork = p->sched_reset_on_fork;
3281		policy = oldpolicy = p->policy;
3282	} else {
3283		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3284
3285		if (policy != SCHED_DEADLINE &&
3286				policy != SCHED_FIFO && policy != SCHED_RR &&
3287				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3288				policy != SCHED_IDLE)
3289			return -EINVAL;
3290	}
3291
3292	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3293		return -EINVAL;
3294
3295	/*
3296	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3297	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3298	 * SCHED_BATCH and SCHED_IDLE is 0.
3299	 */
3300	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3301	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3302		return -EINVAL;
3303	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3304	    (rt_policy(policy) != (attr->sched_priority != 0)))
3305		return -EINVAL;
3306
3307	/*
3308	 * Allow unprivileged RT tasks to decrease priority:
3309	 */
3310	if (user && !capable(CAP_SYS_NICE)) {
3311		if (fair_policy(policy)) {
3312			if (attr->sched_nice < task_nice(p) &&
3313			    !can_nice(p, attr->sched_nice))
3314				return -EPERM;
3315		}
3316
3317		if (rt_policy(policy)) {
3318			unsigned long rlim_rtprio =
3319					task_rlimit(p, RLIMIT_RTPRIO);
3320
3321			/* can't set/change the rt policy */
3322			if (policy != p->policy && !rlim_rtprio)
3323				return -EPERM;
3324
3325			/* can't increase priority */
3326			if (attr->sched_priority > p->rt_priority &&
3327			    attr->sched_priority > rlim_rtprio)
3328				return -EPERM;
3329		}
3330
3331		/*
3332		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3333		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3334		 */
3335		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3336			if (!can_nice(p, task_nice(p)))
3337				return -EPERM;
3338		}
3339
3340		/* can't change other user's priorities */
3341		if (!check_same_owner(p))
3342			return -EPERM;
3343
3344		/* Normal users shall not reset the sched_reset_on_fork flag */
3345		if (p->sched_reset_on_fork && !reset_on_fork)
3346			return -EPERM;
3347	}
3348
3349	if (user) {
3350		retval = security_task_setscheduler(p);
3351		if (retval)
3352			return retval;
3353	}
3354
3355	/*
3356	 * make sure no PI-waiters arrive (or leave) while we are
3357	 * changing the priority of the task:
3358	 *
3359	 * To be able to change p->policy safely, the appropriate
3360	 * runqueue lock must be held.
3361	 */
3362	rq = task_rq_lock(p, &flags);
3363
3364	/*
3365	 * Changing the policy of the stop threads its a very bad idea
3366	 */
3367	if (p == rq->stop) {
3368		task_rq_unlock(rq, p, &flags);
3369		return -EINVAL;
3370	}
3371
3372	/*
3373	 * If not changing anything there's no need to proceed further,
3374	 * but store a possible modification of reset_on_fork.
3375	 */
3376	if (unlikely(policy == p->policy)) {
3377		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3378			goto change;
3379		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3380			goto change;
3381		if (dl_policy(policy))
3382			goto change;
3383
3384		p->sched_reset_on_fork = reset_on_fork;
3385		task_rq_unlock(rq, p, &flags);
3386		return 0;
3387	}
3388change:
3389
3390	if (user) {
3391#ifdef CONFIG_RT_GROUP_SCHED
3392		/*
3393		 * Do not allow realtime tasks into groups that have no runtime
3394		 * assigned.
3395		 */
3396		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3397				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3398				!task_group_is_autogroup(task_group(p))) {
3399			task_rq_unlock(rq, p, &flags);
3400			return -EPERM;
3401		}
3402#endif
3403#ifdef CONFIG_SMP
3404		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3405			cpumask_t *span = rq->rd->span;
3406
3407			/*
3408			 * Don't allow tasks with an affinity mask smaller than
3409			 * the entire root_domain to become SCHED_DEADLINE. We
3410			 * will also fail if there's no bandwidth available.
3411			 */
3412			if (!cpumask_subset(span, &p->cpus_allowed) ||
3413			    rq->rd->dl_bw.bw == 0) {
3414				task_rq_unlock(rq, p, &flags);
3415				return -EPERM;
3416			}
3417		}
3418#endif
3419	}
3420
3421	/* recheck policy now with rq lock held */
3422	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3423		policy = oldpolicy = -1;
3424		task_rq_unlock(rq, p, &flags);
3425		goto recheck;
3426	}
3427
3428	/*
3429	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3430	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3431	 * is available.
3432	 */
3433	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3434		task_rq_unlock(rq, p, &flags);
3435		return -EBUSY;
3436	}
3437
3438	p->sched_reset_on_fork = reset_on_fork;
3439	oldprio = p->prio;
3440
3441	/*
3442	 * Special case for priority boosted tasks.
3443	 *
3444	 * If the new priority is lower or equal (user space view)
3445	 * than the current (boosted) priority, we just store the new
3446	 * normal parameters and do not touch the scheduler class and
3447	 * the runqueue. This will be done when the task deboost
3448	 * itself.
3449	 */
3450	if (rt_mutex_check_prio(p, newprio)) {
3451		__setscheduler_params(p, attr);
3452		task_rq_unlock(rq, p, &flags);
3453		return 0;
3454	}
3455
3456	on_rq = p->on_rq;
3457	running = task_current(rq, p);
3458	if (on_rq)
3459		dequeue_task(rq, p, 0);
3460	if (running)
3461		p->sched_class->put_prev_task(rq, p);
3462
3463	prev_class = p->sched_class;
3464	__setscheduler(rq, p, attr);
3465
3466	if (running)
3467		p->sched_class->set_curr_task(rq);
3468	if (on_rq) {
3469		/*
3470		 * We enqueue to tail when the priority of a task is
3471		 * increased (user space view).
3472		 */
3473		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3474	}
3475
3476	check_class_changed(rq, p, prev_class, oldprio);
3477	task_rq_unlock(rq, p, &flags);
3478
3479	rt_mutex_adjust_pi(p);
3480
3481	return 0;
3482}
3483
3484static int _sched_setscheduler(struct task_struct *p, int policy,
3485			       const struct sched_param *param, bool check)
3486{
3487	struct sched_attr attr = {
3488		.sched_policy   = policy,
3489		.sched_priority = param->sched_priority,
3490		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3491	};
3492
3493	/*
3494	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3495	 */
3496	if (policy & SCHED_RESET_ON_FORK) {
3497		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3498		policy &= ~SCHED_RESET_ON_FORK;
3499		attr.sched_policy = policy;
3500	}
3501
3502	return __sched_setscheduler(p, &attr, check);
3503}
3504/**
3505 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3506 * @p: the task in question.
3507 * @policy: new policy.
3508 * @param: structure containing the new RT priority.
3509 *
3510 * Return: 0 on success. An error code otherwise.
3511 *
3512 * NOTE that the task may be already dead.
3513 */
3514int sched_setscheduler(struct task_struct *p, int policy,
3515		       const struct sched_param *param)
3516{
3517	return _sched_setscheduler(p, policy, param, true);
3518}
3519EXPORT_SYMBOL_GPL(sched_setscheduler);
3520
3521int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3522{
3523	return __sched_setscheduler(p, attr, true);
3524}
3525EXPORT_SYMBOL_GPL(sched_setattr);
3526
3527/**
3528 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3529 * @p: the task in question.
3530 * @policy: new policy.
3531 * @param: structure containing the new RT priority.
3532 *
3533 * Just like sched_setscheduler, only don't bother checking if the
3534 * current context has permission.  For example, this is needed in
3535 * stop_machine(): we create temporary high priority worker threads,
3536 * but our caller might not have that capability.
3537 *
3538 * Return: 0 on success. An error code otherwise.
3539 */
3540int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3541			       const struct sched_param *param)
3542{
3543	return _sched_setscheduler(p, policy, param, false);
3544}
3545
3546static int
3547do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3548{
3549	struct sched_param lparam;
3550	struct task_struct *p;
3551	int retval;
3552
3553	if (!param || pid < 0)
3554		return -EINVAL;
3555	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3556		return -EFAULT;
3557
3558	rcu_read_lock();
3559	retval = -ESRCH;
3560	p = find_process_by_pid(pid);
3561	if (p != NULL)
3562		retval = sched_setscheduler(p, policy, &lparam);
3563	rcu_read_unlock();
3564
3565	return retval;
3566}
3567
3568/*
3569 * Mimics kernel/events/core.c perf_copy_attr().
3570 */
3571static int sched_copy_attr(struct sched_attr __user *uattr,
3572			   struct sched_attr *attr)
3573{
3574	u32 size;
3575	int ret;
3576
3577	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3578		return -EFAULT;
3579
3580	/*
3581	 * zero the full structure, so that a short copy will be nice.
3582	 */
3583	memset(attr, 0, sizeof(*attr));
3584
3585	ret = get_user(size, &uattr->size);
3586	if (ret)
3587		return ret;
3588
3589	if (size > PAGE_SIZE)	/* silly large */
3590		goto err_size;
3591
3592	if (!size)		/* abi compat */
3593		size = SCHED_ATTR_SIZE_VER0;
3594
3595	if (size < SCHED_ATTR_SIZE_VER0)
3596		goto err_size;
3597
3598	/*
3599	 * If we're handed a bigger struct than we know of,
3600	 * ensure all the unknown bits are 0 - i.e. new
3601	 * user-space does not rely on any kernel feature
3602	 * extensions we dont know about yet.
3603	 */
3604	if (size > sizeof(*attr)) {
3605		unsigned char __user *addr;
3606		unsigned char __user *end;
3607		unsigned char val;
3608
3609		addr = (void __user *)uattr + sizeof(*attr);
3610		end  = (void __user *)uattr + size;
3611
3612		for (; addr < end; addr++) {
3613			ret = get_user(val, addr);
3614			if (ret)
3615				return ret;
3616			if (val)
3617				goto err_size;
3618		}
3619		size = sizeof(*attr);
3620	}
3621
3622	ret = copy_from_user(attr, uattr, size);
3623	if (ret)
3624		return -EFAULT;
3625
3626	/*
3627	 * XXX: do we want to be lenient like existing syscalls; or do we want
3628	 * to be strict and return an error on out-of-bounds values?
3629	 */
3630	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3631
3632out:
3633	return ret;
3634
3635err_size:
3636	put_user(sizeof(*attr), &uattr->size);
3637	ret = -E2BIG;
3638	goto out;
3639}
3640
3641/**
3642 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3643 * @pid: the pid in question.
3644 * @policy: new policy.
3645 * @param: structure containing the new RT priority.
3646 *
3647 * Return: 0 on success. An error code otherwise.
3648 */
3649SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3650		struct sched_param __user *, param)
3651{
3652	/* negative values for policy are not valid */
3653	if (policy < 0)
3654		return -EINVAL;
3655
3656	return do_sched_setscheduler(pid, policy, param);
3657}
3658
3659/**
3660 * sys_sched_setparam - set/change the RT priority of a thread
3661 * @pid: the pid in question.
3662 * @param: structure containing the new RT priority.
3663 *
3664 * Return: 0 on success. An error code otherwise.
3665 */
3666SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3667{
3668	return do_sched_setscheduler(pid, -1, param);
3669}
3670
3671/**
3672 * sys_sched_setattr - same as above, but with extended sched_attr
3673 * @pid: the pid in question.
3674 * @uattr: structure containing the extended parameters.
3675 */
3676SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3677{
3678	struct sched_attr attr;
3679	struct task_struct *p;
3680	int retval;
3681
3682	if (!uattr || pid < 0)
3683		return -EINVAL;
3684
3685	if (sched_copy_attr(uattr, &attr))
3686		return -EFAULT;
3687
3688	rcu_read_lock();
3689	retval = -ESRCH;
3690	p = find_process_by_pid(pid);
3691	if (p != NULL)
3692		retval = sched_setattr(p, &attr);
3693	rcu_read_unlock();
3694
3695	return retval;
3696}
3697
3698/**
3699 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3700 * @pid: the pid in question.
3701 *
3702 * Return: On success, the policy of the thread. Otherwise, a negative error
3703 * code.
3704 */
3705SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3706{
3707	struct task_struct *p;
3708	int retval;
3709
3710	if (pid < 0)
3711		return -EINVAL;
3712
3713	retval = -ESRCH;
3714	rcu_read_lock();
3715	p = find_process_by_pid(pid);
3716	if (p) {
3717		retval = security_task_getscheduler(p);
3718		if (!retval)
3719			retval = p->policy
3720				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3721	}
3722	rcu_read_unlock();
3723	return retval;
3724}
3725
3726/**
3727 * sys_sched_getparam - get the RT priority of a thread
3728 * @pid: the pid in question.
3729 * @param: structure containing the RT priority.
3730 *
3731 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3732 * code.
3733 */
3734SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3735{
3736	struct sched_param lp;
3737	struct task_struct *p;
3738	int retval;
3739
3740	if (!param || pid < 0)
3741		return -EINVAL;
3742
3743	rcu_read_lock();
3744	p = find_process_by_pid(pid);
3745	retval = -ESRCH;
3746	if (!p)
3747		goto out_unlock;
3748
3749	retval = security_task_getscheduler(p);
3750	if (retval)
3751		goto out_unlock;
3752
3753	if (task_has_dl_policy(p)) {
3754		retval = -EINVAL;
3755		goto out_unlock;
3756	}
3757	lp.sched_priority = p->rt_priority;
3758	rcu_read_unlock();
3759
3760	/*
3761	 * This one might sleep, we cannot do it with a spinlock held ...
3762	 */
3763	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764
3765	return retval;
3766
3767out_unlock:
3768	rcu_read_unlock();
3769	return retval;
3770}
3771
3772static int sched_read_attr(struct sched_attr __user *uattr,
3773			   struct sched_attr *attr,
3774			   unsigned int usize)
3775{
3776	int ret;
3777
3778	if (!access_ok(VERIFY_WRITE, uattr, usize))
3779		return -EFAULT;
3780
3781	/*
3782	 * If we're handed a smaller struct than we know of,
3783	 * ensure all the unknown bits are 0 - i.e. old
3784	 * user-space does not get uncomplete information.
3785	 */
3786	if (usize < sizeof(*attr)) {
3787		unsigned char *addr;
3788		unsigned char *end;
3789
3790		addr = (void *)attr + usize;
3791		end  = (void *)attr + sizeof(*attr);
3792
3793		for (; addr < end; addr++) {
3794			if (*addr)
3795				goto err_size;
3796		}
3797
3798		attr->size = usize;
3799	}
3800
3801	ret = copy_to_user(uattr, attr, usize);
3802	if (ret)
3803		return -EFAULT;
3804
3805out:
3806	return ret;
3807
3808err_size:
3809	ret = -E2BIG;
3810	goto out;
3811}
3812
3813/**
3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3815 * @pid: the pid in question.
3816 * @uattr: structure containing the extended parameters.
3817 * @size: sizeof(attr) for fwd/bwd comp.
3818 */
3819SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3820		unsigned int, size)
3821{
3822	struct sched_attr attr = {
3823		.size = sizeof(struct sched_attr),
3824	};
3825	struct task_struct *p;
3826	int retval;
3827
3828	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3829	    size < SCHED_ATTR_SIZE_VER0)
3830		return -EINVAL;
3831
3832	rcu_read_lock();
3833	p = find_process_by_pid(pid);
3834	retval = -ESRCH;
3835	if (!p)
3836		goto out_unlock;
3837
3838	retval = security_task_getscheduler(p);
3839	if (retval)
3840		goto out_unlock;
3841
3842	attr.sched_policy = p->policy;
3843	if (p->sched_reset_on_fork)
3844		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3845	if (task_has_dl_policy(p))
3846		__getparam_dl(p, &attr);
3847	else if (task_has_rt_policy(p))
3848		attr.sched_priority = p->rt_priority;
3849	else
3850		attr.sched_nice = task_nice(p);
3851
3852	rcu_read_unlock();
3853
3854	retval = sched_read_attr(uattr, &attr, size);
3855	return retval;
3856
3857out_unlock:
3858	rcu_read_unlock();
3859	return retval;
3860}
3861
3862long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3863{
3864	cpumask_var_t cpus_allowed, new_mask;
3865	struct task_struct *p;
3866	int retval;
3867
3868	rcu_read_lock();
3869
3870	p = find_process_by_pid(pid);
3871	if (!p) {
3872		rcu_read_unlock();
3873		return -ESRCH;
3874	}
3875
3876	/* Prevent p going away */
3877	get_task_struct(p);
3878	rcu_read_unlock();
3879
3880	if (p->flags & PF_NO_SETAFFINITY) {
3881		retval = -EINVAL;
3882		goto out_put_task;
3883	}
3884	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3885		retval = -ENOMEM;
3886		goto out_put_task;
3887	}
3888	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3889		retval = -ENOMEM;
3890		goto out_free_cpus_allowed;
3891	}
3892	retval = -EPERM;
3893	if (!check_same_owner(p)) {
3894		rcu_read_lock();
3895		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3896			rcu_read_unlock();
3897			goto out_unlock;
3898		}
3899		rcu_read_unlock();
3900	}
3901
3902	retval = security_task_setscheduler(p);
3903	if (retval)
3904		goto out_unlock;
3905
3906
3907	cpuset_cpus_allowed(p, cpus_allowed);
3908	cpumask_and(new_mask, in_mask, cpus_allowed);
3909
3910	/*
3911	 * Since bandwidth control happens on root_domain basis,
3912	 * if admission test is enabled, we only admit -deadline
3913	 * tasks allowed to run on all the CPUs in the task's
3914	 * root_domain.
3915	 */
3916#ifdef CONFIG_SMP
3917	if (task_has_dl_policy(p)) {
3918		const struct cpumask *span = task_rq(p)->rd->span;
3919
3920		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3921			retval = -EBUSY;
3922			goto out_unlock;
3923		}
3924	}
3925#endif
3926again:
3927	retval = set_cpus_allowed_ptr(p, new_mask);
3928
3929	if (!retval) {
3930		cpuset_cpus_allowed(p, cpus_allowed);
3931		if (!cpumask_subset(new_mask, cpus_allowed)) {
3932			/*
3933			 * We must have raced with a concurrent cpuset
3934			 * update. Just reset the cpus_allowed to the
3935			 * cpuset's cpus_allowed
3936			 */
3937			cpumask_copy(new_mask, cpus_allowed);
3938			goto again;
3939		}
3940	}
3941out_unlock:
3942	free_cpumask_var(new_mask);
3943out_free_cpus_allowed:
3944	free_cpumask_var(cpus_allowed);
3945out_put_task:
3946	put_task_struct(p);
3947	return retval;
3948}
3949
3950static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3951			     struct cpumask *new_mask)
3952{
3953	if (len < cpumask_size())
3954		cpumask_clear(new_mask);
3955	else if (len > cpumask_size())
3956		len = cpumask_size();
3957
3958	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3959}
3960
3961/**
3962 * sys_sched_setaffinity - set the cpu affinity of a process
3963 * @pid: pid of the process
3964 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3965 * @user_mask_ptr: user-space pointer to the new cpu mask
3966 *
3967 * Return: 0 on success. An error code otherwise.
3968 */
3969SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3970		unsigned long __user *, user_mask_ptr)
3971{
3972	cpumask_var_t new_mask;
3973	int retval;
3974
3975	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3976		return -ENOMEM;
3977
3978	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3979	if (retval == 0)
3980		retval = sched_setaffinity(pid, new_mask);
3981	free_cpumask_var(new_mask);
3982	return retval;
3983}
3984
3985long sched_getaffinity(pid_t pid, struct cpumask *mask)
3986{
3987	struct task_struct *p;
3988	unsigned long flags;
3989	int retval;
3990
3991	rcu_read_lock();
3992
3993	retval = -ESRCH;
3994	p = find_process_by_pid(pid);
3995	if (!p)
3996		goto out_unlock;
3997
3998	retval = security_task_getscheduler(p);
3999	if (retval)
4000		goto out_unlock;
4001
4002	raw_spin_lock_irqsave(&p->pi_lock, flags);
4003	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4004	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4005
4006out_unlock:
4007	rcu_read_unlock();
4008
4009	return retval;
4010}
4011
4012/**
4013 * sys_sched_getaffinity - get the cpu affinity of a process
4014 * @pid: pid of the process
4015 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4016 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4017 *
4018 * Return: 0 on success. An error code otherwise.
4019 */
4020SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4021		unsigned long __user *, user_mask_ptr)
4022{
4023	int ret;
4024	cpumask_var_t mask;
4025
4026	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4027		return -EINVAL;
4028	if (len & (sizeof(unsigned long)-1))
4029		return -EINVAL;
4030
4031	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4032		return -ENOMEM;
4033
4034	ret = sched_getaffinity(pid, mask);
4035	if (ret == 0) {
4036		size_t retlen = min_t(size_t, len, cpumask_size());
4037
4038		if (copy_to_user(user_mask_ptr, mask, retlen))
4039			ret = -EFAULT;
4040		else
4041			ret = retlen;
4042	}
4043	free_cpumask_var(mask);
4044
4045	return ret;
4046}
4047
4048/**
4049 * sys_sched_yield - yield the current processor to other threads.
4050 *
4051 * This function yields the current CPU to other tasks. If there are no
4052 * other threads running on this CPU then this function will return.
4053 *
4054 * Return: 0.
4055 */
4056SYSCALL_DEFINE0(sched_yield)
4057{
4058	struct rq *rq = this_rq_lock();
4059
4060	schedstat_inc(rq, yld_count);
4061	current->sched_class->yield_task(rq);
4062
4063	/*
4064	 * Since we are going to call schedule() anyway, there's
4065	 * no need to preempt or enable interrupts:
4066	 */
4067	__release(rq->lock);
4068	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4069	do_raw_spin_unlock(&rq->lock);
4070	sched_preempt_enable_no_resched();
4071
4072	schedule();
4073
4074	return 0;
4075}
4076
4077static void __cond_resched(void)
4078{
4079	__preempt_count_add(PREEMPT_ACTIVE);
4080	__schedule();
4081	__preempt_count_sub(PREEMPT_ACTIVE);
4082}
4083
4084int __sched _cond_resched(void)
4085{
4086	if (should_resched()) {
4087		__cond_resched();
4088		return 1;
4089	}
4090	return 0;
4091}
4092EXPORT_SYMBOL(_cond_resched);
4093
4094/*
4095 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4096 * call schedule, and on return reacquire the lock.
4097 *
4098 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4099 * operations here to prevent schedule() from being called twice (once via
4100 * spin_unlock(), once by hand).
4101 */
4102int __cond_resched_lock(spinlock_t *lock)
4103{
4104	int resched = should_resched();
4105	int ret = 0;
4106
4107	lockdep_assert_held(lock);
4108
4109	if (spin_needbreak(lock) || resched) {
4110		spin_unlock(lock);
4111		if (resched)
4112			__cond_resched();
4113		else
4114			cpu_relax();
4115		ret = 1;
4116		spin_lock(lock);
4117	}
4118	return ret;
4119}
4120EXPORT_SYMBOL(__cond_resched_lock);
4121
4122int __sched __cond_resched_softirq(void)
4123{
4124	BUG_ON(!in_softirq());
4125
4126	if (should_resched()) {
4127		local_bh_enable();
4128		__cond_resched();
4129		local_bh_disable();
4130		return 1;
4131	}
4132	return 0;
4133}
4134EXPORT_SYMBOL(__cond_resched_softirq);
4135
4136/**
4137 * yield - yield the current processor to other threads.
4138 *
4139 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4140 *
4141 * The scheduler is at all times free to pick the calling task as the most
4142 * eligible task to run, if removing the yield() call from your code breaks
4143 * it, its already broken.
4144 *
4145 * Typical broken usage is:
4146 *
4147 * while (!event)
4148 * 	yield();
4149 *
4150 * where one assumes that yield() will let 'the other' process run that will
4151 * make event true. If the current task is a SCHED_FIFO task that will never
4152 * happen. Never use yield() as a progress guarantee!!
4153 *
4154 * If you want to use yield() to wait for something, use wait_event().
4155 * If you want to use yield() to be 'nice' for others, use cond_resched().
4156 * If you still want to use yield(), do not!
4157 */
4158void __sched yield(void)
4159{
4160	set_current_state(TASK_RUNNING);
4161	sys_sched_yield();
4162}
4163EXPORT_SYMBOL(yield);
4164
4165/**
4166 * yield_to - yield the current processor to another thread in
4167 * your thread group, or accelerate that thread toward the
4168 * processor it's on.
4169 * @p: target task
4170 * @preempt: whether task preemption is allowed or not
4171 *
4172 * It's the caller's job to ensure that the target task struct
4173 * can't go away on us before we can do any checks.
4174 *
4175 * Return:
4176 *	true (>0) if we indeed boosted the target task.
4177 *	false (0) if we failed to boost the target.
4178 *	-ESRCH if there's no task to yield to.
4179 */
4180bool __sched yield_to(struct task_struct *p, bool preempt)
4181{
4182	struct task_struct *curr = current;
4183	struct rq *rq, *p_rq;
4184	unsigned long flags;
4185	int yielded = 0;
4186
4187	local_irq_save(flags);
4188	rq = this_rq();
4189
4190again:
4191	p_rq = task_rq(p);
4192	/*
4193	 * If we're the only runnable task on the rq and target rq also
4194	 * has only one task, there's absolutely no point in yielding.
4195	 */
4196	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4197		yielded = -ESRCH;
4198		goto out_irq;
4199	}
4200
4201	double_rq_lock(rq, p_rq);
4202	if (task_rq(p) != p_rq) {
4203		double_rq_unlock(rq, p_rq);
4204		goto again;
4205	}
4206
4207	if (!curr->sched_class->yield_to_task)
4208		goto out_unlock;
4209
4210	if (curr->sched_class != p->sched_class)
4211		goto out_unlock;
4212
4213	if (task_running(p_rq, p) || p->state)
4214		goto out_unlock;
4215
4216	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4217	if (yielded) {
4218		schedstat_inc(rq, yld_count);
4219		/*
4220		 * Make p's CPU reschedule; pick_next_entity takes care of
4221		 * fairness.
4222		 */
4223		if (preempt && rq != p_rq)
4224			resched_task(p_rq->curr);
4225	}
4226
4227out_unlock:
4228	double_rq_unlock(rq, p_rq);
4229out_irq:
4230	local_irq_restore(flags);
4231
4232	if (yielded > 0)
4233		schedule();
4234
4235	return yielded;
4236}
4237EXPORT_SYMBOL_GPL(yield_to);
4238
4239/*
4240 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4241 * that process accounting knows that this is a task in IO wait state.
4242 */
4243void __sched io_schedule(void)
4244{
4245	struct rq *rq = raw_rq();
4246
4247	delayacct_blkio_start();
4248	atomic_inc(&rq->nr_iowait);
4249	blk_flush_plug(current);
4250	current->in_iowait = 1;
4251	schedule();
4252	current->in_iowait = 0;
4253	atomic_dec(&rq->nr_iowait);
4254	delayacct_blkio_end();
4255}
4256EXPORT_SYMBOL(io_schedule);
4257
4258long __sched io_schedule_timeout(long timeout)
4259{
4260	struct rq *rq = raw_rq();
4261	long ret;
4262
4263	delayacct_blkio_start();
4264	atomic_inc(&rq->nr_iowait);
4265	blk_flush_plug(current);
4266	current->in_iowait = 1;
4267	ret = schedule_timeout(timeout);
4268	current->in_iowait = 0;
4269	atomic_dec(&rq->nr_iowait);
4270	delayacct_blkio_end();
4271	return ret;
4272}
4273
4274/**
4275 * sys_sched_get_priority_max - return maximum RT priority.
4276 * @policy: scheduling class.
4277 *
4278 * Return: On success, this syscall returns the maximum
4279 * rt_priority that can be used by a given scheduling class.
4280 * On failure, a negative error code is returned.
4281 */
4282SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4283{
4284	int ret = -EINVAL;
4285
4286	switch (policy) {
4287	case SCHED_FIFO:
4288	case SCHED_RR:
4289		ret = MAX_USER_RT_PRIO-1;
4290		break;
4291	case SCHED_DEADLINE:
4292	case SCHED_NORMAL:
4293	case SCHED_BATCH:
4294	case SCHED_IDLE:
4295		ret = 0;
4296		break;
4297	}
4298	return ret;
4299}
4300
4301/**
4302 * sys_sched_get_priority_min - return minimum RT priority.
4303 * @policy: scheduling class.
4304 *
4305 * Return: On success, this syscall returns the minimum
4306 * rt_priority that can be used by a given scheduling class.
4307 * On failure, a negative error code is returned.
4308 */
4309SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4310{
4311	int ret = -EINVAL;
4312
4313	switch (policy) {
4314	case SCHED_FIFO:
4315	case SCHED_RR:
4316		ret = 1;
4317		break;
4318	case SCHED_DEADLINE:
4319	case SCHED_NORMAL:
4320	case SCHED_BATCH:
4321	case SCHED_IDLE:
4322		ret = 0;
4323	}
4324	return ret;
4325}
4326
4327/**
4328 * sys_sched_rr_get_interval - return the default timeslice of a process.
4329 * @pid: pid of the process.
4330 * @interval: userspace pointer to the timeslice value.
4331 *
4332 * this syscall writes the default timeslice value of a given process
4333 * into the user-space timespec buffer. A value of '0' means infinity.
4334 *
4335 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4336 * an error code.
4337 */
4338SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4339		struct timespec __user *, interval)
4340{
4341	struct task_struct *p;
4342	unsigned int time_slice;
4343	unsigned long flags;
4344	struct rq *rq;
4345	int retval;
4346	struct timespec t;
4347
4348	if (pid < 0)
4349		return -EINVAL;
4350
4351	retval = -ESRCH;
4352	rcu_read_lock();
4353	p = find_process_by_pid(pid);
4354	if (!p)
4355		goto out_unlock;
4356
4357	retval = security_task_getscheduler(p);
4358	if (retval)
4359		goto out_unlock;
4360
4361	rq = task_rq_lock(p, &flags);
4362	time_slice = 0;
4363	if (p->sched_class->get_rr_interval)
4364		time_slice = p->sched_class->get_rr_interval(rq, p);
4365	task_rq_unlock(rq, p, &flags);
4366
4367	rcu_read_unlock();
4368	jiffies_to_timespec(time_slice, &t);
4369	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4370	return retval;
4371
4372out_unlock:
4373	rcu_read_unlock();
4374	return retval;
4375}
4376
4377static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4378
4379void sched_show_task(struct task_struct *p)
4380{
4381	unsigned long free = 0;
4382	int ppid;
4383	unsigned state;
4384
4385	state = p->state ? __ffs(p->state) + 1 : 0;
4386	printk(KERN_INFO "%-15.15s %c", p->comm,
4387		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4388#if BITS_PER_LONG == 32
4389	if (state == TASK_RUNNING)
4390		printk(KERN_CONT " running  ");
4391	else
4392		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4393#else
4394	if (state == TASK_RUNNING)
4395		printk(KERN_CONT "  running task    ");
4396	else
4397		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4398#endif
4399#ifdef CONFIG_DEBUG_STACK_USAGE
4400	free = stack_not_used(p);
4401#endif
4402	rcu_read_lock();
4403	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4404	rcu_read_unlock();
4405	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4406		task_pid_nr(p), ppid,
4407		(unsigned long)task_thread_info(p)->flags);
4408
4409	print_worker_info(KERN_INFO, p);
4410	show_stack(p, NULL);
4411}
4412
4413void show_state_filter(unsigned long state_filter)
4414{
4415	struct task_struct *g, *p;
4416
4417#if BITS_PER_LONG == 32
4418	printk(KERN_INFO
4419		"  task                PC stack   pid father\n");
4420#else
4421	printk(KERN_INFO
4422		"  task                        PC stack   pid father\n");
4423#endif
4424	rcu_read_lock();
4425	do_each_thread(g, p) {
4426		/*
4427		 * reset the NMI-timeout, listing all files on a slow
4428		 * console might take a lot of time:
4429		 */
4430		touch_nmi_watchdog();
4431		if (!state_filter || (p->state & state_filter))
4432			sched_show_task(p);
4433	} while_each_thread(g, p);
4434
4435	touch_all_softlockup_watchdogs();
4436
4437#ifdef CONFIG_SCHED_DEBUG
4438	sysrq_sched_debug_show();
4439#endif
4440	rcu_read_unlock();
4441	/*
4442	 * Only show locks if all tasks are dumped:
4443	 */
4444	if (!state_filter)
4445		debug_show_all_locks();
4446}
4447
4448void init_idle_bootup_task(struct task_struct *idle)
4449{
4450	idle->sched_class = &idle_sched_class;
4451}
4452
4453/**
4454 * init_idle - set up an idle thread for a given CPU
4455 * @idle: task in question
4456 * @cpu: cpu the idle task belongs to
4457 *
4458 * NOTE: this function does not set the idle thread's NEED_RESCHED
4459 * flag, to make booting more robust.
4460 */
4461void init_idle(struct task_struct *idle, int cpu)
4462{
4463	struct rq *rq = cpu_rq(cpu);
4464	unsigned long flags;
4465
4466	raw_spin_lock_irqsave(&rq->lock, flags);
4467
4468	__sched_fork(0, idle);
4469	idle->state = TASK_RUNNING;
4470	idle->se.exec_start = sched_clock();
4471
4472	do_set_cpus_allowed(idle, cpumask_of(cpu));
4473	/*
4474	 * We're having a chicken and egg problem, even though we are
4475	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4476	 * lockdep check in task_group() will fail.
4477	 *
4478	 * Similar case to sched_fork(). / Alternatively we could
4479	 * use task_rq_lock() here and obtain the other rq->lock.
4480	 *
4481	 * Silence PROVE_RCU
4482	 */
4483	rcu_read_lock();
4484	__set_task_cpu(idle, cpu);
4485	rcu_read_unlock();
4486
4487	rq->curr = rq->idle = idle;
4488	idle->on_rq = 1;
4489#if defined(CONFIG_SMP)
4490	idle->on_cpu = 1;
4491#endif
4492	raw_spin_unlock_irqrestore(&rq->lock, flags);
4493
4494	/* Set the preempt count _outside_ the spinlocks! */
4495	init_idle_preempt_count(idle, cpu);
4496
4497	/*
4498	 * The idle tasks have their own, simple scheduling class:
4499	 */
4500	idle->sched_class = &idle_sched_class;
4501	ftrace_graph_init_idle_task(idle, cpu);
4502	vtime_init_idle(idle, cpu);
4503#if defined(CONFIG_SMP)
4504	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4505#endif
4506}
4507
4508#ifdef CONFIG_SMP
4509void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4510{
4511	if (p->sched_class && p->sched_class->set_cpus_allowed)
4512		p->sched_class->set_cpus_allowed(p, new_mask);
4513
4514	cpumask_copy(&p->cpus_allowed, new_mask);
4515	p->nr_cpus_allowed = cpumask_weight(new_mask);
4516}
4517
4518/*
4519 * This is how migration works:
4520 *
4521 * 1) we invoke migration_cpu_stop() on the target CPU using
4522 *    stop_one_cpu().
4523 * 2) stopper starts to run (implicitly forcing the migrated thread
4524 *    off the CPU)
4525 * 3) it checks whether the migrated task is still in the wrong runqueue.
4526 * 4) if it's in the wrong runqueue then the migration thread removes
4527 *    it and puts it into the right queue.
4528 * 5) stopper completes and stop_one_cpu() returns and the migration
4529 *    is done.
4530 */
4531
4532/*
4533 * Change a given task's CPU affinity. Migrate the thread to a
4534 * proper CPU and schedule it away if the CPU it's executing on
4535 * is removed from the allowed bitmask.
4536 *
4537 * NOTE: the caller must have a valid reference to the task, the
4538 * task must not exit() & deallocate itself prematurely. The
4539 * call is not atomic; no spinlocks may be held.
4540 */
4541int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4542{
4543	unsigned long flags;
4544	struct rq *rq;
4545	unsigned int dest_cpu;
4546	int ret = 0;
4547
4548	rq = task_rq_lock(p, &flags);
4549
4550	if (cpumask_equal(&p->cpus_allowed, new_mask))
4551		goto out;
4552
4553	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4554		ret = -EINVAL;
4555		goto out;
4556	}
4557
4558	do_set_cpus_allowed(p, new_mask);
4559
4560	/* Can the task run on the task's current CPU? If so, we're done */
4561	if (cpumask_test_cpu(task_cpu(p), new_mask))
4562		goto out;
4563
4564	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4565	if (p->on_rq) {
4566		struct migration_arg arg = { p, dest_cpu };
4567		/* Need help from migration thread: drop lock and wait. */
4568		task_rq_unlock(rq, p, &flags);
4569		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4570		tlb_migrate_finish(p->mm);
4571		return 0;
4572	}
4573out:
4574	task_rq_unlock(rq, p, &flags);
4575
4576	return ret;
4577}
4578EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4579
4580/*
4581 * Move (not current) task off this cpu, onto dest cpu. We're doing
4582 * this because either it can't run here any more (set_cpus_allowed()
4583 * away from this CPU, or CPU going down), or because we're
4584 * attempting to rebalance this task on exec (sched_exec).
4585 *
4586 * So we race with normal scheduler movements, but that's OK, as long
4587 * as the task is no longer on this CPU.
4588 *
4589 * Returns non-zero if task was successfully migrated.
4590 */
4591static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4592{
4593	struct rq *rq_dest, *rq_src;
4594	int ret = 0;
4595
4596	if (unlikely(!cpu_active(dest_cpu)))
4597		return ret;
4598
4599	rq_src = cpu_rq(src_cpu);
4600	rq_dest = cpu_rq(dest_cpu);
4601
4602	raw_spin_lock(&p->pi_lock);
4603	double_rq_lock(rq_src, rq_dest);
4604	/* Already moved. */
4605	if (task_cpu(p) != src_cpu)
4606		goto done;
4607	/* Affinity changed (again). */
4608	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4609		goto fail;
4610
4611	/*
4612	 * If we're not on a rq, the next wake-up will ensure we're
4613	 * placed properly.
4614	 */
4615	if (p->on_rq) {
4616		dequeue_task(rq_src, p, 0);
4617		set_task_cpu(p, dest_cpu);
4618		enqueue_task(rq_dest, p, 0);
4619		check_preempt_curr(rq_dest, p, 0);
4620	}
4621done:
4622	ret = 1;
4623fail:
4624	double_rq_unlock(rq_src, rq_dest);
4625	raw_spin_unlock(&p->pi_lock);
4626	return ret;
4627}
4628
4629#ifdef CONFIG_NUMA_BALANCING
4630/* Migrate current task p to target_cpu */
4631int migrate_task_to(struct task_struct *p, int target_cpu)
4632{
4633	struct migration_arg arg = { p, target_cpu };
4634	int curr_cpu = task_cpu(p);
4635
4636	if (curr_cpu == target_cpu)
4637		return 0;
4638
4639	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4640		return -EINVAL;
4641
4642	/* TODO: This is not properly updating schedstats */
4643
4644	trace_sched_move_numa(p, curr_cpu, target_cpu);
4645	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4646}
4647
4648/*
4649 * Requeue a task on a given node and accurately track the number of NUMA
4650 * tasks on the runqueues
4651 */
4652void sched_setnuma(struct task_struct *p, int nid)
4653{
4654	struct rq *rq;
4655	unsigned long flags;
4656	bool on_rq, running;
4657
4658	rq = task_rq_lock(p, &flags);
4659	on_rq = p->on_rq;
4660	running = task_current(rq, p);
4661
4662	if (on_rq)
4663		dequeue_task(rq, p, 0);
4664	if (running)
4665		p->sched_class->put_prev_task(rq, p);
4666
4667	p->numa_preferred_nid = nid;
4668
4669	if (running)
4670		p->sched_class->set_curr_task(rq);
4671	if (on_rq)
4672		enqueue_task(rq, p, 0);
4673	task_rq_unlock(rq, p, &flags);
4674}
4675#endif
4676
4677/*
4678 * migration_cpu_stop - this will be executed by a highprio stopper thread
4679 * and performs thread migration by bumping thread off CPU then
4680 * 'pushing' onto another runqueue.
4681 */
4682static int migration_cpu_stop(void *data)
4683{
4684	struct migration_arg *arg = data;
4685
4686	/*
4687	 * The original target cpu might have gone down and we might
4688	 * be on another cpu but it doesn't matter.
4689	 */
4690	local_irq_disable();
4691	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4692	local_irq_enable();
4693	return 0;
4694}
4695
4696#ifdef CONFIG_HOTPLUG_CPU
4697
4698/*
4699 * Ensures that the idle task is using init_mm right before its cpu goes
4700 * offline.
4701 */
4702void idle_task_exit(void)
4703{
4704	struct mm_struct *mm = current->active_mm;
4705
4706	BUG_ON(cpu_online(smp_processor_id()));
4707
4708	if (mm != &init_mm)
4709		switch_mm(mm, &init_mm, current);
4710	mmdrop(mm);
4711}
4712
4713/*
4714 * Since this CPU is going 'away' for a while, fold any nr_active delta
4715 * we might have. Assumes we're called after migrate_tasks() so that the
4716 * nr_active count is stable.
4717 *
4718 * Also see the comment "Global load-average calculations".
4719 */
4720static void calc_load_migrate(struct rq *rq)
4721{
4722	long delta = calc_load_fold_active(rq);
4723	if (delta)
4724		atomic_long_add(delta, &calc_load_tasks);
4725}
4726
4727static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4728{
4729}
4730
4731static const struct sched_class fake_sched_class = {
4732	.put_prev_task = put_prev_task_fake,
4733};
4734
4735static struct task_struct fake_task = {
4736	/*
4737	 * Avoid pull_{rt,dl}_task()
4738	 */
4739	.prio = MAX_PRIO + 1,
4740	.sched_class = &fake_sched_class,
4741};
4742
4743/*
4744 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4745 * try_to_wake_up()->select_task_rq().
4746 *
4747 * Called with rq->lock held even though we'er in stop_machine() and
4748 * there's no concurrency possible, we hold the required locks anyway
4749 * because of lock validation efforts.
4750 */
4751static void migrate_tasks(unsigned int dead_cpu)
4752{
4753	struct rq *rq = cpu_rq(dead_cpu);
4754	struct task_struct *next, *stop = rq->stop;
4755	int dest_cpu;
4756
4757	/*
4758	 * Fudge the rq selection such that the below task selection loop
4759	 * doesn't get stuck on the currently eligible stop task.
4760	 *
4761	 * We're currently inside stop_machine() and the rq is either stuck
4762	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4763	 * either way we should never end up calling schedule() until we're
4764	 * done here.
4765	 */
4766	rq->stop = NULL;
4767
4768	/*
4769	 * put_prev_task() and pick_next_task() sched
4770	 * class method both need to have an up-to-date
4771	 * value of rq->clock[_task]
4772	 */
4773	update_rq_clock(rq);
4774
4775	for ( ; ; ) {
4776		/*
4777		 * There's this thread running, bail when that's the only
4778		 * remaining thread.
4779		 */
4780		if (rq->nr_running == 1)
4781			break;
4782
4783		next = pick_next_task(rq, &fake_task);
4784		BUG_ON(!next);
4785		next->sched_class->put_prev_task(rq, next);
4786
4787		/* Find suitable destination for @next, with force if needed. */
4788		dest_cpu = select_fallback_rq(dead_cpu, next);
4789		raw_spin_unlock(&rq->lock);
4790
4791		__migrate_task(next, dead_cpu, dest_cpu);
4792
4793		raw_spin_lock(&rq->lock);
4794	}
4795
4796	rq->stop = stop;
4797}
4798
4799#endif /* CONFIG_HOTPLUG_CPU */
4800
4801#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4802
4803static struct ctl_table sd_ctl_dir[] = {
4804	{
4805		.procname	= "sched_domain",
4806		.mode		= 0555,
4807	},
4808	{}
4809};
4810
4811static struct ctl_table sd_ctl_root[] = {
4812	{
4813		.procname	= "kernel",
4814		.mode		= 0555,
4815		.child		= sd_ctl_dir,
4816	},
4817	{}
4818};
4819
4820static struct ctl_table *sd_alloc_ctl_entry(int n)
4821{
4822	struct ctl_table *entry =
4823		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4824
4825	return entry;
4826}
4827
4828static void sd_free_ctl_entry(struct ctl_table **tablep)
4829{
4830	struct ctl_table *entry;
4831
4832	/*
4833	 * In the intermediate directories, both the child directory and
4834	 * procname are dynamically allocated and could fail but the mode
4835	 * will always be set. In the lowest directory the names are
4836	 * static strings and all have proc handlers.
4837	 */
4838	for (entry = *tablep; entry->mode; entry++) {
4839		if (entry->child)
4840			sd_free_ctl_entry(&entry->child);
4841		if (entry->proc_handler == NULL)
4842			kfree(entry->procname);
4843	}
4844
4845	kfree(*tablep);
4846	*tablep = NULL;
4847}
4848
4849static int min_load_idx = 0;
4850static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4851
4852static void
4853set_table_entry(struct ctl_table *entry,
4854		const char *procname, void *data, int maxlen,
4855		umode_t mode, proc_handler *proc_handler,
4856		bool load_idx)
4857{
4858	entry->procname = procname;
4859	entry->data = data;
4860	entry->maxlen = maxlen;
4861	entry->mode = mode;
4862	entry->proc_handler = proc_handler;
4863
4864	if (load_idx) {
4865		entry->extra1 = &min_load_idx;
4866		entry->extra2 = &max_load_idx;
4867	}
4868}
4869
4870static struct ctl_table *
4871sd_alloc_ctl_domain_table(struct sched_domain *sd)
4872{
4873	struct ctl_table *table = sd_alloc_ctl_entry(14);
4874
4875	if (table == NULL)
4876		return NULL;
4877
4878	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4879		sizeof(long), 0644, proc_doulongvec_minmax, false);
4880	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4881		sizeof(long), 0644, proc_doulongvec_minmax, false);
4882	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4883		sizeof(int), 0644, proc_dointvec_minmax, true);
4884	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4885		sizeof(int), 0644, proc_dointvec_minmax, true);
4886	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4887		sizeof(int), 0644, proc_dointvec_minmax, true);
4888	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4889		sizeof(int), 0644, proc_dointvec_minmax, true);
4890	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4891		sizeof(int), 0644, proc_dointvec_minmax, true);
4892	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4893		sizeof(int), 0644, proc_dointvec_minmax, false);
4894	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4895		sizeof(int), 0644, proc_dointvec_minmax, false);
4896	set_table_entry(&table[9], "cache_nice_tries",
4897		&sd->cache_nice_tries,
4898		sizeof(int), 0644, proc_dointvec_minmax, false);
4899	set_table_entry(&table[10], "flags", &sd->flags,
4900		sizeof(int), 0644, proc_dointvec_minmax, false);
4901	set_table_entry(&table[11], "max_newidle_lb_cost",
4902		&sd->max_newidle_lb_cost,
4903		sizeof(long), 0644, proc_doulongvec_minmax, false);
4904	set_table_entry(&table[12], "name", sd->name,
4905		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4906	/* &table[13] is terminator */
4907
4908	return table;
4909}
4910
4911static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4912{
4913	struct ctl_table *entry, *table;
4914	struct sched_domain *sd;
4915	int domain_num = 0, i;
4916	char buf[32];
4917
4918	for_each_domain(cpu, sd)
4919		domain_num++;
4920	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4921	if (table == NULL)
4922		return NULL;
4923
4924	i = 0;
4925	for_each_domain(cpu, sd) {
4926		snprintf(buf, 32, "domain%d", i);
4927		entry->procname = kstrdup(buf, GFP_KERNEL);
4928		entry->mode = 0555;
4929		entry->child = sd_alloc_ctl_domain_table(sd);
4930		entry++;
4931		i++;
4932	}
4933	return table;
4934}
4935
4936static struct ctl_table_header *sd_sysctl_header;
4937static void register_sched_domain_sysctl(void)
4938{
4939	int i, cpu_num = num_possible_cpus();
4940	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4941	char buf[32];
4942
4943	WARN_ON(sd_ctl_dir[0].child);
4944	sd_ctl_dir[0].child = entry;
4945
4946	if (entry == NULL)
4947		return;
4948
4949	for_each_possible_cpu(i) {
4950		snprintf(buf, 32, "cpu%d", i);
4951		entry->procname = kstrdup(buf, GFP_KERNEL);
4952		entry->mode = 0555;
4953		entry->child = sd_alloc_ctl_cpu_table(i);
4954		entry++;
4955	}
4956
4957	WARN_ON(sd_sysctl_header);
4958	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4959}
4960
4961/* may be called multiple times per register */
4962static void unregister_sched_domain_sysctl(void)
4963{
4964	if (sd_sysctl_header)
4965		unregister_sysctl_table(sd_sysctl_header);
4966	sd_sysctl_header = NULL;
4967	if (sd_ctl_dir[0].child)
4968		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4969}
4970#else
4971static void register_sched_domain_sysctl(void)
4972{
4973}
4974static void unregister_sched_domain_sysctl(void)
4975{
4976}
4977#endif
4978
4979static void set_rq_online(struct rq *rq)
4980{
4981	if (!rq->online) {
4982		const struct sched_class *class;
4983
4984		cpumask_set_cpu(rq->cpu, rq->rd->online);
4985		rq->online = 1;
4986
4987		for_each_class(class) {
4988			if (class->rq_online)
4989				class->rq_online(rq);
4990		}
4991	}
4992}
4993
4994static void set_rq_offline(struct rq *rq)
4995{
4996	if (rq->online) {
4997		const struct sched_class *class;
4998
4999		for_each_class(class) {
5000			if (class->rq_offline)
5001				class->rq_offline(rq);
5002		}
5003
5004		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5005		rq->online = 0;
5006	}
5007}
5008
5009/*
5010 * migration_call - callback that gets triggered when a CPU is added.
5011 * Here we can start up the necessary migration thread for the new CPU.
5012 */
5013static int
5014migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5015{
5016	int cpu = (long)hcpu;
5017	unsigned long flags;
5018	struct rq *rq = cpu_rq(cpu);
5019
5020	switch (action & ~CPU_TASKS_FROZEN) {
5021
5022	case CPU_UP_PREPARE:
5023		rq->calc_load_update = calc_load_update;
5024		break;
5025
5026	case CPU_ONLINE:
5027		/* Update our root-domain */
5028		raw_spin_lock_irqsave(&rq->lock, flags);
5029		if (rq->rd) {
5030			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5031
5032			set_rq_online(rq);
5033		}
5034		raw_spin_unlock_irqrestore(&rq->lock, flags);
5035		break;
5036
5037#ifdef CONFIG_HOTPLUG_CPU
5038	case CPU_DYING:
5039		sched_ttwu_pending();
5040		/* Update our root-domain */
5041		raw_spin_lock_irqsave(&rq->lock, flags);
5042		if (rq->rd) {
5043			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5044			set_rq_offline(rq);
5045		}
5046		migrate_tasks(cpu);
5047		BUG_ON(rq->nr_running != 1); /* the migration thread */
5048		raw_spin_unlock_irqrestore(&rq->lock, flags);
5049		break;
5050
5051	case CPU_DEAD:
5052		calc_load_migrate(rq);
5053		break;
5054#endif
5055	}
5056
5057	update_max_interval();
5058
5059	return NOTIFY_OK;
5060}
5061
5062/*
5063 * Register at high priority so that task migration (migrate_all_tasks)
5064 * happens before everything else.  This has to be lower priority than
5065 * the notifier in the perf_event subsystem, though.
5066 */
5067static struct notifier_block migration_notifier = {
5068	.notifier_call = migration_call,
5069	.priority = CPU_PRI_MIGRATION,
5070};
5071
5072static int sched_cpu_active(struct notifier_block *nfb,
5073				      unsigned long action, void *hcpu)
5074{
5075	switch (action & ~CPU_TASKS_FROZEN) {
5076	case CPU_STARTING:
5077	case CPU_DOWN_FAILED:
5078		set_cpu_active((long)hcpu, true);
5079		return NOTIFY_OK;
5080	default:
5081		return NOTIFY_DONE;
5082	}
5083}
5084
5085static int sched_cpu_inactive(struct notifier_block *nfb,
5086					unsigned long action, void *hcpu)
5087{
5088	unsigned long flags;
5089	long cpu = (long)hcpu;
5090
5091	switch (action & ~CPU_TASKS_FROZEN) {
5092	case CPU_DOWN_PREPARE:
5093		set_cpu_active(cpu, false);
5094
5095		/* explicitly allow suspend */
5096		if (!(action & CPU_TASKS_FROZEN)) {
5097			struct dl_bw *dl_b = dl_bw_of(cpu);
5098			bool overflow;
5099			int cpus;
5100
5101			raw_spin_lock_irqsave(&dl_b->lock, flags);
5102			cpus = dl_bw_cpus(cpu);
5103			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5104			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5105
5106			if (overflow)
5107				return notifier_from_errno(-EBUSY);
5108		}
5109		return NOTIFY_OK;
5110	}
5111
5112	return NOTIFY_DONE;
5113}
5114
5115static int __init migration_init(void)
5116{
5117	void *cpu = (void *)(long)smp_processor_id();
5118	int err;
5119
5120	/* Initialize migration for the boot CPU */
5121	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5122	BUG_ON(err == NOTIFY_BAD);
5123	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5124	register_cpu_notifier(&migration_notifier);
5125
5126	/* Register cpu active notifiers */
5127	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5128	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5129
5130	return 0;
5131}
5132early_initcall(migration_init);
5133#endif
5134
5135#ifdef CONFIG_SMP
5136
5137static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5138
5139#ifdef CONFIG_SCHED_DEBUG
5140
5141static __read_mostly int sched_debug_enabled;
5142
5143static int __init sched_debug_setup(char *str)
5144{
5145	sched_debug_enabled = 1;
5146
5147	return 0;
5148}
5149early_param("sched_debug", sched_debug_setup);
5150
5151static inline bool sched_debug(void)
5152{
5153	return sched_debug_enabled;
5154}
5155
5156static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5157				  struct cpumask *groupmask)
5158{
5159	struct sched_group *group = sd->groups;
5160	char str[256];
5161
5162	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5163	cpumask_clear(groupmask);
5164
5165	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5166
5167	if (!(sd->flags & SD_LOAD_BALANCE)) {
5168		printk("does not load-balance\n");
5169		if (sd->parent)
5170			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5171					" has parent");
5172		return -1;
5173	}
5174
5175	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5176
5177	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5178		printk(KERN_ERR "ERROR: domain->span does not contain "
5179				"CPU%d\n", cpu);
5180	}
5181	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5182		printk(KERN_ERR "ERROR: domain->groups does not contain"
5183				" CPU%d\n", cpu);
5184	}
5185
5186	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5187	do {
5188		if (!group) {
5189			printk("\n");
5190			printk(KERN_ERR "ERROR: group is NULL\n");
5191			break;
5192		}
5193
5194		/*
5195		 * Even though we initialize ->power to something semi-sane,
5196		 * we leave power_orig unset. This allows us to detect if
5197		 * domain iteration is still funny without causing /0 traps.
5198		 */
5199		if (!group->sgp->power_orig) {
5200			printk(KERN_CONT "\n");
5201			printk(KERN_ERR "ERROR: domain->cpu_power not "
5202					"set\n");
5203			break;
5204		}
5205
5206		if (!cpumask_weight(sched_group_cpus(group))) {
5207			printk(KERN_CONT "\n");
5208			printk(KERN_ERR "ERROR: empty group\n");
5209			break;
5210		}
5211
5212		if (!(sd->flags & SD_OVERLAP) &&
5213		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5214			printk(KERN_CONT "\n");
5215			printk(KERN_ERR "ERROR: repeated CPUs\n");
5216			break;
5217		}
5218
5219		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5220
5221		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5222
5223		printk(KERN_CONT " %s", str);
5224		if (group->sgp->power != SCHED_POWER_SCALE) {
5225			printk(KERN_CONT " (cpu_power = %d)",
5226				group->sgp->power);
5227		}
5228
5229		group = group->next;
5230	} while (group != sd->groups);
5231	printk(KERN_CONT "\n");
5232
5233	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5234		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5235
5236	if (sd->parent &&
5237	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5238		printk(KERN_ERR "ERROR: parent span is not a superset "
5239			"of domain->span\n");
5240	return 0;
5241}
5242
5243static void sched_domain_debug(struct sched_domain *sd, int cpu)
5244{
5245	int level = 0;
5246
5247	if (!sched_debug_enabled)
5248		return;
5249
5250	if (!sd) {
5251		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5252		return;
5253	}
5254
5255	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5256
5257	for (;;) {
5258		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5259			break;
5260		level++;
5261		sd = sd->parent;
5262		if (!sd)
5263			break;
5264	}
5265}
5266#else /* !CONFIG_SCHED_DEBUG */
5267# define sched_domain_debug(sd, cpu) do { } while (0)
5268static inline bool sched_debug(void)
5269{
5270	return false;
5271}
5272#endif /* CONFIG_SCHED_DEBUG */
5273
5274static int sd_degenerate(struct sched_domain *sd)
5275{
5276	if (cpumask_weight(sched_domain_span(sd)) == 1)
5277		return 1;
5278
5279	/* Following flags need at least 2 groups */
5280	if (sd->flags & (SD_LOAD_BALANCE |
5281			 SD_BALANCE_NEWIDLE |
5282			 SD_BALANCE_FORK |
5283			 SD_BALANCE_EXEC |
5284			 SD_SHARE_CPUPOWER |
5285			 SD_SHARE_PKG_RESOURCES)) {
5286		if (sd->groups != sd->groups->next)
5287			return 0;
5288	}
5289
5290	/* Following flags don't use groups */
5291	if (sd->flags & (SD_WAKE_AFFINE))
5292		return 0;
5293
5294	return 1;
5295}
5296
5297static int
5298sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5299{
5300	unsigned long cflags = sd->flags, pflags = parent->flags;
5301
5302	if (sd_degenerate(parent))
5303		return 1;
5304
5305	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5306		return 0;
5307
5308	/* Flags needing groups don't count if only 1 group in parent */
5309	if (parent->groups == parent->groups->next) {
5310		pflags &= ~(SD_LOAD_BALANCE |
5311				SD_BALANCE_NEWIDLE |
5312				SD_BALANCE_FORK |
5313				SD_BALANCE_EXEC |
5314				SD_SHARE_CPUPOWER |
5315				SD_SHARE_PKG_RESOURCES |
5316				SD_PREFER_SIBLING);
5317		if (nr_node_ids == 1)
5318			pflags &= ~SD_SERIALIZE;
5319	}
5320	if (~cflags & pflags)
5321		return 0;
5322
5323	return 1;
5324}
5325
5326static void free_rootdomain(struct rcu_head *rcu)
5327{
5328	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5329
5330	cpupri_cleanup(&rd->cpupri);
5331	cpudl_cleanup(&rd->cpudl);
5332	free_cpumask_var(rd->dlo_mask);
5333	free_cpumask_var(rd->rto_mask);
5334	free_cpumask_var(rd->online);
5335	free_cpumask_var(rd->span);
5336	kfree(rd);
5337}
5338
5339static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5340{
5341	struct root_domain *old_rd = NULL;
5342	unsigned long flags;
5343
5344	raw_spin_lock_irqsave(&rq->lock, flags);
5345
5346	if (rq->rd) {
5347		old_rd = rq->rd;
5348
5349		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5350			set_rq_offline(rq);
5351
5352		cpumask_clear_cpu(rq->cpu, old_rd->span);
5353
5354		/*
5355		 * If we dont want to free the old_rd yet then
5356		 * set old_rd to NULL to skip the freeing later
5357		 * in this function:
5358		 */
5359		if (!atomic_dec_and_test(&old_rd->refcount))
5360			old_rd = NULL;
5361	}
5362
5363	atomic_inc(&rd->refcount);
5364	rq->rd = rd;
5365
5366	cpumask_set_cpu(rq->cpu, rd->span);
5367	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5368		set_rq_online(rq);
5369
5370	raw_spin_unlock_irqrestore(&rq->lock, flags);
5371
5372	if (old_rd)
5373		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5374}
5375
5376static int init_rootdomain(struct root_domain *rd)
5377{
5378	memset(rd, 0, sizeof(*rd));
5379
5380	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5381		goto out;
5382	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5383		goto free_span;
5384	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5385		goto free_online;
5386	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5387		goto free_dlo_mask;
5388
5389	init_dl_bw(&rd->dl_bw);
5390	if (cpudl_init(&rd->cpudl) != 0)
5391		goto free_dlo_mask;
5392
5393	if (cpupri_init(&rd->cpupri) != 0)
5394		goto free_rto_mask;
5395	return 0;
5396
5397free_rto_mask:
5398	free_cpumask_var(rd->rto_mask);
5399free_dlo_mask:
5400	free_cpumask_var(rd->dlo_mask);
5401free_online:
5402	free_cpumask_var(rd->online);
5403free_span:
5404	free_cpumask_var(rd->span);
5405out:
5406	return -ENOMEM;
5407}
5408
5409/*
5410 * By default the system creates a single root-domain with all cpus as
5411 * members (mimicking the global state we have today).
5412 */
5413struct root_domain def_root_domain;
5414
5415static void init_defrootdomain(void)
5416{
5417	init_rootdomain(&def_root_domain);
5418
5419	atomic_set(&def_root_domain.refcount, 1);
5420}
5421
5422static struct root_domain *alloc_rootdomain(void)
5423{
5424	struct root_domain *rd;
5425
5426	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5427	if (!rd)
5428		return NULL;
5429
5430	if (init_rootdomain(rd) != 0) {
5431		kfree(rd);
5432		return NULL;
5433	}
5434
5435	return rd;
5436}
5437
5438static void free_sched_groups(struct sched_group *sg, int free_sgp)
5439{
5440	struct sched_group *tmp, *first;
5441
5442	if (!sg)
5443		return;
5444
5445	first = sg;
5446	do {
5447		tmp = sg->next;
5448
5449		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5450			kfree(sg->sgp);
5451
5452		kfree(sg);
5453		sg = tmp;
5454	} while (sg != first);
5455}
5456
5457static void free_sched_domain(struct rcu_head *rcu)
5458{
5459	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5460
5461	/*
5462	 * If its an overlapping domain it has private groups, iterate and
5463	 * nuke them all.
5464	 */
5465	if (sd->flags & SD_OVERLAP) {
5466		free_sched_groups(sd->groups, 1);
5467	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5468		kfree(sd->groups->sgp);
5469		kfree(sd->groups);
5470	}
5471	kfree(sd);
5472}
5473
5474static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5475{
5476	call_rcu(&sd->rcu, free_sched_domain);
5477}
5478
5479static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5480{
5481	for (; sd; sd = sd->parent)
5482		destroy_sched_domain(sd, cpu);
5483}
5484
5485/*
5486 * Keep a special pointer to the highest sched_domain that has
5487 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5488 * allows us to avoid some pointer chasing select_idle_sibling().
5489 *
5490 * Also keep a unique ID per domain (we use the first cpu number in
5491 * the cpumask of the domain), this allows us to quickly tell if
5492 * two cpus are in the same cache domain, see cpus_share_cache().
5493 */
5494DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5495DEFINE_PER_CPU(int, sd_llc_size);
5496DEFINE_PER_CPU(int, sd_llc_id);
5497DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5498DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5499DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5500
5501static void update_top_cache_domain(int cpu)
5502{
5503	struct sched_domain *sd;
5504	struct sched_domain *busy_sd = NULL;
5505	int id = cpu;
5506	int size = 1;
5507
5508	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5509	if (sd) {
5510		id = cpumask_first(sched_domain_span(sd));
5511		size = cpumask_weight(sched_domain_span(sd));
5512		busy_sd = sd->parent; /* sd_busy */
5513	}
5514	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5515
5516	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5517	per_cpu(sd_llc_size, cpu) = size;
5518	per_cpu(sd_llc_id, cpu) = id;
5519
5520	sd = lowest_flag_domain(cpu, SD_NUMA);
5521	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5522
5523	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5524	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5525}
5526
5527/*
5528 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5529 * hold the hotplug lock.
5530 */
5531static void
5532cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5533{
5534	struct rq *rq = cpu_rq(cpu);
5535	struct sched_domain *tmp;
5536
5537	/* Remove the sched domains which do not contribute to scheduling. */
5538	for (tmp = sd; tmp; ) {
5539		struct sched_domain *parent = tmp->parent;
5540		if (!parent)
5541			break;
5542
5543		if (sd_parent_degenerate(tmp, parent)) {
5544			tmp->parent = parent->parent;
5545			if (parent->parent)
5546				parent->parent->child = tmp;
5547			/*
5548			 * Transfer SD_PREFER_SIBLING down in case of a
5549			 * degenerate parent; the spans match for this
5550			 * so the property transfers.
5551			 */
5552			if (parent->flags & SD_PREFER_SIBLING)
5553				tmp->flags |= SD_PREFER_SIBLING;
5554			destroy_sched_domain(parent, cpu);
5555		} else
5556			tmp = tmp->parent;
5557	}
5558
5559	if (sd && sd_degenerate(sd)) {
5560		tmp = sd;
5561		sd = sd->parent;
5562		destroy_sched_domain(tmp, cpu);
5563		if (sd)
5564			sd->child = NULL;
5565	}
5566
5567	sched_domain_debug(sd, cpu);
5568
5569	rq_attach_root(rq, rd);
5570	tmp = rq->sd;
5571	rcu_assign_pointer(rq->sd, sd);
5572	destroy_sched_domains(tmp, cpu);
5573
5574	update_top_cache_domain(cpu);
5575}
5576
5577/* cpus with isolated domains */
5578static cpumask_var_t cpu_isolated_map;
5579
5580/* Setup the mask of cpus configured for isolated domains */
5581static int __init isolated_cpu_setup(char *str)
5582{
5583	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5584	cpulist_parse(str, cpu_isolated_map);
5585	return 1;
5586}
5587
5588__setup("isolcpus=", isolated_cpu_setup);
5589
5590static const struct cpumask *cpu_cpu_mask(int cpu)
5591{
5592	return cpumask_of_node(cpu_to_node(cpu));
5593}
5594
5595struct sd_data {
5596	struct sched_domain **__percpu sd;
5597	struct sched_group **__percpu sg;
5598	struct sched_group_power **__percpu sgp;
5599};
5600
5601struct s_data {
5602	struct sched_domain ** __percpu sd;
5603	struct root_domain	*rd;
5604};
5605
5606enum s_alloc {
5607	sa_rootdomain,
5608	sa_sd,
5609	sa_sd_storage,
5610	sa_none,
5611};
5612
5613struct sched_domain_topology_level;
5614
5615typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5616typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5617
5618#define SDTL_OVERLAP	0x01
5619
5620struct sched_domain_topology_level {
5621	sched_domain_init_f init;
5622	sched_domain_mask_f mask;
5623	int		    flags;
5624	int		    numa_level;
5625	struct sd_data      data;
5626};
5627
5628/*
5629 * Build an iteration mask that can exclude certain CPUs from the upwards
5630 * domain traversal.
5631 *
5632 * Asymmetric node setups can result in situations where the domain tree is of
5633 * unequal depth, make sure to skip domains that already cover the entire
5634 * range.
5635 *
5636 * In that case build_sched_domains() will have terminated the iteration early
5637 * and our sibling sd spans will be empty. Domains should always include the
5638 * cpu they're built on, so check that.
5639 *
5640 */
5641static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5642{
5643	const struct cpumask *span = sched_domain_span(sd);
5644	struct sd_data *sdd = sd->private;
5645	struct sched_domain *sibling;
5646	int i;
5647
5648	for_each_cpu(i, span) {
5649		sibling = *per_cpu_ptr(sdd->sd, i);
5650		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5651			continue;
5652
5653		cpumask_set_cpu(i, sched_group_mask(sg));
5654	}
5655}
5656
5657/*
5658 * Return the canonical balance cpu for this group, this is the first cpu
5659 * of this group that's also in the iteration mask.
5660 */
5661int group_balance_cpu(struct sched_group *sg)
5662{
5663	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5664}
5665
5666static int
5667build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5668{
5669	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5670	const struct cpumask *span = sched_domain_span(sd);
5671	struct cpumask *covered = sched_domains_tmpmask;
5672	struct sd_data *sdd = sd->private;
5673	struct sched_domain *child;
5674	int i;
5675
5676	cpumask_clear(covered);
5677
5678	for_each_cpu(i, span) {
5679		struct cpumask *sg_span;
5680
5681		if (cpumask_test_cpu(i, covered))
5682			continue;
5683
5684		child = *per_cpu_ptr(sdd->sd, i);
5685
5686		/* See the comment near build_group_mask(). */
5687		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5688			continue;
5689
5690		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5691				GFP_KERNEL, cpu_to_node(cpu));
5692
5693		if (!sg)
5694			goto fail;
5695
5696		sg_span = sched_group_cpus(sg);
5697		if (child->child) {
5698			child = child->child;
5699			cpumask_copy(sg_span, sched_domain_span(child));
5700		} else
5701			cpumask_set_cpu(i, sg_span);
5702
5703		cpumask_or(covered, covered, sg_span);
5704
5705		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5706		if (atomic_inc_return(&sg->sgp->ref) == 1)
5707			build_group_mask(sd, sg);
5708
5709		/*
5710		 * Initialize sgp->power such that even if we mess up the
5711		 * domains and no possible iteration will get us here, we won't
5712		 * die on a /0 trap.
5713		 */
5714		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5715		sg->sgp->power_orig = sg->sgp->power;
5716
5717		/*
5718		 * Make sure the first group of this domain contains the
5719		 * canonical balance cpu. Otherwise the sched_domain iteration
5720		 * breaks. See update_sg_lb_stats().
5721		 */
5722		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5723		    group_balance_cpu(sg) == cpu)
5724			groups = sg;
5725
5726		if (!first)
5727			first = sg;
5728		if (last)
5729			last->next = sg;
5730		last = sg;
5731		last->next = first;
5732	}
5733	sd->groups = groups;
5734
5735	return 0;
5736
5737fail:
5738	free_sched_groups(first, 0);
5739
5740	return -ENOMEM;
5741}
5742
5743static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5744{
5745	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5746	struct sched_domain *child = sd->child;
5747
5748	if (child)
5749		cpu = cpumask_first(sched_domain_span(child));
5750
5751	if (sg) {
5752		*sg = *per_cpu_ptr(sdd->sg, cpu);
5753		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5754		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5755	}
5756
5757	return cpu;
5758}
5759
5760/*
5761 * build_sched_groups will build a circular linked list of the groups
5762 * covered by the given span, and will set each group's ->cpumask correctly,
5763 * and ->cpu_power to 0.
5764 *
5765 * Assumes the sched_domain tree is fully constructed
5766 */
5767static int
5768build_sched_groups(struct sched_domain *sd, int cpu)
5769{
5770	struct sched_group *first = NULL, *last = NULL;
5771	struct sd_data *sdd = sd->private;
5772	const struct cpumask *span = sched_domain_span(sd);
5773	struct cpumask *covered;
5774	int i;
5775
5776	get_group(cpu, sdd, &sd->groups);
5777	atomic_inc(&sd->groups->ref);
5778
5779	if (cpu != cpumask_first(span))
5780		return 0;
5781
5782	lockdep_assert_held(&sched_domains_mutex);
5783	covered = sched_domains_tmpmask;
5784
5785	cpumask_clear(covered);
5786
5787	for_each_cpu(i, span) {
5788		struct sched_group *sg;
5789		int group, j;
5790
5791		if (cpumask_test_cpu(i, covered))
5792			continue;
5793
5794		group = get_group(i, sdd, &sg);
5795		cpumask_clear(sched_group_cpus(sg));
5796		sg->sgp->power = 0;
5797		cpumask_setall(sched_group_mask(sg));
5798
5799		for_each_cpu(j, span) {
5800			if (get_group(j, sdd, NULL) != group)
5801				continue;
5802
5803			cpumask_set_cpu(j, covered);
5804			cpumask_set_cpu(j, sched_group_cpus(sg));
5805		}
5806
5807		if (!first)
5808			first = sg;
5809		if (last)
5810			last->next = sg;
5811		last = sg;
5812	}
5813	last->next = first;
5814
5815	return 0;
5816}
5817
5818/*
5819 * Initialize sched groups cpu_power.
5820 *
5821 * cpu_power indicates the capacity of sched group, which is used while
5822 * distributing the load between different sched groups in a sched domain.
5823 * Typically cpu_power for all the groups in a sched domain will be same unless
5824 * there are asymmetries in the topology. If there are asymmetries, group
5825 * having more cpu_power will pickup more load compared to the group having
5826 * less cpu_power.
5827 */
5828static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5829{
5830	struct sched_group *sg = sd->groups;
5831
5832	WARN_ON(!sg);
5833
5834	do {
5835		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5836		sg = sg->next;
5837	} while (sg != sd->groups);
5838
5839	if (cpu != group_balance_cpu(sg))
5840		return;
5841
5842	update_group_power(sd, cpu);
5843	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5844}
5845
5846int __weak arch_sd_sibling_asym_packing(void)
5847{
5848       return 0*SD_ASYM_PACKING;
5849}
5850
5851/*
5852 * Initializers for schedule domains
5853 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5854 */
5855
5856#ifdef CONFIG_SCHED_DEBUG
5857# define SD_INIT_NAME(sd, type)		sd->name = #type
5858#else
5859# define SD_INIT_NAME(sd, type)		do { } while (0)
5860#endif
5861
5862#define SD_INIT_FUNC(type)						\
5863static noinline struct sched_domain *					\
5864sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5865{									\
5866	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5867	*sd = SD_##type##_INIT;						\
5868	SD_INIT_NAME(sd, type);						\
5869	sd->private = &tl->data;					\
5870	return sd;							\
5871}
5872
5873SD_INIT_FUNC(CPU)
5874#ifdef CONFIG_SCHED_SMT
5875 SD_INIT_FUNC(SIBLING)
5876#endif
5877#ifdef CONFIG_SCHED_MC
5878 SD_INIT_FUNC(MC)
5879#endif
5880#ifdef CONFIG_SCHED_BOOK
5881 SD_INIT_FUNC(BOOK)
5882#endif
5883
5884static int default_relax_domain_level = -1;
5885int sched_domain_level_max;
5886
5887static int __init setup_relax_domain_level(char *str)
5888{
5889	if (kstrtoint(str, 0, &default_relax_domain_level))
5890		pr_warn("Unable to set relax_domain_level\n");
5891
5892	return 1;
5893}
5894__setup("relax_domain_level=", setup_relax_domain_level);
5895
5896static void set_domain_attribute(struct sched_domain *sd,
5897				 struct sched_domain_attr *attr)
5898{
5899	int request;
5900
5901	if (!attr || attr->relax_domain_level < 0) {
5902		if (default_relax_domain_level < 0)
5903			return;
5904		else
5905			request = default_relax_domain_level;
5906	} else
5907		request = attr->relax_domain_level;
5908	if (request < sd->level) {
5909		/* turn off idle balance on this domain */
5910		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5911	} else {
5912		/* turn on idle balance on this domain */
5913		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5914	}
5915}
5916
5917static void __sdt_free(const struct cpumask *cpu_map);
5918static int __sdt_alloc(const struct cpumask *cpu_map);
5919
5920static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5921				 const struct cpumask *cpu_map)
5922{
5923	switch (what) {
5924	case sa_rootdomain:
5925		if (!atomic_read(&d->rd->refcount))
5926			free_rootdomain(&d->rd->rcu); /* fall through */
5927	case sa_sd:
5928		free_percpu(d->sd); /* fall through */
5929	case sa_sd_storage:
5930		__sdt_free(cpu_map); /* fall through */
5931	case sa_none:
5932		break;
5933	}
5934}
5935
5936static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5937						   const struct cpumask *cpu_map)
5938{
5939	memset(d, 0, sizeof(*d));
5940
5941	if (__sdt_alloc(cpu_map))
5942		return sa_sd_storage;
5943	d->sd = alloc_percpu(struct sched_domain *);
5944	if (!d->sd)
5945		return sa_sd_storage;
5946	d->rd = alloc_rootdomain();
5947	if (!d->rd)
5948		return sa_sd;
5949	return sa_rootdomain;
5950}
5951
5952/*
5953 * NULL the sd_data elements we've used to build the sched_domain and
5954 * sched_group structure so that the subsequent __free_domain_allocs()
5955 * will not free the data we're using.
5956 */
5957static void claim_allocations(int cpu, struct sched_domain *sd)
5958{
5959	struct sd_data *sdd = sd->private;
5960
5961	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5962	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5963
5964	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5965		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5966
5967	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5968		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5969}
5970
5971#ifdef CONFIG_SCHED_SMT
5972static const struct cpumask *cpu_smt_mask(int cpu)
5973{
5974	return topology_thread_cpumask(cpu);
5975}
5976#endif
5977
5978/*
5979 * Topology list, bottom-up.
5980 */
5981static struct sched_domain_topology_level default_topology[] = {
5982#ifdef CONFIG_SCHED_SMT
5983	{ sd_init_SIBLING, cpu_smt_mask, },
5984#endif
5985#ifdef CONFIG_SCHED_MC
5986	{ sd_init_MC, cpu_coregroup_mask, },
5987#endif
5988#ifdef CONFIG_SCHED_BOOK
5989	{ sd_init_BOOK, cpu_book_mask, },
5990#endif
5991	{ sd_init_CPU, cpu_cpu_mask, },
5992	{ NULL, },
5993};
5994
5995static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5996
5997#define for_each_sd_topology(tl)			\
5998	for (tl = sched_domain_topology; tl->init; tl++)
5999
6000#ifdef CONFIG_NUMA
6001
6002static int sched_domains_numa_levels;
6003static int *sched_domains_numa_distance;
6004static struct cpumask ***sched_domains_numa_masks;
6005static int sched_domains_curr_level;
6006
6007static inline int sd_local_flags(int level)
6008{
6009	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6010		return 0;
6011
6012	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6013}
6014
6015static struct sched_domain *
6016sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6017{
6018	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6019	int level = tl->numa_level;
6020	int sd_weight = cpumask_weight(
6021			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6022
6023	*sd = (struct sched_domain){
6024		.min_interval		= sd_weight,
6025		.max_interval		= 2*sd_weight,
6026		.busy_factor		= 32,
6027		.imbalance_pct		= 125,
6028		.cache_nice_tries	= 2,
6029		.busy_idx		= 3,
6030		.idle_idx		= 2,
6031		.newidle_idx		= 0,
6032		.wake_idx		= 0,
6033		.forkexec_idx		= 0,
6034
6035		.flags			= 1*SD_LOAD_BALANCE
6036					| 1*SD_BALANCE_NEWIDLE
6037					| 0*SD_BALANCE_EXEC
6038					| 0*SD_BALANCE_FORK
6039					| 0*SD_BALANCE_WAKE
6040					| 0*SD_WAKE_AFFINE
6041					| 0*SD_SHARE_CPUPOWER
6042					| 0*SD_SHARE_PKG_RESOURCES
6043					| 1*SD_SERIALIZE
6044					| 0*SD_PREFER_SIBLING
6045					| 1*SD_NUMA
6046					| sd_local_flags(level)
6047					,
6048		.last_balance		= jiffies,
6049		.balance_interval	= sd_weight,
6050	};
6051	SD_INIT_NAME(sd, NUMA);
6052	sd->private = &tl->data;
6053
6054	/*
6055	 * Ugly hack to pass state to sd_numa_mask()...
6056	 */
6057	sched_domains_curr_level = tl->numa_level;
6058
6059	return sd;
6060}
6061
6062static const struct cpumask *sd_numa_mask(int cpu)
6063{
6064	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6065}
6066
6067static void sched_numa_warn(const char *str)
6068{
6069	static int done = false;
6070	int i,j;
6071
6072	if (done)
6073		return;
6074
6075	done = true;
6076
6077	printk(KERN_WARNING "ERROR: %s\n\n", str);
6078
6079	for (i = 0; i < nr_node_ids; i++) {
6080		printk(KERN_WARNING "  ");
6081		for (j = 0; j < nr_node_ids; j++)
6082			printk(KERN_CONT "%02d ", node_distance(i,j));
6083		printk(KERN_CONT "\n");
6084	}
6085	printk(KERN_WARNING "\n");
6086}
6087
6088static bool find_numa_distance(int distance)
6089{
6090	int i;
6091
6092	if (distance == node_distance(0, 0))
6093		return true;
6094
6095	for (i = 0; i < sched_domains_numa_levels; i++) {
6096		if (sched_domains_numa_distance[i] == distance)
6097			return true;
6098	}
6099
6100	return false;
6101}
6102
6103static void sched_init_numa(void)
6104{
6105	int next_distance, curr_distance = node_distance(0, 0);
6106	struct sched_domain_topology_level *tl;
6107	int level = 0;
6108	int i, j, k;
6109
6110	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6111	if (!sched_domains_numa_distance)
6112		return;
6113
6114	/*
6115	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6116	 * unique distances in the node_distance() table.
6117	 *
6118	 * Assumes node_distance(0,j) includes all distances in
6119	 * node_distance(i,j) in order to avoid cubic time.
6120	 */
6121	next_distance = curr_distance;
6122	for (i = 0; i < nr_node_ids; i++) {
6123		for (j = 0; j < nr_node_ids; j++) {
6124			for (k = 0; k < nr_node_ids; k++) {
6125				int distance = node_distance(i, k);
6126
6127				if (distance > curr_distance &&
6128				    (distance < next_distance ||
6129				     next_distance == curr_distance))
6130					next_distance = distance;
6131
6132				/*
6133				 * While not a strong assumption it would be nice to know
6134				 * about cases where if node A is connected to B, B is not
6135				 * equally connected to A.
6136				 */
6137				if (sched_debug() && node_distance(k, i) != distance)
6138					sched_numa_warn("Node-distance not symmetric");
6139
6140				if (sched_debug() && i && !find_numa_distance(distance))
6141					sched_numa_warn("Node-0 not representative");
6142			}
6143			if (next_distance != curr_distance) {
6144				sched_domains_numa_distance[level++] = next_distance;
6145				sched_domains_numa_levels = level;
6146				curr_distance = next_distance;
6147			} else break;
6148		}
6149
6150		/*
6151		 * In case of sched_debug() we verify the above assumption.
6152		 */
6153		if (!sched_debug())
6154			break;
6155	}
6156	/*
6157	 * 'level' contains the number of unique distances, excluding the
6158	 * identity distance node_distance(i,i).
6159	 *
6160	 * The sched_domains_numa_distance[] array includes the actual distance
6161	 * numbers.
6162	 */
6163
6164	/*
6165	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6166	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6167	 * the array will contain less then 'level' members. This could be
6168	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6169	 * in other functions.
6170	 *
6171	 * We reset it to 'level' at the end of this function.
6172	 */
6173	sched_domains_numa_levels = 0;
6174
6175	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6176	if (!sched_domains_numa_masks)
6177		return;
6178
6179	/*
6180	 * Now for each level, construct a mask per node which contains all
6181	 * cpus of nodes that are that many hops away from us.
6182	 */
6183	for (i = 0; i < level; i++) {
6184		sched_domains_numa_masks[i] =
6185			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6186		if (!sched_domains_numa_masks[i])
6187			return;
6188
6189		for (j = 0; j < nr_node_ids; j++) {
6190			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6191			if (!mask)
6192				return;
6193
6194			sched_domains_numa_masks[i][j] = mask;
6195
6196			for (k = 0; k < nr_node_ids; k++) {
6197				if (node_distance(j, k) > sched_domains_numa_distance[i])
6198					continue;
6199
6200				cpumask_or(mask, mask, cpumask_of_node(k));
6201			}
6202		}
6203	}
6204
6205	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6206			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6207	if (!tl)
6208		return;
6209
6210	/*
6211	 * Copy the default topology bits..
6212	 */
6213	for (i = 0; default_topology[i].init; i++)
6214		tl[i] = default_topology[i];
6215
6216	/*
6217	 * .. and append 'j' levels of NUMA goodness.
6218	 */
6219	for (j = 0; j < level; i++, j++) {
6220		tl[i] = (struct sched_domain_topology_level){
6221			.init = sd_numa_init,
6222			.mask = sd_numa_mask,
6223			.flags = SDTL_OVERLAP,
6224			.numa_level = j,
6225		};
6226	}
6227
6228	sched_domain_topology = tl;
6229
6230	sched_domains_numa_levels = level;
6231}
6232
6233static void sched_domains_numa_masks_set(int cpu)
6234{
6235	int i, j;
6236	int node = cpu_to_node(cpu);
6237
6238	for (i = 0; i < sched_domains_numa_levels; i++) {
6239		for (j = 0; j < nr_node_ids; j++) {
6240			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6241				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6242		}
6243	}
6244}
6245
6246static void sched_domains_numa_masks_clear(int cpu)
6247{
6248	int i, j;
6249	for (i = 0; i < sched_domains_numa_levels; i++) {
6250		for (j = 0; j < nr_node_ids; j++)
6251			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6252	}
6253}
6254
6255/*
6256 * Update sched_domains_numa_masks[level][node] array when new cpus
6257 * are onlined.
6258 */
6259static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6260					   unsigned long action,
6261					   void *hcpu)
6262{
6263	int cpu = (long)hcpu;
6264
6265	switch (action & ~CPU_TASKS_FROZEN) {
6266	case CPU_ONLINE:
6267		sched_domains_numa_masks_set(cpu);
6268		break;
6269
6270	case CPU_DEAD:
6271		sched_domains_numa_masks_clear(cpu);
6272		break;
6273
6274	default:
6275		return NOTIFY_DONE;
6276	}
6277
6278	return NOTIFY_OK;
6279}
6280#else
6281static inline void sched_init_numa(void)
6282{
6283}
6284
6285static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6286					   unsigned long action,
6287					   void *hcpu)
6288{
6289	return 0;
6290}
6291#endif /* CONFIG_NUMA */
6292
6293static int __sdt_alloc(const struct cpumask *cpu_map)
6294{
6295	struct sched_domain_topology_level *tl;
6296	int j;
6297
6298	for_each_sd_topology(tl) {
6299		struct sd_data *sdd = &tl->data;
6300
6301		sdd->sd = alloc_percpu(struct sched_domain *);
6302		if (!sdd->sd)
6303			return -ENOMEM;
6304
6305		sdd->sg = alloc_percpu(struct sched_group *);
6306		if (!sdd->sg)
6307			return -ENOMEM;
6308
6309		sdd->sgp = alloc_percpu(struct sched_group_power *);
6310		if (!sdd->sgp)
6311			return -ENOMEM;
6312
6313		for_each_cpu(j, cpu_map) {
6314			struct sched_domain *sd;
6315			struct sched_group *sg;
6316			struct sched_group_power *sgp;
6317
6318		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6319					GFP_KERNEL, cpu_to_node(j));
6320			if (!sd)
6321				return -ENOMEM;
6322
6323			*per_cpu_ptr(sdd->sd, j) = sd;
6324
6325			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6326					GFP_KERNEL, cpu_to_node(j));
6327			if (!sg)
6328				return -ENOMEM;
6329
6330			sg->next = sg;
6331
6332			*per_cpu_ptr(sdd->sg, j) = sg;
6333
6334			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6335					GFP_KERNEL, cpu_to_node(j));
6336			if (!sgp)
6337				return -ENOMEM;
6338
6339			*per_cpu_ptr(sdd->sgp, j) = sgp;
6340		}
6341	}
6342
6343	return 0;
6344}
6345
6346static void __sdt_free(const struct cpumask *cpu_map)
6347{
6348	struct sched_domain_topology_level *tl;
6349	int j;
6350
6351	for_each_sd_topology(tl) {
6352		struct sd_data *sdd = &tl->data;
6353
6354		for_each_cpu(j, cpu_map) {
6355			struct sched_domain *sd;
6356
6357			if (sdd->sd) {
6358				sd = *per_cpu_ptr(sdd->sd, j);
6359				if (sd && (sd->flags & SD_OVERLAP))
6360					free_sched_groups(sd->groups, 0);
6361				kfree(*per_cpu_ptr(sdd->sd, j));
6362			}
6363
6364			if (sdd->sg)
6365				kfree(*per_cpu_ptr(sdd->sg, j));
6366			if (sdd->sgp)
6367				kfree(*per_cpu_ptr(sdd->sgp, j));
6368		}
6369		free_percpu(sdd->sd);
6370		sdd->sd = NULL;
6371		free_percpu(sdd->sg);
6372		sdd->sg = NULL;
6373		free_percpu(sdd->sgp);
6374		sdd->sgp = NULL;
6375	}
6376}
6377
6378struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6379		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6380		struct sched_domain *child, int cpu)
6381{
6382	struct sched_domain *sd = tl->init(tl, cpu);
6383	if (!sd)
6384		return child;
6385
6386	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6387	if (child) {
6388		sd->level = child->level + 1;
6389		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6390		child->parent = sd;
6391		sd->child = child;
6392	}
6393	set_domain_attribute(sd, attr);
6394
6395	return sd;
6396}
6397
6398/*
6399 * Build sched domains for a given set of cpus and attach the sched domains
6400 * to the individual cpus
6401 */
6402static int build_sched_domains(const struct cpumask *cpu_map,
6403			       struct sched_domain_attr *attr)
6404{
6405	enum s_alloc alloc_state;
6406	struct sched_domain *sd;
6407	struct s_data d;
6408	int i, ret = -ENOMEM;
6409
6410	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6411	if (alloc_state != sa_rootdomain)
6412		goto error;
6413
6414	/* Set up domains for cpus specified by the cpu_map. */
6415	for_each_cpu(i, cpu_map) {
6416		struct sched_domain_topology_level *tl;
6417
6418		sd = NULL;
6419		for_each_sd_topology(tl) {
6420			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6421			if (tl == sched_domain_topology)
6422				*per_cpu_ptr(d.sd, i) = sd;
6423			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6424				sd->flags |= SD_OVERLAP;
6425			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6426				break;
6427		}
6428	}
6429
6430	/* Build the groups for the domains */
6431	for_each_cpu(i, cpu_map) {
6432		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6433			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6434			if (sd->flags & SD_OVERLAP) {
6435				if (build_overlap_sched_groups(sd, i))
6436					goto error;
6437			} else {
6438				if (build_sched_groups(sd, i))
6439					goto error;
6440			}
6441		}
6442	}
6443
6444	/* Calculate CPU power for physical packages and nodes */
6445	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6446		if (!cpumask_test_cpu(i, cpu_map))
6447			continue;
6448
6449		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6450			claim_allocations(i, sd);
6451			init_sched_groups_power(i, sd);
6452		}
6453	}
6454
6455	/* Attach the domains */
6456	rcu_read_lock();
6457	for_each_cpu(i, cpu_map) {
6458		sd = *per_cpu_ptr(d.sd, i);
6459		cpu_attach_domain(sd, d.rd, i);
6460	}
6461	rcu_read_unlock();
6462
6463	ret = 0;
6464error:
6465	__free_domain_allocs(&d, alloc_state, cpu_map);
6466	return ret;
6467}
6468
6469static cpumask_var_t *doms_cur;	/* current sched domains */
6470static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6471static struct sched_domain_attr *dattr_cur;
6472				/* attribues of custom domains in 'doms_cur' */
6473
6474/*
6475 * Special case: If a kmalloc of a doms_cur partition (array of
6476 * cpumask) fails, then fallback to a single sched domain,
6477 * as determined by the single cpumask fallback_doms.
6478 */
6479static cpumask_var_t fallback_doms;
6480
6481/*
6482 * arch_update_cpu_topology lets virtualized architectures update the
6483 * cpu core maps. It is supposed to return 1 if the topology changed
6484 * or 0 if it stayed the same.
6485 */
6486int __attribute__((weak)) arch_update_cpu_topology(void)
6487{
6488	return 0;
6489}
6490
6491cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6492{
6493	int i;
6494	cpumask_var_t *doms;
6495
6496	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6497	if (!doms)
6498		return NULL;
6499	for (i = 0; i < ndoms; i++) {
6500		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6501			free_sched_domains(doms, i);
6502			return NULL;
6503		}
6504	}
6505	return doms;
6506}
6507
6508void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6509{
6510	unsigned int i;
6511	for (i = 0; i < ndoms; i++)
6512		free_cpumask_var(doms[i]);
6513	kfree(doms);
6514}
6515
6516/*
6517 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6518 * For now this just excludes isolated cpus, but could be used to
6519 * exclude other special cases in the future.
6520 */
6521static int init_sched_domains(const struct cpumask *cpu_map)
6522{
6523	int err;
6524
6525	arch_update_cpu_topology();
6526	ndoms_cur = 1;
6527	doms_cur = alloc_sched_domains(ndoms_cur);
6528	if (!doms_cur)
6529		doms_cur = &fallback_doms;
6530	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6531	err = build_sched_domains(doms_cur[0], NULL);
6532	register_sched_domain_sysctl();
6533
6534	return err;
6535}
6536
6537/*
6538 * Detach sched domains from a group of cpus specified in cpu_map
6539 * These cpus will now be attached to the NULL domain
6540 */
6541static void detach_destroy_domains(const struct cpumask *cpu_map)
6542{
6543	int i;
6544
6545	rcu_read_lock();
6546	for_each_cpu(i, cpu_map)
6547		cpu_attach_domain(NULL, &def_root_domain, i);
6548	rcu_read_unlock();
6549}
6550
6551/* handle null as "default" */
6552static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6553			struct sched_domain_attr *new, int idx_new)
6554{
6555	struct sched_domain_attr tmp;
6556
6557	/* fast path */
6558	if (!new && !cur)
6559		return 1;
6560
6561	tmp = SD_ATTR_INIT;
6562	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6563			new ? (new + idx_new) : &tmp,
6564			sizeof(struct sched_domain_attr));
6565}
6566
6567/*
6568 * Partition sched domains as specified by the 'ndoms_new'
6569 * cpumasks in the array doms_new[] of cpumasks. This compares
6570 * doms_new[] to the current sched domain partitioning, doms_cur[].
6571 * It destroys each deleted domain and builds each new domain.
6572 *
6573 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6574 * The masks don't intersect (don't overlap.) We should setup one
6575 * sched domain for each mask. CPUs not in any of the cpumasks will
6576 * not be load balanced. If the same cpumask appears both in the
6577 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6578 * it as it is.
6579 *
6580 * The passed in 'doms_new' should be allocated using
6581 * alloc_sched_domains.  This routine takes ownership of it and will
6582 * free_sched_domains it when done with it. If the caller failed the
6583 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6584 * and partition_sched_domains() will fallback to the single partition
6585 * 'fallback_doms', it also forces the domains to be rebuilt.
6586 *
6587 * If doms_new == NULL it will be replaced with cpu_online_mask.
6588 * ndoms_new == 0 is a special case for destroying existing domains,
6589 * and it will not create the default domain.
6590 *
6591 * Call with hotplug lock held
6592 */
6593void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6594			     struct sched_domain_attr *dattr_new)
6595{
6596	int i, j, n;
6597	int new_topology;
6598
6599	mutex_lock(&sched_domains_mutex);
6600
6601	/* always unregister in case we don't destroy any domains */
6602	unregister_sched_domain_sysctl();
6603
6604	/* Let architecture update cpu core mappings. */
6605	new_topology = arch_update_cpu_topology();
6606
6607	n = doms_new ? ndoms_new : 0;
6608
6609	/* Destroy deleted domains */
6610	for (i = 0; i < ndoms_cur; i++) {
6611		for (j = 0; j < n && !new_topology; j++) {
6612			if (cpumask_equal(doms_cur[i], doms_new[j])
6613			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6614				goto match1;
6615		}
6616		/* no match - a current sched domain not in new doms_new[] */
6617		detach_destroy_domains(doms_cur[i]);
6618match1:
6619		;
6620	}
6621
6622	n = ndoms_cur;
6623	if (doms_new == NULL) {
6624		n = 0;
6625		doms_new = &fallback_doms;
6626		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6627		WARN_ON_ONCE(dattr_new);
6628	}
6629
6630	/* Build new domains */
6631	for (i = 0; i < ndoms_new; i++) {
6632		for (j = 0; j < n && !new_topology; j++) {
6633			if (cpumask_equal(doms_new[i], doms_cur[j])
6634			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6635				goto match2;
6636		}
6637		/* no match - add a new doms_new */
6638		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6639match2:
6640		;
6641	}
6642
6643	/* Remember the new sched domains */
6644	if (doms_cur != &fallback_doms)
6645		free_sched_domains(doms_cur, ndoms_cur);
6646	kfree(dattr_cur);	/* kfree(NULL) is safe */
6647	doms_cur = doms_new;
6648	dattr_cur = dattr_new;
6649	ndoms_cur = ndoms_new;
6650
6651	register_sched_domain_sysctl();
6652
6653	mutex_unlock(&sched_domains_mutex);
6654}
6655
6656static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6657
6658/*
6659 * Update cpusets according to cpu_active mask.  If cpusets are
6660 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6661 * around partition_sched_domains().
6662 *
6663 * If we come here as part of a suspend/resume, don't touch cpusets because we
6664 * want to restore it back to its original state upon resume anyway.
6665 */
6666static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6667			     void *hcpu)
6668{
6669	switch (action) {
6670	case CPU_ONLINE_FROZEN:
6671	case CPU_DOWN_FAILED_FROZEN:
6672
6673		/*
6674		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6675		 * resume sequence. As long as this is not the last online
6676		 * operation in the resume sequence, just build a single sched
6677		 * domain, ignoring cpusets.
6678		 */
6679		num_cpus_frozen--;
6680		if (likely(num_cpus_frozen)) {
6681			partition_sched_domains(1, NULL, NULL);
6682			break;
6683		}
6684
6685		/*
6686		 * This is the last CPU online operation. So fall through and
6687		 * restore the original sched domains by considering the
6688		 * cpuset configurations.
6689		 */
6690
6691	case CPU_ONLINE:
6692	case CPU_DOWN_FAILED:
6693		cpuset_update_active_cpus(true);
6694		break;
6695	default:
6696		return NOTIFY_DONE;
6697	}
6698	return NOTIFY_OK;
6699}
6700
6701static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6702			       void *hcpu)
6703{
6704	switch (action) {
6705	case CPU_DOWN_PREPARE:
6706		cpuset_update_active_cpus(false);
6707		break;
6708	case CPU_DOWN_PREPARE_FROZEN:
6709		num_cpus_frozen++;
6710		partition_sched_domains(1, NULL, NULL);
6711		break;
6712	default:
6713		return NOTIFY_DONE;
6714	}
6715	return NOTIFY_OK;
6716}
6717
6718void __init sched_init_smp(void)
6719{
6720	cpumask_var_t non_isolated_cpus;
6721
6722	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6723	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6724
6725	sched_init_numa();
6726
6727	/*
6728	 * There's no userspace yet to cause hotplug operations; hence all the
6729	 * cpu masks are stable and all blatant races in the below code cannot
6730	 * happen.
6731	 */
6732	mutex_lock(&sched_domains_mutex);
6733	init_sched_domains(cpu_active_mask);
6734	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6735	if (cpumask_empty(non_isolated_cpus))
6736		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6737	mutex_unlock(&sched_domains_mutex);
6738
6739	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6740	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6741	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6742
6743	init_hrtick();
6744
6745	/* Move init over to a non-isolated CPU */
6746	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6747		BUG();
6748	sched_init_granularity();
6749	free_cpumask_var(non_isolated_cpus);
6750
6751	init_sched_rt_class();
6752	init_sched_dl_class();
6753}
6754#else
6755void __init sched_init_smp(void)
6756{
6757	sched_init_granularity();
6758}
6759#endif /* CONFIG_SMP */
6760
6761const_debug unsigned int sysctl_timer_migration = 1;
6762
6763int in_sched_functions(unsigned long addr)
6764{
6765	return in_lock_functions(addr) ||
6766		(addr >= (unsigned long)__sched_text_start
6767		&& addr < (unsigned long)__sched_text_end);
6768}
6769
6770#ifdef CONFIG_CGROUP_SCHED
6771/*
6772 * Default task group.
6773 * Every task in system belongs to this group at bootup.
6774 */
6775struct task_group root_task_group;
6776LIST_HEAD(task_groups);
6777#endif
6778
6779DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6780
6781void __init sched_init(void)
6782{
6783	int i, j;
6784	unsigned long alloc_size = 0, ptr;
6785
6786#ifdef CONFIG_FAIR_GROUP_SCHED
6787	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6788#endif
6789#ifdef CONFIG_RT_GROUP_SCHED
6790	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6791#endif
6792#ifdef CONFIG_CPUMASK_OFFSTACK
6793	alloc_size += num_possible_cpus() * cpumask_size();
6794#endif
6795	if (alloc_size) {
6796		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6797
6798#ifdef CONFIG_FAIR_GROUP_SCHED
6799		root_task_group.se = (struct sched_entity **)ptr;
6800		ptr += nr_cpu_ids * sizeof(void **);
6801
6802		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6803		ptr += nr_cpu_ids * sizeof(void **);
6804
6805#endif /* CONFIG_FAIR_GROUP_SCHED */
6806#ifdef CONFIG_RT_GROUP_SCHED
6807		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6808		ptr += nr_cpu_ids * sizeof(void **);
6809
6810		root_task_group.rt_rq = (struct rt_rq **)ptr;
6811		ptr += nr_cpu_ids * sizeof(void **);
6812
6813#endif /* CONFIG_RT_GROUP_SCHED */
6814#ifdef CONFIG_CPUMASK_OFFSTACK
6815		for_each_possible_cpu(i) {
6816			per_cpu(load_balance_mask, i) = (void *)ptr;
6817			ptr += cpumask_size();
6818		}
6819#endif /* CONFIG_CPUMASK_OFFSTACK */
6820	}
6821
6822	init_rt_bandwidth(&def_rt_bandwidth,
6823			global_rt_period(), global_rt_runtime());
6824	init_dl_bandwidth(&def_dl_bandwidth,
6825			global_rt_period(), global_rt_runtime());
6826
6827#ifdef CONFIG_SMP
6828	init_defrootdomain();
6829#endif
6830
6831#ifdef CONFIG_RT_GROUP_SCHED
6832	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6833			global_rt_period(), global_rt_runtime());
6834#endif /* CONFIG_RT_GROUP_SCHED */
6835
6836#ifdef CONFIG_CGROUP_SCHED
6837	list_add(&root_task_group.list, &task_groups);
6838	INIT_LIST_HEAD(&root_task_group.children);
6839	INIT_LIST_HEAD(&root_task_group.siblings);
6840	autogroup_init(&init_task);
6841
6842#endif /* CONFIG_CGROUP_SCHED */
6843
6844	for_each_possible_cpu(i) {
6845		struct rq *rq;
6846
6847		rq = cpu_rq(i);
6848		raw_spin_lock_init(&rq->lock);
6849		rq->nr_running = 0;
6850		rq->calc_load_active = 0;
6851		rq->calc_load_update = jiffies + LOAD_FREQ;
6852		init_cfs_rq(&rq->cfs);
6853		init_rt_rq(&rq->rt, rq);
6854		init_dl_rq(&rq->dl, rq);
6855#ifdef CONFIG_FAIR_GROUP_SCHED
6856		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6857		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6858		/*
6859		 * How much cpu bandwidth does root_task_group get?
6860		 *
6861		 * In case of task-groups formed thr' the cgroup filesystem, it
6862		 * gets 100% of the cpu resources in the system. This overall
6863		 * system cpu resource is divided among the tasks of
6864		 * root_task_group and its child task-groups in a fair manner,
6865		 * based on each entity's (task or task-group's) weight
6866		 * (se->load.weight).
6867		 *
6868		 * In other words, if root_task_group has 10 tasks of weight
6869		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6870		 * then A0's share of the cpu resource is:
6871		 *
6872		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6873		 *
6874		 * We achieve this by letting root_task_group's tasks sit
6875		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6876		 */
6877		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6878		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6879#endif /* CONFIG_FAIR_GROUP_SCHED */
6880
6881		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6882#ifdef CONFIG_RT_GROUP_SCHED
6883		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6884#endif
6885
6886		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6887			rq->cpu_load[j] = 0;
6888
6889		rq->last_load_update_tick = jiffies;
6890
6891#ifdef CONFIG_SMP
6892		rq->sd = NULL;
6893		rq->rd = NULL;
6894		rq->cpu_power = SCHED_POWER_SCALE;
6895		rq->post_schedule = 0;
6896		rq->active_balance = 0;
6897		rq->next_balance = jiffies;
6898		rq->push_cpu = 0;
6899		rq->cpu = i;
6900		rq->online = 0;
6901		rq->idle_stamp = 0;
6902		rq->avg_idle = 2*sysctl_sched_migration_cost;
6903		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6904
6905		INIT_LIST_HEAD(&rq->cfs_tasks);
6906
6907		rq_attach_root(rq, &def_root_domain);
6908#ifdef CONFIG_NO_HZ_COMMON
6909		rq->nohz_flags = 0;
6910#endif
6911#ifdef CONFIG_NO_HZ_FULL
6912		rq->last_sched_tick = 0;
6913#endif
6914#endif
6915		init_rq_hrtick(rq);
6916		atomic_set(&rq->nr_iowait, 0);
6917	}
6918
6919	set_load_weight(&init_task);
6920
6921#ifdef CONFIG_PREEMPT_NOTIFIERS
6922	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6923#endif
6924
6925	/*
6926	 * The boot idle thread does lazy MMU switching as well:
6927	 */
6928	atomic_inc(&init_mm.mm_count);
6929	enter_lazy_tlb(&init_mm, current);
6930
6931	/*
6932	 * Make us the idle thread. Technically, schedule() should not be
6933	 * called from this thread, however somewhere below it might be,
6934	 * but because we are the idle thread, we just pick up running again
6935	 * when this runqueue becomes "idle".
6936	 */
6937	init_idle(current, smp_processor_id());
6938
6939	calc_load_update = jiffies + LOAD_FREQ;
6940
6941	/*
6942	 * During early bootup we pretend to be a normal task:
6943	 */
6944	current->sched_class = &fair_sched_class;
6945
6946#ifdef CONFIG_SMP
6947	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6948	/* May be allocated at isolcpus cmdline parse time */
6949	if (cpu_isolated_map == NULL)
6950		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6951	idle_thread_set_boot_cpu();
6952#endif
6953	init_sched_fair_class();
6954
6955	scheduler_running = 1;
6956}
6957
6958#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6959static inline int preempt_count_equals(int preempt_offset)
6960{
6961	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6962
6963	return (nested == preempt_offset);
6964}
6965
6966void __might_sleep(const char *file, int line, int preempt_offset)
6967{
6968	static unsigned long prev_jiffy;	/* ratelimiting */
6969
6970	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6971	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6972	     !is_idle_task(current)) ||
6973	    system_state != SYSTEM_RUNNING || oops_in_progress)
6974		return;
6975	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6976		return;
6977	prev_jiffy = jiffies;
6978
6979	printk(KERN_ERR
6980		"BUG: sleeping function called from invalid context at %s:%d\n",
6981			file, line);
6982	printk(KERN_ERR
6983		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6984			in_atomic(), irqs_disabled(),
6985			current->pid, current->comm);
6986
6987	debug_show_held_locks(current);
6988	if (irqs_disabled())
6989		print_irqtrace_events(current);
6990#ifdef CONFIG_DEBUG_PREEMPT
6991	if (!preempt_count_equals(preempt_offset)) {
6992		pr_err("Preemption disabled at:");
6993		print_ip_sym(current->preempt_disable_ip);
6994		pr_cont("\n");
6995	}
6996#endif
6997	dump_stack();
6998}
6999EXPORT_SYMBOL(__might_sleep);
7000#endif
7001
7002#ifdef CONFIG_MAGIC_SYSRQ
7003static void normalize_task(struct rq *rq, struct task_struct *p)
7004{
7005	const struct sched_class *prev_class = p->sched_class;
7006	struct sched_attr attr = {
7007		.sched_policy = SCHED_NORMAL,
7008	};
7009	int old_prio = p->prio;
7010	int on_rq;
7011
7012	on_rq = p->on_rq;
7013	if (on_rq)
7014		dequeue_task(rq, p, 0);
7015	__setscheduler(rq, p, &attr);
7016	if (on_rq) {
7017		enqueue_task(rq, p, 0);
7018		resched_task(rq->curr);
7019	}
7020
7021	check_class_changed(rq, p, prev_class, old_prio);
7022}
7023
7024void normalize_rt_tasks(void)
7025{
7026	struct task_struct *g, *p;
7027	unsigned long flags;
7028	struct rq *rq;
7029
7030	read_lock_irqsave(&tasklist_lock, flags);
7031	do_each_thread(g, p) {
7032		/*
7033		 * Only normalize user tasks:
7034		 */
7035		if (!p->mm)
7036			continue;
7037
7038		p->se.exec_start		= 0;
7039#ifdef CONFIG_SCHEDSTATS
7040		p->se.statistics.wait_start	= 0;
7041		p->se.statistics.sleep_start	= 0;
7042		p->se.statistics.block_start	= 0;
7043#endif
7044
7045		if (!dl_task(p) && !rt_task(p)) {
7046			/*
7047			 * Renice negative nice level userspace
7048			 * tasks back to 0:
7049			 */
7050			if (task_nice(p) < 0 && p->mm)
7051				set_user_nice(p, 0);
7052			continue;
7053		}
7054
7055		raw_spin_lock(&p->pi_lock);
7056		rq = __task_rq_lock(p);
7057
7058		normalize_task(rq, p);
7059
7060		__task_rq_unlock(rq);
7061		raw_spin_unlock(&p->pi_lock);
7062	} while_each_thread(g, p);
7063
7064	read_unlock_irqrestore(&tasklist_lock, flags);
7065}
7066
7067#endif /* CONFIG_MAGIC_SYSRQ */
7068
7069#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7070/*
7071 * These functions are only useful for the IA64 MCA handling, or kdb.
7072 *
7073 * They can only be called when the whole system has been
7074 * stopped - every CPU needs to be quiescent, and no scheduling
7075 * activity can take place. Using them for anything else would
7076 * be a serious bug, and as a result, they aren't even visible
7077 * under any other configuration.
7078 */
7079
7080/**
7081 * curr_task - return the current task for a given cpu.
7082 * @cpu: the processor in question.
7083 *
7084 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7085 *
7086 * Return: The current task for @cpu.
7087 */
7088struct task_struct *curr_task(int cpu)
7089{
7090	return cpu_curr(cpu);
7091}
7092
7093#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7094
7095#ifdef CONFIG_IA64
7096/**
7097 * set_curr_task - set the current task for a given cpu.
7098 * @cpu: the processor in question.
7099 * @p: the task pointer to set.
7100 *
7101 * Description: This function must only be used when non-maskable interrupts
7102 * are serviced on a separate stack. It allows the architecture to switch the
7103 * notion of the current task on a cpu in a non-blocking manner. This function
7104 * must be called with all CPU's synchronized, and interrupts disabled, the
7105 * and caller must save the original value of the current task (see
7106 * curr_task() above) and restore that value before reenabling interrupts and
7107 * re-starting the system.
7108 *
7109 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7110 */
7111void set_curr_task(int cpu, struct task_struct *p)
7112{
7113	cpu_curr(cpu) = p;
7114}
7115
7116#endif
7117
7118#ifdef CONFIG_CGROUP_SCHED
7119/* task_group_lock serializes the addition/removal of task groups */
7120static DEFINE_SPINLOCK(task_group_lock);
7121
7122static void free_sched_group(struct task_group *tg)
7123{
7124	free_fair_sched_group(tg);
7125	free_rt_sched_group(tg);
7126	autogroup_free(tg);
7127	kfree(tg);
7128}
7129
7130/* allocate runqueue etc for a new task group */
7131struct task_group *sched_create_group(struct task_group *parent)
7132{
7133	struct task_group *tg;
7134
7135	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7136	if (!tg)
7137		return ERR_PTR(-ENOMEM);
7138
7139	if (!alloc_fair_sched_group(tg, parent))
7140		goto err;
7141
7142	if (!alloc_rt_sched_group(tg, parent))
7143		goto err;
7144
7145	return tg;
7146
7147err:
7148	free_sched_group(tg);
7149	return ERR_PTR(-ENOMEM);
7150}
7151
7152void sched_online_group(struct task_group *tg, struct task_group *parent)
7153{
7154	unsigned long flags;
7155
7156	spin_lock_irqsave(&task_group_lock, flags);
7157	list_add_rcu(&tg->list, &task_groups);
7158
7159	WARN_ON(!parent); /* root should already exist */
7160
7161	tg->parent = parent;
7162	INIT_LIST_HEAD(&tg->children);
7163	list_add_rcu(&tg->siblings, &parent->children);
7164	spin_unlock_irqrestore(&task_group_lock, flags);
7165}
7166
7167/* rcu callback to free various structures associated with a task group */
7168static void free_sched_group_rcu(struct rcu_head *rhp)
7169{
7170	/* now it should be safe to free those cfs_rqs */
7171	free_sched_group(container_of(rhp, struct task_group, rcu));
7172}
7173
7174/* Destroy runqueue etc associated with a task group */
7175void sched_destroy_group(struct task_group *tg)
7176{
7177	/* wait for possible concurrent references to cfs_rqs complete */
7178	call_rcu(&tg->rcu, free_sched_group_rcu);
7179}
7180
7181void sched_offline_group(struct task_group *tg)
7182{
7183	unsigned long flags;
7184	int i;
7185
7186	/* end participation in shares distribution */
7187	for_each_possible_cpu(i)
7188		unregister_fair_sched_group(tg, i);
7189
7190	spin_lock_irqsave(&task_group_lock, flags);
7191	list_del_rcu(&tg->list);
7192	list_del_rcu(&tg->siblings);
7193	spin_unlock_irqrestore(&task_group_lock, flags);
7194}
7195
7196/* change task's runqueue when it moves between groups.
7197 *	The caller of this function should have put the task in its new group
7198 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7199 *	reflect its new group.
7200 */
7201void sched_move_task(struct task_struct *tsk)
7202{
7203	struct task_group *tg;
7204	int on_rq, running;
7205	unsigned long flags;
7206	struct rq *rq;
7207
7208	rq = task_rq_lock(tsk, &flags);
7209
7210	running = task_current(rq, tsk);
7211	on_rq = tsk->on_rq;
7212
7213	if (on_rq)
7214		dequeue_task(rq, tsk, 0);
7215	if (unlikely(running))
7216		tsk->sched_class->put_prev_task(rq, tsk);
7217
7218	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7219				lockdep_is_held(&tsk->sighand->siglock)),
7220			  struct task_group, css);
7221	tg = autogroup_task_group(tsk, tg);
7222	tsk->sched_task_group = tg;
7223
7224#ifdef CONFIG_FAIR_GROUP_SCHED
7225	if (tsk->sched_class->task_move_group)
7226		tsk->sched_class->task_move_group(tsk, on_rq);
7227	else
7228#endif
7229		set_task_rq(tsk, task_cpu(tsk));
7230
7231	if (unlikely(running))
7232		tsk->sched_class->set_curr_task(rq);
7233	if (on_rq)
7234		enqueue_task(rq, tsk, 0);
7235
7236	task_rq_unlock(rq, tsk, &flags);
7237}
7238#endif /* CONFIG_CGROUP_SCHED */
7239
7240#ifdef CONFIG_RT_GROUP_SCHED
7241/*
7242 * Ensure that the real time constraints are schedulable.
7243 */
7244static DEFINE_MUTEX(rt_constraints_mutex);
7245
7246/* Must be called with tasklist_lock held */
7247static inline int tg_has_rt_tasks(struct task_group *tg)
7248{
7249	struct task_struct *g, *p;
7250
7251	do_each_thread(g, p) {
7252		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7253			return 1;
7254	} while_each_thread(g, p);
7255
7256	return 0;
7257}
7258
7259struct rt_schedulable_data {
7260	struct task_group *tg;
7261	u64 rt_period;
7262	u64 rt_runtime;
7263};
7264
7265static int tg_rt_schedulable(struct task_group *tg, void *data)
7266{
7267	struct rt_schedulable_data *d = data;
7268	struct task_group *child;
7269	unsigned long total, sum = 0;
7270	u64 period, runtime;
7271
7272	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7273	runtime = tg->rt_bandwidth.rt_runtime;
7274
7275	if (tg == d->tg) {
7276		period = d->rt_period;
7277		runtime = d->rt_runtime;
7278	}
7279
7280	/*
7281	 * Cannot have more runtime than the period.
7282	 */
7283	if (runtime > period && runtime != RUNTIME_INF)
7284		return -EINVAL;
7285
7286	/*
7287	 * Ensure we don't starve existing RT tasks.
7288	 */
7289	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7290		return -EBUSY;
7291
7292	total = to_ratio(period, runtime);
7293
7294	/*
7295	 * Nobody can have more than the global setting allows.
7296	 */
7297	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7298		return -EINVAL;
7299
7300	/*
7301	 * The sum of our children's runtime should not exceed our own.
7302	 */
7303	list_for_each_entry_rcu(child, &tg->children, siblings) {
7304		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7305		runtime = child->rt_bandwidth.rt_runtime;
7306
7307		if (child == d->tg) {
7308			period = d->rt_period;
7309			runtime = d->rt_runtime;
7310		}
7311
7312		sum += to_ratio(period, runtime);
7313	}
7314
7315	if (sum > total)
7316		return -EINVAL;
7317
7318	return 0;
7319}
7320
7321static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7322{
7323	int ret;
7324
7325	struct rt_schedulable_data data = {
7326		.tg = tg,
7327		.rt_period = period,
7328		.rt_runtime = runtime,
7329	};
7330
7331	rcu_read_lock();
7332	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7333	rcu_read_unlock();
7334
7335	return ret;
7336}
7337
7338static int tg_set_rt_bandwidth(struct task_group *tg,
7339		u64 rt_period, u64 rt_runtime)
7340{
7341	int i, err = 0;
7342
7343	mutex_lock(&rt_constraints_mutex);
7344	read_lock(&tasklist_lock);
7345	err = __rt_schedulable(tg, rt_period, rt_runtime);
7346	if (err)
7347		goto unlock;
7348
7349	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7350	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7351	tg->rt_bandwidth.rt_runtime = rt_runtime;
7352
7353	for_each_possible_cpu(i) {
7354		struct rt_rq *rt_rq = tg->rt_rq[i];
7355
7356		raw_spin_lock(&rt_rq->rt_runtime_lock);
7357		rt_rq->rt_runtime = rt_runtime;
7358		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7359	}
7360	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7361unlock:
7362	read_unlock(&tasklist_lock);
7363	mutex_unlock(&rt_constraints_mutex);
7364
7365	return err;
7366}
7367
7368static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7369{
7370	u64 rt_runtime, rt_period;
7371
7372	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7373	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7374	if (rt_runtime_us < 0)
7375		rt_runtime = RUNTIME_INF;
7376
7377	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7378}
7379
7380static long sched_group_rt_runtime(struct task_group *tg)
7381{
7382	u64 rt_runtime_us;
7383
7384	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7385		return -1;
7386
7387	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7388	do_div(rt_runtime_us, NSEC_PER_USEC);
7389	return rt_runtime_us;
7390}
7391
7392static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7393{
7394	u64 rt_runtime, rt_period;
7395
7396	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7397	rt_runtime = tg->rt_bandwidth.rt_runtime;
7398
7399	if (rt_period == 0)
7400		return -EINVAL;
7401
7402	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7403}
7404
7405static long sched_group_rt_period(struct task_group *tg)
7406{
7407	u64 rt_period_us;
7408
7409	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7410	do_div(rt_period_us, NSEC_PER_USEC);
7411	return rt_period_us;
7412}
7413#endif /* CONFIG_RT_GROUP_SCHED */
7414
7415#ifdef CONFIG_RT_GROUP_SCHED
7416static int sched_rt_global_constraints(void)
7417{
7418	int ret = 0;
7419
7420	mutex_lock(&rt_constraints_mutex);
7421	read_lock(&tasklist_lock);
7422	ret = __rt_schedulable(NULL, 0, 0);
7423	read_unlock(&tasklist_lock);
7424	mutex_unlock(&rt_constraints_mutex);
7425
7426	return ret;
7427}
7428
7429static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7430{
7431	/* Don't accept realtime tasks when there is no way for them to run */
7432	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7433		return 0;
7434
7435	return 1;
7436}
7437
7438#else /* !CONFIG_RT_GROUP_SCHED */
7439static int sched_rt_global_constraints(void)
7440{
7441	unsigned long flags;
7442	int i, ret = 0;
7443
7444	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7445	for_each_possible_cpu(i) {
7446		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7447
7448		raw_spin_lock(&rt_rq->rt_runtime_lock);
7449		rt_rq->rt_runtime = global_rt_runtime();
7450		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7451	}
7452	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7453
7454	return ret;
7455}
7456#endif /* CONFIG_RT_GROUP_SCHED */
7457
7458static int sched_dl_global_constraints(void)
7459{
7460	u64 runtime = global_rt_runtime();
7461	u64 period = global_rt_period();
7462	u64 new_bw = to_ratio(period, runtime);
7463	int cpu, ret = 0;
7464
7465	/*
7466	 * Here we want to check the bandwidth not being set to some
7467	 * value smaller than the currently allocated bandwidth in
7468	 * any of the root_domains.
7469	 *
7470	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7471	 * cycling on root_domains... Discussion on different/better
7472	 * solutions is welcome!
7473	 */
7474	for_each_possible_cpu(cpu) {
7475		struct dl_bw *dl_b = dl_bw_of(cpu);
7476
7477		raw_spin_lock(&dl_b->lock);
7478		if (new_bw < dl_b->total_bw)
7479			ret = -EBUSY;
7480		raw_spin_unlock(&dl_b->lock);
7481
7482		if (ret)
7483			break;
7484	}
7485
7486	return ret;
7487}
7488
7489static void sched_dl_do_global(void)
7490{
7491	u64 new_bw = -1;
7492	int cpu;
7493
7494	def_dl_bandwidth.dl_period = global_rt_period();
7495	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7496
7497	if (global_rt_runtime() != RUNTIME_INF)
7498		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7499
7500	/*
7501	 * FIXME: As above...
7502	 */
7503	for_each_possible_cpu(cpu) {
7504		struct dl_bw *dl_b = dl_bw_of(cpu);
7505
7506		raw_spin_lock(&dl_b->lock);
7507		dl_b->bw = new_bw;
7508		raw_spin_unlock(&dl_b->lock);
7509	}
7510}
7511
7512static int sched_rt_global_validate(void)
7513{
7514	if (sysctl_sched_rt_period <= 0)
7515		return -EINVAL;
7516
7517	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7518		return -EINVAL;
7519
7520	return 0;
7521}
7522
7523static void sched_rt_do_global(void)
7524{
7525	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7526	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7527}
7528
7529int sched_rt_handler(struct ctl_table *table, int write,
7530		void __user *buffer, size_t *lenp,
7531		loff_t *ppos)
7532{
7533	int old_period, old_runtime;
7534	static DEFINE_MUTEX(mutex);
7535	int ret;
7536
7537	mutex_lock(&mutex);
7538	old_period = sysctl_sched_rt_period;
7539	old_runtime = sysctl_sched_rt_runtime;
7540
7541	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7542
7543	if (!ret && write) {
7544		ret = sched_rt_global_validate();
7545		if (ret)
7546			goto undo;
7547
7548		ret = sched_rt_global_constraints();
7549		if (ret)
7550			goto undo;
7551
7552		ret = sched_dl_global_constraints();
7553		if (ret)
7554			goto undo;
7555
7556		sched_rt_do_global();
7557		sched_dl_do_global();
7558	}
7559	if (0) {
7560undo:
7561		sysctl_sched_rt_period = old_period;
7562		sysctl_sched_rt_runtime = old_runtime;
7563	}
7564	mutex_unlock(&mutex);
7565
7566	return ret;
7567}
7568
7569int sched_rr_handler(struct ctl_table *table, int write,
7570		void __user *buffer, size_t *lenp,
7571		loff_t *ppos)
7572{
7573	int ret;
7574	static DEFINE_MUTEX(mutex);
7575
7576	mutex_lock(&mutex);
7577	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7578	/* make sure that internally we keep jiffies */
7579	/* also, writing zero resets timeslice to default */
7580	if (!ret && write) {
7581		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7582			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7583	}
7584	mutex_unlock(&mutex);
7585	return ret;
7586}
7587
7588#ifdef CONFIG_CGROUP_SCHED
7589
7590static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7591{
7592	return css ? container_of(css, struct task_group, css) : NULL;
7593}
7594
7595static struct cgroup_subsys_state *
7596cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7597{
7598	struct task_group *parent = css_tg(parent_css);
7599	struct task_group *tg;
7600
7601	if (!parent) {
7602		/* This is early initialization for the top cgroup */
7603		return &root_task_group.css;
7604	}
7605
7606	tg = sched_create_group(parent);
7607	if (IS_ERR(tg))
7608		return ERR_PTR(-ENOMEM);
7609
7610	return &tg->css;
7611}
7612
7613static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7614{
7615	struct task_group *tg = css_tg(css);
7616	struct task_group *parent = css_tg(css_parent(css));
7617
7618	if (parent)
7619		sched_online_group(tg, parent);
7620	return 0;
7621}
7622
7623static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7624{
7625	struct task_group *tg = css_tg(css);
7626
7627	sched_destroy_group(tg);
7628}
7629
7630static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7631{
7632	struct task_group *tg = css_tg(css);
7633
7634	sched_offline_group(tg);
7635}
7636
7637static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7638				 struct cgroup_taskset *tset)
7639{
7640	struct task_struct *task;
7641
7642	cgroup_taskset_for_each(task, css, tset) {
7643#ifdef CONFIG_RT_GROUP_SCHED
7644		if (!sched_rt_can_attach(css_tg(css), task))
7645			return -EINVAL;
7646#else
7647		/* We don't support RT-tasks being in separate groups */
7648		if (task->sched_class != &fair_sched_class)
7649			return -EINVAL;
7650#endif
7651	}
7652	return 0;
7653}
7654
7655static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7656			      struct cgroup_taskset *tset)
7657{
7658	struct task_struct *task;
7659
7660	cgroup_taskset_for_each(task, css, tset)
7661		sched_move_task(task);
7662}
7663
7664static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7665			    struct cgroup_subsys_state *old_css,
7666			    struct task_struct *task)
7667{
7668	/*
7669	 * cgroup_exit() is called in the copy_process() failure path.
7670	 * Ignore this case since the task hasn't ran yet, this avoids
7671	 * trying to poke a half freed task state from generic code.
7672	 */
7673	if (!(task->flags & PF_EXITING))
7674		return;
7675
7676	sched_move_task(task);
7677}
7678
7679#ifdef CONFIG_FAIR_GROUP_SCHED
7680static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7681				struct cftype *cftype, u64 shareval)
7682{
7683	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7684}
7685
7686static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7687			       struct cftype *cft)
7688{
7689	struct task_group *tg = css_tg(css);
7690
7691	return (u64) scale_load_down(tg->shares);
7692}
7693
7694#ifdef CONFIG_CFS_BANDWIDTH
7695static DEFINE_MUTEX(cfs_constraints_mutex);
7696
7697const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7698const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7699
7700static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7701
7702static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7703{
7704	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7705	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7706
7707	if (tg == &root_task_group)
7708		return -EINVAL;
7709
7710	/*
7711	 * Ensure we have at some amount of bandwidth every period.  This is
7712	 * to prevent reaching a state of large arrears when throttled via
7713	 * entity_tick() resulting in prolonged exit starvation.
7714	 */
7715	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7716		return -EINVAL;
7717
7718	/*
7719	 * Likewise, bound things on the otherside by preventing insane quota
7720	 * periods.  This also allows us to normalize in computing quota
7721	 * feasibility.
7722	 */
7723	if (period > max_cfs_quota_period)
7724		return -EINVAL;
7725
7726	mutex_lock(&cfs_constraints_mutex);
7727	ret = __cfs_schedulable(tg, period, quota);
7728	if (ret)
7729		goto out_unlock;
7730
7731	runtime_enabled = quota != RUNTIME_INF;
7732	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7733	/*
7734	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7735	 * before making related changes, and on->off must occur afterwards
7736	 */
7737	if (runtime_enabled && !runtime_was_enabled)
7738		cfs_bandwidth_usage_inc();
7739	raw_spin_lock_irq(&cfs_b->lock);
7740	cfs_b->period = ns_to_ktime(period);
7741	cfs_b->quota = quota;
7742
7743	__refill_cfs_bandwidth_runtime(cfs_b);
7744	/* restart the period timer (if active) to handle new period expiry */
7745	if (runtime_enabled && cfs_b->timer_active) {
7746		/* force a reprogram */
7747		cfs_b->timer_active = 0;
7748		__start_cfs_bandwidth(cfs_b);
7749	}
7750	raw_spin_unlock_irq(&cfs_b->lock);
7751
7752	for_each_possible_cpu(i) {
7753		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7754		struct rq *rq = cfs_rq->rq;
7755
7756		raw_spin_lock_irq(&rq->lock);
7757		cfs_rq->runtime_enabled = runtime_enabled;
7758		cfs_rq->runtime_remaining = 0;
7759
7760		if (cfs_rq->throttled)
7761			unthrottle_cfs_rq(cfs_rq);
7762		raw_spin_unlock_irq(&rq->lock);
7763	}
7764	if (runtime_was_enabled && !runtime_enabled)
7765		cfs_bandwidth_usage_dec();
7766out_unlock:
7767	mutex_unlock(&cfs_constraints_mutex);
7768
7769	return ret;
7770}
7771
7772int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7773{
7774	u64 quota, period;
7775
7776	period = ktime_to_ns(tg->cfs_bandwidth.period);
7777	if (cfs_quota_us < 0)
7778		quota = RUNTIME_INF;
7779	else
7780		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7781
7782	return tg_set_cfs_bandwidth(tg, period, quota);
7783}
7784
7785long tg_get_cfs_quota(struct task_group *tg)
7786{
7787	u64 quota_us;
7788
7789	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7790		return -1;
7791
7792	quota_us = tg->cfs_bandwidth.quota;
7793	do_div(quota_us, NSEC_PER_USEC);
7794
7795	return quota_us;
7796}
7797
7798int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7799{
7800	u64 quota, period;
7801
7802	period = (u64)cfs_period_us * NSEC_PER_USEC;
7803	quota = tg->cfs_bandwidth.quota;
7804
7805	return tg_set_cfs_bandwidth(tg, period, quota);
7806}
7807
7808long tg_get_cfs_period(struct task_group *tg)
7809{
7810	u64 cfs_period_us;
7811
7812	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7813	do_div(cfs_period_us, NSEC_PER_USEC);
7814
7815	return cfs_period_us;
7816}
7817
7818static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7819				  struct cftype *cft)
7820{
7821	return tg_get_cfs_quota(css_tg(css));
7822}
7823
7824static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7825				   struct cftype *cftype, s64 cfs_quota_us)
7826{
7827	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7828}
7829
7830static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7831				   struct cftype *cft)
7832{
7833	return tg_get_cfs_period(css_tg(css));
7834}
7835
7836static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7837				    struct cftype *cftype, u64 cfs_period_us)
7838{
7839	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7840}
7841
7842struct cfs_schedulable_data {
7843	struct task_group *tg;
7844	u64 period, quota;
7845};
7846
7847/*
7848 * normalize group quota/period to be quota/max_period
7849 * note: units are usecs
7850 */
7851static u64 normalize_cfs_quota(struct task_group *tg,
7852			       struct cfs_schedulable_data *d)
7853{
7854	u64 quota, period;
7855
7856	if (tg == d->tg) {
7857		period = d->period;
7858		quota = d->quota;
7859	} else {
7860		period = tg_get_cfs_period(tg);
7861		quota = tg_get_cfs_quota(tg);
7862	}
7863
7864	/* note: these should typically be equivalent */
7865	if (quota == RUNTIME_INF || quota == -1)
7866		return RUNTIME_INF;
7867
7868	return to_ratio(period, quota);
7869}
7870
7871static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7872{
7873	struct cfs_schedulable_data *d = data;
7874	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7875	s64 quota = 0, parent_quota = -1;
7876
7877	if (!tg->parent) {
7878		quota = RUNTIME_INF;
7879	} else {
7880		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7881
7882		quota = normalize_cfs_quota(tg, d);
7883		parent_quota = parent_b->hierarchal_quota;
7884
7885		/*
7886		 * ensure max(child_quota) <= parent_quota, inherit when no
7887		 * limit is set
7888		 */
7889		if (quota == RUNTIME_INF)
7890			quota = parent_quota;
7891		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7892			return -EINVAL;
7893	}
7894	cfs_b->hierarchal_quota = quota;
7895
7896	return 0;
7897}
7898
7899static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7900{
7901	int ret;
7902	struct cfs_schedulable_data data = {
7903		.tg = tg,
7904		.period = period,
7905		.quota = quota,
7906	};
7907
7908	if (quota != RUNTIME_INF) {
7909		do_div(data.period, NSEC_PER_USEC);
7910		do_div(data.quota, NSEC_PER_USEC);
7911	}
7912
7913	rcu_read_lock();
7914	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7915	rcu_read_unlock();
7916
7917	return ret;
7918}
7919
7920static int cpu_stats_show(struct seq_file *sf, void *v)
7921{
7922	struct task_group *tg = css_tg(seq_css(sf));
7923	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7924
7925	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7926	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7927	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7928
7929	return 0;
7930}
7931#endif /* CONFIG_CFS_BANDWIDTH */
7932#endif /* CONFIG_FAIR_GROUP_SCHED */
7933
7934#ifdef CONFIG_RT_GROUP_SCHED
7935static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7936				struct cftype *cft, s64 val)
7937{
7938	return sched_group_set_rt_runtime(css_tg(css), val);
7939}
7940
7941static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7942			       struct cftype *cft)
7943{
7944	return sched_group_rt_runtime(css_tg(css));
7945}
7946
7947static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7948				    struct cftype *cftype, u64 rt_period_us)
7949{
7950	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7951}
7952
7953static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7954				   struct cftype *cft)
7955{
7956	return sched_group_rt_period(css_tg(css));
7957}
7958#endif /* CONFIG_RT_GROUP_SCHED */
7959
7960static struct cftype cpu_files[] = {
7961#ifdef CONFIG_FAIR_GROUP_SCHED
7962	{
7963		.name = "shares",
7964		.read_u64 = cpu_shares_read_u64,
7965		.write_u64 = cpu_shares_write_u64,
7966	},
7967#endif
7968#ifdef CONFIG_CFS_BANDWIDTH
7969	{
7970		.name = "cfs_quota_us",
7971		.read_s64 = cpu_cfs_quota_read_s64,
7972		.write_s64 = cpu_cfs_quota_write_s64,
7973	},
7974	{
7975		.name = "cfs_period_us",
7976		.read_u64 = cpu_cfs_period_read_u64,
7977		.write_u64 = cpu_cfs_period_write_u64,
7978	},
7979	{
7980		.name = "stat",
7981		.seq_show = cpu_stats_show,
7982	},
7983#endif
7984#ifdef CONFIG_RT_GROUP_SCHED
7985	{
7986		.name = "rt_runtime_us",
7987		.read_s64 = cpu_rt_runtime_read,
7988		.write_s64 = cpu_rt_runtime_write,
7989	},
7990	{
7991		.name = "rt_period_us",
7992		.read_u64 = cpu_rt_period_read_uint,
7993		.write_u64 = cpu_rt_period_write_uint,
7994	},
7995#endif
7996	{ }	/* terminate */
7997};
7998
7999struct cgroup_subsys cpu_cgroup_subsys = {
8000	.name		= "cpu",
8001	.css_alloc	= cpu_cgroup_css_alloc,
8002	.css_free	= cpu_cgroup_css_free,
8003	.css_online	= cpu_cgroup_css_online,
8004	.css_offline	= cpu_cgroup_css_offline,
8005	.can_attach	= cpu_cgroup_can_attach,
8006	.attach		= cpu_cgroup_attach,
8007	.exit		= cpu_cgroup_exit,
8008	.subsys_id	= cpu_cgroup_subsys_id,
8009	.base_cftypes	= cpu_files,
8010	.early_init	= 1,
8011};
8012
8013#endif	/* CONFIG_CGROUP_SCHED */
8014
8015void dump_cpu_task(int cpu)
8016{
8017	pr_info("Task dump for CPU %d:\n", cpu);
8018	sched_show_task(cpu_curr(cpu));
8019}
8020