core.c revision 383afd0971538b3d77532a56404b24cfe967b5dd
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115	return ret;
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int nid = cpu_to_node(cpu);
1266	const struct cpumask *nodemask = NULL;
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/*
1271	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272	 * will return -1. There is no cpu on the node, and we should
1273	 * select the cpu on the other node.
1274	 */
1275	if (nid != -1) {
1276		nodemask = cpumask_of_node(nid);
1277
1278		/* Look for allowed, online CPU in same node. */
1279		for_each_cpu(dest_cpu, nodemask) {
1280			if (!cpu_online(dest_cpu))
1281				continue;
1282			if (!cpu_active(dest_cpu))
1283				continue;
1284			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285				return dest_cpu;
1286		}
1287	}
1288
1289	for (;;) {
1290		/* Any allowed, online CPU? */
1291		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292			if (!cpu_online(dest_cpu))
1293				continue;
1294			if (!cpu_active(dest_cpu))
1295				continue;
1296			goto out;
1297		}
1298
1299		switch (state) {
1300		case cpuset:
1301			/* No more Mr. Nice Guy. */
1302			cpuset_cpus_allowed_fallback(p);
1303			state = possible;
1304			break;
1305
1306		case possible:
1307			do_set_cpus_allowed(p, cpu_possible_mask);
1308			state = fail;
1309			break;
1310
1311		case fail:
1312			BUG();
1313			break;
1314		}
1315	}
1316
1317out:
1318	if (state != cpuset) {
1319		/*
1320		 * Don't tell them about moving exiting tasks or
1321		 * kernel threads (both mm NULL), since they never
1322		 * leave kernel.
1323		 */
1324		if (p->mm && printk_ratelimit()) {
1325			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326					task_pid_nr(p), p->comm, cpu);
1327		}
1328	}
1329
1330	return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341	/*
1342	 * In order not to call set_task_cpu() on a blocking task we need
1343	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344	 * cpu.
1345	 *
1346	 * Since this is common to all placement strategies, this lives here.
1347	 *
1348	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349	 *   not worry about this generic constraint ]
1350	 */
1351	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352		     !cpu_online(cpu)))
1353		cpu = select_fallback_rq(task_cpu(p), p);
1354
1355	return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360	s64 diff = sample - *avg;
1361	*avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369	struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372	int this_cpu = smp_processor_id();
1373
1374	if (cpu == this_cpu) {
1375		schedstat_inc(rq, ttwu_local);
1376		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377	} else {
1378		struct sched_domain *sd;
1379
1380		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381		rcu_read_lock();
1382		for_each_domain(this_cpu, sd) {
1383			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384				schedstat_inc(sd, ttwu_wake_remote);
1385				break;
1386			}
1387		}
1388		rcu_read_unlock();
1389	}
1390
1391	if (wake_flags & WF_MIGRATED)
1392		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396	schedstat_inc(rq, ttwu_count);
1397	schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399	if (wake_flags & WF_SYNC)
1400		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407	activate_task(rq, p, en_flags);
1408	p->on_rq = 1;
1409
1410	/* if a worker is waking up, notify workqueue */
1411	if (p->flags & PF_WQ_WORKER)
1412		wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421	check_preempt_curr(rq, p, wake_flags);
1422	trace_sched_wakeup(p, true);
1423
1424	p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426	if (p->sched_class->task_woken)
1427		p->sched_class->task_woken(rq, p);
1428
1429	if (rq->idle_stamp) {
1430		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431		u64 max = 2*rq->max_idle_balance_cost;
1432
1433		update_avg(&rq->avg_idle, delta);
1434
1435		if (rq->avg_idle > max)
1436			rq->avg_idle = max;
1437
1438		rq->idle_stamp = 0;
1439	}
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447	if (p->sched_contributes_to_load)
1448		rq->nr_uninterruptible--;
1449#endif
1450
1451	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452	ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463	struct rq *rq;
1464	int ret = 0;
1465
1466	rq = __task_rq_lock(p);
1467	if (p->on_rq) {
1468		/* check_preempt_curr() may use rq clock */
1469		update_rq_clock(rq);
1470		ttwu_do_wakeup(rq, p, wake_flags);
1471		ret = 1;
1472	}
1473	__task_rq_unlock(rq);
1474
1475	return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481	struct rq *rq = this_rq();
1482	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483	struct task_struct *p;
1484
1485	raw_spin_lock(&rq->lock);
1486
1487	while (llist) {
1488		p = llist_entry(llist, struct task_struct, wake_entry);
1489		llist = llist_next(llist);
1490		ttwu_do_activate(rq, p, 0);
1491	}
1492
1493	raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498	/*
1499	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501	 * this IPI.
1502	 */
1503	preempt_fold_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	RB_CLEAR_NODE(&p->dl.rb_node);
1721	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722	p->dl.dl_runtime = p->dl.runtime = 0;
1723	p->dl.dl_deadline = p->dl.deadline = 0;
1724	p->dl.dl_period = 0;
1725	p->dl.flags = 0;
1726
1727	INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736		p->mm->numa_scan_seq = 0;
1737	}
1738
1739	if (clone_flags & CLONE_VM)
1740		p->numa_preferred_nid = current->numa_preferred_nid;
1741	else
1742		p->numa_preferred_nid = -1;
1743
1744	p->node_stamp = 0ULL;
1745	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747	p->numa_work.next = &p->numa_work;
1748	p->numa_faults_memory = NULL;
1749	p->numa_faults_buffer_memory = NULL;
1750	p->last_task_numa_placement = 0;
1751	p->last_sum_exec_runtime = 0;
1752
1753	INIT_LIST_HEAD(&p->numa_entry);
1754	p->numa_group = NULL;
1755#endif /* CONFIG_NUMA_BALANCING */
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759#ifdef CONFIG_SCHED_DEBUG
1760void set_numabalancing_state(bool enabled)
1761{
1762	if (enabled)
1763		sched_feat_set("NUMA");
1764	else
1765		sched_feat_set("NO_NUMA");
1766}
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772	numabalancing_enabled = enabled;
1773}
1774#endif /* CONFIG_SCHED_DEBUG */
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778			 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780	struct ctl_table t;
1781	int err;
1782	int state = numabalancing_enabled;
1783
1784	if (write && !capable(CAP_SYS_ADMIN))
1785		return -EPERM;
1786
1787	t = *table;
1788	t.data = &state;
1789	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790	if (err < 0)
1791		return err;
1792	if (write)
1793		set_numabalancing_state(state);
1794	return err;
1795}
1796#endif
1797#endif
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803{
1804	unsigned long flags;
1805	int cpu = get_cpu();
1806
1807	__sched_fork(clone_flags, p);
1808	/*
1809	 * We mark the process as running here. This guarantees that
1810	 * nobody will actually run it, and a signal or other external
1811	 * event cannot wake it up and insert it on the runqueue either.
1812	 */
1813	p->state = TASK_RUNNING;
1814
1815	/*
1816	 * Make sure we do not leak PI boosting priority to the child.
1817	 */
1818	p->prio = current->normal_prio;
1819
1820	/*
1821	 * Revert to default priority/policy on fork if requested.
1822	 */
1823	if (unlikely(p->sched_reset_on_fork)) {
1824		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825			p->policy = SCHED_NORMAL;
1826			p->static_prio = NICE_TO_PRIO(0);
1827			p->rt_priority = 0;
1828		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1829			p->static_prio = NICE_TO_PRIO(0);
1830
1831		p->prio = p->normal_prio = __normal_prio(p);
1832		set_load_weight(p);
1833
1834		/*
1835		 * We don't need the reset flag anymore after the fork. It has
1836		 * fulfilled its duty:
1837		 */
1838		p->sched_reset_on_fork = 0;
1839	}
1840
1841	if (dl_prio(p->prio)) {
1842		put_cpu();
1843		return -EAGAIN;
1844	} else if (rt_prio(p->prio)) {
1845		p->sched_class = &rt_sched_class;
1846	} else {
1847		p->sched_class = &fair_sched_class;
1848	}
1849
1850	if (p->sched_class->task_fork)
1851		p->sched_class->task_fork(p);
1852
1853	/*
1854	 * The child is not yet in the pid-hash so no cgroup attach races,
1855	 * and the cgroup is pinned to this child due to cgroup_fork()
1856	 * is ran before sched_fork().
1857	 *
1858	 * Silence PROVE_RCU.
1859	 */
1860	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861	set_task_cpu(p, cpu);
1862	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865	if (likely(sched_info_on()))
1866		memset(&p->sched_info, 0, sizeof(p->sched_info));
1867#endif
1868#if defined(CONFIG_SMP)
1869	p->on_cpu = 0;
1870#endif
1871	init_task_preempt_count(p);
1872#ifdef CONFIG_SMP
1873	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875#endif
1876
1877	put_cpu();
1878	return 0;
1879}
1880
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883	if (runtime == RUNTIME_INF)
1884		return 1ULL << 20;
1885
1886	/*
1887	 * Doing this here saves a lot of checks in all
1888	 * the calling paths, and returning zero seems
1889	 * safe for them anyway.
1890	 */
1891	if (period == 0)
1892		return 0;
1893
1894	return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900	return &cpu_rq(i)->rd->dl_bw;
1901}
1902
1903static inline int dl_bw_cpus(int i)
1904{
1905	struct root_domain *rd = cpu_rq(i)->rd;
1906	int cpus = 0;
1907
1908	for_each_cpu_and(i, rd->span, cpu_active_mask)
1909		cpus++;
1910
1911	return cpus;
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916	return &cpu_rq(i)->dl.dl_bw;
1917}
1918
1919static inline int dl_bw_cpus(int i)
1920{
1921	return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928	dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934	dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940	return dl_b->bw != -1 &&
1941	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953		       const struct sched_attr *attr)
1954{
1955
1956	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957	u64 period = attr->sched_period ?: attr->sched_deadline;
1958	u64 runtime = attr->sched_runtime;
1959	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960	int cpus, err = -1;
1961
1962	if (new_bw == p->dl.dl_bw)
1963		return 0;
1964
1965	/*
1966	 * Either if a task, enters, leave, or stays -deadline but changes
1967	 * its parameters, we may need to update accordingly the total
1968	 * allocated bandwidth of the container.
1969	 */
1970	raw_spin_lock(&dl_b->lock);
1971	cpus = dl_bw_cpus(task_cpu(p));
1972	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974		__dl_add(dl_b, new_bw);
1975		err = 0;
1976	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978		__dl_clear(dl_b, p->dl.dl_bw);
1979		__dl_add(dl_b, new_bw);
1980		err = 0;
1981	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982		__dl_clear(dl_b, p->dl.dl_bw);
1983		err = 0;
1984	}
1985	raw_spin_unlock(&dl_b->lock);
1986
1987	return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999void wake_up_new_task(struct task_struct *p)
2000{
2001	unsigned long flags;
2002	struct rq *rq;
2003
2004	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005#ifdef CONFIG_SMP
2006	/*
2007	 * Fork balancing, do it here and not earlier because:
2008	 *  - cpus_allowed can change in the fork path
2009	 *  - any previously selected cpu might disappear through hotplug
2010	 */
2011	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012#endif
2013
2014	/* Initialize new task's runnable average */
2015	init_task_runnable_average(p);
2016	rq = __task_rq_lock(p);
2017	activate_task(rq, p, 0);
2018	p->on_rq = 1;
2019	trace_sched_wakeup_new(p, true);
2020	check_preempt_curr(rq, p, WF_FORK);
2021#ifdef CONFIG_SMP
2022	if (p->sched_class->task_woken)
2023		p->sched_class->task_woken(rq, p);
2024#endif
2025	task_rq_unlock(rq, p, &flags);
2026}
2027
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048	hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054	struct preempt_notifier *notifier;
2055
2056	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062				 struct task_struct *next)
2063{
2064	struct preempt_notifier *notifier;
2065
2066	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067		notifier->ops->sched_out(notifier, next);
2068}
2069
2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078				 struct task_struct *next)
2079{
2080}
2081
2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099		    struct task_struct *next)
2100{
2101	trace_sched_switch(prev, next);
2102	sched_info_switch(rq, prev, next);
2103	perf_event_task_sched_out(prev, next);
2104	fire_sched_out_preempt_notifiers(prev, next);
2105	prepare_lock_switch(rq, next);
2106	prepare_arch_switch(next);
2107}
2108
2109/**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125	__releases(rq->lock)
2126{
2127	struct mm_struct *mm = rq->prev_mm;
2128	long prev_state;
2129
2130	rq->prev_mm = NULL;
2131
2132	/*
2133	 * A task struct has one reference for the use as "current".
2134	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135	 * schedule one last time. The schedule call will never return, and
2136	 * the scheduled task must drop that reference.
2137	 * The test for TASK_DEAD must occur while the runqueue locks are
2138	 * still held, otherwise prev could be scheduled on another cpu, die
2139	 * there before we look at prev->state, and then the reference would
2140	 * be dropped twice.
2141	 *		Manfred Spraul <manfred@colorfullife.com>
2142	 */
2143	prev_state = prev->state;
2144	vtime_task_switch(prev);
2145	finish_arch_switch(prev);
2146	perf_event_task_sched_in(prev, current);
2147	finish_lock_switch(rq, prev);
2148	finish_arch_post_lock_switch();
2149
2150	fire_sched_in_preempt_notifiers(current);
2151	if (mm)
2152		mmdrop(mm);
2153	if (unlikely(prev_state == TASK_DEAD)) {
2154		if (prev->sched_class->task_dead)
2155			prev->sched_class->task_dead(prev);
2156
2157		/*
2158		 * Remove function-return probe instances associated with this
2159		 * task and put them back on the free list.
2160		 */
2161		kprobe_flush_task(prev);
2162		put_task_struct(prev);
2163	}
2164
2165	tick_nohz_task_switch(current);
2166}
2167
2168#ifdef CONFIG_SMP
2169
2170/* rq->lock is NOT held, but preemption is disabled */
2171static inline void post_schedule(struct rq *rq)
2172{
2173	if (rq->post_schedule) {
2174		unsigned long flags;
2175
2176		raw_spin_lock_irqsave(&rq->lock, flags);
2177		if (rq->curr->sched_class->post_schedule)
2178			rq->curr->sched_class->post_schedule(rq);
2179		raw_spin_unlock_irqrestore(&rq->lock, flags);
2180
2181		rq->post_schedule = 0;
2182	}
2183}
2184
2185#else
2186
2187static inline void post_schedule(struct rq *rq)
2188{
2189}
2190
2191#endif
2192
2193/**
2194 * schedule_tail - first thing a freshly forked thread must call.
2195 * @prev: the thread we just switched away from.
2196 */
2197asmlinkage void schedule_tail(struct task_struct *prev)
2198	__releases(rq->lock)
2199{
2200	struct rq *rq = this_rq();
2201
2202	finish_task_switch(rq, prev);
2203
2204	/*
2205	 * FIXME: do we need to worry about rq being invalidated by the
2206	 * task_switch?
2207	 */
2208	post_schedule(rq);
2209
2210#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2211	/* In this case, finish_task_switch does not reenable preemption */
2212	preempt_enable();
2213#endif
2214	if (current->set_child_tid)
2215		put_user(task_pid_vnr(current), current->set_child_tid);
2216}
2217
2218/*
2219 * context_switch - switch to the new MM and the new
2220 * thread's register state.
2221 */
2222static inline void
2223context_switch(struct rq *rq, struct task_struct *prev,
2224	       struct task_struct *next)
2225{
2226	struct mm_struct *mm, *oldmm;
2227
2228	prepare_task_switch(rq, prev, next);
2229
2230	mm = next->mm;
2231	oldmm = prev->active_mm;
2232	/*
2233	 * For paravirt, this is coupled with an exit in switch_to to
2234	 * combine the page table reload and the switch backend into
2235	 * one hypercall.
2236	 */
2237	arch_start_context_switch(prev);
2238
2239	if (!mm) {
2240		next->active_mm = oldmm;
2241		atomic_inc(&oldmm->mm_count);
2242		enter_lazy_tlb(oldmm, next);
2243	} else
2244		switch_mm(oldmm, mm, next);
2245
2246	if (!prev->mm) {
2247		prev->active_mm = NULL;
2248		rq->prev_mm = oldmm;
2249	}
2250	/*
2251	 * Since the runqueue lock will be released by the next
2252	 * task (which is an invalid locking op but in the case
2253	 * of the scheduler it's an obvious special-case), so we
2254	 * do an early lockdep release here:
2255	 */
2256#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2257	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2258#endif
2259
2260	context_tracking_task_switch(prev, next);
2261	/* Here we just switch the register state and the stack. */
2262	switch_to(prev, next, prev);
2263
2264	barrier();
2265	/*
2266	 * this_rq must be evaluated again because prev may have moved
2267	 * CPUs since it called schedule(), thus the 'rq' on its stack
2268	 * frame will be invalid.
2269	 */
2270	finish_task_switch(this_rq(), prev);
2271}
2272
2273/*
2274 * nr_running and nr_context_switches:
2275 *
2276 * externally visible scheduler statistics: current number of runnable
2277 * threads, total number of context switches performed since bootup.
2278 */
2279unsigned long nr_running(void)
2280{
2281	unsigned long i, sum = 0;
2282
2283	for_each_online_cpu(i)
2284		sum += cpu_rq(i)->nr_running;
2285
2286	return sum;
2287}
2288
2289unsigned long long nr_context_switches(void)
2290{
2291	int i;
2292	unsigned long long sum = 0;
2293
2294	for_each_possible_cpu(i)
2295		sum += cpu_rq(i)->nr_switches;
2296
2297	return sum;
2298}
2299
2300unsigned long nr_iowait(void)
2301{
2302	unsigned long i, sum = 0;
2303
2304	for_each_possible_cpu(i)
2305		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2306
2307	return sum;
2308}
2309
2310unsigned long nr_iowait_cpu(int cpu)
2311{
2312	struct rq *this = cpu_rq(cpu);
2313	return atomic_read(&this->nr_iowait);
2314}
2315
2316#ifdef CONFIG_SMP
2317
2318/*
2319 * sched_exec - execve() is a valuable balancing opportunity, because at
2320 * this point the task has the smallest effective memory and cache footprint.
2321 */
2322void sched_exec(void)
2323{
2324	struct task_struct *p = current;
2325	unsigned long flags;
2326	int dest_cpu;
2327
2328	raw_spin_lock_irqsave(&p->pi_lock, flags);
2329	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2330	if (dest_cpu == smp_processor_id())
2331		goto unlock;
2332
2333	if (likely(cpu_active(dest_cpu))) {
2334		struct migration_arg arg = { p, dest_cpu };
2335
2336		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2337		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2338		return;
2339	}
2340unlock:
2341	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2342}
2343
2344#endif
2345
2346DEFINE_PER_CPU(struct kernel_stat, kstat);
2347DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2348
2349EXPORT_PER_CPU_SYMBOL(kstat);
2350EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2351
2352/*
2353 * Return any ns on the sched_clock that have not yet been accounted in
2354 * @p in case that task is currently running.
2355 *
2356 * Called with task_rq_lock() held on @rq.
2357 */
2358static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2359{
2360	u64 ns = 0;
2361
2362	if (task_current(rq, p)) {
2363		update_rq_clock(rq);
2364		ns = rq_clock_task(rq) - p->se.exec_start;
2365		if ((s64)ns < 0)
2366			ns = 0;
2367	}
2368
2369	return ns;
2370}
2371
2372unsigned long long task_delta_exec(struct task_struct *p)
2373{
2374	unsigned long flags;
2375	struct rq *rq;
2376	u64 ns = 0;
2377
2378	rq = task_rq_lock(p, &flags);
2379	ns = do_task_delta_exec(p, rq);
2380	task_rq_unlock(rq, p, &flags);
2381
2382	return ns;
2383}
2384
2385/*
2386 * Return accounted runtime for the task.
2387 * In case the task is currently running, return the runtime plus current's
2388 * pending runtime that have not been accounted yet.
2389 */
2390unsigned long long task_sched_runtime(struct task_struct *p)
2391{
2392	unsigned long flags;
2393	struct rq *rq;
2394	u64 ns = 0;
2395
2396#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2397	/*
2398	 * 64-bit doesn't need locks to atomically read a 64bit value.
2399	 * So we have a optimization chance when the task's delta_exec is 0.
2400	 * Reading ->on_cpu is racy, but this is ok.
2401	 *
2402	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2403	 * If we race with it entering cpu, unaccounted time is 0. This is
2404	 * indistinguishable from the read occurring a few cycles earlier.
2405	 */
2406	if (!p->on_cpu)
2407		return p->se.sum_exec_runtime;
2408#endif
2409
2410	rq = task_rq_lock(p, &flags);
2411	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2412	task_rq_unlock(rq, p, &flags);
2413
2414	return ns;
2415}
2416
2417/*
2418 * This function gets called by the timer code, with HZ frequency.
2419 * We call it with interrupts disabled.
2420 */
2421void scheduler_tick(void)
2422{
2423	int cpu = smp_processor_id();
2424	struct rq *rq = cpu_rq(cpu);
2425	struct task_struct *curr = rq->curr;
2426
2427	sched_clock_tick();
2428
2429	raw_spin_lock(&rq->lock);
2430	update_rq_clock(rq);
2431	curr->sched_class->task_tick(rq, curr, 0);
2432	update_cpu_load_active(rq);
2433	raw_spin_unlock(&rq->lock);
2434
2435	perf_event_task_tick();
2436
2437#ifdef CONFIG_SMP
2438	rq->idle_balance = idle_cpu(cpu);
2439	trigger_load_balance(rq);
2440#endif
2441	rq_last_tick_reset(rq);
2442}
2443
2444#ifdef CONFIG_NO_HZ_FULL
2445/**
2446 * scheduler_tick_max_deferment
2447 *
2448 * Keep at least one tick per second when a single
2449 * active task is running because the scheduler doesn't
2450 * yet completely support full dynticks environment.
2451 *
2452 * This makes sure that uptime, CFS vruntime, load
2453 * balancing, etc... continue to move forward, even
2454 * with a very low granularity.
2455 *
2456 * Return: Maximum deferment in nanoseconds.
2457 */
2458u64 scheduler_tick_max_deferment(void)
2459{
2460	struct rq *rq = this_rq();
2461	unsigned long next, now = ACCESS_ONCE(jiffies);
2462
2463	next = rq->last_sched_tick + HZ;
2464
2465	if (time_before_eq(next, now))
2466		return 0;
2467
2468	return jiffies_to_nsecs(next - now);
2469}
2470#endif
2471
2472notrace unsigned long get_parent_ip(unsigned long addr)
2473{
2474	if (in_lock_functions(addr)) {
2475		addr = CALLER_ADDR2;
2476		if (in_lock_functions(addr))
2477			addr = CALLER_ADDR3;
2478	}
2479	return addr;
2480}
2481
2482#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2483				defined(CONFIG_PREEMPT_TRACER))
2484
2485void __kprobes preempt_count_add(int val)
2486{
2487#ifdef CONFIG_DEBUG_PREEMPT
2488	/*
2489	 * Underflow?
2490	 */
2491	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2492		return;
2493#endif
2494	__preempt_count_add(val);
2495#ifdef CONFIG_DEBUG_PREEMPT
2496	/*
2497	 * Spinlock count overflowing soon?
2498	 */
2499	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2500				PREEMPT_MASK - 10);
2501#endif
2502	if (preempt_count() == val) {
2503		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2504#ifdef CONFIG_DEBUG_PREEMPT
2505		current->preempt_disable_ip = ip;
2506#endif
2507		trace_preempt_off(CALLER_ADDR0, ip);
2508	}
2509}
2510EXPORT_SYMBOL(preempt_count_add);
2511
2512void __kprobes preempt_count_sub(int val)
2513{
2514#ifdef CONFIG_DEBUG_PREEMPT
2515	/*
2516	 * Underflow?
2517	 */
2518	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2519		return;
2520	/*
2521	 * Is the spinlock portion underflowing?
2522	 */
2523	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2524			!(preempt_count() & PREEMPT_MASK)))
2525		return;
2526#endif
2527
2528	if (preempt_count() == val)
2529		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2530	__preempt_count_sub(val);
2531}
2532EXPORT_SYMBOL(preempt_count_sub);
2533
2534#endif
2535
2536/*
2537 * Print scheduling while atomic bug:
2538 */
2539static noinline void __schedule_bug(struct task_struct *prev)
2540{
2541	if (oops_in_progress)
2542		return;
2543
2544	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2545		prev->comm, prev->pid, preempt_count());
2546
2547	debug_show_held_locks(prev);
2548	print_modules();
2549	if (irqs_disabled())
2550		print_irqtrace_events(prev);
2551#ifdef CONFIG_DEBUG_PREEMPT
2552	if (in_atomic_preempt_off()) {
2553		pr_err("Preemption disabled at:");
2554		print_ip_sym(current->preempt_disable_ip);
2555		pr_cont("\n");
2556	}
2557#endif
2558	dump_stack();
2559	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2560}
2561
2562/*
2563 * Various schedule()-time debugging checks and statistics:
2564 */
2565static inline void schedule_debug(struct task_struct *prev)
2566{
2567	/*
2568	 * Test if we are atomic. Since do_exit() needs to call into
2569	 * schedule() atomically, we ignore that path. Otherwise whine
2570	 * if we are scheduling when we should not.
2571	 */
2572	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2573		__schedule_bug(prev);
2574	rcu_sleep_check();
2575
2576	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2577
2578	schedstat_inc(this_rq(), sched_count);
2579}
2580
2581/*
2582 * Pick up the highest-prio task:
2583 */
2584static inline struct task_struct *
2585pick_next_task(struct rq *rq, struct task_struct *prev)
2586{
2587	const struct sched_class *class = &fair_sched_class;
2588	struct task_struct *p;
2589
2590	/*
2591	 * Optimization: we know that if all tasks are in
2592	 * the fair class we can call that function directly:
2593	 */
2594	if (likely(prev->sched_class == class &&
2595		   rq->nr_running == rq->cfs.h_nr_running)) {
2596		p = fair_sched_class.pick_next_task(rq, prev);
2597		if (likely(p && p != RETRY_TASK))
2598			return p;
2599	}
2600
2601again:
2602	for_each_class(class) {
2603		p = class->pick_next_task(rq, prev);
2604		if (p) {
2605			if (unlikely(p == RETRY_TASK))
2606				goto again;
2607			return p;
2608		}
2609	}
2610
2611	BUG(); /* the idle class will always have a runnable task */
2612}
2613
2614/*
2615 * __schedule() is the main scheduler function.
2616 *
2617 * The main means of driving the scheduler and thus entering this function are:
2618 *
2619 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2620 *
2621 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2622 *      paths. For example, see arch/x86/entry_64.S.
2623 *
2624 *      To drive preemption between tasks, the scheduler sets the flag in timer
2625 *      interrupt handler scheduler_tick().
2626 *
2627 *   3. Wakeups don't really cause entry into schedule(). They add a
2628 *      task to the run-queue and that's it.
2629 *
2630 *      Now, if the new task added to the run-queue preempts the current
2631 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2632 *      called on the nearest possible occasion:
2633 *
2634 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2635 *
2636 *         - in syscall or exception context, at the next outmost
2637 *           preempt_enable(). (this might be as soon as the wake_up()'s
2638 *           spin_unlock()!)
2639 *
2640 *         - in IRQ context, return from interrupt-handler to
2641 *           preemptible context
2642 *
2643 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2644 *         then at the next:
2645 *
2646 *          - cond_resched() call
2647 *          - explicit schedule() call
2648 *          - return from syscall or exception to user-space
2649 *          - return from interrupt-handler to user-space
2650 */
2651static void __sched __schedule(void)
2652{
2653	struct task_struct *prev, *next;
2654	unsigned long *switch_count;
2655	struct rq *rq;
2656	int cpu;
2657
2658need_resched:
2659	preempt_disable();
2660	cpu = smp_processor_id();
2661	rq = cpu_rq(cpu);
2662	rcu_note_context_switch(cpu);
2663	prev = rq->curr;
2664
2665	schedule_debug(prev);
2666
2667	if (sched_feat(HRTICK))
2668		hrtick_clear(rq);
2669
2670	/*
2671	 * Make sure that signal_pending_state()->signal_pending() below
2672	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2673	 * done by the caller to avoid the race with signal_wake_up().
2674	 */
2675	smp_mb__before_spinlock();
2676	raw_spin_lock_irq(&rq->lock);
2677
2678	switch_count = &prev->nivcsw;
2679	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2680		if (unlikely(signal_pending_state(prev->state, prev))) {
2681			prev->state = TASK_RUNNING;
2682		} else {
2683			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2684			prev->on_rq = 0;
2685
2686			/*
2687			 * If a worker went to sleep, notify and ask workqueue
2688			 * whether it wants to wake up a task to maintain
2689			 * concurrency.
2690			 */
2691			if (prev->flags & PF_WQ_WORKER) {
2692				struct task_struct *to_wakeup;
2693
2694				to_wakeup = wq_worker_sleeping(prev, cpu);
2695				if (to_wakeup)
2696					try_to_wake_up_local(to_wakeup);
2697			}
2698		}
2699		switch_count = &prev->nvcsw;
2700	}
2701
2702	if (prev->on_rq || rq->skip_clock_update < 0)
2703		update_rq_clock(rq);
2704
2705	next = pick_next_task(rq, prev);
2706	clear_tsk_need_resched(prev);
2707	clear_preempt_need_resched();
2708	rq->skip_clock_update = 0;
2709
2710	if (likely(prev != next)) {
2711		rq->nr_switches++;
2712		rq->curr = next;
2713		++*switch_count;
2714
2715		context_switch(rq, prev, next); /* unlocks the rq */
2716		/*
2717		 * The context switch have flipped the stack from under us
2718		 * and restored the local variables which were saved when
2719		 * this task called schedule() in the past. prev == current
2720		 * is still correct, but it can be moved to another cpu/rq.
2721		 */
2722		cpu = smp_processor_id();
2723		rq = cpu_rq(cpu);
2724	} else
2725		raw_spin_unlock_irq(&rq->lock);
2726
2727	post_schedule(rq);
2728
2729	sched_preempt_enable_no_resched();
2730	if (need_resched())
2731		goto need_resched;
2732}
2733
2734static inline void sched_submit_work(struct task_struct *tsk)
2735{
2736	if (!tsk->state || tsk_is_pi_blocked(tsk))
2737		return;
2738	/*
2739	 * If we are going to sleep and we have plugged IO queued,
2740	 * make sure to submit it to avoid deadlocks.
2741	 */
2742	if (blk_needs_flush_plug(tsk))
2743		blk_schedule_flush_plug(tsk);
2744}
2745
2746asmlinkage void __sched schedule(void)
2747{
2748	struct task_struct *tsk = current;
2749
2750	sched_submit_work(tsk);
2751	__schedule();
2752}
2753EXPORT_SYMBOL(schedule);
2754
2755#ifdef CONFIG_CONTEXT_TRACKING
2756asmlinkage void __sched schedule_user(void)
2757{
2758	/*
2759	 * If we come here after a random call to set_need_resched(),
2760	 * or we have been woken up remotely but the IPI has not yet arrived,
2761	 * we haven't yet exited the RCU idle mode. Do it here manually until
2762	 * we find a better solution.
2763	 */
2764	user_exit();
2765	schedule();
2766	user_enter();
2767}
2768#endif
2769
2770/**
2771 * schedule_preempt_disabled - called with preemption disabled
2772 *
2773 * Returns with preemption disabled. Note: preempt_count must be 1
2774 */
2775void __sched schedule_preempt_disabled(void)
2776{
2777	sched_preempt_enable_no_resched();
2778	schedule();
2779	preempt_disable();
2780}
2781
2782#ifdef CONFIG_PREEMPT
2783/*
2784 * this is the entry point to schedule() from in-kernel preemption
2785 * off of preempt_enable. Kernel preemptions off return from interrupt
2786 * occur there and call schedule directly.
2787 */
2788asmlinkage void __sched notrace preempt_schedule(void)
2789{
2790	/*
2791	 * If there is a non-zero preempt_count or interrupts are disabled,
2792	 * we do not want to preempt the current task. Just return..
2793	 */
2794	if (likely(!preemptible()))
2795		return;
2796
2797	do {
2798		__preempt_count_add(PREEMPT_ACTIVE);
2799		__schedule();
2800		__preempt_count_sub(PREEMPT_ACTIVE);
2801
2802		/*
2803		 * Check again in case we missed a preemption opportunity
2804		 * between schedule and now.
2805		 */
2806		barrier();
2807	} while (need_resched());
2808}
2809EXPORT_SYMBOL(preempt_schedule);
2810#endif /* CONFIG_PREEMPT */
2811
2812/*
2813 * this is the entry point to schedule() from kernel preemption
2814 * off of irq context.
2815 * Note, that this is called and return with irqs disabled. This will
2816 * protect us against recursive calling from irq.
2817 */
2818asmlinkage void __sched preempt_schedule_irq(void)
2819{
2820	enum ctx_state prev_state;
2821
2822	/* Catch callers which need to be fixed */
2823	BUG_ON(preempt_count() || !irqs_disabled());
2824
2825	prev_state = exception_enter();
2826
2827	do {
2828		__preempt_count_add(PREEMPT_ACTIVE);
2829		local_irq_enable();
2830		__schedule();
2831		local_irq_disable();
2832		__preempt_count_sub(PREEMPT_ACTIVE);
2833
2834		/*
2835		 * Check again in case we missed a preemption opportunity
2836		 * between schedule and now.
2837		 */
2838		barrier();
2839	} while (need_resched());
2840
2841	exception_exit(prev_state);
2842}
2843
2844int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2845			  void *key)
2846{
2847	return try_to_wake_up(curr->private, mode, wake_flags);
2848}
2849EXPORT_SYMBOL(default_wake_function);
2850
2851static long __sched
2852sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2853{
2854	unsigned long flags;
2855	wait_queue_t wait;
2856
2857	init_waitqueue_entry(&wait, current);
2858
2859	__set_current_state(state);
2860
2861	spin_lock_irqsave(&q->lock, flags);
2862	__add_wait_queue(q, &wait);
2863	spin_unlock(&q->lock);
2864	timeout = schedule_timeout(timeout);
2865	spin_lock_irq(&q->lock);
2866	__remove_wait_queue(q, &wait);
2867	spin_unlock_irqrestore(&q->lock, flags);
2868
2869	return timeout;
2870}
2871
2872void __sched interruptible_sleep_on(wait_queue_head_t *q)
2873{
2874	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2875}
2876EXPORT_SYMBOL(interruptible_sleep_on);
2877
2878long __sched
2879interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2880{
2881	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2882}
2883EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2884
2885void __sched sleep_on(wait_queue_head_t *q)
2886{
2887	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2888}
2889EXPORT_SYMBOL(sleep_on);
2890
2891long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2892{
2893	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2894}
2895EXPORT_SYMBOL(sleep_on_timeout);
2896
2897#ifdef CONFIG_RT_MUTEXES
2898
2899/*
2900 * rt_mutex_setprio - set the current priority of a task
2901 * @p: task
2902 * @prio: prio value (kernel-internal form)
2903 *
2904 * This function changes the 'effective' priority of a task. It does
2905 * not touch ->normal_prio like __setscheduler().
2906 *
2907 * Used by the rt_mutex code to implement priority inheritance
2908 * logic. Call site only calls if the priority of the task changed.
2909 */
2910void rt_mutex_setprio(struct task_struct *p, int prio)
2911{
2912	int oldprio, on_rq, running, enqueue_flag = 0;
2913	struct rq *rq;
2914	const struct sched_class *prev_class;
2915
2916	BUG_ON(prio > MAX_PRIO);
2917
2918	rq = __task_rq_lock(p);
2919
2920	/*
2921	 * Idle task boosting is a nono in general. There is one
2922	 * exception, when PREEMPT_RT and NOHZ is active:
2923	 *
2924	 * The idle task calls get_next_timer_interrupt() and holds
2925	 * the timer wheel base->lock on the CPU and another CPU wants
2926	 * to access the timer (probably to cancel it). We can safely
2927	 * ignore the boosting request, as the idle CPU runs this code
2928	 * with interrupts disabled and will complete the lock
2929	 * protected section without being interrupted. So there is no
2930	 * real need to boost.
2931	 */
2932	if (unlikely(p == rq->idle)) {
2933		WARN_ON(p != rq->curr);
2934		WARN_ON(p->pi_blocked_on);
2935		goto out_unlock;
2936	}
2937
2938	trace_sched_pi_setprio(p, prio);
2939	p->pi_top_task = rt_mutex_get_top_task(p);
2940	oldprio = p->prio;
2941	prev_class = p->sched_class;
2942	on_rq = p->on_rq;
2943	running = task_current(rq, p);
2944	if (on_rq)
2945		dequeue_task(rq, p, 0);
2946	if (running)
2947		p->sched_class->put_prev_task(rq, p);
2948
2949	/*
2950	 * Boosting condition are:
2951	 * 1. -rt task is running and holds mutex A
2952	 *      --> -dl task blocks on mutex A
2953	 *
2954	 * 2. -dl task is running and holds mutex A
2955	 *      --> -dl task blocks on mutex A and could preempt the
2956	 *          running task
2957	 */
2958	if (dl_prio(prio)) {
2959		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2960			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2961			p->dl.dl_boosted = 1;
2962			p->dl.dl_throttled = 0;
2963			enqueue_flag = ENQUEUE_REPLENISH;
2964		} else
2965			p->dl.dl_boosted = 0;
2966		p->sched_class = &dl_sched_class;
2967	} else if (rt_prio(prio)) {
2968		if (dl_prio(oldprio))
2969			p->dl.dl_boosted = 0;
2970		if (oldprio < prio)
2971			enqueue_flag = ENQUEUE_HEAD;
2972		p->sched_class = &rt_sched_class;
2973	} else {
2974		if (dl_prio(oldprio))
2975			p->dl.dl_boosted = 0;
2976		p->sched_class = &fair_sched_class;
2977	}
2978
2979	p->prio = prio;
2980
2981	if (running)
2982		p->sched_class->set_curr_task(rq);
2983	if (on_rq)
2984		enqueue_task(rq, p, enqueue_flag);
2985
2986	check_class_changed(rq, p, prev_class, oldprio);
2987out_unlock:
2988	__task_rq_unlock(rq);
2989}
2990#endif
2991
2992void set_user_nice(struct task_struct *p, long nice)
2993{
2994	int old_prio, delta, on_rq;
2995	unsigned long flags;
2996	struct rq *rq;
2997
2998	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2999		return;
3000	/*
3001	 * We have to be careful, if called from sys_setpriority(),
3002	 * the task might be in the middle of scheduling on another CPU.
3003	 */
3004	rq = task_rq_lock(p, &flags);
3005	/*
3006	 * The RT priorities are set via sched_setscheduler(), but we still
3007	 * allow the 'normal' nice value to be set - but as expected
3008	 * it wont have any effect on scheduling until the task is
3009	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3010	 */
3011	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3012		p->static_prio = NICE_TO_PRIO(nice);
3013		goto out_unlock;
3014	}
3015	on_rq = p->on_rq;
3016	if (on_rq)
3017		dequeue_task(rq, p, 0);
3018
3019	p->static_prio = NICE_TO_PRIO(nice);
3020	set_load_weight(p);
3021	old_prio = p->prio;
3022	p->prio = effective_prio(p);
3023	delta = p->prio - old_prio;
3024
3025	if (on_rq) {
3026		enqueue_task(rq, p, 0);
3027		/*
3028		 * If the task increased its priority or is running and
3029		 * lowered its priority, then reschedule its CPU:
3030		 */
3031		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3032			resched_task(rq->curr);
3033	}
3034out_unlock:
3035	task_rq_unlock(rq, p, &flags);
3036}
3037EXPORT_SYMBOL(set_user_nice);
3038
3039/*
3040 * can_nice - check if a task can reduce its nice value
3041 * @p: task
3042 * @nice: nice value
3043 */
3044int can_nice(const struct task_struct *p, const int nice)
3045{
3046	/* convert nice value [19,-20] to rlimit style value [1,40] */
3047	int nice_rlim = 20 - nice;
3048
3049	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3050		capable(CAP_SYS_NICE));
3051}
3052
3053#ifdef __ARCH_WANT_SYS_NICE
3054
3055/*
3056 * sys_nice - change the priority of the current process.
3057 * @increment: priority increment
3058 *
3059 * sys_setpriority is a more generic, but much slower function that
3060 * does similar things.
3061 */
3062SYSCALL_DEFINE1(nice, int, increment)
3063{
3064	long nice, retval;
3065
3066	/*
3067	 * Setpriority might change our priority at the same moment.
3068	 * We don't have to worry. Conceptually one call occurs first
3069	 * and we have a single winner.
3070	 */
3071	if (increment < -40)
3072		increment = -40;
3073	if (increment > 40)
3074		increment = 40;
3075
3076	nice = task_nice(current) + increment;
3077	if (nice < MIN_NICE)
3078		nice = MIN_NICE;
3079	if (nice > MAX_NICE)
3080		nice = MAX_NICE;
3081
3082	if (increment < 0 && !can_nice(current, nice))
3083		return -EPERM;
3084
3085	retval = security_task_setnice(current, nice);
3086	if (retval)
3087		return retval;
3088
3089	set_user_nice(current, nice);
3090	return 0;
3091}
3092
3093#endif
3094
3095/**
3096 * task_prio - return the priority value of a given task.
3097 * @p: the task in question.
3098 *
3099 * Return: The priority value as seen by users in /proc.
3100 * RT tasks are offset by -200. Normal tasks are centered
3101 * around 0, value goes from -16 to +15.
3102 */
3103int task_prio(const struct task_struct *p)
3104{
3105	return p->prio - MAX_RT_PRIO;
3106}
3107
3108/**
3109 * idle_cpu - is a given cpu idle currently?
3110 * @cpu: the processor in question.
3111 *
3112 * Return: 1 if the CPU is currently idle. 0 otherwise.
3113 */
3114int idle_cpu(int cpu)
3115{
3116	struct rq *rq = cpu_rq(cpu);
3117
3118	if (rq->curr != rq->idle)
3119		return 0;
3120
3121	if (rq->nr_running)
3122		return 0;
3123
3124#ifdef CONFIG_SMP
3125	if (!llist_empty(&rq->wake_list))
3126		return 0;
3127#endif
3128
3129	return 1;
3130}
3131
3132/**
3133 * idle_task - return the idle task for a given cpu.
3134 * @cpu: the processor in question.
3135 *
3136 * Return: The idle task for the cpu @cpu.
3137 */
3138struct task_struct *idle_task(int cpu)
3139{
3140	return cpu_rq(cpu)->idle;
3141}
3142
3143/**
3144 * find_process_by_pid - find a process with a matching PID value.
3145 * @pid: the pid in question.
3146 *
3147 * The task of @pid, if found. %NULL otherwise.
3148 */
3149static struct task_struct *find_process_by_pid(pid_t pid)
3150{
3151	return pid ? find_task_by_vpid(pid) : current;
3152}
3153
3154/*
3155 * This function initializes the sched_dl_entity of a newly becoming
3156 * SCHED_DEADLINE task.
3157 *
3158 * Only the static values are considered here, the actual runtime and the
3159 * absolute deadline will be properly calculated when the task is enqueued
3160 * for the first time with its new policy.
3161 */
3162static void
3163__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3164{
3165	struct sched_dl_entity *dl_se = &p->dl;
3166
3167	init_dl_task_timer(dl_se);
3168	dl_se->dl_runtime = attr->sched_runtime;
3169	dl_se->dl_deadline = attr->sched_deadline;
3170	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3171	dl_se->flags = attr->sched_flags;
3172	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3173	dl_se->dl_throttled = 0;
3174	dl_se->dl_new = 1;
3175}
3176
3177static void __setscheduler_params(struct task_struct *p,
3178		const struct sched_attr *attr)
3179{
3180	int policy = attr->sched_policy;
3181
3182	if (policy == -1) /* setparam */
3183		policy = p->policy;
3184
3185	p->policy = policy;
3186
3187	if (dl_policy(policy))
3188		__setparam_dl(p, attr);
3189	else if (fair_policy(policy))
3190		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3191
3192	/*
3193	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3194	 * !rt_policy. Always setting this ensures that things like
3195	 * getparam()/getattr() don't report silly values for !rt tasks.
3196	 */
3197	p->rt_priority = attr->sched_priority;
3198	p->normal_prio = normal_prio(p);
3199	set_load_weight(p);
3200}
3201
3202/* Actually do priority change: must hold pi & rq lock. */
3203static void __setscheduler(struct rq *rq, struct task_struct *p,
3204			   const struct sched_attr *attr)
3205{
3206	__setscheduler_params(p, attr);
3207
3208	/*
3209	 * If we get here, there was no pi waiters boosting the
3210	 * task. It is safe to use the normal prio.
3211	 */
3212	p->prio = normal_prio(p);
3213
3214	if (dl_prio(p->prio))
3215		p->sched_class = &dl_sched_class;
3216	else if (rt_prio(p->prio))
3217		p->sched_class = &rt_sched_class;
3218	else
3219		p->sched_class = &fair_sched_class;
3220}
3221
3222static void
3223__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3224{
3225	struct sched_dl_entity *dl_se = &p->dl;
3226
3227	attr->sched_priority = p->rt_priority;
3228	attr->sched_runtime = dl_se->dl_runtime;
3229	attr->sched_deadline = dl_se->dl_deadline;
3230	attr->sched_period = dl_se->dl_period;
3231	attr->sched_flags = dl_se->flags;
3232}
3233
3234/*
3235 * This function validates the new parameters of a -deadline task.
3236 * We ask for the deadline not being zero, and greater or equal
3237 * than the runtime, as well as the period of being zero or
3238 * greater than deadline. Furthermore, we have to be sure that
3239 * user parameters are above the internal resolution (1us); we
3240 * check sched_runtime only since it is always the smaller one.
3241 */
3242static bool
3243__checkparam_dl(const struct sched_attr *attr)
3244{
3245	return attr && attr->sched_deadline != 0 &&
3246		(attr->sched_period == 0 ||
3247		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3248		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3249		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3250}
3251
3252/*
3253 * check the target process has a UID that matches the current process's
3254 */
3255static bool check_same_owner(struct task_struct *p)
3256{
3257	const struct cred *cred = current_cred(), *pcred;
3258	bool match;
3259
3260	rcu_read_lock();
3261	pcred = __task_cred(p);
3262	match = (uid_eq(cred->euid, pcred->euid) ||
3263		 uid_eq(cred->euid, pcred->uid));
3264	rcu_read_unlock();
3265	return match;
3266}
3267
3268static int __sched_setscheduler(struct task_struct *p,
3269				const struct sched_attr *attr,
3270				bool user)
3271{
3272	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3273		      MAX_RT_PRIO - 1 - attr->sched_priority;
3274	int retval, oldprio, oldpolicy = -1, on_rq, running;
3275	int policy = attr->sched_policy;
3276	unsigned long flags;
3277	const struct sched_class *prev_class;
3278	struct rq *rq;
3279	int reset_on_fork;
3280
3281	/* may grab non-irq protected spin_locks */
3282	BUG_ON(in_interrupt());
3283recheck:
3284	/* double check policy once rq lock held */
3285	if (policy < 0) {
3286		reset_on_fork = p->sched_reset_on_fork;
3287		policy = oldpolicy = p->policy;
3288	} else {
3289		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3290
3291		if (policy != SCHED_DEADLINE &&
3292				policy != SCHED_FIFO && policy != SCHED_RR &&
3293				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3294				policy != SCHED_IDLE)
3295			return -EINVAL;
3296	}
3297
3298	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3299		return -EINVAL;
3300
3301	/*
3302	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3303	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3304	 * SCHED_BATCH and SCHED_IDLE is 0.
3305	 */
3306	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3307	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3308		return -EINVAL;
3309	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3310	    (rt_policy(policy) != (attr->sched_priority != 0)))
3311		return -EINVAL;
3312
3313	/*
3314	 * Allow unprivileged RT tasks to decrease priority:
3315	 */
3316	if (user && !capable(CAP_SYS_NICE)) {
3317		if (fair_policy(policy)) {
3318			if (attr->sched_nice < task_nice(p) &&
3319			    !can_nice(p, attr->sched_nice))
3320				return -EPERM;
3321		}
3322
3323		if (rt_policy(policy)) {
3324			unsigned long rlim_rtprio =
3325					task_rlimit(p, RLIMIT_RTPRIO);
3326
3327			/* can't set/change the rt policy */
3328			if (policy != p->policy && !rlim_rtprio)
3329				return -EPERM;
3330
3331			/* can't increase priority */
3332			if (attr->sched_priority > p->rt_priority &&
3333			    attr->sched_priority > rlim_rtprio)
3334				return -EPERM;
3335		}
3336
3337		 /*
3338		  * Can't set/change SCHED_DEADLINE policy at all for now
3339		  * (safest behavior); in the future we would like to allow
3340		  * unprivileged DL tasks to increase their relative deadline
3341		  * or reduce their runtime (both ways reducing utilization)
3342		  */
3343		if (dl_policy(policy))
3344			return -EPERM;
3345
3346		/*
3347		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3348		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3349		 */
3350		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3351			if (!can_nice(p, task_nice(p)))
3352				return -EPERM;
3353		}
3354
3355		/* can't change other user's priorities */
3356		if (!check_same_owner(p))
3357			return -EPERM;
3358
3359		/* Normal users shall not reset the sched_reset_on_fork flag */
3360		if (p->sched_reset_on_fork && !reset_on_fork)
3361			return -EPERM;
3362	}
3363
3364	if (user) {
3365		retval = security_task_setscheduler(p);
3366		if (retval)
3367			return retval;
3368	}
3369
3370	/*
3371	 * make sure no PI-waiters arrive (or leave) while we are
3372	 * changing the priority of the task:
3373	 *
3374	 * To be able to change p->policy safely, the appropriate
3375	 * runqueue lock must be held.
3376	 */
3377	rq = task_rq_lock(p, &flags);
3378
3379	/*
3380	 * Changing the policy of the stop threads its a very bad idea
3381	 */
3382	if (p == rq->stop) {
3383		task_rq_unlock(rq, p, &flags);
3384		return -EINVAL;
3385	}
3386
3387	/*
3388	 * If not changing anything there's no need to proceed further,
3389	 * but store a possible modification of reset_on_fork.
3390	 */
3391	if (unlikely(policy == p->policy)) {
3392		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3393			goto change;
3394		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3395			goto change;
3396		if (dl_policy(policy))
3397			goto change;
3398
3399		p->sched_reset_on_fork = reset_on_fork;
3400		task_rq_unlock(rq, p, &flags);
3401		return 0;
3402	}
3403change:
3404
3405	if (user) {
3406#ifdef CONFIG_RT_GROUP_SCHED
3407		/*
3408		 * Do not allow realtime tasks into groups that have no runtime
3409		 * assigned.
3410		 */
3411		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3412				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3413				!task_group_is_autogroup(task_group(p))) {
3414			task_rq_unlock(rq, p, &flags);
3415			return -EPERM;
3416		}
3417#endif
3418#ifdef CONFIG_SMP
3419		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3420			cpumask_t *span = rq->rd->span;
3421
3422			/*
3423			 * Don't allow tasks with an affinity mask smaller than
3424			 * the entire root_domain to become SCHED_DEADLINE. We
3425			 * will also fail if there's no bandwidth available.
3426			 */
3427			if (!cpumask_subset(span, &p->cpus_allowed) ||
3428			    rq->rd->dl_bw.bw == 0) {
3429				task_rq_unlock(rq, p, &flags);
3430				return -EPERM;
3431			}
3432		}
3433#endif
3434	}
3435
3436	/* recheck policy now with rq lock held */
3437	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3438		policy = oldpolicy = -1;
3439		task_rq_unlock(rq, p, &flags);
3440		goto recheck;
3441	}
3442
3443	/*
3444	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3445	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3446	 * is available.
3447	 */
3448	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3449		task_rq_unlock(rq, p, &flags);
3450		return -EBUSY;
3451	}
3452
3453	p->sched_reset_on_fork = reset_on_fork;
3454	oldprio = p->prio;
3455
3456	/*
3457	 * Special case for priority boosted tasks.
3458	 *
3459	 * If the new priority is lower or equal (user space view)
3460	 * than the current (boosted) priority, we just store the new
3461	 * normal parameters and do not touch the scheduler class and
3462	 * the runqueue. This will be done when the task deboost
3463	 * itself.
3464	 */
3465	if (rt_mutex_check_prio(p, newprio)) {
3466		__setscheduler_params(p, attr);
3467		task_rq_unlock(rq, p, &flags);
3468		return 0;
3469	}
3470
3471	on_rq = p->on_rq;
3472	running = task_current(rq, p);
3473	if (on_rq)
3474		dequeue_task(rq, p, 0);
3475	if (running)
3476		p->sched_class->put_prev_task(rq, p);
3477
3478	prev_class = p->sched_class;
3479	__setscheduler(rq, p, attr);
3480
3481	if (running)
3482		p->sched_class->set_curr_task(rq);
3483	if (on_rq) {
3484		/*
3485		 * We enqueue to tail when the priority of a task is
3486		 * increased (user space view).
3487		 */
3488		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3489	}
3490
3491	check_class_changed(rq, p, prev_class, oldprio);
3492	task_rq_unlock(rq, p, &flags);
3493
3494	rt_mutex_adjust_pi(p);
3495
3496	return 0;
3497}
3498
3499static int _sched_setscheduler(struct task_struct *p, int policy,
3500			       const struct sched_param *param, bool check)
3501{
3502	struct sched_attr attr = {
3503		.sched_policy   = policy,
3504		.sched_priority = param->sched_priority,
3505		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3506	};
3507
3508	/*
3509	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3510	 */
3511	if (policy & SCHED_RESET_ON_FORK) {
3512		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3513		policy &= ~SCHED_RESET_ON_FORK;
3514		attr.sched_policy = policy;
3515	}
3516
3517	return __sched_setscheduler(p, &attr, check);
3518}
3519/**
3520 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3521 * @p: the task in question.
3522 * @policy: new policy.
3523 * @param: structure containing the new RT priority.
3524 *
3525 * Return: 0 on success. An error code otherwise.
3526 *
3527 * NOTE that the task may be already dead.
3528 */
3529int sched_setscheduler(struct task_struct *p, int policy,
3530		       const struct sched_param *param)
3531{
3532	return _sched_setscheduler(p, policy, param, true);
3533}
3534EXPORT_SYMBOL_GPL(sched_setscheduler);
3535
3536int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3537{
3538	return __sched_setscheduler(p, attr, true);
3539}
3540EXPORT_SYMBOL_GPL(sched_setattr);
3541
3542/**
3543 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3544 * @p: the task in question.
3545 * @policy: new policy.
3546 * @param: structure containing the new RT priority.
3547 *
3548 * Just like sched_setscheduler, only don't bother checking if the
3549 * current context has permission.  For example, this is needed in
3550 * stop_machine(): we create temporary high priority worker threads,
3551 * but our caller might not have that capability.
3552 *
3553 * Return: 0 on success. An error code otherwise.
3554 */
3555int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3556			       const struct sched_param *param)
3557{
3558	return _sched_setscheduler(p, policy, param, false);
3559}
3560
3561static int
3562do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3563{
3564	struct sched_param lparam;
3565	struct task_struct *p;
3566	int retval;
3567
3568	if (!param || pid < 0)
3569		return -EINVAL;
3570	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3571		return -EFAULT;
3572
3573	rcu_read_lock();
3574	retval = -ESRCH;
3575	p = find_process_by_pid(pid);
3576	if (p != NULL)
3577		retval = sched_setscheduler(p, policy, &lparam);
3578	rcu_read_unlock();
3579
3580	return retval;
3581}
3582
3583/*
3584 * Mimics kernel/events/core.c perf_copy_attr().
3585 */
3586static int sched_copy_attr(struct sched_attr __user *uattr,
3587			   struct sched_attr *attr)
3588{
3589	u32 size;
3590	int ret;
3591
3592	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3593		return -EFAULT;
3594
3595	/*
3596	 * zero the full structure, so that a short copy will be nice.
3597	 */
3598	memset(attr, 0, sizeof(*attr));
3599
3600	ret = get_user(size, &uattr->size);
3601	if (ret)
3602		return ret;
3603
3604	if (size > PAGE_SIZE)	/* silly large */
3605		goto err_size;
3606
3607	if (!size)		/* abi compat */
3608		size = SCHED_ATTR_SIZE_VER0;
3609
3610	if (size < SCHED_ATTR_SIZE_VER0)
3611		goto err_size;
3612
3613	/*
3614	 * If we're handed a bigger struct than we know of,
3615	 * ensure all the unknown bits are 0 - i.e. new
3616	 * user-space does not rely on any kernel feature
3617	 * extensions we dont know about yet.
3618	 */
3619	if (size > sizeof(*attr)) {
3620		unsigned char __user *addr;
3621		unsigned char __user *end;
3622		unsigned char val;
3623
3624		addr = (void __user *)uattr + sizeof(*attr);
3625		end  = (void __user *)uattr + size;
3626
3627		for (; addr < end; addr++) {
3628			ret = get_user(val, addr);
3629			if (ret)
3630				return ret;
3631			if (val)
3632				goto err_size;
3633		}
3634		size = sizeof(*attr);
3635	}
3636
3637	ret = copy_from_user(attr, uattr, size);
3638	if (ret)
3639		return -EFAULT;
3640
3641	/*
3642	 * XXX: do we want to be lenient like existing syscalls; or do we want
3643	 * to be strict and return an error on out-of-bounds values?
3644	 */
3645	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3646
3647out:
3648	return ret;
3649
3650err_size:
3651	put_user(sizeof(*attr), &uattr->size);
3652	ret = -E2BIG;
3653	goto out;
3654}
3655
3656/**
3657 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3658 * @pid: the pid in question.
3659 * @policy: new policy.
3660 * @param: structure containing the new RT priority.
3661 *
3662 * Return: 0 on success. An error code otherwise.
3663 */
3664SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3665		struct sched_param __user *, param)
3666{
3667	/* negative values for policy are not valid */
3668	if (policy < 0)
3669		return -EINVAL;
3670
3671	return do_sched_setscheduler(pid, policy, param);
3672}
3673
3674/**
3675 * sys_sched_setparam - set/change the RT priority of a thread
3676 * @pid: the pid in question.
3677 * @param: structure containing the new RT priority.
3678 *
3679 * Return: 0 on success. An error code otherwise.
3680 */
3681SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3682{
3683	return do_sched_setscheduler(pid, -1, param);
3684}
3685
3686/**
3687 * sys_sched_setattr - same as above, but with extended sched_attr
3688 * @pid: the pid in question.
3689 * @uattr: structure containing the extended parameters.
3690 */
3691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3692			       unsigned int, flags)
3693{
3694	struct sched_attr attr;
3695	struct task_struct *p;
3696	int retval;
3697
3698	if (!uattr || pid < 0 || flags)
3699		return -EINVAL;
3700
3701	if (sched_copy_attr(uattr, &attr))
3702		return -EFAULT;
3703
3704	rcu_read_lock();
3705	retval = -ESRCH;
3706	p = find_process_by_pid(pid);
3707	if (p != NULL)
3708		retval = sched_setattr(p, &attr);
3709	rcu_read_unlock();
3710
3711	return retval;
3712}
3713
3714/**
3715 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3716 * @pid: the pid in question.
3717 *
3718 * Return: On success, the policy of the thread. Otherwise, a negative error
3719 * code.
3720 */
3721SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3722{
3723	struct task_struct *p;
3724	int retval;
3725
3726	if (pid < 0)
3727		return -EINVAL;
3728
3729	retval = -ESRCH;
3730	rcu_read_lock();
3731	p = find_process_by_pid(pid);
3732	if (p) {
3733		retval = security_task_getscheduler(p);
3734		if (!retval)
3735			retval = p->policy
3736				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3737	}
3738	rcu_read_unlock();
3739	return retval;
3740}
3741
3742/**
3743 * sys_sched_getparam - get the RT priority of a thread
3744 * @pid: the pid in question.
3745 * @param: structure containing the RT priority.
3746 *
3747 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3748 * code.
3749 */
3750SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3751{
3752	struct sched_param lp;
3753	struct task_struct *p;
3754	int retval;
3755
3756	if (!param || pid < 0)
3757		return -EINVAL;
3758
3759	rcu_read_lock();
3760	p = find_process_by_pid(pid);
3761	retval = -ESRCH;
3762	if (!p)
3763		goto out_unlock;
3764
3765	retval = security_task_getscheduler(p);
3766	if (retval)
3767		goto out_unlock;
3768
3769	if (task_has_dl_policy(p)) {
3770		retval = -EINVAL;
3771		goto out_unlock;
3772	}
3773	lp.sched_priority = p->rt_priority;
3774	rcu_read_unlock();
3775
3776	/*
3777	 * This one might sleep, we cannot do it with a spinlock held ...
3778	 */
3779	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3780
3781	return retval;
3782
3783out_unlock:
3784	rcu_read_unlock();
3785	return retval;
3786}
3787
3788static int sched_read_attr(struct sched_attr __user *uattr,
3789			   struct sched_attr *attr,
3790			   unsigned int usize)
3791{
3792	int ret;
3793
3794	if (!access_ok(VERIFY_WRITE, uattr, usize))
3795		return -EFAULT;
3796
3797	/*
3798	 * If we're handed a smaller struct than we know of,
3799	 * ensure all the unknown bits are 0 - i.e. old
3800	 * user-space does not get uncomplete information.
3801	 */
3802	if (usize < sizeof(*attr)) {
3803		unsigned char *addr;
3804		unsigned char *end;
3805
3806		addr = (void *)attr + usize;
3807		end  = (void *)attr + sizeof(*attr);
3808
3809		for (; addr < end; addr++) {
3810			if (*addr)
3811				goto err_size;
3812		}
3813
3814		attr->size = usize;
3815	}
3816
3817	ret = copy_to_user(uattr, attr, attr->size);
3818	if (ret)
3819		return -EFAULT;
3820
3821out:
3822	return ret;
3823
3824err_size:
3825	ret = -E2BIG;
3826	goto out;
3827}
3828
3829/**
3830 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3831 * @pid: the pid in question.
3832 * @uattr: structure containing the extended parameters.
3833 * @size: sizeof(attr) for fwd/bwd comp.
3834 */
3835SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3836		unsigned int, size, unsigned int, flags)
3837{
3838	struct sched_attr attr = {
3839		.size = sizeof(struct sched_attr),
3840	};
3841	struct task_struct *p;
3842	int retval;
3843
3844	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3845	    size < SCHED_ATTR_SIZE_VER0 || flags)
3846		return -EINVAL;
3847
3848	rcu_read_lock();
3849	p = find_process_by_pid(pid);
3850	retval = -ESRCH;
3851	if (!p)
3852		goto out_unlock;
3853
3854	retval = security_task_getscheduler(p);
3855	if (retval)
3856		goto out_unlock;
3857
3858	attr.sched_policy = p->policy;
3859	if (p->sched_reset_on_fork)
3860		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3861	if (task_has_dl_policy(p))
3862		__getparam_dl(p, &attr);
3863	else if (task_has_rt_policy(p))
3864		attr.sched_priority = p->rt_priority;
3865	else
3866		attr.sched_nice = task_nice(p);
3867
3868	rcu_read_unlock();
3869
3870	retval = sched_read_attr(uattr, &attr, size);
3871	return retval;
3872
3873out_unlock:
3874	rcu_read_unlock();
3875	return retval;
3876}
3877
3878long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3879{
3880	cpumask_var_t cpus_allowed, new_mask;
3881	struct task_struct *p;
3882	int retval;
3883
3884	rcu_read_lock();
3885
3886	p = find_process_by_pid(pid);
3887	if (!p) {
3888		rcu_read_unlock();
3889		return -ESRCH;
3890	}
3891
3892	/* Prevent p going away */
3893	get_task_struct(p);
3894	rcu_read_unlock();
3895
3896	if (p->flags & PF_NO_SETAFFINITY) {
3897		retval = -EINVAL;
3898		goto out_put_task;
3899	}
3900	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3901		retval = -ENOMEM;
3902		goto out_put_task;
3903	}
3904	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3905		retval = -ENOMEM;
3906		goto out_free_cpus_allowed;
3907	}
3908	retval = -EPERM;
3909	if (!check_same_owner(p)) {
3910		rcu_read_lock();
3911		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3912			rcu_read_unlock();
3913			goto out_unlock;
3914		}
3915		rcu_read_unlock();
3916	}
3917
3918	retval = security_task_setscheduler(p);
3919	if (retval)
3920		goto out_unlock;
3921
3922
3923	cpuset_cpus_allowed(p, cpus_allowed);
3924	cpumask_and(new_mask, in_mask, cpus_allowed);
3925
3926	/*
3927	 * Since bandwidth control happens on root_domain basis,
3928	 * if admission test is enabled, we only admit -deadline
3929	 * tasks allowed to run on all the CPUs in the task's
3930	 * root_domain.
3931	 */
3932#ifdef CONFIG_SMP
3933	if (task_has_dl_policy(p)) {
3934		const struct cpumask *span = task_rq(p)->rd->span;
3935
3936		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3937			retval = -EBUSY;
3938			goto out_unlock;
3939		}
3940	}
3941#endif
3942again:
3943	retval = set_cpus_allowed_ptr(p, new_mask);
3944
3945	if (!retval) {
3946		cpuset_cpus_allowed(p, cpus_allowed);
3947		if (!cpumask_subset(new_mask, cpus_allowed)) {
3948			/*
3949			 * We must have raced with a concurrent cpuset
3950			 * update. Just reset the cpus_allowed to the
3951			 * cpuset's cpus_allowed
3952			 */
3953			cpumask_copy(new_mask, cpus_allowed);
3954			goto again;
3955		}
3956	}
3957out_unlock:
3958	free_cpumask_var(new_mask);
3959out_free_cpus_allowed:
3960	free_cpumask_var(cpus_allowed);
3961out_put_task:
3962	put_task_struct(p);
3963	return retval;
3964}
3965
3966static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3967			     struct cpumask *new_mask)
3968{
3969	if (len < cpumask_size())
3970		cpumask_clear(new_mask);
3971	else if (len > cpumask_size())
3972		len = cpumask_size();
3973
3974	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3975}
3976
3977/**
3978 * sys_sched_setaffinity - set the cpu affinity of a process
3979 * @pid: pid of the process
3980 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3981 * @user_mask_ptr: user-space pointer to the new cpu mask
3982 *
3983 * Return: 0 on success. An error code otherwise.
3984 */
3985SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3986		unsigned long __user *, user_mask_ptr)
3987{
3988	cpumask_var_t new_mask;
3989	int retval;
3990
3991	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3992		return -ENOMEM;
3993
3994	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3995	if (retval == 0)
3996		retval = sched_setaffinity(pid, new_mask);
3997	free_cpumask_var(new_mask);
3998	return retval;
3999}
4000
4001long sched_getaffinity(pid_t pid, struct cpumask *mask)
4002{
4003	struct task_struct *p;
4004	unsigned long flags;
4005	int retval;
4006
4007	rcu_read_lock();
4008
4009	retval = -ESRCH;
4010	p = find_process_by_pid(pid);
4011	if (!p)
4012		goto out_unlock;
4013
4014	retval = security_task_getscheduler(p);
4015	if (retval)
4016		goto out_unlock;
4017
4018	raw_spin_lock_irqsave(&p->pi_lock, flags);
4019	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4020	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4021
4022out_unlock:
4023	rcu_read_unlock();
4024
4025	return retval;
4026}
4027
4028/**
4029 * sys_sched_getaffinity - get the cpu affinity of a process
4030 * @pid: pid of the process
4031 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4032 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4033 *
4034 * Return: 0 on success. An error code otherwise.
4035 */
4036SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4037		unsigned long __user *, user_mask_ptr)
4038{
4039	int ret;
4040	cpumask_var_t mask;
4041
4042	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4043		return -EINVAL;
4044	if (len & (sizeof(unsigned long)-1))
4045		return -EINVAL;
4046
4047	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4048		return -ENOMEM;
4049
4050	ret = sched_getaffinity(pid, mask);
4051	if (ret == 0) {
4052		size_t retlen = min_t(size_t, len, cpumask_size());
4053
4054		if (copy_to_user(user_mask_ptr, mask, retlen))
4055			ret = -EFAULT;
4056		else
4057			ret = retlen;
4058	}
4059	free_cpumask_var(mask);
4060
4061	return ret;
4062}
4063
4064/**
4065 * sys_sched_yield - yield the current processor to other threads.
4066 *
4067 * This function yields the current CPU to other tasks. If there are no
4068 * other threads running on this CPU then this function will return.
4069 *
4070 * Return: 0.
4071 */
4072SYSCALL_DEFINE0(sched_yield)
4073{
4074	struct rq *rq = this_rq_lock();
4075
4076	schedstat_inc(rq, yld_count);
4077	current->sched_class->yield_task(rq);
4078
4079	/*
4080	 * Since we are going to call schedule() anyway, there's
4081	 * no need to preempt or enable interrupts:
4082	 */
4083	__release(rq->lock);
4084	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4085	do_raw_spin_unlock(&rq->lock);
4086	sched_preempt_enable_no_resched();
4087
4088	schedule();
4089
4090	return 0;
4091}
4092
4093static void __cond_resched(void)
4094{
4095	__preempt_count_add(PREEMPT_ACTIVE);
4096	__schedule();
4097	__preempt_count_sub(PREEMPT_ACTIVE);
4098}
4099
4100int __sched _cond_resched(void)
4101{
4102	if (should_resched()) {
4103		__cond_resched();
4104		return 1;
4105	}
4106	return 0;
4107}
4108EXPORT_SYMBOL(_cond_resched);
4109
4110/*
4111 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4112 * call schedule, and on return reacquire the lock.
4113 *
4114 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4115 * operations here to prevent schedule() from being called twice (once via
4116 * spin_unlock(), once by hand).
4117 */
4118int __cond_resched_lock(spinlock_t *lock)
4119{
4120	int resched = should_resched();
4121	int ret = 0;
4122
4123	lockdep_assert_held(lock);
4124
4125	if (spin_needbreak(lock) || resched) {
4126		spin_unlock(lock);
4127		if (resched)
4128			__cond_resched();
4129		else
4130			cpu_relax();
4131		ret = 1;
4132		spin_lock(lock);
4133	}
4134	return ret;
4135}
4136EXPORT_SYMBOL(__cond_resched_lock);
4137
4138int __sched __cond_resched_softirq(void)
4139{
4140	BUG_ON(!in_softirq());
4141
4142	if (should_resched()) {
4143		local_bh_enable();
4144		__cond_resched();
4145		local_bh_disable();
4146		return 1;
4147	}
4148	return 0;
4149}
4150EXPORT_SYMBOL(__cond_resched_softirq);
4151
4152/**
4153 * yield - yield the current processor to other threads.
4154 *
4155 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4156 *
4157 * The scheduler is at all times free to pick the calling task as the most
4158 * eligible task to run, if removing the yield() call from your code breaks
4159 * it, its already broken.
4160 *
4161 * Typical broken usage is:
4162 *
4163 * while (!event)
4164 * 	yield();
4165 *
4166 * where one assumes that yield() will let 'the other' process run that will
4167 * make event true. If the current task is a SCHED_FIFO task that will never
4168 * happen. Never use yield() as a progress guarantee!!
4169 *
4170 * If you want to use yield() to wait for something, use wait_event().
4171 * If you want to use yield() to be 'nice' for others, use cond_resched().
4172 * If you still want to use yield(), do not!
4173 */
4174void __sched yield(void)
4175{
4176	set_current_state(TASK_RUNNING);
4177	sys_sched_yield();
4178}
4179EXPORT_SYMBOL(yield);
4180
4181/**
4182 * yield_to - yield the current processor to another thread in
4183 * your thread group, or accelerate that thread toward the
4184 * processor it's on.
4185 * @p: target task
4186 * @preempt: whether task preemption is allowed or not
4187 *
4188 * It's the caller's job to ensure that the target task struct
4189 * can't go away on us before we can do any checks.
4190 *
4191 * Return:
4192 *	true (>0) if we indeed boosted the target task.
4193 *	false (0) if we failed to boost the target.
4194 *	-ESRCH if there's no task to yield to.
4195 */
4196bool __sched yield_to(struct task_struct *p, bool preempt)
4197{
4198	struct task_struct *curr = current;
4199	struct rq *rq, *p_rq;
4200	unsigned long flags;
4201	int yielded = 0;
4202
4203	local_irq_save(flags);
4204	rq = this_rq();
4205
4206again:
4207	p_rq = task_rq(p);
4208	/*
4209	 * If we're the only runnable task on the rq and target rq also
4210	 * has only one task, there's absolutely no point in yielding.
4211	 */
4212	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4213		yielded = -ESRCH;
4214		goto out_irq;
4215	}
4216
4217	double_rq_lock(rq, p_rq);
4218	if (task_rq(p) != p_rq) {
4219		double_rq_unlock(rq, p_rq);
4220		goto again;
4221	}
4222
4223	if (!curr->sched_class->yield_to_task)
4224		goto out_unlock;
4225
4226	if (curr->sched_class != p->sched_class)
4227		goto out_unlock;
4228
4229	if (task_running(p_rq, p) || p->state)
4230		goto out_unlock;
4231
4232	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4233	if (yielded) {
4234		schedstat_inc(rq, yld_count);
4235		/*
4236		 * Make p's CPU reschedule; pick_next_entity takes care of
4237		 * fairness.
4238		 */
4239		if (preempt && rq != p_rq)
4240			resched_task(p_rq->curr);
4241	}
4242
4243out_unlock:
4244	double_rq_unlock(rq, p_rq);
4245out_irq:
4246	local_irq_restore(flags);
4247
4248	if (yielded > 0)
4249		schedule();
4250
4251	return yielded;
4252}
4253EXPORT_SYMBOL_GPL(yield_to);
4254
4255/*
4256 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4257 * that process accounting knows that this is a task in IO wait state.
4258 */
4259void __sched io_schedule(void)
4260{
4261	struct rq *rq = raw_rq();
4262
4263	delayacct_blkio_start();
4264	atomic_inc(&rq->nr_iowait);
4265	blk_flush_plug(current);
4266	current->in_iowait = 1;
4267	schedule();
4268	current->in_iowait = 0;
4269	atomic_dec(&rq->nr_iowait);
4270	delayacct_blkio_end();
4271}
4272EXPORT_SYMBOL(io_schedule);
4273
4274long __sched io_schedule_timeout(long timeout)
4275{
4276	struct rq *rq = raw_rq();
4277	long ret;
4278
4279	delayacct_blkio_start();
4280	atomic_inc(&rq->nr_iowait);
4281	blk_flush_plug(current);
4282	current->in_iowait = 1;
4283	ret = schedule_timeout(timeout);
4284	current->in_iowait = 0;
4285	atomic_dec(&rq->nr_iowait);
4286	delayacct_blkio_end();
4287	return ret;
4288}
4289
4290/**
4291 * sys_sched_get_priority_max - return maximum RT priority.
4292 * @policy: scheduling class.
4293 *
4294 * Return: On success, this syscall returns the maximum
4295 * rt_priority that can be used by a given scheduling class.
4296 * On failure, a negative error code is returned.
4297 */
4298SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4299{
4300	int ret = -EINVAL;
4301
4302	switch (policy) {
4303	case SCHED_FIFO:
4304	case SCHED_RR:
4305		ret = MAX_USER_RT_PRIO-1;
4306		break;
4307	case SCHED_DEADLINE:
4308	case SCHED_NORMAL:
4309	case SCHED_BATCH:
4310	case SCHED_IDLE:
4311		ret = 0;
4312		break;
4313	}
4314	return ret;
4315}
4316
4317/**
4318 * sys_sched_get_priority_min - return minimum RT priority.
4319 * @policy: scheduling class.
4320 *
4321 * Return: On success, this syscall returns the minimum
4322 * rt_priority that can be used by a given scheduling class.
4323 * On failure, a negative error code is returned.
4324 */
4325SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4326{
4327	int ret = -EINVAL;
4328
4329	switch (policy) {
4330	case SCHED_FIFO:
4331	case SCHED_RR:
4332		ret = 1;
4333		break;
4334	case SCHED_DEADLINE:
4335	case SCHED_NORMAL:
4336	case SCHED_BATCH:
4337	case SCHED_IDLE:
4338		ret = 0;
4339	}
4340	return ret;
4341}
4342
4343/**
4344 * sys_sched_rr_get_interval - return the default timeslice of a process.
4345 * @pid: pid of the process.
4346 * @interval: userspace pointer to the timeslice value.
4347 *
4348 * this syscall writes the default timeslice value of a given process
4349 * into the user-space timespec buffer. A value of '0' means infinity.
4350 *
4351 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4352 * an error code.
4353 */
4354SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4355		struct timespec __user *, interval)
4356{
4357	struct task_struct *p;
4358	unsigned int time_slice;
4359	unsigned long flags;
4360	struct rq *rq;
4361	int retval;
4362	struct timespec t;
4363
4364	if (pid < 0)
4365		return -EINVAL;
4366
4367	retval = -ESRCH;
4368	rcu_read_lock();
4369	p = find_process_by_pid(pid);
4370	if (!p)
4371		goto out_unlock;
4372
4373	retval = security_task_getscheduler(p);
4374	if (retval)
4375		goto out_unlock;
4376
4377	rq = task_rq_lock(p, &flags);
4378	time_slice = 0;
4379	if (p->sched_class->get_rr_interval)
4380		time_slice = p->sched_class->get_rr_interval(rq, p);
4381	task_rq_unlock(rq, p, &flags);
4382
4383	rcu_read_unlock();
4384	jiffies_to_timespec(time_slice, &t);
4385	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4386	return retval;
4387
4388out_unlock:
4389	rcu_read_unlock();
4390	return retval;
4391}
4392
4393static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4394
4395void sched_show_task(struct task_struct *p)
4396{
4397	unsigned long free = 0;
4398	int ppid;
4399	unsigned state;
4400
4401	state = p->state ? __ffs(p->state) + 1 : 0;
4402	printk(KERN_INFO "%-15.15s %c", p->comm,
4403		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4404#if BITS_PER_LONG == 32
4405	if (state == TASK_RUNNING)
4406		printk(KERN_CONT " running  ");
4407	else
4408		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4409#else
4410	if (state == TASK_RUNNING)
4411		printk(KERN_CONT "  running task    ");
4412	else
4413		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4414#endif
4415#ifdef CONFIG_DEBUG_STACK_USAGE
4416	free = stack_not_used(p);
4417#endif
4418	rcu_read_lock();
4419	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4420	rcu_read_unlock();
4421	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4422		task_pid_nr(p), ppid,
4423		(unsigned long)task_thread_info(p)->flags);
4424
4425	print_worker_info(KERN_INFO, p);
4426	show_stack(p, NULL);
4427}
4428
4429void show_state_filter(unsigned long state_filter)
4430{
4431	struct task_struct *g, *p;
4432
4433#if BITS_PER_LONG == 32
4434	printk(KERN_INFO
4435		"  task                PC stack   pid father\n");
4436#else
4437	printk(KERN_INFO
4438		"  task                        PC stack   pid father\n");
4439#endif
4440	rcu_read_lock();
4441	do_each_thread(g, p) {
4442		/*
4443		 * reset the NMI-timeout, listing all files on a slow
4444		 * console might take a lot of time:
4445		 */
4446		touch_nmi_watchdog();
4447		if (!state_filter || (p->state & state_filter))
4448			sched_show_task(p);
4449	} while_each_thread(g, p);
4450
4451	touch_all_softlockup_watchdogs();
4452
4453#ifdef CONFIG_SCHED_DEBUG
4454	sysrq_sched_debug_show();
4455#endif
4456	rcu_read_unlock();
4457	/*
4458	 * Only show locks if all tasks are dumped:
4459	 */
4460	if (!state_filter)
4461		debug_show_all_locks();
4462}
4463
4464void init_idle_bootup_task(struct task_struct *idle)
4465{
4466	idle->sched_class = &idle_sched_class;
4467}
4468
4469/**
4470 * init_idle - set up an idle thread for a given CPU
4471 * @idle: task in question
4472 * @cpu: cpu the idle task belongs to
4473 *
4474 * NOTE: this function does not set the idle thread's NEED_RESCHED
4475 * flag, to make booting more robust.
4476 */
4477void init_idle(struct task_struct *idle, int cpu)
4478{
4479	struct rq *rq = cpu_rq(cpu);
4480	unsigned long flags;
4481
4482	raw_spin_lock_irqsave(&rq->lock, flags);
4483
4484	__sched_fork(0, idle);
4485	idle->state = TASK_RUNNING;
4486	idle->se.exec_start = sched_clock();
4487
4488	do_set_cpus_allowed(idle, cpumask_of(cpu));
4489	/*
4490	 * We're having a chicken and egg problem, even though we are
4491	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4492	 * lockdep check in task_group() will fail.
4493	 *
4494	 * Similar case to sched_fork(). / Alternatively we could
4495	 * use task_rq_lock() here and obtain the other rq->lock.
4496	 *
4497	 * Silence PROVE_RCU
4498	 */
4499	rcu_read_lock();
4500	__set_task_cpu(idle, cpu);
4501	rcu_read_unlock();
4502
4503	rq->curr = rq->idle = idle;
4504	idle->on_rq = 1;
4505#if defined(CONFIG_SMP)
4506	idle->on_cpu = 1;
4507#endif
4508	raw_spin_unlock_irqrestore(&rq->lock, flags);
4509
4510	/* Set the preempt count _outside_ the spinlocks! */
4511	init_idle_preempt_count(idle, cpu);
4512
4513	/*
4514	 * The idle tasks have their own, simple scheduling class:
4515	 */
4516	idle->sched_class = &idle_sched_class;
4517	ftrace_graph_init_idle_task(idle, cpu);
4518	vtime_init_idle(idle, cpu);
4519#if defined(CONFIG_SMP)
4520	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4521#endif
4522}
4523
4524#ifdef CONFIG_SMP
4525void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4526{
4527	if (p->sched_class && p->sched_class->set_cpus_allowed)
4528		p->sched_class->set_cpus_allowed(p, new_mask);
4529
4530	cpumask_copy(&p->cpus_allowed, new_mask);
4531	p->nr_cpus_allowed = cpumask_weight(new_mask);
4532}
4533
4534/*
4535 * This is how migration works:
4536 *
4537 * 1) we invoke migration_cpu_stop() on the target CPU using
4538 *    stop_one_cpu().
4539 * 2) stopper starts to run (implicitly forcing the migrated thread
4540 *    off the CPU)
4541 * 3) it checks whether the migrated task is still in the wrong runqueue.
4542 * 4) if it's in the wrong runqueue then the migration thread removes
4543 *    it and puts it into the right queue.
4544 * 5) stopper completes and stop_one_cpu() returns and the migration
4545 *    is done.
4546 */
4547
4548/*
4549 * Change a given task's CPU affinity. Migrate the thread to a
4550 * proper CPU and schedule it away if the CPU it's executing on
4551 * is removed from the allowed bitmask.
4552 *
4553 * NOTE: the caller must have a valid reference to the task, the
4554 * task must not exit() & deallocate itself prematurely. The
4555 * call is not atomic; no spinlocks may be held.
4556 */
4557int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4558{
4559	unsigned long flags;
4560	struct rq *rq;
4561	unsigned int dest_cpu;
4562	int ret = 0;
4563
4564	rq = task_rq_lock(p, &flags);
4565
4566	if (cpumask_equal(&p->cpus_allowed, new_mask))
4567		goto out;
4568
4569	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4570		ret = -EINVAL;
4571		goto out;
4572	}
4573
4574	do_set_cpus_allowed(p, new_mask);
4575
4576	/* Can the task run on the task's current CPU? If so, we're done */
4577	if (cpumask_test_cpu(task_cpu(p), new_mask))
4578		goto out;
4579
4580	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4581	if (p->on_rq) {
4582		struct migration_arg arg = { p, dest_cpu };
4583		/* Need help from migration thread: drop lock and wait. */
4584		task_rq_unlock(rq, p, &flags);
4585		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4586		tlb_migrate_finish(p->mm);
4587		return 0;
4588	}
4589out:
4590	task_rq_unlock(rq, p, &flags);
4591
4592	return ret;
4593}
4594EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4595
4596/*
4597 * Move (not current) task off this cpu, onto dest cpu. We're doing
4598 * this because either it can't run here any more (set_cpus_allowed()
4599 * away from this CPU, or CPU going down), or because we're
4600 * attempting to rebalance this task on exec (sched_exec).
4601 *
4602 * So we race with normal scheduler movements, but that's OK, as long
4603 * as the task is no longer on this CPU.
4604 *
4605 * Returns non-zero if task was successfully migrated.
4606 */
4607static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4608{
4609	struct rq *rq_dest, *rq_src;
4610	int ret = 0;
4611
4612	if (unlikely(!cpu_active(dest_cpu)))
4613		return ret;
4614
4615	rq_src = cpu_rq(src_cpu);
4616	rq_dest = cpu_rq(dest_cpu);
4617
4618	raw_spin_lock(&p->pi_lock);
4619	double_rq_lock(rq_src, rq_dest);
4620	/* Already moved. */
4621	if (task_cpu(p) != src_cpu)
4622		goto done;
4623	/* Affinity changed (again). */
4624	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4625		goto fail;
4626
4627	/*
4628	 * If we're not on a rq, the next wake-up will ensure we're
4629	 * placed properly.
4630	 */
4631	if (p->on_rq) {
4632		dequeue_task(rq_src, p, 0);
4633		set_task_cpu(p, dest_cpu);
4634		enqueue_task(rq_dest, p, 0);
4635		check_preempt_curr(rq_dest, p, 0);
4636	}
4637done:
4638	ret = 1;
4639fail:
4640	double_rq_unlock(rq_src, rq_dest);
4641	raw_spin_unlock(&p->pi_lock);
4642	return ret;
4643}
4644
4645#ifdef CONFIG_NUMA_BALANCING
4646/* Migrate current task p to target_cpu */
4647int migrate_task_to(struct task_struct *p, int target_cpu)
4648{
4649	struct migration_arg arg = { p, target_cpu };
4650	int curr_cpu = task_cpu(p);
4651
4652	if (curr_cpu == target_cpu)
4653		return 0;
4654
4655	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4656		return -EINVAL;
4657
4658	/* TODO: This is not properly updating schedstats */
4659
4660	trace_sched_move_numa(p, curr_cpu, target_cpu);
4661	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4662}
4663
4664/*
4665 * Requeue a task on a given node and accurately track the number of NUMA
4666 * tasks on the runqueues
4667 */
4668void sched_setnuma(struct task_struct *p, int nid)
4669{
4670	struct rq *rq;
4671	unsigned long flags;
4672	bool on_rq, running;
4673
4674	rq = task_rq_lock(p, &flags);
4675	on_rq = p->on_rq;
4676	running = task_current(rq, p);
4677
4678	if (on_rq)
4679		dequeue_task(rq, p, 0);
4680	if (running)
4681		p->sched_class->put_prev_task(rq, p);
4682
4683	p->numa_preferred_nid = nid;
4684
4685	if (running)
4686		p->sched_class->set_curr_task(rq);
4687	if (on_rq)
4688		enqueue_task(rq, p, 0);
4689	task_rq_unlock(rq, p, &flags);
4690}
4691#endif
4692
4693/*
4694 * migration_cpu_stop - this will be executed by a highprio stopper thread
4695 * and performs thread migration by bumping thread off CPU then
4696 * 'pushing' onto another runqueue.
4697 */
4698static int migration_cpu_stop(void *data)
4699{
4700	struct migration_arg *arg = data;
4701
4702	/*
4703	 * The original target cpu might have gone down and we might
4704	 * be on another cpu but it doesn't matter.
4705	 */
4706	local_irq_disable();
4707	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4708	local_irq_enable();
4709	return 0;
4710}
4711
4712#ifdef CONFIG_HOTPLUG_CPU
4713
4714/*
4715 * Ensures that the idle task is using init_mm right before its cpu goes
4716 * offline.
4717 */
4718void idle_task_exit(void)
4719{
4720	struct mm_struct *mm = current->active_mm;
4721
4722	BUG_ON(cpu_online(smp_processor_id()));
4723
4724	if (mm != &init_mm)
4725		switch_mm(mm, &init_mm, current);
4726	mmdrop(mm);
4727}
4728
4729/*
4730 * Since this CPU is going 'away' for a while, fold any nr_active delta
4731 * we might have. Assumes we're called after migrate_tasks() so that the
4732 * nr_active count is stable.
4733 *
4734 * Also see the comment "Global load-average calculations".
4735 */
4736static void calc_load_migrate(struct rq *rq)
4737{
4738	long delta = calc_load_fold_active(rq);
4739	if (delta)
4740		atomic_long_add(delta, &calc_load_tasks);
4741}
4742
4743static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4744{
4745}
4746
4747static const struct sched_class fake_sched_class = {
4748	.put_prev_task = put_prev_task_fake,
4749};
4750
4751static struct task_struct fake_task = {
4752	/*
4753	 * Avoid pull_{rt,dl}_task()
4754	 */
4755	.prio = MAX_PRIO + 1,
4756	.sched_class = &fake_sched_class,
4757};
4758
4759/*
4760 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4761 * try_to_wake_up()->select_task_rq().
4762 *
4763 * Called with rq->lock held even though we'er in stop_machine() and
4764 * there's no concurrency possible, we hold the required locks anyway
4765 * because of lock validation efforts.
4766 */
4767static void migrate_tasks(unsigned int dead_cpu)
4768{
4769	struct rq *rq = cpu_rq(dead_cpu);
4770	struct task_struct *next, *stop = rq->stop;
4771	int dest_cpu;
4772
4773	/*
4774	 * Fudge the rq selection such that the below task selection loop
4775	 * doesn't get stuck on the currently eligible stop task.
4776	 *
4777	 * We're currently inside stop_machine() and the rq is either stuck
4778	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4779	 * either way we should never end up calling schedule() until we're
4780	 * done here.
4781	 */
4782	rq->stop = NULL;
4783
4784	/*
4785	 * put_prev_task() and pick_next_task() sched
4786	 * class method both need to have an up-to-date
4787	 * value of rq->clock[_task]
4788	 */
4789	update_rq_clock(rq);
4790
4791	for ( ; ; ) {
4792		/*
4793		 * There's this thread running, bail when that's the only
4794		 * remaining thread.
4795		 */
4796		if (rq->nr_running == 1)
4797			break;
4798
4799		next = pick_next_task(rq, &fake_task);
4800		BUG_ON(!next);
4801		next->sched_class->put_prev_task(rq, next);
4802
4803		/* Find suitable destination for @next, with force if needed. */
4804		dest_cpu = select_fallback_rq(dead_cpu, next);
4805		raw_spin_unlock(&rq->lock);
4806
4807		__migrate_task(next, dead_cpu, dest_cpu);
4808
4809		raw_spin_lock(&rq->lock);
4810	}
4811
4812	rq->stop = stop;
4813}
4814
4815#endif /* CONFIG_HOTPLUG_CPU */
4816
4817#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4818
4819static struct ctl_table sd_ctl_dir[] = {
4820	{
4821		.procname	= "sched_domain",
4822		.mode		= 0555,
4823	},
4824	{}
4825};
4826
4827static struct ctl_table sd_ctl_root[] = {
4828	{
4829		.procname	= "kernel",
4830		.mode		= 0555,
4831		.child		= sd_ctl_dir,
4832	},
4833	{}
4834};
4835
4836static struct ctl_table *sd_alloc_ctl_entry(int n)
4837{
4838	struct ctl_table *entry =
4839		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4840
4841	return entry;
4842}
4843
4844static void sd_free_ctl_entry(struct ctl_table **tablep)
4845{
4846	struct ctl_table *entry;
4847
4848	/*
4849	 * In the intermediate directories, both the child directory and
4850	 * procname are dynamically allocated and could fail but the mode
4851	 * will always be set. In the lowest directory the names are
4852	 * static strings and all have proc handlers.
4853	 */
4854	for (entry = *tablep; entry->mode; entry++) {
4855		if (entry->child)
4856			sd_free_ctl_entry(&entry->child);
4857		if (entry->proc_handler == NULL)
4858			kfree(entry->procname);
4859	}
4860
4861	kfree(*tablep);
4862	*tablep = NULL;
4863}
4864
4865static int min_load_idx = 0;
4866static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4867
4868static void
4869set_table_entry(struct ctl_table *entry,
4870		const char *procname, void *data, int maxlen,
4871		umode_t mode, proc_handler *proc_handler,
4872		bool load_idx)
4873{
4874	entry->procname = procname;
4875	entry->data = data;
4876	entry->maxlen = maxlen;
4877	entry->mode = mode;
4878	entry->proc_handler = proc_handler;
4879
4880	if (load_idx) {
4881		entry->extra1 = &min_load_idx;
4882		entry->extra2 = &max_load_idx;
4883	}
4884}
4885
4886static struct ctl_table *
4887sd_alloc_ctl_domain_table(struct sched_domain *sd)
4888{
4889	struct ctl_table *table = sd_alloc_ctl_entry(14);
4890
4891	if (table == NULL)
4892		return NULL;
4893
4894	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4895		sizeof(long), 0644, proc_doulongvec_minmax, false);
4896	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4897		sizeof(long), 0644, proc_doulongvec_minmax, false);
4898	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4899		sizeof(int), 0644, proc_dointvec_minmax, true);
4900	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4901		sizeof(int), 0644, proc_dointvec_minmax, true);
4902	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4903		sizeof(int), 0644, proc_dointvec_minmax, true);
4904	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4905		sizeof(int), 0644, proc_dointvec_minmax, true);
4906	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4907		sizeof(int), 0644, proc_dointvec_minmax, true);
4908	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4909		sizeof(int), 0644, proc_dointvec_minmax, false);
4910	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4911		sizeof(int), 0644, proc_dointvec_minmax, false);
4912	set_table_entry(&table[9], "cache_nice_tries",
4913		&sd->cache_nice_tries,
4914		sizeof(int), 0644, proc_dointvec_minmax, false);
4915	set_table_entry(&table[10], "flags", &sd->flags,
4916		sizeof(int), 0644, proc_dointvec_minmax, false);
4917	set_table_entry(&table[11], "max_newidle_lb_cost",
4918		&sd->max_newidle_lb_cost,
4919		sizeof(long), 0644, proc_doulongvec_minmax, false);
4920	set_table_entry(&table[12], "name", sd->name,
4921		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4922	/* &table[13] is terminator */
4923
4924	return table;
4925}
4926
4927static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4928{
4929	struct ctl_table *entry, *table;
4930	struct sched_domain *sd;
4931	int domain_num = 0, i;
4932	char buf[32];
4933
4934	for_each_domain(cpu, sd)
4935		domain_num++;
4936	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4937	if (table == NULL)
4938		return NULL;
4939
4940	i = 0;
4941	for_each_domain(cpu, sd) {
4942		snprintf(buf, 32, "domain%d", i);
4943		entry->procname = kstrdup(buf, GFP_KERNEL);
4944		entry->mode = 0555;
4945		entry->child = sd_alloc_ctl_domain_table(sd);
4946		entry++;
4947		i++;
4948	}
4949	return table;
4950}
4951
4952static struct ctl_table_header *sd_sysctl_header;
4953static void register_sched_domain_sysctl(void)
4954{
4955	int i, cpu_num = num_possible_cpus();
4956	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4957	char buf[32];
4958
4959	WARN_ON(sd_ctl_dir[0].child);
4960	sd_ctl_dir[0].child = entry;
4961
4962	if (entry == NULL)
4963		return;
4964
4965	for_each_possible_cpu(i) {
4966		snprintf(buf, 32, "cpu%d", i);
4967		entry->procname = kstrdup(buf, GFP_KERNEL);
4968		entry->mode = 0555;
4969		entry->child = sd_alloc_ctl_cpu_table(i);
4970		entry++;
4971	}
4972
4973	WARN_ON(sd_sysctl_header);
4974	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4975}
4976
4977/* may be called multiple times per register */
4978static void unregister_sched_domain_sysctl(void)
4979{
4980	if (sd_sysctl_header)
4981		unregister_sysctl_table(sd_sysctl_header);
4982	sd_sysctl_header = NULL;
4983	if (sd_ctl_dir[0].child)
4984		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4985}
4986#else
4987static void register_sched_domain_sysctl(void)
4988{
4989}
4990static void unregister_sched_domain_sysctl(void)
4991{
4992}
4993#endif
4994
4995static void set_rq_online(struct rq *rq)
4996{
4997	if (!rq->online) {
4998		const struct sched_class *class;
4999
5000		cpumask_set_cpu(rq->cpu, rq->rd->online);
5001		rq->online = 1;
5002
5003		for_each_class(class) {
5004			if (class->rq_online)
5005				class->rq_online(rq);
5006		}
5007	}
5008}
5009
5010static void set_rq_offline(struct rq *rq)
5011{
5012	if (rq->online) {
5013		const struct sched_class *class;
5014
5015		for_each_class(class) {
5016			if (class->rq_offline)
5017				class->rq_offline(rq);
5018		}
5019
5020		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5021		rq->online = 0;
5022	}
5023}
5024
5025/*
5026 * migration_call - callback that gets triggered when a CPU is added.
5027 * Here we can start up the necessary migration thread for the new CPU.
5028 */
5029static int
5030migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5031{
5032	int cpu = (long)hcpu;
5033	unsigned long flags;
5034	struct rq *rq = cpu_rq(cpu);
5035
5036	switch (action & ~CPU_TASKS_FROZEN) {
5037
5038	case CPU_UP_PREPARE:
5039		rq->calc_load_update = calc_load_update;
5040		break;
5041
5042	case CPU_ONLINE:
5043		/* Update our root-domain */
5044		raw_spin_lock_irqsave(&rq->lock, flags);
5045		if (rq->rd) {
5046			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5047
5048			set_rq_online(rq);
5049		}
5050		raw_spin_unlock_irqrestore(&rq->lock, flags);
5051		break;
5052
5053#ifdef CONFIG_HOTPLUG_CPU
5054	case CPU_DYING:
5055		sched_ttwu_pending();
5056		/* Update our root-domain */
5057		raw_spin_lock_irqsave(&rq->lock, flags);
5058		if (rq->rd) {
5059			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5060			set_rq_offline(rq);
5061		}
5062		migrate_tasks(cpu);
5063		BUG_ON(rq->nr_running != 1); /* the migration thread */
5064		raw_spin_unlock_irqrestore(&rq->lock, flags);
5065		break;
5066
5067	case CPU_DEAD:
5068		calc_load_migrate(rq);
5069		break;
5070#endif
5071	}
5072
5073	update_max_interval();
5074
5075	return NOTIFY_OK;
5076}
5077
5078/*
5079 * Register at high priority so that task migration (migrate_all_tasks)
5080 * happens before everything else.  This has to be lower priority than
5081 * the notifier in the perf_event subsystem, though.
5082 */
5083static struct notifier_block migration_notifier = {
5084	.notifier_call = migration_call,
5085	.priority = CPU_PRI_MIGRATION,
5086};
5087
5088static int sched_cpu_active(struct notifier_block *nfb,
5089				      unsigned long action, void *hcpu)
5090{
5091	switch (action & ~CPU_TASKS_FROZEN) {
5092	case CPU_STARTING:
5093	case CPU_DOWN_FAILED:
5094		set_cpu_active((long)hcpu, true);
5095		return NOTIFY_OK;
5096	default:
5097		return NOTIFY_DONE;
5098	}
5099}
5100
5101static int sched_cpu_inactive(struct notifier_block *nfb,
5102					unsigned long action, void *hcpu)
5103{
5104	unsigned long flags;
5105	long cpu = (long)hcpu;
5106
5107	switch (action & ~CPU_TASKS_FROZEN) {
5108	case CPU_DOWN_PREPARE:
5109		set_cpu_active(cpu, false);
5110
5111		/* explicitly allow suspend */
5112		if (!(action & CPU_TASKS_FROZEN)) {
5113			struct dl_bw *dl_b = dl_bw_of(cpu);
5114			bool overflow;
5115			int cpus;
5116
5117			raw_spin_lock_irqsave(&dl_b->lock, flags);
5118			cpus = dl_bw_cpus(cpu);
5119			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5120			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5121
5122			if (overflow)
5123				return notifier_from_errno(-EBUSY);
5124		}
5125		return NOTIFY_OK;
5126	}
5127
5128	return NOTIFY_DONE;
5129}
5130
5131static int __init migration_init(void)
5132{
5133	void *cpu = (void *)(long)smp_processor_id();
5134	int err;
5135
5136	/* Initialize migration for the boot CPU */
5137	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5138	BUG_ON(err == NOTIFY_BAD);
5139	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5140	register_cpu_notifier(&migration_notifier);
5141
5142	/* Register cpu active notifiers */
5143	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5144	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5145
5146	return 0;
5147}
5148early_initcall(migration_init);
5149#endif
5150
5151#ifdef CONFIG_SMP
5152
5153static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5154
5155#ifdef CONFIG_SCHED_DEBUG
5156
5157static __read_mostly int sched_debug_enabled;
5158
5159static int __init sched_debug_setup(char *str)
5160{
5161	sched_debug_enabled = 1;
5162
5163	return 0;
5164}
5165early_param("sched_debug", sched_debug_setup);
5166
5167static inline bool sched_debug(void)
5168{
5169	return sched_debug_enabled;
5170}
5171
5172static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5173				  struct cpumask *groupmask)
5174{
5175	struct sched_group *group = sd->groups;
5176	char str[256];
5177
5178	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5179	cpumask_clear(groupmask);
5180
5181	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5182
5183	if (!(sd->flags & SD_LOAD_BALANCE)) {
5184		printk("does not load-balance\n");
5185		if (sd->parent)
5186			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5187					" has parent");
5188		return -1;
5189	}
5190
5191	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5192
5193	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5194		printk(KERN_ERR "ERROR: domain->span does not contain "
5195				"CPU%d\n", cpu);
5196	}
5197	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5198		printk(KERN_ERR "ERROR: domain->groups does not contain"
5199				" CPU%d\n", cpu);
5200	}
5201
5202	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5203	do {
5204		if (!group) {
5205			printk("\n");
5206			printk(KERN_ERR "ERROR: group is NULL\n");
5207			break;
5208		}
5209
5210		/*
5211		 * Even though we initialize ->power to something semi-sane,
5212		 * we leave power_orig unset. This allows us to detect if
5213		 * domain iteration is still funny without causing /0 traps.
5214		 */
5215		if (!group->sgp->power_orig) {
5216			printk(KERN_CONT "\n");
5217			printk(KERN_ERR "ERROR: domain->cpu_power not "
5218					"set\n");
5219			break;
5220		}
5221
5222		if (!cpumask_weight(sched_group_cpus(group))) {
5223			printk(KERN_CONT "\n");
5224			printk(KERN_ERR "ERROR: empty group\n");
5225			break;
5226		}
5227
5228		if (!(sd->flags & SD_OVERLAP) &&
5229		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5230			printk(KERN_CONT "\n");
5231			printk(KERN_ERR "ERROR: repeated CPUs\n");
5232			break;
5233		}
5234
5235		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5236
5237		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5238
5239		printk(KERN_CONT " %s", str);
5240		if (group->sgp->power != SCHED_POWER_SCALE) {
5241			printk(KERN_CONT " (cpu_power = %d)",
5242				group->sgp->power);
5243		}
5244
5245		group = group->next;
5246	} while (group != sd->groups);
5247	printk(KERN_CONT "\n");
5248
5249	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5250		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5251
5252	if (sd->parent &&
5253	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5254		printk(KERN_ERR "ERROR: parent span is not a superset "
5255			"of domain->span\n");
5256	return 0;
5257}
5258
5259static void sched_domain_debug(struct sched_domain *sd, int cpu)
5260{
5261	int level = 0;
5262
5263	if (!sched_debug_enabled)
5264		return;
5265
5266	if (!sd) {
5267		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5268		return;
5269	}
5270
5271	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5272
5273	for (;;) {
5274		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5275			break;
5276		level++;
5277		sd = sd->parent;
5278		if (!sd)
5279			break;
5280	}
5281}
5282#else /* !CONFIG_SCHED_DEBUG */
5283# define sched_domain_debug(sd, cpu) do { } while (0)
5284static inline bool sched_debug(void)
5285{
5286	return false;
5287}
5288#endif /* CONFIG_SCHED_DEBUG */
5289
5290static int sd_degenerate(struct sched_domain *sd)
5291{
5292	if (cpumask_weight(sched_domain_span(sd)) == 1)
5293		return 1;
5294
5295	/* Following flags need at least 2 groups */
5296	if (sd->flags & (SD_LOAD_BALANCE |
5297			 SD_BALANCE_NEWIDLE |
5298			 SD_BALANCE_FORK |
5299			 SD_BALANCE_EXEC |
5300			 SD_SHARE_CPUPOWER |
5301			 SD_SHARE_PKG_RESOURCES)) {
5302		if (sd->groups != sd->groups->next)
5303			return 0;
5304	}
5305
5306	/* Following flags don't use groups */
5307	if (sd->flags & (SD_WAKE_AFFINE))
5308		return 0;
5309
5310	return 1;
5311}
5312
5313static int
5314sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5315{
5316	unsigned long cflags = sd->flags, pflags = parent->flags;
5317
5318	if (sd_degenerate(parent))
5319		return 1;
5320
5321	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5322		return 0;
5323
5324	/* Flags needing groups don't count if only 1 group in parent */
5325	if (parent->groups == parent->groups->next) {
5326		pflags &= ~(SD_LOAD_BALANCE |
5327				SD_BALANCE_NEWIDLE |
5328				SD_BALANCE_FORK |
5329				SD_BALANCE_EXEC |
5330				SD_SHARE_CPUPOWER |
5331				SD_SHARE_PKG_RESOURCES |
5332				SD_PREFER_SIBLING);
5333		if (nr_node_ids == 1)
5334			pflags &= ~SD_SERIALIZE;
5335	}
5336	if (~cflags & pflags)
5337		return 0;
5338
5339	return 1;
5340}
5341
5342static void free_rootdomain(struct rcu_head *rcu)
5343{
5344	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5345
5346	cpupri_cleanup(&rd->cpupri);
5347	cpudl_cleanup(&rd->cpudl);
5348	free_cpumask_var(rd->dlo_mask);
5349	free_cpumask_var(rd->rto_mask);
5350	free_cpumask_var(rd->online);
5351	free_cpumask_var(rd->span);
5352	kfree(rd);
5353}
5354
5355static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5356{
5357	struct root_domain *old_rd = NULL;
5358	unsigned long flags;
5359
5360	raw_spin_lock_irqsave(&rq->lock, flags);
5361
5362	if (rq->rd) {
5363		old_rd = rq->rd;
5364
5365		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5366			set_rq_offline(rq);
5367
5368		cpumask_clear_cpu(rq->cpu, old_rd->span);
5369
5370		/*
5371		 * If we dont want to free the old_rd yet then
5372		 * set old_rd to NULL to skip the freeing later
5373		 * in this function:
5374		 */
5375		if (!atomic_dec_and_test(&old_rd->refcount))
5376			old_rd = NULL;
5377	}
5378
5379	atomic_inc(&rd->refcount);
5380	rq->rd = rd;
5381
5382	cpumask_set_cpu(rq->cpu, rd->span);
5383	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5384		set_rq_online(rq);
5385
5386	raw_spin_unlock_irqrestore(&rq->lock, flags);
5387
5388	if (old_rd)
5389		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5390}
5391
5392static int init_rootdomain(struct root_domain *rd)
5393{
5394	memset(rd, 0, sizeof(*rd));
5395
5396	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5397		goto out;
5398	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5399		goto free_span;
5400	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5401		goto free_online;
5402	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5403		goto free_dlo_mask;
5404
5405	init_dl_bw(&rd->dl_bw);
5406	if (cpudl_init(&rd->cpudl) != 0)
5407		goto free_dlo_mask;
5408
5409	if (cpupri_init(&rd->cpupri) != 0)
5410		goto free_rto_mask;
5411	return 0;
5412
5413free_rto_mask:
5414	free_cpumask_var(rd->rto_mask);
5415free_dlo_mask:
5416	free_cpumask_var(rd->dlo_mask);
5417free_online:
5418	free_cpumask_var(rd->online);
5419free_span:
5420	free_cpumask_var(rd->span);
5421out:
5422	return -ENOMEM;
5423}
5424
5425/*
5426 * By default the system creates a single root-domain with all cpus as
5427 * members (mimicking the global state we have today).
5428 */
5429struct root_domain def_root_domain;
5430
5431static void init_defrootdomain(void)
5432{
5433	init_rootdomain(&def_root_domain);
5434
5435	atomic_set(&def_root_domain.refcount, 1);
5436}
5437
5438static struct root_domain *alloc_rootdomain(void)
5439{
5440	struct root_domain *rd;
5441
5442	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5443	if (!rd)
5444		return NULL;
5445
5446	if (init_rootdomain(rd) != 0) {
5447		kfree(rd);
5448		return NULL;
5449	}
5450
5451	return rd;
5452}
5453
5454static void free_sched_groups(struct sched_group *sg, int free_sgp)
5455{
5456	struct sched_group *tmp, *first;
5457
5458	if (!sg)
5459		return;
5460
5461	first = sg;
5462	do {
5463		tmp = sg->next;
5464
5465		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5466			kfree(sg->sgp);
5467
5468		kfree(sg);
5469		sg = tmp;
5470	} while (sg != first);
5471}
5472
5473static void free_sched_domain(struct rcu_head *rcu)
5474{
5475	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5476
5477	/*
5478	 * If its an overlapping domain it has private groups, iterate and
5479	 * nuke them all.
5480	 */
5481	if (sd->flags & SD_OVERLAP) {
5482		free_sched_groups(sd->groups, 1);
5483	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5484		kfree(sd->groups->sgp);
5485		kfree(sd->groups);
5486	}
5487	kfree(sd);
5488}
5489
5490static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5491{
5492	call_rcu(&sd->rcu, free_sched_domain);
5493}
5494
5495static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5496{
5497	for (; sd; sd = sd->parent)
5498		destroy_sched_domain(sd, cpu);
5499}
5500
5501/*
5502 * Keep a special pointer to the highest sched_domain that has
5503 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5504 * allows us to avoid some pointer chasing select_idle_sibling().
5505 *
5506 * Also keep a unique ID per domain (we use the first cpu number in
5507 * the cpumask of the domain), this allows us to quickly tell if
5508 * two cpus are in the same cache domain, see cpus_share_cache().
5509 */
5510DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5511DEFINE_PER_CPU(int, sd_llc_size);
5512DEFINE_PER_CPU(int, sd_llc_id);
5513DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5514DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5515DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5516
5517static void update_top_cache_domain(int cpu)
5518{
5519	struct sched_domain *sd;
5520	struct sched_domain *busy_sd = NULL;
5521	int id = cpu;
5522	int size = 1;
5523
5524	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5525	if (sd) {
5526		id = cpumask_first(sched_domain_span(sd));
5527		size = cpumask_weight(sched_domain_span(sd));
5528		busy_sd = sd->parent; /* sd_busy */
5529	}
5530	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5531
5532	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5533	per_cpu(sd_llc_size, cpu) = size;
5534	per_cpu(sd_llc_id, cpu) = id;
5535
5536	sd = lowest_flag_domain(cpu, SD_NUMA);
5537	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5538
5539	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5540	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5541}
5542
5543/*
5544 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5545 * hold the hotplug lock.
5546 */
5547static void
5548cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5549{
5550	struct rq *rq = cpu_rq(cpu);
5551	struct sched_domain *tmp;
5552
5553	/* Remove the sched domains which do not contribute to scheduling. */
5554	for (tmp = sd; tmp; ) {
5555		struct sched_domain *parent = tmp->parent;
5556		if (!parent)
5557			break;
5558
5559		if (sd_parent_degenerate(tmp, parent)) {
5560			tmp->parent = parent->parent;
5561			if (parent->parent)
5562				parent->parent->child = tmp;
5563			/*
5564			 * Transfer SD_PREFER_SIBLING down in case of a
5565			 * degenerate parent; the spans match for this
5566			 * so the property transfers.
5567			 */
5568			if (parent->flags & SD_PREFER_SIBLING)
5569				tmp->flags |= SD_PREFER_SIBLING;
5570			destroy_sched_domain(parent, cpu);
5571		} else
5572			tmp = tmp->parent;
5573	}
5574
5575	if (sd && sd_degenerate(sd)) {
5576		tmp = sd;
5577		sd = sd->parent;
5578		destroy_sched_domain(tmp, cpu);
5579		if (sd)
5580			sd->child = NULL;
5581	}
5582
5583	sched_domain_debug(sd, cpu);
5584
5585	rq_attach_root(rq, rd);
5586	tmp = rq->sd;
5587	rcu_assign_pointer(rq->sd, sd);
5588	destroy_sched_domains(tmp, cpu);
5589
5590	update_top_cache_domain(cpu);
5591}
5592
5593/* cpus with isolated domains */
5594static cpumask_var_t cpu_isolated_map;
5595
5596/* Setup the mask of cpus configured for isolated domains */
5597static int __init isolated_cpu_setup(char *str)
5598{
5599	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5600	cpulist_parse(str, cpu_isolated_map);
5601	return 1;
5602}
5603
5604__setup("isolcpus=", isolated_cpu_setup);
5605
5606static const struct cpumask *cpu_cpu_mask(int cpu)
5607{
5608	return cpumask_of_node(cpu_to_node(cpu));
5609}
5610
5611struct sd_data {
5612	struct sched_domain **__percpu sd;
5613	struct sched_group **__percpu sg;
5614	struct sched_group_power **__percpu sgp;
5615};
5616
5617struct s_data {
5618	struct sched_domain ** __percpu sd;
5619	struct root_domain	*rd;
5620};
5621
5622enum s_alloc {
5623	sa_rootdomain,
5624	sa_sd,
5625	sa_sd_storage,
5626	sa_none,
5627};
5628
5629struct sched_domain_topology_level;
5630
5631typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5632typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5633
5634#define SDTL_OVERLAP	0x01
5635
5636struct sched_domain_topology_level {
5637	sched_domain_init_f init;
5638	sched_domain_mask_f mask;
5639	int		    flags;
5640	int		    numa_level;
5641	struct sd_data      data;
5642};
5643
5644/*
5645 * Build an iteration mask that can exclude certain CPUs from the upwards
5646 * domain traversal.
5647 *
5648 * Asymmetric node setups can result in situations where the domain tree is of
5649 * unequal depth, make sure to skip domains that already cover the entire
5650 * range.
5651 *
5652 * In that case build_sched_domains() will have terminated the iteration early
5653 * and our sibling sd spans will be empty. Domains should always include the
5654 * cpu they're built on, so check that.
5655 *
5656 */
5657static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5658{
5659	const struct cpumask *span = sched_domain_span(sd);
5660	struct sd_data *sdd = sd->private;
5661	struct sched_domain *sibling;
5662	int i;
5663
5664	for_each_cpu(i, span) {
5665		sibling = *per_cpu_ptr(sdd->sd, i);
5666		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5667			continue;
5668
5669		cpumask_set_cpu(i, sched_group_mask(sg));
5670	}
5671}
5672
5673/*
5674 * Return the canonical balance cpu for this group, this is the first cpu
5675 * of this group that's also in the iteration mask.
5676 */
5677int group_balance_cpu(struct sched_group *sg)
5678{
5679	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5680}
5681
5682static int
5683build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5684{
5685	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5686	const struct cpumask *span = sched_domain_span(sd);
5687	struct cpumask *covered = sched_domains_tmpmask;
5688	struct sd_data *sdd = sd->private;
5689	struct sched_domain *child;
5690	int i;
5691
5692	cpumask_clear(covered);
5693
5694	for_each_cpu(i, span) {
5695		struct cpumask *sg_span;
5696
5697		if (cpumask_test_cpu(i, covered))
5698			continue;
5699
5700		child = *per_cpu_ptr(sdd->sd, i);
5701
5702		/* See the comment near build_group_mask(). */
5703		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5704			continue;
5705
5706		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5707				GFP_KERNEL, cpu_to_node(cpu));
5708
5709		if (!sg)
5710			goto fail;
5711
5712		sg_span = sched_group_cpus(sg);
5713		if (child->child) {
5714			child = child->child;
5715			cpumask_copy(sg_span, sched_domain_span(child));
5716		} else
5717			cpumask_set_cpu(i, sg_span);
5718
5719		cpumask_or(covered, covered, sg_span);
5720
5721		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5722		if (atomic_inc_return(&sg->sgp->ref) == 1)
5723			build_group_mask(sd, sg);
5724
5725		/*
5726		 * Initialize sgp->power such that even if we mess up the
5727		 * domains and no possible iteration will get us here, we won't
5728		 * die on a /0 trap.
5729		 */
5730		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5731		sg->sgp->power_orig = sg->sgp->power;
5732
5733		/*
5734		 * Make sure the first group of this domain contains the
5735		 * canonical balance cpu. Otherwise the sched_domain iteration
5736		 * breaks. See update_sg_lb_stats().
5737		 */
5738		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5739		    group_balance_cpu(sg) == cpu)
5740			groups = sg;
5741
5742		if (!first)
5743			first = sg;
5744		if (last)
5745			last->next = sg;
5746		last = sg;
5747		last->next = first;
5748	}
5749	sd->groups = groups;
5750
5751	return 0;
5752
5753fail:
5754	free_sched_groups(first, 0);
5755
5756	return -ENOMEM;
5757}
5758
5759static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5760{
5761	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5762	struct sched_domain *child = sd->child;
5763
5764	if (child)
5765		cpu = cpumask_first(sched_domain_span(child));
5766
5767	if (sg) {
5768		*sg = *per_cpu_ptr(sdd->sg, cpu);
5769		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5770		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5771	}
5772
5773	return cpu;
5774}
5775
5776/*
5777 * build_sched_groups will build a circular linked list of the groups
5778 * covered by the given span, and will set each group's ->cpumask correctly,
5779 * and ->cpu_power to 0.
5780 *
5781 * Assumes the sched_domain tree is fully constructed
5782 */
5783static int
5784build_sched_groups(struct sched_domain *sd, int cpu)
5785{
5786	struct sched_group *first = NULL, *last = NULL;
5787	struct sd_data *sdd = sd->private;
5788	const struct cpumask *span = sched_domain_span(sd);
5789	struct cpumask *covered;
5790	int i;
5791
5792	get_group(cpu, sdd, &sd->groups);
5793	atomic_inc(&sd->groups->ref);
5794
5795	if (cpu != cpumask_first(span))
5796		return 0;
5797
5798	lockdep_assert_held(&sched_domains_mutex);
5799	covered = sched_domains_tmpmask;
5800
5801	cpumask_clear(covered);
5802
5803	for_each_cpu(i, span) {
5804		struct sched_group *sg;
5805		int group, j;
5806
5807		if (cpumask_test_cpu(i, covered))
5808			continue;
5809
5810		group = get_group(i, sdd, &sg);
5811		cpumask_clear(sched_group_cpus(sg));
5812		sg->sgp->power = 0;
5813		cpumask_setall(sched_group_mask(sg));
5814
5815		for_each_cpu(j, span) {
5816			if (get_group(j, sdd, NULL) != group)
5817				continue;
5818
5819			cpumask_set_cpu(j, covered);
5820			cpumask_set_cpu(j, sched_group_cpus(sg));
5821		}
5822
5823		if (!first)
5824			first = sg;
5825		if (last)
5826			last->next = sg;
5827		last = sg;
5828	}
5829	last->next = first;
5830
5831	return 0;
5832}
5833
5834/*
5835 * Initialize sched groups cpu_power.
5836 *
5837 * cpu_power indicates the capacity of sched group, which is used while
5838 * distributing the load between different sched groups in a sched domain.
5839 * Typically cpu_power for all the groups in a sched domain will be same unless
5840 * there are asymmetries in the topology. If there are asymmetries, group
5841 * having more cpu_power will pickup more load compared to the group having
5842 * less cpu_power.
5843 */
5844static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5845{
5846	struct sched_group *sg = sd->groups;
5847
5848	WARN_ON(!sg);
5849
5850	do {
5851		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5852		sg = sg->next;
5853	} while (sg != sd->groups);
5854
5855	if (cpu != group_balance_cpu(sg))
5856		return;
5857
5858	update_group_power(sd, cpu);
5859	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5860}
5861
5862int __weak arch_sd_sibling_asym_packing(void)
5863{
5864       return 0*SD_ASYM_PACKING;
5865}
5866
5867/*
5868 * Initializers for schedule domains
5869 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5870 */
5871
5872#ifdef CONFIG_SCHED_DEBUG
5873# define SD_INIT_NAME(sd, type)		sd->name = #type
5874#else
5875# define SD_INIT_NAME(sd, type)		do { } while (0)
5876#endif
5877
5878#define SD_INIT_FUNC(type)						\
5879static noinline struct sched_domain *					\
5880sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5881{									\
5882	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5883	*sd = SD_##type##_INIT;						\
5884	SD_INIT_NAME(sd, type);						\
5885	sd->private = &tl->data;					\
5886	return sd;							\
5887}
5888
5889SD_INIT_FUNC(CPU)
5890#ifdef CONFIG_SCHED_SMT
5891 SD_INIT_FUNC(SIBLING)
5892#endif
5893#ifdef CONFIG_SCHED_MC
5894 SD_INIT_FUNC(MC)
5895#endif
5896#ifdef CONFIG_SCHED_BOOK
5897 SD_INIT_FUNC(BOOK)
5898#endif
5899
5900static int default_relax_domain_level = -1;
5901int sched_domain_level_max;
5902
5903static int __init setup_relax_domain_level(char *str)
5904{
5905	if (kstrtoint(str, 0, &default_relax_domain_level))
5906		pr_warn("Unable to set relax_domain_level\n");
5907
5908	return 1;
5909}
5910__setup("relax_domain_level=", setup_relax_domain_level);
5911
5912static void set_domain_attribute(struct sched_domain *sd,
5913				 struct sched_domain_attr *attr)
5914{
5915	int request;
5916
5917	if (!attr || attr->relax_domain_level < 0) {
5918		if (default_relax_domain_level < 0)
5919			return;
5920		else
5921			request = default_relax_domain_level;
5922	} else
5923		request = attr->relax_domain_level;
5924	if (request < sd->level) {
5925		/* turn off idle balance on this domain */
5926		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5927	} else {
5928		/* turn on idle balance on this domain */
5929		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5930	}
5931}
5932
5933static void __sdt_free(const struct cpumask *cpu_map);
5934static int __sdt_alloc(const struct cpumask *cpu_map);
5935
5936static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5937				 const struct cpumask *cpu_map)
5938{
5939	switch (what) {
5940	case sa_rootdomain:
5941		if (!atomic_read(&d->rd->refcount))
5942			free_rootdomain(&d->rd->rcu); /* fall through */
5943	case sa_sd:
5944		free_percpu(d->sd); /* fall through */
5945	case sa_sd_storage:
5946		__sdt_free(cpu_map); /* fall through */
5947	case sa_none:
5948		break;
5949	}
5950}
5951
5952static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5953						   const struct cpumask *cpu_map)
5954{
5955	memset(d, 0, sizeof(*d));
5956
5957	if (__sdt_alloc(cpu_map))
5958		return sa_sd_storage;
5959	d->sd = alloc_percpu(struct sched_domain *);
5960	if (!d->sd)
5961		return sa_sd_storage;
5962	d->rd = alloc_rootdomain();
5963	if (!d->rd)
5964		return sa_sd;
5965	return sa_rootdomain;
5966}
5967
5968/*
5969 * NULL the sd_data elements we've used to build the sched_domain and
5970 * sched_group structure so that the subsequent __free_domain_allocs()
5971 * will not free the data we're using.
5972 */
5973static void claim_allocations(int cpu, struct sched_domain *sd)
5974{
5975	struct sd_data *sdd = sd->private;
5976
5977	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5978	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5979
5980	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5981		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5982
5983	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5984		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5985}
5986
5987#ifdef CONFIG_SCHED_SMT
5988static const struct cpumask *cpu_smt_mask(int cpu)
5989{
5990	return topology_thread_cpumask(cpu);
5991}
5992#endif
5993
5994/*
5995 * Topology list, bottom-up.
5996 */
5997static struct sched_domain_topology_level default_topology[] = {
5998#ifdef CONFIG_SCHED_SMT
5999	{ sd_init_SIBLING, cpu_smt_mask, },
6000#endif
6001#ifdef CONFIG_SCHED_MC
6002	{ sd_init_MC, cpu_coregroup_mask, },
6003#endif
6004#ifdef CONFIG_SCHED_BOOK
6005	{ sd_init_BOOK, cpu_book_mask, },
6006#endif
6007	{ sd_init_CPU, cpu_cpu_mask, },
6008	{ NULL, },
6009};
6010
6011static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6012
6013#define for_each_sd_topology(tl)			\
6014	for (tl = sched_domain_topology; tl->init; tl++)
6015
6016#ifdef CONFIG_NUMA
6017
6018static int sched_domains_numa_levels;
6019static int *sched_domains_numa_distance;
6020static struct cpumask ***sched_domains_numa_masks;
6021static int sched_domains_curr_level;
6022
6023static inline int sd_local_flags(int level)
6024{
6025	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6026		return 0;
6027
6028	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6029}
6030
6031static struct sched_domain *
6032sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6033{
6034	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6035	int level = tl->numa_level;
6036	int sd_weight = cpumask_weight(
6037			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6038
6039	*sd = (struct sched_domain){
6040		.min_interval		= sd_weight,
6041		.max_interval		= 2*sd_weight,
6042		.busy_factor		= 32,
6043		.imbalance_pct		= 125,
6044		.cache_nice_tries	= 2,
6045		.busy_idx		= 3,
6046		.idle_idx		= 2,
6047		.newidle_idx		= 0,
6048		.wake_idx		= 0,
6049		.forkexec_idx		= 0,
6050
6051		.flags			= 1*SD_LOAD_BALANCE
6052					| 1*SD_BALANCE_NEWIDLE
6053					| 0*SD_BALANCE_EXEC
6054					| 0*SD_BALANCE_FORK
6055					| 0*SD_BALANCE_WAKE
6056					| 0*SD_WAKE_AFFINE
6057					| 0*SD_SHARE_CPUPOWER
6058					| 0*SD_SHARE_PKG_RESOURCES
6059					| 1*SD_SERIALIZE
6060					| 0*SD_PREFER_SIBLING
6061					| 1*SD_NUMA
6062					| sd_local_flags(level)
6063					,
6064		.last_balance		= jiffies,
6065		.balance_interval	= sd_weight,
6066	};
6067	SD_INIT_NAME(sd, NUMA);
6068	sd->private = &tl->data;
6069
6070	/*
6071	 * Ugly hack to pass state to sd_numa_mask()...
6072	 */
6073	sched_domains_curr_level = tl->numa_level;
6074
6075	return sd;
6076}
6077
6078static const struct cpumask *sd_numa_mask(int cpu)
6079{
6080	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6081}
6082
6083static void sched_numa_warn(const char *str)
6084{
6085	static int done = false;
6086	int i,j;
6087
6088	if (done)
6089		return;
6090
6091	done = true;
6092
6093	printk(KERN_WARNING "ERROR: %s\n\n", str);
6094
6095	for (i = 0; i < nr_node_ids; i++) {
6096		printk(KERN_WARNING "  ");
6097		for (j = 0; j < nr_node_ids; j++)
6098			printk(KERN_CONT "%02d ", node_distance(i,j));
6099		printk(KERN_CONT "\n");
6100	}
6101	printk(KERN_WARNING "\n");
6102}
6103
6104static bool find_numa_distance(int distance)
6105{
6106	int i;
6107
6108	if (distance == node_distance(0, 0))
6109		return true;
6110
6111	for (i = 0; i < sched_domains_numa_levels; i++) {
6112		if (sched_domains_numa_distance[i] == distance)
6113			return true;
6114	}
6115
6116	return false;
6117}
6118
6119static void sched_init_numa(void)
6120{
6121	int next_distance, curr_distance = node_distance(0, 0);
6122	struct sched_domain_topology_level *tl;
6123	int level = 0;
6124	int i, j, k;
6125
6126	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6127	if (!sched_domains_numa_distance)
6128		return;
6129
6130	/*
6131	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6132	 * unique distances in the node_distance() table.
6133	 *
6134	 * Assumes node_distance(0,j) includes all distances in
6135	 * node_distance(i,j) in order to avoid cubic time.
6136	 */
6137	next_distance = curr_distance;
6138	for (i = 0; i < nr_node_ids; i++) {
6139		for (j = 0; j < nr_node_ids; j++) {
6140			for (k = 0; k < nr_node_ids; k++) {
6141				int distance = node_distance(i, k);
6142
6143				if (distance > curr_distance &&
6144				    (distance < next_distance ||
6145				     next_distance == curr_distance))
6146					next_distance = distance;
6147
6148				/*
6149				 * While not a strong assumption it would be nice to know
6150				 * about cases where if node A is connected to B, B is not
6151				 * equally connected to A.
6152				 */
6153				if (sched_debug() && node_distance(k, i) != distance)
6154					sched_numa_warn("Node-distance not symmetric");
6155
6156				if (sched_debug() && i && !find_numa_distance(distance))
6157					sched_numa_warn("Node-0 not representative");
6158			}
6159			if (next_distance != curr_distance) {
6160				sched_domains_numa_distance[level++] = next_distance;
6161				sched_domains_numa_levels = level;
6162				curr_distance = next_distance;
6163			} else break;
6164		}
6165
6166		/*
6167		 * In case of sched_debug() we verify the above assumption.
6168		 */
6169		if (!sched_debug())
6170			break;
6171	}
6172	/*
6173	 * 'level' contains the number of unique distances, excluding the
6174	 * identity distance node_distance(i,i).
6175	 *
6176	 * The sched_domains_numa_distance[] array includes the actual distance
6177	 * numbers.
6178	 */
6179
6180	/*
6181	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6182	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6183	 * the array will contain less then 'level' members. This could be
6184	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6185	 * in other functions.
6186	 *
6187	 * We reset it to 'level' at the end of this function.
6188	 */
6189	sched_domains_numa_levels = 0;
6190
6191	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6192	if (!sched_domains_numa_masks)
6193		return;
6194
6195	/*
6196	 * Now for each level, construct a mask per node which contains all
6197	 * cpus of nodes that are that many hops away from us.
6198	 */
6199	for (i = 0; i < level; i++) {
6200		sched_domains_numa_masks[i] =
6201			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6202		if (!sched_domains_numa_masks[i])
6203			return;
6204
6205		for (j = 0; j < nr_node_ids; j++) {
6206			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6207			if (!mask)
6208				return;
6209
6210			sched_domains_numa_masks[i][j] = mask;
6211
6212			for (k = 0; k < nr_node_ids; k++) {
6213				if (node_distance(j, k) > sched_domains_numa_distance[i])
6214					continue;
6215
6216				cpumask_or(mask, mask, cpumask_of_node(k));
6217			}
6218		}
6219	}
6220
6221	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6222			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6223	if (!tl)
6224		return;
6225
6226	/*
6227	 * Copy the default topology bits..
6228	 */
6229	for (i = 0; default_topology[i].init; i++)
6230		tl[i] = default_topology[i];
6231
6232	/*
6233	 * .. and append 'j' levels of NUMA goodness.
6234	 */
6235	for (j = 0; j < level; i++, j++) {
6236		tl[i] = (struct sched_domain_topology_level){
6237			.init = sd_numa_init,
6238			.mask = sd_numa_mask,
6239			.flags = SDTL_OVERLAP,
6240			.numa_level = j,
6241		};
6242	}
6243
6244	sched_domain_topology = tl;
6245
6246	sched_domains_numa_levels = level;
6247}
6248
6249static void sched_domains_numa_masks_set(int cpu)
6250{
6251	int i, j;
6252	int node = cpu_to_node(cpu);
6253
6254	for (i = 0; i < sched_domains_numa_levels; i++) {
6255		for (j = 0; j < nr_node_ids; j++) {
6256			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6257				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6258		}
6259	}
6260}
6261
6262static void sched_domains_numa_masks_clear(int cpu)
6263{
6264	int i, j;
6265	for (i = 0; i < sched_domains_numa_levels; i++) {
6266		for (j = 0; j < nr_node_ids; j++)
6267			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6268	}
6269}
6270
6271/*
6272 * Update sched_domains_numa_masks[level][node] array when new cpus
6273 * are onlined.
6274 */
6275static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6276					   unsigned long action,
6277					   void *hcpu)
6278{
6279	int cpu = (long)hcpu;
6280
6281	switch (action & ~CPU_TASKS_FROZEN) {
6282	case CPU_ONLINE:
6283		sched_domains_numa_masks_set(cpu);
6284		break;
6285
6286	case CPU_DEAD:
6287		sched_domains_numa_masks_clear(cpu);
6288		break;
6289
6290	default:
6291		return NOTIFY_DONE;
6292	}
6293
6294	return NOTIFY_OK;
6295}
6296#else
6297static inline void sched_init_numa(void)
6298{
6299}
6300
6301static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6302					   unsigned long action,
6303					   void *hcpu)
6304{
6305	return 0;
6306}
6307#endif /* CONFIG_NUMA */
6308
6309static int __sdt_alloc(const struct cpumask *cpu_map)
6310{
6311	struct sched_domain_topology_level *tl;
6312	int j;
6313
6314	for_each_sd_topology(tl) {
6315		struct sd_data *sdd = &tl->data;
6316
6317		sdd->sd = alloc_percpu(struct sched_domain *);
6318		if (!sdd->sd)
6319			return -ENOMEM;
6320
6321		sdd->sg = alloc_percpu(struct sched_group *);
6322		if (!sdd->sg)
6323			return -ENOMEM;
6324
6325		sdd->sgp = alloc_percpu(struct sched_group_power *);
6326		if (!sdd->sgp)
6327			return -ENOMEM;
6328
6329		for_each_cpu(j, cpu_map) {
6330			struct sched_domain *sd;
6331			struct sched_group *sg;
6332			struct sched_group_power *sgp;
6333
6334		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6335					GFP_KERNEL, cpu_to_node(j));
6336			if (!sd)
6337				return -ENOMEM;
6338
6339			*per_cpu_ptr(sdd->sd, j) = sd;
6340
6341			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6342					GFP_KERNEL, cpu_to_node(j));
6343			if (!sg)
6344				return -ENOMEM;
6345
6346			sg->next = sg;
6347
6348			*per_cpu_ptr(sdd->sg, j) = sg;
6349
6350			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6351					GFP_KERNEL, cpu_to_node(j));
6352			if (!sgp)
6353				return -ENOMEM;
6354
6355			*per_cpu_ptr(sdd->sgp, j) = sgp;
6356		}
6357	}
6358
6359	return 0;
6360}
6361
6362static void __sdt_free(const struct cpumask *cpu_map)
6363{
6364	struct sched_domain_topology_level *tl;
6365	int j;
6366
6367	for_each_sd_topology(tl) {
6368		struct sd_data *sdd = &tl->data;
6369
6370		for_each_cpu(j, cpu_map) {
6371			struct sched_domain *sd;
6372
6373			if (sdd->sd) {
6374				sd = *per_cpu_ptr(sdd->sd, j);
6375				if (sd && (sd->flags & SD_OVERLAP))
6376					free_sched_groups(sd->groups, 0);
6377				kfree(*per_cpu_ptr(sdd->sd, j));
6378			}
6379
6380			if (sdd->sg)
6381				kfree(*per_cpu_ptr(sdd->sg, j));
6382			if (sdd->sgp)
6383				kfree(*per_cpu_ptr(sdd->sgp, j));
6384		}
6385		free_percpu(sdd->sd);
6386		sdd->sd = NULL;
6387		free_percpu(sdd->sg);
6388		sdd->sg = NULL;
6389		free_percpu(sdd->sgp);
6390		sdd->sgp = NULL;
6391	}
6392}
6393
6394struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6395		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6396		struct sched_domain *child, int cpu)
6397{
6398	struct sched_domain *sd = tl->init(tl, cpu);
6399	if (!sd)
6400		return child;
6401
6402	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6403	if (child) {
6404		sd->level = child->level + 1;
6405		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6406		child->parent = sd;
6407		sd->child = child;
6408	}
6409	set_domain_attribute(sd, attr);
6410
6411	return sd;
6412}
6413
6414/*
6415 * Build sched domains for a given set of cpus and attach the sched domains
6416 * to the individual cpus
6417 */
6418static int build_sched_domains(const struct cpumask *cpu_map,
6419			       struct sched_domain_attr *attr)
6420{
6421	enum s_alloc alloc_state;
6422	struct sched_domain *sd;
6423	struct s_data d;
6424	int i, ret = -ENOMEM;
6425
6426	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6427	if (alloc_state != sa_rootdomain)
6428		goto error;
6429
6430	/* Set up domains for cpus specified by the cpu_map. */
6431	for_each_cpu(i, cpu_map) {
6432		struct sched_domain_topology_level *tl;
6433
6434		sd = NULL;
6435		for_each_sd_topology(tl) {
6436			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6437			if (tl == sched_domain_topology)
6438				*per_cpu_ptr(d.sd, i) = sd;
6439			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6440				sd->flags |= SD_OVERLAP;
6441			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6442				break;
6443		}
6444	}
6445
6446	/* Build the groups for the domains */
6447	for_each_cpu(i, cpu_map) {
6448		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6449			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6450			if (sd->flags & SD_OVERLAP) {
6451				if (build_overlap_sched_groups(sd, i))
6452					goto error;
6453			} else {
6454				if (build_sched_groups(sd, i))
6455					goto error;
6456			}
6457		}
6458	}
6459
6460	/* Calculate CPU power for physical packages and nodes */
6461	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6462		if (!cpumask_test_cpu(i, cpu_map))
6463			continue;
6464
6465		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6466			claim_allocations(i, sd);
6467			init_sched_groups_power(i, sd);
6468		}
6469	}
6470
6471	/* Attach the domains */
6472	rcu_read_lock();
6473	for_each_cpu(i, cpu_map) {
6474		sd = *per_cpu_ptr(d.sd, i);
6475		cpu_attach_domain(sd, d.rd, i);
6476	}
6477	rcu_read_unlock();
6478
6479	ret = 0;
6480error:
6481	__free_domain_allocs(&d, alloc_state, cpu_map);
6482	return ret;
6483}
6484
6485static cpumask_var_t *doms_cur;	/* current sched domains */
6486static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6487static struct sched_domain_attr *dattr_cur;
6488				/* attribues of custom domains in 'doms_cur' */
6489
6490/*
6491 * Special case: If a kmalloc of a doms_cur partition (array of
6492 * cpumask) fails, then fallback to a single sched domain,
6493 * as determined by the single cpumask fallback_doms.
6494 */
6495static cpumask_var_t fallback_doms;
6496
6497/*
6498 * arch_update_cpu_topology lets virtualized architectures update the
6499 * cpu core maps. It is supposed to return 1 if the topology changed
6500 * or 0 if it stayed the same.
6501 */
6502int __attribute__((weak)) arch_update_cpu_topology(void)
6503{
6504	return 0;
6505}
6506
6507cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6508{
6509	int i;
6510	cpumask_var_t *doms;
6511
6512	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6513	if (!doms)
6514		return NULL;
6515	for (i = 0; i < ndoms; i++) {
6516		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6517			free_sched_domains(doms, i);
6518			return NULL;
6519		}
6520	}
6521	return doms;
6522}
6523
6524void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6525{
6526	unsigned int i;
6527	for (i = 0; i < ndoms; i++)
6528		free_cpumask_var(doms[i]);
6529	kfree(doms);
6530}
6531
6532/*
6533 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6534 * For now this just excludes isolated cpus, but could be used to
6535 * exclude other special cases in the future.
6536 */
6537static int init_sched_domains(const struct cpumask *cpu_map)
6538{
6539	int err;
6540
6541	arch_update_cpu_topology();
6542	ndoms_cur = 1;
6543	doms_cur = alloc_sched_domains(ndoms_cur);
6544	if (!doms_cur)
6545		doms_cur = &fallback_doms;
6546	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6547	err = build_sched_domains(doms_cur[0], NULL);
6548	register_sched_domain_sysctl();
6549
6550	return err;
6551}
6552
6553/*
6554 * Detach sched domains from a group of cpus specified in cpu_map
6555 * These cpus will now be attached to the NULL domain
6556 */
6557static void detach_destroy_domains(const struct cpumask *cpu_map)
6558{
6559	int i;
6560
6561	rcu_read_lock();
6562	for_each_cpu(i, cpu_map)
6563		cpu_attach_domain(NULL, &def_root_domain, i);
6564	rcu_read_unlock();
6565}
6566
6567/* handle null as "default" */
6568static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6569			struct sched_domain_attr *new, int idx_new)
6570{
6571	struct sched_domain_attr tmp;
6572
6573	/* fast path */
6574	if (!new && !cur)
6575		return 1;
6576
6577	tmp = SD_ATTR_INIT;
6578	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6579			new ? (new + idx_new) : &tmp,
6580			sizeof(struct sched_domain_attr));
6581}
6582
6583/*
6584 * Partition sched domains as specified by the 'ndoms_new'
6585 * cpumasks in the array doms_new[] of cpumasks. This compares
6586 * doms_new[] to the current sched domain partitioning, doms_cur[].
6587 * It destroys each deleted domain and builds each new domain.
6588 *
6589 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6590 * The masks don't intersect (don't overlap.) We should setup one
6591 * sched domain for each mask. CPUs not in any of the cpumasks will
6592 * not be load balanced. If the same cpumask appears both in the
6593 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6594 * it as it is.
6595 *
6596 * The passed in 'doms_new' should be allocated using
6597 * alloc_sched_domains.  This routine takes ownership of it and will
6598 * free_sched_domains it when done with it. If the caller failed the
6599 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6600 * and partition_sched_domains() will fallback to the single partition
6601 * 'fallback_doms', it also forces the domains to be rebuilt.
6602 *
6603 * If doms_new == NULL it will be replaced with cpu_online_mask.
6604 * ndoms_new == 0 is a special case for destroying existing domains,
6605 * and it will not create the default domain.
6606 *
6607 * Call with hotplug lock held
6608 */
6609void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6610			     struct sched_domain_attr *dattr_new)
6611{
6612	int i, j, n;
6613	int new_topology;
6614
6615	mutex_lock(&sched_domains_mutex);
6616
6617	/* always unregister in case we don't destroy any domains */
6618	unregister_sched_domain_sysctl();
6619
6620	/* Let architecture update cpu core mappings. */
6621	new_topology = arch_update_cpu_topology();
6622
6623	n = doms_new ? ndoms_new : 0;
6624
6625	/* Destroy deleted domains */
6626	for (i = 0; i < ndoms_cur; i++) {
6627		for (j = 0; j < n && !new_topology; j++) {
6628			if (cpumask_equal(doms_cur[i], doms_new[j])
6629			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6630				goto match1;
6631		}
6632		/* no match - a current sched domain not in new doms_new[] */
6633		detach_destroy_domains(doms_cur[i]);
6634match1:
6635		;
6636	}
6637
6638	n = ndoms_cur;
6639	if (doms_new == NULL) {
6640		n = 0;
6641		doms_new = &fallback_doms;
6642		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6643		WARN_ON_ONCE(dattr_new);
6644	}
6645
6646	/* Build new domains */
6647	for (i = 0; i < ndoms_new; i++) {
6648		for (j = 0; j < n && !new_topology; j++) {
6649			if (cpumask_equal(doms_new[i], doms_cur[j])
6650			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6651				goto match2;
6652		}
6653		/* no match - add a new doms_new */
6654		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6655match2:
6656		;
6657	}
6658
6659	/* Remember the new sched domains */
6660	if (doms_cur != &fallback_doms)
6661		free_sched_domains(doms_cur, ndoms_cur);
6662	kfree(dattr_cur);	/* kfree(NULL) is safe */
6663	doms_cur = doms_new;
6664	dattr_cur = dattr_new;
6665	ndoms_cur = ndoms_new;
6666
6667	register_sched_domain_sysctl();
6668
6669	mutex_unlock(&sched_domains_mutex);
6670}
6671
6672static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6673
6674/*
6675 * Update cpusets according to cpu_active mask.  If cpusets are
6676 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6677 * around partition_sched_domains().
6678 *
6679 * If we come here as part of a suspend/resume, don't touch cpusets because we
6680 * want to restore it back to its original state upon resume anyway.
6681 */
6682static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6683			     void *hcpu)
6684{
6685	switch (action) {
6686	case CPU_ONLINE_FROZEN:
6687	case CPU_DOWN_FAILED_FROZEN:
6688
6689		/*
6690		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6691		 * resume sequence. As long as this is not the last online
6692		 * operation in the resume sequence, just build a single sched
6693		 * domain, ignoring cpusets.
6694		 */
6695		num_cpus_frozen--;
6696		if (likely(num_cpus_frozen)) {
6697			partition_sched_domains(1, NULL, NULL);
6698			break;
6699		}
6700
6701		/*
6702		 * This is the last CPU online operation. So fall through and
6703		 * restore the original sched domains by considering the
6704		 * cpuset configurations.
6705		 */
6706
6707	case CPU_ONLINE:
6708	case CPU_DOWN_FAILED:
6709		cpuset_update_active_cpus(true);
6710		break;
6711	default:
6712		return NOTIFY_DONE;
6713	}
6714	return NOTIFY_OK;
6715}
6716
6717static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6718			       void *hcpu)
6719{
6720	switch (action) {
6721	case CPU_DOWN_PREPARE:
6722		cpuset_update_active_cpus(false);
6723		break;
6724	case CPU_DOWN_PREPARE_FROZEN:
6725		num_cpus_frozen++;
6726		partition_sched_domains(1, NULL, NULL);
6727		break;
6728	default:
6729		return NOTIFY_DONE;
6730	}
6731	return NOTIFY_OK;
6732}
6733
6734void __init sched_init_smp(void)
6735{
6736	cpumask_var_t non_isolated_cpus;
6737
6738	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6739	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6740
6741	sched_init_numa();
6742
6743	/*
6744	 * There's no userspace yet to cause hotplug operations; hence all the
6745	 * cpu masks are stable and all blatant races in the below code cannot
6746	 * happen.
6747	 */
6748	mutex_lock(&sched_domains_mutex);
6749	init_sched_domains(cpu_active_mask);
6750	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6751	if (cpumask_empty(non_isolated_cpus))
6752		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6753	mutex_unlock(&sched_domains_mutex);
6754
6755	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6756	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6757	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6758
6759	init_hrtick();
6760
6761	/* Move init over to a non-isolated CPU */
6762	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6763		BUG();
6764	sched_init_granularity();
6765	free_cpumask_var(non_isolated_cpus);
6766
6767	init_sched_rt_class();
6768	init_sched_dl_class();
6769}
6770#else
6771void __init sched_init_smp(void)
6772{
6773	sched_init_granularity();
6774}
6775#endif /* CONFIG_SMP */
6776
6777const_debug unsigned int sysctl_timer_migration = 1;
6778
6779int in_sched_functions(unsigned long addr)
6780{
6781	return in_lock_functions(addr) ||
6782		(addr >= (unsigned long)__sched_text_start
6783		&& addr < (unsigned long)__sched_text_end);
6784}
6785
6786#ifdef CONFIG_CGROUP_SCHED
6787/*
6788 * Default task group.
6789 * Every task in system belongs to this group at bootup.
6790 */
6791struct task_group root_task_group;
6792LIST_HEAD(task_groups);
6793#endif
6794
6795DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6796
6797void __init sched_init(void)
6798{
6799	int i, j;
6800	unsigned long alloc_size = 0, ptr;
6801
6802#ifdef CONFIG_FAIR_GROUP_SCHED
6803	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6804#endif
6805#ifdef CONFIG_RT_GROUP_SCHED
6806	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6807#endif
6808#ifdef CONFIG_CPUMASK_OFFSTACK
6809	alloc_size += num_possible_cpus() * cpumask_size();
6810#endif
6811	if (alloc_size) {
6812		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6813
6814#ifdef CONFIG_FAIR_GROUP_SCHED
6815		root_task_group.se = (struct sched_entity **)ptr;
6816		ptr += nr_cpu_ids * sizeof(void **);
6817
6818		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6819		ptr += nr_cpu_ids * sizeof(void **);
6820
6821#endif /* CONFIG_FAIR_GROUP_SCHED */
6822#ifdef CONFIG_RT_GROUP_SCHED
6823		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6824		ptr += nr_cpu_ids * sizeof(void **);
6825
6826		root_task_group.rt_rq = (struct rt_rq **)ptr;
6827		ptr += nr_cpu_ids * sizeof(void **);
6828
6829#endif /* CONFIG_RT_GROUP_SCHED */
6830#ifdef CONFIG_CPUMASK_OFFSTACK
6831		for_each_possible_cpu(i) {
6832			per_cpu(load_balance_mask, i) = (void *)ptr;
6833			ptr += cpumask_size();
6834		}
6835#endif /* CONFIG_CPUMASK_OFFSTACK */
6836	}
6837
6838	init_rt_bandwidth(&def_rt_bandwidth,
6839			global_rt_period(), global_rt_runtime());
6840	init_dl_bandwidth(&def_dl_bandwidth,
6841			global_rt_period(), global_rt_runtime());
6842
6843#ifdef CONFIG_SMP
6844	init_defrootdomain();
6845#endif
6846
6847#ifdef CONFIG_RT_GROUP_SCHED
6848	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6849			global_rt_period(), global_rt_runtime());
6850#endif /* CONFIG_RT_GROUP_SCHED */
6851
6852#ifdef CONFIG_CGROUP_SCHED
6853	list_add(&root_task_group.list, &task_groups);
6854	INIT_LIST_HEAD(&root_task_group.children);
6855	INIT_LIST_HEAD(&root_task_group.siblings);
6856	autogroup_init(&init_task);
6857
6858#endif /* CONFIG_CGROUP_SCHED */
6859
6860	for_each_possible_cpu(i) {
6861		struct rq *rq;
6862
6863		rq = cpu_rq(i);
6864		raw_spin_lock_init(&rq->lock);
6865		rq->nr_running = 0;
6866		rq->calc_load_active = 0;
6867		rq->calc_load_update = jiffies + LOAD_FREQ;
6868		init_cfs_rq(&rq->cfs);
6869		init_rt_rq(&rq->rt, rq);
6870		init_dl_rq(&rq->dl, rq);
6871#ifdef CONFIG_FAIR_GROUP_SCHED
6872		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6873		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6874		/*
6875		 * How much cpu bandwidth does root_task_group get?
6876		 *
6877		 * In case of task-groups formed thr' the cgroup filesystem, it
6878		 * gets 100% of the cpu resources in the system. This overall
6879		 * system cpu resource is divided among the tasks of
6880		 * root_task_group and its child task-groups in a fair manner,
6881		 * based on each entity's (task or task-group's) weight
6882		 * (se->load.weight).
6883		 *
6884		 * In other words, if root_task_group has 10 tasks of weight
6885		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6886		 * then A0's share of the cpu resource is:
6887		 *
6888		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6889		 *
6890		 * We achieve this by letting root_task_group's tasks sit
6891		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6892		 */
6893		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6894		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6895#endif /* CONFIG_FAIR_GROUP_SCHED */
6896
6897		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6898#ifdef CONFIG_RT_GROUP_SCHED
6899		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6900#endif
6901
6902		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6903			rq->cpu_load[j] = 0;
6904
6905		rq->last_load_update_tick = jiffies;
6906
6907#ifdef CONFIG_SMP
6908		rq->sd = NULL;
6909		rq->rd = NULL;
6910		rq->cpu_power = SCHED_POWER_SCALE;
6911		rq->post_schedule = 0;
6912		rq->active_balance = 0;
6913		rq->next_balance = jiffies;
6914		rq->push_cpu = 0;
6915		rq->cpu = i;
6916		rq->online = 0;
6917		rq->idle_stamp = 0;
6918		rq->avg_idle = 2*sysctl_sched_migration_cost;
6919		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6920
6921		INIT_LIST_HEAD(&rq->cfs_tasks);
6922
6923		rq_attach_root(rq, &def_root_domain);
6924#ifdef CONFIG_NO_HZ_COMMON
6925		rq->nohz_flags = 0;
6926#endif
6927#ifdef CONFIG_NO_HZ_FULL
6928		rq->last_sched_tick = 0;
6929#endif
6930#endif
6931		init_rq_hrtick(rq);
6932		atomic_set(&rq->nr_iowait, 0);
6933	}
6934
6935	set_load_weight(&init_task);
6936
6937#ifdef CONFIG_PREEMPT_NOTIFIERS
6938	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6939#endif
6940
6941	/*
6942	 * The boot idle thread does lazy MMU switching as well:
6943	 */
6944	atomic_inc(&init_mm.mm_count);
6945	enter_lazy_tlb(&init_mm, current);
6946
6947	/*
6948	 * Make us the idle thread. Technically, schedule() should not be
6949	 * called from this thread, however somewhere below it might be,
6950	 * but because we are the idle thread, we just pick up running again
6951	 * when this runqueue becomes "idle".
6952	 */
6953	init_idle(current, smp_processor_id());
6954
6955	calc_load_update = jiffies + LOAD_FREQ;
6956
6957	/*
6958	 * During early bootup we pretend to be a normal task:
6959	 */
6960	current->sched_class = &fair_sched_class;
6961
6962#ifdef CONFIG_SMP
6963	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6964	/* May be allocated at isolcpus cmdline parse time */
6965	if (cpu_isolated_map == NULL)
6966		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6967	idle_thread_set_boot_cpu();
6968#endif
6969	init_sched_fair_class();
6970
6971	scheduler_running = 1;
6972}
6973
6974#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6975static inline int preempt_count_equals(int preempt_offset)
6976{
6977	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6978
6979	return (nested == preempt_offset);
6980}
6981
6982void __might_sleep(const char *file, int line, int preempt_offset)
6983{
6984	static unsigned long prev_jiffy;	/* ratelimiting */
6985
6986	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6987	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6988	     !is_idle_task(current)) ||
6989	    system_state != SYSTEM_RUNNING || oops_in_progress)
6990		return;
6991	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6992		return;
6993	prev_jiffy = jiffies;
6994
6995	printk(KERN_ERR
6996		"BUG: sleeping function called from invalid context at %s:%d\n",
6997			file, line);
6998	printk(KERN_ERR
6999		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7000			in_atomic(), irqs_disabled(),
7001			current->pid, current->comm);
7002
7003	debug_show_held_locks(current);
7004	if (irqs_disabled())
7005		print_irqtrace_events(current);
7006#ifdef CONFIG_DEBUG_PREEMPT
7007	if (!preempt_count_equals(preempt_offset)) {
7008		pr_err("Preemption disabled at:");
7009		print_ip_sym(current->preempt_disable_ip);
7010		pr_cont("\n");
7011	}
7012#endif
7013	dump_stack();
7014}
7015EXPORT_SYMBOL(__might_sleep);
7016#endif
7017
7018#ifdef CONFIG_MAGIC_SYSRQ
7019static void normalize_task(struct rq *rq, struct task_struct *p)
7020{
7021	const struct sched_class *prev_class = p->sched_class;
7022	struct sched_attr attr = {
7023		.sched_policy = SCHED_NORMAL,
7024	};
7025	int old_prio = p->prio;
7026	int on_rq;
7027
7028	on_rq = p->on_rq;
7029	if (on_rq)
7030		dequeue_task(rq, p, 0);
7031	__setscheduler(rq, p, &attr);
7032	if (on_rq) {
7033		enqueue_task(rq, p, 0);
7034		resched_task(rq->curr);
7035	}
7036
7037	check_class_changed(rq, p, prev_class, old_prio);
7038}
7039
7040void normalize_rt_tasks(void)
7041{
7042	struct task_struct *g, *p;
7043	unsigned long flags;
7044	struct rq *rq;
7045
7046	read_lock_irqsave(&tasklist_lock, flags);
7047	do_each_thread(g, p) {
7048		/*
7049		 * Only normalize user tasks:
7050		 */
7051		if (!p->mm)
7052			continue;
7053
7054		p->se.exec_start		= 0;
7055#ifdef CONFIG_SCHEDSTATS
7056		p->se.statistics.wait_start	= 0;
7057		p->se.statistics.sleep_start	= 0;
7058		p->se.statistics.block_start	= 0;
7059#endif
7060
7061		if (!dl_task(p) && !rt_task(p)) {
7062			/*
7063			 * Renice negative nice level userspace
7064			 * tasks back to 0:
7065			 */
7066			if (task_nice(p) < 0 && p->mm)
7067				set_user_nice(p, 0);
7068			continue;
7069		}
7070
7071		raw_spin_lock(&p->pi_lock);
7072		rq = __task_rq_lock(p);
7073
7074		normalize_task(rq, p);
7075
7076		__task_rq_unlock(rq);
7077		raw_spin_unlock(&p->pi_lock);
7078	} while_each_thread(g, p);
7079
7080	read_unlock_irqrestore(&tasklist_lock, flags);
7081}
7082
7083#endif /* CONFIG_MAGIC_SYSRQ */
7084
7085#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7086/*
7087 * These functions are only useful for the IA64 MCA handling, or kdb.
7088 *
7089 * They can only be called when the whole system has been
7090 * stopped - every CPU needs to be quiescent, and no scheduling
7091 * activity can take place. Using them for anything else would
7092 * be a serious bug, and as a result, they aren't even visible
7093 * under any other configuration.
7094 */
7095
7096/**
7097 * curr_task - return the current task for a given cpu.
7098 * @cpu: the processor in question.
7099 *
7100 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7101 *
7102 * Return: The current task for @cpu.
7103 */
7104struct task_struct *curr_task(int cpu)
7105{
7106	return cpu_curr(cpu);
7107}
7108
7109#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7110
7111#ifdef CONFIG_IA64
7112/**
7113 * set_curr_task - set the current task for a given cpu.
7114 * @cpu: the processor in question.
7115 * @p: the task pointer to set.
7116 *
7117 * Description: This function must only be used when non-maskable interrupts
7118 * are serviced on a separate stack. It allows the architecture to switch the
7119 * notion of the current task on a cpu in a non-blocking manner. This function
7120 * must be called with all CPU's synchronized, and interrupts disabled, the
7121 * and caller must save the original value of the current task (see
7122 * curr_task() above) and restore that value before reenabling interrupts and
7123 * re-starting the system.
7124 *
7125 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7126 */
7127void set_curr_task(int cpu, struct task_struct *p)
7128{
7129	cpu_curr(cpu) = p;
7130}
7131
7132#endif
7133
7134#ifdef CONFIG_CGROUP_SCHED
7135/* task_group_lock serializes the addition/removal of task groups */
7136static DEFINE_SPINLOCK(task_group_lock);
7137
7138static void free_sched_group(struct task_group *tg)
7139{
7140	free_fair_sched_group(tg);
7141	free_rt_sched_group(tg);
7142	autogroup_free(tg);
7143	kfree(tg);
7144}
7145
7146/* allocate runqueue etc for a new task group */
7147struct task_group *sched_create_group(struct task_group *parent)
7148{
7149	struct task_group *tg;
7150
7151	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7152	if (!tg)
7153		return ERR_PTR(-ENOMEM);
7154
7155	if (!alloc_fair_sched_group(tg, parent))
7156		goto err;
7157
7158	if (!alloc_rt_sched_group(tg, parent))
7159		goto err;
7160
7161	return tg;
7162
7163err:
7164	free_sched_group(tg);
7165	return ERR_PTR(-ENOMEM);
7166}
7167
7168void sched_online_group(struct task_group *tg, struct task_group *parent)
7169{
7170	unsigned long flags;
7171
7172	spin_lock_irqsave(&task_group_lock, flags);
7173	list_add_rcu(&tg->list, &task_groups);
7174
7175	WARN_ON(!parent); /* root should already exist */
7176
7177	tg->parent = parent;
7178	INIT_LIST_HEAD(&tg->children);
7179	list_add_rcu(&tg->siblings, &parent->children);
7180	spin_unlock_irqrestore(&task_group_lock, flags);
7181}
7182
7183/* rcu callback to free various structures associated with a task group */
7184static void free_sched_group_rcu(struct rcu_head *rhp)
7185{
7186	/* now it should be safe to free those cfs_rqs */
7187	free_sched_group(container_of(rhp, struct task_group, rcu));
7188}
7189
7190/* Destroy runqueue etc associated with a task group */
7191void sched_destroy_group(struct task_group *tg)
7192{
7193	/* wait for possible concurrent references to cfs_rqs complete */
7194	call_rcu(&tg->rcu, free_sched_group_rcu);
7195}
7196
7197void sched_offline_group(struct task_group *tg)
7198{
7199	unsigned long flags;
7200	int i;
7201
7202	/* end participation in shares distribution */
7203	for_each_possible_cpu(i)
7204		unregister_fair_sched_group(tg, i);
7205
7206	spin_lock_irqsave(&task_group_lock, flags);
7207	list_del_rcu(&tg->list);
7208	list_del_rcu(&tg->siblings);
7209	spin_unlock_irqrestore(&task_group_lock, flags);
7210}
7211
7212/* change task's runqueue when it moves between groups.
7213 *	The caller of this function should have put the task in its new group
7214 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7215 *	reflect its new group.
7216 */
7217void sched_move_task(struct task_struct *tsk)
7218{
7219	struct task_group *tg;
7220	int on_rq, running;
7221	unsigned long flags;
7222	struct rq *rq;
7223
7224	rq = task_rq_lock(tsk, &flags);
7225
7226	running = task_current(rq, tsk);
7227	on_rq = tsk->on_rq;
7228
7229	if (on_rq)
7230		dequeue_task(rq, tsk, 0);
7231	if (unlikely(running))
7232		tsk->sched_class->put_prev_task(rq, tsk);
7233
7234	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7235				lockdep_is_held(&tsk->sighand->siglock)),
7236			  struct task_group, css);
7237	tg = autogroup_task_group(tsk, tg);
7238	tsk->sched_task_group = tg;
7239
7240#ifdef CONFIG_FAIR_GROUP_SCHED
7241	if (tsk->sched_class->task_move_group)
7242		tsk->sched_class->task_move_group(tsk, on_rq);
7243	else
7244#endif
7245		set_task_rq(tsk, task_cpu(tsk));
7246
7247	if (unlikely(running))
7248		tsk->sched_class->set_curr_task(rq);
7249	if (on_rq)
7250		enqueue_task(rq, tsk, 0);
7251
7252	task_rq_unlock(rq, tsk, &flags);
7253}
7254#endif /* CONFIG_CGROUP_SCHED */
7255
7256#ifdef CONFIG_RT_GROUP_SCHED
7257/*
7258 * Ensure that the real time constraints are schedulable.
7259 */
7260static DEFINE_MUTEX(rt_constraints_mutex);
7261
7262/* Must be called with tasklist_lock held */
7263static inline int tg_has_rt_tasks(struct task_group *tg)
7264{
7265	struct task_struct *g, *p;
7266
7267	do_each_thread(g, p) {
7268		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7269			return 1;
7270	} while_each_thread(g, p);
7271
7272	return 0;
7273}
7274
7275struct rt_schedulable_data {
7276	struct task_group *tg;
7277	u64 rt_period;
7278	u64 rt_runtime;
7279};
7280
7281static int tg_rt_schedulable(struct task_group *tg, void *data)
7282{
7283	struct rt_schedulable_data *d = data;
7284	struct task_group *child;
7285	unsigned long total, sum = 0;
7286	u64 period, runtime;
7287
7288	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7289	runtime = tg->rt_bandwidth.rt_runtime;
7290
7291	if (tg == d->tg) {
7292		period = d->rt_period;
7293		runtime = d->rt_runtime;
7294	}
7295
7296	/*
7297	 * Cannot have more runtime than the period.
7298	 */
7299	if (runtime > period && runtime != RUNTIME_INF)
7300		return -EINVAL;
7301
7302	/*
7303	 * Ensure we don't starve existing RT tasks.
7304	 */
7305	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7306		return -EBUSY;
7307
7308	total = to_ratio(period, runtime);
7309
7310	/*
7311	 * Nobody can have more than the global setting allows.
7312	 */
7313	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7314		return -EINVAL;
7315
7316	/*
7317	 * The sum of our children's runtime should not exceed our own.
7318	 */
7319	list_for_each_entry_rcu(child, &tg->children, siblings) {
7320		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7321		runtime = child->rt_bandwidth.rt_runtime;
7322
7323		if (child == d->tg) {
7324			period = d->rt_period;
7325			runtime = d->rt_runtime;
7326		}
7327
7328		sum += to_ratio(period, runtime);
7329	}
7330
7331	if (sum > total)
7332		return -EINVAL;
7333
7334	return 0;
7335}
7336
7337static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7338{
7339	int ret;
7340
7341	struct rt_schedulable_data data = {
7342		.tg = tg,
7343		.rt_period = period,
7344		.rt_runtime = runtime,
7345	};
7346
7347	rcu_read_lock();
7348	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7349	rcu_read_unlock();
7350
7351	return ret;
7352}
7353
7354static int tg_set_rt_bandwidth(struct task_group *tg,
7355		u64 rt_period, u64 rt_runtime)
7356{
7357	int i, err = 0;
7358
7359	mutex_lock(&rt_constraints_mutex);
7360	read_lock(&tasklist_lock);
7361	err = __rt_schedulable(tg, rt_period, rt_runtime);
7362	if (err)
7363		goto unlock;
7364
7365	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7366	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7367	tg->rt_bandwidth.rt_runtime = rt_runtime;
7368
7369	for_each_possible_cpu(i) {
7370		struct rt_rq *rt_rq = tg->rt_rq[i];
7371
7372		raw_spin_lock(&rt_rq->rt_runtime_lock);
7373		rt_rq->rt_runtime = rt_runtime;
7374		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7375	}
7376	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7377unlock:
7378	read_unlock(&tasklist_lock);
7379	mutex_unlock(&rt_constraints_mutex);
7380
7381	return err;
7382}
7383
7384static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7385{
7386	u64 rt_runtime, rt_period;
7387
7388	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7389	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7390	if (rt_runtime_us < 0)
7391		rt_runtime = RUNTIME_INF;
7392
7393	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7394}
7395
7396static long sched_group_rt_runtime(struct task_group *tg)
7397{
7398	u64 rt_runtime_us;
7399
7400	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7401		return -1;
7402
7403	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7404	do_div(rt_runtime_us, NSEC_PER_USEC);
7405	return rt_runtime_us;
7406}
7407
7408static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7409{
7410	u64 rt_runtime, rt_period;
7411
7412	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7413	rt_runtime = tg->rt_bandwidth.rt_runtime;
7414
7415	if (rt_period == 0)
7416		return -EINVAL;
7417
7418	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7419}
7420
7421static long sched_group_rt_period(struct task_group *tg)
7422{
7423	u64 rt_period_us;
7424
7425	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7426	do_div(rt_period_us, NSEC_PER_USEC);
7427	return rt_period_us;
7428}
7429#endif /* CONFIG_RT_GROUP_SCHED */
7430
7431#ifdef CONFIG_RT_GROUP_SCHED
7432static int sched_rt_global_constraints(void)
7433{
7434	int ret = 0;
7435
7436	mutex_lock(&rt_constraints_mutex);
7437	read_lock(&tasklist_lock);
7438	ret = __rt_schedulable(NULL, 0, 0);
7439	read_unlock(&tasklist_lock);
7440	mutex_unlock(&rt_constraints_mutex);
7441
7442	return ret;
7443}
7444
7445static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7446{
7447	/* Don't accept realtime tasks when there is no way for them to run */
7448	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7449		return 0;
7450
7451	return 1;
7452}
7453
7454#else /* !CONFIG_RT_GROUP_SCHED */
7455static int sched_rt_global_constraints(void)
7456{
7457	unsigned long flags;
7458	int i, ret = 0;
7459
7460	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7461	for_each_possible_cpu(i) {
7462		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7463
7464		raw_spin_lock(&rt_rq->rt_runtime_lock);
7465		rt_rq->rt_runtime = global_rt_runtime();
7466		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7467	}
7468	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7469
7470	return ret;
7471}
7472#endif /* CONFIG_RT_GROUP_SCHED */
7473
7474static int sched_dl_global_constraints(void)
7475{
7476	u64 runtime = global_rt_runtime();
7477	u64 period = global_rt_period();
7478	u64 new_bw = to_ratio(period, runtime);
7479	int cpu, ret = 0;
7480	unsigned long flags;
7481
7482	/*
7483	 * Here we want to check the bandwidth not being set to some
7484	 * value smaller than the currently allocated bandwidth in
7485	 * any of the root_domains.
7486	 *
7487	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7488	 * cycling on root_domains... Discussion on different/better
7489	 * solutions is welcome!
7490	 */
7491	for_each_possible_cpu(cpu) {
7492		struct dl_bw *dl_b = dl_bw_of(cpu);
7493
7494		raw_spin_lock_irqsave(&dl_b->lock, flags);
7495		if (new_bw < dl_b->total_bw)
7496			ret = -EBUSY;
7497		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7498
7499		if (ret)
7500			break;
7501	}
7502
7503	return ret;
7504}
7505
7506static void sched_dl_do_global(void)
7507{
7508	u64 new_bw = -1;
7509	int cpu;
7510	unsigned long flags;
7511
7512	def_dl_bandwidth.dl_period = global_rt_period();
7513	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7514
7515	if (global_rt_runtime() != RUNTIME_INF)
7516		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7517
7518	/*
7519	 * FIXME: As above...
7520	 */
7521	for_each_possible_cpu(cpu) {
7522		struct dl_bw *dl_b = dl_bw_of(cpu);
7523
7524		raw_spin_lock_irqsave(&dl_b->lock, flags);
7525		dl_b->bw = new_bw;
7526		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7527	}
7528}
7529
7530static int sched_rt_global_validate(void)
7531{
7532	if (sysctl_sched_rt_period <= 0)
7533		return -EINVAL;
7534
7535	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7536		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7537		return -EINVAL;
7538
7539	return 0;
7540}
7541
7542static void sched_rt_do_global(void)
7543{
7544	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7545	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7546}
7547
7548int sched_rt_handler(struct ctl_table *table, int write,
7549		void __user *buffer, size_t *lenp,
7550		loff_t *ppos)
7551{
7552	int old_period, old_runtime;
7553	static DEFINE_MUTEX(mutex);
7554	int ret;
7555
7556	mutex_lock(&mutex);
7557	old_period = sysctl_sched_rt_period;
7558	old_runtime = sysctl_sched_rt_runtime;
7559
7560	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7561
7562	if (!ret && write) {
7563		ret = sched_rt_global_validate();
7564		if (ret)
7565			goto undo;
7566
7567		ret = sched_rt_global_constraints();
7568		if (ret)
7569			goto undo;
7570
7571		ret = sched_dl_global_constraints();
7572		if (ret)
7573			goto undo;
7574
7575		sched_rt_do_global();
7576		sched_dl_do_global();
7577	}
7578	if (0) {
7579undo:
7580		sysctl_sched_rt_period = old_period;
7581		sysctl_sched_rt_runtime = old_runtime;
7582	}
7583	mutex_unlock(&mutex);
7584
7585	return ret;
7586}
7587
7588int sched_rr_handler(struct ctl_table *table, int write,
7589		void __user *buffer, size_t *lenp,
7590		loff_t *ppos)
7591{
7592	int ret;
7593	static DEFINE_MUTEX(mutex);
7594
7595	mutex_lock(&mutex);
7596	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7597	/* make sure that internally we keep jiffies */
7598	/* also, writing zero resets timeslice to default */
7599	if (!ret && write) {
7600		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7601			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7602	}
7603	mutex_unlock(&mutex);
7604	return ret;
7605}
7606
7607#ifdef CONFIG_CGROUP_SCHED
7608
7609static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7610{
7611	return css ? container_of(css, struct task_group, css) : NULL;
7612}
7613
7614static struct cgroup_subsys_state *
7615cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7616{
7617	struct task_group *parent = css_tg(parent_css);
7618	struct task_group *tg;
7619
7620	if (!parent) {
7621		/* This is early initialization for the top cgroup */
7622		return &root_task_group.css;
7623	}
7624
7625	tg = sched_create_group(parent);
7626	if (IS_ERR(tg))
7627		return ERR_PTR(-ENOMEM);
7628
7629	return &tg->css;
7630}
7631
7632static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7633{
7634	struct task_group *tg = css_tg(css);
7635	struct task_group *parent = css_tg(css_parent(css));
7636
7637	if (parent)
7638		sched_online_group(tg, parent);
7639	return 0;
7640}
7641
7642static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7643{
7644	struct task_group *tg = css_tg(css);
7645
7646	sched_destroy_group(tg);
7647}
7648
7649static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7650{
7651	struct task_group *tg = css_tg(css);
7652
7653	sched_offline_group(tg);
7654}
7655
7656static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7657				 struct cgroup_taskset *tset)
7658{
7659	struct task_struct *task;
7660
7661	cgroup_taskset_for_each(task, css, tset) {
7662#ifdef CONFIG_RT_GROUP_SCHED
7663		if (!sched_rt_can_attach(css_tg(css), task))
7664			return -EINVAL;
7665#else
7666		/* We don't support RT-tasks being in separate groups */
7667		if (task->sched_class != &fair_sched_class)
7668			return -EINVAL;
7669#endif
7670	}
7671	return 0;
7672}
7673
7674static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7675			      struct cgroup_taskset *tset)
7676{
7677	struct task_struct *task;
7678
7679	cgroup_taskset_for_each(task, css, tset)
7680		sched_move_task(task);
7681}
7682
7683static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7684			    struct cgroup_subsys_state *old_css,
7685			    struct task_struct *task)
7686{
7687	/*
7688	 * cgroup_exit() is called in the copy_process() failure path.
7689	 * Ignore this case since the task hasn't ran yet, this avoids
7690	 * trying to poke a half freed task state from generic code.
7691	 */
7692	if (!(task->flags & PF_EXITING))
7693		return;
7694
7695	sched_move_task(task);
7696}
7697
7698#ifdef CONFIG_FAIR_GROUP_SCHED
7699static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7700				struct cftype *cftype, u64 shareval)
7701{
7702	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7703}
7704
7705static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7706			       struct cftype *cft)
7707{
7708	struct task_group *tg = css_tg(css);
7709
7710	return (u64) scale_load_down(tg->shares);
7711}
7712
7713#ifdef CONFIG_CFS_BANDWIDTH
7714static DEFINE_MUTEX(cfs_constraints_mutex);
7715
7716const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7717const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7718
7719static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7720
7721static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7722{
7723	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7724	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7725
7726	if (tg == &root_task_group)
7727		return -EINVAL;
7728
7729	/*
7730	 * Ensure we have at some amount of bandwidth every period.  This is
7731	 * to prevent reaching a state of large arrears when throttled via
7732	 * entity_tick() resulting in prolonged exit starvation.
7733	 */
7734	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7735		return -EINVAL;
7736
7737	/*
7738	 * Likewise, bound things on the otherside by preventing insane quota
7739	 * periods.  This also allows us to normalize in computing quota
7740	 * feasibility.
7741	 */
7742	if (period > max_cfs_quota_period)
7743		return -EINVAL;
7744
7745	mutex_lock(&cfs_constraints_mutex);
7746	ret = __cfs_schedulable(tg, period, quota);
7747	if (ret)
7748		goto out_unlock;
7749
7750	runtime_enabled = quota != RUNTIME_INF;
7751	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7752	/*
7753	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7754	 * before making related changes, and on->off must occur afterwards
7755	 */
7756	if (runtime_enabled && !runtime_was_enabled)
7757		cfs_bandwidth_usage_inc();
7758	raw_spin_lock_irq(&cfs_b->lock);
7759	cfs_b->period = ns_to_ktime(period);
7760	cfs_b->quota = quota;
7761
7762	__refill_cfs_bandwidth_runtime(cfs_b);
7763	/* restart the period timer (if active) to handle new period expiry */
7764	if (runtime_enabled && cfs_b->timer_active) {
7765		/* force a reprogram */
7766		cfs_b->timer_active = 0;
7767		__start_cfs_bandwidth(cfs_b);
7768	}
7769	raw_spin_unlock_irq(&cfs_b->lock);
7770
7771	for_each_possible_cpu(i) {
7772		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7773		struct rq *rq = cfs_rq->rq;
7774
7775		raw_spin_lock_irq(&rq->lock);
7776		cfs_rq->runtime_enabled = runtime_enabled;
7777		cfs_rq->runtime_remaining = 0;
7778
7779		if (cfs_rq->throttled)
7780			unthrottle_cfs_rq(cfs_rq);
7781		raw_spin_unlock_irq(&rq->lock);
7782	}
7783	if (runtime_was_enabled && !runtime_enabled)
7784		cfs_bandwidth_usage_dec();
7785out_unlock:
7786	mutex_unlock(&cfs_constraints_mutex);
7787
7788	return ret;
7789}
7790
7791int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7792{
7793	u64 quota, period;
7794
7795	period = ktime_to_ns(tg->cfs_bandwidth.period);
7796	if (cfs_quota_us < 0)
7797		quota = RUNTIME_INF;
7798	else
7799		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7800
7801	return tg_set_cfs_bandwidth(tg, period, quota);
7802}
7803
7804long tg_get_cfs_quota(struct task_group *tg)
7805{
7806	u64 quota_us;
7807
7808	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7809		return -1;
7810
7811	quota_us = tg->cfs_bandwidth.quota;
7812	do_div(quota_us, NSEC_PER_USEC);
7813
7814	return quota_us;
7815}
7816
7817int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7818{
7819	u64 quota, period;
7820
7821	period = (u64)cfs_period_us * NSEC_PER_USEC;
7822	quota = tg->cfs_bandwidth.quota;
7823
7824	return tg_set_cfs_bandwidth(tg, period, quota);
7825}
7826
7827long tg_get_cfs_period(struct task_group *tg)
7828{
7829	u64 cfs_period_us;
7830
7831	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7832	do_div(cfs_period_us, NSEC_PER_USEC);
7833
7834	return cfs_period_us;
7835}
7836
7837static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7838				  struct cftype *cft)
7839{
7840	return tg_get_cfs_quota(css_tg(css));
7841}
7842
7843static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7844				   struct cftype *cftype, s64 cfs_quota_us)
7845{
7846	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7847}
7848
7849static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7850				   struct cftype *cft)
7851{
7852	return tg_get_cfs_period(css_tg(css));
7853}
7854
7855static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7856				    struct cftype *cftype, u64 cfs_period_us)
7857{
7858	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7859}
7860
7861struct cfs_schedulable_data {
7862	struct task_group *tg;
7863	u64 period, quota;
7864};
7865
7866/*
7867 * normalize group quota/period to be quota/max_period
7868 * note: units are usecs
7869 */
7870static u64 normalize_cfs_quota(struct task_group *tg,
7871			       struct cfs_schedulable_data *d)
7872{
7873	u64 quota, period;
7874
7875	if (tg == d->tg) {
7876		period = d->period;
7877		quota = d->quota;
7878	} else {
7879		period = tg_get_cfs_period(tg);
7880		quota = tg_get_cfs_quota(tg);
7881	}
7882
7883	/* note: these should typically be equivalent */
7884	if (quota == RUNTIME_INF || quota == -1)
7885		return RUNTIME_INF;
7886
7887	return to_ratio(period, quota);
7888}
7889
7890static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7891{
7892	struct cfs_schedulable_data *d = data;
7893	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7894	s64 quota = 0, parent_quota = -1;
7895
7896	if (!tg->parent) {
7897		quota = RUNTIME_INF;
7898	} else {
7899		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7900
7901		quota = normalize_cfs_quota(tg, d);
7902		parent_quota = parent_b->hierarchal_quota;
7903
7904		/*
7905		 * ensure max(child_quota) <= parent_quota, inherit when no
7906		 * limit is set
7907		 */
7908		if (quota == RUNTIME_INF)
7909			quota = parent_quota;
7910		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7911			return -EINVAL;
7912	}
7913	cfs_b->hierarchal_quota = quota;
7914
7915	return 0;
7916}
7917
7918static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7919{
7920	int ret;
7921	struct cfs_schedulable_data data = {
7922		.tg = tg,
7923		.period = period,
7924		.quota = quota,
7925	};
7926
7927	if (quota != RUNTIME_INF) {
7928		do_div(data.period, NSEC_PER_USEC);
7929		do_div(data.quota, NSEC_PER_USEC);
7930	}
7931
7932	rcu_read_lock();
7933	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7934	rcu_read_unlock();
7935
7936	return ret;
7937}
7938
7939static int cpu_stats_show(struct seq_file *sf, void *v)
7940{
7941	struct task_group *tg = css_tg(seq_css(sf));
7942	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7943
7944	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7945	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7946	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7947
7948	return 0;
7949}
7950#endif /* CONFIG_CFS_BANDWIDTH */
7951#endif /* CONFIG_FAIR_GROUP_SCHED */
7952
7953#ifdef CONFIG_RT_GROUP_SCHED
7954static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7955				struct cftype *cft, s64 val)
7956{
7957	return sched_group_set_rt_runtime(css_tg(css), val);
7958}
7959
7960static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7961			       struct cftype *cft)
7962{
7963	return sched_group_rt_runtime(css_tg(css));
7964}
7965
7966static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7967				    struct cftype *cftype, u64 rt_period_us)
7968{
7969	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7970}
7971
7972static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7973				   struct cftype *cft)
7974{
7975	return sched_group_rt_period(css_tg(css));
7976}
7977#endif /* CONFIG_RT_GROUP_SCHED */
7978
7979static struct cftype cpu_files[] = {
7980#ifdef CONFIG_FAIR_GROUP_SCHED
7981	{
7982		.name = "shares",
7983		.read_u64 = cpu_shares_read_u64,
7984		.write_u64 = cpu_shares_write_u64,
7985	},
7986#endif
7987#ifdef CONFIG_CFS_BANDWIDTH
7988	{
7989		.name = "cfs_quota_us",
7990		.read_s64 = cpu_cfs_quota_read_s64,
7991		.write_s64 = cpu_cfs_quota_write_s64,
7992	},
7993	{
7994		.name = "cfs_period_us",
7995		.read_u64 = cpu_cfs_period_read_u64,
7996		.write_u64 = cpu_cfs_period_write_u64,
7997	},
7998	{
7999		.name = "stat",
8000		.seq_show = cpu_stats_show,
8001	},
8002#endif
8003#ifdef CONFIG_RT_GROUP_SCHED
8004	{
8005		.name = "rt_runtime_us",
8006		.read_s64 = cpu_rt_runtime_read,
8007		.write_s64 = cpu_rt_runtime_write,
8008	},
8009	{
8010		.name = "rt_period_us",
8011		.read_u64 = cpu_rt_period_read_uint,
8012		.write_u64 = cpu_rt_period_write_uint,
8013	},
8014#endif
8015	{ }	/* terminate */
8016};
8017
8018struct cgroup_subsys cpu_cgroup_subsys = {
8019	.name		= "cpu",
8020	.css_alloc	= cpu_cgroup_css_alloc,
8021	.css_free	= cpu_cgroup_css_free,
8022	.css_online	= cpu_cgroup_css_online,
8023	.css_offline	= cpu_cgroup_css_offline,
8024	.can_attach	= cpu_cgroup_can_attach,
8025	.attach		= cpu_cgroup_attach,
8026	.exit		= cpu_cgroup_exit,
8027	.subsys_id	= cpu_cgroup_subsys_id,
8028	.base_cftypes	= cpu_files,
8029	.early_init	= 1,
8030};
8031
8032#endif	/* CONFIG_CGROUP_SCHED */
8033
8034void dump_cpu_task(int cpu)
8035{
8036	pr_info("Task dump for CPU %d:\n", cpu);
8037	sched_show_task(cpu_curr(cpu));
8038}
8039