core.c revision 383efcd00053ec40023010ce5034bd702e7ab373
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
517#define tsk_is_polling(t) 0
518#endif
519
520void resched_task(struct task_struct *p)
521{
522	int cpu;
523
524	assert_raw_spin_locked(&task_rq(p)->lock);
525
526	if (test_tsk_need_resched(p))
527		return;
528
529	set_tsk_need_resched(p);
530
531	cpu = task_cpu(p);
532	if (cpu == smp_processor_id())
533		return;
534
535	/* NEED_RESCHED must be visible before we test polling */
536	smp_mb();
537	if (!tsk_is_polling(p))
538		smp_send_reschedule(cpu);
539}
540
541void resched_cpu(int cpu)
542{
543	struct rq *rq = cpu_rq(cpu);
544	unsigned long flags;
545
546	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547		return;
548	resched_task(cpu_curr(cpu));
549	raw_spin_unlock_irqrestore(&rq->lock, flags);
550}
551
552#ifdef CONFIG_NO_HZ
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu.  This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563	int cpu = smp_processor_id();
564	int i;
565	struct sched_domain *sd;
566
567	rcu_read_lock();
568	for_each_domain(cpu, sd) {
569		for_each_cpu(i, sched_domain_span(sd)) {
570			if (!idle_cpu(i)) {
571				cpu = i;
572				goto unlock;
573			}
574		}
575	}
576unlock:
577	rcu_read_unlock();
578	return cpu;
579}
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592	struct rq *rq = cpu_rq(cpu);
593
594	if (cpu == smp_processor_id())
595		return;
596
597	/*
598	 * This is safe, as this function is called with the timer
599	 * wheel base lock of (cpu) held. When the CPU is on the way
600	 * to idle and has not yet set rq->curr to idle then it will
601	 * be serialized on the timer wheel base lock and take the new
602	 * timer into account automatically.
603	 */
604	if (rq->curr != rq->idle)
605		return;
606
607	/*
608	 * We can set TIF_RESCHED on the idle task of the other CPU
609	 * lockless. The worst case is that the other CPU runs the
610	 * idle task through an additional NOOP schedule()
611	 */
612	set_tsk_need_resched(rq->idle);
613
614	/* NEED_RESCHED must be visible before we test polling */
615	smp_mb();
616	if (!tsk_is_polling(rq->idle))
617		smp_send_reschedule(cpu);
618}
619
620static inline bool got_nohz_idle_kick(void)
621{
622	int cpu = smp_processor_id();
623	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624}
625
626#else /* CONFIG_NO_HZ */
627
628static inline bool got_nohz_idle_kick(void)
629{
630	return false;
631}
632
633#endif /* CONFIG_NO_HZ */
634
635void sched_avg_update(struct rq *rq)
636{
637	s64 period = sched_avg_period();
638
639	while ((s64)(rq->clock - rq->age_stamp) > period) {
640		/*
641		 * Inline assembly required to prevent the compiler
642		 * optimising this loop into a divmod call.
643		 * See __iter_div_u64_rem() for another example of this.
644		 */
645		asm("" : "+rm" (rq->age_stamp));
646		rq->age_stamp += period;
647		rq->rt_avg /= 2;
648	}
649}
650
651#else /* !CONFIG_SMP */
652void resched_task(struct task_struct *p)
653{
654	assert_raw_spin_locked(&task_rq(p)->lock);
655	set_tsk_need_resched(p);
656}
657#endif /* CONFIG_SMP */
658
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661/*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667int walk_tg_tree_from(struct task_group *from,
668			     tg_visitor down, tg_visitor up, void *data)
669{
670	struct task_group *parent, *child;
671	int ret;
672
673	parent = from;
674
675down:
676	ret = (*down)(parent, data);
677	if (ret)
678		goto out;
679	list_for_each_entry_rcu(child, &parent->children, siblings) {
680		parent = child;
681		goto down;
682
683up:
684		continue;
685	}
686	ret = (*up)(parent, data);
687	if (ret || parent == from)
688		goto out;
689
690	child = parent;
691	parent = parent->parent;
692	if (parent)
693		goto up;
694out:
695	return ret;
696}
697
698int tg_nop(struct task_group *tg, void *data)
699{
700	return 0;
701}
702#endif
703
704static void set_load_weight(struct task_struct *p)
705{
706	int prio = p->static_prio - MAX_RT_PRIO;
707	struct load_weight *load = &p->se.load;
708
709	/*
710	 * SCHED_IDLE tasks get minimal weight:
711	 */
712	if (p->policy == SCHED_IDLE) {
713		load->weight = scale_load(WEIGHT_IDLEPRIO);
714		load->inv_weight = WMULT_IDLEPRIO;
715		return;
716	}
717
718	load->weight = scale_load(prio_to_weight[prio]);
719	load->inv_weight = prio_to_wmult[prio];
720}
721
722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_queued(p);
726	p->sched_class->enqueue_task(rq, p, flags);
727}
728
729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	update_rq_clock(rq);
732	sched_info_dequeued(p);
733	p->sched_class->dequeue_task(rq, p, flags);
734}
735
736void activate_task(struct rq *rq, struct task_struct *p, int flags)
737{
738	if (task_contributes_to_load(p))
739		rq->nr_uninterruptible--;
740
741	enqueue_task(rq, p, flags);
742}
743
744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745{
746	if (task_contributes_to_load(p))
747		rq->nr_uninterruptible++;
748
749	dequeue_task(rq, p, flags);
750}
751
752static void update_rq_clock_task(struct rq *rq, s64 delta)
753{
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759	s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764	/*
765	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766	 * this case when a previous update_rq_clock() happened inside a
767	 * {soft,}irq region.
768	 *
769	 * When this happens, we stop ->clock_task and only update the
770	 * prev_irq_time stamp to account for the part that fit, so that a next
771	 * update will consume the rest. This ensures ->clock_task is
772	 * monotonic.
773	 *
774	 * It does however cause some slight miss-attribution of {soft,}irq
775	 * time, a more accurate solution would be to update the irq_time using
776	 * the current rq->clock timestamp, except that would require using
777	 * atomic ops.
778	 */
779	if (irq_delta > delta)
780		irq_delta = delta;
781
782	rq->prev_irq_time += irq_delta;
783	delta -= irq_delta;
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786	if (static_key_false((&paravirt_steal_rq_enabled))) {
787		u64 st;
788
789		steal = paravirt_steal_clock(cpu_of(rq));
790		steal -= rq->prev_steal_time_rq;
791
792		if (unlikely(steal > delta))
793			steal = delta;
794
795		st = steal_ticks(steal);
796		steal = st * TICK_NSEC;
797
798		rq->prev_steal_time_rq += steal;
799
800		delta -= steal;
801	}
802#endif
803
804	rq->clock_task += delta;
805
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808		sched_rt_avg_update(rq, irq_delta + steal);
809#endif
810}
811
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817	if (stop) {
818		/*
819		 * Make it appear like a SCHED_FIFO task, its something
820		 * userspace knows about and won't get confused about.
821		 *
822		 * Also, it will make PI more or less work without too
823		 * much confusion -- but then, stop work should not
824		 * rely on PI working anyway.
825		 */
826		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828		stop->sched_class = &stop_sched_class;
829	}
830
831	cpu_rq(cpu)->stop = stop;
832
833	if (old_stop) {
834		/*
835		 * Reset it back to a normal scheduling class so that
836		 * it can die in pieces.
837		 */
838		old_stop->sched_class = &rt_sched_class;
839	}
840}
841
842/*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845static inline int __normal_prio(struct task_struct *p)
846{
847	return p->static_prio;
848}
849
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857static inline int normal_prio(struct task_struct *p)
858{
859	int prio;
860
861	if (task_has_rt_policy(p))
862		prio = MAX_RT_PRIO-1 - p->rt_priority;
863	else
864		prio = __normal_prio(p);
865	return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875static int effective_prio(struct task_struct *p)
876{
877	p->normal_prio = normal_prio(p);
878	/*
879	 * If we are RT tasks or we were boosted to RT priority,
880	 * keep the priority unchanged. Otherwise, update priority
881	 * to the normal priority:
882	 */
883	if (!rt_prio(p->prio))
884		return p->normal_prio;
885	return p->prio;
886}
887
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892inline int task_curr(const struct task_struct *p)
893{
894	return cpu_curr(task_cpu(p)) == p;
895}
896
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898				       const struct sched_class *prev_class,
899				       int oldprio)
900{
901	if (prev_class != p->sched_class) {
902		if (prev_class->switched_from)
903			prev_class->switched_from(rq, p);
904		p->sched_class->switched_to(rq, p);
905	} else if (oldprio != p->prio)
906		p->sched_class->prio_changed(rq, p, oldprio);
907}
908
909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910{
911	const struct sched_class *class;
912
913	if (p->sched_class == rq->curr->sched_class) {
914		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915	} else {
916		for_each_class(class) {
917			if (class == rq->curr->sched_class)
918				break;
919			if (class == p->sched_class) {
920				resched_task(rq->curr);
921				break;
922			}
923		}
924	}
925
926	/*
927	 * A queue event has occurred, and we're going to schedule.  In
928	 * this case, we can save a useless back to back clock update.
929	 */
930	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931		rq->skip_clock_update = 1;
932}
933
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938	atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
941#ifdef CONFIG_SMP
942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943{
944#ifdef CONFIG_SCHED_DEBUG
945	/*
946	 * We should never call set_task_cpu() on a blocked task,
947	 * ttwu() will sort out the placement.
948	 */
949	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952#ifdef CONFIG_LOCKDEP
953	/*
954	 * The caller should hold either p->pi_lock or rq->lock, when changing
955	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956	 *
957	 * sched_move_task() holds both and thus holding either pins the cgroup,
958	 * see task_group().
959	 *
960	 * Furthermore, all task_rq users should acquire both locks, see
961	 * task_rq_lock().
962	 */
963	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964				      lockdep_is_held(&task_rq(p)->lock)));
965#endif
966#endif
967
968	trace_sched_migrate_task(p, new_cpu);
969
970	if (task_cpu(p) != new_cpu) {
971		struct task_migration_notifier tmn;
972
973		if (p->sched_class->migrate_task_rq)
974			p->sched_class->migrate_task_rq(p, new_cpu);
975		p->se.nr_migrations++;
976		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978		tmn.task = p;
979		tmn.from_cpu = task_cpu(p);
980		tmn.to_cpu = new_cpu;
981
982		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983	}
984
985	__set_task_cpu(p, new_cpu);
986}
987
988struct migration_arg {
989	struct task_struct *task;
990	int dest_cpu;
991};
992
993static int migration_cpu_stop(void *data);
994
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change.  If it changes, i.e. @p might have woken up,
1000 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count).  If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012{
1013	unsigned long flags;
1014	int running, on_rq;
1015	unsigned long ncsw;
1016	struct rq *rq;
1017
1018	for (;;) {
1019		/*
1020		 * We do the initial early heuristics without holding
1021		 * any task-queue locks at all. We'll only try to get
1022		 * the runqueue lock when things look like they will
1023		 * work out!
1024		 */
1025		rq = task_rq(p);
1026
1027		/*
1028		 * If the task is actively running on another CPU
1029		 * still, just relax and busy-wait without holding
1030		 * any locks.
1031		 *
1032		 * NOTE! Since we don't hold any locks, it's not
1033		 * even sure that "rq" stays as the right runqueue!
1034		 * But we don't care, since "task_running()" will
1035		 * return false if the runqueue has changed and p
1036		 * is actually now running somewhere else!
1037		 */
1038		while (task_running(rq, p)) {
1039			if (match_state && unlikely(p->state != match_state))
1040				return 0;
1041			cpu_relax();
1042		}
1043
1044		/*
1045		 * Ok, time to look more closely! We need the rq
1046		 * lock now, to be *sure*. If we're wrong, we'll
1047		 * just go back and repeat.
1048		 */
1049		rq = task_rq_lock(p, &flags);
1050		trace_sched_wait_task(p);
1051		running = task_running(rq, p);
1052		on_rq = p->on_rq;
1053		ncsw = 0;
1054		if (!match_state || p->state == match_state)
1055			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056		task_rq_unlock(rq, p, &flags);
1057
1058		/*
1059		 * If it changed from the expected state, bail out now.
1060		 */
1061		if (unlikely(!ncsw))
1062			break;
1063
1064		/*
1065		 * Was it really running after all now that we
1066		 * checked with the proper locks actually held?
1067		 *
1068		 * Oops. Go back and try again..
1069		 */
1070		if (unlikely(running)) {
1071			cpu_relax();
1072			continue;
1073		}
1074
1075		/*
1076		 * It's not enough that it's not actively running,
1077		 * it must be off the runqueue _entirely_, and not
1078		 * preempted!
1079		 *
1080		 * So if it was still runnable (but just not actively
1081		 * running right now), it's preempted, and we should
1082		 * yield - it could be a while.
1083		 */
1084		if (unlikely(on_rq)) {
1085			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087			set_current_state(TASK_UNINTERRUPTIBLE);
1088			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089			continue;
1090		}
1091
1092		/*
1093		 * Ahh, all good. It wasn't running, and it wasn't
1094		 * runnable, which means that it will never become
1095		 * running in the future either. We're all done!
1096		 */
1097		break;
1098	}
1099
1100	return ncsw;
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116void kick_process(struct task_struct *p)
1117{
1118	int cpu;
1119
1120	preempt_disable();
1121	cpu = task_cpu(p);
1122	if ((cpu != smp_processor_id()) && task_curr(p))
1123		smp_send_reschedule(cpu);
1124	preempt_enable();
1125}
1126EXPORT_SYMBOL_GPL(kick_process);
1127#endif /* CONFIG_SMP */
1128
1129#ifdef CONFIG_SMP
1130/*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
1135	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136	enum { cpuset, possible, fail } state = cpuset;
1137	int dest_cpu;
1138
1139	/* Look for allowed, online CPU in same node. */
1140	for_each_cpu(dest_cpu, nodemask) {
1141		if (!cpu_online(dest_cpu))
1142			continue;
1143		if (!cpu_active(dest_cpu))
1144			continue;
1145		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146			return dest_cpu;
1147	}
1148
1149	for (;;) {
1150		/* Any allowed, online CPU? */
1151		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152			if (!cpu_online(dest_cpu))
1153				continue;
1154			if (!cpu_active(dest_cpu))
1155				continue;
1156			goto out;
1157		}
1158
1159		switch (state) {
1160		case cpuset:
1161			/* No more Mr. Nice Guy. */
1162			cpuset_cpus_allowed_fallback(p);
1163			state = possible;
1164			break;
1165
1166		case possible:
1167			do_set_cpus_allowed(p, cpu_possible_mask);
1168			state = fail;
1169			break;
1170
1171		case fail:
1172			BUG();
1173			break;
1174		}
1175	}
1176
1177out:
1178	if (state != cpuset) {
1179		/*
1180		 * Don't tell them about moving exiting tasks or
1181		 * kernel threads (both mm NULL), since they never
1182		 * leave kernel.
1183		 */
1184		if (p->mm && printk_ratelimit()) {
1185			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186					task_pid_nr(p), p->comm, cpu);
1187		}
1188	}
1189
1190	return dest_cpu;
1191}
1192
1193/*
1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195 */
1196static inline
1197int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198{
1199	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200
1201	/*
1202	 * In order not to call set_task_cpu() on a blocking task we need
1203	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204	 * cpu.
1205	 *
1206	 * Since this is common to all placement strategies, this lives here.
1207	 *
1208	 * [ this allows ->select_task() to simply return task_cpu(p) and
1209	 *   not worry about this generic constraint ]
1210	 */
1211	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212		     !cpu_online(cpu)))
1213		cpu = select_fallback_rq(task_cpu(p), p);
1214
1215	return cpu;
1216}
1217
1218static void update_avg(u64 *avg, u64 sample)
1219{
1220	s64 diff = sample - *avg;
1221	*avg += diff >> 3;
1222}
1223#endif
1224
1225static void
1226ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227{
1228#ifdef CONFIG_SCHEDSTATS
1229	struct rq *rq = this_rq();
1230
1231#ifdef CONFIG_SMP
1232	int this_cpu = smp_processor_id();
1233
1234	if (cpu == this_cpu) {
1235		schedstat_inc(rq, ttwu_local);
1236		schedstat_inc(p, se.statistics.nr_wakeups_local);
1237	} else {
1238		struct sched_domain *sd;
1239
1240		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241		rcu_read_lock();
1242		for_each_domain(this_cpu, sd) {
1243			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244				schedstat_inc(sd, ttwu_wake_remote);
1245				break;
1246			}
1247		}
1248		rcu_read_unlock();
1249	}
1250
1251	if (wake_flags & WF_MIGRATED)
1252		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
1254#endif /* CONFIG_SMP */
1255
1256	schedstat_inc(rq, ttwu_count);
1257	schedstat_inc(p, se.statistics.nr_wakeups);
1258
1259	if (wake_flags & WF_SYNC)
1260		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1261
1262#endif /* CONFIG_SCHEDSTATS */
1263}
1264
1265static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266{
1267	activate_task(rq, p, en_flags);
1268	p->on_rq = 1;
1269
1270	/* if a worker is waking up, notify workqueue */
1271	if (p->flags & PF_WQ_WORKER)
1272		wq_worker_waking_up(p, cpu_of(rq));
1273}
1274
1275/*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
1278static void
1279ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280{
1281	trace_sched_wakeup(p, true);
1282	check_preempt_curr(rq, p, wake_flags);
1283
1284	p->state = TASK_RUNNING;
1285#ifdef CONFIG_SMP
1286	if (p->sched_class->task_woken)
1287		p->sched_class->task_woken(rq, p);
1288
1289	if (rq->idle_stamp) {
1290		u64 delta = rq->clock - rq->idle_stamp;
1291		u64 max = 2*sysctl_sched_migration_cost;
1292
1293		if (delta > max)
1294			rq->avg_idle = max;
1295		else
1296			update_avg(&rq->avg_idle, delta);
1297		rq->idle_stamp = 0;
1298	}
1299#endif
1300}
1301
1302static void
1303ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304{
1305#ifdef CONFIG_SMP
1306	if (p->sched_contributes_to_load)
1307		rq->nr_uninterruptible--;
1308#endif
1309
1310	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311	ttwu_do_wakeup(rq, p, wake_flags);
1312}
1313
1314/*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320static int ttwu_remote(struct task_struct *p, int wake_flags)
1321{
1322	struct rq *rq;
1323	int ret = 0;
1324
1325	rq = __task_rq_lock(p);
1326	if (p->on_rq) {
1327		ttwu_do_wakeup(rq, p, wake_flags);
1328		ret = 1;
1329	}
1330	__task_rq_unlock(rq);
1331
1332	return ret;
1333}
1334
1335#ifdef CONFIG_SMP
1336static void sched_ttwu_pending(void)
1337{
1338	struct rq *rq = this_rq();
1339	struct llist_node *llist = llist_del_all(&rq->wake_list);
1340	struct task_struct *p;
1341
1342	raw_spin_lock(&rq->lock);
1343
1344	while (llist) {
1345		p = llist_entry(llist, struct task_struct, wake_entry);
1346		llist = llist_next(llist);
1347		ttwu_do_activate(rq, p, 0);
1348	}
1349
1350	raw_spin_unlock(&rq->lock);
1351}
1352
1353void scheduler_ipi(void)
1354{
1355	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356		return;
1357
1358	/*
1359	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360	 * traditionally all their work was done from the interrupt return
1361	 * path. Now that we actually do some work, we need to make sure
1362	 * we do call them.
1363	 *
1364	 * Some archs already do call them, luckily irq_enter/exit nest
1365	 * properly.
1366	 *
1367	 * Arguably we should visit all archs and update all handlers,
1368	 * however a fair share of IPIs are still resched only so this would
1369	 * somewhat pessimize the simple resched case.
1370	 */
1371	irq_enter();
1372	sched_ttwu_pending();
1373
1374	/*
1375	 * Check if someone kicked us for doing the nohz idle load balance.
1376	 */
1377	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378		this_rq()->idle_balance = 1;
1379		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380	}
1381	irq_exit();
1382}
1383
1384static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385{
1386	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387		smp_send_reschedule(cpu);
1388}
1389
1390bool cpus_share_cache(int this_cpu, int that_cpu)
1391{
1392	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393}
1394#endif /* CONFIG_SMP */
1395
1396static void ttwu_queue(struct task_struct *p, int cpu)
1397{
1398	struct rq *rq = cpu_rq(cpu);
1399
1400#if defined(CONFIG_SMP)
1401	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403		ttwu_queue_remote(p, cpu);
1404		return;
1405	}
1406#endif
1407
1408	raw_spin_lock(&rq->lock);
1409	ttwu_do_activate(rq, p, 0);
1410	raw_spin_unlock(&rq->lock);
1411}
1412
1413/**
1414 * try_to_wake_up - wake up a thread
1415 * @p: the thread to be awakened
1416 * @state: the mask of task states that can be woken
1417 * @wake_flags: wake modifier flags (WF_*)
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1427 */
1428static int
1429try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430{
1431	unsigned long flags;
1432	int cpu, success = 0;
1433
1434	smp_wmb();
1435	raw_spin_lock_irqsave(&p->pi_lock, flags);
1436	if (!(p->state & state))
1437		goto out;
1438
1439	success = 1; /* we're going to change ->state */
1440	cpu = task_cpu(p);
1441
1442	if (p->on_rq && ttwu_remote(p, wake_flags))
1443		goto stat;
1444
1445#ifdef CONFIG_SMP
1446	/*
1447	 * If the owning (remote) cpu is still in the middle of schedule() with
1448	 * this task as prev, wait until its done referencing the task.
1449	 */
1450	while (p->on_cpu)
1451		cpu_relax();
1452	/*
1453	 * Pairs with the smp_wmb() in finish_lock_switch().
1454	 */
1455	smp_rmb();
1456
1457	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458	p->state = TASK_WAKING;
1459
1460	if (p->sched_class->task_waking)
1461		p->sched_class->task_waking(p);
1462
1463	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464	if (task_cpu(p) != cpu) {
1465		wake_flags |= WF_MIGRATED;
1466		set_task_cpu(p, cpu);
1467	}
1468#endif /* CONFIG_SMP */
1469
1470	ttwu_queue(p, cpu);
1471stat:
1472	ttwu_stat(p, cpu, wake_flags);
1473out:
1474	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1475
1476	return success;
1477}
1478
1479/**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
1483 * Put @p on the run-queue if it's not already there. The caller must
1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485 * the current task.
1486 */
1487static void try_to_wake_up_local(struct task_struct *p)
1488{
1489	struct rq *rq = task_rq(p);
1490
1491	if (WARN_ON_ONCE(rq != this_rq()) ||
1492	    WARN_ON_ONCE(p == current))
1493		return;
1494
1495	lockdep_assert_held(&rq->lock);
1496
1497	if (!raw_spin_trylock(&p->pi_lock)) {
1498		raw_spin_unlock(&rq->lock);
1499		raw_spin_lock(&p->pi_lock);
1500		raw_spin_lock(&rq->lock);
1501	}
1502
1503	if (!(p->state & TASK_NORMAL))
1504		goto out;
1505
1506	if (!p->on_rq)
1507		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1508
1509	ttwu_do_wakeup(rq, p, 0);
1510	ttwu_stat(p, smp_processor_id(), 0);
1511out:
1512	raw_spin_unlock(&p->pi_lock);
1513}
1514
1515/**
1516 * wake_up_process - Wake up a specific process
1517 * @p: The process to be woken up.
1518 *
1519 * Attempt to wake up the nominated process and move it to the set of runnable
1520 * processes.  Returns 1 if the process was woken up, 0 if it was already
1521 * running.
1522 *
1523 * It may be assumed that this function implies a write memory barrier before
1524 * changing the task state if and only if any tasks are woken up.
1525 */
1526int wake_up_process(struct task_struct *p)
1527{
1528	WARN_ON(task_is_stopped_or_traced(p));
1529	return try_to_wake_up(p, TASK_NORMAL, 0);
1530}
1531EXPORT_SYMBOL(wake_up_process);
1532
1533int wake_up_state(struct task_struct *p, unsigned int state)
1534{
1535	return try_to_wake_up(p, state, 0);
1536}
1537
1538/*
1539 * Perform scheduler related setup for a newly forked process p.
1540 * p is forked by current.
1541 *
1542 * __sched_fork() is basic setup used by init_idle() too:
1543 */
1544static void __sched_fork(struct task_struct *p)
1545{
1546	p->on_rq			= 0;
1547
1548	p->se.on_rq			= 0;
1549	p->se.exec_start		= 0;
1550	p->se.sum_exec_runtime		= 0;
1551	p->se.prev_sum_exec_runtime	= 0;
1552	p->se.nr_migrations		= 0;
1553	p->se.vruntime			= 0;
1554	INIT_LIST_HEAD(&p->se.group_node);
1555
1556/*
1557 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1558 * removed when useful for applications beyond shares distribution (e.g.
1559 * load-balance).
1560 */
1561#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1562	p->se.avg.runnable_avg_period = 0;
1563	p->se.avg.runnable_avg_sum = 0;
1564#endif
1565#ifdef CONFIG_SCHEDSTATS
1566	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1567#endif
1568
1569	INIT_LIST_HEAD(&p->rt.run_list);
1570
1571#ifdef CONFIG_PREEMPT_NOTIFIERS
1572	INIT_HLIST_HEAD(&p->preempt_notifiers);
1573#endif
1574
1575#ifdef CONFIG_NUMA_BALANCING
1576	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1577		p->mm->numa_next_scan = jiffies;
1578		p->mm->numa_next_reset = jiffies;
1579		p->mm->numa_scan_seq = 0;
1580	}
1581
1582	p->node_stamp = 0ULL;
1583	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1584	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1585	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1586	p->numa_work.next = &p->numa_work;
1587#endif /* CONFIG_NUMA_BALANCING */
1588}
1589
1590#ifdef CONFIG_NUMA_BALANCING
1591#ifdef CONFIG_SCHED_DEBUG
1592void set_numabalancing_state(bool enabled)
1593{
1594	if (enabled)
1595		sched_feat_set("NUMA");
1596	else
1597		sched_feat_set("NO_NUMA");
1598}
1599#else
1600__read_mostly bool numabalancing_enabled;
1601
1602void set_numabalancing_state(bool enabled)
1603{
1604	numabalancing_enabled = enabled;
1605}
1606#endif /* CONFIG_SCHED_DEBUG */
1607#endif /* CONFIG_NUMA_BALANCING */
1608
1609/*
1610 * fork()/clone()-time setup:
1611 */
1612void sched_fork(struct task_struct *p)
1613{
1614	unsigned long flags;
1615	int cpu = get_cpu();
1616
1617	__sched_fork(p);
1618	/*
1619	 * We mark the process as running here. This guarantees that
1620	 * nobody will actually run it, and a signal or other external
1621	 * event cannot wake it up and insert it on the runqueue either.
1622	 */
1623	p->state = TASK_RUNNING;
1624
1625	/*
1626	 * Make sure we do not leak PI boosting priority to the child.
1627	 */
1628	p->prio = current->normal_prio;
1629
1630	/*
1631	 * Revert to default priority/policy on fork if requested.
1632	 */
1633	if (unlikely(p->sched_reset_on_fork)) {
1634		if (task_has_rt_policy(p)) {
1635			p->policy = SCHED_NORMAL;
1636			p->static_prio = NICE_TO_PRIO(0);
1637			p->rt_priority = 0;
1638		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1639			p->static_prio = NICE_TO_PRIO(0);
1640
1641		p->prio = p->normal_prio = __normal_prio(p);
1642		set_load_weight(p);
1643
1644		/*
1645		 * We don't need the reset flag anymore after the fork. It has
1646		 * fulfilled its duty:
1647		 */
1648		p->sched_reset_on_fork = 0;
1649	}
1650
1651	if (!rt_prio(p->prio))
1652		p->sched_class = &fair_sched_class;
1653
1654	if (p->sched_class->task_fork)
1655		p->sched_class->task_fork(p);
1656
1657	/*
1658	 * The child is not yet in the pid-hash so no cgroup attach races,
1659	 * and the cgroup is pinned to this child due to cgroup_fork()
1660	 * is ran before sched_fork().
1661	 *
1662	 * Silence PROVE_RCU.
1663	 */
1664	raw_spin_lock_irqsave(&p->pi_lock, flags);
1665	set_task_cpu(p, cpu);
1666	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1667
1668#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1669	if (likely(sched_info_on()))
1670		memset(&p->sched_info, 0, sizeof(p->sched_info));
1671#endif
1672#if defined(CONFIG_SMP)
1673	p->on_cpu = 0;
1674#endif
1675#ifdef CONFIG_PREEMPT_COUNT
1676	/* Want to start with kernel preemption disabled. */
1677	task_thread_info(p)->preempt_count = 1;
1678#endif
1679#ifdef CONFIG_SMP
1680	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1681#endif
1682
1683	put_cpu();
1684}
1685
1686/*
1687 * wake_up_new_task - wake up a newly created task for the first time.
1688 *
1689 * This function will do some initial scheduler statistics housekeeping
1690 * that must be done for every newly created context, then puts the task
1691 * on the runqueue and wakes it.
1692 */
1693void wake_up_new_task(struct task_struct *p)
1694{
1695	unsigned long flags;
1696	struct rq *rq;
1697
1698	raw_spin_lock_irqsave(&p->pi_lock, flags);
1699#ifdef CONFIG_SMP
1700	/*
1701	 * Fork balancing, do it here and not earlier because:
1702	 *  - cpus_allowed can change in the fork path
1703	 *  - any previously selected cpu might disappear through hotplug
1704	 */
1705	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1706#endif
1707
1708	rq = __task_rq_lock(p);
1709	activate_task(rq, p, 0);
1710	p->on_rq = 1;
1711	trace_sched_wakeup_new(p, true);
1712	check_preempt_curr(rq, p, WF_FORK);
1713#ifdef CONFIG_SMP
1714	if (p->sched_class->task_woken)
1715		p->sched_class->task_woken(rq, p);
1716#endif
1717	task_rq_unlock(rq, p, &flags);
1718}
1719
1720#ifdef CONFIG_PREEMPT_NOTIFIERS
1721
1722/**
1723 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1724 * @notifier: notifier struct to register
1725 */
1726void preempt_notifier_register(struct preempt_notifier *notifier)
1727{
1728	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1729}
1730EXPORT_SYMBOL_GPL(preempt_notifier_register);
1731
1732/**
1733 * preempt_notifier_unregister - no longer interested in preemption notifications
1734 * @notifier: notifier struct to unregister
1735 *
1736 * This is safe to call from within a preemption notifier.
1737 */
1738void preempt_notifier_unregister(struct preempt_notifier *notifier)
1739{
1740	hlist_del(&notifier->link);
1741}
1742EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1743
1744static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1745{
1746	struct preempt_notifier *notifier;
1747	struct hlist_node *node;
1748
1749	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1750		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1751}
1752
1753static void
1754fire_sched_out_preempt_notifiers(struct task_struct *curr,
1755				 struct task_struct *next)
1756{
1757	struct preempt_notifier *notifier;
1758	struct hlist_node *node;
1759
1760	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1761		notifier->ops->sched_out(notifier, next);
1762}
1763
1764#else /* !CONFIG_PREEMPT_NOTIFIERS */
1765
1766static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1767{
1768}
1769
1770static void
1771fire_sched_out_preempt_notifiers(struct task_struct *curr,
1772				 struct task_struct *next)
1773{
1774}
1775
1776#endif /* CONFIG_PREEMPT_NOTIFIERS */
1777
1778/**
1779 * prepare_task_switch - prepare to switch tasks
1780 * @rq: the runqueue preparing to switch
1781 * @prev: the current task that is being switched out
1782 * @next: the task we are going to switch to.
1783 *
1784 * This is called with the rq lock held and interrupts off. It must
1785 * be paired with a subsequent finish_task_switch after the context
1786 * switch.
1787 *
1788 * prepare_task_switch sets up locking and calls architecture specific
1789 * hooks.
1790 */
1791static inline void
1792prepare_task_switch(struct rq *rq, struct task_struct *prev,
1793		    struct task_struct *next)
1794{
1795	trace_sched_switch(prev, next);
1796	sched_info_switch(prev, next);
1797	perf_event_task_sched_out(prev, next);
1798	fire_sched_out_preempt_notifiers(prev, next);
1799	prepare_lock_switch(rq, next);
1800	prepare_arch_switch(next);
1801}
1802
1803/**
1804 * finish_task_switch - clean up after a task-switch
1805 * @rq: runqueue associated with task-switch
1806 * @prev: the thread we just switched away from.
1807 *
1808 * finish_task_switch must be called after the context switch, paired
1809 * with a prepare_task_switch call before the context switch.
1810 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1811 * and do any other architecture-specific cleanup actions.
1812 *
1813 * Note that we may have delayed dropping an mm in context_switch(). If
1814 * so, we finish that here outside of the runqueue lock. (Doing it
1815 * with the lock held can cause deadlocks; see schedule() for
1816 * details.)
1817 */
1818static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1819	__releases(rq->lock)
1820{
1821	struct mm_struct *mm = rq->prev_mm;
1822	long prev_state;
1823
1824	rq->prev_mm = NULL;
1825
1826	/*
1827	 * A task struct has one reference for the use as "current".
1828	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1829	 * schedule one last time. The schedule call will never return, and
1830	 * the scheduled task must drop that reference.
1831	 * The test for TASK_DEAD must occur while the runqueue locks are
1832	 * still held, otherwise prev could be scheduled on another cpu, die
1833	 * there before we look at prev->state, and then the reference would
1834	 * be dropped twice.
1835	 *		Manfred Spraul <manfred@colorfullife.com>
1836	 */
1837	prev_state = prev->state;
1838	vtime_task_switch(prev);
1839	finish_arch_switch(prev);
1840	perf_event_task_sched_in(prev, current);
1841	finish_lock_switch(rq, prev);
1842	finish_arch_post_lock_switch();
1843
1844	fire_sched_in_preempt_notifiers(current);
1845	if (mm)
1846		mmdrop(mm);
1847	if (unlikely(prev_state == TASK_DEAD)) {
1848		/*
1849		 * Remove function-return probe instances associated with this
1850		 * task and put them back on the free list.
1851		 */
1852		kprobe_flush_task(prev);
1853		put_task_struct(prev);
1854	}
1855}
1856
1857#ifdef CONFIG_SMP
1858
1859/* assumes rq->lock is held */
1860static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1861{
1862	if (prev->sched_class->pre_schedule)
1863		prev->sched_class->pre_schedule(rq, prev);
1864}
1865
1866/* rq->lock is NOT held, but preemption is disabled */
1867static inline void post_schedule(struct rq *rq)
1868{
1869	if (rq->post_schedule) {
1870		unsigned long flags;
1871
1872		raw_spin_lock_irqsave(&rq->lock, flags);
1873		if (rq->curr->sched_class->post_schedule)
1874			rq->curr->sched_class->post_schedule(rq);
1875		raw_spin_unlock_irqrestore(&rq->lock, flags);
1876
1877		rq->post_schedule = 0;
1878	}
1879}
1880
1881#else
1882
1883static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1884{
1885}
1886
1887static inline void post_schedule(struct rq *rq)
1888{
1889}
1890
1891#endif
1892
1893/**
1894 * schedule_tail - first thing a freshly forked thread must call.
1895 * @prev: the thread we just switched away from.
1896 */
1897asmlinkage void schedule_tail(struct task_struct *prev)
1898	__releases(rq->lock)
1899{
1900	struct rq *rq = this_rq();
1901
1902	finish_task_switch(rq, prev);
1903
1904	/*
1905	 * FIXME: do we need to worry about rq being invalidated by the
1906	 * task_switch?
1907	 */
1908	post_schedule(rq);
1909
1910#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1911	/* In this case, finish_task_switch does not reenable preemption */
1912	preempt_enable();
1913#endif
1914	if (current->set_child_tid)
1915		put_user(task_pid_vnr(current), current->set_child_tid);
1916}
1917
1918/*
1919 * context_switch - switch to the new MM and the new
1920 * thread's register state.
1921 */
1922static inline void
1923context_switch(struct rq *rq, struct task_struct *prev,
1924	       struct task_struct *next)
1925{
1926	struct mm_struct *mm, *oldmm;
1927
1928	prepare_task_switch(rq, prev, next);
1929
1930	mm = next->mm;
1931	oldmm = prev->active_mm;
1932	/*
1933	 * For paravirt, this is coupled with an exit in switch_to to
1934	 * combine the page table reload and the switch backend into
1935	 * one hypercall.
1936	 */
1937	arch_start_context_switch(prev);
1938
1939	if (!mm) {
1940		next->active_mm = oldmm;
1941		atomic_inc(&oldmm->mm_count);
1942		enter_lazy_tlb(oldmm, next);
1943	} else
1944		switch_mm(oldmm, mm, next);
1945
1946	if (!prev->mm) {
1947		prev->active_mm = NULL;
1948		rq->prev_mm = oldmm;
1949	}
1950	/*
1951	 * Since the runqueue lock will be released by the next
1952	 * task (which is an invalid locking op but in the case
1953	 * of the scheduler it's an obvious special-case), so we
1954	 * do an early lockdep release here:
1955	 */
1956#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1957	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1958#endif
1959
1960	context_tracking_task_switch(prev, next);
1961	/* Here we just switch the register state and the stack. */
1962	switch_to(prev, next, prev);
1963
1964	barrier();
1965	/*
1966	 * this_rq must be evaluated again because prev may have moved
1967	 * CPUs since it called schedule(), thus the 'rq' on its stack
1968	 * frame will be invalid.
1969	 */
1970	finish_task_switch(this_rq(), prev);
1971}
1972
1973/*
1974 * nr_running and nr_context_switches:
1975 *
1976 * externally visible scheduler statistics: current number of runnable
1977 * threads, total number of context switches performed since bootup.
1978 */
1979unsigned long nr_running(void)
1980{
1981	unsigned long i, sum = 0;
1982
1983	for_each_online_cpu(i)
1984		sum += cpu_rq(i)->nr_running;
1985
1986	return sum;
1987}
1988
1989unsigned long long nr_context_switches(void)
1990{
1991	int i;
1992	unsigned long long sum = 0;
1993
1994	for_each_possible_cpu(i)
1995		sum += cpu_rq(i)->nr_switches;
1996
1997	return sum;
1998}
1999
2000unsigned long nr_iowait(void)
2001{
2002	unsigned long i, sum = 0;
2003
2004	for_each_possible_cpu(i)
2005		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2006
2007	return sum;
2008}
2009
2010unsigned long nr_iowait_cpu(int cpu)
2011{
2012	struct rq *this = cpu_rq(cpu);
2013	return atomic_read(&this->nr_iowait);
2014}
2015
2016unsigned long this_cpu_load(void)
2017{
2018	struct rq *this = this_rq();
2019	return this->cpu_load[0];
2020}
2021
2022
2023/*
2024 * Global load-average calculations
2025 *
2026 * We take a distributed and async approach to calculating the global load-avg
2027 * in order to minimize overhead.
2028 *
2029 * The global load average is an exponentially decaying average of nr_running +
2030 * nr_uninterruptible.
2031 *
2032 * Once every LOAD_FREQ:
2033 *
2034 *   nr_active = 0;
2035 *   for_each_possible_cpu(cpu)
2036 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2037 *
2038 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2039 *
2040 * Due to a number of reasons the above turns in the mess below:
2041 *
2042 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2043 *    serious number of cpus, therefore we need to take a distributed approach
2044 *    to calculating nr_active.
2045 *
2046 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2047 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2048 *
2049 *    So assuming nr_active := 0 when we start out -- true per definition, we
2050 *    can simply take per-cpu deltas and fold those into a global accumulate
2051 *    to obtain the same result. See calc_load_fold_active().
2052 *
2053 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2054 *    across the machine, we assume 10 ticks is sufficient time for every
2055 *    cpu to have completed this task.
2056 *
2057 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2058 *    again, being late doesn't loose the delta, just wrecks the sample.
2059 *
2060 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2061 *    this would add another cross-cpu cacheline miss and atomic operation
2062 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2063 *    when it went into uninterruptible state and decrement on whatever cpu
2064 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2065 *    all cpus yields the correct result.
2066 *
2067 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2068 */
2069
2070/* Variables and functions for calc_load */
2071static atomic_long_t calc_load_tasks;
2072static unsigned long calc_load_update;
2073unsigned long avenrun[3];
2074EXPORT_SYMBOL(avenrun); /* should be removed */
2075
2076/**
2077 * get_avenrun - get the load average array
2078 * @loads:	pointer to dest load array
2079 * @offset:	offset to add
2080 * @shift:	shift count to shift the result left
2081 *
2082 * These values are estimates at best, so no need for locking.
2083 */
2084void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2085{
2086	loads[0] = (avenrun[0] + offset) << shift;
2087	loads[1] = (avenrun[1] + offset) << shift;
2088	loads[2] = (avenrun[2] + offset) << shift;
2089}
2090
2091static long calc_load_fold_active(struct rq *this_rq)
2092{
2093	long nr_active, delta = 0;
2094
2095	nr_active = this_rq->nr_running;
2096	nr_active += (long) this_rq->nr_uninterruptible;
2097
2098	if (nr_active != this_rq->calc_load_active) {
2099		delta = nr_active - this_rq->calc_load_active;
2100		this_rq->calc_load_active = nr_active;
2101	}
2102
2103	return delta;
2104}
2105
2106/*
2107 * a1 = a0 * e + a * (1 - e)
2108 */
2109static unsigned long
2110calc_load(unsigned long load, unsigned long exp, unsigned long active)
2111{
2112	load *= exp;
2113	load += active * (FIXED_1 - exp);
2114	load += 1UL << (FSHIFT - 1);
2115	return load >> FSHIFT;
2116}
2117
2118#ifdef CONFIG_NO_HZ
2119/*
2120 * Handle NO_HZ for the global load-average.
2121 *
2122 * Since the above described distributed algorithm to compute the global
2123 * load-average relies on per-cpu sampling from the tick, it is affected by
2124 * NO_HZ.
2125 *
2126 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2127 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2128 * when we read the global state.
2129 *
2130 * Obviously reality has to ruin such a delightfully simple scheme:
2131 *
2132 *  - When we go NO_HZ idle during the window, we can negate our sample
2133 *    contribution, causing under-accounting.
2134 *
2135 *    We avoid this by keeping two idle-delta counters and flipping them
2136 *    when the window starts, thus separating old and new NO_HZ load.
2137 *
2138 *    The only trick is the slight shift in index flip for read vs write.
2139 *
2140 *        0s            5s            10s           15s
2141 *          +10           +10           +10           +10
2142 *        |-|-----------|-|-----------|-|-----------|-|
2143 *    r:0 0 1           1 0           0 1           1 0
2144 *    w:0 1 1           0 0           1 1           0 0
2145 *
2146 *    This ensures we'll fold the old idle contribution in this window while
2147 *    accumlating the new one.
2148 *
2149 *  - When we wake up from NO_HZ idle during the window, we push up our
2150 *    contribution, since we effectively move our sample point to a known
2151 *    busy state.
2152 *
2153 *    This is solved by pushing the window forward, and thus skipping the
2154 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2155 *    was in effect at the time the window opened). This also solves the issue
2156 *    of having to deal with a cpu having been in NOHZ idle for multiple
2157 *    LOAD_FREQ intervals.
2158 *
2159 * When making the ILB scale, we should try to pull this in as well.
2160 */
2161static atomic_long_t calc_load_idle[2];
2162static int calc_load_idx;
2163
2164static inline int calc_load_write_idx(void)
2165{
2166	int idx = calc_load_idx;
2167
2168	/*
2169	 * See calc_global_nohz(), if we observe the new index, we also
2170	 * need to observe the new update time.
2171	 */
2172	smp_rmb();
2173
2174	/*
2175	 * If the folding window started, make sure we start writing in the
2176	 * next idle-delta.
2177	 */
2178	if (!time_before(jiffies, calc_load_update))
2179		idx++;
2180
2181	return idx & 1;
2182}
2183
2184static inline int calc_load_read_idx(void)
2185{
2186	return calc_load_idx & 1;
2187}
2188
2189void calc_load_enter_idle(void)
2190{
2191	struct rq *this_rq = this_rq();
2192	long delta;
2193
2194	/*
2195	 * We're going into NOHZ mode, if there's any pending delta, fold it
2196	 * into the pending idle delta.
2197	 */
2198	delta = calc_load_fold_active(this_rq);
2199	if (delta) {
2200		int idx = calc_load_write_idx();
2201		atomic_long_add(delta, &calc_load_idle[idx]);
2202	}
2203}
2204
2205void calc_load_exit_idle(void)
2206{
2207	struct rq *this_rq = this_rq();
2208
2209	/*
2210	 * If we're still before the sample window, we're done.
2211	 */
2212	if (time_before(jiffies, this_rq->calc_load_update))
2213		return;
2214
2215	/*
2216	 * We woke inside or after the sample window, this means we're already
2217	 * accounted through the nohz accounting, so skip the entire deal and
2218	 * sync up for the next window.
2219	 */
2220	this_rq->calc_load_update = calc_load_update;
2221	if (time_before(jiffies, this_rq->calc_load_update + 10))
2222		this_rq->calc_load_update += LOAD_FREQ;
2223}
2224
2225static long calc_load_fold_idle(void)
2226{
2227	int idx = calc_load_read_idx();
2228	long delta = 0;
2229
2230	if (atomic_long_read(&calc_load_idle[idx]))
2231		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2232
2233	return delta;
2234}
2235
2236/**
2237 * fixed_power_int - compute: x^n, in O(log n) time
2238 *
2239 * @x:         base of the power
2240 * @frac_bits: fractional bits of @x
2241 * @n:         power to raise @x to.
2242 *
2243 * By exploiting the relation between the definition of the natural power
2244 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2245 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2246 * (where: n_i \elem {0, 1}, the binary vector representing n),
2247 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2248 * of course trivially computable in O(log_2 n), the length of our binary
2249 * vector.
2250 */
2251static unsigned long
2252fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2253{
2254	unsigned long result = 1UL << frac_bits;
2255
2256	if (n) for (;;) {
2257		if (n & 1) {
2258			result *= x;
2259			result += 1UL << (frac_bits - 1);
2260			result >>= frac_bits;
2261		}
2262		n >>= 1;
2263		if (!n)
2264			break;
2265		x *= x;
2266		x += 1UL << (frac_bits - 1);
2267		x >>= frac_bits;
2268	}
2269
2270	return result;
2271}
2272
2273/*
2274 * a1 = a0 * e + a * (1 - e)
2275 *
2276 * a2 = a1 * e + a * (1 - e)
2277 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2278 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2279 *
2280 * a3 = a2 * e + a * (1 - e)
2281 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2282 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2283 *
2284 *  ...
2285 *
2286 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2287 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2288 *    = a0 * e^n + a * (1 - e^n)
2289 *
2290 * [1] application of the geometric series:
2291 *
2292 *              n         1 - x^(n+1)
2293 *     S_n := \Sum x^i = -------------
2294 *             i=0          1 - x
2295 */
2296static unsigned long
2297calc_load_n(unsigned long load, unsigned long exp,
2298	    unsigned long active, unsigned int n)
2299{
2300
2301	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2302}
2303
2304/*
2305 * NO_HZ can leave us missing all per-cpu ticks calling
2306 * calc_load_account_active(), but since an idle CPU folds its delta into
2307 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2308 * in the pending idle delta if our idle period crossed a load cycle boundary.
2309 *
2310 * Once we've updated the global active value, we need to apply the exponential
2311 * weights adjusted to the number of cycles missed.
2312 */
2313static void calc_global_nohz(void)
2314{
2315	long delta, active, n;
2316
2317	if (!time_before(jiffies, calc_load_update + 10)) {
2318		/*
2319		 * Catch-up, fold however many we are behind still
2320		 */
2321		delta = jiffies - calc_load_update - 10;
2322		n = 1 + (delta / LOAD_FREQ);
2323
2324		active = atomic_long_read(&calc_load_tasks);
2325		active = active > 0 ? active * FIXED_1 : 0;
2326
2327		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2328		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2329		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2330
2331		calc_load_update += n * LOAD_FREQ;
2332	}
2333
2334	/*
2335	 * Flip the idle index...
2336	 *
2337	 * Make sure we first write the new time then flip the index, so that
2338	 * calc_load_write_idx() will see the new time when it reads the new
2339	 * index, this avoids a double flip messing things up.
2340	 */
2341	smp_wmb();
2342	calc_load_idx++;
2343}
2344#else /* !CONFIG_NO_HZ */
2345
2346static inline long calc_load_fold_idle(void) { return 0; }
2347static inline void calc_global_nohz(void) { }
2348
2349#endif /* CONFIG_NO_HZ */
2350
2351/*
2352 * calc_load - update the avenrun load estimates 10 ticks after the
2353 * CPUs have updated calc_load_tasks.
2354 */
2355void calc_global_load(unsigned long ticks)
2356{
2357	long active, delta;
2358
2359	if (time_before(jiffies, calc_load_update + 10))
2360		return;
2361
2362	/*
2363	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2364	 */
2365	delta = calc_load_fold_idle();
2366	if (delta)
2367		atomic_long_add(delta, &calc_load_tasks);
2368
2369	active = atomic_long_read(&calc_load_tasks);
2370	active = active > 0 ? active * FIXED_1 : 0;
2371
2372	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2373	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2374	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2375
2376	calc_load_update += LOAD_FREQ;
2377
2378	/*
2379	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2380	 */
2381	calc_global_nohz();
2382}
2383
2384/*
2385 * Called from update_cpu_load() to periodically update this CPU's
2386 * active count.
2387 */
2388static void calc_load_account_active(struct rq *this_rq)
2389{
2390	long delta;
2391
2392	if (time_before(jiffies, this_rq->calc_load_update))
2393		return;
2394
2395	delta  = calc_load_fold_active(this_rq);
2396	if (delta)
2397		atomic_long_add(delta, &calc_load_tasks);
2398
2399	this_rq->calc_load_update += LOAD_FREQ;
2400}
2401
2402/*
2403 * End of global load-average stuff
2404 */
2405
2406/*
2407 * The exact cpuload at various idx values, calculated at every tick would be
2408 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2409 *
2410 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2411 * on nth tick when cpu may be busy, then we have:
2412 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2413 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2414 *
2415 * decay_load_missed() below does efficient calculation of
2416 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2417 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2418 *
2419 * The calculation is approximated on a 128 point scale.
2420 * degrade_zero_ticks is the number of ticks after which load at any
2421 * particular idx is approximated to be zero.
2422 * degrade_factor is a precomputed table, a row for each load idx.
2423 * Each column corresponds to degradation factor for a power of two ticks,
2424 * based on 128 point scale.
2425 * Example:
2426 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2427 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2428 *
2429 * With this power of 2 load factors, we can degrade the load n times
2430 * by looking at 1 bits in n and doing as many mult/shift instead of
2431 * n mult/shifts needed by the exact degradation.
2432 */
2433#define DEGRADE_SHIFT		7
2434static const unsigned char
2435		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2436static const unsigned char
2437		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2438					{0, 0, 0, 0, 0, 0, 0, 0},
2439					{64, 32, 8, 0, 0, 0, 0, 0},
2440					{96, 72, 40, 12, 1, 0, 0},
2441					{112, 98, 75, 43, 15, 1, 0},
2442					{120, 112, 98, 76, 45, 16, 2} };
2443
2444/*
2445 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2446 * would be when CPU is idle and so we just decay the old load without
2447 * adding any new load.
2448 */
2449static unsigned long
2450decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2451{
2452	int j = 0;
2453
2454	if (!missed_updates)
2455		return load;
2456
2457	if (missed_updates >= degrade_zero_ticks[idx])
2458		return 0;
2459
2460	if (idx == 1)
2461		return load >> missed_updates;
2462
2463	while (missed_updates) {
2464		if (missed_updates % 2)
2465			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2466
2467		missed_updates >>= 1;
2468		j++;
2469	}
2470	return load;
2471}
2472
2473/*
2474 * Update rq->cpu_load[] statistics. This function is usually called every
2475 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2476 * every tick. We fix it up based on jiffies.
2477 */
2478static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2479			      unsigned long pending_updates)
2480{
2481	int i, scale;
2482
2483	this_rq->nr_load_updates++;
2484
2485	/* Update our load: */
2486	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2487	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2488		unsigned long old_load, new_load;
2489
2490		/* scale is effectively 1 << i now, and >> i divides by scale */
2491
2492		old_load = this_rq->cpu_load[i];
2493		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2494		new_load = this_load;
2495		/*
2496		 * Round up the averaging division if load is increasing. This
2497		 * prevents us from getting stuck on 9 if the load is 10, for
2498		 * example.
2499		 */
2500		if (new_load > old_load)
2501			new_load += scale - 1;
2502
2503		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2504	}
2505
2506	sched_avg_update(this_rq);
2507}
2508
2509#ifdef CONFIG_NO_HZ
2510/*
2511 * There is no sane way to deal with nohz on smp when using jiffies because the
2512 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2513 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2514 *
2515 * Therefore we cannot use the delta approach from the regular tick since that
2516 * would seriously skew the load calculation. However we'll make do for those
2517 * updates happening while idle (nohz_idle_balance) or coming out of idle
2518 * (tick_nohz_idle_exit).
2519 *
2520 * This means we might still be one tick off for nohz periods.
2521 */
2522
2523/*
2524 * Called from nohz_idle_balance() to update the load ratings before doing the
2525 * idle balance.
2526 */
2527void update_idle_cpu_load(struct rq *this_rq)
2528{
2529	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2530	unsigned long load = this_rq->load.weight;
2531	unsigned long pending_updates;
2532
2533	/*
2534	 * bail if there's load or we're actually up-to-date.
2535	 */
2536	if (load || curr_jiffies == this_rq->last_load_update_tick)
2537		return;
2538
2539	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2540	this_rq->last_load_update_tick = curr_jiffies;
2541
2542	__update_cpu_load(this_rq, load, pending_updates);
2543}
2544
2545/*
2546 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2547 */
2548void update_cpu_load_nohz(void)
2549{
2550	struct rq *this_rq = this_rq();
2551	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2552	unsigned long pending_updates;
2553
2554	if (curr_jiffies == this_rq->last_load_update_tick)
2555		return;
2556
2557	raw_spin_lock(&this_rq->lock);
2558	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2559	if (pending_updates) {
2560		this_rq->last_load_update_tick = curr_jiffies;
2561		/*
2562		 * We were idle, this means load 0, the current load might be
2563		 * !0 due to remote wakeups and the sort.
2564		 */
2565		__update_cpu_load(this_rq, 0, pending_updates);
2566	}
2567	raw_spin_unlock(&this_rq->lock);
2568}
2569#endif /* CONFIG_NO_HZ */
2570
2571/*
2572 * Called from scheduler_tick()
2573 */
2574static void update_cpu_load_active(struct rq *this_rq)
2575{
2576	/*
2577	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2578	 */
2579	this_rq->last_load_update_tick = jiffies;
2580	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2581
2582	calc_load_account_active(this_rq);
2583}
2584
2585#ifdef CONFIG_SMP
2586
2587/*
2588 * sched_exec - execve() is a valuable balancing opportunity, because at
2589 * this point the task has the smallest effective memory and cache footprint.
2590 */
2591void sched_exec(void)
2592{
2593	struct task_struct *p = current;
2594	unsigned long flags;
2595	int dest_cpu;
2596
2597	raw_spin_lock_irqsave(&p->pi_lock, flags);
2598	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2599	if (dest_cpu == smp_processor_id())
2600		goto unlock;
2601
2602	if (likely(cpu_active(dest_cpu))) {
2603		struct migration_arg arg = { p, dest_cpu };
2604
2605		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2606		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2607		return;
2608	}
2609unlock:
2610	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2611}
2612
2613#endif
2614
2615DEFINE_PER_CPU(struct kernel_stat, kstat);
2616DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2617
2618EXPORT_PER_CPU_SYMBOL(kstat);
2619EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2620
2621/*
2622 * Return any ns on the sched_clock that have not yet been accounted in
2623 * @p in case that task is currently running.
2624 *
2625 * Called with task_rq_lock() held on @rq.
2626 */
2627static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2628{
2629	u64 ns = 0;
2630
2631	if (task_current(rq, p)) {
2632		update_rq_clock(rq);
2633		ns = rq->clock_task - p->se.exec_start;
2634		if ((s64)ns < 0)
2635			ns = 0;
2636	}
2637
2638	return ns;
2639}
2640
2641unsigned long long task_delta_exec(struct task_struct *p)
2642{
2643	unsigned long flags;
2644	struct rq *rq;
2645	u64 ns = 0;
2646
2647	rq = task_rq_lock(p, &flags);
2648	ns = do_task_delta_exec(p, rq);
2649	task_rq_unlock(rq, p, &flags);
2650
2651	return ns;
2652}
2653
2654/*
2655 * Return accounted runtime for the task.
2656 * In case the task is currently running, return the runtime plus current's
2657 * pending runtime that have not been accounted yet.
2658 */
2659unsigned long long task_sched_runtime(struct task_struct *p)
2660{
2661	unsigned long flags;
2662	struct rq *rq;
2663	u64 ns = 0;
2664
2665	rq = task_rq_lock(p, &flags);
2666	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2667	task_rq_unlock(rq, p, &flags);
2668
2669	return ns;
2670}
2671
2672/*
2673 * This function gets called by the timer code, with HZ frequency.
2674 * We call it with interrupts disabled.
2675 */
2676void scheduler_tick(void)
2677{
2678	int cpu = smp_processor_id();
2679	struct rq *rq = cpu_rq(cpu);
2680	struct task_struct *curr = rq->curr;
2681
2682	sched_clock_tick();
2683
2684	raw_spin_lock(&rq->lock);
2685	update_rq_clock(rq);
2686	update_cpu_load_active(rq);
2687	curr->sched_class->task_tick(rq, curr, 0);
2688	raw_spin_unlock(&rq->lock);
2689
2690	perf_event_task_tick();
2691
2692#ifdef CONFIG_SMP
2693	rq->idle_balance = idle_cpu(cpu);
2694	trigger_load_balance(rq, cpu);
2695#endif
2696}
2697
2698notrace unsigned long get_parent_ip(unsigned long addr)
2699{
2700	if (in_lock_functions(addr)) {
2701		addr = CALLER_ADDR2;
2702		if (in_lock_functions(addr))
2703			addr = CALLER_ADDR3;
2704	}
2705	return addr;
2706}
2707
2708#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2709				defined(CONFIG_PREEMPT_TRACER))
2710
2711void __kprobes add_preempt_count(int val)
2712{
2713#ifdef CONFIG_DEBUG_PREEMPT
2714	/*
2715	 * Underflow?
2716	 */
2717	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2718		return;
2719#endif
2720	preempt_count() += val;
2721#ifdef CONFIG_DEBUG_PREEMPT
2722	/*
2723	 * Spinlock count overflowing soon?
2724	 */
2725	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2726				PREEMPT_MASK - 10);
2727#endif
2728	if (preempt_count() == val)
2729		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2730}
2731EXPORT_SYMBOL(add_preempt_count);
2732
2733void __kprobes sub_preempt_count(int val)
2734{
2735#ifdef CONFIG_DEBUG_PREEMPT
2736	/*
2737	 * Underflow?
2738	 */
2739	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2740		return;
2741	/*
2742	 * Is the spinlock portion underflowing?
2743	 */
2744	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2745			!(preempt_count() & PREEMPT_MASK)))
2746		return;
2747#endif
2748
2749	if (preempt_count() == val)
2750		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2751	preempt_count() -= val;
2752}
2753EXPORT_SYMBOL(sub_preempt_count);
2754
2755#endif
2756
2757/*
2758 * Print scheduling while atomic bug:
2759 */
2760static noinline void __schedule_bug(struct task_struct *prev)
2761{
2762	if (oops_in_progress)
2763		return;
2764
2765	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2766		prev->comm, prev->pid, preempt_count());
2767
2768	debug_show_held_locks(prev);
2769	print_modules();
2770	if (irqs_disabled())
2771		print_irqtrace_events(prev);
2772	dump_stack();
2773	add_taint(TAINT_WARN);
2774}
2775
2776/*
2777 * Various schedule()-time debugging checks and statistics:
2778 */
2779static inline void schedule_debug(struct task_struct *prev)
2780{
2781	/*
2782	 * Test if we are atomic. Since do_exit() needs to call into
2783	 * schedule() atomically, we ignore that path for now.
2784	 * Otherwise, whine if we are scheduling when we should not be.
2785	 */
2786	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2787		__schedule_bug(prev);
2788	rcu_sleep_check();
2789
2790	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2791
2792	schedstat_inc(this_rq(), sched_count);
2793}
2794
2795static void put_prev_task(struct rq *rq, struct task_struct *prev)
2796{
2797	if (prev->on_rq || rq->skip_clock_update < 0)
2798		update_rq_clock(rq);
2799	prev->sched_class->put_prev_task(rq, prev);
2800}
2801
2802/*
2803 * Pick up the highest-prio task:
2804 */
2805static inline struct task_struct *
2806pick_next_task(struct rq *rq)
2807{
2808	const struct sched_class *class;
2809	struct task_struct *p;
2810
2811	/*
2812	 * Optimization: we know that if all tasks are in
2813	 * the fair class we can call that function directly:
2814	 */
2815	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2816		p = fair_sched_class.pick_next_task(rq);
2817		if (likely(p))
2818			return p;
2819	}
2820
2821	for_each_class(class) {
2822		p = class->pick_next_task(rq);
2823		if (p)
2824			return p;
2825	}
2826
2827	BUG(); /* the idle class will always have a runnable task */
2828}
2829
2830/*
2831 * __schedule() is the main scheduler function.
2832 *
2833 * The main means of driving the scheduler and thus entering this function are:
2834 *
2835 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2836 *
2837 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2838 *      paths. For example, see arch/x86/entry_64.S.
2839 *
2840 *      To drive preemption between tasks, the scheduler sets the flag in timer
2841 *      interrupt handler scheduler_tick().
2842 *
2843 *   3. Wakeups don't really cause entry into schedule(). They add a
2844 *      task to the run-queue and that's it.
2845 *
2846 *      Now, if the new task added to the run-queue preempts the current
2847 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2848 *      called on the nearest possible occasion:
2849 *
2850 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2851 *
2852 *         - in syscall or exception context, at the next outmost
2853 *           preempt_enable(). (this might be as soon as the wake_up()'s
2854 *           spin_unlock()!)
2855 *
2856 *         - in IRQ context, return from interrupt-handler to
2857 *           preemptible context
2858 *
2859 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2860 *         then at the next:
2861 *
2862 *          - cond_resched() call
2863 *          - explicit schedule() call
2864 *          - return from syscall or exception to user-space
2865 *          - return from interrupt-handler to user-space
2866 */
2867static void __sched __schedule(void)
2868{
2869	struct task_struct *prev, *next;
2870	unsigned long *switch_count;
2871	struct rq *rq;
2872	int cpu;
2873
2874need_resched:
2875	preempt_disable();
2876	cpu = smp_processor_id();
2877	rq = cpu_rq(cpu);
2878	rcu_note_context_switch(cpu);
2879	prev = rq->curr;
2880
2881	schedule_debug(prev);
2882
2883	if (sched_feat(HRTICK))
2884		hrtick_clear(rq);
2885
2886	raw_spin_lock_irq(&rq->lock);
2887
2888	switch_count = &prev->nivcsw;
2889	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2890		if (unlikely(signal_pending_state(prev->state, prev))) {
2891			prev->state = TASK_RUNNING;
2892		} else {
2893			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2894			prev->on_rq = 0;
2895
2896			/*
2897			 * If a worker went to sleep, notify and ask workqueue
2898			 * whether it wants to wake up a task to maintain
2899			 * concurrency.
2900			 */
2901			if (prev->flags & PF_WQ_WORKER) {
2902				struct task_struct *to_wakeup;
2903
2904				to_wakeup = wq_worker_sleeping(prev, cpu);
2905				if (to_wakeup)
2906					try_to_wake_up_local(to_wakeup);
2907			}
2908		}
2909		switch_count = &prev->nvcsw;
2910	}
2911
2912	pre_schedule(rq, prev);
2913
2914	if (unlikely(!rq->nr_running))
2915		idle_balance(cpu, rq);
2916
2917	put_prev_task(rq, prev);
2918	next = pick_next_task(rq);
2919	clear_tsk_need_resched(prev);
2920	rq->skip_clock_update = 0;
2921
2922	if (likely(prev != next)) {
2923		rq->nr_switches++;
2924		rq->curr = next;
2925		++*switch_count;
2926
2927		context_switch(rq, prev, next); /* unlocks the rq */
2928		/*
2929		 * The context switch have flipped the stack from under us
2930		 * and restored the local variables which were saved when
2931		 * this task called schedule() in the past. prev == current
2932		 * is still correct, but it can be moved to another cpu/rq.
2933		 */
2934		cpu = smp_processor_id();
2935		rq = cpu_rq(cpu);
2936	} else
2937		raw_spin_unlock_irq(&rq->lock);
2938
2939	post_schedule(rq);
2940
2941	sched_preempt_enable_no_resched();
2942	if (need_resched())
2943		goto need_resched;
2944}
2945
2946static inline void sched_submit_work(struct task_struct *tsk)
2947{
2948	if (!tsk->state || tsk_is_pi_blocked(tsk))
2949		return;
2950	/*
2951	 * If we are going to sleep and we have plugged IO queued,
2952	 * make sure to submit it to avoid deadlocks.
2953	 */
2954	if (blk_needs_flush_plug(tsk))
2955		blk_schedule_flush_plug(tsk);
2956}
2957
2958asmlinkage void __sched schedule(void)
2959{
2960	struct task_struct *tsk = current;
2961
2962	sched_submit_work(tsk);
2963	__schedule();
2964}
2965EXPORT_SYMBOL(schedule);
2966
2967#ifdef CONFIG_CONTEXT_TRACKING
2968asmlinkage void __sched schedule_user(void)
2969{
2970	/*
2971	 * If we come here after a random call to set_need_resched(),
2972	 * or we have been woken up remotely but the IPI has not yet arrived,
2973	 * we haven't yet exited the RCU idle mode. Do it here manually until
2974	 * we find a better solution.
2975	 */
2976	user_exit();
2977	schedule();
2978	user_enter();
2979}
2980#endif
2981
2982/**
2983 * schedule_preempt_disabled - called with preemption disabled
2984 *
2985 * Returns with preemption disabled. Note: preempt_count must be 1
2986 */
2987void __sched schedule_preempt_disabled(void)
2988{
2989	sched_preempt_enable_no_resched();
2990	schedule();
2991	preempt_disable();
2992}
2993
2994#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2995
2996static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2997{
2998	if (lock->owner != owner)
2999		return false;
3000
3001	/*
3002	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3003	 * lock->owner still matches owner, if that fails, owner might
3004	 * point to free()d memory, if it still matches, the rcu_read_lock()
3005	 * ensures the memory stays valid.
3006	 */
3007	barrier();
3008
3009	return owner->on_cpu;
3010}
3011
3012/*
3013 * Look out! "owner" is an entirely speculative pointer
3014 * access and not reliable.
3015 */
3016int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3017{
3018	if (!sched_feat(OWNER_SPIN))
3019		return 0;
3020
3021	rcu_read_lock();
3022	while (owner_running(lock, owner)) {
3023		if (need_resched())
3024			break;
3025
3026		arch_mutex_cpu_relax();
3027	}
3028	rcu_read_unlock();
3029
3030	/*
3031	 * We break out the loop above on need_resched() and when the
3032	 * owner changed, which is a sign for heavy contention. Return
3033	 * success only when lock->owner is NULL.
3034	 */
3035	return lock->owner == NULL;
3036}
3037#endif
3038
3039#ifdef CONFIG_PREEMPT
3040/*
3041 * this is the entry point to schedule() from in-kernel preemption
3042 * off of preempt_enable. Kernel preemptions off return from interrupt
3043 * occur there and call schedule directly.
3044 */
3045asmlinkage void __sched notrace preempt_schedule(void)
3046{
3047	struct thread_info *ti = current_thread_info();
3048
3049	/*
3050	 * If there is a non-zero preempt_count or interrupts are disabled,
3051	 * we do not want to preempt the current task. Just return..
3052	 */
3053	if (likely(ti->preempt_count || irqs_disabled()))
3054		return;
3055
3056	do {
3057		add_preempt_count_notrace(PREEMPT_ACTIVE);
3058		__schedule();
3059		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3060
3061		/*
3062		 * Check again in case we missed a preemption opportunity
3063		 * between schedule and now.
3064		 */
3065		barrier();
3066	} while (need_resched());
3067}
3068EXPORT_SYMBOL(preempt_schedule);
3069
3070/*
3071 * this is the entry point to schedule() from kernel preemption
3072 * off of irq context.
3073 * Note, that this is called and return with irqs disabled. This will
3074 * protect us against recursive calling from irq.
3075 */
3076asmlinkage void __sched preempt_schedule_irq(void)
3077{
3078	struct thread_info *ti = current_thread_info();
3079
3080	/* Catch callers which need to be fixed */
3081	BUG_ON(ti->preempt_count || !irqs_disabled());
3082
3083	user_exit();
3084	do {
3085		add_preempt_count(PREEMPT_ACTIVE);
3086		local_irq_enable();
3087		__schedule();
3088		local_irq_disable();
3089		sub_preempt_count(PREEMPT_ACTIVE);
3090
3091		/*
3092		 * Check again in case we missed a preemption opportunity
3093		 * between schedule and now.
3094		 */
3095		barrier();
3096	} while (need_resched());
3097}
3098
3099#endif /* CONFIG_PREEMPT */
3100
3101int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3102			  void *key)
3103{
3104	return try_to_wake_up(curr->private, mode, wake_flags);
3105}
3106EXPORT_SYMBOL(default_wake_function);
3107
3108/*
3109 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3110 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3111 * number) then we wake all the non-exclusive tasks and one exclusive task.
3112 *
3113 * There are circumstances in which we can try to wake a task which has already
3114 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3115 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3116 */
3117static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3118			int nr_exclusive, int wake_flags, void *key)
3119{
3120	wait_queue_t *curr, *next;
3121
3122	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3123		unsigned flags = curr->flags;
3124
3125		if (curr->func(curr, mode, wake_flags, key) &&
3126				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3127			break;
3128	}
3129}
3130
3131/**
3132 * __wake_up - wake up threads blocked on a waitqueue.
3133 * @q: the waitqueue
3134 * @mode: which threads
3135 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3136 * @key: is directly passed to the wakeup function
3137 *
3138 * It may be assumed that this function implies a write memory barrier before
3139 * changing the task state if and only if any tasks are woken up.
3140 */
3141void __wake_up(wait_queue_head_t *q, unsigned int mode,
3142			int nr_exclusive, void *key)
3143{
3144	unsigned long flags;
3145
3146	spin_lock_irqsave(&q->lock, flags);
3147	__wake_up_common(q, mode, nr_exclusive, 0, key);
3148	spin_unlock_irqrestore(&q->lock, flags);
3149}
3150EXPORT_SYMBOL(__wake_up);
3151
3152/*
3153 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3154 */
3155void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3156{
3157	__wake_up_common(q, mode, nr, 0, NULL);
3158}
3159EXPORT_SYMBOL_GPL(__wake_up_locked);
3160
3161void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3162{
3163	__wake_up_common(q, mode, 1, 0, key);
3164}
3165EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3166
3167/**
3168 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3169 * @q: the waitqueue
3170 * @mode: which threads
3171 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3172 * @key: opaque value to be passed to wakeup targets
3173 *
3174 * The sync wakeup differs that the waker knows that it will schedule
3175 * away soon, so while the target thread will be woken up, it will not
3176 * be migrated to another CPU - ie. the two threads are 'synchronized'
3177 * with each other. This can prevent needless bouncing between CPUs.
3178 *
3179 * On UP it can prevent extra preemption.
3180 *
3181 * It may be assumed that this function implies a write memory barrier before
3182 * changing the task state if and only if any tasks are woken up.
3183 */
3184void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3185			int nr_exclusive, void *key)
3186{
3187	unsigned long flags;
3188	int wake_flags = WF_SYNC;
3189
3190	if (unlikely(!q))
3191		return;
3192
3193	if (unlikely(!nr_exclusive))
3194		wake_flags = 0;
3195
3196	spin_lock_irqsave(&q->lock, flags);
3197	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3198	spin_unlock_irqrestore(&q->lock, flags);
3199}
3200EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3201
3202/*
3203 * __wake_up_sync - see __wake_up_sync_key()
3204 */
3205void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3206{
3207	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3208}
3209EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3210
3211/**
3212 * complete: - signals a single thread waiting on this completion
3213 * @x:  holds the state of this particular completion
3214 *
3215 * This will wake up a single thread waiting on this completion. Threads will be
3216 * awakened in the same order in which they were queued.
3217 *
3218 * See also complete_all(), wait_for_completion() and related routines.
3219 *
3220 * It may be assumed that this function implies a write memory barrier before
3221 * changing the task state if and only if any tasks are woken up.
3222 */
3223void complete(struct completion *x)
3224{
3225	unsigned long flags;
3226
3227	spin_lock_irqsave(&x->wait.lock, flags);
3228	x->done++;
3229	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3230	spin_unlock_irqrestore(&x->wait.lock, flags);
3231}
3232EXPORT_SYMBOL(complete);
3233
3234/**
3235 * complete_all: - signals all threads waiting on this completion
3236 * @x:  holds the state of this particular completion
3237 *
3238 * This will wake up all threads waiting on this particular completion event.
3239 *
3240 * It may be assumed that this function implies a write memory barrier before
3241 * changing the task state if and only if any tasks are woken up.
3242 */
3243void complete_all(struct completion *x)
3244{
3245	unsigned long flags;
3246
3247	spin_lock_irqsave(&x->wait.lock, flags);
3248	x->done += UINT_MAX/2;
3249	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3250	spin_unlock_irqrestore(&x->wait.lock, flags);
3251}
3252EXPORT_SYMBOL(complete_all);
3253
3254static inline long __sched
3255do_wait_for_common(struct completion *x, long timeout, int state)
3256{
3257	if (!x->done) {
3258		DECLARE_WAITQUEUE(wait, current);
3259
3260		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3261		do {
3262			if (signal_pending_state(state, current)) {
3263				timeout = -ERESTARTSYS;
3264				break;
3265			}
3266			__set_current_state(state);
3267			spin_unlock_irq(&x->wait.lock);
3268			timeout = schedule_timeout(timeout);
3269			spin_lock_irq(&x->wait.lock);
3270		} while (!x->done && timeout);
3271		__remove_wait_queue(&x->wait, &wait);
3272		if (!x->done)
3273			return timeout;
3274	}
3275	x->done--;
3276	return timeout ?: 1;
3277}
3278
3279static long __sched
3280wait_for_common(struct completion *x, long timeout, int state)
3281{
3282	might_sleep();
3283
3284	spin_lock_irq(&x->wait.lock);
3285	timeout = do_wait_for_common(x, timeout, state);
3286	spin_unlock_irq(&x->wait.lock);
3287	return timeout;
3288}
3289
3290/**
3291 * wait_for_completion: - waits for completion of a task
3292 * @x:  holds the state of this particular completion
3293 *
3294 * This waits to be signaled for completion of a specific task. It is NOT
3295 * interruptible and there is no timeout.
3296 *
3297 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3298 * and interrupt capability. Also see complete().
3299 */
3300void __sched wait_for_completion(struct completion *x)
3301{
3302	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3303}
3304EXPORT_SYMBOL(wait_for_completion);
3305
3306/**
3307 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3308 * @x:  holds the state of this particular completion
3309 * @timeout:  timeout value in jiffies
3310 *
3311 * This waits for either a completion of a specific task to be signaled or for a
3312 * specified timeout to expire. The timeout is in jiffies. It is not
3313 * interruptible.
3314 *
3315 * The return value is 0 if timed out, and positive (at least 1, or number of
3316 * jiffies left till timeout) if completed.
3317 */
3318unsigned long __sched
3319wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3320{
3321	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3322}
3323EXPORT_SYMBOL(wait_for_completion_timeout);
3324
3325/**
3326 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3327 * @x:  holds the state of this particular completion
3328 *
3329 * This waits for completion of a specific task to be signaled. It is
3330 * interruptible.
3331 *
3332 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3333 */
3334int __sched wait_for_completion_interruptible(struct completion *x)
3335{
3336	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3337	if (t == -ERESTARTSYS)
3338		return t;
3339	return 0;
3340}
3341EXPORT_SYMBOL(wait_for_completion_interruptible);
3342
3343/**
3344 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3345 * @x:  holds the state of this particular completion
3346 * @timeout:  timeout value in jiffies
3347 *
3348 * This waits for either a completion of a specific task to be signaled or for a
3349 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3350 *
3351 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3352 * positive (at least 1, or number of jiffies left till timeout) if completed.
3353 */
3354long __sched
3355wait_for_completion_interruptible_timeout(struct completion *x,
3356					  unsigned long timeout)
3357{
3358	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3359}
3360EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3361
3362/**
3363 * wait_for_completion_killable: - waits for completion of a task (killable)
3364 * @x:  holds the state of this particular completion
3365 *
3366 * This waits to be signaled for completion of a specific task. It can be
3367 * interrupted by a kill signal.
3368 *
3369 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3370 */
3371int __sched wait_for_completion_killable(struct completion *x)
3372{
3373	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3374	if (t == -ERESTARTSYS)
3375		return t;
3376	return 0;
3377}
3378EXPORT_SYMBOL(wait_for_completion_killable);
3379
3380/**
3381 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3382 * @x:  holds the state of this particular completion
3383 * @timeout:  timeout value in jiffies
3384 *
3385 * This waits for either a completion of a specific task to be
3386 * signaled or for a specified timeout to expire. It can be
3387 * interrupted by a kill signal. The timeout is in jiffies.
3388 *
3389 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3390 * positive (at least 1, or number of jiffies left till timeout) if completed.
3391 */
3392long __sched
3393wait_for_completion_killable_timeout(struct completion *x,
3394				     unsigned long timeout)
3395{
3396	return wait_for_common(x, timeout, TASK_KILLABLE);
3397}
3398EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3399
3400/**
3401 *	try_wait_for_completion - try to decrement a completion without blocking
3402 *	@x:	completion structure
3403 *
3404 *	Returns: 0 if a decrement cannot be done without blocking
3405 *		 1 if a decrement succeeded.
3406 *
3407 *	If a completion is being used as a counting completion,
3408 *	attempt to decrement the counter without blocking. This
3409 *	enables us to avoid waiting if the resource the completion
3410 *	is protecting is not available.
3411 */
3412bool try_wait_for_completion(struct completion *x)
3413{
3414	unsigned long flags;
3415	int ret = 1;
3416
3417	spin_lock_irqsave(&x->wait.lock, flags);
3418	if (!x->done)
3419		ret = 0;
3420	else
3421		x->done--;
3422	spin_unlock_irqrestore(&x->wait.lock, flags);
3423	return ret;
3424}
3425EXPORT_SYMBOL(try_wait_for_completion);
3426
3427/**
3428 *	completion_done - Test to see if a completion has any waiters
3429 *	@x:	completion structure
3430 *
3431 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3432 *		 1 if there are no waiters.
3433 *
3434 */
3435bool completion_done(struct completion *x)
3436{
3437	unsigned long flags;
3438	int ret = 1;
3439
3440	spin_lock_irqsave(&x->wait.lock, flags);
3441	if (!x->done)
3442		ret = 0;
3443	spin_unlock_irqrestore(&x->wait.lock, flags);
3444	return ret;
3445}
3446EXPORT_SYMBOL(completion_done);
3447
3448static long __sched
3449sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3450{
3451	unsigned long flags;
3452	wait_queue_t wait;
3453
3454	init_waitqueue_entry(&wait, current);
3455
3456	__set_current_state(state);
3457
3458	spin_lock_irqsave(&q->lock, flags);
3459	__add_wait_queue(q, &wait);
3460	spin_unlock(&q->lock);
3461	timeout = schedule_timeout(timeout);
3462	spin_lock_irq(&q->lock);
3463	__remove_wait_queue(q, &wait);
3464	spin_unlock_irqrestore(&q->lock, flags);
3465
3466	return timeout;
3467}
3468
3469void __sched interruptible_sleep_on(wait_queue_head_t *q)
3470{
3471	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3472}
3473EXPORT_SYMBOL(interruptible_sleep_on);
3474
3475long __sched
3476interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3477{
3478	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3479}
3480EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3481
3482void __sched sleep_on(wait_queue_head_t *q)
3483{
3484	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3485}
3486EXPORT_SYMBOL(sleep_on);
3487
3488long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3489{
3490	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3491}
3492EXPORT_SYMBOL(sleep_on_timeout);
3493
3494#ifdef CONFIG_RT_MUTEXES
3495
3496/*
3497 * rt_mutex_setprio - set the current priority of a task
3498 * @p: task
3499 * @prio: prio value (kernel-internal form)
3500 *
3501 * This function changes the 'effective' priority of a task. It does
3502 * not touch ->normal_prio like __setscheduler().
3503 *
3504 * Used by the rt_mutex code to implement priority inheritance logic.
3505 */
3506void rt_mutex_setprio(struct task_struct *p, int prio)
3507{
3508	int oldprio, on_rq, running;
3509	struct rq *rq;
3510	const struct sched_class *prev_class;
3511
3512	BUG_ON(prio < 0 || prio > MAX_PRIO);
3513
3514	rq = __task_rq_lock(p);
3515
3516	/*
3517	 * Idle task boosting is a nono in general. There is one
3518	 * exception, when PREEMPT_RT and NOHZ is active:
3519	 *
3520	 * The idle task calls get_next_timer_interrupt() and holds
3521	 * the timer wheel base->lock on the CPU and another CPU wants
3522	 * to access the timer (probably to cancel it). We can safely
3523	 * ignore the boosting request, as the idle CPU runs this code
3524	 * with interrupts disabled and will complete the lock
3525	 * protected section without being interrupted. So there is no
3526	 * real need to boost.
3527	 */
3528	if (unlikely(p == rq->idle)) {
3529		WARN_ON(p != rq->curr);
3530		WARN_ON(p->pi_blocked_on);
3531		goto out_unlock;
3532	}
3533
3534	trace_sched_pi_setprio(p, prio);
3535	oldprio = p->prio;
3536	prev_class = p->sched_class;
3537	on_rq = p->on_rq;
3538	running = task_current(rq, p);
3539	if (on_rq)
3540		dequeue_task(rq, p, 0);
3541	if (running)
3542		p->sched_class->put_prev_task(rq, p);
3543
3544	if (rt_prio(prio))
3545		p->sched_class = &rt_sched_class;
3546	else
3547		p->sched_class = &fair_sched_class;
3548
3549	p->prio = prio;
3550
3551	if (running)
3552		p->sched_class->set_curr_task(rq);
3553	if (on_rq)
3554		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3555
3556	check_class_changed(rq, p, prev_class, oldprio);
3557out_unlock:
3558	__task_rq_unlock(rq);
3559}
3560#endif
3561void set_user_nice(struct task_struct *p, long nice)
3562{
3563	int old_prio, delta, on_rq;
3564	unsigned long flags;
3565	struct rq *rq;
3566
3567	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3568		return;
3569	/*
3570	 * We have to be careful, if called from sys_setpriority(),
3571	 * the task might be in the middle of scheduling on another CPU.
3572	 */
3573	rq = task_rq_lock(p, &flags);
3574	/*
3575	 * The RT priorities are set via sched_setscheduler(), but we still
3576	 * allow the 'normal' nice value to be set - but as expected
3577	 * it wont have any effect on scheduling until the task is
3578	 * SCHED_FIFO/SCHED_RR:
3579	 */
3580	if (task_has_rt_policy(p)) {
3581		p->static_prio = NICE_TO_PRIO(nice);
3582		goto out_unlock;
3583	}
3584	on_rq = p->on_rq;
3585	if (on_rq)
3586		dequeue_task(rq, p, 0);
3587
3588	p->static_prio = NICE_TO_PRIO(nice);
3589	set_load_weight(p);
3590	old_prio = p->prio;
3591	p->prio = effective_prio(p);
3592	delta = p->prio - old_prio;
3593
3594	if (on_rq) {
3595		enqueue_task(rq, p, 0);
3596		/*
3597		 * If the task increased its priority or is running and
3598		 * lowered its priority, then reschedule its CPU:
3599		 */
3600		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3601			resched_task(rq->curr);
3602	}
3603out_unlock:
3604	task_rq_unlock(rq, p, &flags);
3605}
3606EXPORT_SYMBOL(set_user_nice);
3607
3608/*
3609 * can_nice - check if a task can reduce its nice value
3610 * @p: task
3611 * @nice: nice value
3612 */
3613int can_nice(const struct task_struct *p, const int nice)
3614{
3615	/* convert nice value [19,-20] to rlimit style value [1,40] */
3616	int nice_rlim = 20 - nice;
3617
3618	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3619		capable(CAP_SYS_NICE));
3620}
3621
3622#ifdef __ARCH_WANT_SYS_NICE
3623
3624/*
3625 * sys_nice - change the priority of the current process.
3626 * @increment: priority increment
3627 *
3628 * sys_setpriority is a more generic, but much slower function that
3629 * does similar things.
3630 */
3631SYSCALL_DEFINE1(nice, int, increment)
3632{
3633	long nice, retval;
3634
3635	/*
3636	 * Setpriority might change our priority at the same moment.
3637	 * We don't have to worry. Conceptually one call occurs first
3638	 * and we have a single winner.
3639	 */
3640	if (increment < -40)
3641		increment = -40;
3642	if (increment > 40)
3643		increment = 40;
3644
3645	nice = TASK_NICE(current) + increment;
3646	if (nice < -20)
3647		nice = -20;
3648	if (nice > 19)
3649		nice = 19;
3650
3651	if (increment < 0 && !can_nice(current, nice))
3652		return -EPERM;
3653
3654	retval = security_task_setnice(current, nice);
3655	if (retval)
3656		return retval;
3657
3658	set_user_nice(current, nice);
3659	return 0;
3660}
3661
3662#endif
3663
3664/**
3665 * task_prio - return the priority value of a given task.
3666 * @p: the task in question.
3667 *
3668 * This is the priority value as seen by users in /proc.
3669 * RT tasks are offset by -200. Normal tasks are centered
3670 * around 0, value goes from -16 to +15.
3671 */
3672int task_prio(const struct task_struct *p)
3673{
3674	return p->prio - MAX_RT_PRIO;
3675}
3676
3677/**
3678 * task_nice - return the nice value of a given task.
3679 * @p: the task in question.
3680 */
3681int task_nice(const struct task_struct *p)
3682{
3683	return TASK_NICE(p);
3684}
3685EXPORT_SYMBOL(task_nice);
3686
3687/**
3688 * idle_cpu - is a given cpu idle currently?
3689 * @cpu: the processor in question.
3690 */
3691int idle_cpu(int cpu)
3692{
3693	struct rq *rq = cpu_rq(cpu);
3694
3695	if (rq->curr != rq->idle)
3696		return 0;
3697
3698	if (rq->nr_running)
3699		return 0;
3700
3701#ifdef CONFIG_SMP
3702	if (!llist_empty(&rq->wake_list))
3703		return 0;
3704#endif
3705
3706	return 1;
3707}
3708
3709/**
3710 * idle_task - return the idle task for a given cpu.
3711 * @cpu: the processor in question.
3712 */
3713struct task_struct *idle_task(int cpu)
3714{
3715	return cpu_rq(cpu)->idle;
3716}
3717
3718/**
3719 * find_process_by_pid - find a process with a matching PID value.
3720 * @pid: the pid in question.
3721 */
3722static struct task_struct *find_process_by_pid(pid_t pid)
3723{
3724	return pid ? find_task_by_vpid(pid) : current;
3725}
3726
3727/* Actually do priority change: must hold rq lock. */
3728static void
3729__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3730{
3731	p->policy = policy;
3732	p->rt_priority = prio;
3733	p->normal_prio = normal_prio(p);
3734	/* we are holding p->pi_lock already */
3735	p->prio = rt_mutex_getprio(p);
3736	if (rt_prio(p->prio))
3737		p->sched_class = &rt_sched_class;
3738	else
3739		p->sched_class = &fair_sched_class;
3740	set_load_weight(p);
3741}
3742
3743/*
3744 * check the target process has a UID that matches the current process's
3745 */
3746static bool check_same_owner(struct task_struct *p)
3747{
3748	const struct cred *cred = current_cred(), *pcred;
3749	bool match;
3750
3751	rcu_read_lock();
3752	pcred = __task_cred(p);
3753	match = (uid_eq(cred->euid, pcred->euid) ||
3754		 uid_eq(cred->euid, pcred->uid));
3755	rcu_read_unlock();
3756	return match;
3757}
3758
3759static int __sched_setscheduler(struct task_struct *p, int policy,
3760				const struct sched_param *param, bool user)
3761{
3762	int retval, oldprio, oldpolicy = -1, on_rq, running;
3763	unsigned long flags;
3764	const struct sched_class *prev_class;
3765	struct rq *rq;
3766	int reset_on_fork;
3767
3768	/* may grab non-irq protected spin_locks */
3769	BUG_ON(in_interrupt());
3770recheck:
3771	/* double check policy once rq lock held */
3772	if (policy < 0) {
3773		reset_on_fork = p->sched_reset_on_fork;
3774		policy = oldpolicy = p->policy;
3775	} else {
3776		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3777		policy &= ~SCHED_RESET_ON_FORK;
3778
3779		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3780				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3781				policy != SCHED_IDLE)
3782			return -EINVAL;
3783	}
3784
3785	/*
3786	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3787	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3788	 * SCHED_BATCH and SCHED_IDLE is 0.
3789	 */
3790	if (param->sched_priority < 0 ||
3791	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3792	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3793		return -EINVAL;
3794	if (rt_policy(policy) != (param->sched_priority != 0))
3795		return -EINVAL;
3796
3797	/*
3798	 * Allow unprivileged RT tasks to decrease priority:
3799	 */
3800	if (user && !capable(CAP_SYS_NICE)) {
3801		if (rt_policy(policy)) {
3802			unsigned long rlim_rtprio =
3803					task_rlimit(p, RLIMIT_RTPRIO);
3804
3805			/* can't set/change the rt policy */
3806			if (policy != p->policy && !rlim_rtprio)
3807				return -EPERM;
3808
3809			/* can't increase priority */
3810			if (param->sched_priority > p->rt_priority &&
3811			    param->sched_priority > rlim_rtprio)
3812				return -EPERM;
3813		}
3814
3815		/*
3816		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3817		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3818		 */
3819		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3820			if (!can_nice(p, TASK_NICE(p)))
3821				return -EPERM;
3822		}
3823
3824		/* can't change other user's priorities */
3825		if (!check_same_owner(p))
3826			return -EPERM;
3827
3828		/* Normal users shall not reset the sched_reset_on_fork flag */
3829		if (p->sched_reset_on_fork && !reset_on_fork)
3830			return -EPERM;
3831	}
3832
3833	if (user) {
3834		retval = security_task_setscheduler(p);
3835		if (retval)
3836			return retval;
3837	}
3838
3839	/*
3840	 * make sure no PI-waiters arrive (or leave) while we are
3841	 * changing the priority of the task:
3842	 *
3843	 * To be able to change p->policy safely, the appropriate
3844	 * runqueue lock must be held.
3845	 */
3846	rq = task_rq_lock(p, &flags);
3847
3848	/*
3849	 * Changing the policy of the stop threads its a very bad idea
3850	 */
3851	if (p == rq->stop) {
3852		task_rq_unlock(rq, p, &flags);
3853		return -EINVAL;
3854	}
3855
3856	/*
3857	 * If not changing anything there's no need to proceed further:
3858	 */
3859	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3860			param->sched_priority == p->rt_priority))) {
3861		task_rq_unlock(rq, p, &flags);
3862		return 0;
3863	}
3864
3865#ifdef CONFIG_RT_GROUP_SCHED
3866	if (user) {
3867		/*
3868		 * Do not allow realtime tasks into groups that have no runtime
3869		 * assigned.
3870		 */
3871		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3872				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3873				!task_group_is_autogroup(task_group(p))) {
3874			task_rq_unlock(rq, p, &flags);
3875			return -EPERM;
3876		}
3877	}
3878#endif
3879
3880	/* recheck policy now with rq lock held */
3881	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3882		policy = oldpolicy = -1;
3883		task_rq_unlock(rq, p, &flags);
3884		goto recheck;
3885	}
3886	on_rq = p->on_rq;
3887	running = task_current(rq, p);
3888	if (on_rq)
3889		dequeue_task(rq, p, 0);
3890	if (running)
3891		p->sched_class->put_prev_task(rq, p);
3892
3893	p->sched_reset_on_fork = reset_on_fork;
3894
3895	oldprio = p->prio;
3896	prev_class = p->sched_class;
3897	__setscheduler(rq, p, policy, param->sched_priority);
3898
3899	if (running)
3900		p->sched_class->set_curr_task(rq);
3901	if (on_rq)
3902		enqueue_task(rq, p, 0);
3903
3904	check_class_changed(rq, p, prev_class, oldprio);
3905	task_rq_unlock(rq, p, &flags);
3906
3907	rt_mutex_adjust_pi(p);
3908
3909	return 0;
3910}
3911
3912/**
3913 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3914 * @p: the task in question.
3915 * @policy: new policy.
3916 * @param: structure containing the new RT priority.
3917 *
3918 * NOTE that the task may be already dead.
3919 */
3920int sched_setscheduler(struct task_struct *p, int policy,
3921		       const struct sched_param *param)
3922{
3923	return __sched_setscheduler(p, policy, param, true);
3924}
3925EXPORT_SYMBOL_GPL(sched_setscheduler);
3926
3927/**
3928 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3929 * @p: the task in question.
3930 * @policy: new policy.
3931 * @param: structure containing the new RT priority.
3932 *
3933 * Just like sched_setscheduler, only don't bother checking if the
3934 * current context has permission.  For example, this is needed in
3935 * stop_machine(): we create temporary high priority worker threads,
3936 * but our caller might not have that capability.
3937 */
3938int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3939			       const struct sched_param *param)
3940{
3941	return __sched_setscheduler(p, policy, param, false);
3942}
3943
3944static int
3945do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3946{
3947	struct sched_param lparam;
3948	struct task_struct *p;
3949	int retval;
3950
3951	if (!param || pid < 0)
3952		return -EINVAL;
3953	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3954		return -EFAULT;
3955
3956	rcu_read_lock();
3957	retval = -ESRCH;
3958	p = find_process_by_pid(pid);
3959	if (p != NULL)
3960		retval = sched_setscheduler(p, policy, &lparam);
3961	rcu_read_unlock();
3962
3963	return retval;
3964}
3965
3966/**
3967 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3968 * @pid: the pid in question.
3969 * @policy: new policy.
3970 * @param: structure containing the new RT priority.
3971 */
3972SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3973		struct sched_param __user *, param)
3974{
3975	/* negative values for policy are not valid */
3976	if (policy < 0)
3977		return -EINVAL;
3978
3979	return do_sched_setscheduler(pid, policy, param);
3980}
3981
3982/**
3983 * sys_sched_setparam - set/change the RT priority of a thread
3984 * @pid: the pid in question.
3985 * @param: structure containing the new RT priority.
3986 */
3987SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3988{
3989	return do_sched_setscheduler(pid, -1, param);
3990}
3991
3992/**
3993 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3994 * @pid: the pid in question.
3995 */
3996SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3997{
3998	struct task_struct *p;
3999	int retval;
4000
4001	if (pid < 0)
4002		return -EINVAL;
4003
4004	retval = -ESRCH;
4005	rcu_read_lock();
4006	p = find_process_by_pid(pid);
4007	if (p) {
4008		retval = security_task_getscheduler(p);
4009		if (!retval)
4010			retval = p->policy
4011				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4012	}
4013	rcu_read_unlock();
4014	return retval;
4015}
4016
4017/**
4018 * sys_sched_getparam - get the RT priority of a thread
4019 * @pid: the pid in question.
4020 * @param: structure containing the RT priority.
4021 */
4022SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4023{
4024	struct sched_param lp;
4025	struct task_struct *p;
4026	int retval;
4027
4028	if (!param || pid < 0)
4029		return -EINVAL;
4030
4031	rcu_read_lock();
4032	p = find_process_by_pid(pid);
4033	retval = -ESRCH;
4034	if (!p)
4035		goto out_unlock;
4036
4037	retval = security_task_getscheduler(p);
4038	if (retval)
4039		goto out_unlock;
4040
4041	lp.sched_priority = p->rt_priority;
4042	rcu_read_unlock();
4043
4044	/*
4045	 * This one might sleep, we cannot do it with a spinlock held ...
4046	 */
4047	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4048
4049	return retval;
4050
4051out_unlock:
4052	rcu_read_unlock();
4053	return retval;
4054}
4055
4056long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4057{
4058	cpumask_var_t cpus_allowed, new_mask;
4059	struct task_struct *p;
4060	int retval;
4061
4062	get_online_cpus();
4063	rcu_read_lock();
4064
4065	p = find_process_by_pid(pid);
4066	if (!p) {
4067		rcu_read_unlock();
4068		put_online_cpus();
4069		return -ESRCH;
4070	}
4071
4072	/* Prevent p going away */
4073	get_task_struct(p);
4074	rcu_read_unlock();
4075
4076	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4077		retval = -ENOMEM;
4078		goto out_put_task;
4079	}
4080	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4081		retval = -ENOMEM;
4082		goto out_free_cpus_allowed;
4083	}
4084	retval = -EPERM;
4085	if (!check_same_owner(p)) {
4086		rcu_read_lock();
4087		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4088			rcu_read_unlock();
4089			goto out_unlock;
4090		}
4091		rcu_read_unlock();
4092	}
4093
4094	retval = security_task_setscheduler(p);
4095	if (retval)
4096		goto out_unlock;
4097
4098	cpuset_cpus_allowed(p, cpus_allowed);
4099	cpumask_and(new_mask, in_mask, cpus_allowed);
4100again:
4101	retval = set_cpus_allowed_ptr(p, new_mask);
4102
4103	if (!retval) {
4104		cpuset_cpus_allowed(p, cpus_allowed);
4105		if (!cpumask_subset(new_mask, cpus_allowed)) {
4106			/*
4107			 * We must have raced with a concurrent cpuset
4108			 * update. Just reset the cpus_allowed to the
4109			 * cpuset's cpus_allowed
4110			 */
4111			cpumask_copy(new_mask, cpus_allowed);
4112			goto again;
4113		}
4114	}
4115out_unlock:
4116	free_cpumask_var(new_mask);
4117out_free_cpus_allowed:
4118	free_cpumask_var(cpus_allowed);
4119out_put_task:
4120	put_task_struct(p);
4121	put_online_cpus();
4122	return retval;
4123}
4124
4125static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4126			     struct cpumask *new_mask)
4127{
4128	if (len < cpumask_size())
4129		cpumask_clear(new_mask);
4130	else if (len > cpumask_size())
4131		len = cpumask_size();
4132
4133	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4134}
4135
4136/**
4137 * sys_sched_setaffinity - set the cpu affinity of a process
4138 * @pid: pid of the process
4139 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4140 * @user_mask_ptr: user-space pointer to the new cpu mask
4141 */
4142SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4143		unsigned long __user *, user_mask_ptr)
4144{
4145	cpumask_var_t new_mask;
4146	int retval;
4147
4148	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4149		return -ENOMEM;
4150
4151	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4152	if (retval == 0)
4153		retval = sched_setaffinity(pid, new_mask);
4154	free_cpumask_var(new_mask);
4155	return retval;
4156}
4157
4158long sched_getaffinity(pid_t pid, struct cpumask *mask)
4159{
4160	struct task_struct *p;
4161	unsigned long flags;
4162	int retval;
4163
4164	get_online_cpus();
4165	rcu_read_lock();
4166
4167	retval = -ESRCH;
4168	p = find_process_by_pid(pid);
4169	if (!p)
4170		goto out_unlock;
4171
4172	retval = security_task_getscheduler(p);
4173	if (retval)
4174		goto out_unlock;
4175
4176	raw_spin_lock_irqsave(&p->pi_lock, flags);
4177	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4178	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4179
4180out_unlock:
4181	rcu_read_unlock();
4182	put_online_cpus();
4183
4184	return retval;
4185}
4186
4187/**
4188 * sys_sched_getaffinity - get the cpu affinity of a process
4189 * @pid: pid of the process
4190 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4191 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4192 */
4193SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4194		unsigned long __user *, user_mask_ptr)
4195{
4196	int ret;
4197	cpumask_var_t mask;
4198
4199	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4200		return -EINVAL;
4201	if (len & (sizeof(unsigned long)-1))
4202		return -EINVAL;
4203
4204	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4205		return -ENOMEM;
4206
4207	ret = sched_getaffinity(pid, mask);
4208	if (ret == 0) {
4209		size_t retlen = min_t(size_t, len, cpumask_size());
4210
4211		if (copy_to_user(user_mask_ptr, mask, retlen))
4212			ret = -EFAULT;
4213		else
4214			ret = retlen;
4215	}
4216	free_cpumask_var(mask);
4217
4218	return ret;
4219}
4220
4221/**
4222 * sys_sched_yield - yield the current processor to other threads.
4223 *
4224 * This function yields the current CPU to other tasks. If there are no
4225 * other threads running on this CPU then this function will return.
4226 */
4227SYSCALL_DEFINE0(sched_yield)
4228{
4229	struct rq *rq = this_rq_lock();
4230
4231	schedstat_inc(rq, yld_count);
4232	current->sched_class->yield_task(rq);
4233
4234	/*
4235	 * Since we are going to call schedule() anyway, there's
4236	 * no need to preempt or enable interrupts:
4237	 */
4238	__release(rq->lock);
4239	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4240	do_raw_spin_unlock(&rq->lock);
4241	sched_preempt_enable_no_resched();
4242
4243	schedule();
4244
4245	return 0;
4246}
4247
4248static inline int should_resched(void)
4249{
4250	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4251}
4252
4253static void __cond_resched(void)
4254{
4255	add_preempt_count(PREEMPT_ACTIVE);
4256	__schedule();
4257	sub_preempt_count(PREEMPT_ACTIVE);
4258}
4259
4260int __sched _cond_resched(void)
4261{
4262	if (should_resched()) {
4263		__cond_resched();
4264		return 1;
4265	}
4266	return 0;
4267}
4268EXPORT_SYMBOL(_cond_resched);
4269
4270/*
4271 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4272 * call schedule, and on return reacquire the lock.
4273 *
4274 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4275 * operations here to prevent schedule() from being called twice (once via
4276 * spin_unlock(), once by hand).
4277 */
4278int __cond_resched_lock(spinlock_t *lock)
4279{
4280	int resched = should_resched();
4281	int ret = 0;
4282
4283	lockdep_assert_held(lock);
4284
4285	if (spin_needbreak(lock) || resched) {
4286		spin_unlock(lock);
4287		if (resched)
4288			__cond_resched();
4289		else
4290			cpu_relax();
4291		ret = 1;
4292		spin_lock(lock);
4293	}
4294	return ret;
4295}
4296EXPORT_SYMBOL(__cond_resched_lock);
4297
4298int __sched __cond_resched_softirq(void)
4299{
4300	BUG_ON(!in_softirq());
4301
4302	if (should_resched()) {
4303		local_bh_enable();
4304		__cond_resched();
4305		local_bh_disable();
4306		return 1;
4307	}
4308	return 0;
4309}
4310EXPORT_SYMBOL(__cond_resched_softirq);
4311
4312/**
4313 * yield - yield the current processor to other threads.
4314 *
4315 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4316 *
4317 * The scheduler is at all times free to pick the calling task as the most
4318 * eligible task to run, if removing the yield() call from your code breaks
4319 * it, its already broken.
4320 *
4321 * Typical broken usage is:
4322 *
4323 * while (!event)
4324 * 	yield();
4325 *
4326 * where one assumes that yield() will let 'the other' process run that will
4327 * make event true. If the current task is a SCHED_FIFO task that will never
4328 * happen. Never use yield() as a progress guarantee!!
4329 *
4330 * If you want to use yield() to wait for something, use wait_event().
4331 * If you want to use yield() to be 'nice' for others, use cond_resched().
4332 * If you still want to use yield(), do not!
4333 */
4334void __sched yield(void)
4335{
4336	set_current_state(TASK_RUNNING);
4337	sys_sched_yield();
4338}
4339EXPORT_SYMBOL(yield);
4340
4341/**
4342 * yield_to - yield the current processor to another thread in
4343 * your thread group, or accelerate that thread toward the
4344 * processor it's on.
4345 * @p: target task
4346 * @preempt: whether task preemption is allowed or not
4347 *
4348 * It's the caller's job to ensure that the target task struct
4349 * can't go away on us before we can do any checks.
4350 *
4351 * Returns true if we indeed boosted the target task.
4352 */
4353bool __sched yield_to(struct task_struct *p, bool preempt)
4354{
4355	struct task_struct *curr = current;
4356	struct rq *rq, *p_rq;
4357	unsigned long flags;
4358	int yielded = 0;
4359
4360	local_irq_save(flags);
4361	rq = this_rq();
4362
4363again:
4364	p_rq = task_rq(p);
4365	double_rq_lock(rq, p_rq);
4366	while (task_rq(p) != p_rq) {
4367		double_rq_unlock(rq, p_rq);
4368		goto again;
4369	}
4370
4371	if (!curr->sched_class->yield_to_task)
4372		goto out;
4373
4374	if (curr->sched_class != p->sched_class)
4375		goto out;
4376
4377	if (task_running(p_rq, p) || p->state)
4378		goto out;
4379
4380	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4381	if (yielded) {
4382		schedstat_inc(rq, yld_count);
4383		/*
4384		 * Make p's CPU reschedule; pick_next_entity takes care of
4385		 * fairness.
4386		 */
4387		if (preempt && rq != p_rq)
4388			resched_task(p_rq->curr);
4389	}
4390
4391out:
4392	double_rq_unlock(rq, p_rq);
4393	local_irq_restore(flags);
4394
4395	if (yielded)
4396		schedule();
4397
4398	return yielded;
4399}
4400EXPORT_SYMBOL_GPL(yield_to);
4401
4402/*
4403 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4404 * that process accounting knows that this is a task in IO wait state.
4405 */
4406void __sched io_schedule(void)
4407{
4408	struct rq *rq = raw_rq();
4409
4410	delayacct_blkio_start();
4411	atomic_inc(&rq->nr_iowait);
4412	blk_flush_plug(current);
4413	current->in_iowait = 1;
4414	schedule();
4415	current->in_iowait = 0;
4416	atomic_dec(&rq->nr_iowait);
4417	delayacct_blkio_end();
4418}
4419EXPORT_SYMBOL(io_schedule);
4420
4421long __sched io_schedule_timeout(long timeout)
4422{
4423	struct rq *rq = raw_rq();
4424	long ret;
4425
4426	delayacct_blkio_start();
4427	atomic_inc(&rq->nr_iowait);
4428	blk_flush_plug(current);
4429	current->in_iowait = 1;
4430	ret = schedule_timeout(timeout);
4431	current->in_iowait = 0;
4432	atomic_dec(&rq->nr_iowait);
4433	delayacct_blkio_end();
4434	return ret;
4435}
4436
4437/**
4438 * sys_sched_get_priority_max - return maximum RT priority.
4439 * @policy: scheduling class.
4440 *
4441 * this syscall returns the maximum rt_priority that can be used
4442 * by a given scheduling class.
4443 */
4444SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4445{
4446	int ret = -EINVAL;
4447
4448	switch (policy) {
4449	case SCHED_FIFO:
4450	case SCHED_RR:
4451		ret = MAX_USER_RT_PRIO-1;
4452		break;
4453	case SCHED_NORMAL:
4454	case SCHED_BATCH:
4455	case SCHED_IDLE:
4456		ret = 0;
4457		break;
4458	}
4459	return ret;
4460}
4461
4462/**
4463 * sys_sched_get_priority_min - return minimum RT priority.
4464 * @policy: scheduling class.
4465 *
4466 * this syscall returns the minimum rt_priority that can be used
4467 * by a given scheduling class.
4468 */
4469SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4470{
4471	int ret = -EINVAL;
4472
4473	switch (policy) {
4474	case SCHED_FIFO:
4475	case SCHED_RR:
4476		ret = 1;
4477		break;
4478	case SCHED_NORMAL:
4479	case SCHED_BATCH:
4480	case SCHED_IDLE:
4481		ret = 0;
4482	}
4483	return ret;
4484}
4485
4486/**
4487 * sys_sched_rr_get_interval - return the default timeslice of a process.
4488 * @pid: pid of the process.
4489 * @interval: userspace pointer to the timeslice value.
4490 *
4491 * this syscall writes the default timeslice value of a given process
4492 * into the user-space timespec buffer. A value of '0' means infinity.
4493 */
4494SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4495		struct timespec __user *, interval)
4496{
4497	struct task_struct *p;
4498	unsigned int time_slice;
4499	unsigned long flags;
4500	struct rq *rq;
4501	int retval;
4502	struct timespec t;
4503
4504	if (pid < 0)
4505		return -EINVAL;
4506
4507	retval = -ESRCH;
4508	rcu_read_lock();
4509	p = find_process_by_pid(pid);
4510	if (!p)
4511		goto out_unlock;
4512
4513	retval = security_task_getscheduler(p);
4514	if (retval)
4515		goto out_unlock;
4516
4517	rq = task_rq_lock(p, &flags);
4518	time_slice = p->sched_class->get_rr_interval(rq, p);
4519	task_rq_unlock(rq, p, &flags);
4520
4521	rcu_read_unlock();
4522	jiffies_to_timespec(time_slice, &t);
4523	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4524	return retval;
4525
4526out_unlock:
4527	rcu_read_unlock();
4528	return retval;
4529}
4530
4531static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4532
4533void sched_show_task(struct task_struct *p)
4534{
4535	unsigned long free = 0;
4536	int ppid;
4537	unsigned state;
4538
4539	state = p->state ? __ffs(p->state) + 1 : 0;
4540	printk(KERN_INFO "%-15.15s %c", p->comm,
4541		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4542#if BITS_PER_LONG == 32
4543	if (state == TASK_RUNNING)
4544		printk(KERN_CONT " running  ");
4545	else
4546		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4547#else
4548	if (state == TASK_RUNNING)
4549		printk(KERN_CONT "  running task    ");
4550	else
4551		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4552#endif
4553#ifdef CONFIG_DEBUG_STACK_USAGE
4554	free = stack_not_used(p);
4555#endif
4556	rcu_read_lock();
4557	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4558	rcu_read_unlock();
4559	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4560		task_pid_nr(p), ppid,
4561		(unsigned long)task_thread_info(p)->flags);
4562
4563	show_stack(p, NULL);
4564}
4565
4566void show_state_filter(unsigned long state_filter)
4567{
4568	struct task_struct *g, *p;
4569
4570#if BITS_PER_LONG == 32
4571	printk(KERN_INFO
4572		"  task                PC stack   pid father\n");
4573#else
4574	printk(KERN_INFO
4575		"  task                        PC stack   pid father\n");
4576#endif
4577	rcu_read_lock();
4578	do_each_thread(g, p) {
4579		/*
4580		 * reset the NMI-timeout, listing all files on a slow
4581		 * console might take a lot of time:
4582		 */
4583		touch_nmi_watchdog();
4584		if (!state_filter || (p->state & state_filter))
4585			sched_show_task(p);
4586	} while_each_thread(g, p);
4587
4588	touch_all_softlockup_watchdogs();
4589
4590#ifdef CONFIG_SCHED_DEBUG
4591	sysrq_sched_debug_show();
4592#endif
4593	rcu_read_unlock();
4594	/*
4595	 * Only show locks if all tasks are dumped:
4596	 */
4597	if (!state_filter)
4598		debug_show_all_locks();
4599}
4600
4601void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4602{
4603	idle->sched_class = &idle_sched_class;
4604}
4605
4606/**
4607 * init_idle - set up an idle thread for a given CPU
4608 * @idle: task in question
4609 * @cpu: cpu the idle task belongs to
4610 *
4611 * NOTE: this function does not set the idle thread's NEED_RESCHED
4612 * flag, to make booting more robust.
4613 */
4614void __cpuinit init_idle(struct task_struct *idle, int cpu)
4615{
4616	struct rq *rq = cpu_rq(cpu);
4617	unsigned long flags;
4618
4619	raw_spin_lock_irqsave(&rq->lock, flags);
4620
4621	__sched_fork(idle);
4622	idle->state = TASK_RUNNING;
4623	idle->se.exec_start = sched_clock();
4624
4625	do_set_cpus_allowed(idle, cpumask_of(cpu));
4626	/*
4627	 * We're having a chicken and egg problem, even though we are
4628	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4629	 * lockdep check in task_group() will fail.
4630	 *
4631	 * Similar case to sched_fork(). / Alternatively we could
4632	 * use task_rq_lock() here and obtain the other rq->lock.
4633	 *
4634	 * Silence PROVE_RCU
4635	 */
4636	rcu_read_lock();
4637	__set_task_cpu(idle, cpu);
4638	rcu_read_unlock();
4639
4640	rq->curr = rq->idle = idle;
4641#if defined(CONFIG_SMP)
4642	idle->on_cpu = 1;
4643#endif
4644	raw_spin_unlock_irqrestore(&rq->lock, flags);
4645
4646	/* Set the preempt count _outside_ the spinlocks! */
4647	task_thread_info(idle)->preempt_count = 0;
4648
4649	/*
4650	 * The idle tasks have their own, simple scheduling class:
4651	 */
4652	idle->sched_class = &idle_sched_class;
4653	ftrace_graph_init_idle_task(idle, cpu);
4654	vtime_init_idle(idle);
4655#if defined(CONFIG_SMP)
4656	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4657#endif
4658}
4659
4660#ifdef CONFIG_SMP
4661void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4662{
4663	if (p->sched_class && p->sched_class->set_cpus_allowed)
4664		p->sched_class->set_cpus_allowed(p, new_mask);
4665
4666	cpumask_copy(&p->cpus_allowed, new_mask);
4667	p->nr_cpus_allowed = cpumask_weight(new_mask);
4668}
4669
4670/*
4671 * This is how migration works:
4672 *
4673 * 1) we invoke migration_cpu_stop() on the target CPU using
4674 *    stop_one_cpu().
4675 * 2) stopper starts to run (implicitly forcing the migrated thread
4676 *    off the CPU)
4677 * 3) it checks whether the migrated task is still in the wrong runqueue.
4678 * 4) if it's in the wrong runqueue then the migration thread removes
4679 *    it and puts it into the right queue.
4680 * 5) stopper completes and stop_one_cpu() returns and the migration
4681 *    is done.
4682 */
4683
4684/*
4685 * Change a given task's CPU affinity. Migrate the thread to a
4686 * proper CPU and schedule it away if the CPU it's executing on
4687 * is removed from the allowed bitmask.
4688 *
4689 * NOTE: the caller must have a valid reference to the task, the
4690 * task must not exit() & deallocate itself prematurely. The
4691 * call is not atomic; no spinlocks may be held.
4692 */
4693int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4694{
4695	unsigned long flags;
4696	struct rq *rq;
4697	unsigned int dest_cpu;
4698	int ret = 0;
4699
4700	rq = task_rq_lock(p, &flags);
4701
4702	if (cpumask_equal(&p->cpus_allowed, new_mask))
4703		goto out;
4704
4705	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4706		ret = -EINVAL;
4707		goto out;
4708	}
4709
4710	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4711		ret = -EINVAL;
4712		goto out;
4713	}
4714
4715	do_set_cpus_allowed(p, new_mask);
4716
4717	/* Can the task run on the task's current CPU? If so, we're done */
4718	if (cpumask_test_cpu(task_cpu(p), new_mask))
4719		goto out;
4720
4721	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4722	if (p->on_rq) {
4723		struct migration_arg arg = { p, dest_cpu };
4724		/* Need help from migration thread: drop lock and wait. */
4725		task_rq_unlock(rq, p, &flags);
4726		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4727		tlb_migrate_finish(p->mm);
4728		return 0;
4729	}
4730out:
4731	task_rq_unlock(rq, p, &flags);
4732
4733	return ret;
4734}
4735EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4736
4737/*
4738 * Move (not current) task off this cpu, onto dest cpu. We're doing
4739 * this because either it can't run here any more (set_cpus_allowed()
4740 * away from this CPU, or CPU going down), or because we're
4741 * attempting to rebalance this task on exec (sched_exec).
4742 *
4743 * So we race with normal scheduler movements, but that's OK, as long
4744 * as the task is no longer on this CPU.
4745 *
4746 * Returns non-zero if task was successfully migrated.
4747 */
4748static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4749{
4750	struct rq *rq_dest, *rq_src;
4751	int ret = 0;
4752
4753	if (unlikely(!cpu_active(dest_cpu)))
4754		return ret;
4755
4756	rq_src = cpu_rq(src_cpu);
4757	rq_dest = cpu_rq(dest_cpu);
4758
4759	raw_spin_lock(&p->pi_lock);
4760	double_rq_lock(rq_src, rq_dest);
4761	/* Already moved. */
4762	if (task_cpu(p) != src_cpu)
4763		goto done;
4764	/* Affinity changed (again). */
4765	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4766		goto fail;
4767
4768	/*
4769	 * If we're not on a rq, the next wake-up will ensure we're
4770	 * placed properly.
4771	 */
4772	if (p->on_rq) {
4773		dequeue_task(rq_src, p, 0);
4774		set_task_cpu(p, dest_cpu);
4775		enqueue_task(rq_dest, p, 0);
4776		check_preempt_curr(rq_dest, p, 0);
4777	}
4778done:
4779	ret = 1;
4780fail:
4781	double_rq_unlock(rq_src, rq_dest);
4782	raw_spin_unlock(&p->pi_lock);
4783	return ret;
4784}
4785
4786/*
4787 * migration_cpu_stop - this will be executed by a highprio stopper thread
4788 * and performs thread migration by bumping thread off CPU then
4789 * 'pushing' onto another runqueue.
4790 */
4791static int migration_cpu_stop(void *data)
4792{
4793	struct migration_arg *arg = data;
4794
4795	/*
4796	 * The original target cpu might have gone down and we might
4797	 * be on another cpu but it doesn't matter.
4798	 */
4799	local_irq_disable();
4800	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4801	local_irq_enable();
4802	return 0;
4803}
4804
4805#ifdef CONFIG_HOTPLUG_CPU
4806
4807/*
4808 * Ensures that the idle task is using init_mm right before its cpu goes
4809 * offline.
4810 */
4811void idle_task_exit(void)
4812{
4813	struct mm_struct *mm = current->active_mm;
4814
4815	BUG_ON(cpu_online(smp_processor_id()));
4816
4817	if (mm != &init_mm)
4818		switch_mm(mm, &init_mm, current);
4819	mmdrop(mm);
4820}
4821
4822/*
4823 * Since this CPU is going 'away' for a while, fold any nr_active delta
4824 * we might have. Assumes we're called after migrate_tasks() so that the
4825 * nr_active count is stable.
4826 *
4827 * Also see the comment "Global load-average calculations".
4828 */
4829static void calc_load_migrate(struct rq *rq)
4830{
4831	long delta = calc_load_fold_active(rq);
4832	if (delta)
4833		atomic_long_add(delta, &calc_load_tasks);
4834}
4835
4836/*
4837 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4838 * try_to_wake_up()->select_task_rq().
4839 *
4840 * Called with rq->lock held even though we'er in stop_machine() and
4841 * there's no concurrency possible, we hold the required locks anyway
4842 * because of lock validation efforts.
4843 */
4844static void migrate_tasks(unsigned int dead_cpu)
4845{
4846	struct rq *rq = cpu_rq(dead_cpu);
4847	struct task_struct *next, *stop = rq->stop;
4848	int dest_cpu;
4849
4850	/*
4851	 * Fudge the rq selection such that the below task selection loop
4852	 * doesn't get stuck on the currently eligible stop task.
4853	 *
4854	 * We're currently inside stop_machine() and the rq is either stuck
4855	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4856	 * either way we should never end up calling schedule() until we're
4857	 * done here.
4858	 */
4859	rq->stop = NULL;
4860
4861	for ( ; ; ) {
4862		/*
4863		 * There's this thread running, bail when that's the only
4864		 * remaining thread.
4865		 */
4866		if (rq->nr_running == 1)
4867			break;
4868
4869		next = pick_next_task(rq);
4870		BUG_ON(!next);
4871		next->sched_class->put_prev_task(rq, next);
4872
4873		/* Find suitable destination for @next, with force if needed. */
4874		dest_cpu = select_fallback_rq(dead_cpu, next);
4875		raw_spin_unlock(&rq->lock);
4876
4877		__migrate_task(next, dead_cpu, dest_cpu);
4878
4879		raw_spin_lock(&rq->lock);
4880	}
4881
4882	rq->stop = stop;
4883}
4884
4885#endif /* CONFIG_HOTPLUG_CPU */
4886
4887#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4888
4889static struct ctl_table sd_ctl_dir[] = {
4890	{
4891		.procname	= "sched_domain",
4892		.mode		= 0555,
4893	},
4894	{}
4895};
4896
4897static struct ctl_table sd_ctl_root[] = {
4898	{
4899		.procname	= "kernel",
4900		.mode		= 0555,
4901		.child		= sd_ctl_dir,
4902	},
4903	{}
4904};
4905
4906static struct ctl_table *sd_alloc_ctl_entry(int n)
4907{
4908	struct ctl_table *entry =
4909		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4910
4911	return entry;
4912}
4913
4914static void sd_free_ctl_entry(struct ctl_table **tablep)
4915{
4916	struct ctl_table *entry;
4917
4918	/*
4919	 * In the intermediate directories, both the child directory and
4920	 * procname are dynamically allocated and could fail but the mode
4921	 * will always be set. In the lowest directory the names are
4922	 * static strings and all have proc handlers.
4923	 */
4924	for (entry = *tablep; entry->mode; entry++) {
4925		if (entry->child)
4926			sd_free_ctl_entry(&entry->child);
4927		if (entry->proc_handler == NULL)
4928			kfree(entry->procname);
4929	}
4930
4931	kfree(*tablep);
4932	*tablep = NULL;
4933}
4934
4935static int min_load_idx = 0;
4936static int max_load_idx = CPU_LOAD_IDX_MAX;
4937
4938static void
4939set_table_entry(struct ctl_table *entry,
4940		const char *procname, void *data, int maxlen,
4941		umode_t mode, proc_handler *proc_handler,
4942		bool load_idx)
4943{
4944	entry->procname = procname;
4945	entry->data = data;
4946	entry->maxlen = maxlen;
4947	entry->mode = mode;
4948	entry->proc_handler = proc_handler;
4949
4950	if (load_idx) {
4951		entry->extra1 = &min_load_idx;
4952		entry->extra2 = &max_load_idx;
4953	}
4954}
4955
4956static struct ctl_table *
4957sd_alloc_ctl_domain_table(struct sched_domain *sd)
4958{
4959	struct ctl_table *table = sd_alloc_ctl_entry(13);
4960
4961	if (table == NULL)
4962		return NULL;
4963
4964	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4965		sizeof(long), 0644, proc_doulongvec_minmax, false);
4966	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4967		sizeof(long), 0644, proc_doulongvec_minmax, false);
4968	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4969		sizeof(int), 0644, proc_dointvec_minmax, true);
4970	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4971		sizeof(int), 0644, proc_dointvec_minmax, true);
4972	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4973		sizeof(int), 0644, proc_dointvec_minmax, true);
4974	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4975		sizeof(int), 0644, proc_dointvec_minmax, true);
4976	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4977		sizeof(int), 0644, proc_dointvec_minmax, true);
4978	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4979		sizeof(int), 0644, proc_dointvec_minmax, false);
4980	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4981		sizeof(int), 0644, proc_dointvec_minmax, false);
4982	set_table_entry(&table[9], "cache_nice_tries",
4983		&sd->cache_nice_tries,
4984		sizeof(int), 0644, proc_dointvec_minmax, false);
4985	set_table_entry(&table[10], "flags", &sd->flags,
4986		sizeof(int), 0644, proc_dointvec_minmax, false);
4987	set_table_entry(&table[11], "name", sd->name,
4988		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4989	/* &table[12] is terminator */
4990
4991	return table;
4992}
4993
4994static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4995{
4996	struct ctl_table *entry, *table;
4997	struct sched_domain *sd;
4998	int domain_num = 0, i;
4999	char buf[32];
5000
5001	for_each_domain(cpu, sd)
5002		domain_num++;
5003	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5004	if (table == NULL)
5005		return NULL;
5006
5007	i = 0;
5008	for_each_domain(cpu, sd) {
5009		snprintf(buf, 32, "domain%d", i);
5010		entry->procname = kstrdup(buf, GFP_KERNEL);
5011		entry->mode = 0555;
5012		entry->child = sd_alloc_ctl_domain_table(sd);
5013		entry++;
5014		i++;
5015	}
5016	return table;
5017}
5018
5019static struct ctl_table_header *sd_sysctl_header;
5020static void register_sched_domain_sysctl(void)
5021{
5022	int i, cpu_num = num_possible_cpus();
5023	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5024	char buf[32];
5025
5026	WARN_ON(sd_ctl_dir[0].child);
5027	sd_ctl_dir[0].child = entry;
5028
5029	if (entry == NULL)
5030		return;
5031
5032	for_each_possible_cpu(i) {
5033		snprintf(buf, 32, "cpu%d", i);
5034		entry->procname = kstrdup(buf, GFP_KERNEL);
5035		entry->mode = 0555;
5036		entry->child = sd_alloc_ctl_cpu_table(i);
5037		entry++;
5038	}
5039
5040	WARN_ON(sd_sysctl_header);
5041	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5042}
5043
5044/* may be called multiple times per register */
5045static void unregister_sched_domain_sysctl(void)
5046{
5047	if (sd_sysctl_header)
5048		unregister_sysctl_table(sd_sysctl_header);
5049	sd_sysctl_header = NULL;
5050	if (sd_ctl_dir[0].child)
5051		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5052}
5053#else
5054static void register_sched_domain_sysctl(void)
5055{
5056}
5057static void unregister_sched_domain_sysctl(void)
5058{
5059}
5060#endif
5061
5062static void set_rq_online(struct rq *rq)
5063{
5064	if (!rq->online) {
5065		const struct sched_class *class;
5066
5067		cpumask_set_cpu(rq->cpu, rq->rd->online);
5068		rq->online = 1;
5069
5070		for_each_class(class) {
5071			if (class->rq_online)
5072				class->rq_online(rq);
5073		}
5074	}
5075}
5076
5077static void set_rq_offline(struct rq *rq)
5078{
5079	if (rq->online) {
5080		const struct sched_class *class;
5081
5082		for_each_class(class) {
5083			if (class->rq_offline)
5084				class->rq_offline(rq);
5085		}
5086
5087		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5088		rq->online = 0;
5089	}
5090}
5091
5092/*
5093 * migration_call - callback that gets triggered when a CPU is added.
5094 * Here we can start up the necessary migration thread for the new CPU.
5095 */
5096static int __cpuinit
5097migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5098{
5099	int cpu = (long)hcpu;
5100	unsigned long flags;
5101	struct rq *rq = cpu_rq(cpu);
5102
5103	switch (action & ~CPU_TASKS_FROZEN) {
5104
5105	case CPU_UP_PREPARE:
5106		rq->calc_load_update = calc_load_update;
5107		break;
5108
5109	case CPU_ONLINE:
5110		/* Update our root-domain */
5111		raw_spin_lock_irqsave(&rq->lock, flags);
5112		if (rq->rd) {
5113			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5114
5115			set_rq_online(rq);
5116		}
5117		raw_spin_unlock_irqrestore(&rq->lock, flags);
5118		break;
5119
5120#ifdef CONFIG_HOTPLUG_CPU
5121	case CPU_DYING:
5122		sched_ttwu_pending();
5123		/* Update our root-domain */
5124		raw_spin_lock_irqsave(&rq->lock, flags);
5125		if (rq->rd) {
5126			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5127			set_rq_offline(rq);
5128		}
5129		migrate_tasks(cpu);
5130		BUG_ON(rq->nr_running != 1); /* the migration thread */
5131		raw_spin_unlock_irqrestore(&rq->lock, flags);
5132		break;
5133
5134	case CPU_DEAD:
5135		calc_load_migrate(rq);
5136		break;
5137#endif
5138	}
5139
5140	update_max_interval();
5141
5142	return NOTIFY_OK;
5143}
5144
5145/*
5146 * Register at high priority so that task migration (migrate_all_tasks)
5147 * happens before everything else.  This has to be lower priority than
5148 * the notifier in the perf_event subsystem, though.
5149 */
5150static struct notifier_block __cpuinitdata migration_notifier = {
5151	.notifier_call = migration_call,
5152	.priority = CPU_PRI_MIGRATION,
5153};
5154
5155static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5156				      unsigned long action, void *hcpu)
5157{
5158	switch (action & ~CPU_TASKS_FROZEN) {
5159	case CPU_STARTING:
5160	case CPU_DOWN_FAILED:
5161		set_cpu_active((long)hcpu, true);
5162		return NOTIFY_OK;
5163	default:
5164		return NOTIFY_DONE;
5165	}
5166}
5167
5168static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5169					unsigned long action, void *hcpu)
5170{
5171	switch (action & ~CPU_TASKS_FROZEN) {
5172	case CPU_DOWN_PREPARE:
5173		set_cpu_active((long)hcpu, false);
5174		return NOTIFY_OK;
5175	default:
5176		return NOTIFY_DONE;
5177	}
5178}
5179
5180static int __init migration_init(void)
5181{
5182	void *cpu = (void *)(long)smp_processor_id();
5183	int err;
5184
5185	/* Initialize migration for the boot CPU */
5186	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5187	BUG_ON(err == NOTIFY_BAD);
5188	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5189	register_cpu_notifier(&migration_notifier);
5190
5191	/* Register cpu active notifiers */
5192	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5193	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5194
5195	return 0;
5196}
5197early_initcall(migration_init);
5198#endif
5199
5200#ifdef CONFIG_SMP
5201
5202static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5203
5204#ifdef CONFIG_SCHED_DEBUG
5205
5206static __read_mostly int sched_debug_enabled;
5207
5208static int __init sched_debug_setup(char *str)
5209{
5210	sched_debug_enabled = 1;
5211
5212	return 0;
5213}
5214early_param("sched_debug", sched_debug_setup);
5215
5216static inline bool sched_debug(void)
5217{
5218	return sched_debug_enabled;
5219}
5220
5221static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5222				  struct cpumask *groupmask)
5223{
5224	struct sched_group *group = sd->groups;
5225	char str[256];
5226
5227	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5228	cpumask_clear(groupmask);
5229
5230	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5231
5232	if (!(sd->flags & SD_LOAD_BALANCE)) {
5233		printk("does not load-balance\n");
5234		if (sd->parent)
5235			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5236					" has parent");
5237		return -1;
5238	}
5239
5240	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5241
5242	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5243		printk(KERN_ERR "ERROR: domain->span does not contain "
5244				"CPU%d\n", cpu);
5245	}
5246	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5247		printk(KERN_ERR "ERROR: domain->groups does not contain"
5248				" CPU%d\n", cpu);
5249	}
5250
5251	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5252	do {
5253		if (!group) {
5254			printk("\n");
5255			printk(KERN_ERR "ERROR: group is NULL\n");
5256			break;
5257		}
5258
5259		/*
5260		 * Even though we initialize ->power to something semi-sane,
5261		 * we leave power_orig unset. This allows us to detect if
5262		 * domain iteration is still funny without causing /0 traps.
5263		 */
5264		if (!group->sgp->power_orig) {
5265			printk(KERN_CONT "\n");
5266			printk(KERN_ERR "ERROR: domain->cpu_power not "
5267					"set\n");
5268			break;
5269		}
5270
5271		if (!cpumask_weight(sched_group_cpus(group))) {
5272			printk(KERN_CONT "\n");
5273			printk(KERN_ERR "ERROR: empty group\n");
5274			break;
5275		}
5276
5277		if (!(sd->flags & SD_OVERLAP) &&
5278		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5279			printk(KERN_CONT "\n");
5280			printk(KERN_ERR "ERROR: repeated CPUs\n");
5281			break;
5282		}
5283
5284		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5285
5286		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5287
5288		printk(KERN_CONT " %s", str);
5289		if (group->sgp->power != SCHED_POWER_SCALE) {
5290			printk(KERN_CONT " (cpu_power = %d)",
5291				group->sgp->power);
5292		}
5293
5294		group = group->next;
5295	} while (group != sd->groups);
5296	printk(KERN_CONT "\n");
5297
5298	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5299		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5300
5301	if (sd->parent &&
5302	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5303		printk(KERN_ERR "ERROR: parent span is not a superset "
5304			"of domain->span\n");
5305	return 0;
5306}
5307
5308static void sched_domain_debug(struct sched_domain *sd, int cpu)
5309{
5310	int level = 0;
5311
5312	if (!sched_debug_enabled)
5313		return;
5314
5315	if (!sd) {
5316		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5317		return;
5318	}
5319
5320	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5321
5322	for (;;) {
5323		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5324			break;
5325		level++;
5326		sd = sd->parent;
5327		if (!sd)
5328			break;
5329	}
5330}
5331#else /* !CONFIG_SCHED_DEBUG */
5332# define sched_domain_debug(sd, cpu) do { } while (0)
5333static inline bool sched_debug(void)
5334{
5335	return false;
5336}
5337#endif /* CONFIG_SCHED_DEBUG */
5338
5339static int sd_degenerate(struct sched_domain *sd)
5340{
5341	if (cpumask_weight(sched_domain_span(sd)) == 1)
5342		return 1;
5343
5344	/* Following flags need at least 2 groups */
5345	if (sd->flags & (SD_LOAD_BALANCE |
5346			 SD_BALANCE_NEWIDLE |
5347			 SD_BALANCE_FORK |
5348			 SD_BALANCE_EXEC |
5349			 SD_SHARE_CPUPOWER |
5350			 SD_SHARE_PKG_RESOURCES)) {
5351		if (sd->groups != sd->groups->next)
5352			return 0;
5353	}
5354
5355	/* Following flags don't use groups */
5356	if (sd->flags & (SD_WAKE_AFFINE))
5357		return 0;
5358
5359	return 1;
5360}
5361
5362static int
5363sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5364{
5365	unsigned long cflags = sd->flags, pflags = parent->flags;
5366
5367	if (sd_degenerate(parent))
5368		return 1;
5369
5370	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5371		return 0;
5372
5373	/* Flags needing groups don't count if only 1 group in parent */
5374	if (parent->groups == parent->groups->next) {
5375		pflags &= ~(SD_LOAD_BALANCE |
5376				SD_BALANCE_NEWIDLE |
5377				SD_BALANCE_FORK |
5378				SD_BALANCE_EXEC |
5379				SD_SHARE_CPUPOWER |
5380				SD_SHARE_PKG_RESOURCES);
5381		if (nr_node_ids == 1)
5382			pflags &= ~SD_SERIALIZE;
5383	}
5384	if (~cflags & pflags)
5385		return 0;
5386
5387	return 1;
5388}
5389
5390static void free_rootdomain(struct rcu_head *rcu)
5391{
5392	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5393
5394	cpupri_cleanup(&rd->cpupri);
5395	free_cpumask_var(rd->rto_mask);
5396	free_cpumask_var(rd->online);
5397	free_cpumask_var(rd->span);
5398	kfree(rd);
5399}
5400
5401static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5402{
5403	struct root_domain *old_rd = NULL;
5404	unsigned long flags;
5405
5406	raw_spin_lock_irqsave(&rq->lock, flags);
5407
5408	if (rq->rd) {
5409		old_rd = rq->rd;
5410
5411		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5412			set_rq_offline(rq);
5413
5414		cpumask_clear_cpu(rq->cpu, old_rd->span);
5415
5416		/*
5417		 * If we dont want to free the old_rt yet then
5418		 * set old_rd to NULL to skip the freeing later
5419		 * in this function:
5420		 */
5421		if (!atomic_dec_and_test(&old_rd->refcount))
5422			old_rd = NULL;
5423	}
5424
5425	atomic_inc(&rd->refcount);
5426	rq->rd = rd;
5427
5428	cpumask_set_cpu(rq->cpu, rd->span);
5429	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5430		set_rq_online(rq);
5431
5432	raw_spin_unlock_irqrestore(&rq->lock, flags);
5433
5434	if (old_rd)
5435		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5436}
5437
5438static int init_rootdomain(struct root_domain *rd)
5439{
5440	memset(rd, 0, sizeof(*rd));
5441
5442	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5443		goto out;
5444	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5445		goto free_span;
5446	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5447		goto free_online;
5448
5449	if (cpupri_init(&rd->cpupri) != 0)
5450		goto free_rto_mask;
5451	return 0;
5452
5453free_rto_mask:
5454	free_cpumask_var(rd->rto_mask);
5455free_online:
5456	free_cpumask_var(rd->online);
5457free_span:
5458	free_cpumask_var(rd->span);
5459out:
5460	return -ENOMEM;
5461}
5462
5463/*
5464 * By default the system creates a single root-domain with all cpus as
5465 * members (mimicking the global state we have today).
5466 */
5467struct root_domain def_root_domain;
5468
5469static void init_defrootdomain(void)
5470{
5471	init_rootdomain(&def_root_domain);
5472
5473	atomic_set(&def_root_domain.refcount, 1);
5474}
5475
5476static struct root_domain *alloc_rootdomain(void)
5477{
5478	struct root_domain *rd;
5479
5480	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5481	if (!rd)
5482		return NULL;
5483
5484	if (init_rootdomain(rd) != 0) {
5485		kfree(rd);
5486		return NULL;
5487	}
5488
5489	return rd;
5490}
5491
5492static void free_sched_groups(struct sched_group *sg, int free_sgp)
5493{
5494	struct sched_group *tmp, *first;
5495
5496	if (!sg)
5497		return;
5498
5499	first = sg;
5500	do {
5501		tmp = sg->next;
5502
5503		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5504			kfree(sg->sgp);
5505
5506		kfree(sg);
5507		sg = tmp;
5508	} while (sg != first);
5509}
5510
5511static void free_sched_domain(struct rcu_head *rcu)
5512{
5513	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5514
5515	/*
5516	 * If its an overlapping domain it has private groups, iterate and
5517	 * nuke them all.
5518	 */
5519	if (sd->flags & SD_OVERLAP) {
5520		free_sched_groups(sd->groups, 1);
5521	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5522		kfree(sd->groups->sgp);
5523		kfree(sd->groups);
5524	}
5525	kfree(sd);
5526}
5527
5528static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5529{
5530	call_rcu(&sd->rcu, free_sched_domain);
5531}
5532
5533static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5534{
5535	for (; sd; sd = sd->parent)
5536		destroy_sched_domain(sd, cpu);
5537}
5538
5539/*
5540 * Keep a special pointer to the highest sched_domain that has
5541 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5542 * allows us to avoid some pointer chasing select_idle_sibling().
5543 *
5544 * Also keep a unique ID per domain (we use the first cpu number in
5545 * the cpumask of the domain), this allows us to quickly tell if
5546 * two cpus are in the same cache domain, see cpus_share_cache().
5547 */
5548DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5549DEFINE_PER_CPU(int, sd_llc_id);
5550
5551static void update_top_cache_domain(int cpu)
5552{
5553	struct sched_domain *sd;
5554	int id = cpu;
5555
5556	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5557	if (sd)
5558		id = cpumask_first(sched_domain_span(sd));
5559
5560	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5561	per_cpu(sd_llc_id, cpu) = id;
5562}
5563
5564/*
5565 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5566 * hold the hotplug lock.
5567 */
5568static void
5569cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5570{
5571	struct rq *rq = cpu_rq(cpu);
5572	struct sched_domain *tmp;
5573
5574	/* Remove the sched domains which do not contribute to scheduling. */
5575	for (tmp = sd; tmp; ) {
5576		struct sched_domain *parent = tmp->parent;
5577		if (!parent)
5578			break;
5579
5580		if (sd_parent_degenerate(tmp, parent)) {
5581			tmp->parent = parent->parent;
5582			if (parent->parent)
5583				parent->parent->child = tmp;
5584			destroy_sched_domain(parent, cpu);
5585		} else
5586			tmp = tmp->parent;
5587	}
5588
5589	if (sd && sd_degenerate(sd)) {
5590		tmp = sd;
5591		sd = sd->parent;
5592		destroy_sched_domain(tmp, cpu);
5593		if (sd)
5594			sd->child = NULL;
5595	}
5596
5597	sched_domain_debug(sd, cpu);
5598
5599	rq_attach_root(rq, rd);
5600	tmp = rq->sd;
5601	rcu_assign_pointer(rq->sd, sd);
5602	destroy_sched_domains(tmp, cpu);
5603
5604	update_top_cache_domain(cpu);
5605}
5606
5607/* cpus with isolated domains */
5608static cpumask_var_t cpu_isolated_map;
5609
5610/* Setup the mask of cpus configured for isolated domains */
5611static int __init isolated_cpu_setup(char *str)
5612{
5613	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5614	cpulist_parse(str, cpu_isolated_map);
5615	return 1;
5616}
5617
5618__setup("isolcpus=", isolated_cpu_setup);
5619
5620static const struct cpumask *cpu_cpu_mask(int cpu)
5621{
5622	return cpumask_of_node(cpu_to_node(cpu));
5623}
5624
5625struct sd_data {
5626	struct sched_domain **__percpu sd;
5627	struct sched_group **__percpu sg;
5628	struct sched_group_power **__percpu sgp;
5629};
5630
5631struct s_data {
5632	struct sched_domain ** __percpu sd;
5633	struct root_domain	*rd;
5634};
5635
5636enum s_alloc {
5637	sa_rootdomain,
5638	sa_sd,
5639	sa_sd_storage,
5640	sa_none,
5641};
5642
5643struct sched_domain_topology_level;
5644
5645typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5646typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5647
5648#define SDTL_OVERLAP	0x01
5649
5650struct sched_domain_topology_level {
5651	sched_domain_init_f init;
5652	sched_domain_mask_f mask;
5653	int		    flags;
5654	int		    numa_level;
5655	struct sd_data      data;
5656};
5657
5658/*
5659 * Build an iteration mask that can exclude certain CPUs from the upwards
5660 * domain traversal.
5661 *
5662 * Asymmetric node setups can result in situations where the domain tree is of
5663 * unequal depth, make sure to skip domains that already cover the entire
5664 * range.
5665 *
5666 * In that case build_sched_domains() will have terminated the iteration early
5667 * and our sibling sd spans will be empty. Domains should always include the
5668 * cpu they're built on, so check that.
5669 *
5670 */
5671static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5672{
5673	const struct cpumask *span = sched_domain_span(sd);
5674	struct sd_data *sdd = sd->private;
5675	struct sched_domain *sibling;
5676	int i;
5677
5678	for_each_cpu(i, span) {
5679		sibling = *per_cpu_ptr(sdd->sd, i);
5680		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5681			continue;
5682
5683		cpumask_set_cpu(i, sched_group_mask(sg));
5684	}
5685}
5686
5687/*
5688 * Return the canonical balance cpu for this group, this is the first cpu
5689 * of this group that's also in the iteration mask.
5690 */
5691int group_balance_cpu(struct sched_group *sg)
5692{
5693	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5694}
5695
5696static int
5697build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5698{
5699	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5700	const struct cpumask *span = sched_domain_span(sd);
5701	struct cpumask *covered = sched_domains_tmpmask;
5702	struct sd_data *sdd = sd->private;
5703	struct sched_domain *child;
5704	int i;
5705
5706	cpumask_clear(covered);
5707
5708	for_each_cpu(i, span) {
5709		struct cpumask *sg_span;
5710
5711		if (cpumask_test_cpu(i, covered))
5712			continue;
5713
5714		child = *per_cpu_ptr(sdd->sd, i);
5715
5716		/* See the comment near build_group_mask(). */
5717		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5718			continue;
5719
5720		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5721				GFP_KERNEL, cpu_to_node(cpu));
5722
5723		if (!sg)
5724			goto fail;
5725
5726		sg_span = sched_group_cpus(sg);
5727		if (child->child) {
5728			child = child->child;
5729			cpumask_copy(sg_span, sched_domain_span(child));
5730		} else
5731			cpumask_set_cpu(i, sg_span);
5732
5733		cpumask_or(covered, covered, sg_span);
5734
5735		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5736		if (atomic_inc_return(&sg->sgp->ref) == 1)
5737			build_group_mask(sd, sg);
5738
5739		/*
5740		 * Initialize sgp->power such that even if we mess up the
5741		 * domains and no possible iteration will get us here, we won't
5742		 * die on a /0 trap.
5743		 */
5744		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5745
5746		/*
5747		 * Make sure the first group of this domain contains the
5748		 * canonical balance cpu. Otherwise the sched_domain iteration
5749		 * breaks. See update_sg_lb_stats().
5750		 */
5751		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5752		    group_balance_cpu(sg) == cpu)
5753			groups = sg;
5754
5755		if (!first)
5756			first = sg;
5757		if (last)
5758			last->next = sg;
5759		last = sg;
5760		last->next = first;
5761	}
5762	sd->groups = groups;
5763
5764	return 0;
5765
5766fail:
5767	free_sched_groups(first, 0);
5768
5769	return -ENOMEM;
5770}
5771
5772static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5773{
5774	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5775	struct sched_domain *child = sd->child;
5776
5777	if (child)
5778		cpu = cpumask_first(sched_domain_span(child));
5779
5780	if (sg) {
5781		*sg = *per_cpu_ptr(sdd->sg, cpu);
5782		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5783		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5784	}
5785
5786	return cpu;
5787}
5788
5789/*
5790 * build_sched_groups will build a circular linked list of the groups
5791 * covered by the given span, and will set each group's ->cpumask correctly,
5792 * and ->cpu_power to 0.
5793 *
5794 * Assumes the sched_domain tree is fully constructed
5795 */
5796static int
5797build_sched_groups(struct sched_domain *sd, int cpu)
5798{
5799	struct sched_group *first = NULL, *last = NULL;
5800	struct sd_data *sdd = sd->private;
5801	const struct cpumask *span = sched_domain_span(sd);
5802	struct cpumask *covered;
5803	int i;
5804
5805	get_group(cpu, sdd, &sd->groups);
5806	atomic_inc(&sd->groups->ref);
5807
5808	if (cpu != cpumask_first(sched_domain_span(sd)))
5809		return 0;
5810
5811	lockdep_assert_held(&sched_domains_mutex);
5812	covered = sched_domains_tmpmask;
5813
5814	cpumask_clear(covered);
5815
5816	for_each_cpu(i, span) {
5817		struct sched_group *sg;
5818		int group = get_group(i, sdd, &sg);
5819		int j;
5820
5821		if (cpumask_test_cpu(i, covered))
5822			continue;
5823
5824		cpumask_clear(sched_group_cpus(sg));
5825		sg->sgp->power = 0;
5826		cpumask_setall(sched_group_mask(sg));
5827
5828		for_each_cpu(j, span) {
5829			if (get_group(j, sdd, NULL) != group)
5830				continue;
5831
5832			cpumask_set_cpu(j, covered);
5833			cpumask_set_cpu(j, sched_group_cpus(sg));
5834		}
5835
5836		if (!first)
5837			first = sg;
5838		if (last)
5839			last->next = sg;
5840		last = sg;
5841	}
5842	last->next = first;
5843
5844	return 0;
5845}
5846
5847/*
5848 * Initialize sched groups cpu_power.
5849 *
5850 * cpu_power indicates the capacity of sched group, which is used while
5851 * distributing the load between different sched groups in a sched domain.
5852 * Typically cpu_power for all the groups in a sched domain will be same unless
5853 * there are asymmetries in the topology. If there are asymmetries, group
5854 * having more cpu_power will pickup more load compared to the group having
5855 * less cpu_power.
5856 */
5857static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5858{
5859	struct sched_group *sg = sd->groups;
5860
5861	WARN_ON(!sd || !sg);
5862
5863	do {
5864		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5865		sg = sg->next;
5866	} while (sg != sd->groups);
5867
5868	if (cpu != group_balance_cpu(sg))
5869		return;
5870
5871	update_group_power(sd, cpu);
5872	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5873}
5874
5875int __weak arch_sd_sibling_asym_packing(void)
5876{
5877       return 0*SD_ASYM_PACKING;
5878}
5879
5880/*
5881 * Initializers for schedule domains
5882 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5883 */
5884
5885#ifdef CONFIG_SCHED_DEBUG
5886# define SD_INIT_NAME(sd, type)		sd->name = #type
5887#else
5888# define SD_INIT_NAME(sd, type)		do { } while (0)
5889#endif
5890
5891#define SD_INIT_FUNC(type)						\
5892static noinline struct sched_domain *					\
5893sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5894{									\
5895	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5896	*sd = SD_##type##_INIT;						\
5897	SD_INIT_NAME(sd, type);						\
5898	sd->private = &tl->data;					\
5899	return sd;							\
5900}
5901
5902SD_INIT_FUNC(CPU)
5903#ifdef CONFIG_SCHED_SMT
5904 SD_INIT_FUNC(SIBLING)
5905#endif
5906#ifdef CONFIG_SCHED_MC
5907 SD_INIT_FUNC(MC)
5908#endif
5909#ifdef CONFIG_SCHED_BOOK
5910 SD_INIT_FUNC(BOOK)
5911#endif
5912
5913static int default_relax_domain_level = -1;
5914int sched_domain_level_max;
5915
5916static int __init setup_relax_domain_level(char *str)
5917{
5918	if (kstrtoint(str, 0, &default_relax_domain_level))
5919		pr_warn("Unable to set relax_domain_level\n");
5920
5921	return 1;
5922}
5923__setup("relax_domain_level=", setup_relax_domain_level);
5924
5925static void set_domain_attribute(struct sched_domain *sd,
5926				 struct sched_domain_attr *attr)
5927{
5928	int request;
5929
5930	if (!attr || attr->relax_domain_level < 0) {
5931		if (default_relax_domain_level < 0)
5932			return;
5933		else
5934			request = default_relax_domain_level;
5935	} else
5936		request = attr->relax_domain_level;
5937	if (request < sd->level) {
5938		/* turn off idle balance on this domain */
5939		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5940	} else {
5941		/* turn on idle balance on this domain */
5942		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5943	}
5944}
5945
5946static void __sdt_free(const struct cpumask *cpu_map);
5947static int __sdt_alloc(const struct cpumask *cpu_map);
5948
5949static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5950				 const struct cpumask *cpu_map)
5951{
5952	switch (what) {
5953	case sa_rootdomain:
5954		if (!atomic_read(&d->rd->refcount))
5955			free_rootdomain(&d->rd->rcu); /* fall through */
5956	case sa_sd:
5957		free_percpu(d->sd); /* fall through */
5958	case sa_sd_storage:
5959		__sdt_free(cpu_map); /* fall through */
5960	case sa_none:
5961		break;
5962	}
5963}
5964
5965static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5966						   const struct cpumask *cpu_map)
5967{
5968	memset(d, 0, sizeof(*d));
5969
5970	if (__sdt_alloc(cpu_map))
5971		return sa_sd_storage;
5972	d->sd = alloc_percpu(struct sched_domain *);
5973	if (!d->sd)
5974		return sa_sd_storage;
5975	d->rd = alloc_rootdomain();
5976	if (!d->rd)
5977		return sa_sd;
5978	return sa_rootdomain;
5979}
5980
5981/*
5982 * NULL the sd_data elements we've used to build the sched_domain and
5983 * sched_group structure so that the subsequent __free_domain_allocs()
5984 * will not free the data we're using.
5985 */
5986static void claim_allocations(int cpu, struct sched_domain *sd)
5987{
5988	struct sd_data *sdd = sd->private;
5989
5990	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5991	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5992
5993	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5994		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5995
5996	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5997		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5998}
5999
6000#ifdef CONFIG_SCHED_SMT
6001static const struct cpumask *cpu_smt_mask(int cpu)
6002{
6003	return topology_thread_cpumask(cpu);
6004}
6005#endif
6006
6007/*
6008 * Topology list, bottom-up.
6009 */
6010static struct sched_domain_topology_level default_topology[] = {
6011#ifdef CONFIG_SCHED_SMT
6012	{ sd_init_SIBLING, cpu_smt_mask, },
6013#endif
6014#ifdef CONFIG_SCHED_MC
6015	{ sd_init_MC, cpu_coregroup_mask, },
6016#endif
6017#ifdef CONFIG_SCHED_BOOK
6018	{ sd_init_BOOK, cpu_book_mask, },
6019#endif
6020	{ sd_init_CPU, cpu_cpu_mask, },
6021	{ NULL, },
6022};
6023
6024static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6025
6026#ifdef CONFIG_NUMA
6027
6028static int sched_domains_numa_levels;
6029static int *sched_domains_numa_distance;
6030static struct cpumask ***sched_domains_numa_masks;
6031static int sched_domains_curr_level;
6032
6033static inline int sd_local_flags(int level)
6034{
6035	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6036		return 0;
6037
6038	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6039}
6040
6041static struct sched_domain *
6042sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6043{
6044	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6045	int level = tl->numa_level;
6046	int sd_weight = cpumask_weight(
6047			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6048
6049	*sd = (struct sched_domain){
6050		.min_interval		= sd_weight,
6051		.max_interval		= 2*sd_weight,
6052		.busy_factor		= 32,
6053		.imbalance_pct		= 125,
6054		.cache_nice_tries	= 2,
6055		.busy_idx		= 3,
6056		.idle_idx		= 2,
6057		.newidle_idx		= 0,
6058		.wake_idx		= 0,
6059		.forkexec_idx		= 0,
6060
6061		.flags			= 1*SD_LOAD_BALANCE
6062					| 1*SD_BALANCE_NEWIDLE
6063					| 0*SD_BALANCE_EXEC
6064					| 0*SD_BALANCE_FORK
6065					| 0*SD_BALANCE_WAKE
6066					| 0*SD_WAKE_AFFINE
6067					| 0*SD_SHARE_CPUPOWER
6068					| 0*SD_SHARE_PKG_RESOURCES
6069					| 1*SD_SERIALIZE
6070					| 0*SD_PREFER_SIBLING
6071					| sd_local_flags(level)
6072					,
6073		.last_balance		= jiffies,
6074		.balance_interval	= sd_weight,
6075	};
6076	SD_INIT_NAME(sd, NUMA);
6077	sd->private = &tl->data;
6078
6079	/*
6080	 * Ugly hack to pass state to sd_numa_mask()...
6081	 */
6082	sched_domains_curr_level = tl->numa_level;
6083
6084	return sd;
6085}
6086
6087static const struct cpumask *sd_numa_mask(int cpu)
6088{
6089	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6090}
6091
6092static void sched_numa_warn(const char *str)
6093{
6094	static int done = false;
6095	int i,j;
6096
6097	if (done)
6098		return;
6099
6100	done = true;
6101
6102	printk(KERN_WARNING "ERROR: %s\n\n", str);
6103
6104	for (i = 0; i < nr_node_ids; i++) {
6105		printk(KERN_WARNING "  ");
6106		for (j = 0; j < nr_node_ids; j++)
6107			printk(KERN_CONT "%02d ", node_distance(i,j));
6108		printk(KERN_CONT "\n");
6109	}
6110	printk(KERN_WARNING "\n");
6111}
6112
6113static bool find_numa_distance(int distance)
6114{
6115	int i;
6116
6117	if (distance == node_distance(0, 0))
6118		return true;
6119
6120	for (i = 0; i < sched_domains_numa_levels; i++) {
6121		if (sched_domains_numa_distance[i] == distance)
6122			return true;
6123	}
6124
6125	return false;
6126}
6127
6128static void sched_init_numa(void)
6129{
6130	int next_distance, curr_distance = node_distance(0, 0);
6131	struct sched_domain_topology_level *tl;
6132	int level = 0;
6133	int i, j, k;
6134
6135	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6136	if (!sched_domains_numa_distance)
6137		return;
6138
6139	/*
6140	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6141	 * unique distances in the node_distance() table.
6142	 *
6143	 * Assumes node_distance(0,j) includes all distances in
6144	 * node_distance(i,j) in order to avoid cubic time.
6145	 */
6146	next_distance = curr_distance;
6147	for (i = 0; i < nr_node_ids; i++) {
6148		for (j = 0; j < nr_node_ids; j++) {
6149			for (k = 0; k < nr_node_ids; k++) {
6150				int distance = node_distance(i, k);
6151
6152				if (distance > curr_distance &&
6153				    (distance < next_distance ||
6154				     next_distance == curr_distance))
6155					next_distance = distance;
6156
6157				/*
6158				 * While not a strong assumption it would be nice to know
6159				 * about cases where if node A is connected to B, B is not
6160				 * equally connected to A.
6161				 */
6162				if (sched_debug() && node_distance(k, i) != distance)
6163					sched_numa_warn("Node-distance not symmetric");
6164
6165				if (sched_debug() && i && !find_numa_distance(distance))
6166					sched_numa_warn("Node-0 not representative");
6167			}
6168			if (next_distance != curr_distance) {
6169				sched_domains_numa_distance[level++] = next_distance;
6170				sched_domains_numa_levels = level;
6171				curr_distance = next_distance;
6172			} else break;
6173		}
6174
6175		/*
6176		 * In case of sched_debug() we verify the above assumption.
6177		 */
6178		if (!sched_debug())
6179			break;
6180	}
6181	/*
6182	 * 'level' contains the number of unique distances, excluding the
6183	 * identity distance node_distance(i,i).
6184	 *
6185	 * The sched_domains_nume_distance[] array includes the actual distance
6186	 * numbers.
6187	 */
6188
6189	/*
6190	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6191	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6192	 * the array will contain less then 'level' members. This could be
6193	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6194	 * in other functions.
6195	 *
6196	 * We reset it to 'level' at the end of this function.
6197	 */
6198	sched_domains_numa_levels = 0;
6199
6200	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6201	if (!sched_domains_numa_masks)
6202		return;
6203
6204	/*
6205	 * Now for each level, construct a mask per node which contains all
6206	 * cpus of nodes that are that many hops away from us.
6207	 */
6208	for (i = 0; i < level; i++) {
6209		sched_domains_numa_masks[i] =
6210			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6211		if (!sched_domains_numa_masks[i])
6212			return;
6213
6214		for (j = 0; j < nr_node_ids; j++) {
6215			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6216			if (!mask)
6217				return;
6218
6219			sched_domains_numa_masks[i][j] = mask;
6220
6221			for (k = 0; k < nr_node_ids; k++) {
6222				if (node_distance(j, k) > sched_domains_numa_distance[i])
6223					continue;
6224
6225				cpumask_or(mask, mask, cpumask_of_node(k));
6226			}
6227		}
6228	}
6229
6230	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6231			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6232	if (!tl)
6233		return;
6234
6235	/*
6236	 * Copy the default topology bits..
6237	 */
6238	for (i = 0; default_topology[i].init; i++)
6239		tl[i] = default_topology[i];
6240
6241	/*
6242	 * .. and append 'j' levels of NUMA goodness.
6243	 */
6244	for (j = 0; j < level; i++, j++) {
6245		tl[i] = (struct sched_domain_topology_level){
6246			.init = sd_numa_init,
6247			.mask = sd_numa_mask,
6248			.flags = SDTL_OVERLAP,
6249			.numa_level = j,
6250		};
6251	}
6252
6253	sched_domain_topology = tl;
6254
6255	sched_domains_numa_levels = level;
6256}
6257
6258static void sched_domains_numa_masks_set(int cpu)
6259{
6260	int i, j;
6261	int node = cpu_to_node(cpu);
6262
6263	for (i = 0; i < sched_domains_numa_levels; i++) {
6264		for (j = 0; j < nr_node_ids; j++) {
6265			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6266				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6267		}
6268	}
6269}
6270
6271static void sched_domains_numa_masks_clear(int cpu)
6272{
6273	int i, j;
6274	for (i = 0; i < sched_domains_numa_levels; i++) {
6275		for (j = 0; j < nr_node_ids; j++)
6276			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6277	}
6278}
6279
6280/*
6281 * Update sched_domains_numa_masks[level][node] array when new cpus
6282 * are onlined.
6283 */
6284static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6285					   unsigned long action,
6286					   void *hcpu)
6287{
6288	int cpu = (long)hcpu;
6289
6290	switch (action & ~CPU_TASKS_FROZEN) {
6291	case CPU_ONLINE:
6292		sched_domains_numa_masks_set(cpu);
6293		break;
6294
6295	case CPU_DEAD:
6296		sched_domains_numa_masks_clear(cpu);
6297		break;
6298
6299	default:
6300		return NOTIFY_DONE;
6301	}
6302
6303	return NOTIFY_OK;
6304}
6305#else
6306static inline void sched_init_numa(void)
6307{
6308}
6309
6310static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6311					   unsigned long action,
6312					   void *hcpu)
6313{
6314	return 0;
6315}
6316#endif /* CONFIG_NUMA */
6317
6318static int __sdt_alloc(const struct cpumask *cpu_map)
6319{
6320	struct sched_domain_topology_level *tl;
6321	int j;
6322
6323	for (tl = sched_domain_topology; tl->init; tl++) {
6324		struct sd_data *sdd = &tl->data;
6325
6326		sdd->sd = alloc_percpu(struct sched_domain *);
6327		if (!sdd->sd)
6328			return -ENOMEM;
6329
6330		sdd->sg = alloc_percpu(struct sched_group *);
6331		if (!sdd->sg)
6332			return -ENOMEM;
6333
6334		sdd->sgp = alloc_percpu(struct sched_group_power *);
6335		if (!sdd->sgp)
6336			return -ENOMEM;
6337
6338		for_each_cpu(j, cpu_map) {
6339			struct sched_domain *sd;
6340			struct sched_group *sg;
6341			struct sched_group_power *sgp;
6342
6343		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6344					GFP_KERNEL, cpu_to_node(j));
6345			if (!sd)
6346				return -ENOMEM;
6347
6348			*per_cpu_ptr(sdd->sd, j) = sd;
6349
6350			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6351					GFP_KERNEL, cpu_to_node(j));
6352			if (!sg)
6353				return -ENOMEM;
6354
6355			sg->next = sg;
6356
6357			*per_cpu_ptr(sdd->sg, j) = sg;
6358
6359			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6360					GFP_KERNEL, cpu_to_node(j));
6361			if (!sgp)
6362				return -ENOMEM;
6363
6364			*per_cpu_ptr(sdd->sgp, j) = sgp;
6365		}
6366	}
6367
6368	return 0;
6369}
6370
6371static void __sdt_free(const struct cpumask *cpu_map)
6372{
6373	struct sched_domain_topology_level *tl;
6374	int j;
6375
6376	for (tl = sched_domain_topology; tl->init; tl++) {
6377		struct sd_data *sdd = &tl->data;
6378
6379		for_each_cpu(j, cpu_map) {
6380			struct sched_domain *sd;
6381
6382			if (sdd->sd) {
6383				sd = *per_cpu_ptr(sdd->sd, j);
6384				if (sd && (sd->flags & SD_OVERLAP))
6385					free_sched_groups(sd->groups, 0);
6386				kfree(*per_cpu_ptr(sdd->sd, j));
6387			}
6388
6389			if (sdd->sg)
6390				kfree(*per_cpu_ptr(sdd->sg, j));
6391			if (sdd->sgp)
6392				kfree(*per_cpu_ptr(sdd->sgp, j));
6393		}
6394		free_percpu(sdd->sd);
6395		sdd->sd = NULL;
6396		free_percpu(sdd->sg);
6397		sdd->sg = NULL;
6398		free_percpu(sdd->sgp);
6399		sdd->sgp = NULL;
6400	}
6401}
6402
6403struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6404		struct s_data *d, const struct cpumask *cpu_map,
6405		struct sched_domain_attr *attr, struct sched_domain *child,
6406		int cpu)
6407{
6408	struct sched_domain *sd = tl->init(tl, cpu);
6409	if (!sd)
6410		return child;
6411
6412	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6413	if (child) {
6414		sd->level = child->level + 1;
6415		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6416		child->parent = sd;
6417	}
6418	sd->child = child;
6419	set_domain_attribute(sd, attr);
6420
6421	return sd;
6422}
6423
6424/*
6425 * Build sched domains for a given set of cpus and attach the sched domains
6426 * to the individual cpus
6427 */
6428static int build_sched_domains(const struct cpumask *cpu_map,
6429			       struct sched_domain_attr *attr)
6430{
6431	enum s_alloc alloc_state = sa_none;
6432	struct sched_domain *sd;
6433	struct s_data d;
6434	int i, ret = -ENOMEM;
6435
6436	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6437	if (alloc_state != sa_rootdomain)
6438		goto error;
6439
6440	/* Set up domains for cpus specified by the cpu_map. */
6441	for_each_cpu(i, cpu_map) {
6442		struct sched_domain_topology_level *tl;
6443
6444		sd = NULL;
6445		for (tl = sched_domain_topology; tl->init; tl++) {
6446			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6447			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6448				sd->flags |= SD_OVERLAP;
6449			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6450				break;
6451		}
6452
6453		while (sd->child)
6454			sd = sd->child;
6455
6456		*per_cpu_ptr(d.sd, i) = sd;
6457	}
6458
6459	/* Build the groups for the domains */
6460	for_each_cpu(i, cpu_map) {
6461		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6462			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6463			if (sd->flags & SD_OVERLAP) {
6464				if (build_overlap_sched_groups(sd, i))
6465					goto error;
6466			} else {
6467				if (build_sched_groups(sd, i))
6468					goto error;
6469			}
6470		}
6471	}
6472
6473	/* Calculate CPU power for physical packages and nodes */
6474	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6475		if (!cpumask_test_cpu(i, cpu_map))
6476			continue;
6477
6478		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6479			claim_allocations(i, sd);
6480			init_sched_groups_power(i, sd);
6481		}
6482	}
6483
6484	/* Attach the domains */
6485	rcu_read_lock();
6486	for_each_cpu(i, cpu_map) {
6487		sd = *per_cpu_ptr(d.sd, i);
6488		cpu_attach_domain(sd, d.rd, i);
6489	}
6490	rcu_read_unlock();
6491
6492	ret = 0;
6493error:
6494	__free_domain_allocs(&d, alloc_state, cpu_map);
6495	return ret;
6496}
6497
6498static cpumask_var_t *doms_cur;	/* current sched domains */
6499static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6500static struct sched_domain_attr *dattr_cur;
6501				/* attribues of custom domains in 'doms_cur' */
6502
6503/*
6504 * Special case: If a kmalloc of a doms_cur partition (array of
6505 * cpumask) fails, then fallback to a single sched domain,
6506 * as determined by the single cpumask fallback_doms.
6507 */
6508static cpumask_var_t fallback_doms;
6509
6510/*
6511 * arch_update_cpu_topology lets virtualized architectures update the
6512 * cpu core maps. It is supposed to return 1 if the topology changed
6513 * or 0 if it stayed the same.
6514 */
6515int __attribute__((weak)) arch_update_cpu_topology(void)
6516{
6517	return 0;
6518}
6519
6520cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6521{
6522	int i;
6523	cpumask_var_t *doms;
6524
6525	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6526	if (!doms)
6527		return NULL;
6528	for (i = 0; i < ndoms; i++) {
6529		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6530			free_sched_domains(doms, i);
6531			return NULL;
6532		}
6533	}
6534	return doms;
6535}
6536
6537void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6538{
6539	unsigned int i;
6540	for (i = 0; i < ndoms; i++)
6541		free_cpumask_var(doms[i]);
6542	kfree(doms);
6543}
6544
6545/*
6546 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6547 * For now this just excludes isolated cpus, but could be used to
6548 * exclude other special cases in the future.
6549 */
6550static int init_sched_domains(const struct cpumask *cpu_map)
6551{
6552	int err;
6553
6554	arch_update_cpu_topology();
6555	ndoms_cur = 1;
6556	doms_cur = alloc_sched_domains(ndoms_cur);
6557	if (!doms_cur)
6558		doms_cur = &fallback_doms;
6559	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6560	err = build_sched_domains(doms_cur[0], NULL);
6561	register_sched_domain_sysctl();
6562
6563	return err;
6564}
6565
6566/*
6567 * Detach sched domains from a group of cpus specified in cpu_map
6568 * These cpus will now be attached to the NULL domain
6569 */
6570static void detach_destroy_domains(const struct cpumask *cpu_map)
6571{
6572	int i;
6573
6574	rcu_read_lock();
6575	for_each_cpu(i, cpu_map)
6576		cpu_attach_domain(NULL, &def_root_domain, i);
6577	rcu_read_unlock();
6578}
6579
6580/* handle null as "default" */
6581static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6582			struct sched_domain_attr *new, int idx_new)
6583{
6584	struct sched_domain_attr tmp;
6585
6586	/* fast path */
6587	if (!new && !cur)
6588		return 1;
6589
6590	tmp = SD_ATTR_INIT;
6591	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6592			new ? (new + idx_new) : &tmp,
6593			sizeof(struct sched_domain_attr));
6594}
6595
6596/*
6597 * Partition sched domains as specified by the 'ndoms_new'
6598 * cpumasks in the array doms_new[] of cpumasks. This compares
6599 * doms_new[] to the current sched domain partitioning, doms_cur[].
6600 * It destroys each deleted domain and builds each new domain.
6601 *
6602 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6603 * The masks don't intersect (don't overlap.) We should setup one
6604 * sched domain for each mask. CPUs not in any of the cpumasks will
6605 * not be load balanced. If the same cpumask appears both in the
6606 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6607 * it as it is.
6608 *
6609 * The passed in 'doms_new' should be allocated using
6610 * alloc_sched_domains.  This routine takes ownership of it and will
6611 * free_sched_domains it when done with it. If the caller failed the
6612 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6613 * and partition_sched_domains() will fallback to the single partition
6614 * 'fallback_doms', it also forces the domains to be rebuilt.
6615 *
6616 * If doms_new == NULL it will be replaced with cpu_online_mask.
6617 * ndoms_new == 0 is a special case for destroying existing domains,
6618 * and it will not create the default domain.
6619 *
6620 * Call with hotplug lock held
6621 */
6622void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6623			     struct sched_domain_attr *dattr_new)
6624{
6625	int i, j, n;
6626	int new_topology;
6627
6628	mutex_lock(&sched_domains_mutex);
6629
6630	/* always unregister in case we don't destroy any domains */
6631	unregister_sched_domain_sysctl();
6632
6633	/* Let architecture update cpu core mappings. */
6634	new_topology = arch_update_cpu_topology();
6635
6636	n = doms_new ? ndoms_new : 0;
6637
6638	/* Destroy deleted domains */
6639	for (i = 0; i < ndoms_cur; i++) {
6640		for (j = 0; j < n && !new_topology; j++) {
6641			if (cpumask_equal(doms_cur[i], doms_new[j])
6642			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6643				goto match1;
6644		}
6645		/* no match - a current sched domain not in new doms_new[] */
6646		detach_destroy_domains(doms_cur[i]);
6647match1:
6648		;
6649	}
6650
6651	if (doms_new == NULL) {
6652		ndoms_cur = 0;
6653		doms_new = &fallback_doms;
6654		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6655		WARN_ON_ONCE(dattr_new);
6656	}
6657
6658	/* Build new domains */
6659	for (i = 0; i < ndoms_new; i++) {
6660		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6661			if (cpumask_equal(doms_new[i], doms_cur[j])
6662			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6663				goto match2;
6664		}
6665		/* no match - add a new doms_new */
6666		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6667match2:
6668		;
6669	}
6670
6671	/* Remember the new sched domains */
6672	if (doms_cur != &fallback_doms)
6673		free_sched_domains(doms_cur, ndoms_cur);
6674	kfree(dattr_cur);	/* kfree(NULL) is safe */
6675	doms_cur = doms_new;
6676	dattr_cur = dattr_new;
6677	ndoms_cur = ndoms_new;
6678
6679	register_sched_domain_sysctl();
6680
6681	mutex_unlock(&sched_domains_mutex);
6682}
6683
6684static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6685
6686/*
6687 * Update cpusets according to cpu_active mask.  If cpusets are
6688 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6689 * around partition_sched_domains().
6690 *
6691 * If we come here as part of a suspend/resume, don't touch cpusets because we
6692 * want to restore it back to its original state upon resume anyway.
6693 */
6694static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6695			     void *hcpu)
6696{
6697	switch (action) {
6698	case CPU_ONLINE_FROZEN:
6699	case CPU_DOWN_FAILED_FROZEN:
6700
6701		/*
6702		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6703		 * resume sequence. As long as this is not the last online
6704		 * operation in the resume sequence, just build a single sched
6705		 * domain, ignoring cpusets.
6706		 */
6707		num_cpus_frozen--;
6708		if (likely(num_cpus_frozen)) {
6709			partition_sched_domains(1, NULL, NULL);
6710			break;
6711		}
6712
6713		/*
6714		 * This is the last CPU online operation. So fall through and
6715		 * restore the original sched domains by considering the
6716		 * cpuset configurations.
6717		 */
6718
6719	case CPU_ONLINE:
6720	case CPU_DOWN_FAILED:
6721		cpuset_update_active_cpus(true);
6722		break;
6723	default:
6724		return NOTIFY_DONE;
6725	}
6726	return NOTIFY_OK;
6727}
6728
6729static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6730			       void *hcpu)
6731{
6732	switch (action) {
6733	case CPU_DOWN_PREPARE:
6734		cpuset_update_active_cpus(false);
6735		break;
6736	case CPU_DOWN_PREPARE_FROZEN:
6737		num_cpus_frozen++;
6738		partition_sched_domains(1, NULL, NULL);
6739		break;
6740	default:
6741		return NOTIFY_DONE;
6742	}
6743	return NOTIFY_OK;
6744}
6745
6746void __init sched_init_smp(void)
6747{
6748	cpumask_var_t non_isolated_cpus;
6749
6750	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6751	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6752
6753	sched_init_numa();
6754
6755	get_online_cpus();
6756	mutex_lock(&sched_domains_mutex);
6757	init_sched_domains(cpu_active_mask);
6758	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6759	if (cpumask_empty(non_isolated_cpus))
6760		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6761	mutex_unlock(&sched_domains_mutex);
6762	put_online_cpus();
6763
6764	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6765	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6766	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6767
6768	/* RT runtime code needs to handle some hotplug events */
6769	hotcpu_notifier(update_runtime, 0);
6770
6771	init_hrtick();
6772
6773	/* Move init over to a non-isolated CPU */
6774	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6775		BUG();
6776	sched_init_granularity();
6777	free_cpumask_var(non_isolated_cpus);
6778
6779	init_sched_rt_class();
6780}
6781#else
6782void __init sched_init_smp(void)
6783{
6784	sched_init_granularity();
6785}
6786#endif /* CONFIG_SMP */
6787
6788const_debug unsigned int sysctl_timer_migration = 1;
6789
6790int in_sched_functions(unsigned long addr)
6791{
6792	return in_lock_functions(addr) ||
6793		(addr >= (unsigned long)__sched_text_start
6794		&& addr < (unsigned long)__sched_text_end);
6795}
6796
6797#ifdef CONFIG_CGROUP_SCHED
6798struct task_group root_task_group;
6799LIST_HEAD(task_groups);
6800#endif
6801
6802DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6803
6804void __init sched_init(void)
6805{
6806	int i, j;
6807	unsigned long alloc_size = 0, ptr;
6808
6809#ifdef CONFIG_FAIR_GROUP_SCHED
6810	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6811#endif
6812#ifdef CONFIG_RT_GROUP_SCHED
6813	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6814#endif
6815#ifdef CONFIG_CPUMASK_OFFSTACK
6816	alloc_size += num_possible_cpus() * cpumask_size();
6817#endif
6818	if (alloc_size) {
6819		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6820
6821#ifdef CONFIG_FAIR_GROUP_SCHED
6822		root_task_group.se = (struct sched_entity **)ptr;
6823		ptr += nr_cpu_ids * sizeof(void **);
6824
6825		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6826		ptr += nr_cpu_ids * sizeof(void **);
6827
6828#endif /* CONFIG_FAIR_GROUP_SCHED */
6829#ifdef CONFIG_RT_GROUP_SCHED
6830		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6831		ptr += nr_cpu_ids * sizeof(void **);
6832
6833		root_task_group.rt_rq = (struct rt_rq **)ptr;
6834		ptr += nr_cpu_ids * sizeof(void **);
6835
6836#endif /* CONFIG_RT_GROUP_SCHED */
6837#ifdef CONFIG_CPUMASK_OFFSTACK
6838		for_each_possible_cpu(i) {
6839			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6840			ptr += cpumask_size();
6841		}
6842#endif /* CONFIG_CPUMASK_OFFSTACK */
6843	}
6844
6845#ifdef CONFIG_SMP
6846	init_defrootdomain();
6847#endif
6848
6849	init_rt_bandwidth(&def_rt_bandwidth,
6850			global_rt_period(), global_rt_runtime());
6851
6852#ifdef CONFIG_RT_GROUP_SCHED
6853	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6854			global_rt_period(), global_rt_runtime());
6855#endif /* CONFIG_RT_GROUP_SCHED */
6856
6857#ifdef CONFIG_CGROUP_SCHED
6858	list_add(&root_task_group.list, &task_groups);
6859	INIT_LIST_HEAD(&root_task_group.children);
6860	INIT_LIST_HEAD(&root_task_group.siblings);
6861	autogroup_init(&init_task);
6862
6863#endif /* CONFIG_CGROUP_SCHED */
6864
6865#ifdef CONFIG_CGROUP_CPUACCT
6866	root_cpuacct.cpustat = &kernel_cpustat;
6867	root_cpuacct.cpuusage = alloc_percpu(u64);
6868	/* Too early, not expected to fail */
6869	BUG_ON(!root_cpuacct.cpuusage);
6870#endif
6871	for_each_possible_cpu(i) {
6872		struct rq *rq;
6873
6874		rq = cpu_rq(i);
6875		raw_spin_lock_init(&rq->lock);
6876		rq->nr_running = 0;
6877		rq->calc_load_active = 0;
6878		rq->calc_load_update = jiffies + LOAD_FREQ;
6879		init_cfs_rq(&rq->cfs);
6880		init_rt_rq(&rq->rt, rq);
6881#ifdef CONFIG_FAIR_GROUP_SCHED
6882		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6883		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6884		/*
6885		 * How much cpu bandwidth does root_task_group get?
6886		 *
6887		 * In case of task-groups formed thr' the cgroup filesystem, it
6888		 * gets 100% of the cpu resources in the system. This overall
6889		 * system cpu resource is divided among the tasks of
6890		 * root_task_group and its child task-groups in a fair manner,
6891		 * based on each entity's (task or task-group's) weight
6892		 * (se->load.weight).
6893		 *
6894		 * In other words, if root_task_group has 10 tasks of weight
6895		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6896		 * then A0's share of the cpu resource is:
6897		 *
6898		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6899		 *
6900		 * We achieve this by letting root_task_group's tasks sit
6901		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6902		 */
6903		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6904		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6905#endif /* CONFIG_FAIR_GROUP_SCHED */
6906
6907		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6908#ifdef CONFIG_RT_GROUP_SCHED
6909		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6910		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6911#endif
6912
6913		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6914			rq->cpu_load[j] = 0;
6915
6916		rq->last_load_update_tick = jiffies;
6917
6918#ifdef CONFIG_SMP
6919		rq->sd = NULL;
6920		rq->rd = NULL;
6921		rq->cpu_power = SCHED_POWER_SCALE;
6922		rq->post_schedule = 0;
6923		rq->active_balance = 0;
6924		rq->next_balance = jiffies;
6925		rq->push_cpu = 0;
6926		rq->cpu = i;
6927		rq->online = 0;
6928		rq->idle_stamp = 0;
6929		rq->avg_idle = 2*sysctl_sched_migration_cost;
6930
6931		INIT_LIST_HEAD(&rq->cfs_tasks);
6932
6933		rq_attach_root(rq, &def_root_domain);
6934#ifdef CONFIG_NO_HZ
6935		rq->nohz_flags = 0;
6936#endif
6937#endif
6938		init_rq_hrtick(rq);
6939		atomic_set(&rq->nr_iowait, 0);
6940	}
6941
6942	set_load_weight(&init_task);
6943
6944#ifdef CONFIG_PREEMPT_NOTIFIERS
6945	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6946#endif
6947
6948#ifdef CONFIG_RT_MUTEXES
6949	plist_head_init(&init_task.pi_waiters);
6950#endif
6951
6952	/*
6953	 * The boot idle thread does lazy MMU switching as well:
6954	 */
6955	atomic_inc(&init_mm.mm_count);
6956	enter_lazy_tlb(&init_mm, current);
6957
6958	/*
6959	 * Make us the idle thread. Technically, schedule() should not be
6960	 * called from this thread, however somewhere below it might be,
6961	 * but because we are the idle thread, we just pick up running again
6962	 * when this runqueue becomes "idle".
6963	 */
6964	init_idle(current, smp_processor_id());
6965
6966	calc_load_update = jiffies + LOAD_FREQ;
6967
6968	/*
6969	 * During early bootup we pretend to be a normal task:
6970	 */
6971	current->sched_class = &fair_sched_class;
6972
6973#ifdef CONFIG_SMP
6974	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6975	/* May be allocated at isolcpus cmdline parse time */
6976	if (cpu_isolated_map == NULL)
6977		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6978	idle_thread_set_boot_cpu();
6979#endif
6980	init_sched_fair_class();
6981
6982	scheduler_running = 1;
6983}
6984
6985#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6986static inline int preempt_count_equals(int preempt_offset)
6987{
6988	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6989
6990	return (nested == preempt_offset);
6991}
6992
6993void __might_sleep(const char *file, int line, int preempt_offset)
6994{
6995	static unsigned long prev_jiffy;	/* ratelimiting */
6996
6997	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6998	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6999	    system_state != SYSTEM_RUNNING || oops_in_progress)
7000		return;
7001	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7002		return;
7003	prev_jiffy = jiffies;
7004
7005	printk(KERN_ERR
7006		"BUG: sleeping function called from invalid context at %s:%d\n",
7007			file, line);
7008	printk(KERN_ERR
7009		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7010			in_atomic(), irqs_disabled(),
7011			current->pid, current->comm);
7012
7013	debug_show_held_locks(current);
7014	if (irqs_disabled())
7015		print_irqtrace_events(current);
7016	dump_stack();
7017}
7018EXPORT_SYMBOL(__might_sleep);
7019#endif
7020
7021#ifdef CONFIG_MAGIC_SYSRQ
7022static void normalize_task(struct rq *rq, struct task_struct *p)
7023{
7024	const struct sched_class *prev_class = p->sched_class;
7025	int old_prio = p->prio;
7026	int on_rq;
7027
7028	on_rq = p->on_rq;
7029	if (on_rq)
7030		dequeue_task(rq, p, 0);
7031	__setscheduler(rq, p, SCHED_NORMAL, 0);
7032	if (on_rq) {
7033		enqueue_task(rq, p, 0);
7034		resched_task(rq->curr);
7035	}
7036
7037	check_class_changed(rq, p, prev_class, old_prio);
7038}
7039
7040void normalize_rt_tasks(void)
7041{
7042	struct task_struct *g, *p;
7043	unsigned long flags;
7044	struct rq *rq;
7045
7046	read_lock_irqsave(&tasklist_lock, flags);
7047	do_each_thread(g, p) {
7048		/*
7049		 * Only normalize user tasks:
7050		 */
7051		if (!p->mm)
7052			continue;
7053
7054		p->se.exec_start		= 0;
7055#ifdef CONFIG_SCHEDSTATS
7056		p->se.statistics.wait_start	= 0;
7057		p->se.statistics.sleep_start	= 0;
7058		p->se.statistics.block_start	= 0;
7059#endif
7060
7061		if (!rt_task(p)) {
7062			/*
7063			 * Renice negative nice level userspace
7064			 * tasks back to 0:
7065			 */
7066			if (TASK_NICE(p) < 0 && p->mm)
7067				set_user_nice(p, 0);
7068			continue;
7069		}
7070
7071		raw_spin_lock(&p->pi_lock);
7072		rq = __task_rq_lock(p);
7073
7074		normalize_task(rq, p);
7075
7076		__task_rq_unlock(rq);
7077		raw_spin_unlock(&p->pi_lock);
7078	} while_each_thread(g, p);
7079
7080	read_unlock_irqrestore(&tasklist_lock, flags);
7081}
7082
7083#endif /* CONFIG_MAGIC_SYSRQ */
7084
7085#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7086/*
7087 * These functions are only useful for the IA64 MCA handling, or kdb.
7088 *
7089 * They can only be called when the whole system has been
7090 * stopped - every CPU needs to be quiescent, and no scheduling
7091 * activity can take place. Using them for anything else would
7092 * be a serious bug, and as a result, they aren't even visible
7093 * under any other configuration.
7094 */
7095
7096/**
7097 * curr_task - return the current task for a given cpu.
7098 * @cpu: the processor in question.
7099 *
7100 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7101 */
7102struct task_struct *curr_task(int cpu)
7103{
7104	return cpu_curr(cpu);
7105}
7106
7107#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7108
7109#ifdef CONFIG_IA64
7110/**
7111 * set_curr_task - set the current task for a given cpu.
7112 * @cpu: the processor in question.
7113 * @p: the task pointer to set.
7114 *
7115 * Description: This function must only be used when non-maskable interrupts
7116 * are serviced on a separate stack. It allows the architecture to switch the
7117 * notion of the current task on a cpu in a non-blocking manner. This function
7118 * must be called with all CPU's synchronized, and interrupts disabled, the
7119 * and caller must save the original value of the current task (see
7120 * curr_task() above) and restore that value before reenabling interrupts and
7121 * re-starting the system.
7122 *
7123 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7124 */
7125void set_curr_task(int cpu, struct task_struct *p)
7126{
7127	cpu_curr(cpu) = p;
7128}
7129
7130#endif
7131
7132#ifdef CONFIG_CGROUP_SCHED
7133/* task_group_lock serializes the addition/removal of task groups */
7134static DEFINE_SPINLOCK(task_group_lock);
7135
7136static void free_sched_group(struct task_group *tg)
7137{
7138	free_fair_sched_group(tg);
7139	free_rt_sched_group(tg);
7140	autogroup_free(tg);
7141	kfree(tg);
7142}
7143
7144/* allocate runqueue etc for a new task group */
7145struct task_group *sched_create_group(struct task_group *parent)
7146{
7147	struct task_group *tg;
7148	unsigned long flags;
7149
7150	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7151	if (!tg)
7152		return ERR_PTR(-ENOMEM);
7153
7154	if (!alloc_fair_sched_group(tg, parent))
7155		goto err;
7156
7157	if (!alloc_rt_sched_group(tg, parent))
7158		goto err;
7159
7160	spin_lock_irqsave(&task_group_lock, flags);
7161	list_add_rcu(&tg->list, &task_groups);
7162
7163	WARN_ON(!parent); /* root should already exist */
7164
7165	tg->parent = parent;
7166	INIT_LIST_HEAD(&tg->children);
7167	list_add_rcu(&tg->siblings, &parent->children);
7168	spin_unlock_irqrestore(&task_group_lock, flags);
7169
7170	return tg;
7171
7172err:
7173	free_sched_group(tg);
7174	return ERR_PTR(-ENOMEM);
7175}
7176
7177/* rcu callback to free various structures associated with a task group */
7178static void free_sched_group_rcu(struct rcu_head *rhp)
7179{
7180	/* now it should be safe to free those cfs_rqs */
7181	free_sched_group(container_of(rhp, struct task_group, rcu));
7182}
7183
7184/* Destroy runqueue etc associated with a task group */
7185void sched_destroy_group(struct task_group *tg)
7186{
7187	unsigned long flags;
7188	int i;
7189
7190	/* end participation in shares distribution */
7191	for_each_possible_cpu(i)
7192		unregister_fair_sched_group(tg, i);
7193
7194	spin_lock_irqsave(&task_group_lock, flags);
7195	list_del_rcu(&tg->list);
7196	list_del_rcu(&tg->siblings);
7197	spin_unlock_irqrestore(&task_group_lock, flags);
7198
7199	/* wait for possible concurrent references to cfs_rqs complete */
7200	call_rcu(&tg->rcu, free_sched_group_rcu);
7201}
7202
7203/* change task's runqueue when it moves between groups.
7204 *	The caller of this function should have put the task in its new group
7205 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7206 *	reflect its new group.
7207 */
7208void sched_move_task(struct task_struct *tsk)
7209{
7210	struct task_group *tg;
7211	int on_rq, running;
7212	unsigned long flags;
7213	struct rq *rq;
7214
7215	rq = task_rq_lock(tsk, &flags);
7216
7217	running = task_current(rq, tsk);
7218	on_rq = tsk->on_rq;
7219
7220	if (on_rq)
7221		dequeue_task(rq, tsk, 0);
7222	if (unlikely(running))
7223		tsk->sched_class->put_prev_task(rq, tsk);
7224
7225	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7226				lockdep_is_held(&tsk->sighand->siglock)),
7227			  struct task_group, css);
7228	tg = autogroup_task_group(tsk, tg);
7229	tsk->sched_task_group = tg;
7230
7231#ifdef CONFIG_FAIR_GROUP_SCHED
7232	if (tsk->sched_class->task_move_group)
7233		tsk->sched_class->task_move_group(tsk, on_rq);
7234	else
7235#endif
7236		set_task_rq(tsk, task_cpu(tsk));
7237
7238	if (unlikely(running))
7239		tsk->sched_class->set_curr_task(rq);
7240	if (on_rq)
7241		enqueue_task(rq, tsk, 0);
7242
7243	task_rq_unlock(rq, tsk, &flags);
7244}
7245#endif /* CONFIG_CGROUP_SCHED */
7246
7247#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7248static unsigned long to_ratio(u64 period, u64 runtime)
7249{
7250	if (runtime == RUNTIME_INF)
7251		return 1ULL << 20;
7252
7253	return div64_u64(runtime << 20, period);
7254}
7255#endif
7256
7257#ifdef CONFIG_RT_GROUP_SCHED
7258/*
7259 * Ensure that the real time constraints are schedulable.
7260 */
7261static DEFINE_MUTEX(rt_constraints_mutex);
7262
7263/* Must be called with tasklist_lock held */
7264static inline int tg_has_rt_tasks(struct task_group *tg)
7265{
7266	struct task_struct *g, *p;
7267
7268	do_each_thread(g, p) {
7269		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7270			return 1;
7271	} while_each_thread(g, p);
7272
7273	return 0;
7274}
7275
7276struct rt_schedulable_data {
7277	struct task_group *tg;
7278	u64 rt_period;
7279	u64 rt_runtime;
7280};
7281
7282static int tg_rt_schedulable(struct task_group *tg, void *data)
7283{
7284	struct rt_schedulable_data *d = data;
7285	struct task_group *child;
7286	unsigned long total, sum = 0;
7287	u64 period, runtime;
7288
7289	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7290	runtime = tg->rt_bandwidth.rt_runtime;
7291
7292	if (tg == d->tg) {
7293		period = d->rt_period;
7294		runtime = d->rt_runtime;
7295	}
7296
7297	/*
7298	 * Cannot have more runtime than the period.
7299	 */
7300	if (runtime > period && runtime != RUNTIME_INF)
7301		return -EINVAL;
7302
7303	/*
7304	 * Ensure we don't starve existing RT tasks.
7305	 */
7306	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7307		return -EBUSY;
7308
7309	total = to_ratio(period, runtime);
7310
7311	/*
7312	 * Nobody can have more than the global setting allows.
7313	 */
7314	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7315		return -EINVAL;
7316
7317	/*
7318	 * The sum of our children's runtime should not exceed our own.
7319	 */
7320	list_for_each_entry_rcu(child, &tg->children, siblings) {
7321		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7322		runtime = child->rt_bandwidth.rt_runtime;
7323
7324		if (child == d->tg) {
7325			period = d->rt_period;
7326			runtime = d->rt_runtime;
7327		}
7328
7329		sum += to_ratio(period, runtime);
7330	}
7331
7332	if (sum > total)
7333		return -EINVAL;
7334
7335	return 0;
7336}
7337
7338static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7339{
7340	int ret;
7341
7342	struct rt_schedulable_data data = {
7343		.tg = tg,
7344		.rt_period = period,
7345		.rt_runtime = runtime,
7346	};
7347
7348	rcu_read_lock();
7349	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7350	rcu_read_unlock();
7351
7352	return ret;
7353}
7354
7355static int tg_set_rt_bandwidth(struct task_group *tg,
7356		u64 rt_period, u64 rt_runtime)
7357{
7358	int i, err = 0;
7359
7360	mutex_lock(&rt_constraints_mutex);
7361	read_lock(&tasklist_lock);
7362	err = __rt_schedulable(tg, rt_period, rt_runtime);
7363	if (err)
7364		goto unlock;
7365
7366	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7367	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7368	tg->rt_bandwidth.rt_runtime = rt_runtime;
7369
7370	for_each_possible_cpu(i) {
7371		struct rt_rq *rt_rq = tg->rt_rq[i];
7372
7373		raw_spin_lock(&rt_rq->rt_runtime_lock);
7374		rt_rq->rt_runtime = rt_runtime;
7375		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7376	}
7377	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7378unlock:
7379	read_unlock(&tasklist_lock);
7380	mutex_unlock(&rt_constraints_mutex);
7381
7382	return err;
7383}
7384
7385int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7386{
7387	u64 rt_runtime, rt_period;
7388
7389	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7390	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7391	if (rt_runtime_us < 0)
7392		rt_runtime = RUNTIME_INF;
7393
7394	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7395}
7396
7397long sched_group_rt_runtime(struct task_group *tg)
7398{
7399	u64 rt_runtime_us;
7400
7401	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7402		return -1;
7403
7404	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7405	do_div(rt_runtime_us, NSEC_PER_USEC);
7406	return rt_runtime_us;
7407}
7408
7409int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7410{
7411	u64 rt_runtime, rt_period;
7412
7413	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7414	rt_runtime = tg->rt_bandwidth.rt_runtime;
7415
7416	if (rt_period == 0)
7417		return -EINVAL;
7418
7419	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7420}
7421
7422long sched_group_rt_period(struct task_group *tg)
7423{
7424	u64 rt_period_us;
7425
7426	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7427	do_div(rt_period_us, NSEC_PER_USEC);
7428	return rt_period_us;
7429}
7430
7431static int sched_rt_global_constraints(void)
7432{
7433	u64 runtime, period;
7434	int ret = 0;
7435
7436	if (sysctl_sched_rt_period <= 0)
7437		return -EINVAL;
7438
7439	runtime = global_rt_runtime();
7440	period = global_rt_period();
7441
7442	/*
7443	 * Sanity check on the sysctl variables.
7444	 */
7445	if (runtime > period && runtime != RUNTIME_INF)
7446		return -EINVAL;
7447
7448	mutex_lock(&rt_constraints_mutex);
7449	read_lock(&tasklist_lock);
7450	ret = __rt_schedulable(NULL, 0, 0);
7451	read_unlock(&tasklist_lock);
7452	mutex_unlock(&rt_constraints_mutex);
7453
7454	return ret;
7455}
7456
7457int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7458{
7459	/* Don't accept realtime tasks when there is no way for them to run */
7460	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7461		return 0;
7462
7463	return 1;
7464}
7465
7466#else /* !CONFIG_RT_GROUP_SCHED */
7467static int sched_rt_global_constraints(void)
7468{
7469	unsigned long flags;
7470	int i;
7471
7472	if (sysctl_sched_rt_period <= 0)
7473		return -EINVAL;
7474
7475	/*
7476	 * There's always some RT tasks in the root group
7477	 * -- migration, kstopmachine etc..
7478	 */
7479	if (sysctl_sched_rt_runtime == 0)
7480		return -EBUSY;
7481
7482	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7483	for_each_possible_cpu(i) {
7484		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7485
7486		raw_spin_lock(&rt_rq->rt_runtime_lock);
7487		rt_rq->rt_runtime = global_rt_runtime();
7488		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7489	}
7490	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7491
7492	return 0;
7493}
7494#endif /* CONFIG_RT_GROUP_SCHED */
7495
7496int sched_rr_handler(struct ctl_table *table, int write,
7497		void __user *buffer, size_t *lenp,
7498		loff_t *ppos)
7499{
7500	int ret;
7501	static DEFINE_MUTEX(mutex);
7502
7503	mutex_lock(&mutex);
7504	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7505	/* make sure that internally we keep jiffies */
7506	/* also, writing zero resets timeslice to default */
7507	if (!ret && write) {
7508		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7509			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7510	}
7511	mutex_unlock(&mutex);
7512	return ret;
7513}
7514
7515int sched_rt_handler(struct ctl_table *table, int write,
7516		void __user *buffer, size_t *lenp,
7517		loff_t *ppos)
7518{
7519	int ret;
7520	int old_period, old_runtime;
7521	static DEFINE_MUTEX(mutex);
7522
7523	mutex_lock(&mutex);
7524	old_period = sysctl_sched_rt_period;
7525	old_runtime = sysctl_sched_rt_runtime;
7526
7527	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7528
7529	if (!ret && write) {
7530		ret = sched_rt_global_constraints();
7531		if (ret) {
7532			sysctl_sched_rt_period = old_period;
7533			sysctl_sched_rt_runtime = old_runtime;
7534		} else {
7535			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7536			def_rt_bandwidth.rt_period =
7537				ns_to_ktime(global_rt_period());
7538		}
7539	}
7540	mutex_unlock(&mutex);
7541
7542	return ret;
7543}
7544
7545#ifdef CONFIG_CGROUP_SCHED
7546
7547/* return corresponding task_group object of a cgroup */
7548static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7549{
7550	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7551			    struct task_group, css);
7552}
7553
7554static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7555{
7556	struct task_group *tg, *parent;
7557
7558	if (!cgrp->parent) {
7559		/* This is early initialization for the top cgroup */
7560		return &root_task_group.css;
7561	}
7562
7563	parent = cgroup_tg(cgrp->parent);
7564	tg = sched_create_group(parent);
7565	if (IS_ERR(tg))
7566		return ERR_PTR(-ENOMEM);
7567
7568	return &tg->css;
7569}
7570
7571static void cpu_cgroup_css_free(struct cgroup *cgrp)
7572{
7573	struct task_group *tg = cgroup_tg(cgrp);
7574
7575	sched_destroy_group(tg);
7576}
7577
7578static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7579				 struct cgroup_taskset *tset)
7580{
7581	struct task_struct *task;
7582
7583	cgroup_taskset_for_each(task, cgrp, tset) {
7584#ifdef CONFIG_RT_GROUP_SCHED
7585		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7586			return -EINVAL;
7587#else
7588		/* We don't support RT-tasks being in separate groups */
7589		if (task->sched_class != &fair_sched_class)
7590			return -EINVAL;
7591#endif
7592	}
7593	return 0;
7594}
7595
7596static void cpu_cgroup_attach(struct cgroup *cgrp,
7597			      struct cgroup_taskset *tset)
7598{
7599	struct task_struct *task;
7600
7601	cgroup_taskset_for_each(task, cgrp, tset)
7602		sched_move_task(task);
7603}
7604
7605static void
7606cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7607		struct task_struct *task)
7608{
7609	/*
7610	 * cgroup_exit() is called in the copy_process() failure path.
7611	 * Ignore this case since the task hasn't ran yet, this avoids
7612	 * trying to poke a half freed task state from generic code.
7613	 */
7614	if (!(task->flags & PF_EXITING))
7615		return;
7616
7617	sched_move_task(task);
7618}
7619
7620#ifdef CONFIG_FAIR_GROUP_SCHED
7621static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7622				u64 shareval)
7623{
7624	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7625}
7626
7627static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7628{
7629	struct task_group *tg = cgroup_tg(cgrp);
7630
7631	return (u64) scale_load_down(tg->shares);
7632}
7633
7634#ifdef CONFIG_CFS_BANDWIDTH
7635static DEFINE_MUTEX(cfs_constraints_mutex);
7636
7637const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7638const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7639
7640static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7641
7642static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7643{
7644	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7645	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7646
7647	if (tg == &root_task_group)
7648		return -EINVAL;
7649
7650	/*
7651	 * Ensure we have at some amount of bandwidth every period.  This is
7652	 * to prevent reaching a state of large arrears when throttled via
7653	 * entity_tick() resulting in prolonged exit starvation.
7654	 */
7655	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7656		return -EINVAL;
7657
7658	/*
7659	 * Likewise, bound things on the otherside by preventing insane quota
7660	 * periods.  This also allows us to normalize in computing quota
7661	 * feasibility.
7662	 */
7663	if (period > max_cfs_quota_period)
7664		return -EINVAL;
7665
7666	mutex_lock(&cfs_constraints_mutex);
7667	ret = __cfs_schedulable(tg, period, quota);
7668	if (ret)
7669		goto out_unlock;
7670
7671	runtime_enabled = quota != RUNTIME_INF;
7672	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7673	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7674	raw_spin_lock_irq(&cfs_b->lock);
7675	cfs_b->period = ns_to_ktime(period);
7676	cfs_b->quota = quota;
7677
7678	__refill_cfs_bandwidth_runtime(cfs_b);
7679	/* restart the period timer (if active) to handle new period expiry */
7680	if (runtime_enabled && cfs_b->timer_active) {
7681		/* force a reprogram */
7682		cfs_b->timer_active = 0;
7683		__start_cfs_bandwidth(cfs_b);
7684	}
7685	raw_spin_unlock_irq(&cfs_b->lock);
7686
7687	for_each_possible_cpu(i) {
7688		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7689		struct rq *rq = cfs_rq->rq;
7690
7691		raw_spin_lock_irq(&rq->lock);
7692		cfs_rq->runtime_enabled = runtime_enabled;
7693		cfs_rq->runtime_remaining = 0;
7694
7695		if (cfs_rq->throttled)
7696			unthrottle_cfs_rq(cfs_rq);
7697		raw_spin_unlock_irq(&rq->lock);
7698	}
7699out_unlock:
7700	mutex_unlock(&cfs_constraints_mutex);
7701
7702	return ret;
7703}
7704
7705int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7706{
7707	u64 quota, period;
7708
7709	period = ktime_to_ns(tg->cfs_bandwidth.period);
7710	if (cfs_quota_us < 0)
7711		quota = RUNTIME_INF;
7712	else
7713		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7714
7715	return tg_set_cfs_bandwidth(tg, period, quota);
7716}
7717
7718long tg_get_cfs_quota(struct task_group *tg)
7719{
7720	u64 quota_us;
7721
7722	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7723		return -1;
7724
7725	quota_us = tg->cfs_bandwidth.quota;
7726	do_div(quota_us, NSEC_PER_USEC);
7727
7728	return quota_us;
7729}
7730
7731int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7732{
7733	u64 quota, period;
7734
7735	period = (u64)cfs_period_us * NSEC_PER_USEC;
7736	quota = tg->cfs_bandwidth.quota;
7737
7738	return tg_set_cfs_bandwidth(tg, period, quota);
7739}
7740
7741long tg_get_cfs_period(struct task_group *tg)
7742{
7743	u64 cfs_period_us;
7744
7745	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7746	do_div(cfs_period_us, NSEC_PER_USEC);
7747
7748	return cfs_period_us;
7749}
7750
7751static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7752{
7753	return tg_get_cfs_quota(cgroup_tg(cgrp));
7754}
7755
7756static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7757				s64 cfs_quota_us)
7758{
7759	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7760}
7761
7762static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7763{
7764	return tg_get_cfs_period(cgroup_tg(cgrp));
7765}
7766
7767static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7768				u64 cfs_period_us)
7769{
7770	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7771}
7772
7773struct cfs_schedulable_data {
7774	struct task_group *tg;
7775	u64 period, quota;
7776};
7777
7778/*
7779 * normalize group quota/period to be quota/max_period
7780 * note: units are usecs
7781 */
7782static u64 normalize_cfs_quota(struct task_group *tg,
7783			       struct cfs_schedulable_data *d)
7784{
7785	u64 quota, period;
7786
7787	if (tg == d->tg) {
7788		period = d->period;
7789		quota = d->quota;
7790	} else {
7791		period = tg_get_cfs_period(tg);
7792		quota = tg_get_cfs_quota(tg);
7793	}
7794
7795	/* note: these should typically be equivalent */
7796	if (quota == RUNTIME_INF || quota == -1)
7797		return RUNTIME_INF;
7798
7799	return to_ratio(period, quota);
7800}
7801
7802static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7803{
7804	struct cfs_schedulable_data *d = data;
7805	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7806	s64 quota = 0, parent_quota = -1;
7807
7808	if (!tg->parent) {
7809		quota = RUNTIME_INF;
7810	} else {
7811		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7812
7813		quota = normalize_cfs_quota(tg, d);
7814		parent_quota = parent_b->hierarchal_quota;
7815
7816		/*
7817		 * ensure max(child_quota) <= parent_quota, inherit when no
7818		 * limit is set
7819		 */
7820		if (quota == RUNTIME_INF)
7821			quota = parent_quota;
7822		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7823			return -EINVAL;
7824	}
7825	cfs_b->hierarchal_quota = quota;
7826
7827	return 0;
7828}
7829
7830static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7831{
7832	int ret;
7833	struct cfs_schedulable_data data = {
7834		.tg = tg,
7835		.period = period,
7836		.quota = quota,
7837	};
7838
7839	if (quota != RUNTIME_INF) {
7840		do_div(data.period, NSEC_PER_USEC);
7841		do_div(data.quota, NSEC_PER_USEC);
7842	}
7843
7844	rcu_read_lock();
7845	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7846	rcu_read_unlock();
7847
7848	return ret;
7849}
7850
7851static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7852		struct cgroup_map_cb *cb)
7853{
7854	struct task_group *tg = cgroup_tg(cgrp);
7855	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7856
7857	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7858	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7859	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7860
7861	return 0;
7862}
7863#endif /* CONFIG_CFS_BANDWIDTH */
7864#endif /* CONFIG_FAIR_GROUP_SCHED */
7865
7866#ifdef CONFIG_RT_GROUP_SCHED
7867static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7868				s64 val)
7869{
7870	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7871}
7872
7873static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7874{
7875	return sched_group_rt_runtime(cgroup_tg(cgrp));
7876}
7877
7878static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7879		u64 rt_period_us)
7880{
7881	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7882}
7883
7884static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7885{
7886	return sched_group_rt_period(cgroup_tg(cgrp));
7887}
7888#endif /* CONFIG_RT_GROUP_SCHED */
7889
7890static struct cftype cpu_files[] = {
7891#ifdef CONFIG_FAIR_GROUP_SCHED
7892	{
7893		.name = "shares",
7894		.read_u64 = cpu_shares_read_u64,
7895		.write_u64 = cpu_shares_write_u64,
7896	},
7897#endif
7898#ifdef CONFIG_CFS_BANDWIDTH
7899	{
7900		.name = "cfs_quota_us",
7901		.read_s64 = cpu_cfs_quota_read_s64,
7902		.write_s64 = cpu_cfs_quota_write_s64,
7903	},
7904	{
7905		.name = "cfs_period_us",
7906		.read_u64 = cpu_cfs_period_read_u64,
7907		.write_u64 = cpu_cfs_period_write_u64,
7908	},
7909	{
7910		.name = "stat",
7911		.read_map = cpu_stats_show,
7912	},
7913#endif
7914#ifdef CONFIG_RT_GROUP_SCHED
7915	{
7916		.name = "rt_runtime_us",
7917		.read_s64 = cpu_rt_runtime_read,
7918		.write_s64 = cpu_rt_runtime_write,
7919	},
7920	{
7921		.name = "rt_period_us",
7922		.read_u64 = cpu_rt_period_read_uint,
7923		.write_u64 = cpu_rt_period_write_uint,
7924	},
7925#endif
7926	{ }	/* terminate */
7927};
7928
7929struct cgroup_subsys cpu_cgroup_subsys = {
7930	.name		= "cpu",
7931	.css_alloc	= cpu_cgroup_css_alloc,
7932	.css_free	= cpu_cgroup_css_free,
7933	.can_attach	= cpu_cgroup_can_attach,
7934	.attach		= cpu_cgroup_attach,
7935	.exit		= cpu_cgroup_exit,
7936	.subsys_id	= cpu_cgroup_subsys_id,
7937	.base_cftypes	= cpu_files,
7938	.early_init	= 1,
7939};
7940
7941#endif	/* CONFIG_CGROUP_SCHED */
7942
7943#ifdef CONFIG_CGROUP_CPUACCT
7944
7945/*
7946 * CPU accounting code for task groups.
7947 *
7948 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7949 * (balbir@in.ibm.com).
7950 */
7951
7952struct cpuacct root_cpuacct;
7953
7954/* create a new cpu accounting group */
7955static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7956{
7957	struct cpuacct *ca;
7958
7959	if (!cgrp->parent)
7960		return &root_cpuacct.css;
7961
7962	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7963	if (!ca)
7964		goto out;
7965
7966	ca->cpuusage = alloc_percpu(u64);
7967	if (!ca->cpuusage)
7968		goto out_free_ca;
7969
7970	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7971	if (!ca->cpustat)
7972		goto out_free_cpuusage;
7973
7974	return &ca->css;
7975
7976out_free_cpuusage:
7977	free_percpu(ca->cpuusage);
7978out_free_ca:
7979	kfree(ca);
7980out:
7981	return ERR_PTR(-ENOMEM);
7982}
7983
7984/* destroy an existing cpu accounting group */
7985static void cpuacct_css_free(struct cgroup *cgrp)
7986{
7987	struct cpuacct *ca = cgroup_ca(cgrp);
7988
7989	free_percpu(ca->cpustat);
7990	free_percpu(ca->cpuusage);
7991	kfree(ca);
7992}
7993
7994static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7995{
7996	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7997	u64 data;
7998
7999#ifndef CONFIG_64BIT
8000	/*
8001	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8002	 */
8003	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8004	data = *cpuusage;
8005	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8006#else
8007	data = *cpuusage;
8008#endif
8009
8010	return data;
8011}
8012
8013static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8014{
8015	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8016
8017#ifndef CONFIG_64BIT
8018	/*
8019	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8020	 */
8021	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8022	*cpuusage = val;
8023	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8024#else
8025	*cpuusage = val;
8026#endif
8027}
8028
8029/* return total cpu usage (in nanoseconds) of a group */
8030static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8031{
8032	struct cpuacct *ca = cgroup_ca(cgrp);
8033	u64 totalcpuusage = 0;
8034	int i;
8035
8036	for_each_present_cpu(i)
8037		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8038
8039	return totalcpuusage;
8040}
8041
8042static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8043								u64 reset)
8044{
8045	struct cpuacct *ca = cgroup_ca(cgrp);
8046	int err = 0;
8047	int i;
8048
8049	if (reset) {
8050		err = -EINVAL;
8051		goto out;
8052	}
8053
8054	for_each_present_cpu(i)
8055		cpuacct_cpuusage_write(ca, i, 0);
8056
8057out:
8058	return err;
8059}
8060
8061static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8062				   struct seq_file *m)
8063{
8064	struct cpuacct *ca = cgroup_ca(cgroup);
8065	u64 percpu;
8066	int i;
8067
8068	for_each_present_cpu(i) {
8069		percpu = cpuacct_cpuusage_read(ca, i);
8070		seq_printf(m, "%llu ", (unsigned long long) percpu);
8071	}
8072	seq_printf(m, "\n");
8073	return 0;
8074}
8075
8076static const char *cpuacct_stat_desc[] = {
8077	[CPUACCT_STAT_USER] = "user",
8078	[CPUACCT_STAT_SYSTEM] = "system",
8079};
8080
8081static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8082			      struct cgroup_map_cb *cb)
8083{
8084	struct cpuacct *ca = cgroup_ca(cgrp);
8085	int cpu;
8086	s64 val = 0;
8087
8088	for_each_online_cpu(cpu) {
8089		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8090		val += kcpustat->cpustat[CPUTIME_USER];
8091		val += kcpustat->cpustat[CPUTIME_NICE];
8092	}
8093	val = cputime64_to_clock_t(val);
8094	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8095
8096	val = 0;
8097	for_each_online_cpu(cpu) {
8098		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8099		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8100		val += kcpustat->cpustat[CPUTIME_IRQ];
8101		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8102	}
8103
8104	val = cputime64_to_clock_t(val);
8105	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8106
8107	return 0;
8108}
8109
8110static struct cftype files[] = {
8111	{
8112		.name = "usage",
8113		.read_u64 = cpuusage_read,
8114		.write_u64 = cpuusage_write,
8115	},
8116	{
8117		.name = "usage_percpu",
8118		.read_seq_string = cpuacct_percpu_seq_read,
8119	},
8120	{
8121		.name = "stat",
8122		.read_map = cpuacct_stats_show,
8123	},
8124	{ }	/* terminate */
8125};
8126
8127/*
8128 * charge this task's execution time to its accounting group.
8129 *
8130 * called with rq->lock held.
8131 */
8132void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8133{
8134	struct cpuacct *ca;
8135	int cpu;
8136
8137	if (unlikely(!cpuacct_subsys.active))
8138		return;
8139
8140	cpu = task_cpu(tsk);
8141
8142	rcu_read_lock();
8143
8144	ca = task_ca(tsk);
8145
8146	for (; ca; ca = parent_ca(ca)) {
8147		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8148		*cpuusage += cputime;
8149	}
8150
8151	rcu_read_unlock();
8152}
8153
8154struct cgroup_subsys cpuacct_subsys = {
8155	.name = "cpuacct",
8156	.css_alloc = cpuacct_css_alloc,
8157	.css_free = cpuacct_css_free,
8158	.subsys_id = cpuacct_subsys_id,
8159	.base_cftypes = files,
8160};
8161#endif	/* CONFIG_CGROUP_CPUACCT */
8162
8163void dump_cpu_task(int cpu)
8164{
8165	pr_info("Task dump for CPU %d:\n", cpu);
8166	sched_show_task(cpu_curr(cpu));
8167}
8168