core.c revision 3882ec643997757824cd5f25180cd8a787b9dbe1
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	rq->clock += delta;
143	update_rq_clock_task(rq, delta);
144}
145
146/*
147 * Debugging: various feature bits
148 */
149
150#define SCHED_FEAT(name, enabled)	\
151	(1UL << __SCHED_FEAT_##name) * enabled |
152
153const_debug unsigned int sysctl_sched_features =
154#include "features.h"
155	0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled)	\
161	#name ,
162
163static const char * const sched_feat_names[] = {
164#include "features.h"
165};
166
167#undef SCHED_FEAT
168
169static int sched_feat_show(struct seq_file *m, void *v)
170{
171	int i;
172
173	for (i = 0; i < __SCHED_FEAT_NR; i++) {
174		if (!(sysctl_sched_features & (1UL << i)))
175			seq_puts(m, "NO_");
176		seq_printf(m, "%s ", sched_feat_names[i]);
177	}
178	seq_puts(m, "\n");
179
180	return 0;
181}
182
183#ifdef HAVE_JUMP_LABEL
184
185#define jump_label_key__true  STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
187
188#define SCHED_FEAT(name, enabled)	\
189	jump_label_key__##enabled ,
190
191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
199	if (static_key_enabled(&sched_feat_keys[i]))
200		static_key_slow_dec(&sched_feat_keys[i]);
201}
202
203static void sched_feat_enable(int i)
204{
205	if (!static_key_enabled(&sched_feat_keys[i]))
206		static_key_slow_inc(&sched_feat_keys[i]);
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
213static int sched_feat_set(char *cmp)
214{
215	int i;
216	int neg = 0;
217
218	if (strncmp(cmp, "NO_", 3) == 0) {
219		neg = 1;
220		cmp += 3;
221	}
222
223	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225			if (neg) {
226				sysctl_sched_features &= ~(1UL << i);
227				sched_feat_disable(i);
228			} else {
229				sysctl_sched_features |= (1UL << i);
230				sched_feat_enable(i);
231			}
232			break;
233		}
234	}
235
236	return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241		size_t cnt, loff_t *ppos)
242{
243	char buf[64];
244	char *cmp;
245	int i;
246
247	if (cnt > 63)
248		cnt = 63;
249
250	if (copy_from_user(&buf, ubuf, cnt))
251		return -EFAULT;
252
253	buf[cnt] = 0;
254	cmp = strstrip(buf);
255
256	i = sched_feat_set(cmp);
257	if (i == __SCHED_FEAT_NR)
258		return -EINVAL;
259
260	*ppos += cnt;
261
262	return cnt;
263}
264
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267	return single_open(filp, sched_feat_show, NULL);
268}
269
270static const struct file_operations sched_feat_fops = {
271	.open		= sched_feat_open,
272	.write		= sched_feat_write,
273	.read		= seq_read,
274	.llseek		= seq_lseek,
275	.release	= single_release,
276};
277
278static __init int sched_init_debug(void)
279{
280	debugfs_create_file("sched_features", 0644, NULL, NULL,
281			&sched_feat_fops);
282
283	return 0;
284}
285late_initcall(sched_init_debug);
286#endif /* CONFIG_SCHED_DEBUG */
287
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
302/*
303 * period over which we measure -rt task cpu usage in us.
304 * default: 1s
305 */
306unsigned int sysctl_sched_rt_period = 1000000;
307
308__read_mostly int scheduler_running;
309
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
315
316/*
317 * __task_rq_lock - lock the rq @p resides on.
318 */
319static inline struct rq *__task_rq_lock(struct task_struct *p)
320	__acquires(rq->lock)
321{
322	struct rq *rq;
323
324	lockdep_assert_held(&p->pi_lock);
325
326	for (;;) {
327		rq = task_rq(p);
328		raw_spin_lock(&rq->lock);
329		if (likely(rq == task_rq(p)))
330			return rq;
331		raw_spin_unlock(&rq->lock);
332	}
333}
334
335/*
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337 */
338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339	__acquires(p->pi_lock)
340	__acquires(rq->lock)
341{
342	struct rq *rq;
343
344	for (;;) {
345		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346		rq = task_rq(p);
347		raw_spin_lock(&rq->lock);
348		if (likely(rq == task_rq(p)))
349			return rq;
350		raw_spin_unlock(&rq->lock);
351		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352	}
353}
354
355static void __task_rq_unlock(struct rq *rq)
356	__releases(rq->lock)
357{
358	raw_spin_unlock(&rq->lock);
359}
360
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363	__releases(rq->lock)
364	__releases(p->pi_lock)
365{
366	raw_spin_unlock(&rq->lock);
367	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368}
369
370/*
371 * this_rq_lock - lock this runqueue and disable interrupts.
372 */
373static struct rq *this_rq_lock(void)
374	__acquires(rq->lock)
375{
376	struct rq *rq;
377
378	local_irq_disable();
379	rq = this_rq();
380	raw_spin_lock(&rq->lock);
381
382	return rq;
383}
384
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
388 */
389
390static void hrtick_clear(struct rq *rq)
391{
392	if (hrtimer_active(&rq->hrtick_timer))
393		hrtimer_cancel(&rq->hrtick_timer);
394}
395
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
406	raw_spin_lock(&rq->lock);
407	update_rq_clock(rq);
408	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409	raw_spin_unlock(&rq->lock);
410
411	return HRTIMER_NORESTART;
412}
413
414#ifdef CONFIG_SMP
415
416static int __hrtick_restart(struct rq *rq)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = hrtimer_get_softexpires(timer);
420
421	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
428{
429	struct rq *rq = arg;
430
431	raw_spin_lock(&rq->lock);
432	__hrtick_restart(rq);
433	rq->hrtick_csd_pending = 0;
434	raw_spin_unlock(&rq->lock);
435}
436
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
442void hrtick_start(struct rq *rq, u64 delay)
443{
444	struct hrtimer *timer = &rq->hrtick_timer;
445	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446
447	hrtimer_set_expires(timer, time);
448
449	if (rq == this_rq()) {
450		__hrtick_restart(rq);
451	} else if (!rq->hrtick_csd_pending) {
452		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453		rq->hrtick_csd_pending = 1;
454	}
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460	int cpu = (int)(long)hcpu;
461
462	switch (action) {
463	case CPU_UP_CANCELED:
464	case CPU_UP_CANCELED_FROZEN:
465	case CPU_DOWN_PREPARE:
466	case CPU_DOWN_PREPARE_FROZEN:
467	case CPU_DEAD:
468	case CPU_DEAD_FROZEN:
469		hrtick_clear(cpu_rq(cpu));
470		return NOTIFY_OK;
471	}
472
473	return NOTIFY_DONE;
474}
475
476static __init void init_hrtick(void)
477{
478	hotcpu_notifier(hotplug_hrtick, 0);
479}
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
486void hrtick_start(struct rq *rq, u64 delay)
487{
488	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489			HRTIMER_MODE_REL_PINNED, 0);
490}
491
492static inline void init_hrtick(void)
493{
494}
495#endif /* CONFIG_SMP */
496
497static void init_rq_hrtick(struct rq *rq)
498{
499#ifdef CONFIG_SMP
500	rq->hrtick_csd_pending = 0;
501
502	rq->hrtick_csd.flags = 0;
503	rq->hrtick_csd.func = __hrtick_start;
504	rq->hrtick_csd.info = rq;
505#endif
506
507	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508	rq->hrtick_timer.function = hrtick;
509}
510#else	/* CONFIG_SCHED_HRTICK */
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
519static inline void init_hrtick(void)
520{
521}
522#endif	/* CONFIG_SCHED_HRTICK */
523
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val)						\
528({	typeof(*(ptr)) __old, __val = *(ptr);				\
529 	for (;;) {							\
530 		__old = cmpxchg((ptr), __val, __val | (val));		\
531 		if (__old == __val)					\
532 			break;						\
533 		__val = __old;						\
534 	}								\
535 	__old;								\
536})
537
538#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546	struct thread_info *ti = task_thread_info(p);
547	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
549
550/*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556static bool set_nr_if_polling(struct task_struct *p)
557{
558	struct thread_info *ti = task_thread_info(p);
559	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561	for (;;) {
562		if (!(val & _TIF_POLLING_NRFLAG))
563			return false;
564		if (val & _TIF_NEED_RESCHED)
565			return true;
566		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567		if (old == val)
568			break;
569		val = old;
570	}
571	return true;
572}
573
574#else
575static bool set_nr_and_not_polling(struct task_struct *p)
576{
577	set_tsk_need_resched(p);
578	return true;
579}
580
581#ifdef CONFIG_SMP
582static bool set_nr_if_polling(struct task_struct *p)
583{
584	return false;
585}
586#endif
587#endif
588
589/*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
596void resched_task(struct task_struct *p)
597{
598	int cpu;
599
600	lockdep_assert_held(&task_rq(p)->lock);
601
602	if (test_tsk_need_resched(p))
603		return;
604
605	cpu = task_cpu(p);
606
607	if (cpu == smp_processor_id()) {
608		set_tsk_need_resched(p);
609		set_preempt_need_resched();
610		return;
611	}
612
613	if (set_nr_and_not_polling(p))
614		smp_send_reschedule(cpu);
615	else
616		trace_sched_wake_idle_without_ipi(cpu);
617}
618
619void resched_cpu(int cpu)
620{
621	struct rq *rq = cpu_rq(cpu);
622	unsigned long flags;
623
624	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
625		return;
626	resched_task(cpu_curr(cpu));
627	raw_spin_unlock_irqrestore(&rq->lock, flags);
628}
629
630#ifdef CONFIG_SMP
631#ifdef CONFIG_NO_HZ_COMMON
632/*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu.  This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
640int get_nohz_timer_target(int pinned)
641{
642	int cpu = smp_processor_id();
643	int i;
644	struct sched_domain *sd;
645
646	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647		return cpu;
648
649	rcu_read_lock();
650	for_each_domain(cpu, sd) {
651		for_each_cpu(i, sched_domain_span(sd)) {
652			if (!idle_cpu(i)) {
653				cpu = i;
654				goto unlock;
655			}
656		}
657	}
658unlock:
659	rcu_read_unlock();
660	return cpu;
661}
662/*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
672static void wake_up_idle_cpu(int cpu)
673{
674	struct rq *rq = cpu_rq(cpu);
675
676	if (cpu == smp_processor_id())
677		return;
678
679	if (set_nr_and_not_polling(rq->idle))
680		smp_send_reschedule(cpu);
681	else
682		trace_sched_wake_idle_without_ipi(cpu);
683}
684
685static bool wake_up_full_nohz_cpu(int cpu)
686{
687	/*
688	 * We just need the target to call irq_exit() and re-evaluate
689	 * the next tick. The nohz full kick at least implies that.
690	 * If needed we can still optimize that later with an
691	 * empty IRQ.
692	 */
693	if (tick_nohz_full_cpu(cpu)) {
694		if (cpu != smp_processor_id() ||
695		    tick_nohz_tick_stopped())
696			tick_nohz_full_kick_cpu(cpu);
697		return true;
698	}
699
700	return false;
701}
702
703void wake_up_nohz_cpu(int cpu)
704{
705	if (!wake_up_full_nohz_cpu(cpu))
706		wake_up_idle_cpu(cpu);
707}
708
709static inline bool got_nohz_idle_kick(void)
710{
711	int cpu = smp_processor_id();
712
713	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
714		return false;
715
716	if (idle_cpu(cpu) && !need_resched())
717		return true;
718
719	/*
720	 * We can't run Idle Load Balance on this CPU for this time so we
721	 * cancel it and clear NOHZ_BALANCE_KICK
722	 */
723	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
724	return false;
725}
726
727#else /* CONFIG_NO_HZ_COMMON */
728
729static inline bool got_nohz_idle_kick(void)
730{
731	return false;
732}
733
734#endif /* CONFIG_NO_HZ_COMMON */
735
736#ifdef CONFIG_NO_HZ_FULL
737bool sched_can_stop_tick(void)
738{
739       struct rq *rq;
740
741       rq = this_rq();
742
743	/*
744	 * More than one running task need preemption.
745	 * nr_running update is assumed to be visible
746	 * after IPI is sent from wakers.
747	 */
748       if (rq->nr_running > 1)
749               return false;
750
751       return true;
752}
753#endif /* CONFIG_NO_HZ_FULL */
754
755void sched_avg_update(struct rq *rq)
756{
757	s64 period = sched_avg_period();
758
759	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
760		/*
761		 * Inline assembly required to prevent the compiler
762		 * optimising this loop into a divmod call.
763		 * See __iter_div_u64_rem() for another example of this.
764		 */
765		asm("" : "+rm" (rq->age_stamp));
766		rq->age_stamp += period;
767		rq->rt_avg /= 2;
768	}
769}
770
771#endif /* CONFIG_SMP */
772
773#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
774			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
775/*
776 * Iterate task_group tree rooted at *from, calling @down when first entering a
777 * node and @up when leaving it for the final time.
778 *
779 * Caller must hold rcu_lock or sufficient equivalent.
780 */
781int walk_tg_tree_from(struct task_group *from,
782			     tg_visitor down, tg_visitor up, void *data)
783{
784	struct task_group *parent, *child;
785	int ret;
786
787	parent = from;
788
789down:
790	ret = (*down)(parent, data);
791	if (ret)
792		goto out;
793	list_for_each_entry_rcu(child, &parent->children, siblings) {
794		parent = child;
795		goto down;
796
797up:
798		continue;
799	}
800	ret = (*up)(parent, data);
801	if (ret || parent == from)
802		goto out;
803
804	child = parent;
805	parent = parent->parent;
806	if (parent)
807		goto up;
808out:
809	return ret;
810}
811
812int tg_nop(struct task_group *tg, void *data)
813{
814	return 0;
815}
816#endif
817
818static void set_load_weight(struct task_struct *p)
819{
820	int prio = p->static_prio - MAX_RT_PRIO;
821	struct load_weight *load = &p->se.load;
822
823	/*
824	 * SCHED_IDLE tasks get minimal weight:
825	 */
826	if (p->policy == SCHED_IDLE) {
827		load->weight = scale_load(WEIGHT_IDLEPRIO);
828		load->inv_weight = WMULT_IDLEPRIO;
829		return;
830	}
831
832	load->weight = scale_load(prio_to_weight[prio]);
833	load->inv_weight = prio_to_wmult[prio];
834}
835
836static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
837{
838	update_rq_clock(rq);
839	sched_info_queued(rq, p);
840	p->sched_class->enqueue_task(rq, p, flags);
841}
842
843static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
844{
845	update_rq_clock(rq);
846	sched_info_dequeued(rq, p);
847	p->sched_class->dequeue_task(rq, p, flags);
848}
849
850void activate_task(struct rq *rq, struct task_struct *p, int flags)
851{
852	if (task_contributes_to_load(p))
853		rq->nr_uninterruptible--;
854
855	enqueue_task(rq, p, flags);
856}
857
858void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
859{
860	if (task_contributes_to_load(p))
861		rq->nr_uninterruptible++;
862
863	dequeue_task(rq, p, flags);
864}
865
866static void update_rq_clock_task(struct rq *rq, s64 delta)
867{
868/*
869 * In theory, the compile should just see 0 here, and optimize out the call
870 * to sched_rt_avg_update. But I don't trust it...
871 */
872#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
873	s64 steal = 0, irq_delta = 0;
874#endif
875#ifdef CONFIG_IRQ_TIME_ACCOUNTING
876	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
877
878	/*
879	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
880	 * this case when a previous update_rq_clock() happened inside a
881	 * {soft,}irq region.
882	 *
883	 * When this happens, we stop ->clock_task and only update the
884	 * prev_irq_time stamp to account for the part that fit, so that a next
885	 * update will consume the rest. This ensures ->clock_task is
886	 * monotonic.
887	 *
888	 * It does however cause some slight miss-attribution of {soft,}irq
889	 * time, a more accurate solution would be to update the irq_time using
890	 * the current rq->clock timestamp, except that would require using
891	 * atomic ops.
892	 */
893	if (irq_delta > delta)
894		irq_delta = delta;
895
896	rq->prev_irq_time += irq_delta;
897	delta -= irq_delta;
898#endif
899#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
900	if (static_key_false((&paravirt_steal_rq_enabled))) {
901		steal = paravirt_steal_clock(cpu_of(rq));
902		steal -= rq->prev_steal_time_rq;
903
904		if (unlikely(steal > delta))
905			steal = delta;
906
907		rq->prev_steal_time_rq += steal;
908		delta -= steal;
909	}
910#endif
911
912	rq->clock_task += delta;
913
914#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
915	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
916		sched_rt_avg_update(rq, irq_delta + steal);
917#endif
918}
919
920void sched_set_stop_task(int cpu, struct task_struct *stop)
921{
922	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
923	struct task_struct *old_stop = cpu_rq(cpu)->stop;
924
925	if (stop) {
926		/*
927		 * Make it appear like a SCHED_FIFO task, its something
928		 * userspace knows about and won't get confused about.
929		 *
930		 * Also, it will make PI more or less work without too
931		 * much confusion -- but then, stop work should not
932		 * rely on PI working anyway.
933		 */
934		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
935
936		stop->sched_class = &stop_sched_class;
937	}
938
939	cpu_rq(cpu)->stop = stop;
940
941	if (old_stop) {
942		/*
943		 * Reset it back to a normal scheduling class so that
944		 * it can die in pieces.
945		 */
946		old_stop->sched_class = &rt_sched_class;
947	}
948}
949
950/*
951 * __normal_prio - return the priority that is based on the static prio
952 */
953static inline int __normal_prio(struct task_struct *p)
954{
955	return p->static_prio;
956}
957
958/*
959 * Calculate the expected normal priority: i.e. priority
960 * without taking RT-inheritance into account. Might be
961 * boosted by interactivity modifiers. Changes upon fork,
962 * setprio syscalls, and whenever the interactivity
963 * estimator recalculates.
964 */
965static inline int normal_prio(struct task_struct *p)
966{
967	int prio;
968
969	if (task_has_dl_policy(p))
970		prio = MAX_DL_PRIO-1;
971	else if (task_has_rt_policy(p))
972		prio = MAX_RT_PRIO-1 - p->rt_priority;
973	else
974		prio = __normal_prio(p);
975	return prio;
976}
977
978/*
979 * Calculate the current priority, i.e. the priority
980 * taken into account by the scheduler. This value might
981 * be boosted by RT tasks, or might be boosted by
982 * interactivity modifiers. Will be RT if the task got
983 * RT-boosted. If not then it returns p->normal_prio.
984 */
985static int effective_prio(struct task_struct *p)
986{
987	p->normal_prio = normal_prio(p);
988	/*
989	 * If we are RT tasks or we were boosted to RT priority,
990	 * keep the priority unchanged. Otherwise, update priority
991	 * to the normal priority:
992	 */
993	if (!rt_prio(p->prio))
994		return p->normal_prio;
995	return p->prio;
996}
997
998/**
999 * task_curr - is this task currently executing on a CPU?
1000 * @p: the task in question.
1001 *
1002 * Return: 1 if the task is currently executing. 0 otherwise.
1003 */
1004inline int task_curr(const struct task_struct *p)
1005{
1006	return cpu_curr(task_cpu(p)) == p;
1007}
1008
1009static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1010				       const struct sched_class *prev_class,
1011				       int oldprio)
1012{
1013	if (prev_class != p->sched_class) {
1014		if (prev_class->switched_from)
1015			prev_class->switched_from(rq, p);
1016		p->sched_class->switched_to(rq, p);
1017	} else if (oldprio != p->prio || dl_task(p))
1018		p->sched_class->prio_changed(rq, p, oldprio);
1019}
1020
1021void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1022{
1023	const struct sched_class *class;
1024
1025	if (p->sched_class == rq->curr->sched_class) {
1026		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1027	} else {
1028		for_each_class(class) {
1029			if (class == rq->curr->sched_class)
1030				break;
1031			if (class == p->sched_class) {
1032				resched_task(rq->curr);
1033				break;
1034			}
1035		}
1036	}
1037
1038	/*
1039	 * A queue event has occurred, and we're going to schedule.  In
1040	 * this case, we can save a useless back to back clock update.
1041	 */
1042	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1043		rq->skip_clock_update = 1;
1044}
1045
1046#ifdef CONFIG_SMP
1047void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1048{
1049#ifdef CONFIG_SCHED_DEBUG
1050	/*
1051	 * We should never call set_task_cpu() on a blocked task,
1052	 * ttwu() will sort out the placement.
1053	 */
1054	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1055			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1056
1057#ifdef CONFIG_LOCKDEP
1058	/*
1059	 * The caller should hold either p->pi_lock or rq->lock, when changing
1060	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1061	 *
1062	 * sched_move_task() holds both and thus holding either pins the cgroup,
1063	 * see task_group().
1064	 *
1065	 * Furthermore, all task_rq users should acquire both locks, see
1066	 * task_rq_lock().
1067	 */
1068	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1069				      lockdep_is_held(&task_rq(p)->lock)));
1070#endif
1071#endif
1072
1073	trace_sched_migrate_task(p, new_cpu);
1074
1075	if (task_cpu(p) != new_cpu) {
1076		if (p->sched_class->migrate_task_rq)
1077			p->sched_class->migrate_task_rq(p, new_cpu);
1078		p->se.nr_migrations++;
1079		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1080	}
1081
1082	__set_task_cpu(p, new_cpu);
1083}
1084
1085static void __migrate_swap_task(struct task_struct *p, int cpu)
1086{
1087	if (p->on_rq) {
1088		struct rq *src_rq, *dst_rq;
1089
1090		src_rq = task_rq(p);
1091		dst_rq = cpu_rq(cpu);
1092
1093		deactivate_task(src_rq, p, 0);
1094		set_task_cpu(p, cpu);
1095		activate_task(dst_rq, p, 0);
1096		check_preempt_curr(dst_rq, p, 0);
1097	} else {
1098		/*
1099		 * Task isn't running anymore; make it appear like we migrated
1100		 * it before it went to sleep. This means on wakeup we make the
1101		 * previous cpu our targer instead of where it really is.
1102		 */
1103		p->wake_cpu = cpu;
1104	}
1105}
1106
1107struct migration_swap_arg {
1108	struct task_struct *src_task, *dst_task;
1109	int src_cpu, dst_cpu;
1110};
1111
1112static int migrate_swap_stop(void *data)
1113{
1114	struct migration_swap_arg *arg = data;
1115	struct rq *src_rq, *dst_rq;
1116	int ret = -EAGAIN;
1117
1118	src_rq = cpu_rq(arg->src_cpu);
1119	dst_rq = cpu_rq(arg->dst_cpu);
1120
1121	double_raw_lock(&arg->src_task->pi_lock,
1122			&arg->dst_task->pi_lock);
1123	double_rq_lock(src_rq, dst_rq);
1124	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1125		goto unlock;
1126
1127	if (task_cpu(arg->src_task) != arg->src_cpu)
1128		goto unlock;
1129
1130	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1131		goto unlock;
1132
1133	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1134		goto unlock;
1135
1136	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1137	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1138
1139	ret = 0;
1140
1141unlock:
1142	double_rq_unlock(src_rq, dst_rq);
1143	raw_spin_unlock(&arg->dst_task->pi_lock);
1144	raw_spin_unlock(&arg->src_task->pi_lock);
1145
1146	return ret;
1147}
1148
1149/*
1150 * Cross migrate two tasks
1151 */
1152int migrate_swap(struct task_struct *cur, struct task_struct *p)
1153{
1154	struct migration_swap_arg arg;
1155	int ret = -EINVAL;
1156
1157	arg = (struct migration_swap_arg){
1158		.src_task = cur,
1159		.src_cpu = task_cpu(cur),
1160		.dst_task = p,
1161		.dst_cpu = task_cpu(p),
1162	};
1163
1164	if (arg.src_cpu == arg.dst_cpu)
1165		goto out;
1166
1167	/*
1168	 * These three tests are all lockless; this is OK since all of them
1169	 * will be re-checked with proper locks held further down the line.
1170	 */
1171	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1172		goto out;
1173
1174	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1175		goto out;
1176
1177	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1178		goto out;
1179
1180	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1181	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1182
1183out:
1184	return ret;
1185}
1186
1187struct migration_arg {
1188	struct task_struct *task;
1189	int dest_cpu;
1190};
1191
1192static int migration_cpu_stop(void *data);
1193
1194/*
1195 * wait_task_inactive - wait for a thread to unschedule.
1196 *
1197 * If @match_state is nonzero, it's the @p->state value just checked and
1198 * not expected to change.  If it changes, i.e. @p might have woken up,
1199 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1200 * we return a positive number (its total switch count).  If a second call
1201 * a short while later returns the same number, the caller can be sure that
1202 * @p has remained unscheduled the whole time.
1203 *
1204 * The caller must ensure that the task *will* unschedule sometime soon,
1205 * else this function might spin for a *long* time. This function can't
1206 * be called with interrupts off, or it may introduce deadlock with
1207 * smp_call_function() if an IPI is sent by the same process we are
1208 * waiting to become inactive.
1209 */
1210unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1211{
1212	unsigned long flags;
1213	int running, on_rq;
1214	unsigned long ncsw;
1215	struct rq *rq;
1216
1217	for (;;) {
1218		/*
1219		 * We do the initial early heuristics without holding
1220		 * any task-queue locks at all. We'll only try to get
1221		 * the runqueue lock when things look like they will
1222		 * work out!
1223		 */
1224		rq = task_rq(p);
1225
1226		/*
1227		 * If the task is actively running on another CPU
1228		 * still, just relax and busy-wait without holding
1229		 * any locks.
1230		 *
1231		 * NOTE! Since we don't hold any locks, it's not
1232		 * even sure that "rq" stays as the right runqueue!
1233		 * But we don't care, since "task_running()" will
1234		 * return false if the runqueue has changed and p
1235		 * is actually now running somewhere else!
1236		 */
1237		while (task_running(rq, p)) {
1238			if (match_state && unlikely(p->state != match_state))
1239				return 0;
1240			cpu_relax();
1241		}
1242
1243		/*
1244		 * Ok, time to look more closely! We need the rq
1245		 * lock now, to be *sure*. If we're wrong, we'll
1246		 * just go back and repeat.
1247		 */
1248		rq = task_rq_lock(p, &flags);
1249		trace_sched_wait_task(p);
1250		running = task_running(rq, p);
1251		on_rq = p->on_rq;
1252		ncsw = 0;
1253		if (!match_state || p->state == match_state)
1254			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1255		task_rq_unlock(rq, p, &flags);
1256
1257		/*
1258		 * If it changed from the expected state, bail out now.
1259		 */
1260		if (unlikely(!ncsw))
1261			break;
1262
1263		/*
1264		 * Was it really running after all now that we
1265		 * checked with the proper locks actually held?
1266		 *
1267		 * Oops. Go back and try again..
1268		 */
1269		if (unlikely(running)) {
1270			cpu_relax();
1271			continue;
1272		}
1273
1274		/*
1275		 * It's not enough that it's not actively running,
1276		 * it must be off the runqueue _entirely_, and not
1277		 * preempted!
1278		 *
1279		 * So if it was still runnable (but just not actively
1280		 * running right now), it's preempted, and we should
1281		 * yield - it could be a while.
1282		 */
1283		if (unlikely(on_rq)) {
1284			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1285
1286			set_current_state(TASK_UNINTERRUPTIBLE);
1287			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1288			continue;
1289		}
1290
1291		/*
1292		 * Ahh, all good. It wasn't running, and it wasn't
1293		 * runnable, which means that it will never become
1294		 * running in the future either. We're all done!
1295		 */
1296		break;
1297	}
1298
1299	return ncsw;
1300}
1301
1302/***
1303 * kick_process - kick a running thread to enter/exit the kernel
1304 * @p: the to-be-kicked thread
1305 *
1306 * Cause a process which is running on another CPU to enter
1307 * kernel-mode, without any delay. (to get signals handled.)
1308 *
1309 * NOTE: this function doesn't have to take the runqueue lock,
1310 * because all it wants to ensure is that the remote task enters
1311 * the kernel. If the IPI races and the task has been migrated
1312 * to another CPU then no harm is done and the purpose has been
1313 * achieved as well.
1314 */
1315void kick_process(struct task_struct *p)
1316{
1317	int cpu;
1318
1319	preempt_disable();
1320	cpu = task_cpu(p);
1321	if ((cpu != smp_processor_id()) && task_curr(p))
1322		smp_send_reschedule(cpu);
1323	preempt_enable();
1324}
1325EXPORT_SYMBOL_GPL(kick_process);
1326#endif /* CONFIG_SMP */
1327
1328#ifdef CONFIG_SMP
1329/*
1330 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1331 */
1332static int select_fallback_rq(int cpu, struct task_struct *p)
1333{
1334	int nid = cpu_to_node(cpu);
1335	const struct cpumask *nodemask = NULL;
1336	enum { cpuset, possible, fail } state = cpuset;
1337	int dest_cpu;
1338
1339	/*
1340	 * If the node that the cpu is on has been offlined, cpu_to_node()
1341	 * will return -1. There is no cpu on the node, and we should
1342	 * select the cpu on the other node.
1343	 */
1344	if (nid != -1) {
1345		nodemask = cpumask_of_node(nid);
1346
1347		/* Look for allowed, online CPU in same node. */
1348		for_each_cpu(dest_cpu, nodemask) {
1349			if (!cpu_online(dest_cpu))
1350				continue;
1351			if (!cpu_active(dest_cpu))
1352				continue;
1353			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1354				return dest_cpu;
1355		}
1356	}
1357
1358	for (;;) {
1359		/* Any allowed, online CPU? */
1360		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1361			if (!cpu_online(dest_cpu))
1362				continue;
1363			if (!cpu_active(dest_cpu))
1364				continue;
1365			goto out;
1366		}
1367
1368		switch (state) {
1369		case cpuset:
1370			/* No more Mr. Nice Guy. */
1371			cpuset_cpus_allowed_fallback(p);
1372			state = possible;
1373			break;
1374
1375		case possible:
1376			do_set_cpus_allowed(p, cpu_possible_mask);
1377			state = fail;
1378			break;
1379
1380		case fail:
1381			BUG();
1382			break;
1383		}
1384	}
1385
1386out:
1387	if (state != cpuset) {
1388		/*
1389		 * Don't tell them about moving exiting tasks or
1390		 * kernel threads (both mm NULL), since they never
1391		 * leave kernel.
1392		 */
1393		if (p->mm && printk_ratelimit()) {
1394			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1395					task_pid_nr(p), p->comm, cpu);
1396		}
1397	}
1398
1399	return dest_cpu;
1400}
1401
1402/*
1403 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1404 */
1405static inline
1406int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1407{
1408	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1409
1410	/*
1411	 * In order not to call set_task_cpu() on a blocking task we need
1412	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1413	 * cpu.
1414	 *
1415	 * Since this is common to all placement strategies, this lives here.
1416	 *
1417	 * [ this allows ->select_task() to simply return task_cpu(p) and
1418	 *   not worry about this generic constraint ]
1419	 */
1420	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1421		     !cpu_online(cpu)))
1422		cpu = select_fallback_rq(task_cpu(p), p);
1423
1424	return cpu;
1425}
1426
1427static void update_avg(u64 *avg, u64 sample)
1428{
1429	s64 diff = sample - *avg;
1430	*avg += diff >> 3;
1431}
1432#endif
1433
1434static void
1435ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1436{
1437#ifdef CONFIG_SCHEDSTATS
1438	struct rq *rq = this_rq();
1439
1440#ifdef CONFIG_SMP
1441	int this_cpu = smp_processor_id();
1442
1443	if (cpu == this_cpu) {
1444		schedstat_inc(rq, ttwu_local);
1445		schedstat_inc(p, se.statistics.nr_wakeups_local);
1446	} else {
1447		struct sched_domain *sd;
1448
1449		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1450		rcu_read_lock();
1451		for_each_domain(this_cpu, sd) {
1452			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1453				schedstat_inc(sd, ttwu_wake_remote);
1454				break;
1455			}
1456		}
1457		rcu_read_unlock();
1458	}
1459
1460	if (wake_flags & WF_MIGRATED)
1461		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1462
1463#endif /* CONFIG_SMP */
1464
1465	schedstat_inc(rq, ttwu_count);
1466	schedstat_inc(p, se.statistics.nr_wakeups);
1467
1468	if (wake_flags & WF_SYNC)
1469		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1470
1471#endif /* CONFIG_SCHEDSTATS */
1472}
1473
1474static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1475{
1476	activate_task(rq, p, en_flags);
1477	p->on_rq = 1;
1478
1479	/* if a worker is waking up, notify workqueue */
1480	if (p->flags & PF_WQ_WORKER)
1481		wq_worker_waking_up(p, cpu_of(rq));
1482}
1483
1484/*
1485 * Mark the task runnable and perform wakeup-preemption.
1486 */
1487static void
1488ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1489{
1490	check_preempt_curr(rq, p, wake_flags);
1491	trace_sched_wakeup(p, true);
1492
1493	p->state = TASK_RUNNING;
1494#ifdef CONFIG_SMP
1495	if (p->sched_class->task_woken)
1496		p->sched_class->task_woken(rq, p);
1497
1498	if (rq->idle_stamp) {
1499		u64 delta = rq_clock(rq) - rq->idle_stamp;
1500		u64 max = 2*rq->max_idle_balance_cost;
1501
1502		update_avg(&rq->avg_idle, delta);
1503
1504		if (rq->avg_idle > max)
1505			rq->avg_idle = max;
1506
1507		rq->idle_stamp = 0;
1508	}
1509#endif
1510}
1511
1512static void
1513ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1514{
1515#ifdef CONFIG_SMP
1516	if (p->sched_contributes_to_load)
1517		rq->nr_uninterruptible--;
1518#endif
1519
1520	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1521	ttwu_do_wakeup(rq, p, wake_flags);
1522}
1523
1524/*
1525 * Called in case the task @p isn't fully descheduled from its runqueue,
1526 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1527 * since all we need to do is flip p->state to TASK_RUNNING, since
1528 * the task is still ->on_rq.
1529 */
1530static int ttwu_remote(struct task_struct *p, int wake_flags)
1531{
1532	struct rq *rq;
1533	int ret = 0;
1534
1535	rq = __task_rq_lock(p);
1536	if (p->on_rq) {
1537		/* check_preempt_curr() may use rq clock */
1538		update_rq_clock(rq);
1539		ttwu_do_wakeup(rq, p, wake_flags);
1540		ret = 1;
1541	}
1542	__task_rq_unlock(rq);
1543
1544	return ret;
1545}
1546
1547#ifdef CONFIG_SMP
1548void sched_ttwu_pending(void)
1549{
1550	struct rq *rq = this_rq();
1551	struct llist_node *llist = llist_del_all(&rq->wake_list);
1552	struct task_struct *p;
1553	unsigned long flags;
1554
1555	if (!llist)
1556		return;
1557
1558	raw_spin_lock_irqsave(&rq->lock, flags);
1559
1560	while (llist) {
1561		p = llist_entry(llist, struct task_struct, wake_entry);
1562		llist = llist_next(llist);
1563		ttwu_do_activate(rq, p, 0);
1564	}
1565
1566	raw_spin_unlock_irqrestore(&rq->lock, flags);
1567}
1568
1569void scheduler_ipi(void)
1570{
1571	/*
1572	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1573	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1574	 * this IPI.
1575	 */
1576	preempt_fold_need_resched();
1577
1578	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1579		return;
1580
1581	/*
1582	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1583	 * traditionally all their work was done from the interrupt return
1584	 * path. Now that we actually do some work, we need to make sure
1585	 * we do call them.
1586	 *
1587	 * Some archs already do call them, luckily irq_enter/exit nest
1588	 * properly.
1589	 *
1590	 * Arguably we should visit all archs and update all handlers,
1591	 * however a fair share of IPIs are still resched only so this would
1592	 * somewhat pessimize the simple resched case.
1593	 */
1594	irq_enter();
1595	sched_ttwu_pending();
1596
1597	/*
1598	 * Check if someone kicked us for doing the nohz idle load balance.
1599	 */
1600	if (unlikely(got_nohz_idle_kick())) {
1601		this_rq()->idle_balance = 1;
1602		raise_softirq_irqoff(SCHED_SOFTIRQ);
1603	}
1604	irq_exit();
1605}
1606
1607static void ttwu_queue_remote(struct task_struct *p, int cpu)
1608{
1609	struct rq *rq = cpu_rq(cpu);
1610
1611	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1612		if (!set_nr_if_polling(rq->idle))
1613			smp_send_reschedule(cpu);
1614		else
1615			trace_sched_wake_idle_without_ipi(cpu);
1616	}
1617}
1618
1619bool cpus_share_cache(int this_cpu, int that_cpu)
1620{
1621	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1622}
1623#endif /* CONFIG_SMP */
1624
1625static void ttwu_queue(struct task_struct *p, int cpu)
1626{
1627	struct rq *rq = cpu_rq(cpu);
1628
1629#if defined(CONFIG_SMP)
1630	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1631		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1632		ttwu_queue_remote(p, cpu);
1633		return;
1634	}
1635#endif
1636
1637	raw_spin_lock(&rq->lock);
1638	ttwu_do_activate(rq, p, 0);
1639	raw_spin_unlock(&rq->lock);
1640}
1641
1642/**
1643 * try_to_wake_up - wake up a thread
1644 * @p: the thread to be awakened
1645 * @state: the mask of task states that can be woken
1646 * @wake_flags: wake modifier flags (WF_*)
1647 *
1648 * Put it on the run-queue if it's not already there. The "current"
1649 * thread is always on the run-queue (except when the actual
1650 * re-schedule is in progress), and as such you're allowed to do
1651 * the simpler "current->state = TASK_RUNNING" to mark yourself
1652 * runnable without the overhead of this.
1653 *
1654 * Return: %true if @p was woken up, %false if it was already running.
1655 * or @state didn't match @p's state.
1656 */
1657static int
1658try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1659{
1660	unsigned long flags;
1661	int cpu, success = 0;
1662
1663	/*
1664	 * If we are going to wake up a thread waiting for CONDITION we
1665	 * need to ensure that CONDITION=1 done by the caller can not be
1666	 * reordered with p->state check below. This pairs with mb() in
1667	 * set_current_state() the waiting thread does.
1668	 */
1669	smp_mb__before_spinlock();
1670	raw_spin_lock_irqsave(&p->pi_lock, flags);
1671	if (!(p->state & state))
1672		goto out;
1673
1674	success = 1; /* we're going to change ->state */
1675	cpu = task_cpu(p);
1676
1677	if (p->on_rq && ttwu_remote(p, wake_flags))
1678		goto stat;
1679
1680#ifdef CONFIG_SMP
1681	/*
1682	 * If the owning (remote) cpu is still in the middle of schedule() with
1683	 * this task as prev, wait until its done referencing the task.
1684	 */
1685	while (p->on_cpu)
1686		cpu_relax();
1687	/*
1688	 * Pairs with the smp_wmb() in finish_lock_switch().
1689	 */
1690	smp_rmb();
1691
1692	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1693	p->state = TASK_WAKING;
1694
1695	if (p->sched_class->task_waking)
1696		p->sched_class->task_waking(p);
1697
1698	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1699	if (task_cpu(p) != cpu) {
1700		wake_flags |= WF_MIGRATED;
1701		set_task_cpu(p, cpu);
1702	}
1703#endif /* CONFIG_SMP */
1704
1705	ttwu_queue(p, cpu);
1706stat:
1707	ttwu_stat(p, cpu, wake_flags);
1708out:
1709	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710
1711	return success;
1712}
1713
1714/**
1715 * try_to_wake_up_local - try to wake up a local task with rq lock held
1716 * @p: the thread to be awakened
1717 *
1718 * Put @p on the run-queue if it's not already there. The caller must
1719 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1720 * the current task.
1721 */
1722static void try_to_wake_up_local(struct task_struct *p)
1723{
1724	struct rq *rq = task_rq(p);
1725
1726	if (WARN_ON_ONCE(rq != this_rq()) ||
1727	    WARN_ON_ONCE(p == current))
1728		return;
1729
1730	lockdep_assert_held(&rq->lock);
1731
1732	if (!raw_spin_trylock(&p->pi_lock)) {
1733		raw_spin_unlock(&rq->lock);
1734		raw_spin_lock(&p->pi_lock);
1735		raw_spin_lock(&rq->lock);
1736	}
1737
1738	if (!(p->state & TASK_NORMAL))
1739		goto out;
1740
1741	if (!p->on_rq)
1742		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1743
1744	ttwu_do_wakeup(rq, p, 0);
1745	ttwu_stat(p, smp_processor_id(), 0);
1746out:
1747	raw_spin_unlock(&p->pi_lock);
1748}
1749
1750/**
1751 * wake_up_process - Wake up a specific process
1752 * @p: The process to be woken up.
1753 *
1754 * Attempt to wake up the nominated process and move it to the set of runnable
1755 * processes.
1756 *
1757 * Return: 1 if the process was woken up, 0 if it was already running.
1758 *
1759 * It may be assumed that this function implies a write memory barrier before
1760 * changing the task state if and only if any tasks are woken up.
1761 */
1762int wake_up_process(struct task_struct *p)
1763{
1764	WARN_ON(task_is_stopped_or_traced(p));
1765	return try_to_wake_up(p, TASK_NORMAL, 0);
1766}
1767EXPORT_SYMBOL(wake_up_process);
1768
1769int wake_up_state(struct task_struct *p, unsigned int state)
1770{
1771	return try_to_wake_up(p, state, 0);
1772}
1773
1774/*
1775 * Perform scheduler related setup for a newly forked process p.
1776 * p is forked by current.
1777 *
1778 * __sched_fork() is basic setup used by init_idle() too:
1779 */
1780static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1781{
1782	p->on_rq			= 0;
1783
1784	p->se.on_rq			= 0;
1785	p->se.exec_start		= 0;
1786	p->se.sum_exec_runtime		= 0;
1787	p->se.prev_sum_exec_runtime	= 0;
1788	p->se.nr_migrations		= 0;
1789	p->se.vruntime			= 0;
1790	INIT_LIST_HEAD(&p->se.group_node);
1791
1792#ifdef CONFIG_SCHEDSTATS
1793	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1794#endif
1795
1796	RB_CLEAR_NODE(&p->dl.rb_node);
1797	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1798	p->dl.dl_runtime = p->dl.runtime = 0;
1799	p->dl.dl_deadline = p->dl.deadline = 0;
1800	p->dl.dl_period = 0;
1801	p->dl.flags = 0;
1802
1803	INIT_LIST_HEAD(&p->rt.run_list);
1804
1805#ifdef CONFIG_PREEMPT_NOTIFIERS
1806	INIT_HLIST_HEAD(&p->preempt_notifiers);
1807#endif
1808
1809#ifdef CONFIG_NUMA_BALANCING
1810	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1811		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1812		p->mm->numa_scan_seq = 0;
1813	}
1814
1815	if (clone_flags & CLONE_VM)
1816		p->numa_preferred_nid = current->numa_preferred_nid;
1817	else
1818		p->numa_preferred_nid = -1;
1819
1820	p->node_stamp = 0ULL;
1821	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1822	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1823	p->numa_work.next = &p->numa_work;
1824	p->numa_faults_memory = NULL;
1825	p->numa_faults_buffer_memory = NULL;
1826	p->last_task_numa_placement = 0;
1827	p->last_sum_exec_runtime = 0;
1828
1829	INIT_LIST_HEAD(&p->numa_entry);
1830	p->numa_group = NULL;
1831#endif /* CONFIG_NUMA_BALANCING */
1832}
1833
1834#ifdef CONFIG_NUMA_BALANCING
1835#ifdef CONFIG_SCHED_DEBUG
1836void set_numabalancing_state(bool enabled)
1837{
1838	if (enabled)
1839		sched_feat_set("NUMA");
1840	else
1841		sched_feat_set("NO_NUMA");
1842}
1843#else
1844__read_mostly bool numabalancing_enabled;
1845
1846void set_numabalancing_state(bool enabled)
1847{
1848	numabalancing_enabled = enabled;
1849}
1850#endif /* CONFIG_SCHED_DEBUG */
1851
1852#ifdef CONFIG_PROC_SYSCTL
1853int sysctl_numa_balancing(struct ctl_table *table, int write,
1854			 void __user *buffer, size_t *lenp, loff_t *ppos)
1855{
1856	struct ctl_table t;
1857	int err;
1858	int state = numabalancing_enabled;
1859
1860	if (write && !capable(CAP_SYS_ADMIN))
1861		return -EPERM;
1862
1863	t = *table;
1864	t.data = &state;
1865	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1866	if (err < 0)
1867		return err;
1868	if (write)
1869		set_numabalancing_state(state);
1870	return err;
1871}
1872#endif
1873#endif
1874
1875/*
1876 * fork()/clone()-time setup:
1877 */
1878int sched_fork(unsigned long clone_flags, struct task_struct *p)
1879{
1880	unsigned long flags;
1881	int cpu = get_cpu();
1882
1883	__sched_fork(clone_flags, p);
1884	/*
1885	 * We mark the process as running here. This guarantees that
1886	 * nobody will actually run it, and a signal or other external
1887	 * event cannot wake it up and insert it on the runqueue either.
1888	 */
1889	p->state = TASK_RUNNING;
1890
1891	/*
1892	 * Make sure we do not leak PI boosting priority to the child.
1893	 */
1894	p->prio = current->normal_prio;
1895
1896	/*
1897	 * Revert to default priority/policy on fork if requested.
1898	 */
1899	if (unlikely(p->sched_reset_on_fork)) {
1900		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1901			p->policy = SCHED_NORMAL;
1902			p->static_prio = NICE_TO_PRIO(0);
1903			p->rt_priority = 0;
1904		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1905			p->static_prio = NICE_TO_PRIO(0);
1906
1907		p->prio = p->normal_prio = __normal_prio(p);
1908		set_load_weight(p);
1909
1910		/*
1911		 * We don't need the reset flag anymore after the fork. It has
1912		 * fulfilled its duty:
1913		 */
1914		p->sched_reset_on_fork = 0;
1915	}
1916
1917	if (dl_prio(p->prio)) {
1918		put_cpu();
1919		return -EAGAIN;
1920	} else if (rt_prio(p->prio)) {
1921		p->sched_class = &rt_sched_class;
1922	} else {
1923		p->sched_class = &fair_sched_class;
1924	}
1925
1926	if (p->sched_class->task_fork)
1927		p->sched_class->task_fork(p);
1928
1929	/*
1930	 * The child is not yet in the pid-hash so no cgroup attach races,
1931	 * and the cgroup is pinned to this child due to cgroup_fork()
1932	 * is ran before sched_fork().
1933	 *
1934	 * Silence PROVE_RCU.
1935	 */
1936	raw_spin_lock_irqsave(&p->pi_lock, flags);
1937	set_task_cpu(p, cpu);
1938	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1939
1940#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1941	if (likely(sched_info_on()))
1942		memset(&p->sched_info, 0, sizeof(p->sched_info));
1943#endif
1944#if defined(CONFIG_SMP)
1945	p->on_cpu = 0;
1946#endif
1947	init_task_preempt_count(p);
1948#ifdef CONFIG_SMP
1949	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1950	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1951#endif
1952
1953	put_cpu();
1954	return 0;
1955}
1956
1957unsigned long to_ratio(u64 period, u64 runtime)
1958{
1959	if (runtime == RUNTIME_INF)
1960		return 1ULL << 20;
1961
1962	/*
1963	 * Doing this here saves a lot of checks in all
1964	 * the calling paths, and returning zero seems
1965	 * safe for them anyway.
1966	 */
1967	if (period == 0)
1968		return 0;
1969
1970	return div64_u64(runtime << 20, period);
1971}
1972
1973#ifdef CONFIG_SMP
1974inline struct dl_bw *dl_bw_of(int i)
1975{
1976	return &cpu_rq(i)->rd->dl_bw;
1977}
1978
1979static inline int dl_bw_cpus(int i)
1980{
1981	struct root_domain *rd = cpu_rq(i)->rd;
1982	int cpus = 0;
1983
1984	for_each_cpu_and(i, rd->span, cpu_active_mask)
1985		cpus++;
1986
1987	return cpus;
1988}
1989#else
1990inline struct dl_bw *dl_bw_of(int i)
1991{
1992	return &cpu_rq(i)->dl.dl_bw;
1993}
1994
1995static inline int dl_bw_cpus(int i)
1996{
1997	return 1;
1998}
1999#endif
2000
2001static inline
2002void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2003{
2004	dl_b->total_bw -= tsk_bw;
2005}
2006
2007static inline
2008void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2009{
2010	dl_b->total_bw += tsk_bw;
2011}
2012
2013static inline
2014bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2015{
2016	return dl_b->bw != -1 &&
2017	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2018}
2019
2020/*
2021 * We must be sure that accepting a new task (or allowing changing the
2022 * parameters of an existing one) is consistent with the bandwidth
2023 * constraints. If yes, this function also accordingly updates the currently
2024 * allocated bandwidth to reflect the new situation.
2025 *
2026 * This function is called while holding p's rq->lock.
2027 */
2028static int dl_overflow(struct task_struct *p, int policy,
2029		       const struct sched_attr *attr)
2030{
2031
2032	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2033	u64 period = attr->sched_period ?: attr->sched_deadline;
2034	u64 runtime = attr->sched_runtime;
2035	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2036	int cpus, err = -1;
2037
2038	if (new_bw == p->dl.dl_bw)
2039		return 0;
2040
2041	/*
2042	 * Either if a task, enters, leave, or stays -deadline but changes
2043	 * its parameters, we may need to update accordingly the total
2044	 * allocated bandwidth of the container.
2045	 */
2046	raw_spin_lock(&dl_b->lock);
2047	cpus = dl_bw_cpus(task_cpu(p));
2048	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2049	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2050		__dl_add(dl_b, new_bw);
2051		err = 0;
2052	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2053		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2054		__dl_clear(dl_b, p->dl.dl_bw);
2055		__dl_add(dl_b, new_bw);
2056		err = 0;
2057	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2058		__dl_clear(dl_b, p->dl.dl_bw);
2059		err = 0;
2060	}
2061	raw_spin_unlock(&dl_b->lock);
2062
2063	return err;
2064}
2065
2066extern void init_dl_bw(struct dl_bw *dl_b);
2067
2068/*
2069 * wake_up_new_task - wake up a newly created task for the first time.
2070 *
2071 * This function will do some initial scheduler statistics housekeeping
2072 * that must be done for every newly created context, then puts the task
2073 * on the runqueue and wakes it.
2074 */
2075void wake_up_new_task(struct task_struct *p)
2076{
2077	unsigned long flags;
2078	struct rq *rq;
2079
2080	raw_spin_lock_irqsave(&p->pi_lock, flags);
2081#ifdef CONFIG_SMP
2082	/*
2083	 * Fork balancing, do it here and not earlier because:
2084	 *  - cpus_allowed can change in the fork path
2085	 *  - any previously selected cpu might disappear through hotplug
2086	 */
2087	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2088#endif
2089
2090	/* Initialize new task's runnable average */
2091	init_task_runnable_average(p);
2092	rq = __task_rq_lock(p);
2093	activate_task(rq, p, 0);
2094	p->on_rq = 1;
2095	trace_sched_wakeup_new(p, true);
2096	check_preempt_curr(rq, p, WF_FORK);
2097#ifdef CONFIG_SMP
2098	if (p->sched_class->task_woken)
2099		p->sched_class->task_woken(rq, p);
2100#endif
2101	task_rq_unlock(rq, p, &flags);
2102}
2103
2104#ifdef CONFIG_PREEMPT_NOTIFIERS
2105
2106/**
2107 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2108 * @notifier: notifier struct to register
2109 */
2110void preempt_notifier_register(struct preempt_notifier *notifier)
2111{
2112	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2113}
2114EXPORT_SYMBOL_GPL(preempt_notifier_register);
2115
2116/**
2117 * preempt_notifier_unregister - no longer interested in preemption notifications
2118 * @notifier: notifier struct to unregister
2119 *
2120 * This is safe to call from within a preemption notifier.
2121 */
2122void preempt_notifier_unregister(struct preempt_notifier *notifier)
2123{
2124	hlist_del(&notifier->link);
2125}
2126EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2127
2128static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2129{
2130	struct preempt_notifier *notifier;
2131
2132	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2133		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2134}
2135
2136static void
2137fire_sched_out_preempt_notifiers(struct task_struct *curr,
2138				 struct task_struct *next)
2139{
2140	struct preempt_notifier *notifier;
2141
2142	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2143		notifier->ops->sched_out(notifier, next);
2144}
2145
2146#else /* !CONFIG_PREEMPT_NOTIFIERS */
2147
2148static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2149{
2150}
2151
2152static void
2153fire_sched_out_preempt_notifiers(struct task_struct *curr,
2154				 struct task_struct *next)
2155{
2156}
2157
2158#endif /* CONFIG_PREEMPT_NOTIFIERS */
2159
2160/**
2161 * prepare_task_switch - prepare to switch tasks
2162 * @rq: the runqueue preparing to switch
2163 * @prev: the current task that is being switched out
2164 * @next: the task we are going to switch to.
2165 *
2166 * This is called with the rq lock held and interrupts off. It must
2167 * be paired with a subsequent finish_task_switch after the context
2168 * switch.
2169 *
2170 * prepare_task_switch sets up locking and calls architecture specific
2171 * hooks.
2172 */
2173static inline void
2174prepare_task_switch(struct rq *rq, struct task_struct *prev,
2175		    struct task_struct *next)
2176{
2177	trace_sched_switch(prev, next);
2178	sched_info_switch(rq, prev, next);
2179	perf_event_task_sched_out(prev, next);
2180	fire_sched_out_preempt_notifiers(prev, next);
2181	prepare_lock_switch(rq, next);
2182	prepare_arch_switch(next);
2183}
2184
2185/**
2186 * finish_task_switch - clean up after a task-switch
2187 * @rq: runqueue associated with task-switch
2188 * @prev: the thread we just switched away from.
2189 *
2190 * finish_task_switch must be called after the context switch, paired
2191 * with a prepare_task_switch call before the context switch.
2192 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2193 * and do any other architecture-specific cleanup actions.
2194 *
2195 * Note that we may have delayed dropping an mm in context_switch(). If
2196 * so, we finish that here outside of the runqueue lock. (Doing it
2197 * with the lock held can cause deadlocks; see schedule() for
2198 * details.)
2199 */
2200static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2201	__releases(rq->lock)
2202{
2203	struct mm_struct *mm = rq->prev_mm;
2204	long prev_state;
2205
2206	rq->prev_mm = NULL;
2207
2208	/*
2209	 * A task struct has one reference for the use as "current".
2210	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2211	 * schedule one last time. The schedule call will never return, and
2212	 * the scheduled task must drop that reference.
2213	 * The test for TASK_DEAD must occur while the runqueue locks are
2214	 * still held, otherwise prev could be scheduled on another cpu, die
2215	 * there before we look at prev->state, and then the reference would
2216	 * be dropped twice.
2217	 *		Manfred Spraul <manfred@colorfullife.com>
2218	 */
2219	prev_state = prev->state;
2220	vtime_task_switch(prev);
2221	finish_arch_switch(prev);
2222	perf_event_task_sched_in(prev, current);
2223	finish_lock_switch(rq, prev);
2224	finish_arch_post_lock_switch();
2225
2226	fire_sched_in_preempt_notifiers(current);
2227	if (mm)
2228		mmdrop(mm);
2229	if (unlikely(prev_state == TASK_DEAD)) {
2230		if (prev->sched_class->task_dead)
2231			prev->sched_class->task_dead(prev);
2232
2233		/*
2234		 * Remove function-return probe instances associated with this
2235		 * task and put them back on the free list.
2236		 */
2237		kprobe_flush_task(prev);
2238		put_task_struct(prev);
2239	}
2240
2241	tick_nohz_task_switch(current);
2242}
2243
2244#ifdef CONFIG_SMP
2245
2246/* rq->lock is NOT held, but preemption is disabled */
2247static inline void post_schedule(struct rq *rq)
2248{
2249	if (rq->post_schedule) {
2250		unsigned long flags;
2251
2252		raw_spin_lock_irqsave(&rq->lock, flags);
2253		if (rq->curr->sched_class->post_schedule)
2254			rq->curr->sched_class->post_schedule(rq);
2255		raw_spin_unlock_irqrestore(&rq->lock, flags);
2256
2257		rq->post_schedule = 0;
2258	}
2259}
2260
2261#else
2262
2263static inline void post_schedule(struct rq *rq)
2264{
2265}
2266
2267#endif
2268
2269/**
2270 * schedule_tail - first thing a freshly forked thread must call.
2271 * @prev: the thread we just switched away from.
2272 */
2273asmlinkage __visible void schedule_tail(struct task_struct *prev)
2274	__releases(rq->lock)
2275{
2276	struct rq *rq = this_rq();
2277
2278	finish_task_switch(rq, prev);
2279
2280	/*
2281	 * FIXME: do we need to worry about rq being invalidated by the
2282	 * task_switch?
2283	 */
2284	post_schedule(rq);
2285
2286#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2287	/* In this case, finish_task_switch does not reenable preemption */
2288	preempt_enable();
2289#endif
2290	if (current->set_child_tid)
2291		put_user(task_pid_vnr(current), current->set_child_tid);
2292}
2293
2294/*
2295 * context_switch - switch to the new MM and the new
2296 * thread's register state.
2297 */
2298static inline void
2299context_switch(struct rq *rq, struct task_struct *prev,
2300	       struct task_struct *next)
2301{
2302	struct mm_struct *mm, *oldmm;
2303
2304	prepare_task_switch(rq, prev, next);
2305
2306	mm = next->mm;
2307	oldmm = prev->active_mm;
2308	/*
2309	 * For paravirt, this is coupled with an exit in switch_to to
2310	 * combine the page table reload and the switch backend into
2311	 * one hypercall.
2312	 */
2313	arch_start_context_switch(prev);
2314
2315	if (!mm) {
2316		next->active_mm = oldmm;
2317		atomic_inc(&oldmm->mm_count);
2318		enter_lazy_tlb(oldmm, next);
2319	} else
2320		switch_mm(oldmm, mm, next);
2321
2322	if (!prev->mm) {
2323		prev->active_mm = NULL;
2324		rq->prev_mm = oldmm;
2325	}
2326	/*
2327	 * Since the runqueue lock will be released by the next
2328	 * task (which is an invalid locking op but in the case
2329	 * of the scheduler it's an obvious special-case), so we
2330	 * do an early lockdep release here:
2331	 */
2332#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2333	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2334#endif
2335
2336	context_tracking_task_switch(prev, next);
2337	/* Here we just switch the register state and the stack. */
2338	switch_to(prev, next, prev);
2339
2340	barrier();
2341	/*
2342	 * this_rq must be evaluated again because prev may have moved
2343	 * CPUs since it called schedule(), thus the 'rq' on its stack
2344	 * frame will be invalid.
2345	 */
2346	finish_task_switch(this_rq(), prev);
2347}
2348
2349/*
2350 * nr_running and nr_context_switches:
2351 *
2352 * externally visible scheduler statistics: current number of runnable
2353 * threads, total number of context switches performed since bootup.
2354 */
2355unsigned long nr_running(void)
2356{
2357	unsigned long i, sum = 0;
2358
2359	for_each_online_cpu(i)
2360		sum += cpu_rq(i)->nr_running;
2361
2362	return sum;
2363}
2364
2365unsigned long long nr_context_switches(void)
2366{
2367	int i;
2368	unsigned long long sum = 0;
2369
2370	for_each_possible_cpu(i)
2371		sum += cpu_rq(i)->nr_switches;
2372
2373	return sum;
2374}
2375
2376unsigned long nr_iowait(void)
2377{
2378	unsigned long i, sum = 0;
2379
2380	for_each_possible_cpu(i)
2381		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2382
2383	return sum;
2384}
2385
2386unsigned long nr_iowait_cpu(int cpu)
2387{
2388	struct rq *this = cpu_rq(cpu);
2389	return atomic_read(&this->nr_iowait);
2390}
2391
2392#ifdef CONFIG_SMP
2393
2394/*
2395 * sched_exec - execve() is a valuable balancing opportunity, because at
2396 * this point the task has the smallest effective memory and cache footprint.
2397 */
2398void sched_exec(void)
2399{
2400	struct task_struct *p = current;
2401	unsigned long flags;
2402	int dest_cpu;
2403
2404	raw_spin_lock_irqsave(&p->pi_lock, flags);
2405	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2406	if (dest_cpu == smp_processor_id())
2407		goto unlock;
2408
2409	if (likely(cpu_active(dest_cpu))) {
2410		struct migration_arg arg = { p, dest_cpu };
2411
2412		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2413		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2414		return;
2415	}
2416unlock:
2417	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2418}
2419
2420#endif
2421
2422DEFINE_PER_CPU(struct kernel_stat, kstat);
2423DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2424
2425EXPORT_PER_CPU_SYMBOL(kstat);
2426EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2427
2428/*
2429 * Return any ns on the sched_clock that have not yet been accounted in
2430 * @p in case that task is currently running.
2431 *
2432 * Called with task_rq_lock() held on @rq.
2433 */
2434static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2435{
2436	u64 ns = 0;
2437
2438	if (task_current(rq, p)) {
2439		update_rq_clock(rq);
2440		ns = rq_clock_task(rq) - p->se.exec_start;
2441		if ((s64)ns < 0)
2442			ns = 0;
2443	}
2444
2445	return ns;
2446}
2447
2448unsigned long long task_delta_exec(struct task_struct *p)
2449{
2450	unsigned long flags;
2451	struct rq *rq;
2452	u64 ns = 0;
2453
2454	rq = task_rq_lock(p, &flags);
2455	ns = do_task_delta_exec(p, rq);
2456	task_rq_unlock(rq, p, &flags);
2457
2458	return ns;
2459}
2460
2461/*
2462 * Return accounted runtime for the task.
2463 * In case the task is currently running, return the runtime plus current's
2464 * pending runtime that have not been accounted yet.
2465 */
2466unsigned long long task_sched_runtime(struct task_struct *p)
2467{
2468	unsigned long flags;
2469	struct rq *rq;
2470	u64 ns = 0;
2471
2472#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2473	/*
2474	 * 64-bit doesn't need locks to atomically read a 64bit value.
2475	 * So we have a optimization chance when the task's delta_exec is 0.
2476	 * Reading ->on_cpu is racy, but this is ok.
2477	 *
2478	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2479	 * If we race with it entering cpu, unaccounted time is 0. This is
2480	 * indistinguishable from the read occurring a few cycles earlier.
2481	 */
2482	if (!p->on_cpu)
2483		return p->se.sum_exec_runtime;
2484#endif
2485
2486	rq = task_rq_lock(p, &flags);
2487	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2488	task_rq_unlock(rq, p, &flags);
2489
2490	return ns;
2491}
2492
2493/*
2494 * This function gets called by the timer code, with HZ frequency.
2495 * We call it with interrupts disabled.
2496 */
2497void scheduler_tick(void)
2498{
2499	int cpu = smp_processor_id();
2500	struct rq *rq = cpu_rq(cpu);
2501	struct task_struct *curr = rq->curr;
2502
2503	sched_clock_tick();
2504
2505	raw_spin_lock(&rq->lock);
2506	update_rq_clock(rq);
2507	curr->sched_class->task_tick(rq, curr, 0);
2508	update_cpu_load_active(rq);
2509	raw_spin_unlock(&rq->lock);
2510
2511	perf_event_task_tick();
2512
2513#ifdef CONFIG_SMP
2514	rq->idle_balance = idle_cpu(cpu);
2515	trigger_load_balance(rq);
2516#endif
2517	rq_last_tick_reset(rq);
2518}
2519
2520#ifdef CONFIG_NO_HZ_FULL
2521/**
2522 * scheduler_tick_max_deferment
2523 *
2524 * Keep at least one tick per second when a single
2525 * active task is running because the scheduler doesn't
2526 * yet completely support full dynticks environment.
2527 *
2528 * This makes sure that uptime, CFS vruntime, load
2529 * balancing, etc... continue to move forward, even
2530 * with a very low granularity.
2531 *
2532 * Return: Maximum deferment in nanoseconds.
2533 */
2534u64 scheduler_tick_max_deferment(void)
2535{
2536	struct rq *rq = this_rq();
2537	unsigned long next, now = ACCESS_ONCE(jiffies);
2538
2539	next = rq->last_sched_tick + HZ;
2540
2541	if (time_before_eq(next, now))
2542		return 0;
2543
2544	return jiffies_to_nsecs(next - now);
2545}
2546#endif
2547
2548notrace unsigned long get_parent_ip(unsigned long addr)
2549{
2550	if (in_lock_functions(addr)) {
2551		addr = CALLER_ADDR2;
2552		if (in_lock_functions(addr))
2553			addr = CALLER_ADDR3;
2554	}
2555	return addr;
2556}
2557
2558#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2559				defined(CONFIG_PREEMPT_TRACER))
2560
2561void preempt_count_add(int val)
2562{
2563#ifdef CONFIG_DEBUG_PREEMPT
2564	/*
2565	 * Underflow?
2566	 */
2567	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2568		return;
2569#endif
2570	__preempt_count_add(val);
2571#ifdef CONFIG_DEBUG_PREEMPT
2572	/*
2573	 * Spinlock count overflowing soon?
2574	 */
2575	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2576				PREEMPT_MASK - 10);
2577#endif
2578	if (preempt_count() == val) {
2579		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2580#ifdef CONFIG_DEBUG_PREEMPT
2581		current->preempt_disable_ip = ip;
2582#endif
2583		trace_preempt_off(CALLER_ADDR0, ip);
2584	}
2585}
2586EXPORT_SYMBOL(preempt_count_add);
2587NOKPROBE_SYMBOL(preempt_count_add);
2588
2589void preempt_count_sub(int val)
2590{
2591#ifdef CONFIG_DEBUG_PREEMPT
2592	/*
2593	 * Underflow?
2594	 */
2595	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2596		return;
2597	/*
2598	 * Is the spinlock portion underflowing?
2599	 */
2600	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2601			!(preempt_count() & PREEMPT_MASK)))
2602		return;
2603#endif
2604
2605	if (preempt_count() == val)
2606		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2607	__preempt_count_sub(val);
2608}
2609EXPORT_SYMBOL(preempt_count_sub);
2610NOKPROBE_SYMBOL(preempt_count_sub);
2611
2612#endif
2613
2614/*
2615 * Print scheduling while atomic bug:
2616 */
2617static noinline void __schedule_bug(struct task_struct *prev)
2618{
2619	if (oops_in_progress)
2620		return;
2621
2622	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2623		prev->comm, prev->pid, preempt_count());
2624
2625	debug_show_held_locks(prev);
2626	print_modules();
2627	if (irqs_disabled())
2628		print_irqtrace_events(prev);
2629#ifdef CONFIG_DEBUG_PREEMPT
2630	if (in_atomic_preempt_off()) {
2631		pr_err("Preemption disabled at:");
2632		print_ip_sym(current->preempt_disable_ip);
2633		pr_cont("\n");
2634	}
2635#endif
2636	dump_stack();
2637	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2638}
2639
2640/*
2641 * Various schedule()-time debugging checks and statistics:
2642 */
2643static inline void schedule_debug(struct task_struct *prev)
2644{
2645	/*
2646	 * Test if we are atomic. Since do_exit() needs to call into
2647	 * schedule() atomically, we ignore that path. Otherwise whine
2648	 * if we are scheduling when we should not.
2649	 */
2650	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2651		__schedule_bug(prev);
2652	rcu_sleep_check();
2653
2654	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2655
2656	schedstat_inc(this_rq(), sched_count);
2657}
2658
2659/*
2660 * Pick up the highest-prio task:
2661 */
2662static inline struct task_struct *
2663pick_next_task(struct rq *rq, struct task_struct *prev)
2664{
2665	const struct sched_class *class = &fair_sched_class;
2666	struct task_struct *p;
2667
2668	/*
2669	 * Optimization: we know that if all tasks are in
2670	 * the fair class we can call that function directly:
2671	 */
2672	if (likely(prev->sched_class == class &&
2673		   rq->nr_running == rq->cfs.h_nr_running)) {
2674		p = fair_sched_class.pick_next_task(rq, prev);
2675		if (unlikely(p == RETRY_TASK))
2676			goto again;
2677
2678		/* assumes fair_sched_class->next == idle_sched_class */
2679		if (unlikely(!p))
2680			p = idle_sched_class.pick_next_task(rq, prev);
2681
2682		return p;
2683	}
2684
2685again:
2686	for_each_class(class) {
2687		p = class->pick_next_task(rq, prev);
2688		if (p) {
2689			if (unlikely(p == RETRY_TASK))
2690				goto again;
2691			return p;
2692		}
2693	}
2694
2695	BUG(); /* the idle class will always have a runnable task */
2696}
2697
2698/*
2699 * __schedule() is the main scheduler function.
2700 *
2701 * The main means of driving the scheduler and thus entering this function are:
2702 *
2703 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2704 *
2705 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2706 *      paths. For example, see arch/x86/entry_64.S.
2707 *
2708 *      To drive preemption between tasks, the scheduler sets the flag in timer
2709 *      interrupt handler scheduler_tick().
2710 *
2711 *   3. Wakeups don't really cause entry into schedule(). They add a
2712 *      task to the run-queue and that's it.
2713 *
2714 *      Now, if the new task added to the run-queue preempts the current
2715 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2716 *      called on the nearest possible occasion:
2717 *
2718 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2719 *
2720 *         - in syscall or exception context, at the next outmost
2721 *           preempt_enable(). (this might be as soon as the wake_up()'s
2722 *           spin_unlock()!)
2723 *
2724 *         - in IRQ context, return from interrupt-handler to
2725 *           preemptible context
2726 *
2727 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2728 *         then at the next:
2729 *
2730 *          - cond_resched() call
2731 *          - explicit schedule() call
2732 *          - return from syscall or exception to user-space
2733 *          - return from interrupt-handler to user-space
2734 */
2735static void __sched __schedule(void)
2736{
2737	struct task_struct *prev, *next;
2738	unsigned long *switch_count;
2739	struct rq *rq;
2740	int cpu;
2741
2742need_resched:
2743	preempt_disable();
2744	cpu = smp_processor_id();
2745	rq = cpu_rq(cpu);
2746	rcu_note_context_switch(cpu);
2747	prev = rq->curr;
2748
2749	schedule_debug(prev);
2750
2751	if (sched_feat(HRTICK))
2752		hrtick_clear(rq);
2753
2754	/*
2755	 * Make sure that signal_pending_state()->signal_pending() below
2756	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2757	 * done by the caller to avoid the race with signal_wake_up().
2758	 */
2759	smp_mb__before_spinlock();
2760	raw_spin_lock_irq(&rq->lock);
2761
2762	switch_count = &prev->nivcsw;
2763	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2764		if (unlikely(signal_pending_state(prev->state, prev))) {
2765			prev->state = TASK_RUNNING;
2766		} else {
2767			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2768			prev->on_rq = 0;
2769
2770			/*
2771			 * If a worker went to sleep, notify and ask workqueue
2772			 * whether it wants to wake up a task to maintain
2773			 * concurrency.
2774			 */
2775			if (prev->flags & PF_WQ_WORKER) {
2776				struct task_struct *to_wakeup;
2777
2778				to_wakeup = wq_worker_sleeping(prev, cpu);
2779				if (to_wakeup)
2780					try_to_wake_up_local(to_wakeup);
2781			}
2782		}
2783		switch_count = &prev->nvcsw;
2784	}
2785
2786	if (prev->on_rq || rq->skip_clock_update < 0)
2787		update_rq_clock(rq);
2788
2789	next = pick_next_task(rq, prev);
2790	clear_tsk_need_resched(prev);
2791	clear_preempt_need_resched();
2792	rq->skip_clock_update = 0;
2793
2794	if (likely(prev != next)) {
2795		rq->nr_switches++;
2796		rq->curr = next;
2797		++*switch_count;
2798
2799		context_switch(rq, prev, next); /* unlocks the rq */
2800		/*
2801		 * The context switch have flipped the stack from under us
2802		 * and restored the local variables which were saved when
2803		 * this task called schedule() in the past. prev == current
2804		 * is still correct, but it can be moved to another cpu/rq.
2805		 */
2806		cpu = smp_processor_id();
2807		rq = cpu_rq(cpu);
2808	} else
2809		raw_spin_unlock_irq(&rq->lock);
2810
2811	post_schedule(rq);
2812
2813	sched_preempt_enable_no_resched();
2814	if (need_resched())
2815		goto need_resched;
2816}
2817
2818static inline void sched_submit_work(struct task_struct *tsk)
2819{
2820	if (!tsk->state || tsk_is_pi_blocked(tsk))
2821		return;
2822	/*
2823	 * If we are going to sleep and we have plugged IO queued,
2824	 * make sure to submit it to avoid deadlocks.
2825	 */
2826	if (blk_needs_flush_plug(tsk))
2827		blk_schedule_flush_plug(tsk);
2828}
2829
2830asmlinkage __visible void __sched schedule(void)
2831{
2832	struct task_struct *tsk = current;
2833
2834	sched_submit_work(tsk);
2835	__schedule();
2836}
2837EXPORT_SYMBOL(schedule);
2838
2839#ifdef CONFIG_CONTEXT_TRACKING
2840asmlinkage __visible void __sched schedule_user(void)
2841{
2842	/*
2843	 * If we come here after a random call to set_need_resched(),
2844	 * or we have been woken up remotely but the IPI has not yet arrived,
2845	 * we haven't yet exited the RCU idle mode. Do it here manually until
2846	 * we find a better solution.
2847	 */
2848	user_exit();
2849	schedule();
2850	user_enter();
2851}
2852#endif
2853
2854/**
2855 * schedule_preempt_disabled - called with preemption disabled
2856 *
2857 * Returns with preemption disabled. Note: preempt_count must be 1
2858 */
2859void __sched schedule_preempt_disabled(void)
2860{
2861	sched_preempt_enable_no_resched();
2862	schedule();
2863	preempt_disable();
2864}
2865
2866#ifdef CONFIG_PREEMPT
2867/*
2868 * this is the entry point to schedule() from in-kernel preemption
2869 * off of preempt_enable. Kernel preemptions off return from interrupt
2870 * occur there and call schedule directly.
2871 */
2872asmlinkage __visible void __sched notrace preempt_schedule(void)
2873{
2874	/*
2875	 * If there is a non-zero preempt_count or interrupts are disabled,
2876	 * we do not want to preempt the current task. Just return..
2877	 */
2878	if (likely(!preemptible()))
2879		return;
2880
2881	do {
2882		__preempt_count_add(PREEMPT_ACTIVE);
2883		__schedule();
2884		__preempt_count_sub(PREEMPT_ACTIVE);
2885
2886		/*
2887		 * Check again in case we missed a preemption opportunity
2888		 * between schedule and now.
2889		 */
2890		barrier();
2891	} while (need_resched());
2892}
2893NOKPROBE_SYMBOL(preempt_schedule);
2894EXPORT_SYMBOL(preempt_schedule);
2895#endif /* CONFIG_PREEMPT */
2896
2897/*
2898 * this is the entry point to schedule() from kernel preemption
2899 * off of irq context.
2900 * Note, that this is called and return with irqs disabled. This will
2901 * protect us against recursive calling from irq.
2902 */
2903asmlinkage __visible void __sched preempt_schedule_irq(void)
2904{
2905	enum ctx_state prev_state;
2906
2907	/* Catch callers which need to be fixed */
2908	BUG_ON(preempt_count() || !irqs_disabled());
2909
2910	prev_state = exception_enter();
2911
2912	do {
2913		__preempt_count_add(PREEMPT_ACTIVE);
2914		local_irq_enable();
2915		__schedule();
2916		local_irq_disable();
2917		__preempt_count_sub(PREEMPT_ACTIVE);
2918
2919		/*
2920		 * Check again in case we missed a preemption opportunity
2921		 * between schedule and now.
2922		 */
2923		barrier();
2924	} while (need_resched());
2925
2926	exception_exit(prev_state);
2927}
2928
2929int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2930			  void *key)
2931{
2932	return try_to_wake_up(curr->private, mode, wake_flags);
2933}
2934EXPORT_SYMBOL(default_wake_function);
2935
2936#ifdef CONFIG_RT_MUTEXES
2937
2938/*
2939 * rt_mutex_setprio - set the current priority of a task
2940 * @p: task
2941 * @prio: prio value (kernel-internal form)
2942 *
2943 * This function changes the 'effective' priority of a task. It does
2944 * not touch ->normal_prio like __setscheduler().
2945 *
2946 * Used by the rt_mutex code to implement priority inheritance
2947 * logic. Call site only calls if the priority of the task changed.
2948 */
2949void rt_mutex_setprio(struct task_struct *p, int prio)
2950{
2951	int oldprio, on_rq, running, enqueue_flag = 0;
2952	struct rq *rq;
2953	const struct sched_class *prev_class;
2954
2955	BUG_ON(prio > MAX_PRIO);
2956
2957	rq = __task_rq_lock(p);
2958
2959	/*
2960	 * Idle task boosting is a nono in general. There is one
2961	 * exception, when PREEMPT_RT and NOHZ is active:
2962	 *
2963	 * The idle task calls get_next_timer_interrupt() and holds
2964	 * the timer wheel base->lock on the CPU and another CPU wants
2965	 * to access the timer (probably to cancel it). We can safely
2966	 * ignore the boosting request, as the idle CPU runs this code
2967	 * with interrupts disabled and will complete the lock
2968	 * protected section without being interrupted. So there is no
2969	 * real need to boost.
2970	 */
2971	if (unlikely(p == rq->idle)) {
2972		WARN_ON(p != rq->curr);
2973		WARN_ON(p->pi_blocked_on);
2974		goto out_unlock;
2975	}
2976
2977	trace_sched_pi_setprio(p, prio);
2978	p->pi_top_task = rt_mutex_get_top_task(p);
2979	oldprio = p->prio;
2980	prev_class = p->sched_class;
2981	on_rq = p->on_rq;
2982	running = task_current(rq, p);
2983	if (on_rq)
2984		dequeue_task(rq, p, 0);
2985	if (running)
2986		p->sched_class->put_prev_task(rq, p);
2987
2988	/*
2989	 * Boosting condition are:
2990	 * 1. -rt task is running and holds mutex A
2991	 *      --> -dl task blocks on mutex A
2992	 *
2993	 * 2. -dl task is running and holds mutex A
2994	 *      --> -dl task blocks on mutex A and could preempt the
2995	 *          running task
2996	 */
2997	if (dl_prio(prio)) {
2998		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2999			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
3000			p->dl.dl_boosted = 1;
3001			p->dl.dl_throttled = 0;
3002			enqueue_flag = ENQUEUE_REPLENISH;
3003		} else
3004			p->dl.dl_boosted = 0;
3005		p->sched_class = &dl_sched_class;
3006	} else if (rt_prio(prio)) {
3007		if (dl_prio(oldprio))
3008			p->dl.dl_boosted = 0;
3009		if (oldprio < prio)
3010			enqueue_flag = ENQUEUE_HEAD;
3011		p->sched_class = &rt_sched_class;
3012	} else {
3013		if (dl_prio(oldprio))
3014			p->dl.dl_boosted = 0;
3015		p->sched_class = &fair_sched_class;
3016	}
3017
3018	p->prio = prio;
3019
3020	if (running)
3021		p->sched_class->set_curr_task(rq);
3022	if (on_rq)
3023		enqueue_task(rq, p, enqueue_flag);
3024
3025	check_class_changed(rq, p, prev_class, oldprio);
3026out_unlock:
3027	__task_rq_unlock(rq);
3028}
3029#endif
3030
3031void set_user_nice(struct task_struct *p, long nice)
3032{
3033	int old_prio, delta, on_rq;
3034	unsigned long flags;
3035	struct rq *rq;
3036
3037	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3038		return;
3039	/*
3040	 * We have to be careful, if called from sys_setpriority(),
3041	 * the task might be in the middle of scheduling on another CPU.
3042	 */
3043	rq = task_rq_lock(p, &flags);
3044	/*
3045	 * The RT priorities are set via sched_setscheduler(), but we still
3046	 * allow the 'normal' nice value to be set - but as expected
3047	 * it wont have any effect on scheduling until the task is
3048	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3049	 */
3050	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3051		p->static_prio = NICE_TO_PRIO(nice);
3052		goto out_unlock;
3053	}
3054	on_rq = p->on_rq;
3055	if (on_rq)
3056		dequeue_task(rq, p, 0);
3057
3058	p->static_prio = NICE_TO_PRIO(nice);
3059	set_load_weight(p);
3060	old_prio = p->prio;
3061	p->prio = effective_prio(p);
3062	delta = p->prio - old_prio;
3063
3064	if (on_rq) {
3065		enqueue_task(rq, p, 0);
3066		/*
3067		 * If the task increased its priority or is running and
3068		 * lowered its priority, then reschedule its CPU:
3069		 */
3070		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3071			resched_task(rq->curr);
3072	}
3073out_unlock:
3074	task_rq_unlock(rq, p, &flags);
3075}
3076EXPORT_SYMBOL(set_user_nice);
3077
3078/*
3079 * can_nice - check if a task can reduce its nice value
3080 * @p: task
3081 * @nice: nice value
3082 */
3083int can_nice(const struct task_struct *p, const int nice)
3084{
3085	/* convert nice value [19,-20] to rlimit style value [1,40] */
3086	int nice_rlim = nice_to_rlimit(nice);
3087
3088	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3089		capable(CAP_SYS_NICE));
3090}
3091
3092#ifdef __ARCH_WANT_SYS_NICE
3093
3094/*
3095 * sys_nice - change the priority of the current process.
3096 * @increment: priority increment
3097 *
3098 * sys_setpriority is a more generic, but much slower function that
3099 * does similar things.
3100 */
3101SYSCALL_DEFINE1(nice, int, increment)
3102{
3103	long nice, retval;
3104
3105	/*
3106	 * Setpriority might change our priority at the same moment.
3107	 * We don't have to worry. Conceptually one call occurs first
3108	 * and we have a single winner.
3109	 */
3110	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3111	nice = task_nice(current) + increment;
3112
3113	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3114	if (increment < 0 && !can_nice(current, nice))
3115		return -EPERM;
3116
3117	retval = security_task_setnice(current, nice);
3118	if (retval)
3119		return retval;
3120
3121	set_user_nice(current, nice);
3122	return 0;
3123}
3124
3125#endif
3126
3127/**
3128 * task_prio - return the priority value of a given task.
3129 * @p: the task in question.
3130 *
3131 * Return: The priority value as seen by users in /proc.
3132 * RT tasks are offset by -200. Normal tasks are centered
3133 * around 0, value goes from -16 to +15.
3134 */
3135int task_prio(const struct task_struct *p)
3136{
3137	return p->prio - MAX_RT_PRIO;
3138}
3139
3140/**
3141 * idle_cpu - is a given cpu idle currently?
3142 * @cpu: the processor in question.
3143 *
3144 * Return: 1 if the CPU is currently idle. 0 otherwise.
3145 */
3146int idle_cpu(int cpu)
3147{
3148	struct rq *rq = cpu_rq(cpu);
3149
3150	if (rq->curr != rq->idle)
3151		return 0;
3152
3153	if (rq->nr_running)
3154		return 0;
3155
3156#ifdef CONFIG_SMP
3157	if (!llist_empty(&rq->wake_list))
3158		return 0;
3159#endif
3160
3161	return 1;
3162}
3163
3164/**
3165 * idle_task - return the idle task for a given cpu.
3166 * @cpu: the processor in question.
3167 *
3168 * Return: The idle task for the cpu @cpu.
3169 */
3170struct task_struct *idle_task(int cpu)
3171{
3172	return cpu_rq(cpu)->idle;
3173}
3174
3175/**
3176 * find_process_by_pid - find a process with a matching PID value.
3177 * @pid: the pid in question.
3178 *
3179 * The task of @pid, if found. %NULL otherwise.
3180 */
3181static struct task_struct *find_process_by_pid(pid_t pid)
3182{
3183	return pid ? find_task_by_vpid(pid) : current;
3184}
3185
3186/*
3187 * This function initializes the sched_dl_entity of a newly becoming
3188 * SCHED_DEADLINE task.
3189 *
3190 * Only the static values are considered here, the actual runtime and the
3191 * absolute deadline will be properly calculated when the task is enqueued
3192 * for the first time with its new policy.
3193 */
3194static void
3195__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3196{
3197	struct sched_dl_entity *dl_se = &p->dl;
3198
3199	init_dl_task_timer(dl_se);
3200	dl_se->dl_runtime = attr->sched_runtime;
3201	dl_se->dl_deadline = attr->sched_deadline;
3202	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3203	dl_se->flags = attr->sched_flags;
3204	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3205	dl_se->dl_throttled = 0;
3206	dl_se->dl_new = 1;
3207	dl_se->dl_yielded = 0;
3208}
3209
3210static void __setscheduler_params(struct task_struct *p,
3211		const struct sched_attr *attr)
3212{
3213	int policy = attr->sched_policy;
3214
3215	if (policy == -1) /* setparam */
3216		policy = p->policy;
3217
3218	p->policy = policy;
3219
3220	if (dl_policy(policy))
3221		__setparam_dl(p, attr);
3222	else if (fair_policy(policy))
3223		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3224
3225	/*
3226	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3227	 * !rt_policy. Always setting this ensures that things like
3228	 * getparam()/getattr() don't report silly values for !rt tasks.
3229	 */
3230	p->rt_priority = attr->sched_priority;
3231	p->normal_prio = normal_prio(p);
3232	set_load_weight(p);
3233}
3234
3235/* Actually do priority change: must hold pi & rq lock. */
3236static void __setscheduler(struct rq *rq, struct task_struct *p,
3237			   const struct sched_attr *attr)
3238{
3239	__setscheduler_params(p, attr);
3240
3241	/*
3242	 * If we get here, there was no pi waiters boosting the
3243	 * task. It is safe to use the normal prio.
3244	 */
3245	p->prio = normal_prio(p);
3246
3247	if (dl_prio(p->prio))
3248		p->sched_class = &dl_sched_class;
3249	else if (rt_prio(p->prio))
3250		p->sched_class = &rt_sched_class;
3251	else
3252		p->sched_class = &fair_sched_class;
3253}
3254
3255static void
3256__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3257{
3258	struct sched_dl_entity *dl_se = &p->dl;
3259
3260	attr->sched_priority = p->rt_priority;
3261	attr->sched_runtime = dl_se->dl_runtime;
3262	attr->sched_deadline = dl_se->dl_deadline;
3263	attr->sched_period = dl_se->dl_period;
3264	attr->sched_flags = dl_se->flags;
3265}
3266
3267/*
3268 * This function validates the new parameters of a -deadline task.
3269 * We ask for the deadline not being zero, and greater or equal
3270 * than the runtime, as well as the period of being zero or
3271 * greater than deadline. Furthermore, we have to be sure that
3272 * user parameters are above the internal resolution of 1us (we
3273 * check sched_runtime only since it is always the smaller one) and
3274 * below 2^63 ns (we have to check both sched_deadline and
3275 * sched_period, as the latter can be zero).
3276 */
3277static bool
3278__checkparam_dl(const struct sched_attr *attr)
3279{
3280	/* deadline != 0 */
3281	if (attr->sched_deadline == 0)
3282		return false;
3283
3284	/*
3285	 * Since we truncate DL_SCALE bits, make sure we're at least
3286	 * that big.
3287	 */
3288	if (attr->sched_runtime < (1ULL << DL_SCALE))
3289		return false;
3290
3291	/*
3292	 * Since we use the MSB for wrap-around and sign issues, make
3293	 * sure it's not set (mind that period can be equal to zero).
3294	 */
3295	if (attr->sched_deadline & (1ULL << 63) ||
3296	    attr->sched_period & (1ULL << 63))
3297		return false;
3298
3299	/* runtime <= deadline <= period (if period != 0) */
3300	if ((attr->sched_period != 0 &&
3301	     attr->sched_period < attr->sched_deadline) ||
3302	    attr->sched_deadline < attr->sched_runtime)
3303		return false;
3304
3305	return true;
3306}
3307
3308/*
3309 * check the target process has a UID that matches the current process's
3310 */
3311static bool check_same_owner(struct task_struct *p)
3312{
3313	const struct cred *cred = current_cred(), *pcred;
3314	bool match;
3315
3316	rcu_read_lock();
3317	pcred = __task_cred(p);
3318	match = (uid_eq(cred->euid, pcred->euid) ||
3319		 uid_eq(cred->euid, pcred->uid));
3320	rcu_read_unlock();
3321	return match;
3322}
3323
3324static int __sched_setscheduler(struct task_struct *p,
3325				const struct sched_attr *attr,
3326				bool user)
3327{
3328	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3329		      MAX_RT_PRIO - 1 - attr->sched_priority;
3330	int retval, oldprio, oldpolicy = -1, on_rq, running;
3331	int policy = attr->sched_policy;
3332	unsigned long flags;
3333	const struct sched_class *prev_class;
3334	struct rq *rq;
3335	int reset_on_fork;
3336
3337	/* may grab non-irq protected spin_locks */
3338	BUG_ON(in_interrupt());
3339recheck:
3340	/* double check policy once rq lock held */
3341	if (policy < 0) {
3342		reset_on_fork = p->sched_reset_on_fork;
3343		policy = oldpolicy = p->policy;
3344	} else {
3345		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3346
3347		if (policy != SCHED_DEADLINE &&
3348				policy != SCHED_FIFO && policy != SCHED_RR &&
3349				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3350				policy != SCHED_IDLE)
3351			return -EINVAL;
3352	}
3353
3354	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3355		return -EINVAL;
3356
3357	/*
3358	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3359	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3360	 * SCHED_BATCH and SCHED_IDLE is 0.
3361	 */
3362	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3363	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3364		return -EINVAL;
3365	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3366	    (rt_policy(policy) != (attr->sched_priority != 0)))
3367		return -EINVAL;
3368
3369	/*
3370	 * Allow unprivileged RT tasks to decrease priority:
3371	 */
3372	if (user && !capable(CAP_SYS_NICE)) {
3373		if (fair_policy(policy)) {
3374			if (attr->sched_nice < task_nice(p) &&
3375			    !can_nice(p, attr->sched_nice))
3376				return -EPERM;
3377		}
3378
3379		if (rt_policy(policy)) {
3380			unsigned long rlim_rtprio =
3381					task_rlimit(p, RLIMIT_RTPRIO);
3382
3383			/* can't set/change the rt policy */
3384			if (policy != p->policy && !rlim_rtprio)
3385				return -EPERM;
3386
3387			/* can't increase priority */
3388			if (attr->sched_priority > p->rt_priority &&
3389			    attr->sched_priority > rlim_rtprio)
3390				return -EPERM;
3391		}
3392
3393		 /*
3394		  * Can't set/change SCHED_DEADLINE policy at all for now
3395		  * (safest behavior); in the future we would like to allow
3396		  * unprivileged DL tasks to increase their relative deadline
3397		  * or reduce their runtime (both ways reducing utilization)
3398		  */
3399		if (dl_policy(policy))
3400			return -EPERM;
3401
3402		/*
3403		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3404		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3405		 */
3406		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3407			if (!can_nice(p, task_nice(p)))
3408				return -EPERM;
3409		}
3410
3411		/* can't change other user's priorities */
3412		if (!check_same_owner(p))
3413			return -EPERM;
3414
3415		/* Normal users shall not reset the sched_reset_on_fork flag */
3416		if (p->sched_reset_on_fork && !reset_on_fork)
3417			return -EPERM;
3418	}
3419
3420	if (user) {
3421		retval = security_task_setscheduler(p);
3422		if (retval)
3423			return retval;
3424	}
3425
3426	/*
3427	 * make sure no PI-waiters arrive (or leave) while we are
3428	 * changing the priority of the task:
3429	 *
3430	 * To be able to change p->policy safely, the appropriate
3431	 * runqueue lock must be held.
3432	 */
3433	rq = task_rq_lock(p, &flags);
3434
3435	/*
3436	 * Changing the policy of the stop threads its a very bad idea
3437	 */
3438	if (p == rq->stop) {
3439		task_rq_unlock(rq, p, &flags);
3440		return -EINVAL;
3441	}
3442
3443	/*
3444	 * If not changing anything there's no need to proceed further,
3445	 * but store a possible modification of reset_on_fork.
3446	 */
3447	if (unlikely(policy == p->policy)) {
3448		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3449			goto change;
3450		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3451			goto change;
3452		if (dl_policy(policy))
3453			goto change;
3454
3455		p->sched_reset_on_fork = reset_on_fork;
3456		task_rq_unlock(rq, p, &flags);
3457		return 0;
3458	}
3459change:
3460
3461	if (user) {
3462#ifdef CONFIG_RT_GROUP_SCHED
3463		/*
3464		 * Do not allow realtime tasks into groups that have no runtime
3465		 * assigned.
3466		 */
3467		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3468				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3469				!task_group_is_autogroup(task_group(p))) {
3470			task_rq_unlock(rq, p, &flags);
3471			return -EPERM;
3472		}
3473#endif
3474#ifdef CONFIG_SMP
3475		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3476			cpumask_t *span = rq->rd->span;
3477
3478			/*
3479			 * Don't allow tasks with an affinity mask smaller than
3480			 * the entire root_domain to become SCHED_DEADLINE. We
3481			 * will also fail if there's no bandwidth available.
3482			 */
3483			if (!cpumask_subset(span, &p->cpus_allowed) ||
3484			    rq->rd->dl_bw.bw == 0) {
3485				task_rq_unlock(rq, p, &flags);
3486				return -EPERM;
3487			}
3488		}
3489#endif
3490	}
3491
3492	/* recheck policy now with rq lock held */
3493	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3494		policy = oldpolicy = -1;
3495		task_rq_unlock(rq, p, &flags);
3496		goto recheck;
3497	}
3498
3499	/*
3500	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3501	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3502	 * is available.
3503	 */
3504	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3505		task_rq_unlock(rq, p, &flags);
3506		return -EBUSY;
3507	}
3508
3509	p->sched_reset_on_fork = reset_on_fork;
3510	oldprio = p->prio;
3511
3512	/*
3513	 * Special case for priority boosted tasks.
3514	 *
3515	 * If the new priority is lower or equal (user space view)
3516	 * than the current (boosted) priority, we just store the new
3517	 * normal parameters and do not touch the scheduler class and
3518	 * the runqueue. This will be done when the task deboost
3519	 * itself.
3520	 */
3521	if (rt_mutex_check_prio(p, newprio)) {
3522		__setscheduler_params(p, attr);
3523		task_rq_unlock(rq, p, &flags);
3524		return 0;
3525	}
3526
3527	on_rq = p->on_rq;
3528	running = task_current(rq, p);
3529	if (on_rq)
3530		dequeue_task(rq, p, 0);
3531	if (running)
3532		p->sched_class->put_prev_task(rq, p);
3533
3534	prev_class = p->sched_class;
3535	__setscheduler(rq, p, attr);
3536
3537	if (running)
3538		p->sched_class->set_curr_task(rq);
3539	if (on_rq) {
3540		/*
3541		 * We enqueue to tail when the priority of a task is
3542		 * increased (user space view).
3543		 */
3544		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3545	}
3546
3547	check_class_changed(rq, p, prev_class, oldprio);
3548	task_rq_unlock(rq, p, &flags);
3549
3550	rt_mutex_adjust_pi(p);
3551
3552	return 0;
3553}
3554
3555static int _sched_setscheduler(struct task_struct *p, int policy,
3556			       const struct sched_param *param, bool check)
3557{
3558	struct sched_attr attr = {
3559		.sched_policy   = policy,
3560		.sched_priority = param->sched_priority,
3561		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3562	};
3563
3564	/*
3565	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3566	 */
3567	if (policy & SCHED_RESET_ON_FORK) {
3568		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3569		policy &= ~SCHED_RESET_ON_FORK;
3570		attr.sched_policy = policy;
3571	}
3572
3573	return __sched_setscheduler(p, &attr, check);
3574}
3575/**
3576 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3577 * @p: the task in question.
3578 * @policy: new policy.
3579 * @param: structure containing the new RT priority.
3580 *
3581 * Return: 0 on success. An error code otherwise.
3582 *
3583 * NOTE that the task may be already dead.
3584 */
3585int sched_setscheduler(struct task_struct *p, int policy,
3586		       const struct sched_param *param)
3587{
3588	return _sched_setscheduler(p, policy, param, true);
3589}
3590EXPORT_SYMBOL_GPL(sched_setscheduler);
3591
3592int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3593{
3594	return __sched_setscheduler(p, attr, true);
3595}
3596EXPORT_SYMBOL_GPL(sched_setattr);
3597
3598/**
3599 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3600 * @p: the task in question.
3601 * @policy: new policy.
3602 * @param: structure containing the new RT priority.
3603 *
3604 * Just like sched_setscheduler, only don't bother checking if the
3605 * current context has permission.  For example, this is needed in
3606 * stop_machine(): we create temporary high priority worker threads,
3607 * but our caller might not have that capability.
3608 *
3609 * Return: 0 on success. An error code otherwise.
3610 */
3611int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3612			       const struct sched_param *param)
3613{
3614	return _sched_setscheduler(p, policy, param, false);
3615}
3616
3617static int
3618do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3619{
3620	struct sched_param lparam;
3621	struct task_struct *p;
3622	int retval;
3623
3624	if (!param || pid < 0)
3625		return -EINVAL;
3626	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3627		return -EFAULT;
3628
3629	rcu_read_lock();
3630	retval = -ESRCH;
3631	p = find_process_by_pid(pid);
3632	if (p != NULL)
3633		retval = sched_setscheduler(p, policy, &lparam);
3634	rcu_read_unlock();
3635
3636	return retval;
3637}
3638
3639/*
3640 * Mimics kernel/events/core.c perf_copy_attr().
3641 */
3642static int sched_copy_attr(struct sched_attr __user *uattr,
3643			   struct sched_attr *attr)
3644{
3645	u32 size;
3646	int ret;
3647
3648	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3649		return -EFAULT;
3650
3651	/*
3652	 * zero the full structure, so that a short copy will be nice.
3653	 */
3654	memset(attr, 0, sizeof(*attr));
3655
3656	ret = get_user(size, &uattr->size);
3657	if (ret)
3658		return ret;
3659
3660	if (size > PAGE_SIZE)	/* silly large */
3661		goto err_size;
3662
3663	if (!size)		/* abi compat */
3664		size = SCHED_ATTR_SIZE_VER0;
3665
3666	if (size < SCHED_ATTR_SIZE_VER0)
3667		goto err_size;
3668
3669	/*
3670	 * If we're handed a bigger struct than we know of,
3671	 * ensure all the unknown bits are 0 - i.e. new
3672	 * user-space does not rely on any kernel feature
3673	 * extensions we dont know about yet.
3674	 */
3675	if (size > sizeof(*attr)) {
3676		unsigned char __user *addr;
3677		unsigned char __user *end;
3678		unsigned char val;
3679
3680		addr = (void __user *)uattr + sizeof(*attr);
3681		end  = (void __user *)uattr + size;
3682
3683		for (; addr < end; addr++) {
3684			ret = get_user(val, addr);
3685			if (ret)
3686				return ret;
3687			if (val)
3688				goto err_size;
3689		}
3690		size = sizeof(*attr);
3691	}
3692
3693	ret = copy_from_user(attr, uattr, size);
3694	if (ret)
3695		return -EFAULT;
3696
3697	/*
3698	 * XXX: do we want to be lenient like existing syscalls; or do we want
3699	 * to be strict and return an error on out-of-bounds values?
3700	 */
3701	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3702
3703	return 0;
3704
3705err_size:
3706	put_user(sizeof(*attr), &uattr->size);
3707	return -E2BIG;
3708}
3709
3710/**
3711 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3712 * @pid: the pid in question.
3713 * @policy: new policy.
3714 * @param: structure containing the new RT priority.
3715 *
3716 * Return: 0 on success. An error code otherwise.
3717 */
3718SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3719		struct sched_param __user *, param)
3720{
3721	/* negative values for policy are not valid */
3722	if (policy < 0)
3723		return -EINVAL;
3724
3725	return do_sched_setscheduler(pid, policy, param);
3726}
3727
3728/**
3729 * sys_sched_setparam - set/change the RT priority of a thread
3730 * @pid: the pid in question.
3731 * @param: structure containing the new RT priority.
3732 *
3733 * Return: 0 on success. An error code otherwise.
3734 */
3735SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3736{
3737	return do_sched_setscheduler(pid, -1, param);
3738}
3739
3740/**
3741 * sys_sched_setattr - same as above, but with extended sched_attr
3742 * @pid: the pid in question.
3743 * @uattr: structure containing the extended parameters.
3744 * @flags: for future extension.
3745 */
3746SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3747			       unsigned int, flags)
3748{
3749	struct sched_attr attr;
3750	struct task_struct *p;
3751	int retval;
3752
3753	if (!uattr || pid < 0 || flags)
3754		return -EINVAL;
3755
3756	retval = sched_copy_attr(uattr, &attr);
3757	if (retval)
3758		return retval;
3759
3760	if ((int)attr.sched_policy < 0)
3761		return -EINVAL;
3762
3763	rcu_read_lock();
3764	retval = -ESRCH;
3765	p = find_process_by_pid(pid);
3766	if (p != NULL)
3767		retval = sched_setattr(p, &attr);
3768	rcu_read_unlock();
3769
3770	return retval;
3771}
3772
3773/**
3774 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3775 * @pid: the pid in question.
3776 *
3777 * Return: On success, the policy of the thread. Otherwise, a negative error
3778 * code.
3779 */
3780SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3781{
3782	struct task_struct *p;
3783	int retval;
3784
3785	if (pid < 0)
3786		return -EINVAL;
3787
3788	retval = -ESRCH;
3789	rcu_read_lock();
3790	p = find_process_by_pid(pid);
3791	if (p) {
3792		retval = security_task_getscheduler(p);
3793		if (!retval)
3794			retval = p->policy
3795				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3796	}
3797	rcu_read_unlock();
3798	return retval;
3799}
3800
3801/**
3802 * sys_sched_getparam - get the RT priority of a thread
3803 * @pid: the pid in question.
3804 * @param: structure containing the RT priority.
3805 *
3806 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3807 * code.
3808 */
3809SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3810{
3811	struct sched_param lp = { .sched_priority = 0 };
3812	struct task_struct *p;
3813	int retval;
3814
3815	if (!param || pid < 0)
3816		return -EINVAL;
3817
3818	rcu_read_lock();
3819	p = find_process_by_pid(pid);
3820	retval = -ESRCH;
3821	if (!p)
3822		goto out_unlock;
3823
3824	retval = security_task_getscheduler(p);
3825	if (retval)
3826		goto out_unlock;
3827
3828	if (task_has_rt_policy(p))
3829		lp.sched_priority = p->rt_priority;
3830	rcu_read_unlock();
3831
3832	/*
3833	 * This one might sleep, we cannot do it with a spinlock held ...
3834	 */
3835	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3836
3837	return retval;
3838
3839out_unlock:
3840	rcu_read_unlock();
3841	return retval;
3842}
3843
3844static int sched_read_attr(struct sched_attr __user *uattr,
3845			   struct sched_attr *attr,
3846			   unsigned int usize)
3847{
3848	int ret;
3849
3850	if (!access_ok(VERIFY_WRITE, uattr, usize))
3851		return -EFAULT;
3852
3853	/*
3854	 * If we're handed a smaller struct than we know of,
3855	 * ensure all the unknown bits are 0 - i.e. old
3856	 * user-space does not get uncomplete information.
3857	 */
3858	if (usize < sizeof(*attr)) {
3859		unsigned char *addr;
3860		unsigned char *end;
3861
3862		addr = (void *)attr + usize;
3863		end  = (void *)attr + sizeof(*attr);
3864
3865		for (; addr < end; addr++) {
3866			if (*addr)
3867				return -EFBIG;
3868		}
3869
3870		attr->size = usize;
3871	}
3872
3873	ret = copy_to_user(uattr, attr, attr->size);
3874	if (ret)
3875		return -EFAULT;
3876
3877	return 0;
3878}
3879
3880/**
3881 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3882 * @pid: the pid in question.
3883 * @uattr: structure containing the extended parameters.
3884 * @size: sizeof(attr) for fwd/bwd comp.
3885 * @flags: for future extension.
3886 */
3887SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3888		unsigned int, size, unsigned int, flags)
3889{
3890	struct sched_attr attr = {
3891		.size = sizeof(struct sched_attr),
3892	};
3893	struct task_struct *p;
3894	int retval;
3895
3896	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3897	    size < SCHED_ATTR_SIZE_VER0 || flags)
3898		return -EINVAL;
3899
3900	rcu_read_lock();
3901	p = find_process_by_pid(pid);
3902	retval = -ESRCH;
3903	if (!p)
3904		goto out_unlock;
3905
3906	retval = security_task_getscheduler(p);
3907	if (retval)
3908		goto out_unlock;
3909
3910	attr.sched_policy = p->policy;
3911	if (p->sched_reset_on_fork)
3912		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3913	if (task_has_dl_policy(p))
3914		__getparam_dl(p, &attr);
3915	else if (task_has_rt_policy(p))
3916		attr.sched_priority = p->rt_priority;
3917	else
3918		attr.sched_nice = task_nice(p);
3919
3920	rcu_read_unlock();
3921
3922	retval = sched_read_attr(uattr, &attr, size);
3923	return retval;
3924
3925out_unlock:
3926	rcu_read_unlock();
3927	return retval;
3928}
3929
3930long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3931{
3932	cpumask_var_t cpus_allowed, new_mask;
3933	struct task_struct *p;
3934	int retval;
3935
3936	rcu_read_lock();
3937
3938	p = find_process_by_pid(pid);
3939	if (!p) {
3940		rcu_read_unlock();
3941		return -ESRCH;
3942	}
3943
3944	/* Prevent p going away */
3945	get_task_struct(p);
3946	rcu_read_unlock();
3947
3948	if (p->flags & PF_NO_SETAFFINITY) {
3949		retval = -EINVAL;
3950		goto out_put_task;
3951	}
3952	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3953		retval = -ENOMEM;
3954		goto out_put_task;
3955	}
3956	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3957		retval = -ENOMEM;
3958		goto out_free_cpus_allowed;
3959	}
3960	retval = -EPERM;
3961	if (!check_same_owner(p)) {
3962		rcu_read_lock();
3963		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3964			rcu_read_unlock();
3965			goto out_unlock;
3966		}
3967		rcu_read_unlock();
3968	}
3969
3970	retval = security_task_setscheduler(p);
3971	if (retval)
3972		goto out_unlock;
3973
3974
3975	cpuset_cpus_allowed(p, cpus_allowed);
3976	cpumask_and(new_mask, in_mask, cpus_allowed);
3977
3978	/*
3979	 * Since bandwidth control happens on root_domain basis,
3980	 * if admission test is enabled, we only admit -deadline
3981	 * tasks allowed to run on all the CPUs in the task's
3982	 * root_domain.
3983	 */
3984#ifdef CONFIG_SMP
3985	if (task_has_dl_policy(p)) {
3986		const struct cpumask *span = task_rq(p)->rd->span;
3987
3988		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3989			retval = -EBUSY;
3990			goto out_unlock;
3991		}
3992	}
3993#endif
3994again:
3995	retval = set_cpus_allowed_ptr(p, new_mask);
3996
3997	if (!retval) {
3998		cpuset_cpus_allowed(p, cpus_allowed);
3999		if (!cpumask_subset(new_mask, cpus_allowed)) {
4000			/*
4001			 * We must have raced with a concurrent cpuset
4002			 * update. Just reset the cpus_allowed to the
4003			 * cpuset's cpus_allowed
4004			 */
4005			cpumask_copy(new_mask, cpus_allowed);
4006			goto again;
4007		}
4008	}
4009out_unlock:
4010	free_cpumask_var(new_mask);
4011out_free_cpus_allowed:
4012	free_cpumask_var(cpus_allowed);
4013out_put_task:
4014	put_task_struct(p);
4015	return retval;
4016}
4017
4018static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4019			     struct cpumask *new_mask)
4020{
4021	if (len < cpumask_size())
4022		cpumask_clear(new_mask);
4023	else if (len > cpumask_size())
4024		len = cpumask_size();
4025
4026	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4027}
4028
4029/**
4030 * sys_sched_setaffinity - set the cpu affinity of a process
4031 * @pid: pid of the process
4032 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4033 * @user_mask_ptr: user-space pointer to the new cpu mask
4034 *
4035 * Return: 0 on success. An error code otherwise.
4036 */
4037SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4038		unsigned long __user *, user_mask_ptr)
4039{
4040	cpumask_var_t new_mask;
4041	int retval;
4042
4043	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4044		return -ENOMEM;
4045
4046	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4047	if (retval == 0)
4048		retval = sched_setaffinity(pid, new_mask);
4049	free_cpumask_var(new_mask);
4050	return retval;
4051}
4052
4053long sched_getaffinity(pid_t pid, struct cpumask *mask)
4054{
4055	struct task_struct *p;
4056	unsigned long flags;
4057	int retval;
4058
4059	rcu_read_lock();
4060
4061	retval = -ESRCH;
4062	p = find_process_by_pid(pid);
4063	if (!p)
4064		goto out_unlock;
4065
4066	retval = security_task_getscheduler(p);
4067	if (retval)
4068		goto out_unlock;
4069
4070	raw_spin_lock_irqsave(&p->pi_lock, flags);
4071	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4072	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4073
4074out_unlock:
4075	rcu_read_unlock();
4076
4077	return retval;
4078}
4079
4080/**
4081 * sys_sched_getaffinity - get the cpu affinity of a process
4082 * @pid: pid of the process
4083 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4084 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4085 *
4086 * Return: 0 on success. An error code otherwise.
4087 */
4088SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4089		unsigned long __user *, user_mask_ptr)
4090{
4091	int ret;
4092	cpumask_var_t mask;
4093
4094	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4095		return -EINVAL;
4096	if (len & (sizeof(unsigned long)-1))
4097		return -EINVAL;
4098
4099	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4100		return -ENOMEM;
4101
4102	ret = sched_getaffinity(pid, mask);
4103	if (ret == 0) {
4104		size_t retlen = min_t(size_t, len, cpumask_size());
4105
4106		if (copy_to_user(user_mask_ptr, mask, retlen))
4107			ret = -EFAULT;
4108		else
4109			ret = retlen;
4110	}
4111	free_cpumask_var(mask);
4112
4113	return ret;
4114}
4115
4116/**
4117 * sys_sched_yield - yield the current processor to other threads.
4118 *
4119 * This function yields the current CPU to other tasks. If there are no
4120 * other threads running on this CPU then this function will return.
4121 *
4122 * Return: 0.
4123 */
4124SYSCALL_DEFINE0(sched_yield)
4125{
4126	struct rq *rq = this_rq_lock();
4127
4128	schedstat_inc(rq, yld_count);
4129	current->sched_class->yield_task(rq);
4130
4131	/*
4132	 * Since we are going to call schedule() anyway, there's
4133	 * no need to preempt or enable interrupts:
4134	 */
4135	__release(rq->lock);
4136	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4137	do_raw_spin_unlock(&rq->lock);
4138	sched_preempt_enable_no_resched();
4139
4140	schedule();
4141
4142	return 0;
4143}
4144
4145static void __cond_resched(void)
4146{
4147	__preempt_count_add(PREEMPT_ACTIVE);
4148	__schedule();
4149	__preempt_count_sub(PREEMPT_ACTIVE);
4150}
4151
4152int __sched _cond_resched(void)
4153{
4154	rcu_cond_resched();
4155	if (should_resched()) {
4156		__cond_resched();
4157		return 1;
4158	}
4159	return 0;
4160}
4161EXPORT_SYMBOL(_cond_resched);
4162
4163/*
4164 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4165 * call schedule, and on return reacquire the lock.
4166 *
4167 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4168 * operations here to prevent schedule() from being called twice (once via
4169 * spin_unlock(), once by hand).
4170 */
4171int __cond_resched_lock(spinlock_t *lock)
4172{
4173	bool need_rcu_resched = rcu_should_resched();
4174	int resched = should_resched();
4175	int ret = 0;
4176
4177	lockdep_assert_held(lock);
4178
4179	if (spin_needbreak(lock) || resched || need_rcu_resched) {
4180		spin_unlock(lock);
4181		if (resched)
4182			__cond_resched();
4183		else if (unlikely(need_rcu_resched))
4184			rcu_resched();
4185		else
4186			cpu_relax();
4187		ret = 1;
4188		spin_lock(lock);
4189	}
4190	return ret;
4191}
4192EXPORT_SYMBOL(__cond_resched_lock);
4193
4194int __sched __cond_resched_softirq(void)
4195{
4196	BUG_ON(!in_softirq());
4197
4198	rcu_cond_resched();  /* BH disabled OK, just recording QSes. */
4199	if (should_resched()) {
4200		local_bh_enable();
4201		__cond_resched();
4202		local_bh_disable();
4203		return 1;
4204	}
4205	return 0;
4206}
4207EXPORT_SYMBOL(__cond_resched_softirq);
4208
4209/**
4210 * yield - yield the current processor to other threads.
4211 *
4212 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4213 *
4214 * The scheduler is at all times free to pick the calling task as the most
4215 * eligible task to run, if removing the yield() call from your code breaks
4216 * it, its already broken.
4217 *
4218 * Typical broken usage is:
4219 *
4220 * while (!event)
4221 * 	yield();
4222 *
4223 * where one assumes that yield() will let 'the other' process run that will
4224 * make event true. If the current task is a SCHED_FIFO task that will never
4225 * happen. Never use yield() as a progress guarantee!!
4226 *
4227 * If you want to use yield() to wait for something, use wait_event().
4228 * If you want to use yield() to be 'nice' for others, use cond_resched().
4229 * If you still want to use yield(), do not!
4230 */
4231void __sched yield(void)
4232{
4233	set_current_state(TASK_RUNNING);
4234	sys_sched_yield();
4235}
4236EXPORT_SYMBOL(yield);
4237
4238/**
4239 * yield_to - yield the current processor to another thread in
4240 * your thread group, or accelerate that thread toward the
4241 * processor it's on.
4242 * @p: target task
4243 * @preempt: whether task preemption is allowed or not
4244 *
4245 * It's the caller's job to ensure that the target task struct
4246 * can't go away on us before we can do any checks.
4247 *
4248 * Return:
4249 *	true (>0) if we indeed boosted the target task.
4250 *	false (0) if we failed to boost the target.
4251 *	-ESRCH if there's no task to yield to.
4252 */
4253int __sched yield_to(struct task_struct *p, bool preempt)
4254{
4255	struct task_struct *curr = current;
4256	struct rq *rq, *p_rq;
4257	unsigned long flags;
4258	int yielded = 0;
4259
4260	local_irq_save(flags);
4261	rq = this_rq();
4262
4263again:
4264	p_rq = task_rq(p);
4265	/*
4266	 * If we're the only runnable task on the rq and target rq also
4267	 * has only one task, there's absolutely no point in yielding.
4268	 */
4269	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4270		yielded = -ESRCH;
4271		goto out_irq;
4272	}
4273
4274	double_rq_lock(rq, p_rq);
4275	if (task_rq(p) != p_rq) {
4276		double_rq_unlock(rq, p_rq);
4277		goto again;
4278	}
4279
4280	if (!curr->sched_class->yield_to_task)
4281		goto out_unlock;
4282
4283	if (curr->sched_class != p->sched_class)
4284		goto out_unlock;
4285
4286	if (task_running(p_rq, p) || p->state)
4287		goto out_unlock;
4288
4289	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4290	if (yielded) {
4291		schedstat_inc(rq, yld_count);
4292		/*
4293		 * Make p's CPU reschedule; pick_next_entity takes care of
4294		 * fairness.
4295		 */
4296		if (preempt && rq != p_rq)
4297			resched_task(p_rq->curr);
4298	}
4299
4300out_unlock:
4301	double_rq_unlock(rq, p_rq);
4302out_irq:
4303	local_irq_restore(flags);
4304
4305	if (yielded > 0)
4306		schedule();
4307
4308	return yielded;
4309}
4310EXPORT_SYMBOL_GPL(yield_to);
4311
4312/*
4313 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4314 * that process accounting knows that this is a task in IO wait state.
4315 */
4316void __sched io_schedule(void)
4317{
4318	struct rq *rq = raw_rq();
4319
4320	delayacct_blkio_start();
4321	atomic_inc(&rq->nr_iowait);
4322	blk_flush_plug(current);
4323	current->in_iowait = 1;
4324	schedule();
4325	current->in_iowait = 0;
4326	atomic_dec(&rq->nr_iowait);
4327	delayacct_blkio_end();
4328}
4329EXPORT_SYMBOL(io_schedule);
4330
4331long __sched io_schedule_timeout(long timeout)
4332{
4333	struct rq *rq = raw_rq();
4334	long ret;
4335
4336	delayacct_blkio_start();
4337	atomic_inc(&rq->nr_iowait);
4338	blk_flush_plug(current);
4339	current->in_iowait = 1;
4340	ret = schedule_timeout(timeout);
4341	current->in_iowait = 0;
4342	atomic_dec(&rq->nr_iowait);
4343	delayacct_blkio_end();
4344	return ret;
4345}
4346
4347/**
4348 * sys_sched_get_priority_max - return maximum RT priority.
4349 * @policy: scheduling class.
4350 *
4351 * Return: On success, this syscall returns the maximum
4352 * rt_priority that can be used by a given scheduling class.
4353 * On failure, a negative error code is returned.
4354 */
4355SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4356{
4357	int ret = -EINVAL;
4358
4359	switch (policy) {
4360	case SCHED_FIFO:
4361	case SCHED_RR:
4362		ret = MAX_USER_RT_PRIO-1;
4363		break;
4364	case SCHED_DEADLINE:
4365	case SCHED_NORMAL:
4366	case SCHED_BATCH:
4367	case SCHED_IDLE:
4368		ret = 0;
4369		break;
4370	}
4371	return ret;
4372}
4373
4374/**
4375 * sys_sched_get_priority_min - return minimum RT priority.
4376 * @policy: scheduling class.
4377 *
4378 * Return: On success, this syscall returns the minimum
4379 * rt_priority that can be used by a given scheduling class.
4380 * On failure, a negative error code is returned.
4381 */
4382SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4383{
4384	int ret = -EINVAL;
4385
4386	switch (policy) {
4387	case SCHED_FIFO:
4388	case SCHED_RR:
4389		ret = 1;
4390		break;
4391	case SCHED_DEADLINE:
4392	case SCHED_NORMAL:
4393	case SCHED_BATCH:
4394	case SCHED_IDLE:
4395		ret = 0;
4396	}
4397	return ret;
4398}
4399
4400/**
4401 * sys_sched_rr_get_interval - return the default timeslice of a process.
4402 * @pid: pid of the process.
4403 * @interval: userspace pointer to the timeslice value.
4404 *
4405 * this syscall writes the default timeslice value of a given process
4406 * into the user-space timespec buffer. A value of '0' means infinity.
4407 *
4408 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4409 * an error code.
4410 */
4411SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4412		struct timespec __user *, interval)
4413{
4414	struct task_struct *p;
4415	unsigned int time_slice;
4416	unsigned long flags;
4417	struct rq *rq;
4418	int retval;
4419	struct timespec t;
4420
4421	if (pid < 0)
4422		return -EINVAL;
4423
4424	retval = -ESRCH;
4425	rcu_read_lock();
4426	p = find_process_by_pid(pid);
4427	if (!p)
4428		goto out_unlock;
4429
4430	retval = security_task_getscheduler(p);
4431	if (retval)
4432		goto out_unlock;
4433
4434	rq = task_rq_lock(p, &flags);
4435	time_slice = 0;
4436	if (p->sched_class->get_rr_interval)
4437		time_slice = p->sched_class->get_rr_interval(rq, p);
4438	task_rq_unlock(rq, p, &flags);
4439
4440	rcu_read_unlock();
4441	jiffies_to_timespec(time_slice, &t);
4442	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4443	return retval;
4444
4445out_unlock:
4446	rcu_read_unlock();
4447	return retval;
4448}
4449
4450static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4451
4452void sched_show_task(struct task_struct *p)
4453{
4454	unsigned long free = 0;
4455	int ppid;
4456	unsigned state;
4457
4458	state = p->state ? __ffs(p->state) + 1 : 0;
4459	printk(KERN_INFO "%-15.15s %c", p->comm,
4460		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4461#if BITS_PER_LONG == 32
4462	if (state == TASK_RUNNING)
4463		printk(KERN_CONT " running  ");
4464	else
4465		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4466#else
4467	if (state == TASK_RUNNING)
4468		printk(KERN_CONT "  running task    ");
4469	else
4470		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4471#endif
4472#ifdef CONFIG_DEBUG_STACK_USAGE
4473	free = stack_not_used(p);
4474#endif
4475	rcu_read_lock();
4476	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4477	rcu_read_unlock();
4478	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4479		task_pid_nr(p), ppid,
4480		(unsigned long)task_thread_info(p)->flags);
4481
4482	print_worker_info(KERN_INFO, p);
4483	show_stack(p, NULL);
4484}
4485
4486void show_state_filter(unsigned long state_filter)
4487{
4488	struct task_struct *g, *p;
4489
4490#if BITS_PER_LONG == 32
4491	printk(KERN_INFO
4492		"  task                PC stack   pid father\n");
4493#else
4494	printk(KERN_INFO
4495		"  task                        PC stack   pid father\n");
4496#endif
4497	rcu_read_lock();
4498	do_each_thread(g, p) {
4499		/*
4500		 * reset the NMI-timeout, listing all files on a slow
4501		 * console might take a lot of time:
4502		 */
4503		touch_nmi_watchdog();
4504		if (!state_filter || (p->state & state_filter))
4505			sched_show_task(p);
4506	} while_each_thread(g, p);
4507
4508	touch_all_softlockup_watchdogs();
4509
4510#ifdef CONFIG_SCHED_DEBUG
4511	sysrq_sched_debug_show();
4512#endif
4513	rcu_read_unlock();
4514	/*
4515	 * Only show locks if all tasks are dumped:
4516	 */
4517	if (!state_filter)
4518		debug_show_all_locks();
4519}
4520
4521void init_idle_bootup_task(struct task_struct *idle)
4522{
4523	idle->sched_class = &idle_sched_class;
4524}
4525
4526/**
4527 * init_idle - set up an idle thread for a given CPU
4528 * @idle: task in question
4529 * @cpu: cpu the idle task belongs to
4530 *
4531 * NOTE: this function does not set the idle thread's NEED_RESCHED
4532 * flag, to make booting more robust.
4533 */
4534void init_idle(struct task_struct *idle, int cpu)
4535{
4536	struct rq *rq = cpu_rq(cpu);
4537	unsigned long flags;
4538
4539	raw_spin_lock_irqsave(&rq->lock, flags);
4540
4541	__sched_fork(0, idle);
4542	idle->state = TASK_RUNNING;
4543	idle->se.exec_start = sched_clock();
4544
4545	do_set_cpus_allowed(idle, cpumask_of(cpu));
4546	/*
4547	 * We're having a chicken and egg problem, even though we are
4548	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4549	 * lockdep check in task_group() will fail.
4550	 *
4551	 * Similar case to sched_fork(). / Alternatively we could
4552	 * use task_rq_lock() here and obtain the other rq->lock.
4553	 *
4554	 * Silence PROVE_RCU
4555	 */
4556	rcu_read_lock();
4557	__set_task_cpu(idle, cpu);
4558	rcu_read_unlock();
4559
4560	rq->curr = rq->idle = idle;
4561	idle->on_rq = 1;
4562#if defined(CONFIG_SMP)
4563	idle->on_cpu = 1;
4564#endif
4565	raw_spin_unlock_irqrestore(&rq->lock, flags);
4566
4567	/* Set the preempt count _outside_ the spinlocks! */
4568	init_idle_preempt_count(idle, cpu);
4569
4570	/*
4571	 * The idle tasks have their own, simple scheduling class:
4572	 */
4573	idle->sched_class = &idle_sched_class;
4574	ftrace_graph_init_idle_task(idle, cpu);
4575	vtime_init_idle(idle, cpu);
4576#if defined(CONFIG_SMP)
4577	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4578#endif
4579}
4580
4581#ifdef CONFIG_SMP
4582void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4583{
4584	if (p->sched_class && p->sched_class->set_cpus_allowed)
4585		p->sched_class->set_cpus_allowed(p, new_mask);
4586
4587	cpumask_copy(&p->cpus_allowed, new_mask);
4588	p->nr_cpus_allowed = cpumask_weight(new_mask);
4589}
4590
4591/*
4592 * This is how migration works:
4593 *
4594 * 1) we invoke migration_cpu_stop() on the target CPU using
4595 *    stop_one_cpu().
4596 * 2) stopper starts to run (implicitly forcing the migrated thread
4597 *    off the CPU)
4598 * 3) it checks whether the migrated task is still in the wrong runqueue.
4599 * 4) if it's in the wrong runqueue then the migration thread removes
4600 *    it and puts it into the right queue.
4601 * 5) stopper completes and stop_one_cpu() returns and the migration
4602 *    is done.
4603 */
4604
4605/*
4606 * Change a given task's CPU affinity. Migrate the thread to a
4607 * proper CPU and schedule it away if the CPU it's executing on
4608 * is removed from the allowed bitmask.
4609 *
4610 * NOTE: the caller must have a valid reference to the task, the
4611 * task must not exit() & deallocate itself prematurely. The
4612 * call is not atomic; no spinlocks may be held.
4613 */
4614int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4615{
4616	unsigned long flags;
4617	struct rq *rq;
4618	unsigned int dest_cpu;
4619	int ret = 0;
4620
4621	rq = task_rq_lock(p, &flags);
4622
4623	if (cpumask_equal(&p->cpus_allowed, new_mask))
4624		goto out;
4625
4626	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4627		ret = -EINVAL;
4628		goto out;
4629	}
4630
4631	do_set_cpus_allowed(p, new_mask);
4632
4633	/* Can the task run on the task's current CPU? If so, we're done */
4634	if (cpumask_test_cpu(task_cpu(p), new_mask))
4635		goto out;
4636
4637	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4638	if (p->on_rq) {
4639		struct migration_arg arg = { p, dest_cpu };
4640		/* Need help from migration thread: drop lock and wait. */
4641		task_rq_unlock(rq, p, &flags);
4642		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4643		tlb_migrate_finish(p->mm);
4644		return 0;
4645	}
4646out:
4647	task_rq_unlock(rq, p, &flags);
4648
4649	return ret;
4650}
4651EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4652
4653/*
4654 * Move (not current) task off this cpu, onto dest cpu. We're doing
4655 * this because either it can't run here any more (set_cpus_allowed()
4656 * away from this CPU, or CPU going down), or because we're
4657 * attempting to rebalance this task on exec (sched_exec).
4658 *
4659 * So we race with normal scheduler movements, but that's OK, as long
4660 * as the task is no longer on this CPU.
4661 *
4662 * Returns non-zero if task was successfully migrated.
4663 */
4664static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4665{
4666	struct rq *rq_dest, *rq_src;
4667	int ret = 0;
4668
4669	if (unlikely(!cpu_active(dest_cpu)))
4670		return ret;
4671
4672	rq_src = cpu_rq(src_cpu);
4673	rq_dest = cpu_rq(dest_cpu);
4674
4675	raw_spin_lock(&p->pi_lock);
4676	double_rq_lock(rq_src, rq_dest);
4677	/* Already moved. */
4678	if (task_cpu(p) != src_cpu)
4679		goto done;
4680	/* Affinity changed (again). */
4681	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4682		goto fail;
4683
4684	/*
4685	 * If we're not on a rq, the next wake-up will ensure we're
4686	 * placed properly.
4687	 */
4688	if (p->on_rq) {
4689		dequeue_task(rq_src, p, 0);
4690		set_task_cpu(p, dest_cpu);
4691		enqueue_task(rq_dest, p, 0);
4692		check_preempt_curr(rq_dest, p, 0);
4693	}
4694done:
4695	ret = 1;
4696fail:
4697	double_rq_unlock(rq_src, rq_dest);
4698	raw_spin_unlock(&p->pi_lock);
4699	return ret;
4700}
4701
4702#ifdef CONFIG_NUMA_BALANCING
4703/* Migrate current task p to target_cpu */
4704int migrate_task_to(struct task_struct *p, int target_cpu)
4705{
4706	struct migration_arg arg = { p, target_cpu };
4707	int curr_cpu = task_cpu(p);
4708
4709	if (curr_cpu == target_cpu)
4710		return 0;
4711
4712	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4713		return -EINVAL;
4714
4715	/* TODO: This is not properly updating schedstats */
4716
4717	trace_sched_move_numa(p, curr_cpu, target_cpu);
4718	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4719}
4720
4721/*
4722 * Requeue a task on a given node and accurately track the number of NUMA
4723 * tasks on the runqueues
4724 */
4725void sched_setnuma(struct task_struct *p, int nid)
4726{
4727	struct rq *rq;
4728	unsigned long flags;
4729	bool on_rq, running;
4730
4731	rq = task_rq_lock(p, &flags);
4732	on_rq = p->on_rq;
4733	running = task_current(rq, p);
4734
4735	if (on_rq)
4736		dequeue_task(rq, p, 0);
4737	if (running)
4738		p->sched_class->put_prev_task(rq, p);
4739
4740	p->numa_preferred_nid = nid;
4741
4742	if (running)
4743		p->sched_class->set_curr_task(rq);
4744	if (on_rq)
4745		enqueue_task(rq, p, 0);
4746	task_rq_unlock(rq, p, &flags);
4747}
4748#endif
4749
4750/*
4751 * migration_cpu_stop - this will be executed by a highprio stopper thread
4752 * and performs thread migration by bumping thread off CPU then
4753 * 'pushing' onto another runqueue.
4754 */
4755static int migration_cpu_stop(void *data)
4756{
4757	struct migration_arg *arg = data;
4758
4759	/*
4760	 * The original target cpu might have gone down and we might
4761	 * be on another cpu but it doesn't matter.
4762	 */
4763	local_irq_disable();
4764	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4765	local_irq_enable();
4766	return 0;
4767}
4768
4769#ifdef CONFIG_HOTPLUG_CPU
4770
4771/*
4772 * Ensures that the idle task is using init_mm right before its cpu goes
4773 * offline.
4774 */
4775void idle_task_exit(void)
4776{
4777	struct mm_struct *mm = current->active_mm;
4778
4779	BUG_ON(cpu_online(smp_processor_id()));
4780
4781	if (mm != &init_mm) {
4782		switch_mm(mm, &init_mm, current);
4783		finish_arch_post_lock_switch();
4784	}
4785	mmdrop(mm);
4786}
4787
4788/*
4789 * Since this CPU is going 'away' for a while, fold any nr_active delta
4790 * we might have. Assumes we're called after migrate_tasks() so that the
4791 * nr_active count is stable.
4792 *
4793 * Also see the comment "Global load-average calculations".
4794 */
4795static void calc_load_migrate(struct rq *rq)
4796{
4797	long delta = calc_load_fold_active(rq);
4798	if (delta)
4799		atomic_long_add(delta, &calc_load_tasks);
4800}
4801
4802static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4803{
4804}
4805
4806static const struct sched_class fake_sched_class = {
4807	.put_prev_task = put_prev_task_fake,
4808};
4809
4810static struct task_struct fake_task = {
4811	/*
4812	 * Avoid pull_{rt,dl}_task()
4813	 */
4814	.prio = MAX_PRIO + 1,
4815	.sched_class = &fake_sched_class,
4816};
4817
4818/*
4819 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4820 * try_to_wake_up()->select_task_rq().
4821 *
4822 * Called with rq->lock held even though we'er in stop_machine() and
4823 * there's no concurrency possible, we hold the required locks anyway
4824 * because of lock validation efforts.
4825 */
4826static void migrate_tasks(unsigned int dead_cpu)
4827{
4828	struct rq *rq = cpu_rq(dead_cpu);
4829	struct task_struct *next, *stop = rq->stop;
4830	int dest_cpu;
4831
4832	/*
4833	 * Fudge the rq selection such that the below task selection loop
4834	 * doesn't get stuck on the currently eligible stop task.
4835	 *
4836	 * We're currently inside stop_machine() and the rq is either stuck
4837	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4838	 * either way we should never end up calling schedule() until we're
4839	 * done here.
4840	 */
4841	rq->stop = NULL;
4842
4843	/*
4844	 * put_prev_task() and pick_next_task() sched
4845	 * class method both need to have an up-to-date
4846	 * value of rq->clock[_task]
4847	 */
4848	update_rq_clock(rq);
4849
4850	for ( ; ; ) {
4851		/*
4852		 * There's this thread running, bail when that's the only
4853		 * remaining thread.
4854		 */
4855		if (rq->nr_running == 1)
4856			break;
4857
4858		next = pick_next_task(rq, &fake_task);
4859		BUG_ON(!next);
4860		next->sched_class->put_prev_task(rq, next);
4861
4862		/* Find suitable destination for @next, with force if needed. */
4863		dest_cpu = select_fallback_rq(dead_cpu, next);
4864		raw_spin_unlock(&rq->lock);
4865
4866		__migrate_task(next, dead_cpu, dest_cpu);
4867
4868		raw_spin_lock(&rq->lock);
4869	}
4870
4871	rq->stop = stop;
4872}
4873
4874#endif /* CONFIG_HOTPLUG_CPU */
4875
4876#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4877
4878static struct ctl_table sd_ctl_dir[] = {
4879	{
4880		.procname	= "sched_domain",
4881		.mode		= 0555,
4882	},
4883	{}
4884};
4885
4886static struct ctl_table sd_ctl_root[] = {
4887	{
4888		.procname	= "kernel",
4889		.mode		= 0555,
4890		.child		= sd_ctl_dir,
4891	},
4892	{}
4893};
4894
4895static struct ctl_table *sd_alloc_ctl_entry(int n)
4896{
4897	struct ctl_table *entry =
4898		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4899
4900	return entry;
4901}
4902
4903static void sd_free_ctl_entry(struct ctl_table **tablep)
4904{
4905	struct ctl_table *entry;
4906
4907	/*
4908	 * In the intermediate directories, both the child directory and
4909	 * procname are dynamically allocated and could fail but the mode
4910	 * will always be set. In the lowest directory the names are
4911	 * static strings and all have proc handlers.
4912	 */
4913	for (entry = *tablep; entry->mode; entry++) {
4914		if (entry->child)
4915			sd_free_ctl_entry(&entry->child);
4916		if (entry->proc_handler == NULL)
4917			kfree(entry->procname);
4918	}
4919
4920	kfree(*tablep);
4921	*tablep = NULL;
4922}
4923
4924static int min_load_idx = 0;
4925static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4926
4927static void
4928set_table_entry(struct ctl_table *entry,
4929		const char *procname, void *data, int maxlen,
4930		umode_t mode, proc_handler *proc_handler,
4931		bool load_idx)
4932{
4933	entry->procname = procname;
4934	entry->data = data;
4935	entry->maxlen = maxlen;
4936	entry->mode = mode;
4937	entry->proc_handler = proc_handler;
4938
4939	if (load_idx) {
4940		entry->extra1 = &min_load_idx;
4941		entry->extra2 = &max_load_idx;
4942	}
4943}
4944
4945static struct ctl_table *
4946sd_alloc_ctl_domain_table(struct sched_domain *sd)
4947{
4948	struct ctl_table *table = sd_alloc_ctl_entry(14);
4949
4950	if (table == NULL)
4951		return NULL;
4952
4953	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4954		sizeof(long), 0644, proc_doulongvec_minmax, false);
4955	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4956		sizeof(long), 0644, proc_doulongvec_minmax, false);
4957	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4958		sizeof(int), 0644, proc_dointvec_minmax, true);
4959	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4960		sizeof(int), 0644, proc_dointvec_minmax, true);
4961	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4962		sizeof(int), 0644, proc_dointvec_minmax, true);
4963	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4964		sizeof(int), 0644, proc_dointvec_minmax, true);
4965	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4966		sizeof(int), 0644, proc_dointvec_minmax, true);
4967	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4968		sizeof(int), 0644, proc_dointvec_minmax, false);
4969	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4970		sizeof(int), 0644, proc_dointvec_minmax, false);
4971	set_table_entry(&table[9], "cache_nice_tries",
4972		&sd->cache_nice_tries,
4973		sizeof(int), 0644, proc_dointvec_minmax, false);
4974	set_table_entry(&table[10], "flags", &sd->flags,
4975		sizeof(int), 0644, proc_dointvec_minmax, false);
4976	set_table_entry(&table[11], "max_newidle_lb_cost",
4977		&sd->max_newidle_lb_cost,
4978		sizeof(long), 0644, proc_doulongvec_minmax, false);
4979	set_table_entry(&table[12], "name", sd->name,
4980		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4981	/* &table[13] is terminator */
4982
4983	return table;
4984}
4985
4986static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4987{
4988	struct ctl_table *entry, *table;
4989	struct sched_domain *sd;
4990	int domain_num = 0, i;
4991	char buf[32];
4992
4993	for_each_domain(cpu, sd)
4994		domain_num++;
4995	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4996	if (table == NULL)
4997		return NULL;
4998
4999	i = 0;
5000	for_each_domain(cpu, sd) {
5001		snprintf(buf, 32, "domain%d", i);
5002		entry->procname = kstrdup(buf, GFP_KERNEL);
5003		entry->mode = 0555;
5004		entry->child = sd_alloc_ctl_domain_table(sd);
5005		entry++;
5006		i++;
5007	}
5008	return table;
5009}
5010
5011static struct ctl_table_header *sd_sysctl_header;
5012static void register_sched_domain_sysctl(void)
5013{
5014	int i, cpu_num = num_possible_cpus();
5015	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5016	char buf[32];
5017
5018	WARN_ON(sd_ctl_dir[0].child);
5019	sd_ctl_dir[0].child = entry;
5020
5021	if (entry == NULL)
5022		return;
5023
5024	for_each_possible_cpu(i) {
5025		snprintf(buf, 32, "cpu%d", i);
5026		entry->procname = kstrdup(buf, GFP_KERNEL);
5027		entry->mode = 0555;
5028		entry->child = sd_alloc_ctl_cpu_table(i);
5029		entry++;
5030	}
5031
5032	WARN_ON(sd_sysctl_header);
5033	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5034}
5035
5036/* may be called multiple times per register */
5037static void unregister_sched_domain_sysctl(void)
5038{
5039	if (sd_sysctl_header)
5040		unregister_sysctl_table(sd_sysctl_header);
5041	sd_sysctl_header = NULL;
5042	if (sd_ctl_dir[0].child)
5043		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5044}
5045#else
5046static void register_sched_domain_sysctl(void)
5047{
5048}
5049static void unregister_sched_domain_sysctl(void)
5050{
5051}
5052#endif
5053
5054static void set_rq_online(struct rq *rq)
5055{
5056	if (!rq->online) {
5057		const struct sched_class *class;
5058
5059		cpumask_set_cpu(rq->cpu, rq->rd->online);
5060		rq->online = 1;
5061
5062		for_each_class(class) {
5063			if (class->rq_online)
5064				class->rq_online(rq);
5065		}
5066	}
5067}
5068
5069static void set_rq_offline(struct rq *rq)
5070{
5071	if (rq->online) {
5072		const struct sched_class *class;
5073
5074		for_each_class(class) {
5075			if (class->rq_offline)
5076				class->rq_offline(rq);
5077		}
5078
5079		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5080		rq->online = 0;
5081	}
5082}
5083
5084/*
5085 * migration_call - callback that gets triggered when a CPU is added.
5086 * Here we can start up the necessary migration thread for the new CPU.
5087 */
5088static int
5089migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5090{
5091	int cpu = (long)hcpu;
5092	unsigned long flags;
5093	struct rq *rq = cpu_rq(cpu);
5094
5095	switch (action & ~CPU_TASKS_FROZEN) {
5096
5097	case CPU_UP_PREPARE:
5098		rq->calc_load_update = calc_load_update;
5099		break;
5100
5101	case CPU_ONLINE:
5102		/* Update our root-domain */
5103		raw_spin_lock_irqsave(&rq->lock, flags);
5104		if (rq->rd) {
5105			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5106
5107			set_rq_online(rq);
5108		}
5109		raw_spin_unlock_irqrestore(&rq->lock, flags);
5110		break;
5111
5112#ifdef CONFIG_HOTPLUG_CPU
5113	case CPU_DYING:
5114		sched_ttwu_pending();
5115		/* Update our root-domain */
5116		raw_spin_lock_irqsave(&rq->lock, flags);
5117		if (rq->rd) {
5118			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5119			set_rq_offline(rq);
5120		}
5121		migrate_tasks(cpu);
5122		BUG_ON(rq->nr_running != 1); /* the migration thread */
5123		raw_spin_unlock_irqrestore(&rq->lock, flags);
5124		break;
5125
5126	case CPU_DEAD:
5127		calc_load_migrate(rq);
5128		break;
5129#endif
5130	}
5131
5132	update_max_interval();
5133
5134	return NOTIFY_OK;
5135}
5136
5137/*
5138 * Register at high priority so that task migration (migrate_all_tasks)
5139 * happens before everything else.  This has to be lower priority than
5140 * the notifier in the perf_event subsystem, though.
5141 */
5142static struct notifier_block migration_notifier = {
5143	.notifier_call = migration_call,
5144	.priority = CPU_PRI_MIGRATION,
5145};
5146
5147static void __cpuinit set_cpu_rq_start_time(void)
5148{
5149	int cpu = smp_processor_id();
5150	struct rq *rq = cpu_rq(cpu);
5151	rq->age_stamp = sched_clock_cpu(cpu);
5152}
5153
5154static int sched_cpu_active(struct notifier_block *nfb,
5155				      unsigned long action, void *hcpu)
5156{
5157	switch (action & ~CPU_TASKS_FROZEN) {
5158	case CPU_STARTING:
5159		set_cpu_rq_start_time();
5160		return NOTIFY_OK;
5161	case CPU_DOWN_FAILED:
5162		set_cpu_active((long)hcpu, true);
5163		return NOTIFY_OK;
5164	default:
5165		return NOTIFY_DONE;
5166	}
5167}
5168
5169static int sched_cpu_inactive(struct notifier_block *nfb,
5170					unsigned long action, void *hcpu)
5171{
5172	unsigned long flags;
5173	long cpu = (long)hcpu;
5174
5175	switch (action & ~CPU_TASKS_FROZEN) {
5176	case CPU_DOWN_PREPARE:
5177		set_cpu_active(cpu, false);
5178
5179		/* explicitly allow suspend */
5180		if (!(action & CPU_TASKS_FROZEN)) {
5181			struct dl_bw *dl_b = dl_bw_of(cpu);
5182			bool overflow;
5183			int cpus;
5184
5185			raw_spin_lock_irqsave(&dl_b->lock, flags);
5186			cpus = dl_bw_cpus(cpu);
5187			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5188			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5189
5190			if (overflow)
5191				return notifier_from_errno(-EBUSY);
5192		}
5193		return NOTIFY_OK;
5194	}
5195
5196	return NOTIFY_DONE;
5197}
5198
5199static int __init migration_init(void)
5200{
5201	void *cpu = (void *)(long)smp_processor_id();
5202	int err;
5203
5204	/* Initialize migration for the boot CPU */
5205	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5206	BUG_ON(err == NOTIFY_BAD);
5207	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5208	register_cpu_notifier(&migration_notifier);
5209
5210	/* Register cpu active notifiers */
5211	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5212	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5213
5214	return 0;
5215}
5216early_initcall(migration_init);
5217#endif
5218
5219#ifdef CONFIG_SMP
5220
5221static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5222
5223#ifdef CONFIG_SCHED_DEBUG
5224
5225static __read_mostly int sched_debug_enabled;
5226
5227static int __init sched_debug_setup(char *str)
5228{
5229	sched_debug_enabled = 1;
5230
5231	return 0;
5232}
5233early_param("sched_debug", sched_debug_setup);
5234
5235static inline bool sched_debug(void)
5236{
5237	return sched_debug_enabled;
5238}
5239
5240static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5241				  struct cpumask *groupmask)
5242{
5243	struct sched_group *group = sd->groups;
5244	char str[256];
5245
5246	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5247	cpumask_clear(groupmask);
5248
5249	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5250
5251	if (!(sd->flags & SD_LOAD_BALANCE)) {
5252		printk("does not load-balance\n");
5253		if (sd->parent)
5254			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5255					" has parent");
5256		return -1;
5257	}
5258
5259	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5260
5261	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5262		printk(KERN_ERR "ERROR: domain->span does not contain "
5263				"CPU%d\n", cpu);
5264	}
5265	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5266		printk(KERN_ERR "ERROR: domain->groups does not contain"
5267				" CPU%d\n", cpu);
5268	}
5269
5270	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5271	do {
5272		if (!group) {
5273			printk("\n");
5274			printk(KERN_ERR "ERROR: group is NULL\n");
5275			break;
5276		}
5277
5278		/*
5279		 * Even though we initialize ->capacity to something semi-sane,
5280		 * we leave capacity_orig unset. This allows us to detect if
5281		 * domain iteration is still funny without causing /0 traps.
5282		 */
5283		if (!group->sgc->capacity_orig) {
5284			printk(KERN_CONT "\n");
5285			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5286			break;
5287		}
5288
5289		if (!cpumask_weight(sched_group_cpus(group))) {
5290			printk(KERN_CONT "\n");
5291			printk(KERN_ERR "ERROR: empty group\n");
5292			break;
5293		}
5294
5295		if (!(sd->flags & SD_OVERLAP) &&
5296		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5297			printk(KERN_CONT "\n");
5298			printk(KERN_ERR "ERROR: repeated CPUs\n");
5299			break;
5300		}
5301
5302		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5303
5304		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5305
5306		printk(KERN_CONT " %s", str);
5307		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5308			printk(KERN_CONT " (cpu_capacity = %d)",
5309				group->sgc->capacity);
5310		}
5311
5312		group = group->next;
5313	} while (group != sd->groups);
5314	printk(KERN_CONT "\n");
5315
5316	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5317		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5318
5319	if (sd->parent &&
5320	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5321		printk(KERN_ERR "ERROR: parent span is not a superset "
5322			"of domain->span\n");
5323	return 0;
5324}
5325
5326static void sched_domain_debug(struct sched_domain *sd, int cpu)
5327{
5328	int level = 0;
5329
5330	if (!sched_debug_enabled)
5331		return;
5332
5333	if (!sd) {
5334		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5335		return;
5336	}
5337
5338	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5339
5340	for (;;) {
5341		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5342			break;
5343		level++;
5344		sd = sd->parent;
5345		if (!sd)
5346			break;
5347	}
5348}
5349#else /* !CONFIG_SCHED_DEBUG */
5350# define sched_domain_debug(sd, cpu) do { } while (0)
5351static inline bool sched_debug(void)
5352{
5353	return false;
5354}
5355#endif /* CONFIG_SCHED_DEBUG */
5356
5357static int sd_degenerate(struct sched_domain *sd)
5358{
5359	if (cpumask_weight(sched_domain_span(sd)) == 1)
5360		return 1;
5361
5362	/* Following flags need at least 2 groups */
5363	if (sd->flags & (SD_LOAD_BALANCE |
5364			 SD_BALANCE_NEWIDLE |
5365			 SD_BALANCE_FORK |
5366			 SD_BALANCE_EXEC |
5367			 SD_SHARE_CPUCAPACITY |
5368			 SD_SHARE_PKG_RESOURCES |
5369			 SD_SHARE_POWERDOMAIN)) {
5370		if (sd->groups != sd->groups->next)
5371			return 0;
5372	}
5373
5374	/* Following flags don't use groups */
5375	if (sd->flags & (SD_WAKE_AFFINE))
5376		return 0;
5377
5378	return 1;
5379}
5380
5381static int
5382sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5383{
5384	unsigned long cflags = sd->flags, pflags = parent->flags;
5385
5386	if (sd_degenerate(parent))
5387		return 1;
5388
5389	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5390		return 0;
5391
5392	/* Flags needing groups don't count if only 1 group in parent */
5393	if (parent->groups == parent->groups->next) {
5394		pflags &= ~(SD_LOAD_BALANCE |
5395				SD_BALANCE_NEWIDLE |
5396				SD_BALANCE_FORK |
5397				SD_BALANCE_EXEC |
5398				SD_SHARE_CPUCAPACITY |
5399				SD_SHARE_PKG_RESOURCES |
5400				SD_PREFER_SIBLING |
5401				SD_SHARE_POWERDOMAIN);
5402		if (nr_node_ids == 1)
5403			pflags &= ~SD_SERIALIZE;
5404	}
5405	if (~cflags & pflags)
5406		return 0;
5407
5408	return 1;
5409}
5410
5411static void free_rootdomain(struct rcu_head *rcu)
5412{
5413	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5414
5415	cpupri_cleanup(&rd->cpupri);
5416	cpudl_cleanup(&rd->cpudl);
5417	free_cpumask_var(rd->dlo_mask);
5418	free_cpumask_var(rd->rto_mask);
5419	free_cpumask_var(rd->online);
5420	free_cpumask_var(rd->span);
5421	kfree(rd);
5422}
5423
5424static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5425{
5426	struct root_domain *old_rd = NULL;
5427	unsigned long flags;
5428
5429	raw_spin_lock_irqsave(&rq->lock, flags);
5430
5431	if (rq->rd) {
5432		old_rd = rq->rd;
5433
5434		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5435			set_rq_offline(rq);
5436
5437		cpumask_clear_cpu(rq->cpu, old_rd->span);
5438
5439		/*
5440		 * If we dont want to free the old_rd yet then
5441		 * set old_rd to NULL to skip the freeing later
5442		 * in this function:
5443		 */
5444		if (!atomic_dec_and_test(&old_rd->refcount))
5445			old_rd = NULL;
5446	}
5447
5448	atomic_inc(&rd->refcount);
5449	rq->rd = rd;
5450
5451	cpumask_set_cpu(rq->cpu, rd->span);
5452	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5453		set_rq_online(rq);
5454
5455	raw_spin_unlock_irqrestore(&rq->lock, flags);
5456
5457	if (old_rd)
5458		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5459}
5460
5461static int init_rootdomain(struct root_domain *rd)
5462{
5463	memset(rd, 0, sizeof(*rd));
5464
5465	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5466		goto out;
5467	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5468		goto free_span;
5469	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5470		goto free_online;
5471	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5472		goto free_dlo_mask;
5473
5474	init_dl_bw(&rd->dl_bw);
5475	if (cpudl_init(&rd->cpudl) != 0)
5476		goto free_dlo_mask;
5477
5478	if (cpupri_init(&rd->cpupri) != 0)
5479		goto free_rto_mask;
5480	return 0;
5481
5482free_rto_mask:
5483	free_cpumask_var(rd->rto_mask);
5484free_dlo_mask:
5485	free_cpumask_var(rd->dlo_mask);
5486free_online:
5487	free_cpumask_var(rd->online);
5488free_span:
5489	free_cpumask_var(rd->span);
5490out:
5491	return -ENOMEM;
5492}
5493
5494/*
5495 * By default the system creates a single root-domain with all cpus as
5496 * members (mimicking the global state we have today).
5497 */
5498struct root_domain def_root_domain;
5499
5500static void init_defrootdomain(void)
5501{
5502	init_rootdomain(&def_root_domain);
5503
5504	atomic_set(&def_root_domain.refcount, 1);
5505}
5506
5507static struct root_domain *alloc_rootdomain(void)
5508{
5509	struct root_domain *rd;
5510
5511	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5512	if (!rd)
5513		return NULL;
5514
5515	if (init_rootdomain(rd) != 0) {
5516		kfree(rd);
5517		return NULL;
5518	}
5519
5520	return rd;
5521}
5522
5523static void free_sched_groups(struct sched_group *sg, int free_sgc)
5524{
5525	struct sched_group *tmp, *first;
5526
5527	if (!sg)
5528		return;
5529
5530	first = sg;
5531	do {
5532		tmp = sg->next;
5533
5534		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5535			kfree(sg->sgc);
5536
5537		kfree(sg);
5538		sg = tmp;
5539	} while (sg != first);
5540}
5541
5542static void free_sched_domain(struct rcu_head *rcu)
5543{
5544	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5545
5546	/*
5547	 * If its an overlapping domain it has private groups, iterate and
5548	 * nuke them all.
5549	 */
5550	if (sd->flags & SD_OVERLAP) {
5551		free_sched_groups(sd->groups, 1);
5552	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5553		kfree(sd->groups->sgc);
5554		kfree(sd->groups);
5555	}
5556	kfree(sd);
5557}
5558
5559static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5560{
5561	call_rcu(&sd->rcu, free_sched_domain);
5562}
5563
5564static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5565{
5566	for (; sd; sd = sd->parent)
5567		destroy_sched_domain(sd, cpu);
5568}
5569
5570/*
5571 * Keep a special pointer to the highest sched_domain that has
5572 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5573 * allows us to avoid some pointer chasing select_idle_sibling().
5574 *
5575 * Also keep a unique ID per domain (we use the first cpu number in
5576 * the cpumask of the domain), this allows us to quickly tell if
5577 * two cpus are in the same cache domain, see cpus_share_cache().
5578 */
5579DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5580DEFINE_PER_CPU(int, sd_llc_size);
5581DEFINE_PER_CPU(int, sd_llc_id);
5582DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5583DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5584DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5585
5586static void update_top_cache_domain(int cpu)
5587{
5588	struct sched_domain *sd;
5589	struct sched_domain *busy_sd = NULL;
5590	int id = cpu;
5591	int size = 1;
5592
5593	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5594	if (sd) {
5595		id = cpumask_first(sched_domain_span(sd));
5596		size = cpumask_weight(sched_domain_span(sd));
5597		busy_sd = sd->parent; /* sd_busy */
5598	}
5599	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5600
5601	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5602	per_cpu(sd_llc_size, cpu) = size;
5603	per_cpu(sd_llc_id, cpu) = id;
5604
5605	sd = lowest_flag_domain(cpu, SD_NUMA);
5606	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5607
5608	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5609	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5610}
5611
5612/*
5613 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5614 * hold the hotplug lock.
5615 */
5616static void
5617cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5618{
5619	struct rq *rq = cpu_rq(cpu);
5620	struct sched_domain *tmp;
5621
5622	/* Remove the sched domains which do not contribute to scheduling. */
5623	for (tmp = sd; tmp; ) {
5624		struct sched_domain *parent = tmp->parent;
5625		if (!parent)
5626			break;
5627
5628		if (sd_parent_degenerate(tmp, parent)) {
5629			tmp->parent = parent->parent;
5630			if (parent->parent)
5631				parent->parent->child = tmp;
5632			/*
5633			 * Transfer SD_PREFER_SIBLING down in case of a
5634			 * degenerate parent; the spans match for this
5635			 * so the property transfers.
5636			 */
5637			if (parent->flags & SD_PREFER_SIBLING)
5638				tmp->flags |= SD_PREFER_SIBLING;
5639			destroy_sched_domain(parent, cpu);
5640		} else
5641			tmp = tmp->parent;
5642	}
5643
5644	if (sd && sd_degenerate(sd)) {
5645		tmp = sd;
5646		sd = sd->parent;
5647		destroy_sched_domain(tmp, cpu);
5648		if (sd)
5649			sd->child = NULL;
5650	}
5651
5652	sched_domain_debug(sd, cpu);
5653
5654	rq_attach_root(rq, rd);
5655	tmp = rq->sd;
5656	rcu_assign_pointer(rq->sd, sd);
5657	destroy_sched_domains(tmp, cpu);
5658
5659	update_top_cache_domain(cpu);
5660}
5661
5662/* cpus with isolated domains */
5663static cpumask_var_t cpu_isolated_map;
5664
5665/* Setup the mask of cpus configured for isolated domains */
5666static int __init isolated_cpu_setup(char *str)
5667{
5668	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5669	cpulist_parse(str, cpu_isolated_map);
5670	return 1;
5671}
5672
5673__setup("isolcpus=", isolated_cpu_setup);
5674
5675struct s_data {
5676	struct sched_domain ** __percpu sd;
5677	struct root_domain	*rd;
5678};
5679
5680enum s_alloc {
5681	sa_rootdomain,
5682	sa_sd,
5683	sa_sd_storage,
5684	sa_none,
5685};
5686
5687/*
5688 * Build an iteration mask that can exclude certain CPUs from the upwards
5689 * domain traversal.
5690 *
5691 * Asymmetric node setups can result in situations where the domain tree is of
5692 * unequal depth, make sure to skip domains that already cover the entire
5693 * range.
5694 *
5695 * In that case build_sched_domains() will have terminated the iteration early
5696 * and our sibling sd spans will be empty. Domains should always include the
5697 * cpu they're built on, so check that.
5698 *
5699 */
5700static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5701{
5702	const struct cpumask *span = sched_domain_span(sd);
5703	struct sd_data *sdd = sd->private;
5704	struct sched_domain *sibling;
5705	int i;
5706
5707	for_each_cpu(i, span) {
5708		sibling = *per_cpu_ptr(sdd->sd, i);
5709		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5710			continue;
5711
5712		cpumask_set_cpu(i, sched_group_mask(sg));
5713	}
5714}
5715
5716/*
5717 * Return the canonical balance cpu for this group, this is the first cpu
5718 * of this group that's also in the iteration mask.
5719 */
5720int group_balance_cpu(struct sched_group *sg)
5721{
5722	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5723}
5724
5725static int
5726build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5727{
5728	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5729	const struct cpumask *span = sched_domain_span(sd);
5730	struct cpumask *covered = sched_domains_tmpmask;
5731	struct sd_data *sdd = sd->private;
5732	struct sched_domain *child;
5733	int i;
5734
5735	cpumask_clear(covered);
5736
5737	for_each_cpu(i, span) {
5738		struct cpumask *sg_span;
5739
5740		if (cpumask_test_cpu(i, covered))
5741			continue;
5742
5743		child = *per_cpu_ptr(sdd->sd, i);
5744
5745		/* See the comment near build_group_mask(). */
5746		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5747			continue;
5748
5749		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5750				GFP_KERNEL, cpu_to_node(cpu));
5751
5752		if (!sg)
5753			goto fail;
5754
5755		sg_span = sched_group_cpus(sg);
5756		if (child->child) {
5757			child = child->child;
5758			cpumask_copy(sg_span, sched_domain_span(child));
5759		} else
5760			cpumask_set_cpu(i, sg_span);
5761
5762		cpumask_or(covered, covered, sg_span);
5763
5764		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5765		if (atomic_inc_return(&sg->sgc->ref) == 1)
5766			build_group_mask(sd, sg);
5767
5768		/*
5769		 * Initialize sgc->capacity such that even if we mess up the
5770		 * domains and no possible iteration will get us here, we won't
5771		 * die on a /0 trap.
5772		 */
5773		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5774		sg->sgc->capacity_orig = sg->sgc->capacity;
5775
5776		/*
5777		 * Make sure the first group of this domain contains the
5778		 * canonical balance cpu. Otherwise the sched_domain iteration
5779		 * breaks. See update_sg_lb_stats().
5780		 */
5781		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5782		    group_balance_cpu(sg) == cpu)
5783			groups = sg;
5784
5785		if (!first)
5786			first = sg;
5787		if (last)
5788			last->next = sg;
5789		last = sg;
5790		last->next = first;
5791	}
5792	sd->groups = groups;
5793
5794	return 0;
5795
5796fail:
5797	free_sched_groups(first, 0);
5798
5799	return -ENOMEM;
5800}
5801
5802static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5803{
5804	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5805	struct sched_domain *child = sd->child;
5806
5807	if (child)
5808		cpu = cpumask_first(sched_domain_span(child));
5809
5810	if (sg) {
5811		*sg = *per_cpu_ptr(sdd->sg, cpu);
5812		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5813		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5814	}
5815
5816	return cpu;
5817}
5818
5819/*
5820 * build_sched_groups will build a circular linked list of the groups
5821 * covered by the given span, and will set each group's ->cpumask correctly,
5822 * and ->cpu_capacity to 0.
5823 *
5824 * Assumes the sched_domain tree is fully constructed
5825 */
5826static int
5827build_sched_groups(struct sched_domain *sd, int cpu)
5828{
5829	struct sched_group *first = NULL, *last = NULL;
5830	struct sd_data *sdd = sd->private;
5831	const struct cpumask *span = sched_domain_span(sd);
5832	struct cpumask *covered;
5833	int i;
5834
5835	get_group(cpu, sdd, &sd->groups);
5836	atomic_inc(&sd->groups->ref);
5837
5838	if (cpu != cpumask_first(span))
5839		return 0;
5840
5841	lockdep_assert_held(&sched_domains_mutex);
5842	covered = sched_domains_tmpmask;
5843
5844	cpumask_clear(covered);
5845
5846	for_each_cpu(i, span) {
5847		struct sched_group *sg;
5848		int group, j;
5849
5850		if (cpumask_test_cpu(i, covered))
5851			continue;
5852
5853		group = get_group(i, sdd, &sg);
5854		cpumask_setall(sched_group_mask(sg));
5855
5856		for_each_cpu(j, span) {
5857			if (get_group(j, sdd, NULL) != group)
5858				continue;
5859
5860			cpumask_set_cpu(j, covered);
5861			cpumask_set_cpu(j, sched_group_cpus(sg));
5862		}
5863
5864		if (!first)
5865			first = sg;
5866		if (last)
5867			last->next = sg;
5868		last = sg;
5869	}
5870	last->next = first;
5871
5872	return 0;
5873}
5874
5875/*
5876 * Initialize sched groups cpu_capacity.
5877 *
5878 * cpu_capacity indicates the capacity of sched group, which is used while
5879 * distributing the load between different sched groups in a sched domain.
5880 * Typically cpu_capacity for all the groups in a sched domain will be same
5881 * unless there are asymmetries in the topology. If there are asymmetries,
5882 * group having more cpu_capacity will pickup more load compared to the
5883 * group having less cpu_capacity.
5884 */
5885static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5886{
5887	struct sched_group *sg = sd->groups;
5888
5889	WARN_ON(!sg);
5890
5891	do {
5892		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5893		sg = sg->next;
5894	} while (sg != sd->groups);
5895
5896	if (cpu != group_balance_cpu(sg))
5897		return;
5898
5899	update_group_capacity(sd, cpu);
5900	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5901}
5902
5903/*
5904 * Initializers for schedule domains
5905 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5906 */
5907
5908static int default_relax_domain_level = -1;
5909int sched_domain_level_max;
5910
5911static int __init setup_relax_domain_level(char *str)
5912{
5913	if (kstrtoint(str, 0, &default_relax_domain_level))
5914		pr_warn("Unable to set relax_domain_level\n");
5915
5916	return 1;
5917}
5918__setup("relax_domain_level=", setup_relax_domain_level);
5919
5920static void set_domain_attribute(struct sched_domain *sd,
5921				 struct sched_domain_attr *attr)
5922{
5923	int request;
5924
5925	if (!attr || attr->relax_domain_level < 0) {
5926		if (default_relax_domain_level < 0)
5927			return;
5928		else
5929			request = default_relax_domain_level;
5930	} else
5931		request = attr->relax_domain_level;
5932	if (request < sd->level) {
5933		/* turn off idle balance on this domain */
5934		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5935	} else {
5936		/* turn on idle balance on this domain */
5937		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5938	}
5939}
5940
5941static void __sdt_free(const struct cpumask *cpu_map);
5942static int __sdt_alloc(const struct cpumask *cpu_map);
5943
5944static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5945				 const struct cpumask *cpu_map)
5946{
5947	switch (what) {
5948	case sa_rootdomain:
5949		if (!atomic_read(&d->rd->refcount))
5950			free_rootdomain(&d->rd->rcu); /* fall through */
5951	case sa_sd:
5952		free_percpu(d->sd); /* fall through */
5953	case sa_sd_storage:
5954		__sdt_free(cpu_map); /* fall through */
5955	case sa_none:
5956		break;
5957	}
5958}
5959
5960static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5961						   const struct cpumask *cpu_map)
5962{
5963	memset(d, 0, sizeof(*d));
5964
5965	if (__sdt_alloc(cpu_map))
5966		return sa_sd_storage;
5967	d->sd = alloc_percpu(struct sched_domain *);
5968	if (!d->sd)
5969		return sa_sd_storage;
5970	d->rd = alloc_rootdomain();
5971	if (!d->rd)
5972		return sa_sd;
5973	return sa_rootdomain;
5974}
5975
5976/*
5977 * NULL the sd_data elements we've used to build the sched_domain and
5978 * sched_group structure so that the subsequent __free_domain_allocs()
5979 * will not free the data we're using.
5980 */
5981static void claim_allocations(int cpu, struct sched_domain *sd)
5982{
5983	struct sd_data *sdd = sd->private;
5984
5985	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5986	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5987
5988	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5989		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5990
5991	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5992		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5993}
5994
5995#ifdef CONFIG_NUMA
5996static int sched_domains_numa_levels;
5997static int *sched_domains_numa_distance;
5998static struct cpumask ***sched_domains_numa_masks;
5999static int sched_domains_curr_level;
6000#endif
6001
6002/*
6003 * SD_flags allowed in topology descriptions.
6004 *
6005 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6006 * SD_SHARE_PKG_RESOURCES - describes shared caches
6007 * SD_NUMA                - describes NUMA topologies
6008 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6009 *
6010 * Odd one out:
6011 * SD_ASYM_PACKING        - describes SMT quirks
6012 */
6013#define TOPOLOGY_SD_FLAGS		\
6014	(SD_SHARE_CPUCAPACITY |		\
6015	 SD_SHARE_PKG_RESOURCES |	\
6016	 SD_NUMA |			\
6017	 SD_ASYM_PACKING |		\
6018	 SD_SHARE_POWERDOMAIN)
6019
6020static struct sched_domain *
6021sd_init(struct sched_domain_topology_level *tl, int cpu)
6022{
6023	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6024	int sd_weight, sd_flags = 0;
6025
6026#ifdef CONFIG_NUMA
6027	/*
6028	 * Ugly hack to pass state to sd_numa_mask()...
6029	 */
6030	sched_domains_curr_level = tl->numa_level;
6031#endif
6032
6033	sd_weight = cpumask_weight(tl->mask(cpu));
6034
6035	if (tl->sd_flags)
6036		sd_flags = (*tl->sd_flags)();
6037	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6038			"wrong sd_flags in topology description\n"))
6039		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6040
6041	*sd = (struct sched_domain){
6042		.min_interval		= sd_weight,
6043		.max_interval		= 2*sd_weight,
6044		.busy_factor		= 32,
6045		.imbalance_pct		= 125,
6046
6047		.cache_nice_tries	= 0,
6048		.busy_idx		= 0,
6049		.idle_idx		= 0,
6050		.newidle_idx		= 0,
6051		.wake_idx		= 0,
6052		.forkexec_idx		= 0,
6053
6054		.flags			= 1*SD_LOAD_BALANCE
6055					| 1*SD_BALANCE_NEWIDLE
6056					| 1*SD_BALANCE_EXEC
6057					| 1*SD_BALANCE_FORK
6058					| 0*SD_BALANCE_WAKE
6059					| 1*SD_WAKE_AFFINE
6060					| 0*SD_SHARE_CPUCAPACITY
6061					| 0*SD_SHARE_PKG_RESOURCES
6062					| 0*SD_SERIALIZE
6063					| 0*SD_PREFER_SIBLING
6064					| 0*SD_NUMA
6065					| sd_flags
6066					,
6067
6068		.last_balance		= jiffies,
6069		.balance_interval	= sd_weight,
6070		.smt_gain		= 0,
6071		.max_newidle_lb_cost	= 0,
6072		.next_decay_max_lb_cost	= jiffies,
6073#ifdef CONFIG_SCHED_DEBUG
6074		.name			= tl->name,
6075#endif
6076	};
6077
6078	/*
6079	 * Convert topological properties into behaviour.
6080	 */
6081
6082	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6083		sd->imbalance_pct = 110;
6084		sd->smt_gain = 1178; /* ~15% */
6085
6086	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6087		sd->imbalance_pct = 117;
6088		sd->cache_nice_tries = 1;
6089		sd->busy_idx = 2;
6090
6091#ifdef CONFIG_NUMA
6092	} else if (sd->flags & SD_NUMA) {
6093		sd->cache_nice_tries = 2;
6094		sd->busy_idx = 3;
6095		sd->idle_idx = 2;
6096
6097		sd->flags |= SD_SERIALIZE;
6098		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6099			sd->flags &= ~(SD_BALANCE_EXEC |
6100				       SD_BALANCE_FORK |
6101				       SD_WAKE_AFFINE);
6102		}
6103
6104#endif
6105	} else {
6106		sd->flags |= SD_PREFER_SIBLING;
6107		sd->cache_nice_tries = 1;
6108		sd->busy_idx = 2;
6109		sd->idle_idx = 1;
6110	}
6111
6112	sd->private = &tl->data;
6113
6114	return sd;
6115}
6116
6117/*
6118 * Topology list, bottom-up.
6119 */
6120static struct sched_domain_topology_level default_topology[] = {
6121#ifdef CONFIG_SCHED_SMT
6122	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6123#endif
6124#ifdef CONFIG_SCHED_MC
6125	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6126#endif
6127	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6128	{ NULL, },
6129};
6130
6131struct sched_domain_topology_level *sched_domain_topology = default_topology;
6132
6133#define for_each_sd_topology(tl)			\
6134	for (tl = sched_domain_topology; tl->mask; tl++)
6135
6136void set_sched_topology(struct sched_domain_topology_level *tl)
6137{
6138	sched_domain_topology = tl;
6139}
6140
6141#ifdef CONFIG_NUMA
6142
6143static const struct cpumask *sd_numa_mask(int cpu)
6144{
6145	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6146}
6147
6148static void sched_numa_warn(const char *str)
6149{
6150	static int done = false;
6151	int i,j;
6152
6153	if (done)
6154		return;
6155
6156	done = true;
6157
6158	printk(KERN_WARNING "ERROR: %s\n\n", str);
6159
6160	for (i = 0; i < nr_node_ids; i++) {
6161		printk(KERN_WARNING "  ");
6162		for (j = 0; j < nr_node_ids; j++)
6163			printk(KERN_CONT "%02d ", node_distance(i,j));
6164		printk(KERN_CONT "\n");
6165	}
6166	printk(KERN_WARNING "\n");
6167}
6168
6169static bool find_numa_distance(int distance)
6170{
6171	int i;
6172
6173	if (distance == node_distance(0, 0))
6174		return true;
6175
6176	for (i = 0; i < sched_domains_numa_levels; i++) {
6177		if (sched_domains_numa_distance[i] == distance)
6178			return true;
6179	}
6180
6181	return false;
6182}
6183
6184static void sched_init_numa(void)
6185{
6186	int next_distance, curr_distance = node_distance(0, 0);
6187	struct sched_domain_topology_level *tl;
6188	int level = 0;
6189	int i, j, k;
6190
6191	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6192	if (!sched_domains_numa_distance)
6193		return;
6194
6195	/*
6196	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6197	 * unique distances in the node_distance() table.
6198	 *
6199	 * Assumes node_distance(0,j) includes all distances in
6200	 * node_distance(i,j) in order to avoid cubic time.
6201	 */
6202	next_distance = curr_distance;
6203	for (i = 0; i < nr_node_ids; i++) {
6204		for (j = 0; j < nr_node_ids; j++) {
6205			for (k = 0; k < nr_node_ids; k++) {
6206				int distance = node_distance(i, k);
6207
6208				if (distance > curr_distance &&
6209				    (distance < next_distance ||
6210				     next_distance == curr_distance))
6211					next_distance = distance;
6212
6213				/*
6214				 * While not a strong assumption it would be nice to know
6215				 * about cases where if node A is connected to B, B is not
6216				 * equally connected to A.
6217				 */
6218				if (sched_debug() && node_distance(k, i) != distance)
6219					sched_numa_warn("Node-distance not symmetric");
6220
6221				if (sched_debug() && i && !find_numa_distance(distance))
6222					sched_numa_warn("Node-0 not representative");
6223			}
6224			if (next_distance != curr_distance) {
6225				sched_domains_numa_distance[level++] = next_distance;
6226				sched_domains_numa_levels = level;
6227				curr_distance = next_distance;
6228			} else break;
6229		}
6230
6231		/*
6232		 * In case of sched_debug() we verify the above assumption.
6233		 */
6234		if (!sched_debug())
6235			break;
6236	}
6237	/*
6238	 * 'level' contains the number of unique distances, excluding the
6239	 * identity distance node_distance(i,i).
6240	 *
6241	 * The sched_domains_numa_distance[] array includes the actual distance
6242	 * numbers.
6243	 */
6244
6245	/*
6246	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6247	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6248	 * the array will contain less then 'level' members. This could be
6249	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6250	 * in other functions.
6251	 *
6252	 * We reset it to 'level' at the end of this function.
6253	 */
6254	sched_domains_numa_levels = 0;
6255
6256	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6257	if (!sched_domains_numa_masks)
6258		return;
6259
6260	/*
6261	 * Now for each level, construct a mask per node which contains all
6262	 * cpus of nodes that are that many hops away from us.
6263	 */
6264	for (i = 0; i < level; i++) {
6265		sched_domains_numa_masks[i] =
6266			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6267		if (!sched_domains_numa_masks[i])
6268			return;
6269
6270		for (j = 0; j < nr_node_ids; j++) {
6271			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6272			if (!mask)
6273				return;
6274
6275			sched_domains_numa_masks[i][j] = mask;
6276
6277			for (k = 0; k < nr_node_ids; k++) {
6278				if (node_distance(j, k) > sched_domains_numa_distance[i])
6279					continue;
6280
6281				cpumask_or(mask, mask, cpumask_of_node(k));
6282			}
6283		}
6284	}
6285
6286	/* Compute default topology size */
6287	for (i = 0; sched_domain_topology[i].mask; i++);
6288
6289	tl = kzalloc((i + level + 1) *
6290			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6291	if (!tl)
6292		return;
6293
6294	/*
6295	 * Copy the default topology bits..
6296	 */
6297	for (i = 0; sched_domain_topology[i].mask; i++)
6298		tl[i] = sched_domain_topology[i];
6299
6300	/*
6301	 * .. and append 'j' levels of NUMA goodness.
6302	 */
6303	for (j = 0; j < level; i++, j++) {
6304		tl[i] = (struct sched_domain_topology_level){
6305			.mask = sd_numa_mask,
6306			.sd_flags = cpu_numa_flags,
6307			.flags = SDTL_OVERLAP,
6308			.numa_level = j,
6309			SD_INIT_NAME(NUMA)
6310		};
6311	}
6312
6313	sched_domain_topology = tl;
6314
6315	sched_domains_numa_levels = level;
6316}
6317
6318static void sched_domains_numa_masks_set(int cpu)
6319{
6320	int i, j;
6321	int node = cpu_to_node(cpu);
6322
6323	for (i = 0; i < sched_domains_numa_levels; i++) {
6324		for (j = 0; j < nr_node_ids; j++) {
6325			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6326				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6327		}
6328	}
6329}
6330
6331static void sched_domains_numa_masks_clear(int cpu)
6332{
6333	int i, j;
6334	for (i = 0; i < sched_domains_numa_levels; i++) {
6335		for (j = 0; j < nr_node_ids; j++)
6336			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6337	}
6338}
6339
6340/*
6341 * Update sched_domains_numa_masks[level][node] array when new cpus
6342 * are onlined.
6343 */
6344static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6345					   unsigned long action,
6346					   void *hcpu)
6347{
6348	int cpu = (long)hcpu;
6349
6350	switch (action & ~CPU_TASKS_FROZEN) {
6351	case CPU_ONLINE:
6352		sched_domains_numa_masks_set(cpu);
6353		break;
6354
6355	case CPU_DEAD:
6356		sched_domains_numa_masks_clear(cpu);
6357		break;
6358
6359	default:
6360		return NOTIFY_DONE;
6361	}
6362
6363	return NOTIFY_OK;
6364}
6365#else
6366static inline void sched_init_numa(void)
6367{
6368}
6369
6370static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6371					   unsigned long action,
6372					   void *hcpu)
6373{
6374	return 0;
6375}
6376#endif /* CONFIG_NUMA */
6377
6378static int __sdt_alloc(const struct cpumask *cpu_map)
6379{
6380	struct sched_domain_topology_level *tl;
6381	int j;
6382
6383	for_each_sd_topology(tl) {
6384		struct sd_data *sdd = &tl->data;
6385
6386		sdd->sd = alloc_percpu(struct sched_domain *);
6387		if (!sdd->sd)
6388			return -ENOMEM;
6389
6390		sdd->sg = alloc_percpu(struct sched_group *);
6391		if (!sdd->sg)
6392			return -ENOMEM;
6393
6394		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6395		if (!sdd->sgc)
6396			return -ENOMEM;
6397
6398		for_each_cpu(j, cpu_map) {
6399			struct sched_domain *sd;
6400			struct sched_group *sg;
6401			struct sched_group_capacity *sgc;
6402
6403		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6404					GFP_KERNEL, cpu_to_node(j));
6405			if (!sd)
6406				return -ENOMEM;
6407
6408			*per_cpu_ptr(sdd->sd, j) = sd;
6409
6410			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6411					GFP_KERNEL, cpu_to_node(j));
6412			if (!sg)
6413				return -ENOMEM;
6414
6415			sg->next = sg;
6416
6417			*per_cpu_ptr(sdd->sg, j) = sg;
6418
6419			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6420					GFP_KERNEL, cpu_to_node(j));
6421			if (!sgc)
6422				return -ENOMEM;
6423
6424			*per_cpu_ptr(sdd->sgc, j) = sgc;
6425		}
6426	}
6427
6428	return 0;
6429}
6430
6431static void __sdt_free(const struct cpumask *cpu_map)
6432{
6433	struct sched_domain_topology_level *tl;
6434	int j;
6435
6436	for_each_sd_topology(tl) {
6437		struct sd_data *sdd = &tl->data;
6438
6439		for_each_cpu(j, cpu_map) {
6440			struct sched_domain *sd;
6441
6442			if (sdd->sd) {
6443				sd = *per_cpu_ptr(sdd->sd, j);
6444				if (sd && (sd->flags & SD_OVERLAP))
6445					free_sched_groups(sd->groups, 0);
6446				kfree(*per_cpu_ptr(sdd->sd, j));
6447			}
6448
6449			if (sdd->sg)
6450				kfree(*per_cpu_ptr(sdd->sg, j));
6451			if (sdd->sgc)
6452				kfree(*per_cpu_ptr(sdd->sgc, j));
6453		}
6454		free_percpu(sdd->sd);
6455		sdd->sd = NULL;
6456		free_percpu(sdd->sg);
6457		sdd->sg = NULL;
6458		free_percpu(sdd->sgc);
6459		sdd->sgc = NULL;
6460	}
6461}
6462
6463struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6464		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6465		struct sched_domain *child, int cpu)
6466{
6467	struct sched_domain *sd = sd_init(tl, cpu);
6468	if (!sd)
6469		return child;
6470
6471	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6472	if (child) {
6473		sd->level = child->level + 1;
6474		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6475		child->parent = sd;
6476		sd->child = child;
6477	}
6478	set_domain_attribute(sd, attr);
6479
6480	return sd;
6481}
6482
6483/*
6484 * Build sched domains for a given set of cpus and attach the sched domains
6485 * to the individual cpus
6486 */
6487static int build_sched_domains(const struct cpumask *cpu_map,
6488			       struct sched_domain_attr *attr)
6489{
6490	enum s_alloc alloc_state;
6491	struct sched_domain *sd;
6492	struct s_data d;
6493	int i, ret = -ENOMEM;
6494
6495	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6496	if (alloc_state != sa_rootdomain)
6497		goto error;
6498
6499	/* Set up domains for cpus specified by the cpu_map. */
6500	for_each_cpu(i, cpu_map) {
6501		struct sched_domain_topology_level *tl;
6502
6503		sd = NULL;
6504		for_each_sd_topology(tl) {
6505			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6506			if (tl == sched_domain_topology)
6507				*per_cpu_ptr(d.sd, i) = sd;
6508			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6509				sd->flags |= SD_OVERLAP;
6510			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6511				break;
6512		}
6513	}
6514
6515	/* Build the groups for the domains */
6516	for_each_cpu(i, cpu_map) {
6517		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6518			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6519			if (sd->flags & SD_OVERLAP) {
6520				if (build_overlap_sched_groups(sd, i))
6521					goto error;
6522			} else {
6523				if (build_sched_groups(sd, i))
6524					goto error;
6525			}
6526		}
6527	}
6528
6529	/* Calculate CPU capacity for physical packages and nodes */
6530	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6531		if (!cpumask_test_cpu(i, cpu_map))
6532			continue;
6533
6534		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6535			claim_allocations(i, sd);
6536			init_sched_groups_capacity(i, sd);
6537		}
6538	}
6539
6540	/* Attach the domains */
6541	rcu_read_lock();
6542	for_each_cpu(i, cpu_map) {
6543		sd = *per_cpu_ptr(d.sd, i);
6544		cpu_attach_domain(sd, d.rd, i);
6545	}
6546	rcu_read_unlock();
6547
6548	ret = 0;
6549error:
6550	__free_domain_allocs(&d, alloc_state, cpu_map);
6551	return ret;
6552}
6553
6554static cpumask_var_t *doms_cur;	/* current sched domains */
6555static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6556static struct sched_domain_attr *dattr_cur;
6557				/* attribues of custom domains in 'doms_cur' */
6558
6559/*
6560 * Special case: If a kmalloc of a doms_cur partition (array of
6561 * cpumask) fails, then fallback to a single sched domain,
6562 * as determined by the single cpumask fallback_doms.
6563 */
6564static cpumask_var_t fallback_doms;
6565
6566/*
6567 * arch_update_cpu_topology lets virtualized architectures update the
6568 * cpu core maps. It is supposed to return 1 if the topology changed
6569 * or 0 if it stayed the same.
6570 */
6571int __weak arch_update_cpu_topology(void)
6572{
6573	return 0;
6574}
6575
6576cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6577{
6578	int i;
6579	cpumask_var_t *doms;
6580
6581	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6582	if (!doms)
6583		return NULL;
6584	for (i = 0; i < ndoms; i++) {
6585		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6586			free_sched_domains(doms, i);
6587			return NULL;
6588		}
6589	}
6590	return doms;
6591}
6592
6593void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6594{
6595	unsigned int i;
6596	for (i = 0; i < ndoms; i++)
6597		free_cpumask_var(doms[i]);
6598	kfree(doms);
6599}
6600
6601/*
6602 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6603 * For now this just excludes isolated cpus, but could be used to
6604 * exclude other special cases in the future.
6605 */
6606static int init_sched_domains(const struct cpumask *cpu_map)
6607{
6608	int err;
6609
6610	arch_update_cpu_topology();
6611	ndoms_cur = 1;
6612	doms_cur = alloc_sched_domains(ndoms_cur);
6613	if (!doms_cur)
6614		doms_cur = &fallback_doms;
6615	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6616	err = build_sched_domains(doms_cur[0], NULL);
6617	register_sched_domain_sysctl();
6618
6619	return err;
6620}
6621
6622/*
6623 * Detach sched domains from a group of cpus specified in cpu_map
6624 * These cpus will now be attached to the NULL domain
6625 */
6626static void detach_destroy_domains(const struct cpumask *cpu_map)
6627{
6628	int i;
6629
6630	rcu_read_lock();
6631	for_each_cpu(i, cpu_map)
6632		cpu_attach_domain(NULL, &def_root_domain, i);
6633	rcu_read_unlock();
6634}
6635
6636/* handle null as "default" */
6637static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6638			struct sched_domain_attr *new, int idx_new)
6639{
6640	struct sched_domain_attr tmp;
6641
6642	/* fast path */
6643	if (!new && !cur)
6644		return 1;
6645
6646	tmp = SD_ATTR_INIT;
6647	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6648			new ? (new + idx_new) : &tmp,
6649			sizeof(struct sched_domain_attr));
6650}
6651
6652/*
6653 * Partition sched domains as specified by the 'ndoms_new'
6654 * cpumasks in the array doms_new[] of cpumasks. This compares
6655 * doms_new[] to the current sched domain partitioning, doms_cur[].
6656 * It destroys each deleted domain and builds each new domain.
6657 *
6658 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6659 * The masks don't intersect (don't overlap.) We should setup one
6660 * sched domain for each mask. CPUs not in any of the cpumasks will
6661 * not be load balanced. If the same cpumask appears both in the
6662 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6663 * it as it is.
6664 *
6665 * The passed in 'doms_new' should be allocated using
6666 * alloc_sched_domains.  This routine takes ownership of it and will
6667 * free_sched_domains it when done with it. If the caller failed the
6668 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6669 * and partition_sched_domains() will fallback to the single partition
6670 * 'fallback_doms', it also forces the domains to be rebuilt.
6671 *
6672 * If doms_new == NULL it will be replaced with cpu_online_mask.
6673 * ndoms_new == 0 is a special case for destroying existing domains,
6674 * and it will not create the default domain.
6675 *
6676 * Call with hotplug lock held
6677 */
6678void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6679			     struct sched_domain_attr *dattr_new)
6680{
6681	int i, j, n;
6682	int new_topology;
6683
6684	mutex_lock(&sched_domains_mutex);
6685
6686	/* always unregister in case we don't destroy any domains */
6687	unregister_sched_domain_sysctl();
6688
6689	/* Let architecture update cpu core mappings. */
6690	new_topology = arch_update_cpu_topology();
6691
6692	n = doms_new ? ndoms_new : 0;
6693
6694	/* Destroy deleted domains */
6695	for (i = 0; i < ndoms_cur; i++) {
6696		for (j = 0; j < n && !new_topology; j++) {
6697			if (cpumask_equal(doms_cur[i], doms_new[j])
6698			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6699				goto match1;
6700		}
6701		/* no match - a current sched domain not in new doms_new[] */
6702		detach_destroy_domains(doms_cur[i]);
6703match1:
6704		;
6705	}
6706
6707	n = ndoms_cur;
6708	if (doms_new == NULL) {
6709		n = 0;
6710		doms_new = &fallback_doms;
6711		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6712		WARN_ON_ONCE(dattr_new);
6713	}
6714
6715	/* Build new domains */
6716	for (i = 0; i < ndoms_new; i++) {
6717		for (j = 0; j < n && !new_topology; j++) {
6718			if (cpumask_equal(doms_new[i], doms_cur[j])
6719			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6720				goto match2;
6721		}
6722		/* no match - add a new doms_new */
6723		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6724match2:
6725		;
6726	}
6727
6728	/* Remember the new sched domains */
6729	if (doms_cur != &fallback_doms)
6730		free_sched_domains(doms_cur, ndoms_cur);
6731	kfree(dattr_cur);	/* kfree(NULL) is safe */
6732	doms_cur = doms_new;
6733	dattr_cur = dattr_new;
6734	ndoms_cur = ndoms_new;
6735
6736	register_sched_domain_sysctl();
6737
6738	mutex_unlock(&sched_domains_mutex);
6739}
6740
6741static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6742
6743/*
6744 * Update cpusets according to cpu_active mask.  If cpusets are
6745 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6746 * around partition_sched_domains().
6747 *
6748 * If we come here as part of a suspend/resume, don't touch cpusets because we
6749 * want to restore it back to its original state upon resume anyway.
6750 */
6751static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6752			     void *hcpu)
6753{
6754	switch (action) {
6755	case CPU_ONLINE_FROZEN:
6756	case CPU_DOWN_FAILED_FROZEN:
6757
6758		/*
6759		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6760		 * resume sequence. As long as this is not the last online
6761		 * operation in the resume sequence, just build a single sched
6762		 * domain, ignoring cpusets.
6763		 */
6764		num_cpus_frozen--;
6765		if (likely(num_cpus_frozen)) {
6766			partition_sched_domains(1, NULL, NULL);
6767			break;
6768		}
6769
6770		/*
6771		 * This is the last CPU online operation. So fall through and
6772		 * restore the original sched domains by considering the
6773		 * cpuset configurations.
6774		 */
6775
6776	case CPU_ONLINE:
6777	case CPU_DOWN_FAILED:
6778		cpuset_update_active_cpus(true);
6779		break;
6780	default:
6781		return NOTIFY_DONE;
6782	}
6783	return NOTIFY_OK;
6784}
6785
6786static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6787			       void *hcpu)
6788{
6789	switch (action) {
6790	case CPU_DOWN_PREPARE:
6791		cpuset_update_active_cpus(false);
6792		break;
6793	case CPU_DOWN_PREPARE_FROZEN:
6794		num_cpus_frozen++;
6795		partition_sched_domains(1, NULL, NULL);
6796		break;
6797	default:
6798		return NOTIFY_DONE;
6799	}
6800	return NOTIFY_OK;
6801}
6802
6803void __init sched_init_smp(void)
6804{
6805	cpumask_var_t non_isolated_cpus;
6806
6807	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6808	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6809
6810	sched_init_numa();
6811
6812	/*
6813	 * There's no userspace yet to cause hotplug operations; hence all the
6814	 * cpu masks are stable and all blatant races in the below code cannot
6815	 * happen.
6816	 */
6817	mutex_lock(&sched_domains_mutex);
6818	init_sched_domains(cpu_active_mask);
6819	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6820	if (cpumask_empty(non_isolated_cpus))
6821		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6822	mutex_unlock(&sched_domains_mutex);
6823
6824	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6825	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6826	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6827
6828	init_hrtick();
6829
6830	/* Move init over to a non-isolated CPU */
6831	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6832		BUG();
6833	sched_init_granularity();
6834	free_cpumask_var(non_isolated_cpus);
6835
6836	init_sched_rt_class();
6837	init_sched_dl_class();
6838}
6839#else
6840void __init sched_init_smp(void)
6841{
6842	sched_init_granularity();
6843}
6844#endif /* CONFIG_SMP */
6845
6846const_debug unsigned int sysctl_timer_migration = 1;
6847
6848int in_sched_functions(unsigned long addr)
6849{
6850	return in_lock_functions(addr) ||
6851		(addr >= (unsigned long)__sched_text_start
6852		&& addr < (unsigned long)__sched_text_end);
6853}
6854
6855#ifdef CONFIG_CGROUP_SCHED
6856/*
6857 * Default task group.
6858 * Every task in system belongs to this group at bootup.
6859 */
6860struct task_group root_task_group;
6861LIST_HEAD(task_groups);
6862#endif
6863
6864DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6865
6866void __init sched_init(void)
6867{
6868	int i, j;
6869	unsigned long alloc_size = 0, ptr;
6870
6871#ifdef CONFIG_FAIR_GROUP_SCHED
6872	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6873#endif
6874#ifdef CONFIG_RT_GROUP_SCHED
6875	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6876#endif
6877#ifdef CONFIG_CPUMASK_OFFSTACK
6878	alloc_size += num_possible_cpus() * cpumask_size();
6879#endif
6880	if (alloc_size) {
6881		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6882
6883#ifdef CONFIG_FAIR_GROUP_SCHED
6884		root_task_group.se = (struct sched_entity **)ptr;
6885		ptr += nr_cpu_ids * sizeof(void **);
6886
6887		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6888		ptr += nr_cpu_ids * sizeof(void **);
6889
6890#endif /* CONFIG_FAIR_GROUP_SCHED */
6891#ifdef CONFIG_RT_GROUP_SCHED
6892		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6893		ptr += nr_cpu_ids * sizeof(void **);
6894
6895		root_task_group.rt_rq = (struct rt_rq **)ptr;
6896		ptr += nr_cpu_ids * sizeof(void **);
6897
6898#endif /* CONFIG_RT_GROUP_SCHED */
6899#ifdef CONFIG_CPUMASK_OFFSTACK
6900		for_each_possible_cpu(i) {
6901			per_cpu(load_balance_mask, i) = (void *)ptr;
6902			ptr += cpumask_size();
6903		}
6904#endif /* CONFIG_CPUMASK_OFFSTACK */
6905	}
6906
6907	init_rt_bandwidth(&def_rt_bandwidth,
6908			global_rt_period(), global_rt_runtime());
6909	init_dl_bandwidth(&def_dl_bandwidth,
6910			global_rt_period(), global_rt_runtime());
6911
6912#ifdef CONFIG_SMP
6913	init_defrootdomain();
6914#endif
6915
6916#ifdef CONFIG_RT_GROUP_SCHED
6917	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6918			global_rt_period(), global_rt_runtime());
6919#endif /* CONFIG_RT_GROUP_SCHED */
6920
6921#ifdef CONFIG_CGROUP_SCHED
6922	list_add(&root_task_group.list, &task_groups);
6923	INIT_LIST_HEAD(&root_task_group.children);
6924	INIT_LIST_HEAD(&root_task_group.siblings);
6925	autogroup_init(&init_task);
6926
6927#endif /* CONFIG_CGROUP_SCHED */
6928
6929	for_each_possible_cpu(i) {
6930		struct rq *rq;
6931
6932		rq = cpu_rq(i);
6933		raw_spin_lock_init(&rq->lock);
6934		rq->nr_running = 0;
6935		rq->calc_load_active = 0;
6936		rq->calc_load_update = jiffies + LOAD_FREQ;
6937		init_cfs_rq(&rq->cfs);
6938		init_rt_rq(&rq->rt, rq);
6939		init_dl_rq(&rq->dl, rq);
6940#ifdef CONFIG_FAIR_GROUP_SCHED
6941		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6942		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6943		/*
6944		 * How much cpu bandwidth does root_task_group get?
6945		 *
6946		 * In case of task-groups formed thr' the cgroup filesystem, it
6947		 * gets 100% of the cpu resources in the system. This overall
6948		 * system cpu resource is divided among the tasks of
6949		 * root_task_group and its child task-groups in a fair manner,
6950		 * based on each entity's (task or task-group's) weight
6951		 * (se->load.weight).
6952		 *
6953		 * In other words, if root_task_group has 10 tasks of weight
6954		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6955		 * then A0's share of the cpu resource is:
6956		 *
6957		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6958		 *
6959		 * We achieve this by letting root_task_group's tasks sit
6960		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6961		 */
6962		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6963		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6964#endif /* CONFIG_FAIR_GROUP_SCHED */
6965
6966		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6967#ifdef CONFIG_RT_GROUP_SCHED
6968		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6969#endif
6970
6971		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6972			rq->cpu_load[j] = 0;
6973
6974		rq->last_load_update_tick = jiffies;
6975
6976#ifdef CONFIG_SMP
6977		rq->sd = NULL;
6978		rq->rd = NULL;
6979		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6980		rq->post_schedule = 0;
6981		rq->active_balance = 0;
6982		rq->next_balance = jiffies;
6983		rq->push_cpu = 0;
6984		rq->cpu = i;
6985		rq->online = 0;
6986		rq->idle_stamp = 0;
6987		rq->avg_idle = 2*sysctl_sched_migration_cost;
6988		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6989
6990		INIT_LIST_HEAD(&rq->cfs_tasks);
6991
6992		rq_attach_root(rq, &def_root_domain);
6993#ifdef CONFIG_NO_HZ_COMMON
6994		rq->nohz_flags = 0;
6995#endif
6996#ifdef CONFIG_NO_HZ_FULL
6997		rq->last_sched_tick = 0;
6998#endif
6999#endif
7000		init_rq_hrtick(rq);
7001		atomic_set(&rq->nr_iowait, 0);
7002	}
7003
7004	set_load_weight(&init_task);
7005
7006#ifdef CONFIG_PREEMPT_NOTIFIERS
7007	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7008#endif
7009
7010	/*
7011	 * The boot idle thread does lazy MMU switching as well:
7012	 */
7013	atomic_inc(&init_mm.mm_count);
7014	enter_lazy_tlb(&init_mm, current);
7015
7016	/*
7017	 * Make us the idle thread. Technically, schedule() should not be
7018	 * called from this thread, however somewhere below it might be,
7019	 * but because we are the idle thread, we just pick up running again
7020	 * when this runqueue becomes "idle".
7021	 */
7022	init_idle(current, smp_processor_id());
7023
7024	calc_load_update = jiffies + LOAD_FREQ;
7025
7026	/*
7027	 * During early bootup we pretend to be a normal task:
7028	 */
7029	current->sched_class = &fair_sched_class;
7030
7031#ifdef CONFIG_SMP
7032	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7033	/* May be allocated at isolcpus cmdline parse time */
7034	if (cpu_isolated_map == NULL)
7035		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7036	idle_thread_set_boot_cpu();
7037	set_cpu_rq_start_time();
7038#endif
7039	init_sched_fair_class();
7040
7041	scheduler_running = 1;
7042}
7043
7044#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7045static inline int preempt_count_equals(int preempt_offset)
7046{
7047	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7048
7049	return (nested == preempt_offset);
7050}
7051
7052void __might_sleep(const char *file, int line, int preempt_offset)
7053{
7054	static unsigned long prev_jiffy;	/* ratelimiting */
7055
7056	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7057	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7058	     !is_idle_task(current)) ||
7059	    system_state != SYSTEM_RUNNING || oops_in_progress)
7060		return;
7061	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7062		return;
7063	prev_jiffy = jiffies;
7064
7065	printk(KERN_ERR
7066		"BUG: sleeping function called from invalid context at %s:%d\n",
7067			file, line);
7068	printk(KERN_ERR
7069		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7070			in_atomic(), irqs_disabled(),
7071			current->pid, current->comm);
7072
7073	debug_show_held_locks(current);
7074	if (irqs_disabled())
7075		print_irqtrace_events(current);
7076#ifdef CONFIG_DEBUG_PREEMPT
7077	if (!preempt_count_equals(preempt_offset)) {
7078		pr_err("Preemption disabled at:");
7079		print_ip_sym(current->preempt_disable_ip);
7080		pr_cont("\n");
7081	}
7082#endif
7083	dump_stack();
7084}
7085EXPORT_SYMBOL(__might_sleep);
7086#endif
7087
7088#ifdef CONFIG_MAGIC_SYSRQ
7089static void normalize_task(struct rq *rq, struct task_struct *p)
7090{
7091	const struct sched_class *prev_class = p->sched_class;
7092	struct sched_attr attr = {
7093		.sched_policy = SCHED_NORMAL,
7094	};
7095	int old_prio = p->prio;
7096	int on_rq;
7097
7098	on_rq = p->on_rq;
7099	if (on_rq)
7100		dequeue_task(rq, p, 0);
7101	__setscheduler(rq, p, &attr);
7102	if (on_rq) {
7103		enqueue_task(rq, p, 0);
7104		resched_task(rq->curr);
7105	}
7106
7107	check_class_changed(rq, p, prev_class, old_prio);
7108}
7109
7110void normalize_rt_tasks(void)
7111{
7112	struct task_struct *g, *p;
7113	unsigned long flags;
7114	struct rq *rq;
7115
7116	read_lock_irqsave(&tasklist_lock, flags);
7117	do_each_thread(g, p) {
7118		/*
7119		 * Only normalize user tasks:
7120		 */
7121		if (!p->mm)
7122			continue;
7123
7124		p->se.exec_start		= 0;
7125#ifdef CONFIG_SCHEDSTATS
7126		p->se.statistics.wait_start	= 0;
7127		p->se.statistics.sleep_start	= 0;
7128		p->se.statistics.block_start	= 0;
7129#endif
7130
7131		if (!dl_task(p) && !rt_task(p)) {
7132			/*
7133			 * Renice negative nice level userspace
7134			 * tasks back to 0:
7135			 */
7136			if (task_nice(p) < 0 && p->mm)
7137				set_user_nice(p, 0);
7138			continue;
7139		}
7140
7141		raw_spin_lock(&p->pi_lock);
7142		rq = __task_rq_lock(p);
7143
7144		normalize_task(rq, p);
7145
7146		__task_rq_unlock(rq);
7147		raw_spin_unlock(&p->pi_lock);
7148	} while_each_thread(g, p);
7149
7150	read_unlock_irqrestore(&tasklist_lock, flags);
7151}
7152
7153#endif /* CONFIG_MAGIC_SYSRQ */
7154
7155#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7156/*
7157 * These functions are only useful for the IA64 MCA handling, or kdb.
7158 *
7159 * They can only be called when the whole system has been
7160 * stopped - every CPU needs to be quiescent, and no scheduling
7161 * activity can take place. Using them for anything else would
7162 * be a serious bug, and as a result, they aren't even visible
7163 * under any other configuration.
7164 */
7165
7166/**
7167 * curr_task - return the current task for a given cpu.
7168 * @cpu: the processor in question.
7169 *
7170 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7171 *
7172 * Return: The current task for @cpu.
7173 */
7174struct task_struct *curr_task(int cpu)
7175{
7176	return cpu_curr(cpu);
7177}
7178
7179#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7180
7181#ifdef CONFIG_IA64
7182/**
7183 * set_curr_task - set the current task for a given cpu.
7184 * @cpu: the processor in question.
7185 * @p: the task pointer to set.
7186 *
7187 * Description: This function must only be used when non-maskable interrupts
7188 * are serviced on a separate stack. It allows the architecture to switch the
7189 * notion of the current task on a cpu in a non-blocking manner. This function
7190 * must be called with all CPU's synchronized, and interrupts disabled, the
7191 * and caller must save the original value of the current task (see
7192 * curr_task() above) and restore that value before reenabling interrupts and
7193 * re-starting the system.
7194 *
7195 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7196 */
7197void set_curr_task(int cpu, struct task_struct *p)
7198{
7199	cpu_curr(cpu) = p;
7200}
7201
7202#endif
7203
7204#ifdef CONFIG_CGROUP_SCHED
7205/* task_group_lock serializes the addition/removal of task groups */
7206static DEFINE_SPINLOCK(task_group_lock);
7207
7208static void free_sched_group(struct task_group *tg)
7209{
7210	free_fair_sched_group(tg);
7211	free_rt_sched_group(tg);
7212	autogroup_free(tg);
7213	kfree(tg);
7214}
7215
7216/* allocate runqueue etc for a new task group */
7217struct task_group *sched_create_group(struct task_group *parent)
7218{
7219	struct task_group *tg;
7220
7221	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7222	if (!tg)
7223		return ERR_PTR(-ENOMEM);
7224
7225	if (!alloc_fair_sched_group(tg, parent))
7226		goto err;
7227
7228	if (!alloc_rt_sched_group(tg, parent))
7229		goto err;
7230
7231	return tg;
7232
7233err:
7234	free_sched_group(tg);
7235	return ERR_PTR(-ENOMEM);
7236}
7237
7238void sched_online_group(struct task_group *tg, struct task_group *parent)
7239{
7240	unsigned long flags;
7241
7242	spin_lock_irqsave(&task_group_lock, flags);
7243	list_add_rcu(&tg->list, &task_groups);
7244
7245	WARN_ON(!parent); /* root should already exist */
7246
7247	tg->parent = parent;
7248	INIT_LIST_HEAD(&tg->children);
7249	list_add_rcu(&tg->siblings, &parent->children);
7250	spin_unlock_irqrestore(&task_group_lock, flags);
7251}
7252
7253/* rcu callback to free various structures associated with a task group */
7254static void free_sched_group_rcu(struct rcu_head *rhp)
7255{
7256	/* now it should be safe to free those cfs_rqs */
7257	free_sched_group(container_of(rhp, struct task_group, rcu));
7258}
7259
7260/* Destroy runqueue etc associated with a task group */
7261void sched_destroy_group(struct task_group *tg)
7262{
7263	/* wait for possible concurrent references to cfs_rqs complete */
7264	call_rcu(&tg->rcu, free_sched_group_rcu);
7265}
7266
7267void sched_offline_group(struct task_group *tg)
7268{
7269	unsigned long flags;
7270	int i;
7271
7272	/* end participation in shares distribution */
7273	for_each_possible_cpu(i)
7274		unregister_fair_sched_group(tg, i);
7275
7276	spin_lock_irqsave(&task_group_lock, flags);
7277	list_del_rcu(&tg->list);
7278	list_del_rcu(&tg->siblings);
7279	spin_unlock_irqrestore(&task_group_lock, flags);
7280}
7281
7282/* change task's runqueue when it moves between groups.
7283 *	The caller of this function should have put the task in its new group
7284 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7285 *	reflect its new group.
7286 */
7287void sched_move_task(struct task_struct *tsk)
7288{
7289	struct task_group *tg;
7290	int on_rq, running;
7291	unsigned long flags;
7292	struct rq *rq;
7293
7294	rq = task_rq_lock(tsk, &flags);
7295
7296	running = task_current(rq, tsk);
7297	on_rq = tsk->on_rq;
7298
7299	if (on_rq)
7300		dequeue_task(rq, tsk, 0);
7301	if (unlikely(running))
7302		tsk->sched_class->put_prev_task(rq, tsk);
7303
7304	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7305				lockdep_is_held(&tsk->sighand->siglock)),
7306			  struct task_group, css);
7307	tg = autogroup_task_group(tsk, tg);
7308	tsk->sched_task_group = tg;
7309
7310#ifdef CONFIG_FAIR_GROUP_SCHED
7311	if (tsk->sched_class->task_move_group)
7312		tsk->sched_class->task_move_group(tsk, on_rq);
7313	else
7314#endif
7315		set_task_rq(tsk, task_cpu(tsk));
7316
7317	if (unlikely(running))
7318		tsk->sched_class->set_curr_task(rq);
7319	if (on_rq)
7320		enqueue_task(rq, tsk, 0);
7321
7322	task_rq_unlock(rq, tsk, &flags);
7323}
7324#endif /* CONFIG_CGROUP_SCHED */
7325
7326#ifdef CONFIG_RT_GROUP_SCHED
7327/*
7328 * Ensure that the real time constraints are schedulable.
7329 */
7330static DEFINE_MUTEX(rt_constraints_mutex);
7331
7332/* Must be called with tasklist_lock held */
7333static inline int tg_has_rt_tasks(struct task_group *tg)
7334{
7335	struct task_struct *g, *p;
7336
7337	do_each_thread(g, p) {
7338		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7339			return 1;
7340	} while_each_thread(g, p);
7341
7342	return 0;
7343}
7344
7345struct rt_schedulable_data {
7346	struct task_group *tg;
7347	u64 rt_period;
7348	u64 rt_runtime;
7349};
7350
7351static int tg_rt_schedulable(struct task_group *tg, void *data)
7352{
7353	struct rt_schedulable_data *d = data;
7354	struct task_group *child;
7355	unsigned long total, sum = 0;
7356	u64 period, runtime;
7357
7358	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7359	runtime = tg->rt_bandwidth.rt_runtime;
7360
7361	if (tg == d->tg) {
7362		period = d->rt_period;
7363		runtime = d->rt_runtime;
7364	}
7365
7366	/*
7367	 * Cannot have more runtime than the period.
7368	 */
7369	if (runtime > period && runtime != RUNTIME_INF)
7370		return -EINVAL;
7371
7372	/*
7373	 * Ensure we don't starve existing RT tasks.
7374	 */
7375	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7376		return -EBUSY;
7377
7378	total = to_ratio(period, runtime);
7379
7380	/*
7381	 * Nobody can have more than the global setting allows.
7382	 */
7383	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7384		return -EINVAL;
7385
7386	/*
7387	 * The sum of our children's runtime should not exceed our own.
7388	 */
7389	list_for_each_entry_rcu(child, &tg->children, siblings) {
7390		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7391		runtime = child->rt_bandwidth.rt_runtime;
7392
7393		if (child == d->tg) {
7394			period = d->rt_period;
7395			runtime = d->rt_runtime;
7396		}
7397
7398		sum += to_ratio(period, runtime);
7399	}
7400
7401	if (sum > total)
7402		return -EINVAL;
7403
7404	return 0;
7405}
7406
7407static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7408{
7409	int ret;
7410
7411	struct rt_schedulable_data data = {
7412		.tg = tg,
7413		.rt_period = period,
7414		.rt_runtime = runtime,
7415	};
7416
7417	rcu_read_lock();
7418	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7419	rcu_read_unlock();
7420
7421	return ret;
7422}
7423
7424static int tg_set_rt_bandwidth(struct task_group *tg,
7425		u64 rt_period, u64 rt_runtime)
7426{
7427	int i, err = 0;
7428
7429	mutex_lock(&rt_constraints_mutex);
7430	read_lock(&tasklist_lock);
7431	err = __rt_schedulable(tg, rt_period, rt_runtime);
7432	if (err)
7433		goto unlock;
7434
7435	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7436	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7437	tg->rt_bandwidth.rt_runtime = rt_runtime;
7438
7439	for_each_possible_cpu(i) {
7440		struct rt_rq *rt_rq = tg->rt_rq[i];
7441
7442		raw_spin_lock(&rt_rq->rt_runtime_lock);
7443		rt_rq->rt_runtime = rt_runtime;
7444		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7445	}
7446	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7447unlock:
7448	read_unlock(&tasklist_lock);
7449	mutex_unlock(&rt_constraints_mutex);
7450
7451	return err;
7452}
7453
7454static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7455{
7456	u64 rt_runtime, rt_period;
7457
7458	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7459	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7460	if (rt_runtime_us < 0)
7461		rt_runtime = RUNTIME_INF;
7462
7463	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7464}
7465
7466static long sched_group_rt_runtime(struct task_group *tg)
7467{
7468	u64 rt_runtime_us;
7469
7470	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7471		return -1;
7472
7473	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7474	do_div(rt_runtime_us, NSEC_PER_USEC);
7475	return rt_runtime_us;
7476}
7477
7478static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7479{
7480	u64 rt_runtime, rt_period;
7481
7482	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7483	rt_runtime = tg->rt_bandwidth.rt_runtime;
7484
7485	if (rt_period == 0)
7486		return -EINVAL;
7487
7488	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7489}
7490
7491static long sched_group_rt_period(struct task_group *tg)
7492{
7493	u64 rt_period_us;
7494
7495	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7496	do_div(rt_period_us, NSEC_PER_USEC);
7497	return rt_period_us;
7498}
7499#endif /* CONFIG_RT_GROUP_SCHED */
7500
7501#ifdef CONFIG_RT_GROUP_SCHED
7502static int sched_rt_global_constraints(void)
7503{
7504	int ret = 0;
7505
7506	mutex_lock(&rt_constraints_mutex);
7507	read_lock(&tasklist_lock);
7508	ret = __rt_schedulable(NULL, 0, 0);
7509	read_unlock(&tasklist_lock);
7510	mutex_unlock(&rt_constraints_mutex);
7511
7512	return ret;
7513}
7514
7515static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7516{
7517	/* Don't accept realtime tasks when there is no way for them to run */
7518	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7519		return 0;
7520
7521	return 1;
7522}
7523
7524#else /* !CONFIG_RT_GROUP_SCHED */
7525static int sched_rt_global_constraints(void)
7526{
7527	unsigned long flags;
7528	int i, ret = 0;
7529
7530	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7531	for_each_possible_cpu(i) {
7532		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7533
7534		raw_spin_lock(&rt_rq->rt_runtime_lock);
7535		rt_rq->rt_runtime = global_rt_runtime();
7536		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7537	}
7538	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7539
7540	return ret;
7541}
7542#endif /* CONFIG_RT_GROUP_SCHED */
7543
7544static int sched_dl_global_constraints(void)
7545{
7546	u64 runtime = global_rt_runtime();
7547	u64 period = global_rt_period();
7548	u64 new_bw = to_ratio(period, runtime);
7549	int cpu, ret = 0;
7550	unsigned long flags;
7551
7552	/*
7553	 * Here we want to check the bandwidth not being set to some
7554	 * value smaller than the currently allocated bandwidth in
7555	 * any of the root_domains.
7556	 *
7557	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7558	 * cycling on root_domains... Discussion on different/better
7559	 * solutions is welcome!
7560	 */
7561	for_each_possible_cpu(cpu) {
7562		struct dl_bw *dl_b = dl_bw_of(cpu);
7563
7564		raw_spin_lock_irqsave(&dl_b->lock, flags);
7565		if (new_bw < dl_b->total_bw)
7566			ret = -EBUSY;
7567		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7568
7569		if (ret)
7570			break;
7571	}
7572
7573	return ret;
7574}
7575
7576static void sched_dl_do_global(void)
7577{
7578	u64 new_bw = -1;
7579	int cpu;
7580	unsigned long flags;
7581
7582	def_dl_bandwidth.dl_period = global_rt_period();
7583	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7584
7585	if (global_rt_runtime() != RUNTIME_INF)
7586		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7587
7588	/*
7589	 * FIXME: As above...
7590	 */
7591	for_each_possible_cpu(cpu) {
7592		struct dl_bw *dl_b = dl_bw_of(cpu);
7593
7594		raw_spin_lock_irqsave(&dl_b->lock, flags);
7595		dl_b->bw = new_bw;
7596		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7597	}
7598}
7599
7600static int sched_rt_global_validate(void)
7601{
7602	if (sysctl_sched_rt_period <= 0)
7603		return -EINVAL;
7604
7605	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7606		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7607		return -EINVAL;
7608
7609	return 0;
7610}
7611
7612static void sched_rt_do_global(void)
7613{
7614	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7615	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7616}
7617
7618int sched_rt_handler(struct ctl_table *table, int write,
7619		void __user *buffer, size_t *lenp,
7620		loff_t *ppos)
7621{
7622	int old_period, old_runtime;
7623	static DEFINE_MUTEX(mutex);
7624	int ret;
7625
7626	mutex_lock(&mutex);
7627	old_period = sysctl_sched_rt_period;
7628	old_runtime = sysctl_sched_rt_runtime;
7629
7630	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7631
7632	if (!ret && write) {
7633		ret = sched_rt_global_validate();
7634		if (ret)
7635			goto undo;
7636
7637		ret = sched_rt_global_constraints();
7638		if (ret)
7639			goto undo;
7640
7641		ret = sched_dl_global_constraints();
7642		if (ret)
7643			goto undo;
7644
7645		sched_rt_do_global();
7646		sched_dl_do_global();
7647	}
7648	if (0) {
7649undo:
7650		sysctl_sched_rt_period = old_period;
7651		sysctl_sched_rt_runtime = old_runtime;
7652	}
7653	mutex_unlock(&mutex);
7654
7655	return ret;
7656}
7657
7658int sched_rr_handler(struct ctl_table *table, int write,
7659		void __user *buffer, size_t *lenp,
7660		loff_t *ppos)
7661{
7662	int ret;
7663	static DEFINE_MUTEX(mutex);
7664
7665	mutex_lock(&mutex);
7666	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7667	/* make sure that internally we keep jiffies */
7668	/* also, writing zero resets timeslice to default */
7669	if (!ret && write) {
7670		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7671			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7672	}
7673	mutex_unlock(&mutex);
7674	return ret;
7675}
7676
7677#ifdef CONFIG_CGROUP_SCHED
7678
7679static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7680{
7681	return css ? container_of(css, struct task_group, css) : NULL;
7682}
7683
7684static struct cgroup_subsys_state *
7685cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7686{
7687	struct task_group *parent = css_tg(parent_css);
7688	struct task_group *tg;
7689
7690	if (!parent) {
7691		/* This is early initialization for the top cgroup */
7692		return &root_task_group.css;
7693	}
7694
7695	tg = sched_create_group(parent);
7696	if (IS_ERR(tg))
7697		return ERR_PTR(-ENOMEM);
7698
7699	return &tg->css;
7700}
7701
7702static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7703{
7704	struct task_group *tg = css_tg(css);
7705	struct task_group *parent = css_tg(css->parent);
7706
7707	if (parent)
7708		sched_online_group(tg, parent);
7709	return 0;
7710}
7711
7712static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7713{
7714	struct task_group *tg = css_tg(css);
7715
7716	sched_destroy_group(tg);
7717}
7718
7719static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7720{
7721	struct task_group *tg = css_tg(css);
7722
7723	sched_offline_group(tg);
7724}
7725
7726static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7727				 struct cgroup_taskset *tset)
7728{
7729	struct task_struct *task;
7730
7731	cgroup_taskset_for_each(task, tset) {
7732#ifdef CONFIG_RT_GROUP_SCHED
7733		if (!sched_rt_can_attach(css_tg(css), task))
7734			return -EINVAL;
7735#else
7736		/* We don't support RT-tasks being in separate groups */
7737		if (task->sched_class != &fair_sched_class)
7738			return -EINVAL;
7739#endif
7740	}
7741	return 0;
7742}
7743
7744static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7745			      struct cgroup_taskset *tset)
7746{
7747	struct task_struct *task;
7748
7749	cgroup_taskset_for_each(task, tset)
7750		sched_move_task(task);
7751}
7752
7753static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7754			    struct cgroup_subsys_state *old_css,
7755			    struct task_struct *task)
7756{
7757	/*
7758	 * cgroup_exit() is called in the copy_process() failure path.
7759	 * Ignore this case since the task hasn't ran yet, this avoids
7760	 * trying to poke a half freed task state from generic code.
7761	 */
7762	if (!(task->flags & PF_EXITING))
7763		return;
7764
7765	sched_move_task(task);
7766}
7767
7768#ifdef CONFIG_FAIR_GROUP_SCHED
7769static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7770				struct cftype *cftype, u64 shareval)
7771{
7772	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7773}
7774
7775static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7776			       struct cftype *cft)
7777{
7778	struct task_group *tg = css_tg(css);
7779
7780	return (u64) scale_load_down(tg->shares);
7781}
7782
7783#ifdef CONFIG_CFS_BANDWIDTH
7784static DEFINE_MUTEX(cfs_constraints_mutex);
7785
7786const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7787const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7788
7789static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7790
7791static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7792{
7793	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7794	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7795
7796	if (tg == &root_task_group)
7797		return -EINVAL;
7798
7799	/*
7800	 * Ensure we have at some amount of bandwidth every period.  This is
7801	 * to prevent reaching a state of large arrears when throttled via
7802	 * entity_tick() resulting in prolonged exit starvation.
7803	 */
7804	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7805		return -EINVAL;
7806
7807	/*
7808	 * Likewise, bound things on the otherside by preventing insane quota
7809	 * periods.  This also allows us to normalize in computing quota
7810	 * feasibility.
7811	 */
7812	if (period > max_cfs_quota_period)
7813		return -EINVAL;
7814
7815	mutex_lock(&cfs_constraints_mutex);
7816	ret = __cfs_schedulable(tg, period, quota);
7817	if (ret)
7818		goto out_unlock;
7819
7820	runtime_enabled = quota != RUNTIME_INF;
7821	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7822	/*
7823	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7824	 * before making related changes, and on->off must occur afterwards
7825	 */
7826	if (runtime_enabled && !runtime_was_enabled)
7827		cfs_bandwidth_usage_inc();
7828	raw_spin_lock_irq(&cfs_b->lock);
7829	cfs_b->period = ns_to_ktime(period);
7830	cfs_b->quota = quota;
7831
7832	__refill_cfs_bandwidth_runtime(cfs_b);
7833	/* restart the period timer (if active) to handle new period expiry */
7834	if (runtime_enabled && cfs_b->timer_active) {
7835		/* force a reprogram */
7836		__start_cfs_bandwidth(cfs_b, true);
7837	}
7838	raw_spin_unlock_irq(&cfs_b->lock);
7839
7840	for_each_possible_cpu(i) {
7841		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7842		struct rq *rq = cfs_rq->rq;
7843
7844		raw_spin_lock_irq(&rq->lock);
7845		cfs_rq->runtime_enabled = runtime_enabled;
7846		cfs_rq->runtime_remaining = 0;
7847
7848		if (cfs_rq->throttled)
7849			unthrottle_cfs_rq(cfs_rq);
7850		raw_spin_unlock_irq(&rq->lock);
7851	}
7852	if (runtime_was_enabled && !runtime_enabled)
7853		cfs_bandwidth_usage_dec();
7854out_unlock:
7855	mutex_unlock(&cfs_constraints_mutex);
7856
7857	return ret;
7858}
7859
7860int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7861{
7862	u64 quota, period;
7863
7864	period = ktime_to_ns(tg->cfs_bandwidth.period);
7865	if (cfs_quota_us < 0)
7866		quota = RUNTIME_INF;
7867	else
7868		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7869
7870	return tg_set_cfs_bandwidth(tg, period, quota);
7871}
7872
7873long tg_get_cfs_quota(struct task_group *tg)
7874{
7875	u64 quota_us;
7876
7877	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7878		return -1;
7879
7880	quota_us = tg->cfs_bandwidth.quota;
7881	do_div(quota_us, NSEC_PER_USEC);
7882
7883	return quota_us;
7884}
7885
7886int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7887{
7888	u64 quota, period;
7889
7890	period = (u64)cfs_period_us * NSEC_PER_USEC;
7891	quota = tg->cfs_bandwidth.quota;
7892
7893	return tg_set_cfs_bandwidth(tg, period, quota);
7894}
7895
7896long tg_get_cfs_period(struct task_group *tg)
7897{
7898	u64 cfs_period_us;
7899
7900	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7901	do_div(cfs_period_us, NSEC_PER_USEC);
7902
7903	return cfs_period_us;
7904}
7905
7906static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7907				  struct cftype *cft)
7908{
7909	return tg_get_cfs_quota(css_tg(css));
7910}
7911
7912static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7913				   struct cftype *cftype, s64 cfs_quota_us)
7914{
7915	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7916}
7917
7918static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7919				   struct cftype *cft)
7920{
7921	return tg_get_cfs_period(css_tg(css));
7922}
7923
7924static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7925				    struct cftype *cftype, u64 cfs_period_us)
7926{
7927	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7928}
7929
7930struct cfs_schedulable_data {
7931	struct task_group *tg;
7932	u64 period, quota;
7933};
7934
7935/*
7936 * normalize group quota/period to be quota/max_period
7937 * note: units are usecs
7938 */
7939static u64 normalize_cfs_quota(struct task_group *tg,
7940			       struct cfs_schedulable_data *d)
7941{
7942	u64 quota, period;
7943
7944	if (tg == d->tg) {
7945		period = d->period;
7946		quota = d->quota;
7947	} else {
7948		period = tg_get_cfs_period(tg);
7949		quota = tg_get_cfs_quota(tg);
7950	}
7951
7952	/* note: these should typically be equivalent */
7953	if (quota == RUNTIME_INF || quota == -1)
7954		return RUNTIME_INF;
7955
7956	return to_ratio(period, quota);
7957}
7958
7959static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7960{
7961	struct cfs_schedulable_data *d = data;
7962	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7963	s64 quota = 0, parent_quota = -1;
7964
7965	if (!tg->parent) {
7966		quota = RUNTIME_INF;
7967	} else {
7968		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7969
7970		quota = normalize_cfs_quota(tg, d);
7971		parent_quota = parent_b->hierarchal_quota;
7972
7973		/*
7974		 * ensure max(child_quota) <= parent_quota, inherit when no
7975		 * limit is set
7976		 */
7977		if (quota == RUNTIME_INF)
7978			quota = parent_quota;
7979		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7980			return -EINVAL;
7981	}
7982	cfs_b->hierarchal_quota = quota;
7983
7984	return 0;
7985}
7986
7987static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7988{
7989	int ret;
7990	struct cfs_schedulable_data data = {
7991		.tg = tg,
7992		.period = period,
7993		.quota = quota,
7994	};
7995
7996	if (quota != RUNTIME_INF) {
7997		do_div(data.period, NSEC_PER_USEC);
7998		do_div(data.quota, NSEC_PER_USEC);
7999	}
8000
8001	rcu_read_lock();
8002	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8003	rcu_read_unlock();
8004
8005	return ret;
8006}
8007
8008static int cpu_stats_show(struct seq_file *sf, void *v)
8009{
8010	struct task_group *tg = css_tg(seq_css(sf));
8011	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8012
8013	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8014	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8015	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8016
8017	return 0;
8018}
8019#endif /* CONFIG_CFS_BANDWIDTH */
8020#endif /* CONFIG_FAIR_GROUP_SCHED */
8021
8022#ifdef CONFIG_RT_GROUP_SCHED
8023static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8024				struct cftype *cft, s64 val)
8025{
8026	return sched_group_set_rt_runtime(css_tg(css), val);
8027}
8028
8029static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8030			       struct cftype *cft)
8031{
8032	return sched_group_rt_runtime(css_tg(css));
8033}
8034
8035static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8036				    struct cftype *cftype, u64 rt_period_us)
8037{
8038	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8039}
8040
8041static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8042				   struct cftype *cft)
8043{
8044	return sched_group_rt_period(css_tg(css));
8045}
8046#endif /* CONFIG_RT_GROUP_SCHED */
8047
8048static struct cftype cpu_files[] = {
8049#ifdef CONFIG_FAIR_GROUP_SCHED
8050	{
8051		.name = "shares",
8052		.read_u64 = cpu_shares_read_u64,
8053		.write_u64 = cpu_shares_write_u64,
8054	},
8055#endif
8056#ifdef CONFIG_CFS_BANDWIDTH
8057	{
8058		.name = "cfs_quota_us",
8059		.read_s64 = cpu_cfs_quota_read_s64,
8060		.write_s64 = cpu_cfs_quota_write_s64,
8061	},
8062	{
8063		.name = "cfs_period_us",
8064		.read_u64 = cpu_cfs_period_read_u64,
8065		.write_u64 = cpu_cfs_period_write_u64,
8066	},
8067	{
8068		.name = "stat",
8069		.seq_show = cpu_stats_show,
8070	},
8071#endif
8072#ifdef CONFIG_RT_GROUP_SCHED
8073	{
8074		.name = "rt_runtime_us",
8075		.read_s64 = cpu_rt_runtime_read,
8076		.write_s64 = cpu_rt_runtime_write,
8077	},
8078	{
8079		.name = "rt_period_us",
8080		.read_u64 = cpu_rt_period_read_uint,
8081		.write_u64 = cpu_rt_period_write_uint,
8082	},
8083#endif
8084	{ }	/* terminate */
8085};
8086
8087struct cgroup_subsys cpu_cgrp_subsys = {
8088	.css_alloc	= cpu_cgroup_css_alloc,
8089	.css_free	= cpu_cgroup_css_free,
8090	.css_online	= cpu_cgroup_css_online,
8091	.css_offline	= cpu_cgroup_css_offline,
8092	.can_attach	= cpu_cgroup_can_attach,
8093	.attach		= cpu_cgroup_attach,
8094	.exit		= cpu_cgroup_exit,
8095	.base_cftypes	= cpu_files,
8096	.early_init	= 1,
8097};
8098
8099#endif	/* CONFIG_CGROUP_SCHED */
8100
8101void dump_cpu_task(int cpu)
8102{
8103	pr_info("Task dump for CPU %d:\n", cpu);
8104	sched_show_task(cpu_curr(cpu));
8105}
8106