core.c revision 39e24d8ffbb6aa90222527dbd5991ec49fbbf323
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
1114	return ret;
1115}
1116
1117struct migration_arg {
1118	struct task_struct *task;
1119	int dest_cpu;
1120};
1121
1122static int migration_cpu_stop(void *data);
1123
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change.  If it changes, i.e. @p might have woken up,
1129 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count).  If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1141{
1142	unsigned long flags;
1143	int running, on_rq;
1144	unsigned long ncsw;
1145	struct rq *rq;
1146
1147	for (;;) {
1148		/*
1149		 * We do the initial early heuristics without holding
1150		 * any task-queue locks at all. We'll only try to get
1151		 * the runqueue lock when things look like they will
1152		 * work out!
1153		 */
1154		rq = task_rq(p);
1155
1156		/*
1157		 * If the task is actively running on another CPU
1158		 * still, just relax and busy-wait without holding
1159		 * any locks.
1160		 *
1161		 * NOTE! Since we don't hold any locks, it's not
1162		 * even sure that "rq" stays as the right runqueue!
1163		 * But we don't care, since "task_running()" will
1164		 * return false if the runqueue has changed and p
1165		 * is actually now running somewhere else!
1166		 */
1167		while (task_running(rq, p)) {
1168			if (match_state && unlikely(p->state != match_state))
1169				return 0;
1170			cpu_relax();
1171		}
1172
1173		/*
1174		 * Ok, time to look more closely! We need the rq
1175		 * lock now, to be *sure*. If we're wrong, we'll
1176		 * just go back and repeat.
1177		 */
1178		rq = task_rq_lock(p, &flags);
1179		trace_sched_wait_task(p);
1180		running = task_running(rq, p);
1181		on_rq = p->on_rq;
1182		ncsw = 0;
1183		if (!match_state || p->state == match_state)
1184			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1185		task_rq_unlock(rq, p, &flags);
1186
1187		/*
1188		 * If it changed from the expected state, bail out now.
1189		 */
1190		if (unlikely(!ncsw))
1191			break;
1192
1193		/*
1194		 * Was it really running after all now that we
1195		 * checked with the proper locks actually held?
1196		 *
1197		 * Oops. Go back and try again..
1198		 */
1199		if (unlikely(running)) {
1200			cpu_relax();
1201			continue;
1202		}
1203
1204		/*
1205		 * It's not enough that it's not actively running,
1206		 * it must be off the runqueue _entirely_, and not
1207		 * preempted!
1208		 *
1209		 * So if it was still runnable (but just not actively
1210		 * running right now), it's preempted, and we should
1211		 * yield - it could be a while.
1212		 */
1213		if (unlikely(on_rq)) {
1214			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216			set_current_state(TASK_UNINTERRUPTIBLE);
1217			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1218			continue;
1219		}
1220
1221		/*
1222		 * Ahh, all good. It wasn't running, and it wasn't
1223		 * runnable, which means that it will never become
1224		 * running in the future either. We're all done!
1225		 */
1226		break;
1227	}
1228
1229	return ncsw;
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
1239 * NOTE: this function doesn't have to take the runqueue lock,
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
1245void kick_process(struct task_struct *p)
1246{
1247	int cpu;
1248
1249	preempt_disable();
1250	cpu = task_cpu(p);
1251	if ((cpu != smp_processor_id()) && task_curr(p))
1252		smp_send_reschedule(cpu);
1253	preempt_enable();
1254}
1255EXPORT_SYMBOL_GPL(kick_process);
1256#endif /* CONFIG_SMP */
1257
1258#ifdef CONFIG_SMP
1259/*
1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1261 */
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
1264	int nid = cpu_to_node(cpu);
1265	const struct cpumask *nodemask = NULL;
1266	enum { cpuset, possible, fail } state = cpuset;
1267	int dest_cpu;
1268
1269	/*
1270	 * If the node that the cpu is on has been offlined, cpu_to_node()
1271	 * will return -1. There is no cpu on the node, and we should
1272	 * select the cpu on the other node.
1273	 */
1274	if (nid != -1) {
1275		nodemask = cpumask_of_node(nid);
1276
1277		/* Look for allowed, online CPU in same node. */
1278		for_each_cpu(dest_cpu, nodemask) {
1279			if (!cpu_online(dest_cpu))
1280				continue;
1281			if (!cpu_active(dest_cpu))
1282				continue;
1283			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284				return dest_cpu;
1285		}
1286	}
1287
1288	for (;;) {
1289		/* Any allowed, online CPU? */
1290		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1291			if (!cpu_online(dest_cpu))
1292				continue;
1293			if (!cpu_active(dest_cpu))
1294				continue;
1295			goto out;
1296		}
1297
1298		switch (state) {
1299		case cpuset:
1300			/* No more Mr. Nice Guy. */
1301			cpuset_cpus_allowed_fallback(p);
1302			state = possible;
1303			break;
1304
1305		case possible:
1306			do_set_cpus_allowed(p, cpu_possible_mask);
1307			state = fail;
1308			break;
1309
1310		case fail:
1311			BUG();
1312			break;
1313		}
1314	}
1315
1316out:
1317	if (state != cpuset) {
1318		/*
1319		 * Don't tell them about moving exiting tasks or
1320		 * kernel threads (both mm NULL), since they never
1321		 * leave kernel.
1322		 */
1323		if (p->mm && printk_ratelimit()) {
1324			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325					task_pid_nr(p), p->comm, cpu);
1326		}
1327	}
1328
1329	return dest_cpu;
1330}
1331
1332/*
1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1334 */
1335static inline
1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1337{
1338	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1339
1340	/*
1341	 * In order not to call set_task_cpu() on a blocking task we need
1342	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343	 * cpu.
1344	 *
1345	 * Since this is common to all placement strategies, this lives here.
1346	 *
1347	 * [ this allows ->select_task() to simply return task_cpu(p) and
1348	 *   not worry about this generic constraint ]
1349	 */
1350	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1351		     !cpu_online(cpu)))
1352		cpu = select_fallback_rq(task_cpu(p), p);
1353
1354	return cpu;
1355}
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359	s64 diff = sample - *avg;
1360	*avg += diff >> 3;
1361}
1362#endif
1363
1364static void
1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1366{
1367#ifdef CONFIG_SCHEDSTATS
1368	struct rq *rq = this_rq();
1369
1370#ifdef CONFIG_SMP
1371	int this_cpu = smp_processor_id();
1372
1373	if (cpu == this_cpu) {
1374		schedstat_inc(rq, ttwu_local);
1375		schedstat_inc(p, se.statistics.nr_wakeups_local);
1376	} else {
1377		struct sched_domain *sd;
1378
1379		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1380		rcu_read_lock();
1381		for_each_domain(this_cpu, sd) {
1382			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383				schedstat_inc(sd, ttwu_wake_remote);
1384				break;
1385			}
1386		}
1387		rcu_read_unlock();
1388	}
1389
1390	if (wake_flags & WF_MIGRATED)
1391		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
1393#endif /* CONFIG_SMP */
1394
1395	schedstat_inc(rq, ttwu_count);
1396	schedstat_inc(p, se.statistics.nr_wakeups);
1397
1398	if (wake_flags & WF_SYNC)
1399		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1400
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
1406	activate_task(rq, p, en_flags);
1407	p->on_rq = 1;
1408
1409	/* if a worker is waking up, notify workqueue */
1410	if (p->flags & PF_WQ_WORKER)
1411		wq_worker_waking_up(p, cpu_of(rq));
1412}
1413
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
1417static void
1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1419{
1420	check_preempt_curr(rq, p, wake_flags);
1421	trace_sched_wakeup(p, true);
1422
1423	p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425	if (p->sched_class->task_woken)
1426		p->sched_class->task_woken(rq, p);
1427
1428	if (rq->idle_stamp) {
1429		u64 delta = rq_clock(rq) - rq->idle_stamp;
1430		u64 max = 2*rq->max_idle_balance_cost;
1431
1432		update_avg(&rq->avg_idle, delta);
1433
1434		if (rq->avg_idle > max)
1435			rq->avg_idle = max;
1436
1437		rq->idle_stamp = 0;
1438	}
1439#endif
1440}
1441
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446	if (p->sched_contributes_to_load)
1447		rq->nr_uninterruptible--;
1448#endif
1449
1450	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451	ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462	struct rq *rq;
1463	int ret = 0;
1464
1465	rq = __task_rq_lock(p);
1466	if (p->on_rq) {
1467		/* check_preempt_curr() may use rq clock */
1468		update_rq_clock(rq);
1469		ttwu_do_wakeup(rq, p, wake_flags);
1470		ret = 1;
1471	}
1472	__task_rq_unlock(rq);
1473
1474	return ret;
1475}
1476
1477#ifdef CONFIG_SMP
1478static void sched_ttwu_pending(void)
1479{
1480	struct rq *rq = this_rq();
1481	struct llist_node *llist = llist_del_all(&rq->wake_list);
1482	struct task_struct *p;
1483
1484	raw_spin_lock(&rq->lock);
1485
1486	while (llist) {
1487		p = llist_entry(llist, struct task_struct, wake_entry);
1488		llist = llist_next(llist);
1489		ttwu_do_activate(rq, p, 0);
1490	}
1491
1492	raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
1497	/*
1498	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500	 * this IPI.
1501	 */
1502	if (tif_need_resched())
1503		set_preempt_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	INIT_LIST_HEAD(&p->rt.run_list);
1721
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723	INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
1725
1726#ifdef CONFIG_NUMA_BALANCING
1727	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1728		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1729		p->mm->numa_scan_seq = 0;
1730	}
1731
1732	if (clone_flags & CLONE_VM)
1733		p->numa_preferred_nid = current->numa_preferred_nid;
1734	else
1735		p->numa_preferred_nid = -1;
1736
1737	p->node_stamp = 0ULL;
1738	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1739	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1740	p->numa_work.next = &p->numa_work;
1741	p->numa_faults = NULL;
1742	p->numa_faults_buffer = NULL;
1743
1744	INIT_LIST_HEAD(&p->numa_entry);
1745	p->numa_group = NULL;
1746#endif /* CONFIG_NUMA_BALANCING */
1747}
1748
1749#ifdef CONFIG_NUMA_BALANCING
1750#ifdef CONFIG_SCHED_DEBUG
1751void set_numabalancing_state(bool enabled)
1752{
1753	if (enabled)
1754		sched_feat_set("NUMA");
1755	else
1756		sched_feat_set("NO_NUMA");
1757}
1758#else
1759__read_mostly bool numabalancing_enabled;
1760
1761void set_numabalancing_state(bool enabled)
1762{
1763	numabalancing_enabled = enabled;
1764}
1765#endif /* CONFIG_SCHED_DEBUG */
1766#endif /* CONFIG_NUMA_BALANCING */
1767
1768/*
1769 * fork()/clone()-time setup:
1770 */
1771void sched_fork(unsigned long clone_flags, struct task_struct *p)
1772{
1773	unsigned long flags;
1774	int cpu = get_cpu();
1775
1776	__sched_fork(clone_flags, p);
1777	/*
1778	 * We mark the process as running here. This guarantees that
1779	 * nobody will actually run it, and a signal or other external
1780	 * event cannot wake it up and insert it on the runqueue either.
1781	 */
1782	p->state = TASK_RUNNING;
1783
1784	/*
1785	 * Make sure we do not leak PI boosting priority to the child.
1786	 */
1787	p->prio = current->normal_prio;
1788
1789	/*
1790	 * Revert to default priority/policy on fork if requested.
1791	 */
1792	if (unlikely(p->sched_reset_on_fork)) {
1793		if (task_has_rt_policy(p)) {
1794			p->policy = SCHED_NORMAL;
1795			p->static_prio = NICE_TO_PRIO(0);
1796			p->rt_priority = 0;
1797		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1798			p->static_prio = NICE_TO_PRIO(0);
1799
1800		p->prio = p->normal_prio = __normal_prio(p);
1801		set_load_weight(p);
1802
1803		/*
1804		 * We don't need the reset flag anymore after the fork. It has
1805		 * fulfilled its duty:
1806		 */
1807		p->sched_reset_on_fork = 0;
1808	}
1809
1810	if (!rt_prio(p->prio))
1811		p->sched_class = &fair_sched_class;
1812
1813	if (p->sched_class->task_fork)
1814		p->sched_class->task_fork(p);
1815
1816	/*
1817	 * The child is not yet in the pid-hash so no cgroup attach races,
1818	 * and the cgroup is pinned to this child due to cgroup_fork()
1819	 * is ran before sched_fork().
1820	 *
1821	 * Silence PROVE_RCU.
1822	 */
1823	raw_spin_lock_irqsave(&p->pi_lock, flags);
1824	set_task_cpu(p, cpu);
1825	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1826
1827#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1828	if (likely(sched_info_on()))
1829		memset(&p->sched_info, 0, sizeof(p->sched_info));
1830#endif
1831#if defined(CONFIG_SMP)
1832	p->on_cpu = 0;
1833#endif
1834	init_task_preempt_count(p);
1835#ifdef CONFIG_SMP
1836	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1837#endif
1838
1839	put_cpu();
1840}
1841
1842/*
1843 * wake_up_new_task - wake up a newly created task for the first time.
1844 *
1845 * This function will do some initial scheduler statistics housekeeping
1846 * that must be done for every newly created context, then puts the task
1847 * on the runqueue and wakes it.
1848 */
1849void wake_up_new_task(struct task_struct *p)
1850{
1851	unsigned long flags;
1852	struct rq *rq;
1853
1854	raw_spin_lock_irqsave(&p->pi_lock, flags);
1855#ifdef CONFIG_SMP
1856	/*
1857	 * Fork balancing, do it here and not earlier because:
1858	 *  - cpus_allowed can change in the fork path
1859	 *  - any previously selected cpu might disappear through hotplug
1860	 */
1861	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1862#endif
1863
1864	/* Initialize new task's runnable average */
1865	init_task_runnable_average(p);
1866	rq = __task_rq_lock(p);
1867	activate_task(rq, p, 0);
1868	p->on_rq = 1;
1869	trace_sched_wakeup_new(p, true);
1870	check_preempt_curr(rq, p, WF_FORK);
1871#ifdef CONFIG_SMP
1872	if (p->sched_class->task_woken)
1873		p->sched_class->task_woken(rq, p);
1874#endif
1875	task_rq_unlock(rq, p, &flags);
1876}
1877
1878#ifdef CONFIG_PREEMPT_NOTIFIERS
1879
1880/**
1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1882 * @notifier: notifier struct to register
1883 */
1884void preempt_notifier_register(struct preempt_notifier *notifier)
1885{
1886	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887}
1888EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889
1890/**
1891 * preempt_notifier_unregister - no longer interested in preemption notifications
1892 * @notifier: notifier struct to unregister
1893 *
1894 * This is safe to call from within a preemption notifier.
1895 */
1896void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897{
1898	hlist_del(&notifier->link);
1899}
1900EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901
1902static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903{
1904	struct preempt_notifier *notifier;
1905
1906	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1907		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908}
1909
1910static void
1911fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912				 struct task_struct *next)
1913{
1914	struct preempt_notifier *notifier;
1915
1916	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1917		notifier->ops->sched_out(notifier, next);
1918}
1919
1920#else /* !CONFIG_PREEMPT_NOTIFIERS */
1921
1922static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923{
1924}
1925
1926static void
1927fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928				 struct task_struct *next)
1929{
1930}
1931
1932#endif /* CONFIG_PREEMPT_NOTIFIERS */
1933
1934/**
1935 * prepare_task_switch - prepare to switch tasks
1936 * @rq: the runqueue preparing to switch
1937 * @prev: the current task that is being switched out
1938 * @next: the task we are going to switch to.
1939 *
1940 * This is called with the rq lock held and interrupts off. It must
1941 * be paired with a subsequent finish_task_switch after the context
1942 * switch.
1943 *
1944 * prepare_task_switch sets up locking and calls architecture specific
1945 * hooks.
1946 */
1947static inline void
1948prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949		    struct task_struct *next)
1950{
1951	trace_sched_switch(prev, next);
1952	sched_info_switch(rq, prev, next);
1953	perf_event_task_sched_out(prev, next);
1954	fire_sched_out_preempt_notifiers(prev, next);
1955	prepare_lock_switch(rq, next);
1956	prepare_arch_switch(next);
1957}
1958
1959/**
1960 * finish_task_switch - clean up after a task-switch
1961 * @rq: runqueue associated with task-switch
1962 * @prev: the thread we just switched away from.
1963 *
1964 * finish_task_switch must be called after the context switch, paired
1965 * with a prepare_task_switch call before the context switch.
1966 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967 * and do any other architecture-specific cleanup actions.
1968 *
1969 * Note that we may have delayed dropping an mm in context_switch(). If
1970 * so, we finish that here outside of the runqueue lock. (Doing it
1971 * with the lock held can cause deadlocks; see schedule() for
1972 * details.)
1973 */
1974static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1975	__releases(rq->lock)
1976{
1977	struct mm_struct *mm = rq->prev_mm;
1978	long prev_state;
1979
1980	rq->prev_mm = NULL;
1981
1982	/*
1983	 * A task struct has one reference for the use as "current".
1984	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1985	 * schedule one last time. The schedule call will never return, and
1986	 * the scheduled task must drop that reference.
1987	 * The test for TASK_DEAD must occur while the runqueue locks are
1988	 * still held, otherwise prev could be scheduled on another cpu, die
1989	 * there before we look at prev->state, and then the reference would
1990	 * be dropped twice.
1991	 *		Manfred Spraul <manfred@colorfullife.com>
1992	 */
1993	prev_state = prev->state;
1994	vtime_task_switch(prev);
1995	finish_arch_switch(prev);
1996	perf_event_task_sched_in(prev, current);
1997	finish_lock_switch(rq, prev);
1998	finish_arch_post_lock_switch();
1999
2000	fire_sched_in_preempt_notifiers(current);
2001	if (mm)
2002		mmdrop(mm);
2003	if (unlikely(prev_state == TASK_DEAD)) {
2004		task_numa_free(prev);
2005
2006		/*
2007		 * Remove function-return probe instances associated with this
2008		 * task and put them back on the free list.
2009		 */
2010		kprobe_flush_task(prev);
2011		put_task_struct(prev);
2012	}
2013
2014	tick_nohz_task_switch(current);
2015}
2016
2017#ifdef CONFIG_SMP
2018
2019/* assumes rq->lock is held */
2020static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2021{
2022	if (prev->sched_class->pre_schedule)
2023		prev->sched_class->pre_schedule(rq, prev);
2024}
2025
2026/* rq->lock is NOT held, but preemption is disabled */
2027static inline void post_schedule(struct rq *rq)
2028{
2029	if (rq->post_schedule) {
2030		unsigned long flags;
2031
2032		raw_spin_lock_irqsave(&rq->lock, flags);
2033		if (rq->curr->sched_class->post_schedule)
2034			rq->curr->sched_class->post_schedule(rq);
2035		raw_spin_unlock_irqrestore(&rq->lock, flags);
2036
2037		rq->post_schedule = 0;
2038	}
2039}
2040
2041#else
2042
2043static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2044{
2045}
2046
2047static inline void post_schedule(struct rq *rq)
2048{
2049}
2050
2051#endif
2052
2053/**
2054 * schedule_tail - first thing a freshly forked thread must call.
2055 * @prev: the thread we just switched away from.
2056 */
2057asmlinkage void schedule_tail(struct task_struct *prev)
2058	__releases(rq->lock)
2059{
2060	struct rq *rq = this_rq();
2061
2062	finish_task_switch(rq, prev);
2063
2064	/*
2065	 * FIXME: do we need to worry about rq being invalidated by the
2066	 * task_switch?
2067	 */
2068	post_schedule(rq);
2069
2070#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2071	/* In this case, finish_task_switch does not reenable preemption */
2072	preempt_enable();
2073#endif
2074	if (current->set_child_tid)
2075		put_user(task_pid_vnr(current), current->set_child_tid);
2076}
2077
2078/*
2079 * context_switch - switch to the new MM and the new
2080 * thread's register state.
2081 */
2082static inline void
2083context_switch(struct rq *rq, struct task_struct *prev,
2084	       struct task_struct *next)
2085{
2086	struct mm_struct *mm, *oldmm;
2087
2088	prepare_task_switch(rq, prev, next);
2089
2090	mm = next->mm;
2091	oldmm = prev->active_mm;
2092	/*
2093	 * For paravirt, this is coupled with an exit in switch_to to
2094	 * combine the page table reload and the switch backend into
2095	 * one hypercall.
2096	 */
2097	arch_start_context_switch(prev);
2098
2099	if (!mm) {
2100		next->active_mm = oldmm;
2101		atomic_inc(&oldmm->mm_count);
2102		enter_lazy_tlb(oldmm, next);
2103	} else
2104		switch_mm(oldmm, mm, next);
2105
2106	if (!prev->mm) {
2107		prev->active_mm = NULL;
2108		rq->prev_mm = oldmm;
2109	}
2110	/*
2111	 * Since the runqueue lock will be released by the next
2112	 * task (which is an invalid locking op but in the case
2113	 * of the scheduler it's an obvious special-case), so we
2114	 * do an early lockdep release here:
2115	 */
2116#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2117	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2118#endif
2119
2120	context_tracking_task_switch(prev, next);
2121	/* Here we just switch the register state and the stack. */
2122	switch_to(prev, next, prev);
2123
2124	barrier();
2125	/*
2126	 * this_rq must be evaluated again because prev may have moved
2127	 * CPUs since it called schedule(), thus the 'rq' on its stack
2128	 * frame will be invalid.
2129	 */
2130	finish_task_switch(this_rq(), prev);
2131}
2132
2133/*
2134 * nr_running and nr_context_switches:
2135 *
2136 * externally visible scheduler statistics: current number of runnable
2137 * threads, total number of context switches performed since bootup.
2138 */
2139unsigned long nr_running(void)
2140{
2141	unsigned long i, sum = 0;
2142
2143	for_each_online_cpu(i)
2144		sum += cpu_rq(i)->nr_running;
2145
2146	return sum;
2147}
2148
2149unsigned long long nr_context_switches(void)
2150{
2151	int i;
2152	unsigned long long sum = 0;
2153
2154	for_each_possible_cpu(i)
2155		sum += cpu_rq(i)->nr_switches;
2156
2157	return sum;
2158}
2159
2160unsigned long nr_iowait(void)
2161{
2162	unsigned long i, sum = 0;
2163
2164	for_each_possible_cpu(i)
2165		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2166
2167	return sum;
2168}
2169
2170unsigned long nr_iowait_cpu(int cpu)
2171{
2172	struct rq *this = cpu_rq(cpu);
2173	return atomic_read(&this->nr_iowait);
2174}
2175
2176#ifdef CONFIG_SMP
2177
2178/*
2179 * sched_exec - execve() is a valuable balancing opportunity, because at
2180 * this point the task has the smallest effective memory and cache footprint.
2181 */
2182void sched_exec(void)
2183{
2184	struct task_struct *p = current;
2185	unsigned long flags;
2186	int dest_cpu;
2187
2188	raw_spin_lock_irqsave(&p->pi_lock, flags);
2189	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2190	if (dest_cpu == smp_processor_id())
2191		goto unlock;
2192
2193	if (likely(cpu_active(dest_cpu))) {
2194		struct migration_arg arg = { p, dest_cpu };
2195
2196		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2198		return;
2199	}
2200unlock:
2201	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2202}
2203
2204#endif
2205
2206DEFINE_PER_CPU(struct kernel_stat, kstat);
2207DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2208
2209EXPORT_PER_CPU_SYMBOL(kstat);
2210EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2211
2212/*
2213 * Return any ns on the sched_clock that have not yet been accounted in
2214 * @p in case that task is currently running.
2215 *
2216 * Called with task_rq_lock() held on @rq.
2217 */
2218static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2219{
2220	u64 ns = 0;
2221
2222	if (task_current(rq, p)) {
2223		update_rq_clock(rq);
2224		ns = rq_clock_task(rq) - p->se.exec_start;
2225		if ((s64)ns < 0)
2226			ns = 0;
2227	}
2228
2229	return ns;
2230}
2231
2232unsigned long long task_delta_exec(struct task_struct *p)
2233{
2234	unsigned long flags;
2235	struct rq *rq;
2236	u64 ns = 0;
2237
2238	rq = task_rq_lock(p, &flags);
2239	ns = do_task_delta_exec(p, rq);
2240	task_rq_unlock(rq, p, &flags);
2241
2242	return ns;
2243}
2244
2245/*
2246 * Return accounted runtime for the task.
2247 * In case the task is currently running, return the runtime plus current's
2248 * pending runtime that have not been accounted yet.
2249 */
2250unsigned long long task_sched_runtime(struct task_struct *p)
2251{
2252	unsigned long flags;
2253	struct rq *rq;
2254	u64 ns = 0;
2255
2256#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2257	/*
2258	 * 64-bit doesn't need locks to atomically read a 64bit value.
2259	 * So we have a optimization chance when the task's delta_exec is 0.
2260	 * Reading ->on_cpu is racy, but this is ok.
2261	 *
2262	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2263	 * If we race with it entering cpu, unaccounted time is 0. This is
2264	 * indistinguishable from the read occurring a few cycles earlier.
2265	 */
2266	if (!p->on_cpu)
2267		return p->se.sum_exec_runtime;
2268#endif
2269
2270	rq = task_rq_lock(p, &flags);
2271	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2272	task_rq_unlock(rq, p, &flags);
2273
2274	return ns;
2275}
2276
2277/*
2278 * This function gets called by the timer code, with HZ frequency.
2279 * We call it with interrupts disabled.
2280 */
2281void scheduler_tick(void)
2282{
2283	int cpu = smp_processor_id();
2284	struct rq *rq = cpu_rq(cpu);
2285	struct task_struct *curr = rq->curr;
2286
2287	sched_clock_tick();
2288
2289	raw_spin_lock(&rq->lock);
2290	update_rq_clock(rq);
2291	curr->sched_class->task_tick(rq, curr, 0);
2292	update_cpu_load_active(rq);
2293	raw_spin_unlock(&rq->lock);
2294
2295	perf_event_task_tick();
2296
2297#ifdef CONFIG_SMP
2298	rq->idle_balance = idle_cpu(cpu);
2299	trigger_load_balance(rq, cpu);
2300#endif
2301	rq_last_tick_reset(rq);
2302}
2303
2304#ifdef CONFIG_NO_HZ_FULL
2305/**
2306 * scheduler_tick_max_deferment
2307 *
2308 * Keep at least one tick per second when a single
2309 * active task is running because the scheduler doesn't
2310 * yet completely support full dynticks environment.
2311 *
2312 * This makes sure that uptime, CFS vruntime, load
2313 * balancing, etc... continue to move forward, even
2314 * with a very low granularity.
2315 *
2316 * Return: Maximum deferment in nanoseconds.
2317 */
2318u64 scheduler_tick_max_deferment(void)
2319{
2320	struct rq *rq = this_rq();
2321	unsigned long next, now = ACCESS_ONCE(jiffies);
2322
2323	next = rq->last_sched_tick + HZ;
2324
2325	if (time_before_eq(next, now))
2326		return 0;
2327
2328	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2329}
2330#endif
2331
2332notrace unsigned long get_parent_ip(unsigned long addr)
2333{
2334	if (in_lock_functions(addr)) {
2335		addr = CALLER_ADDR2;
2336		if (in_lock_functions(addr))
2337			addr = CALLER_ADDR3;
2338	}
2339	return addr;
2340}
2341
2342#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2343				defined(CONFIG_PREEMPT_TRACER))
2344
2345void __kprobes preempt_count_add(int val)
2346{
2347#ifdef CONFIG_DEBUG_PREEMPT
2348	/*
2349	 * Underflow?
2350	 */
2351	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2352		return;
2353#endif
2354	__preempt_count_add(val);
2355#ifdef CONFIG_DEBUG_PREEMPT
2356	/*
2357	 * Spinlock count overflowing soon?
2358	 */
2359	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2360				PREEMPT_MASK - 10);
2361#endif
2362	if (preempt_count() == val)
2363		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2364}
2365EXPORT_SYMBOL(preempt_count_add);
2366
2367void __kprobes preempt_count_sub(int val)
2368{
2369#ifdef CONFIG_DEBUG_PREEMPT
2370	/*
2371	 * Underflow?
2372	 */
2373	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2374		return;
2375	/*
2376	 * Is the spinlock portion underflowing?
2377	 */
2378	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2379			!(preempt_count() & PREEMPT_MASK)))
2380		return;
2381#endif
2382
2383	if (preempt_count() == val)
2384		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2385	__preempt_count_sub(val);
2386}
2387EXPORT_SYMBOL(preempt_count_sub);
2388
2389#endif
2390
2391/*
2392 * Print scheduling while atomic bug:
2393 */
2394static noinline void __schedule_bug(struct task_struct *prev)
2395{
2396	if (oops_in_progress)
2397		return;
2398
2399	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2400		prev->comm, prev->pid, preempt_count());
2401
2402	debug_show_held_locks(prev);
2403	print_modules();
2404	if (irqs_disabled())
2405		print_irqtrace_events(prev);
2406	dump_stack();
2407	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2408}
2409
2410/*
2411 * Various schedule()-time debugging checks and statistics:
2412 */
2413static inline void schedule_debug(struct task_struct *prev)
2414{
2415	/*
2416	 * Test if we are atomic. Since do_exit() needs to call into
2417	 * schedule() atomically, we ignore that path for now.
2418	 * Otherwise, whine if we are scheduling when we should not be.
2419	 */
2420	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2421		__schedule_bug(prev);
2422	rcu_sleep_check();
2423
2424	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2425
2426	schedstat_inc(this_rq(), sched_count);
2427}
2428
2429static void put_prev_task(struct rq *rq, struct task_struct *prev)
2430{
2431	if (prev->on_rq || rq->skip_clock_update < 0)
2432		update_rq_clock(rq);
2433	prev->sched_class->put_prev_task(rq, prev);
2434}
2435
2436/*
2437 * Pick up the highest-prio task:
2438 */
2439static inline struct task_struct *
2440pick_next_task(struct rq *rq)
2441{
2442	const struct sched_class *class;
2443	struct task_struct *p;
2444
2445	/*
2446	 * Optimization: we know that if all tasks are in
2447	 * the fair class we can call that function directly:
2448	 */
2449	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2450		p = fair_sched_class.pick_next_task(rq);
2451		if (likely(p))
2452			return p;
2453	}
2454
2455	for_each_class(class) {
2456		p = class->pick_next_task(rq);
2457		if (p)
2458			return p;
2459	}
2460
2461	BUG(); /* the idle class will always have a runnable task */
2462}
2463
2464/*
2465 * __schedule() is the main scheduler function.
2466 *
2467 * The main means of driving the scheduler and thus entering this function are:
2468 *
2469 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2470 *
2471 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2472 *      paths. For example, see arch/x86/entry_64.S.
2473 *
2474 *      To drive preemption between tasks, the scheduler sets the flag in timer
2475 *      interrupt handler scheduler_tick().
2476 *
2477 *   3. Wakeups don't really cause entry into schedule(). They add a
2478 *      task to the run-queue and that's it.
2479 *
2480 *      Now, if the new task added to the run-queue preempts the current
2481 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2482 *      called on the nearest possible occasion:
2483 *
2484 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2485 *
2486 *         - in syscall or exception context, at the next outmost
2487 *           preempt_enable(). (this might be as soon as the wake_up()'s
2488 *           spin_unlock()!)
2489 *
2490 *         - in IRQ context, return from interrupt-handler to
2491 *           preemptible context
2492 *
2493 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2494 *         then at the next:
2495 *
2496 *          - cond_resched() call
2497 *          - explicit schedule() call
2498 *          - return from syscall or exception to user-space
2499 *          - return from interrupt-handler to user-space
2500 */
2501static void __sched __schedule(void)
2502{
2503	struct task_struct *prev, *next;
2504	unsigned long *switch_count;
2505	struct rq *rq;
2506	int cpu;
2507
2508need_resched:
2509	preempt_disable();
2510	cpu = smp_processor_id();
2511	rq = cpu_rq(cpu);
2512	rcu_note_context_switch(cpu);
2513	prev = rq->curr;
2514
2515	schedule_debug(prev);
2516
2517	if (sched_feat(HRTICK))
2518		hrtick_clear(rq);
2519
2520	/*
2521	 * Make sure that signal_pending_state()->signal_pending() below
2522	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2523	 * done by the caller to avoid the race with signal_wake_up().
2524	 */
2525	smp_mb__before_spinlock();
2526	raw_spin_lock_irq(&rq->lock);
2527
2528	switch_count = &prev->nivcsw;
2529	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2530		if (unlikely(signal_pending_state(prev->state, prev))) {
2531			prev->state = TASK_RUNNING;
2532		} else {
2533			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2534			prev->on_rq = 0;
2535
2536			/*
2537			 * If a worker went to sleep, notify and ask workqueue
2538			 * whether it wants to wake up a task to maintain
2539			 * concurrency.
2540			 */
2541			if (prev->flags & PF_WQ_WORKER) {
2542				struct task_struct *to_wakeup;
2543
2544				to_wakeup = wq_worker_sleeping(prev, cpu);
2545				if (to_wakeup)
2546					try_to_wake_up_local(to_wakeup);
2547			}
2548		}
2549		switch_count = &prev->nvcsw;
2550	}
2551
2552	pre_schedule(rq, prev);
2553
2554	if (unlikely(!rq->nr_running))
2555		idle_balance(cpu, rq);
2556
2557	put_prev_task(rq, prev);
2558	next = pick_next_task(rq);
2559	clear_tsk_need_resched(prev);
2560	clear_preempt_need_resched();
2561	rq->skip_clock_update = 0;
2562
2563	if (likely(prev != next)) {
2564		rq->nr_switches++;
2565		rq->curr = next;
2566		++*switch_count;
2567
2568		context_switch(rq, prev, next); /* unlocks the rq */
2569		/*
2570		 * The context switch have flipped the stack from under us
2571		 * and restored the local variables which were saved when
2572		 * this task called schedule() in the past. prev == current
2573		 * is still correct, but it can be moved to another cpu/rq.
2574		 */
2575		cpu = smp_processor_id();
2576		rq = cpu_rq(cpu);
2577	} else
2578		raw_spin_unlock_irq(&rq->lock);
2579
2580	post_schedule(rq);
2581
2582	sched_preempt_enable_no_resched();
2583	if (need_resched())
2584		goto need_resched;
2585}
2586
2587static inline void sched_submit_work(struct task_struct *tsk)
2588{
2589	if (!tsk->state || tsk_is_pi_blocked(tsk))
2590		return;
2591	/*
2592	 * If we are going to sleep and we have plugged IO queued,
2593	 * make sure to submit it to avoid deadlocks.
2594	 */
2595	if (blk_needs_flush_plug(tsk))
2596		blk_schedule_flush_plug(tsk);
2597}
2598
2599asmlinkage void __sched schedule(void)
2600{
2601	struct task_struct *tsk = current;
2602
2603	sched_submit_work(tsk);
2604	__schedule();
2605}
2606EXPORT_SYMBOL(schedule);
2607
2608#ifdef CONFIG_CONTEXT_TRACKING
2609asmlinkage void __sched schedule_user(void)
2610{
2611	/*
2612	 * If we come here after a random call to set_need_resched(),
2613	 * or we have been woken up remotely but the IPI has not yet arrived,
2614	 * we haven't yet exited the RCU idle mode. Do it here manually until
2615	 * we find a better solution.
2616	 */
2617	user_exit();
2618	schedule();
2619	user_enter();
2620}
2621#endif
2622
2623/**
2624 * schedule_preempt_disabled - called with preemption disabled
2625 *
2626 * Returns with preemption disabled. Note: preempt_count must be 1
2627 */
2628void __sched schedule_preempt_disabled(void)
2629{
2630	sched_preempt_enable_no_resched();
2631	schedule();
2632	preempt_disable();
2633}
2634
2635#ifdef CONFIG_PREEMPT
2636/*
2637 * this is the entry point to schedule() from in-kernel preemption
2638 * off of preempt_enable. Kernel preemptions off return from interrupt
2639 * occur there and call schedule directly.
2640 */
2641asmlinkage void __sched notrace preempt_schedule(void)
2642{
2643	/*
2644	 * If there is a non-zero preempt_count or interrupts are disabled,
2645	 * we do not want to preempt the current task. Just return..
2646	 */
2647	if (likely(!preemptible()))
2648		return;
2649
2650	do {
2651		__preempt_count_add(PREEMPT_ACTIVE);
2652		__schedule();
2653		__preempt_count_sub(PREEMPT_ACTIVE);
2654
2655		/*
2656		 * Check again in case we missed a preemption opportunity
2657		 * between schedule and now.
2658		 */
2659		barrier();
2660	} while (need_resched());
2661}
2662EXPORT_SYMBOL(preempt_schedule);
2663
2664/*
2665 * this is the entry point to schedule() from kernel preemption
2666 * off of irq context.
2667 * Note, that this is called and return with irqs disabled. This will
2668 * protect us against recursive calling from irq.
2669 */
2670asmlinkage void __sched preempt_schedule_irq(void)
2671{
2672	enum ctx_state prev_state;
2673
2674	/* Catch callers which need to be fixed */
2675	BUG_ON(preempt_count() || !irqs_disabled());
2676
2677	prev_state = exception_enter();
2678
2679	do {
2680		__preempt_count_add(PREEMPT_ACTIVE);
2681		local_irq_enable();
2682		__schedule();
2683		local_irq_disable();
2684		__preempt_count_sub(PREEMPT_ACTIVE);
2685
2686		/*
2687		 * Check again in case we missed a preemption opportunity
2688		 * between schedule and now.
2689		 */
2690		barrier();
2691	} while (need_resched());
2692
2693	exception_exit(prev_state);
2694}
2695
2696#endif /* CONFIG_PREEMPT */
2697
2698int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2699			  void *key)
2700{
2701	return try_to_wake_up(curr->private, mode, wake_flags);
2702}
2703EXPORT_SYMBOL(default_wake_function);
2704
2705static long __sched
2706sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2707{
2708	unsigned long flags;
2709	wait_queue_t wait;
2710
2711	init_waitqueue_entry(&wait, current);
2712
2713	__set_current_state(state);
2714
2715	spin_lock_irqsave(&q->lock, flags);
2716	__add_wait_queue(q, &wait);
2717	spin_unlock(&q->lock);
2718	timeout = schedule_timeout(timeout);
2719	spin_lock_irq(&q->lock);
2720	__remove_wait_queue(q, &wait);
2721	spin_unlock_irqrestore(&q->lock, flags);
2722
2723	return timeout;
2724}
2725
2726void __sched interruptible_sleep_on(wait_queue_head_t *q)
2727{
2728	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2729}
2730EXPORT_SYMBOL(interruptible_sleep_on);
2731
2732long __sched
2733interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2734{
2735	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2736}
2737EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2738
2739void __sched sleep_on(wait_queue_head_t *q)
2740{
2741	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2742}
2743EXPORT_SYMBOL(sleep_on);
2744
2745long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2746{
2747	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2748}
2749EXPORT_SYMBOL(sleep_on_timeout);
2750
2751#ifdef CONFIG_RT_MUTEXES
2752
2753/*
2754 * rt_mutex_setprio - set the current priority of a task
2755 * @p: task
2756 * @prio: prio value (kernel-internal form)
2757 *
2758 * This function changes the 'effective' priority of a task. It does
2759 * not touch ->normal_prio like __setscheduler().
2760 *
2761 * Used by the rt_mutex code to implement priority inheritance logic.
2762 */
2763void rt_mutex_setprio(struct task_struct *p, int prio)
2764{
2765	int oldprio, on_rq, running;
2766	struct rq *rq;
2767	const struct sched_class *prev_class;
2768
2769	BUG_ON(prio < 0 || prio > MAX_PRIO);
2770
2771	rq = __task_rq_lock(p);
2772
2773	/*
2774	 * Idle task boosting is a nono in general. There is one
2775	 * exception, when PREEMPT_RT and NOHZ is active:
2776	 *
2777	 * The idle task calls get_next_timer_interrupt() and holds
2778	 * the timer wheel base->lock on the CPU and another CPU wants
2779	 * to access the timer (probably to cancel it). We can safely
2780	 * ignore the boosting request, as the idle CPU runs this code
2781	 * with interrupts disabled and will complete the lock
2782	 * protected section without being interrupted. So there is no
2783	 * real need to boost.
2784	 */
2785	if (unlikely(p == rq->idle)) {
2786		WARN_ON(p != rq->curr);
2787		WARN_ON(p->pi_blocked_on);
2788		goto out_unlock;
2789	}
2790
2791	trace_sched_pi_setprio(p, prio);
2792	oldprio = p->prio;
2793	prev_class = p->sched_class;
2794	on_rq = p->on_rq;
2795	running = task_current(rq, p);
2796	if (on_rq)
2797		dequeue_task(rq, p, 0);
2798	if (running)
2799		p->sched_class->put_prev_task(rq, p);
2800
2801	if (rt_prio(prio))
2802		p->sched_class = &rt_sched_class;
2803	else
2804		p->sched_class = &fair_sched_class;
2805
2806	p->prio = prio;
2807
2808	if (running)
2809		p->sched_class->set_curr_task(rq);
2810	if (on_rq)
2811		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
2812
2813	check_class_changed(rq, p, prev_class, oldprio);
2814out_unlock:
2815	__task_rq_unlock(rq);
2816}
2817#endif
2818void set_user_nice(struct task_struct *p, long nice)
2819{
2820	int old_prio, delta, on_rq;
2821	unsigned long flags;
2822	struct rq *rq;
2823
2824	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2825		return;
2826	/*
2827	 * We have to be careful, if called from sys_setpriority(),
2828	 * the task might be in the middle of scheduling on another CPU.
2829	 */
2830	rq = task_rq_lock(p, &flags);
2831	/*
2832	 * The RT priorities are set via sched_setscheduler(), but we still
2833	 * allow the 'normal' nice value to be set - but as expected
2834	 * it wont have any effect on scheduling until the task is
2835	 * SCHED_FIFO/SCHED_RR:
2836	 */
2837	if (task_has_rt_policy(p)) {
2838		p->static_prio = NICE_TO_PRIO(nice);
2839		goto out_unlock;
2840	}
2841	on_rq = p->on_rq;
2842	if (on_rq)
2843		dequeue_task(rq, p, 0);
2844
2845	p->static_prio = NICE_TO_PRIO(nice);
2846	set_load_weight(p);
2847	old_prio = p->prio;
2848	p->prio = effective_prio(p);
2849	delta = p->prio - old_prio;
2850
2851	if (on_rq) {
2852		enqueue_task(rq, p, 0);
2853		/*
2854		 * If the task increased its priority or is running and
2855		 * lowered its priority, then reschedule its CPU:
2856		 */
2857		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2858			resched_task(rq->curr);
2859	}
2860out_unlock:
2861	task_rq_unlock(rq, p, &flags);
2862}
2863EXPORT_SYMBOL(set_user_nice);
2864
2865/*
2866 * can_nice - check if a task can reduce its nice value
2867 * @p: task
2868 * @nice: nice value
2869 */
2870int can_nice(const struct task_struct *p, const int nice)
2871{
2872	/* convert nice value [19,-20] to rlimit style value [1,40] */
2873	int nice_rlim = 20 - nice;
2874
2875	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
2876		capable(CAP_SYS_NICE));
2877}
2878
2879#ifdef __ARCH_WANT_SYS_NICE
2880
2881/*
2882 * sys_nice - change the priority of the current process.
2883 * @increment: priority increment
2884 *
2885 * sys_setpriority is a more generic, but much slower function that
2886 * does similar things.
2887 */
2888SYSCALL_DEFINE1(nice, int, increment)
2889{
2890	long nice, retval;
2891
2892	/*
2893	 * Setpriority might change our priority at the same moment.
2894	 * We don't have to worry. Conceptually one call occurs first
2895	 * and we have a single winner.
2896	 */
2897	if (increment < -40)
2898		increment = -40;
2899	if (increment > 40)
2900		increment = 40;
2901
2902	nice = TASK_NICE(current) + increment;
2903	if (nice < -20)
2904		nice = -20;
2905	if (nice > 19)
2906		nice = 19;
2907
2908	if (increment < 0 && !can_nice(current, nice))
2909		return -EPERM;
2910
2911	retval = security_task_setnice(current, nice);
2912	if (retval)
2913		return retval;
2914
2915	set_user_nice(current, nice);
2916	return 0;
2917}
2918
2919#endif
2920
2921/**
2922 * task_prio - return the priority value of a given task.
2923 * @p: the task in question.
2924 *
2925 * Return: The priority value as seen by users in /proc.
2926 * RT tasks are offset by -200. Normal tasks are centered
2927 * around 0, value goes from -16 to +15.
2928 */
2929int task_prio(const struct task_struct *p)
2930{
2931	return p->prio - MAX_RT_PRIO;
2932}
2933
2934/**
2935 * task_nice - return the nice value of a given task.
2936 * @p: the task in question.
2937 *
2938 * Return: The nice value [ -20 ... 0 ... 19 ].
2939 */
2940int task_nice(const struct task_struct *p)
2941{
2942	return TASK_NICE(p);
2943}
2944EXPORT_SYMBOL(task_nice);
2945
2946/**
2947 * idle_cpu - is a given cpu idle currently?
2948 * @cpu: the processor in question.
2949 *
2950 * Return: 1 if the CPU is currently idle. 0 otherwise.
2951 */
2952int idle_cpu(int cpu)
2953{
2954	struct rq *rq = cpu_rq(cpu);
2955
2956	if (rq->curr != rq->idle)
2957		return 0;
2958
2959	if (rq->nr_running)
2960		return 0;
2961
2962#ifdef CONFIG_SMP
2963	if (!llist_empty(&rq->wake_list))
2964		return 0;
2965#endif
2966
2967	return 1;
2968}
2969
2970/**
2971 * idle_task - return the idle task for a given cpu.
2972 * @cpu: the processor in question.
2973 *
2974 * Return: The idle task for the cpu @cpu.
2975 */
2976struct task_struct *idle_task(int cpu)
2977{
2978	return cpu_rq(cpu)->idle;
2979}
2980
2981/**
2982 * find_process_by_pid - find a process with a matching PID value.
2983 * @pid: the pid in question.
2984 *
2985 * The task of @pid, if found. %NULL otherwise.
2986 */
2987static struct task_struct *find_process_by_pid(pid_t pid)
2988{
2989	return pid ? find_task_by_vpid(pid) : current;
2990}
2991
2992/* Actually do priority change: must hold rq lock. */
2993static void
2994__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
2995{
2996	p->policy = policy;
2997	p->rt_priority = prio;
2998	p->normal_prio = normal_prio(p);
2999	/* we are holding p->pi_lock already */
3000	p->prio = rt_mutex_getprio(p);
3001	if (rt_prio(p->prio))
3002		p->sched_class = &rt_sched_class;
3003	else
3004		p->sched_class = &fair_sched_class;
3005	set_load_weight(p);
3006}
3007
3008/*
3009 * check the target process has a UID that matches the current process's
3010 */
3011static bool check_same_owner(struct task_struct *p)
3012{
3013	const struct cred *cred = current_cred(), *pcred;
3014	bool match;
3015
3016	rcu_read_lock();
3017	pcred = __task_cred(p);
3018	match = (uid_eq(cred->euid, pcred->euid) ||
3019		 uid_eq(cred->euid, pcred->uid));
3020	rcu_read_unlock();
3021	return match;
3022}
3023
3024static int __sched_setscheduler(struct task_struct *p, int policy,
3025				const struct sched_param *param, bool user)
3026{
3027	int retval, oldprio, oldpolicy = -1, on_rq, running;
3028	unsigned long flags;
3029	const struct sched_class *prev_class;
3030	struct rq *rq;
3031	int reset_on_fork;
3032
3033	/* may grab non-irq protected spin_locks */
3034	BUG_ON(in_interrupt());
3035recheck:
3036	/* double check policy once rq lock held */
3037	if (policy < 0) {
3038		reset_on_fork = p->sched_reset_on_fork;
3039		policy = oldpolicy = p->policy;
3040	} else {
3041		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3042		policy &= ~SCHED_RESET_ON_FORK;
3043
3044		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3045				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3046				policy != SCHED_IDLE)
3047			return -EINVAL;
3048	}
3049
3050	/*
3051	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3052	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3053	 * SCHED_BATCH and SCHED_IDLE is 0.
3054	 */
3055	if (param->sched_priority < 0 ||
3056	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3057	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3058		return -EINVAL;
3059	if (rt_policy(policy) != (param->sched_priority != 0))
3060		return -EINVAL;
3061
3062	/*
3063	 * Allow unprivileged RT tasks to decrease priority:
3064	 */
3065	if (user && !capable(CAP_SYS_NICE)) {
3066		if (rt_policy(policy)) {
3067			unsigned long rlim_rtprio =
3068					task_rlimit(p, RLIMIT_RTPRIO);
3069
3070			/* can't set/change the rt policy */
3071			if (policy != p->policy && !rlim_rtprio)
3072				return -EPERM;
3073
3074			/* can't increase priority */
3075			if (param->sched_priority > p->rt_priority &&
3076			    param->sched_priority > rlim_rtprio)
3077				return -EPERM;
3078		}
3079
3080		/*
3081		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3082		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3083		 */
3084		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3085			if (!can_nice(p, TASK_NICE(p)))
3086				return -EPERM;
3087		}
3088
3089		/* can't change other user's priorities */
3090		if (!check_same_owner(p))
3091			return -EPERM;
3092
3093		/* Normal users shall not reset the sched_reset_on_fork flag */
3094		if (p->sched_reset_on_fork && !reset_on_fork)
3095			return -EPERM;
3096	}
3097
3098	if (user) {
3099		retval = security_task_setscheduler(p);
3100		if (retval)
3101			return retval;
3102	}
3103
3104	/*
3105	 * make sure no PI-waiters arrive (or leave) while we are
3106	 * changing the priority of the task:
3107	 *
3108	 * To be able to change p->policy safely, the appropriate
3109	 * runqueue lock must be held.
3110	 */
3111	rq = task_rq_lock(p, &flags);
3112
3113	/*
3114	 * Changing the policy of the stop threads its a very bad idea
3115	 */
3116	if (p == rq->stop) {
3117		task_rq_unlock(rq, p, &flags);
3118		return -EINVAL;
3119	}
3120
3121	/*
3122	 * If not changing anything there's no need to proceed further:
3123	 */
3124	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3125			param->sched_priority == p->rt_priority))) {
3126		task_rq_unlock(rq, p, &flags);
3127		return 0;
3128	}
3129
3130#ifdef CONFIG_RT_GROUP_SCHED
3131	if (user) {
3132		/*
3133		 * Do not allow realtime tasks into groups that have no runtime
3134		 * assigned.
3135		 */
3136		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3137				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3138				!task_group_is_autogroup(task_group(p))) {
3139			task_rq_unlock(rq, p, &flags);
3140			return -EPERM;
3141		}
3142	}
3143#endif
3144
3145	/* recheck policy now with rq lock held */
3146	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3147		policy = oldpolicy = -1;
3148		task_rq_unlock(rq, p, &flags);
3149		goto recheck;
3150	}
3151	on_rq = p->on_rq;
3152	running = task_current(rq, p);
3153	if (on_rq)
3154		dequeue_task(rq, p, 0);
3155	if (running)
3156		p->sched_class->put_prev_task(rq, p);
3157
3158	p->sched_reset_on_fork = reset_on_fork;
3159
3160	oldprio = p->prio;
3161	prev_class = p->sched_class;
3162	__setscheduler(rq, p, policy, param->sched_priority);
3163
3164	if (running)
3165		p->sched_class->set_curr_task(rq);
3166	if (on_rq)
3167		enqueue_task(rq, p, 0);
3168
3169	check_class_changed(rq, p, prev_class, oldprio);
3170	task_rq_unlock(rq, p, &flags);
3171
3172	rt_mutex_adjust_pi(p);
3173
3174	return 0;
3175}
3176
3177/**
3178 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3179 * @p: the task in question.
3180 * @policy: new policy.
3181 * @param: structure containing the new RT priority.
3182 *
3183 * Return: 0 on success. An error code otherwise.
3184 *
3185 * NOTE that the task may be already dead.
3186 */
3187int sched_setscheduler(struct task_struct *p, int policy,
3188		       const struct sched_param *param)
3189{
3190	return __sched_setscheduler(p, policy, param, true);
3191}
3192EXPORT_SYMBOL_GPL(sched_setscheduler);
3193
3194/**
3195 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3196 * @p: the task in question.
3197 * @policy: new policy.
3198 * @param: structure containing the new RT priority.
3199 *
3200 * Just like sched_setscheduler, only don't bother checking if the
3201 * current context has permission.  For example, this is needed in
3202 * stop_machine(): we create temporary high priority worker threads,
3203 * but our caller might not have that capability.
3204 *
3205 * Return: 0 on success. An error code otherwise.
3206 */
3207int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3208			       const struct sched_param *param)
3209{
3210	return __sched_setscheduler(p, policy, param, false);
3211}
3212
3213static int
3214do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3215{
3216	struct sched_param lparam;
3217	struct task_struct *p;
3218	int retval;
3219
3220	if (!param || pid < 0)
3221		return -EINVAL;
3222	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3223		return -EFAULT;
3224
3225	rcu_read_lock();
3226	retval = -ESRCH;
3227	p = find_process_by_pid(pid);
3228	if (p != NULL)
3229		retval = sched_setscheduler(p, policy, &lparam);
3230	rcu_read_unlock();
3231
3232	return retval;
3233}
3234
3235/**
3236 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3237 * @pid: the pid in question.
3238 * @policy: new policy.
3239 * @param: structure containing the new RT priority.
3240 *
3241 * Return: 0 on success. An error code otherwise.
3242 */
3243SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3244		struct sched_param __user *, param)
3245{
3246	/* negative values for policy are not valid */
3247	if (policy < 0)
3248		return -EINVAL;
3249
3250	return do_sched_setscheduler(pid, policy, param);
3251}
3252
3253/**
3254 * sys_sched_setparam - set/change the RT priority of a thread
3255 * @pid: the pid in question.
3256 * @param: structure containing the new RT priority.
3257 *
3258 * Return: 0 on success. An error code otherwise.
3259 */
3260SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3261{
3262	return do_sched_setscheduler(pid, -1, param);
3263}
3264
3265/**
3266 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3267 * @pid: the pid in question.
3268 *
3269 * Return: On success, the policy of the thread. Otherwise, a negative error
3270 * code.
3271 */
3272SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3273{
3274	struct task_struct *p;
3275	int retval;
3276
3277	if (pid < 0)
3278		return -EINVAL;
3279
3280	retval = -ESRCH;
3281	rcu_read_lock();
3282	p = find_process_by_pid(pid);
3283	if (p) {
3284		retval = security_task_getscheduler(p);
3285		if (!retval)
3286			retval = p->policy
3287				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3288	}
3289	rcu_read_unlock();
3290	return retval;
3291}
3292
3293/**
3294 * sys_sched_getparam - get the RT priority of a thread
3295 * @pid: the pid in question.
3296 * @param: structure containing the RT priority.
3297 *
3298 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3299 * code.
3300 */
3301SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3302{
3303	struct sched_param lp;
3304	struct task_struct *p;
3305	int retval;
3306
3307	if (!param || pid < 0)
3308		return -EINVAL;
3309
3310	rcu_read_lock();
3311	p = find_process_by_pid(pid);
3312	retval = -ESRCH;
3313	if (!p)
3314		goto out_unlock;
3315
3316	retval = security_task_getscheduler(p);
3317	if (retval)
3318		goto out_unlock;
3319
3320	lp.sched_priority = p->rt_priority;
3321	rcu_read_unlock();
3322
3323	/*
3324	 * This one might sleep, we cannot do it with a spinlock held ...
3325	 */
3326	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3327
3328	return retval;
3329
3330out_unlock:
3331	rcu_read_unlock();
3332	return retval;
3333}
3334
3335long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3336{
3337	cpumask_var_t cpus_allowed, new_mask;
3338	struct task_struct *p;
3339	int retval;
3340
3341	rcu_read_lock();
3342
3343	p = find_process_by_pid(pid);
3344	if (!p) {
3345		rcu_read_unlock();
3346		return -ESRCH;
3347	}
3348
3349	/* Prevent p going away */
3350	get_task_struct(p);
3351	rcu_read_unlock();
3352
3353	if (p->flags & PF_NO_SETAFFINITY) {
3354		retval = -EINVAL;
3355		goto out_put_task;
3356	}
3357	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3358		retval = -ENOMEM;
3359		goto out_put_task;
3360	}
3361	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3362		retval = -ENOMEM;
3363		goto out_free_cpus_allowed;
3364	}
3365	retval = -EPERM;
3366	if (!check_same_owner(p)) {
3367		rcu_read_lock();
3368		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3369			rcu_read_unlock();
3370			goto out_unlock;
3371		}
3372		rcu_read_unlock();
3373	}
3374
3375	retval = security_task_setscheduler(p);
3376	if (retval)
3377		goto out_unlock;
3378
3379	cpuset_cpus_allowed(p, cpus_allowed);
3380	cpumask_and(new_mask, in_mask, cpus_allowed);
3381again:
3382	retval = set_cpus_allowed_ptr(p, new_mask);
3383
3384	if (!retval) {
3385		cpuset_cpus_allowed(p, cpus_allowed);
3386		if (!cpumask_subset(new_mask, cpus_allowed)) {
3387			/*
3388			 * We must have raced with a concurrent cpuset
3389			 * update. Just reset the cpus_allowed to the
3390			 * cpuset's cpus_allowed
3391			 */
3392			cpumask_copy(new_mask, cpus_allowed);
3393			goto again;
3394		}
3395	}
3396out_unlock:
3397	free_cpumask_var(new_mask);
3398out_free_cpus_allowed:
3399	free_cpumask_var(cpus_allowed);
3400out_put_task:
3401	put_task_struct(p);
3402	return retval;
3403}
3404
3405static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3406			     struct cpumask *new_mask)
3407{
3408	if (len < cpumask_size())
3409		cpumask_clear(new_mask);
3410	else if (len > cpumask_size())
3411		len = cpumask_size();
3412
3413	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3414}
3415
3416/**
3417 * sys_sched_setaffinity - set the cpu affinity of a process
3418 * @pid: pid of the process
3419 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3420 * @user_mask_ptr: user-space pointer to the new cpu mask
3421 *
3422 * Return: 0 on success. An error code otherwise.
3423 */
3424SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3425		unsigned long __user *, user_mask_ptr)
3426{
3427	cpumask_var_t new_mask;
3428	int retval;
3429
3430	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3431		return -ENOMEM;
3432
3433	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3434	if (retval == 0)
3435		retval = sched_setaffinity(pid, new_mask);
3436	free_cpumask_var(new_mask);
3437	return retval;
3438}
3439
3440long sched_getaffinity(pid_t pid, struct cpumask *mask)
3441{
3442	struct task_struct *p;
3443	unsigned long flags;
3444	int retval;
3445
3446	rcu_read_lock();
3447
3448	retval = -ESRCH;
3449	p = find_process_by_pid(pid);
3450	if (!p)
3451		goto out_unlock;
3452
3453	retval = security_task_getscheduler(p);
3454	if (retval)
3455		goto out_unlock;
3456
3457	raw_spin_lock_irqsave(&p->pi_lock, flags);
3458	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3459	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3460
3461out_unlock:
3462	rcu_read_unlock();
3463
3464	return retval;
3465}
3466
3467/**
3468 * sys_sched_getaffinity - get the cpu affinity of a process
3469 * @pid: pid of the process
3470 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3471 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3472 *
3473 * Return: 0 on success. An error code otherwise.
3474 */
3475SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3476		unsigned long __user *, user_mask_ptr)
3477{
3478	int ret;
3479	cpumask_var_t mask;
3480
3481	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3482		return -EINVAL;
3483	if (len & (sizeof(unsigned long)-1))
3484		return -EINVAL;
3485
3486	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3487		return -ENOMEM;
3488
3489	ret = sched_getaffinity(pid, mask);
3490	if (ret == 0) {
3491		size_t retlen = min_t(size_t, len, cpumask_size());
3492
3493		if (copy_to_user(user_mask_ptr, mask, retlen))
3494			ret = -EFAULT;
3495		else
3496			ret = retlen;
3497	}
3498	free_cpumask_var(mask);
3499
3500	return ret;
3501}
3502
3503/**
3504 * sys_sched_yield - yield the current processor to other threads.
3505 *
3506 * This function yields the current CPU to other tasks. If there are no
3507 * other threads running on this CPU then this function will return.
3508 *
3509 * Return: 0.
3510 */
3511SYSCALL_DEFINE0(sched_yield)
3512{
3513	struct rq *rq = this_rq_lock();
3514
3515	schedstat_inc(rq, yld_count);
3516	current->sched_class->yield_task(rq);
3517
3518	/*
3519	 * Since we are going to call schedule() anyway, there's
3520	 * no need to preempt or enable interrupts:
3521	 */
3522	__release(rq->lock);
3523	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3524	do_raw_spin_unlock(&rq->lock);
3525	sched_preempt_enable_no_resched();
3526
3527	schedule();
3528
3529	return 0;
3530}
3531
3532static void __cond_resched(void)
3533{
3534	__preempt_count_add(PREEMPT_ACTIVE);
3535	__schedule();
3536	__preempt_count_sub(PREEMPT_ACTIVE);
3537}
3538
3539int __sched _cond_resched(void)
3540{
3541	if (should_resched()) {
3542		__cond_resched();
3543		return 1;
3544	}
3545	return 0;
3546}
3547EXPORT_SYMBOL(_cond_resched);
3548
3549/*
3550 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3551 * call schedule, and on return reacquire the lock.
3552 *
3553 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3554 * operations here to prevent schedule() from being called twice (once via
3555 * spin_unlock(), once by hand).
3556 */
3557int __cond_resched_lock(spinlock_t *lock)
3558{
3559	int resched = should_resched();
3560	int ret = 0;
3561
3562	lockdep_assert_held(lock);
3563
3564	if (spin_needbreak(lock) || resched) {
3565		spin_unlock(lock);
3566		if (resched)
3567			__cond_resched();
3568		else
3569			cpu_relax();
3570		ret = 1;
3571		spin_lock(lock);
3572	}
3573	return ret;
3574}
3575EXPORT_SYMBOL(__cond_resched_lock);
3576
3577int __sched __cond_resched_softirq(void)
3578{
3579	BUG_ON(!in_softirq());
3580
3581	if (should_resched()) {
3582		local_bh_enable();
3583		__cond_resched();
3584		local_bh_disable();
3585		return 1;
3586	}
3587	return 0;
3588}
3589EXPORT_SYMBOL(__cond_resched_softirq);
3590
3591/**
3592 * yield - yield the current processor to other threads.
3593 *
3594 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3595 *
3596 * The scheduler is at all times free to pick the calling task as the most
3597 * eligible task to run, if removing the yield() call from your code breaks
3598 * it, its already broken.
3599 *
3600 * Typical broken usage is:
3601 *
3602 * while (!event)
3603 * 	yield();
3604 *
3605 * where one assumes that yield() will let 'the other' process run that will
3606 * make event true. If the current task is a SCHED_FIFO task that will never
3607 * happen. Never use yield() as a progress guarantee!!
3608 *
3609 * If you want to use yield() to wait for something, use wait_event().
3610 * If you want to use yield() to be 'nice' for others, use cond_resched().
3611 * If you still want to use yield(), do not!
3612 */
3613void __sched yield(void)
3614{
3615	set_current_state(TASK_RUNNING);
3616	sys_sched_yield();
3617}
3618EXPORT_SYMBOL(yield);
3619
3620/**
3621 * yield_to - yield the current processor to another thread in
3622 * your thread group, or accelerate that thread toward the
3623 * processor it's on.
3624 * @p: target task
3625 * @preempt: whether task preemption is allowed or not
3626 *
3627 * It's the caller's job to ensure that the target task struct
3628 * can't go away on us before we can do any checks.
3629 *
3630 * Return:
3631 *	true (>0) if we indeed boosted the target task.
3632 *	false (0) if we failed to boost the target.
3633 *	-ESRCH if there's no task to yield to.
3634 */
3635bool __sched yield_to(struct task_struct *p, bool preempt)
3636{
3637	struct task_struct *curr = current;
3638	struct rq *rq, *p_rq;
3639	unsigned long flags;
3640	int yielded = 0;
3641
3642	local_irq_save(flags);
3643	rq = this_rq();
3644
3645again:
3646	p_rq = task_rq(p);
3647	/*
3648	 * If we're the only runnable task on the rq and target rq also
3649	 * has only one task, there's absolutely no point in yielding.
3650	 */
3651	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3652		yielded = -ESRCH;
3653		goto out_irq;
3654	}
3655
3656	double_rq_lock(rq, p_rq);
3657	if (task_rq(p) != p_rq) {
3658		double_rq_unlock(rq, p_rq);
3659		goto again;
3660	}
3661
3662	if (!curr->sched_class->yield_to_task)
3663		goto out_unlock;
3664
3665	if (curr->sched_class != p->sched_class)
3666		goto out_unlock;
3667
3668	if (task_running(p_rq, p) || p->state)
3669		goto out_unlock;
3670
3671	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3672	if (yielded) {
3673		schedstat_inc(rq, yld_count);
3674		/*
3675		 * Make p's CPU reschedule; pick_next_entity takes care of
3676		 * fairness.
3677		 */
3678		if (preempt && rq != p_rq)
3679			resched_task(p_rq->curr);
3680	}
3681
3682out_unlock:
3683	double_rq_unlock(rq, p_rq);
3684out_irq:
3685	local_irq_restore(flags);
3686
3687	if (yielded > 0)
3688		schedule();
3689
3690	return yielded;
3691}
3692EXPORT_SYMBOL_GPL(yield_to);
3693
3694/*
3695 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3696 * that process accounting knows that this is a task in IO wait state.
3697 */
3698void __sched io_schedule(void)
3699{
3700	struct rq *rq = raw_rq();
3701
3702	delayacct_blkio_start();
3703	atomic_inc(&rq->nr_iowait);
3704	blk_flush_plug(current);
3705	current->in_iowait = 1;
3706	schedule();
3707	current->in_iowait = 0;
3708	atomic_dec(&rq->nr_iowait);
3709	delayacct_blkio_end();
3710}
3711EXPORT_SYMBOL(io_schedule);
3712
3713long __sched io_schedule_timeout(long timeout)
3714{
3715	struct rq *rq = raw_rq();
3716	long ret;
3717
3718	delayacct_blkio_start();
3719	atomic_inc(&rq->nr_iowait);
3720	blk_flush_plug(current);
3721	current->in_iowait = 1;
3722	ret = schedule_timeout(timeout);
3723	current->in_iowait = 0;
3724	atomic_dec(&rq->nr_iowait);
3725	delayacct_blkio_end();
3726	return ret;
3727}
3728
3729/**
3730 * sys_sched_get_priority_max - return maximum RT priority.
3731 * @policy: scheduling class.
3732 *
3733 * Return: On success, this syscall returns the maximum
3734 * rt_priority that can be used by a given scheduling class.
3735 * On failure, a negative error code is returned.
3736 */
3737SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3738{
3739	int ret = -EINVAL;
3740
3741	switch (policy) {
3742	case SCHED_FIFO:
3743	case SCHED_RR:
3744		ret = MAX_USER_RT_PRIO-1;
3745		break;
3746	case SCHED_NORMAL:
3747	case SCHED_BATCH:
3748	case SCHED_IDLE:
3749		ret = 0;
3750		break;
3751	}
3752	return ret;
3753}
3754
3755/**
3756 * sys_sched_get_priority_min - return minimum RT priority.
3757 * @policy: scheduling class.
3758 *
3759 * Return: On success, this syscall returns the minimum
3760 * rt_priority that can be used by a given scheduling class.
3761 * On failure, a negative error code is returned.
3762 */
3763SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
3764{
3765	int ret = -EINVAL;
3766
3767	switch (policy) {
3768	case SCHED_FIFO:
3769	case SCHED_RR:
3770		ret = 1;
3771		break;
3772	case SCHED_NORMAL:
3773	case SCHED_BATCH:
3774	case SCHED_IDLE:
3775		ret = 0;
3776	}
3777	return ret;
3778}
3779
3780/**
3781 * sys_sched_rr_get_interval - return the default timeslice of a process.
3782 * @pid: pid of the process.
3783 * @interval: userspace pointer to the timeslice value.
3784 *
3785 * this syscall writes the default timeslice value of a given process
3786 * into the user-space timespec buffer. A value of '0' means infinity.
3787 *
3788 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
3789 * an error code.
3790 */
3791SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
3792		struct timespec __user *, interval)
3793{
3794	struct task_struct *p;
3795	unsigned int time_slice;
3796	unsigned long flags;
3797	struct rq *rq;
3798	int retval;
3799	struct timespec t;
3800
3801	if (pid < 0)
3802		return -EINVAL;
3803
3804	retval = -ESRCH;
3805	rcu_read_lock();
3806	p = find_process_by_pid(pid);
3807	if (!p)
3808		goto out_unlock;
3809
3810	retval = security_task_getscheduler(p);
3811	if (retval)
3812		goto out_unlock;
3813
3814	rq = task_rq_lock(p, &flags);
3815	time_slice = p->sched_class->get_rr_interval(rq, p);
3816	task_rq_unlock(rq, p, &flags);
3817
3818	rcu_read_unlock();
3819	jiffies_to_timespec(time_slice, &t);
3820	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3821	return retval;
3822
3823out_unlock:
3824	rcu_read_unlock();
3825	return retval;
3826}
3827
3828static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
3829
3830void sched_show_task(struct task_struct *p)
3831{
3832	unsigned long free = 0;
3833	int ppid;
3834	unsigned state;
3835
3836	state = p->state ? __ffs(p->state) + 1 : 0;
3837	printk(KERN_INFO "%-15.15s %c", p->comm,
3838		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
3839#if BITS_PER_LONG == 32
3840	if (state == TASK_RUNNING)
3841		printk(KERN_CONT " running  ");
3842	else
3843		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
3844#else
3845	if (state == TASK_RUNNING)
3846		printk(KERN_CONT "  running task    ");
3847	else
3848		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
3849#endif
3850#ifdef CONFIG_DEBUG_STACK_USAGE
3851	free = stack_not_used(p);
3852#endif
3853	rcu_read_lock();
3854	ppid = task_pid_nr(rcu_dereference(p->real_parent));
3855	rcu_read_unlock();
3856	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
3857		task_pid_nr(p), ppid,
3858		(unsigned long)task_thread_info(p)->flags);
3859
3860	print_worker_info(KERN_INFO, p);
3861	show_stack(p, NULL);
3862}
3863
3864void show_state_filter(unsigned long state_filter)
3865{
3866	struct task_struct *g, *p;
3867
3868#if BITS_PER_LONG == 32
3869	printk(KERN_INFO
3870		"  task                PC stack   pid father\n");
3871#else
3872	printk(KERN_INFO
3873		"  task                        PC stack   pid father\n");
3874#endif
3875	rcu_read_lock();
3876	do_each_thread(g, p) {
3877		/*
3878		 * reset the NMI-timeout, listing all files on a slow
3879		 * console might take a lot of time:
3880		 */
3881		touch_nmi_watchdog();
3882		if (!state_filter || (p->state & state_filter))
3883			sched_show_task(p);
3884	} while_each_thread(g, p);
3885
3886	touch_all_softlockup_watchdogs();
3887
3888#ifdef CONFIG_SCHED_DEBUG
3889	sysrq_sched_debug_show();
3890#endif
3891	rcu_read_unlock();
3892	/*
3893	 * Only show locks if all tasks are dumped:
3894	 */
3895	if (!state_filter)
3896		debug_show_all_locks();
3897}
3898
3899void init_idle_bootup_task(struct task_struct *idle)
3900{
3901	idle->sched_class = &idle_sched_class;
3902}
3903
3904/**
3905 * init_idle - set up an idle thread for a given CPU
3906 * @idle: task in question
3907 * @cpu: cpu the idle task belongs to
3908 *
3909 * NOTE: this function does not set the idle thread's NEED_RESCHED
3910 * flag, to make booting more robust.
3911 */
3912void init_idle(struct task_struct *idle, int cpu)
3913{
3914	struct rq *rq = cpu_rq(cpu);
3915	unsigned long flags;
3916
3917	raw_spin_lock_irqsave(&rq->lock, flags);
3918
3919	__sched_fork(0, idle);
3920	idle->state = TASK_RUNNING;
3921	idle->se.exec_start = sched_clock();
3922
3923	do_set_cpus_allowed(idle, cpumask_of(cpu));
3924	/*
3925	 * We're having a chicken and egg problem, even though we are
3926	 * holding rq->lock, the cpu isn't yet set to this cpu so the
3927	 * lockdep check in task_group() will fail.
3928	 *
3929	 * Similar case to sched_fork(). / Alternatively we could
3930	 * use task_rq_lock() here and obtain the other rq->lock.
3931	 *
3932	 * Silence PROVE_RCU
3933	 */
3934	rcu_read_lock();
3935	__set_task_cpu(idle, cpu);
3936	rcu_read_unlock();
3937
3938	rq->curr = rq->idle = idle;
3939#if defined(CONFIG_SMP)
3940	idle->on_cpu = 1;
3941#endif
3942	raw_spin_unlock_irqrestore(&rq->lock, flags);
3943
3944	/* Set the preempt count _outside_ the spinlocks! */
3945	init_idle_preempt_count(idle, cpu);
3946
3947	/*
3948	 * The idle tasks have their own, simple scheduling class:
3949	 */
3950	idle->sched_class = &idle_sched_class;
3951	ftrace_graph_init_idle_task(idle, cpu);
3952	vtime_init_idle(idle, cpu);
3953#if defined(CONFIG_SMP)
3954	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
3955#endif
3956}
3957
3958#ifdef CONFIG_SMP
3959void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
3960{
3961	if (p->sched_class && p->sched_class->set_cpus_allowed)
3962		p->sched_class->set_cpus_allowed(p, new_mask);
3963
3964	cpumask_copy(&p->cpus_allowed, new_mask);
3965	p->nr_cpus_allowed = cpumask_weight(new_mask);
3966}
3967
3968/*
3969 * This is how migration works:
3970 *
3971 * 1) we invoke migration_cpu_stop() on the target CPU using
3972 *    stop_one_cpu().
3973 * 2) stopper starts to run (implicitly forcing the migrated thread
3974 *    off the CPU)
3975 * 3) it checks whether the migrated task is still in the wrong runqueue.
3976 * 4) if it's in the wrong runqueue then the migration thread removes
3977 *    it and puts it into the right queue.
3978 * 5) stopper completes and stop_one_cpu() returns and the migration
3979 *    is done.
3980 */
3981
3982/*
3983 * Change a given task's CPU affinity. Migrate the thread to a
3984 * proper CPU and schedule it away if the CPU it's executing on
3985 * is removed from the allowed bitmask.
3986 *
3987 * NOTE: the caller must have a valid reference to the task, the
3988 * task must not exit() & deallocate itself prematurely. The
3989 * call is not atomic; no spinlocks may be held.
3990 */
3991int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3992{
3993	unsigned long flags;
3994	struct rq *rq;
3995	unsigned int dest_cpu;
3996	int ret = 0;
3997
3998	rq = task_rq_lock(p, &flags);
3999
4000	if (cpumask_equal(&p->cpus_allowed, new_mask))
4001		goto out;
4002
4003	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4004		ret = -EINVAL;
4005		goto out;
4006	}
4007
4008	do_set_cpus_allowed(p, new_mask);
4009
4010	/* Can the task run on the task's current CPU? If so, we're done */
4011	if (cpumask_test_cpu(task_cpu(p), new_mask))
4012		goto out;
4013
4014	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4015	if (p->on_rq) {
4016		struct migration_arg arg = { p, dest_cpu };
4017		/* Need help from migration thread: drop lock and wait. */
4018		task_rq_unlock(rq, p, &flags);
4019		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4020		tlb_migrate_finish(p->mm);
4021		return 0;
4022	}
4023out:
4024	task_rq_unlock(rq, p, &flags);
4025
4026	return ret;
4027}
4028EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4029
4030/*
4031 * Move (not current) task off this cpu, onto dest cpu. We're doing
4032 * this because either it can't run here any more (set_cpus_allowed()
4033 * away from this CPU, or CPU going down), or because we're
4034 * attempting to rebalance this task on exec (sched_exec).
4035 *
4036 * So we race with normal scheduler movements, but that's OK, as long
4037 * as the task is no longer on this CPU.
4038 *
4039 * Returns non-zero if task was successfully migrated.
4040 */
4041static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4042{
4043	struct rq *rq_dest, *rq_src;
4044	int ret = 0;
4045
4046	if (unlikely(!cpu_active(dest_cpu)))
4047		return ret;
4048
4049	rq_src = cpu_rq(src_cpu);
4050	rq_dest = cpu_rq(dest_cpu);
4051
4052	raw_spin_lock(&p->pi_lock);
4053	double_rq_lock(rq_src, rq_dest);
4054	/* Already moved. */
4055	if (task_cpu(p) != src_cpu)
4056		goto done;
4057	/* Affinity changed (again). */
4058	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4059		goto fail;
4060
4061	/*
4062	 * If we're not on a rq, the next wake-up will ensure we're
4063	 * placed properly.
4064	 */
4065	if (p->on_rq) {
4066		dequeue_task(rq_src, p, 0);
4067		set_task_cpu(p, dest_cpu);
4068		enqueue_task(rq_dest, p, 0);
4069		check_preempt_curr(rq_dest, p, 0);
4070	}
4071done:
4072	ret = 1;
4073fail:
4074	double_rq_unlock(rq_src, rq_dest);
4075	raw_spin_unlock(&p->pi_lock);
4076	return ret;
4077}
4078
4079#ifdef CONFIG_NUMA_BALANCING
4080/* Migrate current task p to target_cpu */
4081int migrate_task_to(struct task_struct *p, int target_cpu)
4082{
4083	struct migration_arg arg = { p, target_cpu };
4084	int curr_cpu = task_cpu(p);
4085
4086	if (curr_cpu == target_cpu)
4087		return 0;
4088
4089	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4090		return -EINVAL;
4091
4092	/* TODO: This is not properly updating schedstats */
4093
4094	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4095}
4096
4097/*
4098 * Requeue a task on a given node and accurately track the number of NUMA
4099 * tasks on the runqueues
4100 */
4101void sched_setnuma(struct task_struct *p, int nid)
4102{
4103	struct rq *rq;
4104	unsigned long flags;
4105	bool on_rq, running;
4106
4107	rq = task_rq_lock(p, &flags);
4108	on_rq = p->on_rq;
4109	running = task_current(rq, p);
4110
4111	if (on_rq)
4112		dequeue_task(rq, p, 0);
4113	if (running)
4114		p->sched_class->put_prev_task(rq, p);
4115
4116	p->numa_preferred_nid = nid;
4117
4118	if (running)
4119		p->sched_class->set_curr_task(rq);
4120	if (on_rq)
4121		enqueue_task(rq, p, 0);
4122	task_rq_unlock(rq, p, &flags);
4123}
4124#endif
4125
4126/*
4127 * migration_cpu_stop - this will be executed by a highprio stopper thread
4128 * and performs thread migration by bumping thread off CPU then
4129 * 'pushing' onto another runqueue.
4130 */
4131static int migration_cpu_stop(void *data)
4132{
4133	struct migration_arg *arg = data;
4134
4135	/*
4136	 * The original target cpu might have gone down and we might
4137	 * be on another cpu but it doesn't matter.
4138	 */
4139	local_irq_disable();
4140	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4141	local_irq_enable();
4142	return 0;
4143}
4144
4145#ifdef CONFIG_HOTPLUG_CPU
4146
4147/*
4148 * Ensures that the idle task is using init_mm right before its cpu goes
4149 * offline.
4150 */
4151void idle_task_exit(void)
4152{
4153	struct mm_struct *mm = current->active_mm;
4154
4155	BUG_ON(cpu_online(smp_processor_id()));
4156
4157	if (mm != &init_mm)
4158		switch_mm(mm, &init_mm, current);
4159	mmdrop(mm);
4160}
4161
4162/*
4163 * Since this CPU is going 'away' for a while, fold any nr_active delta
4164 * we might have. Assumes we're called after migrate_tasks() so that the
4165 * nr_active count is stable.
4166 *
4167 * Also see the comment "Global load-average calculations".
4168 */
4169static void calc_load_migrate(struct rq *rq)
4170{
4171	long delta = calc_load_fold_active(rq);
4172	if (delta)
4173		atomic_long_add(delta, &calc_load_tasks);
4174}
4175
4176/*
4177 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4178 * try_to_wake_up()->select_task_rq().
4179 *
4180 * Called with rq->lock held even though we'er in stop_machine() and
4181 * there's no concurrency possible, we hold the required locks anyway
4182 * because of lock validation efforts.
4183 */
4184static void migrate_tasks(unsigned int dead_cpu)
4185{
4186	struct rq *rq = cpu_rq(dead_cpu);
4187	struct task_struct *next, *stop = rq->stop;
4188	int dest_cpu;
4189
4190	/*
4191	 * Fudge the rq selection such that the below task selection loop
4192	 * doesn't get stuck on the currently eligible stop task.
4193	 *
4194	 * We're currently inside stop_machine() and the rq is either stuck
4195	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4196	 * either way we should never end up calling schedule() until we're
4197	 * done here.
4198	 */
4199	rq->stop = NULL;
4200
4201	/*
4202	 * put_prev_task() and pick_next_task() sched
4203	 * class method both need to have an up-to-date
4204	 * value of rq->clock[_task]
4205	 */
4206	update_rq_clock(rq);
4207
4208	for ( ; ; ) {
4209		/*
4210		 * There's this thread running, bail when that's the only
4211		 * remaining thread.
4212		 */
4213		if (rq->nr_running == 1)
4214			break;
4215
4216		next = pick_next_task(rq);
4217		BUG_ON(!next);
4218		next->sched_class->put_prev_task(rq, next);
4219
4220		/* Find suitable destination for @next, with force if needed. */
4221		dest_cpu = select_fallback_rq(dead_cpu, next);
4222		raw_spin_unlock(&rq->lock);
4223
4224		__migrate_task(next, dead_cpu, dest_cpu);
4225
4226		raw_spin_lock(&rq->lock);
4227	}
4228
4229	rq->stop = stop;
4230}
4231
4232#endif /* CONFIG_HOTPLUG_CPU */
4233
4234#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4235
4236static struct ctl_table sd_ctl_dir[] = {
4237	{
4238		.procname	= "sched_domain",
4239		.mode		= 0555,
4240	},
4241	{}
4242};
4243
4244static struct ctl_table sd_ctl_root[] = {
4245	{
4246		.procname	= "kernel",
4247		.mode		= 0555,
4248		.child		= sd_ctl_dir,
4249	},
4250	{}
4251};
4252
4253static struct ctl_table *sd_alloc_ctl_entry(int n)
4254{
4255	struct ctl_table *entry =
4256		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4257
4258	return entry;
4259}
4260
4261static void sd_free_ctl_entry(struct ctl_table **tablep)
4262{
4263	struct ctl_table *entry;
4264
4265	/*
4266	 * In the intermediate directories, both the child directory and
4267	 * procname are dynamically allocated and could fail but the mode
4268	 * will always be set. In the lowest directory the names are
4269	 * static strings and all have proc handlers.
4270	 */
4271	for (entry = *tablep; entry->mode; entry++) {
4272		if (entry->child)
4273			sd_free_ctl_entry(&entry->child);
4274		if (entry->proc_handler == NULL)
4275			kfree(entry->procname);
4276	}
4277
4278	kfree(*tablep);
4279	*tablep = NULL;
4280}
4281
4282static int min_load_idx = 0;
4283static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4284
4285static void
4286set_table_entry(struct ctl_table *entry,
4287		const char *procname, void *data, int maxlen,
4288		umode_t mode, proc_handler *proc_handler,
4289		bool load_idx)
4290{
4291	entry->procname = procname;
4292	entry->data = data;
4293	entry->maxlen = maxlen;
4294	entry->mode = mode;
4295	entry->proc_handler = proc_handler;
4296
4297	if (load_idx) {
4298		entry->extra1 = &min_load_idx;
4299		entry->extra2 = &max_load_idx;
4300	}
4301}
4302
4303static struct ctl_table *
4304sd_alloc_ctl_domain_table(struct sched_domain *sd)
4305{
4306	struct ctl_table *table = sd_alloc_ctl_entry(13);
4307
4308	if (table == NULL)
4309		return NULL;
4310
4311	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4312		sizeof(long), 0644, proc_doulongvec_minmax, false);
4313	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4314		sizeof(long), 0644, proc_doulongvec_minmax, false);
4315	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4316		sizeof(int), 0644, proc_dointvec_minmax, true);
4317	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4318		sizeof(int), 0644, proc_dointvec_minmax, true);
4319	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4320		sizeof(int), 0644, proc_dointvec_minmax, true);
4321	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4322		sizeof(int), 0644, proc_dointvec_minmax, true);
4323	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4324		sizeof(int), 0644, proc_dointvec_minmax, true);
4325	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4326		sizeof(int), 0644, proc_dointvec_minmax, false);
4327	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4328		sizeof(int), 0644, proc_dointvec_minmax, false);
4329	set_table_entry(&table[9], "cache_nice_tries",
4330		&sd->cache_nice_tries,
4331		sizeof(int), 0644, proc_dointvec_minmax, false);
4332	set_table_entry(&table[10], "flags", &sd->flags,
4333		sizeof(int), 0644, proc_dointvec_minmax, false);
4334	set_table_entry(&table[11], "name", sd->name,
4335		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4336	/* &table[12] is terminator */
4337
4338	return table;
4339}
4340
4341static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4342{
4343	struct ctl_table *entry, *table;
4344	struct sched_domain *sd;
4345	int domain_num = 0, i;
4346	char buf[32];
4347
4348	for_each_domain(cpu, sd)
4349		domain_num++;
4350	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4351	if (table == NULL)
4352		return NULL;
4353
4354	i = 0;
4355	for_each_domain(cpu, sd) {
4356		snprintf(buf, 32, "domain%d", i);
4357		entry->procname = kstrdup(buf, GFP_KERNEL);
4358		entry->mode = 0555;
4359		entry->child = sd_alloc_ctl_domain_table(sd);
4360		entry++;
4361		i++;
4362	}
4363	return table;
4364}
4365
4366static struct ctl_table_header *sd_sysctl_header;
4367static void register_sched_domain_sysctl(void)
4368{
4369	int i, cpu_num = num_possible_cpus();
4370	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4371	char buf[32];
4372
4373	WARN_ON(sd_ctl_dir[0].child);
4374	sd_ctl_dir[0].child = entry;
4375
4376	if (entry == NULL)
4377		return;
4378
4379	for_each_possible_cpu(i) {
4380		snprintf(buf, 32, "cpu%d", i);
4381		entry->procname = kstrdup(buf, GFP_KERNEL);
4382		entry->mode = 0555;
4383		entry->child = sd_alloc_ctl_cpu_table(i);
4384		entry++;
4385	}
4386
4387	WARN_ON(sd_sysctl_header);
4388	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4389}
4390
4391/* may be called multiple times per register */
4392static void unregister_sched_domain_sysctl(void)
4393{
4394	if (sd_sysctl_header)
4395		unregister_sysctl_table(sd_sysctl_header);
4396	sd_sysctl_header = NULL;
4397	if (sd_ctl_dir[0].child)
4398		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4399}
4400#else
4401static void register_sched_domain_sysctl(void)
4402{
4403}
4404static void unregister_sched_domain_sysctl(void)
4405{
4406}
4407#endif
4408
4409static void set_rq_online(struct rq *rq)
4410{
4411	if (!rq->online) {
4412		const struct sched_class *class;
4413
4414		cpumask_set_cpu(rq->cpu, rq->rd->online);
4415		rq->online = 1;
4416
4417		for_each_class(class) {
4418			if (class->rq_online)
4419				class->rq_online(rq);
4420		}
4421	}
4422}
4423
4424static void set_rq_offline(struct rq *rq)
4425{
4426	if (rq->online) {
4427		const struct sched_class *class;
4428
4429		for_each_class(class) {
4430			if (class->rq_offline)
4431				class->rq_offline(rq);
4432		}
4433
4434		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4435		rq->online = 0;
4436	}
4437}
4438
4439/*
4440 * migration_call - callback that gets triggered when a CPU is added.
4441 * Here we can start up the necessary migration thread for the new CPU.
4442 */
4443static int
4444migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4445{
4446	int cpu = (long)hcpu;
4447	unsigned long flags;
4448	struct rq *rq = cpu_rq(cpu);
4449
4450	switch (action & ~CPU_TASKS_FROZEN) {
4451
4452	case CPU_UP_PREPARE:
4453		rq->calc_load_update = calc_load_update;
4454		break;
4455
4456	case CPU_ONLINE:
4457		/* Update our root-domain */
4458		raw_spin_lock_irqsave(&rq->lock, flags);
4459		if (rq->rd) {
4460			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4461
4462			set_rq_online(rq);
4463		}
4464		raw_spin_unlock_irqrestore(&rq->lock, flags);
4465		break;
4466
4467#ifdef CONFIG_HOTPLUG_CPU
4468	case CPU_DYING:
4469		sched_ttwu_pending();
4470		/* Update our root-domain */
4471		raw_spin_lock_irqsave(&rq->lock, flags);
4472		if (rq->rd) {
4473			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4474			set_rq_offline(rq);
4475		}
4476		migrate_tasks(cpu);
4477		BUG_ON(rq->nr_running != 1); /* the migration thread */
4478		raw_spin_unlock_irqrestore(&rq->lock, flags);
4479		break;
4480
4481	case CPU_DEAD:
4482		calc_load_migrate(rq);
4483		break;
4484#endif
4485	}
4486
4487	update_max_interval();
4488
4489	return NOTIFY_OK;
4490}
4491
4492/*
4493 * Register at high priority so that task migration (migrate_all_tasks)
4494 * happens before everything else.  This has to be lower priority than
4495 * the notifier in the perf_event subsystem, though.
4496 */
4497static struct notifier_block migration_notifier = {
4498	.notifier_call = migration_call,
4499	.priority = CPU_PRI_MIGRATION,
4500};
4501
4502static int sched_cpu_active(struct notifier_block *nfb,
4503				      unsigned long action, void *hcpu)
4504{
4505	switch (action & ~CPU_TASKS_FROZEN) {
4506	case CPU_STARTING:
4507	case CPU_DOWN_FAILED:
4508		set_cpu_active((long)hcpu, true);
4509		return NOTIFY_OK;
4510	default:
4511		return NOTIFY_DONE;
4512	}
4513}
4514
4515static int sched_cpu_inactive(struct notifier_block *nfb,
4516					unsigned long action, void *hcpu)
4517{
4518	switch (action & ~CPU_TASKS_FROZEN) {
4519	case CPU_DOWN_PREPARE:
4520		set_cpu_active((long)hcpu, false);
4521		return NOTIFY_OK;
4522	default:
4523		return NOTIFY_DONE;
4524	}
4525}
4526
4527static int __init migration_init(void)
4528{
4529	void *cpu = (void *)(long)smp_processor_id();
4530	int err;
4531
4532	/* Initialize migration for the boot CPU */
4533	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4534	BUG_ON(err == NOTIFY_BAD);
4535	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4536	register_cpu_notifier(&migration_notifier);
4537
4538	/* Register cpu active notifiers */
4539	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4540	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4541
4542	return 0;
4543}
4544early_initcall(migration_init);
4545#endif
4546
4547#ifdef CONFIG_SMP
4548
4549static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4550
4551#ifdef CONFIG_SCHED_DEBUG
4552
4553static __read_mostly int sched_debug_enabled;
4554
4555static int __init sched_debug_setup(char *str)
4556{
4557	sched_debug_enabled = 1;
4558
4559	return 0;
4560}
4561early_param("sched_debug", sched_debug_setup);
4562
4563static inline bool sched_debug(void)
4564{
4565	return sched_debug_enabled;
4566}
4567
4568static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4569				  struct cpumask *groupmask)
4570{
4571	struct sched_group *group = sd->groups;
4572	char str[256];
4573
4574	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4575	cpumask_clear(groupmask);
4576
4577	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4578
4579	if (!(sd->flags & SD_LOAD_BALANCE)) {
4580		printk("does not load-balance\n");
4581		if (sd->parent)
4582			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4583					" has parent");
4584		return -1;
4585	}
4586
4587	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4588
4589	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4590		printk(KERN_ERR "ERROR: domain->span does not contain "
4591				"CPU%d\n", cpu);
4592	}
4593	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4594		printk(KERN_ERR "ERROR: domain->groups does not contain"
4595				" CPU%d\n", cpu);
4596	}
4597
4598	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4599	do {
4600		if (!group) {
4601			printk("\n");
4602			printk(KERN_ERR "ERROR: group is NULL\n");
4603			break;
4604		}
4605
4606		/*
4607		 * Even though we initialize ->power to something semi-sane,
4608		 * we leave power_orig unset. This allows us to detect if
4609		 * domain iteration is still funny without causing /0 traps.
4610		 */
4611		if (!group->sgp->power_orig) {
4612			printk(KERN_CONT "\n");
4613			printk(KERN_ERR "ERROR: domain->cpu_power not "
4614					"set\n");
4615			break;
4616		}
4617
4618		if (!cpumask_weight(sched_group_cpus(group))) {
4619			printk(KERN_CONT "\n");
4620			printk(KERN_ERR "ERROR: empty group\n");
4621			break;
4622		}
4623
4624		if (!(sd->flags & SD_OVERLAP) &&
4625		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4626			printk(KERN_CONT "\n");
4627			printk(KERN_ERR "ERROR: repeated CPUs\n");
4628			break;
4629		}
4630
4631		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4632
4633		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4634
4635		printk(KERN_CONT " %s", str);
4636		if (group->sgp->power != SCHED_POWER_SCALE) {
4637			printk(KERN_CONT " (cpu_power = %d)",
4638				group->sgp->power);
4639		}
4640
4641		group = group->next;
4642	} while (group != sd->groups);
4643	printk(KERN_CONT "\n");
4644
4645	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4646		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4647
4648	if (sd->parent &&
4649	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4650		printk(KERN_ERR "ERROR: parent span is not a superset "
4651			"of domain->span\n");
4652	return 0;
4653}
4654
4655static void sched_domain_debug(struct sched_domain *sd, int cpu)
4656{
4657	int level = 0;
4658
4659	if (!sched_debug_enabled)
4660		return;
4661
4662	if (!sd) {
4663		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4664		return;
4665	}
4666
4667	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4668
4669	for (;;) {
4670		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4671			break;
4672		level++;
4673		sd = sd->parent;
4674		if (!sd)
4675			break;
4676	}
4677}
4678#else /* !CONFIG_SCHED_DEBUG */
4679# define sched_domain_debug(sd, cpu) do { } while (0)
4680static inline bool sched_debug(void)
4681{
4682	return false;
4683}
4684#endif /* CONFIG_SCHED_DEBUG */
4685
4686static int sd_degenerate(struct sched_domain *sd)
4687{
4688	if (cpumask_weight(sched_domain_span(sd)) == 1)
4689		return 1;
4690
4691	/* Following flags need at least 2 groups */
4692	if (sd->flags & (SD_LOAD_BALANCE |
4693			 SD_BALANCE_NEWIDLE |
4694			 SD_BALANCE_FORK |
4695			 SD_BALANCE_EXEC |
4696			 SD_SHARE_CPUPOWER |
4697			 SD_SHARE_PKG_RESOURCES)) {
4698		if (sd->groups != sd->groups->next)
4699			return 0;
4700	}
4701
4702	/* Following flags don't use groups */
4703	if (sd->flags & (SD_WAKE_AFFINE))
4704		return 0;
4705
4706	return 1;
4707}
4708
4709static int
4710sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4711{
4712	unsigned long cflags = sd->flags, pflags = parent->flags;
4713
4714	if (sd_degenerate(parent))
4715		return 1;
4716
4717	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4718		return 0;
4719
4720	/* Flags needing groups don't count if only 1 group in parent */
4721	if (parent->groups == parent->groups->next) {
4722		pflags &= ~(SD_LOAD_BALANCE |
4723				SD_BALANCE_NEWIDLE |
4724				SD_BALANCE_FORK |
4725				SD_BALANCE_EXEC |
4726				SD_SHARE_CPUPOWER |
4727				SD_SHARE_PKG_RESOURCES |
4728				SD_PREFER_SIBLING);
4729		if (nr_node_ids == 1)
4730			pflags &= ~SD_SERIALIZE;
4731	}
4732	if (~cflags & pflags)
4733		return 0;
4734
4735	return 1;
4736}
4737
4738static void free_rootdomain(struct rcu_head *rcu)
4739{
4740	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4741
4742	cpupri_cleanup(&rd->cpupri);
4743	free_cpumask_var(rd->rto_mask);
4744	free_cpumask_var(rd->online);
4745	free_cpumask_var(rd->span);
4746	kfree(rd);
4747}
4748
4749static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4750{
4751	struct root_domain *old_rd = NULL;
4752	unsigned long flags;
4753
4754	raw_spin_lock_irqsave(&rq->lock, flags);
4755
4756	if (rq->rd) {
4757		old_rd = rq->rd;
4758
4759		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4760			set_rq_offline(rq);
4761
4762		cpumask_clear_cpu(rq->cpu, old_rd->span);
4763
4764		/*
4765		 * If we dont want to free the old_rt yet then
4766		 * set old_rd to NULL to skip the freeing later
4767		 * in this function:
4768		 */
4769		if (!atomic_dec_and_test(&old_rd->refcount))
4770			old_rd = NULL;
4771	}
4772
4773	atomic_inc(&rd->refcount);
4774	rq->rd = rd;
4775
4776	cpumask_set_cpu(rq->cpu, rd->span);
4777	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4778		set_rq_online(rq);
4779
4780	raw_spin_unlock_irqrestore(&rq->lock, flags);
4781
4782	if (old_rd)
4783		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4784}
4785
4786static int init_rootdomain(struct root_domain *rd)
4787{
4788	memset(rd, 0, sizeof(*rd));
4789
4790	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4791		goto out;
4792	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4793		goto free_span;
4794	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4795		goto free_online;
4796
4797	if (cpupri_init(&rd->cpupri) != 0)
4798		goto free_rto_mask;
4799	return 0;
4800
4801free_rto_mask:
4802	free_cpumask_var(rd->rto_mask);
4803free_online:
4804	free_cpumask_var(rd->online);
4805free_span:
4806	free_cpumask_var(rd->span);
4807out:
4808	return -ENOMEM;
4809}
4810
4811/*
4812 * By default the system creates a single root-domain with all cpus as
4813 * members (mimicking the global state we have today).
4814 */
4815struct root_domain def_root_domain;
4816
4817static void init_defrootdomain(void)
4818{
4819	init_rootdomain(&def_root_domain);
4820
4821	atomic_set(&def_root_domain.refcount, 1);
4822}
4823
4824static struct root_domain *alloc_rootdomain(void)
4825{
4826	struct root_domain *rd;
4827
4828	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
4829	if (!rd)
4830		return NULL;
4831
4832	if (init_rootdomain(rd) != 0) {
4833		kfree(rd);
4834		return NULL;
4835	}
4836
4837	return rd;
4838}
4839
4840static void free_sched_groups(struct sched_group *sg, int free_sgp)
4841{
4842	struct sched_group *tmp, *first;
4843
4844	if (!sg)
4845		return;
4846
4847	first = sg;
4848	do {
4849		tmp = sg->next;
4850
4851		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
4852			kfree(sg->sgp);
4853
4854		kfree(sg);
4855		sg = tmp;
4856	} while (sg != first);
4857}
4858
4859static void free_sched_domain(struct rcu_head *rcu)
4860{
4861	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
4862
4863	/*
4864	 * If its an overlapping domain it has private groups, iterate and
4865	 * nuke them all.
4866	 */
4867	if (sd->flags & SD_OVERLAP) {
4868		free_sched_groups(sd->groups, 1);
4869	} else if (atomic_dec_and_test(&sd->groups->ref)) {
4870		kfree(sd->groups->sgp);
4871		kfree(sd->groups);
4872	}
4873	kfree(sd);
4874}
4875
4876static void destroy_sched_domain(struct sched_domain *sd, int cpu)
4877{
4878	call_rcu(&sd->rcu, free_sched_domain);
4879}
4880
4881static void destroy_sched_domains(struct sched_domain *sd, int cpu)
4882{
4883	for (; sd; sd = sd->parent)
4884		destroy_sched_domain(sd, cpu);
4885}
4886
4887/*
4888 * Keep a special pointer to the highest sched_domain that has
4889 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
4890 * allows us to avoid some pointer chasing select_idle_sibling().
4891 *
4892 * Also keep a unique ID per domain (we use the first cpu number in
4893 * the cpumask of the domain), this allows us to quickly tell if
4894 * two cpus are in the same cache domain, see cpus_share_cache().
4895 */
4896DEFINE_PER_CPU(struct sched_domain *, sd_llc);
4897DEFINE_PER_CPU(int, sd_llc_size);
4898DEFINE_PER_CPU(int, sd_llc_id);
4899DEFINE_PER_CPU(struct sched_domain *, sd_numa);
4900DEFINE_PER_CPU(struct sched_domain *, sd_busy);
4901DEFINE_PER_CPU(struct sched_domain *, sd_asym);
4902
4903static void update_top_cache_domain(int cpu)
4904{
4905	struct sched_domain *sd;
4906	int id = cpu;
4907	int size = 1;
4908
4909	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
4910	if (sd) {
4911		id = cpumask_first(sched_domain_span(sd));
4912		size = cpumask_weight(sched_domain_span(sd));
4913		rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent);
4914	}
4915
4916	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
4917	per_cpu(sd_llc_size, cpu) = size;
4918	per_cpu(sd_llc_id, cpu) = id;
4919
4920	sd = lowest_flag_domain(cpu, SD_NUMA);
4921	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
4922
4923	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
4924	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
4925}
4926
4927/*
4928 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4929 * hold the hotplug lock.
4930 */
4931static void
4932cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
4933{
4934	struct rq *rq = cpu_rq(cpu);
4935	struct sched_domain *tmp;
4936
4937	/* Remove the sched domains which do not contribute to scheduling. */
4938	for (tmp = sd; tmp; ) {
4939		struct sched_domain *parent = tmp->parent;
4940		if (!parent)
4941			break;
4942
4943		if (sd_parent_degenerate(tmp, parent)) {
4944			tmp->parent = parent->parent;
4945			if (parent->parent)
4946				parent->parent->child = tmp;
4947			/*
4948			 * Transfer SD_PREFER_SIBLING down in case of a
4949			 * degenerate parent; the spans match for this
4950			 * so the property transfers.
4951			 */
4952			if (parent->flags & SD_PREFER_SIBLING)
4953				tmp->flags |= SD_PREFER_SIBLING;
4954			destroy_sched_domain(parent, cpu);
4955		} else
4956			tmp = tmp->parent;
4957	}
4958
4959	if (sd && sd_degenerate(sd)) {
4960		tmp = sd;
4961		sd = sd->parent;
4962		destroy_sched_domain(tmp, cpu);
4963		if (sd)
4964			sd->child = NULL;
4965	}
4966
4967	sched_domain_debug(sd, cpu);
4968
4969	rq_attach_root(rq, rd);
4970	tmp = rq->sd;
4971	rcu_assign_pointer(rq->sd, sd);
4972	destroy_sched_domains(tmp, cpu);
4973
4974	update_top_cache_domain(cpu);
4975}
4976
4977/* cpus with isolated domains */
4978static cpumask_var_t cpu_isolated_map;
4979
4980/* Setup the mask of cpus configured for isolated domains */
4981static int __init isolated_cpu_setup(char *str)
4982{
4983	alloc_bootmem_cpumask_var(&cpu_isolated_map);
4984	cpulist_parse(str, cpu_isolated_map);
4985	return 1;
4986}
4987
4988__setup("isolcpus=", isolated_cpu_setup);
4989
4990static const struct cpumask *cpu_cpu_mask(int cpu)
4991{
4992	return cpumask_of_node(cpu_to_node(cpu));
4993}
4994
4995struct sd_data {
4996	struct sched_domain **__percpu sd;
4997	struct sched_group **__percpu sg;
4998	struct sched_group_power **__percpu sgp;
4999};
5000
5001struct s_data {
5002	struct sched_domain ** __percpu sd;
5003	struct root_domain	*rd;
5004};
5005
5006enum s_alloc {
5007	sa_rootdomain,
5008	sa_sd,
5009	sa_sd_storage,
5010	sa_none,
5011};
5012
5013struct sched_domain_topology_level;
5014
5015typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5016typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5017
5018#define SDTL_OVERLAP	0x01
5019
5020struct sched_domain_topology_level {
5021	sched_domain_init_f init;
5022	sched_domain_mask_f mask;
5023	int		    flags;
5024	int		    numa_level;
5025	struct sd_data      data;
5026};
5027
5028/*
5029 * Build an iteration mask that can exclude certain CPUs from the upwards
5030 * domain traversal.
5031 *
5032 * Asymmetric node setups can result in situations where the domain tree is of
5033 * unequal depth, make sure to skip domains that already cover the entire
5034 * range.
5035 *
5036 * In that case build_sched_domains() will have terminated the iteration early
5037 * and our sibling sd spans will be empty. Domains should always include the
5038 * cpu they're built on, so check that.
5039 *
5040 */
5041static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5042{
5043	const struct cpumask *span = sched_domain_span(sd);
5044	struct sd_data *sdd = sd->private;
5045	struct sched_domain *sibling;
5046	int i;
5047
5048	for_each_cpu(i, span) {
5049		sibling = *per_cpu_ptr(sdd->sd, i);
5050		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5051			continue;
5052
5053		cpumask_set_cpu(i, sched_group_mask(sg));
5054	}
5055}
5056
5057/*
5058 * Return the canonical balance cpu for this group, this is the first cpu
5059 * of this group that's also in the iteration mask.
5060 */
5061int group_balance_cpu(struct sched_group *sg)
5062{
5063	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5064}
5065
5066static int
5067build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5068{
5069	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5070	const struct cpumask *span = sched_domain_span(sd);
5071	struct cpumask *covered = sched_domains_tmpmask;
5072	struct sd_data *sdd = sd->private;
5073	struct sched_domain *child;
5074	int i;
5075
5076	cpumask_clear(covered);
5077
5078	for_each_cpu(i, span) {
5079		struct cpumask *sg_span;
5080
5081		if (cpumask_test_cpu(i, covered))
5082			continue;
5083
5084		child = *per_cpu_ptr(sdd->sd, i);
5085
5086		/* See the comment near build_group_mask(). */
5087		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5088			continue;
5089
5090		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5091				GFP_KERNEL, cpu_to_node(cpu));
5092
5093		if (!sg)
5094			goto fail;
5095
5096		sg_span = sched_group_cpus(sg);
5097		if (child->child) {
5098			child = child->child;
5099			cpumask_copy(sg_span, sched_domain_span(child));
5100		} else
5101			cpumask_set_cpu(i, sg_span);
5102
5103		cpumask_or(covered, covered, sg_span);
5104
5105		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5106		if (atomic_inc_return(&sg->sgp->ref) == 1)
5107			build_group_mask(sd, sg);
5108
5109		/*
5110		 * Initialize sgp->power such that even if we mess up the
5111		 * domains and no possible iteration will get us here, we won't
5112		 * die on a /0 trap.
5113		 */
5114		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5115
5116		/*
5117		 * Make sure the first group of this domain contains the
5118		 * canonical balance cpu. Otherwise the sched_domain iteration
5119		 * breaks. See update_sg_lb_stats().
5120		 */
5121		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5122		    group_balance_cpu(sg) == cpu)
5123			groups = sg;
5124
5125		if (!first)
5126			first = sg;
5127		if (last)
5128			last->next = sg;
5129		last = sg;
5130		last->next = first;
5131	}
5132	sd->groups = groups;
5133
5134	return 0;
5135
5136fail:
5137	free_sched_groups(first, 0);
5138
5139	return -ENOMEM;
5140}
5141
5142static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5143{
5144	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5145	struct sched_domain *child = sd->child;
5146
5147	if (child)
5148		cpu = cpumask_first(sched_domain_span(child));
5149
5150	if (sg) {
5151		*sg = *per_cpu_ptr(sdd->sg, cpu);
5152		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5153		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5154	}
5155
5156	return cpu;
5157}
5158
5159/*
5160 * build_sched_groups will build a circular linked list of the groups
5161 * covered by the given span, and will set each group's ->cpumask correctly,
5162 * and ->cpu_power to 0.
5163 *
5164 * Assumes the sched_domain tree is fully constructed
5165 */
5166static int
5167build_sched_groups(struct sched_domain *sd, int cpu)
5168{
5169	struct sched_group *first = NULL, *last = NULL;
5170	struct sd_data *sdd = sd->private;
5171	const struct cpumask *span = sched_domain_span(sd);
5172	struct cpumask *covered;
5173	int i;
5174
5175	get_group(cpu, sdd, &sd->groups);
5176	atomic_inc(&sd->groups->ref);
5177
5178	if (cpu != cpumask_first(span))
5179		return 0;
5180
5181	lockdep_assert_held(&sched_domains_mutex);
5182	covered = sched_domains_tmpmask;
5183
5184	cpumask_clear(covered);
5185
5186	for_each_cpu(i, span) {
5187		struct sched_group *sg;
5188		int group, j;
5189
5190		if (cpumask_test_cpu(i, covered))
5191			continue;
5192
5193		group = get_group(i, sdd, &sg);
5194		cpumask_clear(sched_group_cpus(sg));
5195		sg->sgp->power = 0;
5196		cpumask_setall(sched_group_mask(sg));
5197
5198		for_each_cpu(j, span) {
5199			if (get_group(j, sdd, NULL) != group)
5200				continue;
5201
5202			cpumask_set_cpu(j, covered);
5203			cpumask_set_cpu(j, sched_group_cpus(sg));
5204		}
5205
5206		if (!first)
5207			first = sg;
5208		if (last)
5209			last->next = sg;
5210		last = sg;
5211	}
5212	last->next = first;
5213
5214	return 0;
5215}
5216
5217/*
5218 * Initialize sched groups cpu_power.
5219 *
5220 * cpu_power indicates the capacity of sched group, which is used while
5221 * distributing the load between different sched groups in a sched domain.
5222 * Typically cpu_power for all the groups in a sched domain will be same unless
5223 * there are asymmetries in the topology. If there are asymmetries, group
5224 * having more cpu_power will pickup more load compared to the group having
5225 * less cpu_power.
5226 */
5227static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5228{
5229	struct sched_group *sg = sd->groups;
5230
5231	WARN_ON(!sg);
5232
5233	do {
5234		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5235		sg = sg->next;
5236	} while (sg != sd->groups);
5237
5238	if (cpu != group_balance_cpu(sg))
5239		return;
5240
5241	update_group_power(sd, cpu);
5242	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5243}
5244
5245int __weak arch_sd_sibling_asym_packing(void)
5246{
5247       return 0*SD_ASYM_PACKING;
5248}
5249
5250/*
5251 * Initializers for schedule domains
5252 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5253 */
5254
5255#ifdef CONFIG_SCHED_DEBUG
5256# define SD_INIT_NAME(sd, type)		sd->name = #type
5257#else
5258# define SD_INIT_NAME(sd, type)		do { } while (0)
5259#endif
5260
5261#define SD_INIT_FUNC(type)						\
5262static noinline struct sched_domain *					\
5263sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5264{									\
5265	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5266	*sd = SD_##type##_INIT;						\
5267	SD_INIT_NAME(sd, type);						\
5268	sd->private = &tl->data;					\
5269	return sd;							\
5270}
5271
5272SD_INIT_FUNC(CPU)
5273#ifdef CONFIG_SCHED_SMT
5274 SD_INIT_FUNC(SIBLING)
5275#endif
5276#ifdef CONFIG_SCHED_MC
5277 SD_INIT_FUNC(MC)
5278#endif
5279#ifdef CONFIG_SCHED_BOOK
5280 SD_INIT_FUNC(BOOK)
5281#endif
5282
5283static int default_relax_domain_level = -1;
5284int sched_domain_level_max;
5285
5286static int __init setup_relax_domain_level(char *str)
5287{
5288	if (kstrtoint(str, 0, &default_relax_domain_level))
5289		pr_warn("Unable to set relax_domain_level\n");
5290
5291	return 1;
5292}
5293__setup("relax_domain_level=", setup_relax_domain_level);
5294
5295static void set_domain_attribute(struct sched_domain *sd,
5296				 struct sched_domain_attr *attr)
5297{
5298	int request;
5299
5300	if (!attr || attr->relax_domain_level < 0) {
5301		if (default_relax_domain_level < 0)
5302			return;
5303		else
5304			request = default_relax_domain_level;
5305	} else
5306		request = attr->relax_domain_level;
5307	if (request < sd->level) {
5308		/* turn off idle balance on this domain */
5309		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5310	} else {
5311		/* turn on idle balance on this domain */
5312		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5313	}
5314}
5315
5316static void __sdt_free(const struct cpumask *cpu_map);
5317static int __sdt_alloc(const struct cpumask *cpu_map);
5318
5319static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5320				 const struct cpumask *cpu_map)
5321{
5322	switch (what) {
5323	case sa_rootdomain:
5324		if (!atomic_read(&d->rd->refcount))
5325			free_rootdomain(&d->rd->rcu); /* fall through */
5326	case sa_sd:
5327		free_percpu(d->sd); /* fall through */
5328	case sa_sd_storage:
5329		__sdt_free(cpu_map); /* fall through */
5330	case sa_none:
5331		break;
5332	}
5333}
5334
5335static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5336						   const struct cpumask *cpu_map)
5337{
5338	memset(d, 0, sizeof(*d));
5339
5340	if (__sdt_alloc(cpu_map))
5341		return sa_sd_storage;
5342	d->sd = alloc_percpu(struct sched_domain *);
5343	if (!d->sd)
5344		return sa_sd_storage;
5345	d->rd = alloc_rootdomain();
5346	if (!d->rd)
5347		return sa_sd;
5348	return sa_rootdomain;
5349}
5350
5351/*
5352 * NULL the sd_data elements we've used to build the sched_domain and
5353 * sched_group structure so that the subsequent __free_domain_allocs()
5354 * will not free the data we're using.
5355 */
5356static void claim_allocations(int cpu, struct sched_domain *sd)
5357{
5358	struct sd_data *sdd = sd->private;
5359
5360	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5361	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5362
5363	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5364		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5365
5366	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5367		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5368}
5369
5370#ifdef CONFIG_SCHED_SMT
5371static const struct cpumask *cpu_smt_mask(int cpu)
5372{
5373	return topology_thread_cpumask(cpu);
5374}
5375#endif
5376
5377/*
5378 * Topology list, bottom-up.
5379 */
5380static struct sched_domain_topology_level default_topology[] = {
5381#ifdef CONFIG_SCHED_SMT
5382	{ sd_init_SIBLING, cpu_smt_mask, },
5383#endif
5384#ifdef CONFIG_SCHED_MC
5385	{ sd_init_MC, cpu_coregroup_mask, },
5386#endif
5387#ifdef CONFIG_SCHED_BOOK
5388	{ sd_init_BOOK, cpu_book_mask, },
5389#endif
5390	{ sd_init_CPU, cpu_cpu_mask, },
5391	{ NULL, },
5392};
5393
5394static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5395
5396#define for_each_sd_topology(tl)			\
5397	for (tl = sched_domain_topology; tl->init; tl++)
5398
5399#ifdef CONFIG_NUMA
5400
5401static int sched_domains_numa_levels;
5402static int *sched_domains_numa_distance;
5403static struct cpumask ***sched_domains_numa_masks;
5404static int sched_domains_curr_level;
5405
5406static inline int sd_local_flags(int level)
5407{
5408	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5409		return 0;
5410
5411	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5412}
5413
5414static struct sched_domain *
5415sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5416{
5417	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5418	int level = tl->numa_level;
5419	int sd_weight = cpumask_weight(
5420			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5421
5422	*sd = (struct sched_domain){
5423		.min_interval		= sd_weight,
5424		.max_interval		= 2*sd_weight,
5425		.busy_factor		= 32,
5426		.imbalance_pct		= 125,
5427		.cache_nice_tries	= 2,
5428		.busy_idx		= 3,
5429		.idle_idx		= 2,
5430		.newidle_idx		= 0,
5431		.wake_idx		= 0,
5432		.forkexec_idx		= 0,
5433
5434		.flags			= 1*SD_LOAD_BALANCE
5435					| 1*SD_BALANCE_NEWIDLE
5436					| 0*SD_BALANCE_EXEC
5437					| 0*SD_BALANCE_FORK
5438					| 0*SD_BALANCE_WAKE
5439					| 0*SD_WAKE_AFFINE
5440					| 0*SD_SHARE_CPUPOWER
5441					| 0*SD_SHARE_PKG_RESOURCES
5442					| 1*SD_SERIALIZE
5443					| 0*SD_PREFER_SIBLING
5444					| 1*SD_NUMA
5445					| sd_local_flags(level)
5446					,
5447		.last_balance		= jiffies,
5448		.balance_interval	= sd_weight,
5449	};
5450	SD_INIT_NAME(sd, NUMA);
5451	sd->private = &tl->data;
5452
5453	/*
5454	 * Ugly hack to pass state to sd_numa_mask()...
5455	 */
5456	sched_domains_curr_level = tl->numa_level;
5457
5458	return sd;
5459}
5460
5461static const struct cpumask *sd_numa_mask(int cpu)
5462{
5463	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5464}
5465
5466static void sched_numa_warn(const char *str)
5467{
5468	static int done = false;
5469	int i,j;
5470
5471	if (done)
5472		return;
5473
5474	done = true;
5475
5476	printk(KERN_WARNING "ERROR: %s\n\n", str);
5477
5478	for (i = 0; i < nr_node_ids; i++) {
5479		printk(KERN_WARNING "  ");
5480		for (j = 0; j < nr_node_ids; j++)
5481			printk(KERN_CONT "%02d ", node_distance(i,j));
5482		printk(KERN_CONT "\n");
5483	}
5484	printk(KERN_WARNING "\n");
5485}
5486
5487static bool find_numa_distance(int distance)
5488{
5489	int i;
5490
5491	if (distance == node_distance(0, 0))
5492		return true;
5493
5494	for (i = 0; i < sched_domains_numa_levels; i++) {
5495		if (sched_domains_numa_distance[i] == distance)
5496			return true;
5497	}
5498
5499	return false;
5500}
5501
5502static void sched_init_numa(void)
5503{
5504	int next_distance, curr_distance = node_distance(0, 0);
5505	struct sched_domain_topology_level *tl;
5506	int level = 0;
5507	int i, j, k;
5508
5509	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5510	if (!sched_domains_numa_distance)
5511		return;
5512
5513	/*
5514	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5515	 * unique distances in the node_distance() table.
5516	 *
5517	 * Assumes node_distance(0,j) includes all distances in
5518	 * node_distance(i,j) in order to avoid cubic time.
5519	 */
5520	next_distance = curr_distance;
5521	for (i = 0; i < nr_node_ids; i++) {
5522		for (j = 0; j < nr_node_ids; j++) {
5523			for (k = 0; k < nr_node_ids; k++) {
5524				int distance = node_distance(i, k);
5525
5526				if (distance > curr_distance &&
5527				    (distance < next_distance ||
5528				     next_distance == curr_distance))
5529					next_distance = distance;
5530
5531				/*
5532				 * While not a strong assumption it would be nice to know
5533				 * about cases where if node A is connected to B, B is not
5534				 * equally connected to A.
5535				 */
5536				if (sched_debug() && node_distance(k, i) != distance)
5537					sched_numa_warn("Node-distance not symmetric");
5538
5539				if (sched_debug() && i && !find_numa_distance(distance))
5540					sched_numa_warn("Node-0 not representative");
5541			}
5542			if (next_distance != curr_distance) {
5543				sched_domains_numa_distance[level++] = next_distance;
5544				sched_domains_numa_levels = level;
5545				curr_distance = next_distance;
5546			} else break;
5547		}
5548
5549		/*
5550		 * In case of sched_debug() we verify the above assumption.
5551		 */
5552		if (!sched_debug())
5553			break;
5554	}
5555	/*
5556	 * 'level' contains the number of unique distances, excluding the
5557	 * identity distance node_distance(i,i).
5558	 *
5559	 * The sched_domains_numa_distance[] array includes the actual distance
5560	 * numbers.
5561	 */
5562
5563	/*
5564	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5565	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5566	 * the array will contain less then 'level' members. This could be
5567	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5568	 * in other functions.
5569	 *
5570	 * We reset it to 'level' at the end of this function.
5571	 */
5572	sched_domains_numa_levels = 0;
5573
5574	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5575	if (!sched_domains_numa_masks)
5576		return;
5577
5578	/*
5579	 * Now for each level, construct a mask per node which contains all
5580	 * cpus of nodes that are that many hops away from us.
5581	 */
5582	for (i = 0; i < level; i++) {
5583		sched_domains_numa_masks[i] =
5584			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5585		if (!sched_domains_numa_masks[i])
5586			return;
5587
5588		for (j = 0; j < nr_node_ids; j++) {
5589			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5590			if (!mask)
5591				return;
5592
5593			sched_domains_numa_masks[i][j] = mask;
5594
5595			for (k = 0; k < nr_node_ids; k++) {
5596				if (node_distance(j, k) > sched_domains_numa_distance[i])
5597					continue;
5598
5599				cpumask_or(mask, mask, cpumask_of_node(k));
5600			}
5601		}
5602	}
5603
5604	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5605			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5606	if (!tl)
5607		return;
5608
5609	/*
5610	 * Copy the default topology bits..
5611	 */
5612	for (i = 0; default_topology[i].init; i++)
5613		tl[i] = default_topology[i];
5614
5615	/*
5616	 * .. and append 'j' levels of NUMA goodness.
5617	 */
5618	for (j = 0; j < level; i++, j++) {
5619		tl[i] = (struct sched_domain_topology_level){
5620			.init = sd_numa_init,
5621			.mask = sd_numa_mask,
5622			.flags = SDTL_OVERLAP,
5623			.numa_level = j,
5624		};
5625	}
5626
5627	sched_domain_topology = tl;
5628
5629	sched_domains_numa_levels = level;
5630}
5631
5632static void sched_domains_numa_masks_set(int cpu)
5633{
5634	int i, j;
5635	int node = cpu_to_node(cpu);
5636
5637	for (i = 0; i < sched_domains_numa_levels; i++) {
5638		for (j = 0; j < nr_node_ids; j++) {
5639			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5640				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5641		}
5642	}
5643}
5644
5645static void sched_domains_numa_masks_clear(int cpu)
5646{
5647	int i, j;
5648	for (i = 0; i < sched_domains_numa_levels; i++) {
5649		for (j = 0; j < nr_node_ids; j++)
5650			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5651	}
5652}
5653
5654/*
5655 * Update sched_domains_numa_masks[level][node] array when new cpus
5656 * are onlined.
5657 */
5658static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5659					   unsigned long action,
5660					   void *hcpu)
5661{
5662	int cpu = (long)hcpu;
5663
5664	switch (action & ~CPU_TASKS_FROZEN) {
5665	case CPU_ONLINE:
5666		sched_domains_numa_masks_set(cpu);
5667		break;
5668
5669	case CPU_DEAD:
5670		sched_domains_numa_masks_clear(cpu);
5671		break;
5672
5673	default:
5674		return NOTIFY_DONE;
5675	}
5676
5677	return NOTIFY_OK;
5678}
5679#else
5680static inline void sched_init_numa(void)
5681{
5682}
5683
5684static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5685					   unsigned long action,
5686					   void *hcpu)
5687{
5688	return 0;
5689}
5690#endif /* CONFIG_NUMA */
5691
5692static int __sdt_alloc(const struct cpumask *cpu_map)
5693{
5694	struct sched_domain_topology_level *tl;
5695	int j;
5696
5697	for_each_sd_topology(tl) {
5698		struct sd_data *sdd = &tl->data;
5699
5700		sdd->sd = alloc_percpu(struct sched_domain *);
5701		if (!sdd->sd)
5702			return -ENOMEM;
5703
5704		sdd->sg = alloc_percpu(struct sched_group *);
5705		if (!sdd->sg)
5706			return -ENOMEM;
5707
5708		sdd->sgp = alloc_percpu(struct sched_group_power *);
5709		if (!sdd->sgp)
5710			return -ENOMEM;
5711
5712		for_each_cpu(j, cpu_map) {
5713			struct sched_domain *sd;
5714			struct sched_group *sg;
5715			struct sched_group_power *sgp;
5716
5717		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5718					GFP_KERNEL, cpu_to_node(j));
5719			if (!sd)
5720				return -ENOMEM;
5721
5722			*per_cpu_ptr(sdd->sd, j) = sd;
5723
5724			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5725					GFP_KERNEL, cpu_to_node(j));
5726			if (!sg)
5727				return -ENOMEM;
5728
5729			sg->next = sg;
5730
5731			*per_cpu_ptr(sdd->sg, j) = sg;
5732
5733			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5734					GFP_KERNEL, cpu_to_node(j));
5735			if (!sgp)
5736				return -ENOMEM;
5737
5738			*per_cpu_ptr(sdd->sgp, j) = sgp;
5739		}
5740	}
5741
5742	return 0;
5743}
5744
5745static void __sdt_free(const struct cpumask *cpu_map)
5746{
5747	struct sched_domain_topology_level *tl;
5748	int j;
5749
5750	for_each_sd_topology(tl) {
5751		struct sd_data *sdd = &tl->data;
5752
5753		for_each_cpu(j, cpu_map) {
5754			struct sched_domain *sd;
5755
5756			if (sdd->sd) {
5757				sd = *per_cpu_ptr(sdd->sd, j);
5758				if (sd && (sd->flags & SD_OVERLAP))
5759					free_sched_groups(sd->groups, 0);
5760				kfree(*per_cpu_ptr(sdd->sd, j));
5761			}
5762
5763			if (sdd->sg)
5764				kfree(*per_cpu_ptr(sdd->sg, j));
5765			if (sdd->sgp)
5766				kfree(*per_cpu_ptr(sdd->sgp, j));
5767		}
5768		free_percpu(sdd->sd);
5769		sdd->sd = NULL;
5770		free_percpu(sdd->sg);
5771		sdd->sg = NULL;
5772		free_percpu(sdd->sgp);
5773		sdd->sgp = NULL;
5774	}
5775}
5776
5777struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5778		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5779		struct sched_domain *child, int cpu)
5780{
5781	struct sched_domain *sd = tl->init(tl, cpu);
5782	if (!sd)
5783		return child;
5784
5785	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5786	if (child) {
5787		sd->level = child->level + 1;
5788		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5789		child->parent = sd;
5790		sd->child = child;
5791	}
5792	set_domain_attribute(sd, attr);
5793
5794	return sd;
5795}
5796
5797/*
5798 * Build sched domains for a given set of cpus and attach the sched domains
5799 * to the individual cpus
5800 */
5801static int build_sched_domains(const struct cpumask *cpu_map,
5802			       struct sched_domain_attr *attr)
5803{
5804	enum s_alloc alloc_state;
5805	struct sched_domain *sd;
5806	struct s_data d;
5807	int i, ret = -ENOMEM;
5808
5809	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5810	if (alloc_state != sa_rootdomain)
5811		goto error;
5812
5813	/* Set up domains for cpus specified by the cpu_map. */
5814	for_each_cpu(i, cpu_map) {
5815		struct sched_domain_topology_level *tl;
5816
5817		sd = NULL;
5818		for_each_sd_topology(tl) {
5819			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5820			if (tl == sched_domain_topology)
5821				*per_cpu_ptr(d.sd, i) = sd;
5822			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5823				sd->flags |= SD_OVERLAP;
5824			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5825				break;
5826		}
5827	}
5828
5829	/* Build the groups for the domains */
5830	for_each_cpu(i, cpu_map) {
5831		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5832			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5833			if (sd->flags & SD_OVERLAP) {
5834				if (build_overlap_sched_groups(sd, i))
5835					goto error;
5836			} else {
5837				if (build_sched_groups(sd, i))
5838					goto error;
5839			}
5840		}
5841	}
5842
5843	/* Calculate CPU power for physical packages and nodes */
5844	for (i = nr_cpumask_bits-1; i >= 0; i--) {
5845		if (!cpumask_test_cpu(i, cpu_map))
5846			continue;
5847
5848		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5849			claim_allocations(i, sd);
5850			init_sched_groups_power(i, sd);
5851		}
5852	}
5853
5854	/* Attach the domains */
5855	rcu_read_lock();
5856	for_each_cpu(i, cpu_map) {
5857		sd = *per_cpu_ptr(d.sd, i);
5858		cpu_attach_domain(sd, d.rd, i);
5859	}
5860	rcu_read_unlock();
5861
5862	ret = 0;
5863error:
5864	__free_domain_allocs(&d, alloc_state, cpu_map);
5865	return ret;
5866}
5867
5868static cpumask_var_t *doms_cur;	/* current sched domains */
5869static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
5870static struct sched_domain_attr *dattr_cur;
5871				/* attribues of custom domains in 'doms_cur' */
5872
5873/*
5874 * Special case: If a kmalloc of a doms_cur partition (array of
5875 * cpumask) fails, then fallback to a single sched domain,
5876 * as determined by the single cpumask fallback_doms.
5877 */
5878static cpumask_var_t fallback_doms;
5879
5880/*
5881 * arch_update_cpu_topology lets virtualized architectures update the
5882 * cpu core maps. It is supposed to return 1 if the topology changed
5883 * or 0 if it stayed the same.
5884 */
5885int __attribute__((weak)) arch_update_cpu_topology(void)
5886{
5887	return 0;
5888}
5889
5890cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
5891{
5892	int i;
5893	cpumask_var_t *doms;
5894
5895	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
5896	if (!doms)
5897		return NULL;
5898	for (i = 0; i < ndoms; i++) {
5899		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
5900			free_sched_domains(doms, i);
5901			return NULL;
5902		}
5903	}
5904	return doms;
5905}
5906
5907void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
5908{
5909	unsigned int i;
5910	for (i = 0; i < ndoms; i++)
5911		free_cpumask_var(doms[i]);
5912	kfree(doms);
5913}
5914
5915/*
5916 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5917 * For now this just excludes isolated cpus, but could be used to
5918 * exclude other special cases in the future.
5919 */
5920static int init_sched_domains(const struct cpumask *cpu_map)
5921{
5922	int err;
5923
5924	arch_update_cpu_topology();
5925	ndoms_cur = 1;
5926	doms_cur = alloc_sched_domains(ndoms_cur);
5927	if (!doms_cur)
5928		doms_cur = &fallback_doms;
5929	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
5930	err = build_sched_domains(doms_cur[0], NULL);
5931	register_sched_domain_sysctl();
5932
5933	return err;
5934}
5935
5936/*
5937 * Detach sched domains from a group of cpus specified in cpu_map
5938 * These cpus will now be attached to the NULL domain
5939 */
5940static void detach_destroy_domains(const struct cpumask *cpu_map)
5941{
5942	int i;
5943
5944	rcu_read_lock();
5945	for_each_cpu(i, cpu_map)
5946		cpu_attach_domain(NULL, &def_root_domain, i);
5947	rcu_read_unlock();
5948}
5949
5950/* handle null as "default" */
5951static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
5952			struct sched_domain_attr *new, int idx_new)
5953{
5954	struct sched_domain_attr tmp;
5955
5956	/* fast path */
5957	if (!new && !cur)
5958		return 1;
5959
5960	tmp = SD_ATTR_INIT;
5961	return !memcmp(cur ? (cur + idx_cur) : &tmp,
5962			new ? (new + idx_new) : &tmp,
5963			sizeof(struct sched_domain_attr));
5964}
5965
5966/*
5967 * Partition sched domains as specified by the 'ndoms_new'
5968 * cpumasks in the array doms_new[] of cpumasks. This compares
5969 * doms_new[] to the current sched domain partitioning, doms_cur[].
5970 * It destroys each deleted domain and builds each new domain.
5971 *
5972 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
5973 * The masks don't intersect (don't overlap.) We should setup one
5974 * sched domain for each mask. CPUs not in any of the cpumasks will
5975 * not be load balanced. If the same cpumask appears both in the
5976 * current 'doms_cur' domains and in the new 'doms_new', we can leave
5977 * it as it is.
5978 *
5979 * The passed in 'doms_new' should be allocated using
5980 * alloc_sched_domains.  This routine takes ownership of it and will
5981 * free_sched_domains it when done with it. If the caller failed the
5982 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
5983 * and partition_sched_domains() will fallback to the single partition
5984 * 'fallback_doms', it also forces the domains to be rebuilt.
5985 *
5986 * If doms_new == NULL it will be replaced with cpu_online_mask.
5987 * ndoms_new == 0 is a special case for destroying existing domains,
5988 * and it will not create the default domain.
5989 *
5990 * Call with hotplug lock held
5991 */
5992void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
5993			     struct sched_domain_attr *dattr_new)
5994{
5995	int i, j, n;
5996	int new_topology;
5997
5998	mutex_lock(&sched_domains_mutex);
5999
6000	/* always unregister in case we don't destroy any domains */
6001	unregister_sched_domain_sysctl();
6002
6003	/* Let architecture update cpu core mappings. */
6004	new_topology = arch_update_cpu_topology();
6005
6006	n = doms_new ? ndoms_new : 0;
6007
6008	/* Destroy deleted domains */
6009	for (i = 0; i < ndoms_cur; i++) {
6010		for (j = 0; j < n && !new_topology; j++) {
6011			if (cpumask_equal(doms_cur[i], doms_new[j])
6012			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6013				goto match1;
6014		}
6015		/* no match - a current sched domain not in new doms_new[] */
6016		detach_destroy_domains(doms_cur[i]);
6017match1:
6018		;
6019	}
6020
6021	n = ndoms_cur;
6022	if (doms_new == NULL) {
6023		n = 0;
6024		doms_new = &fallback_doms;
6025		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6026		WARN_ON_ONCE(dattr_new);
6027	}
6028
6029	/* Build new domains */
6030	for (i = 0; i < ndoms_new; i++) {
6031		for (j = 0; j < n && !new_topology; j++) {
6032			if (cpumask_equal(doms_new[i], doms_cur[j])
6033			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6034				goto match2;
6035		}
6036		/* no match - add a new doms_new */
6037		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6038match2:
6039		;
6040	}
6041
6042	/* Remember the new sched domains */
6043	if (doms_cur != &fallback_doms)
6044		free_sched_domains(doms_cur, ndoms_cur);
6045	kfree(dattr_cur);	/* kfree(NULL) is safe */
6046	doms_cur = doms_new;
6047	dattr_cur = dattr_new;
6048	ndoms_cur = ndoms_new;
6049
6050	register_sched_domain_sysctl();
6051
6052	mutex_unlock(&sched_domains_mutex);
6053}
6054
6055static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6056
6057/*
6058 * Update cpusets according to cpu_active mask.  If cpusets are
6059 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6060 * around partition_sched_domains().
6061 *
6062 * If we come here as part of a suspend/resume, don't touch cpusets because we
6063 * want to restore it back to its original state upon resume anyway.
6064 */
6065static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6066			     void *hcpu)
6067{
6068	switch (action) {
6069	case CPU_ONLINE_FROZEN:
6070	case CPU_DOWN_FAILED_FROZEN:
6071
6072		/*
6073		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6074		 * resume sequence. As long as this is not the last online
6075		 * operation in the resume sequence, just build a single sched
6076		 * domain, ignoring cpusets.
6077		 */
6078		num_cpus_frozen--;
6079		if (likely(num_cpus_frozen)) {
6080			partition_sched_domains(1, NULL, NULL);
6081			break;
6082		}
6083
6084		/*
6085		 * This is the last CPU online operation. So fall through and
6086		 * restore the original sched domains by considering the
6087		 * cpuset configurations.
6088		 */
6089
6090	case CPU_ONLINE:
6091	case CPU_DOWN_FAILED:
6092		cpuset_update_active_cpus(true);
6093		break;
6094	default:
6095		return NOTIFY_DONE;
6096	}
6097	return NOTIFY_OK;
6098}
6099
6100static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6101			       void *hcpu)
6102{
6103	switch (action) {
6104	case CPU_DOWN_PREPARE:
6105		cpuset_update_active_cpus(false);
6106		break;
6107	case CPU_DOWN_PREPARE_FROZEN:
6108		num_cpus_frozen++;
6109		partition_sched_domains(1, NULL, NULL);
6110		break;
6111	default:
6112		return NOTIFY_DONE;
6113	}
6114	return NOTIFY_OK;
6115}
6116
6117void __init sched_init_smp(void)
6118{
6119	cpumask_var_t non_isolated_cpus;
6120
6121	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6122	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6123
6124	sched_init_numa();
6125
6126	/*
6127	 * There's no userspace yet to cause hotplug operations; hence all the
6128	 * cpu masks are stable and all blatant races in the below code cannot
6129	 * happen.
6130	 */
6131	mutex_lock(&sched_domains_mutex);
6132	init_sched_domains(cpu_active_mask);
6133	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6134	if (cpumask_empty(non_isolated_cpus))
6135		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6136	mutex_unlock(&sched_domains_mutex);
6137
6138	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6139	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6140	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6141
6142	init_hrtick();
6143
6144	/* Move init over to a non-isolated CPU */
6145	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6146		BUG();
6147	sched_init_granularity();
6148	free_cpumask_var(non_isolated_cpus);
6149
6150	init_sched_rt_class();
6151}
6152#else
6153void __init sched_init_smp(void)
6154{
6155	sched_init_granularity();
6156}
6157#endif /* CONFIG_SMP */
6158
6159const_debug unsigned int sysctl_timer_migration = 1;
6160
6161int in_sched_functions(unsigned long addr)
6162{
6163	return in_lock_functions(addr) ||
6164		(addr >= (unsigned long)__sched_text_start
6165		&& addr < (unsigned long)__sched_text_end);
6166}
6167
6168#ifdef CONFIG_CGROUP_SCHED
6169/*
6170 * Default task group.
6171 * Every task in system belongs to this group at bootup.
6172 */
6173struct task_group root_task_group;
6174LIST_HEAD(task_groups);
6175#endif
6176
6177DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6178
6179void __init sched_init(void)
6180{
6181	int i, j;
6182	unsigned long alloc_size = 0, ptr;
6183
6184#ifdef CONFIG_FAIR_GROUP_SCHED
6185	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6186#endif
6187#ifdef CONFIG_RT_GROUP_SCHED
6188	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6189#endif
6190#ifdef CONFIG_CPUMASK_OFFSTACK
6191	alloc_size += num_possible_cpus() * cpumask_size();
6192#endif
6193	if (alloc_size) {
6194		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6195
6196#ifdef CONFIG_FAIR_GROUP_SCHED
6197		root_task_group.se = (struct sched_entity **)ptr;
6198		ptr += nr_cpu_ids * sizeof(void **);
6199
6200		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6201		ptr += nr_cpu_ids * sizeof(void **);
6202
6203#endif /* CONFIG_FAIR_GROUP_SCHED */
6204#ifdef CONFIG_RT_GROUP_SCHED
6205		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6206		ptr += nr_cpu_ids * sizeof(void **);
6207
6208		root_task_group.rt_rq = (struct rt_rq **)ptr;
6209		ptr += nr_cpu_ids * sizeof(void **);
6210
6211#endif /* CONFIG_RT_GROUP_SCHED */
6212#ifdef CONFIG_CPUMASK_OFFSTACK
6213		for_each_possible_cpu(i) {
6214			per_cpu(load_balance_mask, i) = (void *)ptr;
6215			ptr += cpumask_size();
6216		}
6217#endif /* CONFIG_CPUMASK_OFFSTACK */
6218	}
6219
6220#ifdef CONFIG_SMP
6221	init_defrootdomain();
6222#endif
6223
6224	init_rt_bandwidth(&def_rt_bandwidth,
6225			global_rt_period(), global_rt_runtime());
6226
6227#ifdef CONFIG_RT_GROUP_SCHED
6228	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6229			global_rt_period(), global_rt_runtime());
6230#endif /* CONFIG_RT_GROUP_SCHED */
6231
6232#ifdef CONFIG_CGROUP_SCHED
6233	list_add(&root_task_group.list, &task_groups);
6234	INIT_LIST_HEAD(&root_task_group.children);
6235	INIT_LIST_HEAD(&root_task_group.siblings);
6236	autogroup_init(&init_task);
6237
6238#endif /* CONFIG_CGROUP_SCHED */
6239
6240	for_each_possible_cpu(i) {
6241		struct rq *rq;
6242
6243		rq = cpu_rq(i);
6244		raw_spin_lock_init(&rq->lock);
6245		rq->nr_running = 0;
6246		rq->calc_load_active = 0;
6247		rq->calc_load_update = jiffies + LOAD_FREQ;
6248		init_cfs_rq(&rq->cfs);
6249		init_rt_rq(&rq->rt, rq);
6250#ifdef CONFIG_FAIR_GROUP_SCHED
6251		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6252		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6253		/*
6254		 * How much cpu bandwidth does root_task_group get?
6255		 *
6256		 * In case of task-groups formed thr' the cgroup filesystem, it
6257		 * gets 100% of the cpu resources in the system. This overall
6258		 * system cpu resource is divided among the tasks of
6259		 * root_task_group and its child task-groups in a fair manner,
6260		 * based on each entity's (task or task-group's) weight
6261		 * (se->load.weight).
6262		 *
6263		 * In other words, if root_task_group has 10 tasks of weight
6264		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6265		 * then A0's share of the cpu resource is:
6266		 *
6267		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6268		 *
6269		 * We achieve this by letting root_task_group's tasks sit
6270		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6271		 */
6272		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6273		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6274#endif /* CONFIG_FAIR_GROUP_SCHED */
6275
6276		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6277#ifdef CONFIG_RT_GROUP_SCHED
6278		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6279		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6280#endif
6281
6282		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6283			rq->cpu_load[j] = 0;
6284
6285		rq->last_load_update_tick = jiffies;
6286
6287#ifdef CONFIG_SMP
6288		rq->sd = NULL;
6289		rq->rd = NULL;
6290		rq->cpu_power = SCHED_POWER_SCALE;
6291		rq->post_schedule = 0;
6292		rq->active_balance = 0;
6293		rq->next_balance = jiffies;
6294		rq->push_cpu = 0;
6295		rq->cpu = i;
6296		rq->online = 0;
6297		rq->idle_stamp = 0;
6298		rq->avg_idle = 2*sysctl_sched_migration_cost;
6299		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6300
6301		INIT_LIST_HEAD(&rq->cfs_tasks);
6302
6303		rq_attach_root(rq, &def_root_domain);
6304#ifdef CONFIG_NO_HZ_COMMON
6305		rq->nohz_flags = 0;
6306#endif
6307#ifdef CONFIG_NO_HZ_FULL
6308		rq->last_sched_tick = 0;
6309#endif
6310#endif
6311		init_rq_hrtick(rq);
6312		atomic_set(&rq->nr_iowait, 0);
6313	}
6314
6315	set_load_weight(&init_task);
6316
6317#ifdef CONFIG_PREEMPT_NOTIFIERS
6318	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6319#endif
6320
6321#ifdef CONFIG_RT_MUTEXES
6322	plist_head_init(&init_task.pi_waiters);
6323#endif
6324
6325	/*
6326	 * The boot idle thread does lazy MMU switching as well:
6327	 */
6328	atomic_inc(&init_mm.mm_count);
6329	enter_lazy_tlb(&init_mm, current);
6330
6331	/*
6332	 * Make us the idle thread. Technically, schedule() should not be
6333	 * called from this thread, however somewhere below it might be,
6334	 * but because we are the idle thread, we just pick up running again
6335	 * when this runqueue becomes "idle".
6336	 */
6337	init_idle(current, smp_processor_id());
6338
6339	calc_load_update = jiffies + LOAD_FREQ;
6340
6341	/*
6342	 * During early bootup we pretend to be a normal task:
6343	 */
6344	current->sched_class = &fair_sched_class;
6345
6346#ifdef CONFIG_SMP
6347	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6348	/* May be allocated at isolcpus cmdline parse time */
6349	if (cpu_isolated_map == NULL)
6350		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6351	idle_thread_set_boot_cpu();
6352#endif
6353	init_sched_fair_class();
6354
6355	scheduler_running = 1;
6356}
6357
6358#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6359static inline int preempt_count_equals(int preempt_offset)
6360{
6361	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6362
6363	return (nested == preempt_offset);
6364}
6365
6366void __might_sleep(const char *file, int line, int preempt_offset)
6367{
6368	static unsigned long prev_jiffy;	/* ratelimiting */
6369
6370	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6371	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6372	    system_state != SYSTEM_RUNNING || oops_in_progress)
6373		return;
6374	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6375		return;
6376	prev_jiffy = jiffies;
6377
6378	printk(KERN_ERR
6379		"BUG: sleeping function called from invalid context at %s:%d\n",
6380			file, line);
6381	printk(KERN_ERR
6382		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6383			in_atomic(), irqs_disabled(),
6384			current->pid, current->comm);
6385
6386	debug_show_held_locks(current);
6387	if (irqs_disabled())
6388		print_irqtrace_events(current);
6389	dump_stack();
6390}
6391EXPORT_SYMBOL(__might_sleep);
6392#endif
6393
6394#ifdef CONFIG_MAGIC_SYSRQ
6395static void normalize_task(struct rq *rq, struct task_struct *p)
6396{
6397	const struct sched_class *prev_class = p->sched_class;
6398	int old_prio = p->prio;
6399	int on_rq;
6400
6401	on_rq = p->on_rq;
6402	if (on_rq)
6403		dequeue_task(rq, p, 0);
6404	__setscheduler(rq, p, SCHED_NORMAL, 0);
6405	if (on_rq) {
6406		enqueue_task(rq, p, 0);
6407		resched_task(rq->curr);
6408	}
6409
6410	check_class_changed(rq, p, prev_class, old_prio);
6411}
6412
6413void normalize_rt_tasks(void)
6414{
6415	struct task_struct *g, *p;
6416	unsigned long flags;
6417	struct rq *rq;
6418
6419	read_lock_irqsave(&tasklist_lock, flags);
6420	do_each_thread(g, p) {
6421		/*
6422		 * Only normalize user tasks:
6423		 */
6424		if (!p->mm)
6425			continue;
6426
6427		p->se.exec_start		= 0;
6428#ifdef CONFIG_SCHEDSTATS
6429		p->se.statistics.wait_start	= 0;
6430		p->se.statistics.sleep_start	= 0;
6431		p->se.statistics.block_start	= 0;
6432#endif
6433
6434		if (!rt_task(p)) {
6435			/*
6436			 * Renice negative nice level userspace
6437			 * tasks back to 0:
6438			 */
6439			if (TASK_NICE(p) < 0 && p->mm)
6440				set_user_nice(p, 0);
6441			continue;
6442		}
6443
6444		raw_spin_lock(&p->pi_lock);
6445		rq = __task_rq_lock(p);
6446
6447		normalize_task(rq, p);
6448
6449		__task_rq_unlock(rq);
6450		raw_spin_unlock(&p->pi_lock);
6451	} while_each_thread(g, p);
6452
6453	read_unlock_irqrestore(&tasklist_lock, flags);
6454}
6455
6456#endif /* CONFIG_MAGIC_SYSRQ */
6457
6458#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6459/*
6460 * These functions are only useful for the IA64 MCA handling, or kdb.
6461 *
6462 * They can only be called when the whole system has been
6463 * stopped - every CPU needs to be quiescent, and no scheduling
6464 * activity can take place. Using them for anything else would
6465 * be a serious bug, and as a result, they aren't even visible
6466 * under any other configuration.
6467 */
6468
6469/**
6470 * curr_task - return the current task for a given cpu.
6471 * @cpu: the processor in question.
6472 *
6473 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6474 *
6475 * Return: The current task for @cpu.
6476 */
6477struct task_struct *curr_task(int cpu)
6478{
6479	return cpu_curr(cpu);
6480}
6481
6482#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6483
6484#ifdef CONFIG_IA64
6485/**
6486 * set_curr_task - set the current task for a given cpu.
6487 * @cpu: the processor in question.
6488 * @p: the task pointer to set.
6489 *
6490 * Description: This function must only be used when non-maskable interrupts
6491 * are serviced on a separate stack. It allows the architecture to switch the
6492 * notion of the current task on a cpu in a non-blocking manner. This function
6493 * must be called with all CPU's synchronized, and interrupts disabled, the
6494 * and caller must save the original value of the current task (see
6495 * curr_task() above) and restore that value before reenabling interrupts and
6496 * re-starting the system.
6497 *
6498 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6499 */
6500void set_curr_task(int cpu, struct task_struct *p)
6501{
6502	cpu_curr(cpu) = p;
6503}
6504
6505#endif
6506
6507#ifdef CONFIG_CGROUP_SCHED
6508/* task_group_lock serializes the addition/removal of task groups */
6509static DEFINE_SPINLOCK(task_group_lock);
6510
6511static void free_sched_group(struct task_group *tg)
6512{
6513	free_fair_sched_group(tg);
6514	free_rt_sched_group(tg);
6515	autogroup_free(tg);
6516	kfree(tg);
6517}
6518
6519/* allocate runqueue etc for a new task group */
6520struct task_group *sched_create_group(struct task_group *parent)
6521{
6522	struct task_group *tg;
6523
6524	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6525	if (!tg)
6526		return ERR_PTR(-ENOMEM);
6527
6528	if (!alloc_fair_sched_group(tg, parent))
6529		goto err;
6530
6531	if (!alloc_rt_sched_group(tg, parent))
6532		goto err;
6533
6534	return tg;
6535
6536err:
6537	free_sched_group(tg);
6538	return ERR_PTR(-ENOMEM);
6539}
6540
6541void sched_online_group(struct task_group *tg, struct task_group *parent)
6542{
6543	unsigned long flags;
6544
6545	spin_lock_irqsave(&task_group_lock, flags);
6546	list_add_rcu(&tg->list, &task_groups);
6547
6548	WARN_ON(!parent); /* root should already exist */
6549
6550	tg->parent = parent;
6551	INIT_LIST_HEAD(&tg->children);
6552	list_add_rcu(&tg->siblings, &parent->children);
6553	spin_unlock_irqrestore(&task_group_lock, flags);
6554}
6555
6556/* rcu callback to free various structures associated with a task group */
6557static void free_sched_group_rcu(struct rcu_head *rhp)
6558{
6559	/* now it should be safe to free those cfs_rqs */
6560	free_sched_group(container_of(rhp, struct task_group, rcu));
6561}
6562
6563/* Destroy runqueue etc associated with a task group */
6564void sched_destroy_group(struct task_group *tg)
6565{
6566	/* wait for possible concurrent references to cfs_rqs complete */
6567	call_rcu(&tg->rcu, free_sched_group_rcu);
6568}
6569
6570void sched_offline_group(struct task_group *tg)
6571{
6572	unsigned long flags;
6573	int i;
6574
6575	/* end participation in shares distribution */
6576	for_each_possible_cpu(i)
6577		unregister_fair_sched_group(tg, i);
6578
6579	spin_lock_irqsave(&task_group_lock, flags);
6580	list_del_rcu(&tg->list);
6581	list_del_rcu(&tg->siblings);
6582	spin_unlock_irqrestore(&task_group_lock, flags);
6583}
6584
6585/* change task's runqueue when it moves between groups.
6586 *	The caller of this function should have put the task in its new group
6587 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6588 *	reflect its new group.
6589 */
6590void sched_move_task(struct task_struct *tsk)
6591{
6592	struct task_group *tg;
6593	int on_rq, running;
6594	unsigned long flags;
6595	struct rq *rq;
6596
6597	rq = task_rq_lock(tsk, &flags);
6598
6599	running = task_current(rq, tsk);
6600	on_rq = tsk->on_rq;
6601
6602	if (on_rq)
6603		dequeue_task(rq, tsk, 0);
6604	if (unlikely(running))
6605		tsk->sched_class->put_prev_task(rq, tsk);
6606
6607	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6608				lockdep_is_held(&tsk->sighand->siglock)),
6609			  struct task_group, css);
6610	tg = autogroup_task_group(tsk, tg);
6611	tsk->sched_task_group = tg;
6612
6613#ifdef CONFIG_FAIR_GROUP_SCHED
6614	if (tsk->sched_class->task_move_group)
6615		tsk->sched_class->task_move_group(tsk, on_rq);
6616	else
6617#endif
6618		set_task_rq(tsk, task_cpu(tsk));
6619
6620	if (unlikely(running))
6621		tsk->sched_class->set_curr_task(rq);
6622	if (on_rq)
6623		enqueue_task(rq, tsk, 0);
6624
6625	task_rq_unlock(rq, tsk, &flags);
6626}
6627#endif /* CONFIG_CGROUP_SCHED */
6628
6629#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6630static unsigned long to_ratio(u64 period, u64 runtime)
6631{
6632	if (runtime == RUNTIME_INF)
6633		return 1ULL << 20;
6634
6635	return div64_u64(runtime << 20, period);
6636}
6637#endif
6638
6639#ifdef CONFIG_RT_GROUP_SCHED
6640/*
6641 * Ensure that the real time constraints are schedulable.
6642 */
6643static DEFINE_MUTEX(rt_constraints_mutex);
6644
6645/* Must be called with tasklist_lock held */
6646static inline int tg_has_rt_tasks(struct task_group *tg)
6647{
6648	struct task_struct *g, *p;
6649
6650	do_each_thread(g, p) {
6651		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6652			return 1;
6653	} while_each_thread(g, p);
6654
6655	return 0;
6656}
6657
6658struct rt_schedulable_data {
6659	struct task_group *tg;
6660	u64 rt_period;
6661	u64 rt_runtime;
6662};
6663
6664static int tg_rt_schedulable(struct task_group *tg, void *data)
6665{
6666	struct rt_schedulable_data *d = data;
6667	struct task_group *child;
6668	unsigned long total, sum = 0;
6669	u64 period, runtime;
6670
6671	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6672	runtime = tg->rt_bandwidth.rt_runtime;
6673
6674	if (tg == d->tg) {
6675		period = d->rt_period;
6676		runtime = d->rt_runtime;
6677	}
6678
6679	/*
6680	 * Cannot have more runtime than the period.
6681	 */
6682	if (runtime > period && runtime != RUNTIME_INF)
6683		return -EINVAL;
6684
6685	/*
6686	 * Ensure we don't starve existing RT tasks.
6687	 */
6688	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6689		return -EBUSY;
6690
6691	total = to_ratio(period, runtime);
6692
6693	/*
6694	 * Nobody can have more than the global setting allows.
6695	 */
6696	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6697		return -EINVAL;
6698
6699	/*
6700	 * The sum of our children's runtime should not exceed our own.
6701	 */
6702	list_for_each_entry_rcu(child, &tg->children, siblings) {
6703		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6704		runtime = child->rt_bandwidth.rt_runtime;
6705
6706		if (child == d->tg) {
6707			period = d->rt_period;
6708			runtime = d->rt_runtime;
6709		}
6710
6711		sum += to_ratio(period, runtime);
6712	}
6713
6714	if (sum > total)
6715		return -EINVAL;
6716
6717	return 0;
6718}
6719
6720static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6721{
6722	int ret;
6723
6724	struct rt_schedulable_data data = {
6725		.tg = tg,
6726		.rt_period = period,
6727		.rt_runtime = runtime,
6728	};
6729
6730	rcu_read_lock();
6731	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6732	rcu_read_unlock();
6733
6734	return ret;
6735}
6736
6737static int tg_set_rt_bandwidth(struct task_group *tg,
6738		u64 rt_period, u64 rt_runtime)
6739{
6740	int i, err = 0;
6741
6742	mutex_lock(&rt_constraints_mutex);
6743	read_lock(&tasklist_lock);
6744	err = __rt_schedulable(tg, rt_period, rt_runtime);
6745	if (err)
6746		goto unlock;
6747
6748	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6749	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6750	tg->rt_bandwidth.rt_runtime = rt_runtime;
6751
6752	for_each_possible_cpu(i) {
6753		struct rt_rq *rt_rq = tg->rt_rq[i];
6754
6755		raw_spin_lock(&rt_rq->rt_runtime_lock);
6756		rt_rq->rt_runtime = rt_runtime;
6757		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6758	}
6759	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6760unlock:
6761	read_unlock(&tasklist_lock);
6762	mutex_unlock(&rt_constraints_mutex);
6763
6764	return err;
6765}
6766
6767static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6768{
6769	u64 rt_runtime, rt_period;
6770
6771	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6772	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6773	if (rt_runtime_us < 0)
6774		rt_runtime = RUNTIME_INF;
6775
6776	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6777}
6778
6779static long sched_group_rt_runtime(struct task_group *tg)
6780{
6781	u64 rt_runtime_us;
6782
6783	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6784		return -1;
6785
6786	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6787	do_div(rt_runtime_us, NSEC_PER_USEC);
6788	return rt_runtime_us;
6789}
6790
6791static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6792{
6793	u64 rt_runtime, rt_period;
6794
6795	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6796	rt_runtime = tg->rt_bandwidth.rt_runtime;
6797
6798	if (rt_period == 0)
6799		return -EINVAL;
6800
6801	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6802}
6803
6804static long sched_group_rt_period(struct task_group *tg)
6805{
6806	u64 rt_period_us;
6807
6808	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6809	do_div(rt_period_us, NSEC_PER_USEC);
6810	return rt_period_us;
6811}
6812
6813static int sched_rt_global_constraints(void)
6814{
6815	u64 runtime, period;
6816	int ret = 0;
6817
6818	if (sysctl_sched_rt_period <= 0)
6819		return -EINVAL;
6820
6821	runtime = global_rt_runtime();
6822	period = global_rt_period();
6823
6824	/*
6825	 * Sanity check on the sysctl variables.
6826	 */
6827	if (runtime > period && runtime != RUNTIME_INF)
6828		return -EINVAL;
6829
6830	mutex_lock(&rt_constraints_mutex);
6831	read_lock(&tasklist_lock);
6832	ret = __rt_schedulable(NULL, 0, 0);
6833	read_unlock(&tasklist_lock);
6834	mutex_unlock(&rt_constraints_mutex);
6835
6836	return ret;
6837}
6838
6839static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6840{
6841	/* Don't accept realtime tasks when there is no way for them to run */
6842	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6843		return 0;
6844
6845	return 1;
6846}
6847
6848#else /* !CONFIG_RT_GROUP_SCHED */
6849static int sched_rt_global_constraints(void)
6850{
6851	unsigned long flags;
6852	int i;
6853
6854	if (sysctl_sched_rt_period <= 0)
6855		return -EINVAL;
6856
6857	/*
6858	 * There's always some RT tasks in the root group
6859	 * -- migration, kstopmachine etc..
6860	 */
6861	if (sysctl_sched_rt_runtime == 0)
6862		return -EBUSY;
6863
6864	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6865	for_each_possible_cpu(i) {
6866		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6867
6868		raw_spin_lock(&rt_rq->rt_runtime_lock);
6869		rt_rq->rt_runtime = global_rt_runtime();
6870		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6871	}
6872	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6873
6874	return 0;
6875}
6876#endif /* CONFIG_RT_GROUP_SCHED */
6877
6878int sched_rr_handler(struct ctl_table *table, int write,
6879		void __user *buffer, size_t *lenp,
6880		loff_t *ppos)
6881{
6882	int ret;
6883	static DEFINE_MUTEX(mutex);
6884
6885	mutex_lock(&mutex);
6886	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6887	/* make sure that internally we keep jiffies */
6888	/* also, writing zero resets timeslice to default */
6889	if (!ret && write) {
6890		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
6891			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
6892	}
6893	mutex_unlock(&mutex);
6894	return ret;
6895}
6896
6897int sched_rt_handler(struct ctl_table *table, int write,
6898		void __user *buffer, size_t *lenp,
6899		loff_t *ppos)
6900{
6901	int ret;
6902	int old_period, old_runtime;
6903	static DEFINE_MUTEX(mutex);
6904
6905	mutex_lock(&mutex);
6906	old_period = sysctl_sched_rt_period;
6907	old_runtime = sysctl_sched_rt_runtime;
6908
6909	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6910
6911	if (!ret && write) {
6912		ret = sched_rt_global_constraints();
6913		if (ret) {
6914			sysctl_sched_rt_period = old_period;
6915			sysctl_sched_rt_runtime = old_runtime;
6916		} else {
6917			def_rt_bandwidth.rt_runtime = global_rt_runtime();
6918			def_rt_bandwidth.rt_period =
6919				ns_to_ktime(global_rt_period());
6920		}
6921	}
6922	mutex_unlock(&mutex);
6923
6924	return ret;
6925}
6926
6927#ifdef CONFIG_CGROUP_SCHED
6928
6929static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6930{
6931	return css ? container_of(css, struct task_group, css) : NULL;
6932}
6933
6934static struct cgroup_subsys_state *
6935cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6936{
6937	struct task_group *parent = css_tg(parent_css);
6938	struct task_group *tg;
6939
6940	if (!parent) {
6941		/* This is early initialization for the top cgroup */
6942		return &root_task_group.css;
6943	}
6944
6945	tg = sched_create_group(parent);
6946	if (IS_ERR(tg))
6947		return ERR_PTR(-ENOMEM);
6948
6949	return &tg->css;
6950}
6951
6952static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6953{
6954	struct task_group *tg = css_tg(css);
6955	struct task_group *parent = css_tg(css_parent(css));
6956
6957	if (parent)
6958		sched_online_group(tg, parent);
6959	return 0;
6960}
6961
6962static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6963{
6964	struct task_group *tg = css_tg(css);
6965
6966	sched_destroy_group(tg);
6967}
6968
6969static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
6970{
6971	struct task_group *tg = css_tg(css);
6972
6973	sched_offline_group(tg);
6974}
6975
6976static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
6977				 struct cgroup_taskset *tset)
6978{
6979	struct task_struct *task;
6980
6981	cgroup_taskset_for_each(task, css, tset) {
6982#ifdef CONFIG_RT_GROUP_SCHED
6983		if (!sched_rt_can_attach(css_tg(css), task))
6984			return -EINVAL;
6985#else
6986		/* We don't support RT-tasks being in separate groups */
6987		if (task->sched_class != &fair_sched_class)
6988			return -EINVAL;
6989#endif
6990	}
6991	return 0;
6992}
6993
6994static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
6995			      struct cgroup_taskset *tset)
6996{
6997	struct task_struct *task;
6998
6999	cgroup_taskset_for_each(task, css, tset)
7000		sched_move_task(task);
7001}
7002
7003static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7004			    struct cgroup_subsys_state *old_css,
7005			    struct task_struct *task)
7006{
7007	/*
7008	 * cgroup_exit() is called in the copy_process() failure path.
7009	 * Ignore this case since the task hasn't ran yet, this avoids
7010	 * trying to poke a half freed task state from generic code.
7011	 */
7012	if (!(task->flags & PF_EXITING))
7013		return;
7014
7015	sched_move_task(task);
7016}
7017
7018#ifdef CONFIG_FAIR_GROUP_SCHED
7019static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7020				struct cftype *cftype, u64 shareval)
7021{
7022	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7023}
7024
7025static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7026			       struct cftype *cft)
7027{
7028	struct task_group *tg = css_tg(css);
7029
7030	return (u64) scale_load_down(tg->shares);
7031}
7032
7033#ifdef CONFIG_CFS_BANDWIDTH
7034static DEFINE_MUTEX(cfs_constraints_mutex);
7035
7036const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7037const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7038
7039static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7040
7041static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7042{
7043	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7044	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7045
7046	if (tg == &root_task_group)
7047		return -EINVAL;
7048
7049	/*
7050	 * Ensure we have at some amount of bandwidth every period.  This is
7051	 * to prevent reaching a state of large arrears when throttled via
7052	 * entity_tick() resulting in prolonged exit starvation.
7053	 */
7054	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7055		return -EINVAL;
7056
7057	/*
7058	 * Likewise, bound things on the otherside by preventing insane quota
7059	 * periods.  This also allows us to normalize in computing quota
7060	 * feasibility.
7061	 */
7062	if (period > max_cfs_quota_period)
7063		return -EINVAL;
7064
7065	mutex_lock(&cfs_constraints_mutex);
7066	ret = __cfs_schedulable(tg, period, quota);
7067	if (ret)
7068		goto out_unlock;
7069
7070	runtime_enabled = quota != RUNTIME_INF;
7071	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7072	/*
7073	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7074	 * before making related changes, and on->off must occur afterwards
7075	 */
7076	if (runtime_enabled && !runtime_was_enabled)
7077		cfs_bandwidth_usage_inc();
7078	raw_spin_lock_irq(&cfs_b->lock);
7079	cfs_b->period = ns_to_ktime(period);
7080	cfs_b->quota = quota;
7081
7082	__refill_cfs_bandwidth_runtime(cfs_b);
7083	/* restart the period timer (if active) to handle new period expiry */
7084	if (runtime_enabled && cfs_b->timer_active) {
7085		/* force a reprogram */
7086		cfs_b->timer_active = 0;
7087		__start_cfs_bandwidth(cfs_b);
7088	}
7089	raw_spin_unlock_irq(&cfs_b->lock);
7090
7091	for_each_possible_cpu(i) {
7092		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7093		struct rq *rq = cfs_rq->rq;
7094
7095		raw_spin_lock_irq(&rq->lock);
7096		cfs_rq->runtime_enabled = runtime_enabled;
7097		cfs_rq->runtime_remaining = 0;
7098
7099		if (cfs_rq->throttled)
7100			unthrottle_cfs_rq(cfs_rq);
7101		raw_spin_unlock_irq(&rq->lock);
7102	}
7103	if (runtime_was_enabled && !runtime_enabled)
7104		cfs_bandwidth_usage_dec();
7105out_unlock:
7106	mutex_unlock(&cfs_constraints_mutex);
7107
7108	return ret;
7109}
7110
7111int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7112{
7113	u64 quota, period;
7114
7115	period = ktime_to_ns(tg->cfs_bandwidth.period);
7116	if (cfs_quota_us < 0)
7117		quota = RUNTIME_INF;
7118	else
7119		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7120
7121	return tg_set_cfs_bandwidth(tg, period, quota);
7122}
7123
7124long tg_get_cfs_quota(struct task_group *tg)
7125{
7126	u64 quota_us;
7127
7128	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7129		return -1;
7130
7131	quota_us = tg->cfs_bandwidth.quota;
7132	do_div(quota_us, NSEC_PER_USEC);
7133
7134	return quota_us;
7135}
7136
7137int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7138{
7139	u64 quota, period;
7140
7141	period = (u64)cfs_period_us * NSEC_PER_USEC;
7142	quota = tg->cfs_bandwidth.quota;
7143
7144	return tg_set_cfs_bandwidth(tg, period, quota);
7145}
7146
7147long tg_get_cfs_period(struct task_group *tg)
7148{
7149	u64 cfs_period_us;
7150
7151	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7152	do_div(cfs_period_us, NSEC_PER_USEC);
7153
7154	return cfs_period_us;
7155}
7156
7157static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7158				  struct cftype *cft)
7159{
7160	return tg_get_cfs_quota(css_tg(css));
7161}
7162
7163static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7164				   struct cftype *cftype, s64 cfs_quota_us)
7165{
7166	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7167}
7168
7169static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7170				   struct cftype *cft)
7171{
7172	return tg_get_cfs_period(css_tg(css));
7173}
7174
7175static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7176				    struct cftype *cftype, u64 cfs_period_us)
7177{
7178	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7179}
7180
7181struct cfs_schedulable_data {
7182	struct task_group *tg;
7183	u64 period, quota;
7184};
7185
7186/*
7187 * normalize group quota/period to be quota/max_period
7188 * note: units are usecs
7189 */
7190static u64 normalize_cfs_quota(struct task_group *tg,
7191			       struct cfs_schedulable_data *d)
7192{
7193	u64 quota, period;
7194
7195	if (tg == d->tg) {
7196		period = d->period;
7197		quota = d->quota;
7198	} else {
7199		period = tg_get_cfs_period(tg);
7200		quota = tg_get_cfs_quota(tg);
7201	}
7202
7203	/* note: these should typically be equivalent */
7204	if (quota == RUNTIME_INF || quota == -1)
7205		return RUNTIME_INF;
7206
7207	return to_ratio(period, quota);
7208}
7209
7210static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7211{
7212	struct cfs_schedulable_data *d = data;
7213	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7214	s64 quota = 0, parent_quota = -1;
7215
7216	if (!tg->parent) {
7217		quota = RUNTIME_INF;
7218	} else {
7219		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7220
7221		quota = normalize_cfs_quota(tg, d);
7222		parent_quota = parent_b->hierarchal_quota;
7223
7224		/*
7225		 * ensure max(child_quota) <= parent_quota, inherit when no
7226		 * limit is set
7227		 */
7228		if (quota == RUNTIME_INF)
7229			quota = parent_quota;
7230		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7231			return -EINVAL;
7232	}
7233	cfs_b->hierarchal_quota = quota;
7234
7235	return 0;
7236}
7237
7238static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7239{
7240	int ret;
7241	struct cfs_schedulable_data data = {
7242		.tg = tg,
7243		.period = period,
7244		.quota = quota,
7245	};
7246
7247	if (quota != RUNTIME_INF) {
7248		do_div(data.period, NSEC_PER_USEC);
7249		do_div(data.quota, NSEC_PER_USEC);
7250	}
7251
7252	rcu_read_lock();
7253	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7254	rcu_read_unlock();
7255
7256	return ret;
7257}
7258
7259static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7260		struct cgroup_map_cb *cb)
7261{
7262	struct task_group *tg = css_tg(css);
7263	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7264
7265	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7266	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7267	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7268
7269	return 0;
7270}
7271#endif /* CONFIG_CFS_BANDWIDTH */
7272#endif /* CONFIG_FAIR_GROUP_SCHED */
7273
7274#ifdef CONFIG_RT_GROUP_SCHED
7275static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7276				struct cftype *cft, s64 val)
7277{
7278	return sched_group_set_rt_runtime(css_tg(css), val);
7279}
7280
7281static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7282			       struct cftype *cft)
7283{
7284	return sched_group_rt_runtime(css_tg(css));
7285}
7286
7287static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7288				    struct cftype *cftype, u64 rt_period_us)
7289{
7290	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7291}
7292
7293static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7294				   struct cftype *cft)
7295{
7296	return sched_group_rt_period(css_tg(css));
7297}
7298#endif /* CONFIG_RT_GROUP_SCHED */
7299
7300static struct cftype cpu_files[] = {
7301#ifdef CONFIG_FAIR_GROUP_SCHED
7302	{
7303		.name = "shares",
7304		.read_u64 = cpu_shares_read_u64,
7305		.write_u64 = cpu_shares_write_u64,
7306	},
7307#endif
7308#ifdef CONFIG_CFS_BANDWIDTH
7309	{
7310		.name = "cfs_quota_us",
7311		.read_s64 = cpu_cfs_quota_read_s64,
7312		.write_s64 = cpu_cfs_quota_write_s64,
7313	},
7314	{
7315		.name = "cfs_period_us",
7316		.read_u64 = cpu_cfs_period_read_u64,
7317		.write_u64 = cpu_cfs_period_write_u64,
7318	},
7319	{
7320		.name = "stat",
7321		.read_map = cpu_stats_show,
7322	},
7323#endif
7324#ifdef CONFIG_RT_GROUP_SCHED
7325	{
7326		.name = "rt_runtime_us",
7327		.read_s64 = cpu_rt_runtime_read,
7328		.write_s64 = cpu_rt_runtime_write,
7329	},
7330	{
7331		.name = "rt_period_us",
7332		.read_u64 = cpu_rt_period_read_uint,
7333		.write_u64 = cpu_rt_period_write_uint,
7334	},
7335#endif
7336	{ }	/* terminate */
7337};
7338
7339struct cgroup_subsys cpu_cgroup_subsys = {
7340	.name		= "cpu",
7341	.css_alloc	= cpu_cgroup_css_alloc,
7342	.css_free	= cpu_cgroup_css_free,
7343	.css_online	= cpu_cgroup_css_online,
7344	.css_offline	= cpu_cgroup_css_offline,
7345	.can_attach	= cpu_cgroup_can_attach,
7346	.attach		= cpu_cgroup_attach,
7347	.exit		= cpu_cgroup_exit,
7348	.subsys_id	= cpu_cgroup_subsys_id,
7349	.base_cftypes	= cpu_files,
7350	.early_init	= 1,
7351};
7352
7353#endif	/* CONFIG_CGROUP_SCHED */
7354
7355void dump_cpu_task(int cpu)
7356{
7357	pr_info("Task dump for CPU %d:\n", cpu);
7358	sched_show_task(cpu_curr(cpu));
7359}
7360