core.c revision 3c4017c13f91069194fce3160944efec50f15a6e
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115	return ret;
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int nid = cpu_to_node(cpu);
1266	const struct cpumask *nodemask = NULL;
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/*
1271	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272	 * will return -1. There is no cpu on the node, and we should
1273	 * select the cpu on the other node.
1274	 */
1275	if (nid != -1) {
1276		nodemask = cpumask_of_node(nid);
1277
1278		/* Look for allowed, online CPU in same node. */
1279		for_each_cpu(dest_cpu, nodemask) {
1280			if (!cpu_online(dest_cpu))
1281				continue;
1282			if (!cpu_active(dest_cpu))
1283				continue;
1284			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285				return dest_cpu;
1286		}
1287	}
1288
1289	for (;;) {
1290		/* Any allowed, online CPU? */
1291		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292			if (!cpu_online(dest_cpu))
1293				continue;
1294			if (!cpu_active(dest_cpu))
1295				continue;
1296			goto out;
1297		}
1298
1299		switch (state) {
1300		case cpuset:
1301			/* No more Mr. Nice Guy. */
1302			cpuset_cpus_allowed_fallback(p);
1303			state = possible;
1304			break;
1305
1306		case possible:
1307			do_set_cpus_allowed(p, cpu_possible_mask);
1308			state = fail;
1309			break;
1310
1311		case fail:
1312			BUG();
1313			break;
1314		}
1315	}
1316
1317out:
1318	if (state != cpuset) {
1319		/*
1320		 * Don't tell them about moving exiting tasks or
1321		 * kernel threads (both mm NULL), since they never
1322		 * leave kernel.
1323		 */
1324		if (p->mm && printk_ratelimit()) {
1325			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326					task_pid_nr(p), p->comm, cpu);
1327		}
1328	}
1329
1330	return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341	/*
1342	 * In order not to call set_task_cpu() on a blocking task we need
1343	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344	 * cpu.
1345	 *
1346	 * Since this is common to all placement strategies, this lives here.
1347	 *
1348	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349	 *   not worry about this generic constraint ]
1350	 */
1351	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352		     !cpu_online(cpu)))
1353		cpu = select_fallback_rq(task_cpu(p), p);
1354
1355	return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360	s64 diff = sample - *avg;
1361	*avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369	struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372	int this_cpu = smp_processor_id();
1373
1374	if (cpu == this_cpu) {
1375		schedstat_inc(rq, ttwu_local);
1376		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377	} else {
1378		struct sched_domain *sd;
1379
1380		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381		rcu_read_lock();
1382		for_each_domain(this_cpu, sd) {
1383			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384				schedstat_inc(sd, ttwu_wake_remote);
1385				break;
1386			}
1387		}
1388		rcu_read_unlock();
1389	}
1390
1391	if (wake_flags & WF_MIGRATED)
1392		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396	schedstat_inc(rq, ttwu_count);
1397	schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399	if (wake_flags & WF_SYNC)
1400		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407	activate_task(rq, p, en_flags);
1408	p->on_rq = 1;
1409
1410	/* if a worker is waking up, notify workqueue */
1411	if (p->flags & PF_WQ_WORKER)
1412		wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421	check_preempt_curr(rq, p, wake_flags);
1422	trace_sched_wakeup(p, true);
1423
1424	p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426	if (p->sched_class->task_woken)
1427		p->sched_class->task_woken(rq, p);
1428
1429	if (rq->idle_stamp) {
1430		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431		u64 max = 2*rq->max_idle_balance_cost;
1432
1433		update_avg(&rq->avg_idle, delta);
1434
1435		if (rq->avg_idle > max)
1436			rq->avg_idle = max;
1437
1438		rq->idle_stamp = 0;
1439	}
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447	if (p->sched_contributes_to_load)
1448		rq->nr_uninterruptible--;
1449#endif
1450
1451	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452	ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463	struct rq *rq;
1464	int ret = 0;
1465
1466	rq = __task_rq_lock(p);
1467	if (p->on_rq) {
1468		/* check_preempt_curr() may use rq clock */
1469		update_rq_clock(rq);
1470		ttwu_do_wakeup(rq, p, wake_flags);
1471		ret = 1;
1472	}
1473	__task_rq_unlock(rq);
1474
1475	return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481	struct rq *rq = this_rq();
1482	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483	struct task_struct *p;
1484
1485	raw_spin_lock(&rq->lock);
1486
1487	while (llist) {
1488		p = llist_entry(llist, struct task_struct, wake_entry);
1489		llist = llist_next(llist);
1490		ttwu_do_activate(rq, p, 0);
1491	}
1492
1493	raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498	/*
1499	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501	 * this IPI.
1502	 */
1503	preempt_fold_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	RB_CLEAR_NODE(&p->dl.rb_node);
1721	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722	p->dl.dl_runtime = p->dl.runtime = 0;
1723	p->dl.dl_deadline = p->dl.deadline = 0;
1724	p->dl.dl_period = 0;
1725	p->dl.flags = 0;
1726
1727	INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736		p->mm->numa_scan_seq = 0;
1737	}
1738
1739	if (clone_flags & CLONE_VM)
1740		p->numa_preferred_nid = current->numa_preferred_nid;
1741	else
1742		p->numa_preferred_nid = -1;
1743
1744	p->node_stamp = 0ULL;
1745	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747	p->numa_work.next = &p->numa_work;
1748	p->numa_faults_memory = NULL;
1749	p->numa_faults_buffer_memory = NULL;
1750	p->last_task_numa_placement = 0;
1751	p->last_sum_exec_runtime = 0;
1752
1753	INIT_LIST_HEAD(&p->numa_entry);
1754	p->numa_group = NULL;
1755#endif /* CONFIG_NUMA_BALANCING */
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759#ifdef CONFIG_SCHED_DEBUG
1760void set_numabalancing_state(bool enabled)
1761{
1762	if (enabled)
1763		sched_feat_set("NUMA");
1764	else
1765		sched_feat_set("NO_NUMA");
1766}
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772	numabalancing_enabled = enabled;
1773}
1774#endif /* CONFIG_SCHED_DEBUG */
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778			 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780	struct ctl_table t;
1781	int err;
1782	int state = numabalancing_enabled;
1783
1784	if (write && !capable(CAP_SYS_ADMIN))
1785		return -EPERM;
1786
1787	t = *table;
1788	t.data = &state;
1789	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790	if (err < 0)
1791		return err;
1792	if (write)
1793		set_numabalancing_state(state);
1794	return err;
1795}
1796#endif
1797#endif
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803{
1804	unsigned long flags;
1805	int cpu = get_cpu();
1806
1807	__sched_fork(clone_flags, p);
1808	/*
1809	 * We mark the process as running here. This guarantees that
1810	 * nobody will actually run it, and a signal or other external
1811	 * event cannot wake it up and insert it on the runqueue either.
1812	 */
1813	p->state = TASK_RUNNING;
1814
1815	/*
1816	 * Make sure we do not leak PI boosting priority to the child.
1817	 */
1818	p->prio = current->normal_prio;
1819
1820	/*
1821	 * Revert to default priority/policy on fork if requested.
1822	 */
1823	if (unlikely(p->sched_reset_on_fork)) {
1824		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825			p->policy = SCHED_NORMAL;
1826			p->static_prio = NICE_TO_PRIO(0);
1827			p->rt_priority = 0;
1828		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1829			p->static_prio = NICE_TO_PRIO(0);
1830
1831		p->prio = p->normal_prio = __normal_prio(p);
1832		set_load_weight(p);
1833
1834		/*
1835		 * We don't need the reset flag anymore after the fork. It has
1836		 * fulfilled its duty:
1837		 */
1838		p->sched_reset_on_fork = 0;
1839	}
1840
1841	if (dl_prio(p->prio)) {
1842		put_cpu();
1843		return -EAGAIN;
1844	} else if (rt_prio(p->prio)) {
1845		p->sched_class = &rt_sched_class;
1846	} else {
1847		p->sched_class = &fair_sched_class;
1848	}
1849
1850	if (p->sched_class->task_fork)
1851		p->sched_class->task_fork(p);
1852
1853	/*
1854	 * The child is not yet in the pid-hash so no cgroup attach races,
1855	 * and the cgroup is pinned to this child due to cgroup_fork()
1856	 * is ran before sched_fork().
1857	 *
1858	 * Silence PROVE_RCU.
1859	 */
1860	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861	set_task_cpu(p, cpu);
1862	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865	if (likely(sched_info_on()))
1866		memset(&p->sched_info, 0, sizeof(p->sched_info));
1867#endif
1868#if defined(CONFIG_SMP)
1869	p->on_cpu = 0;
1870#endif
1871	init_task_preempt_count(p);
1872#ifdef CONFIG_SMP
1873	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875#endif
1876
1877	put_cpu();
1878	return 0;
1879}
1880
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883	if (runtime == RUNTIME_INF)
1884		return 1ULL << 20;
1885
1886	/*
1887	 * Doing this here saves a lot of checks in all
1888	 * the calling paths, and returning zero seems
1889	 * safe for them anyway.
1890	 */
1891	if (period == 0)
1892		return 0;
1893
1894	return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900	return &cpu_rq(i)->rd->dl_bw;
1901}
1902
1903static inline int dl_bw_cpus(int i)
1904{
1905	struct root_domain *rd = cpu_rq(i)->rd;
1906	int cpus = 0;
1907
1908	for_each_cpu_and(i, rd->span, cpu_active_mask)
1909		cpus++;
1910
1911	return cpus;
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916	return &cpu_rq(i)->dl.dl_bw;
1917}
1918
1919static inline int dl_bw_cpus(int i)
1920{
1921	return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928	dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934	dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940	return dl_b->bw != -1 &&
1941	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953		       const struct sched_attr *attr)
1954{
1955
1956	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957	u64 period = attr->sched_period;
1958	u64 runtime = attr->sched_runtime;
1959	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960	int cpus, err = -1;
1961
1962	if (new_bw == p->dl.dl_bw)
1963		return 0;
1964
1965	/*
1966	 * Either if a task, enters, leave, or stays -deadline but changes
1967	 * its parameters, we may need to update accordingly the total
1968	 * allocated bandwidth of the container.
1969	 */
1970	raw_spin_lock(&dl_b->lock);
1971	cpus = dl_bw_cpus(task_cpu(p));
1972	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974		__dl_add(dl_b, new_bw);
1975		err = 0;
1976	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978		__dl_clear(dl_b, p->dl.dl_bw);
1979		__dl_add(dl_b, new_bw);
1980		err = 0;
1981	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982		__dl_clear(dl_b, p->dl.dl_bw);
1983		err = 0;
1984	}
1985	raw_spin_unlock(&dl_b->lock);
1986
1987	return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999void wake_up_new_task(struct task_struct *p)
2000{
2001	unsigned long flags;
2002	struct rq *rq;
2003
2004	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005#ifdef CONFIG_SMP
2006	/*
2007	 * Fork balancing, do it here and not earlier because:
2008	 *  - cpus_allowed can change in the fork path
2009	 *  - any previously selected cpu might disappear through hotplug
2010	 */
2011	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012#endif
2013
2014	/* Initialize new task's runnable average */
2015	init_task_runnable_average(p);
2016	rq = __task_rq_lock(p);
2017	activate_task(rq, p, 0);
2018	p->on_rq = 1;
2019	trace_sched_wakeup_new(p, true);
2020	check_preempt_curr(rq, p, WF_FORK);
2021#ifdef CONFIG_SMP
2022	if (p->sched_class->task_woken)
2023		p->sched_class->task_woken(rq, p);
2024#endif
2025	task_rq_unlock(rq, p, &flags);
2026}
2027
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048	hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054	struct preempt_notifier *notifier;
2055
2056	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062				 struct task_struct *next)
2063{
2064	struct preempt_notifier *notifier;
2065
2066	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067		notifier->ops->sched_out(notifier, next);
2068}
2069
2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078				 struct task_struct *next)
2079{
2080}
2081
2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099		    struct task_struct *next)
2100{
2101	trace_sched_switch(prev, next);
2102	sched_info_switch(rq, prev, next);
2103	perf_event_task_sched_out(prev, next);
2104	fire_sched_out_preempt_notifiers(prev, next);
2105	prepare_lock_switch(rq, next);
2106	prepare_arch_switch(next);
2107}
2108
2109/**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125	__releases(rq->lock)
2126{
2127	struct mm_struct *mm = rq->prev_mm;
2128	long prev_state;
2129
2130	rq->prev_mm = NULL;
2131
2132	/*
2133	 * A task struct has one reference for the use as "current".
2134	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135	 * schedule one last time. The schedule call will never return, and
2136	 * the scheduled task must drop that reference.
2137	 * The test for TASK_DEAD must occur while the runqueue locks are
2138	 * still held, otherwise prev could be scheduled on another cpu, die
2139	 * there before we look at prev->state, and then the reference would
2140	 * be dropped twice.
2141	 *		Manfred Spraul <manfred@colorfullife.com>
2142	 */
2143	prev_state = prev->state;
2144	vtime_task_switch(prev);
2145	finish_arch_switch(prev);
2146	perf_event_task_sched_in(prev, current);
2147	finish_lock_switch(rq, prev);
2148	finish_arch_post_lock_switch();
2149
2150	fire_sched_in_preempt_notifiers(current);
2151	if (mm)
2152		mmdrop(mm);
2153	if (unlikely(prev_state == TASK_DEAD)) {
2154		task_numa_free(prev);
2155
2156		if (prev->sched_class->task_dead)
2157			prev->sched_class->task_dead(prev);
2158
2159		/*
2160		 * Remove function-return probe instances associated with this
2161		 * task and put them back on the free list.
2162		 */
2163		kprobe_flush_task(prev);
2164		put_task_struct(prev);
2165	}
2166
2167	tick_nohz_task_switch(current);
2168}
2169
2170#ifdef CONFIG_SMP
2171
2172/* assumes rq->lock is held */
2173static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2174{
2175	if (prev->sched_class->pre_schedule)
2176		prev->sched_class->pre_schedule(rq, prev);
2177}
2178
2179/* rq->lock is NOT held, but preemption is disabled */
2180static inline void post_schedule(struct rq *rq)
2181{
2182	if (rq->post_schedule) {
2183		unsigned long flags;
2184
2185		raw_spin_lock_irqsave(&rq->lock, flags);
2186		if (rq->curr->sched_class->post_schedule)
2187			rq->curr->sched_class->post_schedule(rq);
2188		raw_spin_unlock_irqrestore(&rq->lock, flags);
2189
2190		rq->post_schedule = 0;
2191	}
2192}
2193
2194#else
2195
2196static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2197{
2198}
2199
2200static inline void post_schedule(struct rq *rq)
2201{
2202}
2203
2204#endif
2205
2206/**
2207 * schedule_tail - first thing a freshly forked thread must call.
2208 * @prev: the thread we just switched away from.
2209 */
2210asmlinkage void schedule_tail(struct task_struct *prev)
2211	__releases(rq->lock)
2212{
2213	struct rq *rq = this_rq();
2214
2215	finish_task_switch(rq, prev);
2216
2217	/*
2218	 * FIXME: do we need to worry about rq being invalidated by the
2219	 * task_switch?
2220	 */
2221	post_schedule(rq);
2222
2223#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2224	/* In this case, finish_task_switch does not reenable preemption */
2225	preempt_enable();
2226#endif
2227	if (current->set_child_tid)
2228		put_user(task_pid_vnr(current), current->set_child_tid);
2229}
2230
2231/*
2232 * context_switch - switch to the new MM and the new
2233 * thread's register state.
2234 */
2235static inline void
2236context_switch(struct rq *rq, struct task_struct *prev,
2237	       struct task_struct *next)
2238{
2239	struct mm_struct *mm, *oldmm;
2240
2241	prepare_task_switch(rq, prev, next);
2242
2243	mm = next->mm;
2244	oldmm = prev->active_mm;
2245	/*
2246	 * For paravirt, this is coupled with an exit in switch_to to
2247	 * combine the page table reload and the switch backend into
2248	 * one hypercall.
2249	 */
2250	arch_start_context_switch(prev);
2251
2252	if (!mm) {
2253		next->active_mm = oldmm;
2254		atomic_inc(&oldmm->mm_count);
2255		enter_lazy_tlb(oldmm, next);
2256	} else
2257		switch_mm(oldmm, mm, next);
2258
2259	if (!prev->mm) {
2260		prev->active_mm = NULL;
2261		rq->prev_mm = oldmm;
2262	}
2263	/*
2264	 * Since the runqueue lock will be released by the next
2265	 * task (which is an invalid locking op but in the case
2266	 * of the scheduler it's an obvious special-case), so we
2267	 * do an early lockdep release here:
2268	 */
2269#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2270	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2271#endif
2272
2273	context_tracking_task_switch(prev, next);
2274	/* Here we just switch the register state and the stack. */
2275	switch_to(prev, next, prev);
2276
2277	barrier();
2278	/*
2279	 * this_rq must be evaluated again because prev may have moved
2280	 * CPUs since it called schedule(), thus the 'rq' on its stack
2281	 * frame will be invalid.
2282	 */
2283	finish_task_switch(this_rq(), prev);
2284}
2285
2286/*
2287 * nr_running and nr_context_switches:
2288 *
2289 * externally visible scheduler statistics: current number of runnable
2290 * threads, total number of context switches performed since bootup.
2291 */
2292unsigned long nr_running(void)
2293{
2294	unsigned long i, sum = 0;
2295
2296	for_each_online_cpu(i)
2297		sum += cpu_rq(i)->nr_running;
2298
2299	return sum;
2300}
2301
2302unsigned long long nr_context_switches(void)
2303{
2304	int i;
2305	unsigned long long sum = 0;
2306
2307	for_each_possible_cpu(i)
2308		sum += cpu_rq(i)->nr_switches;
2309
2310	return sum;
2311}
2312
2313unsigned long nr_iowait(void)
2314{
2315	unsigned long i, sum = 0;
2316
2317	for_each_possible_cpu(i)
2318		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2319
2320	return sum;
2321}
2322
2323unsigned long nr_iowait_cpu(int cpu)
2324{
2325	struct rq *this = cpu_rq(cpu);
2326	return atomic_read(&this->nr_iowait);
2327}
2328
2329#ifdef CONFIG_SMP
2330
2331/*
2332 * sched_exec - execve() is a valuable balancing opportunity, because at
2333 * this point the task has the smallest effective memory and cache footprint.
2334 */
2335void sched_exec(void)
2336{
2337	struct task_struct *p = current;
2338	unsigned long flags;
2339	int dest_cpu;
2340
2341	raw_spin_lock_irqsave(&p->pi_lock, flags);
2342	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2343	if (dest_cpu == smp_processor_id())
2344		goto unlock;
2345
2346	if (likely(cpu_active(dest_cpu))) {
2347		struct migration_arg arg = { p, dest_cpu };
2348
2349		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2350		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2351		return;
2352	}
2353unlock:
2354	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2355}
2356
2357#endif
2358
2359DEFINE_PER_CPU(struct kernel_stat, kstat);
2360DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2361
2362EXPORT_PER_CPU_SYMBOL(kstat);
2363EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2364
2365/*
2366 * Return any ns on the sched_clock that have not yet been accounted in
2367 * @p in case that task is currently running.
2368 *
2369 * Called with task_rq_lock() held on @rq.
2370 */
2371static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2372{
2373	u64 ns = 0;
2374
2375	if (task_current(rq, p)) {
2376		update_rq_clock(rq);
2377		ns = rq_clock_task(rq) - p->se.exec_start;
2378		if ((s64)ns < 0)
2379			ns = 0;
2380	}
2381
2382	return ns;
2383}
2384
2385unsigned long long task_delta_exec(struct task_struct *p)
2386{
2387	unsigned long flags;
2388	struct rq *rq;
2389	u64 ns = 0;
2390
2391	rq = task_rq_lock(p, &flags);
2392	ns = do_task_delta_exec(p, rq);
2393	task_rq_unlock(rq, p, &flags);
2394
2395	return ns;
2396}
2397
2398/*
2399 * Return accounted runtime for the task.
2400 * In case the task is currently running, return the runtime plus current's
2401 * pending runtime that have not been accounted yet.
2402 */
2403unsigned long long task_sched_runtime(struct task_struct *p)
2404{
2405	unsigned long flags;
2406	struct rq *rq;
2407	u64 ns = 0;
2408
2409#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2410	/*
2411	 * 64-bit doesn't need locks to atomically read a 64bit value.
2412	 * So we have a optimization chance when the task's delta_exec is 0.
2413	 * Reading ->on_cpu is racy, but this is ok.
2414	 *
2415	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2416	 * If we race with it entering cpu, unaccounted time is 0. This is
2417	 * indistinguishable from the read occurring a few cycles earlier.
2418	 */
2419	if (!p->on_cpu)
2420		return p->se.sum_exec_runtime;
2421#endif
2422
2423	rq = task_rq_lock(p, &flags);
2424	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2425	task_rq_unlock(rq, p, &flags);
2426
2427	return ns;
2428}
2429
2430/*
2431 * This function gets called by the timer code, with HZ frequency.
2432 * We call it with interrupts disabled.
2433 */
2434void scheduler_tick(void)
2435{
2436	int cpu = smp_processor_id();
2437	struct rq *rq = cpu_rq(cpu);
2438	struct task_struct *curr = rq->curr;
2439
2440	sched_clock_tick();
2441
2442	raw_spin_lock(&rq->lock);
2443	update_rq_clock(rq);
2444	curr->sched_class->task_tick(rq, curr, 0);
2445	update_cpu_load_active(rq);
2446	raw_spin_unlock(&rq->lock);
2447
2448	perf_event_task_tick();
2449
2450#ifdef CONFIG_SMP
2451	rq->idle_balance = idle_cpu(cpu);
2452	trigger_load_balance(rq);
2453#endif
2454	rq_last_tick_reset(rq);
2455}
2456
2457#ifdef CONFIG_NO_HZ_FULL
2458/**
2459 * scheduler_tick_max_deferment
2460 *
2461 * Keep at least one tick per second when a single
2462 * active task is running because the scheduler doesn't
2463 * yet completely support full dynticks environment.
2464 *
2465 * This makes sure that uptime, CFS vruntime, load
2466 * balancing, etc... continue to move forward, even
2467 * with a very low granularity.
2468 *
2469 * Return: Maximum deferment in nanoseconds.
2470 */
2471u64 scheduler_tick_max_deferment(void)
2472{
2473	struct rq *rq = this_rq();
2474	unsigned long next, now = ACCESS_ONCE(jiffies);
2475
2476	next = rq->last_sched_tick + HZ;
2477
2478	if (time_before_eq(next, now))
2479		return 0;
2480
2481	return jiffies_to_nsecs(next - now);
2482}
2483#endif
2484
2485notrace unsigned long get_parent_ip(unsigned long addr)
2486{
2487	if (in_lock_functions(addr)) {
2488		addr = CALLER_ADDR2;
2489		if (in_lock_functions(addr))
2490			addr = CALLER_ADDR3;
2491	}
2492	return addr;
2493}
2494
2495#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2496				defined(CONFIG_PREEMPT_TRACER))
2497
2498void __kprobes preempt_count_add(int val)
2499{
2500#ifdef CONFIG_DEBUG_PREEMPT
2501	/*
2502	 * Underflow?
2503	 */
2504	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2505		return;
2506#endif
2507	__preempt_count_add(val);
2508#ifdef CONFIG_DEBUG_PREEMPT
2509	/*
2510	 * Spinlock count overflowing soon?
2511	 */
2512	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2513				PREEMPT_MASK - 10);
2514#endif
2515	if (preempt_count() == val)
2516		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2517}
2518EXPORT_SYMBOL(preempt_count_add);
2519
2520void __kprobes preempt_count_sub(int val)
2521{
2522#ifdef CONFIG_DEBUG_PREEMPT
2523	/*
2524	 * Underflow?
2525	 */
2526	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2527		return;
2528	/*
2529	 * Is the spinlock portion underflowing?
2530	 */
2531	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2532			!(preempt_count() & PREEMPT_MASK)))
2533		return;
2534#endif
2535
2536	if (preempt_count() == val)
2537		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2538	__preempt_count_sub(val);
2539}
2540EXPORT_SYMBOL(preempt_count_sub);
2541
2542#endif
2543
2544/*
2545 * Print scheduling while atomic bug:
2546 */
2547static noinline void __schedule_bug(struct task_struct *prev)
2548{
2549	if (oops_in_progress)
2550		return;
2551
2552	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2553		prev->comm, prev->pid, preempt_count());
2554
2555	debug_show_held_locks(prev);
2556	print_modules();
2557	if (irqs_disabled())
2558		print_irqtrace_events(prev);
2559	dump_stack();
2560	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2561}
2562
2563/*
2564 * Various schedule()-time debugging checks and statistics:
2565 */
2566static inline void schedule_debug(struct task_struct *prev)
2567{
2568	/*
2569	 * Test if we are atomic. Since do_exit() needs to call into
2570	 * schedule() atomically, we ignore that path. Otherwise whine
2571	 * if we are scheduling when we should not.
2572	 */
2573	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2574		__schedule_bug(prev);
2575	rcu_sleep_check();
2576
2577	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2578
2579	schedstat_inc(this_rq(), sched_count);
2580}
2581
2582static void put_prev_task(struct rq *rq, struct task_struct *prev)
2583{
2584	if (prev->on_rq || rq->skip_clock_update < 0)
2585		update_rq_clock(rq);
2586	prev->sched_class->put_prev_task(rq, prev);
2587}
2588
2589/*
2590 * Pick up the highest-prio task:
2591 */
2592static inline struct task_struct *
2593pick_next_task(struct rq *rq)
2594{
2595	const struct sched_class *class;
2596	struct task_struct *p;
2597
2598	/*
2599	 * Optimization: we know that if all tasks are in
2600	 * the fair class we can call that function directly:
2601	 */
2602	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2603		p = fair_sched_class.pick_next_task(rq);
2604		if (likely(p))
2605			return p;
2606	}
2607
2608	for_each_class(class) {
2609		p = class->pick_next_task(rq);
2610		if (p)
2611			return p;
2612	}
2613
2614	BUG(); /* the idle class will always have a runnable task */
2615}
2616
2617/*
2618 * __schedule() is the main scheduler function.
2619 *
2620 * The main means of driving the scheduler and thus entering this function are:
2621 *
2622 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2623 *
2624 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2625 *      paths. For example, see arch/x86/entry_64.S.
2626 *
2627 *      To drive preemption between tasks, the scheduler sets the flag in timer
2628 *      interrupt handler scheduler_tick().
2629 *
2630 *   3. Wakeups don't really cause entry into schedule(). They add a
2631 *      task to the run-queue and that's it.
2632 *
2633 *      Now, if the new task added to the run-queue preempts the current
2634 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2635 *      called on the nearest possible occasion:
2636 *
2637 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2638 *
2639 *         - in syscall or exception context, at the next outmost
2640 *           preempt_enable(). (this might be as soon as the wake_up()'s
2641 *           spin_unlock()!)
2642 *
2643 *         - in IRQ context, return from interrupt-handler to
2644 *           preemptible context
2645 *
2646 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2647 *         then at the next:
2648 *
2649 *          - cond_resched() call
2650 *          - explicit schedule() call
2651 *          - return from syscall or exception to user-space
2652 *          - return from interrupt-handler to user-space
2653 */
2654static void __sched __schedule(void)
2655{
2656	struct task_struct *prev, *next;
2657	unsigned long *switch_count;
2658	struct rq *rq;
2659	int cpu;
2660
2661need_resched:
2662	preempt_disable();
2663	cpu = smp_processor_id();
2664	rq = cpu_rq(cpu);
2665	rcu_note_context_switch(cpu);
2666	prev = rq->curr;
2667
2668	schedule_debug(prev);
2669
2670	if (sched_feat(HRTICK))
2671		hrtick_clear(rq);
2672
2673	/*
2674	 * Make sure that signal_pending_state()->signal_pending() below
2675	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2676	 * done by the caller to avoid the race with signal_wake_up().
2677	 */
2678	smp_mb__before_spinlock();
2679	raw_spin_lock_irq(&rq->lock);
2680
2681	switch_count = &prev->nivcsw;
2682	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2683		if (unlikely(signal_pending_state(prev->state, prev))) {
2684			prev->state = TASK_RUNNING;
2685		} else {
2686			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2687			prev->on_rq = 0;
2688
2689			/*
2690			 * If a worker went to sleep, notify and ask workqueue
2691			 * whether it wants to wake up a task to maintain
2692			 * concurrency.
2693			 */
2694			if (prev->flags & PF_WQ_WORKER) {
2695				struct task_struct *to_wakeup;
2696
2697				to_wakeup = wq_worker_sleeping(prev, cpu);
2698				if (to_wakeup)
2699					try_to_wake_up_local(to_wakeup);
2700			}
2701		}
2702		switch_count = &prev->nvcsw;
2703	}
2704
2705	pre_schedule(rq, prev);
2706
2707	if (unlikely(!rq->nr_running)) {
2708		/*
2709		 * We must set idle_stamp _before_ calling idle_balance(), such
2710		 * that we measure the duration of idle_balance() as idle time.
2711		 */
2712		rq->idle_stamp = rq_clock(rq);
2713		if (idle_balance(rq))
2714			rq->idle_stamp = 0;
2715	}
2716
2717	put_prev_task(rq, prev);
2718	next = pick_next_task(rq);
2719	clear_tsk_need_resched(prev);
2720	clear_preempt_need_resched();
2721	rq->skip_clock_update = 0;
2722
2723	if (likely(prev != next)) {
2724		rq->nr_switches++;
2725		rq->curr = next;
2726		++*switch_count;
2727
2728		context_switch(rq, prev, next); /* unlocks the rq */
2729		/*
2730		 * The context switch have flipped the stack from under us
2731		 * and restored the local variables which were saved when
2732		 * this task called schedule() in the past. prev == current
2733		 * is still correct, but it can be moved to another cpu/rq.
2734		 */
2735		cpu = smp_processor_id();
2736		rq = cpu_rq(cpu);
2737	} else
2738		raw_spin_unlock_irq(&rq->lock);
2739
2740	post_schedule(rq);
2741
2742	sched_preempt_enable_no_resched();
2743	if (need_resched())
2744		goto need_resched;
2745}
2746
2747static inline void sched_submit_work(struct task_struct *tsk)
2748{
2749	if (!tsk->state || tsk_is_pi_blocked(tsk))
2750		return;
2751	/*
2752	 * If we are going to sleep and we have plugged IO queued,
2753	 * make sure to submit it to avoid deadlocks.
2754	 */
2755	if (blk_needs_flush_plug(tsk))
2756		blk_schedule_flush_plug(tsk);
2757}
2758
2759asmlinkage void __sched schedule(void)
2760{
2761	struct task_struct *tsk = current;
2762
2763	sched_submit_work(tsk);
2764	__schedule();
2765}
2766EXPORT_SYMBOL(schedule);
2767
2768#ifdef CONFIG_CONTEXT_TRACKING
2769asmlinkage void __sched schedule_user(void)
2770{
2771	/*
2772	 * If we come here after a random call to set_need_resched(),
2773	 * or we have been woken up remotely but the IPI has not yet arrived,
2774	 * we haven't yet exited the RCU idle mode. Do it here manually until
2775	 * we find a better solution.
2776	 */
2777	user_exit();
2778	schedule();
2779	user_enter();
2780}
2781#endif
2782
2783/**
2784 * schedule_preempt_disabled - called with preemption disabled
2785 *
2786 * Returns with preemption disabled. Note: preempt_count must be 1
2787 */
2788void __sched schedule_preempt_disabled(void)
2789{
2790	sched_preempt_enable_no_resched();
2791	schedule();
2792	preempt_disable();
2793}
2794
2795#ifdef CONFIG_PREEMPT
2796/*
2797 * this is the entry point to schedule() from in-kernel preemption
2798 * off of preempt_enable. Kernel preemptions off return from interrupt
2799 * occur there and call schedule directly.
2800 */
2801asmlinkage void __sched notrace preempt_schedule(void)
2802{
2803	/*
2804	 * If there is a non-zero preempt_count or interrupts are disabled,
2805	 * we do not want to preempt the current task. Just return..
2806	 */
2807	if (likely(!preemptible()))
2808		return;
2809
2810	do {
2811		__preempt_count_add(PREEMPT_ACTIVE);
2812		__schedule();
2813		__preempt_count_sub(PREEMPT_ACTIVE);
2814
2815		/*
2816		 * Check again in case we missed a preemption opportunity
2817		 * between schedule and now.
2818		 */
2819		barrier();
2820	} while (need_resched());
2821}
2822EXPORT_SYMBOL(preempt_schedule);
2823#endif /* CONFIG_PREEMPT */
2824
2825/*
2826 * this is the entry point to schedule() from kernel preemption
2827 * off of irq context.
2828 * Note, that this is called and return with irqs disabled. This will
2829 * protect us against recursive calling from irq.
2830 */
2831asmlinkage void __sched preempt_schedule_irq(void)
2832{
2833	enum ctx_state prev_state;
2834
2835	/* Catch callers which need to be fixed */
2836	BUG_ON(preempt_count() || !irqs_disabled());
2837
2838	prev_state = exception_enter();
2839
2840	do {
2841		__preempt_count_add(PREEMPT_ACTIVE);
2842		local_irq_enable();
2843		__schedule();
2844		local_irq_disable();
2845		__preempt_count_sub(PREEMPT_ACTIVE);
2846
2847		/*
2848		 * Check again in case we missed a preemption opportunity
2849		 * between schedule and now.
2850		 */
2851		barrier();
2852	} while (need_resched());
2853
2854	exception_exit(prev_state);
2855}
2856
2857int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2858			  void *key)
2859{
2860	return try_to_wake_up(curr->private, mode, wake_flags);
2861}
2862EXPORT_SYMBOL(default_wake_function);
2863
2864static long __sched
2865sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2866{
2867	unsigned long flags;
2868	wait_queue_t wait;
2869
2870	init_waitqueue_entry(&wait, current);
2871
2872	__set_current_state(state);
2873
2874	spin_lock_irqsave(&q->lock, flags);
2875	__add_wait_queue(q, &wait);
2876	spin_unlock(&q->lock);
2877	timeout = schedule_timeout(timeout);
2878	spin_lock_irq(&q->lock);
2879	__remove_wait_queue(q, &wait);
2880	spin_unlock_irqrestore(&q->lock, flags);
2881
2882	return timeout;
2883}
2884
2885void __sched interruptible_sleep_on(wait_queue_head_t *q)
2886{
2887	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2888}
2889EXPORT_SYMBOL(interruptible_sleep_on);
2890
2891long __sched
2892interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2893{
2894	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2895}
2896EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2897
2898void __sched sleep_on(wait_queue_head_t *q)
2899{
2900	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2901}
2902EXPORT_SYMBOL(sleep_on);
2903
2904long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2905{
2906	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2907}
2908EXPORT_SYMBOL(sleep_on_timeout);
2909
2910#ifdef CONFIG_RT_MUTEXES
2911
2912/*
2913 * rt_mutex_setprio - set the current priority of a task
2914 * @p: task
2915 * @prio: prio value (kernel-internal form)
2916 *
2917 * This function changes the 'effective' priority of a task. It does
2918 * not touch ->normal_prio like __setscheduler().
2919 *
2920 * Used by the rt_mutex code to implement priority inheritance logic.
2921 */
2922void rt_mutex_setprio(struct task_struct *p, int prio)
2923{
2924	int oldprio, on_rq, running, enqueue_flag = 0;
2925	struct rq *rq;
2926	const struct sched_class *prev_class;
2927
2928	BUG_ON(prio > MAX_PRIO);
2929
2930	rq = __task_rq_lock(p);
2931
2932	/*
2933	 * Idle task boosting is a nono in general. There is one
2934	 * exception, when PREEMPT_RT and NOHZ is active:
2935	 *
2936	 * The idle task calls get_next_timer_interrupt() and holds
2937	 * the timer wheel base->lock on the CPU and another CPU wants
2938	 * to access the timer (probably to cancel it). We can safely
2939	 * ignore the boosting request, as the idle CPU runs this code
2940	 * with interrupts disabled and will complete the lock
2941	 * protected section without being interrupted. So there is no
2942	 * real need to boost.
2943	 */
2944	if (unlikely(p == rq->idle)) {
2945		WARN_ON(p != rq->curr);
2946		WARN_ON(p->pi_blocked_on);
2947		goto out_unlock;
2948	}
2949
2950	trace_sched_pi_setprio(p, prio);
2951	p->pi_top_task = rt_mutex_get_top_task(p);
2952	oldprio = p->prio;
2953	prev_class = p->sched_class;
2954	on_rq = p->on_rq;
2955	running = task_current(rq, p);
2956	if (on_rq)
2957		dequeue_task(rq, p, 0);
2958	if (running)
2959		p->sched_class->put_prev_task(rq, p);
2960
2961	/*
2962	 * Boosting condition are:
2963	 * 1. -rt task is running and holds mutex A
2964	 *      --> -dl task blocks on mutex A
2965	 *
2966	 * 2. -dl task is running and holds mutex A
2967	 *      --> -dl task blocks on mutex A and could preempt the
2968	 *          running task
2969	 */
2970	if (dl_prio(prio)) {
2971		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2972			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2973			p->dl.dl_boosted = 1;
2974			p->dl.dl_throttled = 0;
2975			enqueue_flag = ENQUEUE_REPLENISH;
2976		} else
2977			p->dl.dl_boosted = 0;
2978		p->sched_class = &dl_sched_class;
2979	} else if (rt_prio(prio)) {
2980		if (dl_prio(oldprio))
2981			p->dl.dl_boosted = 0;
2982		if (oldprio < prio)
2983			enqueue_flag = ENQUEUE_HEAD;
2984		p->sched_class = &rt_sched_class;
2985	} else {
2986		if (dl_prio(oldprio))
2987			p->dl.dl_boosted = 0;
2988		p->sched_class = &fair_sched_class;
2989	}
2990
2991	p->prio = prio;
2992
2993	if (running)
2994		p->sched_class->set_curr_task(rq);
2995	if (on_rq)
2996		enqueue_task(rq, p, enqueue_flag);
2997
2998	check_class_changed(rq, p, prev_class, oldprio);
2999out_unlock:
3000	__task_rq_unlock(rq);
3001}
3002#endif
3003
3004void set_user_nice(struct task_struct *p, long nice)
3005{
3006	int old_prio, delta, on_rq;
3007	unsigned long flags;
3008	struct rq *rq;
3009
3010	if (task_nice(p) == nice || nice < -20 || nice > 19)
3011		return;
3012	/*
3013	 * We have to be careful, if called from sys_setpriority(),
3014	 * the task might be in the middle of scheduling on another CPU.
3015	 */
3016	rq = task_rq_lock(p, &flags);
3017	/*
3018	 * The RT priorities are set via sched_setscheduler(), but we still
3019	 * allow the 'normal' nice value to be set - but as expected
3020	 * it wont have any effect on scheduling until the task is
3021	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3022	 */
3023	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3024		p->static_prio = NICE_TO_PRIO(nice);
3025		goto out_unlock;
3026	}
3027	on_rq = p->on_rq;
3028	if (on_rq)
3029		dequeue_task(rq, p, 0);
3030
3031	p->static_prio = NICE_TO_PRIO(nice);
3032	set_load_weight(p);
3033	old_prio = p->prio;
3034	p->prio = effective_prio(p);
3035	delta = p->prio - old_prio;
3036
3037	if (on_rq) {
3038		enqueue_task(rq, p, 0);
3039		/*
3040		 * If the task increased its priority or is running and
3041		 * lowered its priority, then reschedule its CPU:
3042		 */
3043		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3044			resched_task(rq->curr);
3045	}
3046out_unlock:
3047	task_rq_unlock(rq, p, &flags);
3048}
3049EXPORT_SYMBOL(set_user_nice);
3050
3051/*
3052 * can_nice - check if a task can reduce its nice value
3053 * @p: task
3054 * @nice: nice value
3055 */
3056int can_nice(const struct task_struct *p, const int nice)
3057{
3058	/* convert nice value [19,-20] to rlimit style value [1,40] */
3059	int nice_rlim = 20 - nice;
3060
3061	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3062		capable(CAP_SYS_NICE));
3063}
3064
3065#ifdef __ARCH_WANT_SYS_NICE
3066
3067/*
3068 * sys_nice - change the priority of the current process.
3069 * @increment: priority increment
3070 *
3071 * sys_setpriority is a more generic, but much slower function that
3072 * does similar things.
3073 */
3074SYSCALL_DEFINE1(nice, int, increment)
3075{
3076	long nice, retval;
3077
3078	/*
3079	 * Setpriority might change our priority at the same moment.
3080	 * We don't have to worry. Conceptually one call occurs first
3081	 * and we have a single winner.
3082	 */
3083	if (increment < -40)
3084		increment = -40;
3085	if (increment > 40)
3086		increment = 40;
3087
3088	nice = task_nice(current) + increment;
3089	if (nice < -20)
3090		nice = -20;
3091	if (nice > 19)
3092		nice = 19;
3093
3094	if (increment < 0 && !can_nice(current, nice))
3095		return -EPERM;
3096
3097	retval = security_task_setnice(current, nice);
3098	if (retval)
3099		return retval;
3100
3101	set_user_nice(current, nice);
3102	return 0;
3103}
3104
3105#endif
3106
3107/**
3108 * task_prio - return the priority value of a given task.
3109 * @p: the task in question.
3110 *
3111 * Return: The priority value as seen by users in /proc.
3112 * RT tasks are offset by -200. Normal tasks are centered
3113 * around 0, value goes from -16 to +15.
3114 */
3115int task_prio(const struct task_struct *p)
3116{
3117	return p->prio - MAX_RT_PRIO;
3118}
3119
3120/**
3121 * idle_cpu - is a given cpu idle currently?
3122 * @cpu: the processor in question.
3123 *
3124 * Return: 1 if the CPU is currently idle. 0 otherwise.
3125 */
3126int idle_cpu(int cpu)
3127{
3128	struct rq *rq = cpu_rq(cpu);
3129
3130	if (rq->curr != rq->idle)
3131		return 0;
3132
3133	if (rq->nr_running)
3134		return 0;
3135
3136#ifdef CONFIG_SMP
3137	if (!llist_empty(&rq->wake_list))
3138		return 0;
3139#endif
3140
3141	return 1;
3142}
3143
3144/**
3145 * idle_task - return the idle task for a given cpu.
3146 * @cpu: the processor in question.
3147 *
3148 * Return: The idle task for the cpu @cpu.
3149 */
3150struct task_struct *idle_task(int cpu)
3151{
3152	return cpu_rq(cpu)->idle;
3153}
3154
3155/**
3156 * find_process_by_pid - find a process with a matching PID value.
3157 * @pid: the pid in question.
3158 *
3159 * The task of @pid, if found. %NULL otherwise.
3160 */
3161static struct task_struct *find_process_by_pid(pid_t pid)
3162{
3163	return pid ? find_task_by_vpid(pid) : current;
3164}
3165
3166/*
3167 * This function initializes the sched_dl_entity of a newly becoming
3168 * SCHED_DEADLINE task.
3169 *
3170 * Only the static values are considered here, the actual runtime and the
3171 * absolute deadline will be properly calculated when the task is enqueued
3172 * for the first time with its new policy.
3173 */
3174static void
3175__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3176{
3177	struct sched_dl_entity *dl_se = &p->dl;
3178
3179	init_dl_task_timer(dl_se);
3180	dl_se->dl_runtime = attr->sched_runtime;
3181	dl_se->dl_deadline = attr->sched_deadline;
3182	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3183	dl_se->flags = attr->sched_flags;
3184	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3185	dl_se->dl_throttled = 0;
3186	dl_se->dl_new = 1;
3187}
3188
3189/* Actually do priority change: must hold pi & rq lock. */
3190static void __setscheduler(struct rq *rq, struct task_struct *p,
3191			   const struct sched_attr *attr)
3192{
3193	int policy = attr->sched_policy;
3194
3195	if (policy == -1) /* setparam */
3196		policy = p->policy;
3197
3198	p->policy = policy;
3199
3200	if (dl_policy(policy))
3201		__setparam_dl(p, attr);
3202	else if (fair_policy(policy))
3203		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3204
3205	/*
3206	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3207	 * !rt_policy. Always setting this ensures that things like
3208	 * getparam()/getattr() don't report silly values for !rt tasks.
3209	 */
3210	p->rt_priority = attr->sched_priority;
3211
3212	p->normal_prio = normal_prio(p);
3213	p->prio = rt_mutex_getprio(p);
3214
3215	if (dl_prio(p->prio))
3216		p->sched_class = &dl_sched_class;
3217	else if (rt_prio(p->prio))
3218		p->sched_class = &rt_sched_class;
3219	else
3220		p->sched_class = &fair_sched_class;
3221
3222	set_load_weight(p);
3223}
3224
3225static void
3226__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3227{
3228	struct sched_dl_entity *dl_se = &p->dl;
3229
3230	attr->sched_priority = p->rt_priority;
3231	attr->sched_runtime = dl_se->dl_runtime;
3232	attr->sched_deadline = dl_se->dl_deadline;
3233	attr->sched_period = dl_se->dl_period;
3234	attr->sched_flags = dl_se->flags;
3235}
3236
3237/*
3238 * This function validates the new parameters of a -deadline task.
3239 * We ask for the deadline not being zero, and greater or equal
3240 * than the runtime, as well as the period of being zero or
3241 * greater than deadline. Furthermore, we have to be sure that
3242 * user parameters are above the internal resolution (1us); we
3243 * check sched_runtime only since it is always the smaller one.
3244 */
3245static bool
3246__checkparam_dl(const struct sched_attr *attr)
3247{
3248	return attr && attr->sched_deadline != 0 &&
3249		(attr->sched_period == 0 ||
3250		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3251		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3252		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3253}
3254
3255/*
3256 * check the target process has a UID that matches the current process's
3257 */
3258static bool check_same_owner(struct task_struct *p)
3259{
3260	const struct cred *cred = current_cred(), *pcred;
3261	bool match;
3262
3263	rcu_read_lock();
3264	pcred = __task_cred(p);
3265	match = (uid_eq(cred->euid, pcred->euid) ||
3266		 uid_eq(cred->euid, pcred->uid));
3267	rcu_read_unlock();
3268	return match;
3269}
3270
3271static int __sched_setscheduler(struct task_struct *p,
3272				const struct sched_attr *attr,
3273				bool user)
3274{
3275	int retval, oldprio, oldpolicy = -1, on_rq, running;
3276	int policy = attr->sched_policy;
3277	unsigned long flags;
3278	const struct sched_class *prev_class;
3279	struct rq *rq;
3280	int reset_on_fork;
3281
3282	/* may grab non-irq protected spin_locks */
3283	BUG_ON(in_interrupt());
3284recheck:
3285	/* double check policy once rq lock held */
3286	if (policy < 0) {
3287		reset_on_fork = p->sched_reset_on_fork;
3288		policy = oldpolicy = p->policy;
3289	} else {
3290		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3291
3292		if (policy != SCHED_DEADLINE &&
3293				policy != SCHED_FIFO && policy != SCHED_RR &&
3294				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3295				policy != SCHED_IDLE)
3296			return -EINVAL;
3297	}
3298
3299	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3300		return -EINVAL;
3301
3302	/*
3303	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3304	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3305	 * SCHED_BATCH and SCHED_IDLE is 0.
3306	 */
3307	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3308	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3309		return -EINVAL;
3310	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3311	    (rt_policy(policy) != (attr->sched_priority != 0)))
3312		return -EINVAL;
3313
3314	/*
3315	 * Allow unprivileged RT tasks to decrease priority:
3316	 */
3317	if (user && !capable(CAP_SYS_NICE)) {
3318		if (fair_policy(policy)) {
3319			if (attr->sched_nice < task_nice(p) &&
3320			    !can_nice(p, attr->sched_nice))
3321				return -EPERM;
3322		}
3323
3324		if (rt_policy(policy)) {
3325			unsigned long rlim_rtprio =
3326					task_rlimit(p, RLIMIT_RTPRIO);
3327
3328			/* can't set/change the rt policy */
3329			if (policy != p->policy && !rlim_rtprio)
3330				return -EPERM;
3331
3332			/* can't increase priority */
3333			if (attr->sched_priority > p->rt_priority &&
3334			    attr->sched_priority > rlim_rtprio)
3335				return -EPERM;
3336		}
3337
3338		/*
3339		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3340		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3341		 */
3342		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3343			if (!can_nice(p, task_nice(p)))
3344				return -EPERM;
3345		}
3346
3347		/* can't change other user's priorities */
3348		if (!check_same_owner(p))
3349			return -EPERM;
3350
3351		/* Normal users shall not reset the sched_reset_on_fork flag */
3352		if (p->sched_reset_on_fork && !reset_on_fork)
3353			return -EPERM;
3354	}
3355
3356	if (user) {
3357		retval = security_task_setscheduler(p);
3358		if (retval)
3359			return retval;
3360	}
3361
3362	/*
3363	 * make sure no PI-waiters arrive (or leave) while we are
3364	 * changing the priority of the task:
3365	 *
3366	 * To be able to change p->policy safely, the appropriate
3367	 * runqueue lock must be held.
3368	 */
3369	rq = task_rq_lock(p, &flags);
3370
3371	/*
3372	 * Changing the policy of the stop threads its a very bad idea
3373	 */
3374	if (p == rq->stop) {
3375		task_rq_unlock(rq, p, &flags);
3376		return -EINVAL;
3377	}
3378
3379	/*
3380	 * If not changing anything there's no need to proceed further:
3381	 */
3382	if (unlikely(policy == p->policy)) {
3383		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3384			goto change;
3385		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3386			goto change;
3387		if (dl_policy(policy))
3388			goto change;
3389
3390		task_rq_unlock(rq, p, &flags);
3391		return 0;
3392	}
3393change:
3394
3395	if (user) {
3396#ifdef CONFIG_RT_GROUP_SCHED
3397		/*
3398		 * Do not allow realtime tasks into groups that have no runtime
3399		 * assigned.
3400		 */
3401		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3402				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3403				!task_group_is_autogroup(task_group(p))) {
3404			task_rq_unlock(rq, p, &flags);
3405			return -EPERM;
3406		}
3407#endif
3408#ifdef CONFIG_SMP
3409		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3410			cpumask_t *span = rq->rd->span;
3411
3412			/*
3413			 * Don't allow tasks with an affinity mask smaller than
3414			 * the entire root_domain to become SCHED_DEADLINE. We
3415			 * will also fail if there's no bandwidth available.
3416			 */
3417			if (!cpumask_subset(span, &p->cpus_allowed) ||
3418			    rq->rd->dl_bw.bw == 0) {
3419				task_rq_unlock(rq, p, &flags);
3420				return -EPERM;
3421			}
3422		}
3423#endif
3424	}
3425
3426	/* recheck policy now with rq lock held */
3427	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3428		policy = oldpolicy = -1;
3429		task_rq_unlock(rq, p, &flags);
3430		goto recheck;
3431	}
3432
3433	/*
3434	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3435	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3436	 * is available.
3437	 */
3438	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3439		task_rq_unlock(rq, p, &flags);
3440		return -EBUSY;
3441	}
3442
3443	on_rq = p->on_rq;
3444	running = task_current(rq, p);
3445	if (on_rq)
3446		dequeue_task(rq, p, 0);
3447	if (running)
3448		p->sched_class->put_prev_task(rq, p);
3449
3450	p->sched_reset_on_fork = reset_on_fork;
3451
3452	oldprio = p->prio;
3453	prev_class = p->sched_class;
3454	__setscheduler(rq, p, attr);
3455
3456	if (running)
3457		p->sched_class->set_curr_task(rq);
3458	if (on_rq)
3459		enqueue_task(rq, p, 0);
3460
3461	check_class_changed(rq, p, prev_class, oldprio);
3462	task_rq_unlock(rq, p, &flags);
3463
3464	rt_mutex_adjust_pi(p);
3465
3466	return 0;
3467}
3468
3469static int _sched_setscheduler(struct task_struct *p, int policy,
3470			       const struct sched_param *param, bool check)
3471{
3472	struct sched_attr attr = {
3473		.sched_policy   = policy,
3474		.sched_priority = param->sched_priority,
3475		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3476	};
3477
3478	/*
3479	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3480	 */
3481	if (policy & SCHED_RESET_ON_FORK) {
3482		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3483		policy &= ~SCHED_RESET_ON_FORK;
3484		attr.sched_policy = policy;
3485	}
3486
3487	return __sched_setscheduler(p, &attr, check);
3488}
3489/**
3490 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3491 * @p: the task in question.
3492 * @policy: new policy.
3493 * @param: structure containing the new RT priority.
3494 *
3495 * Return: 0 on success. An error code otherwise.
3496 *
3497 * NOTE that the task may be already dead.
3498 */
3499int sched_setscheduler(struct task_struct *p, int policy,
3500		       const struct sched_param *param)
3501{
3502	return _sched_setscheduler(p, policy, param, true);
3503}
3504EXPORT_SYMBOL_GPL(sched_setscheduler);
3505
3506int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3507{
3508	return __sched_setscheduler(p, attr, true);
3509}
3510EXPORT_SYMBOL_GPL(sched_setattr);
3511
3512/**
3513 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3514 * @p: the task in question.
3515 * @policy: new policy.
3516 * @param: structure containing the new RT priority.
3517 *
3518 * Just like sched_setscheduler, only don't bother checking if the
3519 * current context has permission.  For example, this is needed in
3520 * stop_machine(): we create temporary high priority worker threads,
3521 * but our caller might not have that capability.
3522 *
3523 * Return: 0 on success. An error code otherwise.
3524 */
3525int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3526			       const struct sched_param *param)
3527{
3528	return _sched_setscheduler(p, policy, param, false);
3529}
3530
3531static int
3532do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3533{
3534	struct sched_param lparam;
3535	struct task_struct *p;
3536	int retval;
3537
3538	if (!param || pid < 0)
3539		return -EINVAL;
3540	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3541		return -EFAULT;
3542
3543	rcu_read_lock();
3544	retval = -ESRCH;
3545	p = find_process_by_pid(pid);
3546	if (p != NULL)
3547		retval = sched_setscheduler(p, policy, &lparam);
3548	rcu_read_unlock();
3549
3550	return retval;
3551}
3552
3553/*
3554 * Mimics kernel/events/core.c perf_copy_attr().
3555 */
3556static int sched_copy_attr(struct sched_attr __user *uattr,
3557			   struct sched_attr *attr)
3558{
3559	u32 size;
3560	int ret;
3561
3562	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3563		return -EFAULT;
3564
3565	/*
3566	 * zero the full structure, so that a short copy will be nice.
3567	 */
3568	memset(attr, 0, sizeof(*attr));
3569
3570	ret = get_user(size, &uattr->size);
3571	if (ret)
3572		return ret;
3573
3574	if (size > PAGE_SIZE)	/* silly large */
3575		goto err_size;
3576
3577	if (!size)		/* abi compat */
3578		size = SCHED_ATTR_SIZE_VER0;
3579
3580	if (size < SCHED_ATTR_SIZE_VER0)
3581		goto err_size;
3582
3583	/*
3584	 * If we're handed a bigger struct than we know of,
3585	 * ensure all the unknown bits are 0 - i.e. new
3586	 * user-space does not rely on any kernel feature
3587	 * extensions we dont know about yet.
3588	 */
3589	if (size > sizeof(*attr)) {
3590		unsigned char __user *addr;
3591		unsigned char __user *end;
3592		unsigned char val;
3593
3594		addr = (void __user *)uattr + sizeof(*attr);
3595		end  = (void __user *)uattr + size;
3596
3597		for (; addr < end; addr++) {
3598			ret = get_user(val, addr);
3599			if (ret)
3600				return ret;
3601			if (val)
3602				goto err_size;
3603		}
3604		size = sizeof(*attr);
3605	}
3606
3607	ret = copy_from_user(attr, uattr, size);
3608	if (ret)
3609		return -EFAULT;
3610
3611	/*
3612	 * XXX: do we want to be lenient like existing syscalls; or do we want
3613	 * to be strict and return an error on out-of-bounds values?
3614	 */
3615	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3616
3617out:
3618	return ret;
3619
3620err_size:
3621	put_user(sizeof(*attr), &uattr->size);
3622	ret = -E2BIG;
3623	goto out;
3624}
3625
3626/**
3627 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3628 * @pid: the pid in question.
3629 * @policy: new policy.
3630 * @param: structure containing the new RT priority.
3631 *
3632 * Return: 0 on success. An error code otherwise.
3633 */
3634SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3635		struct sched_param __user *, param)
3636{
3637	/* negative values for policy are not valid */
3638	if (policy < 0)
3639		return -EINVAL;
3640
3641	return do_sched_setscheduler(pid, policy, param);
3642}
3643
3644/**
3645 * sys_sched_setparam - set/change the RT priority of a thread
3646 * @pid: the pid in question.
3647 * @param: structure containing the new RT priority.
3648 *
3649 * Return: 0 on success. An error code otherwise.
3650 */
3651SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3652{
3653	return do_sched_setscheduler(pid, -1, param);
3654}
3655
3656/**
3657 * sys_sched_setattr - same as above, but with extended sched_attr
3658 * @pid: the pid in question.
3659 * @uattr: structure containing the extended parameters.
3660 */
3661SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3662{
3663	struct sched_attr attr;
3664	struct task_struct *p;
3665	int retval;
3666
3667	if (!uattr || pid < 0)
3668		return -EINVAL;
3669
3670	if (sched_copy_attr(uattr, &attr))
3671		return -EFAULT;
3672
3673	rcu_read_lock();
3674	retval = -ESRCH;
3675	p = find_process_by_pid(pid);
3676	if (p != NULL)
3677		retval = sched_setattr(p, &attr);
3678	rcu_read_unlock();
3679
3680	return retval;
3681}
3682
3683/**
3684 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3685 * @pid: the pid in question.
3686 *
3687 * Return: On success, the policy of the thread. Otherwise, a negative error
3688 * code.
3689 */
3690SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3691{
3692	struct task_struct *p;
3693	int retval;
3694
3695	if (pid < 0)
3696		return -EINVAL;
3697
3698	retval = -ESRCH;
3699	rcu_read_lock();
3700	p = find_process_by_pid(pid);
3701	if (p) {
3702		retval = security_task_getscheduler(p);
3703		if (!retval)
3704			retval = p->policy
3705				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3706	}
3707	rcu_read_unlock();
3708	return retval;
3709}
3710
3711/**
3712 * sys_sched_getparam - get the RT priority of a thread
3713 * @pid: the pid in question.
3714 * @param: structure containing the RT priority.
3715 *
3716 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3717 * code.
3718 */
3719SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3720{
3721	struct sched_param lp;
3722	struct task_struct *p;
3723	int retval;
3724
3725	if (!param || pid < 0)
3726		return -EINVAL;
3727
3728	rcu_read_lock();
3729	p = find_process_by_pid(pid);
3730	retval = -ESRCH;
3731	if (!p)
3732		goto out_unlock;
3733
3734	retval = security_task_getscheduler(p);
3735	if (retval)
3736		goto out_unlock;
3737
3738	if (task_has_dl_policy(p)) {
3739		retval = -EINVAL;
3740		goto out_unlock;
3741	}
3742	lp.sched_priority = p->rt_priority;
3743	rcu_read_unlock();
3744
3745	/*
3746	 * This one might sleep, we cannot do it with a spinlock held ...
3747	 */
3748	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3749
3750	return retval;
3751
3752out_unlock:
3753	rcu_read_unlock();
3754	return retval;
3755}
3756
3757static int sched_read_attr(struct sched_attr __user *uattr,
3758			   struct sched_attr *attr,
3759			   unsigned int usize)
3760{
3761	int ret;
3762
3763	if (!access_ok(VERIFY_WRITE, uattr, usize))
3764		return -EFAULT;
3765
3766	/*
3767	 * If we're handed a smaller struct than we know of,
3768	 * ensure all the unknown bits are 0 - i.e. old
3769	 * user-space does not get uncomplete information.
3770	 */
3771	if (usize < sizeof(*attr)) {
3772		unsigned char *addr;
3773		unsigned char *end;
3774
3775		addr = (void *)attr + usize;
3776		end  = (void *)attr + sizeof(*attr);
3777
3778		for (; addr < end; addr++) {
3779			if (*addr)
3780				goto err_size;
3781		}
3782
3783		attr->size = usize;
3784	}
3785
3786	ret = copy_to_user(uattr, attr, usize);
3787	if (ret)
3788		return -EFAULT;
3789
3790out:
3791	return ret;
3792
3793err_size:
3794	ret = -E2BIG;
3795	goto out;
3796}
3797
3798/**
3799 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3800 * @pid: the pid in question.
3801 * @uattr: structure containing the extended parameters.
3802 * @size: sizeof(attr) for fwd/bwd comp.
3803 */
3804SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3805		unsigned int, size)
3806{
3807	struct sched_attr attr = {
3808		.size = sizeof(struct sched_attr),
3809	};
3810	struct task_struct *p;
3811	int retval;
3812
3813	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3814	    size < SCHED_ATTR_SIZE_VER0)
3815		return -EINVAL;
3816
3817	rcu_read_lock();
3818	p = find_process_by_pid(pid);
3819	retval = -ESRCH;
3820	if (!p)
3821		goto out_unlock;
3822
3823	retval = security_task_getscheduler(p);
3824	if (retval)
3825		goto out_unlock;
3826
3827	attr.sched_policy = p->policy;
3828	if (p->sched_reset_on_fork)
3829		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3830	if (task_has_dl_policy(p))
3831		__getparam_dl(p, &attr);
3832	else if (task_has_rt_policy(p))
3833		attr.sched_priority = p->rt_priority;
3834	else
3835		attr.sched_nice = task_nice(p);
3836
3837	rcu_read_unlock();
3838
3839	retval = sched_read_attr(uattr, &attr, size);
3840	return retval;
3841
3842out_unlock:
3843	rcu_read_unlock();
3844	return retval;
3845}
3846
3847long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3848{
3849	cpumask_var_t cpus_allowed, new_mask;
3850	struct task_struct *p;
3851	int retval;
3852
3853	rcu_read_lock();
3854
3855	p = find_process_by_pid(pid);
3856	if (!p) {
3857		rcu_read_unlock();
3858		return -ESRCH;
3859	}
3860
3861	/* Prevent p going away */
3862	get_task_struct(p);
3863	rcu_read_unlock();
3864
3865	if (p->flags & PF_NO_SETAFFINITY) {
3866		retval = -EINVAL;
3867		goto out_put_task;
3868	}
3869	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3870		retval = -ENOMEM;
3871		goto out_put_task;
3872	}
3873	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3874		retval = -ENOMEM;
3875		goto out_free_cpus_allowed;
3876	}
3877	retval = -EPERM;
3878	if (!check_same_owner(p)) {
3879		rcu_read_lock();
3880		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3881			rcu_read_unlock();
3882			goto out_unlock;
3883		}
3884		rcu_read_unlock();
3885	}
3886
3887	retval = security_task_setscheduler(p);
3888	if (retval)
3889		goto out_unlock;
3890
3891
3892	cpuset_cpus_allowed(p, cpus_allowed);
3893	cpumask_and(new_mask, in_mask, cpus_allowed);
3894
3895	/*
3896	 * Since bandwidth control happens on root_domain basis,
3897	 * if admission test is enabled, we only admit -deadline
3898	 * tasks allowed to run on all the CPUs in the task's
3899	 * root_domain.
3900	 */
3901#ifdef CONFIG_SMP
3902	if (task_has_dl_policy(p)) {
3903		const struct cpumask *span = task_rq(p)->rd->span;
3904
3905		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3906			retval = -EBUSY;
3907			goto out_unlock;
3908		}
3909	}
3910#endif
3911again:
3912	retval = set_cpus_allowed_ptr(p, new_mask);
3913
3914	if (!retval) {
3915		cpuset_cpus_allowed(p, cpus_allowed);
3916		if (!cpumask_subset(new_mask, cpus_allowed)) {
3917			/*
3918			 * We must have raced with a concurrent cpuset
3919			 * update. Just reset the cpus_allowed to the
3920			 * cpuset's cpus_allowed
3921			 */
3922			cpumask_copy(new_mask, cpus_allowed);
3923			goto again;
3924		}
3925	}
3926out_unlock:
3927	free_cpumask_var(new_mask);
3928out_free_cpus_allowed:
3929	free_cpumask_var(cpus_allowed);
3930out_put_task:
3931	put_task_struct(p);
3932	return retval;
3933}
3934
3935static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3936			     struct cpumask *new_mask)
3937{
3938	if (len < cpumask_size())
3939		cpumask_clear(new_mask);
3940	else if (len > cpumask_size())
3941		len = cpumask_size();
3942
3943	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3944}
3945
3946/**
3947 * sys_sched_setaffinity - set the cpu affinity of a process
3948 * @pid: pid of the process
3949 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3950 * @user_mask_ptr: user-space pointer to the new cpu mask
3951 *
3952 * Return: 0 on success. An error code otherwise.
3953 */
3954SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3955		unsigned long __user *, user_mask_ptr)
3956{
3957	cpumask_var_t new_mask;
3958	int retval;
3959
3960	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3961		return -ENOMEM;
3962
3963	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3964	if (retval == 0)
3965		retval = sched_setaffinity(pid, new_mask);
3966	free_cpumask_var(new_mask);
3967	return retval;
3968}
3969
3970long sched_getaffinity(pid_t pid, struct cpumask *mask)
3971{
3972	struct task_struct *p;
3973	unsigned long flags;
3974	int retval;
3975
3976	rcu_read_lock();
3977
3978	retval = -ESRCH;
3979	p = find_process_by_pid(pid);
3980	if (!p)
3981		goto out_unlock;
3982
3983	retval = security_task_getscheduler(p);
3984	if (retval)
3985		goto out_unlock;
3986
3987	raw_spin_lock_irqsave(&p->pi_lock, flags);
3988	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3989	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3990
3991out_unlock:
3992	rcu_read_unlock();
3993
3994	return retval;
3995}
3996
3997/**
3998 * sys_sched_getaffinity - get the cpu affinity of a process
3999 * @pid: pid of the process
4000 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4001 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4002 *
4003 * Return: 0 on success. An error code otherwise.
4004 */
4005SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4006		unsigned long __user *, user_mask_ptr)
4007{
4008	int ret;
4009	cpumask_var_t mask;
4010
4011	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4012		return -EINVAL;
4013	if (len & (sizeof(unsigned long)-1))
4014		return -EINVAL;
4015
4016	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4017		return -ENOMEM;
4018
4019	ret = sched_getaffinity(pid, mask);
4020	if (ret == 0) {
4021		size_t retlen = min_t(size_t, len, cpumask_size());
4022
4023		if (copy_to_user(user_mask_ptr, mask, retlen))
4024			ret = -EFAULT;
4025		else
4026			ret = retlen;
4027	}
4028	free_cpumask_var(mask);
4029
4030	return ret;
4031}
4032
4033/**
4034 * sys_sched_yield - yield the current processor to other threads.
4035 *
4036 * This function yields the current CPU to other tasks. If there are no
4037 * other threads running on this CPU then this function will return.
4038 *
4039 * Return: 0.
4040 */
4041SYSCALL_DEFINE0(sched_yield)
4042{
4043	struct rq *rq = this_rq_lock();
4044
4045	schedstat_inc(rq, yld_count);
4046	current->sched_class->yield_task(rq);
4047
4048	/*
4049	 * Since we are going to call schedule() anyway, there's
4050	 * no need to preempt or enable interrupts:
4051	 */
4052	__release(rq->lock);
4053	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4054	do_raw_spin_unlock(&rq->lock);
4055	sched_preempt_enable_no_resched();
4056
4057	schedule();
4058
4059	return 0;
4060}
4061
4062static void __cond_resched(void)
4063{
4064	__preempt_count_add(PREEMPT_ACTIVE);
4065	__schedule();
4066	__preempt_count_sub(PREEMPT_ACTIVE);
4067}
4068
4069int __sched _cond_resched(void)
4070{
4071	if (should_resched()) {
4072		__cond_resched();
4073		return 1;
4074	}
4075	return 0;
4076}
4077EXPORT_SYMBOL(_cond_resched);
4078
4079/*
4080 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4081 * call schedule, and on return reacquire the lock.
4082 *
4083 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4084 * operations here to prevent schedule() from being called twice (once via
4085 * spin_unlock(), once by hand).
4086 */
4087int __cond_resched_lock(spinlock_t *lock)
4088{
4089	int resched = should_resched();
4090	int ret = 0;
4091
4092	lockdep_assert_held(lock);
4093
4094	if (spin_needbreak(lock) || resched) {
4095		spin_unlock(lock);
4096		if (resched)
4097			__cond_resched();
4098		else
4099			cpu_relax();
4100		ret = 1;
4101		spin_lock(lock);
4102	}
4103	return ret;
4104}
4105EXPORT_SYMBOL(__cond_resched_lock);
4106
4107int __sched __cond_resched_softirq(void)
4108{
4109	BUG_ON(!in_softirq());
4110
4111	if (should_resched()) {
4112		local_bh_enable();
4113		__cond_resched();
4114		local_bh_disable();
4115		return 1;
4116	}
4117	return 0;
4118}
4119EXPORT_SYMBOL(__cond_resched_softirq);
4120
4121/**
4122 * yield - yield the current processor to other threads.
4123 *
4124 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4125 *
4126 * The scheduler is at all times free to pick the calling task as the most
4127 * eligible task to run, if removing the yield() call from your code breaks
4128 * it, its already broken.
4129 *
4130 * Typical broken usage is:
4131 *
4132 * while (!event)
4133 * 	yield();
4134 *
4135 * where one assumes that yield() will let 'the other' process run that will
4136 * make event true. If the current task is a SCHED_FIFO task that will never
4137 * happen. Never use yield() as a progress guarantee!!
4138 *
4139 * If you want to use yield() to wait for something, use wait_event().
4140 * If you want to use yield() to be 'nice' for others, use cond_resched().
4141 * If you still want to use yield(), do not!
4142 */
4143void __sched yield(void)
4144{
4145	set_current_state(TASK_RUNNING);
4146	sys_sched_yield();
4147}
4148EXPORT_SYMBOL(yield);
4149
4150/**
4151 * yield_to - yield the current processor to another thread in
4152 * your thread group, or accelerate that thread toward the
4153 * processor it's on.
4154 * @p: target task
4155 * @preempt: whether task preemption is allowed or not
4156 *
4157 * It's the caller's job to ensure that the target task struct
4158 * can't go away on us before we can do any checks.
4159 *
4160 * Return:
4161 *	true (>0) if we indeed boosted the target task.
4162 *	false (0) if we failed to boost the target.
4163 *	-ESRCH if there's no task to yield to.
4164 */
4165bool __sched yield_to(struct task_struct *p, bool preempt)
4166{
4167	struct task_struct *curr = current;
4168	struct rq *rq, *p_rq;
4169	unsigned long flags;
4170	int yielded = 0;
4171
4172	local_irq_save(flags);
4173	rq = this_rq();
4174
4175again:
4176	p_rq = task_rq(p);
4177	/*
4178	 * If we're the only runnable task on the rq and target rq also
4179	 * has only one task, there's absolutely no point in yielding.
4180	 */
4181	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4182		yielded = -ESRCH;
4183		goto out_irq;
4184	}
4185
4186	double_rq_lock(rq, p_rq);
4187	if (task_rq(p) != p_rq) {
4188		double_rq_unlock(rq, p_rq);
4189		goto again;
4190	}
4191
4192	if (!curr->sched_class->yield_to_task)
4193		goto out_unlock;
4194
4195	if (curr->sched_class != p->sched_class)
4196		goto out_unlock;
4197
4198	if (task_running(p_rq, p) || p->state)
4199		goto out_unlock;
4200
4201	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4202	if (yielded) {
4203		schedstat_inc(rq, yld_count);
4204		/*
4205		 * Make p's CPU reschedule; pick_next_entity takes care of
4206		 * fairness.
4207		 */
4208		if (preempt && rq != p_rq)
4209			resched_task(p_rq->curr);
4210	}
4211
4212out_unlock:
4213	double_rq_unlock(rq, p_rq);
4214out_irq:
4215	local_irq_restore(flags);
4216
4217	if (yielded > 0)
4218		schedule();
4219
4220	return yielded;
4221}
4222EXPORT_SYMBOL_GPL(yield_to);
4223
4224/*
4225 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4226 * that process accounting knows that this is a task in IO wait state.
4227 */
4228void __sched io_schedule(void)
4229{
4230	struct rq *rq = raw_rq();
4231
4232	delayacct_blkio_start();
4233	atomic_inc(&rq->nr_iowait);
4234	blk_flush_plug(current);
4235	current->in_iowait = 1;
4236	schedule();
4237	current->in_iowait = 0;
4238	atomic_dec(&rq->nr_iowait);
4239	delayacct_blkio_end();
4240}
4241EXPORT_SYMBOL(io_schedule);
4242
4243long __sched io_schedule_timeout(long timeout)
4244{
4245	struct rq *rq = raw_rq();
4246	long ret;
4247
4248	delayacct_blkio_start();
4249	atomic_inc(&rq->nr_iowait);
4250	blk_flush_plug(current);
4251	current->in_iowait = 1;
4252	ret = schedule_timeout(timeout);
4253	current->in_iowait = 0;
4254	atomic_dec(&rq->nr_iowait);
4255	delayacct_blkio_end();
4256	return ret;
4257}
4258
4259/**
4260 * sys_sched_get_priority_max - return maximum RT priority.
4261 * @policy: scheduling class.
4262 *
4263 * Return: On success, this syscall returns the maximum
4264 * rt_priority that can be used by a given scheduling class.
4265 * On failure, a negative error code is returned.
4266 */
4267SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4268{
4269	int ret = -EINVAL;
4270
4271	switch (policy) {
4272	case SCHED_FIFO:
4273	case SCHED_RR:
4274		ret = MAX_USER_RT_PRIO-1;
4275		break;
4276	case SCHED_DEADLINE:
4277	case SCHED_NORMAL:
4278	case SCHED_BATCH:
4279	case SCHED_IDLE:
4280		ret = 0;
4281		break;
4282	}
4283	return ret;
4284}
4285
4286/**
4287 * sys_sched_get_priority_min - return minimum RT priority.
4288 * @policy: scheduling class.
4289 *
4290 * Return: On success, this syscall returns the minimum
4291 * rt_priority that can be used by a given scheduling class.
4292 * On failure, a negative error code is returned.
4293 */
4294SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4295{
4296	int ret = -EINVAL;
4297
4298	switch (policy) {
4299	case SCHED_FIFO:
4300	case SCHED_RR:
4301		ret = 1;
4302		break;
4303	case SCHED_DEADLINE:
4304	case SCHED_NORMAL:
4305	case SCHED_BATCH:
4306	case SCHED_IDLE:
4307		ret = 0;
4308	}
4309	return ret;
4310}
4311
4312/**
4313 * sys_sched_rr_get_interval - return the default timeslice of a process.
4314 * @pid: pid of the process.
4315 * @interval: userspace pointer to the timeslice value.
4316 *
4317 * this syscall writes the default timeslice value of a given process
4318 * into the user-space timespec buffer. A value of '0' means infinity.
4319 *
4320 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4321 * an error code.
4322 */
4323SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4324		struct timespec __user *, interval)
4325{
4326	struct task_struct *p;
4327	unsigned int time_slice;
4328	unsigned long flags;
4329	struct rq *rq;
4330	int retval;
4331	struct timespec t;
4332
4333	if (pid < 0)
4334		return -EINVAL;
4335
4336	retval = -ESRCH;
4337	rcu_read_lock();
4338	p = find_process_by_pid(pid);
4339	if (!p)
4340		goto out_unlock;
4341
4342	retval = security_task_getscheduler(p);
4343	if (retval)
4344		goto out_unlock;
4345
4346	rq = task_rq_lock(p, &flags);
4347	time_slice = 0;
4348	if (p->sched_class->get_rr_interval)
4349		time_slice = p->sched_class->get_rr_interval(rq, p);
4350	task_rq_unlock(rq, p, &flags);
4351
4352	rcu_read_unlock();
4353	jiffies_to_timespec(time_slice, &t);
4354	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4355	return retval;
4356
4357out_unlock:
4358	rcu_read_unlock();
4359	return retval;
4360}
4361
4362static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4363
4364void sched_show_task(struct task_struct *p)
4365{
4366	unsigned long free = 0;
4367	int ppid;
4368	unsigned state;
4369
4370	state = p->state ? __ffs(p->state) + 1 : 0;
4371	printk(KERN_INFO "%-15.15s %c", p->comm,
4372		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4373#if BITS_PER_LONG == 32
4374	if (state == TASK_RUNNING)
4375		printk(KERN_CONT " running  ");
4376	else
4377		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4378#else
4379	if (state == TASK_RUNNING)
4380		printk(KERN_CONT "  running task    ");
4381	else
4382		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4383#endif
4384#ifdef CONFIG_DEBUG_STACK_USAGE
4385	free = stack_not_used(p);
4386#endif
4387	rcu_read_lock();
4388	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4389	rcu_read_unlock();
4390	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4391		task_pid_nr(p), ppid,
4392		(unsigned long)task_thread_info(p)->flags);
4393
4394	print_worker_info(KERN_INFO, p);
4395	show_stack(p, NULL);
4396}
4397
4398void show_state_filter(unsigned long state_filter)
4399{
4400	struct task_struct *g, *p;
4401
4402#if BITS_PER_LONG == 32
4403	printk(KERN_INFO
4404		"  task                PC stack   pid father\n");
4405#else
4406	printk(KERN_INFO
4407		"  task                        PC stack   pid father\n");
4408#endif
4409	rcu_read_lock();
4410	do_each_thread(g, p) {
4411		/*
4412		 * reset the NMI-timeout, listing all files on a slow
4413		 * console might take a lot of time:
4414		 */
4415		touch_nmi_watchdog();
4416		if (!state_filter || (p->state & state_filter))
4417			sched_show_task(p);
4418	} while_each_thread(g, p);
4419
4420	touch_all_softlockup_watchdogs();
4421
4422#ifdef CONFIG_SCHED_DEBUG
4423	sysrq_sched_debug_show();
4424#endif
4425	rcu_read_unlock();
4426	/*
4427	 * Only show locks if all tasks are dumped:
4428	 */
4429	if (!state_filter)
4430		debug_show_all_locks();
4431}
4432
4433void init_idle_bootup_task(struct task_struct *idle)
4434{
4435	idle->sched_class = &idle_sched_class;
4436}
4437
4438/**
4439 * init_idle - set up an idle thread for a given CPU
4440 * @idle: task in question
4441 * @cpu: cpu the idle task belongs to
4442 *
4443 * NOTE: this function does not set the idle thread's NEED_RESCHED
4444 * flag, to make booting more robust.
4445 */
4446void init_idle(struct task_struct *idle, int cpu)
4447{
4448	struct rq *rq = cpu_rq(cpu);
4449	unsigned long flags;
4450
4451	raw_spin_lock_irqsave(&rq->lock, flags);
4452
4453	__sched_fork(0, idle);
4454	idle->state = TASK_RUNNING;
4455	idle->se.exec_start = sched_clock();
4456
4457	do_set_cpus_allowed(idle, cpumask_of(cpu));
4458	/*
4459	 * We're having a chicken and egg problem, even though we are
4460	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4461	 * lockdep check in task_group() will fail.
4462	 *
4463	 * Similar case to sched_fork(). / Alternatively we could
4464	 * use task_rq_lock() here and obtain the other rq->lock.
4465	 *
4466	 * Silence PROVE_RCU
4467	 */
4468	rcu_read_lock();
4469	__set_task_cpu(idle, cpu);
4470	rcu_read_unlock();
4471
4472	rq->curr = rq->idle = idle;
4473#if defined(CONFIG_SMP)
4474	idle->on_cpu = 1;
4475#endif
4476	raw_spin_unlock_irqrestore(&rq->lock, flags);
4477
4478	/* Set the preempt count _outside_ the spinlocks! */
4479	init_idle_preempt_count(idle, cpu);
4480
4481	/*
4482	 * The idle tasks have their own, simple scheduling class:
4483	 */
4484	idle->sched_class = &idle_sched_class;
4485	ftrace_graph_init_idle_task(idle, cpu);
4486	vtime_init_idle(idle, cpu);
4487#if defined(CONFIG_SMP)
4488	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4489#endif
4490}
4491
4492#ifdef CONFIG_SMP
4493void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4494{
4495	if (p->sched_class && p->sched_class->set_cpus_allowed)
4496		p->sched_class->set_cpus_allowed(p, new_mask);
4497
4498	cpumask_copy(&p->cpus_allowed, new_mask);
4499	p->nr_cpus_allowed = cpumask_weight(new_mask);
4500}
4501
4502/*
4503 * This is how migration works:
4504 *
4505 * 1) we invoke migration_cpu_stop() on the target CPU using
4506 *    stop_one_cpu().
4507 * 2) stopper starts to run (implicitly forcing the migrated thread
4508 *    off the CPU)
4509 * 3) it checks whether the migrated task is still in the wrong runqueue.
4510 * 4) if it's in the wrong runqueue then the migration thread removes
4511 *    it and puts it into the right queue.
4512 * 5) stopper completes and stop_one_cpu() returns and the migration
4513 *    is done.
4514 */
4515
4516/*
4517 * Change a given task's CPU affinity. Migrate the thread to a
4518 * proper CPU and schedule it away if the CPU it's executing on
4519 * is removed from the allowed bitmask.
4520 *
4521 * NOTE: the caller must have a valid reference to the task, the
4522 * task must not exit() & deallocate itself prematurely. The
4523 * call is not atomic; no spinlocks may be held.
4524 */
4525int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4526{
4527	unsigned long flags;
4528	struct rq *rq;
4529	unsigned int dest_cpu;
4530	int ret = 0;
4531
4532	rq = task_rq_lock(p, &flags);
4533
4534	if (cpumask_equal(&p->cpus_allowed, new_mask))
4535		goto out;
4536
4537	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4538		ret = -EINVAL;
4539		goto out;
4540	}
4541
4542	do_set_cpus_allowed(p, new_mask);
4543
4544	/* Can the task run on the task's current CPU? If so, we're done */
4545	if (cpumask_test_cpu(task_cpu(p), new_mask))
4546		goto out;
4547
4548	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4549	if (p->on_rq) {
4550		struct migration_arg arg = { p, dest_cpu };
4551		/* Need help from migration thread: drop lock and wait. */
4552		task_rq_unlock(rq, p, &flags);
4553		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4554		tlb_migrate_finish(p->mm);
4555		return 0;
4556	}
4557out:
4558	task_rq_unlock(rq, p, &flags);
4559
4560	return ret;
4561}
4562EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4563
4564/*
4565 * Move (not current) task off this cpu, onto dest cpu. We're doing
4566 * this because either it can't run here any more (set_cpus_allowed()
4567 * away from this CPU, or CPU going down), or because we're
4568 * attempting to rebalance this task on exec (sched_exec).
4569 *
4570 * So we race with normal scheduler movements, but that's OK, as long
4571 * as the task is no longer on this CPU.
4572 *
4573 * Returns non-zero if task was successfully migrated.
4574 */
4575static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4576{
4577	struct rq *rq_dest, *rq_src;
4578	int ret = 0;
4579
4580	if (unlikely(!cpu_active(dest_cpu)))
4581		return ret;
4582
4583	rq_src = cpu_rq(src_cpu);
4584	rq_dest = cpu_rq(dest_cpu);
4585
4586	raw_spin_lock(&p->pi_lock);
4587	double_rq_lock(rq_src, rq_dest);
4588	/* Already moved. */
4589	if (task_cpu(p) != src_cpu)
4590		goto done;
4591	/* Affinity changed (again). */
4592	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4593		goto fail;
4594
4595	/*
4596	 * If we're not on a rq, the next wake-up will ensure we're
4597	 * placed properly.
4598	 */
4599	if (p->on_rq) {
4600		dequeue_task(rq_src, p, 0);
4601		set_task_cpu(p, dest_cpu);
4602		enqueue_task(rq_dest, p, 0);
4603		check_preempt_curr(rq_dest, p, 0);
4604	}
4605done:
4606	ret = 1;
4607fail:
4608	double_rq_unlock(rq_src, rq_dest);
4609	raw_spin_unlock(&p->pi_lock);
4610	return ret;
4611}
4612
4613#ifdef CONFIG_NUMA_BALANCING
4614/* Migrate current task p to target_cpu */
4615int migrate_task_to(struct task_struct *p, int target_cpu)
4616{
4617	struct migration_arg arg = { p, target_cpu };
4618	int curr_cpu = task_cpu(p);
4619
4620	if (curr_cpu == target_cpu)
4621		return 0;
4622
4623	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4624		return -EINVAL;
4625
4626	/* TODO: This is not properly updating schedstats */
4627
4628	trace_sched_move_numa(p, curr_cpu, target_cpu);
4629	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4630}
4631
4632/*
4633 * Requeue a task on a given node and accurately track the number of NUMA
4634 * tasks on the runqueues
4635 */
4636void sched_setnuma(struct task_struct *p, int nid)
4637{
4638	struct rq *rq;
4639	unsigned long flags;
4640	bool on_rq, running;
4641
4642	rq = task_rq_lock(p, &flags);
4643	on_rq = p->on_rq;
4644	running = task_current(rq, p);
4645
4646	if (on_rq)
4647		dequeue_task(rq, p, 0);
4648	if (running)
4649		p->sched_class->put_prev_task(rq, p);
4650
4651	p->numa_preferred_nid = nid;
4652
4653	if (running)
4654		p->sched_class->set_curr_task(rq);
4655	if (on_rq)
4656		enqueue_task(rq, p, 0);
4657	task_rq_unlock(rq, p, &flags);
4658}
4659#endif
4660
4661/*
4662 * migration_cpu_stop - this will be executed by a highprio stopper thread
4663 * and performs thread migration by bumping thread off CPU then
4664 * 'pushing' onto another runqueue.
4665 */
4666static int migration_cpu_stop(void *data)
4667{
4668	struct migration_arg *arg = data;
4669
4670	/*
4671	 * The original target cpu might have gone down and we might
4672	 * be on another cpu but it doesn't matter.
4673	 */
4674	local_irq_disable();
4675	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4676	local_irq_enable();
4677	return 0;
4678}
4679
4680#ifdef CONFIG_HOTPLUG_CPU
4681
4682/*
4683 * Ensures that the idle task is using init_mm right before its cpu goes
4684 * offline.
4685 */
4686void idle_task_exit(void)
4687{
4688	struct mm_struct *mm = current->active_mm;
4689
4690	BUG_ON(cpu_online(smp_processor_id()));
4691
4692	if (mm != &init_mm)
4693		switch_mm(mm, &init_mm, current);
4694	mmdrop(mm);
4695}
4696
4697/*
4698 * Since this CPU is going 'away' for a while, fold any nr_active delta
4699 * we might have. Assumes we're called after migrate_tasks() so that the
4700 * nr_active count is stable.
4701 *
4702 * Also see the comment "Global load-average calculations".
4703 */
4704static void calc_load_migrate(struct rq *rq)
4705{
4706	long delta = calc_load_fold_active(rq);
4707	if (delta)
4708		atomic_long_add(delta, &calc_load_tasks);
4709}
4710
4711/*
4712 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4713 * try_to_wake_up()->select_task_rq().
4714 *
4715 * Called with rq->lock held even though we'er in stop_machine() and
4716 * there's no concurrency possible, we hold the required locks anyway
4717 * because of lock validation efforts.
4718 */
4719static void migrate_tasks(unsigned int dead_cpu)
4720{
4721	struct rq *rq = cpu_rq(dead_cpu);
4722	struct task_struct *next, *stop = rq->stop;
4723	int dest_cpu;
4724
4725	/*
4726	 * Fudge the rq selection such that the below task selection loop
4727	 * doesn't get stuck on the currently eligible stop task.
4728	 *
4729	 * We're currently inside stop_machine() and the rq is either stuck
4730	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4731	 * either way we should never end up calling schedule() until we're
4732	 * done here.
4733	 */
4734	rq->stop = NULL;
4735
4736	/*
4737	 * put_prev_task() and pick_next_task() sched
4738	 * class method both need to have an up-to-date
4739	 * value of rq->clock[_task]
4740	 */
4741	update_rq_clock(rq);
4742
4743	for ( ; ; ) {
4744		/*
4745		 * There's this thread running, bail when that's the only
4746		 * remaining thread.
4747		 */
4748		if (rq->nr_running == 1)
4749			break;
4750
4751		next = pick_next_task(rq);
4752		BUG_ON(!next);
4753		next->sched_class->put_prev_task(rq, next);
4754
4755		/* Find suitable destination for @next, with force if needed. */
4756		dest_cpu = select_fallback_rq(dead_cpu, next);
4757		raw_spin_unlock(&rq->lock);
4758
4759		__migrate_task(next, dead_cpu, dest_cpu);
4760
4761		raw_spin_lock(&rq->lock);
4762	}
4763
4764	rq->stop = stop;
4765}
4766
4767#endif /* CONFIG_HOTPLUG_CPU */
4768
4769#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4770
4771static struct ctl_table sd_ctl_dir[] = {
4772	{
4773		.procname	= "sched_domain",
4774		.mode		= 0555,
4775	},
4776	{}
4777};
4778
4779static struct ctl_table sd_ctl_root[] = {
4780	{
4781		.procname	= "kernel",
4782		.mode		= 0555,
4783		.child		= sd_ctl_dir,
4784	},
4785	{}
4786};
4787
4788static struct ctl_table *sd_alloc_ctl_entry(int n)
4789{
4790	struct ctl_table *entry =
4791		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4792
4793	return entry;
4794}
4795
4796static void sd_free_ctl_entry(struct ctl_table **tablep)
4797{
4798	struct ctl_table *entry;
4799
4800	/*
4801	 * In the intermediate directories, both the child directory and
4802	 * procname are dynamically allocated and could fail but the mode
4803	 * will always be set. In the lowest directory the names are
4804	 * static strings and all have proc handlers.
4805	 */
4806	for (entry = *tablep; entry->mode; entry++) {
4807		if (entry->child)
4808			sd_free_ctl_entry(&entry->child);
4809		if (entry->proc_handler == NULL)
4810			kfree(entry->procname);
4811	}
4812
4813	kfree(*tablep);
4814	*tablep = NULL;
4815}
4816
4817static int min_load_idx = 0;
4818static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4819
4820static void
4821set_table_entry(struct ctl_table *entry,
4822		const char *procname, void *data, int maxlen,
4823		umode_t mode, proc_handler *proc_handler,
4824		bool load_idx)
4825{
4826	entry->procname = procname;
4827	entry->data = data;
4828	entry->maxlen = maxlen;
4829	entry->mode = mode;
4830	entry->proc_handler = proc_handler;
4831
4832	if (load_idx) {
4833		entry->extra1 = &min_load_idx;
4834		entry->extra2 = &max_load_idx;
4835	}
4836}
4837
4838static struct ctl_table *
4839sd_alloc_ctl_domain_table(struct sched_domain *sd)
4840{
4841	struct ctl_table *table = sd_alloc_ctl_entry(13);
4842
4843	if (table == NULL)
4844		return NULL;
4845
4846	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4847		sizeof(long), 0644, proc_doulongvec_minmax, false);
4848	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4849		sizeof(long), 0644, proc_doulongvec_minmax, false);
4850	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4851		sizeof(int), 0644, proc_dointvec_minmax, true);
4852	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4853		sizeof(int), 0644, proc_dointvec_minmax, true);
4854	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4855		sizeof(int), 0644, proc_dointvec_minmax, true);
4856	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4857		sizeof(int), 0644, proc_dointvec_minmax, true);
4858	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4859		sizeof(int), 0644, proc_dointvec_minmax, true);
4860	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4861		sizeof(int), 0644, proc_dointvec_minmax, false);
4862	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4863		sizeof(int), 0644, proc_dointvec_minmax, false);
4864	set_table_entry(&table[9], "cache_nice_tries",
4865		&sd->cache_nice_tries,
4866		sizeof(int), 0644, proc_dointvec_minmax, false);
4867	set_table_entry(&table[10], "flags", &sd->flags,
4868		sizeof(int), 0644, proc_dointvec_minmax, false);
4869	set_table_entry(&table[11], "name", sd->name,
4870		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4871	/* &table[12] is terminator */
4872
4873	return table;
4874}
4875
4876static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4877{
4878	struct ctl_table *entry, *table;
4879	struct sched_domain *sd;
4880	int domain_num = 0, i;
4881	char buf[32];
4882
4883	for_each_domain(cpu, sd)
4884		domain_num++;
4885	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4886	if (table == NULL)
4887		return NULL;
4888
4889	i = 0;
4890	for_each_domain(cpu, sd) {
4891		snprintf(buf, 32, "domain%d", i);
4892		entry->procname = kstrdup(buf, GFP_KERNEL);
4893		entry->mode = 0555;
4894		entry->child = sd_alloc_ctl_domain_table(sd);
4895		entry++;
4896		i++;
4897	}
4898	return table;
4899}
4900
4901static struct ctl_table_header *sd_sysctl_header;
4902static void register_sched_domain_sysctl(void)
4903{
4904	int i, cpu_num = num_possible_cpus();
4905	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4906	char buf[32];
4907
4908	WARN_ON(sd_ctl_dir[0].child);
4909	sd_ctl_dir[0].child = entry;
4910
4911	if (entry == NULL)
4912		return;
4913
4914	for_each_possible_cpu(i) {
4915		snprintf(buf, 32, "cpu%d", i);
4916		entry->procname = kstrdup(buf, GFP_KERNEL);
4917		entry->mode = 0555;
4918		entry->child = sd_alloc_ctl_cpu_table(i);
4919		entry++;
4920	}
4921
4922	WARN_ON(sd_sysctl_header);
4923	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4924}
4925
4926/* may be called multiple times per register */
4927static void unregister_sched_domain_sysctl(void)
4928{
4929	if (sd_sysctl_header)
4930		unregister_sysctl_table(sd_sysctl_header);
4931	sd_sysctl_header = NULL;
4932	if (sd_ctl_dir[0].child)
4933		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4934}
4935#else
4936static void register_sched_domain_sysctl(void)
4937{
4938}
4939static void unregister_sched_domain_sysctl(void)
4940{
4941}
4942#endif
4943
4944static void set_rq_online(struct rq *rq)
4945{
4946	if (!rq->online) {
4947		const struct sched_class *class;
4948
4949		cpumask_set_cpu(rq->cpu, rq->rd->online);
4950		rq->online = 1;
4951
4952		for_each_class(class) {
4953			if (class->rq_online)
4954				class->rq_online(rq);
4955		}
4956	}
4957}
4958
4959static void set_rq_offline(struct rq *rq)
4960{
4961	if (rq->online) {
4962		const struct sched_class *class;
4963
4964		for_each_class(class) {
4965			if (class->rq_offline)
4966				class->rq_offline(rq);
4967		}
4968
4969		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4970		rq->online = 0;
4971	}
4972}
4973
4974/*
4975 * migration_call - callback that gets triggered when a CPU is added.
4976 * Here we can start up the necessary migration thread for the new CPU.
4977 */
4978static int
4979migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4980{
4981	int cpu = (long)hcpu;
4982	unsigned long flags;
4983	struct rq *rq = cpu_rq(cpu);
4984
4985	switch (action & ~CPU_TASKS_FROZEN) {
4986
4987	case CPU_UP_PREPARE:
4988		rq->calc_load_update = calc_load_update;
4989		break;
4990
4991	case CPU_ONLINE:
4992		/* Update our root-domain */
4993		raw_spin_lock_irqsave(&rq->lock, flags);
4994		if (rq->rd) {
4995			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4996
4997			set_rq_online(rq);
4998		}
4999		raw_spin_unlock_irqrestore(&rq->lock, flags);
5000		break;
5001
5002#ifdef CONFIG_HOTPLUG_CPU
5003	case CPU_DYING:
5004		sched_ttwu_pending();
5005		/* Update our root-domain */
5006		raw_spin_lock_irqsave(&rq->lock, flags);
5007		if (rq->rd) {
5008			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5009			set_rq_offline(rq);
5010		}
5011		migrate_tasks(cpu);
5012		BUG_ON(rq->nr_running != 1); /* the migration thread */
5013		raw_spin_unlock_irqrestore(&rq->lock, flags);
5014		break;
5015
5016	case CPU_DEAD:
5017		calc_load_migrate(rq);
5018		break;
5019#endif
5020	}
5021
5022	update_max_interval();
5023
5024	return NOTIFY_OK;
5025}
5026
5027/*
5028 * Register at high priority so that task migration (migrate_all_tasks)
5029 * happens before everything else.  This has to be lower priority than
5030 * the notifier in the perf_event subsystem, though.
5031 */
5032static struct notifier_block migration_notifier = {
5033	.notifier_call = migration_call,
5034	.priority = CPU_PRI_MIGRATION,
5035};
5036
5037static int sched_cpu_active(struct notifier_block *nfb,
5038				      unsigned long action, void *hcpu)
5039{
5040	switch (action & ~CPU_TASKS_FROZEN) {
5041	case CPU_STARTING:
5042	case CPU_DOWN_FAILED:
5043		set_cpu_active((long)hcpu, true);
5044		return NOTIFY_OK;
5045	default:
5046		return NOTIFY_DONE;
5047	}
5048}
5049
5050static int sched_cpu_inactive(struct notifier_block *nfb,
5051					unsigned long action, void *hcpu)
5052{
5053	unsigned long flags;
5054	long cpu = (long)hcpu;
5055
5056	switch (action & ~CPU_TASKS_FROZEN) {
5057	case CPU_DOWN_PREPARE:
5058		set_cpu_active(cpu, false);
5059
5060		/* explicitly allow suspend */
5061		if (!(action & CPU_TASKS_FROZEN)) {
5062			struct dl_bw *dl_b = dl_bw_of(cpu);
5063			bool overflow;
5064			int cpus;
5065
5066			raw_spin_lock_irqsave(&dl_b->lock, flags);
5067			cpus = dl_bw_cpus(cpu);
5068			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5069			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5070
5071			if (overflow)
5072				return notifier_from_errno(-EBUSY);
5073		}
5074		return NOTIFY_OK;
5075	}
5076
5077	return NOTIFY_DONE;
5078}
5079
5080static int __init migration_init(void)
5081{
5082	void *cpu = (void *)(long)smp_processor_id();
5083	int err;
5084
5085	/* Initialize migration for the boot CPU */
5086	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5087	BUG_ON(err == NOTIFY_BAD);
5088	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5089	register_cpu_notifier(&migration_notifier);
5090
5091	/* Register cpu active notifiers */
5092	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5093	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5094
5095	return 0;
5096}
5097early_initcall(migration_init);
5098#endif
5099
5100#ifdef CONFIG_SMP
5101
5102static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5103
5104#ifdef CONFIG_SCHED_DEBUG
5105
5106static __read_mostly int sched_debug_enabled;
5107
5108static int __init sched_debug_setup(char *str)
5109{
5110	sched_debug_enabled = 1;
5111
5112	return 0;
5113}
5114early_param("sched_debug", sched_debug_setup);
5115
5116static inline bool sched_debug(void)
5117{
5118	return sched_debug_enabled;
5119}
5120
5121static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5122				  struct cpumask *groupmask)
5123{
5124	struct sched_group *group = sd->groups;
5125	char str[256];
5126
5127	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5128	cpumask_clear(groupmask);
5129
5130	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5131
5132	if (!(sd->flags & SD_LOAD_BALANCE)) {
5133		printk("does not load-balance\n");
5134		if (sd->parent)
5135			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5136					" has parent");
5137		return -1;
5138	}
5139
5140	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5141
5142	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5143		printk(KERN_ERR "ERROR: domain->span does not contain "
5144				"CPU%d\n", cpu);
5145	}
5146	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5147		printk(KERN_ERR "ERROR: domain->groups does not contain"
5148				" CPU%d\n", cpu);
5149	}
5150
5151	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5152	do {
5153		if (!group) {
5154			printk("\n");
5155			printk(KERN_ERR "ERROR: group is NULL\n");
5156			break;
5157		}
5158
5159		/*
5160		 * Even though we initialize ->power to something semi-sane,
5161		 * we leave power_orig unset. This allows us to detect if
5162		 * domain iteration is still funny without causing /0 traps.
5163		 */
5164		if (!group->sgp->power_orig) {
5165			printk(KERN_CONT "\n");
5166			printk(KERN_ERR "ERROR: domain->cpu_power not "
5167					"set\n");
5168			break;
5169		}
5170
5171		if (!cpumask_weight(sched_group_cpus(group))) {
5172			printk(KERN_CONT "\n");
5173			printk(KERN_ERR "ERROR: empty group\n");
5174			break;
5175		}
5176
5177		if (!(sd->flags & SD_OVERLAP) &&
5178		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5179			printk(KERN_CONT "\n");
5180			printk(KERN_ERR "ERROR: repeated CPUs\n");
5181			break;
5182		}
5183
5184		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5185
5186		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5187
5188		printk(KERN_CONT " %s", str);
5189		if (group->sgp->power != SCHED_POWER_SCALE) {
5190			printk(KERN_CONT " (cpu_power = %d)",
5191				group->sgp->power);
5192		}
5193
5194		group = group->next;
5195	} while (group != sd->groups);
5196	printk(KERN_CONT "\n");
5197
5198	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5199		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5200
5201	if (sd->parent &&
5202	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5203		printk(KERN_ERR "ERROR: parent span is not a superset "
5204			"of domain->span\n");
5205	return 0;
5206}
5207
5208static void sched_domain_debug(struct sched_domain *sd, int cpu)
5209{
5210	int level = 0;
5211
5212	if (!sched_debug_enabled)
5213		return;
5214
5215	if (!sd) {
5216		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5217		return;
5218	}
5219
5220	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5221
5222	for (;;) {
5223		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5224			break;
5225		level++;
5226		sd = sd->parent;
5227		if (!sd)
5228			break;
5229	}
5230}
5231#else /* !CONFIG_SCHED_DEBUG */
5232# define sched_domain_debug(sd, cpu) do { } while (0)
5233static inline bool sched_debug(void)
5234{
5235	return false;
5236}
5237#endif /* CONFIG_SCHED_DEBUG */
5238
5239static int sd_degenerate(struct sched_domain *sd)
5240{
5241	if (cpumask_weight(sched_domain_span(sd)) == 1)
5242		return 1;
5243
5244	/* Following flags need at least 2 groups */
5245	if (sd->flags & (SD_LOAD_BALANCE |
5246			 SD_BALANCE_NEWIDLE |
5247			 SD_BALANCE_FORK |
5248			 SD_BALANCE_EXEC |
5249			 SD_SHARE_CPUPOWER |
5250			 SD_SHARE_PKG_RESOURCES)) {
5251		if (sd->groups != sd->groups->next)
5252			return 0;
5253	}
5254
5255	/* Following flags don't use groups */
5256	if (sd->flags & (SD_WAKE_AFFINE))
5257		return 0;
5258
5259	return 1;
5260}
5261
5262static int
5263sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5264{
5265	unsigned long cflags = sd->flags, pflags = parent->flags;
5266
5267	if (sd_degenerate(parent))
5268		return 1;
5269
5270	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5271		return 0;
5272
5273	/* Flags needing groups don't count if only 1 group in parent */
5274	if (parent->groups == parent->groups->next) {
5275		pflags &= ~(SD_LOAD_BALANCE |
5276				SD_BALANCE_NEWIDLE |
5277				SD_BALANCE_FORK |
5278				SD_BALANCE_EXEC |
5279				SD_SHARE_CPUPOWER |
5280				SD_SHARE_PKG_RESOURCES |
5281				SD_PREFER_SIBLING);
5282		if (nr_node_ids == 1)
5283			pflags &= ~SD_SERIALIZE;
5284	}
5285	if (~cflags & pflags)
5286		return 0;
5287
5288	return 1;
5289}
5290
5291static void free_rootdomain(struct rcu_head *rcu)
5292{
5293	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5294
5295	cpupri_cleanup(&rd->cpupri);
5296	cpudl_cleanup(&rd->cpudl);
5297	free_cpumask_var(rd->dlo_mask);
5298	free_cpumask_var(rd->rto_mask);
5299	free_cpumask_var(rd->online);
5300	free_cpumask_var(rd->span);
5301	kfree(rd);
5302}
5303
5304static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5305{
5306	struct root_domain *old_rd = NULL;
5307	unsigned long flags;
5308
5309	raw_spin_lock_irqsave(&rq->lock, flags);
5310
5311	if (rq->rd) {
5312		old_rd = rq->rd;
5313
5314		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5315			set_rq_offline(rq);
5316
5317		cpumask_clear_cpu(rq->cpu, old_rd->span);
5318
5319		/*
5320		 * If we dont want to free the old_rd yet then
5321		 * set old_rd to NULL to skip the freeing later
5322		 * in this function:
5323		 */
5324		if (!atomic_dec_and_test(&old_rd->refcount))
5325			old_rd = NULL;
5326	}
5327
5328	atomic_inc(&rd->refcount);
5329	rq->rd = rd;
5330
5331	cpumask_set_cpu(rq->cpu, rd->span);
5332	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5333		set_rq_online(rq);
5334
5335	raw_spin_unlock_irqrestore(&rq->lock, flags);
5336
5337	if (old_rd)
5338		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5339}
5340
5341static int init_rootdomain(struct root_domain *rd)
5342{
5343	memset(rd, 0, sizeof(*rd));
5344
5345	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5346		goto out;
5347	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5348		goto free_span;
5349	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5350		goto free_online;
5351	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5352		goto free_dlo_mask;
5353
5354	init_dl_bw(&rd->dl_bw);
5355	if (cpudl_init(&rd->cpudl) != 0)
5356		goto free_dlo_mask;
5357
5358	if (cpupri_init(&rd->cpupri) != 0)
5359		goto free_rto_mask;
5360	return 0;
5361
5362free_rto_mask:
5363	free_cpumask_var(rd->rto_mask);
5364free_dlo_mask:
5365	free_cpumask_var(rd->dlo_mask);
5366free_online:
5367	free_cpumask_var(rd->online);
5368free_span:
5369	free_cpumask_var(rd->span);
5370out:
5371	return -ENOMEM;
5372}
5373
5374/*
5375 * By default the system creates a single root-domain with all cpus as
5376 * members (mimicking the global state we have today).
5377 */
5378struct root_domain def_root_domain;
5379
5380static void init_defrootdomain(void)
5381{
5382	init_rootdomain(&def_root_domain);
5383
5384	atomic_set(&def_root_domain.refcount, 1);
5385}
5386
5387static struct root_domain *alloc_rootdomain(void)
5388{
5389	struct root_domain *rd;
5390
5391	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5392	if (!rd)
5393		return NULL;
5394
5395	if (init_rootdomain(rd) != 0) {
5396		kfree(rd);
5397		return NULL;
5398	}
5399
5400	return rd;
5401}
5402
5403static void free_sched_groups(struct sched_group *sg, int free_sgp)
5404{
5405	struct sched_group *tmp, *first;
5406
5407	if (!sg)
5408		return;
5409
5410	first = sg;
5411	do {
5412		tmp = sg->next;
5413
5414		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5415			kfree(sg->sgp);
5416
5417		kfree(sg);
5418		sg = tmp;
5419	} while (sg != first);
5420}
5421
5422static void free_sched_domain(struct rcu_head *rcu)
5423{
5424	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5425
5426	/*
5427	 * If its an overlapping domain it has private groups, iterate and
5428	 * nuke them all.
5429	 */
5430	if (sd->flags & SD_OVERLAP) {
5431		free_sched_groups(sd->groups, 1);
5432	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5433		kfree(sd->groups->sgp);
5434		kfree(sd->groups);
5435	}
5436	kfree(sd);
5437}
5438
5439static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5440{
5441	call_rcu(&sd->rcu, free_sched_domain);
5442}
5443
5444static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5445{
5446	for (; sd; sd = sd->parent)
5447		destroy_sched_domain(sd, cpu);
5448}
5449
5450/*
5451 * Keep a special pointer to the highest sched_domain that has
5452 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5453 * allows us to avoid some pointer chasing select_idle_sibling().
5454 *
5455 * Also keep a unique ID per domain (we use the first cpu number in
5456 * the cpumask of the domain), this allows us to quickly tell if
5457 * two cpus are in the same cache domain, see cpus_share_cache().
5458 */
5459DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5460DEFINE_PER_CPU(int, sd_llc_size);
5461DEFINE_PER_CPU(int, sd_llc_id);
5462DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5463DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5464DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5465
5466static void update_top_cache_domain(int cpu)
5467{
5468	struct sched_domain *sd;
5469	struct sched_domain *busy_sd = NULL;
5470	int id = cpu;
5471	int size = 1;
5472
5473	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5474	if (sd) {
5475		id = cpumask_first(sched_domain_span(sd));
5476		size = cpumask_weight(sched_domain_span(sd));
5477		busy_sd = sd->parent; /* sd_busy */
5478	}
5479	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5480
5481	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5482	per_cpu(sd_llc_size, cpu) = size;
5483	per_cpu(sd_llc_id, cpu) = id;
5484
5485	sd = lowest_flag_domain(cpu, SD_NUMA);
5486	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5487
5488	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5489	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5490}
5491
5492/*
5493 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5494 * hold the hotplug lock.
5495 */
5496static void
5497cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5498{
5499	struct rq *rq = cpu_rq(cpu);
5500	struct sched_domain *tmp;
5501
5502	/* Remove the sched domains which do not contribute to scheduling. */
5503	for (tmp = sd; tmp; ) {
5504		struct sched_domain *parent = tmp->parent;
5505		if (!parent)
5506			break;
5507
5508		if (sd_parent_degenerate(tmp, parent)) {
5509			tmp->parent = parent->parent;
5510			if (parent->parent)
5511				parent->parent->child = tmp;
5512			/*
5513			 * Transfer SD_PREFER_SIBLING down in case of a
5514			 * degenerate parent; the spans match for this
5515			 * so the property transfers.
5516			 */
5517			if (parent->flags & SD_PREFER_SIBLING)
5518				tmp->flags |= SD_PREFER_SIBLING;
5519			destroy_sched_domain(parent, cpu);
5520		} else
5521			tmp = tmp->parent;
5522	}
5523
5524	if (sd && sd_degenerate(sd)) {
5525		tmp = sd;
5526		sd = sd->parent;
5527		destroy_sched_domain(tmp, cpu);
5528		if (sd)
5529			sd->child = NULL;
5530	}
5531
5532	sched_domain_debug(sd, cpu);
5533
5534	rq_attach_root(rq, rd);
5535	tmp = rq->sd;
5536	rcu_assign_pointer(rq->sd, sd);
5537	destroy_sched_domains(tmp, cpu);
5538
5539	update_top_cache_domain(cpu);
5540}
5541
5542/* cpus with isolated domains */
5543static cpumask_var_t cpu_isolated_map;
5544
5545/* Setup the mask of cpus configured for isolated domains */
5546static int __init isolated_cpu_setup(char *str)
5547{
5548	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5549	cpulist_parse(str, cpu_isolated_map);
5550	return 1;
5551}
5552
5553__setup("isolcpus=", isolated_cpu_setup);
5554
5555static const struct cpumask *cpu_cpu_mask(int cpu)
5556{
5557	return cpumask_of_node(cpu_to_node(cpu));
5558}
5559
5560struct sd_data {
5561	struct sched_domain **__percpu sd;
5562	struct sched_group **__percpu sg;
5563	struct sched_group_power **__percpu sgp;
5564};
5565
5566struct s_data {
5567	struct sched_domain ** __percpu sd;
5568	struct root_domain	*rd;
5569};
5570
5571enum s_alloc {
5572	sa_rootdomain,
5573	sa_sd,
5574	sa_sd_storage,
5575	sa_none,
5576};
5577
5578struct sched_domain_topology_level;
5579
5580typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5581typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5582
5583#define SDTL_OVERLAP	0x01
5584
5585struct sched_domain_topology_level {
5586	sched_domain_init_f init;
5587	sched_domain_mask_f mask;
5588	int		    flags;
5589	int		    numa_level;
5590	struct sd_data      data;
5591};
5592
5593/*
5594 * Build an iteration mask that can exclude certain CPUs from the upwards
5595 * domain traversal.
5596 *
5597 * Asymmetric node setups can result in situations where the domain tree is of
5598 * unequal depth, make sure to skip domains that already cover the entire
5599 * range.
5600 *
5601 * In that case build_sched_domains() will have terminated the iteration early
5602 * and our sibling sd spans will be empty. Domains should always include the
5603 * cpu they're built on, so check that.
5604 *
5605 */
5606static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5607{
5608	const struct cpumask *span = sched_domain_span(sd);
5609	struct sd_data *sdd = sd->private;
5610	struct sched_domain *sibling;
5611	int i;
5612
5613	for_each_cpu(i, span) {
5614		sibling = *per_cpu_ptr(sdd->sd, i);
5615		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5616			continue;
5617
5618		cpumask_set_cpu(i, sched_group_mask(sg));
5619	}
5620}
5621
5622/*
5623 * Return the canonical balance cpu for this group, this is the first cpu
5624 * of this group that's also in the iteration mask.
5625 */
5626int group_balance_cpu(struct sched_group *sg)
5627{
5628	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5629}
5630
5631static int
5632build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5633{
5634	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5635	const struct cpumask *span = sched_domain_span(sd);
5636	struct cpumask *covered = sched_domains_tmpmask;
5637	struct sd_data *sdd = sd->private;
5638	struct sched_domain *child;
5639	int i;
5640
5641	cpumask_clear(covered);
5642
5643	for_each_cpu(i, span) {
5644		struct cpumask *sg_span;
5645
5646		if (cpumask_test_cpu(i, covered))
5647			continue;
5648
5649		child = *per_cpu_ptr(sdd->sd, i);
5650
5651		/* See the comment near build_group_mask(). */
5652		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5653			continue;
5654
5655		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5656				GFP_KERNEL, cpu_to_node(cpu));
5657
5658		if (!sg)
5659			goto fail;
5660
5661		sg_span = sched_group_cpus(sg);
5662		if (child->child) {
5663			child = child->child;
5664			cpumask_copy(sg_span, sched_domain_span(child));
5665		} else
5666			cpumask_set_cpu(i, sg_span);
5667
5668		cpumask_or(covered, covered, sg_span);
5669
5670		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5671		if (atomic_inc_return(&sg->sgp->ref) == 1)
5672			build_group_mask(sd, sg);
5673
5674		/*
5675		 * Initialize sgp->power such that even if we mess up the
5676		 * domains and no possible iteration will get us here, we won't
5677		 * die on a /0 trap.
5678		 */
5679		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5680		sg->sgp->power_orig = sg->sgp->power;
5681
5682		/*
5683		 * Make sure the first group of this domain contains the
5684		 * canonical balance cpu. Otherwise the sched_domain iteration
5685		 * breaks. See update_sg_lb_stats().
5686		 */
5687		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5688		    group_balance_cpu(sg) == cpu)
5689			groups = sg;
5690
5691		if (!first)
5692			first = sg;
5693		if (last)
5694			last->next = sg;
5695		last = sg;
5696		last->next = first;
5697	}
5698	sd->groups = groups;
5699
5700	return 0;
5701
5702fail:
5703	free_sched_groups(first, 0);
5704
5705	return -ENOMEM;
5706}
5707
5708static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5709{
5710	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5711	struct sched_domain *child = sd->child;
5712
5713	if (child)
5714		cpu = cpumask_first(sched_domain_span(child));
5715
5716	if (sg) {
5717		*sg = *per_cpu_ptr(sdd->sg, cpu);
5718		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5719		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5720	}
5721
5722	return cpu;
5723}
5724
5725/*
5726 * build_sched_groups will build a circular linked list of the groups
5727 * covered by the given span, and will set each group's ->cpumask correctly,
5728 * and ->cpu_power to 0.
5729 *
5730 * Assumes the sched_domain tree is fully constructed
5731 */
5732static int
5733build_sched_groups(struct sched_domain *sd, int cpu)
5734{
5735	struct sched_group *first = NULL, *last = NULL;
5736	struct sd_data *sdd = sd->private;
5737	const struct cpumask *span = sched_domain_span(sd);
5738	struct cpumask *covered;
5739	int i;
5740
5741	get_group(cpu, sdd, &sd->groups);
5742	atomic_inc(&sd->groups->ref);
5743
5744	if (cpu != cpumask_first(span))
5745		return 0;
5746
5747	lockdep_assert_held(&sched_domains_mutex);
5748	covered = sched_domains_tmpmask;
5749
5750	cpumask_clear(covered);
5751
5752	for_each_cpu(i, span) {
5753		struct sched_group *sg;
5754		int group, j;
5755
5756		if (cpumask_test_cpu(i, covered))
5757			continue;
5758
5759		group = get_group(i, sdd, &sg);
5760		cpumask_clear(sched_group_cpus(sg));
5761		sg->sgp->power = 0;
5762		cpumask_setall(sched_group_mask(sg));
5763
5764		for_each_cpu(j, span) {
5765			if (get_group(j, sdd, NULL) != group)
5766				continue;
5767
5768			cpumask_set_cpu(j, covered);
5769			cpumask_set_cpu(j, sched_group_cpus(sg));
5770		}
5771
5772		if (!first)
5773			first = sg;
5774		if (last)
5775			last->next = sg;
5776		last = sg;
5777	}
5778	last->next = first;
5779
5780	return 0;
5781}
5782
5783/*
5784 * Initialize sched groups cpu_power.
5785 *
5786 * cpu_power indicates the capacity of sched group, which is used while
5787 * distributing the load between different sched groups in a sched domain.
5788 * Typically cpu_power for all the groups in a sched domain will be same unless
5789 * there are asymmetries in the topology. If there are asymmetries, group
5790 * having more cpu_power will pickup more load compared to the group having
5791 * less cpu_power.
5792 */
5793static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5794{
5795	struct sched_group *sg = sd->groups;
5796
5797	WARN_ON(!sg);
5798
5799	do {
5800		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5801		sg = sg->next;
5802	} while (sg != sd->groups);
5803
5804	if (cpu != group_balance_cpu(sg))
5805		return;
5806
5807	update_group_power(sd, cpu);
5808	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5809}
5810
5811int __weak arch_sd_sibling_asym_packing(void)
5812{
5813       return 0*SD_ASYM_PACKING;
5814}
5815
5816/*
5817 * Initializers for schedule domains
5818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5819 */
5820
5821#ifdef CONFIG_SCHED_DEBUG
5822# define SD_INIT_NAME(sd, type)		sd->name = #type
5823#else
5824# define SD_INIT_NAME(sd, type)		do { } while (0)
5825#endif
5826
5827#define SD_INIT_FUNC(type)						\
5828static noinline struct sched_domain *					\
5829sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5830{									\
5831	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5832	*sd = SD_##type##_INIT;						\
5833	SD_INIT_NAME(sd, type);						\
5834	sd->private = &tl->data;					\
5835	return sd;							\
5836}
5837
5838SD_INIT_FUNC(CPU)
5839#ifdef CONFIG_SCHED_SMT
5840 SD_INIT_FUNC(SIBLING)
5841#endif
5842#ifdef CONFIG_SCHED_MC
5843 SD_INIT_FUNC(MC)
5844#endif
5845#ifdef CONFIG_SCHED_BOOK
5846 SD_INIT_FUNC(BOOK)
5847#endif
5848
5849static int default_relax_domain_level = -1;
5850int sched_domain_level_max;
5851
5852static int __init setup_relax_domain_level(char *str)
5853{
5854	if (kstrtoint(str, 0, &default_relax_domain_level))
5855		pr_warn("Unable to set relax_domain_level\n");
5856
5857	return 1;
5858}
5859__setup("relax_domain_level=", setup_relax_domain_level);
5860
5861static void set_domain_attribute(struct sched_domain *sd,
5862				 struct sched_domain_attr *attr)
5863{
5864	int request;
5865
5866	if (!attr || attr->relax_domain_level < 0) {
5867		if (default_relax_domain_level < 0)
5868			return;
5869		else
5870			request = default_relax_domain_level;
5871	} else
5872		request = attr->relax_domain_level;
5873	if (request < sd->level) {
5874		/* turn off idle balance on this domain */
5875		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5876	} else {
5877		/* turn on idle balance on this domain */
5878		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5879	}
5880}
5881
5882static void __sdt_free(const struct cpumask *cpu_map);
5883static int __sdt_alloc(const struct cpumask *cpu_map);
5884
5885static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5886				 const struct cpumask *cpu_map)
5887{
5888	switch (what) {
5889	case sa_rootdomain:
5890		if (!atomic_read(&d->rd->refcount))
5891			free_rootdomain(&d->rd->rcu); /* fall through */
5892	case sa_sd:
5893		free_percpu(d->sd); /* fall through */
5894	case sa_sd_storage:
5895		__sdt_free(cpu_map); /* fall through */
5896	case sa_none:
5897		break;
5898	}
5899}
5900
5901static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5902						   const struct cpumask *cpu_map)
5903{
5904	memset(d, 0, sizeof(*d));
5905
5906	if (__sdt_alloc(cpu_map))
5907		return sa_sd_storage;
5908	d->sd = alloc_percpu(struct sched_domain *);
5909	if (!d->sd)
5910		return sa_sd_storage;
5911	d->rd = alloc_rootdomain();
5912	if (!d->rd)
5913		return sa_sd;
5914	return sa_rootdomain;
5915}
5916
5917/*
5918 * NULL the sd_data elements we've used to build the sched_domain and
5919 * sched_group structure so that the subsequent __free_domain_allocs()
5920 * will not free the data we're using.
5921 */
5922static void claim_allocations(int cpu, struct sched_domain *sd)
5923{
5924	struct sd_data *sdd = sd->private;
5925
5926	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5927	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5928
5929	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5930		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5931
5932	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5933		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5934}
5935
5936#ifdef CONFIG_SCHED_SMT
5937static const struct cpumask *cpu_smt_mask(int cpu)
5938{
5939	return topology_thread_cpumask(cpu);
5940}
5941#endif
5942
5943/*
5944 * Topology list, bottom-up.
5945 */
5946static struct sched_domain_topology_level default_topology[] = {
5947#ifdef CONFIG_SCHED_SMT
5948	{ sd_init_SIBLING, cpu_smt_mask, },
5949#endif
5950#ifdef CONFIG_SCHED_MC
5951	{ sd_init_MC, cpu_coregroup_mask, },
5952#endif
5953#ifdef CONFIG_SCHED_BOOK
5954	{ sd_init_BOOK, cpu_book_mask, },
5955#endif
5956	{ sd_init_CPU, cpu_cpu_mask, },
5957	{ NULL, },
5958};
5959
5960static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5961
5962#define for_each_sd_topology(tl)			\
5963	for (tl = sched_domain_topology; tl->init; tl++)
5964
5965#ifdef CONFIG_NUMA
5966
5967static int sched_domains_numa_levels;
5968static int *sched_domains_numa_distance;
5969static struct cpumask ***sched_domains_numa_masks;
5970static int sched_domains_curr_level;
5971
5972static inline int sd_local_flags(int level)
5973{
5974	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5975		return 0;
5976
5977	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5978}
5979
5980static struct sched_domain *
5981sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5982{
5983	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5984	int level = tl->numa_level;
5985	int sd_weight = cpumask_weight(
5986			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5987
5988	*sd = (struct sched_domain){
5989		.min_interval		= sd_weight,
5990		.max_interval		= 2*sd_weight,
5991		.busy_factor		= 32,
5992		.imbalance_pct		= 125,
5993		.cache_nice_tries	= 2,
5994		.busy_idx		= 3,
5995		.idle_idx		= 2,
5996		.newidle_idx		= 0,
5997		.wake_idx		= 0,
5998		.forkexec_idx		= 0,
5999
6000		.flags			= 1*SD_LOAD_BALANCE
6001					| 1*SD_BALANCE_NEWIDLE
6002					| 0*SD_BALANCE_EXEC
6003					| 0*SD_BALANCE_FORK
6004					| 0*SD_BALANCE_WAKE
6005					| 0*SD_WAKE_AFFINE
6006					| 0*SD_SHARE_CPUPOWER
6007					| 0*SD_SHARE_PKG_RESOURCES
6008					| 1*SD_SERIALIZE
6009					| 0*SD_PREFER_SIBLING
6010					| 1*SD_NUMA
6011					| sd_local_flags(level)
6012					,
6013		.last_balance		= jiffies,
6014		.balance_interval	= sd_weight,
6015	};
6016	SD_INIT_NAME(sd, NUMA);
6017	sd->private = &tl->data;
6018
6019	/*
6020	 * Ugly hack to pass state to sd_numa_mask()...
6021	 */
6022	sched_domains_curr_level = tl->numa_level;
6023
6024	return sd;
6025}
6026
6027static const struct cpumask *sd_numa_mask(int cpu)
6028{
6029	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6030}
6031
6032static void sched_numa_warn(const char *str)
6033{
6034	static int done = false;
6035	int i,j;
6036
6037	if (done)
6038		return;
6039
6040	done = true;
6041
6042	printk(KERN_WARNING "ERROR: %s\n\n", str);
6043
6044	for (i = 0; i < nr_node_ids; i++) {
6045		printk(KERN_WARNING "  ");
6046		for (j = 0; j < nr_node_ids; j++)
6047			printk(KERN_CONT "%02d ", node_distance(i,j));
6048		printk(KERN_CONT "\n");
6049	}
6050	printk(KERN_WARNING "\n");
6051}
6052
6053static bool find_numa_distance(int distance)
6054{
6055	int i;
6056
6057	if (distance == node_distance(0, 0))
6058		return true;
6059
6060	for (i = 0; i < sched_domains_numa_levels; i++) {
6061		if (sched_domains_numa_distance[i] == distance)
6062			return true;
6063	}
6064
6065	return false;
6066}
6067
6068static void sched_init_numa(void)
6069{
6070	int next_distance, curr_distance = node_distance(0, 0);
6071	struct sched_domain_topology_level *tl;
6072	int level = 0;
6073	int i, j, k;
6074
6075	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6076	if (!sched_domains_numa_distance)
6077		return;
6078
6079	/*
6080	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6081	 * unique distances in the node_distance() table.
6082	 *
6083	 * Assumes node_distance(0,j) includes all distances in
6084	 * node_distance(i,j) in order to avoid cubic time.
6085	 */
6086	next_distance = curr_distance;
6087	for (i = 0; i < nr_node_ids; i++) {
6088		for (j = 0; j < nr_node_ids; j++) {
6089			for (k = 0; k < nr_node_ids; k++) {
6090				int distance = node_distance(i, k);
6091
6092				if (distance > curr_distance &&
6093				    (distance < next_distance ||
6094				     next_distance == curr_distance))
6095					next_distance = distance;
6096
6097				/*
6098				 * While not a strong assumption it would be nice to know
6099				 * about cases where if node A is connected to B, B is not
6100				 * equally connected to A.
6101				 */
6102				if (sched_debug() && node_distance(k, i) != distance)
6103					sched_numa_warn("Node-distance not symmetric");
6104
6105				if (sched_debug() && i && !find_numa_distance(distance))
6106					sched_numa_warn("Node-0 not representative");
6107			}
6108			if (next_distance != curr_distance) {
6109				sched_domains_numa_distance[level++] = next_distance;
6110				sched_domains_numa_levels = level;
6111				curr_distance = next_distance;
6112			} else break;
6113		}
6114
6115		/*
6116		 * In case of sched_debug() we verify the above assumption.
6117		 */
6118		if (!sched_debug())
6119			break;
6120	}
6121	/*
6122	 * 'level' contains the number of unique distances, excluding the
6123	 * identity distance node_distance(i,i).
6124	 *
6125	 * The sched_domains_numa_distance[] array includes the actual distance
6126	 * numbers.
6127	 */
6128
6129	/*
6130	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6131	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6132	 * the array will contain less then 'level' members. This could be
6133	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6134	 * in other functions.
6135	 *
6136	 * We reset it to 'level' at the end of this function.
6137	 */
6138	sched_domains_numa_levels = 0;
6139
6140	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6141	if (!sched_domains_numa_masks)
6142		return;
6143
6144	/*
6145	 * Now for each level, construct a mask per node which contains all
6146	 * cpus of nodes that are that many hops away from us.
6147	 */
6148	for (i = 0; i < level; i++) {
6149		sched_domains_numa_masks[i] =
6150			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6151		if (!sched_domains_numa_masks[i])
6152			return;
6153
6154		for (j = 0; j < nr_node_ids; j++) {
6155			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6156			if (!mask)
6157				return;
6158
6159			sched_domains_numa_masks[i][j] = mask;
6160
6161			for (k = 0; k < nr_node_ids; k++) {
6162				if (node_distance(j, k) > sched_domains_numa_distance[i])
6163					continue;
6164
6165				cpumask_or(mask, mask, cpumask_of_node(k));
6166			}
6167		}
6168	}
6169
6170	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6171			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6172	if (!tl)
6173		return;
6174
6175	/*
6176	 * Copy the default topology bits..
6177	 */
6178	for (i = 0; default_topology[i].init; i++)
6179		tl[i] = default_topology[i];
6180
6181	/*
6182	 * .. and append 'j' levels of NUMA goodness.
6183	 */
6184	for (j = 0; j < level; i++, j++) {
6185		tl[i] = (struct sched_domain_topology_level){
6186			.init = sd_numa_init,
6187			.mask = sd_numa_mask,
6188			.flags = SDTL_OVERLAP,
6189			.numa_level = j,
6190		};
6191	}
6192
6193	sched_domain_topology = tl;
6194
6195	sched_domains_numa_levels = level;
6196}
6197
6198static void sched_domains_numa_masks_set(int cpu)
6199{
6200	int i, j;
6201	int node = cpu_to_node(cpu);
6202
6203	for (i = 0; i < sched_domains_numa_levels; i++) {
6204		for (j = 0; j < nr_node_ids; j++) {
6205			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6206				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6207		}
6208	}
6209}
6210
6211static void sched_domains_numa_masks_clear(int cpu)
6212{
6213	int i, j;
6214	for (i = 0; i < sched_domains_numa_levels; i++) {
6215		for (j = 0; j < nr_node_ids; j++)
6216			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6217	}
6218}
6219
6220/*
6221 * Update sched_domains_numa_masks[level][node] array when new cpus
6222 * are onlined.
6223 */
6224static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6225					   unsigned long action,
6226					   void *hcpu)
6227{
6228	int cpu = (long)hcpu;
6229
6230	switch (action & ~CPU_TASKS_FROZEN) {
6231	case CPU_ONLINE:
6232		sched_domains_numa_masks_set(cpu);
6233		break;
6234
6235	case CPU_DEAD:
6236		sched_domains_numa_masks_clear(cpu);
6237		break;
6238
6239	default:
6240		return NOTIFY_DONE;
6241	}
6242
6243	return NOTIFY_OK;
6244}
6245#else
6246static inline void sched_init_numa(void)
6247{
6248}
6249
6250static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6251					   unsigned long action,
6252					   void *hcpu)
6253{
6254	return 0;
6255}
6256#endif /* CONFIG_NUMA */
6257
6258static int __sdt_alloc(const struct cpumask *cpu_map)
6259{
6260	struct sched_domain_topology_level *tl;
6261	int j;
6262
6263	for_each_sd_topology(tl) {
6264		struct sd_data *sdd = &tl->data;
6265
6266		sdd->sd = alloc_percpu(struct sched_domain *);
6267		if (!sdd->sd)
6268			return -ENOMEM;
6269
6270		sdd->sg = alloc_percpu(struct sched_group *);
6271		if (!sdd->sg)
6272			return -ENOMEM;
6273
6274		sdd->sgp = alloc_percpu(struct sched_group_power *);
6275		if (!sdd->sgp)
6276			return -ENOMEM;
6277
6278		for_each_cpu(j, cpu_map) {
6279			struct sched_domain *sd;
6280			struct sched_group *sg;
6281			struct sched_group_power *sgp;
6282
6283		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6284					GFP_KERNEL, cpu_to_node(j));
6285			if (!sd)
6286				return -ENOMEM;
6287
6288			*per_cpu_ptr(sdd->sd, j) = sd;
6289
6290			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6291					GFP_KERNEL, cpu_to_node(j));
6292			if (!sg)
6293				return -ENOMEM;
6294
6295			sg->next = sg;
6296
6297			*per_cpu_ptr(sdd->sg, j) = sg;
6298
6299			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6300					GFP_KERNEL, cpu_to_node(j));
6301			if (!sgp)
6302				return -ENOMEM;
6303
6304			*per_cpu_ptr(sdd->sgp, j) = sgp;
6305		}
6306	}
6307
6308	return 0;
6309}
6310
6311static void __sdt_free(const struct cpumask *cpu_map)
6312{
6313	struct sched_domain_topology_level *tl;
6314	int j;
6315
6316	for_each_sd_topology(tl) {
6317		struct sd_data *sdd = &tl->data;
6318
6319		for_each_cpu(j, cpu_map) {
6320			struct sched_domain *sd;
6321
6322			if (sdd->sd) {
6323				sd = *per_cpu_ptr(sdd->sd, j);
6324				if (sd && (sd->flags & SD_OVERLAP))
6325					free_sched_groups(sd->groups, 0);
6326				kfree(*per_cpu_ptr(sdd->sd, j));
6327			}
6328
6329			if (sdd->sg)
6330				kfree(*per_cpu_ptr(sdd->sg, j));
6331			if (sdd->sgp)
6332				kfree(*per_cpu_ptr(sdd->sgp, j));
6333		}
6334		free_percpu(sdd->sd);
6335		sdd->sd = NULL;
6336		free_percpu(sdd->sg);
6337		sdd->sg = NULL;
6338		free_percpu(sdd->sgp);
6339		sdd->sgp = NULL;
6340	}
6341}
6342
6343struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6344		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6345		struct sched_domain *child, int cpu)
6346{
6347	struct sched_domain *sd = tl->init(tl, cpu);
6348	if (!sd)
6349		return child;
6350
6351	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6352	if (child) {
6353		sd->level = child->level + 1;
6354		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6355		child->parent = sd;
6356		sd->child = child;
6357	}
6358	set_domain_attribute(sd, attr);
6359
6360	return sd;
6361}
6362
6363/*
6364 * Build sched domains for a given set of cpus and attach the sched domains
6365 * to the individual cpus
6366 */
6367static int build_sched_domains(const struct cpumask *cpu_map,
6368			       struct sched_domain_attr *attr)
6369{
6370	enum s_alloc alloc_state;
6371	struct sched_domain *sd;
6372	struct s_data d;
6373	int i, ret = -ENOMEM;
6374
6375	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6376	if (alloc_state != sa_rootdomain)
6377		goto error;
6378
6379	/* Set up domains for cpus specified by the cpu_map. */
6380	for_each_cpu(i, cpu_map) {
6381		struct sched_domain_topology_level *tl;
6382
6383		sd = NULL;
6384		for_each_sd_topology(tl) {
6385			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6386			if (tl == sched_domain_topology)
6387				*per_cpu_ptr(d.sd, i) = sd;
6388			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6389				sd->flags |= SD_OVERLAP;
6390			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6391				break;
6392		}
6393	}
6394
6395	/* Build the groups for the domains */
6396	for_each_cpu(i, cpu_map) {
6397		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6398			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6399			if (sd->flags & SD_OVERLAP) {
6400				if (build_overlap_sched_groups(sd, i))
6401					goto error;
6402			} else {
6403				if (build_sched_groups(sd, i))
6404					goto error;
6405			}
6406		}
6407	}
6408
6409	/* Calculate CPU power for physical packages and nodes */
6410	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6411		if (!cpumask_test_cpu(i, cpu_map))
6412			continue;
6413
6414		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6415			claim_allocations(i, sd);
6416			init_sched_groups_power(i, sd);
6417		}
6418	}
6419
6420	/* Attach the domains */
6421	rcu_read_lock();
6422	for_each_cpu(i, cpu_map) {
6423		sd = *per_cpu_ptr(d.sd, i);
6424		cpu_attach_domain(sd, d.rd, i);
6425	}
6426	rcu_read_unlock();
6427
6428	ret = 0;
6429error:
6430	__free_domain_allocs(&d, alloc_state, cpu_map);
6431	return ret;
6432}
6433
6434static cpumask_var_t *doms_cur;	/* current sched domains */
6435static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6436static struct sched_domain_attr *dattr_cur;
6437				/* attribues of custom domains in 'doms_cur' */
6438
6439/*
6440 * Special case: If a kmalloc of a doms_cur partition (array of
6441 * cpumask) fails, then fallback to a single sched domain,
6442 * as determined by the single cpumask fallback_doms.
6443 */
6444static cpumask_var_t fallback_doms;
6445
6446/*
6447 * arch_update_cpu_topology lets virtualized architectures update the
6448 * cpu core maps. It is supposed to return 1 if the topology changed
6449 * or 0 if it stayed the same.
6450 */
6451int __attribute__((weak)) arch_update_cpu_topology(void)
6452{
6453	return 0;
6454}
6455
6456cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6457{
6458	int i;
6459	cpumask_var_t *doms;
6460
6461	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6462	if (!doms)
6463		return NULL;
6464	for (i = 0; i < ndoms; i++) {
6465		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6466			free_sched_domains(doms, i);
6467			return NULL;
6468		}
6469	}
6470	return doms;
6471}
6472
6473void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6474{
6475	unsigned int i;
6476	for (i = 0; i < ndoms; i++)
6477		free_cpumask_var(doms[i]);
6478	kfree(doms);
6479}
6480
6481/*
6482 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6483 * For now this just excludes isolated cpus, but could be used to
6484 * exclude other special cases in the future.
6485 */
6486static int init_sched_domains(const struct cpumask *cpu_map)
6487{
6488	int err;
6489
6490	arch_update_cpu_topology();
6491	ndoms_cur = 1;
6492	doms_cur = alloc_sched_domains(ndoms_cur);
6493	if (!doms_cur)
6494		doms_cur = &fallback_doms;
6495	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6496	err = build_sched_domains(doms_cur[0], NULL);
6497	register_sched_domain_sysctl();
6498
6499	return err;
6500}
6501
6502/*
6503 * Detach sched domains from a group of cpus specified in cpu_map
6504 * These cpus will now be attached to the NULL domain
6505 */
6506static void detach_destroy_domains(const struct cpumask *cpu_map)
6507{
6508	int i;
6509
6510	rcu_read_lock();
6511	for_each_cpu(i, cpu_map)
6512		cpu_attach_domain(NULL, &def_root_domain, i);
6513	rcu_read_unlock();
6514}
6515
6516/* handle null as "default" */
6517static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6518			struct sched_domain_attr *new, int idx_new)
6519{
6520	struct sched_domain_attr tmp;
6521
6522	/* fast path */
6523	if (!new && !cur)
6524		return 1;
6525
6526	tmp = SD_ATTR_INIT;
6527	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6528			new ? (new + idx_new) : &tmp,
6529			sizeof(struct sched_domain_attr));
6530}
6531
6532/*
6533 * Partition sched domains as specified by the 'ndoms_new'
6534 * cpumasks in the array doms_new[] of cpumasks. This compares
6535 * doms_new[] to the current sched domain partitioning, doms_cur[].
6536 * It destroys each deleted domain and builds each new domain.
6537 *
6538 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6539 * The masks don't intersect (don't overlap.) We should setup one
6540 * sched domain for each mask. CPUs not in any of the cpumasks will
6541 * not be load balanced. If the same cpumask appears both in the
6542 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6543 * it as it is.
6544 *
6545 * The passed in 'doms_new' should be allocated using
6546 * alloc_sched_domains.  This routine takes ownership of it and will
6547 * free_sched_domains it when done with it. If the caller failed the
6548 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6549 * and partition_sched_domains() will fallback to the single partition
6550 * 'fallback_doms', it also forces the domains to be rebuilt.
6551 *
6552 * If doms_new == NULL it will be replaced with cpu_online_mask.
6553 * ndoms_new == 0 is a special case for destroying existing domains,
6554 * and it will not create the default domain.
6555 *
6556 * Call with hotplug lock held
6557 */
6558void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6559			     struct sched_domain_attr *dattr_new)
6560{
6561	int i, j, n;
6562	int new_topology;
6563
6564	mutex_lock(&sched_domains_mutex);
6565
6566	/* always unregister in case we don't destroy any domains */
6567	unregister_sched_domain_sysctl();
6568
6569	/* Let architecture update cpu core mappings. */
6570	new_topology = arch_update_cpu_topology();
6571
6572	n = doms_new ? ndoms_new : 0;
6573
6574	/* Destroy deleted domains */
6575	for (i = 0; i < ndoms_cur; i++) {
6576		for (j = 0; j < n && !new_topology; j++) {
6577			if (cpumask_equal(doms_cur[i], doms_new[j])
6578			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6579				goto match1;
6580		}
6581		/* no match - a current sched domain not in new doms_new[] */
6582		detach_destroy_domains(doms_cur[i]);
6583match1:
6584		;
6585	}
6586
6587	n = ndoms_cur;
6588	if (doms_new == NULL) {
6589		n = 0;
6590		doms_new = &fallback_doms;
6591		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6592		WARN_ON_ONCE(dattr_new);
6593	}
6594
6595	/* Build new domains */
6596	for (i = 0; i < ndoms_new; i++) {
6597		for (j = 0; j < n && !new_topology; j++) {
6598			if (cpumask_equal(doms_new[i], doms_cur[j])
6599			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6600				goto match2;
6601		}
6602		/* no match - add a new doms_new */
6603		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6604match2:
6605		;
6606	}
6607
6608	/* Remember the new sched domains */
6609	if (doms_cur != &fallback_doms)
6610		free_sched_domains(doms_cur, ndoms_cur);
6611	kfree(dattr_cur);	/* kfree(NULL) is safe */
6612	doms_cur = doms_new;
6613	dattr_cur = dattr_new;
6614	ndoms_cur = ndoms_new;
6615
6616	register_sched_domain_sysctl();
6617
6618	mutex_unlock(&sched_domains_mutex);
6619}
6620
6621static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6622
6623/*
6624 * Update cpusets according to cpu_active mask.  If cpusets are
6625 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6626 * around partition_sched_domains().
6627 *
6628 * If we come here as part of a suspend/resume, don't touch cpusets because we
6629 * want to restore it back to its original state upon resume anyway.
6630 */
6631static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6632			     void *hcpu)
6633{
6634	switch (action) {
6635	case CPU_ONLINE_FROZEN:
6636	case CPU_DOWN_FAILED_FROZEN:
6637
6638		/*
6639		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6640		 * resume sequence. As long as this is not the last online
6641		 * operation in the resume sequence, just build a single sched
6642		 * domain, ignoring cpusets.
6643		 */
6644		num_cpus_frozen--;
6645		if (likely(num_cpus_frozen)) {
6646			partition_sched_domains(1, NULL, NULL);
6647			break;
6648		}
6649
6650		/*
6651		 * This is the last CPU online operation. So fall through and
6652		 * restore the original sched domains by considering the
6653		 * cpuset configurations.
6654		 */
6655
6656	case CPU_ONLINE:
6657	case CPU_DOWN_FAILED:
6658		cpuset_update_active_cpus(true);
6659		break;
6660	default:
6661		return NOTIFY_DONE;
6662	}
6663	return NOTIFY_OK;
6664}
6665
6666static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6667			       void *hcpu)
6668{
6669	switch (action) {
6670	case CPU_DOWN_PREPARE:
6671		cpuset_update_active_cpus(false);
6672		break;
6673	case CPU_DOWN_PREPARE_FROZEN:
6674		num_cpus_frozen++;
6675		partition_sched_domains(1, NULL, NULL);
6676		break;
6677	default:
6678		return NOTIFY_DONE;
6679	}
6680	return NOTIFY_OK;
6681}
6682
6683void __init sched_init_smp(void)
6684{
6685	cpumask_var_t non_isolated_cpus;
6686
6687	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6688	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6689
6690	sched_init_numa();
6691
6692	/*
6693	 * There's no userspace yet to cause hotplug operations; hence all the
6694	 * cpu masks are stable and all blatant races in the below code cannot
6695	 * happen.
6696	 */
6697	mutex_lock(&sched_domains_mutex);
6698	init_sched_domains(cpu_active_mask);
6699	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6700	if (cpumask_empty(non_isolated_cpus))
6701		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6702	mutex_unlock(&sched_domains_mutex);
6703
6704	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6705	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6706	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6707
6708	init_hrtick();
6709
6710	/* Move init over to a non-isolated CPU */
6711	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6712		BUG();
6713	sched_init_granularity();
6714	free_cpumask_var(non_isolated_cpus);
6715
6716	init_sched_rt_class();
6717	init_sched_dl_class();
6718}
6719#else
6720void __init sched_init_smp(void)
6721{
6722	sched_init_granularity();
6723}
6724#endif /* CONFIG_SMP */
6725
6726const_debug unsigned int sysctl_timer_migration = 1;
6727
6728int in_sched_functions(unsigned long addr)
6729{
6730	return in_lock_functions(addr) ||
6731		(addr >= (unsigned long)__sched_text_start
6732		&& addr < (unsigned long)__sched_text_end);
6733}
6734
6735#ifdef CONFIG_CGROUP_SCHED
6736/*
6737 * Default task group.
6738 * Every task in system belongs to this group at bootup.
6739 */
6740struct task_group root_task_group;
6741LIST_HEAD(task_groups);
6742#endif
6743
6744DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6745
6746void __init sched_init(void)
6747{
6748	int i, j;
6749	unsigned long alloc_size = 0, ptr;
6750
6751#ifdef CONFIG_FAIR_GROUP_SCHED
6752	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6753#endif
6754#ifdef CONFIG_RT_GROUP_SCHED
6755	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6756#endif
6757#ifdef CONFIG_CPUMASK_OFFSTACK
6758	alloc_size += num_possible_cpus() * cpumask_size();
6759#endif
6760	if (alloc_size) {
6761		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6762
6763#ifdef CONFIG_FAIR_GROUP_SCHED
6764		root_task_group.se = (struct sched_entity **)ptr;
6765		ptr += nr_cpu_ids * sizeof(void **);
6766
6767		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6768		ptr += nr_cpu_ids * sizeof(void **);
6769
6770#endif /* CONFIG_FAIR_GROUP_SCHED */
6771#ifdef CONFIG_RT_GROUP_SCHED
6772		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6773		ptr += nr_cpu_ids * sizeof(void **);
6774
6775		root_task_group.rt_rq = (struct rt_rq **)ptr;
6776		ptr += nr_cpu_ids * sizeof(void **);
6777
6778#endif /* CONFIG_RT_GROUP_SCHED */
6779#ifdef CONFIG_CPUMASK_OFFSTACK
6780		for_each_possible_cpu(i) {
6781			per_cpu(load_balance_mask, i) = (void *)ptr;
6782			ptr += cpumask_size();
6783		}
6784#endif /* CONFIG_CPUMASK_OFFSTACK */
6785	}
6786
6787	init_rt_bandwidth(&def_rt_bandwidth,
6788			global_rt_period(), global_rt_runtime());
6789	init_dl_bandwidth(&def_dl_bandwidth,
6790			global_rt_period(), global_rt_runtime());
6791
6792#ifdef CONFIG_SMP
6793	init_defrootdomain();
6794#endif
6795
6796#ifdef CONFIG_RT_GROUP_SCHED
6797	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6798			global_rt_period(), global_rt_runtime());
6799#endif /* CONFIG_RT_GROUP_SCHED */
6800
6801#ifdef CONFIG_CGROUP_SCHED
6802	list_add(&root_task_group.list, &task_groups);
6803	INIT_LIST_HEAD(&root_task_group.children);
6804	INIT_LIST_HEAD(&root_task_group.siblings);
6805	autogroup_init(&init_task);
6806
6807#endif /* CONFIG_CGROUP_SCHED */
6808
6809	for_each_possible_cpu(i) {
6810		struct rq *rq;
6811
6812		rq = cpu_rq(i);
6813		raw_spin_lock_init(&rq->lock);
6814		rq->nr_running = 0;
6815		rq->calc_load_active = 0;
6816		rq->calc_load_update = jiffies + LOAD_FREQ;
6817		init_cfs_rq(&rq->cfs);
6818		init_rt_rq(&rq->rt, rq);
6819		init_dl_rq(&rq->dl, rq);
6820#ifdef CONFIG_FAIR_GROUP_SCHED
6821		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6822		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6823		/*
6824		 * How much cpu bandwidth does root_task_group get?
6825		 *
6826		 * In case of task-groups formed thr' the cgroup filesystem, it
6827		 * gets 100% of the cpu resources in the system. This overall
6828		 * system cpu resource is divided among the tasks of
6829		 * root_task_group and its child task-groups in a fair manner,
6830		 * based on each entity's (task or task-group's) weight
6831		 * (se->load.weight).
6832		 *
6833		 * In other words, if root_task_group has 10 tasks of weight
6834		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6835		 * then A0's share of the cpu resource is:
6836		 *
6837		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6838		 *
6839		 * We achieve this by letting root_task_group's tasks sit
6840		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6841		 */
6842		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6843		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6844#endif /* CONFIG_FAIR_GROUP_SCHED */
6845
6846		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6847#ifdef CONFIG_RT_GROUP_SCHED
6848		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6849		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6850#endif
6851
6852		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6853			rq->cpu_load[j] = 0;
6854
6855		rq->last_load_update_tick = jiffies;
6856
6857#ifdef CONFIG_SMP
6858		rq->sd = NULL;
6859		rq->rd = NULL;
6860		rq->cpu_power = SCHED_POWER_SCALE;
6861		rq->post_schedule = 0;
6862		rq->active_balance = 0;
6863		rq->next_balance = jiffies;
6864		rq->push_cpu = 0;
6865		rq->cpu = i;
6866		rq->online = 0;
6867		rq->idle_stamp = 0;
6868		rq->avg_idle = 2*sysctl_sched_migration_cost;
6869		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6870
6871		INIT_LIST_HEAD(&rq->cfs_tasks);
6872
6873		rq_attach_root(rq, &def_root_domain);
6874#ifdef CONFIG_NO_HZ_COMMON
6875		rq->nohz_flags = 0;
6876#endif
6877#ifdef CONFIG_NO_HZ_FULL
6878		rq->last_sched_tick = 0;
6879#endif
6880#endif
6881		init_rq_hrtick(rq);
6882		atomic_set(&rq->nr_iowait, 0);
6883	}
6884
6885	set_load_weight(&init_task);
6886
6887#ifdef CONFIG_PREEMPT_NOTIFIERS
6888	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6889#endif
6890
6891	/*
6892	 * The boot idle thread does lazy MMU switching as well:
6893	 */
6894	atomic_inc(&init_mm.mm_count);
6895	enter_lazy_tlb(&init_mm, current);
6896
6897	/*
6898	 * Make us the idle thread. Technically, schedule() should not be
6899	 * called from this thread, however somewhere below it might be,
6900	 * but because we are the idle thread, we just pick up running again
6901	 * when this runqueue becomes "idle".
6902	 */
6903	init_idle(current, smp_processor_id());
6904
6905	calc_load_update = jiffies + LOAD_FREQ;
6906
6907	/*
6908	 * During early bootup we pretend to be a normal task:
6909	 */
6910	current->sched_class = &fair_sched_class;
6911
6912#ifdef CONFIG_SMP
6913	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6914	/* May be allocated at isolcpus cmdline parse time */
6915	if (cpu_isolated_map == NULL)
6916		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6917	idle_thread_set_boot_cpu();
6918#endif
6919	init_sched_fair_class();
6920
6921	scheduler_running = 1;
6922}
6923
6924#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6925static inline int preempt_count_equals(int preempt_offset)
6926{
6927	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6928
6929	return (nested == preempt_offset);
6930}
6931
6932void __might_sleep(const char *file, int line, int preempt_offset)
6933{
6934	static unsigned long prev_jiffy;	/* ratelimiting */
6935
6936	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6937	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6938	    system_state != SYSTEM_RUNNING || oops_in_progress)
6939		return;
6940	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6941		return;
6942	prev_jiffy = jiffies;
6943
6944	printk(KERN_ERR
6945		"BUG: sleeping function called from invalid context at %s:%d\n",
6946			file, line);
6947	printk(KERN_ERR
6948		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6949			in_atomic(), irqs_disabled(),
6950			current->pid, current->comm);
6951
6952	debug_show_held_locks(current);
6953	if (irqs_disabled())
6954		print_irqtrace_events(current);
6955	dump_stack();
6956}
6957EXPORT_SYMBOL(__might_sleep);
6958#endif
6959
6960#ifdef CONFIG_MAGIC_SYSRQ
6961static void normalize_task(struct rq *rq, struct task_struct *p)
6962{
6963	const struct sched_class *prev_class = p->sched_class;
6964	struct sched_attr attr = {
6965		.sched_policy = SCHED_NORMAL,
6966	};
6967	int old_prio = p->prio;
6968	int on_rq;
6969
6970	on_rq = p->on_rq;
6971	if (on_rq)
6972		dequeue_task(rq, p, 0);
6973	__setscheduler(rq, p, &attr);
6974	if (on_rq) {
6975		enqueue_task(rq, p, 0);
6976		resched_task(rq->curr);
6977	}
6978
6979	check_class_changed(rq, p, prev_class, old_prio);
6980}
6981
6982void normalize_rt_tasks(void)
6983{
6984	struct task_struct *g, *p;
6985	unsigned long flags;
6986	struct rq *rq;
6987
6988	read_lock_irqsave(&tasklist_lock, flags);
6989	do_each_thread(g, p) {
6990		/*
6991		 * Only normalize user tasks:
6992		 */
6993		if (!p->mm)
6994			continue;
6995
6996		p->se.exec_start		= 0;
6997#ifdef CONFIG_SCHEDSTATS
6998		p->se.statistics.wait_start	= 0;
6999		p->se.statistics.sleep_start	= 0;
7000		p->se.statistics.block_start	= 0;
7001#endif
7002
7003		if (!dl_task(p) && !rt_task(p)) {
7004			/*
7005			 * Renice negative nice level userspace
7006			 * tasks back to 0:
7007			 */
7008			if (task_nice(p) < 0 && p->mm)
7009				set_user_nice(p, 0);
7010			continue;
7011		}
7012
7013		raw_spin_lock(&p->pi_lock);
7014		rq = __task_rq_lock(p);
7015
7016		normalize_task(rq, p);
7017
7018		__task_rq_unlock(rq);
7019		raw_spin_unlock(&p->pi_lock);
7020	} while_each_thread(g, p);
7021
7022	read_unlock_irqrestore(&tasklist_lock, flags);
7023}
7024
7025#endif /* CONFIG_MAGIC_SYSRQ */
7026
7027#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7028/*
7029 * These functions are only useful for the IA64 MCA handling, or kdb.
7030 *
7031 * They can only be called when the whole system has been
7032 * stopped - every CPU needs to be quiescent, and no scheduling
7033 * activity can take place. Using them for anything else would
7034 * be a serious bug, and as a result, they aren't even visible
7035 * under any other configuration.
7036 */
7037
7038/**
7039 * curr_task - return the current task for a given cpu.
7040 * @cpu: the processor in question.
7041 *
7042 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7043 *
7044 * Return: The current task for @cpu.
7045 */
7046struct task_struct *curr_task(int cpu)
7047{
7048	return cpu_curr(cpu);
7049}
7050
7051#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7052
7053#ifdef CONFIG_IA64
7054/**
7055 * set_curr_task - set the current task for a given cpu.
7056 * @cpu: the processor in question.
7057 * @p: the task pointer to set.
7058 *
7059 * Description: This function must only be used when non-maskable interrupts
7060 * are serviced on a separate stack. It allows the architecture to switch the
7061 * notion of the current task on a cpu in a non-blocking manner. This function
7062 * must be called with all CPU's synchronized, and interrupts disabled, the
7063 * and caller must save the original value of the current task (see
7064 * curr_task() above) and restore that value before reenabling interrupts and
7065 * re-starting the system.
7066 *
7067 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7068 */
7069void set_curr_task(int cpu, struct task_struct *p)
7070{
7071	cpu_curr(cpu) = p;
7072}
7073
7074#endif
7075
7076#ifdef CONFIG_CGROUP_SCHED
7077/* task_group_lock serializes the addition/removal of task groups */
7078static DEFINE_SPINLOCK(task_group_lock);
7079
7080static void free_sched_group(struct task_group *tg)
7081{
7082	free_fair_sched_group(tg);
7083	free_rt_sched_group(tg);
7084	autogroup_free(tg);
7085	kfree(tg);
7086}
7087
7088/* allocate runqueue etc for a new task group */
7089struct task_group *sched_create_group(struct task_group *parent)
7090{
7091	struct task_group *tg;
7092
7093	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7094	if (!tg)
7095		return ERR_PTR(-ENOMEM);
7096
7097	if (!alloc_fair_sched_group(tg, parent))
7098		goto err;
7099
7100	if (!alloc_rt_sched_group(tg, parent))
7101		goto err;
7102
7103	return tg;
7104
7105err:
7106	free_sched_group(tg);
7107	return ERR_PTR(-ENOMEM);
7108}
7109
7110void sched_online_group(struct task_group *tg, struct task_group *parent)
7111{
7112	unsigned long flags;
7113
7114	spin_lock_irqsave(&task_group_lock, flags);
7115	list_add_rcu(&tg->list, &task_groups);
7116
7117	WARN_ON(!parent); /* root should already exist */
7118
7119	tg->parent = parent;
7120	INIT_LIST_HEAD(&tg->children);
7121	list_add_rcu(&tg->siblings, &parent->children);
7122	spin_unlock_irqrestore(&task_group_lock, flags);
7123}
7124
7125/* rcu callback to free various structures associated with a task group */
7126static void free_sched_group_rcu(struct rcu_head *rhp)
7127{
7128	/* now it should be safe to free those cfs_rqs */
7129	free_sched_group(container_of(rhp, struct task_group, rcu));
7130}
7131
7132/* Destroy runqueue etc associated with a task group */
7133void sched_destroy_group(struct task_group *tg)
7134{
7135	/* wait for possible concurrent references to cfs_rqs complete */
7136	call_rcu(&tg->rcu, free_sched_group_rcu);
7137}
7138
7139void sched_offline_group(struct task_group *tg)
7140{
7141	unsigned long flags;
7142	int i;
7143
7144	/* end participation in shares distribution */
7145	for_each_possible_cpu(i)
7146		unregister_fair_sched_group(tg, i);
7147
7148	spin_lock_irqsave(&task_group_lock, flags);
7149	list_del_rcu(&tg->list);
7150	list_del_rcu(&tg->siblings);
7151	spin_unlock_irqrestore(&task_group_lock, flags);
7152}
7153
7154/* change task's runqueue when it moves between groups.
7155 *	The caller of this function should have put the task in its new group
7156 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7157 *	reflect its new group.
7158 */
7159void sched_move_task(struct task_struct *tsk)
7160{
7161	struct task_group *tg;
7162	int on_rq, running;
7163	unsigned long flags;
7164	struct rq *rq;
7165
7166	rq = task_rq_lock(tsk, &flags);
7167
7168	running = task_current(rq, tsk);
7169	on_rq = tsk->on_rq;
7170
7171	if (on_rq)
7172		dequeue_task(rq, tsk, 0);
7173	if (unlikely(running))
7174		tsk->sched_class->put_prev_task(rq, tsk);
7175
7176	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7177				lockdep_is_held(&tsk->sighand->siglock)),
7178			  struct task_group, css);
7179	tg = autogroup_task_group(tsk, tg);
7180	tsk->sched_task_group = tg;
7181
7182#ifdef CONFIG_FAIR_GROUP_SCHED
7183	if (tsk->sched_class->task_move_group)
7184		tsk->sched_class->task_move_group(tsk, on_rq);
7185	else
7186#endif
7187		set_task_rq(tsk, task_cpu(tsk));
7188
7189	if (unlikely(running))
7190		tsk->sched_class->set_curr_task(rq);
7191	if (on_rq)
7192		enqueue_task(rq, tsk, 0);
7193
7194	task_rq_unlock(rq, tsk, &flags);
7195}
7196#endif /* CONFIG_CGROUP_SCHED */
7197
7198#ifdef CONFIG_RT_GROUP_SCHED
7199/*
7200 * Ensure that the real time constraints are schedulable.
7201 */
7202static DEFINE_MUTEX(rt_constraints_mutex);
7203
7204/* Must be called with tasklist_lock held */
7205static inline int tg_has_rt_tasks(struct task_group *tg)
7206{
7207	struct task_struct *g, *p;
7208
7209	do_each_thread(g, p) {
7210		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7211			return 1;
7212	} while_each_thread(g, p);
7213
7214	return 0;
7215}
7216
7217struct rt_schedulable_data {
7218	struct task_group *tg;
7219	u64 rt_period;
7220	u64 rt_runtime;
7221};
7222
7223static int tg_rt_schedulable(struct task_group *tg, void *data)
7224{
7225	struct rt_schedulable_data *d = data;
7226	struct task_group *child;
7227	unsigned long total, sum = 0;
7228	u64 period, runtime;
7229
7230	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7231	runtime = tg->rt_bandwidth.rt_runtime;
7232
7233	if (tg == d->tg) {
7234		period = d->rt_period;
7235		runtime = d->rt_runtime;
7236	}
7237
7238	/*
7239	 * Cannot have more runtime than the period.
7240	 */
7241	if (runtime > period && runtime != RUNTIME_INF)
7242		return -EINVAL;
7243
7244	/*
7245	 * Ensure we don't starve existing RT tasks.
7246	 */
7247	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7248		return -EBUSY;
7249
7250	total = to_ratio(period, runtime);
7251
7252	/*
7253	 * Nobody can have more than the global setting allows.
7254	 */
7255	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7256		return -EINVAL;
7257
7258	/*
7259	 * The sum of our children's runtime should not exceed our own.
7260	 */
7261	list_for_each_entry_rcu(child, &tg->children, siblings) {
7262		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7263		runtime = child->rt_bandwidth.rt_runtime;
7264
7265		if (child == d->tg) {
7266			period = d->rt_period;
7267			runtime = d->rt_runtime;
7268		}
7269
7270		sum += to_ratio(period, runtime);
7271	}
7272
7273	if (sum > total)
7274		return -EINVAL;
7275
7276	return 0;
7277}
7278
7279static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7280{
7281	int ret;
7282
7283	struct rt_schedulable_data data = {
7284		.tg = tg,
7285		.rt_period = period,
7286		.rt_runtime = runtime,
7287	};
7288
7289	rcu_read_lock();
7290	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7291	rcu_read_unlock();
7292
7293	return ret;
7294}
7295
7296static int tg_set_rt_bandwidth(struct task_group *tg,
7297		u64 rt_period, u64 rt_runtime)
7298{
7299	int i, err = 0;
7300
7301	mutex_lock(&rt_constraints_mutex);
7302	read_lock(&tasklist_lock);
7303	err = __rt_schedulable(tg, rt_period, rt_runtime);
7304	if (err)
7305		goto unlock;
7306
7307	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7308	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7309	tg->rt_bandwidth.rt_runtime = rt_runtime;
7310
7311	for_each_possible_cpu(i) {
7312		struct rt_rq *rt_rq = tg->rt_rq[i];
7313
7314		raw_spin_lock(&rt_rq->rt_runtime_lock);
7315		rt_rq->rt_runtime = rt_runtime;
7316		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7317	}
7318	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7319unlock:
7320	read_unlock(&tasklist_lock);
7321	mutex_unlock(&rt_constraints_mutex);
7322
7323	return err;
7324}
7325
7326static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7327{
7328	u64 rt_runtime, rt_period;
7329
7330	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7331	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7332	if (rt_runtime_us < 0)
7333		rt_runtime = RUNTIME_INF;
7334
7335	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7336}
7337
7338static long sched_group_rt_runtime(struct task_group *tg)
7339{
7340	u64 rt_runtime_us;
7341
7342	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7343		return -1;
7344
7345	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7346	do_div(rt_runtime_us, NSEC_PER_USEC);
7347	return rt_runtime_us;
7348}
7349
7350static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7351{
7352	u64 rt_runtime, rt_period;
7353
7354	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7355	rt_runtime = tg->rt_bandwidth.rt_runtime;
7356
7357	if (rt_period == 0)
7358		return -EINVAL;
7359
7360	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7361}
7362
7363static long sched_group_rt_period(struct task_group *tg)
7364{
7365	u64 rt_period_us;
7366
7367	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7368	do_div(rt_period_us, NSEC_PER_USEC);
7369	return rt_period_us;
7370}
7371#endif /* CONFIG_RT_GROUP_SCHED */
7372
7373#ifdef CONFIG_RT_GROUP_SCHED
7374static int sched_rt_global_constraints(void)
7375{
7376	int ret = 0;
7377
7378	mutex_lock(&rt_constraints_mutex);
7379	read_lock(&tasklist_lock);
7380	ret = __rt_schedulable(NULL, 0, 0);
7381	read_unlock(&tasklist_lock);
7382	mutex_unlock(&rt_constraints_mutex);
7383
7384	return ret;
7385}
7386
7387static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7388{
7389	/* Don't accept realtime tasks when there is no way for them to run */
7390	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7391		return 0;
7392
7393	return 1;
7394}
7395
7396#else /* !CONFIG_RT_GROUP_SCHED */
7397static int sched_rt_global_constraints(void)
7398{
7399	unsigned long flags;
7400	int i, ret = 0;
7401
7402	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7403	for_each_possible_cpu(i) {
7404		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7405
7406		raw_spin_lock(&rt_rq->rt_runtime_lock);
7407		rt_rq->rt_runtime = global_rt_runtime();
7408		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7409	}
7410	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7411
7412	return ret;
7413}
7414#endif /* CONFIG_RT_GROUP_SCHED */
7415
7416static int sched_dl_global_constraints(void)
7417{
7418	u64 runtime = global_rt_runtime();
7419	u64 period = global_rt_period();
7420	u64 new_bw = to_ratio(period, runtime);
7421	int cpu, ret = 0;
7422
7423	/*
7424	 * Here we want to check the bandwidth not being set to some
7425	 * value smaller than the currently allocated bandwidth in
7426	 * any of the root_domains.
7427	 *
7428	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7429	 * cycling on root_domains... Discussion on different/better
7430	 * solutions is welcome!
7431	 */
7432	for_each_possible_cpu(cpu) {
7433		struct dl_bw *dl_b = dl_bw_of(cpu);
7434
7435		raw_spin_lock(&dl_b->lock);
7436		if (new_bw < dl_b->total_bw)
7437			ret = -EBUSY;
7438		raw_spin_unlock(&dl_b->lock);
7439
7440		if (ret)
7441			break;
7442	}
7443
7444	return ret;
7445}
7446
7447static void sched_dl_do_global(void)
7448{
7449	u64 new_bw = -1;
7450	int cpu;
7451
7452	def_dl_bandwidth.dl_period = global_rt_period();
7453	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7454
7455	if (global_rt_runtime() != RUNTIME_INF)
7456		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7457
7458	/*
7459	 * FIXME: As above...
7460	 */
7461	for_each_possible_cpu(cpu) {
7462		struct dl_bw *dl_b = dl_bw_of(cpu);
7463
7464		raw_spin_lock(&dl_b->lock);
7465		dl_b->bw = new_bw;
7466		raw_spin_unlock(&dl_b->lock);
7467	}
7468}
7469
7470static int sched_rt_global_validate(void)
7471{
7472	if (sysctl_sched_rt_period <= 0)
7473		return -EINVAL;
7474
7475	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7476		return -EINVAL;
7477
7478	return 0;
7479}
7480
7481static void sched_rt_do_global(void)
7482{
7483	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7484	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7485}
7486
7487int sched_rt_handler(struct ctl_table *table, int write,
7488		void __user *buffer, size_t *lenp,
7489		loff_t *ppos)
7490{
7491	int old_period, old_runtime;
7492	static DEFINE_MUTEX(mutex);
7493	int ret;
7494
7495	mutex_lock(&mutex);
7496	old_period = sysctl_sched_rt_period;
7497	old_runtime = sysctl_sched_rt_runtime;
7498
7499	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7500
7501	if (!ret && write) {
7502		ret = sched_rt_global_validate();
7503		if (ret)
7504			goto undo;
7505
7506		ret = sched_rt_global_constraints();
7507		if (ret)
7508			goto undo;
7509
7510		ret = sched_dl_global_constraints();
7511		if (ret)
7512			goto undo;
7513
7514		sched_rt_do_global();
7515		sched_dl_do_global();
7516	}
7517	if (0) {
7518undo:
7519		sysctl_sched_rt_period = old_period;
7520		sysctl_sched_rt_runtime = old_runtime;
7521	}
7522	mutex_unlock(&mutex);
7523
7524	return ret;
7525}
7526
7527int sched_rr_handler(struct ctl_table *table, int write,
7528		void __user *buffer, size_t *lenp,
7529		loff_t *ppos)
7530{
7531	int ret;
7532	static DEFINE_MUTEX(mutex);
7533
7534	mutex_lock(&mutex);
7535	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7536	/* make sure that internally we keep jiffies */
7537	/* also, writing zero resets timeslice to default */
7538	if (!ret && write) {
7539		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7540			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7541	}
7542	mutex_unlock(&mutex);
7543	return ret;
7544}
7545
7546#ifdef CONFIG_CGROUP_SCHED
7547
7548static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7549{
7550	return css ? container_of(css, struct task_group, css) : NULL;
7551}
7552
7553static struct cgroup_subsys_state *
7554cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7555{
7556	struct task_group *parent = css_tg(parent_css);
7557	struct task_group *tg;
7558
7559	if (!parent) {
7560		/* This is early initialization for the top cgroup */
7561		return &root_task_group.css;
7562	}
7563
7564	tg = sched_create_group(parent);
7565	if (IS_ERR(tg))
7566		return ERR_PTR(-ENOMEM);
7567
7568	return &tg->css;
7569}
7570
7571static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7572{
7573	struct task_group *tg = css_tg(css);
7574	struct task_group *parent = css_tg(css_parent(css));
7575
7576	if (parent)
7577		sched_online_group(tg, parent);
7578	return 0;
7579}
7580
7581static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7582{
7583	struct task_group *tg = css_tg(css);
7584
7585	sched_destroy_group(tg);
7586}
7587
7588static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7589{
7590	struct task_group *tg = css_tg(css);
7591
7592	sched_offline_group(tg);
7593}
7594
7595static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7596				 struct cgroup_taskset *tset)
7597{
7598	struct task_struct *task;
7599
7600	cgroup_taskset_for_each(task, css, tset) {
7601#ifdef CONFIG_RT_GROUP_SCHED
7602		if (!sched_rt_can_attach(css_tg(css), task))
7603			return -EINVAL;
7604#else
7605		/* We don't support RT-tasks being in separate groups */
7606		if (task->sched_class != &fair_sched_class)
7607			return -EINVAL;
7608#endif
7609	}
7610	return 0;
7611}
7612
7613static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7614			      struct cgroup_taskset *tset)
7615{
7616	struct task_struct *task;
7617
7618	cgroup_taskset_for_each(task, css, tset)
7619		sched_move_task(task);
7620}
7621
7622static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7623			    struct cgroup_subsys_state *old_css,
7624			    struct task_struct *task)
7625{
7626	/*
7627	 * cgroup_exit() is called in the copy_process() failure path.
7628	 * Ignore this case since the task hasn't ran yet, this avoids
7629	 * trying to poke a half freed task state from generic code.
7630	 */
7631	if (!(task->flags & PF_EXITING))
7632		return;
7633
7634	sched_move_task(task);
7635}
7636
7637#ifdef CONFIG_FAIR_GROUP_SCHED
7638static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7639				struct cftype *cftype, u64 shareval)
7640{
7641	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7642}
7643
7644static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7645			       struct cftype *cft)
7646{
7647	struct task_group *tg = css_tg(css);
7648
7649	return (u64) scale_load_down(tg->shares);
7650}
7651
7652#ifdef CONFIG_CFS_BANDWIDTH
7653static DEFINE_MUTEX(cfs_constraints_mutex);
7654
7655const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7656const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7657
7658static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7659
7660static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7661{
7662	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7663	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7664
7665	if (tg == &root_task_group)
7666		return -EINVAL;
7667
7668	/*
7669	 * Ensure we have at some amount of bandwidth every period.  This is
7670	 * to prevent reaching a state of large arrears when throttled via
7671	 * entity_tick() resulting in prolonged exit starvation.
7672	 */
7673	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7674		return -EINVAL;
7675
7676	/*
7677	 * Likewise, bound things on the otherside by preventing insane quota
7678	 * periods.  This also allows us to normalize in computing quota
7679	 * feasibility.
7680	 */
7681	if (period > max_cfs_quota_period)
7682		return -EINVAL;
7683
7684	mutex_lock(&cfs_constraints_mutex);
7685	ret = __cfs_schedulable(tg, period, quota);
7686	if (ret)
7687		goto out_unlock;
7688
7689	runtime_enabled = quota != RUNTIME_INF;
7690	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7691	/*
7692	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7693	 * before making related changes, and on->off must occur afterwards
7694	 */
7695	if (runtime_enabled && !runtime_was_enabled)
7696		cfs_bandwidth_usage_inc();
7697	raw_spin_lock_irq(&cfs_b->lock);
7698	cfs_b->period = ns_to_ktime(period);
7699	cfs_b->quota = quota;
7700
7701	__refill_cfs_bandwidth_runtime(cfs_b);
7702	/* restart the period timer (if active) to handle new period expiry */
7703	if (runtime_enabled && cfs_b->timer_active) {
7704		/* force a reprogram */
7705		cfs_b->timer_active = 0;
7706		__start_cfs_bandwidth(cfs_b);
7707	}
7708	raw_spin_unlock_irq(&cfs_b->lock);
7709
7710	for_each_possible_cpu(i) {
7711		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7712		struct rq *rq = cfs_rq->rq;
7713
7714		raw_spin_lock_irq(&rq->lock);
7715		cfs_rq->runtime_enabled = runtime_enabled;
7716		cfs_rq->runtime_remaining = 0;
7717
7718		if (cfs_rq->throttled)
7719			unthrottle_cfs_rq(cfs_rq);
7720		raw_spin_unlock_irq(&rq->lock);
7721	}
7722	if (runtime_was_enabled && !runtime_enabled)
7723		cfs_bandwidth_usage_dec();
7724out_unlock:
7725	mutex_unlock(&cfs_constraints_mutex);
7726
7727	return ret;
7728}
7729
7730int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7731{
7732	u64 quota, period;
7733
7734	period = ktime_to_ns(tg->cfs_bandwidth.period);
7735	if (cfs_quota_us < 0)
7736		quota = RUNTIME_INF;
7737	else
7738		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7739
7740	return tg_set_cfs_bandwidth(tg, period, quota);
7741}
7742
7743long tg_get_cfs_quota(struct task_group *tg)
7744{
7745	u64 quota_us;
7746
7747	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7748		return -1;
7749
7750	quota_us = tg->cfs_bandwidth.quota;
7751	do_div(quota_us, NSEC_PER_USEC);
7752
7753	return quota_us;
7754}
7755
7756int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7757{
7758	u64 quota, period;
7759
7760	period = (u64)cfs_period_us * NSEC_PER_USEC;
7761	quota = tg->cfs_bandwidth.quota;
7762
7763	return tg_set_cfs_bandwidth(tg, period, quota);
7764}
7765
7766long tg_get_cfs_period(struct task_group *tg)
7767{
7768	u64 cfs_period_us;
7769
7770	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7771	do_div(cfs_period_us, NSEC_PER_USEC);
7772
7773	return cfs_period_us;
7774}
7775
7776static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7777				  struct cftype *cft)
7778{
7779	return tg_get_cfs_quota(css_tg(css));
7780}
7781
7782static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7783				   struct cftype *cftype, s64 cfs_quota_us)
7784{
7785	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7786}
7787
7788static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7789				   struct cftype *cft)
7790{
7791	return tg_get_cfs_period(css_tg(css));
7792}
7793
7794static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7795				    struct cftype *cftype, u64 cfs_period_us)
7796{
7797	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7798}
7799
7800struct cfs_schedulable_data {
7801	struct task_group *tg;
7802	u64 period, quota;
7803};
7804
7805/*
7806 * normalize group quota/period to be quota/max_period
7807 * note: units are usecs
7808 */
7809static u64 normalize_cfs_quota(struct task_group *tg,
7810			       struct cfs_schedulable_data *d)
7811{
7812	u64 quota, period;
7813
7814	if (tg == d->tg) {
7815		period = d->period;
7816		quota = d->quota;
7817	} else {
7818		period = tg_get_cfs_period(tg);
7819		quota = tg_get_cfs_quota(tg);
7820	}
7821
7822	/* note: these should typically be equivalent */
7823	if (quota == RUNTIME_INF || quota == -1)
7824		return RUNTIME_INF;
7825
7826	return to_ratio(period, quota);
7827}
7828
7829static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7830{
7831	struct cfs_schedulable_data *d = data;
7832	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7833	s64 quota = 0, parent_quota = -1;
7834
7835	if (!tg->parent) {
7836		quota = RUNTIME_INF;
7837	} else {
7838		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7839
7840		quota = normalize_cfs_quota(tg, d);
7841		parent_quota = parent_b->hierarchal_quota;
7842
7843		/*
7844		 * ensure max(child_quota) <= parent_quota, inherit when no
7845		 * limit is set
7846		 */
7847		if (quota == RUNTIME_INF)
7848			quota = parent_quota;
7849		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7850			return -EINVAL;
7851	}
7852	cfs_b->hierarchal_quota = quota;
7853
7854	return 0;
7855}
7856
7857static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7858{
7859	int ret;
7860	struct cfs_schedulable_data data = {
7861		.tg = tg,
7862		.period = period,
7863		.quota = quota,
7864	};
7865
7866	if (quota != RUNTIME_INF) {
7867		do_div(data.period, NSEC_PER_USEC);
7868		do_div(data.quota, NSEC_PER_USEC);
7869	}
7870
7871	rcu_read_lock();
7872	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7873	rcu_read_unlock();
7874
7875	return ret;
7876}
7877
7878static int cpu_stats_show(struct seq_file *sf, void *v)
7879{
7880	struct task_group *tg = css_tg(seq_css(sf));
7881	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7882
7883	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7884	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7885	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7886
7887	return 0;
7888}
7889#endif /* CONFIG_CFS_BANDWIDTH */
7890#endif /* CONFIG_FAIR_GROUP_SCHED */
7891
7892#ifdef CONFIG_RT_GROUP_SCHED
7893static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7894				struct cftype *cft, s64 val)
7895{
7896	return sched_group_set_rt_runtime(css_tg(css), val);
7897}
7898
7899static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7900			       struct cftype *cft)
7901{
7902	return sched_group_rt_runtime(css_tg(css));
7903}
7904
7905static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7906				    struct cftype *cftype, u64 rt_period_us)
7907{
7908	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7909}
7910
7911static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7912				   struct cftype *cft)
7913{
7914	return sched_group_rt_period(css_tg(css));
7915}
7916#endif /* CONFIG_RT_GROUP_SCHED */
7917
7918static struct cftype cpu_files[] = {
7919#ifdef CONFIG_FAIR_GROUP_SCHED
7920	{
7921		.name = "shares",
7922		.read_u64 = cpu_shares_read_u64,
7923		.write_u64 = cpu_shares_write_u64,
7924	},
7925#endif
7926#ifdef CONFIG_CFS_BANDWIDTH
7927	{
7928		.name = "cfs_quota_us",
7929		.read_s64 = cpu_cfs_quota_read_s64,
7930		.write_s64 = cpu_cfs_quota_write_s64,
7931	},
7932	{
7933		.name = "cfs_period_us",
7934		.read_u64 = cpu_cfs_period_read_u64,
7935		.write_u64 = cpu_cfs_period_write_u64,
7936	},
7937	{
7938		.name = "stat",
7939		.seq_show = cpu_stats_show,
7940	},
7941#endif
7942#ifdef CONFIG_RT_GROUP_SCHED
7943	{
7944		.name = "rt_runtime_us",
7945		.read_s64 = cpu_rt_runtime_read,
7946		.write_s64 = cpu_rt_runtime_write,
7947	},
7948	{
7949		.name = "rt_period_us",
7950		.read_u64 = cpu_rt_period_read_uint,
7951		.write_u64 = cpu_rt_period_write_uint,
7952	},
7953#endif
7954	{ }	/* terminate */
7955};
7956
7957struct cgroup_subsys cpu_cgroup_subsys = {
7958	.name		= "cpu",
7959	.css_alloc	= cpu_cgroup_css_alloc,
7960	.css_free	= cpu_cgroup_css_free,
7961	.css_online	= cpu_cgroup_css_online,
7962	.css_offline	= cpu_cgroup_css_offline,
7963	.can_attach	= cpu_cgroup_can_attach,
7964	.attach		= cpu_cgroup_attach,
7965	.exit		= cpu_cgroup_exit,
7966	.subsys_id	= cpu_cgroup_subsys_id,
7967	.base_cftypes	= cpu_files,
7968	.early_init	= 1,
7969};
7970
7971#endif	/* CONFIG_CGROUP_SCHED */
7972
7973void dump_cpu_task(int cpu)
7974{
7975	pr_info("Task dump for CPU %d:\n", cpu);
7976	sched_show_task(cpu_curr(cpu));
7977}
7978