core.c revision 45ceebf77653975815d82fcf7cec0a164215ae11
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	assert_raw_spin_locked(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id())
528		return;
529
530	/* NEED_RESCHED must be visible before we test polling */
531	smp_mb();
532	if (!tsk_is_polling(p))
533		smp_send_reschedule(cpu);
534}
535
536void resched_cpu(int cpu)
537{
538	struct rq *rq = cpu_rq(cpu);
539	unsigned long flags;
540
541	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542		return;
543	resched_task(cpu_curr(cpu));
544	raw_spin_unlock_irqrestore(&rq->lock, flags);
545}
546
547#ifdef CONFIG_NO_HZ_COMMON
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu.  This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558	int cpu = smp_processor_id();
559	int i;
560	struct sched_domain *sd;
561
562	rcu_read_lock();
563	for_each_domain(cpu, sd) {
564		for_each_cpu(i, sched_domain_span(sd)) {
565			if (!idle_cpu(i)) {
566				cpu = i;
567				goto unlock;
568			}
569		}
570	}
571unlock:
572	rcu_read_unlock();
573	return cpu;
574}
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585static void wake_up_idle_cpu(int cpu)
586{
587	struct rq *rq = cpu_rq(cpu);
588
589	if (cpu == smp_processor_id())
590		return;
591
592	/*
593	 * This is safe, as this function is called with the timer
594	 * wheel base lock of (cpu) held. When the CPU is on the way
595	 * to idle and has not yet set rq->curr to idle then it will
596	 * be serialized on the timer wheel base lock and take the new
597	 * timer into account automatically.
598	 */
599	if (rq->curr != rq->idle)
600		return;
601
602	/*
603	 * We can set TIF_RESCHED on the idle task of the other CPU
604	 * lockless. The worst case is that the other CPU runs the
605	 * idle task through an additional NOOP schedule()
606	 */
607	set_tsk_need_resched(rq->idle);
608
609	/* NEED_RESCHED must be visible before we test polling */
610	smp_mb();
611	if (!tsk_is_polling(rq->idle))
612		smp_send_reschedule(cpu);
613}
614
615static bool wake_up_full_nohz_cpu(int cpu)
616{
617	if (tick_nohz_full_cpu(cpu)) {
618		if (cpu != smp_processor_id() ||
619		    tick_nohz_tick_stopped())
620			smp_send_reschedule(cpu);
621		return true;
622	}
623
624	return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
629	if (!wake_up_full_nohz_cpu(cpu))
630		wake_up_idle_cpu(cpu);
631}
632
633static inline bool got_nohz_idle_kick(void)
634{
635	int cpu = smp_processor_id();
636	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637}
638
639#else /* CONFIG_NO_HZ_COMMON */
640
641static inline bool got_nohz_idle_kick(void)
642{
643	return false;
644}
645
646#endif /* CONFIG_NO_HZ_COMMON */
647
648#ifdef CONFIG_NO_HZ_FULL
649bool sched_can_stop_tick(void)
650{
651       struct rq *rq;
652
653       rq = this_rq();
654
655       /* Make sure rq->nr_running update is visible after the IPI */
656       smp_rmb();
657
658       /* More than one running task need preemption */
659       if (rq->nr_running > 1)
660               return false;
661
662       return true;
663}
664#endif /* CONFIG_NO_HZ_FULL */
665
666void sched_avg_update(struct rq *rq)
667{
668	s64 period = sched_avg_period();
669
670	while ((s64)(rq->clock - rq->age_stamp) > period) {
671		/*
672		 * Inline assembly required to prevent the compiler
673		 * optimising this loop into a divmod call.
674		 * See __iter_div_u64_rem() for another example of this.
675		 */
676		asm("" : "+rm" (rq->age_stamp));
677		rq->age_stamp += period;
678		rq->rt_avg /= 2;
679	}
680}
681
682#else /* !CONFIG_SMP */
683void resched_task(struct task_struct *p)
684{
685	assert_raw_spin_locked(&task_rq(p)->lock);
686	set_tsk_need_resched(p);
687}
688#endif /* CONFIG_SMP */
689
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692/*
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
697 */
698int walk_tg_tree_from(struct task_group *from,
699			     tg_visitor down, tg_visitor up, void *data)
700{
701	struct task_group *parent, *child;
702	int ret;
703
704	parent = from;
705
706down:
707	ret = (*down)(parent, data);
708	if (ret)
709		goto out;
710	list_for_each_entry_rcu(child, &parent->children, siblings) {
711		parent = child;
712		goto down;
713
714up:
715		continue;
716	}
717	ret = (*up)(parent, data);
718	if (ret || parent == from)
719		goto out;
720
721	child = parent;
722	parent = parent->parent;
723	if (parent)
724		goto up;
725out:
726	return ret;
727}
728
729int tg_nop(struct task_group *tg, void *data)
730{
731	return 0;
732}
733#endif
734
735static void set_load_weight(struct task_struct *p)
736{
737	int prio = p->static_prio - MAX_RT_PRIO;
738	struct load_weight *load = &p->se.load;
739
740	/*
741	 * SCHED_IDLE tasks get minimal weight:
742	 */
743	if (p->policy == SCHED_IDLE) {
744		load->weight = scale_load(WEIGHT_IDLEPRIO);
745		load->inv_weight = WMULT_IDLEPRIO;
746		return;
747	}
748
749	load->weight = scale_load(prio_to_weight[prio]);
750	load->inv_weight = prio_to_wmult[prio];
751}
752
753static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754{
755	update_rq_clock(rq);
756	sched_info_queued(p);
757	p->sched_class->enqueue_task(rq, p, flags);
758}
759
760static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761{
762	update_rq_clock(rq);
763	sched_info_dequeued(p);
764	p->sched_class->dequeue_task(rq, p, flags);
765}
766
767void activate_task(struct rq *rq, struct task_struct *p, int flags)
768{
769	if (task_contributes_to_load(p))
770		rq->nr_uninterruptible--;
771
772	enqueue_task(rq, p, flags);
773}
774
775void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible++;
779
780	dequeue_task(rq, p, flags);
781}
782
783static void update_rq_clock_task(struct rq *rq, s64 delta)
784{
785/*
786 * In theory, the compile should just see 0 here, and optimize out the call
787 * to sched_rt_avg_update. But I don't trust it...
788 */
789#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
790	s64 steal = 0, irq_delta = 0;
791#endif
792#ifdef CONFIG_IRQ_TIME_ACCOUNTING
793	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794
795	/*
796	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
797	 * this case when a previous update_rq_clock() happened inside a
798	 * {soft,}irq region.
799	 *
800	 * When this happens, we stop ->clock_task and only update the
801	 * prev_irq_time stamp to account for the part that fit, so that a next
802	 * update will consume the rest. This ensures ->clock_task is
803	 * monotonic.
804	 *
805	 * It does however cause some slight miss-attribution of {soft,}irq
806	 * time, a more accurate solution would be to update the irq_time using
807	 * the current rq->clock timestamp, except that would require using
808	 * atomic ops.
809	 */
810	if (irq_delta > delta)
811		irq_delta = delta;
812
813	rq->prev_irq_time += irq_delta;
814	delta -= irq_delta;
815#endif
816#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817	if (static_key_false((&paravirt_steal_rq_enabled))) {
818		u64 st;
819
820		steal = paravirt_steal_clock(cpu_of(rq));
821		steal -= rq->prev_steal_time_rq;
822
823		if (unlikely(steal > delta))
824			steal = delta;
825
826		st = steal_ticks(steal);
827		steal = st * TICK_NSEC;
828
829		rq->prev_steal_time_rq += steal;
830
831		delta -= steal;
832	}
833#endif
834
835	rq->clock_task += delta;
836
837#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
838	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
839		sched_rt_avg_update(rq, irq_delta + steal);
840#endif
841}
842
843void sched_set_stop_task(int cpu, struct task_struct *stop)
844{
845	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
846	struct task_struct *old_stop = cpu_rq(cpu)->stop;
847
848	if (stop) {
849		/*
850		 * Make it appear like a SCHED_FIFO task, its something
851		 * userspace knows about and won't get confused about.
852		 *
853		 * Also, it will make PI more or less work without too
854		 * much confusion -- but then, stop work should not
855		 * rely on PI working anyway.
856		 */
857		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
858
859		stop->sched_class = &stop_sched_class;
860	}
861
862	cpu_rq(cpu)->stop = stop;
863
864	if (old_stop) {
865		/*
866		 * Reset it back to a normal scheduling class so that
867		 * it can die in pieces.
868		 */
869		old_stop->sched_class = &rt_sched_class;
870	}
871}
872
873/*
874 * __normal_prio - return the priority that is based on the static prio
875 */
876static inline int __normal_prio(struct task_struct *p)
877{
878	return p->static_prio;
879}
880
881/*
882 * Calculate the expected normal priority: i.e. priority
883 * without taking RT-inheritance into account. Might be
884 * boosted by interactivity modifiers. Changes upon fork,
885 * setprio syscalls, and whenever the interactivity
886 * estimator recalculates.
887 */
888static inline int normal_prio(struct task_struct *p)
889{
890	int prio;
891
892	if (task_has_rt_policy(p))
893		prio = MAX_RT_PRIO-1 - p->rt_priority;
894	else
895		prio = __normal_prio(p);
896	return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906static int effective_prio(struct task_struct *p)
907{
908	p->normal_prio = normal_prio(p);
909	/*
910	 * If we are RT tasks or we were boosted to RT priority,
911	 * keep the priority unchanged. Otherwise, update priority
912	 * to the normal priority:
913	 */
914	if (!rt_prio(p->prio))
915		return p->normal_prio;
916	return p->prio;
917}
918
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 */
923inline int task_curr(const struct task_struct *p)
924{
925	return cpu_curr(task_cpu(p)) == p;
926}
927
928static inline void check_class_changed(struct rq *rq, struct task_struct *p,
929				       const struct sched_class *prev_class,
930				       int oldprio)
931{
932	if (prev_class != p->sched_class) {
933		if (prev_class->switched_from)
934			prev_class->switched_from(rq, p);
935		p->sched_class->switched_to(rq, p);
936	} else if (oldprio != p->prio)
937		p->sched_class->prio_changed(rq, p, oldprio);
938}
939
940void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941{
942	const struct sched_class *class;
943
944	if (p->sched_class == rq->curr->sched_class) {
945		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
946	} else {
947		for_each_class(class) {
948			if (class == rq->curr->sched_class)
949				break;
950			if (class == p->sched_class) {
951				resched_task(rq->curr);
952				break;
953			}
954		}
955	}
956
957	/*
958	 * A queue event has occurred, and we're going to schedule.  In
959	 * this case, we can save a useless back to back clock update.
960	 */
961	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962		rq->skip_clock_update = 1;
963}
964
965static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
966
967void register_task_migration_notifier(struct notifier_block *n)
968{
969	atomic_notifier_chain_register(&task_migration_notifier, n);
970}
971
972#ifdef CONFIG_SMP
973void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
974{
975#ifdef CONFIG_SCHED_DEBUG
976	/*
977	 * We should never call set_task_cpu() on a blocked task,
978	 * ttwu() will sort out the placement.
979	 */
980	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
981			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982
983#ifdef CONFIG_LOCKDEP
984	/*
985	 * The caller should hold either p->pi_lock or rq->lock, when changing
986	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
987	 *
988	 * sched_move_task() holds both and thus holding either pins the cgroup,
989	 * see task_group().
990	 *
991	 * Furthermore, all task_rq users should acquire both locks, see
992	 * task_rq_lock().
993	 */
994	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
995				      lockdep_is_held(&task_rq(p)->lock)));
996#endif
997#endif
998
999	trace_sched_migrate_task(p, new_cpu);
1000
1001	if (task_cpu(p) != new_cpu) {
1002		struct task_migration_notifier tmn;
1003
1004		if (p->sched_class->migrate_task_rq)
1005			p->sched_class->migrate_task_rq(p, new_cpu);
1006		p->se.nr_migrations++;
1007		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008
1009		tmn.task = p;
1010		tmn.from_cpu = task_cpu(p);
1011		tmn.to_cpu = new_cpu;
1012
1013		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014	}
1015
1016	__set_task_cpu(p, new_cpu);
1017}
1018
1019struct migration_arg {
1020	struct task_struct *task;
1021	int dest_cpu;
1022};
1023
1024static int migration_cpu_stop(void *data);
1025
1026/*
1027 * wait_task_inactive - wait for a thread to unschedule.
1028 *
1029 * If @match_state is nonzero, it's the @p->state value just checked and
1030 * not expected to change.  If it changes, i.e. @p might have woken up,
1031 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1032 * we return a positive number (its total switch count).  If a second call
1033 * a short while later returns the same number, the caller can be sure that
1034 * @p has remained unscheduled the whole time.
1035 *
1036 * The caller must ensure that the task *will* unschedule sometime soon,
1037 * else this function might spin for a *long* time. This function can't
1038 * be called with interrupts off, or it may introduce deadlock with
1039 * smp_call_function() if an IPI is sent by the same process we are
1040 * waiting to become inactive.
1041 */
1042unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1043{
1044	unsigned long flags;
1045	int running, on_rq;
1046	unsigned long ncsw;
1047	struct rq *rq;
1048
1049	for (;;) {
1050		/*
1051		 * We do the initial early heuristics without holding
1052		 * any task-queue locks at all. We'll only try to get
1053		 * the runqueue lock when things look like they will
1054		 * work out!
1055		 */
1056		rq = task_rq(p);
1057
1058		/*
1059		 * If the task is actively running on another CPU
1060		 * still, just relax and busy-wait without holding
1061		 * any locks.
1062		 *
1063		 * NOTE! Since we don't hold any locks, it's not
1064		 * even sure that "rq" stays as the right runqueue!
1065		 * But we don't care, since "task_running()" will
1066		 * return false if the runqueue has changed and p
1067		 * is actually now running somewhere else!
1068		 */
1069		while (task_running(rq, p)) {
1070			if (match_state && unlikely(p->state != match_state))
1071				return 0;
1072			cpu_relax();
1073		}
1074
1075		/*
1076		 * Ok, time to look more closely! We need the rq
1077		 * lock now, to be *sure*. If we're wrong, we'll
1078		 * just go back and repeat.
1079		 */
1080		rq = task_rq_lock(p, &flags);
1081		trace_sched_wait_task(p);
1082		running = task_running(rq, p);
1083		on_rq = p->on_rq;
1084		ncsw = 0;
1085		if (!match_state || p->state == match_state)
1086			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087		task_rq_unlock(rq, p, &flags);
1088
1089		/*
1090		 * If it changed from the expected state, bail out now.
1091		 */
1092		if (unlikely(!ncsw))
1093			break;
1094
1095		/*
1096		 * Was it really running after all now that we
1097		 * checked with the proper locks actually held?
1098		 *
1099		 * Oops. Go back and try again..
1100		 */
1101		if (unlikely(running)) {
1102			cpu_relax();
1103			continue;
1104		}
1105
1106		/*
1107		 * It's not enough that it's not actively running,
1108		 * it must be off the runqueue _entirely_, and not
1109		 * preempted!
1110		 *
1111		 * So if it was still runnable (but just not actively
1112		 * running right now), it's preempted, and we should
1113		 * yield - it could be a while.
1114		 */
1115		if (unlikely(on_rq)) {
1116			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1117
1118			set_current_state(TASK_UNINTERRUPTIBLE);
1119			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120			continue;
1121		}
1122
1123		/*
1124		 * Ahh, all good. It wasn't running, and it wasn't
1125		 * runnable, which means that it will never become
1126		 * running in the future either. We're all done!
1127		 */
1128		break;
1129	}
1130
1131	return ncsw;
1132}
1133
1134/***
1135 * kick_process - kick a running thread to enter/exit the kernel
1136 * @p: the to-be-kicked thread
1137 *
1138 * Cause a process which is running on another CPU to enter
1139 * kernel-mode, without any delay. (to get signals handled.)
1140 *
1141 * NOTE: this function doesn't have to take the runqueue lock,
1142 * because all it wants to ensure is that the remote task enters
1143 * the kernel. If the IPI races and the task has been migrated
1144 * to another CPU then no harm is done and the purpose has been
1145 * achieved as well.
1146 */
1147void kick_process(struct task_struct *p)
1148{
1149	int cpu;
1150
1151	preempt_disable();
1152	cpu = task_cpu(p);
1153	if ((cpu != smp_processor_id()) && task_curr(p))
1154		smp_send_reschedule(cpu);
1155	preempt_enable();
1156}
1157EXPORT_SYMBOL_GPL(kick_process);
1158#endif /* CONFIG_SMP */
1159
1160#ifdef CONFIG_SMP
1161/*
1162 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163 */
1164static int select_fallback_rq(int cpu, struct task_struct *p)
1165{
1166	int nid = cpu_to_node(cpu);
1167	const struct cpumask *nodemask = NULL;
1168	enum { cpuset, possible, fail } state = cpuset;
1169	int dest_cpu;
1170
1171	/*
1172	 * If the node that the cpu is on has been offlined, cpu_to_node()
1173	 * will return -1. There is no cpu on the node, and we should
1174	 * select the cpu on the other node.
1175	 */
1176	if (nid != -1) {
1177		nodemask = cpumask_of_node(nid);
1178
1179		/* Look for allowed, online CPU in same node. */
1180		for_each_cpu(dest_cpu, nodemask) {
1181			if (!cpu_online(dest_cpu))
1182				continue;
1183			if (!cpu_active(dest_cpu))
1184				continue;
1185			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1186				return dest_cpu;
1187		}
1188	}
1189
1190	for (;;) {
1191		/* Any allowed, online CPU? */
1192		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193			if (!cpu_online(dest_cpu))
1194				continue;
1195			if (!cpu_active(dest_cpu))
1196				continue;
1197			goto out;
1198		}
1199
1200		switch (state) {
1201		case cpuset:
1202			/* No more Mr. Nice Guy. */
1203			cpuset_cpus_allowed_fallback(p);
1204			state = possible;
1205			break;
1206
1207		case possible:
1208			do_set_cpus_allowed(p, cpu_possible_mask);
1209			state = fail;
1210			break;
1211
1212		case fail:
1213			BUG();
1214			break;
1215		}
1216	}
1217
1218out:
1219	if (state != cpuset) {
1220		/*
1221		 * Don't tell them about moving exiting tasks or
1222		 * kernel threads (both mm NULL), since they never
1223		 * leave kernel.
1224		 */
1225		if (p->mm && printk_ratelimit()) {
1226			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1227					task_pid_nr(p), p->comm, cpu);
1228		}
1229	}
1230
1231	return dest_cpu;
1232}
1233
1234/*
1235 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236 */
1237static inline
1238int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239{
1240	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241
1242	/*
1243	 * In order not to call set_task_cpu() on a blocking task we need
1244	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1245	 * cpu.
1246	 *
1247	 * Since this is common to all placement strategies, this lives here.
1248	 *
1249	 * [ this allows ->select_task() to simply return task_cpu(p) and
1250	 *   not worry about this generic constraint ]
1251	 */
1252	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1253		     !cpu_online(cpu)))
1254		cpu = select_fallback_rq(task_cpu(p), p);
1255
1256	return cpu;
1257}
1258
1259static void update_avg(u64 *avg, u64 sample)
1260{
1261	s64 diff = sample - *avg;
1262	*avg += diff >> 3;
1263}
1264#endif
1265
1266static void
1267ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1268{
1269#ifdef CONFIG_SCHEDSTATS
1270	struct rq *rq = this_rq();
1271
1272#ifdef CONFIG_SMP
1273	int this_cpu = smp_processor_id();
1274
1275	if (cpu == this_cpu) {
1276		schedstat_inc(rq, ttwu_local);
1277		schedstat_inc(p, se.statistics.nr_wakeups_local);
1278	} else {
1279		struct sched_domain *sd;
1280
1281		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282		rcu_read_lock();
1283		for_each_domain(this_cpu, sd) {
1284			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1285				schedstat_inc(sd, ttwu_wake_remote);
1286				break;
1287			}
1288		}
1289		rcu_read_unlock();
1290	}
1291
1292	if (wake_flags & WF_MIGRATED)
1293		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1294
1295#endif /* CONFIG_SMP */
1296
1297	schedstat_inc(rq, ttwu_count);
1298	schedstat_inc(p, se.statistics.nr_wakeups);
1299
1300	if (wake_flags & WF_SYNC)
1301		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1302
1303#endif /* CONFIG_SCHEDSTATS */
1304}
1305
1306static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1307{
1308	activate_task(rq, p, en_flags);
1309	p->on_rq = 1;
1310
1311	/* if a worker is waking up, notify workqueue */
1312	if (p->flags & PF_WQ_WORKER)
1313		wq_worker_waking_up(p, cpu_of(rq));
1314}
1315
1316/*
1317 * Mark the task runnable and perform wakeup-preemption.
1318 */
1319static void
1320ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1321{
1322	check_preempt_curr(rq, p, wake_flags);
1323	trace_sched_wakeup(p, true);
1324
1325	p->state = TASK_RUNNING;
1326#ifdef CONFIG_SMP
1327	if (p->sched_class->task_woken)
1328		p->sched_class->task_woken(rq, p);
1329
1330	if (rq->idle_stamp) {
1331		u64 delta = rq->clock - rq->idle_stamp;
1332		u64 max = 2*sysctl_sched_migration_cost;
1333
1334		if (delta > max)
1335			rq->avg_idle = max;
1336		else
1337			update_avg(&rq->avg_idle, delta);
1338		rq->idle_stamp = 0;
1339	}
1340#endif
1341}
1342
1343static void
1344ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1345{
1346#ifdef CONFIG_SMP
1347	if (p->sched_contributes_to_load)
1348		rq->nr_uninterruptible--;
1349#endif
1350
1351	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1352	ttwu_do_wakeup(rq, p, wake_flags);
1353}
1354
1355/*
1356 * Called in case the task @p isn't fully descheduled from its runqueue,
1357 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1358 * since all we need to do is flip p->state to TASK_RUNNING, since
1359 * the task is still ->on_rq.
1360 */
1361static int ttwu_remote(struct task_struct *p, int wake_flags)
1362{
1363	struct rq *rq;
1364	int ret = 0;
1365
1366	rq = __task_rq_lock(p);
1367	if (p->on_rq) {
1368		ttwu_do_wakeup(rq, p, wake_flags);
1369		ret = 1;
1370	}
1371	__task_rq_unlock(rq);
1372
1373	return ret;
1374}
1375
1376#ifdef CONFIG_SMP
1377static void sched_ttwu_pending(void)
1378{
1379	struct rq *rq = this_rq();
1380	struct llist_node *llist = llist_del_all(&rq->wake_list);
1381	struct task_struct *p;
1382
1383	raw_spin_lock(&rq->lock);
1384
1385	while (llist) {
1386		p = llist_entry(llist, struct task_struct, wake_entry);
1387		llist = llist_next(llist);
1388		ttwu_do_activate(rq, p, 0);
1389	}
1390
1391	raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
1396	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
1397	    && !tick_nohz_full_cpu(smp_processor_id()))
1398		return;
1399
1400	/*
1401	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1402	 * traditionally all their work was done from the interrupt return
1403	 * path. Now that we actually do some work, we need to make sure
1404	 * we do call them.
1405	 *
1406	 * Some archs already do call them, luckily irq_enter/exit nest
1407	 * properly.
1408	 *
1409	 * Arguably we should visit all archs and update all handlers,
1410	 * however a fair share of IPIs are still resched only so this would
1411	 * somewhat pessimize the simple resched case.
1412	 */
1413	irq_enter();
1414	tick_nohz_full_check();
1415	sched_ttwu_pending();
1416
1417	/*
1418	 * Check if someone kicked us for doing the nohz idle load balance.
1419	 */
1420	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1421		this_rq()->idle_balance = 1;
1422		raise_softirq_irqoff(SCHED_SOFTIRQ);
1423	}
1424	irq_exit();
1425}
1426
1427static void ttwu_queue_remote(struct task_struct *p, int cpu)
1428{
1429	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1430		smp_send_reschedule(cpu);
1431}
1432
1433bool cpus_share_cache(int this_cpu, int that_cpu)
1434{
1435	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1436}
1437#endif /* CONFIG_SMP */
1438
1439static void ttwu_queue(struct task_struct *p, int cpu)
1440{
1441	struct rq *rq = cpu_rq(cpu);
1442
1443#if defined(CONFIG_SMP)
1444	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1445		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1446		ttwu_queue_remote(p, cpu);
1447		return;
1448	}
1449#endif
1450
1451	raw_spin_lock(&rq->lock);
1452	ttwu_do_activate(rq, p, 0);
1453	raw_spin_unlock(&rq->lock);
1454}
1455
1456/**
1457 * try_to_wake_up - wake up a thread
1458 * @p: the thread to be awakened
1459 * @state: the mask of task states that can be woken
1460 * @wake_flags: wake modifier flags (WF_*)
1461 *
1462 * Put it on the run-queue if it's not already there. The "current"
1463 * thread is always on the run-queue (except when the actual
1464 * re-schedule is in progress), and as such you're allowed to do
1465 * the simpler "current->state = TASK_RUNNING" to mark yourself
1466 * runnable without the overhead of this.
1467 *
1468 * Returns %true if @p was woken up, %false if it was already running
1469 * or @state didn't match @p's state.
1470 */
1471static int
1472try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1473{
1474	unsigned long flags;
1475	int cpu, success = 0;
1476
1477	smp_wmb();
1478	raw_spin_lock_irqsave(&p->pi_lock, flags);
1479	if (!(p->state & state))
1480		goto out;
1481
1482	success = 1; /* we're going to change ->state */
1483	cpu = task_cpu(p);
1484
1485	if (p->on_rq && ttwu_remote(p, wake_flags))
1486		goto stat;
1487
1488#ifdef CONFIG_SMP
1489	/*
1490	 * If the owning (remote) cpu is still in the middle of schedule() with
1491	 * this task as prev, wait until its done referencing the task.
1492	 */
1493	while (p->on_cpu)
1494		cpu_relax();
1495	/*
1496	 * Pairs with the smp_wmb() in finish_lock_switch().
1497	 */
1498	smp_rmb();
1499
1500	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1501	p->state = TASK_WAKING;
1502
1503	if (p->sched_class->task_waking)
1504		p->sched_class->task_waking(p);
1505
1506	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1507	if (task_cpu(p) != cpu) {
1508		wake_flags |= WF_MIGRATED;
1509		set_task_cpu(p, cpu);
1510	}
1511#endif /* CONFIG_SMP */
1512
1513	ttwu_queue(p, cpu);
1514stat:
1515	ttwu_stat(p, cpu, wake_flags);
1516out:
1517	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1518
1519	return success;
1520}
1521
1522/**
1523 * try_to_wake_up_local - try to wake up a local task with rq lock held
1524 * @p: the thread to be awakened
1525 *
1526 * Put @p on the run-queue if it's not already there. The caller must
1527 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1528 * the current task.
1529 */
1530static void try_to_wake_up_local(struct task_struct *p)
1531{
1532	struct rq *rq = task_rq(p);
1533
1534	if (WARN_ON_ONCE(rq != this_rq()) ||
1535	    WARN_ON_ONCE(p == current))
1536		return;
1537
1538	lockdep_assert_held(&rq->lock);
1539
1540	if (!raw_spin_trylock(&p->pi_lock)) {
1541		raw_spin_unlock(&rq->lock);
1542		raw_spin_lock(&p->pi_lock);
1543		raw_spin_lock(&rq->lock);
1544	}
1545
1546	if (!(p->state & TASK_NORMAL))
1547		goto out;
1548
1549	if (!p->on_rq)
1550		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1551
1552	ttwu_do_wakeup(rq, p, 0);
1553	ttwu_stat(p, smp_processor_id(), 0);
1554out:
1555	raw_spin_unlock(&p->pi_lock);
1556}
1557
1558/**
1559 * wake_up_process - Wake up a specific process
1560 * @p: The process to be woken up.
1561 *
1562 * Attempt to wake up the nominated process and move it to the set of runnable
1563 * processes.  Returns 1 if the process was woken up, 0 if it was already
1564 * running.
1565 *
1566 * It may be assumed that this function implies a write memory barrier before
1567 * changing the task state if and only if any tasks are woken up.
1568 */
1569int wake_up_process(struct task_struct *p)
1570{
1571	WARN_ON(task_is_stopped_or_traced(p));
1572	return try_to_wake_up(p, TASK_NORMAL, 0);
1573}
1574EXPORT_SYMBOL(wake_up_process);
1575
1576int wake_up_state(struct task_struct *p, unsigned int state)
1577{
1578	return try_to_wake_up(p, state, 0);
1579}
1580
1581/*
1582 * Perform scheduler related setup for a newly forked process p.
1583 * p is forked by current.
1584 *
1585 * __sched_fork() is basic setup used by init_idle() too:
1586 */
1587static void __sched_fork(struct task_struct *p)
1588{
1589	p->on_rq			= 0;
1590
1591	p->se.on_rq			= 0;
1592	p->se.exec_start		= 0;
1593	p->se.sum_exec_runtime		= 0;
1594	p->se.prev_sum_exec_runtime	= 0;
1595	p->se.nr_migrations		= 0;
1596	p->se.vruntime			= 0;
1597	INIT_LIST_HEAD(&p->se.group_node);
1598
1599/*
1600 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1601 * removed when useful for applications beyond shares distribution (e.g.
1602 * load-balance).
1603 */
1604#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1605	p->se.avg.runnable_avg_period = 0;
1606	p->se.avg.runnable_avg_sum = 0;
1607#endif
1608#ifdef CONFIG_SCHEDSTATS
1609	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1610#endif
1611
1612	INIT_LIST_HEAD(&p->rt.run_list);
1613
1614#ifdef CONFIG_PREEMPT_NOTIFIERS
1615	INIT_HLIST_HEAD(&p->preempt_notifiers);
1616#endif
1617
1618#ifdef CONFIG_NUMA_BALANCING
1619	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1620		p->mm->numa_next_scan = jiffies;
1621		p->mm->numa_next_reset = jiffies;
1622		p->mm->numa_scan_seq = 0;
1623	}
1624
1625	p->node_stamp = 0ULL;
1626	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1627	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1628	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1629	p->numa_work.next = &p->numa_work;
1630#endif /* CONFIG_NUMA_BALANCING */
1631}
1632
1633#ifdef CONFIG_NUMA_BALANCING
1634#ifdef CONFIG_SCHED_DEBUG
1635void set_numabalancing_state(bool enabled)
1636{
1637	if (enabled)
1638		sched_feat_set("NUMA");
1639	else
1640		sched_feat_set("NO_NUMA");
1641}
1642#else
1643__read_mostly bool numabalancing_enabled;
1644
1645void set_numabalancing_state(bool enabled)
1646{
1647	numabalancing_enabled = enabled;
1648}
1649#endif /* CONFIG_SCHED_DEBUG */
1650#endif /* CONFIG_NUMA_BALANCING */
1651
1652/*
1653 * fork()/clone()-time setup:
1654 */
1655void sched_fork(struct task_struct *p)
1656{
1657	unsigned long flags;
1658	int cpu = get_cpu();
1659
1660	__sched_fork(p);
1661	/*
1662	 * We mark the process as running here. This guarantees that
1663	 * nobody will actually run it, and a signal or other external
1664	 * event cannot wake it up and insert it on the runqueue either.
1665	 */
1666	p->state = TASK_RUNNING;
1667
1668	/*
1669	 * Make sure we do not leak PI boosting priority to the child.
1670	 */
1671	p->prio = current->normal_prio;
1672
1673	/*
1674	 * Revert to default priority/policy on fork if requested.
1675	 */
1676	if (unlikely(p->sched_reset_on_fork)) {
1677		if (task_has_rt_policy(p)) {
1678			p->policy = SCHED_NORMAL;
1679			p->static_prio = NICE_TO_PRIO(0);
1680			p->rt_priority = 0;
1681		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1682			p->static_prio = NICE_TO_PRIO(0);
1683
1684		p->prio = p->normal_prio = __normal_prio(p);
1685		set_load_weight(p);
1686
1687		/*
1688		 * We don't need the reset flag anymore after the fork. It has
1689		 * fulfilled its duty:
1690		 */
1691		p->sched_reset_on_fork = 0;
1692	}
1693
1694	if (!rt_prio(p->prio))
1695		p->sched_class = &fair_sched_class;
1696
1697	if (p->sched_class->task_fork)
1698		p->sched_class->task_fork(p);
1699
1700	/*
1701	 * The child is not yet in the pid-hash so no cgroup attach races,
1702	 * and the cgroup is pinned to this child due to cgroup_fork()
1703	 * is ran before sched_fork().
1704	 *
1705	 * Silence PROVE_RCU.
1706	 */
1707	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708	set_task_cpu(p, cpu);
1709	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710
1711#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1712	if (likely(sched_info_on()))
1713		memset(&p->sched_info, 0, sizeof(p->sched_info));
1714#endif
1715#if defined(CONFIG_SMP)
1716	p->on_cpu = 0;
1717#endif
1718#ifdef CONFIG_PREEMPT_COUNT
1719	/* Want to start with kernel preemption disabled. */
1720	task_thread_info(p)->preempt_count = 1;
1721#endif
1722#ifdef CONFIG_SMP
1723	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1724#endif
1725
1726	put_cpu();
1727}
1728
1729/*
1730 * wake_up_new_task - wake up a newly created task for the first time.
1731 *
1732 * This function will do some initial scheduler statistics housekeeping
1733 * that must be done for every newly created context, then puts the task
1734 * on the runqueue and wakes it.
1735 */
1736void wake_up_new_task(struct task_struct *p)
1737{
1738	unsigned long flags;
1739	struct rq *rq;
1740
1741	raw_spin_lock_irqsave(&p->pi_lock, flags);
1742#ifdef CONFIG_SMP
1743	/*
1744	 * Fork balancing, do it here and not earlier because:
1745	 *  - cpus_allowed can change in the fork path
1746	 *  - any previously selected cpu might disappear through hotplug
1747	 */
1748	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1749#endif
1750
1751	rq = __task_rq_lock(p);
1752	activate_task(rq, p, 0);
1753	p->on_rq = 1;
1754	trace_sched_wakeup_new(p, true);
1755	check_preempt_curr(rq, p, WF_FORK);
1756#ifdef CONFIG_SMP
1757	if (p->sched_class->task_woken)
1758		p->sched_class->task_woken(rq, p);
1759#endif
1760	task_rq_unlock(rq, p, &flags);
1761}
1762
1763#ifdef CONFIG_PREEMPT_NOTIFIERS
1764
1765/**
1766 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1767 * @notifier: notifier struct to register
1768 */
1769void preempt_notifier_register(struct preempt_notifier *notifier)
1770{
1771	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1772}
1773EXPORT_SYMBOL_GPL(preempt_notifier_register);
1774
1775/**
1776 * preempt_notifier_unregister - no longer interested in preemption notifications
1777 * @notifier: notifier struct to unregister
1778 *
1779 * This is safe to call from within a preemption notifier.
1780 */
1781void preempt_notifier_unregister(struct preempt_notifier *notifier)
1782{
1783	hlist_del(&notifier->link);
1784}
1785EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1786
1787static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1788{
1789	struct preempt_notifier *notifier;
1790
1791	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1792		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1793}
1794
1795static void
1796fire_sched_out_preempt_notifiers(struct task_struct *curr,
1797				 struct task_struct *next)
1798{
1799	struct preempt_notifier *notifier;
1800
1801	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802		notifier->ops->sched_out(notifier, next);
1803}
1804
1805#else /* !CONFIG_PREEMPT_NOTIFIERS */
1806
1807static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1808{
1809}
1810
1811static void
1812fire_sched_out_preempt_notifiers(struct task_struct *curr,
1813				 struct task_struct *next)
1814{
1815}
1816
1817#endif /* CONFIG_PREEMPT_NOTIFIERS */
1818
1819/**
1820 * prepare_task_switch - prepare to switch tasks
1821 * @rq: the runqueue preparing to switch
1822 * @prev: the current task that is being switched out
1823 * @next: the task we are going to switch to.
1824 *
1825 * This is called with the rq lock held and interrupts off. It must
1826 * be paired with a subsequent finish_task_switch after the context
1827 * switch.
1828 *
1829 * prepare_task_switch sets up locking and calls architecture specific
1830 * hooks.
1831 */
1832static inline void
1833prepare_task_switch(struct rq *rq, struct task_struct *prev,
1834		    struct task_struct *next)
1835{
1836	trace_sched_switch(prev, next);
1837	sched_info_switch(prev, next);
1838	perf_event_task_sched_out(prev, next);
1839	fire_sched_out_preempt_notifiers(prev, next);
1840	prepare_lock_switch(rq, next);
1841	prepare_arch_switch(next);
1842}
1843
1844/**
1845 * finish_task_switch - clean up after a task-switch
1846 * @rq: runqueue associated with task-switch
1847 * @prev: the thread we just switched away from.
1848 *
1849 * finish_task_switch must be called after the context switch, paired
1850 * with a prepare_task_switch call before the context switch.
1851 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1852 * and do any other architecture-specific cleanup actions.
1853 *
1854 * Note that we may have delayed dropping an mm in context_switch(). If
1855 * so, we finish that here outside of the runqueue lock. (Doing it
1856 * with the lock held can cause deadlocks; see schedule() for
1857 * details.)
1858 */
1859static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1860	__releases(rq->lock)
1861{
1862	struct mm_struct *mm = rq->prev_mm;
1863	long prev_state;
1864
1865	rq->prev_mm = NULL;
1866
1867	/*
1868	 * A task struct has one reference for the use as "current".
1869	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1870	 * schedule one last time. The schedule call will never return, and
1871	 * the scheduled task must drop that reference.
1872	 * The test for TASK_DEAD must occur while the runqueue locks are
1873	 * still held, otherwise prev could be scheduled on another cpu, die
1874	 * there before we look at prev->state, and then the reference would
1875	 * be dropped twice.
1876	 *		Manfred Spraul <manfred@colorfullife.com>
1877	 */
1878	prev_state = prev->state;
1879	vtime_task_switch(prev);
1880	finish_arch_switch(prev);
1881	perf_event_task_sched_in(prev, current);
1882	finish_lock_switch(rq, prev);
1883	finish_arch_post_lock_switch();
1884
1885	fire_sched_in_preempt_notifiers(current);
1886	if (mm)
1887		mmdrop(mm);
1888	if (unlikely(prev_state == TASK_DEAD)) {
1889		/*
1890		 * Remove function-return probe instances associated with this
1891		 * task and put them back on the free list.
1892		 */
1893		kprobe_flush_task(prev);
1894		put_task_struct(prev);
1895	}
1896
1897	tick_nohz_task_switch(current);
1898}
1899
1900#ifdef CONFIG_SMP
1901
1902/* assumes rq->lock is held */
1903static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1904{
1905	if (prev->sched_class->pre_schedule)
1906		prev->sched_class->pre_schedule(rq, prev);
1907}
1908
1909/* rq->lock is NOT held, but preemption is disabled */
1910static inline void post_schedule(struct rq *rq)
1911{
1912	if (rq->post_schedule) {
1913		unsigned long flags;
1914
1915		raw_spin_lock_irqsave(&rq->lock, flags);
1916		if (rq->curr->sched_class->post_schedule)
1917			rq->curr->sched_class->post_schedule(rq);
1918		raw_spin_unlock_irqrestore(&rq->lock, flags);
1919
1920		rq->post_schedule = 0;
1921	}
1922}
1923
1924#else
1925
1926static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1927{
1928}
1929
1930static inline void post_schedule(struct rq *rq)
1931{
1932}
1933
1934#endif
1935
1936/**
1937 * schedule_tail - first thing a freshly forked thread must call.
1938 * @prev: the thread we just switched away from.
1939 */
1940asmlinkage void schedule_tail(struct task_struct *prev)
1941	__releases(rq->lock)
1942{
1943	struct rq *rq = this_rq();
1944
1945	finish_task_switch(rq, prev);
1946
1947	/*
1948	 * FIXME: do we need to worry about rq being invalidated by the
1949	 * task_switch?
1950	 */
1951	post_schedule(rq);
1952
1953#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1954	/* In this case, finish_task_switch does not reenable preemption */
1955	preempt_enable();
1956#endif
1957	if (current->set_child_tid)
1958		put_user(task_pid_vnr(current), current->set_child_tid);
1959}
1960
1961/*
1962 * context_switch - switch to the new MM and the new
1963 * thread's register state.
1964 */
1965static inline void
1966context_switch(struct rq *rq, struct task_struct *prev,
1967	       struct task_struct *next)
1968{
1969	struct mm_struct *mm, *oldmm;
1970
1971	prepare_task_switch(rq, prev, next);
1972
1973	mm = next->mm;
1974	oldmm = prev->active_mm;
1975	/*
1976	 * For paravirt, this is coupled with an exit in switch_to to
1977	 * combine the page table reload and the switch backend into
1978	 * one hypercall.
1979	 */
1980	arch_start_context_switch(prev);
1981
1982	if (!mm) {
1983		next->active_mm = oldmm;
1984		atomic_inc(&oldmm->mm_count);
1985		enter_lazy_tlb(oldmm, next);
1986	} else
1987		switch_mm(oldmm, mm, next);
1988
1989	if (!prev->mm) {
1990		prev->active_mm = NULL;
1991		rq->prev_mm = oldmm;
1992	}
1993	/*
1994	 * Since the runqueue lock will be released by the next
1995	 * task (which is an invalid locking op but in the case
1996	 * of the scheduler it's an obvious special-case), so we
1997	 * do an early lockdep release here:
1998	 */
1999#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2000	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2001#endif
2002
2003	context_tracking_task_switch(prev, next);
2004	/* Here we just switch the register state and the stack. */
2005	switch_to(prev, next, prev);
2006
2007	barrier();
2008	/*
2009	 * this_rq must be evaluated again because prev may have moved
2010	 * CPUs since it called schedule(), thus the 'rq' on its stack
2011	 * frame will be invalid.
2012	 */
2013	finish_task_switch(this_rq(), prev);
2014}
2015
2016/*
2017 * nr_running and nr_context_switches:
2018 *
2019 * externally visible scheduler statistics: current number of runnable
2020 * threads, total number of context switches performed since bootup.
2021 */
2022unsigned long nr_running(void)
2023{
2024	unsigned long i, sum = 0;
2025
2026	for_each_online_cpu(i)
2027		sum += cpu_rq(i)->nr_running;
2028
2029	return sum;
2030}
2031
2032unsigned long long nr_context_switches(void)
2033{
2034	int i;
2035	unsigned long long sum = 0;
2036
2037	for_each_possible_cpu(i)
2038		sum += cpu_rq(i)->nr_switches;
2039
2040	return sum;
2041}
2042
2043unsigned long nr_iowait(void)
2044{
2045	unsigned long i, sum = 0;
2046
2047	for_each_possible_cpu(i)
2048		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2049
2050	return sum;
2051}
2052
2053unsigned long nr_iowait_cpu(int cpu)
2054{
2055	struct rq *this = cpu_rq(cpu);
2056	return atomic_read(&this->nr_iowait);
2057}
2058
2059#ifdef CONFIG_SMP
2060
2061/*
2062 * sched_exec - execve() is a valuable balancing opportunity, because at
2063 * this point the task has the smallest effective memory and cache footprint.
2064 */
2065void sched_exec(void)
2066{
2067	struct task_struct *p = current;
2068	unsigned long flags;
2069	int dest_cpu;
2070
2071	raw_spin_lock_irqsave(&p->pi_lock, flags);
2072	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2073	if (dest_cpu == smp_processor_id())
2074		goto unlock;
2075
2076	if (likely(cpu_active(dest_cpu))) {
2077		struct migration_arg arg = { p, dest_cpu };
2078
2079		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2080		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2081		return;
2082	}
2083unlock:
2084	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2085}
2086
2087#endif
2088
2089DEFINE_PER_CPU(struct kernel_stat, kstat);
2090DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2091
2092EXPORT_PER_CPU_SYMBOL(kstat);
2093EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2094
2095/*
2096 * Return any ns on the sched_clock that have not yet been accounted in
2097 * @p in case that task is currently running.
2098 *
2099 * Called with task_rq_lock() held on @rq.
2100 */
2101static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2102{
2103	u64 ns = 0;
2104
2105	if (task_current(rq, p)) {
2106		update_rq_clock(rq);
2107		ns = rq->clock_task - p->se.exec_start;
2108		if ((s64)ns < 0)
2109			ns = 0;
2110	}
2111
2112	return ns;
2113}
2114
2115unsigned long long task_delta_exec(struct task_struct *p)
2116{
2117	unsigned long flags;
2118	struct rq *rq;
2119	u64 ns = 0;
2120
2121	rq = task_rq_lock(p, &flags);
2122	ns = do_task_delta_exec(p, rq);
2123	task_rq_unlock(rq, p, &flags);
2124
2125	return ns;
2126}
2127
2128/*
2129 * Return accounted runtime for the task.
2130 * In case the task is currently running, return the runtime plus current's
2131 * pending runtime that have not been accounted yet.
2132 */
2133unsigned long long task_sched_runtime(struct task_struct *p)
2134{
2135	unsigned long flags;
2136	struct rq *rq;
2137	u64 ns = 0;
2138
2139	rq = task_rq_lock(p, &flags);
2140	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2141	task_rq_unlock(rq, p, &flags);
2142
2143	return ns;
2144}
2145
2146/*
2147 * This function gets called by the timer code, with HZ frequency.
2148 * We call it with interrupts disabled.
2149 */
2150void scheduler_tick(void)
2151{
2152	int cpu = smp_processor_id();
2153	struct rq *rq = cpu_rq(cpu);
2154	struct task_struct *curr = rq->curr;
2155
2156	sched_clock_tick();
2157
2158	raw_spin_lock(&rq->lock);
2159	update_rq_clock(rq);
2160	update_cpu_load_active(rq);
2161	curr->sched_class->task_tick(rq, curr, 0);
2162	raw_spin_unlock(&rq->lock);
2163
2164	perf_event_task_tick();
2165
2166#ifdef CONFIG_SMP
2167	rq->idle_balance = idle_cpu(cpu);
2168	trigger_load_balance(rq, cpu);
2169#endif
2170	rq_last_tick_reset(rq);
2171}
2172
2173#ifdef CONFIG_NO_HZ_FULL
2174/**
2175 * scheduler_tick_max_deferment
2176 *
2177 * Keep at least one tick per second when a single
2178 * active task is running because the scheduler doesn't
2179 * yet completely support full dynticks environment.
2180 *
2181 * This makes sure that uptime, CFS vruntime, load
2182 * balancing, etc... continue to move forward, even
2183 * with a very low granularity.
2184 */
2185u64 scheduler_tick_max_deferment(void)
2186{
2187	struct rq *rq = this_rq();
2188	unsigned long next, now = ACCESS_ONCE(jiffies);
2189
2190	next = rq->last_sched_tick + HZ;
2191
2192	if (time_before_eq(next, now))
2193		return 0;
2194
2195	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2196}
2197#endif
2198
2199notrace unsigned long get_parent_ip(unsigned long addr)
2200{
2201	if (in_lock_functions(addr)) {
2202		addr = CALLER_ADDR2;
2203		if (in_lock_functions(addr))
2204			addr = CALLER_ADDR3;
2205	}
2206	return addr;
2207}
2208
2209#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2210				defined(CONFIG_PREEMPT_TRACER))
2211
2212void __kprobes add_preempt_count(int val)
2213{
2214#ifdef CONFIG_DEBUG_PREEMPT
2215	/*
2216	 * Underflow?
2217	 */
2218	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2219		return;
2220#endif
2221	preempt_count() += val;
2222#ifdef CONFIG_DEBUG_PREEMPT
2223	/*
2224	 * Spinlock count overflowing soon?
2225	 */
2226	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2227				PREEMPT_MASK - 10);
2228#endif
2229	if (preempt_count() == val)
2230		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2231}
2232EXPORT_SYMBOL(add_preempt_count);
2233
2234void __kprobes sub_preempt_count(int val)
2235{
2236#ifdef CONFIG_DEBUG_PREEMPT
2237	/*
2238	 * Underflow?
2239	 */
2240	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2241		return;
2242	/*
2243	 * Is the spinlock portion underflowing?
2244	 */
2245	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2246			!(preempt_count() & PREEMPT_MASK)))
2247		return;
2248#endif
2249
2250	if (preempt_count() == val)
2251		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2252	preempt_count() -= val;
2253}
2254EXPORT_SYMBOL(sub_preempt_count);
2255
2256#endif
2257
2258/*
2259 * Print scheduling while atomic bug:
2260 */
2261static noinline void __schedule_bug(struct task_struct *prev)
2262{
2263	if (oops_in_progress)
2264		return;
2265
2266	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2267		prev->comm, prev->pid, preempt_count());
2268
2269	debug_show_held_locks(prev);
2270	print_modules();
2271	if (irqs_disabled())
2272		print_irqtrace_events(prev);
2273	dump_stack();
2274	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2275}
2276
2277/*
2278 * Various schedule()-time debugging checks and statistics:
2279 */
2280static inline void schedule_debug(struct task_struct *prev)
2281{
2282	/*
2283	 * Test if we are atomic. Since do_exit() needs to call into
2284	 * schedule() atomically, we ignore that path for now.
2285	 * Otherwise, whine if we are scheduling when we should not be.
2286	 */
2287	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2288		__schedule_bug(prev);
2289	rcu_sleep_check();
2290
2291	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2292
2293	schedstat_inc(this_rq(), sched_count);
2294}
2295
2296static void put_prev_task(struct rq *rq, struct task_struct *prev)
2297{
2298	if (prev->on_rq || rq->skip_clock_update < 0)
2299		update_rq_clock(rq);
2300	prev->sched_class->put_prev_task(rq, prev);
2301}
2302
2303/*
2304 * Pick up the highest-prio task:
2305 */
2306static inline struct task_struct *
2307pick_next_task(struct rq *rq)
2308{
2309	const struct sched_class *class;
2310	struct task_struct *p;
2311
2312	/*
2313	 * Optimization: we know that if all tasks are in
2314	 * the fair class we can call that function directly:
2315	 */
2316	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2317		p = fair_sched_class.pick_next_task(rq);
2318		if (likely(p))
2319			return p;
2320	}
2321
2322	for_each_class(class) {
2323		p = class->pick_next_task(rq);
2324		if (p)
2325			return p;
2326	}
2327
2328	BUG(); /* the idle class will always have a runnable task */
2329}
2330
2331/*
2332 * __schedule() is the main scheduler function.
2333 *
2334 * The main means of driving the scheduler and thus entering this function are:
2335 *
2336 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2337 *
2338 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2339 *      paths. For example, see arch/x86/entry_64.S.
2340 *
2341 *      To drive preemption between tasks, the scheduler sets the flag in timer
2342 *      interrupt handler scheduler_tick().
2343 *
2344 *   3. Wakeups don't really cause entry into schedule(). They add a
2345 *      task to the run-queue and that's it.
2346 *
2347 *      Now, if the new task added to the run-queue preempts the current
2348 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2349 *      called on the nearest possible occasion:
2350 *
2351 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2352 *
2353 *         - in syscall or exception context, at the next outmost
2354 *           preempt_enable(). (this might be as soon as the wake_up()'s
2355 *           spin_unlock()!)
2356 *
2357 *         - in IRQ context, return from interrupt-handler to
2358 *           preemptible context
2359 *
2360 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2361 *         then at the next:
2362 *
2363 *          - cond_resched() call
2364 *          - explicit schedule() call
2365 *          - return from syscall or exception to user-space
2366 *          - return from interrupt-handler to user-space
2367 */
2368static void __sched __schedule(void)
2369{
2370	struct task_struct *prev, *next;
2371	unsigned long *switch_count;
2372	struct rq *rq;
2373	int cpu;
2374
2375need_resched:
2376	preempt_disable();
2377	cpu = smp_processor_id();
2378	rq = cpu_rq(cpu);
2379	rcu_note_context_switch(cpu);
2380	prev = rq->curr;
2381
2382	schedule_debug(prev);
2383
2384	if (sched_feat(HRTICK))
2385		hrtick_clear(rq);
2386
2387	raw_spin_lock_irq(&rq->lock);
2388
2389	switch_count = &prev->nivcsw;
2390	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2391		if (unlikely(signal_pending_state(prev->state, prev))) {
2392			prev->state = TASK_RUNNING;
2393		} else {
2394			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2395			prev->on_rq = 0;
2396
2397			/*
2398			 * If a worker went to sleep, notify and ask workqueue
2399			 * whether it wants to wake up a task to maintain
2400			 * concurrency.
2401			 */
2402			if (prev->flags & PF_WQ_WORKER) {
2403				struct task_struct *to_wakeup;
2404
2405				to_wakeup = wq_worker_sleeping(prev, cpu);
2406				if (to_wakeup)
2407					try_to_wake_up_local(to_wakeup);
2408			}
2409		}
2410		switch_count = &prev->nvcsw;
2411	}
2412
2413	pre_schedule(rq, prev);
2414
2415	if (unlikely(!rq->nr_running))
2416		idle_balance(cpu, rq);
2417
2418	put_prev_task(rq, prev);
2419	next = pick_next_task(rq);
2420	clear_tsk_need_resched(prev);
2421	rq->skip_clock_update = 0;
2422
2423	if (likely(prev != next)) {
2424		rq->nr_switches++;
2425		rq->curr = next;
2426		++*switch_count;
2427
2428		context_switch(rq, prev, next); /* unlocks the rq */
2429		/*
2430		 * The context switch have flipped the stack from under us
2431		 * and restored the local variables which were saved when
2432		 * this task called schedule() in the past. prev == current
2433		 * is still correct, but it can be moved to another cpu/rq.
2434		 */
2435		cpu = smp_processor_id();
2436		rq = cpu_rq(cpu);
2437	} else
2438		raw_spin_unlock_irq(&rq->lock);
2439
2440	post_schedule(rq);
2441
2442	sched_preempt_enable_no_resched();
2443	if (need_resched())
2444		goto need_resched;
2445}
2446
2447static inline void sched_submit_work(struct task_struct *tsk)
2448{
2449	if (!tsk->state || tsk_is_pi_blocked(tsk))
2450		return;
2451	/*
2452	 * If we are going to sleep and we have plugged IO queued,
2453	 * make sure to submit it to avoid deadlocks.
2454	 */
2455	if (blk_needs_flush_plug(tsk))
2456		blk_schedule_flush_plug(tsk);
2457}
2458
2459asmlinkage void __sched schedule(void)
2460{
2461	struct task_struct *tsk = current;
2462
2463	sched_submit_work(tsk);
2464	__schedule();
2465}
2466EXPORT_SYMBOL(schedule);
2467
2468#ifdef CONFIG_CONTEXT_TRACKING
2469asmlinkage void __sched schedule_user(void)
2470{
2471	/*
2472	 * If we come here after a random call to set_need_resched(),
2473	 * or we have been woken up remotely but the IPI has not yet arrived,
2474	 * we haven't yet exited the RCU idle mode. Do it here manually until
2475	 * we find a better solution.
2476	 */
2477	user_exit();
2478	schedule();
2479	user_enter();
2480}
2481#endif
2482
2483/**
2484 * schedule_preempt_disabled - called with preemption disabled
2485 *
2486 * Returns with preemption disabled. Note: preempt_count must be 1
2487 */
2488void __sched schedule_preempt_disabled(void)
2489{
2490	sched_preempt_enable_no_resched();
2491	schedule();
2492	preempt_disable();
2493}
2494
2495#ifdef CONFIG_PREEMPT
2496/*
2497 * this is the entry point to schedule() from in-kernel preemption
2498 * off of preempt_enable. Kernel preemptions off return from interrupt
2499 * occur there and call schedule directly.
2500 */
2501asmlinkage void __sched notrace preempt_schedule(void)
2502{
2503	struct thread_info *ti = current_thread_info();
2504
2505	/*
2506	 * If there is a non-zero preempt_count or interrupts are disabled,
2507	 * we do not want to preempt the current task. Just return..
2508	 */
2509	if (likely(ti->preempt_count || irqs_disabled()))
2510		return;
2511
2512	do {
2513		add_preempt_count_notrace(PREEMPT_ACTIVE);
2514		__schedule();
2515		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2516
2517		/*
2518		 * Check again in case we missed a preemption opportunity
2519		 * between schedule and now.
2520		 */
2521		barrier();
2522	} while (need_resched());
2523}
2524EXPORT_SYMBOL(preempt_schedule);
2525
2526/*
2527 * this is the entry point to schedule() from kernel preemption
2528 * off of irq context.
2529 * Note, that this is called and return with irqs disabled. This will
2530 * protect us against recursive calling from irq.
2531 */
2532asmlinkage void __sched preempt_schedule_irq(void)
2533{
2534	struct thread_info *ti = current_thread_info();
2535	enum ctx_state prev_state;
2536
2537	/* Catch callers which need to be fixed */
2538	BUG_ON(ti->preempt_count || !irqs_disabled());
2539
2540	prev_state = exception_enter();
2541
2542	do {
2543		add_preempt_count(PREEMPT_ACTIVE);
2544		local_irq_enable();
2545		__schedule();
2546		local_irq_disable();
2547		sub_preempt_count(PREEMPT_ACTIVE);
2548
2549		/*
2550		 * Check again in case we missed a preemption opportunity
2551		 * between schedule and now.
2552		 */
2553		barrier();
2554	} while (need_resched());
2555
2556	exception_exit(prev_state);
2557}
2558
2559#endif /* CONFIG_PREEMPT */
2560
2561int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2562			  void *key)
2563{
2564	return try_to_wake_up(curr->private, mode, wake_flags);
2565}
2566EXPORT_SYMBOL(default_wake_function);
2567
2568/*
2569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2571 * number) then we wake all the non-exclusive tasks and one exclusive task.
2572 *
2573 * There are circumstances in which we can try to wake a task which has already
2574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2576 */
2577static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2578			int nr_exclusive, int wake_flags, void *key)
2579{
2580	wait_queue_t *curr, *next;
2581
2582	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2583		unsigned flags = curr->flags;
2584
2585		if (curr->func(curr, mode, wake_flags, key) &&
2586				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2587			break;
2588	}
2589}
2590
2591/**
2592 * __wake_up - wake up threads blocked on a waitqueue.
2593 * @q: the waitqueue
2594 * @mode: which threads
2595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2596 * @key: is directly passed to the wakeup function
2597 *
2598 * It may be assumed that this function implies a write memory barrier before
2599 * changing the task state if and only if any tasks are woken up.
2600 */
2601void __wake_up(wait_queue_head_t *q, unsigned int mode,
2602			int nr_exclusive, void *key)
2603{
2604	unsigned long flags;
2605
2606	spin_lock_irqsave(&q->lock, flags);
2607	__wake_up_common(q, mode, nr_exclusive, 0, key);
2608	spin_unlock_irqrestore(&q->lock, flags);
2609}
2610EXPORT_SYMBOL(__wake_up);
2611
2612/*
2613 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2614 */
2615void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2616{
2617	__wake_up_common(q, mode, nr, 0, NULL);
2618}
2619EXPORT_SYMBOL_GPL(__wake_up_locked);
2620
2621void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2622{
2623	__wake_up_common(q, mode, 1, 0, key);
2624}
2625EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2626
2627/**
2628 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2629 * @q: the waitqueue
2630 * @mode: which threads
2631 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2632 * @key: opaque value to be passed to wakeup targets
2633 *
2634 * The sync wakeup differs that the waker knows that it will schedule
2635 * away soon, so while the target thread will be woken up, it will not
2636 * be migrated to another CPU - ie. the two threads are 'synchronized'
2637 * with each other. This can prevent needless bouncing between CPUs.
2638 *
2639 * On UP it can prevent extra preemption.
2640 *
2641 * It may be assumed that this function implies a write memory barrier before
2642 * changing the task state if and only if any tasks are woken up.
2643 */
2644void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2645			int nr_exclusive, void *key)
2646{
2647	unsigned long flags;
2648	int wake_flags = WF_SYNC;
2649
2650	if (unlikely(!q))
2651		return;
2652
2653	if (unlikely(!nr_exclusive))
2654		wake_flags = 0;
2655
2656	spin_lock_irqsave(&q->lock, flags);
2657	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2658	spin_unlock_irqrestore(&q->lock, flags);
2659}
2660EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2661
2662/*
2663 * __wake_up_sync - see __wake_up_sync_key()
2664 */
2665void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2666{
2667	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2668}
2669EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2670
2671/**
2672 * complete: - signals a single thread waiting on this completion
2673 * @x:  holds the state of this particular completion
2674 *
2675 * This will wake up a single thread waiting on this completion. Threads will be
2676 * awakened in the same order in which they were queued.
2677 *
2678 * See also complete_all(), wait_for_completion() and related routines.
2679 *
2680 * It may be assumed that this function implies a write memory barrier before
2681 * changing the task state if and only if any tasks are woken up.
2682 */
2683void complete(struct completion *x)
2684{
2685	unsigned long flags;
2686
2687	spin_lock_irqsave(&x->wait.lock, flags);
2688	x->done++;
2689	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2690	spin_unlock_irqrestore(&x->wait.lock, flags);
2691}
2692EXPORT_SYMBOL(complete);
2693
2694/**
2695 * complete_all: - signals all threads waiting on this completion
2696 * @x:  holds the state of this particular completion
2697 *
2698 * This will wake up all threads waiting on this particular completion event.
2699 *
2700 * It may be assumed that this function implies a write memory barrier before
2701 * changing the task state if and only if any tasks are woken up.
2702 */
2703void complete_all(struct completion *x)
2704{
2705	unsigned long flags;
2706
2707	spin_lock_irqsave(&x->wait.lock, flags);
2708	x->done += UINT_MAX/2;
2709	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2710	spin_unlock_irqrestore(&x->wait.lock, flags);
2711}
2712EXPORT_SYMBOL(complete_all);
2713
2714static inline long __sched
2715do_wait_for_common(struct completion *x,
2716		   long (*action)(long), long timeout, int state)
2717{
2718	if (!x->done) {
2719		DECLARE_WAITQUEUE(wait, current);
2720
2721		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2722		do {
2723			if (signal_pending_state(state, current)) {
2724				timeout = -ERESTARTSYS;
2725				break;
2726			}
2727			__set_current_state(state);
2728			spin_unlock_irq(&x->wait.lock);
2729			timeout = action(timeout);
2730			spin_lock_irq(&x->wait.lock);
2731		} while (!x->done && timeout);
2732		__remove_wait_queue(&x->wait, &wait);
2733		if (!x->done)
2734			return timeout;
2735	}
2736	x->done--;
2737	return timeout ?: 1;
2738}
2739
2740static inline long __sched
2741__wait_for_common(struct completion *x,
2742		  long (*action)(long), long timeout, int state)
2743{
2744	might_sleep();
2745
2746	spin_lock_irq(&x->wait.lock);
2747	timeout = do_wait_for_common(x, action, timeout, state);
2748	spin_unlock_irq(&x->wait.lock);
2749	return timeout;
2750}
2751
2752static long __sched
2753wait_for_common(struct completion *x, long timeout, int state)
2754{
2755	return __wait_for_common(x, schedule_timeout, timeout, state);
2756}
2757
2758static long __sched
2759wait_for_common_io(struct completion *x, long timeout, int state)
2760{
2761	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2762}
2763
2764/**
2765 * wait_for_completion: - waits for completion of a task
2766 * @x:  holds the state of this particular completion
2767 *
2768 * This waits to be signaled for completion of a specific task. It is NOT
2769 * interruptible and there is no timeout.
2770 *
2771 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2772 * and interrupt capability. Also see complete().
2773 */
2774void __sched wait_for_completion(struct completion *x)
2775{
2776	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2777}
2778EXPORT_SYMBOL(wait_for_completion);
2779
2780/**
2781 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2782 * @x:  holds the state of this particular completion
2783 * @timeout:  timeout value in jiffies
2784 *
2785 * This waits for either a completion of a specific task to be signaled or for a
2786 * specified timeout to expire. The timeout is in jiffies. It is not
2787 * interruptible.
2788 *
2789 * The return value is 0 if timed out, and positive (at least 1, or number of
2790 * jiffies left till timeout) if completed.
2791 */
2792unsigned long __sched
2793wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2794{
2795	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2796}
2797EXPORT_SYMBOL(wait_for_completion_timeout);
2798
2799/**
2800 * wait_for_completion_io: - waits for completion of a task
2801 * @x:  holds the state of this particular completion
2802 *
2803 * This waits to be signaled for completion of a specific task. It is NOT
2804 * interruptible and there is no timeout. The caller is accounted as waiting
2805 * for IO.
2806 */
2807void __sched wait_for_completion_io(struct completion *x)
2808{
2809	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2810}
2811EXPORT_SYMBOL(wait_for_completion_io);
2812
2813/**
2814 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2815 * @x:  holds the state of this particular completion
2816 * @timeout:  timeout value in jiffies
2817 *
2818 * This waits for either a completion of a specific task to be signaled or for a
2819 * specified timeout to expire. The timeout is in jiffies. It is not
2820 * interruptible. The caller is accounted as waiting for IO.
2821 *
2822 * The return value is 0 if timed out, and positive (at least 1, or number of
2823 * jiffies left till timeout) if completed.
2824 */
2825unsigned long __sched
2826wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2827{
2828	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2829}
2830EXPORT_SYMBOL(wait_for_completion_io_timeout);
2831
2832/**
2833 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2834 * @x:  holds the state of this particular completion
2835 *
2836 * This waits for completion of a specific task to be signaled. It is
2837 * interruptible.
2838 *
2839 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2840 */
2841int __sched wait_for_completion_interruptible(struct completion *x)
2842{
2843	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2844	if (t == -ERESTARTSYS)
2845		return t;
2846	return 0;
2847}
2848EXPORT_SYMBOL(wait_for_completion_interruptible);
2849
2850/**
2851 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2852 * @x:  holds the state of this particular completion
2853 * @timeout:  timeout value in jiffies
2854 *
2855 * This waits for either a completion of a specific task to be signaled or for a
2856 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2857 *
2858 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2859 * positive (at least 1, or number of jiffies left till timeout) if completed.
2860 */
2861long __sched
2862wait_for_completion_interruptible_timeout(struct completion *x,
2863					  unsigned long timeout)
2864{
2865	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2866}
2867EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2868
2869/**
2870 * wait_for_completion_killable: - waits for completion of a task (killable)
2871 * @x:  holds the state of this particular completion
2872 *
2873 * This waits to be signaled for completion of a specific task. It can be
2874 * interrupted by a kill signal.
2875 *
2876 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2877 */
2878int __sched wait_for_completion_killable(struct completion *x)
2879{
2880	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2881	if (t == -ERESTARTSYS)
2882		return t;
2883	return 0;
2884}
2885EXPORT_SYMBOL(wait_for_completion_killable);
2886
2887/**
2888 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2889 * @x:  holds the state of this particular completion
2890 * @timeout:  timeout value in jiffies
2891 *
2892 * This waits for either a completion of a specific task to be
2893 * signaled or for a specified timeout to expire. It can be
2894 * interrupted by a kill signal. The timeout is in jiffies.
2895 *
2896 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2897 * positive (at least 1, or number of jiffies left till timeout) if completed.
2898 */
2899long __sched
2900wait_for_completion_killable_timeout(struct completion *x,
2901				     unsigned long timeout)
2902{
2903	return wait_for_common(x, timeout, TASK_KILLABLE);
2904}
2905EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2906
2907/**
2908 *	try_wait_for_completion - try to decrement a completion without blocking
2909 *	@x:	completion structure
2910 *
2911 *	Returns: 0 if a decrement cannot be done without blocking
2912 *		 1 if a decrement succeeded.
2913 *
2914 *	If a completion is being used as a counting completion,
2915 *	attempt to decrement the counter without blocking. This
2916 *	enables us to avoid waiting if the resource the completion
2917 *	is protecting is not available.
2918 */
2919bool try_wait_for_completion(struct completion *x)
2920{
2921	unsigned long flags;
2922	int ret = 1;
2923
2924	spin_lock_irqsave(&x->wait.lock, flags);
2925	if (!x->done)
2926		ret = 0;
2927	else
2928		x->done--;
2929	spin_unlock_irqrestore(&x->wait.lock, flags);
2930	return ret;
2931}
2932EXPORT_SYMBOL(try_wait_for_completion);
2933
2934/**
2935 *	completion_done - Test to see if a completion has any waiters
2936 *	@x:	completion structure
2937 *
2938 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2939 *		 1 if there are no waiters.
2940 *
2941 */
2942bool completion_done(struct completion *x)
2943{
2944	unsigned long flags;
2945	int ret = 1;
2946
2947	spin_lock_irqsave(&x->wait.lock, flags);
2948	if (!x->done)
2949		ret = 0;
2950	spin_unlock_irqrestore(&x->wait.lock, flags);
2951	return ret;
2952}
2953EXPORT_SYMBOL(completion_done);
2954
2955static long __sched
2956sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2957{
2958	unsigned long flags;
2959	wait_queue_t wait;
2960
2961	init_waitqueue_entry(&wait, current);
2962
2963	__set_current_state(state);
2964
2965	spin_lock_irqsave(&q->lock, flags);
2966	__add_wait_queue(q, &wait);
2967	spin_unlock(&q->lock);
2968	timeout = schedule_timeout(timeout);
2969	spin_lock_irq(&q->lock);
2970	__remove_wait_queue(q, &wait);
2971	spin_unlock_irqrestore(&q->lock, flags);
2972
2973	return timeout;
2974}
2975
2976void __sched interruptible_sleep_on(wait_queue_head_t *q)
2977{
2978	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2979}
2980EXPORT_SYMBOL(interruptible_sleep_on);
2981
2982long __sched
2983interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2984{
2985	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2986}
2987EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2988
2989void __sched sleep_on(wait_queue_head_t *q)
2990{
2991	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2992}
2993EXPORT_SYMBOL(sleep_on);
2994
2995long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2996{
2997	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2998}
2999EXPORT_SYMBOL(sleep_on_timeout);
3000
3001#ifdef CONFIG_RT_MUTEXES
3002
3003/*
3004 * rt_mutex_setprio - set the current priority of a task
3005 * @p: task
3006 * @prio: prio value (kernel-internal form)
3007 *
3008 * This function changes the 'effective' priority of a task. It does
3009 * not touch ->normal_prio like __setscheduler().
3010 *
3011 * Used by the rt_mutex code to implement priority inheritance logic.
3012 */
3013void rt_mutex_setprio(struct task_struct *p, int prio)
3014{
3015	int oldprio, on_rq, running;
3016	struct rq *rq;
3017	const struct sched_class *prev_class;
3018
3019	BUG_ON(prio < 0 || prio > MAX_PRIO);
3020
3021	rq = __task_rq_lock(p);
3022
3023	/*
3024	 * Idle task boosting is a nono in general. There is one
3025	 * exception, when PREEMPT_RT and NOHZ is active:
3026	 *
3027	 * The idle task calls get_next_timer_interrupt() and holds
3028	 * the timer wheel base->lock on the CPU and another CPU wants
3029	 * to access the timer (probably to cancel it). We can safely
3030	 * ignore the boosting request, as the idle CPU runs this code
3031	 * with interrupts disabled and will complete the lock
3032	 * protected section without being interrupted. So there is no
3033	 * real need to boost.
3034	 */
3035	if (unlikely(p == rq->idle)) {
3036		WARN_ON(p != rq->curr);
3037		WARN_ON(p->pi_blocked_on);
3038		goto out_unlock;
3039	}
3040
3041	trace_sched_pi_setprio(p, prio);
3042	oldprio = p->prio;
3043	prev_class = p->sched_class;
3044	on_rq = p->on_rq;
3045	running = task_current(rq, p);
3046	if (on_rq)
3047		dequeue_task(rq, p, 0);
3048	if (running)
3049		p->sched_class->put_prev_task(rq, p);
3050
3051	if (rt_prio(prio))
3052		p->sched_class = &rt_sched_class;
3053	else
3054		p->sched_class = &fair_sched_class;
3055
3056	p->prio = prio;
3057
3058	if (running)
3059		p->sched_class->set_curr_task(rq);
3060	if (on_rq)
3061		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3062
3063	check_class_changed(rq, p, prev_class, oldprio);
3064out_unlock:
3065	__task_rq_unlock(rq);
3066}
3067#endif
3068void set_user_nice(struct task_struct *p, long nice)
3069{
3070	int old_prio, delta, on_rq;
3071	unsigned long flags;
3072	struct rq *rq;
3073
3074	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3075		return;
3076	/*
3077	 * We have to be careful, if called from sys_setpriority(),
3078	 * the task might be in the middle of scheduling on another CPU.
3079	 */
3080	rq = task_rq_lock(p, &flags);
3081	/*
3082	 * The RT priorities are set via sched_setscheduler(), but we still
3083	 * allow the 'normal' nice value to be set - but as expected
3084	 * it wont have any effect on scheduling until the task is
3085	 * SCHED_FIFO/SCHED_RR:
3086	 */
3087	if (task_has_rt_policy(p)) {
3088		p->static_prio = NICE_TO_PRIO(nice);
3089		goto out_unlock;
3090	}
3091	on_rq = p->on_rq;
3092	if (on_rq)
3093		dequeue_task(rq, p, 0);
3094
3095	p->static_prio = NICE_TO_PRIO(nice);
3096	set_load_weight(p);
3097	old_prio = p->prio;
3098	p->prio = effective_prio(p);
3099	delta = p->prio - old_prio;
3100
3101	if (on_rq) {
3102		enqueue_task(rq, p, 0);
3103		/*
3104		 * If the task increased its priority or is running and
3105		 * lowered its priority, then reschedule its CPU:
3106		 */
3107		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3108			resched_task(rq->curr);
3109	}
3110out_unlock:
3111	task_rq_unlock(rq, p, &flags);
3112}
3113EXPORT_SYMBOL(set_user_nice);
3114
3115/*
3116 * can_nice - check if a task can reduce its nice value
3117 * @p: task
3118 * @nice: nice value
3119 */
3120int can_nice(const struct task_struct *p, const int nice)
3121{
3122	/* convert nice value [19,-20] to rlimit style value [1,40] */
3123	int nice_rlim = 20 - nice;
3124
3125	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3126		capable(CAP_SYS_NICE));
3127}
3128
3129#ifdef __ARCH_WANT_SYS_NICE
3130
3131/*
3132 * sys_nice - change the priority of the current process.
3133 * @increment: priority increment
3134 *
3135 * sys_setpriority is a more generic, but much slower function that
3136 * does similar things.
3137 */
3138SYSCALL_DEFINE1(nice, int, increment)
3139{
3140	long nice, retval;
3141
3142	/*
3143	 * Setpriority might change our priority at the same moment.
3144	 * We don't have to worry. Conceptually one call occurs first
3145	 * and we have a single winner.
3146	 */
3147	if (increment < -40)
3148		increment = -40;
3149	if (increment > 40)
3150		increment = 40;
3151
3152	nice = TASK_NICE(current) + increment;
3153	if (nice < -20)
3154		nice = -20;
3155	if (nice > 19)
3156		nice = 19;
3157
3158	if (increment < 0 && !can_nice(current, nice))
3159		return -EPERM;
3160
3161	retval = security_task_setnice(current, nice);
3162	if (retval)
3163		return retval;
3164
3165	set_user_nice(current, nice);
3166	return 0;
3167}
3168
3169#endif
3170
3171/**
3172 * task_prio - return the priority value of a given task.
3173 * @p: the task in question.
3174 *
3175 * This is the priority value as seen by users in /proc.
3176 * RT tasks are offset by -200. Normal tasks are centered
3177 * around 0, value goes from -16 to +15.
3178 */
3179int task_prio(const struct task_struct *p)
3180{
3181	return p->prio - MAX_RT_PRIO;
3182}
3183
3184/**
3185 * task_nice - return the nice value of a given task.
3186 * @p: the task in question.
3187 */
3188int task_nice(const struct task_struct *p)
3189{
3190	return TASK_NICE(p);
3191}
3192EXPORT_SYMBOL(task_nice);
3193
3194/**
3195 * idle_cpu - is a given cpu idle currently?
3196 * @cpu: the processor in question.
3197 */
3198int idle_cpu(int cpu)
3199{
3200	struct rq *rq = cpu_rq(cpu);
3201
3202	if (rq->curr != rq->idle)
3203		return 0;
3204
3205	if (rq->nr_running)
3206		return 0;
3207
3208#ifdef CONFIG_SMP
3209	if (!llist_empty(&rq->wake_list))
3210		return 0;
3211#endif
3212
3213	return 1;
3214}
3215
3216/**
3217 * idle_task - return the idle task for a given cpu.
3218 * @cpu: the processor in question.
3219 */
3220struct task_struct *idle_task(int cpu)
3221{
3222	return cpu_rq(cpu)->idle;
3223}
3224
3225/**
3226 * find_process_by_pid - find a process with a matching PID value.
3227 * @pid: the pid in question.
3228 */
3229static struct task_struct *find_process_by_pid(pid_t pid)
3230{
3231	return pid ? find_task_by_vpid(pid) : current;
3232}
3233
3234/* Actually do priority change: must hold rq lock. */
3235static void
3236__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3237{
3238	p->policy = policy;
3239	p->rt_priority = prio;
3240	p->normal_prio = normal_prio(p);
3241	/* we are holding p->pi_lock already */
3242	p->prio = rt_mutex_getprio(p);
3243	if (rt_prio(p->prio))
3244		p->sched_class = &rt_sched_class;
3245	else
3246		p->sched_class = &fair_sched_class;
3247	set_load_weight(p);
3248}
3249
3250/*
3251 * check the target process has a UID that matches the current process's
3252 */
3253static bool check_same_owner(struct task_struct *p)
3254{
3255	const struct cred *cred = current_cred(), *pcred;
3256	bool match;
3257
3258	rcu_read_lock();
3259	pcred = __task_cred(p);
3260	match = (uid_eq(cred->euid, pcred->euid) ||
3261		 uid_eq(cred->euid, pcred->uid));
3262	rcu_read_unlock();
3263	return match;
3264}
3265
3266static int __sched_setscheduler(struct task_struct *p, int policy,
3267				const struct sched_param *param, bool user)
3268{
3269	int retval, oldprio, oldpolicy = -1, on_rq, running;
3270	unsigned long flags;
3271	const struct sched_class *prev_class;
3272	struct rq *rq;
3273	int reset_on_fork;
3274
3275	/* may grab non-irq protected spin_locks */
3276	BUG_ON(in_interrupt());
3277recheck:
3278	/* double check policy once rq lock held */
3279	if (policy < 0) {
3280		reset_on_fork = p->sched_reset_on_fork;
3281		policy = oldpolicy = p->policy;
3282	} else {
3283		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3284		policy &= ~SCHED_RESET_ON_FORK;
3285
3286		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3287				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3288				policy != SCHED_IDLE)
3289			return -EINVAL;
3290	}
3291
3292	/*
3293	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3294	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3295	 * SCHED_BATCH and SCHED_IDLE is 0.
3296	 */
3297	if (param->sched_priority < 0 ||
3298	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3299	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3300		return -EINVAL;
3301	if (rt_policy(policy) != (param->sched_priority != 0))
3302		return -EINVAL;
3303
3304	/*
3305	 * Allow unprivileged RT tasks to decrease priority:
3306	 */
3307	if (user && !capable(CAP_SYS_NICE)) {
3308		if (rt_policy(policy)) {
3309			unsigned long rlim_rtprio =
3310					task_rlimit(p, RLIMIT_RTPRIO);
3311
3312			/* can't set/change the rt policy */
3313			if (policy != p->policy && !rlim_rtprio)
3314				return -EPERM;
3315
3316			/* can't increase priority */
3317			if (param->sched_priority > p->rt_priority &&
3318			    param->sched_priority > rlim_rtprio)
3319				return -EPERM;
3320		}
3321
3322		/*
3323		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3324		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3325		 */
3326		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3327			if (!can_nice(p, TASK_NICE(p)))
3328				return -EPERM;
3329		}
3330
3331		/* can't change other user's priorities */
3332		if (!check_same_owner(p))
3333			return -EPERM;
3334
3335		/* Normal users shall not reset the sched_reset_on_fork flag */
3336		if (p->sched_reset_on_fork && !reset_on_fork)
3337			return -EPERM;
3338	}
3339
3340	if (user) {
3341		retval = security_task_setscheduler(p);
3342		if (retval)
3343			return retval;
3344	}
3345
3346	/*
3347	 * make sure no PI-waiters arrive (or leave) while we are
3348	 * changing the priority of the task:
3349	 *
3350	 * To be able to change p->policy safely, the appropriate
3351	 * runqueue lock must be held.
3352	 */
3353	rq = task_rq_lock(p, &flags);
3354
3355	/*
3356	 * Changing the policy of the stop threads its a very bad idea
3357	 */
3358	if (p == rq->stop) {
3359		task_rq_unlock(rq, p, &flags);
3360		return -EINVAL;
3361	}
3362
3363	/*
3364	 * If not changing anything there's no need to proceed further:
3365	 */
3366	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3367			param->sched_priority == p->rt_priority))) {
3368		task_rq_unlock(rq, p, &flags);
3369		return 0;
3370	}
3371
3372#ifdef CONFIG_RT_GROUP_SCHED
3373	if (user) {
3374		/*
3375		 * Do not allow realtime tasks into groups that have no runtime
3376		 * assigned.
3377		 */
3378		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3379				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3380				!task_group_is_autogroup(task_group(p))) {
3381			task_rq_unlock(rq, p, &flags);
3382			return -EPERM;
3383		}
3384	}
3385#endif
3386
3387	/* recheck policy now with rq lock held */
3388	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3389		policy = oldpolicy = -1;
3390		task_rq_unlock(rq, p, &flags);
3391		goto recheck;
3392	}
3393	on_rq = p->on_rq;
3394	running = task_current(rq, p);
3395	if (on_rq)
3396		dequeue_task(rq, p, 0);
3397	if (running)
3398		p->sched_class->put_prev_task(rq, p);
3399
3400	p->sched_reset_on_fork = reset_on_fork;
3401
3402	oldprio = p->prio;
3403	prev_class = p->sched_class;
3404	__setscheduler(rq, p, policy, param->sched_priority);
3405
3406	if (running)
3407		p->sched_class->set_curr_task(rq);
3408	if (on_rq)
3409		enqueue_task(rq, p, 0);
3410
3411	check_class_changed(rq, p, prev_class, oldprio);
3412	task_rq_unlock(rq, p, &flags);
3413
3414	rt_mutex_adjust_pi(p);
3415
3416	return 0;
3417}
3418
3419/**
3420 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3421 * @p: the task in question.
3422 * @policy: new policy.
3423 * @param: structure containing the new RT priority.
3424 *
3425 * NOTE that the task may be already dead.
3426 */
3427int sched_setscheduler(struct task_struct *p, int policy,
3428		       const struct sched_param *param)
3429{
3430	return __sched_setscheduler(p, policy, param, true);
3431}
3432EXPORT_SYMBOL_GPL(sched_setscheduler);
3433
3434/**
3435 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3436 * @p: the task in question.
3437 * @policy: new policy.
3438 * @param: structure containing the new RT priority.
3439 *
3440 * Just like sched_setscheduler, only don't bother checking if the
3441 * current context has permission.  For example, this is needed in
3442 * stop_machine(): we create temporary high priority worker threads,
3443 * but our caller might not have that capability.
3444 */
3445int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3446			       const struct sched_param *param)
3447{
3448	return __sched_setscheduler(p, policy, param, false);
3449}
3450
3451static int
3452do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3453{
3454	struct sched_param lparam;
3455	struct task_struct *p;
3456	int retval;
3457
3458	if (!param || pid < 0)
3459		return -EINVAL;
3460	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3461		return -EFAULT;
3462
3463	rcu_read_lock();
3464	retval = -ESRCH;
3465	p = find_process_by_pid(pid);
3466	if (p != NULL)
3467		retval = sched_setscheduler(p, policy, &lparam);
3468	rcu_read_unlock();
3469
3470	return retval;
3471}
3472
3473/**
3474 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3475 * @pid: the pid in question.
3476 * @policy: new policy.
3477 * @param: structure containing the new RT priority.
3478 */
3479SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3480		struct sched_param __user *, param)
3481{
3482	/* negative values for policy are not valid */
3483	if (policy < 0)
3484		return -EINVAL;
3485
3486	return do_sched_setscheduler(pid, policy, param);
3487}
3488
3489/**
3490 * sys_sched_setparam - set/change the RT priority of a thread
3491 * @pid: the pid in question.
3492 * @param: structure containing the new RT priority.
3493 */
3494SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3495{
3496	return do_sched_setscheduler(pid, -1, param);
3497}
3498
3499/**
3500 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3501 * @pid: the pid in question.
3502 */
3503SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3504{
3505	struct task_struct *p;
3506	int retval;
3507
3508	if (pid < 0)
3509		return -EINVAL;
3510
3511	retval = -ESRCH;
3512	rcu_read_lock();
3513	p = find_process_by_pid(pid);
3514	if (p) {
3515		retval = security_task_getscheduler(p);
3516		if (!retval)
3517			retval = p->policy
3518				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3519	}
3520	rcu_read_unlock();
3521	return retval;
3522}
3523
3524/**
3525 * sys_sched_getparam - get the RT priority of a thread
3526 * @pid: the pid in question.
3527 * @param: structure containing the RT priority.
3528 */
3529SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3530{
3531	struct sched_param lp;
3532	struct task_struct *p;
3533	int retval;
3534
3535	if (!param || pid < 0)
3536		return -EINVAL;
3537
3538	rcu_read_lock();
3539	p = find_process_by_pid(pid);
3540	retval = -ESRCH;
3541	if (!p)
3542		goto out_unlock;
3543
3544	retval = security_task_getscheduler(p);
3545	if (retval)
3546		goto out_unlock;
3547
3548	lp.sched_priority = p->rt_priority;
3549	rcu_read_unlock();
3550
3551	/*
3552	 * This one might sleep, we cannot do it with a spinlock held ...
3553	 */
3554	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3555
3556	return retval;
3557
3558out_unlock:
3559	rcu_read_unlock();
3560	return retval;
3561}
3562
3563long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3564{
3565	cpumask_var_t cpus_allowed, new_mask;
3566	struct task_struct *p;
3567	int retval;
3568
3569	get_online_cpus();
3570	rcu_read_lock();
3571
3572	p = find_process_by_pid(pid);
3573	if (!p) {
3574		rcu_read_unlock();
3575		put_online_cpus();
3576		return -ESRCH;
3577	}
3578
3579	/* Prevent p going away */
3580	get_task_struct(p);
3581	rcu_read_unlock();
3582
3583	if (p->flags & PF_NO_SETAFFINITY) {
3584		retval = -EINVAL;
3585		goto out_put_task;
3586	}
3587	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3588		retval = -ENOMEM;
3589		goto out_put_task;
3590	}
3591	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3592		retval = -ENOMEM;
3593		goto out_free_cpus_allowed;
3594	}
3595	retval = -EPERM;
3596	if (!check_same_owner(p)) {
3597		rcu_read_lock();
3598		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3599			rcu_read_unlock();
3600			goto out_unlock;
3601		}
3602		rcu_read_unlock();
3603	}
3604
3605	retval = security_task_setscheduler(p);
3606	if (retval)
3607		goto out_unlock;
3608
3609	cpuset_cpus_allowed(p, cpus_allowed);
3610	cpumask_and(new_mask, in_mask, cpus_allowed);
3611again:
3612	retval = set_cpus_allowed_ptr(p, new_mask);
3613
3614	if (!retval) {
3615		cpuset_cpus_allowed(p, cpus_allowed);
3616		if (!cpumask_subset(new_mask, cpus_allowed)) {
3617			/*
3618			 * We must have raced with a concurrent cpuset
3619			 * update. Just reset the cpus_allowed to the
3620			 * cpuset's cpus_allowed
3621			 */
3622			cpumask_copy(new_mask, cpus_allowed);
3623			goto again;
3624		}
3625	}
3626out_unlock:
3627	free_cpumask_var(new_mask);
3628out_free_cpus_allowed:
3629	free_cpumask_var(cpus_allowed);
3630out_put_task:
3631	put_task_struct(p);
3632	put_online_cpus();
3633	return retval;
3634}
3635
3636static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3637			     struct cpumask *new_mask)
3638{
3639	if (len < cpumask_size())
3640		cpumask_clear(new_mask);
3641	else if (len > cpumask_size())
3642		len = cpumask_size();
3643
3644	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3645}
3646
3647/**
3648 * sys_sched_setaffinity - set the cpu affinity of a process
3649 * @pid: pid of the process
3650 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3651 * @user_mask_ptr: user-space pointer to the new cpu mask
3652 */
3653SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3654		unsigned long __user *, user_mask_ptr)
3655{
3656	cpumask_var_t new_mask;
3657	int retval;
3658
3659	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3660		return -ENOMEM;
3661
3662	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3663	if (retval == 0)
3664		retval = sched_setaffinity(pid, new_mask);
3665	free_cpumask_var(new_mask);
3666	return retval;
3667}
3668
3669long sched_getaffinity(pid_t pid, struct cpumask *mask)
3670{
3671	struct task_struct *p;
3672	unsigned long flags;
3673	int retval;
3674
3675	get_online_cpus();
3676	rcu_read_lock();
3677
3678	retval = -ESRCH;
3679	p = find_process_by_pid(pid);
3680	if (!p)
3681		goto out_unlock;
3682
3683	retval = security_task_getscheduler(p);
3684	if (retval)
3685		goto out_unlock;
3686
3687	raw_spin_lock_irqsave(&p->pi_lock, flags);
3688	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3689	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3690
3691out_unlock:
3692	rcu_read_unlock();
3693	put_online_cpus();
3694
3695	return retval;
3696}
3697
3698/**
3699 * sys_sched_getaffinity - get the cpu affinity of a process
3700 * @pid: pid of the process
3701 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3702 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3703 */
3704SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3705		unsigned long __user *, user_mask_ptr)
3706{
3707	int ret;
3708	cpumask_var_t mask;
3709
3710	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3711		return -EINVAL;
3712	if (len & (sizeof(unsigned long)-1))
3713		return -EINVAL;
3714
3715	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3716		return -ENOMEM;
3717
3718	ret = sched_getaffinity(pid, mask);
3719	if (ret == 0) {
3720		size_t retlen = min_t(size_t, len, cpumask_size());
3721
3722		if (copy_to_user(user_mask_ptr, mask, retlen))
3723			ret = -EFAULT;
3724		else
3725			ret = retlen;
3726	}
3727	free_cpumask_var(mask);
3728
3729	return ret;
3730}
3731
3732/**
3733 * sys_sched_yield - yield the current processor to other threads.
3734 *
3735 * This function yields the current CPU to other tasks. If there are no
3736 * other threads running on this CPU then this function will return.
3737 */
3738SYSCALL_DEFINE0(sched_yield)
3739{
3740	struct rq *rq = this_rq_lock();
3741
3742	schedstat_inc(rq, yld_count);
3743	current->sched_class->yield_task(rq);
3744
3745	/*
3746	 * Since we are going to call schedule() anyway, there's
3747	 * no need to preempt or enable interrupts:
3748	 */
3749	__release(rq->lock);
3750	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3751	do_raw_spin_unlock(&rq->lock);
3752	sched_preempt_enable_no_resched();
3753
3754	schedule();
3755
3756	return 0;
3757}
3758
3759static inline int should_resched(void)
3760{
3761	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3762}
3763
3764static void __cond_resched(void)
3765{
3766	add_preempt_count(PREEMPT_ACTIVE);
3767	__schedule();
3768	sub_preempt_count(PREEMPT_ACTIVE);
3769}
3770
3771int __sched _cond_resched(void)
3772{
3773	if (should_resched()) {
3774		__cond_resched();
3775		return 1;
3776	}
3777	return 0;
3778}
3779EXPORT_SYMBOL(_cond_resched);
3780
3781/*
3782 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3783 * call schedule, and on return reacquire the lock.
3784 *
3785 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3786 * operations here to prevent schedule() from being called twice (once via
3787 * spin_unlock(), once by hand).
3788 */
3789int __cond_resched_lock(spinlock_t *lock)
3790{
3791	int resched = should_resched();
3792	int ret = 0;
3793
3794	lockdep_assert_held(lock);
3795
3796	if (spin_needbreak(lock) || resched) {
3797		spin_unlock(lock);
3798		if (resched)
3799			__cond_resched();
3800		else
3801			cpu_relax();
3802		ret = 1;
3803		spin_lock(lock);
3804	}
3805	return ret;
3806}
3807EXPORT_SYMBOL(__cond_resched_lock);
3808
3809int __sched __cond_resched_softirq(void)
3810{
3811	BUG_ON(!in_softirq());
3812
3813	if (should_resched()) {
3814		local_bh_enable();
3815		__cond_resched();
3816		local_bh_disable();
3817		return 1;
3818	}
3819	return 0;
3820}
3821EXPORT_SYMBOL(__cond_resched_softirq);
3822
3823/**
3824 * yield - yield the current processor to other threads.
3825 *
3826 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3827 *
3828 * The scheduler is at all times free to pick the calling task as the most
3829 * eligible task to run, if removing the yield() call from your code breaks
3830 * it, its already broken.
3831 *
3832 * Typical broken usage is:
3833 *
3834 * while (!event)
3835 * 	yield();
3836 *
3837 * where one assumes that yield() will let 'the other' process run that will
3838 * make event true. If the current task is a SCHED_FIFO task that will never
3839 * happen. Never use yield() as a progress guarantee!!
3840 *
3841 * If you want to use yield() to wait for something, use wait_event().
3842 * If you want to use yield() to be 'nice' for others, use cond_resched().
3843 * If you still want to use yield(), do not!
3844 */
3845void __sched yield(void)
3846{
3847	set_current_state(TASK_RUNNING);
3848	sys_sched_yield();
3849}
3850EXPORT_SYMBOL(yield);
3851
3852/**
3853 * yield_to - yield the current processor to another thread in
3854 * your thread group, or accelerate that thread toward the
3855 * processor it's on.
3856 * @p: target task
3857 * @preempt: whether task preemption is allowed or not
3858 *
3859 * It's the caller's job to ensure that the target task struct
3860 * can't go away on us before we can do any checks.
3861 *
3862 * Returns:
3863 *	true (>0) if we indeed boosted the target task.
3864 *	false (0) if we failed to boost the target.
3865 *	-ESRCH if there's no task to yield to.
3866 */
3867bool __sched yield_to(struct task_struct *p, bool preempt)
3868{
3869	struct task_struct *curr = current;
3870	struct rq *rq, *p_rq;
3871	unsigned long flags;
3872	int yielded = 0;
3873
3874	local_irq_save(flags);
3875	rq = this_rq();
3876
3877again:
3878	p_rq = task_rq(p);
3879	/*
3880	 * If we're the only runnable task on the rq and target rq also
3881	 * has only one task, there's absolutely no point in yielding.
3882	 */
3883	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3884		yielded = -ESRCH;
3885		goto out_irq;
3886	}
3887
3888	double_rq_lock(rq, p_rq);
3889	while (task_rq(p) != p_rq) {
3890		double_rq_unlock(rq, p_rq);
3891		goto again;
3892	}
3893
3894	if (!curr->sched_class->yield_to_task)
3895		goto out_unlock;
3896
3897	if (curr->sched_class != p->sched_class)
3898		goto out_unlock;
3899
3900	if (task_running(p_rq, p) || p->state)
3901		goto out_unlock;
3902
3903	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3904	if (yielded) {
3905		schedstat_inc(rq, yld_count);
3906		/*
3907		 * Make p's CPU reschedule; pick_next_entity takes care of
3908		 * fairness.
3909		 */
3910		if (preempt && rq != p_rq)
3911			resched_task(p_rq->curr);
3912	}
3913
3914out_unlock:
3915	double_rq_unlock(rq, p_rq);
3916out_irq:
3917	local_irq_restore(flags);
3918
3919	if (yielded > 0)
3920		schedule();
3921
3922	return yielded;
3923}
3924EXPORT_SYMBOL_GPL(yield_to);
3925
3926/*
3927 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3928 * that process accounting knows that this is a task in IO wait state.
3929 */
3930void __sched io_schedule(void)
3931{
3932	struct rq *rq = raw_rq();
3933
3934	delayacct_blkio_start();
3935	atomic_inc(&rq->nr_iowait);
3936	blk_flush_plug(current);
3937	current->in_iowait = 1;
3938	schedule();
3939	current->in_iowait = 0;
3940	atomic_dec(&rq->nr_iowait);
3941	delayacct_blkio_end();
3942}
3943EXPORT_SYMBOL(io_schedule);
3944
3945long __sched io_schedule_timeout(long timeout)
3946{
3947	struct rq *rq = raw_rq();
3948	long ret;
3949
3950	delayacct_blkio_start();
3951	atomic_inc(&rq->nr_iowait);
3952	blk_flush_plug(current);
3953	current->in_iowait = 1;
3954	ret = schedule_timeout(timeout);
3955	current->in_iowait = 0;
3956	atomic_dec(&rq->nr_iowait);
3957	delayacct_blkio_end();
3958	return ret;
3959}
3960
3961/**
3962 * sys_sched_get_priority_max - return maximum RT priority.
3963 * @policy: scheduling class.
3964 *
3965 * this syscall returns the maximum rt_priority that can be used
3966 * by a given scheduling class.
3967 */
3968SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3969{
3970	int ret = -EINVAL;
3971
3972	switch (policy) {
3973	case SCHED_FIFO:
3974	case SCHED_RR:
3975		ret = MAX_USER_RT_PRIO-1;
3976		break;
3977	case SCHED_NORMAL:
3978	case SCHED_BATCH:
3979	case SCHED_IDLE:
3980		ret = 0;
3981		break;
3982	}
3983	return ret;
3984}
3985
3986/**
3987 * sys_sched_get_priority_min - return minimum RT priority.
3988 * @policy: scheduling class.
3989 *
3990 * this syscall returns the minimum rt_priority that can be used
3991 * by a given scheduling class.
3992 */
3993SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
3994{
3995	int ret = -EINVAL;
3996
3997	switch (policy) {
3998	case SCHED_FIFO:
3999	case SCHED_RR:
4000		ret = 1;
4001		break;
4002	case SCHED_NORMAL:
4003	case SCHED_BATCH:
4004	case SCHED_IDLE:
4005		ret = 0;
4006	}
4007	return ret;
4008}
4009
4010/**
4011 * sys_sched_rr_get_interval - return the default timeslice of a process.
4012 * @pid: pid of the process.
4013 * @interval: userspace pointer to the timeslice value.
4014 *
4015 * this syscall writes the default timeslice value of a given process
4016 * into the user-space timespec buffer. A value of '0' means infinity.
4017 */
4018SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4019		struct timespec __user *, interval)
4020{
4021	struct task_struct *p;
4022	unsigned int time_slice;
4023	unsigned long flags;
4024	struct rq *rq;
4025	int retval;
4026	struct timespec t;
4027
4028	if (pid < 0)
4029		return -EINVAL;
4030
4031	retval = -ESRCH;
4032	rcu_read_lock();
4033	p = find_process_by_pid(pid);
4034	if (!p)
4035		goto out_unlock;
4036
4037	retval = security_task_getscheduler(p);
4038	if (retval)
4039		goto out_unlock;
4040
4041	rq = task_rq_lock(p, &flags);
4042	time_slice = p->sched_class->get_rr_interval(rq, p);
4043	task_rq_unlock(rq, p, &flags);
4044
4045	rcu_read_unlock();
4046	jiffies_to_timespec(time_slice, &t);
4047	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4048	return retval;
4049
4050out_unlock:
4051	rcu_read_unlock();
4052	return retval;
4053}
4054
4055static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4056
4057void sched_show_task(struct task_struct *p)
4058{
4059	unsigned long free = 0;
4060	int ppid;
4061	unsigned state;
4062
4063	state = p->state ? __ffs(p->state) + 1 : 0;
4064	printk(KERN_INFO "%-15.15s %c", p->comm,
4065		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4066#if BITS_PER_LONG == 32
4067	if (state == TASK_RUNNING)
4068		printk(KERN_CONT " running  ");
4069	else
4070		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4071#else
4072	if (state == TASK_RUNNING)
4073		printk(KERN_CONT "  running task    ");
4074	else
4075		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4076#endif
4077#ifdef CONFIG_DEBUG_STACK_USAGE
4078	free = stack_not_used(p);
4079#endif
4080	rcu_read_lock();
4081	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4082	rcu_read_unlock();
4083	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4084		task_pid_nr(p), ppid,
4085		(unsigned long)task_thread_info(p)->flags);
4086
4087	print_worker_info(KERN_INFO, p);
4088	show_stack(p, NULL);
4089}
4090
4091void show_state_filter(unsigned long state_filter)
4092{
4093	struct task_struct *g, *p;
4094
4095#if BITS_PER_LONG == 32
4096	printk(KERN_INFO
4097		"  task                PC stack   pid father\n");
4098#else
4099	printk(KERN_INFO
4100		"  task                        PC stack   pid father\n");
4101#endif
4102	rcu_read_lock();
4103	do_each_thread(g, p) {
4104		/*
4105		 * reset the NMI-timeout, listing all files on a slow
4106		 * console might take a lot of time:
4107		 */
4108		touch_nmi_watchdog();
4109		if (!state_filter || (p->state & state_filter))
4110			sched_show_task(p);
4111	} while_each_thread(g, p);
4112
4113	touch_all_softlockup_watchdogs();
4114
4115#ifdef CONFIG_SCHED_DEBUG
4116	sysrq_sched_debug_show();
4117#endif
4118	rcu_read_unlock();
4119	/*
4120	 * Only show locks if all tasks are dumped:
4121	 */
4122	if (!state_filter)
4123		debug_show_all_locks();
4124}
4125
4126void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4127{
4128	idle->sched_class = &idle_sched_class;
4129}
4130
4131/**
4132 * init_idle - set up an idle thread for a given CPU
4133 * @idle: task in question
4134 * @cpu: cpu the idle task belongs to
4135 *
4136 * NOTE: this function does not set the idle thread's NEED_RESCHED
4137 * flag, to make booting more robust.
4138 */
4139void __cpuinit init_idle(struct task_struct *idle, int cpu)
4140{
4141	struct rq *rq = cpu_rq(cpu);
4142	unsigned long flags;
4143
4144	raw_spin_lock_irqsave(&rq->lock, flags);
4145
4146	__sched_fork(idle);
4147	idle->state = TASK_RUNNING;
4148	idle->se.exec_start = sched_clock();
4149
4150	do_set_cpus_allowed(idle, cpumask_of(cpu));
4151	/*
4152	 * We're having a chicken and egg problem, even though we are
4153	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4154	 * lockdep check in task_group() will fail.
4155	 *
4156	 * Similar case to sched_fork(). / Alternatively we could
4157	 * use task_rq_lock() here and obtain the other rq->lock.
4158	 *
4159	 * Silence PROVE_RCU
4160	 */
4161	rcu_read_lock();
4162	__set_task_cpu(idle, cpu);
4163	rcu_read_unlock();
4164
4165	rq->curr = rq->idle = idle;
4166#if defined(CONFIG_SMP)
4167	idle->on_cpu = 1;
4168#endif
4169	raw_spin_unlock_irqrestore(&rq->lock, flags);
4170
4171	/* Set the preempt count _outside_ the spinlocks! */
4172	task_thread_info(idle)->preempt_count = 0;
4173
4174	/*
4175	 * The idle tasks have their own, simple scheduling class:
4176	 */
4177	idle->sched_class = &idle_sched_class;
4178	ftrace_graph_init_idle_task(idle, cpu);
4179	vtime_init_idle(idle);
4180#if defined(CONFIG_SMP)
4181	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4182#endif
4183}
4184
4185#ifdef CONFIG_SMP
4186void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4187{
4188	if (p->sched_class && p->sched_class->set_cpus_allowed)
4189		p->sched_class->set_cpus_allowed(p, new_mask);
4190
4191	cpumask_copy(&p->cpus_allowed, new_mask);
4192	p->nr_cpus_allowed = cpumask_weight(new_mask);
4193}
4194
4195/*
4196 * This is how migration works:
4197 *
4198 * 1) we invoke migration_cpu_stop() on the target CPU using
4199 *    stop_one_cpu().
4200 * 2) stopper starts to run (implicitly forcing the migrated thread
4201 *    off the CPU)
4202 * 3) it checks whether the migrated task is still in the wrong runqueue.
4203 * 4) if it's in the wrong runqueue then the migration thread removes
4204 *    it and puts it into the right queue.
4205 * 5) stopper completes and stop_one_cpu() returns and the migration
4206 *    is done.
4207 */
4208
4209/*
4210 * Change a given task's CPU affinity. Migrate the thread to a
4211 * proper CPU and schedule it away if the CPU it's executing on
4212 * is removed from the allowed bitmask.
4213 *
4214 * NOTE: the caller must have a valid reference to the task, the
4215 * task must not exit() & deallocate itself prematurely. The
4216 * call is not atomic; no spinlocks may be held.
4217 */
4218int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4219{
4220	unsigned long flags;
4221	struct rq *rq;
4222	unsigned int dest_cpu;
4223	int ret = 0;
4224
4225	rq = task_rq_lock(p, &flags);
4226
4227	if (cpumask_equal(&p->cpus_allowed, new_mask))
4228		goto out;
4229
4230	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4231		ret = -EINVAL;
4232		goto out;
4233	}
4234
4235	do_set_cpus_allowed(p, new_mask);
4236
4237	/* Can the task run on the task's current CPU? If so, we're done */
4238	if (cpumask_test_cpu(task_cpu(p), new_mask))
4239		goto out;
4240
4241	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4242	if (p->on_rq) {
4243		struct migration_arg arg = { p, dest_cpu };
4244		/* Need help from migration thread: drop lock and wait. */
4245		task_rq_unlock(rq, p, &flags);
4246		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4247		tlb_migrate_finish(p->mm);
4248		return 0;
4249	}
4250out:
4251	task_rq_unlock(rq, p, &flags);
4252
4253	return ret;
4254}
4255EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4256
4257/*
4258 * Move (not current) task off this cpu, onto dest cpu. We're doing
4259 * this because either it can't run here any more (set_cpus_allowed()
4260 * away from this CPU, or CPU going down), or because we're
4261 * attempting to rebalance this task on exec (sched_exec).
4262 *
4263 * So we race with normal scheduler movements, but that's OK, as long
4264 * as the task is no longer on this CPU.
4265 *
4266 * Returns non-zero if task was successfully migrated.
4267 */
4268static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4269{
4270	struct rq *rq_dest, *rq_src;
4271	int ret = 0;
4272
4273	if (unlikely(!cpu_active(dest_cpu)))
4274		return ret;
4275
4276	rq_src = cpu_rq(src_cpu);
4277	rq_dest = cpu_rq(dest_cpu);
4278
4279	raw_spin_lock(&p->pi_lock);
4280	double_rq_lock(rq_src, rq_dest);
4281	/* Already moved. */
4282	if (task_cpu(p) != src_cpu)
4283		goto done;
4284	/* Affinity changed (again). */
4285	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4286		goto fail;
4287
4288	/*
4289	 * If we're not on a rq, the next wake-up will ensure we're
4290	 * placed properly.
4291	 */
4292	if (p->on_rq) {
4293		dequeue_task(rq_src, p, 0);
4294		set_task_cpu(p, dest_cpu);
4295		enqueue_task(rq_dest, p, 0);
4296		check_preempt_curr(rq_dest, p, 0);
4297	}
4298done:
4299	ret = 1;
4300fail:
4301	double_rq_unlock(rq_src, rq_dest);
4302	raw_spin_unlock(&p->pi_lock);
4303	return ret;
4304}
4305
4306/*
4307 * migration_cpu_stop - this will be executed by a highprio stopper thread
4308 * and performs thread migration by bumping thread off CPU then
4309 * 'pushing' onto another runqueue.
4310 */
4311static int migration_cpu_stop(void *data)
4312{
4313	struct migration_arg *arg = data;
4314
4315	/*
4316	 * The original target cpu might have gone down and we might
4317	 * be on another cpu but it doesn't matter.
4318	 */
4319	local_irq_disable();
4320	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4321	local_irq_enable();
4322	return 0;
4323}
4324
4325#ifdef CONFIG_HOTPLUG_CPU
4326
4327/*
4328 * Ensures that the idle task is using init_mm right before its cpu goes
4329 * offline.
4330 */
4331void idle_task_exit(void)
4332{
4333	struct mm_struct *mm = current->active_mm;
4334
4335	BUG_ON(cpu_online(smp_processor_id()));
4336
4337	if (mm != &init_mm)
4338		switch_mm(mm, &init_mm, current);
4339	mmdrop(mm);
4340}
4341
4342/*
4343 * Since this CPU is going 'away' for a while, fold any nr_active delta
4344 * we might have. Assumes we're called after migrate_tasks() so that the
4345 * nr_active count is stable.
4346 *
4347 * Also see the comment "Global load-average calculations".
4348 */
4349static void calc_load_migrate(struct rq *rq)
4350{
4351	long delta = calc_load_fold_active(rq);
4352	if (delta)
4353		atomic_long_add(delta, &calc_load_tasks);
4354}
4355
4356/*
4357 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4358 * try_to_wake_up()->select_task_rq().
4359 *
4360 * Called with rq->lock held even though we'er in stop_machine() and
4361 * there's no concurrency possible, we hold the required locks anyway
4362 * because of lock validation efforts.
4363 */
4364static void migrate_tasks(unsigned int dead_cpu)
4365{
4366	struct rq *rq = cpu_rq(dead_cpu);
4367	struct task_struct *next, *stop = rq->stop;
4368	int dest_cpu;
4369
4370	/*
4371	 * Fudge the rq selection such that the below task selection loop
4372	 * doesn't get stuck on the currently eligible stop task.
4373	 *
4374	 * We're currently inside stop_machine() and the rq is either stuck
4375	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4376	 * either way we should never end up calling schedule() until we're
4377	 * done here.
4378	 */
4379	rq->stop = NULL;
4380
4381	for ( ; ; ) {
4382		/*
4383		 * There's this thread running, bail when that's the only
4384		 * remaining thread.
4385		 */
4386		if (rq->nr_running == 1)
4387			break;
4388
4389		next = pick_next_task(rq);
4390		BUG_ON(!next);
4391		next->sched_class->put_prev_task(rq, next);
4392
4393		/* Find suitable destination for @next, with force if needed. */
4394		dest_cpu = select_fallback_rq(dead_cpu, next);
4395		raw_spin_unlock(&rq->lock);
4396
4397		__migrate_task(next, dead_cpu, dest_cpu);
4398
4399		raw_spin_lock(&rq->lock);
4400	}
4401
4402	rq->stop = stop;
4403}
4404
4405#endif /* CONFIG_HOTPLUG_CPU */
4406
4407#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4408
4409static struct ctl_table sd_ctl_dir[] = {
4410	{
4411		.procname	= "sched_domain",
4412		.mode		= 0555,
4413	},
4414	{}
4415};
4416
4417static struct ctl_table sd_ctl_root[] = {
4418	{
4419		.procname	= "kernel",
4420		.mode		= 0555,
4421		.child		= sd_ctl_dir,
4422	},
4423	{}
4424};
4425
4426static struct ctl_table *sd_alloc_ctl_entry(int n)
4427{
4428	struct ctl_table *entry =
4429		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4430
4431	return entry;
4432}
4433
4434static void sd_free_ctl_entry(struct ctl_table **tablep)
4435{
4436	struct ctl_table *entry;
4437
4438	/*
4439	 * In the intermediate directories, both the child directory and
4440	 * procname are dynamically allocated and could fail but the mode
4441	 * will always be set. In the lowest directory the names are
4442	 * static strings and all have proc handlers.
4443	 */
4444	for (entry = *tablep; entry->mode; entry++) {
4445		if (entry->child)
4446			sd_free_ctl_entry(&entry->child);
4447		if (entry->proc_handler == NULL)
4448			kfree(entry->procname);
4449	}
4450
4451	kfree(*tablep);
4452	*tablep = NULL;
4453}
4454
4455static int min_load_idx = 0;
4456static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4457
4458static void
4459set_table_entry(struct ctl_table *entry,
4460		const char *procname, void *data, int maxlen,
4461		umode_t mode, proc_handler *proc_handler,
4462		bool load_idx)
4463{
4464	entry->procname = procname;
4465	entry->data = data;
4466	entry->maxlen = maxlen;
4467	entry->mode = mode;
4468	entry->proc_handler = proc_handler;
4469
4470	if (load_idx) {
4471		entry->extra1 = &min_load_idx;
4472		entry->extra2 = &max_load_idx;
4473	}
4474}
4475
4476static struct ctl_table *
4477sd_alloc_ctl_domain_table(struct sched_domain *sd)
4478{
4479	struct ctl_table *table = sd_alloc_ctl_entry(13);
4480
4481	if (table == NULL)
4482		return NULL;
4483
4484	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4485		sizeof(long), 0644, proc_doulongvec_minmax, false);
4486	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4487		sizeof(long), 0644, proc_doulongvec_minmax, false);
4488	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4489		sizeof(int), 0644, proc_dointvec_minmax, true);
4490	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4491		sizeof(int), 0644, proc_dointvec_minmax, true);
4492	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4493		sizeof(int), 0644, proc_dointvec_minmax, true);
4494	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4495		sizeof(int), 0644, proc_dointvec_minmax, true);
4496	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4497		sizeof(int), 0644, proc_dointvec_minmax, true);
4498	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4499		sizeof(int), 0644, proc_dointvec_minmax, false);
4500	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4501		sizeof(int), 0644, proc_dointvec_minmax, false);
4502	set_table_entry(&table[9], "cache_nice_tries",
4503		&sd->cache_nice_tries,
4504		sizeof(int), 0644, proc_dointvec_minmax, false);
4505	set_table_entry(&table[10], "flags", &sd->flags,
4506		sizeof(int), 0644, proc_dointvec_minmax, false);
4507	set_table_entry(&table[11], "name", sd->name,
4508		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4509	/* &table[12] is terminator */
4510
4511	return table;
4512}
4513
4514static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4515{
4516	struct ctl_table *entry, *table;
4517	struct sched_domain *sd;
4518	int domain_num = 0, i;
4519	char buf[32];
4520
4521	for_each_domain(cpu, sd)
4522		domain_num++;
4523	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4524	if (table == NULL)
4525		return NULL;
4526
4527	i = 0;
4528	for_each_domain(cpu, sd) {
4529		snprintf(buf, 32, "domain%d", i);
4530		entry->procname = kstrdup(buf, GFP_KERNEL);
4531		entry->mode = 0555;
4532		entry->child = sd_alloc_ctl_domain_table(sd);
4533		entry++;
4534		i++;
4535	}
4536	return table;
4537}
4538
4539static struct ctl_table_header *sd_sysctl_header;
4540static void register_sched_domain_sysctl(void)
4541{
4542	int i, cpu_num = num_possible_cpus();
4543	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4544	char buf[32];
4545
4546	WARN_ON(sd_ctl_dir[0].child);
4547	sd_ctl_dir[0].child = entry;
4548
4549	if (entry == NULL)
4550		return;
4551
4552	for_each_possible_cpu(i) {
4553		snprintf(buf, 32, "cpu%d", i);
4554		entry->procname = kstrdup(buf, GFP_KERNEL);
4555		entry->mode = 0555;
4556		entry->child = sd_alloc_ctl_cpu_table(i);
4557		entry++;
4558	}
4559
4560	WARN_ON(sd_sysctl_header);
4561	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4562}
4563
4564/* may be called multiple times per register */
4565static void unregister_sched_domain_sysctl(void)
4566{
4567	if (sd_sysctl_header)
4568		unregister_sysctl_table(sd_sysctl_header);
4569	sd_sysctl_header = NULL;
4570	if (sd_ctl_dir[0].child)
4571		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4572}
4573#else
4574static void register_sched_domain_sysctl(void)
4575{
4576}
4577static void unregister_sched_domain_sysctl(void)
4578{
4579}
4580#endif
4581
4582static void set_rq_online(struct rq *rq)
4583{
4584	if (!rq->online) {
4585		const struct sched_class *class;
4586
4587		cpumask_set_cpu(rq->cpu, rq->rd->online);
4588		rq->online = 1;
4589
4590		for_each_class(class) {
4591			if (class->rq_online)
4592				class->rq_online(rq);
4593		}
4594	}
4595}
4596
4597static void set_rq_offline(struct rq *rq)
4598{
4599	if (rq->online) {
4600		const struct sched_class *class;
4601
4602		for_each_class(class) {
4603			if (class->rq_offline)
4604				class->rq_offline(rq);
4605		}
4606
4607		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4608		rq->online = 0;
4609	}
4610}
4611
4612/*
4613 * migration_call - callback that gets triggered when a CPU is added.
4614 * Here we can start up the necessary migration thread for the new CPU.
4615 */
4616static int __cpuinit
4617migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4618{
4619	int cpu = (long)hcpu;
4620	unsigned long flags;
4621	struct rq *rq = cpu_rq(cpu);
4622
4623	switch (action & ~CPU_TASKS_FROZEN) {
4624
4625	case CPU_UP_PREPARE:
4626		rq->calc_load_update = calc_load_update;
4627		break;
4628
4629	case CPU_ONLINE:
4630		/* Update our root-domain */
4631		raw_spin_lock_irqsave(&rq->lock, flags);
4632		if (rq->rd) {
4633			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4634
4635			set_rq_online(rq);
4636		}
4637		raw_spin_unlock_irqrestore(&rq->lock, flags);
4638		break;
4639
4640#ifdef CONFIG_HOTPLUG_CPU
4641	case CPU_DYING:
4642		sched_ttwu_pending();
4643		/* Update our root-domain */
4644		raw_spin_lock_irqsave(&rq->lock, flags);
4645		if (rq->rd) {
4646			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4647			set_rq_offline(rq);
4648		}
4649		migrate_tasks(cpu);
4650		BUG_ON(rq->nr_running != 1); /* the migration thread */
4651		raw_spin_unlock_irqrestore(&rq->lock, flags);
4652		break;
4653
4654	case CPU_DEAD:
4655		calc_load_migrate(rq);
4656		break;
4657#endif
4658	}
4659
4660	update_max_interval();
4661
4662	return NOTIFY_OK;
4663}
4664
4665/*
4666 * Register at high priority so that task migration (migrate_all_tasks)
4667 * happens before everything else.  This has to be lower priority than
4668 * the notifier in the perf_event subsystem, though.
4669 */
4670static struct notifier_block __cpuinitdata migration_notifier = {
4671	.notifier_call = migration_call,
4672	.priority = CPU_PRI_MIGRATION,
4673};
4674
4675static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4676				      unsigned long action, void *hcpu)
4677{
4678	switch (action & ~CPU_TASKS_FROZEN) {
4679	case CPU_STARTING:
4680	case CPU_DOWN_FAILED:
4681		set_cpu_active((long)hcpu, true);
4682		return NOTIFY_OK;
4683	default:
4684		return NOTIFY_DONE;
4685	}
4686}
4687
4688static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4689					unsigned long action, void *hcpu)
4690{
4691	switch (action & ~CPU_TASKS_FROZEN) {
4692	case CPU_DOWN_PREPARE:
4693		set_cpu_active((long)hcpu, false);
4694		return NOTIFY_OK;
4695	default:
4696		return NOTIFY_DONE;
4697	}
4698}
4699
4700static int __init migration_init(void)
4701{
4702	void *cpu = (void *)(long)smp_processor_id();
4703	int err;
4704
4705	/* Initialize migration for the boot CPU */
4706	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4707	BUG_ON(err == NOTIFY_BAD);
4708	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4709	register_cpu_notifier(&migration_notifier);
4710
4711	/* Register cpu active notifiers */
4712	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4713	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4714
4715	return 0;
4716}
4717early_initcall(migration_init);
4718#endif
4719
4720#ifdef CONFIG_SMP
4721
4722static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4723
4724#ifdef CONFIG_SCHED_DEBUG
4725
4726static __read_mostly int sched_debug_enabled;
4727
4728static int __init sched_debug_setup(char *str)
4729{
4730	sched_debug_enabled = 1;
4731
4732	return 0;
4733}
4734early_param("sched_debug", sched_debug_setup);
4735
4736static inline bool sched_debug(void)
4737{
4738	return sched_debug_enabled;
4739}
4740
4741static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4742				  struct cpumask *groupmask)
4743{
4744	struct sched_group *group = sd->groups;
4745	char str[256];
4746
4747	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4748	cpumask_clear(groupmask);
4749
4750	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4751
4752	if (!(sd->flags & SD_LOAD_BALANCE)) {
4753		printk("does not load-balance\n");
4754		if (sd->parent)
4755			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4756					" has parent");
4757		return -1;
4758	}
4759
4760	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4761
4762	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4763		printk(KERN_ERR "ERROR: domain->span does not contain "
4764				"CPU%d\n", cpu);
4765	}
4766	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4767		printk(KERN_ERR "ERROR: domain->groups does not contain"
4768				" CPU%d\n", cpu);
4769	}
4770
4771	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4772	do {
4773		if (!group) {
4774			printk("\n");
4775			printk(KERN_ERR "ERROR: group is NULL\n");
4776			break;
4777		}
4778
4779		/*
4780		 * Even though we initialize ->power to something semi-sane,
4781		 * we leave power_orig unset. This allows us to detect if
4782		 * domain iteration is still funny without causing /0 traps.
4783		 */
4784		if (!group->sgp->power_orig) {
4785			printk(KERN_CONT "\n");
4786			printk(KERN_ERR "ERROR: domain->cpu_power not "
4787					"set\n");
4788			break;
4789		}
4790
4791		if (!cpumask_weight(sched_group_cpus(group))) {
4792			printk(KERN_CONT "\n");
4793			printk(KERN_ERR "ERROR: empty group\n");
4794			break;
4795		}
4796
4797		if (!(sd->flags & SD_OVERLAP) &&
4798		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4799			printk(KERN_CONT "\n");
4800			printk(KERN_ERR "ERROR: repeated CPUs\n");
4801			break;
4802		}
4803
4804		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4805
4806		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4807
4808		printk(KERN_CONT " %s", str);
4809		if (group->sgp->power != SCHED_POWER_SCALE) {
4810			printk(KERN_CONT " (cpu_power = %d)",
4811				group->sgp->power);
4812		}
4813
4814		group = group->next;
4815	} while (group != sd->groups);
4816	printk(KERN_CONT "\n");
4817
4818	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4819		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4820
4821	if (sd->parent &&
4822	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4823		printk(KERN_ERR "ERROR: parent span is not a superset "
4824			"of domain->span\n");
4825	return 0;
4826}
4827
4828static void sched_domain_debug(struct sched_domain *sd, int cpu)
4829{
4830	int level = 0;
4831
4832	if (!sched_debug_enabled)
4833		return;
4834
4835	if (!sd) {
4836		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4837		return;
4838	}
4839
4840	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4841
4842	for (;;) {
4843		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4844			break;
4845		level++;
4846		sd = sd->parent;
4847		if (!sd)
4848			break;
4849	}
4850}
4851#else /* !CONFIG_SCHED_DEBUG */
4852# define sched_domain_debug(sd, cpu) do { } while (0)
4853static inline bool sched_debug(void)
4854{
4855	return false;
4856}
4857#endif /* CONFIG_SCHED_DEBUG */
4858
4859static int sd_degenerate(struct sched_domain *sd)
4860{
4861	if (cpumask_weight(sched_domain_span(sd)) == 1)
4862		return 1;
4863
4864	/* Following flags need at least 2 groups */
4865	if (sd->flags & (SD_LOAD_BALANCE |
4866			 SD_BALANCE_NEWIDLE |
4867			 SD_BALANCE_FORK |
4868			 SD_BALANCE_EXEC |
4869			 SD_SHARE_CPUPOWER |
4870			 SD_SHARE_PKG_RESOURCES)) {
4871		if (sd->groups != sd->groups->next)
4872			return 0;
4873	}
4874
4875	/* Following flags don't use groups */
4876	if (sd->flags & (SD_WAKE_AFFINE))
4877		return 0;
4878
4879	return 1;
4880}
4881
4882static int
4883sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4884{
4885	unsigned long cflags = sd->flags, pflags = parent->flags;
4886
4887	if (sd_degenerate(parent))
4888		return 1;
4889
4890	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4891		return 0;
4892
4893	/* Flags needing groups don't count if only 1 group in parent */
4894	if (parent->groups == parent->groups->next) {
4895		pflags &= ~(SD_LOAD_BALANCE |
4896				SD_BALANCE_NEWIDLE |
4897				SD_BALANCE_FORK |
4898				SD_BALANCE_EXEC |
4899				SD_SHARE_CPUPOWER |
4900				SD_SHARE_PKG_RESOURCES);
4901		if (nr_node_ids == 1)
4902			pflags &= ~SD_SERIALIZE;
4903	}
4904	if (~cflags & pflags)
4905		return 0;
4906
4907	return 1;
4908}
4909
4910static void free_rootdomain(struct rcu_head *rcu)
4911{
4912	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4913
4914	cpupri_cleanup(&rd->cpupri);
4915	free_cpumask_var(rd->rto_mask);
4916	free_cpumask_var(rd->online);
4917	free_cpumask_var(rd->span);
4918	kfree(rd);
4919}
4920
4921static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4922{
4923	struct root_domain *old_rd = NULL;
4924	unsigned long flags;
4925
4926	raw_spin_lock_irqsave(&rq->lock, flags);
4927
4928	if (rq->rd) {
4929		old_rd = rq->rd;
4930
4931		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4932			set_rq_offline(rq);
4933
4934		cpumask_clear_cpu(rq->cpu, old_rd->span);
4935
4936		/*
4937		 * If we dont want to free the old_rt yet then
4938		 * set old_rd to NULL to skip the freeing later
4939		 * in this function:
4940		 */
4941		if (!atomic_dec_and_test(&old_rd->refcount))
4942			old_rd = NULL;
4943	}
4944
4945	atomic_inc(&rd->refcount);
4946	rq->rd = rd;
4947
4948	cpumask_set_cpu(rq->cpu, rd->span);
4949	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4950		set_rq_online(rq);
4951
4952	raw_spin_unlock_irqrestore(&rq->lock, flags);
4953
4954	if (old_rd)
4955		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4956}
4957
4958static int init_rootdomain(struct root_domain *rd)
4959{
4960	memset(rd, 0, sizeof(*rd));
4961
4962	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4963		goto out;
4964	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4965		goto free_span;
4966	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4967		goto free_online;
4968
4969	if (cpupri_init(&rd->cpupri) != 0)
4970		goto free_rto_mask;
4971	return 0;
4972
4973free_rto_mask:
4974	free_cpumask_var(rd->rto_mask);
4975free_online:
4976	free_cpumask_var(rd->online);
4977free_span:
4978	free_cpumask_var(rd->span);
4979out:
4980	return -ENOMEM;
4981}
4982
4983/*
4984 * By default the system creates a single root-domain with all cpus as
4985 * members (mimicking the global state we have today).
4986 */
4987struct root_domain def_root_domain;
4988
4989static void init_defrootdomain(void)
4990{
4991	init_rootdomain(&def_root_domain);
4992
4993	atomic_set(&def_root_domain.refcount, 1);
4994}
4995
4996static struct root_domain *alloc_rootdomain(void)
4997{
4998	struct root_domain *rd;
4999
5000	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5001	if (!rd)
5002		return NULL;
5003
5004	if (init_rootdomain(rd) != 0) {
5005		kfree(rd);
5006		return NULL;
5007	}
5008
5009	return rd;
5010}
5011
5012static void free_sched_groups(struct sched_group *sg, int free_sgp)
5013{
5014	struct sched_group *tmp, *first;
5015
5016	if (!sg)
5017		return;
5018
5019	first = sg;
5020	do {
5021		tmp = sg->next;
5022
5023		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5024			kfree(sg->sgp);
5025
5026		kfree(sg);
5027		sg = tmp;
5028	} while (sg != first);
5029}
5030
5031static void free_sched_domain(struct rcu_head *rcu)
5032{
5033	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5034
5035	/*
5036	 * If its an overlapping domain it has private groups, iterate and
5037	 * nuke them all.
5038	 */
5039	if (sd->flags & SD_OVERLAP) {
5040		free_sched_groups(sd->groups, 1);
5041	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5042		kfree(sd->groups->sgp);
5043		kfree(sd->groups);
5044	}
5045	kfree(sd);
5046}
5047
5048static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5049{
5050	call_rcu(&sd->rcu, free_sched_domain);
5051}
5052
5053static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5054{
5055	for (; sd; sd = sd->parent)
5056		destroy_sched_domain(sd, cpu);
5057}
5058
5059/*
5060 * Keep a special pointer to the highest sched_domain that has
5061 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5062 * allows us to avoid some pointer chasing select_idle_sibling().
5063 *
5064 * Also keep a unique ID per domain (we use the first cpu number in
5065 * the cpumask of the domain), this allows us to quickly tell if
5066 * two cpus are in the same cache domain, see cpus_share_cache().
5067 */
5068DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5069DEFINE_PER_CPU(int, sd_llc_id);
5070
5071static void update_top_cache_domain(int cpu)
5072{
5073	struct sched_domain *sd;
5074	int id = cpu;
5075
5076	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5077	if (sd)
5078		id = cpumask_first(sched_domain_span(sd));
5079
5080	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5081	per_cpu(sd_llc_id, cpu) = id;
5082}
5083
5084/*
5085 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5086 * hold the hotplug lock.
5087 */
5088static void
5089cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5090{
5091	struct rq *rq = cpu_rq(cpu);
5092	struct sched_domain *tmp;
5093
5094	/* Remove the sched domains which do not contribute to scheduling. */
5095	for (tmp = sd; tmp; ) {
5096		struct sched_domain *parent = tmp->parent;
5097		if (!parent)
5098			break;
5099
5100		if (sd_parent_degenerate(tmp, parent)) {
5101			tmp->parent = parent->parent;
5102			if (parent->parent)
5103				parent->parent->child = tmp;
5104			destroy_sched_domain(parent, cpu);
5105		} else
5106			tmp = tmp->parent;
5107	}
5108
5109	if (sd && sd_degenerate(sd)) {
5110		tmp = sd;
5111		sd = sd->parent;
5112		destroy_sched_domain(tmp, cpu);
5113		if (sd)
5114			sd->child = NULL;
5115	}
5116
5117	sched_domain_debug(sd, cpu);
5118
5119	rq_attach_root(rq, rd);
5120	tmp = rq->sd;
5121	rcu_assign_pointer(rq->sd, sd);
5122	destroy_sched_domains(tmp, cpu);
5123
5124	update_top_cache_domain(cpu);
5125}
5126
5127/* cpus with isolated domains */
5128static cpumask_var_t cpu_isolated_map;
5129
5130/* Setup the mask of cpus configured for isolated domains */
5131static int __init isolated_cpu_setup(char *str)
5132{
5133	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5134	cpulist_parse(str, cpu_isolated_map);
5135	return 1;
5136}
5137
5138__setup("isolcpus=", isolated_cpu_setup);
5139
5140static const struct cpumask *cpu_cpu_mask(int cpu)
5141{
5142	return cpumask_of_node(cpu_to_node(cpu));
5143}
5144
5145struct sd_data {
5146	struct sched_domain **__percpu sd;
5147	struct sched_group **__percpu sg;
5148	struct sched_group_power **__percpu sgp;
5149};
5150
5151struct s_data {
5152	struct sched_domain ** __percpu sd;
5153	struct root_domain	*rd;
5154};
5155
5156enum s_alloc {
5157	sa_rootdomain,
5158	sa_sd,
5159	sa_sd_storage,
5160	sa_none,
5161};
5162
5163struct sched_domain_topology_level;
5164
5165typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5166typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5167
5168#define SDTL_OVERLAP	0x01
5169
5170struct sched_domain_topology_level {
5171	sched_domain_init_f init;
5172	sched_domain_mask_f mask;
5173	int		    flags;
5174	int		    numa_level;
5175	struct sd_data      data;
5176};
5177
5178/*
5179 * Build an iteration mask that can exclude certain CPUs from the upwards
5180 * domain traversal.
5181 *
5182 * Asymmetric node setups can result in situations where the domain tree is of
5183 * unequal depth, make sure to skip domains that already cover the entire
5184 * range.
5185 *
5186 * In that case build_sched_domains() will have terminated the iteration early
5187 * and our sibling sd spans will be empty. Domains should always include the
5188 * cpu they're built on, so check that.
5189 *
5190 */
5191static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5192{
5193	const struct cpumask *span = sched_domain_span(sd);
5194	struct sd_data *sdd = sd->private;
5195	struct sched_domain *sibling;
5196	int i;
5197
5198	for_each_cpu(i, span) {
5199		sibling = *per_cpu_ptr(sdd->sd, i);
5200		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5201			continue;
5202
5203		cpumask_set_cpu(i, sched_group_mask(sg));
5204	}
5205}
5206
5207/*
5208 * Return the canonical balance cpu for this group, this is the first cpu
5209 * of this group that's also in the iteration mask.
5210 */
5211int group_balance_cpu(struct sched_group *sg)
5212{
5213	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5214}
5215
5216static int
5217build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5218{
5219	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5220	const struct cpumask *span = sched_domain_span(sd);
5221	struct cpumask *covered = sched_domains_tmpmask;
5222	struct sd_data *sdd = sd->private;
5223	struct sched_domain *child;
5224	int i;
5225
5226	cpumask_clear(covered);
5227
5228	for_each_cpu(i, span) {
5229		struct cpumask *sg_span;
5230
5231		if (cpumask_test_cpu(i, covered))
5232			continue;
5233
5234		child = *per_cpu_ptr(sdd->sd, i);
5235
5236		/* See the comment near build_group_mask(). */
5237		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5238			continue;
5239
5240		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5241				GFP_KERNEL, cpu_to_node(cpu));
5242
5243		if (!sg)
5244			goto fail;
5245
5246		sg_span = sched_group_cpus(sg);
5247		if (child->child) {
5248			child = child->child;
5249			cpumask_copy(sg_span, sched_domain_span(child));
5250		} else
5251			cpumask_set_cpu(i, sg_span);
5252
5253		cpumask_or(covered, covered, sg_span);
5254
5255		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5256		if (atomic_inc_return(&sg->sgp->ref) == 1)
5257			build_group_mask(sd, sg);
5258
5259		/*
5260		 * Initialize sgp->power such that even if we mess up the
5261		 * domains and no possible iteration will get us here, we won't
5262		 * die on a /0 trap.
5263		 */
5264		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5265
5266		/*
5267		 * Make sure the first group of this domain contains the
5268		 * canonical balance cpu. Otherwise the sched_domain iteration
5269		 * breaks. See update_sg_lb_stats().
5270		 */
5271		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5272		    group_balance_cpu(sg) == cpu)
5273			groups = sg;
5274
5275		if (!first)
5276			first = sg;
5277		if (last)
5278			last->next = sg;
5279		last = sg;
5280		last->next = first;
5281	}
5282	sd->groups = groups;
5283
5284	return 0;
5285
5286fail:
5287	free_sched_groups(first, 0);
5288
5289	return -ENOMEM;
5290}
5291
5292static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5293{
5294	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5295	struct sched_domain *child = sd->child;
5296
5297	if (child)
5298		cpu = cpumask_first(sched_domain_span(child));
5299
5300	if (sg) {
5301		*sg = *per_cpu_ptr(sdd->sg, cpu);
5302		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5303		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5304	}
5305
5306	return cpu;
5307}
5308
5309/*
5310 * build_sched_groups will build a circular linked list of the groups
5311 * covered by the given span, and will set each group's ->cpumask correctly,
5312 * and ->cpu_power to 0.
5313 *
5314 * Assumes the sched_domain tree is fully constructed
5315 */
5316static int
5317build_sched_groups(struct sched_domain *sd, int cpu)
5318{
5319	struct sched_group *first = NULL, *last = NULL;
5320	struct sd_data *sdd = sd->private;
5321	const struct cpumask *span = sched_domain_span(sd);
5322	struct cpumask *covered;
5323	int i;
5324
5325	get_group(cpu, sdd, &sd->groups);
5326	atomic_inc(&sd->groups->ref);
5327
5328	if (cpu != cpumask_first(sched_domain_span(sd)))
5329		return 0;
5330
5331	lockdep_assert_held(&sched_domains_mutex);
5332	covered = sched_domains_tmpmask;
5333
5334	cpumask_clear(covered);
5335
5336	for_each_cpu(i, span) {
5337		struct sched_group *sg;
5338		int group = get_group(i, sdd, &sg);
5339		int j;
5340
5341		if (cpumask_test_cpu(i, covered))
5342			continue;
5343
5344		cpumask_clear(sched_group_cpus(sg));
5345		sg->sgp->power = 0;
5346		cpumask_setall(sched_group_mask(sg));
5347
5348		for_each_cpu(j, span) {
5349			if (get_group(j, sdd, NULL) != group)
5350				continue;
5351
5352			cpumask_set_cpu(j, covered);
5353			cpumask_set_cpu(j, sched_group_cpus(sg));
5354		}
5355
5356		if (!first)
5357			first = sg;
5358		if (last)
5359			last->next = sg;
5360		last = sg;
5361	}
5362	last->next = first;
5363
5364	return 0;
5365}
5366
5367/*
5368 * Initialize sched groups cpu_power.
5369 *
5370 * cpu_power indicates the capacity of sched group, which is used while
5371 * distributing the load between different sched groups in a sched domain.
5372 * Typically cpu_power for all the groups in a sched domain will be same unless
5373 * there are asymmetries in the topology. If there are asymmetries, group
5374 * having more cpu_power will pickup more load compared to the group having
5375 * less cpu_power.
5376 */
5377static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5378{
5379	struct sched_group *sg = sd->groups;
5380
5381	WARN_ON(!sd || !sg);
5382
5383	do {
5384		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5385		sg = sg->next;
5386	} while (sg != sd->groups);
5387
5388	if (cpu != group_balance_cpu(sg))
5389		return;
5390
5391	update_group_power(sd, cpu);
5392	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5393}
5394
5395int __weak arch_sd_sibling_asym_packing(void)
5396{
5397       return 0*SD_ASYM_PACKING;
5398}
5399
5400/*
5401 * Initializers for schedule domains
5402 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5403 */
5404
5405#ifdef CONFIG_SCHED_DEBUG
5406# define SD_INIT_NAME(sd, type)		sd->name = #type
5407#else
5408# define SD_INIT_NAME(sd, type)		do { } while (0)
5409#endif
5410
5411#define SD_INIT_FUNC(type)						\
5412static noinline struct sched_domain *					\
5413sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5414{									\
5415	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5416	*sd = SD_##type##_INIT;						\
5417	SD_INIT_NAME(sd, type);						\
5418	sd->private = &tl->data;					\
5419	return sd;							\
5420}
5421
5422SD_INIT_FUNC(CPU)
5423#ifdef CONFIG_SCHED_SMT
5424 SD_INIT_FUNC(SIBLING)
5425#endif
5426#ifdef CONFIG_SCHED_MC
5427 SD_INIT_FUNC(MC)
5428#endif
5429#ifdef CONFIG_SCHED_BOOK
5430 SD_INIT_FUNC(BOOK)
5431#endif
5432
5433static int default_relax_domain_level = -1;
5434int sched_domain_level_max;
5435
5436static int __init setup_relax_domain_level(char *str)
5437{
5438	if (kstrtoint(str, 0, &default_relax_domain_level))
5439		pr_warn("Unable to set relax_domain_level\n");
5440
5441	return 1;
5442}
5443__setup("relax_domain_level=", setup_relax_domain_level);
5444
5445static void set_domain_attribute(struct sched_domain *sd,
5446				 struct sched_domain_attr *attr)
5447{
5448	int request;
5449
5450	if (!attr || attr->relax_domain_level < 0) {
5451		if (default_relax_domain_level < 0)
5452			return;
5453		else
5454			request = default_relax_domain_level;
5455	} else
5456		request = attr->relax_domain_level;
5457	if (request < sd->level) {
5458		/* turn off idle balance on this domain */
5459		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5460	} else {
5461		/* turn on idle balance on this domain */
5462		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5463	}
5464}
5465
5466static void __sdt_free(const struct cpumask *cpu_map);
5467static int __sdt_alloc(const struct cpumask *cpu_map);
5468
5469static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5470				 const struct cpumask *cpu_map)
5471{
5472	switch (what) {
5473	case sa_rootdomain:
5474		if (!atomic_read(&d->rd->refcount))
5475			free_rootdomain(&d->rd->rcu); /* fall through */
5476	case sa_sd:
5477		free_percpu(d->sd); /* fall through */
5478	case sa_sd_storage:
5479		__sdt_free(cpu_map); /* fall through */
5480	case sa_none:
5481		break;
5482	}
5483}
5484
5485static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5486						   const struct cpumask *cpu_map)
5487{
5488	memset(d, 0, sizeof(*d));
5489
5490	if (__sdt_alloc(cpu_map))
5491		return sa_sd_storage;
5492	d->sd = alloc_percpu(struct sched_domain *);
5493	if (!d->sd)
5494		return sa_sd_storage;
5495	d->rd = alloc_rootdomain();
5496	if (!d->rd)
5497		return sa_sd;
5498	return sa_rootdomain;
5499}
5500
5501/*
5502 * NULL the sd_data elements we've used to build the sched_domain and
5503 * sched_group structure so that the subsequent __free_domain_allocs()
5504 * will not free the data we're using.
5505 */
5506static void claim_allocations(int cpu, struct sched_domain *sd)
5507{
5508	struct sd_data *sdd = sd->private;
5509
5510	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5511	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5512
5513	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5514		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5515
5516	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5517		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5518}
5519
5520#ifdef CONFIG_SCHED_SMT
5521static const struct cpumask *cpu_smt_mask(int cpu)
5522{
5523	return topology_thread_cpumask(cpu);
5524}
5525#endif
5526
5527/*
5528 * Topology list, bottom-up.
5529 */
5530static struct sched_domain_topology_level default_topology[] = {
5531#ifdef CONFIG_SCHED_SMT
5532	{ sd_init_SIBLING, cpu_smt_mask, },
5533#endif
5534#ifdef CONFIG_SCHED_MC
5535	{ sd_init_MC, cpu_coregroup_mask, },
5536#endif
5537#ifdef CONFIG_SCHED_BOOK
5538	{ sd_init_BOOK, cpu_book_mask, },
5539#endif
5540	{ sd_init_CPU, cpu_cpu_mask, },
5541	{ NULL, },
5542};
5543
5544static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5545
5546#ifdef CONFIG_NUMA
5547
5548static int sched_domains_numa_levels;
5549static int *sched_domains_numa_distance;
5550static struct cpumask ***sched_domains_numa_masks;
5551static int sched_domains_curr_level;
5552
5553static inline int sd_local_flags(int level)
5554{
5555	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5556		return 0;
5557
5558	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5559}
5560
5561static struct sched_domain *
5562sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5563{
5564	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5565	int level = tl->numa_level;
5566	int sd_weight = cpumask_weight(
5567			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5568
5569	*sd = (struct sched_domain){
5570		.min_interval		= sd_weight,
5571		.max_interval		= 2*sd_weight,
5572		.busy_factor		= 32,
5573		.imbalance_pct		= 125,
5574		.cache_nice_tries	= 2,
5575		.busy_idx		= 3,
5576		.idle_idx		= 2,
5577		.newidle_idx		= 0,
5578		.wake_idx		= 0,
5579		.forkexec_idx		= 0,
5580
5581		.flags			= 1*SD_LOAD_BALANCE
5582					| 1*SD_BALANCE_NEWIDLE
5583					| 0*SD_BALANCE_EXEC
5584					| 0*SD_BALANCE_FORK
5585					| 0*SD_BALANCE_WAKE
5586					| 0*SD_WAKE_AFFINE
5587					| 0*SD_SHARE_CPUPOWER
5588					| 0*SD_SHARE_PKG_RESOURCES
5589					| 1*SD_SERIALIZE
5590					| 0*SD_PREFER_SIBLING
5591					| sd_local_flags(level)
5592					,
5593		.last_balance		= jiffies,
5594		.balance_interval	= sd_weight,
5595	};
5596	SD_INIT_NAME(sd, NUMA);
5597	sd->private = &tl->data;
5598
5599	/*
5600	 * Ugly hack to pass state to sd_numa_mask()...
5601	 */
5602	sched_domains_curr_level = tl->numa_level;
5603
5604	return sd;
5605}
5606
5607static const struct cpumask *sd_numa_mask(int cpu)
5608{
5609	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5610}
5611
5612static void sched_numa_warn(const char *str)
5613{
5614	static int done = false;
5615	int i,j;
5616
5617	if (done)
5618		return;
5619
5620	done = true;
5621
5622	printk(KERN_WARNING "ERROR: %s\n\n", str);
5623
5624	for (i = 0; i < nr_node_ids; i++) {
5625		printk(KERN_WARNING "  ");
5626		for (j = 0; j < nr_node_ids; j++)
5627			printk(KERN_CONT "%02d ", node_distance(i,j));
5628		printk(KERN_CONT "\n");
5629	}
5630	printk(KERN_WARNING "\n");
5631}
5632
5633static bool find_numa_distance(int distance)
5634{
5635	int i;
5636
5637	if (distance == node_distance(0, 0))
5638		return true;
5639
5640	for (i = 0; i < sched_domains_numa_levels; i++) {
5641		if (sched_domains_numa_distance[i] == distance)
5642			return true;
5643	}
5644
5645	return false;
5646}
5647
5648static void sched_init_numa(void)
5649{
5650	int next_distance, curr_distance = node_distance(0, 0);
5651	struct sched_domain_topology_level *tl;
5652	int level = 0;
5653	int i, j, k;
5654
5655	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5656	if (!sched_domains_numa_distance)
5657		return;
5658
5659	/*
5660	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5661	 * unique distances in the node_distance() table.
5662	 *
5663	 * Assumes node_distance(0,j) includes all distances in
5664	 * node_distance(i,j) in order to avoid cubic time.
5665	 */
5666	next_distance = curr_distance;
5667	for (i = 0; i < nr_node_ids; i++) {
5668		for (j = 0; j < nr_node_ids; j++) {
5669			for (k = 0; k < nr_node_ids; k++) {
5670				int distance = node_distance(i, k);
5671
5672				if (distance > curr_distance &&
5673				    (distance < next_distance ||
5674				     next_distance == curr_distance))
5675					next_distance = distance;
5676
5677				/*
5678				 * While not a strong assumption it would be nice to know
5679				 * about cases where if node A is connected to B, B is not
5680				 * equally connected to A.
5681				 */
5682				if (sched_debug() && node_distance(k, i) != distance)
5683					sched_numa_warn("Node-distance not symmetric");
5684
5685				if (sched_debug() && i && !find_numa_distance(distance))
5686					sched_numa_warn("Node-0 not representative");
5687			}
5688			if (next_distance != curr_distance) {
5689				sched_domains_numa_distance[level++] = next_distance;
5690				sched_domains_numa_levels = level;
5691				curr_distance = next_distance;
5692			} else break;
5693		}
5694
5695		/*
5696		 * In case of sched_debug() we verify the above assumption.
5697		 */
5698		if (!sched_debug())
5699			break;
5700	}
5701	/*
5702	 * 'level' contains the number of unique distances, excluding the
5703	 * identity distance node_distance(i,i).
5704	 *
5705	 * The sched_domains_numa_distance[] array includes the actual distance
5706	 * numbers.
5707	 */
5708
5709	/*
5710	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5711	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5712	 * the array will contain less then 'level' members. This could be
5713	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5714	 * in other functions.
5715	 *
5716	 * We reset it to 'level' at the end of this function.
5717	 */
5718	sched_domains_numa_levels = 0;
5719
5720	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5721	if (!sched_domains_numa_masks)
5722		return;
5723
5724	/*
5725	 * Now for each level, construct a mask per node which contains all
5726	 * cpus of nodes that are that many hops away from us.
5727	 */
5728	for (i = 0; i < level; i++) {
5729		sched_domains_numa_masks[i] =
5730			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5731		if (!sched_domains_numa_masks[i])
5732			return;
5733
5734		for (j = 0; j < nr_node_ids; j++) {
5735			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5736			if (!mask)
5737				return;
5738
5739			sched_domains_numa_masks[i][j] = mask;
5740
5741			for (k = 0; k < nr_node_ids; k++) {
5742				if (node_distance(j, k) > sched_domains_numa_distance[i])
5743					continue;
5744
5745				cpumask_or(mask, mask, cpumask_of_node(k));
5746			}
5747		}
5748	}
5749
5750	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5751			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5752	if (!tl)
5753		return;
5754
5755	/*
5756	 * Copy the default topology bits..
5757	 */
5758	for (i = 0; default_topology[i].init; i++)
5759		tl[i] = default_topology[i];
5760
5761	/*
5762	 * .. and append 'j' levels of NUMA goodness.
5763	 */
5764	for (j = 0; j < level; i++, j++) {
5765		tl[i] = (struct sched_domain_topology_level){
5766			.init = sd_numa_init,
5767			.mask = sd_numa_mask,
5768			.flags = SDTL_OVERLAP,
5769			.numa_level = j,
5770		};
5771	}
5772
5773	sched_domain_topology = tl;
5774
5775	sched_domains_numa_levels = level;
5776}
5777
5778static void sched_domains_numa_masks_set(int cpu)
5779{
5780	int i, j;
5781	int node = cpu_to_node(cpu);
5782
5783	for (i = 0; i < sched_domains_numa_levels; i++) {
5784		for (j = 0; j < nr_node_ids; j++) {
5785			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5786				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5787		}
5788	}
5789}
5790
5791static void sched_domains_numa_masks_clear(int cpu)
5792{
5793	int i, j;
5794	for (i = 0; i < sched_domains_numa_levels; i++) {
5795		for (j = 0; j < nr_node_ids; j++)
5796			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5797	}
5798}
5799
5800/*
5801 * Update sched_domains_numa_masks[level][node] array when new cpus
5802 * are onlined.
5803 */
5804static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5805					   unsigned long action,
5806					   void *hcpu)
5807{
5808	int cpu = (long)hcpu;
5809
5810	switch (action & ~CPU_TASKS_FROZEN) {
5811	case CPU_ONLINE:
5812		sched_domains_numa_masks_set(cpu);
5813		break;
5814
5815	case CPU_DEAD:
5816		sched_domains_numa_masks_clear(cpu);
5817		break;
5818
5819	default:
5820		return NOTIFY_DONE;
5821	}
5822
5823	return NOTIFY_OK;
5824}
5825#else
5826static inline void sched_init_numa(void)
5827{
5828}
5829
5830static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5831					   unsigned long action,
5832					   void *hcpu)
5833{
5834	return 0;
5835}
5836#endif /* CONFIG_NUMA */
5837
5838static int __sdt_alloc(const struct cpumask *cpu_map)
5839{
5840	struct sched_domain_topology_level *tl;
5841	int j;
5842
5843	for (tl = sched_domain_topology; tl->init; tl++) {
5844		struct sd_data *sdd = &tl->data;
5845
5846		sdd->sd = alloc_percpu(struct sched_domain *);
5847		if (!sdd->sd)
5848			return -ENOMEM;
5849
5850		sdd->sg = alloc_percpu(struct sched_group *);
5851		if (!sdd->sg)
5852			return -ENOMEM;
5853
5854		sdd->sgp = alloc_percpu(struct sched_group_power *);
5855		if (!sdd->sgp)
5856			return -ENOMEM;
5857
5858		for_each_cpu(j, cpu_map) {
5859			struct sched_domain *sd;
5860			struct sched_group *sg;
5861			struct sched_group_power *sgp;
5862
5863		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5864					GFP_KERNEL, cpu_to_node(j));
5865			if (!sd)
5866				return -ENOMEM;
5867
5868			*per_cpu_ptr(sdd->sd, j) = sd;
5869
5870			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5871					GFP_KERNEL, cpu_to_node(j));
5872			if (!sg)
5873				return -ENOMEM;
5874
5875			sg->next = sg;
5876
5877			*per_cpu_ptr(sdd->sg, j) = sg;
5878
5879			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5880					GFP_KERNEL, cpu_to_node(j));
5881			if (!sgp)
5882				return -ENOMEM;
5883
5884			*per_cpu_ptr(sdd->sgp, j) = sgp;
5885		}
5886	}
5887
5888	return 0;
5889}
5890
5891static void __sdt_free(const struct cpumask *cpu_map)
5892{
5893	struct sched_domain_topology_level *tl;
5894	int j;
5895
5896	for (tl = sched_domain_topology; tl->init; tl++) {
5897		struct sd_data *sdd = &tl->data;
5898
5899		for_each_cpu(j, cpu_map) {
5900			struct sched_domain *sd;
5901
5902			if (sdd->sd) {
5903				sd = *per_cpu_ptr(sdd->sd, j);
5904				if (sd && (sd->flags & SD_OVERLAP))
5905					free_sched_groups(sd->groups, 0);
5906				kfree(*per_cpu_ptr(sdd->sd, j));
5907			}
5908
5909			if (sdd->sg)
5910				kfree(*per_cpu_ptr(sdd->sg, j));
5911			if (sdd->sgp)
5912				kfree(*per_cpu_ptr(sdd->sgp, j));
5913		}
5914		free_percpu(sdd->sd);
5915		sdd->sd = NULL;
5916		free_percpu(sdd->sg);
5917		sdd->sg = NULL;
5918		free_percpu(sdd->sgp);
5919		sdd->sgp = NULL;
5920	}
5921}
5922
5923struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5924		struct s_data *d, const struct cpumask *cpu_map,
5925		struct sched_domain_attr *attr, struct sched_domain *child,
5926		int cpu)
5927{
5928	struct sched_domain *sd = tl->init(tl, cpu);
5929	if (!sd)
5930		return child;
5931
5932	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5933	if (child) {
5934		sd->level = child->level + 1;
5935		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5936		child->parent = sd;
5937	}
5938	sd->child = child;
5939	set_domain_attribute(sd, attr);
5940
5941	return sd;
5942}
5943
5944/*
5945 * Build sched domains for a given set of cpus and attach the sched domains
5946 * to the individual cpus
5947 */
5948static int build_sched_domains(const struct cpumask *cpu_map,
5949			       struct sched_domain_attr *attr)
5950{
5951	enum s_alloc alloc_state = sa_none;
5952	struct sched_domain *sd;
5953	struct s_data d;
5954	int i, ret = -ENOMEM;
5955
5956	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5957	if (alloc_state != sa_rootdomain)
5958		goto error;
5959
5960	/* Set up domains for cpus specified by the cpu_map. */
5961	for_each_cpu(i, cpu_map) {
5962		struct sched_domain_topology_level *tl;
5963
5964		sd = NULL;
5965		for (tl = sched_domain_topology; tl->init; tl++) {
5966			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
5967			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5968				sd->flags |= SD_OVERLAP;
5969			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5970				break;
5971		}
5972
5973		while (sd->child)
5974			sd = sd->child;
5975
5976		*per_cpu_ptr(d.sd, i) = sd;
5977	}
5978
5979	/* Build the groups for the domains */
5980	for_each_cpu(i, cpu_map) {
5981		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5982			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5983			if (sd->flags & SD_OVERLAP) {
5984				if (build_overlap_sched_groups(sd, i))
5985					goto error;
5986			} else {
5987				if (build_sched_groups(sd, i))
5988					goto error;
5989			}
5990		}
5991	}
5992
5993	/* Calculate CPU power for physical packages and nodes */
5994	for (i = nr_cpumask_bits-1; i >= 0; i--) {
5995		if (!cpumask_test_cpu(i, cpu_map))
5996			continue;
5997
5998		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5999			claim_allocations(i, sd);
6000			init_sched_groups_power(i, sd);
6001		}
6002	}
6003
6004	/* Attach the domains */
6005	rcu_read_lock();
6006	for_each_cpu(i, cpu_map) {
6007		sd = *per_cpu_ptr(d.sd, i);
6008		cpu_attach_domain(sd, d.rd, i);
6009	}
6010	rcu_read_unlock();
6011
6012	ret = 0;
6013error:
6014	__free_domain_allocs(&d, alloc_state, cpu_map);
6015	return ret;
6016}
6017
6018static cpumask_var_t *doms_cur;	/* current sched domains */
6019static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6020static struct sched_domain_attr *dattr_cur;
6021				/* attribues of custom domains in 'doms_cur' */
6022
6023/*
6024 * Special case: If a kmalloc of a doms_cur partition (array of
6025 * cpumask) fails, then fallback to a single sched domain,
6026 * as determined by the single cpumask fallback_doms.
6027 */
6028static cpumask_var_t fallback_doms;
6029
6030/*
6031 * arch_update_cpu_topology lets virtualized architectures update the
6032 * cpu core maps. It is supposed to return 1 if the topology changed
6033 * or 0 if it stayed the same.
6034 */
6035int __attribute__((weak)) arch_update_cpu_topology(void)
6036{
6037	return 0;
6038}
6039
6040cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6041{
6042	int i;
6043	cpumask_var_t *doms;
6044
6045	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6046	if (!doms)
6047		return NULL;
6048	for (i = 0; i < ndoms; i++) {
6049		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6050			free_sched_domains(doms, i);
6051			return NULL;
6052		}
6053	}
6054	return doms;
6055}
6056
6057void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6058{
6059	unsigned int i;
6060	for (i = 0; i < ndoms; i++)
6061		free_cpumask_var(doms[i]);
6062	kfree(doms);
6063}
6064
6065/*
6066 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6067 * For now this just excludes isolated cpus, but could be used to
6068 * exclude other special cases in the future.
6069 */
6070static int init_sched_domains(const struct cpumask *cpu_map)
6071{
6072	int err;
6073
6074	arch_update_cpu_topology();
6075	ndoms_cur = 1;
6076	doms_cur = alloc_sched_domains(ndoms_cur);
6077	if (!doms_cur)
6078		doms_cur = &fallback_doms;
6079	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6080	err = build_sched_domains(doms_cur[0], NULL);
6081	register_sched_domain_sysctl();
6082
6083	return err;
6084}
6085
6086/*
6087 * Detach sched domains from a group of cpus specified in cpu_map
6088 * These cpus will now be attached to the NULL domain
6089 */
6090static void detach_destroy_domains(const struct cpumask *cpu_map)
6091{
6092	int i;
6093
6094	rcu_read_lock();
6095	for_each_cpu(i, cpu_map)
6096		cpu_attach_domain(NULL, &def_root_domain, i);
6097	rcu_read_unlock();
6098}
6099
6100/* handle null as "default" */
6101static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6102			struct sched_domain_attr *new, int idx_new)
6103{
6104	struct sched_domain_attr tmp;
6105
6106	/* fast path */
6107	if (!new && !cur)
6108		return 1;
6109
6110	tmp = SD_ATTR_INIT;
6111	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6112			new ? (new + idx_new) : &tmp,
6113			sizeof(struct sched_domain_attr));
6114}
6115
6116/*
6117 * Partition sched domains as specified by the 'ndoms_new'
6118 * cpumasks in the array doms_new[] of cpumasks. This compares
6119 * doms_new[] to the current sched domain partitioning, doms_cur[].
6120 * It destroys each deleted domain and builds each new domain.
6121 *
6122 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6123 * The masks don't intersect (don't overlap.) We should setup one
6124 * sched domain for each mask. CPUs not in any of the cpumasks will
6125 * not be load balanced. If the same cpumask appears both in the
6126 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6127 * it as it is.
6128 *
6129 * The passed in 'doms_new' should be allocated using
6130 * alloc_sched_domains.  This routine takes ownership of it and will
6131 * free_sched_domains it when done with it. If the caller failed the
6132 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6133 * and partition_sched_domains() will fallback to the single partition
6134 * 'fallback_doms', it also forces the domains to be rebuilt.
6135 *
6136 * If doms_new == NULL it will be replaced with cpu_online_mask.
6137 * ndoms_new == 0 is a special case for destroying existing domains,
6138 * and it will not create the default domain.
6139 *
6140 * Call with hotplug lock held
6141 */
6142void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6143			     struct sched_domain_attr *dattr_new)
6144{
6145	int i, j, n;
6146	int new_topology;
6147
6148	mutex_lock(&sched_domains_mutex);
6149
6150	/* always unregister in case we don't destroy any domains */
6151	unregister_sched_domain_sysctl();
6152
6153	/* Let architecture update cpu core mappings. */
6154	new_topology = arch_update_cpu_topology();
6155
6156	n = doms_new ? ndoms_new : 0;
6157
6158	/* Destroy deleted domains */
6159	for (i = 0; i < ndoms_cur; i++) {
6160		for (j = 0; j < n && !new_topology; j++) {
6161			if (cpumask_equal(doms_cur[i], doms_new[j])
6162			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6163				goto match1;
6164		}
6165		/* no match - a current sched domain not in new doms_new[] */
6166		detach_destroy_domains(doms_cur[i]);
6167match1:
6168		;
6169	}
6170
6171	if (doms_new == NULL) {
6172		ndoms_cur = 0;
6173		doms_new = &fallback_doms;
6174		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6175		WARN_ON_ONCE(dattr_new);
6176	}
6177
6178	/* Build new domains */
6179	for (i = 0; i < ndoms_new; i++) {
6180		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6181			if (cpumask_equal(doms_new[i], doms_cur[j])
6182			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6183				goto match2;
6184		}
6185		/* no match - add a new doms_new */
6186		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6187match2:
6188		;
6189	}
6190
6191	/* Remember the new sched domains */
6192	if (doms_cur != &fallback_doms)
6193		free_sched_domains(doms_cur, ndoms_cur);
6194	kfree(dattr_cur);	/* kfree(NULL) is safe */
6195	doms_cur = doms_new;
6196	dattr_cur = dattr_new;
6197	ndoms_cur = ndoms_new;
6198
6199	register_sched_domain_sysctl();
6200
6201	mutex_unlock(&sched_domains_mutex);
6202}
6203
6204static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6205
6206/*
6207 * Update cpusets according to cpu_active mask.  If cpusets are
6208 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6209 * around partition_sched_domains().
6210 *
6211 * If we come here as part of a suspend/resume, don't touch cpusets because we
6212 * want to restore it back to its original state upon resume anyway.
6213 */
6214static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6215			     void *hcpu)
6216{
6217	switch (action) {
6218	case CPU_ONLINE_FROZEN:
6219	case CPU_DOWN_FAILED_FROZEN:
6220
6221		/*
6222		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6223		 * resume sequence. As long as this is not the last online
6224		 * operation in the resume sequence, just build a single sched
6225		 * domain, ignoring cpusets.
6226		 */
6227		num_cpus_frozen--;
6228		if (likely(num_cpus_frozen)) {
6229			partition_sched_domains(1, NULL, NULL);
6230			break;
6231		}
6232
6233		/*
6234		 * This is the last CPU online operation. So fall through and
6235		 * restore the original sched domains by considering the
6236		 * cpuset configurations.
6237		 */
6238
6239	case CPU_ONLINE:
6240	case CPU_DOWN_FAILED:
6241		cpuset_update_active_cpus(true);
6242		break;
6243	default:
6244		return NOTIFY_DONE;
6245	}
6246	return NOTIFY_OK;
6247}
6248
6249static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6250			       void *hcpu)
6251{
6252	switch (action) {
6253	case CPU_DOWN_PREPARE:
6254		cpuset_update_active_cpus(false);
6255		break;
6256	case CPU_DOWN_PREPARE_FROZEN:
6257		num_cpus_frozen++;
6258		partition_sched_domains(1, NULL, NULL);
6259		break;
6260	default:
6261		return NOTIFY_DONE;
6262	}
6263	return NOTIFY_OK;
6264}
6265
6266void __init sched_init_smp(void)
6267{
6268	cpumask_var_t non_isolated_cpus;
6269
6270	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6271	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6272
6273	sched_init_numa();
6274
6275	get_online_cpus();
6276	mutex_lock(&sched_domains_mutex);
6277	init_sched_domains(cpu_active_mask);
6278	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6279	if (cpumask_empty(non_isolated_cpus))
6280		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6281	mutex_unlock(&sched_domains_mutex);
6282	put_online_cpus();
6283
6284	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6285	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6286	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6287
6288	/* RT runtime code needs to handle some hotplug events */
6289	hotcpu_notifier(update_runtime, 0);
6290
6291	init_hrtick();
6292
6293	/* Move init over to a non-isolated CPU */
6294	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6295		BUG();
6296	sched_init_granularity();
6297	free_cpumask_var(non_isolated_cpus);
6298
6299	init_sched_rt_class();
6300}
6301#else
6302void __init sched_init_smp(void)
6303{
6304	sched_init_granularity();
6305}
6306#endif /* CONFIG_SMP */
6307
6308const_debug unsigned int sysctl_timer_migration = 1;
6309
6310int in_sched_functions(unsigned long addr)
6311{
6312	return in_lock_functions(addr) ||
6313		(addr >= (unsigned long)__sched_text_start
6314		&& addr < (unsigned long)__sched_text_end);
6315}
6316
6317#ifdef CONFIG_CGROUP_SCHED
6318/*
6319 * Default task group.
6320 * Every task in system belongs to this group at bootup.
6321 */
6322struct task_group root_task_group;
6323LIST_HEAD(task_groups);
6324#endif
6325
6326DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6327
6328void __init sched_init(void)
6329{
6330	int i, j;
6331	unsigned long alloc_size = 0, ptr;
6332
6333#ifdef CONFIG_FAIR_GROUP_SCHED
6334	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6335#endif
6336#ifdef CONFIG_RT_GROUP_SCHED
6337	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6338#endif
6339#ifdef CONFIG_CPUMASK_OFFSTACK
6340	alloc_size += num_possible_cpus() * cpumask_size();
6341#endif
6342	if (alloc_size) {
6343		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6344
6345#ifdef CONFIG_FAIR_GROUP_SCHED
6346		root_task_group.se = (struct sched_entity **)ptr;
6347		ptr += nr_cpu_ids * sizeof(void **);
6348
6349		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6350		ptr += nr_cpu_ids * sizeof(void **);
6351
6352#endif /* CONFIG_FAIR_GROUP_SCHED */
6353#ifdef CONFIG_RT_GROUP_SCHED
6354		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6355		ptr += nr_cpu_ids * sizeof(void **);
6356
6357		root_task_group.rt_rq = (struct rt_rq **)ptr;
6358		ptr += nr_cpu_ids * sizeof(void **);
6359
6360#endif /* CONFIG_RT_GROUP_SCHED */
6361#ifdef CONFIG_CPUMASK_OFFSTACK
6362		for_each_possible_cpu(i) {
6363			per_cpu(load_balance_mask, i) = (void *)ptr;
6364			ptr += cpumask_size();
6365		}
6366#endif /* CONFIG_CPUMASK_OFFSTACK */
6367	}
6368
6369#ifdef CONFIG_SMP
6370	init_defrootdomain();
6371#endif
6372
6373	init_rt_bandwidth(&def_rt_bandwidth,
6374			global_rt_period(), global_rt_runtime());
6375
6376#ifdef CONFIG_RT_GROUP_SCHED
6377	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6378			global_rt_period(), global_rt_runtime());
6379#endif /* CONFIG_RT_GROUP_SCHED */
6380
6381#ifdef CONFIG_CGROUP_SCHED
6382	list_add(&root_task_group.list, &task_groups);
6383	INIT_LIST_HEAD(&root_task_group.children);
6384	INIT_LIST_HEAD(&root_task_group.siblings);
6385	autogroup_init(&init_task);
6386
6387#endif /* CONFIG_CGROUP_SCHED */
6388
6389	for_each_possible_cpu(i) {
6390		struct rq *rq;
6391
6392		rq = cpu_rq(i);
6393		raw_spin_lock_init(&rq->lock);
6394		rq->nr_running = 0;
6395		rq->calc_load_active = 0;
6396		rq->calc_load_update = jiffies + LOAD_FREQ;
6397		init_cfs_rq(&rq->cfs);
6398		init_rt_rq(&rq->rt, rq);
6399#ifdef CONFIG_FAIR_GROUP_SCHED
6400		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6401		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6402		/*
6403		 * How much cpu bandwidth does root_task_group get?
6404		 *
6405		 * In case of task-groups formed thr' the cgroup filesystem, it
6406		 * gets 100% of the cpu resources in the system. This overall
6407		 * system cpu resource is divided among the tasks of
6408		 * root_task_group and its child task-groups in a fair manner,
6409		 * based on each entity's (task or task-group's) weight
6410		 * (se->load.weight).
6411		 *
6412		 * In other words, if root_task_group has 10 tasks of weight
6413		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6414		 * then A0's share of the cpu resource is:
6415		 *
6416		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6417		 *
6418		 * We achieve this by letting root_task_group's tasks sit
6419		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6420		 */
6421		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6422		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6423#endif /* CONFIG_FAIR_GROUP_SCHED */
6424
6425		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6426#ifdef CONFIG_RT_GROUP_SCHED
6427		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6428		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6429#endif
6430
6431		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6432			rq->cpu_load[j] = 0;
6433
6434		rq->last_load_update_tick = jiffies;
6435
6436#ifdef CONFIG_SMP
6437		rq->sd = NULL;
6438		rq->rd = NULL;
6439		rq->cpu_power = SCHED_POWER_SCALE;
6440		rq->post_schedule = 0;
6441		rq->active_balance = 0;
6442		rq->next_balance = jiffies;
6443		rq->push_cpu = 0;
6444		rq->cpu = i;
6445		rq->online = 0;
6446		rq->idle_stamp = 0;
6447		rq->avg_idle = 2*sysctl_sched_migration_cost;
6448
6449		INIT_LIST_HEAD(&rq->cfs_tasks);
6450
6451		rq_attach_root(rq, &def_root_domain);
6452#ifdef CONFIG_NO_HZ_COMMON
6453		rq->nohz_flags = 0;
6454#endif
6455#ifdef CONFIG_NO_HZ_FULL
6456		rq->last_sched_tick = 0;
6457#endif
6458#endif
6459		init_rq_hrtick(rq);
6460		atomic_set(&rq->nr_iowait, 0);
6461	}
6462
6463	set_load_weight(&init_task);
6464
6465#ifdef CONFIG_PREEMPT_NOTIFIERS
6466	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6467#endif
6468
6469#ifdef CONFIG_RT_MUTEXES
6470	plist_head_init(&init_task.pi_waiters);
6471#endif
6472
6473	/*
6474	 * The boot idle thread does lazy MMU switching as well:
6475	 */
6476	atomic_inc(&init_mm.mm_count);
6477	enter_lazy_tlb(&init_mm, current);
6478
6479	/*
6480	 * Make us the idle thread. Technically, schedule() should not be
6481	 * called from this thread, however somewhere below it might be,
6482	 * but because we are the idle thread, we just pick up running again
6483	 * when this runqueue becomes "idle".
6484	 */
6485	init_idle(current, smp_processor_id());
6486
6487	calc_load_update = jiffies + LOAD_FREQ;
6488
6489	/*
6490	 * During early bootup we pretend to be a normal task:
6491	 */
6492	current->sched_class = &fair_sched_class;
6493
6494#ifdef CONFIG_SMP
6495	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6496	/* May be allocated at isolcpus cmdline parse time */
6497	if (cpu_isolated_map == NULL)
6498		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6499	idle_thread_set_boot_cpu();
6500#endif
6501	init_sched_fair_class();
6502
6503	scheduler_running = 1;
6504}
6505
6506#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6507static inline int preempt_count_equals(int preempt_offset)
6508{
6509	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6510
6511	return (nested == preempt_offset);
6512}
6513
6514void __might_sleep(const char *file, int line, int preempt_offset)
6515{
6516	static unsigned long prev_jiffy;	/* ratelimiting */
6517
6518	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6519	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6520	    system_state != SYSTEM_RUNNING || oops_in_progress)
6521		return;
6522	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6523		return;
6524	prev_jiffy = jiffies;
6525
6526	printk(KERN_ERR
6527		"BUG: sleeping function called from invalid context at %s:%d\n",
6528			file, line);
6529	printk(KERN_ERR
6530		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6531			in_atomic(), irqs_disabled(),
6532			current->pid, current->comm);
6533
6534	debug_show_held_locks(current);
6535	if (irqs_disabled())
6536		print_irqtrace_events(current);
6537	dump_stack();
6538}
6539EXPORT_SYMBOL(__might_sleep);
6540#endif
6541
6542#ifdef CONFIG_MAGIC_SYSRQ
6543static void normalize_task(struct rq *rq, struct task_struct *p)
6544{
6545	const struct sched_class *prev_class = p->sched_class;
6546	int old_prio = p->prio;
6547	int on_rq;
6548
6549	on_rq = p->on_rq;
6550	if (on_rq)
6551		dequeue_task(rq, p, 0);
6552	__setscheduler(rq, p, SCHED_NORMAL, 0);
6553	if (on_rq) {
6554		enqueue_task(rq, p, 0);
6555		resched_task(rq->curr);
6556	}
6557
6558	check_class_changed(rq, p, prev_class, old_prio);
6559}
6560
6561void normalize_rt_tasks(void)
6562{
6563	struct task_struct *g, *p;
6564	unsigned long flags;
6565	struct rq *rq;
6566
6567	read_lock_irqsave(&tasklist_lock, flags);
6568	do_each_thread(g, p) {
6569		/*
6570		 * Only normalize user tasks:
6571		 */
6572		if (!p->mm)
6573			continue;
6574
6575		p->se.exec_start		= 0;
6576#ifdef CONFIG_SCHEDSTATS
6577		p->se.statistics.wait_start	= 0;
6578		p->se.statistics.sleep_start	= 0;
6579		p->se.statistics.block_start	= 0;
6580#endif
6581
6582		if (!rt_task(p)) {
6583			/*
6584			 * Renice negative nice level userspace
6585			 * tasks back to 0:
6586			 */
6587			if (TASK_NICE(p) < 0 && p->mm)
6588				set_user_nice(p, 0);
6589			continue;
6590		}
6591
6592		raw_spin_lock(&p->pi_lock);
6593		rq = __task_rq_lock(p);
6594
6595		normalize_task(rq, p);
6596
6597		__task_rq_unlock(rq);
6598		raw_spin_unlock(&p->pi_lock);
6599	} while_each_thread(g, p);
6600
6601	read_unlock_irqrestore(&tasklist_lock, flags);
6602}
6603
6604#endif /* CONFIG_MAGIC_SYSRQ */
6605
6606#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6607/*
6608 * These functions are only useful for the IA64 MCA handling, or kdb.
6609 *
6610 * They can only be called when the whole system has been
6611 * stopped - every CPU needs to be quiescent, and no scheduling
6612 * activity can take place. Using them for anything else would
6613 * be a serious bug, and as a result, they aren't even visible
6614 * under any other configuration.
6615 */
6616
6617/**
6618 * curr_task - return the current task for a given cpu.
6619 * @cpu: the processor in question.
6620 *
6621 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6622 */
6623struct task_struct *curr_task(int cpu)
6624{
6625	return cpu_curr(cpu);
6626}
6627
6628#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6629
6630#ifdef CONFIG_IA64
6631/**
6632 * set_curr_task - set the current task for a given cpu.
6633 * @cpu: the processor in question.
6634 * @p: the task pointer to set.
6635 *
6636 * Description: This function must only be used when non-maskable interrupts
6637 * are serviced on a separate stack. It allows the architecture to switch the
6638 * notion of the current task on a cpu in a non-blocking manner. This function
6639 * must be called with all CPU's synchronized, and interrupts disabled, the
6640 * and caller must save the original value of the current task (see
6641 * curr_task() above) and restore that value before reenabling interrupts and
6642 * re-starting the system.
6643 *
6644 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6645 */
6646void set_curr_task(int cpu, struct task_struct *p)
6647{
6648	cpu_curr(cpu) = p;
6649}
6650
6651#endif
6652
6653#ifdef CONFIG_CGROUP_SCHED
6654/* task_group_lock serializes the addition/removal of task groups */
6655static DEFINE_SPINLOCK(task_group_lock);
6656
6657static void free_sched_group(struct task_group *tg)
6658{
6659	free_fair_sched_group(tg);
6660	free_rt_sched_group(tg);
6661	autogroup_free(tg);
6662	kfree(tg);
6663}
6664
6665/* allocate runqueue etc for a new task group */
6666struct task_group *sched_create_group(struct task_group *parent)
6667{
6668	struct task_group *tg;
6669
6670	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6671	if (!tg)
6672		return ERR_PTR(-ENOMEM);
6673
6674	if (!alloc_fair_sched_group(tg, parent))
6675		goto err;
6676
6677	if (!alloc_rt_sched_group(tg, parent))
6678		goto err;
6679
6680	return tg;
6681
6682err:
6683	free_sched_group(tg);
6684	return ERR_PTR(-ENOMEM);
6685}
6686
6687void sched_online_group(struct task_group *tg, struct task_group *parent)
6688{
6689	unsigned long flags;
6690
6691	spin_lock_irqsave(&task_group_lock, flags);
6692	list_add_rcu(&tg->list, &task_groups);
6693
6694	WARN_ON(!parent); /* root should already exist */
6695
6696	tg->parent = parent;
6697	INIT_LIST_HEAD(&tg->children);
6698	list_add_rcu(&tg->siblings, &parent->children);
6699	spin_unlock_irqrestore(&task_group_lock, flags);
6700}
6701
6702/* rcu callback to free various structures associated with a task group */
6703static void free_sched_group_rcu(struct rcu_head *rhp)
6704{
6705	/* now it should be safe to free those cfs_rqs */
6706	free_sched_group(container_of(rhp, struct task_group, rcu));
6707}
6708
6709/* Destroy runqueue etc associated with a task group */
6710void sched_destroy_group(struct task_group *tg)
6711{
6712	/* wait for possible concurrent references to cfs_rqs complete */
6713	call_rcu(&tg->rcu, free_sched_group_rcu);
6714}
6715
6716void sched_offline_group(struct task_group *tg)
6717{
6718	unsigned long flags;
6719	int i;
6720
6721	/* end participation in shares distribution */
6722	for_each_possible_cpu(i)
6723		unregister_fair_sched_group(tg, i);
6724
6725	spin_lock_irqsave(&task_group_lock, flags);
6726	list_del_rcu(&tg->list);
6727	list_del_rcu(&tg->siblings);
6728	spin_unlock_irqrestore(&task_group_lock, flags);
6729}
6730
6731/* change task's runqueue when it moves between groups.
6732 *	The caller of this function should have put the task in its new group
6733 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6734 *	reflect its new group.
6735 */
6736void sched_move_task(struct task_struct *tsk)
6737{
6738	struct task_group *tg;
6739	int on_rq, running;
6740	unsigned long flags;
6741	struct rq *rq;
6742
6743	rq = task_rq_lock(tsk, &flags);
6744
6745	running = task_current(rq, tsk);
6746	on_rq = tsk->on_rq;
6747
6748	if (on_rq)
6749		dequeue_task(rq, tsk, 0);
6750	if (unlikely(running))
6751		tsk->sched_class->put_prev_task(rq, tsk);
6752
6753	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6754				lockdep_is_held(&tsk->sighand->siglock)),
6755			  struct task_group, css);
6756	tg = autogroup_task_group(tsk, tg);
6757	tsk->sched_task_group = tg;
6758
6759#ifdef CONFIG_FAIR_GROUP_SCHED
6760	if (tsk->sched_class->task_move_group)
6761		tsk->sched_class->task_move_group(tsk, on_rq);
6762	else
6763#endif
6764		set_task_rq(tsk, task_cpu(tsk));
6765
6766	if (unlikely(running))
6767		tsk->sched_class->set_curr_task(rq);
6768	if (on_rq)
6769		enqueue_task(rq, tsk, 0);
6770
6771	task_rq_unlock(rq, tsk, &flags);
6772}
6773#endif /* CONFIG_CGROUP_SCHED */
6774
6775#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6776static unsigned long to_ratio(u64 period, u64 runtime)
6777{
6778	if (runtime == RUNTIME_INF)
6779		return 1ULL << 20;
6780
6781	return div64_u64(runtime << 20, period);
6782}
6783#endif
6784
6785#ifdef CONFIG_RT_GROUP_SCHED
6786/*
6787 * Ensure that the real time constraints are schedulable.
6788 */
6789static DEFINE_MUTEX(rt_constraints_mutex);
6790
6791/* Must be called with tasklist_lock held */
6792static inline int tg_has_rt_tasks(struct task_group *tg)
6793{
6794	struct task_struct *g, *p;
6795
6796	do_each_thread(g, p) {
6797		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6798			return 1;
6799	} while_each_thread(g, p);
6800
6801	return 0;
6802}
6803
6804struct rt_schedulable_data {
6805	struct task_group *tg;
6806	u64 rt_period;
6807	u64 rt_runtime;
6808};
6809
6810static int tg_rt_schedulable(struct task_group *tg, void *data)
6811{
6812	struct rt_schedulable_data *d = data;
6813	struct task_group *child;
6814	unsigned long total, sum = 0;
6815	u64 period, runtime;
6816
6817	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6818	runtime = tg->rt_bandwidth.rt_runtime;
6819
6820	if (tg == d->tg) {
6821		period = d->rt_period;
6822		runtime = d->rt_runtime;
6823	}
6824
6825	/*
6826	 * Cannot have more runtime than the period.
6827	 */
6828	if (runtime > period && runtime != RUNTIME_INF)
6829		return -EINVAL;
6830
6831	/*
6832	 * Ensure we don't starve existing RT tasks.
6833	 */
6834	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6835		return -EBUSY;
6836
6837	total = to_ratio(period, runtime);
6838
6839	/*
6840	 * Nobody can have more than the global setting allows.
6841	 */
6842	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6843		return -EINVAL;
6844
6845	/*
6846	 * The sum of our children's runtime should not exceed our own.
6847	 */
6848	list_for_each_entry_rcu(child, &tg->children, siblings) {
6849		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6850		runtime = child->rt_bandwidth.rt_runtime;
6851
6852		if (child == d->tg) {
6853			period = d->rt_period;
6854			runtime = d->rt_runtime;
6855		}
6856
6857		sum += to_ratio(period, runtime);
6858	}
6859
6860	if (sum > total)
6861		return -EINVAL;
6862
6863	return 0;
6864}
6865
6866static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6867{
6868	int ret;
6869
6870	struct rt_schedulable_data data = {
6871		.tg = tg,
6872		.rt_period = period,
6873		.rt_runtime = runtime,
6874	};
6875
6876	rcu_read_lock();
6877	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6878	rcu_read_unlock();
6879
6880	return ret;
6881}
6882
6883static int tg_set_rt_bandwidth(struct task_group *tg,
6884		u64 rt_period, u64 rt_runtime)
6885{
6886	int i, err = 0;
6887
6888	mutex_lock(&rt_constraints_mutex);
6889	read_lock(&tasklist_lock);
6890	err = __rt_schedulable(tg, rt_period, rt_runtime);
6891	if (err)
6892		goto unlock;
6893
6894	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6895	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6896	tg->rt_bandwidth.rt_runtime = rt_runtime;
6897
6898	for_each_possible_cpu(i) {
6899		struct rt_rq *rt_rq = tg->rt_rq[i];
6900
6901		raw_spin_lock(&rt_rq->rt_runtime_lock);
6902		rt_rq->rt_runtime = rt_runtime;
6903		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6904	}
6905	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6906unlock:
6907	read_unlock(&tasklist_lock);
6908	mutex_unlock(&rt_constraints_mutex);
6909
6910	return err;
6911}
6912
6913static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6914{
6915	u64 rt_runtime, rt_period;
6916
6917	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6918	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6919	if (rt_runtime_us < 0)
6920		rt_runtime = RUNTIME_INF;
6921
6922	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6923}
6924
6925static long sched_group_rt_runtime(struct task_group *tg)
6926{
6927	u64 rt_runtime_us;
6928
6929	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6930		return -1;
6931
6932	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6933	do_div(rt_runtime_us, NSEC_PER_USEC);
6934	return rt_runtime_us;
6935}
6936
6937static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6938{
6939	u64 rt_runtime, rt_period;
6940
6941	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6942	rt_runtime = tg->rt_bandwidth.rt_runtime;
6943
6944	if (rt_period == 0)
6945		return -EINVAL;
6946
6947	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6948}
6949
6950static long sched_group_rt_period(struct task_group *tg)
6951{
6952	u64 rt_period_us;
6953
6954	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6955	do_div(rt_period_us, NSEC_PER_USEC);
6956	return rt_period_us;
6957}
6958
6959static int sched_rt_global_constraints(void)
6960{
6961	u64 runtime, period;
6962	int ret = 0;
6963
6964	if (sysctl_sched_rt_period <= 0)
6965		return -EINVAL;
6966
6967	runtime = global_rt_runtime();
6968	period = global_rt_period();
6969
6970	/*
6971	 * Sanity check on the sysctl variables.
6972	 */
6973	if (runtime > period && runtime != RUNTIME_INF)
6974		return -EINVAL;
6975
6976	mutex_lock(&rt_constraints_mutex);
6977	read_lock(&tasklist_lock);
6978	ret = __rt_schedulable(NULL, 0, 0);
6979	read_unlock(&tasklist_lock);
6980	mutex_unlock(&rt_constraints_mutex);
6981
6982	return ret;
6983}
6984
6985static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6986{
6987	/* Don't accept realtime tasks when there is no way for them to run */
6988	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6989		return 0;
6990
6991	return 1;
6992}
6993
6994#else /* !CONFIG_RT_GROUP_SCHED */
6995static int sched_rt_global_constraints(void)
6996{
6997	unsigned long flags;
6998	int i;
6999
7000	if (sysctl_sched_rt_period <= 0)
7001		return -EINVAL;
7002
7003	/*
7004	 * There's always some RT tasks in the root group
7005	 * -- migration, kstopmachine etc..
7006	 */
7007	if (sysctl_sched_rt_runtime == 0)
7008		return -EBUSY;
7009
7010	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7011	for_each_possible_cpu(i) {
7012		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7013
7014		raw_spin_lock(&rt_rq->rt_runtime_lock);
7015		rt_rq->rt_runtime = global_rt_runtime();
7016		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7017	}
7018	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7019
7020	return 0;
7021}
7022#endif /* CONFIG_RT_GROUP_SCHED */
7023
7024int sched_rr_handler(struct ctl_table *table, int write,
7025		void __user *buffer, size_t *lenp,
7026		loff_t *ppos)
7027{
7028	int ret;
7029	static DEFINE_MUTEX(mutex);
7030
7031	mutex_lock(&mutex);
7032	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7033	/* make sure that internally we keep jiffies */
7034	/* also, writing zero resets timeslice to default */
7035	if (!ret && write) {
7036		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7037			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7038	}
7039	mutex_unlock(&mutex);
7040	return ret;
7041}
7042
7043int sched_rt_handler(struct ctl_table *table, int write,
7044		void __user *buffer, size_t *lenp,
7045		loff_t *ppos)
7046{
7047	int ret;
7048	int old_period, old_runtime;
7049	static DEFINE_MUTEX(mutex);
7050
7051	mutex_lock(&mutex);
7052	old_period = sysctl_sched_rt_period;
7053	old_runtime = sysctl_sched_rt_runtime;
7054
7055	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7056
7057	if (!ret && write) {
7058		ret = sched_rt_global_constraints();
7059		if (ret) {
7060			sysctl_sched_rt_period = old_period;
7061			sysctl_sched_rt_runtime = old_runtime;
7062		} else {
7063			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7064			def_rt_bandwidth.rt_period =
7065				ns_to_ktime(global_rt_period());
7066		}
7067	}
7068	mutex_unlock(&mutex);
7069
7070	return ret;
7071}
7072
7073#ifdef CONFIG_CGROUP_SCHED
7074
7075/* return corresponding task_group object of a cgroup */
7076static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7077{
7078	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7079			    struct task_group, css);
7080}
7081
7082static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7083{
7084	struct task_group *tg, *parent;
7085
7086	if (!cgrp->parent) {
7087		/* This is early initialization for the top cgroup */
7088		return &root_task_group.css;
7089	}
7090
7091	parent = cgroup_tg(cgrp->parent);
7092	tg = sched_create_group(parent);
7093	if (IS_ERR(tg))
7094		return ERR_PTR(-ENOMEM);
7095
7096	return &tg->css;
7097}
7098
7099static int cpu_cgroup_css_online(struct cgroup *cgrp)
7100{
7101	struct task_group *tg = cgroup_tg(cgrp);
7102	struct task_group *parent;
7103
7104	if (!cgrp->parent)
7105		return 0;
7106
7107	parent = cgroup_tg(cgrp->parent);
7108	sched_online_group(tg, parent);
7109	return 0;
7110}
7111
7112static void cpu_cgroup_css_free(struct cgroup *cgrp)
7113{
7114	struct task_group *tg = cgroup_tg(cgrp);
7115
7116	sched_destroy_group(tg);
7117}
7118
7119static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7120{
7121	struct task_group *tg = cgroup_tg(cgrp);
7122
7123	sched_offline_group(tg);
7124}
7125
7126static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7127				 struct cgroup_taskset *tset)
7128{
7129	struct task_struct *task;
7130
7131	cgroup_taskset_for_each(task, cgrp, tset) {
7132#ifdef CONFIG_RT_GROUP_SCHED
7133		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7134			return -EINVAL;
7135#else
7136		/* We don't support RT-tasks being in separate groups */
7137		if (task->sched_class != &fair_sched_class)
7138			return -EINVAL;
7139#endif
7140	}
7141	return 0;
7142}
7143
7144static void cpu_cgroup_attach(struct cgroup *cgrp,
7145			      struct cgroup_taskset *tset)
7146{
7147	struct task_struct *task;
7148
7149	cgroup_taskset_for_each(task, cgrp, tset)
7150		sched_move_task(task);
7151}
7152
7153static void
7154cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7155		struct task_struct *task)
7156{
7157	/*
7158	 * cgroup_exit() is called in the copy_process() failure path.
7159	 * Ignore this case since the task hasn't ran yet, this avoids
7160	 * trying to poke a half freed task state from generic code.
7161	 */
7162	if (!(task->flags & PF_EXITING))
7163		return;
7164
7165	sched_move_task(task);
7166}
7167
7168#ifdef CONFIG_FAIR_GROUP_SCHED
7169static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7170				u64 shareval)
7171{
7172	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7173}
7174
7175static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7176{
7177	struct task_group *tg = cgroup_tg(cgrp);
7178
7179	return (u64) scale_load_down(tg->shares);
7180}
7181
7182#ifdef CONFIG_CFS_BANDWIDTH
7183static DEFINE_MUTEX(cfs_constraints_mutex);
7184
7185const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7186const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7187
7188static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7189
7190static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7191{
7192	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7193	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7194
7195	if (tg == &root_task_group)
7196		return -EINVAL;
7197
7198	/*
7199	 * Ensure we have at some amount of bandwidth every period.  This is
7200	 * to prevent reaching a state of large arrears when throttled via
7201	 * entity_tick() resulting in prolonged exit starvation.
7202	 */
7203	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7204		return -EINVAL;
7205
7206	/*
7207	 * Likewise, bound things on the otherside by preventing insane quota
7208	 * periods.  This also allows us to normalize in computing quota
7209	 * feasibility.
7210	 */
7211	if (period > max_cfs_quota_period)
7212		return -EINVAL;
7213
7214	mutex_lock(&cfs_constraints_mutex);
7215	ret = __cfs_schedulable(tg, period, quota);
7216	if (ret)
7217		goto out_unlock;
7218
7219	runtime_enabled = quota != RUNTIME_INF;
7220	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7221	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7222	raw_spin_lock_irq(&cfs_b->lock);
7223	cfs_b->period = ns_to_ktime(period);
7224	cfs_b->quota = quota;
7225
7226	__refill_cfs_bandwidth_runtime(cfs_b);
7227	/* restart the period timer (if active) to handle new period expiry */
7228	if (runtime_enabled && cfs_b->timer_active) {
7229		/* force a reprogram */
7230		cfs_b->timer_active = 0;
7231		__start_cfs_bandwidth(cfs_b);
7232	}
7233	raw_spin_unlock_irq(&cfs_b->lock);
7234
7235	for_each_possible_cpu(i) {
7236		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7237		struct rq *rq = cfs_rq->rq;
7238
7239		raw_spin_lock_irq(&rq->lock);
7240		cfs_rq->runtime_enabled = runtime_enabled;
7241		cfs_rq->runtime_remaining = 0;
7242
7243		if (cfs_rq->throttled)
7244			unthrottle_cfs_rq(cfs_rq);
7245		raw_spin_unlock_irq(&rq->lock);
7246	}
7247out_unlock:
7248	mutex_unlock(&cfs_constraints_mutex);
7249
7250	return ret;
7251}
7252
7253int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7254{
7255	u64 quota, period;
7256
7257	period = ktime_to_ns(tg->cfs_bandwidth.period);
7258	if (cfs_quota_us < 0)
7259		quota = RUNTIME_INF;
7260	else
7261		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7262
7263	return tg_set_cfs_bandwidth(tg, period, quota);
7264}
7265
7266long tg_get_cfs_quota(struct task_group *tg)
7267{
7268	u64 quota_us;
7269
7270	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7271		return -1;
7272
7273	quota_us = tg->cfs_bandwidth.quota;
7274	do_div(quota_us, NSEC_PER_USEC);
7275
7276	return quota_us;
7277}
7278
7279int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7280{
7281	u64 quota, period;
7282
7283	period = (u64)cfs_period_us * NSEC_PER_USEC;
7284	quota = tg->cfs_bandwidth.quota;
7285
7286	return tg_set_cfs_bandwidth(tg, period, quota);
7287}
7288
7289long tg_get_cfs_period(struct task_group *tg)
7290{
7291	u64 cfs_period_us;
7292
7293	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7294	do_div(cfs_period_us, NSEC_PER_USEC);
7295
7296	return cfs_period_us;
7297}
7298
7299static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7300{
7301	return tg_get_cfs_quota(cgroup_tg(cgrp));
7302}
7303
7304static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7305				s64 cfs_quota_us)
7306{
7307	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7308}
7309
7310static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7311{
7312	return tg_get_cfs_period(cgroup_tg(cgrp));
7313}
7314
7315static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7316				u64 cfs_period_us)
7317{
7318	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7319}
7320
7321struct cfs_schedulable_data {
7322	struct task_group *tg;
7323	u64 period, quota;
7324};
7325
7326/*
7327 * normalize group quota/period to be quota/max_period
7328 * note: units are usecs
7329 */
7330static u64 normalize_cfs_quota(struct task_group *tg,
7331			       struct cfs_schedulable_data *d)
7332{
7333	u64 quota, period;
7334
7335	if (tg == d->tg) {
7336		period = d->period;
7337		quota = d->quota;
7338	} else {
7339		period = tg_get_cfs_period(tg);
7340		quota = tg_get_cfs_quota(tg);
7341	}
7342
7343	/* note: these should typically be equivalent */
7344	if (quota == RUNTIME_INF || quota == -1)
7345		return RUNTIME_INF;
7346
7347	return to_ratio(period, quota);
7348}
7349
7350static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7351{
7352	struct cfs_schedulable_data *d = data;
7353	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7354	s64 quota = 0, parent_quota = -1;
7355
7356	if (!tg->parent) {
7357		quota = RUNTIME_INF;
7358	} else {
7359		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7360
7361		quota = normalize_cfs_quota(tg, d);
7362		parent_quota = parent_b->hierarchal_quota;
7363
7364		/*
7365		 * ensure max(child_quota) <= parent_quota, inherit when no
7366		 * limit is set
7367		 */
7368		if (quota == RUNTIME_INF)
7369			quota = parent_quota;
7370		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7371			return -EINVAL;
7372	}
7373	cfs_b->hierarchal_quota = quota;
7374
7375	return 0;
7376}
7377
7378static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7379{
7380	int ret;
7381	struct cfs_schedulable_data data = {
7382		.tg = tg,
7383		.period = period,
7384		.quota = quota,
7385	};
7386
7387	if (quota != RUNTIME_INF) {
7388		do_div(data.period, NSEC_PER_USEC);
7389		do_div(data.quota, NSEC_PER_USEC);
7390	}
7391
7392	rcu_read_lock();
7393	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7394	rcu_read_unlock();
7395
7396	return ret;
7397}
7398
7399static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7400		struct cgroup_map_cb *cb)
7401{
7402	struct task_group *tg = cgroup_tg(cgrp);
7403	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7404
7405	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7406	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7407	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7408
7409	return 0;
7410}
7411#endif /* CONFIG_CFS_BANDWIDTH */
7412#endif /* CONFIG_FAIR_GROUP_SCHED */
7413
7414#ifdef CONFIG_RT_GROUP_SCHED
7415static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7416				s64 val)
7417{
7418	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7419}
7420
7421static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7422{
7423	return sched_group_rt_runtime(cgroup_tg(cgrp));
7424}
7425
7426static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7427		u64 rt_period_us)
7428{
7429	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7430}
7431
7432static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7433{
7434	return sched_group_rt_period(cgroup_tg(cgrp));
7435}
7436#endif /* CONFIG_RT_GROUP_SCHED */
7437
7438static struct cftype cpu_files[] = {
7439#ifdef CONFIG_FAIR_GROUP_SCHED
7440	{
7441		.name = "shares",
7442		.read_u64 = cpu_shares_read_u64,
7443		.write_u64 = cpu_shares_write_u64,
7444	},
7445#endif
7446#ifdef CONFIG_CFS_BANDWIDTH
7447	{
7448		.name = "cfs_quota_us",
7449		.read_s64 = cpu_cfs_quota_read_s64,
7450		.write_s64 = cpu_cfs_quota_write_s64,
7451	},
7452	{
7453		.name = "cfs_period_us",
7454		.read_u64 = cpu_cfs_period_read_u64,
7455		.write_u64 = cpu_cfs_period_write_u64,
7456	},
7457	{
7458		.name = "stat",
7459		.read_map = cpu_stats_show,
7460	},
7461#endif
7462#ifdef CONFIG_RT_GROUP_SCHED
7463	{
7464		.name = "rt_runtime_us",
7465		.read_s64 = cpu_rt_runtime_read,
7466		.write_s64 = cpu_rt_runtime_write,
7467	},
7468	{
7469		.name = "rt_period_us",
7470		.read_u64 = cpu_rt_period_read_uint,
7471		.write_u64 = cpu_rt_period_write_uint,
7472	},
7473#endif
7474	{ }	/* terminate */
7475};
7476
7477struct cgroup_subsys cpu_cgroup_subsys = {
7478	.name		= "cpu",
7479	.css_alloc	= cpu_cgroup_css_alloc,
7480	.css_free	= cpu_cgroup_css_free,
7481	.css_online	= cpu_cgroup_css_online,
7482	.css_offline	= cpu_cgroup_css_offline,
7483	.can_attach	= cpu_cgroup_can_attach,
7484	.attach		= cpu_cgroup_attach,
7485	.exit		= cpu_cgroup_exit,
7486	.subsys_id	= cpu_cgroup_subsys_id,
7487	.base_cftypes	= cpu_files,
7488	.early_init	= 1,
7489};
7490
7491#endif	/* CONFIG_CGROUP_SCHED */
7492
7493void dump_cpu_task(int cpu)
7494{
7495	pr_info("Task dump for CPU %d:\n", cpu);
7496	sched_show_task(cpu_curr(cpu));
7497}
7498