core.c revision 45eacc692771bd2b1ea3d384e6345cab3da10861
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	assert_raw_spin_locked(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id())
528		return;
529
530	/* NEED_RESCHED must be visible before we test polling */
531	smp_mb();
532	if (!tsk_is_polling(p))
533		smp_send_reschedule(cpu);
534}
535
536void resched_cpu(int cpu)
537{
538	struct rq *rq = cpu_rq(cpu);
539	unsigned long flags;
540
541	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542		return;
543	resched_task(cpu_curr(cpu));
544	raw_spin_unlock_irqrestore(&rq->lock, flags);
545}
546
547#ifdef CONFIG_NO_HZ_COMMON
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu.  This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558	int cpu = smp_processor_id();
559	int i;
560	struct sched_domain *sd;
561
562	rcu_read_lock();
563	for_each_domain(cpu, sd) {
564		for_each_cpu(i, sched_domain_span(sd)) {
565			if (!idle_cpu(i)) {
566				cpu = i;
567				goto unlock;
568			}
569		}
570	}
571unlock:
572	rcu_read_unlock();
573	return cpu;
574}
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585static void wake_up_idle_cpu(int cpu)
586{
587	struct rq *rq = cpu_rq(cpu);
588
589	if (cpu == smp_processor_id())
590		return;
591
592	/*
593	 * This is safe, as this function is called with the timer
594	 * wheel base lock of (cpu) held. When the CPU is on the way
595	 * to idle and has not yet set rq->curr to idle then it will
596	 * be serialized on the timer wheel base lock and take the new
597	 * timer into account automatically.
598	 */
599	if (rq->curr != rq->idle)
600		return;
601
602	/*
603	 * We can set TIF_RESCHED on the idle task of the other CPU
604	 * lockless. The worst case is that the other CPU runs the
605	 * idle task through an additional NOOP schedule()
606	 */
607	set_tsk_need_resched(rq->idle);
608
609	/* NEED_RESCHED must be visible before we test polling */
610	smp_mb();
611	if (!tsk_is_polling(rq->idle))
612		smp_send_reschedule(cpu);
613}
614
615static bool wake_up_full_nohz_cpu(int cpu)
616{
617	if (tick_nohz_full_cpu(cpu)) {
618		if (cpu != smp_processor_id() ||
619		    tick_nohz_tick_stopped())
620			smp_send_reschedule(cpu);
621		return true;
622	}
623
624	return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
629	if (!wake_up_full_nohz_cpu(cpu))
630		wake_up_idle_cpu(cpu);
631}
632
633static inline bool got_nohz_idle_kick(void)
634{
635	int cpu = smp_processor_id();
636	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637}
638
639#else /* CONFIG_NO_HZ_COMMON */
640
641static inline bool got_nohz_idle_kick(void)
642{
643	return false;
644}
645
646#endif /* CONFIG_NO_HZ_COMMON */
647
648#ifdef CONFIG_NO_HZ_FULL
649bool sched_can_stop_tick(void)
650{
651       struct rq *rq;
652
653       rq = this_rq();
654
655       /* Make sure rq->nr_running update is visible after the IPI */
656       smp_rmb();
657
658       /* More than one running task need preemption */
659       if (rq->nr_running > 1)
660               return false;
661
662       return true;
663}
664#endif /* CONFIG_NO_HZ_FULL */
665
666void sched_avg_update(struct rq *rq)
667{
668	s64 period = sched_avg_period();
669
670	while ((s64)(rq->clock - rq->age_stamp) > period) {
671		/*
672		 * Inline assembly required to prevent the compiler
673		 * optimising this loop into a divmod call.
674		 * See __iter_div_u64_rem() for another example of this.
675		 */
676		asm("" : "+rm" (rq->age_stamp));
677		rq->age_stamp += period;
678		rq->rt_avg /= 2;
679	}
680}
681
682#else /* !CONFIG_SMP */
683void resched_task(struct task_struct *p)
684{
685	assert_raw_spin_locked(&task_rq(p)->lock);
686	set_tsk_need_resched(p);
687}
688#endif /* CONFIG_SMP */
689
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692/*
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
697 */
698int walk_tg_tree_from(struct task_group *from,
699			     tg_visitor down, tg_visitor up, void *data)
700{
701	struct task_group *parent, *child;
702	int ret;
703
704	parent = from;
705
706down:
707	ret = (*down)(parent, data);
708	if (ret)
709		goto out;
710	list_for_each_entry_rcu(child, &parent->children, siblings) {
711		parent = child;
712		goto down;
713
714up:
715		continue;
716	}
717	ret = (*up)(parent, data);
718	if (ret || parent == from)
719		goto out;
720
721	child = parent;
722	parent = parent->parent;
723	if (parent)
724		goto up;
725out:
726	return ret;
727}
728
729int tg_nop(struct task_group *tg, void *data)
730{
731	return 0;
732}
733#endif
734
735static void set_load_weight(struct task_struct *p)
736{
737	int prio = p->static_prio - MAX_RT_PRIO;
738	struct load_weight *load = &p->se.load;
739
740	/*
741	 * SCHED_IDLE tasks get minimal weight:
742	 */
743	if (p->policy == SCHED_IDLE) {
744		load->weight = scale_load(WEIGHT_IDLEPRIO);
745		load->inv_weight = WMULT_IDLEPRIO;
746		return;
747	}
748
749	load->weight = scale_load(prio_to_weight[prio]);
750	load->inv_weight = prio_to_wmult[prio];
751}
752
753static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754{
755	update_rq_clock(rq);
756	sched_info_queued(p);
757	p->sched_class->enqueue_task(rq, p, flags);
758}
759
760static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761{
762	update_rq_clock(rq);
763	sched_info_dequeued(p);
764	p->sched_class->dequeue_task(rq, p, flags);
765}
766
767void activate_task(struct rq *rq, struct task_struct *p, int flags)
768{
769	if (task_contributes_to_load(p))
770		rq->nr_uninterruptible--;
771
772	enqueue_task(rq, p, flags);
773}
774
775void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible++;
779
780	dequeue_task(rq, p, flags);
781}
782
783static void update_rq_clock_task(struct rq *rq, s64 delta)
784{
785/*
786 * In theory, the compile should just see 0 here, and optimize out the call
787 * to sched_rt_avg_update. But I don't trust it...
788 */
789#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
790	s64 steal = 0, irq_delta = 0;
791#endif
792#ifdef CONFIG_IRQ_TIME_ACCOUNTING
793	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794
795	/*
796	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
797	 * this case when a previous update_rq_clock() happened inside a
798	 * {soft,}irq region.
799	 *
800	 * When this happens, we stop ->clock_task and only update the
801	 * prev_irq_time stamp to account for the part that fit, so that a next
802	 * update will consume the rest. This ensures ->clock_task is
803	 * monotonic.
804	 *
805	 * It does however cause some slight miss-attribution of {soft,}irq
806	 * time, a more accurate solution would be to update the irq_time using
807	 * the current rq->clock timestamp, except that would require using
808	 * atomic ops.
809	 */
810	if (irq_delta > delta)
811		irq_delta = delta;
812
813	rq->prev_irq_time += irq_delta;
814	delta -= irq_delta;
815#endif
816#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817	if (static_key_false((&paravirt_steal_rq_enabled))) {
818		u64 st;
819
820		steal = paravirt_steal_clock(cpu_of(rq));
821		steal -= rq->prev_steal_time_rq;
822
823		if (unlikely(steal > delta))
824			steal = delta;
825
826		st = steal_ticks(steal);
827		steal = st * TICK_NSEC;
828
829		rq->prev_steal_time_rq += steal;
830
831		delta -= steal;
832	}
833#endif
834
835	rq->clock_task += delta;
836
837#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
838	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
839		sched_rt_avg_update(rq, irq_delta + steal);
840#endif
841}
842
843void sched_set_stop_task(int cpu, struct task_struct *stop)
844{
845	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
846	struct task_struct *old_stop = cpu_rq(cpu)->stop;
847
848	if (stop) {
849		/*
850		 * Make it appear like a SCHED_FIFO task, its something
851		 * userspace knows about and won't get confused about.
852		 *
853		 * Also, it will make PI more or less work without too
854		 * much confusion -- but then, stop work should not
855		 * rely on PI working anyway.
856		 */
857		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
858
859		stop->sched_class = &stop_sched_class;
860	}
861
862	cpu_rq(cpu)->stop = stop;
863
864	if (old_stop) {
865		/*
866		 * Reset it back to a normal scheduling class so that
867		 * it can die in pieces.
868		 */
869		old_stop->sched_class = &rt_sched_class;
870	}
871}
872
873/*
874 * __normal_prio - return the priority that is based on the static prio
875 */
876static inline int __normal_prio(struct task_struct *p)
877{
878	return p->static_prio;
879}
880
881/*
882 * Calculate the expected normal priority: i.e. priority
883 * without taking RT-inheritance into account. Might be
884 * boosted by interactivity modifiers. Changes upon fork,
885 * setprio syscalls, and whenever the interactivity
886 * estimator recalculates.
887 */
888static inline int normal_prio(struct task_struct *p)
889{
890	int prio;
891
892	if (task_has_rt_policy(p))
893		prio = MAX_RT_PRIO-1 - p->rt_priority;
894	else
895		prio = __normal_prio(p);
896	return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906static int effective_prio(struct task_struct *p)
907{
908	p->normal_prio = normal_prio(p);
909	/*
910	 * If we are RT tasks or we were boosted to RT priority,
911	 * keep the priority unchanged. Otherwise, update priority
912	 * to the normal priority:
913	 */
914	if (!rt_prio(p->prio))
915		return p->normal_prio;
916	return p->prio;
917}
918
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 */
923inline int task_curr(const struct task_struct *p)
924{
925	return cpu_curr(task_cpu(p)) == p;
926}
927
928static inline void check_class_changed(struct rq *rq, struct task_struct *p,
929				       const struct sched_class *prev_class,
930				       int oldprio)
931{
932	if (prev_class != p->sched_class) {
933		if (prev_class->switched_from)
934			prev_class->switched_from(rq, p);
935		p->sched_class->switched_to(rq, p);
936	} else if (oldprio != p->prio)
937		p->sched_class->prio_changed(rq, p, oldprio);
938}
939
940void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941{
942	const struct sched_class *class;
943
944	if (p->sched_class == rq->curr->sched_class) {
945		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
946	} else {
947		for_each_class(class) {
948			if (class == rq->curr->sched_class)
949				break;
950			if (class == p->sched_class) {
951				resched_task(rq->curr);
952				break;
953			}
954		}
955	}
956
957	/*
958	 * A queue event has occurred, and we're going to schedule.  In
959	 * this case, we can save a useless back to back clock update.
960	 */
961	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962		rq->skip_clock_update = 1;
963}
964
965static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
966
967void register_task_migration_notifier(struct notifier_block *n)
968{
969	atomic_notifier_chain_register(&task_migration_notifier, n);
970}
971
972#ifdef CONFIG_SMP
973void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
974{
975#ifdef CONFIG_SCHED_DEBUG
976	/*
977	 * We should never call set_task_cpu() on a blocked task,
978	 * ttwu() will sort out the placement.
979	 */
980	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
981			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982
983#ifdef CONFIG_LOCKDEP
984	/*
985	 * The caller should hold either p->pi_lock or rq->lock, when changing
986	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
987	 *
988	 * sched_move_task() holds both and thus holding either pins the cgroup,
989	 * see task_group().
990	 *
991	 * Furthermore, all task_rq users should acquire both locks, see
992	 * task_rq_lock().
993	 */
994	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
995				      lockdep_is_held(&task_rq(p)->lock)));
996#endif
997#endif
998
999	trace_sched_migrate_task(p, new_cpu);
1000
1001	if (task_cpu(p) != new_cpu) {
1002		struct task_migration_notifier tmn;
1003
1004		if (p->sched_class->migrate_task_rq)
1005			p->sched_class->migrate_task_rq(p, new_cpu);
1006		p->se.nr_migrations++;
1007		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008
1009		tmn.task = p;
1010		tmn.from_cpu = task_cpu(p);
1011		tmn.to_cpu = new_cpu;
1012
1013		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014	}
1015
1016	__set_task_cpu(p, new_cpu);
1017}
1018
1019struct migration_arg {
1020	struct task_struct *task;
1021	int dest_cpu;
1022};
1023
1024static int migration_cpu_stop(void *data);
1025
1026/*
1027 * wait_task_inactive - wait for a thread to unschedule.
1028 *
1029 * If @match_state is nonzero, it's the @p->state value just checked and
1030 * not expected to change.  If it changes, i.e. @p might have woken up,
1031 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1032 * we return a positive number (its total switch count).  If a second call
1033 * a short while later returns the same number, the caller can be sure that
1034 * @p has remained unscheduled the whole time.
1035 *
1036 * The caller must ensure that the task *will* unschedule sometime soon,
1037 * else this function might spin for a *long* time. This function can't
1038 * be called with interrupts off, or it may introduce deadlock with
1039 * smp_call_function() if an IPI is sent by the same process we are
1040 * waiting to become inactive.
1041 */
1042unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1043{
1044	unsigned long flags;
1045	int running, on_rq;
1046	unsigned long ncsw;
1047	struct rq *rq;
1048
1049	for (;;) {
1050		/*
1051		 * We do the initial early heuristics without holding
1052		 * any task-queue locks at all. We'll only try to get
1053		 * the runqueue lock when things look like they will
1054		 * work out!
1055		 */
1056		rq = task_rq(p);
1057
1058		/*
1059		 * If the task is actively running on another CPU
1060		 * still, just relax and busy-wait without holding
1061		 * any locks.
1062		 *
1063		 * NOTE! Since we don't hold any locks, it's not
1064		 * even sure that "rq" stays as the right runqueue!
1065		 * But we don't care, since "task_running()" will
1066		 * return false if the runqueue has changed and p
1067		 * is actually now running somewhere else!
1068		 */
1069		while (task_running(rq, p)) {
1070			if (match_state && unlikely(p->state != match_state))
1071				return 0;
1072			cpu_relax();
1073		}
1074
1075		/*
1076		 * Ok, time to look more closely! We need the rq
1077		 * lock now, to be *sure*. If we're wrong, we'll
1078		 * just go back and repeat.
1079		 */
1080		rq = task_rq_lock(p, &flags);
1081		trace_sched_wait_task(p);
1082		running = task_running(rq, p);
1083		on_rq = p->on_rq;
1084		ncsw = 0;
1085		if (!match_state || p->state == match_state)
1086			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087		task_rq_unlock(rq, p, &flags);
1088
1089		/*
1090		 * If it changed from the expected state, bail out now.
1091		 */
1092		if (unlikely(!ncsw))
1093			break;
1094
1095		/*
1096		 * Was it really running after all now that we
1097		 * checked with the proper locks actually held?
1098		 *
1099		 * Oops. Go back and try again..
1100		 */
1101		if (unlikely(running)) {
1102			cpu_relax();
1103			continue;
1104		}
1105
1106		/*
1107		 * It's not enough that it's not actively running,
1108		 * it must be off the runqueue _entirely_, and not
1109		 * preempted!
1110		 *
1111		 * So if it was still runnable (but just not actively
1112		 * running right now), it's preempted, and we should
1113		 * yield - it could be a while.
1114		 */
1115		if (unlikely(on_rq)) {
1116			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1117
1118			set_current_state(TASK_UNINTERRUPTIBLE);
1119			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120			continue;
1121		}
1122
1123		/*
1124		 * Ahh, all good. It wasn't running, and it wasn't
1125		 * runnable, which means that it will never become
1126		 * running in the future either. We're all done!
1127		 */
1128		break;
1129	}
1130
1131	return ncsw;
1132}
1133
1134/***
1135 * kick_process - kick a running thread to enter/exit the kernel
1136 * @p: the to-be-kicked thread
1137 *
1138 * Cause a process which is running on another CPU to enter
1139 * kernel-mode, without any delay. (to get signals handled.)
1140 *
1141 * NOTE: this function doesn't have to take the runqueue lock,
1142 * because all it wants to ensure is that the remote task enters
1143 * the kernel. If the IPI races and the task has been migrated
1144 * to another CPU then no harm is done and the purpose has been
1145 * achieved as well.
1146 */
1147void kick_process(struct task_struct *p)
1148{
1149	int cpu;
1150
1151	preempt_disable();
1152	cpu = task_cpu(p);
1153	if ((cpu != smp_processor_id()) && task_curr(p))
1154		smp_send_reschedule(cpu);
1155	preempt_enable();
1156}
1157EXPORT_SYMBOL_GPL(kick_process);
1158#endif /* CONFIG_SMP */
1159
1160#ifdef CONFIG_SMP
1161/*
1162 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163 */
1164static int select_fallback_rq(int cpu, struct task_struct *p)
1165{
1166	int nid = cpu_to_node(cpu);
1167	const struct cpumask *nodemask = NULL;
1168	enum { cpuset, possible, fail } state = cpuset;
1169	int dest_cpu;
1170
1171	/*
1172	 * If the node that the cpu is on has been offlined, cpu_to_node()
1173	 * will return -1. There is no cpu on the node, and we should
1174	 * select the cpu on the other node.
1175	 */
1176	if (nid != -1) {
1177		nodemask = cpumask_of_node(nid);
1178
1179		/* Look for allowed, online CPU in same node. */
1180		for_each_cpu(dest_cpu, nodemask) {
1181			if (!cpu_online(dest_cpu))
1182				continue;
1183			if (!cpu_active(dest_cpu))
1184				continue;
1185			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1186				return dest_cpu;
1187		}
1188	}
1189
1190	for (;;) {
1191		/* Any allowed, online CPU? */
1192		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193			if (!cpu_online(dest_cpu))
1194				continue;
1195			if (!cpu_active(dest_cpu))
1196				continue;
1197			goto out;
1198		}
1199
1200		switch (state) {
1201		case cpuset:
1202			/* No more Mr. Nice Guy. */
1203			cpuset_cpus_allowed_fallback(p);
1204			state = possible;
1205			break;
1206
1207		case possible:
1208			do_set_cpus_allowed(p, cpu_possible_mask);
1209			state = fail;
1210			break;
1211
1212		case fail:
1213			BUG();
1214			break;
1215		}
1216	}
1217
1218out:
1219	if (state != cpuset) {
1220		/*
1221		 * Don't tell them about moving exiting tasks or
1222		 * kernel threads (both mm NULL), since they never
1223		 * leave kernel.
1224		 */
1225		if (p->mm && printk_ratelimit()) {
1226			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1227					task_pid_nr(p), p->comm, cpu);
1228		}
1229	}
1230
1231	return dest_cpu;
1232}
1233
1234/*
1235 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236 */
1237static inline
1238int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239{
1240	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241
1242	/*
1243	 * In order not to call set_task_cpu() on a blocking task we need
1244	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1245	 * cpu.
1246	 *
1247	 * Since this is common to all placement strategies, this lives here.
1248	 *
1249	 * [ this allows ->select_task() to simply return task_cpu(p) and
1250	 *   not worry about this generic constraint ]
1251	 */
1252	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1253		     !cpu_online(cpu)))
1254		cpu = select_fallback_rq(task_cpu(p), p);
1255
1256	return cpu;
1257}
1258
1259static void update_avg(u64 *avg, u64 sample)
1260{
1261	s64 diff = sample - *avg;
1262	*avg += diff >> 3;
1263}
1264#endif
1265
1266static void
1267ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1268{
1269#ifdef CONFIG_SCHEDSTATS
1270	struct rq *rq = this_rq();
1271
1272#ifdef CONFIG_SMP
1273	int this_cpu = smp_processor_id();
1274
1275	if (cpu == this_cpu) {
1276		schedstat_inc(rq, ttwu_local);
1277		schedstat_inc(p, se.statistics.nr_wakeups_local);
1278	} else {
1279		struct sched_domain *sd;
1280
1281		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282		rcu_read_lock();
1283		for_each_domain(this_cpu, sd) {
1284			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1285				schedstat_inc(sd, ttwu_wake_remote);
1286				break;
1287			}
1288		}
1289		rcu_read_unlock();
1290	}
1291
1292	if (wake_flags & WF_MIGRATED)
1293		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1294
1295#endif /* CONFIG_SMP */
1296
1297	schedstat_inc(rq, ttwu_count);
1298	schedstat_inc(p, se.statistics.nr_wakeups);
1299
1300	if (wake_flags & WF_SYNC)
1301		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1302
1303#endif /* CONFIG_SCHEDSTATS */
1304}
1305
1306static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1307{
1308	activate_task(rq, p, en_flags);
1309	p->on_rq = 1;
1310
1311	/* if a worker is waking up, notify workqueue */
1312	if (p->flags & PF_WQ_WORKER)
1313		wq_worker_waking_up(p, cpu_of(rq));
1314}
1315
1316/*
1317 * Mark the task runnable and perform wakeup-preemption.
1318 */
1319static void
1320ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1321{
1322	check_preempt_curr(rq, p, wake_flags);
1323	trace_sched_wakeup(p, true);
1324
1325	p->state = TASK_RUNNING;
1326#ifdef CONFIG_SMP
1327	if (p->sched_class->task_woken)
1328		p->sched_class->task_woken(rq, p);
1329
1330	if (rq->idle_stamp) {
1331		u64 delta = rq->clock - rq->idle_stamp;
1332		u64 max = 2*sysctl_sched_migration_cost;
1333
1334		if (delta > max)
1335			rq->avg_idle = max;
1336		else
1337			update_avg(&rq->avg_idle, delta);
1338		rq->idle_stamp = 0;
1339	}
1340#endif
1341}
1342
1343static void
1344ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1345{
1346#ifdef CONFIG_SMP
1347	if (p->sched_contributes_to_load)
1348		rq->nr_uninterruptible--;
1349#endif
1350
1351	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1352	ttwu_do_wakeup(rq, p, wake_flags);
1353}
1354
1355/*
1356 * Called in case the task @p isn't fully descheduled from its runqueue,
1357 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1358 * since all we need to do is flip p->state to TASK_RUNNING, since
1359 * the task is still ->on_rq.
1360 */
1361static int ttwu_remote(struct task_struct *p, int wake_flags)
1362{
1363	struct rq *rq;
1364	int ret = 0;
1365
1366	rq = __task_rq_lock(p);
1367	if (p->on_rq) {
1368		ttwu_do_wakeup(rq, p, wake_flags);
1369		ret = 1;
1370	}
1371	__task_rq_unlock(rq);
1372
1373	return ret;
1374}
1375
1376#ifdef CONFIG_SMP
1377static void sched_ttwu_pending(void)
1378{
1379	struct rq *rq = this_rq();
1380	struct llist_node *llist = llist_del_all(&rq->wake_list);
1381	struct task_struct *p;
1382
1383	raw_spin_lock(&rq->lock);
1384
1385	while (llist) {
1386		p = llist_entry(llist, struct task_struct, wake_entry);
1387		llist = llist_next(llist);
1388		ttwu_do_activate(rq, p, 0);
1389	}
1390
1391	raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
1396	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
1397	    && !tick_nohz_full_cpu(smp_processor_id()))
1398		return;
1399
1400	/*
1401	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1402	 * traditionally all their work was done from the interrupt return
1403	 * path. Now that we actually do some work, we need to make sure
1404	 * we do call them.
1405	 *
1406	 * Some archs already do call them, luckily irq_enter/exit nest
1407	 * properly.
1408	 *
1409	 * Arguably we should visit all archs and update all handlers,
1410	 * however a fair share of IPIs are still resched only so this would
1411	 * somewhat pessimize the simple resched case.
1412	 */
1413	irq_enter();
1414	tick_nohz_full_check();
1415	sched_ttwu_pending();
1416
1417	/*
1418	 * Check if someone kicked us for doing the nohz idle load balance.
1419	 */
1420	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1421		this_rq()->idle_balance = 1;
1422		raise_softirq_irqoff(SCHED_SOFTIRQ);
1423	}
1424	irq_exit();
1425}
1426
1427static void ttwu_queue_remote(struct task_struct *p, int cpu)
1428{
1429	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1430		smp_send_reschedule(cpu);
1431}
1432
1433bool cpus_share_cache(int this_cpu, int that_cpu)
1434{
1435	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1436}
1437#endif /* CONFIG_SMP */
1438
1439static void ttwu_queue(struct task_struct *p, int cpu)
1440{
1441	struct rq *rq = cpu_rq(cpu);
1442
1443#if defined(CONFIG_SMP)
1444	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1445		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1446		ttwu_queue_remote(p, cpu);
1447		return;
1448	}
1449#endif
1450
1451	raw_spin_lock(&rq->lock);
1452	ttwu_do_activate(rq, p, 0);
1453	raw_spin_unlock(&rq->lock);
1454}
1455
1456/**
1457 * try_to_wake_up - wake up a thread
1458 * @p: the thread to be awakened
1459 * @state: the mask of task states that can be woken
1460 * @wake_flags: wake modifier flags (WF_*)
1461 *
1462 * Put it on the run-queue if it's not already there. The "current"
1463 * thread is always on the run-queue (except when the actual
1464 * re-schedule is in progress), and as such you're allowed to do
1465 * the simpler "current->state = TASK_RUNNING" to mark yourself
1466 * runnable without the overhead of this.
1467 *
1468 * Returns %true if @p was woken up, %false if it was already running
1469 * or @state didn't match @p's state.
1470 */
1471static int
1472try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1473{
1474	unsigned long flags;
1475	int cpu, success = 0;
1476
1477	smp_wmb();
1478	raw_spin_lock_irqsave(&p->pi_lock, flags);
1479	if (!(p->state & state))
1480		goto out;
1481
1482	success = 1; /* we're going to change ->state */
1483	cpu = task_cpu(p);
1484
1485	if (p->on_rq && ttwu_remote(p, wake_flags))
1486		goto stat;
1487
1488#ifdef CONFIG_SMP
1489	/*
1490	 * If the owning (remote) cpu is still in the middle of schedule() with
1491	 * this task as prev, wait until its done referencing the task.
1492	 */
1493	while (p->on_cpu)
1494		cpu_relax();
1495	/*
1496	 * Pairs with the smp_wmb() in finish_lock_switch().
1497	 */
1498	smp_rmb();
1499
1500	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1501	p->state = TASK_WAKING;
1502
1503	if (p->sched_class->task_waking)
1504		p->sched_class->task_waking(p);
1505
1506	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1507	if (task_cpu(p) != cpu) {
1508		wake_flags |= WF_MIGRATED;
1509		set_task_cpu(p, cpu);
1510	}
1511#endif /* CONFIG_SMP */
1512
1513	ttwu_queue(p, cpu);
1514stat:
1515	ttwu_stat(p, cpu, wake_flags);
1516out:
1517	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1518
1519	return success;
1520}
1521
1522/**
1523 * try_to_wake_up_local - try to wake up a local task with rq lock held
1524 * @p: the thread to be awakened
1525 *
1526 * Put @p on the run-queue if it's not already there. The caller must
1527 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1528 * the current task.
1529 */
1530static void try_to_wake_up_local(struct task_struct *p)
1531{
1532	struct rq *rq = task_rq(p);
1533
1534	if (WARN_ON_ONCE(rq != this_rq()) ||
1535	    WARN_ON_ONCE(p == current))
1536		return;
1537
1538	lockdep_assert_held(&rq->lock);
1539
1540	if (!raw_spin_trylock(&p->pi_lock)) {
1541		raw_spin_unlock(&rq->lock);
1542		raw_spin_lock(&p->pi_lock);
1543		raw_spin_lock(&rq->lock);
1544	}
1545
1546	if (!(p->state & TASK_NORMAL))
1547		goto out;
1548
1549	if (!p->on_rq)
1550		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1551
1552	ttwu_do_wakeup(rq, p, 0);
1553	ttwu_stat(p, smp_processor_id(), 0);
1554out:
1555	raw_spin_unlock(&p->pi_lock);
1556}
1557
1558/**
1559 * wake_up_process - Wake up a specific process
1560 * @p: The process to be woken up.
1561 *
1562 * Attempt to wake up the nominated process and move it to the set of runnable
1563 * processes.  Returns 1 if the process was woken up, 0 if it was already
1564 * running.
1565 *
1566 * It may be assumed that this function implies a write memory barrier before
1567 * changing the task state if and only if any tasks are woken up.
1568 */
1569int wake_up_process(struct task_struct *p)
1570{
1571	WARN_ON(task_is_stopped_or_traced(p));
1572	return try_to_wake_up(p, TASK_NORMAL, 0);
1573}
1574EXPORT_SYMBOL(wake_up_process);
1575
1576int wake_up_state(struct task_struct *p, unsigned int state)
1577{
1578	return try_to_wake_up(p, state, 0);
1579}
1580
1581/*
1582 * Perform scheduler related setup for a newly forked process p.
1583 * p is forked by current.
1584 *
1585 * __sched_fork() is basic setup used by init_idle() too:
1586 */
1587static void __sched_fork(struct task_struct *p)
1588{
1589	p->on_rq			= 0;
1590
1591	p->se.on_rq			= 0;
1592	p->se.exec_start		= 0;
1593	p->se.sum_exec_runtime		= 0;
1594	p->se.prev_sum_exec_runtime	= 0;
1595	p->se.nr_migrations		= 0;
1596	p->se.vruntime			= 0;
1597	INIT_LIST_HEAD(&p->se.group_node);
1598
1599/*
1600 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1601 * removed when useful for applications beyond shares distribution (e.g.
1602 * load-balance).
1603 */
1604#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1605	p->se.avg.runnable_avg_period = 0;
1606	p->se.avg.runnable_avg_sum = 0;
1607#endif
1608#ifdef CONFIG_SCHEDSTATS
1609	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1610#endif
1611
1612	INIT_LIST_HEAD(&p->rt.run_list);
1613
1614#ifdef CONFIG_PREEMPT_NOTIFIERS
1615	INIT_HLIST_HEAD(&p->preempt_notifiers);
1616#endif
1617
1618#ifdef CONFIG_NUMA_BALANCING
1619	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1620		p->mm->numa_next_scan = jiffies;
1621		p->mm->numa_next_reset = jiffies;
1622		p->mm->numa_scan_seq = 0;
1623	}
1624
1625	p->node_stamp = 0ULL;
1626	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1627	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1628	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1629	p->numa_work.next = &p->numa_work;
1630#endif /* CONFIG_NUMA_BALANCING */
1631}
1632
1633#ifdef CONFIG_NUMA_BALANCING
1634#ifdef CONFIG_SCHED_DEBUG
1635void set_numabalancing_state(bool enabled)
1636{
1637	if (enabled)
1638		sched_feat_set("NUMA");
1639	else
1640		sched_feat_set("NO_NUMA");
1641}
1642#else
1643__read_mostly bool numabalancing_enabled;
1644
1645void set_numabalancing_state(bool enabled)
1646{
1647	numabalancing_enabled = enabled;
1648}
1649#endif /* CONFIG_SCHED_DEBUG */
1650#endif /* CONFIG_NUMA_BALANCING */
1651
1652/*
1653 * fork()/clone()-time setup:
1654 */
1655void sched_fork(struct task_struct *p)
1656{
1657	unsigned long flags;
1658	int cpu = get_cpu();
1659
1660	__sched_fork(p);
1661	/*
1662	 * We mark the process as running here. This guarantees that
1663	 * nobody will actually run it, and a signal or other external
1664	 * event cannot wake it up and insert it on the runqueue either.
1665	 */
1666	p->state = TASK_RUNNING;
1667
1668	/*
1669	 * Make sure we do not leak PI boosting priority to the child.
1670	 */
1671	p->prio = current->normal_prio;
1672
1673	/*
1674	 * Revert to default priority/policy on fork if requested.
1675	 */
1676	if (unlikely(p->sched_reset_on_fork)) {
1677		if (task_has_rt_policy(p)) {
1678			p->policy = SCHED_NORMAL;
1679			p->static_prio = NICE_TO_PRIO(0);
1680			p->rt_priority = 0;
1681		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1682			p->static_prio = NICE_TO_PRIO(0);
1683
1684		p->prio = p->normal_prio = __normal_prio(p);
1685		set_load_weight(p);
1686
1687		/*
1688		 * We don't need the reset flag anymore after the fork. It has
1689		 * fulfilled its duty:
1690		 */
1691		p->sched_reset_on_fork = 0;
1692	}
1693
1694	if (!rt_prio(p->prio))
1695		p->sched_class = &fair_sched_class;
1696
1697	if (p->sched_class->task_fork)
1698		p->sched_class->task_fork(p);
1699
1700	/*
1701	 * The child is not yet in the pid-hash so no cgroup attach races,
1702	 * and the cgroup is pinned to this child due to cgroup_fork()
1703	 * is ran before sched_fork().
1704	 *
1705	 * Silence PROVE_RCU.
1706	 */
1707	raw_spin_lock_irqsave(&p->pi_lock, flags);
1708	set_task_cpu(p, cpu);
1709	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1710
1711#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1712	if (likely(sched_info_on()))
1713		memset(&p->sched_info, 0, sizeof(p->sched_info));
1714#endif
1715#if defined(CONFIG_SMP)
1716	p->on_cpu = 0;
1717#endif
1718#ifdef CONFIG_PREEMPT_COUNT
1719	/* Want to start with kernel preemption disabled. */
1720	task_thread_info(p)->preempt_count = 1;
1721#endif
1722#ifdef CONFIG_SMP
1723	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1724#endif
1725
1726	put_cpu();
1727}
1728
1729/*
1730 * wake_up_new_task - wake up a newly created task for the first time.
1731 *
1732 * This function will do some initial scheduler statistics housekeeping
1733 * that must be done for every newly created context, then puts the task
1734 * on the runqueue and wakes it.
1735 */
1736void wake_up_new_task(struct task_struct *p)
1737{
1738	unsigned long flags;
1739	struct rq *rq;
1740
1741	raw_spin_lock_irqsave(&p->pi_lock, flags);
1742#ifdef CONFIG_SMP
1743	/*
1744	 * Fork balancing, do it here and not earlier because:
1745	 *  - cpus_allowed can change in the fork path
1746	 *  - any previously selected cpu might disappear through hotplug
1747	 */
1748	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1749#endif
1750
1751	rq = __task_rq_lock(p);
1752	activate_task(rq, p, 0);
1753	p->on_rq = 1;
1754	trace_sched_wakeup_new(p, true);
1755	check_preempt_curr(rq, p, WF_FORK);
1756#ifdef CONFIG_SMP
1757	if (p->sched_class->task_woken)
1758		p->sched_class->task_woken(rq, p);
1759#endif
1760	task_rq_unlock(rq, p, &flags);
1761}
1762
1763#ifdef CONFIG_PREEMPT_NOTIFIERS
1764
1765/**
1766 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1767 * @notifier: notifier struct to register
1768 */
1769void preempt_notifier_register(struct preempt_notifier *notifier)
1770{
1771	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1772}
1773EXPORT_SYMBOL_GPL(preempt_notifier_register);
1774
1775/**
1776 * preempt_notifier_unregister - no longer interested in preemption notifications
1777 * @notifier: notifier struct to unregister
1778 *
1779 * This is safe to call from within a preemption notifier.
1780 */
1781void preempt_notifier_unregister(struct preempt_notifier *notifier)
1782{
1783	hlist_del(&notifier->link);
1784}
1785EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1786
1787static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1788{
1789	struct preempt_notifier *notifier;
1790
1791	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1792		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1793}
1794
1795static void
1796fire_sched_out_preempt_notifiers(struct task_struct *curr,
1797				 struct task_struct *next)
1798{
1799	struct preempt_notifier *notifier;
1800
1801	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1802		notifier->ops->sched_out(notifier, next);
1803}
1804
1805#else /* !CONFIG_PREEMPT_NOTIFIERS */
1806
1807static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1808{
1809}
1810
1811static void
1812fire_sched_out_preempt_notifiers(struct task_struct *curr,
1813				 struct task_struct *next)
1814{
1815}
1816
1817#endif /* CONFIG_PREEMPT_NOTIFIERS */
1818
1819/**
1820 * prepare_task_switch - prepare to switch tasks
1821 * @rq: the runqueue preparing to switch
1822 * @prev: the current task that is being switched out
1823 * @next: the task we are going to switch to.
1824 *
1825 * This is called with the rq lock held and interrupts off. It must
1826 * be paired with a subsequent finish_task_switch after the context
1827 * switch.
1828 *
1829 * prepare_task_switch sets up locking and calls architecture specific
1830 * hooks.
1831 */
1832static inline void
1833prepare_task_switch(struct rq *rq, struct task_struct *prev,
1834		    struct task_struct *next)
1835{
1836	trace_sched_switch(prev, next);
1837	sched_info_switch(prev, next);
1838	perf_event_task_sched_out(prev, next);
1839	fire_sched_out_preempt_notifiers(prev, next);
1840	prepare_lock_switch(rq, next);
1841	prepare_arch_switch(next);
1842}
1843
1844/**
1845 * finish_task_switch - clean up after a task-switch
1846 * @rq: runqueue associated with task-switch
1847 * @prev: the thread we just switched away from.
1848 *
1849 * finish_task_switch must be called after the context switch, paired
1850 * with a prepare_task_switch call before the context switch.
1851 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1852 * and do any other architecture-specific cleanup actions.
1853 *
1854 * Note that we may have delayed dropping an mm in context_switch(). If
1855 * so, we finish that here outside of the runqueue lock. (Doing it
1856 * with the lock held can cause deadlocks; see schedule() for
1857 * details.)
1858 */
1859static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1860	__releases(rq->lock)
1861{
1862	struct mm_struct *mm = rq->prev_mm;
1863	long prev_state;
1864
1865	rq->prev_mm = NULL;
1866
1867	/*
1868	 * A task struct has one reference for the use as "current".
1869	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1870	 * schedule one last time. The schedule call will never return, and
1871	 * the scheduled task must drop that reference.
1872	 * The test for TASK_DEAD must occur while the runqueue locks are
1873	 * still held, otherwise prev could be scheduled on another cpu, die
1874	 * there before we look at prev->state, and then the reference would
1875	 * be dropped twice.
1876	 *		Manfred Spraul <manfred@colorfullife.com>
1877	 */
1878	prev_state = prev->state;
1879	vtime_task_switch(prev);
1880	finish_arch_switch(prev);
1881	perf_event_task_sched_in(prev, current);
1882	finish_lock_switch(rq, prev);
1883	finish_arch_post_lock_switch();
1884
1885	fire_sched_in_preempt_notifiers(current);
1886	if (mm)
1887		mmdrop(mm);
1888	if (unlikely(prev_state == TASK_DEAD)) {
1889		/*
1890		 * Remove function-return probe instances associated with this
1891		 * task and put them back on the free list.
1892		 */
1893		kprobe_flush_task(prev);
1894		put_task_struct(prev);
1895	}
1896
1897	tick_nohz_task_switch(current);
1898}
1899
1900#ifdef CONFIG_SMP
1901
1902/* assumes rq->lock is held */
1903static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1904{
1905	if (prev->sched_class->pre_schedule)
1906		prev->sched_class->pre_schedule(rq, prev);
1907}
1908
1909/* rq->lock is NOT held, but preemption is disabled */
1910static inline void post_schedule(struct rq *rq)
1911{
1912	if (rq->post_schedule) {
1913		unsigned long flags;
1914
1915		raw_spin_lock_irqsave(&rq->lock, flags);
1916		if (rq->curr->sched_class->post_schedule)
1917			rq->curr->sched_class->post_schedule(rq);
1918		raw_spin_unlock_irqrestore(&rq->lock, flags);
1919
1920		rq->post_schedule = 0;
1921	}
1922}
1923
1924#else
1925
1926static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1927{
1928}
1929
1930static inline void post_schedule(struct rq *rq)
1931{
1932}
1933
1934#endif
1935
1936/**
1937 * schedule_tail - first thing a freshly forked thread must call.
1938 * @prev: the thread we just switched away from.
1939 */
1940asmlinkage void schedule_tail(struct task_struct *prev)
1941	__releases(rq->lock)
1942{
1943	struct rq *rq = this_rq();
1944
1945	finish_task_switch(rq, prev);
1946
1947	/*
1948	 * FIXME: do we need to worry about rq being invalidated by the
1949	 * task_switch?
1950	 */
1951	post_schedule(rq);
1952
1953#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1954	/* In this case, finish_task_switch does not reenable preemption */
1955	preempt_enable();
1956#endif
1957	if (current->set_child_tid)
1958		put_user(task_pid_vnr(current), current->set_child_tid);
1959}
1960
1961/*
1962 * context_switch - switch to the new MM and the new
1963 * thread's register state.
1964 */
1965static inline void
1966context_switch(struct rq *rq, struct task_struct *prev,
1967	       struct task_struct *next)
1968{
1969	struct mm_struct *mm, *oldmm;
1970
1971	prepare_task_switch(rq, prev, next);
1972
1973	mm = next->mm;
1974	oldmm = prev->active_mm;
1975	/*
1976	 * For paravirt, this is coupled with an exit in switch_to to
1977	 * combine the page table reload and the switch backend into
1978	 * one hypercall.
1979	 */
1980	arch_start_context_switch(prev);
1981
1982	if (!mm) {
1983		next->active_mm = oldmm;
1984		atomic_inc(&oldmm->mm_count);
1985		enter_lazy_tlb(oldmm, next);
1986	} else
1987		switch_mm(oldmm, mm, next);
1988
1989	if (!prev->mm) {
1990		prev->active_mm = NULL;
1991		rq->prev_mm = oldmm;
1992	}
1993	/*
1994	 * Since the runqueue lock will be released by the next
1995	 * task (which is an invalid locking op but in the case
1996	 * of the scheduler it's an obvious special-case), so we
1997	 * do an early lockdep release here:
1998	 */
1999#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2000	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2001#endif
2002
2003	context_tracking_task_switch(prev, next);
2004	/* Here we just switch the register state and the stack. */
2005	switch_to(prev, next, prev);
2006
2007	barrier();
2008	/*
2009	 * this_rq must be evaluated again because prev may have moved
2010	 * CPUs since it called schedule(), thus the 'rq' on its stack
2011	 * frame will be invalid.
2012	 */
2013	finish_task_switch(this_rq(), prev);
2014}
2015
2016/*
2017 * nr_running and nr_context_switches:
2018 *
2019 * externally visible scheduler statistics: current number of runnable
2020 * threads, total number of context switches performed since bootup.
2021 */
2022unsigned long nr_running(void)
2023{
2024	unsigned long i, sum = 0;
2025
2026	for_each_online_cpu(i)
2027		sum += cpu_rq(i)->nr_running;
2028
2029	return sum;
2030}
2031
2032unsigned long long nr_context_switches(void)
2033{
2034	int i;
2035	unsigned long long sum = 0;
2036
2037	for_each_possible_cpu(i)
2038		sum += cpu_rq(i)->nr_switches;
2039
2040	return sum;
2041}
2042
2043unsigned long nr_iowait(void)
2044{
2045	unsigned long i, sum = 0;
2046
2047	for_each_possible_cpu(i)
2048		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2049
2050	return sum;
2051}
2052
2053unsigned long nr_iowait_cpu(int cpu)
2054{
2055	struct rq *this = cpu_rq(cpu);
2056	return atomic_read(&this->nr_iowait);
2057}
2058
2059unsigned long this_cpu_load(void)
2060{
2061	struct rq *this = this_rq();
2062	return this->cpu_load[0];
2063}
2064
2065
2066/*
2067 * Global load-average calculations
2068 *
2069 * We take a distributed and async approach to calculating the global load-avg
2070 * in order to minimize overhead.
2071 *
2072 * The global load average is an exponentially decaying average of nr_running +
2073 * nr_uninterruptible.
2074 *
2075 * Once every LOAD_FREQ:
2076 *
2077 *   nr_active = 0;
2078 *   for_each_possible_cpu(cpu)
2079 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2080 *
2081 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2082 *
2083 * Due to a number of reasons the above turns in the mess below:
2084 *
2085 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2086 *    serious number of cpus, therefore we need to take a distributed approach
2087 *    to calculating nr_active.
2088 *
2089 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2090 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2091 *
2092 *    So assuming nr_active := 0 when we start out -- true per definition, we
2093 *    can simply take per-cpu deltas and fold those into a global accumulate
2094 *    to obtain the same result. See calc_load_fold_active().
2095 *
2096 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2097 *    across the machine, we assume 10 ticks is sufficient time for every
2098 *    cpu to have completed this task.
2099 *
2100 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2101 *    again, being late doesn't loose the delta, just wrecks the sample.
2102 *
2103 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2104 *    this would add another cross-cpu cacheline miss and atomic operation
2105 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2106 *    when it went into uninterruptible state and decrement on whatever cpu
2107 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2108 *    all cpus yields the correct result.
2109 *
2110 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2111 */
2112
2113/* Variables and functions for calc_load */
2114static atomic_long_t calc_load_tasks;
2115static unsigned long calc_load_update;
2116unsigned long avenrun[3];
2117EXPORT_SYMBOL(avenrun); /* should be removed */
2118
2119/**
2120 * get_avenrun - get the load average array
2121 * @loads:	pointer to dest load array
2122 * @offset:	offset to add
2123 * @shift:	shift count to shift the result left
2124 *
2125 * These values are estimates at best, so no need for locking.
2126 */
2127void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2128{
2129	loads[0] = (avenrun[0] + offset) << shift;
2130	loads[1] = (avenrun[1] + offset) << shift;
2131	loads[2] = (avenrun[2] + offset) << shift;
2132}
2133
2134static long calc_load_fold_active(struct rq *this_rq)
2135{
2136	long nr_active, delta = 0;
2137
2138	nr_active = this_rq->nr_running;
2139	nr_active += (long) this_rq->nr_uninterruptible;
2140
2141	if (nr_active != this_rq->calc_load_active) {
2142		delta = nr_active - this_rq->calc_load_active;
2143		this_rq->calc_load_active = nr_active;
2144	}
2145
2146	return delta;
2147}
2148
2149/*
2150 * a1 = a0 * e + a * (1 - e)
2151 */
2152static unsigned long
2153calc_load(unsigned long load, unsigned long exp, unsigned long active)
2154{
2155	load *= exp;
2156	load += active * (FIXED_1 - exp);
2157	load += 1UL << (FSHIFT - 1);
2158	return load >> FSHIFT;
2159}
2160
2161#ifdef CONFIG_NO_HZ_COMMON
2162/*
2163 * Handle NO_HZ for the global load-average.
2164 *
2165 * Since the above described distributed algorithm to compute the global
2166 * load-average relies on per-cpu sampling from the tick, it is affected by
2167 * NO_HZ.
2168 *
2169 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2170 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2171 * when we read the global state.
2172 *
2173 * Obviously reality has to ruin such a delightfully simple scheme:
2174 *
2175 *  - When we go NO_HZ idle during the window, we can negate our sample
2176 *    contribution, causing under-accounting.
2177 *
2178 *    We avoid this by keeping two idle-delta counters and flipping them
2179 *    when the window starts, thus separating old and new NO_HZ load.
2180 *
2181 *    The only trick is the slight shift in index flip for read vs write.
2182 *
2183 *        0s            5s            10s           15s
2184 *          +10           +10           +10           +10
2185 *        |-|-----------|-|-----------|-|-----------|-|
2186 *    r:0 0 1           1 0           0 1           1 0
2187 *    w:0 1 1           0 0           1 1           0 0
2188 *
2189 *    This ensures we'll fold the old idle contribution in this window while
2190 *    accumlating the new one.
2191 *
2192 *  - When we wake up from NO_HZ idle during the window, we push up our
2193 *    contribution, since we effectively move our sample point to a known
2194 *    busy state.
2195 *
2196 *    This is solved by pushing the window forward, and thus skipping the
2197 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2198 *    was in effect at the time the window opened). This also solves the issue
2199 *    of having to deal with a cpu having been in NOHZ idle for multiple
2200 *    LOAD_FREQ intervals.
2201 *
2202 * When making the ILB scale, we should try to pull this in as well.
2203 */
2204static atomic_long_t calc_load_idle[2];
2205static int calc_load_idx;
2206
2207static inline int calc_load_write_idx(void)
2208{
2209	int idx = calc_load_idx;
2210
2211	/*
2212	 * See calc_global_nohz(), if we observe the new index, we also
2213	 * need to observe the new update time.
2214	 */
2215	smp_rmb();
2216
2217	/*
2218	 * If the folding window started, make sure we start writing in the
2219	 * next idle-delta.
2220	 */
2221	if (!time_before(jiffies, calc_load_update))
2222		idx++;
2223
2224	return idx & 1;
2225}
2226
2227static inline int calc_load_read_idx(void)
2228{
2229	return calc_load_idx & 1;
2230}
2231
2232void calc_load_enter_idle(void)
2233{
2234	struct rq *this_rq = this_rq();
2235	long delta;
2236
2237	/*
2238	 * We're going into NOHZ mode, if there's any pending delta, fold it
2239	 * into the pending idle delta.
2240	 */
2241	delta = calc_load_fold_active(this_rq);
2242	if (delta) {
2243		int idx = calc_load_write_idx();
2244		atomic_long_add(delta, &calc_load_idle[idx]);
2245	}
2246}
2247
2248void calc_load_exit_idle(void)
2249{
2250	struct rq *this_rq = this_rq();
2251
2252	/*
2253	 * If we're still before the sample window, we're done.
2254	 */
2255	if (time_before(jiffies, this_rq->calc_load_update))
2256		return;
2257
2258	/*
2259	 * We woke inside or after the sample window, this means we're already
2260	 * accounted through the nohz accounting, so skip the entire deal and
2261	 * sync up for the next window.
2262	 */
2263	this_rq->calc_load_update = calc_load_update;
2264	if (time_before(jiffies, this_rq->calc_load_update + 10))
2265		this_rq->calc_load_update += LOAD_FREQ;
2266}
2267
2268static long calc_load_fold_idle(void)
2269{
2270	int idx = calc_load_read_idx();
2271	long delta = 0;
2272
2273	if (atomic_long_read(&calc_load_idle[idx]))
2274		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2275
2276	return delta;
2277}
2278
2279/**
2280 * fixed_power_int - compute: x^n, in O(log n) time
2281 *
2282 * @x:         base of the power
2283 * @frac_bits: fractional bits of @x
2284 * @n:         power to raise @x to.
2285 *
2286 * By exploiting the relation between the definition of the natural power
2287 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2288 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2289 * (where: n_i \elem {0, 1}, the binary vector representing n),
2290 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2291 * of course trivially computable in O(log_2 n), the length of our binary
2292 * vector.
2293 */
2294static unsigned long
2295fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2296{
2297	unsigned long result = 1UL << frac_bits;
2298
2299	if (n) for (;;) {
2300		if (n & 1) {
2301			result *= x;
2302			result += 1UL << (frac_bits - 1);
2303			result >>= frac_bits;
2304		}
2305		n >>= 1;
2306		if (!n)
2307			break;
2308		x *= x;
2309		x += 1UL << (frac_bits - 1);
2310		x >>= frac_bits;
2311	}
2312
2313	return result;
2314}
2315
2316/*
2317 * a1 = a0 * e + a * (1 - e)
2318 *
2319 * a2 = a1 * e + a * (1 - e)
2320 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2321 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2322 *
2323 * a3 = a2 * e + a * (1 - e)
2324 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2325 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2326 *
2327 *  ...
2328 *
2329 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2330 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2331 *    = a0 * e^n + a * (1 - e^n)
2332 *
2333 * [1] application of the geometric series:
2334 *
2335 *              n         1 - x^(n+1)
2336 *     S_n := \Sum x^i = -------------
2337 *             i=0          1 - x
2338 */
2339static unsigned long
2340calc_load_n(unsigned long load, unsigned long exp,
2341	    unsigned long active, unsigned int n)
2342{
2343
2344	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2345}
2346
2347/*
2348 * NO_HZ can leave us missing all per-cpu ticks calling
2349 * calc_load_account_active(), but since an idle CPU folds its delta into
2350 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2351 * in the pending idle delta if our idle period crossed a load cycle boundary.
2352 *
2353 * Once we've updated the global active value, we need to apply the exponential
2354 * weights adjusted to the number of cycles missed.
2355 */
2356static void calc_global_nohz(void)
2357{
2358	long delta, active, n;
2359
2360	if (!time_before(jiffies, calc_load_update + 10)) {
2361		/*
2362		 * Catch-up, fold however many we are behind still
2363		 */
2364		delta = jiffies - calc_load_update - 10;
2365		n = 1 + (delta / LOAD_FREQ);
2366
2367		active = atomic_long_read(&calc_load_tasks);
2368		active = active > 0 ? active * FIXED_1 : 0;
2369
2370		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2371		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2372		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2373
2374		calc_load_update += n * LOAD_FREQ;
2375	}
2376
2377	/*
2378	 * Flip the idle index...
2379	 *
2380	 * Make sure we first write the new time then flip the index, so that
2381	 * calc_load_write_idx() will see the new time when it reads the new
2382	 * index, this avoids a double flip messing things up.
2383	 */
2384	smp_wmb();
2385	calc_load_idx++;
2386}
2387#else /* !CONFIG_NO_HZ_COMMON */
2388
2389static inline long calc_load_fold_idle(void) { return 0; }
2390static inline void calc_global_nohz(void) { }
2391
2392#endif /* CONFIG_NO_HZ_COMMON */
2393
2394/*
2395 * calc_load - update the avenrun load estimates 10 ticks after the
2396 * CPUs have updated calc_load_tasks.
2397 */
2398void calc_global_load(unsigned long ticks)
2399{
2400	long active, delta;
2401
2402	if (time_before(jiffies, calc_load_update + 10))
2403		return;
2404
2405	/*
2406	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2407	 */
2408	delta = calc_load_fold_idle();
2409	if (delta)
2410		atomic_long_add(delta, &calc_load_tasks);
2411
2412	active = atomic_long_read(&calc_load_tasks);
2413	active = active > 0 ? active * FIXED_1 : 0;
2414
2415	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2416	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2417	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2418
2419	calc_load_update += LOAD_FREQ;
2420
2421	/*
2422	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2423	 */
2424	calc_global_nohz();
2425}
2426
2427/*
2428 * Called from update_cpu_load() to periodically update this CPU's
2429 * active count.
2430 */
2431static void calc_load_account_active(struct rq *this_rq)
2432{
2433	long delta;
2434
2435	if (time_before(jiffies, this_rq->calc_load_update))
2436		return;
2437
2438	delta  = calc_load_fold_active(this_rq);
2439	if (delta)
2440		atomic_long_add(delta, &calc_load_tasks);
2441
2442	this_rq->calc_load_update += LOAD_FREQ;
2443}
2444
2445/*
2446 * End of global load-average stuff
2447 */
2448
2449/*
2450 * The exact cpuload at various idx values, calculated at every tick would be
2451 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2452 *
2453 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2454 * on nth tick when cpu may be busy, then we have:
2455 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2456 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2457 *
2458 * decay_load_missed() below does efficient calculation of
2459 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2460 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2461 *
2462 * The calculation is approximated on a 128 point scale.
2463 * degrade_zero_ticks is the number of ticks after which load at any
2464 * particular idx is approximated to be zero.
2465 * degrade_factor is a precomputed table, a row for each load idx.
2466 * Each column corresponds to degradation factor for a power of two ticks,
2467 * based on 128 point scale.
2468 * Example:
2469 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2470 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2471 *
2472 * With this power of 2 load factors, we can degrade the load n times
2473 * by looking at 1 bits in n and doing as many mult/shift instead of
2474 * n mult/shifts needed by the exact degradation.
2475 */
2476#define DEGRADE_SHIFT		7
2477static const unsigned char
2478		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2479static const unsigned char
2480		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2481					{0, 0, 0, 0, 0, 0, 0, 0},
2482					{64, 32, 8, 0, 0, 0, 0, 0},
2483					{96, 72, 40, 12, 1, 0, 0},
2484					{112, 98, 75, 43, 15, 1, 0},
2485					{120, 112, 98, 76, 45, 16, 2} };
2486
2487/*
2488 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2489 * would be when CPU is idle and so we just decay the old load without
2490 * adding any new load.
2491 */
2492static unsigned long
2493decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2494{
2495	int j = 0;
2496
2497	if (!missed_updates)
2498		return load;
2499
2500	if (missed_updates >= degrade_zero_ticks[idx])
2501		return 0;
2502
2503	if (idx == 1)
2504		return load >> missed_updates;
2505
2506	while (missed_updates) {
2507		if (missed_updates % 2)
2508			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2509
2510		missed_updates >>= 1;
2511		j++;
2512	}
2513	return load;
2514}
2515
2516/*
2517 * Update rq->cpu_load[] statistics. This function is usually called every
2518 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2519 * every tick. We fix it up based on jiffies.
2520 */
2521static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2522			      unsigned long pending_updates)
2523{
2524	int i, scale;
2525
2526	this_rq->nr_load_updates++;
2527
2528	/* Update our load: */
2529	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2530	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2531		unsigned long old_load, new_load;
2532
2533		/* scale is effectively 1 << i now, and >> i divides by scale */
2534
2535		old_load = this_rq->cpu_load[i];
2536		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2537		new_load = this_load;
2538		/*
2539		 * Round up the averaging division if load is increasing. This
2540		 * prevents us from getting stuck on 9 if the load is 10, for
2541		 * example.
2542		 */
2543		if (new_load > old_load)
2544			new_load += scale - 1;
2545
2546		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2547	}
2548
2549	sched_avg_update(this_rq);
2550}
2551
2552#ifdef CONFIG_NO_HZ_COMMON
2553/*
2554 * There is no sane way to deal with nohz on smp when using jiffies because the
2555 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2556 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2557 *
2558 * Therefore we cannot use the delta approach from the regular tick since that
2559 * would seriously skew the load calculation. However we'll make do for those
2560 * updates happening while idle (nohz_idle_balance) or coming out of idle
2561 * (tick_nohz_idle_exit).
2562 *
2563 * This means we might still be one tick off for nohz periods.
2564 */
2565
2566/*
2567 * Called from nohz_idle_balance() to update the load ratings before doing the
2568 * idle balance.
2569 */
2570void update_idle_cpu_load(struct rq *this_rq)
2571{
2572	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2573	unsigned long load = this_rq->load.weight;
2574	unsigned long pending_updates;
2575
2576	/*
2577	 * bail if there's load or we're actually up-to-date.
2578	 */
2579	if (load || curr_jiffies == this_rq->last_load_update_tick)
2580		return;
2581
2582	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2583	this_rq->last_load_update_tick = curr_jiffies;
2584
2585	__update_cpu_load(this_rq, load, pending_updates);
2586}
2587
2588/*
2589 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2590 */
2591void update_cpu_load_nohz(void)
2592{
2593	struct rq *this_rq = this_rq();
2594	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2595	unsigned long pending_updates;
2596
2597	if (curr_jiffies == this_rq->last_load_update_tick)
2598		return;
2599
2600	raw_spin_lock(&this_rq->lock);
2601	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2602	if (pending_updates) {
2603		this_rq->last_load_update_tick = curr_jiffies;
2604		/*
2605		 * We were idle, this means load 0, the current load might be
2606		 * !0 due to remote wakeups and the sort.
2607		 */
2608		__update_cpu_load(this_rq, 0, pending_updates);
2609	}
2610	raw_spin_unlock(&this_rq->lock);
2611}
2612#endif /* CONFIG_NO_HZ_COMMON */
2613
2614/*
2615 * Called from scheduler_tick()
2616 */
2617static void update_cpu_load_active(struct rq *this_rq)
2618{
2619	/*
2620	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2621	 */
2622	this_rq->last_load_update_tick = jiffies;
2623	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2624
2625	calc_load_account_active(this_rq);
2626}
2627
2628#ifdef CONFIG_SMP
2629
2630/*
2631 * sched_exec - execve() is a valuable balancing opportunity, because at
2632 * this point the task has the smallest effective memory and cache footprint.
2633 */
2634void sched_exec(void)
2635{
2636	struct task_struct *p = current;
2637	unsigned long flags;
2638	int dest_cpu;
2639
2640	raw_spin_lock_irqsave(&p->pi_lock, flags);
2641	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2642	if (dest_cpu == smp_processor_id())
2643		goto unlock;
2644
2645	if (likely(cpu_active(dest_cpu))) {
2646		struct migration_arg arg = { p, dest_cpu };
2647
2648		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2649		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2650		return;
2651	}
2652unlock:
2653	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2654}
2655
2656#endif
2657
2658DEFINE_PER_CPU(struct kernel_stat, kstat);
2659DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2660
2661EXPORT_PER_CPU_SYMBOL(kstat);
2662EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2663
2664/*
2665 * Return any ns on the sched_clock that have not yet been accounted in
2666 * @p in case that task is currently running.
2667 *
2668 * Called with task_rq_lock() held on @rq.
2669 */
2670static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2671{
2672	u64 ns = 0;
2673
2674	if (task_current(rq, p)) {
2675		update_rq_clock(rq);
2676		ns = rq->clock_task - p->se.exec_start;
2677		if ((s64)ns < 0)
2678			ns = 0;
2679	}
2680
2681	return ns;
2682}
2683
2684unsigned long long task_delta_exec(struct task_struct *p)
2685{
2686	unsigned long flags;
2687	struct rq *rq;
2688	u64 ns = 0;
2689
2690	rq = task_rq_lock(p, &flags);
2691	ns = do_task_delta_exec(p, rq);
2692	task_rq_unlock(rq, p, &flags);
2693
2694	return ns;
2695}
2696
2697/*
2698 * Return accounted runtime for the task.
2699 * In case the task is currently running, return the runtime plus current's
2700 * pending runtime that have not been accounted yet.
2701 */
2702unsigned long long task_sched_runtime(struct task_struct *p)
2703{
2704	unsigned long flags;
2705	struct rq *rq;
2706	u64 ns = 0;
2707
2708	rq = task_rq_lock(p, &flags);
2709	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2710	task_rq_unlock(rq, p, &flags);
2711
2712	return ns;
2713}
2714
2715/*
2716 * This function gets called by the timer code, with HZ frequency.
2717 * We call it with interrupts disabled.
2718 */
2719void scheduler_tick(void)
2720{
2721	int cpu = smp_processor_id();
2722	struct rq *rq = cpu_rq(cpu);
2723	struct task_struct *curr = rq->curr;
2724
2725	sched_clock_tick();
2726
2727	raw_spin_lock(&rq->lock);
2728	update_rq_clock(rq);
2729	update_cpu_load_active(rq);
2730	curr->sched_class->task_tick(rq, curr, 0);
2731	raw_spin_unlock(&rq->lock);
2732
2733	perf_event_task_tick();
2734
2735#ifdef CONFIG_SMP
2736	rq->idle_balance = idle_cpu(cpu);
2737	trigger_load_balance(rq, cpu);
2738#endif
2739	rq_last_tick_reset(rq);
2740}
2741
2742#ifdef CONFIG_NO_HZ_FULL
2743/**
2744 * scheduler_tick_max_deferment
2745 *
2746 * Keep at least one tick per second when a single
2747 * active task is running because the scheduler doesn't
2748 * yet completely support full dynticks environment.
2749 *
2750 * This makes sure that uptime, CFS vruntime, load
2751 * balancing, etc... continue to move forward, even
2752 * with a very low granularity.
2753 */
2754u64 scheduler_tick_max_deferment(void)
2755{
2756	struct rq *rq = this_rq();
2757	unsigned long next, now = ACCESS_ONCE(jiffies);
2758
2759	next = rq->last_sched_tick + HZ;
2760
2761	if (time_before_eq(next, now))
2762		return 0;
2763
2764	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2765}
2766#endif
2767
2768notrace unsigned long get_parent_ip(unsigned long addr)
2769{
2770	if (in_lock_functions(addr)) {
2771		addr = CALLER_ADDR2;
2772		if (in_lock_functions(addr))
2773			addr = CALLER_ADDR3;
2774	}
2775	return addr;
2776}
2777
2778#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2779				defined(CONFIG_PREEMPT_TRACER))
2780
2781void __kprobes add_preempt_count(int val)
2782{
2783#ifdef CONFIG_DEBUG_PREEMPT
2784	/*
2785	 * Underflow?
2786	 */
2787	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2788		return;
2789#endif
2790	preempt_count() += val;
2791#ifdef CONFIG_DEBUG_PREEMPT
2792	/*
2793	 * Spinlock count overflowing soon?
2794	 */
2795	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2796				PREEMPT_MASK - 10);
2797#endif
2798	if (preempt_count() == val)
2799		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2800}
2801EXPORT_SYMBOL(add_preempt_count);
2802
2803void __kprobes sub_preempt_count(int val)
2804{
2805#ifdef CONFIG_DEBUG_PREEMPT
2806	/*
2807	 * Underflow?
2808	 */
2809	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2810		return;
2811	/*
2812	 * Is the spinlock portion underflowing?
2813	 */
2814	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2815			!(preempt_count() & PREEMPT_MASK)))
2816		return;
2817#endif
2818
2819	if (preempt_count() == val)
2820		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2821	preempt_count() -= val;
2822}
2823EXPORT_SYMBOL(sub_preempt_count);
2824
2825#endif
2826
2827/*
2828 * Print scheduling while atomic bug:
2829 */
2830static noinline void __schedule_bug(struct task_struct *prev)
2831{
2832	if (oops_in_progress)
2833		return;
2834
2835	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2836		prev->comm, prev->pid, preempt_count());
2837
2838	debug_show_held_locks(prev);
2839	print_modules();
2840	if (irqs_disabled())
2841		print_irqtrace_events(prev);
2842	dump_stack();
2843	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2844}
2845
2846/*
2847 * Various schedule()-time debugging checks and statistics:
2848 */
2849static inline void schedule_debug(struct task_struct *prev)
2850{
2851	/*
2852	 * Test if we are atomic. Since do_exit() needs to call into
2853	 * schedule() atomically, we ignore that path for now.
2854	 * Otherwise, whine if we are scheduling when we should not be.
2855	 */
2856	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2857		__schedule_bug(prev);
2858	rcu_sleep_check();
2859
2860	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2861
2862	schedstat_inc(this_rq(), sched_count);
2863}
2864
2865static void put_prev_task(struct rq *rq, struct task_struct *prev)
2866{
2867	if (prev->on_rq || rq->skip_clock_update < 0)
2868		update_rq_clock(rq);
2869	prev->sched_class->put_prev_task(rq, prev);
2870}
2871
2872/*
2873 * Pick up the highest-prio task:
2874 */
2875static inline struct task_struct *
2876pick_next_task(struct rq *rq)
2877{
2878	const struct sched_class *class;
2879	struct task_struct *p;
2880
2881	/*
2882	 * Optimization: we know that if all tasks are in
2883	 * the fair class we can call that function directly:
2884	 */
2885	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2886		p = fair_sched_class.pick_next_task(rq);
2887		if (likely(p))
2888			return p;
2889	}
2890
2891	for_each_class(class) {
2892		p = class->pick_next_task(rq);
2893		if (p)
2894			return p;
2895	}
2896
2897	BUG(); /* the idle class will always have a runnable task */
2898}
2899
2900/*
2901 * __schedule() is the main scheduler function.
2902 *
2903 * The main means of driving the scheduler and thus entering this function are:
2904 *
2905 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2906 *
2907 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2908 *      paths. For example, see arch/x86/entry_64.S.
2909 *
2910 *      To drive preemption between tasks, the scheduler sets the flag in timer
2911 *      interrupt handler scheduler_tick().
2912 *
2913 *   3. Wakeups don't really cause entry into schedule(). They add a
2914 *      task to the run-queue and that's it.
2915 *
2916 *      Now, if the new task added to the run-queue preempts the current
2917 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2918 *      called on the nearest possible occasion:
2919 *
2920 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2921 *
2922 *         - in syscall or exception context, at the next outmost
2923 *           preempt_enable(). (this might be as soon as the wake_up()'s
2924 *           spin_unlock()!)
2925 *
2926 *         - in IRQ context, return from interrupt-handler to
2927 *           preemptible context
2928 *
2929 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2930 *         then at the next:
2931 *
2932 *          - cond_resched() call
2933 *          - explicit schedule() call
2934 *          - return from syscall or exception to user-space
2935 *          - return from interrupt-handler to user-space
2936 */
2937static void __sched __schedule(void)
2938{
2939	struct task_struct *prev, *next;
2940	unsigned long *switch_count;
2941	struct rq *rq;
2942	int cpu;
2943
2944need_resched:
2945	preempt_disable();
2946	cpu = smp_processor_id();
2947	rq = cpu_rq(cpu);
2948	rcu_note_context_switch(cpu);
2949	prev = rq->curr;
2950
2951	schedule_debug(prev);
2952
2953	if (sched_feat(HRTICK))
2954		hrtick_clear(rq);
2955
2956	raw_spin_lock_irq(&rq->lock);
2957
2958	switch_count = &prev->nivcsw;
2959	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2960		if (unlikely(signal_pending_state(prev->state, prev))) {
2961			prev->state = TASK_RUNNING;
2962		} else {
2963			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2964			prev->on_rq = 0;
2965
2966			/*
2967			 * If a worker went to sleep, notify and ask workqueue
2968			 * whether it wants to wake up a task to maintain
2969			 * concurrency.
2970			 */
2971			if (prev->flags & PF_WQ_WORKER) {
2972				struct task_struct *to_wakeup;
2973
2974				to_wakeup = wq_worker_sleeping(prev, cpu);
2975				if (to_wakeup)
2976					try_to_wake_up_local(to_wakeup);
2977			}
2978		}
2979		switch_count = &prev->nvcsw;
2980	}
2981
2982	pre_schedule(rq, prev);
2983
2984	if (unlikely(!rq->nr_running))
2985		idle_balance(cpu, rq);
2986
2987	put_prev_task(rq, prev);
2988	next = pick_next_task(rq);
2989	clear_tsk_need_resched(prev);
2990	rq->skip_clock_update = 0;
2991
2992	if (likely(prev != next)) {
2993		rq->nr_switches++;
2994		rq->curr = next;
2995		++*switch_count;
2996
2997		context_switch(rq, prev, next); /* unlocks the rq */
2998		/*
2999		 * The context switch have flipped the stack from under us
3000		 * and restored the local variables which were saved when
3001		 * this task called schedule() in the past. prev == current
3002		 * is still correct, but it can be moved to another cpu/rq.
3003		 */
3004		cpu = smp_processor_id();
3005		rq = cpu_rq(cpu);
3006	} else
3007		raw_spin_unlock_irq(&rq->lock);
3008
3009	post_schedule(rq);
3010
3011	sched_preempt_enable_no_resched();
3012	if (need_resched())
3013		goto need_resched;
3014}
3015
3016static inline void sched_submit_work(struct task_struct *tsk)
3017{
3018	if (!tsk->state || tsk_is_pi_blocked(tsk))
3019		return;
3020	/*
3021	 * If we are going to sleep and we have plugged IO queued,
3022	 * make sure to submit it to avoid deadlocks.
3023	 */
3024	if (blk_needs_flush_plug(tsk))
3025		blk_schedule_flush_plug(tsk);
3026}
3027
3028asmlinkage void __sched schedule(void)
3029{
3030	struct task_struct *tsk = current;
3031
3032	sched_submit_work(tsk);
3033	__schedule();
3034}
3035EXPORT_SYMBOL(schedule);
3036
3037#ifdef CONFIG_CONTEXT_TRACKING
3038asmlinkage void __sched schedule_user(void)
3039{
3040	/*
3041	 * If we come here after a random call to set_need_resched(),
3042	 * or we have been woken up remotely but the IPI has not yet arrived,
3043	 * we haven't yet exited the RCU idle mode. Do it here manually until
3044	 * we find a better solution.
3045	 */
3046	user_exit();
3047	schedule();
3048	user_enter();
3049}
3050#endif
3051
3052/**
3053 * schedule_preempt_disabled - called with preemption disabled
3054 *
3055 * Returns with preemption disabled. Note: preempt_count must be 1
3056 */
3057void __sched schedule_preempt_disabled(void)
3058{
3059	sched_preempt_enable_no_resched();
3060	schedule();
3061	preempt_disable();
3062}
3063
3064#ifdef CONFIG_PREEMPT
3065/*
3066 * this is the entry point to schedule() from in-kernel preemption
3067 * off of preempt_enable. Kernel preemptions off return from interrupt
3068 * occur there and call schedule directly.
3069 */
3070asmlinkage void __sched notrace preempt_schedule(void)
3071{
3072	struct thread_info *ti = current_thread_info();
3073
3074	/*
3075	 * If there is a non-zero preempt_count or interrupts are disabled,
3076	 * we do not want to preempt the current task. Just return..
3077	 */
3078	if (likely(ti->preempt_count || irqs_disabled()))
3079		return;
3080
3081	do {
3082		add_preempt_count_notrace(PREEMPT_ACTIVE);
3083		__schedule();
3084		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3085
3086		/*
3087		 * Check again in case we missed a preemption opportunity
3088		 * between schedule and now.
3089		 */
3090		barrier();
3091	} while (need_resched());
3092}
3093EXPORT_SYMBOL(preempt_schedule);
3094
3095/*
3096 * this is the entry point to schedule() from kernel preemption
3097 * off of irq context.
3098 * Note, that this is called and return with irqs disabled. This will
3099 * protect us against recursive calling from irq.
3100 */
3101asmlinkage void __sched preempt_schedule_irq(void)
3102{
3103	struct thread_info *ti = current_thread_info();
3104	enum ctx_state prev_state;
3105
3106	/* Catch callers which need to be fixed */
3107	BUG_ON(ti->preempt_count || !irqs_disabled());
3108
3109	prev_state = exception_enter();
3110
3111	do {
3112		add_preempt_count(PREEMPT_ACTIVE);
3113		local_irq_enable();
3114		__schedule();
3115		local_irq_disable();
3116		sub_preempt_count(PREEMPT_ACTIVE);
3117
3118		/*
3119		 * Check again in case we missed a preemption opportunity
3120		 * between schedule and now.
3121		 */
3122		barrier();
3123	} while (need_resched());
3124
3125	exception_exit(prev_state);
3126}
3127
3128#endif /* CONFIG_PREEMPT */
3129
3130int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3131			  void *key)
3132{
3133	return try_to_wake_up(curr->private, mode, wake_flags);
3134}
3135EXPORT_SYMBOL(default_wake_function);
3136
3137/*
3138 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3139 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3140 * number) then we wake all the non-exclusive tasks and one exclusive task.
3141 *
3142 * There are circumstances in which we can try to wake a task which has already
3143 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3144 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3145 */
3146static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3147			int nr_exclusive, int wake_flags, void *key)
3148{
3149	wait_queue_t *curr, *next;
3150
3151	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3152		unsigned flags = curr->flags;
3153
3154		if (curr->func(curr, mode, wake_flags, key) &&
3155				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3156			break;
3157	}
3158}
3159
3160/**
3161 * __wake_up - wake up threads blocked on a waitqueue.
3162 * @q: the waitqueue
3163 * @mode: which threads
3164 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3165 * @key: is directly passed to the wakeup function
3166 *
3167 * It may be assumed that this function implies a write memory barrier before
3168 * changing the task state if and only if any tasks are woken up.
3169 */
3170void __wake_up(wait_queue_head_t *q, unsigned int mode,
3171			int nr_exclusive, void *key)
3172{
3173	unsigned long flags;
3174
3175	spin_lock_irqsave(&q->lock, flags);
3176	__wake_up_common(q, mode, nr_exclusive, 0, key);
3177	spin_unlock_irqrestore(&q->lock, flags);
3178}
3179EXPORT_SYMBOL(__wake_up);
3180
3181/*
3182 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3183 */
3184void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3185{
3186	__wake_up_common(q, mode, nr, 0, NULL);
3187}
3188EXPORT_SYMBOL_GPL(__wake_up_locked);
3189
3190void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3191{
3192	__wake_up_common(q, mode, 1, 0, key);
3193}
3194EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3195
3196/**
3197 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3198 * @q: the waitqueue
3199 * @mode: which threads
3200 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3201 * @key: opaque value to be passed to wakeup targets
3202 *
3203 * The sync wakeup differs that the waker knows that it will schedule
3204 * away soon, so while the target thread will be woken up, it will not
3205 * be migrated to another CPU - ie. the two threads are 'synchronized'
3206 * with each other. This can prevent needless bouncing between CPUs.
3207 *
3208 * On UP it can prevent extra preemption.
3209 *
3210 * It may be assumed that this function implies a write memory barrier before
3211 * changing the task state if and only if any tasks are woken up.
3212 */
3213void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3214			int nr_exclusive, void *key)
3215{
3216	unsigned long flags;
3217	int wake_flags = WF_SYNC;
3218
3219	if (unlikely(!q))
3220		return;
3221
3222	if (unlikely(!nr_exclusive))
3223		wake_flags = 0;
3224
3225	spin_lock_irqsave(&q->lock, flags);
3226	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3227	spin_unlock_irqrestore(&q->lock, flags);
3228}
3229EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3230
3231/*
3232 * __wake_up_sync - see __wake_up_sync_key()
3233 */
3234void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3235{
3236	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3237}
3238EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3239
3240/**
3241 * complete: - signals a single thread waiting on this completion
3242 * @x:  holds the state of this particular completion
3243 *
3244 * This will wake up a single thread waiting on this completion. Threads will be
3245 * awakened in the same order in which they were queued.
3246 *
3247 * See also complete_all(), wait_for_completion() and related routines.
3248 *
3249 * It may be assumed that this function implies a write memory barrier before
3250 * changing the task state if and only if any tasks are woken up.
3251 */
3252void complete(struct completion *x)
3253{
3254	unsigned long flags;
3255
3256	spin_lock_irqsave(&x->wait.lock, flags);
3257	x->done++;
3258	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3259	spin_unlock_irqrestore(&x->wait.lock, flags);
3260}
3261EXPORT_SYMBOL(complete);
3262
3263/**
3264 * complete_all: - signals all threads waiting on this completion
3265 * @x:  holds the state of this particular completion
3266 *
3267 * This will wake up all threads waiting on this particular completion event.
3268 *
3269 * It may be assumed that this function implies a write memory barrier before
3270 * changing the task state if and only if any tasks are woken up.
3271 */
3272void complete_all(struct completion *x)
3273{
3274	unsigned long flags;
3275
3276	spin_lock_irqsave(&x->wait.lock, flags);
3277	x->done += UINT_MAX/2;
3278	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3279	spin_unlock_irqrestore(&x->wait.lock, flags);
3280}
3281EXPORT_SYMBOL(complete_all);
3282
3283static inline long __sched
3284do_wait_for_common(struct completion *x,
3285		   long (*action)(long), long timeout, int state)
3286{
3287	if (!x->done) {
3288		DECLARE_WAITQUEUE(wait, current);
3289
3290		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3291		do {
3292			if (signal_pending_state(state, current)) {
3293				timeout = -ERESTARTSYS;
3294				break;
3295			}
3296			__set_current_state(state);
3297			spin_unlock_irq(&x->wait.lock);
3298			timeout = action(timeout);
3299			spin_lock_irq(&x->wait.lock);
3300		} while (!x->done && timeout);
3301		__remove_wait_queue(&x->wait, &wait);
3302		if (!x->done)
3303			return timeout;
3304	}
3305	x->done--;
3306	return timeout ?: 1;
3307}
3308
3309static inline long __sched
3310__wait_for_common(struct completion *x,
3311		  long (*action)(long), long timeout, int state)
3312{
3313	might_sleep();
3314
3315	spin_lock_irq(&x->wait.lock);
3316	timeout = do_wait_for_common(x, action, timeout, state);
3317	spin_unlock_irq(&x->wait.lock);
3318	return timeout;
3319}
3320
3321static long __sched
3322wait_for_common(struct completion *x, long timeout, int state)
3323{
3324	return __wait_for_common(x, schedule_timeout, timeout, state);
3325}
3326
3327static long __sched
3328wait_for_common_io(struct completion *x, long timeout, int state)
3329{
3330	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3331}
3332
3333/**
3334 * wait_for_completion: - waits for completion of a task
3335 * @x:  holds the state of this particular completion
3336 *
3337 * This waits to be signaled for completion of a specific task. It is NOT
3338 * interruptible and there is no timeout.
3339 *
3340 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3341 * and interrupt capability. Also see complete().
3342 */
3343void __sched wait_for_completion(struct completion *x)
3344{
3345	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3346}
3347EXPORT_SYMBOL(wait_for_completion);
3348
3349/**
3350 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3351 * @x:  holds the state of this particular completion
3352 * @timeout:  timeout value in jiffies
3353 *
3354 * This waits for either a completion of a specific task to be signaled or for a
3355 * specified timeout to expire. The timeout is in jiffies. It is not
3356 * interruptible.
3357 *
3358 * The return value is 0 if timed out, and positive (at least 1, or number of
3359 * jiffies left till timeout) if completed.
3360 */
3361unsigned long __sched
3362wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3363{
3364	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3365}
3366EXPORT_SYMBOL(wait_for_completion_timeout);
3367
3368/**
3369 * wait_for_completion_io: - waits for completion of a task
3370 * @x:  holds the state of this particular completion
3371 *
3372 * This waits to be signaled for completion of a specific task. It is NOT
3373 * interruptible and there is no timeout. The caller is accounted as waiting
3374 * for IO.
3375 */
3376void __sched wait_for_completion_io(struct completion *x)
3377{
3378	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3379}
3380EXPORT_SYMBOL(wait_for_completion_io);
3381
3382/**
3383 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3384 * @x:  holds the state of this particular completion
3385 * @timeout:  timeout value in jiffies
3386 *
3387 * This waits for either a completion of a specific task to be signaled or for a
3388 * specified timeout to expire. The timeout is in jiffies. It is not
3389 * interruptible. The caller is accounted as waiting for IO.
3390 *
3391 * The return value is 0 if timed out, and positive (at least 1, or number of
3392 * jiffies left till timeout) if completed.
3393 */
3394unsigned long __sched
3395wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3396{
3397	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3398}
3399EXPORT_SYMBOL(wait_for_completion_io_timeout);
3400
3401/**
3402 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3403 * @x:  holds the state of this particular completion
3404 *
3405 * This waits for completion of a specific task to be signaled. It is
3406 * interruptible.
3407 *
3408 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3409 */
3410int __sched wait_for_completion_interruptible(struct completion *x)
3411{
3412	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3413	if (t == -ERESTARTSYS)
3414		return t;
3415	return 0;
3416}
3417EXPORT_SYMBOL(wait_for_completion_interruptible);
3418
3419/**
3420 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3421 * @x:  holds the state of this particular completion
3422 * @timeout:  timeout value in jiffies
3423 *
3424 * This waits for either a completion of a specific task to be signaled or for a
3425 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3426 *
3427 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3428 * positive (at least 1, or number of jiffies left till timeout) if completed.
3429 */
3430long __sched
3431wait_for_completion_interruptible_timeout(struct completion *x,
3432					  unsigned long timeout)
3433{
3434	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3435}
3436EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3437
3438/**
3439 * wait_for_completion_killable: - waits for completion of a task (killable)
3440 * @x:  holds the state of this particular completion
3441 *
3442 * This waits to be signaled for completion of a specific task. It can be
3443 * interrupted by a kill signal.
3444 *
3445 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3446 */
3447int __sched wait_for_completion_killable(struct completion *x)
3448{
3449	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3450	if (t == -ERESTARTSYS)
3451		return t;
3452	return 0;
3453}
3454EXPORT_SYMBOL(wait_for_completion_killable);
3455
3456/**
3457 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3458 * @x:  holds the state of this particular completion
3459 * @timeout:  timeout value in jiffies
3460 *
3461 * This waits for either a completion of a specific task to be
3462 * signaled or for a specified timeout to expire. It can be
3463 * interrupted by a kill signal. The timeout is in jiffies.
3464 *
3465 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3466 * positive (at least 1, or number of jiffies left till timeout) if completed.
3467 */
3468long __sched
3469wait_for_completion_killable_timeout(struct completion *x,
3470				     unsigned long timeout)
3471{
3472	return wait_for_common(x, timeout, TASK_KILLABLE);
3473}
3474EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3475
3476/**
3477 *	try_wait_for_completion - try to decrement a completion without blocking
3478 *	@x:	completion structure
3479 *
3480 *	Returns: 0 if a decrement cannot be done without blocking
3481 *		 1 if a decrement succeeded.
3482 *
3483 *	If a completion is being used as a counting completion,
3484 *	attempt to decrement the counter without blocking. This
3485 *	enables us to avoid waiting if the resource the completion
3486 *	is protecting is not available.
3487 */
3488bool try_wait_for_completion(struct completion *x)
3489{
3490	unsigned long flags;
3491	int ret = 1;
3492
3493	spin_lock_irqsave(&x->wait.lock, flags);
3494	if (!x->done)
3495		ret = 0;
3496	else
3497		x->done--;
3498	spin_unlock_irqrestore(&x->wait.lock, flags);
3499	return ret;
3500}
3501EXPORT_SYMBOL(try_wait_for_completion);
3502
3503/**
3504 *	completion_done - Test to see if a completion has any waiters
3505 *	@x:	completion structure
3506 *
3507 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3508 *		 1 if there are no waiters.
3509 *
3510 */
3511bool completion_done(struct completion *x)
3512{
3513	unsigned long flags;
3514	int ret = 1;
3515
3516	spin_lock_irqsave(&x->wait.lock, flags);
3517	if (!x->done)
3518		ret = 0;
3519	spin_unlock_irqrestore(&x->wait.lock, flags);
3520	return ret;
3521}
3522EXPORT_SYMBOL(completion_done);
3523
3524static long __sched
3525sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3526{
3527	unsigned long flags;
3528	wait_queue_t wait;
3529
3530	init_waitqueue_entry(&wait, current);
3531
3532	__set_current_state(state);
3533
3534	spin_lock_irqsave(&q->lock, flags);
3535	__add_wait_queue(q, &wait);
3536	spin_unlock(&q->lock);
3537	timeout = schedule_timeout(timeout);
3538	spin_lock_irq(&q->lock);
3539	__remove_wait_queue(q, &wait);
3540	spin_unlock_irqrestore(&q->lock, flags);
3541
3542	return timeout;
3543}
3544
3545void __sched interruptible_sleep_on(wait_queue_head_t *q)
3546{
3547	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3548}
3549EXPORT_SYMBOL(interruptible_sleep_on);
3550
3551long __sched
3552interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3553{
3554	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3555}
3556EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3557
3558void __sched sleep_on(wait_queue_head_t *q)
3559{
3560	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3561}
3562EXPORT_SYMBOL(sleep_on);
3563
3564long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3565{
3566	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3567}
3568EXPORT_SYMBOL(sleep_on_timeout);
3569
3570#ifdef CONFIG_RT_MUTEXES
3571
3572/*
3573 * rt_mutex_setprio - set the current priority of a task
3574 * @p: task
3575 * @prio: prio value (kernel-internal form)
3576 *
3577 * This function changes the 'effective' priority of a task. It does
3578 * not touch ->normal_prio like __setscheduler().
3579 *
3580 * Used by the rt_mutex code to implement priority inheritance logic.
3581 */
3582void rt_mutex_setprio(struct task_struct *p, int prio)
3583{
3584	int oldprio, on_rq, running;
3585	struct rq *rq;
3586	const struct sched_class *prev_class;
3587
3588	BUG_ON(prio < 0 || prio > MAX_PRIO);
3589
3590	rq = __task_rq_lock(p);
3591
3592	/*
3593	 * Idle task boosting is a nono in general. There is one
3594	 * exception, when PREEMPT_RT and NOHZ is active:
3595	 *
3596	 * The idle task calls get_next_timer_interrupt() and holds
3597	 * the timer wheel base->lock on the CPU and another CPU wants
3598	 * to access the timer (probably to cancel it). We can safely
3599	 * ignore the boosting request, as the idle CPU runs this code
3600	 * with interrupts disabled and will complete the lock
3601	 * protected section without being interrupted. So there is no
3602	 * real need to boost.
3603	 */
3604	if (unlikely(p == rq->idle)) {
3605		WARN_ON(p != rq->curr);
3606		WARN_ON(p->pi_blocked_on);
3607		goto out_unlock;
3608	}
3609
3610	trace_sched_pi_setprio(p, prio);
3611	oldprio = p->prio;
3612	prev_class = p->sched_class;
3613	on_rq = p->on_rq;
3614	running = task_current(rq, p);
3615	if (on_rq)
3616		dequeue_task(rq, p, 0);
3617	if (running)
3618		p->sched_class->put_prev_task(rq, p);
3619
3620	if (rt_prio(prio))
3621		p->sched_class = &rt_sched_class;
3622	else
3623		p->sched_class = &fair_sched_class;
3624
3625	p->prio = prio;
3626
3627	if (running)
3628		p->sched_class->set_curr_task(rq);
3629	if (on_rq)
3630		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3631
3632	check_class_changed(rq, p, prev_class, oldprio);
3633out_unlock:
3634	__task_rq_unlock(rq);
3635}
3636#endif
3637void set_user_nice(struct task_struct *p, long nice)
3638{
3639	int old_prio, delta, on_rq;
3640	unsigned long flags;
3641	struct rq *rq;
3642
3643	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3644		return;
3645	/*
3646	 * We have to be careful, if called from sys_setpriority(),
3647	 * the task might be in the middle of scheduling on another CPU.
3648	 */
3649	rq = task_rq_lock(p, &flags);
3650	/*
3651	 * The RT priorities are set via sched_setscheduler(), but we still
3652	 * allow the 'normal' nice value to be set - but as expected
3653	 * it wont have any effect on scheduling until the task is
3654	 * SCHED_FIFO/SCHED_RR:
3655	 */
3656	if (task_has_rt_policy(p)) {
3657		p->static_prio = NICE_TO_PRIO(nice);
3658		goto out_unlock;
3659	}
3660	on_rq = p->on_rq;
3661	if (on_rq)
3662		dequeue_task(rq, p, 0);
3663
3664	p->static_prio = NICE_TO_PRIO(nice);
3665	set_load_weight(p);
3666	old_prio = p->prio;
3667	p->prio = effective_prio(p);
3668	delta = p->prio - old_prio;
3669
3670	if (on_rq) {
3671		enqueue_task(rq, p, 0);
3672		/*
3673		 * If the task increased its priority or is running and
3674		 * lowered its priority, then reschedule its CPU:
3675		 */
3676		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3677			resched_task(rq->curr);
3678	}
3679out_unlock:
3680	task_rq_unlock(rq, p, &flags);
3681}
3682EXPORT_SYMBOL(set_user_nice);
3683
3684/*
3685 * can_nice - check if a task can reduce its nice value
3686 * @p: task
3687 * @nice: nice value
3688 */
3689int can_nice(const struct task_struct *p, const int nice)
3690{
3691	/* convert nice value [19,-20] to rlimit style value [1,40] */
3692	int nice_rlim = 20 - nice;
3693
3694	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3695		capable(CAP_SYS_NICE));
3696}
3697
3698#ifdef __ARCH_WANT_SYS_NICE
3699
3700/*
3701 * sys_nice - change the priority of the current process.
3702 * @increment: priority increment
3703 *
3704 * sys_setpriority is a more generic, but much slower function that
3705 * does similar things.
3706 */
3707SYSCALL_DEFINE1(nice, int, increment)
3708{
3709	long nice, retval;
3710
3711	/*
3712	 * Setpriority might change our priority at the same moment.
3713	 * We don't have to worry. Conceptually one call occurs first
3714	 * and we have a single winner.
3715	 */
3716	if (increment < -40)
3717		increment = -40;
3718	if (increment > 40)
3719		increment = 40;
3720
3721	nice = TASK_NICE(current) + increment;
3722	if (nice < -20)
3723		nice = -20;
3724	if (nice > 19)
3725		nice = 19;
3726
3727	if (increment < 0 && !can_nice(current, nice))
3728		return -EPERM;
3729
3730	retval = security_task_setnice(current, nice);
3731	if (retval)
3732		return retval;
3733
3734	set_user_nice(current, nice);
3735	return 0;
3736}
3737
3738#endif
3739
3740/**
3741 * task_prio - return the priority value of a given task.
3742 * @p: the task in question.
3743 *
3744 * This is the priority value as seen by users in /proc.
3745 * RT tasks are offset by -200. Normal tasks are centered
3746 * around 0, value goes from -16 to +15.
3747 */
3748int task_prio(const struct task_struct *p)
3749{
3750	return p->prio - MAX_RT_PRIO;
3751}
3752
3753/**
3754 * task_nice - return the nice value of a given task.
3755 * @p: the task in question.
3756 */
3757int task_nice(const struct task_struct *p)
3758{
3759	return TASK_NICE(p);
3760}
3761EXPORT_SYMBOL(task_nice);
3762
3763/**
3764 * idle_cpu - is a given cpu idle currently?
3765 * @cpu: the processor in question.
3766 */
3767int idle_cpu(int cpu)
3768{
3769	struct rq *rq = cpu_rq(cpu);
3770
3771	if (rq->curr != rq->idle)
3772		return 0;
3773
3774	if (rq->nr_running)
3775		return 0;
3776
3777#ifdef CONFIG_SMP
3778	if (!llist_empty(&rq->wake_list))
3779		return 0;
3780#endif
3781
3782	return 1;
3783}
3784
3785/**
3786 * idle_task - return the idle task for a given cpu.
3787 * @cpu: the processor in question.
3788 */
3789struct task_struct *idle_task(int cpu)
3790{
3791	return cpu_rq(cpu)->idle;
3792}
3793
3794/**
3795 * find_process_by_pid - find a process with a matching PID value.
3796 * @pid: the pid in question.
3797 */
3798static struct task_struct *find_process_by_pid(pid_t pid)
3799{
3800	return pid ? find_task_by_vpid(pid) : current;
3801}
3802
3803/* Actually do priority change: must hold rq lock. */
3804static void
3805__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3806{
3807	p->policy = policy;
3808	p->rt_priority = prio;
3809	p->normal_prio = normal_prio(p);
3810	/* we are holding p->pi_lock already */
3811	p->prio = rt_mutex_getprio(p);
3812	if (rt_prio(p->prio))
3813		p->sched_class = &rt_sched_class;
3814	else
3815		p->sched_class = &fair_sched_class;
3816	set_load_weight(p);
3817}
3818
3819/*
3820 * check the target process has a UID that matches the current process's
3821 */
3822static bool check_same_owner(struct task_struct *p)
3823{
3824	const struct cred *cred = current_cred(), *pcred;
3825	bool match;
3826
3827	rcu_read_lock();
3828	pcred = __task_cred(p);
3829	match = (uid_eq(cred->euid, pcred->euid) ||
3830		 uid_eq(cred->euid, pcred->uid));
3831	rcu_read_unlock();
3832	return match;
3833}
3834
3835static int __sched_setscheduler(struct task_struct *p, int policy,
3836				const struct sched_param *param, bool user)
3837{
3838	int retval, oldprio, oldpolicy = -1, on_rq, running;
3839	unsigned long flags;
3840	const struct sched_class *prev_class;
3841	struct rq *rq;
3842	int reset_on_fork;
3843
3844	/* may grab non-irq protected spin_locks */
3845	BUG_ON(in_interrupt());
3846recheck:
3847	/* double check policy once rq lock held */
3848	if (policy < 0) {
3849		reset_on_fork = p->sched_reset_on_fork;
3850		policy = oldpolicy = p->policy;
3851	} else {
3852		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3853		policy &= ~SCHED_RESET_ON_FORK;
3854
3855		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3856				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3857				policy != SCHED_IDLE)
3858			return -EINVAL;
3859	}
3860
3861	/*
3862	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3863	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3864	 * SCHED_BATCH and SCHED_IDLE is 0.
3865	 */
3866	if (param->sched_priority < 0 ||
3867	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3868	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3869		return -EINVAL;
3870	if (rt_policy(policy) != (param->sched_priority != 0))
3871		return -EINVAL;
3872
3873	/*
3874	 * Allow unprivileged RT tasks to decrease priority:
3875	 */
3876	if (user && !capable(CAP_SYS_NICE)) {
3877		if (rt_policy(policy)) {
3878			unsigned long rlim_rtprio =
3879					task_rlimit(p, RLIMIT_RTPRIO);
3880
3881			/* can't set/change the rt policy */
3882			if (policy != p->policy && !rlim_rtprio)
3883				return -EPERM;
3884
3885			/* can't increase priority */
3886			if (param->sched_priority > p->rt_priority &&
3887			    param->sched_priority > rlim_rtprio)
3888				return -EPERM;
3889		}
3890
3891		/*
3892		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3893		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3894		 */
3895		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3896			if (!can_nice(p, TASK_NICE(p)))
3897				return -EPERM;
3898		}
3899
3900		/* can't change other user's priorities */
3901		if (!check_same_owner(p))
3902			return -EPERM;
3903
3904		/* Normal users shall not reset the sched_reset_on_fork flag */
3905		if (p->sched_reset_on_fork && !reset_on_fork)
3906			return -EPERM;
3907	}
3908
3909	if (user) {
3910		retval = security_task_setscheduler(p);
3911		if (retval)
3912			return retval;
3913	}
3914
3915	/*
3916	 * make sure no PI-waiters arrive (or leave) while we are
3917	 * changing the priority of the task:
3918	 *
3919	 * To be able to change p->policy safely, the appropriate
3920	 * runqueue lock must be held.
3921	 */
3922	rq = task_rq_lock(p, &flags);
3923
3924	/*
3925	 * Changing the policy of the stop threads its a very bad idea
3926	 */
3927	if (p == rq->stop) {
3928		task_rq_unlock(rq, p, &flags);
3929		return -EINVAL;
3930	}
3931
3932	/*
3933	 * If not changing anything there's no need to proceed further:
3934	 */
3935	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3936			param->sched_priority == p->rt_priority))) {
3937		task_rq_unlock(rq, p, &flags);
3938		return 0;
3939	}
3940
3941#ifdef CONFIG_RT_GROUP_SCHED
3942	if (user) {
3943		/*
3944		 * Do not allow realtime tasks into groups that have no runtime
3945		 * assigned.
3946		 */
3947		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3948				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3949				!task_group_is_autogroup(task_group(p))) {
3950			task_rq_unlock(rq, p, &flags);
3951			return -EPERM;
3952		}
3953	}
3954#endif
3955
3956	/* recheck policy now with rq lock held */
3957	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3958		policy = oldpolicy = -1;
3959		task_rq_unlock(rq, p, &flags);
3960		goto recheck;
3961	}
3962	on_rq = p->on_rq;
3963	running = task_current(rq, p);
3964	if (on_rq)
3965		dequeue_task(rq, p, 0);
3966	if (running)
3967		p->sched_class->put_prev_task(rq, p);
3968
3969	p->sched_reset_on_fork = reset_on_fork;
3970
3971	oldprio = p->prio;
3972	prev_class = p->sched_class;
3973	__setscheduler(rq, p, policy, param->sched_priority);
3974
3975	if (running)
3976		p->sched_class->set_curr_task(rq);
3977	if (on_rq)
3978		enqueue_task(rq, p, 0);
3979
3980	check_class_changed(rq, p, prev_class, oldprio);
3981	task_rq_unlock(rq, p, &flags);
3982
3983	rt_mutex_adjust_pi(p);
3984
3985	return 0;
3986}
3987
3988/**
3989 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3990 * @p: the task in question.
3991 * @policy: new policy.
3992 * @param: structure containing the new RT priority.
3993 *
3994 * NOTE that the task may be already dead.
3995 */
3996int sched_setscheduler(struct task_struct *p, int policy,
3997		       const struct sched_param *param)
3998{
3999	return __sched_setscheduler(p, policy, param, true);
4000}
4001EXPORT_SYMBOL_GPL(sched_setscheduler);
4002
4003/**
4004 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4005 * @p: the task in question.
4006 * @policy: new policy.
4007 * @param: structure containing the new RT priority.
4008 *
4009 * Just like sched_setscheduler, only don't bother checking if the
4010 * current context has permission.  For example, this is needed in
4011 * stop_machine(): we create temporary high priority worker threads,
4012 * but our caller might not have that capability.
4013 */
4014int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4015			       const struct sched_param *param)
4016{
4017	return __sched_setscheduler(p, policy, param, false);
4018}
4019
4020static int
4021do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4022{
4023	struct sched_param lparam;
4024	struct task_struct *p;
4025	int retval;
4026
4027	if (!param || pid < 0)
4028		return -EINVAL;
4029	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4030		return -EFAULT;
4031
4032	rcu_read_lock();
4033	retval = -ESRCH;
4034	p = find_process_by_pid(pid);
4035	if (p != NULL)
4036		retval = sched_setscheduler(p, policy, &lparam);
4037	rcu_read_unlock();
4038
4039	return retval;
4040}
4041
4042/**
4043 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4044 * @pid: the pid in question.
4045 * @policy: new policy.
4046 * @param: structure containing the new RT priority.
4047 */
4048SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4049		struct sched_param __user *, param)
4050{
4051	/* negative values for policy are not valid */
4052	if (policy < 0)
4053		return -EINVAL;
4054
4055	return do_sched_setscheduler(pid, policy, param);
4056}
4057
4058/**
4059 * sys_sched_setparam - set/change the RT priority of a thread
4060 * @pid: the pid in question.
4061 * @param: structure containing the new RT priority.
4062 */
4063SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4064{
4065	return do_sched_setscheduler(pid, -1, param);
4066}
4067
4068/**
4069 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4070 * @pid: the pid in question.
4071 */
4072SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4073{
4074	struct task_struct *p;
4075	int retval;
4076
4077	if (pid < 0)
4078		return -EINVAL;
4079
4080	retval = -ESRCH;
4081	rcu_read_lock();
4082	p = find_process_by_pid(pid);
4083	if (p) {
4084		retval = security_task_getscheduler(p);
4085		if (!retval)
4086			retval = p->policy
4087				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4088	}
4089	rcu_read_unlock();
4090	return retval;
4091}
4092
4093/**
4094 * sys_sched_getparam - get the RT priority of a thread
4095 * @pid: the pid in question.
4096 * @param: structure containing the RT priority.
4097 */
4098SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4099{
4100	struct sched_param lp;
4101	struct task_struct *p;
4102	int retval;
4103
4104	if (!param || pid < 0)
4105		return -EINVAL;
4106
4107	rcu_read_lock();
4108	p = find_process_by_pid(pid);
4109	retval = -ESRCH;
4110	if (!p)
4111		goto out_unlock;
4112
4113	retval = security_task_getscheduler(p);
4114	if (retval)
4115		goto out_unlock;
4116
4117	lp.sched_priority = p->rt_priority;
4118	rcu_read_unlock();
4119
4120	/*
4121	 * This one might sleep, we cannot do it with a spinlock held ...
4122	 */
4123	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4124
4125	return retval;
4126
4127out_unlock:
4128	rcu_read_unlock();
4129	return retval;
4130}
4131
4132long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4133{
4134	cpumask_var_t cpus_allowed, new_mask;
4135	struct task_struct *p;
4136	int retval;
4137
4138	get_online_cpus();
4139	rcu_read_lock();
4140
4141	p = find_process_by_pid(pid);
4142	if (!p) {
4143		rcu_read_unlock();
4144		put_online_cpus();
4145		return -ESRCH;
4146	}
4147
4148	/* Prevent p going away */
4149	get_task_struct(p);
4150	rcu_read_unlock();
4151
4152	if (p->flags & PF_NO_SETAFFINITY) {
4153		retval = -EINVAL;
4154		goto out_put_task;
4155	}
4156	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4157		retval = -ENOMEM;
4158		goto out_put_task;
4159	}
4160	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4161		retval = -ENOMEM;
4162		goto out_free_cpus_allowed;
4163	}
4164	retval = -EPERM;
4165	if (!check_same_owner(p)) {
4166		rcu_read_lock();
4167		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4168			rcu_read_unlock();
4169			goto out_unlock;
4170		}
4171		rcu_read_unlock();
4172	}
4173
4174	retval = security_task_setscheduler(p);
4175	if (retval)
4176		goto out_unlock;
4177
4178	cpuset_cpus_allowed(p, cpus_allowed);
4179	cpumask_and(new_mask, in_mask, cpus_allowed);
4180again:
4181	retval = set_cpus_allowed_ptr(p, new_mask);
4182
4183	if (!retval) {
4184		cpuset_cpus_allowed(p, cpus_allowed);
4185		if (!cpumask_subset(new_mask, cpus_allowed)) {
4186			/*
4187			 * We must have raced with a concurrent cpuset
4188			 * update. Just reset the cpus_allowed to the
4189			 * cpuset's cpus_allowed
4190			 */
4191			cpumask_copy(new_mask, cpus_allowed);
4192			goto again;
4193		}
4194	}
4195out_unlock:
4196	free_cpumask_var(new_mask);
4197out_free_cpus_allowed:
4198	free_cpumask_var(cpus_allowed);
4199out_put_task:
4200	put_task_struct(p);
4201	put_online_cpus();
4202	return retval;
4203}
4204
4205static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4206			     struct cpumask *new_mask)
4207{
4208	if (len < cpumask_size())
4209		cpumask_clear(new_mask);
4210	else if (len > cpumask_size())
4211		len = cpumask_size();
4212
4213	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4214}
4215
4216/**
4217 * sys_sched_setaffinity - set the cpu affinity of a process
4218 * @pid: pid of the process
4219 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4220 * @user_mask_ptr: user-space pointer to the new cpu mask
4221 */
4222SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4223		unsigned long __user *, user_mask_ptr)
4224{
4225	cpumask_var_t new_mask;
4226	int retval;
4227
4228	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4229		return -ENOMEM;
4230
4231	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4232	if (retval == 0)
4233		retval = sched_setaffinity(pid, new_mask);
4234	free_cpumask_var(new_mask);
4235	return retval;
4236}
4237
4238long sched_getaffinity(pid_t pid, struct cpumask *mask)
4239{
4240	struct task_struct *p;
4241	unsigned long flags;
4242	int retval;
4243
4244	get_online_cpus();
4245	rcu_read_lock();
4246
4247	retval = -ESRCH;
4248	p = find_process_by_pid(pid);
4249	if (!p)
4250		goto out_unlock;
4251
4252	retval = security_task_getscheduler(p);
4253	if (retval)
4254		goto out_unlock;
4255
4256	raw_spin_lock_irqsave(&p->pi_lock, flags);
4257	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4258	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4259
4260out_unlock:
4261	rcu_read_unlock();
4262	put_online_cpus();
4263
4264	return retval;
4265}
4266
4267/**
4268 * sys_sched_getaffinity - get the cpu affinity of a process
4269 * @pid: pid of the process
4270 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4271 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4272 */
4273SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4274		unsigned long __user *, user_mask_ptr)
4275{
4276	int ret;
4277	cpumask_var_t mask;
4278
4279	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4280		return -EINVAL;
4281	if (len & (sizeof(unsigned long)-1))
4282		return -EINVAL;
4283
4284	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4285		return -ENOMEM;
4286
4287	ret = sched_getaffinity(pid, mask);
4288	if (ret == 0) {
4289		size_t retlen = min_t(size_t, len, cpumask_size());
4290
4291		if (copy_to_user(user_mask_ptr, mask, retlen))
4292			ret = -EFAULT;
4293		else
4294			ret = retlen;
4295	}
4296	free_cpumask_var(mask);
4297
4298	return ret;
4299}
4300
4301/**
4302 * sys_sched_yield - yield the current processor to other threads.
4303 *
4304 * This function yields the current CPU to other tasks. If there are no
4305 * other threads running on this CPU then this function will return.
4306 */
4307SYSCALL_DEFINE0(sched_yield)
4308{
4309	struct rq *rq = this_rq_lock();
4310
4311	schedstat_inc(rq, yld_count);
4312	current->sched_class->yield_task(rq);
4313
4314	/*
4315	 * Since we are going to call schedule() anyway, there's
4316	 * no need to preempt or enable interrupts:
4317	 */
4318	__release(rq->lock);
4319	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4320	do_raw_spin_unlock(&rq->lock);
4321	sched_preempt_enable_no_resched();
4322
4323	schedule();
4324
4325	return 0;
4326}
4327
4328static inline int should_resched(void)
4329{
4330	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4331}
4332
4333static void __cond_resched(void)
4334{
4335	add_preempt_count(PREEMPT_ACTIVE);
4336	__schedule();
4337	sub_preempt_count(PREEMPT_ACTIVE);
4338}
4339
4340int __sched _cond_resched(void)
4341{
4342	if (should_resched()) {
4343		__cond_resched();
4344		return 1;
4345	}
4346	return 0;
4347}
4348EXPORT_SYMBOL(_cond_resched);
4349
4350/*
4351 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4352 * call schedule, and on return reacquire the lock.
4353 *
4354 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4355 * operations here to prevent schedule() from being called twice (once via
4356 * spin_unlock(), once by hand).
4357 */
4358int __cond_resched_lock(spinlock_t *lock)
4359{
4360	int resched = should_resched();
4361	int ret = 0;
4362
4363	lockdep_assert_held(lock);
4364
4365	if (spin_needbreak(lock) || resched) {
4366		spin_unlock(lock);
4367		if (resched)
4368			__cond_resched();
4369		else
4370			cpu_relax();
4371		ret = 1;
4372		spin_lock(lock);
4373	}
4374	return ret;
4375}
4376EXPORT_SYMBOL(__cond_resched_lock);
4377
4378int __sched __cond_resched_softirq(void)
4379{
4380	BUG_ON(!in_softirq());
4381
4382	if (should_resched()) {
4383		local_bh_enable();
4384		__cond_resched();
4385		local_bh_disable();
4386		return 1;
4387	}
4388	return 0;
4389}
4390EXPORT_SYMBOL(__cond_resched_softirq);
4391
4392/**
4393 * yield - yield the current processor to other threads.
4394 *
4395 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4396 *
4397 * The scheduler is at all times free to pick the calling task as the most
4398 * eligible task to run, if removing the yield() call from your code breaks
4399 * it, its already broken.
4400 *
4401 * Typical broken usage is:
4402 *
4403 * while (!event)
4404 * 	yield();
4405 *
4406 * where one assumes that yield() will let 'the other' process run that will
4407 * make event true. If the current task is a SCHED_FIFO task that will never
4408 * happen. Never use yield() as a progress guarantee!!
4409 *
4410 * If you want to use yield() to wait for something, use wait_event().
4411 * If you want to use yield() to be 'nice' for others, use cond_resched().
4412 * If you still want to use yield(), do not!
4413 */
4414void __sched yield(void)
4415{
4416	set_current_state(TASK_RUNNING);
4417	sys_sched_yield();
4418}
4419EXPORT_SYMBOL(yield);
4420
4421/**
4422 * yield_to - yield the current processor to another thread in
4423 * your thread group, or accelerate that thread toward the
4424 * processor it's on.
4425 * @p: target task
4426 * @preempt: whether task preemption is allowed or not
4427 *
4428 * It's the caller's job to ensure that the target task struct
4429 * can't go away on us before we can do any checks.
4430 *
4431 * Returns:
4432 *	true (>0) if we indeed boosted the target task.
4433 *	false (0) if we failed to boost the target.
4434 *	-ESRCH if there's no task to yield to.
4435 */
4436bool __sched yield_to(struct task_struct *p, bool preempt)
4437{
4438	struct task_struct *curr = current;
4439	struct rq *rq, *p_rq;
4440	unsigned long flags;
4441	int yielded = 0;
4442
4443	local_irq_save(flags);
4444	rq = this_rq();
4445
4446again:
4447	p_rq = task_rq(p);
4448	/*
4449	 * If we're the only runnable task on the rq and target rq also
4450	 * has only one task, there's absolutely no point in yielding.
4451	 */
4452	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4453		yielded = -ESRCH;
4454		goto out_irq;
4455	}
4456
4457	double_rq_lock(rq, p_rq);
4458	while (task_rq(p) != p_rq) {
4459		double_rq_unlock(rq, p_rq);
4460		goto again;
4461	}
4462
4463	if (!curr->sched_class->yield_to_task)
4464		goto out_unlock;
4465
4466	if (curr->sched_class != p->sched_class)
4467		goto out_unlock;
4468
4469	if (task_running(p_rq, p) || p->state)
4470		goto out_unlock;
4471
4472	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4473	if (yielded) {
4474		schedstat_inc(rq, yld_count);
4475		/*
4476		 * Make p's CPU reschedule; pick_next_entity takes care of
4477		 * fairness.
4478		 */
4479		if (preempt && rq != p_rq)
4480			resched_task(p_rq->curr);
4481	}
4482
4483out_unlock:
4484	double_rq_unlock(rq, p_rq);
4485out_irq:
4486	local_irq_restore(flags);
4487
4488	if (yielded > 0)
4489		schedule();
4490
4491	return yielded;
4492}
4493EXPORT_SYMBOL_GPL(yield_to);
4494
4495/*
4496 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4497 * that process accounting knows that this is a task in IO wait state.
4498 */
4499void __sched io_schedule(void)
4500{
4501	struct rq *rq = raw_rq();
4502
4503	delayacct_blkio_start();
4504	atomic_inc(&rq->nr_iowait);
4505	blk_flush_plug(current);
4506	current->in_iowait = 1;
4507	schedule();
4508	current->in_iowait = 0;
4509	atomic_dec(&rq->nr_iowait);
4510	delayacct_blkio_end();
4511}
4512EXPORT_SYMBOL(io_schedule);
4513
4514long __sched io_schedule_timeout(long timeout)
4515{
4516	struct rq *rq = raw_rq();
4517	long ret;
4518
4519	delayacct_blkio_start();
4520	atomic_inc(&rq->nr_iowait);
4521	blk_flush_plug(current);
4522	current->in_iowait = 1;
4523	ret = schedule_timeout(timeout);
4524	current->in_iowait = 0;
4525	atomic_dec(&rq->nr_iowait);
4526	delayacct_blkio_end();
4527	return ret;
4528}
4529
4530/**
4531 * sys_sched_get_priority_max - return maximum RT priority.
4532 * @policy: scheduling class.
4533 *
4534 * this syscall returns the maximum rt_priority that can be used
4535 * by a given scheduling class.
4536 */
4537SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4538{
4539	int ret = -EINVAL;
4540
4541	switch (policy) {
4542	case SCHED_FIFO:
4543	case SCHED_RR:
4544		ret = MAX_USER_RT_PRIO-1;
4545		break;
4546	case SCHED_NORMAL:
4547	case SCHED_BATCH:
4548	case SCHED_IDLE:
4549		ret = 0;
4550		break;
4551	}
4552	return ret;
4553}
4554
4555/**
4556 * sys_sched_get_priority_min - return minimum RT priority.
4557 * @policy: scheduling class.
4558 *
4559 * this syscall returns the minimum rt_priority that can be used
4560 * by a given scheduling class.
4561 */
4562SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4563{
4564	int ret = -EINVAL;
4565
4566	switch (policy) {
4567	case SCHED_FIFO:
4568	case SCHED_RR:
4569		ret = 1;
4570		break;
4571	case SCHED_NORMAL:
4572	case SCHED_BATCH:
4573	case SCHED_IDLE:
4574		ret = 0;
4575	}
4576	return ret;
4577}
4578
4579/**
4580 * sys_sched_rr_get_interval - return the default timeslice of a process.
4581 * @pid: pid of the process.
4582 * @interval: userspace pointer to the timeslice value.
4583 *
4584 * this syscall writes the default timeslice value of a given process
4585 * into the user-space timespec buffer. A value of '0' means infinity.
4586 */
4587SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4588		struct timespec __user *, interval)
4589{
4590	struct task_struct *p;
4591	unsigned int time_slice;
4592	unsigned long flags;
4593	struct rq *rq;
4594	int retval;
4595	struct timespec t;
4596
4597	if (pid < 0)
4598		return -EINVAL;
4599
4600	retval = -ESRCH;
4601	rcu_read_lock();
4602	p = find_process_by_pid(pid);
4603	if (!p)
4604		goto out_unlock;
4605
4606	retval = security_task_getscheduler(p);
4607	if (retval)
4608		goto out_unlock;
4609
4610	rq = task_rq_lock(p, &flags);
4611	time_slice = p->sched_class->get_rr_interval(rq, p);
4612	task_rq_unlock(rq, p, &flags);
4613
4614	rcu_read_unlock();
4615	jiffies_to_timespec(time_slice, &t);
4616	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4617	return retval;
4618
4619out_unlock:
4620	rcu_read_unlock();
4621	return retval;
4622}
4623
4624static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4625
4626void sched_show_task(struct task_struct *p)
4627{
4628	unsigned long free = 0;
4629	int ppid;
4630	unsigned state;
4631
4632	state = p->state ? __ffs(p->state) + 1 : 0;
4633	printk(KERN_INFO "%-15.15s %c", p->comm,
4634		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4635#if BITS_PER_LONG == 32
4636	if (state == TASK_RUNNING)
4637		printk(KERN_CONT " running  ");
4638	else
4639		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4640#else
4641	if (state == TASK_RUNNING)
4642		printk(KERN_CONT "  running task    ");
4643	else
4644		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4645#endif
4646#ifdef CONFIG_DEBUG_STACK_USAGE
4647	free = stack_not_used(p);
4648#endif
4649	rcu_read_lock();
4650	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4651	rcu_read_unlock();
4652	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4653		task_pid_nr(p), ppid,
4654		(unsigned long)task_thread_info(p)->flags);
4655
4656	print_worker_info(KERN_INFO, p);
4657	show_stack(p, NULL);
4658}
4659
4660void show_state_filter(unsigned long state_filter)
4661{
4662	struct task_struct *g, *p;
4663
4664#if BITS_PER_LONG == 32
4665	printk(KERN_INFO
4666		"  task                PC stack   pid father\n");
4667#else
4668	printk(KERN_INFO
4669		"  task                        PC stack   pid father\n");
4670#endif
4671	rcu_read_lock();
4672	do_each_thread(g, p) {
4673		/*
4674		 * reset the NMI-timeout, listing all files on a slow
4675		 * console might take a lot of time:
4676		 */
4677		touch_nmi_watchdog();
4678		if (!state_filter || (p->state & state_filter))
4679			sched_show_task(p);
4680	} while_each_thread(g, p);
4681
4682	touch_all_softlockup_watchdogs();
4683
4684#ifdef CONFIG_SCHED_DEBUG
4685	sysrq_sched_debug_show();
4686#endif
4687	rcu_read_unlock();
4688	/*
4689	 * Only show locks if all tasks are dumped:
4690	 */
4691	if (!state_filter)
4692		debug_show_all_locks();
4693}
4694
4695void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4696{
4697	idle->sched_class = &idle_sched_class;
4698}
4699
4700/**
4701 * init_idle - set up an idle thread for a given CPU
4702 * @idle: task in question
4703 * @cpu: cpu the idle task belongs to
4704 *
4705 * NOTE: this function does not set the idle thread's NEED_RESCHED
4706 * flag, to make booting more robust.
4707 */
4708void __cpuinit init_idle(struct task_struct *idle, int cpu)
4709{
4710	struct rq *rq = cpu_rq(cpu);
4711	unsigned long flags;
4712
4713	raw_spin_lock_irqsave(&rq->lock, flags);
4714
4715	__sched_fork(idle);
4716	idle->state = TASK_RUNNING;
4717	idle->se.exec_start = sched_clock();
4718
4719	do_set_cpus_allowed(idle, cpumask_of(cpu));
4720	/*
4721	 * We're having a chicken and egg problem, even though we are
4722	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4723	 * lockdep check in task_group() will fail.
4724	 *
4725	 * Similar case to sched_fork(). / Alternatively we could
4726	 * use task_rq_lock() here and obtain the other rq->lock.
4727	 *
4728	 * Silence PROVE_RCU
4729	 */
4730	rcu_read_lock();
4731	__set_task_cpu(idle, cpu);
4732	rcu_read_unlock();
4733
4734	rq->curr = rq->idle = idle;
4735#if defined(CONFIG_SMP)
4736	idle->on_cpu = 1;
4737#endif
4738	raw_spin_unlock_irqrestore(&rq->lock, flags);
4739
4740	/* Set the preempt count _outside_ the spinlocks! */
4741	task_thread_info(idle)->preempt_count = 0;
4742
4743	/*
4744	 * The idle tasks have their own, simple scheduling class:
4745	 */
4746	idle->sched_class = &idle_sched_class;
4747	ftrace_graph_init_idle_task(idle, cpu);
4748	vtime_init_idle(idle, cpu);
4749#if defined(CONFIG_SMP)
4750	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4751#endif
4752}
4753
4754#ifdef CONFIG_SMP
4755void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4756{
4757	if (p->sched_class && p->sched_class->set_cpus_allowed)
4758		p->sched_class->set_cpus_allowed(p, new_mask);
4759
4760	cpumask_copy(&p->cpus_allowed, new_mask);
4761	p->nr_cpus_allowed = cpumask_weight(new_mask);
4762}
4763
4764/*
4765 * This is how migration works:
4766 *
4767 * 1) we invoke migration_cpu_stop() on the target CPU using
4768 *    stop_one_cpu().
4769 * 2) stopper starts to run (implicitly forcing the migrated thread
4770 *    off the CPU)
4771 * 3) it checks whether the migrated task is still in the wrong runqueue.
4772 * 4) if it's in the wrong runqueue then the migration thread removes
4773 *    it and puts it into the right queue.
4774 * 5) stopper completes and stop_one_cpu() returns and the migration
4775 *    is done.
4776 */
4777
4778/*
4779 * Change a given task's CPU affinity. Migrate the thread to a
4780 * proper CPU and schedule it away if the CPU it's executing on
4781 * is removed from the allowed bitmask.
4782 *
4783 * NOTE: the caller must have a valid reference to the task, the
4784 * task must not exit() & deallocate itself prematurely. The
4785 * call is not atomic; no spinlocks may be held.
4786 */
4787int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4788{
4789	unsigned long flags;
4790	struct rq *rq;
4791	unsigned int dest_cpu;
4792	int ret = 0;
4793
4794	rq = task_rq_lock(p, &flags);
4795
4796	if (cpumask_equal(&p->cpus_allowed, new_mask))
4797		goto out;
4798
4799	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4800		ret = -EINVAL;
4801		goto out;
4802	}
4803
4804	do_set_cpus_allowed(p, new_mask);
4805
4806	/* Can the task run on the task's current CPU? If so, we're done */
4807	if (cpumask_test_cpu(task_cpu(p), new_mask))
4808		goto out;
4809
4810	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4811	if (p->on_rq) {
4812		struct migration_arg arg = { p, dest_cpu };
4813		/* Need help from migration thread: drop lock and wait. */
4814		task_rq_unlock(rq, p, &flags);
4815		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4816		tlb_migrate_finish(p->mm);
4817		return 0;
4818	}
4819out:
4820	task_rq_unlock(rq, p, &flags);
4821
4822	return ret;
4823}
4824EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4825
4826/*
4827 * Move (not current) task off this cpu, onto dest cpu. We're doing
4828 * this because either it can't run here any more (set_cpus_allowed()
4829 * away from this CPU, or CPU going down), or because we're
4830 * attempting to rebalance this task on exec (sched_exec).
4831 *
4832 * So we race with normal scheduler movements, but that's OK, as long
4833 * as the task is no longer on this CPU.
4834 *
4835 * Returns non-zero if task was successfully migrated.
4836 */
4837static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4838{
4839	struct rq *rq_dest, *rq_src;
4840	int ret = 0;
4841
4842	if (unlikely(!cpu_active(dest_cpu)))
4843		return ret;
4844
4845	rq_src = cpu_rq(src_cpu);
4846	rq_dest = cpu_rq(dest_cpu);
4847
4848	raw_spin_lock(&p->pi_lock);
4849	double_rq_lock(rq_src, rq_dest);
4850	/* Already moved. */
4851	if (task_cpu(p) != src_cpu)
4852		goto done;
4853	/* Affinity changed (again). */
4854	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4855		goto fail;
4856
4857	/*
4858	 * If we're not on a rq, the next wake-up will ensure we're
4859	 * placed properly.
4860	 */
4861	if (p->on_rq) {
4862		dequeue_task(rq_src, p, 0);
4863		set_task_cpu(p, dest_cpu);
4864		enqueue_task(rq_dest, p, 0);
4865		check_preempt_curr(rq_dest, p, 0);
4866	}
4867done:
4868	ret = 1;
4869fail:
4870	double_rq_unlock(rq_src, rq_dest);
4871	raw_spin_unlock(&p->pi_lock);
4872	return ret;
4873}
4874
4875/*
4876 * migration_cpu_stop - this will be executed by a highprio stopper thread
4877 * and performs thread migration by bumping thread off CPU then
4878 * 'pushing' onto another runqueue.
4879 */
4880static int migration_cpu_stop(void *data)
4881{
4882	struct migration_arg *arg = data;
4883
4884	/*
4885	 * The original target cpu might have gone down and we might
4886	 * be on another cpu but it doesn't matter.
4887	 */
4888	local_irq_disable();
4889	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4890	local_irq_enable();
4891	return 0;
4892}
4893
4894#ifdef CONFIG_HOTPLUG_CPU
4895
4896/*
4897 * Ensures that the idle task is using init_mm right before its cpu goes
4898 * offline.
4899 */
4900void idle_task_exit(void)
4901{
4902	struct mm_struct *mm = current->active_mm;
4903
4904	BUG_ON(cpu_online(smp_processor_id()));
4905
4906	if (mm != &init_mm)
4907		switch_mm(mm, &init_mm, current);
4908	mmdrop(mm);
4909}
4910
4911/*
4912 * Since this CPU is going 'away' for a while, fold any nr_active delta
4913 * we might have. Assumes we're called after migrate_tasks() so that the
4914 * nr_active count is stable.
4915 *
4916 * Also see the comment "Global load-average calculations".
4917 */
4918static void calc_load_migrate(struct rq *rq)
4919{
4920	long delta = calc_load_fold_active(rq);
4921	if (delta)
4922		atomic_long_add(delta, &calc_load_tasks);
4923}
4924
4925/*
4926 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4927 * try_to_wake_up()->select_task_rq().
4928 *
4929 * Called with rq->lock held even though we'er in stop_machine() and
4930 * there's no concurrency possible, we hold the required locks anyway
4931 * because of lock validation efforts.
4932 */
4933static void migrate_tasks(unsigned int dead_cpu)
4934{
4935	struct rq *rq = cpu_rq(dead_cpu);
4936	struct task_struct *next, *stop = rq->stop;
4937	int dest_cpu;
4938
4939	/*
4940	 * Fudge the rq selection such that the below task selection loop
4941	 * doesn't get stuck on the currently eligible stop task.
4942	 *
4943	 * We're currently inside stop_machine() and the rq is either stuck
4944	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4945	 * either way we should never end up calling schedule() until we're
4946	 * done here.
4947	 */
4948	rq->stop = NULL;
4949
4950	for ( ; ; ) {
4951		/*
4952		 * There's this thread running, bail when that's the only
4953		 * remaining thread.
4954		 */
4955		if (rq->nr_running == 1)
4956			break;
4957
4958		next = pick_next_task(rq);
4959		BUG_ON(!next);
4960		next->sched_class->put_prev_task(rq, next);
4961
4962		/* Find suitable destination for @next, with force if needed. */
4963		dest_cpu = select_fallback_rq(dead_cpu, next);
4964		raw_spin_unlock(&rq->lock);
4965
4966		__migrate_task(next, dead_cpu, dest_cpu);
4967
4968		raw_spin_lock(&rq->lock);
4969	}
4970
4971	rq->stop = stop;
4972}
4973
4974#endif /* CONFIG_HOTPLUG_CPU */
4975
4976#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4977
4978static struct ctl_table sd_ctl_dir[] = {
4979	{
4980		.procname	= "sched_domain",
4981		.mode		= 0555,
4982	},
4983	{}
4984};
4985
4986static struct ctl_table sd_ctl_root[] = {
4987	{
4988		.procname	= "kernel",
4989		.mode		= 0555,
4990		.child		= sd_ctl_dir,
4991	},
4992	{}
4993};
4994
4995static struct ctl_table *sd_alloc_ctl_entry(int n)
4996{
4997	struct ctl_table *entry =
4998		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4999
5000	return entry;
5001}
5002
5003static void sd_free_ctl_entry(struct ctl_table **tablep)
5004{
5005	struct ctl_table *entry;
5006
5007	/*
5008	 * In the intermediate directories, both the child directory and
5009	 * procname are dynamically allocated and could fail but the mode
5010	 * will always be set. In the lowest directory the names are
5011	 * static strings and all have proc handlers.
5012	 */
5013	for (entry = *tablep; entry->mode; entry++) {
5014		if (entry->child)
5015			sd_free_ctl_entry(&entry->child);
5016		if (entry->proc_handler == NULL)
5017			kfree(entry->procname);
5018	}
5019
5020	kfree(*tablep);
5021	*tablep = NULL;
5022}
5023
5024static int min_load_idx = 0;
5025static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5026
5027static void
5028set_table_entry(struct ctl_table *entry,
5029		const char *procname, void *data, int maxlen,
5030		umode_t mode, proc_handler *proc_handler,
5031		bool load_idx)
5032{
5033	entry->procname = procname;
5034	entry->data = data;
5035	entry->maxlen = maxlen;
5036	entry->mode = mode;
5037	entry->proc_handler = proc_handler;
5038
5039	if (load_idx) {
5040		entry->extra1 = &min_load_idx;
5041		entry->extra2 = &max_load_idx;
5042	}
5043}
5044
5045static struct ctl_table *
5046sd_alloc_ctl_domain_table(struct sched_domain *sd)
5047{
5048	struct ctl_table *table = sd_alloc_ctl_entry(13);
5049
5050	if (table == NULL)
5051		return NULL;
5052
5053	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5054		sizeof(long), 0644, proc_doulongvec_minmax, false);
5055	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5056		sizeof(long), 0644, proc_doulongvec_minmax, false);
5057	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5058		sizeof(int), 0644, proc_dointvec_minmax, true);
5059	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5060		sizeof(int), 0644, proc_dointvec_minmax, true);
5061	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5062		sizeof(int), 0644, proc_dointvec_minmax, true);
5063	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5064		sizeof(int), 0644, proc_dointvec_minmax, true);
5065	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5066		sizeof(int), 0644, proc_dointvec_minmax, true);
5067	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5068		sizeof(int), 0644, proc_dointvec_minmax, false);
5069	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5070		sizeof(int), 0644, proc_dointvec_minmax, false);
5071	set_table_entry(&table[9], "cache_nice_tries",
5072		&sd->cache_nice_tries,
5073		sizeof(int), 0644, proc_dointvec_minmax, false);
5074	set_table_entry(&table[10], "flags", &sd->flags,
5075		sizeof(int), 0644, proc_dointvec_minmax, false);
5076	set_table_entry(&table[11], "name", sd->name,
5077		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5078	/* &table[12] is terminator */
5079
5080	return table;
5081}
5082
5083static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5084{
5085	struct ctl_table *entry, *table;
5086	struct sched_domain *sd;
5087	int domain_num = 0, i;
5088	char buf[32];
5089
5090	for_each_domain(cpu, sd)
5091		domain_num++;
5092	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5093	if (table == NULL)
5094		return NULL;
5095
5096	i = 0;
5097	for_each_domain(cpu, sd) {
5098		snprintf(buf, 32, "domain%d", i);
5099		entry->procname = kstrdup(buf, GFP_KERNEL);
5100		entry->mode = 0555;
5101		entry->child = sd_alloc_ctl_domain_table(sd);
5102		entry++;
5103		i++;
5104	}
5105	return table;
5106}
5107
5108static struct ctl_table_header *sd_sysctl_header;
5109static void register_sched_domain_sysctl(void)
5110{
5111	int i, cpu_num = num_possible_cpus();
5112	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5113	char buf[32];
5114
5115	WARN_ON(sd_ctl_dir[0].child);
5116	sd_ctl_dir[0].child = entry;
5117
5118	if (entry == NULL)
5119		return;
5120
5121	for_each_possible_cpu(i) {
5122		snprintf(buf, 32, "cpu%d", i);
5123		entry->procname = kstrdup(buf, GFP_KERNEL);
5124		entry->mode = 0555;
5125		entry->child = sd_alloc_ctl_cpu_table(i);
5126		entry++;
5127	}
5128
5129	WARN_ON(sd_sysctl_header);
5130	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5131}
5132
5133/* may be called multiple times per register */
5134static void unregister_sched_domain_sysctl(void)
5135{
5136	if (sd_sysctl_header)
5137		unregister_sysctl_table(sd_sysctl_header);
5138	sd_sysctl_header = NULL;
5139	if (sd_ctl_dir[0].child)
5140		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5141}
5142#else
5143static void register_sched_domain_sysctl(void)
5144{
5145}
5146static void unregister_sched_domain_sysctl(void)
5147{
5148}
5149#endif
5150
5151static void set_rq_online(struct rq *rq)
5152{
5153	if (!rq->online) {
5154		const struct sched_class *class;
5155
5156		cpumask_set_cpu(rq->cpu, rq->rd->online);
5157		rq->online = 1;
5158
5159		for_each_class(class) {
5160			if (class->rq_online)
5161				class->rq_online(rq);
5162		}
5163	}
5164}
5165
5166static void set_rq_offline(struct rq *rq)
5167{
5168	if (rq->online) {
5169		const struct sched_class *class;
5170
5171		for_each_class(class) {
5172			if (class->rq_offline)
5173				class->rq_offline(rq);
5174		}
5175
5176		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5177		rq->online = 0;
5178	}
5179}
5180
5181/*
5182 * migration_call - callback that gets triggered when a CPU is added.
5183 * Here we can start up the necessary migration thread for the new CPU.
5184 */
5185static int __cpuinit
5186migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5187{
5188	int cpu = (long)hcpu;
5189	unsigned long flags;
5190	struct rq *rq = cpu_rq(cpu);
5191
5192	switch (action & ~CPU_TASKS_FROZEN) {
5193
5194	case CPU_UP_PREPARE:
5195		rq->calc_load_update = calc_load_update;
5196		break;
5197
5198	case CPU_ONLINE:
5199		/* Update our root-domain */
5200		raw_spin_lock_irqsave(&rq->lock, flags);
5201		if (rq->rd) {
5202			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5203
5204			set_rq_online(rq);
5205		}
5206		raw_spin_unlock_irqrestore(&rq->lock, flags);
5207		break;
5208
5209#ifdef CONFIG_HOTPLUG_CPU
5210	case CPU_DYING:
5211		sched_ttwu_pending();
5212		/* Update our root-domain */
5213		raw_spin_lock_irqsave(&rq->lock, flags);
5214		if (rq->rd) {
5215			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5216			set_rq_offline(rq);
5217		}
5218		migrate_tasks(cpu);
5219		BUG_ON(rq->nr_running != 1); /* the migration thread */
5220		raw_spin_unlock_irqrestore(&rq->lock, flags);
5221		break;
5222
5223	case CPU_DEAD:
5224		calc_load_migrate(rq);
5225		break;
5226#endif
5227	}
5228
5229	update_max_interval();
5230
5231	return NOTIFY_OK;
5232}
5233
5234/*
5235 * Register at high priority so that task migration (migrate_all_tasks)
5236 * happens before everything else.  This has to be lower priority than
5237 * the notifier in the perf_event subsystem, though.
5238 */
5239static struct notifier_block __cpuinitdata migration_notifier = {
5240	.notifier_call = migration_call,
5241	.priority = CPU_PRI_MIGRATION,
5242};
5243
5244static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5245				      unsigned long action, void *hcpu)
5246{
5247	switch (action & ~CPU_TASKS_FROZEN) {
5248	case CPU_STARTING:
5249	case CPU_DOWN_FAILED:
5250		set_cpu_active((long)hcpu, true);
5251		return NOTIFY_OK;
5252	default:
5253		return NOTIFY_DONE;
5254	}
5255}
5256
5257static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5258					unsigned long action, void *hcpu)
5259{
5260	switch (action & ~CPU_TASKS_FROZEN) {
5261	case CPU_DOWN_PREPARE:
5262		set_cpu_active((long)hcpu, false);
5263		return NOTIFY_OK;
5264	default:
5265		return NOTIFY_DONE;
5266	}
5267}
5268
5269static int __init migration_init(void)
5270{
5271	void *cpu = (void *)(long)smp_processor_id();
5272	int err;
5273
5274	/* Initialize migration for the boot CPU */
5275	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5276	BUG_ON(err == NOTIFY_BAD);
5277	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5278	register_cpu_notifier(&migration_notifier);
5279
5280	/* Register cpu active notifiers */
5281	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5282	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5283
5284	return 0;
5285}
5286early_initcall(migration_init);
5287#endif
5288
5289#ifdef CONFIG_SMP
5290
5291static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5292
5293#ifdef CONFIG_SCHED_DEBUG
5294
5295static __read_mostly int sched_debug_enabled;
5296
5297static int __init sched_debug_setup(char *str)
5298{
5299	sched_debug_enabled = 1;
5300
5301	return 0;
5302}
5303early_param("sched_debug", sched_debug_setup);
5304
5305static inline bool sched_debug(void)
5306{
5307	return sched_debug_enabled;
5308}
5309
5310static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5311				  struct cpumask *groupmask)
5312{
5313	struct sched_group *group = sd->groups;
5314	char str[256];
5315
5316	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5317	cpumask_clear(groupmask);
5318
5319	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5320
5321	if (!(sd->flags & SD_LOAD_BALANCE)) {
5322		printk("does not load-balance\n");
5323		if (sd->parent)
5324			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5325					" has parent");
5326		return -1;
5327	}
5328
5329	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5330
5331	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5332		printk(KERN_ERR "ERROR: domain->span does not contain "
5333				"CPU%d\n", cpu);
5334	}
5335	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5336		printk(KERN_ERR "ERROR: domain->groups does not contain"
5337				" CPU%d\n", cpu);
5338	}
5339
5340	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5341	do {
5342		if (!group) {
5343			printk("\n");
5344			printk(KERN_ERR "ERROR: group is NULL\n");
5345			break;
5346		}
5347
5348		/*
5349		 * Even though we initialize ->power to something semi-sane,
5350		 * we leave power_orig unset. This allows us to detect if
5351		 * domain iteration is still funny without causing /0 traps.
5352		 */
5353		if (!group->sgp->power_orig) {
5354			printk(KERN_CONT "\n");
5355			printk(KERN_ERR "ERROR: domain->cpu_power not "
5356					"set\n");
5357			break;
5358		}
5359
5360		if (!cpumask_weight(sched_group_cpus(group))) {
5361			printk(KERN_CONT "\n");
5362			printk(KERN_ERR "ERROR: empty group\n");
5363			break;
5364		}
5365
5366		if (!(sd->flags & SD_OVERLAP) &&
5367		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5368			printk(KERN_CONT "\n");
5369			printk(KERN_ERR "ERROR: repeated CPUs\n");
5370			break;
5371		}
5372
5373		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5374
5375		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5376
5377		printk(KERN_CONT " %s", str);
5378		if (group->sgp->power != SCHED_POWER_SCALE) {
5379			printk(KERN_CONT " (cpu_power = %d)",
5380				group->sgp->power);
5381		}
5382
5383		group = group->next;
5384	} while (group != sd->groups);
5385	printk(KERN_CONT "\n");
5386
5387	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5388		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5389
5390	if (sd->parent &&
5391	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5392		printk(KERN_ERR "ERROR: parent span is not a superset "
5393			"of domain->span\n");
5394	return 0;
5395}
5396
5397static void sched_domain_debug(struct sched_domain *sd, int cpu)
5398{
5399	int level = 0;
5400
5401	if (!sched_debug_enabled)
5402		return;
5403
5404	if (!sd) {
5405		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5406		return;
5407	}
5408
5409	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5410
5411	for (;;) {
5412		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5413			break;
5414		level++;
5415		sd = sd->parent;
5416		if (!sd)
5417			break;
5418	}
5419}
5420#else /* !CONFIG_SCHED_DEBUG */
5421# define sched_domain_debug(sd, cpu) do { } while (0)
5422static inline bool sched_debug(void)
5423{
5424	return false;
5425}
5426#endif /* CONFIG_SCHED_DEBUG */
5427
5428static int sd_degenerate(struct sched_domain *sd)
5429{
5430	if (cpumask_weight(sched_domain_span(sd)) == 1)
5431		return 1;
5432
5433	/* Following flags need at least 2 groups */
5434	if (sd->flags & (SD_LOAD_BALANCE |
5435			 SD_BALANCE_NEWIDLE |
5436			 SD_BALANCE_FORK |
5437			 SD_BALANCE_EXEC |
5438			 SD_SHARE_CPUPOWER |
5439			 SD_SHARE_PKG_RESOURCES)) {
5440		if (sd->groups != sd->groups->next)
5441			return 0;
5442	}
5443
5444	/* Following flags don't use groups */
5445	if (sd->flags & (SD_WAKE_AFFINE))
5446		return 0;
5447
5448	return 1;
5449}
5450
5451static int
5452sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5453{
5454	unsigned long cflags = sd->flags, pflags = parent->flags;
5455
5456	if (sd_degenerate(parent))
5457		return 1;
5458
5459	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5460		return 0;
5461
5462	/* Flags needing groups don't count if only 1 group in parent */
5463	if (parent->groups == parent->groups->next) {
5464		pflags &= ~(SD_LOAD_BALANCE |
5465				SD_BALANCE_NEWIDLE |
5466				SD_BALANCE_FORK |
5467				SD_BALANCE_EXEC |
5468				SD_SHARE_CPUPOWER |
5469				SD_SHARE_PKG_RESOURCES);
5470		if (nr_node_ids == 1)
5471			pflags &= ~SD_SERIALIZE;
5472	}
5473	if (~cflags & pflags)
5474		return 0;
5475
5476	return 1;
5477}
5478
5479static void free_rootdomain(struct rcu_head *rcu)
5480{
5481	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5482
5483	cpupri_cleanup(&rd->cpupri);
5484	free_cpumask_var(rd->rto_mask);
5485	free_cpumask_var(rd->online);
5486	free_cpumask_var(rd->span);
5487	kfree(rd);
5488}
5489
5490static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5491{
5492	struct root_domain *old_rd = NULL;
5493	unsigned long flags;
5494
5495	raw_spin_lock_irqsave(&rq->lock, flags);
5496
5497	if (rq->rd) {
5498		old_rd = rq->rd;
5499
5500		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5501			set_rq_offline(rq);
5502
5503		cpumask_clear_cpu(rq->cpu, old_rd->span);
5504
5505		/*
5506		 * If we dont want to free the old_rt yet then
5507		 * set old_rd to NULL to skip the freeing later
5508		 * in this function:
5509		 */
5510		if (!atomic_dec_and_test(&old_rd->refcount))
5511			old_rd = NULL;
5512	}
5513
5514	atomic_inc(&rd->refcount);
5515	rq->rd = rd;
5516
5517	cpumask_set_cpu(rq->cpu, rd->span);
5518	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5519		set_rq_online(rq);
5520
5521	raw_spin_unlock_irqrestore(&rq->lock, flags);
5522
5523	if (old_rd)
5524		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5525}
5526
5527static int init_rootdomain(struct root_domain *rd)
5528{
5529	memset(rd, 0, sizeof(*rd));
5530
5531	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5532		goto out;
5533	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5534		goto free_span;
5535	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5536		goto free_online;
5537
5538	if (cpupri_init(&rd->cpupri) != 0)
5539		goto free_rto_mask;
5540	return 0;
5541
5542free_rto_mask:
5543	free_cpumask_var(rd->rto_mask);
5544free_online:
5545	free_cpumask_var(rd->online);
5546free_span:
5547	free_cpumask_var(rd->span);
5548out:
5549	return -ENOMEM;
5550}
5551
5552/*
5553 * By default the system creates a single root-domain with all cpus as
5554 * members (mimicking the global state we have today).
5555 */
5556struct root_domain def_root_domain;
5557
5558static void init_defrootdomain(void)
5559{
5560	init_rootdomain(&def_root_domain);
5561
5562	atomic_set(&def_root_domain.refcount, 1);
5563}
5564
5565static struct root_domain *alloc_rootdomain(void)
5566{
5567	struct root_domain *rd;
5568
5569	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5570	if (!rd)
5571		return NULL;
5572
5573	if (init_rootdomain(rd) != 0) {
5574		kfree(rd);
5575		return NULL;
5576	}
5577
5578	return rd;
5579}
5580
5581static void free_sched_groups(struct sched_group *sg, int free_sgp)
5582{
5583	struct sched_group *tmp, *first;
5584
5585	if (!sg)
5586		return;
5587
5588	first = sg;
5589	do {
5590		tmp = sg->next;
5591
5592		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5593			kfree(sg->sgp);
5594
5595		kfree(sg);
5596		sg = tmp;
5597	} while (sg != first);
5598}
5599
5600static void free_sched_domain(struct rcu_head *rcu)
5601{
5602	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5603
5604	/*
5605	 * If its an overlapping domain it has private groups, iterate and
5606	 * nuke them all.
5607	 */
5608	if (sd->flags & SD_OVERLAP) {
5609		free_sched_groups(sd->groups, 1);
5610	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5611		kfree(sd->groups->sgp);
5612		kfree(sd->groups);
5613	}
5614	kfree(sd);
5615}
5616
5617static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5618{
5619	call_rcu(&sd->rcu, free_sched_domain);
5620}
5621
5622static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5623{
5624	for (; sd; sd = sd->parent)
5625		destroy_sched_domain(sd, cpu);
5626}
5627
5628/*
5629 * Keep a special pointer to the highest sched_domain that has
5630 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5631 * allows us to avoid some pointer chasing select_idle_sibling().
5632 *
5633 * Also keep a unique ID per domain (we use the first cpu number in
5634 * the cpumask of the domain), this allows us to quickly tell if
5635 * two cpus are in the same cache domain, see cpus_share_cache().
5636 */
5637DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5638DEFINE_PER_CPU(int, sd_llc_id);
5639
5640static void update_top_cache_domain(int cpu)
5641{
5642	struct sched_domain *sd;
5643	int id = cpu;
5644
5645	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5646	if (sd)
5647		id = cpumask_first(sched_domain_span(sd));
5648
5649	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5650	per_cpu(sd_llc_id, cpu) = id;
5651}
5652
5653/*
5654 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5655 * hold the hotplug lock.
5656 */
5657static void
5658cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5659{
5660	struct rq *rq = cpu_rq(cpu);
5661	struct sched_domain *tmp;
5662
5663	/* Remove the sched domains which do not contribute to scheduling. */
5664	for (tmp = sd; tmp; ) {
5665		struct sched_domain *parent = tmp->parent;
5666		if (!parent)
5667			break;
5668
5669		if (sd_parent_degenerate(tmp, parent)) {
5670			tmp->parent = parent->parent;
5671			if (parent->parent)
5672				parent->parent->child = tmp;
5673			destroy_sched_domain(parent, cpu);
5674		} else
5675			tmp = tmp->parent;
5676	}
5677
5678	if (sd && sd_degenerate(sd)) {
5679		tmp = sd;
5680		sd = sd->parent;
5681		destroy_sched_domain(tmp, cpu);
5682		if (sd)
5683			sd->child = NULL;
5684	}
5685
5686	sched_domain_debug(sd, cpu);
5687
5688	rq_attach_root(rq, rd);
5689	tmp = rq->sd;
5690	rcu_assign_pointer(rq->sd, sd);
5691	destroy_sched_domains(tmp, cpu);
5692
5693	update_top_cache_domain(cpu);
5694}
5695
5696/* cpus with isolated domains */
5697static cpumask_var_t cpu_isolated_map;
5698
5699/* Setup the mask of cpus configured for isolated domains */
5700static int __init isolated_cpu_setup(char *str)
5701{
5702	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5703	cpulist_parse(str, cpu_isolated_map);
5704	return 1;
5705}
5706
5707__setup("isolcpus=", isolated_cpu_setup);
5708
5709static const struct cpumask *cpu_cpu_mask(int cpu)
5710{
5711	return cpumask_of_node(cpu_to_node(cpu));
5712}
5713
5714struct sd_data {
5715	struct sched_domain **__percpu sd;
5716	struct sched_group **__percpu sg;
5717	struct sched_group_power **__percpu sgp;
5718};
5719
5720struct s_data {
5721	struct sched_domain ** __percpu sd;
5722	struct root_domain	*rd;
5723};
5724
5725enum s_alloc {
5726	sa_rootdomain,
5727	sa_sd,
5728	sa_sd_storage,
5729	sa_none,
5730};
5731
5732struct sched_domain_topology_level;
5733
5734typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5735typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5736
5737#define SDTL_OVERLAP	0x01
5738
5739struct sched_domain_topology_level {
5740	sched_domain_init_f init;
5741	sched_domain_mask_f mask;
5742	int		    flags;
5743	int		    numa_level;
5744	struct sd_data      data;
5745};
5746
5747/*
5748 * Build an iteration mask that can exclude certain CPUs from the upwards
5749 * domain traversal.
5750 *
5751 * Asymmetric node setups can result in situations where the domain tree is of
5752 * unequal depth, make sure to skip domains that already cover the entire
5753 * range.
5754 *
5755 * In that case build_sched_domains() will have terminated the iteration early
5756 * and our sibling sd spans will be empty. Domains should always include the
5757 * cpu they're built on, so check that.
5758 *
5759 */
5760static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5761{
5762	const struct cpumask *span = sched_domain_span(sd);
5763	struct sd_data *sdd = sd->private;
5764	struct sched_domain *sibling;
5765	int i;
5766
5767	for_each_cpu(i, span) {
5768		sibling = *per_cpu_ptr(sdd->sd, i);
5769		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5770			continue;
5771
5772		cpumask_set_cpu(i, sched_group_mask(sg));
5773	}
5774}
5775
5776/*
5777 * Return the canonical balance cpu for this group, this is the first cpu
5778 * of this group that's also in the iteration mask.
5779 */
5780int group_balance_cpu(struct sched_group *sg)
5781{
5782	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5783}
5784
5785static int
5786build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5787{
5788	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5789	const struct cpumask *span = sched_domain_span(sd);
5790	struct cpumask *covered = sched_domains_tmpmask;
5791	struct sd_data *sdd = sd->private;
5792	struct sched_domain *child;
5793	int i;
5794
5795	cpumask_clear(covered);
5796
5797	for_each_cpu(i, span) {
5798		struct cpumask *sg_span;
5799
5800		if (cpumask_test_cpu(i, covered))
5801			continue;
5802
5803		child = *per_cpu_ptr(sdd->sd, i);
5804
5805		/* See the comment near build_group_mask(). */
5806		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5807			continue;
5808
5809		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5810				GFP_KERNEL, cpu_to_node(cpu));
5811
5812		if (!sg)
5813			goto fail;
5814
5815		sg_span = sched_group_cpus(sg);
5816		if (child->child) {
5817			child = child->child;
5818			cpumask_copy(sg_span, sched_domain_span(child));
5819		} else
5820			cpumask_set_cpu(i, sg_span);
5821
5822		cpumask_or(covered, covered, sg_span);
5823
5824		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5825		if (atomic_inc_return(&sg->sgp->ref) == 1)
5826			build_group_mask(sd, sg);
5827
5828		/*
5829		 * Initialize sgp->power such that even if we mess up the
5830		 * domains and no possible iteration will get us here, we won't
5831		 * die on a /0 trap.
5832		 */
5833		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5834
5835		/*
5836		 * Make sure the first group of this domain contains the
5837		 * canonical balance cpu. Otherwise the sched_domain iteration
5838		 * breaks. See update_sg_lb_stats().
5839		 */
5840		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5841		    group_balance_cpu(sg) == cpu)
5842			groups = sg;
5843
5844		if (!first)
5845			first = sg;
5846		if (last)
5847			last->next = sg;
5848		last = sg;
5849		last->next = first;
5850	}
5851	sd->groups = groups;
5852
5853	return 0;
5854
5855fail:
5856	free_sched_groups(first, 0);
5857
5858	return -ENOMEM;
5859}
5860
5861static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5862{
5863	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5864	struct sched_domain *child = sd->child;
5865
5866	if (child)
5867		cpu = cpumask_first(sched_domain_span(child));
5868
5869	if (sg) {
5870		*sg = *per_cpu_ptr(sdd->sg, cpu);
5871		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5872		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5873	}
5874
5875	return cpu;
5876}
5877
5878/*
5879 * build_sched_groups will build a circular linked list of the groups
5880 * covered by the given span, and will set each group's ->cpumask correctly,
5881 * and ->cpu_power to 0.
5882 *
5883 * Assumes the sched_domain tree is fully constructed
5884 */
5885static int
5886build_sched_groups(struct sched_domain *sd, int cpu)
5887{
5888	struct sched_group *first = NULL, *last = NULL;
5889	struct sd_data *sdd = sd->private;
5890	const struct cpumask *span = sched_domain_span(sd);
5891	struct cpumask *covered;
5892	int i;
5893
5894	get_group(cpu, sdd, &sd->groups);
5895	atomic_inc(&sd->groups->ref);
5896
5897	if (cpu != cpumask_first(sched_domain_span(sd)))
5898		return 0;
5899
5900	lockdep_assert_held(&sched_domains_mutex);
5901	covered = sched_domains_tmpmask;
5902
5903	cpumask_clear(covered);
5904
5905	for_each_cpu(i, span) {
5906		struct sched_group *sg;
5907		int group = get_group(i, sdd, &sg);
5908		int j;
5909
5910		if (cpumask_test_cpu(i, covered))
5911			continue;
5912
5913		cpumask_clear(sched_group_cpus(sg));
5914		sg->sgp->power = 0;
5915		cpumask_setall(sched_group_mask(sg));
5916
5917		for_each_cpu(j, span) {
5918			if (get_group(j, sdd, NULL) != group)
5919				continue;
5920
5921			cpumask_set_cpu(j, covered);
5922			cpumask_set_cpu(j, sched_group_cpus(sg));
5923		}
5924
5925		if (!first)
5926			first = sg;
5927		if (last)
5928			last->next = sg;
5929		last = sg;
5930	}
5931	last->next = first;
5932
5933	return 0;
5934}
5935
5936/*
5937 * Initialize sched groups cpu_power.
5938 *
5939 * cpu_power indicates the capacity of sched group, which is used while
5940 * distributing the load between different sched groups in a sched domain.
5941 * Typically cpu_power for all the groups in a sched domain will be same unless
5942 * there are asymmetries in the topology. If there are asymmetries, group
5943 * having more cpu_power will pickup more load compared to the group having
5944 * less cpu_power.
5945 */
5946static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5947{
5948	struct sched_group *sg = sd->groups;
5949
5950	WARN_ON(!sd || !sg);
5951
5952	do {
5953		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5954		sg = sg->next;
5955	} while (sg != sd->groups);
5956
5957	if (cpu != group_balance_cpu(sg))
5958		return;
5959
5960	update_group_power(sd, cpu);
5961	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5962}
5963
5964int __weak arch_sd_sibling_asym_packing(void)
5965{
5966       return 0*SD_ASYM_PACKING;
5967}
5968
5969/*
5970 * Initializers for schedule domains
5971 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5972 */
5973
5974#ifdef CONFIG_SCHED_DEBUG
5975# define SD_INIT_NAME(sd, type)		sd->name = #type
5976#else
5977# define SD_INIT_NAME(sd, type)		do { } while (0)
5978#endif
5979
5980#define SD_INIT_FUNC(type)						\
5981static noinline struct sched_domain *					\
5982sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5983{									\
5984	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5985	*sd = SD_##type##_INIT;						\
5986	SD_INIT_NAME(sd, type);						\
5987	sd->private = &tl->data;					\
5988	return sd;							\
5989}
5990
5991SD_INIT_FUNC(CPU)
5992#ifdef CONFIG_SCHED_SMT
5993 SD_INIT_FUNC(SIBLING)
5994#endif
5995#ifdef CONFIG_SCHED_MC
5996 SD_INIT_FUNC(MC)
5997#endif
5998#ifdef CONFIG_SCHED_BOOK
5999 SD_INIT_FUNC(BOOK)
6000#endif
6001
6002static int default_relax_domain_level = -1;
6003int sched_domain_level_max;
6004
6005static int __init setup_relax_domain_level(char *str)
6006{
6007	if (kstrtoint(str, 0, &default_relax_domain_level))
6008		pr_warn("Unable to set relax_domain_level\n");
6009
6010	return 1;
6011}
6012__setup("relax_domain_level=", setup_relax_domain_level);
6013
6014static void set_domain_attribute(struct sched_domain *sd,
6015				 struct sched_domain_attr *attr)
6016{
6017	int request;
6018
6019	if (!attr || attr->relax_domain_level < 0) {
6020		if (default_relax_domain_level < 0)
6021			return;
6022		else
6023			request = default_relax_domain_level;
6024	} else
6025		request = attr->relax_domain_level;
6026	if (request < sd->level) {
6027		/* turn off idle balance on this domain */
6028		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6029	} else {
6030		/* turn on idle balance on this domain */
6031		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6032	}
6033}
6034
6035static void __sdt_free(const struct cpumask *cpu_map);
6036static int __sdt_alloc(const struct cpumask *cpu_map);
6037
6038static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6039				 const struct cpumask *cpu_map)
6040{
6041	switch (what) {
6042	case sa_rootdomain:
6043		if (!atomic_read(&d->rd->refcount))
6044			free_rootdomain(&d->rd->rcu); /* fall through */
6045	case sa_sd:
6046		free_percpu(d->sd); /* fall through */
6047	case sa_sd_storage:
6048		__sdt_free(cpu_map); /* fall through */
6049	case sa_none:
6050		break;
6051	}
6052}
6053
6054static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6055						   const struct cpumask *cpu_map)
6056{
6057	memset(d, 0, sizeof(*d));
6058
6059	if (__sdt_alloc(cpu_map))
6060		return sa_sd_storage;
6061	d->sd = alloc_percpu(struct sched_domain *);
6062	if (!d->sd)
6063		return sa_sd_storage;
6064	d->rd = alloc_rootdomain();
6065	if (!d->rd)
6066		return sa_sd;
6067	return sa_rootdomain;
6068}
6069
6070/*
6071 * NULL the sd_data elements we've used to build the sched_domain and
6072 * sched_group structure so that the subsequent __free_domain_allocs()
6073 * will not free the data we're using.
6074 */
6075static void claim_allocations(int cpu, struct sched_domain *sd)
6076{
6077	struct sd_data *sdd = sd->private;
6078
6079	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6080	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6081
6082	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6083		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6084
6085	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6086		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6087}
6088
6089#ifdef CONFIG_SCHED_SMT
6090static const struct cpumask *cpu_smt_mask(int cpu)
6091{
6092	return topology_thread_cpumask(cpu);
6093}
6094#endif
6095
6096/*
6097 * Topology list, bottom-up.
6098 */
6099static struct sched_domain_topology_level default_topology[] = {
6100#ifdef CONFIG_SCHED_SMT
6101	{ sd_init_SIBLING, cpu_smt_mask, },
6102#endif
6103#ifdef CONFIG_SCHED_MC
6104	{ sd_init_MC, cpu_coregroup_mask, },
6105#endif
6106#ifdef CONFIG_SCHED_BOOK
6107	{ sd_init_BOOK, cpu_book_mask, },
6108#endif
6109	{ sd_init_CPU, cpu_cpu_mask, },
6110	{ NULL, },
6111};
6112
6113static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6114
6115#ifdef CONFIG_NUMA
6116
6117static int sched_domains_numa_levels;
6118static int *sched_domains_numa_distance;
6119static struct cpumask ***sched_domains_numa_masks;
6120static int sched_domains_curr_level;
6121
6122static inline int sd_local_flags(int level)
6123{
6124	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6125		return 0;
6126
6127	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6128}
6129
6130static struct sched_domain *
6131sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6132{
6133	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6134	int level = tl->numa_level;
6135	int sd_weight = cpumask_weight(
6136			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6137
6138	*sd = (struct sched_domain){
6139		.min_interval		= sd_weight,
6140		.max_interval		= 2*sd_weight,
6141		.busy_factor		= 32,
6142		.imbalance_pct		= 125,
6143		.cache_nice_tries	= 2,
6144		.busy_idx		= 3,
6145		.idle_idx		= 2,
6146		.newidle_idx		= 0,
6147		.wake_idx		= 0,
6148		.forkexec_idx		= 0,
6149
6150		.flags			= 1*SD_LOAD_BALANCE
6151					| 1*SD_BALANCE_NEWIDLE
6152					| 0*SD_BALANCE_EXEC
6153					| 0*SD_BALANCE_FORK
6154					| 0*SD_BALANCE_WAKE
6155					| 0*SD_WAKE_AFFINE
6156					| 0*SD_SHARE_CPUPOWER
6157					| 0*SD_SHARE_PKG_RESOURCES
6158					| 1*SD_SERIALIZE
6159					| 0*SD_PREFER_SIBLING
6160					| sd_local_flags(level)
6161					,
6162		.last_balance		= jiffies,
6163		.balance_interval	= sd_weight,
6164	};
6165	SD_INIT_NAME(sd, NUMA);
6166	sd->private = &tl->data;
6167
6168	/*
6169	 * Ugly hack to pass state to sd_numa_mask()...
6170	 */
6171	sched_domains_curr_level = tl->numa_level;
6172
6173	return sd;
6174}
6175
6176static const struct cpumask *sd_numa_mask(int cpu)
6177{
6178	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6179}
6180
6181static void sched_numa_warn(const char *str)
6182{
6183	static int done = false;
6184	int i,j;
6185
6186	if (done)
6187		return;
6188
6189	done = true;
6190
6191	printk(KERN_WARNING "ERROR: %s\n\n", str);
6192
6193	for (i = 0; i < nr_node_ids; i++) {
6194		printk(KERN_WARNING "  ");
6195		for (j = 0; j < nr_node_ids; j++)
6196			printk(KERN_CONT "%02d ", node_distance(i,j));
6197		printk(KERN_CONT "\n");
6198	}
6199	printk(KERN_WARNING "\n");
6200}
6201
6202static bool find_numa_distance(int distance)
6203{
6204	int i;
6205
6206	if (distance == node_distance(0, 0))
6207		return true;
6208
6209	for (i = 0; i < sched_domains_numa_levels; i++) {
6210		if (sched_domains_numa_distance[i] == distance)
6211			return true;
6212	}
6213
6214	return false;
6215}
6216
6217static void sched_init_numa(void)
6218{
6219	int next_distance, curr_distance = node_distance(0, 0);
6220	struct sched_domain_topology_level *tl;
6221	int level = 0;
6222	int i, j, k;
6223
6224	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6225	if (!sched_domains_numa_distance)
6226		return;
6227
6228	/*
6229	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6230	 * unique distances in the node_distance() table.
6231	 *
6232	 * Assumes node_distance(0,j) includes all distances in
6233	 * node_distance(i,j) in order to avoid cubic time.
6234	 */
6235	next_distance = curr_distance;
6236	for (i = 0; i < nr_node_ids; i++) {
6237		for (j = 0; j < nr_node_ids; j++) {
6238			for (k = 0; k < nr_node_ids; k++) {
6239				int distance = node_distance(i, k);
6240
6241				if (distance > curr_distance &&
6242				    (distance < next_distance ||
6243				     next_distance == curr_distance))
6244					next_distance = distance;
6245
6246				/*
6247				 * While not a strong assumption it would be nice to know
6248				 * about cases where if node A is connected to B, B is not
6249				 * equally connected to A.
6250				 */
6251				if (sched_debug() && node_distance(k, i) != distance)
6252					sched_numa_warn("Node-distance not symmetric");
6253
6254				if (sched_debug() && i && !find_numa_distance(distance))
6255					sched_numa_warn("Node-0 not representative");
6256			}
6257			if (next_distance != curr_distance) {
6258				sched_domains_numa_distance[level++] = next_distance;
6259				sched_domains_numa_levels = level;
6260				curr_distance = next_distance;
6261			} else break;
6262		}
6263
6264		/*
6265		 * In case of sched_debug() we verify the above assumption.
6266		 */
6267		if (!sched_debug())
6268			break;
6269	}
6270	/*
6271	 * 'level' contains the number of unique distances, excluding the
6272	 * identity distance node_distance(i,i).
6273	 *
6274	 * The sched_domains_numa_distance[] array includes the actual distance
6275	 * numbers.
6276	 */
6277
6278	/*
6279	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6280	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6281	 * the array will contain less then 'level' members. This could be
6282	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6283	 * in other functions.
6284	 *
6285	 * We reset it to 'level' at the end of this function.
6286	 */
6287	sched_domains_numa_levels = 0;
6288
6289	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6290	if (!sched_domains_numa_masks)
6291		return;
6292
6293	/*
6294	 * Now for each level, construct a mask per node which contains all
6295	 * cpus of nodes that are that many hops away from us.
6296	 */
6297	for (i = 0; i < level; i++) {
6298		sched_domains_numa_masks[i] =
6299			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6300		if (!sched_domains_numa_masks[i])
6301			return;
6302
6303		for (j = 0; j < nr_node_ids; j++) {
6304			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6305			if (!mask)
6306				return;
6307
6308			sched_domains_numa_masks[i][j] = mask;
6309
6310			for (k = 0; k < nr_node_ids; k++) {
6311				if (node_distance(j, k) > sched_domains_numa_distance[i])
6312					continue;
6313
6314				cpumask_or(mask, mask, cpumask_of_node(k));
6315			}
6316		}
6317	}
6318
6319	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6320			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6321	if (!tl)
6322		return;
6323
6324	/*
6325	 * Copy the default topology bits..
6326	 */
6327	for (i = 0; default_topology[i].init; i++)
6328		tl[i] = default_topology[i];
6329
6330	/*
6331	 * .. and append 'j' levels of NUMA goodness.
6332	 */
6333	for (j = 0; j < level; i++, j++) {
6334		tl[i] = (struct sched_domain_topology_level){
6335			.init = sd_numa_init,
6336			.mask = sd_numa_mask,
6337			.flags = SDTL_OVERLAP,
6338			.numa_level = j,
6339		};
6340	}
6341
6342	sched_domain_topology = tl;
6343
6344	sched_domains_numa_levels = level;
6345}
6346
6347static void sched_domains_numa_masks_set(int cpu)
6348{
6349	int i, j;
6350	int node = cpu_to_node(cpu);
6351
6352	for (i = 0; i < sched_domains_numa_levels; i++) {
6353		for (j = 0; j < nr_node_ids; j++) {
6354			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6355				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6356		}
6357	}
6358}
6359
6360static void sched_domains_numa_masks_clear(int cpu)
6361{
6362	int i, j;
6363	for (i = 0; i < sched_domains_numa_levels; i++) {
6364		for (j = 0; j < nr_node_ids; j++)
6365			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6366	}
6367}
6368
6369/*
6370 * Update sched_domains_numa_masks[level][node] array when new cpus
6371 * are onlined.
6372 */
6373static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6374					   unsigned long action,
6375					   void *hcpu)
6376{
6377	int cpu = (long)hcpu;
6378
6379	switch (action & ~CPU_TASKS_FROZEN) {
6380	case CPU_ONLINE:
6381		sched_domains_numa_masks_set(cpu);
6382		break;
6383
6384	case CPU_DEAD:
6385		sched_domains_numa_masks_clear(cpu);
6386		break;
6387
6388	default:
6389		return NOTIFY_DONE;
6390	}
6391
6392	return NOTIFY_OK;
6393}
6394#else
6395static inline void sched_init_numa(void)
6396{
6397}
6398
6399static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6400					   unsigned long action,
6401					   void *hcpu)
6402{
6403	return 0;
6404}
6405#endif /* CONFIG_NUMA */
6406
6407static int __sdt_alloc(const struct cpumask *cpu_map)
6408{
6409	struct sched_domain_topology_level *tl;
6410	int j;
6411
6412	for (tl = sched_domain_topology; tl->init; tl++) {
6413		struct sd_data *sdd = &tl->data;
6414
6415		sdd->sd = alloc_percpu(struct sched_domain *);
6416		if (!sdd->sd)
6417			return -ENOMEM;
6418
6419		sdd->sg = alloc_percpu(struct sched_group *);
6420		if (!sdd->sg)
6421			return -ENOMEM;
6422
6423		sdd->sgp = alloc_percpu(struct sched_group_power *);
6424		if (!sdd->sgp)
6425			return -ENOMEM;
6426
6427		for_each_cpu(j, cpu_map) {
6428			struct sched_domain *sd;
6429			struct sched_group *sg;
6430			struct sched_group_power *sgp;
6431
6432		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6433					GFP_KERNEL, cpu_to_node(j));
6434			if (!sd)
6435				return -ENOMEM;
6436
6437			*per_cpu_ptr(sdd->sd, j) = sd;
6438
6439			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6440					GFP_KERNEL, cpu_to_node(j));
6441			if (!sg)
6442				return -ENOMEM;
6443
6444			sg->next = sg;
6445
6446			*per_cpu_ptr(sdd->sg, j) = sg;
6447
6448			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6449					GFP_KERNEL, cpu_to_node(j));
6450			if (!sgp)
6451				return -ENOMEM;
6452
6453			*per_cpu_ptr(sdd->sgp, j) = sgp;
6454		}
6455	}
6456
6457	return 0;
6458}
6459
6460static void __sdt_free(const struct cpumask *cpu_map)
6461{
6462	struct sched_domain_topology_level *tl;
6463	int j;
6464
6465	for (tl = sched_domain_topology; tl->init; tl++) {
6466		struct sd_data *sdd = &tl->data;
6467
6468		for_each_cpu(j, cpu_map) {
6469			struct sched_domain *sd;
6470
6471			if (sdd->sd) {
6472				sd = *per_cpu_ptr(sdd->sd, j);
6473				if (sd && (sd->flags & SD_OVERLAP))
6474					free_sched_groups(sd->groups, 0);
6475				kfree(*per_cpu_ptr(sdd->sd, j));
6476			}
6477
6478			if (sdd->sg)
6479				kfree(*per_cpu_ptr(sdd->sg, j));
6480			if (sdd->sgp)
6481				kfree(*per_cpu_ptr(sdd->sgp, j));
6482		}
6483		free_percpu(sdd->sd);
6484		sdd->sd = NULL;
6485		free_percpu(sdd->sg);
6486		sdd->sg = NULL;
6487		free_percpu(sdd->sgp);
6488		sdd->sgp = NULL;
6489	}
6490}
6491
6492struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6493		struct s_data *d, const struct cpumask *cpu_map,
6494		struct sched_domain_attr *attr, struct sched_domain *child,
6495		int cpu)
6496{
6497	struct sched_domain *sd = tl->init(tl, cpu);
6498	if (!sd)
6499		return child;
6500
6501	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6502	if (child) {
6503		sd->level = child->level + 1;
6504		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6505		child->parent = sd;
6506	}
6507	sd->child = child;
6508	set_domain_attribute(sd, attr);
6509
6510	return sd;
6511}
6512
6513/*
6514 * Build sched domains for a given set of cpus and attach the sched domains
6515 * to the individual cpus
6516 */
6517static int build_sched_domains(const struct cpumask *cpu_map,
6518			       struct sched_domain_attr *attr)
6519{
6520	enum s_alloc alloc_state = sa_none;
6521	struct sched_domain *sd;
6522	struct s_data d;
6523	int i, ret = -ENOMEM;
6524
6525	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6526	if (alloc_state != sa_rootdomain)
6527		goto error;
6528
6529	/* Set up domains for cpus specified by the cpu_map. */
6530	for_each_cpu(i, cpu_map) {
6531		struct sched_domain_topology_level *tl;
6532
6533		sd = NULL;
6534		for (tl = sched_domain_topology; tl->init; tl++) {
6535			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6536			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6537				sd->flags |= SD_OVERLAP;
6538			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6539				break;
6540		}
6541
6542		while (sd->child)
6543			sd = sd->child;
6544
6545		*per_cpu_ptr(d.sd, i) = sd;
6546	}
6547
6548	/* Build the groups for the domains */
6549	for_each_cpu(i, cpu_map) {
6550		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6551			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6552			if (sd->flags & SD_OVERLAP) {
6553				if (build_overlap_sched_groups(sd, i))
6554					goto error;
6555			} else {
6556				if (build_sched_groups(sd, i))
6557					goto error;
6558			}
6559		}
6560	}
6561
6562	/* Calculate CPU power for physical packages and nodes */
6563	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6564		if (!cpumask_test_cpu(i, cpu_map))
6565			continue;
6566
6567		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6568			claim_allocations(i, sd);
6569			init_sched_groups_power(i, sd);
6570		}
6571	}
6572
6573	/* Attach the domains */
6574	rcu_read_lock();
6575	for_each_cpu(i, cpu_map) {
6576		sd = *per_cpu_ptr(d.sd, i);
6577		cpu_attach_domain(sd, d.rd, i);
6578	}
6579	rcu_read_unlock();
6580
6581	ret = 0;
6582error:
6583	__free_domain_allocs(&d, alloc_state, cpu_map);
6584	return ret;
6585}
6586
6587static cpumask_var_t *doms_cur;	/* current sched domains */
6588static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6589static struct sched_domain_attr *dattr_cur;
6590				/* attribues of custom domains in 'doms_cur' */
6591
6592/*
6593 * Special case: If a kmalloc of a doms_cur partition (array of
6594 * cpumask) fails, then fallback to a single sched domain,
6595 * as determined by the single cpumask fallback_doms.
6596 */
6597static cpumask_var_t fallback_doms;
6598
6599/*
6600 * arch_update_cpu_topology lets virtualized architectures update the
6601 * cpu core maps. It is supposed to return 1 if the topology changed
6602 * or 0 if it stayed the same.
6603 */
6604int __attribute__((weak)) arch_update_cpu_topology(void)
6605{
6606	return 0;
6607}
6608
6609cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6610{
6611	int i;
6612	cpumask_var_t *doms;
6613
6614	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6615	if (!doms)
6616		return NULL;
6617	for (i = 0; i < ndoms; i++) {
6618		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6619			free_sched_domains(doms, i);
6620			return NULL;
6621		}
6622	}
6623	return doms;
6624}
6625
6626void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6627{
6628	unsigned int i;
6629	for (i = 0; i < ndoms; i++)
6630		free_cpumask_var(doms[i]);
6631	kfree(doms);
6632}
6633
6634/*
6635 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6636 * For now this just excludes isolated cpus, but could be used to
6637 * exclude other special cases in the future.
6638 */
6639static int init_sched_domains(const struct cpumask *cpu_map)
6640{
6641	int err;
6642
6643	arch_update_cpu_topology();
6644	ndoms_cur = 1;
6645	doms_cur = alloc_sched_domains(ndoms_cur);
6646	if (!doms_cur)
6647		doms_cur = &fallback_doms;
6648	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6649	err = build_sched_domains(doms_cur[0], NULL);
6650	register_sched_domain_sysctl();
6651
6652	return err;
6653}
6654
6655/*
6656 * Detach sched domains from a group of cpus specified in cpu_map
6657 * These cpus will now be attached to the NULL domain
6658 */
6659static void detach_destroy_domains(const struct cpumask *cpu_map)
6660{
6661	int i;
6662
6663	rcu_read_lock();
6664	for_each_cpu(i, cpu_map)
6665		cpu_attach_domain(NULL, &def_root_domain, i);
6666	rcu_read_unlock();
6667}
6668
6669/* handle null as "default" */
6670static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6671			struct sched_domain_attr *new, int idx_new)
6672{
6673	struct sched_domain_attr tmp;
6674
6675	/* fast path */
6676	if (!new && !cur)
6677		return 1;
6678
6679	tmp = SD_ATTR_INIT;
6680	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6681			new ? (new + idx_new) : &tmp,
6682			sizeof(struct sched_domain_attr));
6683}
6684
6685/*
6686 * Partition sched domains as specified by the 'ndoms_new'
6687 * cpumasks in the array doms_new[] of cpumasks. This compares
6688 * doms_new[] to the current sched domain partitioning, doms_cur[].
6689 * It destroys each deleted domain and builds each new domain.
6690 *
6691 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6692 * The masks don't intersect (don't overlap.) We should setup one
6693 * sched domain for each mask. CPUs not in any of the cpumasks will
6694 * not be load balanced. If the same cpumask appears both in the
6695 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6696 * it as it is.
6697 *
6698 * The passed in 'doms_new' should be allocated using
6699 * alloc_sched_domains.  This routine takes ownership of it and will
6700 * free_sched_domains it when done with it. If the caller failed the
6701 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6702 * and partition_sched_domains() will fallback to the single partition
6703 * 'fallback_doms', it also forces the domains to be rebuilt.
6704 *
6705 * If doms_new == NULL it will be replaced with cpu_online_mask.
6706 * ndoms_new == 0 is a special case for destroying existing domains,
6707 * and it will not create the default domain.
6708 *
6709 * Call with hotplug lock held
6710 */
6711void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6712			     struct sched_domain_attr *dattr_new)
6713{
6714	int i, j, n;
6715	int new_topology;
6716
6717	mutex_lock(&sched_domains_mutex);
6718
6719	/* always unregister in case we don't destroy any domains */
6720	unregister_sched_domain_sysctl();
6721
6722	/* Let architecture update cpu core mappings. */
6723	new_topology = arch_update_cpu_topology();
6724
6725	n = doms_new ? ndoms_new : 0;
6726
6727	/* Destroy deleted domains */
6728	for (i = 0; i < ndoms_cur; i++) {
6729		for (j = 0; j < n && !new_topology; j++) {
6730			if (cpumask_equal(doms_cur[i], doms_new[j])
6731			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6732				goto match1;
6733		}
6734		/* no match - a current sched domain not in new doms_new[] */
6735		detach_destroy_domains(doms_cur[i]);
6736match1:
6737		;
6738	}
6739
6740	if (doms_new == NULL) {
6741		ndoms_cur = 0;
6742		doms_new = &fallback_doms;
6743		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6744		WARN_ON_ONCE(dattr_new);
6745	}
6746
6747	/* Build new domains */
6748	for (i = 0; i < ndoms_new; i++) {
6749		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6750			if (cpumask_equal(doms_new[i], doms_cur[j])
6751			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6752				goto match2;
6753		}
6754		/* no match - add a new doms_new */
6755		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6756match2:
6757		;
6758	}
6759
6760	/* Remember the new sched domains */
6761	if (doms_cur != &fallback_doms)
6762		free_sched_domains(doms_cur, ndoms_cur);
6763	kfree(dattr_cur);	/* kfree(NULL) is safe */
6764	doms_cur = doms_new;
6765	dattr_cur = dattr_new;
6766	ndoms_cur = ndoms_new;
6767
6768	register_sched_domain_sysctl();
6769
6770	mutex_unlock(&sched_domains_mutex);
6771}
6772
6773static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6774
6775/*
6776 * Update cpusets according to cpu_active mask.  If cpusets are
6777 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6778 * around partition_sched_domains().
6779 *
6780 * If we come here as part of a suspend/resume, don't touch cpusets because we
6781 * want to restore it back to its original state upon resume anyway.
6782 */
6783static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6784			     void *hcpu)
6785{
6786	switch (action) {
6787	case CPU_ONLINE_FROZEN:
6788	case CPU_DOWN_FAILED_FROZEN:
6789
6790		/*
6791		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6792		 * resume sequence. As long as this is not the last online
6793		 * operation in the resume sequence, just build a single sched
6794		 * domain, ignoring cpusets.
6795		 */
6796		num_cpus_frozen--;
6797		if (likely(num_cpus_frozen)) {
6798			partition_sched_domains(1, NULL, NULL);
6799			break;
6800		}
6801
6802		/*
6803		 * This is the last CPU online operation. So fall through and
6804		 * restore the original sched domains by considering the
6805		 * cpuset configurations.
6806		 */
6807
6808	case CPU_ONLINE:
6809	case CPU_DOWN_FAILED:
6810		cpuset_update_active_cpus(true);
6811		break;
6812	default:
6813		return NOTIFY_DONE;
6814	}
6815	return NOTIFY_OK;
6816}
6817
6818static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6819			       void *hcpu)
6820{
6821	switch (action) {
6822	case CPU_DOWN_PREPARE:
6823		cpuset_update_active_cpus(false);
6824		break;
6825	case CPU_DOWN_PREPARE_FROZEN:
6826		num_cpus_frozen++;
6827		partition_sched_domains(1, NULL, NULL);
6828		break;
6829	default:
6830		return NOTIFY_DONE;
6831	}
6832	return NOTIFY_OK;
6833}
6834
6835void __init sched_init_smp(void)
6836{
6837	cpumask_var_t non_isolated_cpus;
6838
6839	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6840	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6841
6842	sched_init_numa();
6843
6844	get_online_cpus();
6845	mutex_lock(&sched_domains_mutex);
6846	init_sched_domains(cpu_active_mask);
6847	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6848	if (cpumask_empty(non_isolated_cpus))
6849		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6850	mutex_unlock(&sched_domains_mutex);
6851	put_online_cpus();
6852
6853	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6854	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6855	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6856
6857	/* RT runtime code needs to handle some hotplug events */
6858	hotcpu_notifier(update_runtime, 0);
6859
6860	init_hrtick();
6861
6862	/* Move init over to a non-isolated CPU */
6863	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6864		BUG();
6865	sched_init_granularity();
6866	free_cpumask_var(non_isolated_cpus);
6867
6868	init_sched_rt_class();
6869}
6870#else
6871void __init sched_init_smp(void)
6872{
6873	sched_init_granularity();
6874}
6875#endif /* CONFIG_SMP */
6876
6877const_debug unsigned int sysctl_timer_migration = 1;
6878
6879int in_sched_functions(unsigned long addr)
6880{
6881	return in_lock_functions(addr) ||
6882		(addr >= (unsigned long)__sched_text_start
6883		&& addr < (unsigned long)__sched_text_end);
6884}
6885
6886#ifdef CONFIG_CGROUP_SCHED
6887/*
6888 * Default task group.
6889 * Every task in system belongs to this group at bootup.
6890 */
6891struct task_group root_task_group;
6892LIST_HEAD(task_groups);
6893#endif
6894
6895DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6896
6897void __init sched_init(void)
6898{
6899	int i, j;
6900	unsigned long alloc_size = 0, ptr;
6901
6902#ifdef CONFIG_FAIR_GROUP_SCHED
6903	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6904#endif
6905#ifdef CONFIG_RT_GROUP_SCHED
6906	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6907#endif
6908#ifdef CONFIG_CPUMASK_OFFSTACK
6909	alloc_size += num_possible_cpus() * cpumask_size();
6910#endif
6911	if (alloc_size) {
6912		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6913
6914#ifdef CONFIG_FAIR_GROUP_SCHED
6915		root_task_group.se = (struct sched_entity **)ptr;
6916		ptr += nr_cpu_ids * sizeof(void **);
6917
6918		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6919		ptr += nr_cpu_ids * sizeof(void **);
6920
6921#endif /* CONFIG_FAIR_GROUP_SCHED */
6922#ifdef CONFIG_RT_GROUP_SCHED
6923		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6924		ptr += nr_cpu_ids * sizeof(void **);
6925
6926		root_task_group.rt_rq = (struct rt_rq **)ptr;
6927		ptr += nr_cpu_ids * sizeof(void **);
6928
6929#endif /* CONFIG_RT_GROUP_SCHED */
6930#ifdef CONFIG_CPUMASK_OFFSTACK
6931		for_each_possible_cpu(i) {
6932			per_cpu(load_balance_mask, i) = (void *)ptr;
6933			ptr += cpumask_size();
6934		}
6935#endif /* CONFIG_CPUMASK_OFFSTACK */
6936	}
6937
6938#ifdef CONFIG_SMP
6939	init_defrootdomain();
6940#endif
6941
6942	init_rt_bandwidth(&def_rt_bandwidth,
6943			global_rt_period(), global_rt_runtime());
6944
6945#ifdef CONFIG_RT_GROUP_SCHED
6946	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6947			global_rt_period(), global_rt_runtime());
6948#endif /* CONFIG_RT_GROUP_SCHED */
6949
6950#ifdef CONFIG_CGROUP_SCHED
6951	list_add(&root_task_group.list, &task_groups);
6952	INIT_LIST_HEAD(&root_task_group.children);
6953	INIT_LIST_HEAD(&root_task_group.siblings);
6954	autogroup_init(&init_task);
6955
6956#endif /* CONFIG_CGROUP_SCHED */
6957
6958	for_each_possible_cpu(i) {
6959		struct rq *rq;
6960
6961		rq = cpu_rq(i);
6962		raw_spin_lock_init(&rq->lock);
6963		rq->nr_running = 0;
6964		rq->calc_load_active = 0;
6965		rq->calc_load_update = jiffies + LOAD_FREQ;
6966		init_cfs_rq(&rq->cfs);
6967		init_rt_rq(&rq->rt, rq);
6968#ifdef CONFIG_FAIR_GROUP_SCHED
6969		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6970		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6971		/*
6972		 * How much cpu bandwidth does root_task_group get?
6973		 *
6974		 * In case of task-groups formed thr' the cgroup filesystem, it
6975		 * gets 100% of the cpu resources in the system. This overall
6976		 * system cpu resource is divided among the tasks of
6977		 * root_task_group and its child task-groups in a fair manner,
6978		 * based on each entity's (task or task-group's) weight
6979		 * (se->load.weight).
6980		 *
6981		 * In other words, if root_task_group has 10 tasks of weight
6982		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6983		 * then A0's share of the cpu resource is:
6984		 *
6985		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6986		 *
6987		 * We achieve this by letting root_task_group's tasks sit
6988		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6989		 */
6990		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6991		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6992#endif /* CONFIG_FAIR_GROUP_SCHED */
6993
6994		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6995#ifdef CONFIG_RT_GROUP_SCHED
6996		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6997		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6998#endif
6999
7000		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7001			rq->cpu_load[j] = 0;
7002
7003		rq->last_load_update_tick = jiffies;
7004
7005#ifdef CONFIG_SMP
7006		rq->sd = NULL;
7007		rq->rd = NULL;
7008		rq->cpu_power = SCHED_POWER_SCALE;
7009		rq->post_schedule = 0;
7010		rq->active_balance = 0;
7011		rq->next_balance = jiffies;
7012		rq->push_cpu = 0;
7013		rq->cpu = i;
7014		rq->online = 0;
7015		rq->idle_stamp = 0;
7016		rq->avg_idle = 2*sysctl_sched_migration_cost;
7017
7018		INIT_LIST_HEAD(&rq->cfs_tasks);
7019
7020		rq_attach_root(rq, &def_root_domain);
7021#ifdef CONFIG_NO_HZ_COMMON
7022		rq->nohz_flags = 0;
7023#endif
7024#ifdef CONFIG_NO_HZ_FULL
7025		rq->last_sched_tick = 0;
7026#endif
7027#endif
7028		init_rq_hrtick(rq);
7029		atomic_set(&rq->nr_iowait, 0);
7030	}
7031
7032	set_load_weight(&init_task);
7033
7034#ifdef CONFIG_PREEMPT_NOTIFIERS
7035	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7036#endif
7037
7038#ifdef CONFIG_RT_MUTEXES
7039	plist_head_init(&init_task.pi_waiters);
7040#endif
7041
7042	/*
7043	 * The boot idle thread does lazy MMU switching as well:
7044	 */
7045	atomic_inc(&init_mm.mm_count);
7046	enter_lazy_tlb(&init_mm, current);
7047
7048	/*
7049	 * Make us the idle thread. Technically, schedule() should not be
7050	 * called from this thread, however somewhere below it might be,
7051	 * but because we are the idle thread, we just pick up running again
7052	 * when this runqueue becomes "idle".
7053	 */
7054	init_idle(current, smp_processor_id());
7055
7056	calc_load_update = jiffies + LOAD_FREQ;
7057
7058	/*
7059	 * During early bootup we pretend to be a normal task:
7060	 */
7061	current->sched_class = &fair_sched_class;
7062
7063#ifdef CONFIG_SMP
7064	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7065	/* May be allocated at isolcpus cmdline parse time */
7066	if (cpu_isolated_map == NULL)
7067		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7068	idle_thread_set_boot_cpu();
7069#endif
7070	init_sched_fair_class();
7071
7072	scheduler_running = 1;
7073}
7074
7075#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7076static inline int preempt_count_equals(int preempt_offset)
7077{
7078	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7079
7080	return (nested == preempt_offset);
7081}
7082
7083void __might_sleep(const char *file, int line, int preempt_offset)
7084{
7085	static unsigned long prev_jiffy;	/* ratelimiting */
7086
7087	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7088	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7089	    system_state != SYSTEM_RUNNING || oops_in_progress)
7090		return;
7091	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7092		return;
7093	prev_jiffy = jiffies;
7094
7095	printk(KERN_ERR
7096		"BUG: sleeping function called from invalid context at %s:%d\n",
7097			file, line);
7098	printk(KERN_ERR
7099		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7100			in_atomic(), irqs_disabled(),
7101			current->pid, current->comm);
7102
7103	debug_show_held_locks(current);
7104	if (irqs_disabled())
7105		print_irqtrace_events(current);
7106	dump_stack();
7107}
7108EXPORT_SYMBOL(__might_sleep);
7109#endif
7110
7111#ifdef CONFIG_MAGIC_SYSRQ
7112static void normalize_task(struct rq *rq, struct task_struct *p)
7113{
7114	const struct sched_class *prev_class = p->sched_class;
7115	int old_prio = p->prio;
7116	int on_rq;
7117
7118	on_rq = p->on_rq;
7119	if (on_rq)
7120		dequeue_task(rq, p, 0);
7121	__setscheduler(rq, p, SCHED_NORMAL, 0);
7122	if (on_rq) {
7123		enqueue_task(rq, p, 0);
7124		resched_task(rq->curr);
7125	}
7126
7127	check_class_changed(rq, p, prev_class, old_prio);
7128}
7129
7130void normalize_rt_tasks(void)
7131{
7132	struct task_struct *g, *p;
7133	unsigned long flags;
7134	struct rq *rq;
7135
7136	read_lock_irqsave(&tasklist_lock, flags);
7137	do_each_thread(g, p) {
7138		/*
7139		 * Only normalize user tasks:
7140		 */
7141		if (!p->mm)
7142			continue;
7143
7144		p->se.exec_start		= 0;
7145#ifdef CONFIG_SCHEDSTATS
7146		p->se.statistics.wait_start	= 0;
7147		p->se.statistics.sleep_start	= 0;
7148		p->se.statistics.block_start	= 0;
7149#endif
7150
7151		if (!rt_task(p)) {
7152			/*
7153			 * Renice negative nice level userspace
7154			 * tasks back to 0:
7155			 */
7156			if (TASK_NICE(p) < 0 && p->mm)
7157				set_user_nice(p, 0);
7158			continue;
7159		}
7160
7161		raw_spin_lock(&p->pi_lock);
7162		rq = __task_rq_lock(p);
7163
7164		normalize_task(rq, p);
7165
7166		__task_rq_unlock(rq);
7167		raw_spin_unlock(&p->pi_lock);
7168	} while_each_thread(g, p);
7169
7170	read_unlock_irqrestore(&tasklist_lock, flags);
7171}
7172
7173#endif /* CONFIG_MAGIC_SYSRQ */
7174
7175#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7176/*
7177 * These functions are only useful for the IA64 MCA handling, or kdb.
7178 *
7179 * They can only be called when the whole system has been
7180 * stopped - every CPU needs to be quiescent, and no scheduling
7181 * activity can take place. Using them for anything else would
7182 * be a serious bug, and as a result, they aren't even visible
7183 * under any other configuration.
7184 */
7185
7186/**
7187 * curr_task - return the current task for a given cpu.
7188 * @cpu: the processor in question.
7189 *
7190 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7191 */
7192struct task_struct *curr_task(int cpu)
7193{
7194	return cpu_curr(cpu);
7195}
7196
7197#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7198
7199#ifdef CONFIG_IA64
7200/**
7201 * set_curr_task - set the current task for a given cpu.
7202 * @cpu: the processor in question.
7203 * @p: the task pointer to set.
7204 *
7205 * Description: This function must only be used when non-maskable interrupts
7206 * are serviced on a separate stack. It allows the architecture to switch the
7207 * notion of the current task on a cpu in a non-blocking manner. This function
7208 * must be called with all CPU's synchronized, and interrupts disabled, the
7209 * and caller must save the original value of the current task (see
7210 * curr_task() above) and restore that value before reenabling interrupts and
7211 * re-starting the system.
7212 *
7213 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7214 */
7215void set_curr_task(int cpu, struct task_struct *p)
7216{
7217	cpu_curr(cpu) = p;
7218}
7219
7220#endif
7221
7222#ifdef CONFIG_CGROUP_SCHED
7223/* task_group_lock serializes the addition/removal of task groups */
7224static DEFINE_SPINLOCK(task_group_lock);
7225
7226static void free_sched_group(struct task_group *tg)
7227{
7228	free_fair_sched_group(tg);
7229	free_rt_sched_group(tg);
7230	autogroup_free(tg);
7231	kfree(tg);
7232}
7233
7234/* allocate runqueue etc for a new task group */
7235struct task_group *sched_create_group(struct task_group *parent)
7236{
7237	struct task_group *tg;
7238
7239	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7240	if (!tg)
7241		return ERR_PTR(-ENOMEM);
7242
7243	if (!alloc_fair_sched_group(tg, parent))
7244		goto err;
7245
7246	if (!alloc_rt_sched_group(tg, parent))
7247		goto err;
7248
7249	return tg;
7250
7251err:
7252	free_sched_group(tg);
7253	return ERR_PTR(-ENOMEM);
7254}
7255
7256void sched_online_group(struct task_group *tg, struct task_group *parent)
7257{
7258	unsigned long flags;
7259
7260	spin_lock_irqsave(&task_group_lock, flags);
7261	list_add_rcu(&tg->list, &task_groups);
7262
7263	WARN_ON(!parent); /* root should already exist */
7264
7265	tg->parent = parent;
7266	INIT_LIST_HEAD(&tg->children);
7267	list_add_rcu(&tg->siblings, &parent->children);
7268	spin_unlock_irqrestore(&task_group_lock, flags);
7269}
7270
7271/* rcu callback to free various structures associated with a task group */
7272static void free_sched_group_rcu(struct rcu_head *rhp)
7273{
7274	/* now it should be safe to free those cfs_rqs */
7275	free_sched_group(container_of(rhp, struct task_group, rcu));
7276}
7277
7278/* Destroy runqueue etc associated with a task group */
7279void sched_destroy_group(struct task_group *tg)
7280{
7281	/* wait for possible concurrent references to cfs_rqs complete */
7282	call_rcu(&tg->rcu, free_sched_group_rcu);
7283}
7284
7285void sched_offline_group(struct task_group *tg)
7286{
7287	unsigned long flags;
7288	int i;
7289
7290	/* end participation in shares distribution */
7291	for_each_possible_cpu(i)
7292		unregister_fair_sched_group(tg, i);
7293
7294	spin_lock_irqsave(&task_group_lock, flags);
7295	list_del_rcu(&tg->list);
7296	list_del_rcu(&tg->siblings);
7297	spin_unlock_irqrestore(&task_group_lock, flags);
7298}
7299
7300/* change task's runqueue when it moves between groups.
7301 *	The caller of this function should have put the task in its new group
7302 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7303 *	reflect its new group.
7304 */
7305void sched_move_task(struct task_struct *tsk)
7306{
7307	struct task_group *tg;
7308	int on_rq, running;
7309	unsigned long flags;
7310	struct rq *rq;
7311
7312	rq = task_rq_lock(tsk, &flags);
7313
7314	running = task_current(rq, tsk);
7315	on_rq = tsk->on_rq;
7316
7317	if (on_rq)
7318		dequeue_task(rq, tsk, 0);
7319	if (unlikely(running))
7320		tsk->sched_class->put_prev_task(rq, tsk);
7321
7322	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7323				lockdep_is_held(&tsk->sighand->siglock)),
7324			  struct task_group, css);
7325	tg = autogroup_task_group(tsk, tg);
7326	tsk->sched_task_group = tg;
7327
7328#ifdef CONFIG_FAIR_GROUP_SCHED
7329	if (tsk->sched_class->task_move_group)
7330		tsk->sched_class->task_move_group(tsk, on_rq);
7331	else
7332#endif
7333		set_task_rq(tsk, task_cpu(tsk));
7334
7335	if (unlikely(running))
7336		tsk->sched_class->set_curr_task(rq);
7337	if (on_rq)
7338		enqueue_task(rq, tsk, 0);
7339
7340	task_rq_unlock(rq, tsk, &flags);
7341}
7342#endif /* CONFIG_CGROUP_SCHED */
7343
7344#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7345static unsigned long to_ratio(u64 period, u64 runtime)
7346{
7347	if (runtime == RUNTIME_INF)
7348		return 1ULL << 20;
7349
7350	return div64_u64(runtime << 20, period);
7351}
7352#endif
7353
7354#ifdef CONFIG_RT_GROUP_SCHED
7355/*
7356 * Ensure that the real time constraints are schedulable.
7357 */
7358static DEFINE_MUTEX(rt_constraints_mutex);
7359
7360/* Must be called with tasklist_lock held */
7361static inline int tg_has_rt_tasks(struct task_group *tg)
7362{
7363	struct task_struct *g, *p;
7364
7365	do_each_thread(g, p) {
7366		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7367			return 1;
7368	} while_each_thread(g, p);
7369
7370	return 0;
7371}
7372
7373struct rt_schedulable_data {
7374	struct task_group *tg;
7375	u64 rt_period;
7376	u64 rt_runtime;
7377};
7378
7379static int tg_rt_schedulable(struct task_group *tg, void *data)
7380{
7381	struct rt_schedulable_data *d = data;
7382	struct task_group *child;
7383	unsigned long total, sum = 0;
7384	u64 period, runtime;
7385
7386	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7387	runtime = tg->rt_bandwidth.rt_runtime;
7388
7389	if (tg == d->tg) {
7390		period = d->rt_period;
7391		runtime = d->rt_runtime;
7392	}
7393
7394	/*
7395	 * Cannot have more runtime than the period.
7396	 */
7397	if (runtime > period && runtime != RUNTIME_INF)
7398		return -EINVAL;
7399
7400	/*
7401	 * Ensure we don't starve existing RT tasks.
7402	 */
7403	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7404		return -EBUSY;
7405
7406	total = to_ratio(period, runtime);
7407
7408	/*
7409	 * Nobody can have more than the global setting allows.
7410	 */
7411	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7412		return -EINVAL;
7413
7414	/*
7415	 * The sum of our children's runtime should not exceed our own.
7416	 */
7417	list_for_each_entry_rcu(child, &tg->children, siblings) {
7418		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7419		runtime = child->rt_bandwidth.rt_runtime;
7420
7421		if (child == d->tg) {
7422			period = d->rt_period;
7423			runtime = d->rt_runtime;
7424		}
7425
7426		sum += to_ratio(period, runtime);
7427	}
7428
7429	if (sum > total)
7430		return -EINVAL;
7431
7432	return 0;
7433}
7434
7435static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7436{
7437	int ret;
7438
7439	struct rt_schedulable_data data = {
7440		.tg = tg,
7441		.rt_period = period,
7442		.rt_runtime = runtime,
7443	};
7444
7445	rcu_read_lock();
7446	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7447	rcu_read_unlock();
7448
7449	return ret;
7450}
7451
7452static int tg_set_rt_bandwidth(struct task_group *tg,
7453		u64 rt_period, u64 rt_runtime)
7454{
7455	int i, err = 0;
7456
7457	mutex_lock(&rt_constraints_mutex);
7458	read_lock(&tasklist_lock);
7459	err = __rt_schedulable(tg, rt_period, rt_runtime);
7460	if (err)
7461		goto unlock;
7462
7463	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7464	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7465	tg->rt_bandwidth.rt_runtime = rt_runtime;
7466
7467	for_each_possible_cpu(i) {
7468		struct rt_rq *rt_rq = tg->rt_rq[i];
7469
7470		raw_spin_lock(&rt_rq->rt_runtime_lock);
7471		rt_rq->rt_runtime = rt_runtime;
7472		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7473	}
7474	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7475unlock:
7476	read_unlock(&tasklist_lock);
7477	mutex_unlock(&rt_constraints_mutex);
7478
7479	return err;
7480}
7481
7482static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7483{
7484	u64 rt_runtime, rt_period;
7485
7486	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7487	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7488	if (rt_runtime_us < 0)
7489		rt_runtime = RUNTIME_INF;
7490
7491	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7492}
7493
7494static long sched_group_rt_runtime(struct task_group *tg)
7495{
7496	u64 rt_runtime_us;
7497
7498	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7499		return -1;
7500
7501	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7502	do_div(rt_runtime_us, NSEC_PER_USEC);
7503	return rt_runtime_us;
7504}
7505
7506static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7507{
7508	u64 rt_runtime, rt_period;
7509
7510	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7511	rt_runtime = tg->rt_bandwidth.rt_runtime;
7512
7513	if (rt_period == 0)
7514		return -EINVAL;
7515
7516	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7517}
7518
7519static long sched_group_rt_period(struct task_group *tg)
7520{
7521	u64 rt_period_us;
7522
7523	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7524	do_div(rt_period_us, NSEC_PER_USEC);
7525	return rt_period_us;
7526}
7527
7528static int sched_rt_global_constraints(void)
7529{
7530	u64 runtime, period;
7531	int ret = 0;
7532
7533	if (sysctl_sched_rt_period <= 0)
7534		return -EINVAL;
7535
7536	runtime = global_rt_runtime();
7537	period = global_rt_period();
7538
7539	/*
7540	 * Sanity check on the sysctl variables.
7541	 */
7542	if (runtime > period && runtime != RUNTIME_INF)
7543		return -EINVAL;
7544
7545	mutex_lock(&rt_constraints_mutex);
7546	read_lock(&tasklist_lock);
7547	ret = __rt_schedulable(NULL, 0, 0);
7548	read_unlock(&tasklist_lock);
7549	mutex_unlock(&rt_constraints_mutex);
7550
7551	return ret;
7552}
7553
7554static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7555{
7556	/* Don't accept realtime tasks when there is no way for them to run */
7557	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7558		return 0;
7559
7560	return 1;
7561}
7562
7563#else /* !CONFIG_RT_GROUP_SCHED */
7564static int sched_rt_global_constraints(void)
7565{
7566	unsigned long flags;
7567	int i;
7568
7569	if (sysctl_sched_rt_period <= 0)
7570		return -EINVAL;
7571
7572	/*
7573	 * There's always some RT tasks in the root group
7574	 * -- migration, kstopmachine etc..
7575	 */
7576	if (sysctl_sched_rt_runtime == 0)
7577		return -EBUSY;
7578
7579	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7580	for_each_possible_cpu(i) {
7581		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7582
7583		raw_spin_lock(&rt_rq->rt_runtime_lock);
7584		rt_rq->rt_runtime = global_rt_runtime();
7585		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7586	}
7587	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7588
7589	return 0;
7590}
7591#endif /* CONFIG_RT_GROUP_SCHED */
7592
7593int sched_rr_handler(struct ctl_table *table, int write,
7594		void __user *buffer, size_t *lenp,
7595		loff_t *ppos)
7596{
7597	int ret;
7598	static DEFINE_MUTEX(mutex);
7599
7600	mutex_lock(&mutex);
7601	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7602	/* make sure that internally we keep jiffies */
7603	/* also, writing zero resets timeslice to default */
7604	if (!ret && write) {
7605		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7606			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7607	}
7608	mutex_unlock(&mutex);
7609	return ret;
7610}
7611
7612int sched_rt_handler(struct ctl_table *table, int write,
7613		void __user *buffer, size_t *lenp,
7614		loff_t *ppos)
7615{
7616	int ret;
7617	int old_period, old_runtime;
7618	static DEFINE_MUTEX(mutex);
7619
7620	mutex_lock(&mutex);
7621	old_period = sysctl_sched_rt_period;
7622	old_runtime = sysctl_sched_rt_runtime;
7623
7624	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7625
7626	if (!ret && write) {
7627		ret = sched_rt_global_constraints();
7628		if (ret) {
7629			sysctl_sched_rt_period = old_period;
7630			sysctl_sched_rt_runtime = old_runtime;
7631		} else {
7632			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7633			def_rt_bandwidth.rt_period =
7634				ns_to_ktime(global_rt_period());
7635		}
7636	}
7637	mutex_unlock(&mutex);
7638
7639	return ret;
7640}
7641
7642#ifdef CONFIG_CGROUP_SCHED
7643
7644/* return corresponding task_group object of a cgroup */
7645static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7646{
7647	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7648			    struct task_group, css);
7649}
7650
7651static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7652{
7653	struct task_group *tg, *parent;
7654
7655	if (!cgrp->parent) {
7656		/* This is early initialization for the top cgroup */
7657		return &root_task_group.css;
7658	}
7659
7660	parent = cgroup_tg(cgrp->parent);
7661	tg = sched_create_group(parent);
7662	if (IS_ERR(tg))
7663		return ERR_PTR(-ENOMEM);
7664
7665	return &tg->css;
7666}
7667
7668static int cpu_cgroup_css_online(struct cgroup *cgrp)
7669{
7670	struct task_group *tg = cgroup_tg(cgrp);
7671	struct task_group *parent;
7672
7673	if (!cgrp->parent)
7674		return 0;
7675
7676	parent = cgroup_tg(cgrp->parent);
7677	sched_online_group(tg, parent);
7678	return 0;
7679}
7680
7681static void cpu_cgroup_css_free(struct cgroup *cgrp)
7682{
7683	struct task_group *tg = cgroup_tg(cgrp);
7684
7685	sched_destroy_group(tg);
7686}
7687
7688static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7689{
7690	struct task_group *tg = cgroup_tg(cgrp);
7691
7692	sched_offline_group(tg);
7693}
7694
7695static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7696				 struct cgroup_taskset *tset)
7697{
7698	struct task_struct *task;
7699
7700	cgroup_taskset_for_each(task, cgrp, tset) {
7701#ifdef CONFIG_RT_GROUP_SCHED
7702		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7703			return -EINVAL;
7704#else
7705		/* We don't support RT-tasks being in separate groups */
7706		if (task->sched_class != &fair_sched_class)
7707			return -EINVAL;
7708#endif
7709	}
7710	return 0;
7711}
7712
7713static void cpu_cgroup_attach(struct cgroup *cgrp,
7714			      struct cgroup_taskset *tset)
7715{
7716	struct task_struct *task;
7717
7718	cgroup_taskset_for_each(task, cgrp, tset)
7719		sched_move_task(task);
7720}
7721
7722static void
7723cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7724		struct task_struct *task)
7725{
7726	/*
7727	 * cgroup_exit() is called in the copy_process() failure path.
7728	 * Ignore this case since the task hasn't ran yet, this avoids
7729	 * trying to poke a half freed task state from generic code.
7730	 */
7731	if (!(task->flags & PF_EXITING))
7732		return;
7733
7734	sched_move_task(task);
7735}
7736
7737#ifdef CONFIG_FAIR_GROUP_SCHED
7738static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7739				u64 shareval)
7740{
7741	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7742}
7743
7744static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7745{
7746	struct task_group *tg = cgroup_tg(cgrp);
7747
7748	return (u64) scale_load_down(tg->shares);
7749}
7750
7751#ifdef CONFIG_CFS_BANDWIDTH
7752static DEFINE_MUTEX(cfs_constraints_mutex);
7753
7754const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7755const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7756
7757static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7758
7759static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7760{
7761	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7762	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7763
7764	if (tg == &root_task_group)
7765		return -EINVAL;
7766
7767	/*
7768	 * Ensure we have at some amount of bandwidth every period.  This is
7769	 * to prevent reaching a state of large arrears when throttled via
7770	 * entity_tick() resulting in prolonged exit starvation.
7771	 */
7772	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7773		return -EINVAL;
7774
7775	/*
7776	 * Likewise, bound things on the otherside by preventing insane quota
7777	 * periods.  This also allows us to normalize in computing quota
7778	 * feasibility.
7779	 */
7780	if (period > max_cfs_quota_period)
7781		return -EINVAL;
7782
7783	mutex_lock(&cfs_constraints_mutex);
7784	ret = __cfs_schedulable(tg, period, quota);
7785	if (ret)
7786		goto out_unlock;
7787
7788	runtime_enabled = quota != RUNTIME_INF;
7789	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7790	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7791	raw_spin_lock_irq(&cfs_b->lock);
7792	cfs_b->period = ns_to_ktime(period);
7793	cfs_b->quota = quota;
7794
7795	__refill_cfs_bandwidth_runtime(cfs_b);
7796	/* restart the period timer (if active) to handle new period expiry */
7797	if (runtime_enabled && cfs_b->timer_active) {
7798		/* force a reprogram */
7799		cfs_b->timer_active = 0;
7800		__start_cfs_bandwidth(cfs_b);
7801	}
7802	raw_spin_unlock_irq(&cfs_b->lock);
7803
7804	for_each_possible_cpu(i) {
7805		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7806		struct rq *rq = cfs_rq->rq;
7807
7808		raw_spin_lock_irq(&rq->lock);
7809		cfs_rq->runtime_enabled = runtime_enabled;
7810		cfs_rq->runtime_remaining = 0;
7811
7812		if (cfs_rq->throttled)
7813			unthrottle_cfs_rq(cfs_rq);
7814		raw_spin_unlock_irq(&rq->lock);
7815	}
7816out_unlock:
7817	mutex_unlock(&cfs_constraints_mutex);
7818
7819	return ret;
7820}
7821
7822int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7823{
7824	u64 quota, period;
7825
7826	period = ktime_to_ns(tg->cfs_bandwidth.period);
7827	if (cfs_quota_us < 0)
7828		quota = RUNTIME_INF;
7829	else
7830		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7831
7832	return tg_set_cfs_bandwidth(tg, period, quota);
7833}
7834
7835long tg_get_cfs_quota(struct task_group *tg)
7836{
7837	u64 quota_us;
7838
7839	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7840		return -1;
7841
7842	quota_us = tg->cfs_bandwidth.quota;
7843	do_div(quota_us, NSEC_PER_USEC);
7844
7845	return quota_us;
7846}
7847
7848int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7849{
7850	u64 quota, period;
7851
7852	period = (u64)cfs_period_us * NSEC_PER_USEC;
7853	quota = tg->cfs_bandwidth.quota;
7854
7855	return tg_set_cfs_bandwidth(tg, period, quota);
7856}
7857
7858long tg_get_cfs_period(struct task_group *tg)
7859{
7860	u64 cfs_period_us;
7861
7862	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7863	do_div(cfs_period_us, NSEC_PER_USEC);
7864
7865	return cfs_period_us;
7866}
7867
7868static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7869{
7870	return tg_get_cfs_quota(cgroup_tg(cgrp));
7871}
7872
7873static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7874				s64 cfs_quota_us)
7875{
7876	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7877}
7878
7879static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7880{
7881	return tg_get_cfs_period(cgroup_tg(cgrp));
7882}
7883
7884static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7885				u64 cfs_period_us)
7886{
7887	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7888}
7889
7890struct cfs_schedulable_data {
7891	struct task_group *tg;
7892	u64 period, quota;
7893};
7894
7895/*
7896 * normalize group quota/period to be quota/max_period
7897 * note: units are usecs
7898 */
7899static u64 normalize_cfs_quota(struct task_group *tg,
7900			       struct cfs_schedulable_data *d)
7901{
7902	u64 quota, period;
7903
7904	if (tg == d->tg) {
7905		period = d->period;
7906		quota = d->quota;
7907	} else {
7908		period = tg_get_cfs_period(tg);
7909		quota = tg_get_cfs_quota(tg);
7910	}
7911
7912	/* note: these should typically be equivalent */
7913	if (quota == RUNTIME_INF || quota == -1)
7914		return RUNTIME_INF;
7915
7916	return to_ratio(period, quota);
7917}
7918
7919static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7920{
7921	struct cfs_schedulable_data *d = data;
7922	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7923	s64 quota = 0, parent_quota = -1;
7924
7925	if (!tg->parent) {
7926		quota = RUNTIME_INF;
7927	} else {
7928		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7929
7930		quota = normalize_cfs_quota(tg, d);
7931		parent_quota = parent_b->hierarchal_quota;
7932
7933		/*
7934		 * ensure max(child_quota) <= parent_quota, inherit when no
7935		 * limit is set
7936		 */
7937		if (quota == RUNTIME_INF)
7938			quota = parent_quota;
7939		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7940			return -EINVAL;
7941	}
7942	cfs_b->hierarchal_quota = quota;
7943
7944	return 0;
7945}
7946
7947static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7948{
7949	int ret;
7950	struct cfs_schedulable_data data = {
7951		.tg = tg,
7952		.period = period,
7953		.quota = quota,
7954	};
7955
7956	if (quota != RUNTIME_INF) {
7957		do_div(data.period, NSEC_PER_USEC);
7958		do_div(data.quota, NSEC_PER_USEC);
7959	}
7960
7961	rcu_read_lock();
7962	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7963	rcu_read_unlock();
7964
7965	return ret;
7966}
7967
7968static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7969		struct cgroup_map_cb *cb)
7970{
7971	struct task_group *tg = cgroup_tg(cgrp);
7972	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7973
7974	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7975	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7976	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7977
7978	return 0;
7979}
7980#endif /* CONFIG_CFS_BANDWIDTH */
7981#endif /* CONFIG_FAIR_GROUP_SCHED */
7982
7983#ifdef CONFIG_RT_GROUP_SCHED
7984static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7985				s64 val)
7986{
7987	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7988}
7989
7990static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7991{
7992	return sched_group_rt_runtime(cgroup_tg(cgrp));
7993}
7994
7995static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7996		u64 rt_period_us)
7997{
7998	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7999}
8000
8001static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8002{
8003	return sched_group_rt_period(cgroup_tg(cgrp));
8004}
8005#endif /* CONFIG_RT_GROUP_SCHED */
8006
8007static struct cftype cpu_files[] = {
8008#ifdef CONFIG_FAIR_GROUP_SCHED
8009	{
8010		.name = "shares",
8011		.read_u64 = cpu_shares_read_u64,
8012		.write_u64 = cpu_shares_write_u64,
8013	},
8014#endif
8015#ifdef CONFIG_CFS_BANDWIDTH
8016	{
8017		.name = "cfs_quota_us",
8018		.read_s64 = cpu_cfs_quota_read_s64,
8019		.write_s64 = cpu_cfs_quota_write_s64,
8020	},
8021	{
8022		.name = "cfs_period_us",
8023		.read_u64 = cpu_cfs_period_read_u64,
8024		.write_u64 = cpu_cfs_period_write_u64,
8025	},
8026	{
8027		.name = "stat",
8028		.read_map = cpu_stats_show,
8029	},
8030#endif
8031#ifdef CONFIG_RT_GROUP_SCHED
8032	{
8033		.name = "rt_runtime_us",
8034		.read_s64 = cpu_rt_runtime_read,
8035		.write_s64 = cpu_rt_runtime_write,
8036	},
8037	{
8038		.name = "rt_period_us",
8039		.read_u64 = cpu_rt_period_read_uint,
8040		.write_u64 = cpu_rt_period_write_uint,
8041	},
8042#endif
8043	{ }	/* terminate */
8044};
8045
8046struct cgroup_subsys cpu_cgroup_subsys = {
8047	.name		= "cpu",
8048	.css_alloc	= cpu_cgroup_css_alloc,
8049	.css_free	= cpu_cgroup_css_free,
8050	.css_online	= cpu_cgroup_css_online,
8051	.css_offline	= cpu_cgroup_css_offline,
8052	.can_attach	= cpu_cgroup_can_attach,
8053	.attach		= cpu_cgroup_attach,
8054	.exit		= cpu_cgroup_exit,
8055	.subsys_id	= cpu_cgroup_subsys_id,
8056	.base_cftypes	= cpu_files,
8057	.early_init	= 1,
8058};
8059
8060#endif	/* CONFIG_CGROUP_SCHED */
8061
8062void dump_cpu_task(int cpu)
8063{
8064	pr_info("Task dump for CPU %d:\n", cpu);
8065	sched_show_task(cpu_curr(cpu));
8066}
8067