core.c revision 4a2b4b222743bb07fedf985b884550f2ca067ea9
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id())
529		return;
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_rt_policy(p))
901		prio = MAX_RT_PRIO-1 - p->rt_priority;
902	else
903		prio = __normal_prio(p);
904	return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914static int effective_prio(struct task_struct *p)
915{
916	p->normal_prio = normal_prio(p);
917	/*
918	 * If we are RT tasks or we were boosted to RT priority,
919	 * keep the priority unchanged. Otherwise, update priority
920	 * to the normal priority:
921	 */
922	if (!rt_prio(p->prio))
923		return p->normal_prio;
924	return p->prio;
925}
926
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933inline int task_curr(const struct task_struct *p)
934{
935	return cpu_curr(task_cpu(p)) == p;
936}
937
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939				       const struct sched_class *prev_class,
940				       int oldprio)
941{
942	if (prev_class != p->sched_class) {
943		if (prev_class->switched_from)
944			prev_class->switched_from(rq, p);
945		p->sched_class->switched_to(rq, p);
946	} else if (oldprio != p->prio)
947		p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952	const struct sched_class *class;
953
954	if (p->sched_class == rq->curr->sched_class) {
955		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956	} else {
957		for_each_class(class) {
958			if (class == rq->curr->sched_class)
959				break;
960			if (class == p->sched_class) {
961				resched_task(rq->curr);
962				break;
963			}
964		}
965	}
966
967	/*
968	 * A queue event has occurred, and we're going to schedule.  In
969	 * this case, we can save a useless back to back clock update.
970	 */
971	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972		rq->skip_clock_update = 1;
973}
974
975#ifdef CONFIG_SMP
976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977{
978#ifdef CONFIG_SCHED_DEBUG
979	/*
980	 * We should never call set_task_cpu() on a blocked task,
981	 * ttwu() will sort out the placement.
982	 */
983	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
985
986#ifdef CONFIG_LOCKDEP
987	/*
988	 * The caller should hold either p->pi_lock or rq->lock, when changing
989	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990	 *
991	 * sched_move_task() holds both and thus holding either pins the cgroup,
992	 * see task_group().
993	 *
994	 * Furthermore, all task_rq users should acquire both locks, see
995	 * task_rq_lock().
996	 */
997	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998				      lockdep_is_held(&task_rq(p)->lock)));
999#endif
1000#endif
1001
1002	trace_sched_migrate_task(p, new_cpu);
1003
1004	if (task_cpu(p) != new_cpu) {
1005		if (p->sched_class->migrate_task_rq)
1006			p->sched_class->migrate_task_rq(p, new_cpu);
1007		p->se.nr_migrations++;
1008		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009	}
1010
1011	__set_task_cpu(p, new_cpu);
1012}
1013
1014struct migration_arg {
1015	struct task_struct *task;
1016	int dest_cpu;
1017};
1018
1019static int migration_cpu_stop(void *data);
1020
1021/*
1022 * wait_task_inactive - wait for a thread to unschedule.
1023 *
1024 * If @match_state is nonzero, it's the @p->state value just checked and
1025 * not expected to change.  If it changes, i.e. @p might have woken up,
1026 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1027 * we return a positive number (its total switch count).  If a second call
1028 * a short while later returns the same number, the caller can be sure that
1029 * @p has remained unscheduled the whole time.
1030 *
1031 * The caller must ensure that the task *will* unschedule sometime soon,
1032 * else this function might spin for a *long* time. This function can't
1033 * be called with interrupts off, or it may introduce deadlock with
1034 * smp_call_function() if an IPI is sent by the same process we are
1035 * waiting to become inactive.
1036 */
1037unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1038{
1039	unsigned long flags;
1040	int running, on_rq;
1041	unsigned long ncsw;
1042	struct rq *rq;
1043
1044	for (;;) {
1045		/*
1046		 * We do the initial early heuristics without holding
1047		 * any task-queue locks at all. We'll only try to get
1048		 * the runqueue lock when things look like they will
1049		 * work out!
1050		 */
1051		rq = task_rq(p);
1052
1053		/*
1054		 * If the task is actively running on another CPU
1055		 * still, just relax and busy-wait without holding
1056		 * any locks.
1057		 *
1058		 * NOTE! Since we don't hold any locks, it's not
1059		 * even sure that "rq" stays as the right runqueue!
1060		 * But we don't care, since "task_running()" will
1061		 * return false if the runqueue has changed and p
1062		 * is actually now running somewhere else!
1063		 */
1064		while (task_running(rq, p)) {
1065			if (match_state && unlikely(p->state != match_state))
1066				return 0;
1067			cpu_relax();
1068		}
1069
1070		/*
1071		 * Ok, time to look more closely! We need the rq
1072		 * lock now, to be *sure*. If we're wrong, we'll
1073		 * just go back and repeat.
1074		 */
1075		rq = task_rq_lock(p, &flags);
1076		trace_sched_wait_task(p);
1077		running = task_running(rq, p);
1078		on_rq = p->on_rq;
1079		ncsw = 0;
1080		if (!match_state || p->state == match_state)
1081			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1082		task_rq_unlock(rq, p, &flags);
1083
1084		/*
1085		 * If it changed from the expected state, bail out now.
1086		 */
1087		if (unlikely(!ncsw))
1088			break;
1089
1090		/*
1091		 * Was it really running after all now that we
1092		 * checked with the proper locks actually held?
1093		 *
1094		 * Oops. Go back and try again..
1095		 */
1096		if (unlikely(running)) {
1097			cpu_relax();
1098			continue;
1099		}
1100
1101		/*
1102		 * It's not enough that it's not actively running,
1103		 * it must be off the runqueue _entirely_, and not
1104		 * preempted!
1105		 *
1106		 * So if it was still runnable (but just not actively
1107		 * running right now), it's preempted, and we should
1108		 * yield - it could be a while.
1109		 */
1110		if (unlikely(on_rq)) {
1111			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1112
1113			set_current_state(TASK_UNINTERRUPTIBLE);
1114			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1115			continue;
1116		}
1117
1118		/*
1119		 * Ahh, all good. It wasn't running, and it wasn't
1120		 * runnable, which means that it will never become
1121		 * running in the future either. We're all done!
1122		 */
1123		break;
1124	}
1125
1126	return ncsw;
1127}
1128
1129/***
1130 * kick_process - kick a running thread to enter/exit the kernel
1131 * @p: the to-be-kicked thread
1132 *
1133 * Cause a process which is running on another CPU to enter
1134 * kernel-mode, without any delay. (to get signals handled.)
1135 *
1136 * NOTE: this function doesn't have to take the runqueue lock,
1137 * because all it wants to ensure is that the remote task enters
1138 * the kernel. If the IPI races and the task has been migrated
1139 * to another CPU then no harm is done and the purpose has been
1140 * achieved as well.
1141 */
1142void kick_process(struct task_struct *p)
1143{
1144	int cpu;
1145
1146	preempt_disable();
1147	cpu = task_cpu(p);
1148	if ((cpu != smp_processor_id()) && task_curr(p))
1149		smp_send_reschedule(cpu);
1150	preempt_enable();
1151}
1152EXPORT_SYMBOL_GPL(kick_process);
1153#endif /* CONFIG_SMP */
1154
1155#ifdef CONFIG_SMP
1156/*
1157 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1158 */
1159static int select_fallback_rq(int cpu, struct task_struct *p)
1160{
1161	int nid = cpu_to_node(cpu);
1162	const struct cpumask *nodemask = NULL;
1163	enum { cpuset, possible, fail } state = cpuset;
1164	int dest_cpu;
1165
1166	/*
1167	 * If the node that the cpu is on has been offlined, cpu_to_node()
1168	 * will return -1. There is no cpu on the node, and we should
1169	 * select the cpu on the other node.
1170	 */
1171	if (nid != -1) {
1172		nodemask = cpumask_of_node(nid);
1173
1174		/* Look for allowed, online CPU in same node. */
1175		for_each_cpu(dest_cpu, nodemask) {
1176			if (!cpu_online(dest_cpu))
1177				continue;
1178			if (!cpu_active(dest_cpu))
1179				continue;
1180			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1181				return dest_cpu;
1182		}
1183	}
1184
1185	for (;;) {
1186		/* Any allowed, online CPU? */
1187		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1188			if (!cpu_online(dest_cpu))
1189				continue;
1190			if (!cpu_active(dest_cpu))
1191				continue;
1192			goto out;
1193		}
1194
1195		switch (state) {
1196		case cpuset:
1197			/* No more Mr. Nice Guy. */
1198			cpuset_cpus_allowed_fallback(p);
1199			state = possible;
1200			break;
1201
1202		case possible:
1203			do_set_cpus_allowed(p, cpu_possible_mask);
1204			state = fail;
1205			break;
1206
1207		case fail:
1208			BUG();
1209			break;
1210		}
1211	}
1212
1213out:
1214	if (state != cpuset) {
1215		/*
1216		 * Don't tell them about moving exiting tasks or
1217		 * kernel threads (both mm NULL), since they never
1218		 * leave kernel.
1219		 */
1220		if (p->mm && printk_ratelimit()) {
1221			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1222					task_pid_nr(p), p->comm, cpu);
1223		}
1224	}
1225
1226	return dest_cpu;
1227}
1228
1229/*
1230 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1231 */
1232static inline
1233int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1234{
1235	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1236
1237	/*
1238	 * In order not to call set_task_cpu() on a blocking task we need
1239	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1240	 * cpu.
1241	 *
1242	 * Since this is common to all placement strategies, this lives here.
1243	 *
1244	 * [ this allows ->select_task() to simply return task_cpu(p) and
1245	 *   not worry about this generic constraint ]
1246	 */
1247	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1248		     !cpu_online(cpu)))
1249		cpu = select_fallback_rq(task_cpu(p), p);
1250
1251	return cpu;
1252}
1253
1254static void update_avg(u64 *avg, u64 sample)
1255{
1256	s64 diff = sample - *avg;
1257	*avg += diff >> 3;
1258}
1259#endif
1260
1261static void
1262ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1263{
1264#ifdef CONFIG_SCHEDSTATS
1265	struct rq *rq = this_rq();
1266
1267#ifdef CONFIG_SMP
1268	int this_cpu = smp_processor_id();
1269
1270	if (cpu == this_cpu) {
1271		schedstat_inc(rq, ttwu_local);
1272		schedstat_inc(p, se.statistics.nr_wakeups_local);
1273	} else {
1274		struct sched_domain *sd;
1275
1276		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1277		rcu_read_lock();
1278		for_each_domain(this_cpu, sd) {
1279			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1280				schedstat_inc(sd, ttwu_wake_remote);
1281				break;
1282			}
1283		}
1284		rcu_read_unlock();
1285	}
1286
1287	if (wake_flags & WF_MIGRATED)
1288		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1289
1290#endif /* CONFIG_SMP */
1291
1292	schedstat_inc(rq, ttwu_count);
1293	schedstat_inc(p, se.statistics.nr_wakeups);
1294
1295	if (wake_flags & WF_SYNC)
1296		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1297
1298#endif /* CONFIG_SCHEDSTATS */
1299}
1300
1301static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1302{
1303	activate_task(rq, p, en_flags);
1304	p->on_rq = 1;
1305
1306	/* if a worker is waking up, notify workqueue */
1307	if (p->flags & PF_WQ_WORKER)
1308		wq_worker_waking_up(p, cpu_of(rq));
1309}
1310
1311/*
1312 * Mark the task runnable and perform wakeup-preemption.
1313 */
1314static void
1315ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1316{
1317	check_preempt_curr(rq, p, wake_flags);
1318	trace_sched_wakeup(p, true);
1319
1320	p->state = TASK_RUNNING;
1321#ifdef CONFIG_SMP
1322	if (p->sched_class->task_woken)
1323		p->sched_class->task_woken(rq, p);
1324
1325	if (rq->idle_stamp) {
1326		u64 delta = rq_clock(rq) - rq->idle_stamp;
1327		u64 max = 2*rq->max_idle_balance_cost;
1328
1329		update_avg(&rq->avg_idle, delta);
1330
1331		if (rq->avg_idle > max)
1332			rq->avg_idle = max;
1333
1334		rq->idle_stamp = 0;
1335	}
1336#endif
1337}
1338
1339static void
1340ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1341{
1342#ifdef CONFIG_SMP
1343	if (p->sched_contributes_to_load)
1344		rq->nr_uninterruptible--;
1345#endif
1346
1347	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1348	ttwu_do_wakeup(rq, p, wake_flags);
1349}
1350
1351/*
1352 * Called in case the task @p isn't fully descheduled from its runqueue,
1353 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1354 * since all we need to do is flip p->state to TASK_RUNNING, since
1355 * the task is still ->on_rq.
1356 */
1357static int ttwu_remote(struct task_struct *p, int wake_flags)
1358{
1359	struct rq *rq;
1360	int ret = 0;
1361
1362	rq = __task_rq_lock(p);
1363	if (p->on_rq) {
1364		/* check_preempt_curr() may use rq clock */
1365		update_rq_clock(rq);
1366		ttwu_do_wakeup(rq, p, wake_flags);
1367		ret = 1;
1368	}
1369	__task_rq_unlock(rq);
1370
1371	return ret;
1372}
1373
1374#ifdef CONFIG_SMP
1375static void sched_ttwu_pending(void)
1376{
1377	struct rq *rq = this_rq();
1378	struct llist_node *llist = llist_del_all(&rq->wake_list);
1379	struct task_struct *p;
1380
1381	raw_spin_lock(&rq->lock);
1382
1383	while (llist) {
1384		p = llist_entry(llist, struct task_struct, wake_entry);
1385		llist = llist_next(llist);
1386		ttwu_do_activate(rq, p, 0);
1387	}
1388
1389	raw_spin_unlock(&rq->lock);
1390}
1391
1392void scheduler_ipi(void)
1393{
1394	if (llist_empty(&this_rq()->wake_list)
1395			&& !tick_nohz_full_cpu(smp_processor_id())
1396			&& !got_nohz_idle_kick())
1397		return;
1398
1399	/*
1400	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1401	 * traditionally all their work was done from the interrupt return
1402	 * path. Now that we actually do some work, we need to make sure
1403	 * we do call them.
1404	 *
1405	 * Some archs already do call them, luckily irq_enter/exit nest
1406	 * properly.
1407	 *
1408	 * Arguably we should visit all archs and update all handlers,
1409	 * however a fair share of IPIs are still resched only so this would
1410	 * somewhat pessimize the simple resched case.
1411	 */
1412	irq_enter();
1413	tick_nohz_full_check();
1414	sched_ttwu_pending();
1415
1416	/*
1417	 * Check if someone kicked us for doing the nohz idle load balance.
1418	 */
1419	if (unlikely(got_nohz_idle_kick())) {
1420		this_rq()->idle_balance = 1;
1421		raise_softirq_irqoff(SCHED_SOFTIRQ);
1422	}
1423	irq_exit();
1424}
1425
1426static void ttwu_queue_remote(struct task_struct *p, int cpu)
1427{
1428	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1429		smp_send_reschedule(cpu);
1430}
1431
1432bool cpus_share_cache(int this_cpu, int that_cpu)
1433{
1434	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1435}
1436#endif /* CONFIG_SMP */
1437
1438static void ttwu_queue(struct task_struct *p, int cpu)
1439{
1440	struct rq *rq = cpu_rq(cpu);
1441
1442#if defined(CONFIG_SMP)
1443	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1444		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1445		ttwu_queue_remote(p, cpu);
1446		return;
1447	}
1448#endif
1449
1450	raw_spin_lock(&rq->lock);
1451	ttwu_do_activate(rq, p, 0);
1452	raw_spin_unlock(&rq->lock);
1453}
1454
1455/**
1456 * try_to_wake_up - wake up a thread
1457 * @p: the thread to be awakened
1458 * @state: the mask of task states that can be woken
1459 * @wake_flags: wake modifier flags (WF_*)
1460 *
1461 * Put it on the run-queue if it's not already there. The "current"
1462 * thread is always on the run-queue (except when the actual
1463 * re-schedule is in progress), and as such you're allowed to do
1464 * the simpler "current->state = TASK_RUNNING" to mark yourself
1465 * runnable without the overhead of this.
1466 *
1467 * Return: %true if @p was woken up, %false if it was already running.
1468 * or @state didn't match @p's state.
1469 */
1470static int
1471try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1472{
1473	unsigned long flags;
1474	int cpu, success = 0;
1475
1476	/*
1477	 * If we are going to wake up a thread waiting for CONDITION we
1478	 * need to ensure that CONDITION=1 done by the caller can not be
1479	 * reordered with p->state check below. This pairs with mb() in
1480	 * set_current_state() the waiting thread does.
1481	 */
1482	smp_mb__before_spinlock();
1483	raw_spin_lock_irqsave(&p->pi_lock, flags);
1484	if (!(p->state & state))
1485		goto out;
1486
1487	success = 1; /* we're going to change ->state */
1488	cpu = task_cpu(p);
1489
1490	if (p->on_rq && ttwu_remote(p, wake_flags))
1491		goto stat;
1492
1493#ifdef CONFIG_SMP
1494	/*
1495	 * If the owning (remote) cpu is still in the middle of schedule() with
1496	 * this task as prev, wait until its done referencing the task.
1497	 */
1498	while (p->on_cpu)
1499		cpu_relax();
1500	/*
1501	 * Pairs with the smp_wmb() in finish_lock_switch().
1502	 */
1503	smp_rmb();
1504
1505	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1506	p->state = TASK_WAKING;
1507
1508	if (p->sched_class->task_waking)
1509		p->sched_class->task_waking(p);
1510
1511	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1512	if (task_cpu(p) != cpu) {
1513		wake_flags |= WF_MIGRATED;
1514		set_task_cpu(p, cpu);
1515	}
1516#endif /* CONFIG_SMP */
1517
1518	ttwu_queue(p, cpu);
1519stat:
1520	ttwu_stat(p, cpu, wake_flags);
1521out:
1522	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1523
1524	return success;
1525}
1526
1527/**
1528 * try_to_wake_up_local - try to wake up a local task with rq lock held
1529 * @p: the thread to be awakened
1530 *
1531 * Put @p on the run-queue if it's not already there. The caller must
1532 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1533 * the current task.
1534 */
1535static void try_to_wake_up_local(struct task_struct *p)
1536{
1537	struct rq *rq = task_rq(p);
1538
1539	if (WARN_ON_ONCE(rq != this_rq()) ||
1540	    WARN_ON_ONCE(p == current))
1541		return;
1542
1543	lockdep_assert_held(&rq->lock);
1544
1545	if (!raw_spin_trylock(&p->pi_lock)) {
1546		raw_spin_unlock(&rq->lock);
1547		raw_spin_lock(&p->pi_lock);
1548		raw_spin_lock(&rq->lock);
1549	}
1550
1551	if (!(p->state & TASK_NORMAL))
1552		goto out;
1553
1554	if (!p->on_rq)
1555		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1556
1557	ttwu_do_wakeup(rq, p, 0);
1558	ttwu_stat(p, smp_processor_id(), 0);
1559out:
1560	raw_spin_unlock(&p->pi_lock);
1561}
1562
1563/**
1564 * wake_up_process - Wake up a specific process
1565 * @p: The process to be woken up.
1566 *
1567 * Attempt to wake up the nominated process and move it to the set of runnable
1568 * processes.
1569 *
1570 * Return: 1 if the process was woken up, 0 if it was already running.
1571 *
1572 * It may be assumed that this function implies a write memory barrier before
1573 * changing the task state if and only if any tasks are woken up.
1574 */
1575int wake_up_process(struct task_struct *p)
1576{
1577	WARN_ON(task_is_stopped_or_traced(p));
1578	return try_to_wake_up(p, TASK_NORMAL, 0);
1579}
1580EXPORT_SYMBOL(wake_up_process);
1581
1582int wake_up_state(struct task_struct *p, unsigned int state)
1583{
1584	return try_to_wake_up(p, state, 0);
1585}
1586
1587/*
1588 * Perform scheduler related setup for a newly forked process p.
1589 * p is forked by current.
1590 *
1591 * __sched_fork() is basic setup used by init_idle() too:
1592 */
1593static void __sched_fork(struct task_struct *p)
1594{
1595	p->on_rq			= 0;
1596
1597	p->se.on_rq			= 0;
1598	p->se.exec_start		= 0;
1599	p->se.sum_exec_runtime		= 0;
1600	p->se.prev_sum_exec_runtime	= 0;
1601	p->se.nr_migrations		= 0;
1602	p->se.vruntime			= 0;
1603	INIT_LIST_HEAD(&p->se.group_node);
1604
1605#ifdef CONFIG_SCHEDSTATS
1606	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1607#endif
1608
1609	INIT_LIST_HEAD(&p->rt.run_list);
1610
1611#ifdef CONFIG_PREEMPT_NOTIFIERS
1612	INIT_HLIST_HEAD(&p->preempt_notifiers);
1613#endif
1614
1615#ifdef CONFIG_NUMA_BALANCING
1616	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1617		p->mm->numa_next_scan = jiffies;
1618		p->mm->numa_next_reset = jiffies;
1619		p->mm->numa_scan_seq = 0;
1620	}
1621
1622	p->node_stamp = 0ULL;
1623	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1624	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1625	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1626	p->numa_work.next = &p->numa_work;
1627#endif /* CONFIG_NUMA_BALANCING */
1628}
1629
1630#ifdef CONFIG_NUMA_BALANCING
1631#ifdef CONFIG_SCHED_DEBUG
1632void set_numabalancing_state(bool enabled)
1633{
1634	if (enabled)
1635		sched_feat_set("NUMA");
1636	else
1637		sched_feat_set("NO_NUMA");
1638}
1639#else
1640__read_mostly bool numabalancing_enabled;
1641
1642void set_numabalancing_state(bool enabled)
1643{
1644	numabalancing_enabled = enabled;
1645}
1646#endif /* CONFIG_SCHED_DEBUG */
1647#endif /* CONFIG_NUMA_BALANCING */
1648
1649/*
1650 * fork()/clone()-time setup:
1651 */
1652void sched_fork(struct task_struct *p)
1653{
1654	unsigned long flags;
1655	int cpu = get_cpu();
1656
1657	__sched_fork(p);
1658	/*
1659	 * We mark the process as running here. This guarantees that
1660	 * nobody will actually run it, and a signal or other external
1661	 * event cannot wake it up and insert it on the runqueue either.
1662	 */
1663	p->state = TASK_RUNNING;
1664
1665	/*
1666	 * Make sure we do not leak PI boosting priority to the child.
1667	 */
1668	p->prio = current->normal_prio;
1669
1670	/*
1671	 * Revert to default priority/policy on fork if requested.
1672	 */
1673	if (unlikely(p->sched_reset_on_fork)) {
1674		if (task_has_rt_policy(p)) {
1675			p->policy = SCHED_NORMAL;
1676			p->static_prio = NICE_TO_PRIO(0);
1677			p->rt_priority = 0;
1678		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1679			p->static_prio = NICE_TO_PRIO(0);
1680
1681		p->prio = p->normal_prio = __normal_prio(p);
1682		set_load_weight(p);
1683
1684		/*
1685		 * We don't need the reset flag anymore after the fork. It has
1686		 * fulfilled its duty:
1687		 */
1688		p->sched_reset_on_fork = 0;
1689	}
1690
1691	if (!rt_prio(p->prio))
1692		p->sched_class = &fair_sched_class;
1693
1694	if (p->sched_class->task_fork)
1695		p->sched_class->task_fork(p);
1696
1697	/*
1698	 * The child is not yet in the pid-hash so no cgroup attach races,
1699	 * and the cgroup is pinned to this child due to cgroup_fork()
1700	 * is ran before sched_fork().
1701	 *
1702	 * Silence PROVE_RCU.
1703	 */
1704	raw_spin_lock_irqsave(&p->pi_lock, flags);
1705	set_task_cpu(p, cpu);
1706	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1707
1708#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1709	if (likely(sched_info_on()))
1710		memset(&p->sched_info, 0, sizeof(p->sched_info));
1711#endif
1712#if defined(CONFIG_SMP)
1713	p->on_cpu = 0;
1714#endif
1715#ifdef CONFIG_PREEMPT_COUNT
1716	/* Want to start with kernel preemption disabled. */
1717	task_thread_info(p)->preempt_count = 1;
1718#endif
1719#ifdef CONFIG_SMP
1720	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1721#endif
1722
1723	put_cpu();
1724}
1725
1726/*
1727 * wake_up_new_task - wake up a newly created task for the first time.
1728 *
1729 * This function will do some initial scheduler statistics housekeeping
1730 * that must be done for every newly created context, then puts the task
1731 * on the runqueue and wakes it.
1732 */
1733void wake_up_new_task(struct task_struct *p)
1734{
1735	unsigned long flags;
1736	struct rq *rq;
1737
1738	raw_spin_lock_irqsave(&p->pi_lock, flags);
1739#ifdef CONFIG_SMP
1740	/*
1741	 * Fork balancing, do it here and not earlier because:
1742	 *  - cpus_allowed can change in the fork path
1743	 *  - any previously selected cpu might disappear through hotplug
1744	 */
1745	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1746#endif
1747
1748	/* Initialize new task's runnable average */
1749	init_task_runnable_average(p);
1750	rq = __task_rq_lock(p);
1751	activate_task(rq, p, 0);
1752	p->on_rq = 1;
1753	trace_sched_wakeup_new(p, true);
1754	check_preempt_curr(rq, p, WF_FORK);
1755#ifdef CONFIG_SMP
1756	if (p->sched_class->task_woken)
1757		p->sched_class->task_woken(rq, p);
1758#endif
1759	task_rq_unlock(rq, p, &flags);
1760}
1761
1762#ifdef CONFIG_PREEMPT_NOTIFIERS
1763
1764/**
1765 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1766 * @notifier: notifier struct to register
1767 */
1768void preempt_notifier_register(struct preempt_notifier *notifier)
1769{
1770	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1771}
1772EXPORT_SYMBOL_GPL(preempt_notifier_register);
1773
1774/**
1775 * preempt_notifier_unregister - no longer interested in preemption notifications
1776 * @notifier: notifier struct to unregister
1777 *
1778 * This is safe to call from within a preemption notifier.
1779 */
1780void preempt_notifier_unregister(struct preempt_notifier *notifier)
1781{
1782	hlist_del(&notifier->link);
1783}
1784EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1785
1786static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1787{
1788	struct preempt_notifier *notifier;
1789
1790	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1791		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1792}
1793
1794static void
1795fire_sched_out_preempt_notifiers(struct task_struct *curr,
1796				 struct task_struct *next)
1797{
1798	struct preempt_notifier *notifier;
1799
1800	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1801		notifier->ops->sched_out(notifier, next);
1802}
1803
1804#else /* !CONFIG_PREEMPT_NOTIFIERS */
1805
1806static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1807{
1808}
1809
1810static void
1811fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812				 struct task_struct *next)
1813{
1814}
1815
1816#endif /* CONFIG_PREEMPT_NOTIFIERS */
1817
1818/**
1819 * prepare_task_switch - prepare to switch tasks
1820 * @rq: the runqueue preparing to switch
1821 * @prev: the current task that is being switched out
1822 * @next: the task we are going to switch to.
1823 *
1824 * This is called with the rq lock held and interrupts off. It must
1825 * be paired with a subsequent finish_task_switch after the context
1826 * switch.
1827 *
1828 * prepare_task_switch sets up locking and calls architecture specific
1829 * hooks.
1830 */
1831static inline void
1832prepare_task_switch(struct rq *rq, struct task_struct *prev,
1833		    struct task_struct *next)
1834{
1835	trace_sched_switch(prev, next);
1836	sched_info_switch(rq, prev, next);
1837	perf_event_task_sched_out(prev, next);
1838	fire_sched_out_preempt_notifiers(prev, next);
1839	prepare_lock_switch(rq, next);
1840	prepare_arch_switch(next);
1841}
1842
1843/**
1844 * finish_task_switch - clean up after a task-switch
1845 * @rq: runqueue associated with task-switch
1846 * @prev: the thread we just switched away from.
1847 *
1848 * finish_task_switch must be called after the context switch, paired
1849 * with a prepare_task_switch call before the context switch.
1850 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1851 * and do any other architecture-specific cleanup actions.
1852 *
1853 * Note that we may have delayed dropping an mm in context_switch(). If
1854 * so, we finish that here outside of the runqueue lock. (Doing it
1855 * with the lock held can cause deadlocks; see schedule() for
1856 * details.)
1857 */
1858static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1859	__releases(rq->lock)
1860{
1861	struct mm_struct *mm = rq->prev_mm;
1862	long prev_state;
1863
1864	rq->prev_mm = NULL;
1865
1866	/*
1867	 * A task struct has one reference for the use as "current".
1868	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1869	 * schedule one last time. The schedule call will never return, and
1870	 * the scheduled task must drop that reference.
1871	 * The test for TASK_DEAD must occur while the runqueue locks are
1872	 * still held, otherwise prev could be scheduled on another cpu, die
1873	 * there before we look at prev->state, and then the reference would
1874	 * be dropped twice.
1875	 *		Manfred Spraul <manfred@colorfullife.com>
1876	 */
1877	prev_state = prev->state;
1878	vtime_task_switch(prev);
1879	finish_arch_switch(prev);
1880	perf_event_task_sched_in(prev, current);
1881	finish_lock_switch(rq, prev);
1882	finish_arch_post_lock_switch();
1883
1884	fire_sched_in_preempt_notifiers(current);
1885	if (mm)
1886		mmdrop(mm);
1887	if (unlikely(prev_state == TASK_DEAD)) {
1888		/*
1889		 * Remove function-return probe instances associated with this
1890		 * task and put them back on the free list.
1891		 */
1892		kprobe_flush_task(prev);
1893		put_task_struct(prev);
1894	}
1895
1896	tick_nohz_task_switch(current);
1897}
1898
1899#ifdef CONFIG_SMP
1900
1901/* assumes rq->lock is held */
1902static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1903{
1904	if (prev->sched_class->pre_schedule)
1905		prev->sched_class->pre_schedule(rq, prev);
1906}
1907
1908/* rq->lock is NOT held, but preemption is disabled */
1909static inline void post_schedule(struct rq *rq)
1910{
1911	if (rq->post_schedule) {
1912		unsigned long flags;
1913
1914		raw_spin_lock_irqsave(&rq->lock, flags);
1915		if (rq->curr->sched_class->post_schedule)
1916			rq->curr->sched_class->post_schedule(rq);
1917		raw_spin_unlock_irqrestore(&rq->lock, flags);
1918
1919		rq->post_schedule = 0;
1920	}
1921}
1922
1923#else
1924
1925static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1926{
1927}
1928
1929static inline void post_schedule(struct rq *rq)
1930{
1931}
1932
1933#endif
1934
1935/**
1936 * schedule_tail - first thing a freshly forked thread must call.
1937 * @prev: the thread we just switched away from.
1938 */
1939asmlinkage void schedule_tail(struct task_struct *prev)
1940	__releases(rq->lock)
1941{
1942	struct rq *rq = this_rq();
1943
1944	finish_task_switch(rq, prev);
1945
1946	/*
1947	 * FIXME: do we need to worry about rq being invalidated by the
1948	 * task_switch?
1949	 */
1950	post_schedule(rq);
1951
1952#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1953	/* In this case, finish_task_switch does not reenable preemption */
1954	preempt_enable();
1955#endif
1956	if (current->set_child_tid)
1957		put_user(task_pid_vnr(current), current->set_child_tid);
1958}
1959
1960/*
1961 * context_switch - switch to the new MM and the new
1962 * thread's register state.
1963 */
1964static inline void
1965context_switch(struct rq *rq, struct task_struct *prev,
1966	       struct task_struct *next)
1967{
1968	struct mm_struct *mm, *oldmm;
1969
1970	prepare_task_switch(rq, prev, next);
1971
1972	mm = next->mm;
1973	oldmm = prev->active_mm;
1974	/*
1975	 * For paravirt, this is coupled with an exit in switch_to to
1976	 * combine the page table reload and the switch backend into
1977	 * one hypercall.
1978	 */
1979	arch_start_context_switch(prev);
1980
1981	if (!mm) {
1982		next->active_mm = oldmm;
1983		atomic_inc(&oldmm->mm_count);
1984		enter_lazy_tlb(oldmm, next);
1985	} else
1986		switch_mm(oldmm, mm, next);
1987
1988	if (!prev->mm) {
1989		prev->active_mm = NULL;
1990		rq->prev_mm = oldmm;
1991	}
1992	/*
1993	 * Since the runqueue lock will be released by the next
1994	 * task (which is an invalid locking op but in the case
1995	 * of the scheduler it's an obvious special-case), so we
1996	 * do an early lockdep release here:
1997	 */
1998#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1999	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2000#endif
2001
2002	context_tracking_task_switch(prev, next);
2003	/* Here we just switch the register state and the stack. */
2004	switch_to(prev, next, prev);
2005
2006	barrier();
2007	/*
2008	 * this_rq must be evaluated again because prev may have moved
2009	 * CPUs since it called schedule(), thus the 'rq' on its stack
2010	 * frame will be invalid.
2011	 */
2012	finish_task_switch(this_rq(), prev);
2013}
2014
2015/*
2016 * nr_running and nr_context_switches:
2017 *
2018 * externally visible scheduler statistics: current number of runnable
2019 * threads, total number of context switches performed since bootup.
2020 */
2021unsigned long nr_running(void)
2022{
2023	unsigned long i, sum = 0;
2024
2025	for_each_online_cpu(i)
2026		sum += cpu_rq(i)->nr_running;
2027
2028	return sum;
2029}
2030
2031unsigned long long nr_context_switches(void)
2032{
2033	int i;
2034	unsigned long long sum = 0;
2035
2036	for_each_possible_cpu(i)
2037		sum += cpu_rq(i)->nr_switches;
2038
2039	return sum;
2040}
2041
2042unsigned long nr_iowait(void)
2043{
2044	unsigned long i, sum = 0;
2045
2046	for_each_possible_cpu(i)
2047		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2048
2049	return sum;
2050}
2051
2052unsigned long nr_iowait_cpu(int cpu)
2053{
2054	struct rq *this = cpu_rq(cpu);
2055	return atomic_read(&this->nr_iowait);
2056}
2057
2058#ifdef CONFIG_SMP
2059
2060/*
2061 * sched_exec - execve() is a valuable balancing opportunity, because at
2062 * this point the task has the smallest effective memory and cache footprint.
2063 */
2064void sched_exec(void)
2065{
2066	struct task_struct *p = current;
2067	unsigned long flags;
2068	int dest_cpu;
2069
2070	raw_spin_lock_irqsave(&p->pi_lock, flags);
2071	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2072	if (dest_cpu == smp_processor_id())
2073		goto unlock;
2074
2075	if (likely(cpu_active(dest_cpu))) {
2076		struct migration_arg arg = { p, dest_cpu };
2077
2078		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2079		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2080		return;
2081	}
2082unlock:
2083	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2084}
2085
2086#endif
2087
2088DEFINE_PER_CPU(struct kernel_stat, kstat);
2089DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2090
2091EXPORT_PER_CPU_SYMBOL(kstat);
2092EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2093
2094/*
2095 * Return any ns on the sched_clock that have not yet been accounted in
2096 * @p in case that task is currently running.
2097 *
2098 * Called with task_rq_lock() held on @rq.
2099 */
2100static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2101{
2102	u64 ns = 0;
2103
2104	if (task_current(rq, p)) {
2105		update_rq_clock(rq);
2106		ns = rq_clock_task(rq) - p->se.exec_start;
2107		if ((s64)ns < 0)
2108			ns = 0;
2109	}
2110
2111	return ns;
2112}
2113
2114unsigned long long task_delta_exec(struct task_struct *p)
2115{
2116	unsigned long flags;
2117	struct rq *rq;
2118	u64 ns = 0;
2119
2120	rq = task_rq_lock(p, &flags);
2121	ns = do_task_delta_exec(p, rq);
2122	task_rq_unlock(rq, p, &flags);
2123
2124	return ns;
2125}
2126
2127/*
2128 * Return accounted runtime for the task.
2129 * In case the task is currently running, return the runtime plus current's
2130 * pending runtime that have not been accounted yet.
2131 */
2132unsigned long long task_sched_runtime(struct task_struct *p)
2133{
2134	unsigned long flags;
2135	struct rq *rq;
2136	u64 ns = 0;
2137
2138	rq = task_rq_lock(p, &flags);
2139	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2140	task_rq_unlock(rq, p, &flags);
2141
2142	return ns;
2143}
2144
2145/*
2146 * This function gets called by the timer code, with HZ frequency.
2147 * We call it with interrupts disabled.
2148 */
2149void scheduler_tick(void)
2150{
2151	int cpu = smp_processor_id();
2152	struct rq *rq = cpu_rq(cpu);
2153	struct task_struct *curr = rq->curr;
2154
2155	sched_clock_tick();
2156
2157	raw_spin_lock(&rq->lock);
2158	update_rq_clock(rq);
2159	curr->sched_class->task_tick(rq, curr, 0);
2160	update_cpu_load_active(rq);
2161	raw_spin_unlock(&rq->lock);
2162
2163	perf_event_task_tick();
2164
2165#ifdef CONFIG_SMP
2166	rq->idle_balance = idle_cpu(cpu);
2167	trigger_load_balance(rq, cpu);
2168#endif
2169	rq_last_tick_reset(rq);
2170}
2171
2172#ifdef CONFIG_NO_HZ_FULL
2173/**
2174 * scheduler_tick_max_deferment
2175 *
2176 * Keep at least one tick per second when a single
2177 * active task is running because the scheduler doesn't
2178 * yet completely support full dynticks environment.
2179 *
2180 * This makes sure that uptime, CFS vruntime, load
2181 * balancing, etc... continue to move forward, even
2182 * with a very low granularity.
2183 *
2184 * Return: Maximum deferment in nanoseconds.
2185 */
2186u64 scheduler_tick_max_deferment(void)
2187{
2188	struct rq *rq = this_rq();
2189	unsigned long next, now = ACCESS_ONCE(jiffies);
2190
2191	next = rq->last_sched_tick + HZ;
2192
2193	if (time_before_eq(next, now))
2194		return 0;
2195
2196	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2197}
2198#endif
2199
2200notrace unsigned long get_parent_ip(unsigned long addr)
2201{
2202	if (in_lock_functions(addr)) {
2203		addr = CALLER_ADDR2;
2204		if (in_lock_functions(addr))
2205			addr = CALLER_ADDR3;
2206	}
2207	return addr;
2208}
2209
2210#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2211				defined(CONFIG_PREEMPT_TRACER))
2212
2213void __kprobes add_preempt_count(int val)
2214{
2215#ifdef CONFIG_DEBUG_PREEMPT
2216	/*
2217	 * Underflow?
2218	 */
2219	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2220		return;
2221#endif
2222	add_preempt_count_notrace(val);
2223#ifdef CONFIG_DEBUG_PREEMPT
2224	/*
2225	 * Spinlock count overflowing soon?
2226	 */
2227	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2228				PREEMPT_MASK - 10);
2229#endif
2230	if (preempt_count() == val)
2231		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2232}
2233EXPORT_SYMBOL(add_preempt_count);
2234
2235void __kprobes sub_preempt_count(int val)
2236{
2237#ifdef CONFIG_DEBUG_PREEMPT
2238	/*
2239	 * Underflow?
2240	 */
2241	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2242		return;
2243	/*
2244	 * Is the spinlock portion underflowing?
2245	 */
2246	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2247			!(preempt_count() & PREEMPT_MASK)))
2248		return;
2249#endif
2250
2251	if (preempt_count() == val)
2252		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2253	sub_preempt_count_notrace(val);
2254}
2255EXPORT_SYMBOL(sub_preempt_count);
2256
2257#endif
2258
2259/*
2260 * Print scheduling while atomic bug:
2261 */
2262static noinline void __schedule_bug(struct task_struct *prev)
2263{
2264	if (oops_in_progress)
2265		return;
2266
2267	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2268		prev->comm, prev->pid, preempt_count());
2269
2270	debug_show_held_locks(prev);
2271	print_modules();
2272	if (irqs_disabled())
2273		print_irqtrace_events(prev);
2274	dump_stack();
2275	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2276}
2277
2278/*
2279 * Various schedule()-time debugging checks and statistics:
2280 */
2281static inline void schedule_debug(struct task_struct *prev)
2282{
2283	/*
2284	 * Test if we are atomic. Since do_exit() needs to call into
2285	 * schedule() atomically, we ignore that path for now.
2286	 * Otherwise, whine if we are scheduling when we should not be.
2287	 */
2288	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2289		__schedule_bug(prev);
2290	rcu_sleep_check();
2291
2292	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2293
2294	schedstat_inc(this_rq(), sched_count);
2295}
2296
2297static void put_prev_task(struct rq *rq, struct task_struct *prev)
2298{
2299	if (prev->on_rq || rq->skip_clock_update < 0)
2300		update_rq_clock(rq);
2301	prev->sched_class->put_prev_task(rq, prev);
2302}
2303
2304/*
2305 * Pick up the highest-prio task:
2306 */
2307static inline struct task_struct *
2308pick_next_task(struct rq *rq)
2309{
2310	const struct sched_class *class;
2311	struct task_struct *p;
2312
2313	/*
2314	 * Optimization: we know that if all tasks are in
2315	 * the fair class we can call that function directly:
2316	 */
2317	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2318		p = fair_sched_class.pick_next_task(rq);
2319		if (likely(p))
2320			return p;
2321	}
2322
2323	for_each_class(class) {
2324		p = class->pick_next_task(rq);
2325		if (p)
2326			return p;
2327	}
2328
2329	BUG(); /* the idle class will always have a runnable task */
2330}
2331
2332/*
2333 * __schedule() is the main scheduler function.
2334 *
2335 * The main means of driving the scheduler and thus entering this function are:
2336 *
2337 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2338 *
2339 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2340 *      paths. For example, see arch/x86/entry_64.S.
2341 *
2342 *      To drive preemption between tasks, the scheduler sets the flag in timer
2343 *      interrupt handler scheduler_tick().
2344 *
2345 *   3. Wakeups don't really cause entry into schedule(). They add a
2346 *      task to the run-queue and that's it.
2347 *
2348 *      Now, if the new task added to the run-queue preempts the current
2349 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2350 *      called on the nearest possible occasion:
2351 *
2352 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2353 *
2354 *         - in syscall or exception context, at the next outmost
2355 *           preempt_enable(). (this might be as soon as the wake_up()'s
2356 *           spin_unlock()!)
2357 *
2358 *         - in IRQ context, return from interrupt-handler to
2359 *           preemptible context
2360 *
2361 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2362 *         then at the next:
2363 *
2364 *          - cond_resched() call
2365 *          - explicit schedule() call
2366 *          - return from syscall or exception to user-space
2367 *          - return from interrupt-handler to user-space
2368 */
2369static void __sched __schedule(void)
2370{
2371	struct task_struct *prev, *next;
2372	unsigned long *switch_count;
2373	struct rq *rq;
2374	int cpu;
2375
2376need_resched:
2377	preempt_disable();
2378	cpu = smp_processor_id();
2379	rq = cpu_rq(cpu);
2380	rcu_note_context_switch(cpu);
2381	prev = rq->curr;
2382
2383	schedule_debug(prev);
2384
2385	if (sched_feat(HRTICK))
2386		hrtick_clear(rq);
2387
2388	/*
2389	 * Make sure that signal_pending_state()->signal_pending() below
2390	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2391	 * done by the caller to avoid the race with signal_wake_up().
2392	 */
2393	smp_mb__before_spinlock();
2394	raw_spin_lock_irq(&rq->lock);
2395
2396	switch_count = &prev->nivcsw;
2397	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2398		if (unlikely(signal_pending_state(prev->state, prev))) {
2399			prev->state = TASK_RUNNING;
2400		} else {
2401			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2402			prev->on_rq = 0;
2403
2404			/*
2405			 * If a worker went to sleep, notify and ask workqueue
2406			 * whether it wants to wake up a task to maintain
2407			 * concurrency.
2408			 */
2409			if (prev->flags & PF_WQ_WORKER) {
2410				struct task_struct *to_wakeup;
2411
2412				to_wakeup = wq_worker_sleeping(prev, cpu);
2413				if (to_wakeup)
2414					try_to_wake_up_local(to_wakeup);
2415			}
2416		}
2417		switch_count = &prev->nvcsw;
2418	}
2419
2420	pre_schedule(rq, prev);
2421
2422	if (unlikely(!rq->nr_running))
2423		idle_balance(cpu, rq);
2424
2425	put_prev_task(rq, prev);
2426	next = pick_next_task(rq);
2427	clear_tsk_need_resched(prev);
2428	rq->skip_clock_update = 0;
2429
2430	if (likely(prev != next)) {
2431		rq->nr_switches++;
2432		rq->curr = next;
2433		++*switch_count;
2434
2435		context_switch(rq, prev, next); /* unlocks the rq */
2436		/*
2437		 * The context switch have flipped the stack from under us
2438		 * and restored the local variables which were saved when
2439		 * this task called schedule() in the past. prev == current
2440		 * is still correct, but it can be moved to another cpu/rq.
2441		 */
2442		cpu = smp_processor_id();
2443		rq = cpu_rq(cpu);
2444	} else
2445		raw_spin_unlock_irq(&rq->lock);
2446
2447	post_schedule(rq);
2448
2449	sched_preempt_enable_no_resched();
2450	if (need_resched())
2451		goto need_resched;
2452}
2453
2454static inline void sched_submit_work(struct task_struct *tsk)
2455{
2456	if (!tsk->state || tsk_is_pi_blocked(tsk))
2457		return;
2458	/*
2459	 * If we are going to sleep and we have plugged IO queued,
2460	 * make sure to submit it to avoid deadlocks.
2461	 */
2462	if (blk_needs_flush_plug(tsk))
2463		blk_schedule_flush_plug(tsk);
2464}
2465
2466asmlinkage void __sched schedule(void)
2467{
2468	struct task_struct *tsk = current;
2469
2470	sched_submit_work(tsk);
2471	__schedule();
2472}
2473EXPORT_SYMBOL(schedule);
2474
2475#ifdef CONFIG_CONTEXT_TRACKING
2476asmlinkage void __sched schedule_user(void)
2477{
2478	/*
2479	 * If we come here after a random call to set_need_resched(),
2480	 * or we have been woken up remotely but the IPI has not yet arrived,
2481	 * we haven't yet exited the RCU idle mode. Do it here manually until
2482	 * we find a better solution.
2483	 */
2484	user_exit();
2485	schedule();
2486	user_enter();
2487}
2488#endif
2489
2490/**
2491 * schedule_preempt_disabled - called with preemption disabled
2492 *
2493 * Returns with preemption disabled. Note: preempt_count must be 1
2494 */
2495void __sched schedule_preempt_disabled(void)
2496{
2497	sched_preempt_enable_no_resched();
2498	schedule();
2499	preempt_disable();
2500}
2501
2502#ifdef CONFIG_PREEMPT
2503/*
2504 * this is the entry point to schedule() from in-kernel preemption
2505 * off of preempt_enable. Kernel preemptions off return from interrupt
2506 * occur there and call schedule directly.
2507 */
2508asmlinkage void __sched notrace preempt_schedule(void)
2509{
2510	/*
2511	 * If there is a non-zero preempt_count or interrupts are disabled,
2512	 * we do not want to preempt the current task. Just return..
2513	 */
2514	if (likely(!preemptible()))
2515		return;
2516
2517	do {
2518		add_preempt_count_notrace(PREEMPT_ACTIVE);
2519		__schedule();
2520		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2521
2522		/*
2523		 * Check again in case we missed a preemption opportunity
2524		 * between schedule and now.
2525		 */
2526		barrier();
2527	} while (need_resched());
2528}
2529EXPORT_SYMBOL(preempt_schedule);
2530
2531/*
2532 * this is the entry point to schedule() from kernel preemption
2533 * off of irq context.
2534 * Note, that this is called and return with irqs disabled. This will
2535 * protect us against recursive calling from irq.
2536 */
2537asmlinkage void __sched preempt_schedule_irq(void)
2538{
2539	struct thread_info *ti = current_thread_info();
2540	enum ctx_state prev_state;
2541
2542	/* Catch callers which need to be fixed */
2543	BUG_ON(ti->preempt_count || !irqs_disabled());
2544
2545	prev_state = exception_enter();
2546
2547	do {
2548		add_preempt_count(PREEMPT_ACTIVE);
2549		local_irq_enable();
2550		__schedule();
2551		local_irq_disable();
2552		sub_preempt_count(PREEMPT_ACTIVE);
2553
2554		/*
2555		 * Check again in case we missed a preemption opportunity
2556		 * between schedule and now.
2557		 */
2558		barrier();
2559	} while (need_resched());
2560
2561	exception_exit(prev_state);
2562}
2563
2564#endif /* CONFIG_PREEMPT */
2565
2566int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2567			  void *key)
2568{
2569	return try_to_wake_up(curr->private, mode, wake_flags);
2570}
2571EXPORT_SYMBOL(default_wake_function);
2572
2573/*
2574 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2575 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2576 * number) then we wake all the non-exclusive tasks and one exclusive task.
2577 *
2578 * There are circumstances in which we can try to wake a task which has already
2579 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2580 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2581 */
2582static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2583			int nr_exclusive, int wake_flags, void *key)
2584{
2585	wait_queue_t *curr, *next;
2586
2587	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2588		unsigned flags = curr->flags;
2589
2590		if (curr->func(curr, mode, wake_flags, key) &&
2591				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2592			break;
2593	}
2594}
2595
2596/**
2597 * __wake_up - wake up threads blocked on a waitqueue.
2598 * @q: the waitqueue
2599 * @mode: which threads
2600 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2601 * @key: is directly passed to the wakeup function
2602 *
2603 * It may be assumed that this function implies a write memory barrier before
2604 * changing the task state if and only if any tasks are woken up.
2605 */
2606void __wake_up(wait_queue_head_t *q, unsigned int mode,
2607			int nr_exclusive, void *key)
2608{
2609	unsigned long flags;
2610
2611	spin_lock_irqsave(&q->lock, flags);
2612	__wake_up_common(q, mode, nr_exclusive, 0, key);
2613	spin_unlock_irqrestore(&q->lock, flags);
2614}
2615EXPORT_SYMBOL(__wake_up);
2616
2617/*
2618 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2619 */
2620void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2621{
2622	__wake_up_common(q, mode, nr, 0, NULL);
2623}
2624EXPORT_SYMBOL_GPL(__wake_up_locked);
2625
2626void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2627{
2628	__wake_up_common(q, mode, 1, 0, key);
2629}
2630EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2631
2632/**
2633 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2634 * @q: the waitqueue
2635 * @mode: which threads
2636 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2637 * @key: opaque value to be passed to wakeup targets
2638 *
2639 * The sync wakeup differs that the waker knows that it will schedule
2640 * away soon, so while the target thread will be woken up, it will not
2641 * be migrated to another CPU - ie. the two threads are 'synchronized'
2642 * with each other. This can prevent needless bouncing between CPUs.
2643 *
2644 * On UP it can prevent extra preemption.
2645 *
2646 * It may be assumed that this function implies a write memory barrier before
2647 * changing the task state if and only if any tasks are woken up.
2648 */
2649void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2650			int nr_exclusive, void *key)
2651{
2652	unsigned long flags;
2653	int wake_flags = WF_SYNC;
2654
2655	if (unlikely(!q))
2656		return;
2657
2658	if (unlikely(nr_exclusive != 1))
2659		wake_flags = 0;
2660
2661	spin_lock_irqsave(&q->lock, flags);
2662	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2663	spin_unlock_irqrestore(&q->lock, flags);
2664}
2665EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2666
2667/*
2668 * __wake_up_sync - see __wake_up_sync_key()
2669 */
2670void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2671{
2672	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2673}
2674EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2675
2676/**
2677 * complete: - signals a single thread waiting on this completion
2678 * @x:  holds the state of this particular completion
2679 *
2680 * This will wake up a single thread waiting on this completion. Threads will be
2681 * awakened in the same order in which they were queued.
2682 *
2683 * See also complete_all(), wait_for_completion() and related routines.
2684 *
2685 * It may be assumed that this function implies a write memory barrier before
2686 * changing the task state if and only if any tasks are woken up.
2687 */
2688void complete(struct completion *x)
2689{
2690	unsigned long flags;
2691
2692	spin_lock_irqsave(&x->wait.lock, flags);
2693	x->done++;
2694	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2695	spin_unlock_irqrestore(&x->wait.lock, flags);
2696}
2697EXPORT_SYMBOL(complete);
2698
2699/**
2700 * complete_all: - signals all threads waiting on this completion
2701 * @x:  holds the state of this particular completion
2702 *
2703 * This will wake up all threads waiting on this particular completion event.
2704 *
2705 * It may be assumed that this function implies a write memory barrier before
2706 * changing the task state if and only if any tasks are woken up.
2707 */
2708void complete_all(struct completion *x)
2709{
2710	unsigned long flags;
2711
2712	spin_lock_irqsave(&x->wait.lock, flags);
2713	x->done += UINT_MAX/2;
2714	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2715	spin_unlock_irqrestore(&x->wait.lock, flags);
2716}
2717EXPORT_SYMBOL(complete_all);
2718
2719static inline long __sched
2720do_wait_for_common(struct completion *x,
2721		   long (*action)(long), long timeout, int state)
2722{
2723	if (!x->done) {
2724		DECLARE_WAITQUEUE(wait, current);
2725
2726		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2727		do {
2728			if (signal_pending_state(state, current)) {
2729				timeout = -ERESTARTSYS;
2730				break;
2731			}
2732			__set_current_state(state);
2733			spin_unlock_irq(&x->wait.lock);
2734			timeout = action(timeout);
2735			spin_lock_irq(&x->wait.lock);
2736		} while (!x->done && timeout);
2737		__remove_wait_queue(&x->wait, &wait);
2738		if (!x->done)
2739			return timeout;
2740	}
2741	x->done--;
2742	return timeout ?: 1;
2743}
2744
2745static inline long __sched
2746__wait_for_common(struct completion *x,
2747		  long (*action)(long), long timeout, int state)
2748{
2749	might_sleep();
2750
2751	spin_lock_irq(&x->wait.lock);
2752	timeout = do_wait_for_common(x, action, timeout, state);
2753	spin_unlock_irq(&x->wait.lock);
2754	return timeout;
2755}
2756
2757static long __sched
2758wait_for_common(struct completion *x, long timeout, int state)
2759{
2760	return __wait_for_common(x, schedule_timeout, timeout, state);
2761}
2762
2763static long __sched
2764wait_for_common_io(struct completion *x, long timeout, int state)
2765{
2766	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2767}
2768
2769/**
2770 * wait_for_completion: - waits for completion of a task
2771 * @x:  holds the state of this particular completion
2772 *
2773 * This waits to be signaled for completion of a specific task. It is NOT
2774 * interruptible and there is no timeout.
2775 *
2776 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2777 * and interrupt capability. Also see complete().
2778 */
2779void __sched wait_for_completion(struct completion *x)
2780{
2781	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2782}
2783EXPORT_SYMBOL(wait_for_completion);
2784
2785/**
2786 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2787 * @x:  holds the state of this particular completion
2788 * @timeout:  timeout value in jiffies
2789 *
2790 * This waits for either a completion of a specific task to be signaled or for a
2791 * specified timeout to expire. The timeout is in jiffies. It is not
2792 * interruptible.
2793 *
2794 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2795 * till timeout) if completed.
2796 */
2797unsigned long __sched
2798wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2799{
2800	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2801}
2802EXPORT_SYMBOL(wait_for_completion_timeout);
2803
2804/**
2805 * wait_for_completion_io: - waits for completion of a task
2806 * @x:  holds the state of this particular completion
2807 *
2808 * This waits to be signaled for completion of a specific task. It is NOT
2809 * interruptible and there is no timeout. The caller is accounted as waiting
2810 * for IO.
2811 */
2812void __sched wait_for_completion_io(struct completion *x)
2813{
2814	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2815}
2816EXPORT_SYMBOL(wait_for_completion_io);
2817
2818/**
2819 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2820 * @x:  holds the state of this particular completion
2821 * @timeout:  timeout value in jiffies
2822 *
2823 * This waits for either a completion of a specific task to be signaled or for a
2824 * specified timeout to expire. The timeout is in jiffies. It is not
2825 * interruptible. The caller is accounted as waiting for IO.
2826 *
2827 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2828 * till timeout) if completed.
2829 */
2830unsigned long __sched
2831wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2832{
2833	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2834}
2835EXPORT_SYMBOL(wait_for_completion_io_timeout);
2836
2837/**
2838 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2839 * @x:  holds the state of this particular completion
2840 *
2841 * This waits for completion of a specific task to be signaled. It is
2842 * interruptible.
2843 *
2844 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2845 */
2846int __sched wait_for_completion_interruptible(struct completion *x)
2847{
2848	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2849	if (t == -ERESTARTSYS)
2850		return t;
2851	return 0;
2852}
2853EXPORT_SYMBOL(wait_for_completion_interruptible);
2854
2855/**
2856 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2857 * @x:  holds the state of this particular completion
2858 * @timeout:  timeout value in jiffies
2859 *
2860 * This waits for either a completion of a specific task to be signaled or for a
2861 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2862 *
2863 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2864 * or number of jiffies left till timeout) if completed.
2865 */
2866long __sched
2867wait_for_completion_interruptible_timeout(struct completion *x,
2868					  unsigned long timeout)
2869{
2870	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2871}
2872EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2873
2874/**
2875 * wait_for_completion_killable: - waits for completion of a task (killable)
2876 * @x:  holds the state of this particular completion
2877 *
2878 * This waits to be signaled for completion of a specific task. It can be
2879 * interrupted by a kill signal.
2880 *
2881 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2882 */
2883int __sched wait_for_completion_killable(struct completion *x)
2884{
2885	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2886	if (t == -ERESTARTSYS)
2887		return t;
2888	return 0;
2889}
2890EXPORT_SYMBOL(wait_for_completion_killable);
2891
2892/**
2893 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2894 * @x:  holds the state of this particular completion
2895 * @timeout:  timeout value in jiffies
2896 *
2897 * This waits for either a completion of a specific task to be
2898 * signaled or for a specified timeout to expire. It can be
2899 * interrupted by a kill signal. The timeout is in jiffies.
2900 *
2901 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2902 * or number of jiffies left till timeout) if completed.
2903 */
2904long __sched
2905wait_for_completion_killable_timeout(struct completion *x,
2906				     unsigned long timeout)
2907{
2908	return wait_for_common(x, timeout, TASK_KILLABLE);
2909}
2910EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2911
2912/**
2913 *	try_wait_for_completion - try to decrement a completion without blocking
2914 *	@x:	completion structure
2915 *
2916 *	Return: 0 if a decrement cannot be done without blocking
2917 *		 1 if a decrement succeeded.
2918 *
2919 *	If a completion is being used as a counting completion,
2920 *	attempt to decrement the counter without blocking. This
2921 *	enables us to avoid waiting if the resource the completion
2922 *	is protecting is not available.
2923 */
2924bool try_wait_for_completion(struct completion *x)
2925{
2926	unsigned long flags;
2927	int ret = 1;
2928
2929	spin_lock_irqsave(&x->wait.lock, flags);
2930	if (!x->done)
2931		ret = 0;
2932	else
2933		x->done--;
2934	spin_unlock_irqrestore(&x->wait.lock, flags);
2935	return ret;
2936}
2937EXPORT_SYMBOL(try_wait_for_completion);
2938
2939/**
2940 *	completion_done - Test to see if a completion has any waiters
2941 *	@x:	completion structure
2942 *
2943 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2944 *		 1 if there are no waiters.
2945 *
2946 */
2947bool completion_done(struct completion *x)
2948{
2949	unsigned long flags;
2950	int ret = 1;
2951
2952	spin_lock_irqsave(&x->wait.lock, flags);
2953	if (!x->done)
2954		ret = 0;
2955	spin_unlock_irqrestore(&x->wait.lock, flags);
2956	return ret;
2957}
2958EXPORT_SYMBOL(completion_done);
2959
2960static long __sched
2961sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2962{
2963	unsigned long flags;
2964	wait_queue_t wait;
2965
2966	init_waitqueue_entry(&wait, current);
2967
2968	__set_current_state(state);
2969
2970	spin_lock_irqsave(&q->lock, flags);
2971	__add_wait_queue(q, &wait);
2972	spin_unlock(&q->lock);
2973	timeout = schedule_timeout(timeout);
2974	spin_lock_irq(&q->lock);
2975	__remove_wait_queue(q, &wait);
2976	spin_unlock_irqrestore(&q->lock, flags);
2977
2978	return timeout;
2979}
2980
2981void __sched interruptible_sleep_on(wait_queue_head_t *q)
2982{
2983	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2984}
2985EXPORT_SYMBOL(interruptible_sleep_on);
2986
2987long __sched
2988interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2989{
2990	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2991}
2992EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2993
2994void __sched sleep_on(wait_queue_head_t *q)
2995{
2996	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2997}
2998EXPORT_SYMBOL(sleep_on);
2999
3000long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3001{
3002	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3003}
3004EXPORT_SYMBOL(sleep_on_timeout);
3005
3006#ifdef CONFIG_RT_MUTEXES
3007
3008/*
3009 * rt_mutex_setprio - set the current priority of a task
3010 * @p: task
3011 * @prio: prio value (kernel-internal form)
3012 *
3013 * This function changes the 'effective' priority of a task. It does
3014 * not touch ->normal_prio like __setscheduler().
3015 *
3016 * Used by the rt_mutex code to implement priority inheritance logic.
3017 */
3018void rt_mutex_setprio(struct task_struct *p, int prio)
3019{
3020	int oldprio, on_rq, running;
3021	struct rq *rq;
3022	const struct sched_class *prev_class;
3023
3024	BUG_ON(prio < 0 || prio > MAX_PRIO);
3025
3026	rq = __task_rq_lock(p);
3027
3028	/*
3029	 * Idle task boosting is a nono in general. There is one
3030	 * exception, when PREEMPT_RT and NOHZ is active:
3031	 *
3032	 * The idle task calls get_next_timer_interrupt() and holds
3033	 * the timer wheel base->lock on the CPU and another CPU wants
3034	 * to access the timer (probably to cancel it). We can safely
3035	 * ignore the boosting request, as the idle CPU runs this code
3036	 * with interrupts disabled and will complete the lock
3037	 * protected section without being interrupted. So there is no
3038	 * real need to boost.
3039	 */
3040	if (unlikely(p == rq->idle)) {
3041		WARN_ON(p != rq->curr);
3042		WARN_ON(p->pi_blocked_on);
3043		goto out_unlock;
3044	}
3045
3046	trace_sched_pi_setprio(p, prio);
3047	oldprio = p->prio;
3048	prev_class = p->sched_class;
3049	on_rq = p->on_rq;
3050	running = task_current(rq, p);
3051	if (on_rq)
3052		dequeue_task(rq, p, 0);
3053	if (running)
3054		p->sched_class->put_prev_task(rq, p);
3055
3056	if (rt_prio(prio))
3057		p->sched_class = &rt_sched_class;
3058	else
3059		p->sched_class = &fair_sched_class;
3060
3061	p->prio = prio;
3062
3063	if (running)
3064		p->sched_class->set_curr_task(rq);
3065	if (on_rq)
3066		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3067
3068	check_class_changed(rq, p, prev_class, oldprio);
3069out_unlock:
3070	__task_rq_unlock(rq);
3071}
3072#endif
3073void set_user_nice(struct task_struct *p, long nice)
3074{
3075	int old_prio, delta, on_rq;
3076	unsigned long flags;
3077	struct rq *rq;
3078
3079	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3080		return;
3081	/*
3082	 * We have to be careful, if called from sys_setpriority(),
3083	 * the task might be in the middle of scheduling on another CPU.
3084	 */
3085	rq = task_rq_lock(p, &flags);
3086	/*
3087	 * The RT priorities are set via sched_setscheduler(), but we still
3088	 * allow the 'normal' nice value to be set - but as expected
3089	 * it wont have any effect on scheduling until the task is
3090	 * SCHED_FIFO/SCHED_RR:
3091	 */
3092	if (task_has_rt_policy(p)) {
3093		p->static_prio = NICE_TO_PRIO(nice);
3094		goto out_unlock;
3095	}
3096	on_rq = p->on_rq;
3097	if (on_rq)
3098		dequeue_task(rq, p, 0);
3099
3100	p->static_prio = NICE_TO_PRIO(nice);
3101	set_load_weight(p);
3102	old_prio = p->prio;
3103	p->prio = effective_prio(p);
3104	delta = p->prio - old_prio;
3105
3106	if (on_rq) {
3107		enqueue_task(rq, p, 0);
3108		/*
3109		 * If the task increased its priority or is running and
3110		 * lowered its priority, then reschedule its CPU:
3111		 */
3112		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3113			resched_task(rq->curr);
3114	}
3115out_unlock:
3116	task_rq_unlock(rq, p, &flags);
3117}
3118EXPORT_SYMBOL(set_user_nice);
3119
3120/*
3121 * can_nice - check if a task can reduce its nice value
3122 * @p: task
3123 * @nice: nice value
3124 */
3125int can_nice(const struct task_struct *p, const int nice)
3126{
3127	/* convert nice value [19,-20] to rlimit style value [1,40] */
3128	int nice_rlim = 20 - nice;
3129
3130	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3131		capable(CAP_SYS_NICE));
3132}
3133
3134#ifdef __ARCH_WANT_SYS_NICE
3135
3136/*
3137 * sys_nice - change the priority of the current process.
3138 * @increment: priority increment
3139 *
3140 * sys_setpriority is a more generic, but much slower function that
3141 * does similar things.
3142 */
3143SYSCALL_DEFINE1(nice, int, increment)
3144{
3145	long nice, retval;
3146
3147	/*
3148	 * Setpriority might change our priority at the same moment.
3149	 * We don't have to worry. Conceptually one call occurs first
3150	 * and we have a single winner.
3151	 */
3152	if (increment < -40)
3153		increment = -40;
3154	if (increment > 40)
3155		increment = 40;
3156
3157	nice = TASK_NICE(current) + increment;
3158	if (nice < -20)
3159		nice = -20;
3160	if (nice > 19)
3161		nice = 19;
3162
3163	if (increment < 0 && !can_nice(current, nice))
3164		return -EPERM;
3165
3166	retval = security_task_setnice(current, nice);
3167	if (retval)
3168		return retval;
3169
3170	set_user_nice(current, nice);
3171	return 0;
3172}
3173
3174#endif
3175
3176/**
3177 * task_prio - return the priority value of a given task.
3178 * @p: the task in question.
3179 *
3180 * Return: The priority value as seen by users in /proc.
3181 * RT tasks are offset by -200. Normal tasks are centered
3182 * around 0, value goes from -16 to +15.
3183 */
3184int task_prio(const struct task_struct *p)
3185{
3186	return p->prio - MAX_RT_PRIO;
3187}
3188
3189/**
3190 * task_nice - return the nice value of a given task.
3191 * @p: the task in question.
3192 *
3193 * Return: The nice value [ -20 ... 0 ... 19 ].
3194 */
3195int task_nice(const struct task_struct *p)
3196{
3197	return TASK_NICE(p);
3198}
3199EXPORT_SYMBOL(task_nice);
3200
3201/**
3202 * idle_cpu - is a given cpu idle currently?
3203 * @cpu: the processor in question.
3204 *
3205 * Return: 1 if the CPU is currently idle. 0 otherwise.
3206 */
3207int idle_cpu(int cpu)
3208{
3209	struct rq *rq = cpu_rq(cpu);
3210
3211	if (rq->curr != rq->idle)
3212		return 0;
3213
3214	if (rq->nr_running)
3215		return 0;
3216
3217#ifdef CONFIG_SMP
3218	if (!llist_empty(&rq->wake_list))
3219		return 0;
3220#endif
3221
3222	return 1;
3223}
3224
3225/**
3226 * idle_task - return the idle task for a given cpu.
3227 * @cpu: the processor in question.
3228 *
3229 * Return: The idle task for the cpu @cpu.
3230 */
3231struct task_struct *idle_task(int cpu)
3232{
3233	return cpu_rq(cpu)->idle;
3234}
3235
3236/**
3237 * find_process_by_pid - find a process with a matching PID value.
3238 * @pid: the pid in question.
3239 *
3240 * The task of @pid, if found. %NULL otherwise.
3241 */
3242static struct task_struct *find_process_by_pid(pid_t pid)
3243{
3244	return pid ? find_task_by_vpid(pid) : current;
3245}
3246
3247/* Actually do priority change: must hold rq lock. */
3248static void
3249__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3250{
3251	p->policy = policy;
3252	p->rt_priority = prio;
3253	p->normal_prio = normal_prio(p);
3254	/* we are holding p->pi_lock already */
3255	p->prio = rt_mutex_getprio(p);
3256	if (rt_prio(p->prio))
3257		p->sched_class = &rt_sched_class;
3258	else
3259		p->sched_class = &fair_sched_class;
3260	set_load_weight(p);
3261}
3262
3263/*
3264 * check the target process has a UID that matches the current process's
3265 */
3266static bool check_same_owner(struct task_struct *p)
3267{
3268	const struct cred *cred = current_cred(), *pcred;
3269	bool match;
3270
3271	rcu_read_lock();
3272	pcred = __task_cred(p);
3273	match = (uid_eq(cred->euid, pcred->euid) ||
3274		 uid_eq(cred->euid, pcred->uid));
3275	rcu_read_unlock();
3276	return match;
3277}
3278
3279static int __sched_setscheduler(struct task_struct *p, int policy,
3280				const struct sched_param *param, bool user)
3281{
3282	int retval, oldprio, oldpolicy = -1, on_rq, running;
3283	unsigned long flags;
3284	const struct sched_class *prev_class;
3285	struct rq *rq;
3286	int reset_on_fork;
3287
3288	/* may grab non-irq protected spin_locks */
3289	BUG_ON(in_interrupt());
3290recheck:
3291	/* double check policy once rq lock held */
3292	if (policy < 0) {
3293		reset_on_fork = p->sched_reset_on_fork;
3294		policy = oldpolicy = p->policy;
3295	} else {
3296		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3297		policy &= ~SCHED_RESET_ON_FORK;
3298
3299		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3300				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3301				policy != SCHED_IDLE)
3302			return -EINVAL;
3303	}
3304
3305	/*
3306	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3307	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308	 * SCHED_BATCH and SCHED_IDLE is 0.
3309	 */
3310	if (param->sched_priority < 0 ||
3311	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3312	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3313		return -EINVAL;
3314	if (rt_policy(policy) != (param->sched_priority != 0))
3315		return -EINVAL;
3316
3317	/*
3318	 * Allow unprivileged RT tasks to decrease priority:
3319	 */
3320	if (user && !capable(CAP_SYS_NICE)) {
3321		if (rt_policy(policy)) {
3322			unsigned long rlim_rtprio =
3323					task_rlimit(p, RLIMIT_RTPRIO);
3324
3325			/* can't set/change the rt policy */
3326			if (policy != p->policy && !rlim_rtprio)
3327				return -EPERM;
3328
3329			/* can't increase priority */
3330			if (param->sched_priority > p->rt_priority &&
3331			    param->sched_priority > rlim_rtprio)
3332				return -EPERM;
3333		}
3334
3335		/*
3336		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3337		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3338		 */
3339		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3340			if (!can_nice(p, TASK_NICE(p)))
3341				return -EPERM;
3342		}
3343
3344		/* can't change other user's priorities */
3345		if (!check_same_owner(p))
3346			return -EPERM;
3347
3348		/* Normal users shall not reset the sched_reset_on_fork flag */
3349		if (p->sched_reset_on_fork && !reset_on_fork)
3350			return -EPERM;
3351	}
3352
3353	if (user) {
3354		retval = security_task_setscheduler(p);
3355		if (retval)
3356			return retval;
3357	}
3358
3359	/*
3360	 * make sure no PI-waiters arrive (or leave) while we are
3361	 * changing the priority of the task:
3362	 *
3363	 * To be able to change p->policy safely, the appropriate
3364	 * runqueue lock must be held.
3365	 */
3366	rq = task_rq_lock(p, &flags);
3367
3368	/*
3369	 * Changing the policy of the stop threads its a very bad idea
3370	 */
3371	if (p == rq->stop) {
3372		task_rq_unlock(rq, p, &flags);
3373		return -EINVAL;
3374	}
3375
3376	/*
3377	 * If not changing anything there's no need to proceed further:
3378	 */
3379	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3380			param->sched_priority == p->rt_priority))) {
3381		task_rq_unlock(rq, p, &flags);
3382		return 0;
3383	}
3384
3385#ifdef CONFIG_RT_GROUP_SCHED
3386	if (user) {
3387		/*
3388		 * Do not allow realtime tasks into groups that have no runtime
3389		 * assigned.
3390		 */
3391		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3392				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3393				!task_group_is_autogroup(task_group(p))) {
3394			task_rq_unlock(rq, p, &flags);
3395			return -EPERM;
3396		}
3397	}
3398#endif
3399
3400	/* recheck policy now with rq lock held */
3401	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3402		policy = oldpolicy = -1;
3403		task_rq_unlock(rq, p, &flags);
3404		goto recheck;
3405	}
3406	on_rq = p->on_rq;
3407	running = task_current(rq, p);
3408	if (on_rq)
3409		dequeue_task(rq, p, 0);
3410	if (running)
3411		p->sched_class->put_prev_task(rq, p);
3412
3413	p->sched_reset_on_fork = reset_on_fork;
3414
3415	oldprio = p->prio;
3416	prev_class = p->sched_class;
3417	__setscheduler(rq, p, policy, param->sched_priority);
3418
3419	if (running)
3420		p->sched_class->set_curr_task(rq);
3421	if (on_rq)
3422		enqueue_task(rq, p, 0);
3423
3424	check_class_changed(rq, p, prev_class, oldprio);
3425	task_rq_unlock(rq, p, &flags);
3426
3427	rt_mutex_adjust_pi(p);
3428
3429	return 0;
3430}
3431
3432/**
3433 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3434 * @p: the task in question.
3435 * @policy: new policy.
3436 * @param: structure containing the new RT priority.
3437 *
3438 * Return: 0 on success. An error code otherwise.
3439 *
3440 * NOTE that the task may be already dead.
3441 */
3442int sched_setscheduler(struct task_struct *p, int policy,
3443		       const struct sched_param *param)
3444{
3445	return __sched_setscheduler(p, policy, param, true);
3446}
3447EXPORT_SYMBOL_GPL(sched_setscheduler);
3448
3449/**
3450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3451 * @p: the task in question.
3452 * @policy: new policy.
3453 * @param: structure containing the new RT priority.
3454 *
3455 * Just like sched_setscheduler, only don't bother checking if the
3456 * current context has permission.  For example, this is needed in
3457 * stop_machine(): we create temporary high priority worker threads,
3458 * but our caller might not have that capability.
3459 *
3460 * Return: 0 on success. An error code otherwise.
3461 */
3462int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3463			       const struct sched_param *param)
3464{
3465	return __sched_setscheduler(p, policy, param, false);
3466}
3467
3468static int
3469do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3470{
3471	struct sched_param lparam;
3472	struct task_struct *p;
3473	int retval;
3474
3475	if (!param || pid < 0)
3476		return -EINVAL;
3477	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3478		return -EFAULT;
3479
3480	rcu_read_lock();
3481	retval = -ESRCH;
3482	p = find_process_by_pid(pid);
3483	if (p != NULL)
3484		retval = sched_setscheduler(p, policy, &lparam);
3485	rcu_read_unlock();
3486
3487	return retval;
3488}
3489
3490/**
3491 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3492 * @pid: the pid in question.
3493 * @policy: new policy.
3494 * @param: structure containing the new RT priority.
3495 *
3496 * Return: 0 on success. An error code otherwise.
3497 */
3498SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3499		struct sched_param __user *, param)
3500{
3501	/* negative values for policy are not valid */
3502	if (policy < 0)
3503		return -EINVAL;
3504
3505	return do_sched_setscheduler(pid, policy, param);
3506}
3507
3508/**
3509 * sys_sched_setparam - set/change the RT priority of a thread
3510 * @pid: the pid in question.
3511 * @param: structure containing the new RT priority.
3512 *
3513 * Return: 0 on success. An error code otherwise.
3514 */
3515SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3516{
3517	return do_sched_setscheduler(pid, -1, param);
3518}
3519
3520/**
3521 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3522 * @pid: the pid in question.
3523 *
3524 * Return: On success, the policy of the thread. Otherwise, a negative error
3525 * code.
3526 */
3527SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3528{
3529	struct task_struct *p;
3530	int retval;
3531
3532	if (pid < 0)
3533		return -EINVAL;
3534
3535	retval = -ESRCH;
3536	rcu_read_lock();
3537	p = find_process_by_pid(pid);
3538	if (p) {
3539		retval = security_task_getscheduler(p);
3540		if (!retval)
3541			retval = p->policy
3542				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3543	}
3544	rcu_read_unlock();
3545	return retval;
3546}
3547
3548/**
3549 * sys_sched_getparam - get the RT priority of a thread
3550 * @pid: the pid in question.
3551 * @param: structure containing the RT priority.
3552 *
3553 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3554 * code.
3555 */
3556SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3557{
3558	struct sched_param lp;
3559	struct task_struct *p;
3560	int retval;
3561
3562	if (!param || pid < 0)
3563		return -EINVAL;
3564
3565	rcu_read_lock();
3566	p = find_process_by_pid(pid);
3567	retval = -ESRCH;
3568	if (!p)
3569		goto out_unlock;
3570
3571	retval = security_task_getscheduler(p);
3572	if (retval)
3573		goto out_unlock;
3574
3575	lp.sched_priority = p->rt_priority;
3576	rcu_read_unlock();
3577
3578	/*
3579	 * This one might sleep, we cannot do it with a spinlock held ...
3580	 */
3581	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3582
3583	return retval;
3584
3585out_unlock:
3586	rcu_read_unlock();
3587	return retval;
3588}
3589
3590long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3591{
3592	cpumask_var_t cpus_allowed, new_mask;
3593	struct task_struct *p;
3594	int retval;
3595
3596	get_online_cpus();
3597	rcu_read_lock();
3598
3599	p = find_process_by_pid(pid);
3600	if (!p) {
3601		rcu_read_unlock();
3602		put_online_cpus();
3603		return -ESRCH;
3604	}
3605
3606	/* Prevent p going away */
3607	get_task_struct(p);
3608	rcu_read_unlock();
3609
3610	if (p->flags & PF_NO_SETAFFINITY) {
3611		retval = -EINVAL;
3612		goto out_put_task;
3613	}
3614	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3615		retval = -ENOMEM;
3616		goto out_put_task;
3617	}
3618	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3619		retval = -ENOMEM;
3620		goto out_free_cpus_allowed;
3621	}
3622	retval = -EPERM;
3623	if (!check_same_owner(p)) {
3624		rcu_read_lock();
3625		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3626			rcu_read_unlock();
3627			goto out_unlock;
3628		}
3629		rcu_read_unlock();
3630	}
3631
3632	retval = security_task_setscheduler(p);
3633	if (retval)
3634		goto out_unlock;
3635
3636	cpuset_cpus_allowed(p, cpus_allowed);
3637	cpumask_and(new_mask, in_mask, cpus_allowed);
3638again:
3639	retval = set_cpus_allowed_ptr(p, new_mask);
3640
3641	if (!retval) {
3642		cpuset_cpus_allowed(p, cpus_allowed);
3643		if (!cpumask_subset(new_mask, cpus_allowed)) {
3644			/*
3645			 * We must have raced with a concurrent cpuset
3646			 * update. Just reset the cpus_allowed to the
3647			 * cpuset's cpus_allowed
3648			 */
3649			cpumask_copy(new_mask, cpus_allowed);
3650			goto again;
3651		}
3652	}
3653out_unlock:
3654	free_cpumask_var(new_mask);
3655out_free_cpus_allowed:
3656	free_cpumask_var(cpus_allowed);
3657out_put_task:
3658	put_task_struct(p);
3659	put_online_cpus();
3660	return retval;
3661}
3662
3663static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3664			     struct cpumask *new_mask)
3665{
3666	if (len < cpumask_size())
3667		cpumask_clear(new_mask);
3668	else if (len > cpumask_size())
3669		len = cpumask_size();
3670
3671	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3672}
3673
3674/**
3675 * sys_sched_setaffinity - set the cpu affinity of a process
3676 * @pid: pid of the process
3677 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3678 * @user_mask_ptr: user-space pointer to the new cpu mask
3679 *
3680 * Return: 0 on success. An error code otherwise.
3681 */
3682SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3683		unsigned long __user *, user_mask_ptr)
3684{
3685	cpumask_var_t new_mask;
3686	int retval;
3687
3688	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3689		return -ENOMEM;
3690
3691	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3692	if (retval == 0)
3693		retval = sched_setaffinity(pid, new_mask);
3694	free_cpumask_var(new_mask);
3695	return retval;
3696}
3697
3698long sched_getaffinity(pid_t pid, struct cpumask *mask)
3699{
3700	struct task_struct *p;
3701	unsigned long flags;
3702	int retval;
3703
3704	get_online_cpus();
3705	rcu_read_lock();
3706
3707	retval = -ESRCH;
3708	p = find_process_by_pid(pid);
3709	if (!p)
3710		goto out_unlock;
3711
3712	retval = security_task_getscheduler(p);
3713	if (retval)
3714		goto out_unlock;
3715
3716	raw_spin_lock_irqsave(&p->pi_lock, flags);
3717	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3718	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3719
3720out_unlock:
3721	rcu_read_unlock();
3722	put_online_cpus();
3723
3724	return retval;
3725}
3726
3727/**
3728 * sys_sched_getaffinity - get the cpu affinity of a process
3729 * @pid: pid of the process
3730 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3731 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3732 *
3733 * Return: 0 on success. An error code otherwise.
3734 */
3735SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3736		unsigned long __user *, user_mask_ptr)
3737{
3738	int ret;
3739	cpumask_var_t mask;
3740
3741	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3742		return -EINVAL;
3743	if (len & (sizeof(unsigned long)-1))
3744		return -EINVAL;
3745
3746	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3747		return -ENOMEM;
3748
3749	ret = sched_getaffinity(pid, mask);
3750	if (ret == 0) {
3751		size_t retlen = min_t(size_t, len, cpumask_size());
3752
3753		if (copy_to_user(user_mask_ptr, mask, retlen))
3754			ret = -EFAULT;
3755		else
3756			ret = retlen;
3757	}
3758	free_cpumask_var(mask);
3759
3760	return ret;
3761}
3762
3763/**
3764 * sys_sched_yield - yield the current processor to other threads.
3765 *
3766 * This function yields the current CPU to other tasks. If there are no
3767 * other threads running on this CPU then this function will return.
3768 *
3769 * Return: 0.
3770 */
3771SYSCALL_DEFINE0(sched_yield)
3772{
3773	struct rq *rq = this_rq_lock();
3774
3775	schedstat_inc(rq, yld_count);
3776	current->sched_class->yield_task(rq);
3777
3778	/*
3779	 * Since we are going to call schedule() anyway, there's
3780	 * no need to preempt or enable interrupts:
3781	 */
3782	__release(rq->lock);
3783	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3784	do_raw_spin_unlock(&rq->lock);
3785	sched_preempt_enable_no_resched();
3786
3787	schedule();
3788
3789	return 0;
3790}
3791
3792static inline int should_resched(void)
3793{
3794	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3795}
3796
3797static void __cond_resched(void)
3798{
3799	add_preempt_count(PREEMPT_ACTIVE);
3800	__schedule();
3801	sub_preempt_count(PREEMPT_ACTIVE);
3802}
3803
3804int __sched _cond_resched(void)
3805{
3806	if (should_resched()) {
3807		__cond_resched();
3808		return 1;
3809	}
3810	return 0;
3811}
3812EXPORT_SYMBOL(_cond_resched);
3813
3814/*
3815 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3816 * call schedule, and on return reacquire the lock.
3817 *
3818 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3819 * operations here to prevent schedule() from being called twice (once via
3820 * spin_unlock(), once by hand).
3821 */
3822int __cond_resched_lock(spinlock_t *lock)
3823{
3824	int resched = should_resched();
3825	int ret = 0;
3826
3827	lockdep_assert_held(lock);
3828
3829	if (spin_needbreak(lock) || resched) {
3830		spin_unlock(lock);
3831		if (resched)
3832			__cond_resched();
3833		else
3834			cpu_relax();
3835		ret = 1;
3836		spin_lock(lock);
3837	}
3838	return ret;
3839}
3840EXPORT_SYMBOL(__cond_resched_lock);
3841
3842int __sched __cond_resched_softirq(void)
3843{
3844	BUG_ON(!in_softirq());
3845
3846	if (should_resched()) {
3847		local_bh_enable();
3848		__cond_resched();
3849		local_bh_disable();
3850		return 1;
3851	}
3852	return 0;
3853}
3854EXPORT_SYMBOL(__cond_resched_softirq);
3855
3856/**
3857 * yield - yield the current processor to other threads.
3858 *
3859 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3860 *
3861 * The scheduler is at all times free to pick the calling task as the most
3862 * eligible task to run, if removing the yield() call from your code breaks
3863 * it, its already broken.
3864 *
3865 * Typical broken usage is:
3866 *
3867 * while (!event)
3868 * 	yield();
3869 *
3870 * where one assumes that yield() will let 'the other' process run that will
3871 * make event true. If the current task is a SCHED_FIFO task that will never
3872 * happen. Never use yield() as a progress guarantee!!
3873 *
3874 * If you want to use yield() to wait for something, use wait_event().
3875 * If you want to use yield() to be 'nice' for others, use cond_resched().
3876 * If you still want to use yield(), do not!
3877 */
3878void __sched yield(void)
3879{
3880	set_current_state(TASK_RUNNING);
3881	sys_sched_yield();
3882}
3883EXPORT_SYMBOL(yield);
3884
3885/**
3886 * yield_to - yield the current processor to another thread in
3887 * your thread group, or accelerate that thread toward the
3888 * processor it's on.
3889 * @p: target task
3890 * @preempt: whether task preemption is allowed or not
3891 *
3892 * It's the caller's job to ensure that the target task struct
3893 * can't go away on us before we can do any checks.
3894 *
3895 * Return:
3896 *	true (>0) if we indeed boosted the target task.
3897 *	false (0) if we failed to boost the target.
3898 *	-ESRCH if there's no task to yield to.
3899 */
3900bool __sched yield_to(struct task_struct *p, bool preempt)
3901{
3902	struct task_struct *curr = current;
3903	struct rq *rq, *p_rq;
3904	unsigned long flags;
3905	int yielded = 0;
3906
3907	local_irq_save(flags);
3908	rq = this_rq();
3909
3910again:
3911	p_rq = task_rq(p);
3912	/*
3913	 * If we're the only runnable task on the rq and target rq also
3914	 * has only one task, there's absolutely no point in yielding.
3915	 */
3916	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3917		yielded = -ESRCH;
3918		goto out_irq;
3919	}
3920
3921	double_rq_lock(rq, p_rq);
3922	while (task_rq(p) != p_rq) {
3923		double_rq_unlock(rq, p_rq);
3924		goto again;
3925	}
3926
3927	if (!curr->sched_class->yield_to_task)
3928		goto out_unlock;
3929
3930	if (curr->sched_class != p->sched_class)
3931		goto out_unlock;
3932
3933	if (task_running(p_rq, p) || p->state)
3934		goto out_unlock;
3935
3936	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3937	if (yielded) {
3938		schedstat_inc(rq, yld_count);
3939		/*
3940		 * Make p's CPU reschedule; pick_next_entity takes care of
3941		 * fairness.
3942		 */
3943		if (preempt && rq != p_rq)
3944			resched_task(p_rq->curr);
3945	}
3946
3947out_unlock:
3948	double_rq_unlock(rq, p_rq);
3949out_irq:
3950	local_irq_restore(flags);
3951
3952	if (yielded > 0)
3953		schedule();
3954
3955	return yielded;
3956}
3957EXPORT_SYMBOL_GPL(yield_to);
3958
3959/*
3960 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3961 * that process accounting knows that this is a task in IO wait state.
3962 */
3963void __sched io_schedule(void)
3964{
3965	struct rq *rq = raw_rq();
3966
3967	delayacct_blkio_start();
3968	atomic_inc(&rq->nr_iowait);
3969	blk_flush_plug(current);
3970	current->in_iowait = 1;
3971	schedule();
3972	current->in_iowait = 0;
3973	atomic_dec(&rq->nr_iowait);
3974	delayacct_blkio_end();
3975}
3976EXPORT_SYMBOL(io_schedule);
3977
3978long __sched io_schedule_timeout(long timeout)
3979{
3980	struct rq *rq = raw_rq();
3981	long ret;
3982
3983	delayacct_blkio_start();
3984	atomic_inc(&rq->nr_iowait);
3985	blk_flush_plug(current);
3986	current->in_iowait = 1;
3987	ret = schedule_timeout(timeout);
3988	current->in_iowait = 0;
3989	atomic_dec(&rq->nr_iowait);
3990	delayacct_blkio_end();
3991	return ret;
3992}
3993
3994/**
3995 * sys_sched_get_priority_max - return maximum RT priority.
3996 * @policy: scheduling class.
3997 *
3998 * Return: On success, this syscall returns the maximum
3999 * rt_priority that can be used by a given scheduling class.
4000 * On failure, a negative error code is returned.
4001 */
4002SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4003{
4004	int ret = -EINVAL;
4005
4006	switch (policy) {
4007	case SCHED_FIFO:
4008	case SCHED_RR:
4009		ret = MAX_USER_RT_PRIO-1;
4010		break;
4011	case SCHED_NORMAL:
4012	case SCHED_BATCH:
4013	case SCHED_IDLE:
4014		ret = 0;
4015		break;
4016	}
4017	return ret;
4018}
4019
4020/**
4021 * sys_sched_get_priority_min - return minimum RT priority.
4022 * @policy: scheduling class.
4023 *
4024 * Return: On success, this syscall returns the minimum
4025 * rt_priority that can be used by a given scheduling class.
4026 * On failure, a negative error code is returned.
4027 */
4028SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4029{
4030	int ret = -EINVAL;
4031
4032	switch (policy) {
4033	case SCHED_FIFO:
4034	case SCHED_RR:
4035		ret = 1;
4036		break;
4037	case SCHED_NORMAL:
4038	case SCHED_BATCH:
4039	case SCHED_IDLE:
4040		ret = 0;
4041	}
4042	return ret;
4043}
4044
4045/**
4046 * sys_sched_rr_get_interval - return the default timeslice of a process.
4047 * @pid: pid of the process.
4048 * @interval: userspace pointer to the timeslice value.
4049 *
4050 * this syscall writes the default timeslice value of a given process
4051 * into the user-space timespec buffer. A value of '0' means infinity.
4052 *
4053 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4054 * an error code.
4055 */
4056SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4057		struct timespec __user *, interval)
4058{
4059	struct task_struct *p;
4060	unsigned int time_slice;
4061	unsigned long flags;
4062	struct rq *rq;
4063	int retval;
4064	struct timespec t;
4065
4066	if (pid < 0)
4067		return -EINVAL;
4068
4069	retval = -ESRCH;
4070	rcu_read_lock();
4071	p = find_process_by_pid(pid);
4072	if (!p)
4073		goto out_unlock;
4074
4075	retval = security_task_getscheduler(p);
4076	if (retval)
4077		goto out_unlock;
4078
4079	rq = task_rq_lock(p, &flags);
4080	time_slice = p->sched_class->get_rr_interval(rq, p);
4081	task_rq_unlock(rq, p, &flags);
4082
4083	rcu_read_unlock();
4084	jiffies_to_timespec(time_slice, &t);
4085	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4086	return retval;
4087
4088out_unlock:
4089	rcu_read_unlock();
4090	return retval;
4091}
4092
4093static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4094
4095void sched_show_task(struct task_struct *p)
4096{
4097	unsigned long free = 0;
4098	int ppid;
4099	unsigned state;
4100
4101	state = p->state ? __ffs(p->state) + 1 : 0;
4102	printk(KERN_INFO "%-15.15s %c", p->comm,
4103		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4104#if BITS_PER_LONG == 32
4105	if (state == TASK_RUNNING)
4106		printk(KERN_CONT " running  ");
4107	else
4108		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4109#else
4110	if (state == TASK_RUNNING)
4111		printk(KERN_CONT "  running task    ");
4112	else
4113		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4114#endif
4115#ifdef CONFIG_DEBUG_STACK_USAGE
4116	free = stack_not_used(p);
4117#endif
4118	rcu_read_lock();
4119	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4120	rcu_read_unlock();
4121	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4122		task_pid_nr(p), ppid,
4123		(unsigned long)task_thread_info(p)->flags);
4124
4125	print_worker_info(KERN_INFO, p);
4126	show_stack(p, NULL);
4127}
4128
4129void show_state_filter(unsigned long state_filter)
4130{
4131	struct task_struct *g, *p;
4132
4133#if BITS_PER_LONG == 32
4134	printk(KERN_INFO
4135		"  task                PC stack   pid father\n");
4136#else
4137	printk(KERN_INFO
4138		"  task                        PC stack   pid father\n");
4139#endif
4140	rcu_read_lock();
4141	do_each_thread(g, p) {
4142		/*
4143		 * reset the NMI-timeout, listing all files on a slow
4144		 * console might take a lot of time:
4145		 */
4146		touch_nmi_watchdog();
4147		if (!state_filter || (p->state & state_filter))
4148			sched_show_task(p);
4149	} while_each_thread(g, p);
4150
4151	touch_all_softlockup_watchdogs();
4152
4153#ifdef CONFIG_SCHED_DEBUG
4154	sysrq_sched_debug_show();
4155#endif
4156	rcu_read_unlock();
4157	/*
4158	 * Only show locks if all tasks are dumped:
4159	 */
4160	if (!state_filter)
4161		debug_show_all_locks();
4162}
4163
4164void init_idle_bootup_task(struct task_struct *idle)
4165{
4166	idle->sched_class = &idle_sched_class;
4167}
4168
4169/**
4170 * init_idle - set up an idle thread for a given CPU
4171 * @idle: task in question
4172 * @cpu: cpu the idle task belongs to
4173 *
4174 * NOTE: this function does not set the idle thread's NEED_RESCHED
4175 * flag, to make booting more robust.
4176 */
4177void init_idle(struct task_struct *idle, int cpu)
4178{
4179	struct rq *rq = cpu_rq(cpu);
4180	unsigned long flags;
4181
4182	raw_spin_lock_irqsave(&rq->lock, flags);
4183
4184	__sched_fork(idle);
4185	idle->state = TASK_RUNNING;
4186	idle->se.exec_start = sched_clock();
4187
4188	do_set_cpus_allowed(idle, cpumask_of(cpu));
4189	/*
4190	 * We're having a chicken and egg problem, even though we are
4191	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4192	 * lockdep check in task_group() will fail.
4193	 *
4194	 * Similar case to sched_fork(). / Alternatively we could
4195	 * use task_rq_lock() here and obtain the other rq->lock.
4196	 *
4197	 * Silence PROVE_RCU
4198	 */
4199	rcu_read_lock();
4200	__set_task_cpu(idle, cpu);
4201	rcu_read_unlock();
4202
4203	rq->curr = rq->idle = idle;
4204#if defined(CONFIG_SMP)
4205	idle->on_cpu = 1;
4206#endif
4207	raw_spin_unlock_irqrestore(&rq->lock, flags);
4208
4209	/* Set the preempt count _outside_ the spinlocks! */
4210	task_thread_info(idle)->preempt_count = 0;
4211
4212	/*
4213	 * The idle tasks have their own, simple scheduling class:
4214	 */
4215	idle->sched_class = &idle_sched_class;
4216	ftrace_graph_init_idle_task(idle, cpu);
4217	vtime_init_idle(idle, cpu);
4218#if defined(CONFIG_SMP)
4219	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4220#endif
4221}
4222
4223#ifdef CONFIG_SMP
4224void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4225{
4226	if (p->sched_class && p->sched_class->set_cpus_allowed)
4227		p->sched_class->set_cpus_allowed(p, new_mask);
4228
4229	cpumask_copy(&p->cpus_allowed, new_mask);
4230	p->nr_cpus_allowed = cpumask_weight(new_mask);
4231}
4232
4233/*
4234 * This is how migration works:
4235 *
4236 * 1) we invoke migration_cpu_stop() on the target CPU using
4237 *    stop_one_cpu().
4238 * 2) stopper starts to run (implicitly forcing the migrated thread
4239 *    off the CPU)
4240 * 3) it checks whether the migrated task is still in the wrong runqueue.
4241 * 4) if it's in the wrong runqueue then the migration thread removes
4242 *    it and puts it into the right queue.
4243 * 5) stopper completes and stop_one_cpu() returns and the migration
4244 *    is done.
4245 */
4246
4247/*
4248 * Change a given task's CPU affinity. Migrate the thread to a
4249 * proper CPU and schedule it away if the CPU it's executing on
4250 * is removed from the allowed bitmask.
4251 *
4252 * NOTE: the caller must have a valid reference to the task, the
4253 * task must not exit() & deallocate itself prematurely. The
4254 * call is not atomic; no spinlocks may be held.
4255 */
4256int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4257{
4258	unsigned long flags;
4259	struct rq *rq;
4260	unsigned int dest_cpu;
4261	int ret = 0;
4262
4263	rq = task_rq_lock(p, &flags);
4264
4265	if (cpumask_equal(&p->cpus_allowed, new_mask))
4266		goto out;
4267
4268	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4269		ret = -EINVAL;
4270		goto out;
4271	}
4272
4273	do_set_cpus_allowed(p, new_mask);
4274
4275	/* Can the task run on the task's current CPU? If so, we're done */
4276	if (cpumask_test_cpu(task_cpu(p), new_mask))
4277		goto out;
4278
4279	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4280	if (p->on_rq) {
4281		struct migration_arg arg = { p, dest_cpu };
4282		/* Need help from migration thread: drop lock and wait. */
4283		task_rq_unlock(rq, p, &flags);
4284		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4285		tlb_migrate_finish(p->mm);
4286		return 0;
4287	}
4288out:
4289	task_rq_unlock(rq, p, &flags);
4290
4291	return ret;
4292}
4293EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4294
4295/*
4296 * Move (not current) task off this cpu, onto dest cpu. We're doing
4297 * this because either it can't run here any more (set_cpus_allowed()
4298 * away from this CPU, or CPU going down), or because we're
4299 * attempting to rebalance this task on exec (sched_exec).
4300 *
4301 * So we race with normal scheduler movements, but that's OK, as long
4302 * as the task is no longer on this CPU.
4303 *
4304 * Returns non-zero if task was successfully migrated.
4305 */
4306static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4307{
4308	struct rq *rq_dest, *rq_src;
4309	int ret = 0;
4310
4311	if (unlikely(!cpu_active(dest_cpu)))
4312		return ret;
4313
4314	rq_src = cpu_rq(src_cpu);
4315	rq_dest = cpu_rq(dest_cpu);
4316
4317	raw_spin_lock(&p->pi_lock);
4318	double_rq_lock(rq_src, rq_dest);
4319	/* Already moved. */
4320	if (task_cpu(p) != src_cpu)
4321		goto done;
4322	/* Affinity changed (again). */
4323	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4324		goto fail;
4325
4326	/*
4327	 * If we're not on a rq, the next wake-up will ensure we're
4328	 * placed properly.
4329	 */
4330	if (p->on_rq) {
4331		dequeue_task(rq_src, p, 0);
4332		set_task_cpu(p, dest_cpu);
4333		enqueue_task(rq_dest, p, 0);
4334		check_preempt_curr(rq_dest, p, 0);
4335	}
4336done:
4337	ret = 1;
4338fail:
4339	double_rq_unlock(rq_src, rq_dest);
4340	raw_spin_unlock(&p->pi_lock);
4341	return ret;
4342}
4343
4344/*
4345 * migration_cpu_stop - this will be executed by a highprio stopper thread
4346 * and performs thread migration by bumping thread off CPU then
4347 * 'pushing' onto another runqueue.
4348 */
4349static int migration_cpu_stop(void *data)
4350{
4351	struct migration_arg *arg = data;
4352
4353	/*
4354	 * The original target cpu might have gone down and we might
4355	 * be on another cpu but it doesn't matter.
4356	 */
4357	local_irq_disable();
4358	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4359	local_irq_enable();
4360	return 0;
4361}
4362
4363#ifdef CONFIG_HOTPLUG_CPU
4364
4365/*
4366 * Ensures that the idle task is using init_mm right before its cpu goes
4367 * offline.
4368 */
4369void idle_task_exit(void)
4370{
4371	struct mm_struct *mm = current->active_mm;
4372
4373	BUG_ON(cpu_online(smp_processor_id()));
4374
4375	if (mm != &init_mm)
4376		switch_mm(mm, &init_mm, current);
4377	mmdrop(mm);
4378}
4379
4380/*
4381 * Since this CPU is going 'away' for a while, fold any nr_active delta
4382 * we might have. Assumes we're called after migrate_tasks() so that the
4383 * nr_active count is stable.
4384 *
4385 * Also see the comment "Global load-average calculations".
4386 */
4387static void calc_load_migrate(struct rq *rq)
4388{
4389	long delta = calc_load_fold_active(rq);
4390	if (delta)
4391		atomic_long_add(delta, &calc_load_tasks);
4392}
4393
4394/*
4395 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4396 * try_to_wake_up()->select_task_rq().
4397 *
4398 * Called with rq->lock held even though we'er in stop_machine() and
4399 * there's no concurrency possible, we hold the required locks anyway
4400 * because of lock validation efforts.
4401 */
4402static void migrate_tasks(unsigned int dead_cpu)
4403{
4404	struct rq *rq = cpu_rq(dead_cpu);
4405	struct task_struct *next, *stop = rq->stop;
4406	int dest_cpu;
4407
4408	/*
4409	 * Fudge the rq selection such that the below task selection loop
4410	 * doesn't get stuck on the currently eligible stop task.
4411	 *
4412	 * We're currently inside stop_machine() and the rq is either stuck
4413	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4414	 * either way we should never end up calling schedule() until we're
4415	 * done here.
4416	 */
4417	rq->stop = NULL;
4418
4419	/*
4420	 * put_prev_task() and pick_next_task() sched
4421	 * class method both need to have an up-to-date
4422	 * value of rq->clock[_task]
4423	 */
4424	update_rq_clock(rq);
4425
4426	for ( ; ; ) {
4427		/*
4428		 * There's this thread running, bail when that's the only
4429		 * remaining thread.
4430		 */
4431		if (rq->nr_running == 1)
4432			break;
4433
4434		next = pick_next_task(rq);
4435		BUG_ON(!next);
4436		next->sched_class->put_prev_task(rq, next);
4437
4438		/* Find suitable destination for @next, with force if needed. */
4439		dest_cpu = select_fallback_rq(dead_cpu, next);
4440		raw_spin_unlock(&rq->lock);
4441
4442		__migrate_task(next, dead_cpu, dest_cpu);
4443
4444		raw_spin_lock(&rq->lock);
4445	}
4446
4447	rq->stop = stop;
4448}
4449
4450#endif /* CONFIG_HOTPLUG_CPU */
4451
4452#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4453
4454static struct ctl_table sd_ctl_dir[] = {
4455	{
4456		.procname	= "sched_domain",
4457		.mode		= 0555,
4458	},
4459	{}
4460};
4461
4462static struct ctl_table sd_ctl_root[] = {
4463	{
4464		.procname	= "kernel",
4465		.mode		= 0555,
4466		.child		= sd_ctl_dir,
4467	},
4468	{}
4469};
4470
4471static struct ctl_table *sd_alloc_ctl_entry(int n)
4472{
4473	struct ctl_table *entry =
4474		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4475
4476	return entry;
4477}
4478
4479static void sd_free_ctl_entry(struct ctl_table **tablep)
4480{
4481	struct ctl_table *entry;
4482
4483	/*
4484	 * In the intermediate directories, both the child directory and
4485	 * procname are dynamically allocated and could fail but the mode
4486	 * will always be set. In the lowest directory the names are
4487	 * static strings and all have proc handlers.
4488	 */
4489	for (entry = *tablep; entry->mode; entry++) {
4490		if (entry->child)
4491			sd_free_ctl_entry(&entry->child);
4492		if (entry->proc_handler == NULL)
4493			kfree(entry->procname);
4494	}
4495
4496	kfree(*tablep);
4497	*tablep = NULL;
4498}
4499
4500static int min_load_idx = 0;
4501static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4502
4503static void
4504set_table_entry(struct ctl_table *entry,
4505		const char *procname, void *data, int maxlen,
4506		umode_t mode, proc_handler *proc_handler,
4507		bool load_idx)
4508{
4509	entry->procname = procname;
4510	entry->data = data;
4511	entry->maxlen = maxlen;
4512	entry->mode = mode;
4513	entry->proc_handler = proc_handler;
4514
4515	if (load_idx) {
4516		entry->extra1 = &min_load_idx;
4517		entry->extra2 = &max_load_idx;
4518	}
4519}
4520
4521static struct ctl_table *
4522sd_alloc_ctl_domain_table(struct sched_domain *sd)
4523{
4524	struct ctl_table *table = sd_alloc_ctl_entry(13);
4525
4526	if (table == NULL)
4527		return NULL;
4528
4529	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4530		sizeof(long), 0644, proc_doulongvec_minmax, false);
4531	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4532		sizeof(long), 0644, proc_doulongvec_minmax, false);
4533	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4534		sizeof(int), 0644, proc_dointvec_minmax, true);
4535	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4536		sizeof(int), 0644, proc_dointvec_minmax, true);
4537	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4538		sizeof(int), 0644, proc_dointvec_minmax, true);
4539	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4540		sizeof(int), 0644, proc_dointvec_minmax, true);
4541	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4542		sizeof(int), 0644, proc_dointvec_minmax, true);
4543	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4544		sizeof(int), 0644, proc_dointvec_minmax, false);
4545	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4546		sizeof(int), 0644, proc_dointvec_minmax, false);
4547	set_table_entry(&table[9], "cache_nice_tries",
4548		&sd->cache_nice_tries,
4549		sizeof(int), 0644, proc_dointvec_minmax, false);
4550	set_table_entry(&table[10], "flags", &sd->flags,
4551		sizeof(int), 0644, proc_dointvec_minmax, false);
4552	set_table_entry(&table[11], "name", sd->name,
4553		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4554	/* &table[12] is terminator */
4555
4556	return table;
4557}
4558
4559static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4560{
4561	struct ctl_table *entry, *table;
4562	struct sched_domain *sd;
4563	int domain_num = 0, i;
4564	char buf[32];
4565
4566	for_each_domain(cpu, sd)
4567		domain_num++;
4568	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4569	if (table == NULL)
4570		return NULL;
4571
4572	i = 0;
4573	for_each_domain(cpu, sd) {
4574		snprintf(buf, 32, "domain%d", i);
4575		entry->procname = kstrdup(buf, GFP_KERNEL);
4576		entry->mode = 0555;
4577		entry->child = sd_alloc_ctl_domain_table(sd);
4578		entry++;
4579		i++;
4580	}
4581	return table;
4582}
4583
4584static struct ctl_table_header *sd_sysctl_header;
4585static void register_sched_domain_sysctl(void)
4586{
4587	int i, cpu_num = num_possible_cpus();
4588	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4589	char buf[32];
4590
4591	WARN_ON(sd_ctl_dir[0].child);
4592	sd_ctl_dir[0].child = entry;
4593
4594	if (entry == NULL)
4595		return;
4596
4597	for_each_possible_cpu(i) {
4598		snprintf(buf, 32, "cpu%d", i);
4599		entry->procname = kstrdup(buf, GFP_KERNEL);
4600		entry->mode = 0555;
4601		entry->child = sd_alloc_ctl_cpu_table(i);
4602		entry++;
4603	}
4604
4605	WARN_ON(sd_sysctl_header);
4606	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4607}
4608
4609/* may be called multiple times per register */
4610static void unregister_sched_domain_sysctl(void)
4611{
4612	if (sd_sysctl_header)
4613		unregister_sysctl_table(sd_sysctl_header);
4614	sd_sysctl_header = NULL;
4615	if (sd_ctl_dir[0].child)
4616		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4617}
4618#else
4619static void register_sched_domain_sysctl(void)
4620{
4621}
4622static void unregister_sched_domain_sysctl(void)
4623{
4624}
4625#endif
4626
4627static void set_rq_online(struct rq *rq)
4628{
4629	if (!rq->online) {
4630		const struct sched_class *class;
4631
4632		cpumask_set_cpu(rq->cpu, rq->rd->online);
4633		rq->online = 1;
4634
4635		for_each_class(class) {
4636			if (class->rq_online)
4637				class->rq_online(rq);
4638		}
4639	}
4640}
4641
4642static void set_rq_offline(struct rq *rq)
4643{
4644	if (rq->online) {
4645		const struct sched_class *class;
4646
4647		for_each_class(class) {
4648			if (class->rq_offline)
4649				class->rq_offline(rq);
4650		}
4651
4652		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4653		rq->online = 0;
4654	}
4655}
4656
4657/*
4658 * migration_call - callback that gets triggered when a CPU is added.
4659 * Here we can start up the necessary migration thread for the new CPU.
4660 */
4661static int
4662migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4663{
4664	int cpu = (long)hcpu;
4665	unsigned long flags;
4666	struct rq *rq = cpu_rq(cpu);
4667
4668	switch (action & ~CPU_TASKS_FROZEN) {
4669
4670	case CPU_UP_PREPARE:
4671		rq->calc_load_update = calc_load_update;
4672		break;
4673
4674	case CPU_ONLINE:
4675		/* Update our root-domain */
4676		raw_spin_lock_irqsave(&rq->lock, flags);
4677		if (rq->rd) {
4678			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4679
4680			set_rq_online(rq);
4681		}
4682		raw_spin_unlock_irqrestore(&rq->lock, flags);
4683		break;
4684
4685#ifdef CONFIG_HOTPLUG_CPU
4686	case CPU_DYING:
4687		sched_ttwu_pending();
4688		/* Update our root-domain */
4689		raw_spin_lock_irqsave(&rq->lock, flags);
4690		if (rq->rd) {
4691			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4692			set_rq_offline(rq);
4693		}
4694		migrate_tasks(cpu);
4695		BUG_ON(rq->nr_running != 1); /* the migration thread */
4696		raw_spin_unlock_irqrestore(&rq->lock, flags);
4697		break;
4698
4699	case CPU_DEAD:
4700		calc_load_migrate(rq);
4701		break;
4702#endif
4703	}
4704
4705	update_max_interval();
4706
4707	return NOTIFY_OK;
4708}
4709
4710/*
4711 * Register at high priority so that task migration (migrate_all_tasks)
4712 * happens before everything else.  This has to be lower priority than
4713 * the notifier in the perf_event subsystem, though.
4714 */
4715static struct notifier_block migration_notifier = {
4716	.notifier_call = migration_call,
4717	.priority = CPU_PRI_MIGRATION,
4718};
4719
4720static int sched_cpu_active(struct notifier_block *nfb,
4721				      unsigned long action, void *hcpu)
4722{
4723	switch (action & ~CPU_TASKS_FROZEN) {
4724	case CPU_STARTING:
4725	case CPU_DOWN_FAILED:
4726		set_cpu_active((long)hcpu, true);
4727		return NOTIFY_OK;
4728	default:
4729		return NOTIFY_DONE;
4730	}
4731}
4732
4733static int sched_cpu_inactive(struct notifier_block *nfb,
4734					unsigned long action, void *hcpu)
4735{
4736	switch (action & ~CPU_TASKS_FROZEN) {
4737	case CPU_DOWN_PREPARE:
4738		set_cpu_active((long)hcpu, false);
4739		return NOTIFY_OK;
4740	default:
4741		return NOTIFY_DONE;
4742	}
4743}
4744
4745static int __init migration_init(void)
4746{
4747	void *cpu = (void *)(long)smp_processor_id();
4748	int err;
4749
4750	/* Initialize migration for the boot CPU */
4751	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4752	BUG_ON(err == NOTIFY_BAD);
4753	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4754	register_cpu_notifier(&migration_notifier);
4755
4756	/* Register cpu active notifiers */
4757	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4758	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4759
4760	return 0;
4761}
4762early_initcall(migration_init);
4763#endif
4764
4765#ifdef CONFIG_SMP
4766
4767static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4768
4769#ifdef CONFIG_SCHED_DEBUG
4770
4771static __read_mostly int sched_debug_enabled;
4772
4773static int __init sched_debug_setup(char *str)
4774{
4775	sched_debug_enabled = 1;
4776
4777	return 0;
4778}
4779early_param("sched_debug", sched_debug_setup);
4780
4781static inline bool sched_debug(void)
4782{
4783	return sched_debug_enabled;
4784}
4785
4786static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4787				  struct cpumask *groupmask)
4788{
4789	struct sched_group *group = sd->groups;
4790	char str[256];
4791
4792	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4793	cpumask_clear(groupmask);
4794
4795	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4796
4797	if (!(sd->flags & SD_LOAD_BALANCE)) {
4798		printk("does not load-balance\n");
4799		if (sd->parent)
4800			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4801					" has parent");
4802		return -1;
4803	}
4804
4805	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4806
4807	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4808		printk(KERN_ERR "ERROR: domain->span does not contain "
4809				"CPU%d\n", cpu);
4810	}
4811	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4812		printk(KERN_ERR "ERROR: domain->groups does not contain"
4813				" CPU%d\n", cpu);
4814	}
4815
4816	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4817	do {
4818		if (!group) {
4819			printk("\n");
4820			printk(KERN_ERR "ERROR: group is NULL\n");
4821			break;
4822		}
4823
4824		/*
4825		 * Even though we initialize ->power to something semi-sane,
4826		 * we leave power_orig unset. This allows us to detect if
4827		 * domain iteration is still funny without causing /0 traps.
4828		 */
4829		if (!group->sgp->power_orig) {
4830			printk(KERN_CONT "\n");
4831			printk(KERN_ERR "ERROR: domain->cpu_power not "
4832					"set\n");
4833			break;
4834		}
4835
4836		if (!cpumask_weight(sched_group_cpus(group))) {
4837			printk(KERN_CONT "\n");
4838			printk(KERN_ERR "ERROR: empty group\n");
4839			break;
4840		}
4841
4842		if (!(sd->flags & SD_OVERLAP) &&
4843		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4844			printk(KERN_CONT "\n");
4845			printk(KERN_ERR "ERROR: repeated CPUs\n");
4846			break;
4847		}
4848
4849		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4850
4851		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4852
4853		printk(KERN_CONT " %s", str);
4854		if (group->sgp->power != SCHED_POWER_SCALE) {
4855			printk(KERN_CONT " (cpu_power = %d)",
4856				group->sgp->power);
4857		}
4858
4859		group = group->next;
4860	} while (group != sd->groups);
4861	printk(KERN_CONT "\n");
4862
4863	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4864		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4865
4866	if (sd->parent &&
4867	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4868		printk(KERN_ERR "ERROR: parent span is not a superset "
4869			"of domain->span\n");
4870	return 0;
4871}
4872
4873static void sched_domain_debug(struct sched_domain *sd, int cpu)
4874{
4875	int level = 0;
4876
4877	if (!sched_debug_enabled)
4878		return;
4879
4880	if (!sd) {
4881		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4882		return;
4883	}
4884
4885	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4886
4887	for (;;) {
4888		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4889			break;
4890		level++;
4891		sd = sd->parent;
4892		if (!sd)
4893			break;
4894	}
4895}
4896#else /* !CONFIG_SCHED_DEBUG */
4897# define sched_domain_debug(sd, cpu) do { } while (0)
4898static inline bool sched_debug(void)
4899{
4900	return false;
4901}
4902#endif /* CONFIG_SCHED_DEBUG */
4903
4904static int sd_degenerate(struct sched_domain *sd)
4905{
4906	if (cpumask_weight(sched_domain_span(sd)) == 1)
4907		return 1;
4908
4909	/* Following flags need at least 2 groups */
4910	if (sd->flags & (SD_LOAD_BALANCE |
4911			 SD_BALANCE_NEWIDLE |
4912			 SD_BALANCE_FORK |
4913			 SD_BALANCE_EXEC |
4914			 SD_SHARE_CPUPOWER |
4915			 SD_SHARE_PKG_RESOURCES)) {
4916		if (sd->groups != sd->groups->next)
4917			return 0;
4918	}
4919
4920	/* Following flags don't use groups */
4921	if (sd->flags & (SD_WAKE_AFFINE))
4922		return 0;
4923
4924	return 1;
4925}
4926
4927static int
4928sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4929{
4930	unsigned long cflags = sd->flags, pflags = parent->flags;
4931
4932	if (sd_degenerate(parent))
4933		return 1;
4934
4935	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4936		return 0;
4937
4938	/* Flags needing groups don't count if only 1 group in parent */
4939	if (parent->groups == parent->groups->next) {
4940		pflags &= ~(SD_LOAD_BALANCE |
4941				SD_BALANCE_NEWIDLE |
4942				SD_BALANCE_FORK |
4943				SD_BALANCE_EXEC |
4944				SD_SHARE_CPUPOWER |
4945				SD_SHARE_PKG_RESOURCES |
4946				SD_PREFER_SIBLING);
4947		if (nr_node_ids == 1)
4948			pflags &= ~SD_SERIALIZE;
4949	}
4950	if (~cflags & pflags)
4951		return 0;
4952
4953	return 1;
4954}
4955
4956static void free_rootdomain(struct rcu_head *rcu)
4957{
4958	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4959
4960	cpupri_cleanup(&rd->cpupri);
4961	free_cpumask_var(rd->rto_mask);
4962	free_cpumask_var(rd->online);
4963	free_cpumask_var(rd->span);
4964	kfree(rd);
4965}
4966
4967static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4968{
4969	struct root_domain *old_rd = NULL;
4970	unsigned long flags;
4971
4972	raw_spin_lock_irqsave(&rq->lock, flags);
4973
4974	if (rq->rd) {
4975		old_rd = rq->rd;
4976
4977		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4978			set_rq_offline(rq);
4979
4980		cpumask_clear_cpu(rq->cpu, old_rd->span);
4981
4982		/*
4983		 * If we dont want to free the old_rt yet then
4984		 * set old_rd to NULL to skip the freeing later
4985		 * in this function:
4986		 */
4987		if (!atomic_dec_and_test(&old_rd->refcount))
4988			old_rd = NULL;
4989	}
4990
4991	atomic_inc(&rd->refcount);
4992	rq->rd = rd;
4993
4994	cpumask_set_cpu(rq->cpu, rd->span);
4995	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4996		set_rq_online(rq);
4997
4998	raw_spin_unlock_irqrestore(&rq->lock, flags);
4999
5000	if (old_rd)
5001		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5002}
5003
5004static int init_rootdomain(struct root_domain *rd)
5005{
5006	memset(rd, 0, sizeof(*rd));
5007
5008	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5009		goto out;
5010	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5011		goto free_span;
5012	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5013		goto free_online;
5014
5015	if (cpupri_init(&rd->cpupri) != 0)
5016		goto free_rto_mask;
5017	return 0;
5018
5019free_rto_mask:
5020	free_cpumask_var(rd->rto_mask);
5021free_online:
5022	free_cpumask_var(rd->online);
5023free_span:
5024	free_cpumask_var(rd->span);
5025out:
5026	return -ENOMEM;
5027}
5028
5029/*
5030 * By default the system creates a single root-domain with all cpus as
5031 * members (mimicking the global state we have today).
5032 */
5033struct root_domain def_root_domain;
5034
5035static void init_defrootdomain(void)
5036{
5037	init_rootdomain(&def_root_domain);
5038
5039	atomic_set(&def_root_domain.refcount, 1);
5040}
5041
5042static struct root_domain *alloc_rootdomain(void)
5043{
5044	struct root_domain *rd;
5045
5046	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5047	if (!rd)
5048		return NULL;
5049
5050	if (init_rootdomain(rd) != 0) {
5051		kfree(rd);
5052		return NULL;
5053	}
5054
5055	return rd;
5056}
5057
5058static void free_sched_groups(struct sched_group *sg, int free_sgp)
5059{
5060	struct sched_group *tmp, *first;
5061
5062	if (!sg)
5063		return;
5064
5065	first = sg;
5066	do {
5067		tmp = sg->next;
5068
5069		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5070			kfree(sg->sgp);
5071
5072		kfree(sg);
5073		sg = tmp;
5074	} while (sg != first);
5075}
5076
5077static void free_sched_domain(struct rcu_head *rcu)
5078{
5079	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5080
5081	/*
5082	 * If its an overlapping domain it has private groups, iterate and
5083	 * nuke them all.
5084	 */
5085	if (sd->flags & SD_OVERLAP) {
5086		free_sched_groups(sd->groups, 1);
5087	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5088		kfree(sd->groups->sgp);
5089		kfree(sd->groups);
5090	}
5091	kfree(sd);
5092}
5093
5094static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5095{
5096	call_rcu(&sd->rcu, free_sched_domain);
5097}
5098
5099static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5100{
5101	for (; sd; sd = sd->parent)
5102		destroy_sched_domain(sd, cpu);
5103}
5104
5105/*
5106 * Keep a special pointer to the highest sched_domain that has
5107 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5108 * allows us to avoid some pointer chasing select_idle_sibling().
5109 *
5110 * Also keep a unique ID per domain (we use the first cpu number in
5111 * the cpumask of the domain), this allows us to quickly tell if
5112 * two cpus are in the same cache domain, see cpus_share_cache().
5113 */
5114DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5115DEFINE_PER_CPU(int, sd_llc_size);
5116DEFINE_PER_CPU(int, sd_llc_id);
5117
5118static void update_top_cache_domain(int cpu)
5119{
5120	struct sched_domain *sd;
5121	int id = cpu;
5122	int size = 1;
5123
5124	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5125	if (sd) {
5126		id = cpumask_first(sched_domain_span(sd));
5127		size = cpumask_weight(sched_domain_span(sd));
5128	}
5129
5130	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5131	per_cpu(sd_llc_size, cpu) = size;
5132	per_cpu(sd_llc_id, cpu) = id;
5133}
5134
5135/*
5136 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5137 * hold the hotplug lock.
5138 */
5139static void
5140cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5141{
5142	struct rq *rq = cpu_rq(cpu);
5143	struct sched_domain *tmp;
5144
5145	/* Remove the sched domains which do not contribute to scheduling. */
5146	for (tmp = sd; tmp; ) {
5147		struct sched_domain *parent = tmp->parent;
5148		if (!parent)
5149			break;
5150
5151		if (sd_parent_degenerate(tmp, parent)) {
5152			tmp->parent = parent->parent;
5153			if (parent->parent)
5154				parent->parent->child = tmp;
5155			/*
5156			 * Transfer SD_PREFER_SIBLING down in case of a
5157			 * degenerate parent; the spans match for this
5158			 * so the property transfers.
5159			 */
5160			if (parent->flags & SD_PREFER_SIBLING)
5161				tmp->flags |= SD_PREFER_SIBLING;
5162			destroy_sched_domain(parent, cpu);
5163		} else
5164			tmp = tmp->parent;
5165	}
5166
5167	if (sd && sd_degenerate(sd)) {
5168		tmp = sd;
5169		sd = sd->parent;
5170		destroy_sched_domain(tmp, cpu);
5171		if (sd)
5172			sd->child = NULL;
5173	}
5174
5175	sched_domain_debug(sd, cpu);
5176
5177	rq_attach_root(rq, rd);
5178	tmp = rq->sd;
5179	rcu_assign_pointer(rq->sd, sd);
5180	destroy_sched_domains(tmp, cpu);
5181
5182	update_top_cache_domain(cpu);
5183}
5184
5185/* cpus with isolated domains */
5186static cpumask_var_t cpu_isolated_map;
5187
5188/* Setup the mask of cpus configured for isolated domains */
5189static int __init isolated_cpu_setup(char *str)
5190{
5191	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5192	cpulist_parse(str, cpu_isolated_map);
5193	return 1;
5194}
5195
5196__setup("isolcpus=", isolated_cpu_setup);
5197
5198static const struct cpumask *cpu_cpu_mask(int cpu)
5199{
5200	return cpumask_of_node(cpu_to_node(cpu));
5201}
5202
5203struct sd_data {
5204	struct sched_domain **__percpu sd;
5205	struct sched_group **__percpu sg;
5206	struct sched_group_power **__percpu sgp;
5207};
5208
5209struct s_data {
5210	struct sched_domain ** __percpu sd;
5211	struct root_domain	*rd;
5212};
5213
5214enum s_alloc {
5215	sa_rootdomain,
5216	sa_sd,
5217	sa_sd_storage,
5218	sa_none,
5219};
5220
5221struct sched_domain_topology_level;
5222
5223typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5224typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5225
5226#define SDTL_OVERLAP	0x01
5227
5228struct sched_domain_topology_level {
5229	sched_domain_init_f init;
5230	sched_domain_mask_f mask;
5231	int		    flags;
5232	int		    numa_level;
5233	struct sd_data      data;
5234};
5235
5236/*
5237 * Build an iteration mask that can exclude certain CPUs from the upwards
5238 * domain traversal.
5239 *
5240 * Asymmetric node setups can result in situations where the domain tree is of
5241 * unequal depth, make sure to skip domains that already cover the entire
5242 * range.
5243 *
5244 * In that case build_sched_domains() will have terminated the iteration early
5245 * and our sibling sd spans will be empty. Domains should always include the
5246 * cpu they're built on, so check that.
5247 *
5248 */
5249static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5250{
5251	const struct cpumask *span = sched_domain_span(sd);
5252	struct sd_data *sdd = sd->private;
5253	struct sched_domain *sibling;
5254	int i;
5255
5256	for_each_cpu(i, span) {
5257		sibling = *per_cpu_ptr(sdd->sd, i);
5258		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5259			continue;
5260
5261		cpumask_set_cpu(i, sched_group_mask(sg));
5262	}
5263}
5264
5265/*
5266 * Return the canonical balance cpu for this group, this is the first cpu
5267 * of this group that's also in the iteration mask.
5268 */
5269int group_balance_cpu(struct sched_group *sg)
5270{
5271	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5272}
5273
5274static int
5275build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5276{
5277	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5278	const struct cpumask *span = sched_domain_span(sd);
5279	struct cpumask *covered = sched_domains_tmpmask;
5280	struct sd_data *sdd = sd->private;
5281	struct sched_domain *child;
5282	int i;
5283
5284	cpumask_clear(covered);
5285
5286	for_each_cpu(i, span) {
5287		struct cpumask *sg_span;
5288
5289		if (cpumask_test_cpu(i, covered))
5290			continue;
5291
5292		child = *per_cpu_ptr(sdd->sd, i);
5293
5294		/* See the comment near build_group_mask(). */
5295		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5296			continue;
5297
5298		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5299				GFP_KERNEL, cpu_to_node(cpu));
5300
5301		if (!sg)
5302			goto fail;
5303
5304		sg_span = sched_group_cpus(sg);
5305		if (child->child) {
5306			child = child->child;
5307			cpumask_copy(sg_span, sched_domain_span(child));
5308		} else
5309			cpumask_set_cpu(i, sg_span);
5310
5311		cpumask_or(covered, covered, sg_span);
5312
5313		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5314		if (atomic_inc_return(&sg->sgp->ref) == 1)
5315			build_group_mask(sd, sg);
5316
5317		/*
5318		 * Initialize sgp->power such that even if we mess up the
5319		 * domains and no possible iteration will get us here, we won't
5320		 * die on a /0 trap.
5321		 */
5322		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5323
5324		/*
5325		 * Make sure the first group of this domain contains the
5326		 * canonical balance cpu. Otherwise the sched_domain iteration
5327		 * breaks. See update_sg_lb_stats().
5328		 */
5329		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5330		    group_balance_cpu(sg) == cpu)
5331			groups = sg;
5332
5333		if (!first)
5334			first = sg;
5335		if (last)
5336			last->next = sg;
5337		last = sg;
5338		last->next = first;
5339	}
5340	sd->groups = groups;
5341
5342	return 0;
5343
5344fail:
5345	free_sched_groups(first, 0);
5346
5347	return -ENOMEM;
5348}
5349
5350static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5351{
5352	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5353	struct sched_domain *child = sd->child;
5354
5355	if (child)
5356		cpu = cpumask_first(sched_domain_span(child));
5357
5358	if (sg) {
5359		*sg = *per_cpu_ptr(sdd->sg, cpu);
5360		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5361		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5362	}
5363
5364	return cpu;
5365}
5366
5367/*
5368 * build_sched_groups will build a circular linked list of the groups
5369 * covered by the given span, and will set each group's ->cpumask correctly,
5370 * and ->cpu_power to 0.
5371 *
5372 * Assumes the sched_domain tree is fully constructed
5373 */
5374static int
5375build_sched_groups(struct sched_domain *sd, int cpu)
5376{
5377	struct sched_group *first = NULL, *last = NULL;
5378	struct sd_data *sdd = sd->private;
5379	const struct cpumask *span = sched_domain_span(sd);
5380	struct cpumask *covered;
5381	int i;
5382
5383	get_group(cpu, sdd, &sd->groups);
5384	atomic_inc(&sd->groups->ref);
5385
5386	if (cpu != cpumask_first(span))
5387		return 0;
5388
5389	lockdep_assert_held(&sched_domains_mutex);
5390	covered = sched_domains_tmpmask;
5391
5392	cpumask_clear(covered);
5393
5394	for_each_cpu(i, span) {
5395		struct sched_group *sg;
5396		int group, j;
5397
5398		if (cpumask_test_cpu(i, covered))
5399			continue;
5400
5401		group = get_group(i, sdd, &sg);
5402		cpumask_clear(sched_group_cpus(sg));
5403		sg->sgp->power = 0;
5404		cpumask_setall(sched_group_mask(sg));
5405
5406		for_each_cpu(j, span) {
5407			if (get_group(j, sdd, NULL) != group)
5408				continue;
5409
5410			cpumask_set_cpu(j, covered);
5411			cpumask_set_cpu(j, sched_group_cpus(sg));
5412		}
5413
5414		if (!first)
5415			first = sg;
5416		if (last)
5417			last->next = sg;
5418		last = sg;
5419	}
5420	last->next = first;
5421
5422	return 0;
5423}
5424
5425/*
5426 * Initialize sched groups cpu_power.
5427 *
5428 * cpu_power indicates the capacity of sched group, which is used while
5429 * distributing the load between different sched groups in a sched domain.
5430 * Typically cpu_power for all the groups in a sched domain will be same unless
5431 * there are asymmetries in the topology. If there are asymmetries, group
5432 * having more cpu_power will pickup more load compared to the group having
5433 * less cpu_power.
5434 */
5435static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5436{
5437	struct sched_group *sg = sd->groups;
5438
5439	WARN_ON(!sg);
5440
5441	do {
5442		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5443		sg = sg->next;
5444	} while (sg != sd->groups);
5445
5446	if (cpu != group_balance_cpu(sg))
5447		return;
5448
5449	update_group_power(sd, cpu);
5450	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5451}
5452
5453int __weak arch_sd_sibling_asym_packing(void)
5454{
5455       return 0*SD_ASYM_PACKING;
5456}
5457
5458/*
5459 * Initializers for schedule domains
5460 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5461 */
5462
5463#ifdef CONFIG_SCHED_DEBUG
5464# define SD_INIT_NAME(sd, type)		sd->name = #type
5465#else
5466# define SD_INIT_NAME(sd, type)		do { } while (0)
5467#endif
5468
5469#define SD_INIT_FUNC(type)						\
5470static noinline struct sched_domain *					\
5471sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5472{									\
5473	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5474	*sd = SD_##type##_INIT;						\
5475	SD_INIT_NAME(sd, type);						\
5476	sd->private = &tl->data;					\
5477	return sd;							\
5478}
5479
5480SD_INIT_FUNC(CPU)
5481#ifdef CONFIG_SCHED_SMT
5482 SD_INIT_FUNC(SIBLING)
5483#endif
5484#ifdef CONFIG_SCHED_MC
5485 SD_INIT_FUNC(MC)
5486#endif
5487#ifdef CONFIG_SCHED_BOOK
5488 SD_INIT_FUNC(BOOK)
5489#endif
5490
5491static int default_relax_domain_level = -1;
5492int sched_domain_level_max;
5493
5494static int __init setup_relax_domain_level(char *str)
5495{
5496	if (kstrtoint(str, 0, &default_relax_domain_level))
5497		pr_warn("Unable to set relax_domain_level\n");
5498
5499	return 1;
5500}
5501__setup("relax_domain_level=", setup_relax_domain_level);
5502
5503static void set_domain_attribute(struct sched_domain *sd,
5504				 struct sched_domain_attr *attr)
5505{
5506	int request;
5507
5508	if (!attr || attr->relax_domain_level < 0) {
5509		if (default_relax_domain_level < 0)
5510			return;
5511		else
5512			request = default_relax_domain_level;
5513	} else
5514		request = attr->relax_domain_level;
5515	if (request < sd->level) {
5516		/* turn off idle balance on this domain */
5517		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5518	} else {
5519		/* turn on idle balance on this domain */
5520		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5521	}
5522}
5523
5524static void __sdt_free(const struct cpumask *cpu_map);
5525static int __sdt_alloc(const struct cpumask *cpu_map);
5526
5527static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5528				 const struct cpumask *cpu_map)
5529{
5530	switch (what) {
5531	case sa_rootdomain:
5532		if (!atomic_read(&d->rd->refcount))
5533			free_rootdomain(&d->rd->rcu); /* fall through */
5534	case sa_sd:
5535		free_percpu(d->sd); /* fall through */
5536	case sa_sd_storage:
5537		__sdt_free(cpu_map); /* fall through */
5538	case sa_none:
5539		break;
5540	}
5541}
5542
5543static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5544						   const struct cpumask *cpu_map)
5545{
5546	memset(d, 0, sizeof(*d));
5547
5548	if (__sdt_alloc(cpu_map))
5549		return sa_sd_storage;
5550	d->sd = alloc_percpu(struct sched_domain *);
5551	if (!d->sd)
5552		return sa_sd_storage;
5553	d->rd = alloc_rootdomain();
5554	if (!d->rd)
5555		return sa_sd;
5556	return sa_rootdomain;
5557}
5558
5559/*
5560 * NULL the sd_data elements we've used to build the sched_domain and
5561 * sched_group structure so that the subsequent __free_domain_allocs()
5562 * will not free the data we're using.
5563 */
5564static void claim_allocations(int cpu, struct sched_domain *sd)
5565{
5566	struct sd_data *sdd = sd->private;
5567
5568	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5569	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5570
5571	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5572		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5573
5574	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5575		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5576}
5577
5578#ifdef CONFIG_SCHED_SMT
5579static const struct cpumask *cpu_smt_mask(int cpu)
5580{
5581	return topology_thread_cpumask(cpu);
5582}
5583#endif
5584
5585/*
5586 * Topology list, bottom-up.
5587 */
5588static struct sched_domain_topology_level default_topology[] = {
5589#ifdef CONFIG_SCHED_SMT
5590	{ sd_init_SIBLING, cpu_smt_mask, },
5591#endif
5592#ifdef CONFIG_SCHED_MC
5593	{ sd_init_MC, cpu_coregroup_mask, },
5594#endif
5595#ifdef CONFIG_SCHED_BOOK
5596	{ sd_init_BOOK, cpu_book_mask, },
5597#endif
5598	{ sd_init_CPU, cpu_cpu_mask, },
5599	{ NULL, },
5600};
5601
5602static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5603
5604#define for_each_sd_topology(tl)			\
5605	for (tl = sched_domain_topology; tl->init; tl++)
5606
5607#ifdef CONFIG_NUMA
5608
5609static int sched_domains_numa_levels;
5610static int *sched_domains_numa_distance;
5611static struct cpumask ***sched_domains_numa_masks;
5612static int sched_domains_curr_level;
5613
5614static inline int sd_local_flags(int level)
5615{
5616	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5617		return 0;
5618
5619	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5620}
5621
5622static struct sched_domain *
5623sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5624{
5625	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5626	int level = tl->numa_level;
5627	int sd_weight = cpumask_weight(
5628			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5629
5630	*sd = (struct sched_domain){
5631		.min_interval		= sd_weight,
5632		.max_interval		= 2*sd_weight,
5633		.busy_factor		= 32,
5634		.imbalance_pct		= 125,
5635		.cache_nice_tries	= 2,
5636		.busy_idx		= 3,
5637		.idle_idx		= 2,
5638		.newidle_idx		= 0,
5639		.wake_idx		= 0,
5640		.forkexec_idx		= 0,
5641
5642		.flags			= 1*SD_LOAD_BALANCE
5643					| 1*SD_BALANCE_NEWIDLE
5644					| 0*SD_BALANCE_EXEC
5645					| 0*SD_BALANCE_FORK
5646					| 0*SD_BALANCE_WAKE
5647					| 0*SD_WAKE_AFFINE
5648					| 0*SD_SHARE_CPUPOWER
5649					| 0*SD_SHARE_PKG_RESOURCES
5650					| 1*SD_SERIALIZE
5651					| 0*SD_PREFER_SIBLING
5652					| sd_local_flags(level)
5653					,
5654		.last_balance		= jiffies,
5655		.balance_interval	= sd_weight,
5656	};
5657	SD_INIT_NAME(sd, NUMA);
5658	sd->private = &tl->data;
5659
5660	/*
5661	 * Ugly hack to pass state to sd_numa_mask()...
5662	 */
5663	sched_domains_curr_level = tl->numa_level;
5664
5665	return sd;
5666}
5667
5668static const struct cpumask *sd_numa_mask(int cpu)
5669{
5670	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5671}
5672
5673static void sched_numa_warn(const char *str)
5674{
5675	static int done = false;
5676	int i,j;
5677
5678	if (done)
5679		return;
5680
5681	done = true;
5682
5683	printk(KERN_WARNING "ERROR: %s\n\n", str);
5684
5685	for (i = 0; i < nr_node_ids; i++) {
5686		printk(KERN_WARNING "  ");
5687		for (j = 0; j < nr_node_ids; j++)
5688			printk(KERN_CONT "%02d ", node_distance(i,j));
5689		printk(KERN_CONT "\n");
5690	}
5691	printk(KERN_WARNING "\n");
5692}
5693
5694static bool find_numa_distance(int distance)
5695{
5696	int i;
5697
5698	if (distance == node_distance(0, 0))
5699		return true;
5700
5701	for (i = 0; i < sched_domains_numa_levels; i++) {
5702		if (sched_domains_numa_distance[i] == distance)
5703			return true;
5704	}
5705
5706	return false;
5707}
5708
5709static void sched_init_numa(void)
5710{
5711	int next_distance, curr_distance = node_distance(0, 0);
5712	struct sched_domain_topology_level *tl;
5713	int level = 0;
5714	int i, j, k;
5715
5716	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5717	if (!sched_domains_numa_distance)
5718		return;
5719
5720	/*
5721	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5722	 * unique distances in the node_distance() table.
5723	 *
5724	 * Assumes node_distance(0,j) includes all distances in
5725	 * node_distance(i,j) in order to avoid cubic time.
5726	 */
5727	next_distance = curr_distance;
5728	for (i = 0; i < nr_node_ids; i++) {
5729		for (j = 0; j < nr_node_ids; j++) {
5730			for (k = 0; k < nr_node_ids; k++) {
5731				int distance = node_distance(i, k);
5732
5733				if (distance > curr_distance &&
5734				    (distance < next_distance ||
5735				     next_distance == curr_distance))
5736					next_distance = distance;
5737
5738				/*
5739				 * While not a strong assumption it would be nice to know
5740				 * about cases where if node A is connected to B, B is not
5741				 * equally connected to A.
5742				 */
5743				if (sched_debug() && node_distance(k, i) != distance)
5744					sched_numa_warn("Node-distance not symmetric");
5745
5746				if (sched_debug() && i && !find_numa_distance(distance))
5747					sched_numa_warn("Node-0 not representative");
5748			}
5749			if (next_distance != curr_distance) {
5750				sched_domains_numa_distance[level++] = next_distance;
5751				sched_domains_numa_levels = level;
5752				curr_distance = next_distance;
5753			} else break;
5754		}
5755
5756		/*
5757		 * In case of sched_debug() we verify the above assumption.
5758		 */
5759		if (!sched_debug())
5760			break;
5761	}
5762	/*
5763	 * 'level' contains the number of unique distances, excluding the
5764	 * identity distance node_distance(i,i).
5765	 *
5766	 * The sched_domains_numa_distance[] array includes the actual distance
5767	 * numbers.
5768	 */
5769
5770	/*
5771	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5772	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5773	 * the array will contain less then 'level' members. This could be
5774	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5775	 * in other functions.
5776	 *
5777	 * We reset it to 'level' at the end of this function.
5778	 */
5779	sched_domains_numa_levels = 0;
5780
5781	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5782	if (!sched_domains_numa_masks)
5783		return;
5784
5785	/*
5786	 * Now for each level, construct a mask per node which contains all
5787	 * cpus of nodes that are that many hops away from us.
5788	 */
5789	for (i = 0; i < level; i++) {
5790		sched_domains_numa_masks[i] =
5791			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5792		if (!sched_domains_numa_masks[i])
5793			return;
5794
5795		for (j = 0; j < nr_node_ids; j++) {
5796			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5797			if (!mask)
5798				return;
5799
5800			sched_domains_numa_masks[i][j] = mask;
5801
5802			for (k = 0; k < nr_node_ids; k++) {
5803				if (node_distance(j, k) > sched_domains_numa_distance[i])
5804					continue;
5805
5806				cpumask_or(mask, mask, cpumask_of_node(k));
5807			}
5808		}
5809	}
5810
5811	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5812			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5813	if (!tl)
5814		return;
5815
5816	/*
5817	 * Copy the default topology bits..
5818	 */
5819	for (i = 0; default_topology[i].init; i++)
5820		tl[i] = default_topology[i];
5821
5822	/*
5823	 * .. and append 'j' levels of NUMA goodness.
5824	 */
5825	for (j = 0; j < level; i++, j++) {
5826		tl[i] = (struct sched_domain_topology_level){
5827			.init = sd_numa_init,
5828			.mask = sd_numa_mask,
5829			.flags = SDTL_OVERLAP,
5830			.numa_level = j,
5831		};
5832	}
5833
5834	sched_domain_topology = tl;
5835
5836	sched_domains_numa_levels = level;
5837}
5838
5839static void sched_domains_numa_masks_set(int cpu)
5840{
5841	int i, j;
5842	int node = cpu_to_node(cpu);
5843
5844	for (i = 0; i < sched_domains_numa_levels; i++) {
5845		for (j = 0; j < nr_node_ids; j++) {
5846			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5847				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5848		}
5849	}
5850}
5851
5852static void sched_domains_numa_masks_clear(int cpu)
5853{
5854	int i, j;
5855	for (i = 0; i < sched_domains_numa_levels; i++) {
5856		for (j = 0; j < nr_node_ids; j++)
5857			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5858	}
5859}
5860
5861/*
5862 * Update sched_domains_numa_masks[level][node] array when new cpus
5863 * are onlined.
5864 */
5865static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5866					   unsigned long action,
5867					   void *hcpu)
5868{
5869	int cpu = (long)hcpu;
5870
5871	switch (action & ~CPU_TASKS_FROZEN) {
5872	case CPU_ONLINE:
5873		sched_domains_numa_masks_set(cpu);
5874		break;
5875
5876	case CPU_DEAD:
5877		sched_domains_numa_masks_clear(cpu);
5878		break;
5879
5880	default:
5881		return NOTIFY_DONE;
5882	}
5883
5884	return NOTIFY_OK;
5885}
5886#else
5887static inline void sched_init_numa(void)
5888{
5889}
5890
5891static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5892					   unsigned long action,
5893					   void *hcpu)
5894{
5895	return 0;
5896}
5897#endif /* CONFIG_NUMA */
5898
5899static int __sdt_alloc(const struct cpumask *cpu_map)
5900{
5901	struct sched_domain_topology_level *tl;
5902	int j;
5903
5904	for_each_sd_topology(tl) {
5905		struct sd_data *sdd = &tl->data;
5906
5907		sdd->sd = alloc_percpu(struct sched_domain *);
5908		if (!sdd->sd)
5909			return -ENOMEM;
5910
5911		sdd->sg = alloc_percpu(struct sched_group *);
5912		if (!sdd->sg)
5913			return -ENOMEM;
5914
5915		sdd->sgp = alloc_percpu(struct sched_group_power *);
5916		if (!sdd->sgp)
5917			return -ENOMEM;
5918
5919		for_each_cpu(j, cpu_map) {
5920			struct sched_domain *sd;
5921			struct sched_group *sg;
5922			struct sched_group_power *sgp;
5923
5924		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5925					GFP_KERNEL, cpu_to_node(j));
5926			if (!sd)
5927				return -ENOMEM;
5928
5929			*per_cpu_ptr(sdd->sd, j) = sd;
5930
5931			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5932					GFP_KERNEL, cpu_to_node(j));
5933			if (!sg)
5934				return -ENOMEM;
5935
5936			sg->next = sg;
5937
5938			*per_cpu_ptr(sdd->sg, j) = sg;
5939
5940			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5941					GFP_KERNEL, cpu_to_node(j));
5942			if (!sgp)
5943				return -ENOMEM;
5944
5945			*per_cpu_ptr(sdd->sgp, j) = sgp;
5946		}
5947	}
5948
5949	return 0;
5950}
5951
5952static void __sdt_free(const struct cpumask *cpu_map)
5953{
5954	struct sched_domain_topology_level *tl;
5955	int j;
5956
5957	for_each_sd_topology(tl) {
5958		struct sd_data *sdd = &tl->data;
5959
5960		for_each_cpu(j, cpu_map) {
5961			struct sched_domain *sd;
5962
5963			if (sdd->sd) {
5964				sd = *per_cpu_ptr(sdd->sd, j);
5965				if (sd && (sd->flags & SD_OVERLAP))
5966					free_sched_groups(sd->groups, 0);
5967				kfree(*per_cpu_ptr(sdd->sd, j));
5968			}
5969
5970			if (sdd->sg)
5971				kfree(*per_cpu_ptr(sdd->sg, j));
5972			if (sdd->sgp)
5973				kfree(*per_cpu_ptr(sdd->sgp, j));
5974		}
5975		free_percpu(sdd->sd);
5976		sdd->sd = NULL;
5977		free_percpu(sdd->sg);
5978		sdd->sg = NULL;
5979		free_percpu(sdd->sgp);
5980		sdd->sgp = NULL;
5981	}
5982}
5983
5984struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5985		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5986		struct sched_domain *child, int cpu)
5987{
5988	struct sched_domain *sd = tl->init(tl, cpu);
5989	if (!sd)
5990		return child;
5991
5992	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5993	if (child) {
5994		sd->level = child->level + 1;
5995		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5996		child->parent = sd;
5997		sd->child = child;
5998	}
5999	set_domain_attribute(sd, attr);
6000
6001	return sd;
6002}
6003
6004/*
6005 * Build sched domains for a given set of cpus and attach the sched domains
6006 * to the individual cpus
6007 */
6008static int build_sched_domains(const struct cpumask *cpu_map,
6009			       struct sched_domain_attr *attr)
6010{
6011	enum s_alloc alloc_state;
6012	struct sched_domain *sd;
6013	struct s_data d;
6014	int i, ret = -ENOMEM;
6015
6016	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6017	if (alloc_state != sa_rootdomain)
6018		goto error;
6019
6020	/* Set up domains for cpus specified by the cpu_map. */
6021	for_each_cpu(i, cpu_map) {
6022		struct sched_domain_topology_level *tl;
6023
6024		sd = NULL;
6025		for_each_sd_topology(tl) {
6026			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6027			if (tl == sched_domain_topology)
6028				*per_cpu_ptr(d.sd, i) = sd;
6029			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6030				sd->flags |= SD_OVERLAP;
6031			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6032				break;
6033		}
6034	}
6035
6036	/* Build the groups for the domains */
6037	for_each_cpu(i, cpu_map) {
6038		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6039			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6040			if (sd->flags & SD_OVERLAP) {
6041				if (build_overlap_sched_groups(sd, i))
6042					goto error;
6043			} else {
6044				if (build_sched_groups(sd, i))
6045					goto error;
6046			}
6047		}
6048	}
6049
6050	/* Calculate CPU power for physical packages and nodes */
6051	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6052		if (!cpumask_test_cpu(i, cpu_map))
6053			continue;
6054
6055		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6056			claim_allocations(i, sd);
6057			init_sched_groups_power(i, sd);
6058		}
6059	}
6060
6061	/* Attach the domains */
6062	rcu_read_lock();
6063	for_each_cpu(i, cpu_map) {
6064		sd = *per_cpu_ptr(d.sd, i);
6065		cpu_attach_domain(sd, d.rd, i);
6066	}
6067	rcu_read_unlock();
6068
6069	ret = 0;
6070error:
6071	__free_domain_allocs(&d, alloc_state, cpu_map);
6072	return ret;
6073}
6074
6075static cpumask_var_t *doms_cur;	/* current sched domains */
6076static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6077static struct sched_domain_attr *dattr_cur;
6078				/* attribues of custom domains in 'doms_cur' */
6079
6080/*
6081 * Special case: If a kmalloc of a doms_cur partition (array of
6082 * cpumask) fails, then fallback to a single sched domain,
6083 * as determined by the single cpumask fallback_doms.
6084 */
6085static cpumask_var_t fallback_doms;
6086
6087/*
6088 * arch_update_cpu_topology lets virtualized architectures update the
6089 * cpu core maps. It is supposed to return 1 if the topology changed
6090 * or 0 if it stayed the same.
6091 */
6092int __attribute__((weak)) arch_update_cpu_topology(void)
6093{
6094	return 0;
6095}
6096
6097cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6098{
6099	int i;
6100	cpumask_var_t *doms;
6101
6102	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6103	if (!doms)
6104		return NULL;
6105	for (i = 0; i < ndoms; i++) {
6106		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6107			free_sched_domains(doms, i);
6108			return NULL;
6109		}
6110	}
6111	return doms;
6112}
6113
6114void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6115{
6116	unsigned int i;
6117	for (i = 0; i < ndoms; i++)
6118		free_cpumask_var(doms[i]);
6119	kfree(doms);
6120}
6121
6122/*
6123 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6124 * For now this just excludes isolated cpus, but could be used to
6125 * exclude other special cases in the future.
6126 */
6127static int init_sched_domains(const struct cpumask *cpu_map)
6128{
6129	int err;
6130
6131	arch_update_cpu_topology();
6132	ndoms_cur = 1;
6133	doms_cur = alloc_sched_domains(ndoms_cur);
6134	if (!doms_cur)
6135		doms_cur = &fallback_doms;
6136	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6137	err = build_sched_domains(doms_cur[0], NULL);
6138	register_sched_domain_sysctl();
6139
6140	return err;
6141}
6142
6143/*
6144 * Detach sched domains from a group of cpus specified in cpu_map
6145 * These cpus will now be attached to the NULL domain
6146 */
6147static void detach_destroy_domains(const struct cpumask *cpu_map)
6148{
6149	int i;
6150
6151	rcu_read_lock();
6152	for_each_cpu(i, cpu_map)
6153		cpu_attach_domain(NULL, &def_root_domain, i);
6154	rcu_read_unlock();
6155}
6156
6157/* handle null as "default" */
6158static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6159			struct sched_domain_attr *new, int idx_new)
6160{
6161	struct sched_domain_attr tmp;
6162
6163	/* fast path */
6164	if (!new && !cur)
6165		return 1;
6166
6167	tmp = SD_ATTR_INIT;
6168	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6169			new ? (new + idx_new) : &tmp,
6170			sizeof(struct sched_domain_attr));
6171}
6172
6173/*
6174 * Partition sched domains as specified by the 'ndoms_new'
6175 * cpumasks in the array doms_new[] of cpumasks. This compares
6176 * doms_new[] to the current sched domain partitioning, doms_cur[].
6177 * It destroys each deleted domain and builds each new domain.
6178 *
6179 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6180 * The masks don't intersect (don't overlap.) We should setup one
6181 * sched domain for each mask. CPUs not in any of the cpumasks will
6182 * not be load balanced. If the same cpumask appears both in the
6183 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6184 * it as it is.
6185 *
6186 * The passed in 'doms_new' should be allocated using
6187 * alloc_sched_domains.  This routine takes ownership of it and will
6188 * free_sched_domains it when done with it. If the caller failed the
6189 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6190 * and partition_sched_domains() will fallback to the single partition
6191 * 'fallback_doms', it also forces the domains to be rebuilt.
6192 *
6193 * If doms_new == NULL it will be replaced with cpu_online_mask.
6194 * ndoms_new == 0 is a special case for destroying existing domains,
6195 * and it will not create the default domain.
6196 *
6197 * Call with hotplug lock held
6198 */
6199void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6200			     struct sched_domain_attr *dattr_new)
6201{
6202	int i, j, n;
6203	int new_topology;
6204
6205	mutex_lock(&sched_domains_mutex);
6206
6207	/* always unregister in case we don't destroy any domains */
6208	unregister_sched_domain_sysctl();
6209
6210	/* Let architecture update cpu core mappings. */
6211	new_topology = arch_update_cpu_topology();
6212
6213	n = doms_new ? ndoms_new : 0;
6214
6215	/* Destroy deleted domains */
6216	for (i = 0; i < ndoms_cur; i++) {
6217		for (j = 0; j < n && !new_topology; j++) {
6218			if (cpumask_equal(doms_cur[i], doms_new[j])
6219			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6220				goto match1;
6221		}
6222		/* no match - a current sched domain not in new doms_new[] */
6223		detach_destroy_domains(doms_cur[i]);
6224match1:
6225		;
6226	}
6227
6228	n = ndoms_cur;
6229	if (doms_new == NULL) {
6230		n = 0;
6231		doms_new = &fallback_doms;
6232		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6233		WARN_ON_ONCE(dattr_new);
6234	}
6235
6236	/* Build new domains */
6237	for (i = 0; i < ndoms_new; i++) {
6238		for (j = 0; j < n && !new_topology; j++) {
6239			if (cpumask_equal(doms_new[i], doms_cur[j])
6240			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6241				goto match2;
6242		}
6243		/* no match - add a new doms_new */
6244		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6245match2:
6246		;
6247	}
6248
6249	/* Remember the new sched domains */
6250	if (doms_cur != &fallback_doms)
6251		free_sched_domains(doms_cur, ndoms_cur);
6252	kfree(dattr_cur);	/* kfree(NULL) is safe */
6253	doms_cur = doms_new;
6254	dattr_cur = dattr_new;
6255	ndoms_cur = ndoms_new;
6256
6257	register_sched_domain_sysctl();
6258
6259	mutex_unlock(&sched_domains_mutex);
6260}
6261
6262static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6263
6264/*
6265 * Update cpusets according to cpu_active mask.  If cpusets are
6266 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6267 * around partition_sched_domains().
6268 *
6269 * If we come here as part of a suspend/resume, don't touch cpusets because we
6270 * want to restore it back to its original state upon resume anyway.
6271 */
6272static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6273			     void *hcpu)
6274{
6275	switch (action) {
6276	case CPU_ONLINE_FROZEN:
6277	case CPU_DOWN_FAILED_FROZEN:
6278
6279		/*
6280		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6281		 * resume sequence. As long as this is not the last online
6282		 * operation in the resume sequence, just build a single sched
6283		 * domain, ignoring cpusets.
6284		 */
6285		num_cpus_frozen--;
6286		if (likely(num_cpus_frozen)) {
6287			partition_sched_domains(1, NULL, NULL);
6288			break;
6289		}
6290
6291		/*
6292		 * This is the last CPU online operation. So fall through and
6293		 * restore the original sched domains by considering the
6294		 * cpuset configurations.
6295		 */
6296
6297	case CPU_ONLINE:
6298	case CPU_DOWN_FAILED:
6299		cpuset_update_active_cpus(true);
6300		break;
6301	default:
6302		return NOTIFY_DONE;
6303	}
6304	return NOTIFY_OK;
6305}
6306
6307static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6308			       void *hcpu)
6309{
6310	switch (action) {
6311	case CPU_DOWN_PREPARE:
6312		cpuset_update_active_cpus(false);
6313		break;
6314	case CPU_DOWN_PREPARE_FROZEN:
6315		num_cpus_frozen++;
6316		partition_sched_domains(1, NULL, NULL);
6317		break;
6318	default:
6319		return NOTIFY_DONE;
6320	}
6321	return NOTIFY_OK;
6322}
6323
6324void __init sched_init_smp(void)
6325{
6326	cpumask_var_t non_isolated_cpus;
6327
6328	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6329	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6330
6331	sched_init_numa();
6332
6333	get_online_cpus();
6334	mutex_lock(&sched_domains_mutex);
6335	init_sched_domains(cpu_active_mask);
6336	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6337	if (cpumask_empty(non_isolated_cpus))
6338		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6339	mutex_unlock(&sched_domains_mutex);
6340	put_online_cpus();
6341
6342	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6343	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6344	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6345
6346	init_hrtick();
6347
6348	/* Move init over to a non-isolated CPU */
6349	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6350		BUG();
6351	sched_init_granularity();
6352	free_cpumask_var(non_isolated_cpus);
6353
6354	init_sched_rt_class();
6355}
6356#else
6357void __init sched_init_smp(void)
6358{
6359	sched_init_granularity();
6360}
6361#endif /* CONFIG_SMP */
6362
6363const_debug unsigned int sysctl_timer_migration = 1;
6364
6365int in_sched_functions(unsigned long addr)
6366{
6367	return in_lock_functions(addr) ||
6368		(addr >= (unsigned long)__sched_text_start
6369		&& addr < (unsigned long)__sched_text_end);
6370}
6371
6372#ifdef CONFIG_CGROUP_SCHED
6373/*
6374 * Default task group.
6375 * Every task in system belongs to this group at bootup.
6376 */
6377struct task_group root_task_group;
6378LIST_HEAD(task_groups);
6379#endif
6380
6381DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6382
6383void __init sched_init(void)
6384{
6385	int i, j;
6386	unsigned long alloc_size = 0, ptr;
6387
6388#ifdef CONFIG_FAIR_GROUP_SCHED
6389	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6390#endif
6391#ifdef CONFIG_RT_GROUP_SCHED
6392	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6393#endif
6394#ifdef CONFIG_CPUMASK_OFFSTACK
6395	alloc_size += num_possible_cpus() * cpumask_size();
6396#endif
6397	if (alloc_size) {
6398		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6399
6400#ifdef CONFIG_FAIR_GROUP_SCHED
6401		root_task_group.se = (struct sched_entity **)ptr;
6402		ptr += nr_cpu_ids * sizeof(void **);
6403
6404		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6405		ptr += nr_cpu_ids * sizeof(void **);
6406
6407#endif /* CONFIG_FAIR_GROUP_SCHED */
6408#ifdef CONFIG_RT_GROUP_SCHED
6409		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6410		ptr += nr_cpu_ids * sizeof(void **);
6411
6412		root_task_group.rt_rq = (struct rt_rq **)ptr;
6413		ptr += nr_cpu_ids * sizeof(void **);
6414
6415#endif /* CONFIG_RT_GROUP_SCHED */
6416#ifdef CONFIG_CPUMASK_OFFSTACK
6417		for_each_possible_cpu(i) {
6418			per_cpu(load_balance_mask, i) = (void *)ptr;
6419			ptr += cpumask_size();
6420		}
6421#endif /* CONFIG_CPUMASK_OFFSTACK */
6422	}
6423
6424#ifdef CONFIG_SMP
6425	init_defrootdomain();
6426#endif
6427
6428	init_rt_bandwidth(&def_rt_bandwidth,
6429			global_rt_period(), global_rt_runtime());
6430
6431#ifdef CONFIG_RT_GROUP_SCHED
6432	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6433			global_rt_period(), global_rt_runtime());
6434#endif /* CONFIG_RT_GROUP_SCHED */
6435
6436#ifdef CONFIG_CGROUP_SCHED
6437	list_add(&root_task_group.list, &task_groups);
6438	INIT_LIST_HEAD(&root_task_group.children);
6439	INIT_LIST_HEAD(&root_task_group.siblings);
6440	autogroup_init(&init_task);
6441
6442#endif /* CONFIG_CGROUP_SCHED */
6443
6444	for_each_possible_cpu(i) {
6445		struct rq *rq;
6446
6447		rq = cpu_rq(i);
6448		raw_spin_lock_init(&rq->lock);
6449		rq->nr_running = 0;
6450		rq->calc_load_active = 0;
6451		rq->calc_load_update = jiffies + LOAD_FREQ;
6452		init_cfs_rq(&rq->cfs);
6453		init_rt_rq(&rq->rt, rq);
6454#ifdef CONFIG_FAIR_GROUP_SCHED
6455		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6456		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6457		/*
6458		 * How much cpu bandwidth does root_task_group get?
6459		 *
6460		 * In case of task-groups formed thr' the cgroup filesystem, it
6461		 * gets 100% of the cpu resources in the system. This overall
6462		 * system cpu resource is divided among the tasks of
6463		 * root_task_group and its child task-groups in a fair manner,
6464		 * based on each entity's (task or task-group's) weight
6465		 * (se->load.weight).
6466		 *
6467		 * In other words, if root_task_group has 10 tasks of weight
6468		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6469		 * then A0's share of the cpu resource is:
6470		 *
6471		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6472		 *
6473		 * We achieve this by letting root_task_group's tasks sit
6474		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6475		 */
6476		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6477		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6478#endif /* CONFIG_FAIR_GROUP_SCHED */
6479
6480		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6481#ifdef CONFIG_RT_GROUP_SCHED
6482		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6483		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6484#endif
6485
6486		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6487			rq->cpu_load[j] = 0;
6488
6489		rq->last_load_update_tick = jiffies;
6490
6491#ifdef CONFIG_SMP
6492		rq->sd = NULL;
6493		rq->rd = NULL;
6494		rq->cpu_power = SCHED_POWER_SCALE;
6495		rq->post_schedule = 0;
6496		rq->active_balance = 0;
6497		rq->next_balance = jiffies;
6498		rq->push_cpu = 0;
6499		rq->cpu = i;
6500		rq->online = 0;
6501		rq->idle_stamp = 0;
6502		rq->avg_idle = 2*sysctl_sched_migration_cost;
6503		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6504
6505		INIT_LIST_HEAD(&rq->cfs_tasks);
6506
6507		rq_attach_root(rq, &def_root_domain);
6508#ifdef CONFIG_NO_HZ_COMMON
6509		rq->nohz_flags = 0;
6510#endif
6511#ifdef CONFIG_NO_HZ_FULL
6512		rq->last_sched_tick = 0;
6513#endif
6514#endif
6515		init_rq_hrtick(rq);
6516		atomic_set(&rq->nr_iowait, 0);
6517	}
6518
6519	set_load_weight(&init_task);
6520
6521#ifdef CONFIG_PREEMPT_NOTIFIERS
6522	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6523#endif
6524
6525#ifdef CONFIG_RT_MUTEXES
6526	plist_head_init(&init_task.pi_waiters);
6527#endif
6528
6529	/*
6530	 * The boot idle thread does lazy MMU switching as well:
6531	 */
6532	atomic_inc(&init_mm.mm_count);
6533	enter_lazy_tlb(&init_mm, current);
6534
6535	/*
6536	 * Make us the idle thread. Technically, schedule() should not be
6537	 * called from this thread, however somewhere below it might be,
6538	 * but because we are the idle thread, we just pick up running again
6539	 * when this runqueue becomes "idle".
6540	 */
6541	init_idle(current, smp_processor_id());
6542
6543	calc_load_update = jiffies + LOAD_FREQ;
6544
6545	/*
6546	 * During early bootup we pretend to be a normal task:
6547	 */
6548	current->sched_class = &fair_sched_class;
6549
6550#ifdef CONFIG_SMP
6551	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6552	/* May be allocated at isolcpus cmdline parse time */
6553	if (cpu_isolated_map == NULL)
6554		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6555	idle_thread_set_boot_cpu();
6556#endif
6557	init_sched_fair_class();
6558
6559	scheduler_running = 1;
6560}
6561
6562#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6563static inline int preempt_count_equals(int preempt_offset)
6564{
6565	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6566
6567	return (nested == preempt_offset);
6568}
6569
6570void __might_sleep(const char *file, int line, int preempt_offset)
6571{
6572	static unsigned long prev_jiffy;	/* ratelimiting */
6573
6574	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6575	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6576	    system_state != SYSTEM_RUNNING || oops_in_progress)
6577		return;
6578	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6579		return;
6580	prev_jiffy = jiffies;
6581
6582	printk(KERN_ERR
6583		"BUG: sleeping function called from invalid context at %s:%d\n",
6584			file, line);
6585	printk(KERN_ERR
6586		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6587			in_atomic(), irqs_disabled(),
6588			current->pid, current->comm);
6589
6590	debug_show_held_locks(current);
6591	if (irqs_disabled())
6592		print_irqtrace_events(current);
6593	dump_stack();
6594}
6595EXPORT_SYMBOL(__might_sleep);
6596#endif
6597
6598#ifdef CONFIG_MAGIC_SYSRQ
6599static void normalize_task(struct rq *rq, struct task_struct *p)
6600{
6601	const struct sched_class *prev_class = p->sched_class;
6602	int old_prio = p->prio;
6603	int on_rq;
6604
6605	on_rq = p->on_rq;
6606	if (on_rq)
6607		dequeue_task(rq, p, 0);
6608	__setscheduler(rq, p, SCHED_NORMAL, 0);
6609	if (on_rq) {
6610		enqueue_task(rq, p, 0);
6611		resched_task(rq->curr);
6612	}
6613
6614	check_class_changed(rq, p, prev_class, old_prio);
6615}
6616
6617void normalize_rt_tasks(void)
6618{
6619	struct task_struct *g, *p;
6620	unsigned long flags;
6621	struct rq *rq;
6622
6623	read_lock_irqsave(&tasklist_lock, flags);
6624	do_each_thread(g, p) {
6625		/*
6626		 * Only normalize user tasks:
6627		 */
6628		if (!p->mm)
6629			continue;
6630
6631		p->se.exec_start		= 0;
6632#ifdef CONFIG_SCHEDSTATS
6633		p->se.statistics.wait_start	= 0;
6634		p->se.statistics.sleep_start	= 0;
6635		p->se.statistics.block_start	= 0;
6636#endif
6637
6638		if (!rt_task(p)) {
6639			/*
6640			 * Renice negative nice level userspace
6641			 * tasks back to 0:
6642			 */
6643			if (TASK_NICE(p) < 0 && p->mm)
6644				set_user_nice(p, 0);
6645			continue;
6646		}
6647
6648		raw_spin_lock(&p->pi_lock);
6649		rq = __task_rq_lock(p);
6650
6651		normalize_task(rq, p);
6652
6653		__task_rq_unlock(rq);
6654		raw_spin_unlock(&p->pi_lock);
6655	} while_each_thread(g, p);
6656
6657	read_unlock_irqrestore(&tasklist_lock, flags);
6658}
6659
6660#endif /* CONFIG_MAGIC_SYSRQ */
6661
6662#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6663/*
6664 * These functions are only useful for the IA64 MCA handling, or kdb.
6665 *
6666 * They can only be called when the whole system has been
6667 * stopped - every CPU needs to be quiescent, and no scheduling
6668 * activity can take place. Using them for anything else would
6669 * be a serious bug, and as a result, they aren't even visible
6670 * under any other configuration.
6671 */
6672
6673/**
6674 * curr_task - return the current task for a given cpu.
6675 * @cpu: the processor in question.
6676 *
6677 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6678 *
6679 * Return: The current task for @cpu.
6680 */
6681struct task_struct *curr_task(int cpu)
6682{
6683	return cpu_curr(cpu);
6684}
6685
6686#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6687
6688#ifdef CONFIG_IA64
6689/**
6690 * set_curr_task - set the current task for a given cpu.
6691 * @cpu: the processor in question.
6692 * @p: the task pointer to set.
6693 *
6694 * Description: This function must only be used when non-maskable interrupts
6695 * are serviced on a separate stack. It allows the architecture to switch the
6696 * notion of the current task on a cpu in a non-blocking manner. This function
6697 * must be called with all CPU's synchronized, and interrupts disabled, the
6698 * and caller must save the original value of the current task (see
6699 * curr_task() above) and restore that value before reenabling interrupts and
6700 * re-starting the system.
6701 *
6702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 */
6704void set_curr_task(int cpu, struct task_struct *p)
6705{
6706	cpu_curr(cpu) = p;
6707}
6708
6709#endif
6710
6711#ifdef CONFIG_CGROUP_SCHED
6712/* task_group_lock serializes the addition/removal of task groups */
6713static DEFINE_SPINLOCK(task_group_lock);
6714
6715static void free_sched_group(struct task_group *tg)
6716{
6717	free_fair_sched_group(tg);
6718	free_rt_sched_group(tg);
6719	autogroup_free(tg);
6720	kfree(tg);
6721}
6722
6723/* allocate runqueue etc for a new task group */
6724struct task_group *sched_create_group(struct task_group *parent)
6725{
6726	struct task_group *tg;
6727
6728	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6729	if (!tg)
6730		return ERR_PTR(-ENOMEM);
6731
6732	if (!alloc_fair_sched_group(tg, parent))
6733		goto err;
6734
6735	if (!alloc_rt_sched_group(tg, parent))
6736		goto err;
6737
6738	return tg;
6739
6740err:
6741	free_sched_group(tg);
6742	return ERR_PTR(-ENOMEM);
6743}
6744
6745void sched_online_group(struct task_group *tg, struct task_group *parent)
6746{
6747	unsigned long flags;
6748
6749	spin_lock_irqsave(&task_group_lock, flags);
6750	list_add_rcu(&tg->list, &task_groups);
6751
6752	WARN_ON(!parent); /* root should already exist */
6753
6754	tg->parent = parent;
6755	INIT_LIST_HEAD(&tg->children);
6756	list_add_rcu(&tg->siblings, &parent->children);
6757	spin_unlock_irqrestore(&task_group_lock, flags);
6758}
6759
6760/* rcu callback to free various structures associated with a task group */
6761static void free_sched_group_rcu(struct rcu_head *rhp)
6762{
6763	/* now it should be safe to free those cfs_rqs */
6764	free_sched_group(container_of(rhp, struct task_group, rcu));
6765}
6766
6767/* Destroy runqueue etc associated with a task group */
6768void sched_destroy_group(struct task_group *tg)
6769{
6770	/* wait for possible concurrent references to cfs_rqs complete */
6771	call_rcu(&tg->rcu, free_sched_group_rcu);
6772}
6773
6774void sched_offline_group(struct task_group *tg)
6775{
6776	unsigned long flags;
6777	int i;
6778
6779	/* end participation in shares distribution */
6780	for_each_possible_cpu(i)
6781		unregister_fair_sched_group(tg, i);
6782
6783	spin_lock_irqsave(&task_group_lock, flags);
6784	list_del_rcu(&tg->list);
6785	list_del_rcu(&tg->siblings);
6786	spin_unlock_irqrestore(&task_group_lock, flags);
6787}
6788
6789/* change task's runqueue when it moves between groups.
6790 *	The caller of this function should have put the task in its new group
6791 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6792 *	reflect its new group.
6793 */
6794void sched_move_task(struct task_struct *tsk)
6795{
6796	struct task_group *tg;
6797	int on_rq, running;
6798	unsigned long flags;
6799	struct rq *rq;
6800
6801	rq = task_rq_lock(tsk, &flags);
6802
6803	running = task_current(rq, tsk);
6804	on_rq = tsk->on_rq;
6805
6806	if (on_rq)
6807		dequeue_task(rq, tsk, 0);
6808	if (unlikely(running))
6809		tsk->sched_class->put_prev_task(rq, tsk);
6810
6811	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6812				lockdep_is_held(&tsk->sighand->siglock)),
6813			  struct task_group, css);
6814	tg = autogroup_task_group(tsk, tg);
6815	tsk->sched_task_group = tg;
6816
6817#ifdef CONFIG_FAIR_GROUP_SCHED
6818	if (tsk->sched_class->task_move_group)
6819		tsk->sched_class->task_move_group(tsk, on_rq);
6820	else
6821#endif
6822		set_task_rq(tsk, task_cpu(tsk));
6823
6824	if (unlikely(running))
6825		tsk->sched_class->set_curr_task(rq);
6826	if (on_rq)
6827		enqueue_task(rq, tsk, 0);
6828
6829	task_rq_unlock(rq, tsk, &flags);
6830}
6831#endif /* CONFIG_CGROUP_SCHED */
6832
6833#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6834static unsigned long to_ratio(u64 period, u64 runtime)
6835{
6836	if (runtime == RUNTIME_INF)
6837		return 1ULL << 20;
6838
6839	return div64_u64(runtime << 20, period);
6840}
6841#endif
6842
6843#ifdef CONFIG_RT_GROUP_SCHED
6844/*
6845 * Ensure that the real time constraints are schedulable.
6846 */
6847static DEFINE_MUTEX(rt_constraints_mutex);
6848
6849/* Must be called with tasklist_lock held */
6850static inline int tg_has_rt_tasks(struct task_group *tg)
6851{
6852	struct task_struct *g, *p;
6853
6854	do_each_thread(g, p) {
6855		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6856			return 1;
6857	} while_each_thread(g, p);
6858
6859	return 0;
6860}
6861
6862struct rt_schedulable_data {
6863	struct task_group *tg;
6864	u64 rt_period;
6865	u64 rt_runtime;
6866};
6867
6868static int tg_rt_schedulable(struct task_group *tg, void *data)
6869{
6870	struct rt_schedulable_data *d = data;
6871	struct task_group *child;
6872	unsigned long total, sum = 0;
6873	u64 period, runtime;
6874
6875	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6876	runtime = tg->rt_bandwidth.rt_runtime;
6877
6878	if (tg == d->tg) {
6879		period = d->rt_period;
6880		runtime = d->rt_runtime;
6881	}
6882
6883	/*
6884	 * Cannot have more runtime than the period.
6885	 */
6886	if (runtime > period && runtime != RUNTIME_INF)
6887		return -EINVAL;
6888
6889	/*
6890	 * Ensure we don't starve existing RT tasks.
6891	 */
6892	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6893		return -EBUSY;
6894
6895	total = to_ratio(period, runtime);
6896
6897	/*
6898	 * Nobody can have more than the global setting allows.
6899	 */
6900	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6901		return -EINVAL;
6902
6903	/*
6904	 * The sum of our children's runtime should not exceed our own.
6905	 */
6906	list_for_each_entry_rcu(child, &tg->children, siblings) {
6907		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6908		runtime = child->rt_bandwidth.rt_runtime;
6909
6910		if (child == d->tg) {
6911			period = d->rt_period;
6912			runtime = d->rt_runtime;
6913		}
6914
6915		sum += to_ratio(period, runtime);
6916	}
6917
6918	if (sum > total)
6919		return -EINVAL;
6920
6921	return 0;
6922}
6923
6924static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6925{
6926	int ret;
6927
6928	struct rt_schedulable_data data = {
6929		.tg = tg,
6930		.rt_period = period,
6931		.rt_runtime = runtime,
6932	};
6933
6934	rcu_read_lock();
6935	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6936	rcu_read_unlock();
6937
6938	return ret;
6939}
6940
6941static int tg_set_rt_bandwidth(struct task_group *tg,
6942		u64 rt_period, u64 rt_runtime)
6943{
6944	int i, err = 0;
6945
6946	mutex_lock(&rt_constraints_mutex);
6947	read_lock(&tasklist_lock);
6948	err = __rt_schedulable(tg, rt_period, rt_runtime);
6949	if (err)
6950		goto unlock;
6951
6952	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6953	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6954	tg->rt_bandwidth.rt_runtime = rt_runtime;
6955
6956	for_each_possible_cpu(i) {
6957		struct rt_rq *rt_rq = tg->rt_rq[i];
6958
6959		raw_spin_lock(&rt_rq->rt_runtime_lock);
6960		rt_rq->rt_runtime = rt_runtime;
6961		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6962	}
6963	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6964unlock:
6965	read_unlock(&tasklist_lock);
6966	mutex_unlock(&rt_constraints_mutex);
6967
6968	return err;
6969}
6970
6971static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6972{
6973	u64 rt_runtime, rt_period;
6974
6975	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6976	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6977	if (rt_runtime_us < 0)
6978		rt_runtime = RUNTIME_INF;
6979
6980	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6981}
6982
6983static long sched_group_rt_runtime(struct task_group *tg)
6984{
6985	u64 rt_runtime_us;
6986
6987	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6988		return -1;
6989
6990	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6991	do_div(rt_runtime_us, NSEC_PER_USEC);
6992	return rt_runtime_us;
6993}
6994
6995static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6996{
6997	u64 rt_runtime, rt_period;
6998
6999	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7000	rt_runtime = tg->rt_bandwidth.rt_runtime;
7001
7002	if (rt_period == 0)
7003		return -EINVAL;
7004
7005	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7006}
7007
7008static long sched_group_rt_period(struct task_group *tg)
7009{
7010	u64 rt_period_us;
7011
7012	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7013	do_div(rt_period_us, NSEC_PER_USEC);
7014	return rt_period_us;
7015}
7016
7017static int sched_rt_global_constraints(void)
7018{
7019	u64 runtime, period;
7020	int ret = 0;
7021
7022	if (sysctl_sched_rt_period <= 0)
7023		return -EINVAL;
7024
7025	runtime = global_rt_runtime();
7026	period = global_rt_period();
7027
7028	/*
7029	 * Sanity check on the sysctl variables.
7030	 */
7031	if (runtime > period && runtime != RUNTIME_INF)
7032		return -EINVAL;
7033
7034	mutex_lock(&rt_constraints_mutex);
7035	read_lock(&tasklist_lock);
7036	ret = __rt_schedulable(NULL, 0, 0);
7037	read_unlock(&tasklist_lock);
7038	mutex_unlock(&rt_constraints_mutex);
7039
7040	return ret;
7041}
7042
7043static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7044{
7045	/* Don't accept realtime tasks when there is no way for them to run */
7046	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7047		return 0;
7048
7049	return 1;
7050}
7051
7052#else /* !CONFIG_RT_GROUP_SCHED */
7053static int sched_rt_global_constraints(void)
7054{
7055	unsigned long flags;
7056	int i;
7057
7058	if (sysctl_sched_rt_period <= 0)
7059		return -EINVAL;
7060
7061	/*
7062	 * There's always some RT tasks in the root group
7063	 * -- migration, kstopmachine etc..
7064	 */
7065	if (sysctl_sched_rt_runtime == 0)
7066		return -EBUSY;
7067
7068	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7069	for_each_possible_cpu(i) {
7070		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7071
7072		raw_spin_lock(&rt_rq->rt_runtime_lock);
7073		rt_rq->rt_runtime = global_rt_runtime();
7074		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7075	}
7076	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7077
7078	return 0;
7079}
7080#endif /* CONFIG_RT_GROUP_SCHED */
7081
7082int sched_rr_handler(struct ctl_table *table, int write,
7083		void __user *buffer, size_t *lenp,
7084		loff_t *ppos)
7085{
7086	int ret;
7087	static DEFINE_MUTEX(mutex);
7088
7089	mutex_lock(&mutex);
7090	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7091	/* make sure that internally we keep jiffies */
7092	/* also, writing zero resets timeslice to default */
7093	if (!ret && write) {
7094		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7095			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7096	}
7097	mutex_unlock(&mutex);
7098	return ret;
7099}
7100
7101int sched_rt_handler(struct ctl_table *table, int write,
7102		void __user *buffer, size_t *lenp,
7103		loff_t *ppos)
7104{
7105	int ret;
7106	int old_period, old_runtime;
7107	static DEFINE_MUTEX(mutex);
7108
7109	mutex_lock(&mutex);
7110	old_period = sysctl_sched_rt_period;
7111	old_runtime = sysctl_sched_rt_runtime;
7112
7113	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7114
7115	if (!ret && write) {
7116		ret = sched_rt_global_constraints();
7117		if (ret) {
7118			sysctl_sched_rt_period = old_period;
7119			sysctl_sched_rt_runtime = old_runtime;
7120		} else {
7121			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7122			def_rt_bandwidth.rt_period =
7123				ns_to_ktime(global_rt_period());
7124		}
7125	}
7126	mutex_unlock(&mutex);
7127
7128	return ret;
7129}
7130
7131#ifdef CONFIG_CGROUP_SCHED
7132
7133static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7134{
7135	return css ? container_of(css, struct task_group, css) : NULL;
7136}
7137
7138static struct cgroup_subsys_state *
7139cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7140{
7141	struct task_group *parent = css_tg(parent_css);
7142	struct task_group *tg;
7143
7144	if (!parent) {
7145		/* This is early initialization for the top cgroup */
7146		return &root_task_group.css;
7147	}
7148
7149	tg = sched_create_group(parent);
7150	if (IS_ERR(tg))
7151		return ERR_PTR(-ENOMEM);
7152
7153	return &tg->css;
7154}
7155
7156static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7157{
7158	struct task_group *tg = css_tg(css);
7159	struct task_group *parent = css_tg(css_parent(css));
7160
7161	if (parent)
7162		sched_online_group(tg, parent);
7163	return 0;
7164}
7165
7166static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7167{
7168	struct task_group *tg = css_tg(css);
7169
7170	sched_destroy_group(tg);
7171}
7172
7173static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7174{
7175	struct task_group *tg = css_tg(css);
7176
7177	sched_offline_group(tg);
7178}
7179
7180static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7181				 struct cgroup_taskset *tset)
7182{
7183	struct task_struct *task;
7184
7185	cgroup_taskset_for_each(task, css, tset) {
7186#ifdef CONFIG_RT_GROUP_SCHED
7187		if (!sched_rt_can_attach(css_tg(css), task))
7188			return -EINVAL;
7189#else
7190		/* We don't support RT-tasks being in separate groups */
7191		if (task->sched_class != &fair_sched_class)
7192			return -EINVAL;
7193#endif
7194	}
7195	return 0;
7196}
7197
7198static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7199			      struct cgroup_taskset *tset)
7200{
7201	struct task_struct *task;
7202
7203	cgroup_taskset_for_each(task, css, tset)
7204		sched_move_task(task);
7205}
7206
7207static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7208			    struct cgroup_subsys_state *old_css,
7209			    struct task_struct *task)
7210{
7211	/*
7212	 * cgroup_exit() is called in the copy_process() failure path.
7213	 * Ignore this case since the task hasn't ran yet, this avoids
7214	 * trying to poke a half freed task state from generic code.
7215	 */
7216	if (!(task->flags & PF_EXITING))
7217		return;
7218
7219	sched_move_task(task);
7220}
7221
7222#ifdef CONFIG_FAIR_GROUP_SCHED
7223static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7224				struct cftype *cftype, u64 shareval)
7225{
7226	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7227}
7228
7229static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7230			       struct cftype *cft)
7231{
7232	struct task_group *tg = css_tg(css);
7233
7234	return (u64) scale_load_down(tg->shares);
7235}
7236
7237#ifdef CONFIG_CFS_BANDWIDTH
7238static DEFINE_MUTEX(cfs_constraints_mutex);
7239
7240const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7241const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7242
7243static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7244
7245static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7246{
7247	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7248	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7249
7250	if (tg == &root_task_group)
7251		return -EINVAL;
7252
7253	/*
7254	 * Ensure we have at some amount of bandwidth every period.  This is
7255	 * to prevent reaching a state of large arrears when throttled via
7256	 * entity_tick() resulting in prolonged exit starvation.
7257	 */
7258	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7259		return -EINVAL;
7260
7261	/*
7262	 * Likewise, bound things on the otherside by preventing insane quota
7263	 * periods.  This also allows us to normalize in computing quota
7264	 * feasibility.
7265	 */
7266	if (period > max_cfs_quota_period)
7267		return -EINVAL;
7268
7269	mutex_lock(&cfs_constraints_mutex);
7270	ret = __cfs_schedulable(tg, period, quota);
7271	if (ret)
7272		goto out_unlock;
7273
7274	runtime_enabled = quota != RUNTIME_INF;
7275	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7276	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7277	raw_spin_lock_irq(&cfs_b->lock);
7278	cfs_b->period = ns_to_ktime(period);
7279	cfs_b->quota = quota;
7280
7281	__refill_cfs_bandwidth_runtime(cfs_b);
7282	/* restart the period timer (if active) to handle new period expiry */
7283	if (runtime_enabled && cfs_b->timer_active) {
7284		/* force a reprogram */
7285		cfs_b->timer_active = 0;
7286		__start_cfs_bandwidth(cfs_b);
7287	}
7288	raw_spin_unlock_irq(&cfs_b->lock);
7289
7290	for_each_possible_cpu(i) {
7291		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7292		struct rq *rq = cfs_rq->rq;
7293
7294		raw_spin_lock_irq(&rq->lock);
7295		cfs_rq->runtime_enabled = runtime_enabled;
7296		cfs_rq->runtime_remaining = 0;
7297
7298		if (cfs_rq->throttled)
7299			unthrottle_cfs_rq(cfs_rq);
7300		raw_spin_unlock_irq(&rq->lock);
7301	}
7302out_unlock:
7303	mutex_unlock(&cfs_constraints_mutex);
7304
7305	return ret;
7306}
7307
7308int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7309{
7310	u64 quota, period;
7311
7312	period = ktime_to_ns(tg->cfs_bandwidth.period);
7313	if (cfs_quota_us < 0)
7314		quota = RUNTIME_INF;
7315	else
7316		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7317
7318	return tg_set_cfs_bandwidth(tg, period, quota);
7319}
7320
7321long tg_get_cfs_quota(struct task_group *tg)
7322{
7323	u64 quota_us;
7324
7325	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7326		return -1;
7327
7328	quota_us = tg->cfs_bandwidth.quota;
7329	do_div(quota_us, NSEC_PER_USEC);
7330
7331	return quota_us;
7332}
7333
7334int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7335{
7336	u64 quota, period;
7337
7338	period = (u64)cfs_period_us * NSEC_PER_USEC;
7339	quota = tg->cfs_bandwidth.quota;
7340
7341	return tg_set_cfs_bandwidth(tg, period, quota);
7342}
7343
7344long tg_get_cfs_period(struct task_group *tg)
7345{
7346	u64 cfs_period_us;
7347
7348	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7349	do_div(cfs_period_us, NSEC_PER_USEC);
7350
7351	return cfs_period_us;
7352}
7353
7354static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7355				  struct cftype *cft)
7356{
7357	return tg_get_cfs_quota(css_tg(css));
7358}
7359
7360static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7361				   struct cftype *cftype, s64 cfs_quota_us)
7362{
7363	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7364}
7365
7366static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7367				   struct cftype *cft)
7368{
7369	return tg_get_cfs_period(css_tg(css));
7370}
7371
7372static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7373				    struct cftype *cftype, u64 cfs_period_us)
7374{
7375	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7376}
7377
7378struct cfs_schedulable_data {
7379	struct task_group *tg;
7380	u64 period, quota;
7381};
7382
7383/*
7384 * normalize group quota/period to be quota/max_period
7385 * note: units are usecs
7386 */
7387static u64 normalize_cfs_quota(struct task_group *tg,
7388			       struct cfs_schedulable_data *d)
7389{
7390	u64 quota, period;
7391
7392	if (tg == d->tg) {
7393		period = d->period;
7394		quota = d->quota;
7395	} else {
7396		period = tg_get_cfs_period(tg);
7397		quota = tg_get_cfs_quota(tg);
7398	}
7399
7400	/* note: these should typically be equivalent */
7401	if (quota == RUNTIME_INF || quota == -1)
7402		return RUNTIME_INF;
7403
7404	return to_ratio(period, quota);
7405}
7406
7407static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7408{
7409	struct cfs_schedulable_data *d = data;
7410	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7411	s64 quota = 0, parent_quota = -1;
7412
7413	if (!tg->parent) {
7414		quota = RUNTIME_INF;
7415	} else {
7416		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7417
7418		quota = normalize_cfs_quota(tg, d);
7419		parent_quota = parent_b->hierarchal_quota;
7420
7421		/*
7422		 * ensure max(child_quota) <= parent_quota, inherit when no
7423		 * limit is set
7424		 */
7425		if (quota == RUNTIME_INF)
7426			quota = parent_quota;
7427		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7428			return -EINVAL;
7429	}
7430	cfs_b->hierarchal_quota = quota;
7431
7432	return 0;
7433}
7434
7435static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7436{
7437	int ret;
7438	struct cfs_schedulable_data data = {
7439		.tg = tg,
7440		.period = period,
7441		.quota = quota,
7442	};
7443
7444	if (quota != RUNTIME_INF) {
7445		do_div(data.period, NSEC_PER_USEC);
7446		do_div(data.quota, NSEC_PER_USEC);
7447	}
7448
7449	rcu_read_lock();
7450	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7451	rcu_read_unlock();
7452
7453	return ret;
7454}
7455
7456static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7457		struct cgroup_map_cb *cb)
7458{
7459	struct task_group *tg = css_tg(css);
7460	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7461
7462	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7463	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7464	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7465
7466	return 0;
7467}
7468#endif /* CONFIG_CFS_BANDWIDTH */
7469#endif /* CONFIG_FAIR_GROUP_SCHED */
7470
7471#ifdef CONFIG_RT_GROUP_SCHED
7472static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7473				struct cftype *cft, s64 val)
7474{
7475	return sched_group_set_rt_runtime(css_tg(css), val);
7476}
7477
7478static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7479			       struct cftype *cft)
7480{
7481	return sched_group_rt_runtime(css_tg(css));
7482}
7483
7484static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7485				    struct cftype *cftype, u64 rt_period_us)
7486{
7487	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7488}
7489
7490static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7491				   struct cftype *cft)
7492{
7493	return sched_group_rt_period(css_tg(css));
7494}
7495#endif /* CONFIG_RT_GROUP_SCHED */
7496
7497static struct cftype cpu_files[] = {
7498#ifdef CONFIG_FAIR_GROUP_SCHED
7499	{
7500		.name = "shares",
7501		.read_u64 = cpu_shares_read_u64,
7502		.write_u64 = cpu_shares_write_u64,
7503	},
7504#endif
7505#ifdef CONFIG_CFS_BANDWIDTH
7506	{
7507		.name = "cfs_quota_us",
7508		.read_s64 = cpu_cfs_quota_read_s64,
7509		.write_s64 = cpu_cfs_quota_write_s64,
7510	},
7511	{
7512		.name = "cfs_period_us",
7513		.read_u64 = cpu_cfs_period_read_u64,
7514		.write_u64 = cpu_cfs_period_write_u64,
7515	},
7516	{
7517		.name = "stat",
7518		.read_map = cpu_stats_show,
7519	},
7520#endif
7521#ifdef CONFIG_RT_GROUP_SCHED
7522	{
7523		.name = "rt_runtime_us",
7524		.read_s64 = cpu_rt_runtime_read,
7525		.write_s64 = cpu_rt_runtime_write,
7526	},
7527	{
7528		.name = "rt_period_us",
7529		.read_u64 = cpu_rt_period_read_uint,
7530		.write_u64 = cpu_rt_period_write_uint,
7531	},
7532#endif
7533	{ }	/* terminate */
7534};
7535
7536struct cgroup_subsys cpu_cgroup_subsys = {
7537	.name		= "cpu",
7538	.css_alloc	= cpu_cgroup_css_alloc,
7539	.css_free	= cpu_cgroup_css_free,
7540	.css_online	= cpu_cgroup_css_online,
7541	.css_offline	= cpu_cgroup_css_offline,
7542	.can_attach	= cpu_cgroup_can_attach,
7543	.attach		= cpu_cgroup_attach,
7544	.exit		= cpu_cgroup_exit,
7545	.subsys_id	= cpu_cgroup_subsys_id,
7546	.base_cftypes	= cpu_files,
7547	.early_init	= 1,
7548};
7549
7550#endif	/* CONFIG_CGROUP_SCHED */
7551
7552void dump_cpu_task(int cpu)
7553{
7554	pr_info("Task dump for CPU %d:\n", cpu);
7555	sched_show_task(cpu_curr(cpu));
7556}
7557