core.c revision 4a81e8328d3791a4f99bf5b436d050f6dc5ffea3
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	rq->clock += delta;
143	update_rq_clock_task(rq, delta);
144}
145
146/*
147 * Debugging: various feature bits
148 */
149
150#define SCHED_FEAT(name, enabled)	\
151	(1UL << __SCHED_FEAT_##name) * enabled |
152
153const_debug unsigned int sysctl_sched_features =
154#include "features.h"
155	0;
156
157#undef SCHED_FEAT
158
159#ifdef CONFIG_SCHED_DEBUG
160#define SCHED_FEAT(name, enabled)	\
161	#name ,
162
163static const char * const sched_feat_names[] = {
164#include "features.h"
165};
166
167#undef SCHED_FEAT
168
169static int sched_feat_show(struct seq_file *m, void *v)
170{
171	int i;
172
173	for (i = 0; i < __SCHED_FEAT_NR; i++) {
174		if (!(sysctl_sched_features & (1UL << i)))
175			seq_puts(m, "NO_");
176		seq_printf(m, "%s ", sched_feat_names[i]);
177	}
178	seq_puts(m, "\n");
179
180	return 0;
181}
182
183#ifdef HAVE_JUMP_LABEL
184
185#define jump_label_key__true  STATIC_KEY_INIT_TRUE
186#define jump_label_key__false STATIC_KEY_INIT_FALSE
187
188#define SCHED_FEAT(name, enabled)	\
189	jump_label_key__##enabled ,
190
191struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192#include "features.h"
193};
194
195#undef SCHED_FEAT
196
197static void sched_feat_disable(int i)
198{
199	if (static_key_enabled(&sched_feat_keys[i]))
200		static_key_slow_dec(&sched_feat_keys[i]);
201}
202
203static void sched_feat_enable(int i)
204{
205	if (!static_key_enabled(&sched_feat_keys[i]))
206		static_key_slow_inc(&sched_feat_keys[i]);
207}
208#else
209static void sched_feat_disable(int i) { };
210static void sched_feat_enable(int i) { };
211#endif /* HAVE_JUMP_LABEL */
212
213static int sched_feat_set(char *cmp)
214{
215	int i;
216	int neg = 0;
217
218	if (strncmp(cmp, "NO_", 3) == 0) {
219		neg = 1;
220		cmp += 3;
221	}
222
223	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225			if (neg) {
226				sysctl_sched_features &= ~(1UL << i);
227				sched_feat_disable(i);
228			} else {
229				sysctl_sched_features |= (1UL << i);
230				sched_feat_enable(i);
231			}
232			break;
233		}
234	}
235
236	return i;
237}
238
239static ssize_t
240sched_feat_write(struct file *filp, const char __user *ubuf,
241		size_t cnt, loff_t *ppos)
242{
243	char buf[64];
244	char *cmp;
245	int i;
246
247	if (cnt > 63)
248		cnt = 63;
249
250	if (copy_from_user(&buf, ubuf, cnt))
251		return -EFAULT;
252
253	buf[cnt] = 0;
254	cmp = strstrip(buf);
255
256	i = sched_feat_set(cmp);
257	if (i == __SCHED_FEAT_NR)
258		return -EINVAL;
259
260	*ppos += cnt;
261
262	return cnt;
263}
264
265static int sched_feat_open(struct inode *inode, struct file *filp)
266{
267	return single_open(filp, sched_feat_show, NULL);
268}
269
270static const struct file_operations sched_feat_fops = {
271	.open		= sched_feat_open,
272	.write		= sched_feat_write,
273	.read		= seq_read,
274	.llseek		= seq_lseek,
275	.release	= single_release,
276};
277
278static __init int sched_init_debug(void)
279{
280	debugfs_create_file("sched_features", 0644, NULL, NULL,
281			&sched_feat_fops);
282
283	return 0;
284}
285late_initcall(sched_init_debug);
286#endif /* CONFIG_SCHED_DEBUG */
287
288/*
289 * Number of tasks to iterate in a single balance run.
290 * Limited because this is done with IRQs disabled.
291 */
292const_debug unsigned int sysctl_sched_nr_migrate = 32;
293
294/*
295 * period over which we average the RT time consumption, measured
296 * in ms.
297 *
298 * default: 1s
299 */
300const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
301
302/*
303 * period over which we measure -rt task cpu usage in us.
304 * default: 1s
305 */
306unsigned int sysctl_sched_rt_period = 1000000;
307
308__read_mostly int scheduler_running;
309
310/*
311 * part of the period that we allow rt tasks to run in us.
312 * default: 0.95s
313 */
314int sysctl_sched_rt_runtime = 950000;
315
316/*
317 * __task_rq_lock - lock the rq @p resides on.
318 */
319static inline struct rq *__task_rq_lock(struct task_struct *p)
320	__acquires(rq->lock)
321{
322	struct rq *rq;
323
324	lockdep_assert_held(&p->pi_lock);
325
326	for (;;) {
327		rq = task_rq(p);
328		raw_spin_lock(&rq->lock);
329		if (likely(rq == task_rq(p)))
330			return rq;
331		raw_spin_unlock(&rq->lock);
332	}
333}
334
335/*
336 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
337 */
338static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339	__acquires(p->pi_lock)
340	__acquires(rq->lock)
341{
342	struct rq *rq;
343
344	for (;;) {
345		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346		rq = task_rq(p);
347		raw_spin_lock(&rq->lock);
348		if (likely(rq == task_rq(p)))
349			return rq;
350		raw_spin_unlock(&rq->lock);
351		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352	}
353}
354
355static void __task_rq_unlock(struct rq *rq)
356	__releases(rq->lock)
357{
358	raw_spin_unlock(&rq->lock);
359}
360
361static inline void
362task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
363	__releases(rq->lock)
364	__releases(p->pi_lock)
365{
366	raw_spin_unlock(&rq->lock);
367	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
368}
369
370/*
371 * this_rq_lock - lock this runqueue and disable interrupts.
372 */
373static struct rq *this_rq_lock(void)
374	__acquires(rq->lock)
375{
376	struct rq *rq;
377
378	local_irq_disable();
379	rq = this_rq();
380	raw_spin_lock(&rq->lock);
381
382	return rq;
383}
384
385#ifdef CONFIG_SCHED_HRTICK
386/*
387 * Use HR-timers to deliver accurate preemption points.
388 */
389
390static void hrtick_clear(struct rq *rq)
391{
392	if (hrtimer_active(&rq->hrtick_timer))
393		hrtimer_cancel(&rq->hrtick_timer);
394}
395
396/*
397 * High-resolution timer tick.
398 * Runs from hardirq context with interrupts disabled.
399 */
400static enum hrtimer_restart hrtick(struct hrtimer *timer)
401{
402	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
403
404	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
405
406	raw_spin_lock(&rq->lock);
407	update_rq_clock(rq);
408	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409	raw_spin_unlock(&rq->lock);
410
411	return HRTIMER_NORESTART;
412}
413
414#ifdef CONFIG_SMP
415
416static int __hrtick_restart(struct rq *rq)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = hrtimer_get_softexpires(timer);
420
421	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
422}
423
424/*
425 * called from hardirq (IPI) context
426 */
427static void __hrtick_start(void *arg)
428{
429	struct rq *rq = arg;
430
431	raw_spin_lock(&rq->lock);
432	__hrtick_restart(rq);
433	rq->hrtick_csd_pending = 0;
434	raw_spin_unlock(&rq->lock);
435}
436
437/*
438 * Called to set the hrtick timer state.
439 *
440 * called with rq->lock held and irqs disabled
441 */
442void hrtick_start(struct rq *rq, u64 delay)
443{
444	struct hrtimer *timer = &rq->hrtick_timer;
445	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446
447	hrtimer_set_expires(timer, time);
448
449	if (rq == this_rq()) {
450		__hrtick_restart(rq);
451	} else if (!rq->hrtick_csd_pending) {
452		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453		rq->hrtick_csd_pending = 1;
454	}
455}
456
457static int
458hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
459{
460	int cpu = (int)(long)hcpu;
461
462	switch (action) {
463	case CPU_UP_CANCELED:
464	case CPU_UP_CANCELED_FROZEN:
465	case CPU_DOWN_PREPARE:
466	case CPU_DOWN_PREPARE_FROZEN:
467	case CPU_DEAD:
468	case CPU_DEAD_FROZEN:
469		hrtick_clear(cpu_rq(cpu));
470		return NOTIFY_OK;
471	}
472
473	return NOTIFY_DONE;
474}
475
476static __init void init_hrtick(void)
477{
478	hotcpu_notifier(hotplug_hrtick, 0);
479}
480#else
481/*
482 * Called to set the hrtick timer state.
483 *
484 * called with rq->lock held and irqs disabled
485 */
486void hrtick_start(struct rq *rq, u64 delay)
487{
488	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489			HRTIMER_MODE_REL_PINNED, 0);
490}
491
492static inline void init_hrtick(void)
493{
494}
495#endif /* CONFIG_SMP */
496
497static void init_rq_hrtick(struct rq *rq)
498{
499#ifdef CONFIG_SMP
500	rq->hrtick_csd_pending = 0;
501
502	rq->hrtick_csd.flags = 0;
503	rq->hrtick_csd.func = __hrtick_start;
504	rq->hrtick_csd.info = rq;
505#endif
506
507	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
508	rq->hrtick_timer.function = hrtick;
509}
510#else	/* CONFIG_SCHED_HRTICK */
511static inline void hrtick_clear(struct rq *rq)
512{
513}
514
515static inline void init_rq_hrtick(struct rq *rq)
516{
517}
518
519static inline void init_hrtick(void)
520{
521}
522#endif	/* CONFIG_SCHED_HRTICK */
523
524/*
525 * cmpxchg based fetch_or, macro so it works for different integer types
526 */
527#define fetch_or(ptr, val)						\
528({	typeof(*(ptr)) __old, __val = *(ptr);				\
529 	for (;;) {							\
530 		__old = cmpxchg((ptr), __val, __val | (val));		\
531 		if (__old == __val)					\
532 			break;						\
533 		__val = __old;						\
534 	}								\
535 	__old;								\
536})
537
538#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539/*
540 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
541 * this avoids any races wrt polling state changes and thereby avoids
542 * spurious IPIs.
543 */
544static bool set_nr_and_not_polling(struct task_struct *p)
545{
546	struct thread_info *ti = task_thread_info(p);
547	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
548}
549
550/*
551 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
552 *
553 * If this returns true, then the idle task promises to call
554 * sched_ttwu_pending() and reschedule soon.
555 */
556static bool set_nr_if_polling(struct task_struct *p)
557{
558	struct thread_info *ti = task_thread_info(p);
559	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
560
561	for (;;) {
562		if (!(val & _TIF_POLLING_NRFLAG))
563			return false;
564		if (val & _TIF_NEED_RESCHED)
565			return true;
566		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
567		if (old == val)
568			break;
569		val = old;
570	}
571	return true;
572}
573
574#else
575static bool set_nr_and_not_polling(struct task_struct *p)
576{
577	set_tsk_need_resched(p);
578	return true;
579}
580
581#ifdef CONFIG_SMP
582static bool set_nr_if_polling(struct task_struct *p)
583{
584	return false;
585}
586#endif
587#endif
588
589/*
590 * resched_task - mark a task 'to be rescheduled now'.
591 *
592 * On UP this means the setting of the need_resched flag, on SMP it
593 * might also involve a cross-CPU call to trigger the scheduler on
594 * the target CPU.
595 */
596void resched_task(struct task_struct *p)
597{
598	int cpu;
599
600	lockdep_assert_held(&task_rq(p)->lock);
601
602	if (test_tsk_need_resched(p))
603		return;
604
605	cpu = task_cpu(p);
606
607	if (cpu == smp_processor_id()) {
608		set_tsk_need_resched(p);
609		set_preempt_need_resched();
610		return;
611	}
612
613	if (set_nr_and_not_polling(p))
614		smp_send_reschedule(cpu);
615	else
616		trace_sched_wake_idle_without_ipi(cpu);
617}
618
619void resched_cpu(int cpu)
620{
621	struct rq *rq = cpu_rq(cpu);
622	unsigned long flags;
623
624	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
625		return;
626	resched_task(cpu_curr(cpu));
627	raw_spin_unlock_irqrestore(&rq->lock, flags);
628}
629
630#ifdef CONFIG_SMP
631#ifdef CONFIG_NO_HZ_COMMON
632/*
633 * In the semi idle case, use the nearest busy cpu for migrating timers
634 * from an idle cpu.  This is good for power-savings.
635 *
636 * We don't do similar optimization for completely idle system, as
637 * selecting an idle cpu will add more delays to the timers than intended
638 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
639 */
640int get_nohz_timer_target(int pinned)
641{
642	int cpu = smp_processor_id();
643	int i;
644	struct sched_domain *sd;
645
646	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
647		return cpu;
648
649	rcu_read_lock();
650	for_each_domain(cpu, sd) {
651		for_each_cpu(i, sched_domain_span(sd)) {
652			if (!idle_cpu(i)) {
653				cpu = i;
654				goto unlock;
655			}
656		}
657	}
658unlock:
659	rcu_read_unlock();
660	return cpu;
661}
662/*
663 * When add_timer_on() enqueues a timer into the timer wheel of an
664 * idle CPU then this timer might expire before the next timer event
665 * which is scheduled to wake up that CPU. In case of a completely
666 * idle system the next event might even be infinite time into the
667 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
668 * leaves the inner idle loop so the newly added timer is taken into
669 * account when the CPU goes back to idle and evaluates the timer
670 * wheel for the next timer event.
671 */
672static void wake_up_idle_cpu(int cpu)
673{
674	struct rq *rq = cpu_rq(cpu);
675
676	if (cpu == smp_processor_id())
677		return;
678
679	if (set_nr_and_not_polling(rq->idle))
680		smp_send_reschedule(cpu);
681	else
682		trace_sched_wake_idle_without_ipi(cpu);
683}
684
685static bool wake_up_full_nohz_cpu(int cpu)
686{
687	if (tick_nohz_full_cpu(cpu)) {
688		if (cpu != smp_processor_id() ||
689		    tick_nohz_tick_stopped())
690			smp_send_reschedule(cpu);
691		return true;
692	}
693
694	return false;
695}
696
697void wake_up_nohz_cpu(int cpu)
698{
699	if (!wake_up_full_nohz_cpu(cpu))
700		wake_up_idle_cpu(cpu);
701}
702
703static inline bool got_nohz_idle_kick(void)
704{
705	int cpu = smp_processor_id();
706
707	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
708		return false;
709
710	if (idle_cpu(cpu) && !need_resched())
711		return true;
712
713	/*
714	 * We can't run Idle Load Balance on this CPU for this time so we
715	 * cancel it and clear NOHZ_BALANCE_KICK
716	 */
717	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
718	return false;
719}
720
721#else /* CONFIG_NO_HZ_COMMON */
722
723static inline bool got_nohz_idle_kick(void)
724{
725	return false;
726}
727
728#endif /* CONFIG_NO_HZ_COMMON */
729
730#ifdef CONFIG_NO_HZ_FULL
731bool sched_can_stop_tick(void)
732{
733       struct rq *rq;
734
735       rq = this_rq();
736
737       /* Make sure rq->nr_running update is visible after the IPI */
738       smp_rmb();
739
740       /* More than one running task need preemption */
741       if (rq->nr_running > 1)
742               return false;
743
744       return true;
745}
746#endif /* CONFIG_NO_HZ_FULL */
747
748void sched_avg_update(struct rq *rq)
749{
750	s64 period = sched_avg_period();
751
752	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753		/*
754		 * Inline assembly required to prevent the compiler
755		 * optimising this loop into a divmod call.
756		 * See __iter_div_u64_rem() for another example of this.
757		 */
758		asm("" : "+rm" (rq->age_stamp));
759		rq->age_stamp += period;
760		rq->rt_avg /= 2;
761	}
762}
763
764#endif /* CONFIG_SMP */
765
766#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
767			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768/*
769 * Iterate task_group tree rooted at *from, calling @down when first entering a
770 * node and @up when leaving it for the final time.
771 *
772 * Caller must hold rcu_lock or sufficient equivalent.
773 */
774int walk_tg_tree_from(struct task_group *from,
775			     tg_visitor down, tg_visitor up, void *data)
776{
777	struct task_group *parent, *child;
778	int ret;
779
780	parent = from;
781
782down:
783	ret = (*down)(parent, data);
784	if (ret)
785		goto out;
786	list_for_each_entry_rcu(child, &parent->children, siblings) {
787		parent = child;
788		goto down;
789
790up:
791		continue;
792	}
793	ret = (*up)(parent, data);
794	if (ret || parent == from)
795		goto out;
796
797	child = parent;
798	parent = parent->parent;
799	if (parent)
800		goto up;
801out:
802	return ret;
803}
804
805int tg_nop(struct task_group *tg, void *data)
806{
807	return 0;
808}
809#endif
810
811static void set_load_weight(struct task_struct *p)
812{
813	int prio = p->static_prio - MAX_RT_PRIO;
814	struct load_weight *load = &p->se.load;
815
816	/*
817	 * SCHED_IDLE tasks get minimal weight:
818	 */
819	if (p->policy == SCHED_IDLE) {
820		load->weight = scale_load(WEIGHT_IDLEPRIO);
821		load->inv_weight = WMULT_IDLEPRIO;
822		return;
823	}
824
825	load->weight = scale_load(prio_to_weight[prio]);
826	load->inv_weight = prio_to_wmult[prio];
827}
828
829static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830{
831	update_rq_clock(rq);
832	sched_info_queued(rq, p);
833	p->sched_class->enqueue_task(rq, p, flags);
834}
835
836static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837{
838	update_rq_clock(rq);
839	sched_info_dequeued(rq, p);
840	p->sched_class->dequeue_task(rq, p, flags);
841}
842
843void activate_task(struct rq *rq, struct task_struct *p, int flags)
844{
845	if (task_contributes_to_load(p))
846		rq->nr_uninterruptible--;
847
848	enqueue_task(rq, p, flags);
849}
850
851void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852{
853	if (task_contributes_to_load(p))
854		rq->nr_uninterruptible++;
855
856	dequeue_task(rq, p, flags);
857}
858
859static void update_rq_clock_task(struct rq *rq, s64 delta)
860{
861/*
862 * In theory, the compile should just see 0 here, and optimize out the call
863 * to sched_rt_avg_update. But I don't trust it...
864 */
865#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
866	s64 steal = 0, irq_delta = 0;
867#endif
868#ifdef CONFIG_IRQ_TIME_ACCOUNTING
869	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870
871	/*
872	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
873	 * this case when a previous update_rq_clock() happened inside a
874	 * {soft,}irq region.
875	 *
876	 * When this happens, we stop ->clock_task and only update the
877	 * prev_irq_time stamp to account for the part that fit, so that a next
878	 * update will consume the rest. This ensures ->clock_task is
879	 * monotonic.
880	 *
881	 * It does however cause some slight miss-attribution of {soft,}irq
882	 * time, a more accurate solution would be to update the irq_time using
883	 * the current rq->clock timestamp, except that would require using
884	 * atomic ops.
885	 */
886	if (irq_delta > delta)
887		irq_delta = delta;
888
889	rq->prev_irq_time += irq_delta;
890	delta -= irq_delta;
891#endif
892#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893	if (static_key_false((&paravirt_steal_rq_enabled))) {
894		steal = paravirt_steal_clock(cpu_of(rq));
895		steal -= rq->prev_steal_time_rq;
896
897		if (unlikely(steal > delta))
898			steal = delta;
899
900		rq->prev_steal_time_rq += steal;
901		delta -= steal;
902	}
903#endif
904
905	rq->clock_task += delta;
906
907#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909		sched_rt_avg_update(rq, irq_delta + steal);
910#endif
911}
912
913void sched_set_stop_task(int cpu, struct task_struct *stop)
914{
915	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
916	struct task_struct *old_stop = cpu_rq(cpu)->stop;
917
918	if (stop) {
919		/*
920		 * Make it appear like a SCHED_FIFO task, its something
921		 * userspace knows about and won't get confused about.
922		 *
923		 * Also, it will make PI more or less work without too
924		 * much confusion -- but then, stop work should not
925		 * rely on PI working anyway.
926		 */
927		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
928
929		stop->sched_class = &stop_sched_class;
930	}
931
932	cpu_rq(cpu)->stop = stop;
933
934	if (old_stop) {
935		/*
936		 * Reset it back to a normal scheduling class so that
937		 * it can die in pieces.
938		 */
939		old_stop->sched_class = &rt_sched_class;
940	}
941}
942
943/*
944 * __normal_prio - return the priority that is based on the static prio
945 */
946static inline int __normal_prio(struct task_struct *p)
947{
948	return p->static_prio;
949}
950
951/*
952 * Calculate the expected normal priority: i.e. priority
953 * without taking RT-inheritance into account. Might be
954 * boosted by interactivity modifiers. Changes upon fork,
955 * setprio syscalls, and whenever the interactivity
956 * estimator recalculates.
957 */
958static inline int normal_prio(struct task_struct *p)
959{
960	int prio;
961
962	if (task_has_dl_policy(p))
963		prio = MAX_DL_PRIO-1;
964	else if (task_has_rt_policy(p))
965		prio = MAX_RT_PRIO-1 - p->rt_priority;
966	else
967		prio = __normal_prio(p);
968	return prio;
969}
970
971/*
972 * Calculate the current priority, i.e. the priority
973 * taken into account by the scheduler. This value might
974 * be boosted by RT tasks, or might be boosted by
975 * interactivity modifiers. Will be RT if the task got
976 * RT-boosted. If not then it returns p->normal_prio.
977 */
978static int effective_prio(struct task_struct *p)
979{
980	p->normal_prio = normal_prio(p);
981	/*
982	 * If we are RT tasks or we were boosted to RT priority,
983	 * keep the priority unchanged. Otherwise, update priority
984	 * to the normal priority:
985	 */
986	if (!rt_prio(p->prio))
987		return p->normal_prio;
988	return p->prio;
989}
990
991/**
992 * task_curr - is this task currently executing on a CPU?
993 * @p: the task in question.
994 *
995 * Return: 1 if the task is currently executing. 0 otherwise.
996 */
997inline int task_curr(const struct task_struct *p)
998{
999	return cpu_curr(task_cpu(p)) == p;
1000}
1001
1002static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1003				       const struct sched_class *prev_class,
1004				       int oldprio)
1005{
1006	if (prev_class != p->sched_class) {
1007		if (prev_class->switched_from)
1008			prev_class->switched_from(rq, p);
1009		p->sched_class->switched_to(rq, p);
1010	} else if (oldprio != p->prio || dl_task(p))
1011		p->sched_class->prio_changed(rq, p, oldprio);
1012}
1013
1014void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1015{
1016	const struct sched_class *class;
1017
1018	if (p->sched_class == rq->curr->sched_class) {
1019		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1020	} else {
1021		for_each_class(class) {
1022			if (class == rq->curr->sched_class)
1023				break;
1024			if (class == p->sched_class) {
1025				resched_task(rq->curr);
1026				break;
1027			}
1028		}
1029	}
1030
1031	/*
1032	 * A queue event has occurred, and we're going to schedule.  In
1033	 * this case, we can save a useless back to back clock update.
1034	 */
1035	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1036		rq->skip_clock_update = 1;
1037}
1038
1039#ifdef CONFIG_SMP
1040void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1041{
1042#ifdef CONFIG_SCHED_DEBUG
1043	/*
1044	 * We should never call set_task_cpu() on a blocked task,
1045	 * ttwu() will sort out the placement.
1046	 */
1047	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1048			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1049
1050#ifdef CONFIG_LOCKDEP
1051	/*
1052	 * The caller should hold either p->pi_lock or rq->lock, when changing
1053	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1054	 *
1055	 * sched_move_task() holds both and thus holding either pins the cgroup,
1056	 * see task_group().
1057	 *
1058	 * Furthermore, all task_rq users should acquire both locks, see
1059	 * task_rq_lock().
1060	 */
1061	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1062				      lockdep_is_held(&task_rq(p)->lock)));
1063#endif
1064#endif
1065
1066	trace_sched_migrate_task(p, new_cpu);
1067
1068	if (task_cpu(p) != new_cpu) {
1069		if (p->sched_class->migrate_task_rq)
1070			p->sched_class->migrate_task_rq(p, new_cpu);
1071		p->se.nr_migrations++;
1072		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1073	}
1074
1075	__set_task_cpu(p, new_cpu);
1076}
1077
1078static void __migrate_swap_task(struct task_struct *p, int cpu)
1079{
1080	if (p->on_rq) {
1081		struct rq *src_rq, *dst_rq;
1082
1083		src_rq = task_rq(p);
1084		dst_rq = cpu_rq(cpu);
1085
1086		deactivate_task(src_rq, p, 0);
1087		set_task_cpu(p, cpu);
1088		activate_task(dst_rq, p, 0);
1089		check_preempt_curr(dst_rq, p, 0);
1090	} else {
1091		/*
1092		 * Task isn't running anymore; make it appear like we migrated
1093		 * it before it went to sleep. This means on wakeup we make the
1094		 * previous cpu our targer instead of where it really is.
1095		 */
1096		p->wake_cpu = cpu;
1097	}
1098}
1099
1100struct migration_swap_arg {
1101	struct task_struct *src_task, *dst_task;
1102	int src_cpu, dst_cpu;
1103};
1104
1105static int migrate_swap_stop(void *data)
1106{
1107	struct migration_swap_arg *arg = data;
1108	struct rq *src_rq, *dst_rq;
1109	int ret = -EAGAIN;
1110
1111	src_rq = cpu_rq(arg->src_cpu);
1112	dst_rq = cpu_rq(arg->dst_cpu);
1113
1114	double_raw_lock(&arg->src_task->pi_lock,
1115			&arg->dst_task->pi_lock);
1116	double_rq_lock(src_rq, dst_rq);
1117	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1118		goto unlock;
1119
1120	if (task_cpu(arg->src_task) != arg->src_cpu)
1121		goto unlock;
1122
1123	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1124		goto unlock;
1125
1126	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1127		goto unlock;
1128
1129	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1130	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1131
1132	ret = 0;
1133
1134unlock:
1135	double_rq_unlock(src_rq, dst_rq);
1136	raw_spin_unlock(&arg->dst_task->pi_lock);
1137	raw_spin_unlock(&arg->src_task->pi_lock);
1138
1139	return ret;
1140}
1141
1142/*
1143 * Cross migrate two tasks
1144 */
1145int migrate_swap(struct task_struct *cur, struct task_struct *p)
1146{
1147	struct migration_swap_arg arg;
1148	int ret = -EINVAL;
1149
1150	arg = (struct migration_swap_arg){
1151		.src_task = cur,
1152		.src_cpu = task_cpu(cur),
1153		.dst_task = p,
1154		.dst_cpu = task_cpu(p),
1155	};
1156
1157	if (arg.src_cpu == arg.dst_cpu)
1158		goto out;
1159
1160	/*
1161	 * These three tests are all lockless; this is OK since all of them
1162	 * will be re-checked with proper locks held further down the line.
1163	 */
1164	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1165		goto out;
1166
1167	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1168		goto out;
1169
1170	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1171		goto out;
1172
1173	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1174	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1175
1176out:
1177	return ret;
1178}
1179
1180struct migration_arg {
1181	struct task_struct *task;
1182	int dest_cpu;
1183};
1184
1185static int migration_cpu_stop(void *data);
1186
1187/*
1188 * wait_task_inactive - wait for a thread to unschedule.
1189 *
1190 * If @match_state is nonzero, it's the @p->state value just checked and
1191 * not expected to change.  If it changes, i.e. @p might have woken up,
1192 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1193 * we return a positive number (its total switch count).  If a second call
1194 * a short while later returns the same number, the caller can be sure that
1195 * @p has remained unscheduled the whole time.
1196 *
1197 * The caller must ensure that the task *will* unschedule sometime soon,
1198 * else this function might spin for a *long* time. This function can't
1199 * be called with interrupts off, or it may introduce deadlock with
1200 * smp_call_function() if an IPI is sent by the same process we are
1201 * waiting to become inactive.
1202 */
1203unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1204{
1205	unsigned long flags;
1206	int running, on_rq;
1207	unsigned long ncsw;
1208	struct rq *rq;
1209
1210	for (;;) {
1211		/*
1212		 * We do the initial early heuristics without holding
1213		 * any task-queue locks at all. We'll only try to get
1214		 * the runqueue lock when things look like they will
1215		 * work out!
1216		 */
1217		rq = task_rq(p);
1218
1219		/*
1220		 * If the task is actively running on another CPU
1221		 * still, just relax and busy-wait without holding
1222		 * any locks.
1223		 *
1224		 * NOTE! Since we don't hold any locks, it's not
1225		 * even sure that "rq" stays as the right runqueue!
1226		 * But we don't care, since "task_running()" will
1227		 * return false if the runqueue has changed and p
1228		 * is actually now running somewhere else!
1229		 */
1230		while (task_running(rq, p)) {
1231			if (match_state && unlikely(p->state != match_state))
1232				return 0;
1233			cpu_relax();
1234		}
1235
1236		/*
1237		 * Ok, time to look more closely! We need the rq
1238		 * lock now, to be *sure*. If we're wrong, we'll
1239		 * just go back and repeat.
1240		 */
1241		rq = task_rq_lock(p, &flags);
1242		trace_sched_wait_task(p);
1243		running = task_running(rq, p);
1244		on_rq = p->on_rq;
1245		ncsw = 0;
1246		if (!match_state || p->state == match_state)
1247			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1248		task_rq_unlock(rq, p, &flags);
1249
1250		/*
1251		 * If it changed from the expected state, bail out now.
1252		 */
1253		if (unlikely(!ncsw))
1254			break;
1255
1256		/*
1257		 * Was it really running after all now that we
1258		 * checked with the proper locks actually held?
1259		 *
1260		 * Oops. Go back and try again..
1261		 */
1262		if (unlikely(running)) {
1263			cpu_relax();
1264			continue;
1265		}
1266
1267		/*
1268		 * It's not enough that it's not actively running,
1269		 * it must be off the runqueue _entirely_, and not
1270		 * preempted!
1271		 *
1272		 * So if it was still runnable (but just not actively
1273		 * running right now), it's preempted, and we should
1274		 * yield - it could be a while.
1275		 */
1276		if (unlikely(on_rq)) {
1277			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1278
1279			set_current_state(TASK_UNINTERRUPTIBLE);
1280			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1281			continue;
1282		}
1283
1284		/*
1285		 * Ahh, all good. It wasn't running, and it wasn't
1286		 * runnable, which means that it will never become
1287		 * running in the future either. We're all done!
1288		 */
1289		break;
1290	}
1291
1292	return ncsw;
1293}
1294
1295/***
1296 * kick_process - kick a running thread to enter/exit the kernel
1297 * @p: the to-be-kicked thread
1298 *
1299 * Cause a process which is running on another CPU to enter
1300 * kernel-mode, without any delay. (to get signals handled.)
1301 *
1302 * NOTE: this function doesn't have to take the runqueue lock,
1303 * because all it wants to ensure is that the remote task enters
1304 * the kernel. If the IPI races and the task has been migrated
1305 * to another CPU then no harm is done and the purpose has been
1306 * achieved as well.
1307 */
1308void kick_process(struct task_struct *p)
1309{
1310	int cpu;
1311
1312	preempt_disable();
1313	cpu = task_cpu(p);
1314	if ((cpu != smp_processor_id()) && task_curr(p))
1315		smp_send_reschedule(cpu);
1316	preempt_enable();
1317}
1318EXPORT_SYMBOL_GPL(kick_process);
1319#endif /* CONFIG_SMP */
1320
1321#ifdef CONFIG_SMP
1322/*
1323 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1324 */
1325static int select_fallback_rq(int cpu, struct task_struct *p)
1326{
1327	int nid = cpu_to_node(cpu);
1328	const struct cpumask *nodemask = NULL;
1329	enum { cpuset, possible, fail } state = cpuset;
1330	int dest_cpu;
1331
1332	/*
1333	 * If the node that the cpu is on has been offlined, cpu_to_node()
1334	 * will return -1. There is no cpu on the node, and we should
1335	 * select the cpu on the other node.
1336	 */
1337	if (nid != -1) {
1338		nodemask = cpumask_of_node(nid);
1339
1340		/* Look for allowed, online CPU in same node. */
1341		for_each_cpu(dest_cpu, nodemask) {
1342			if (!cpu_online(dest_cpu))
1343				continue;
1344			if (!cpu_active(dest_cpu))
1345				continue;
1346			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1347				return dest_cpu;
1348		}
1349	}
1350
1351	for (;;) {
1352		/* Any allowed, online CPU? */
1353		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1354			if (!cpu_online(dest_cpu))
1355				continue;
1356			if (!cpu_active(dest_cpu))
1357				continue;
1358			goto out;
1359		}
1360
1361		switch (state) {
1362		case cpuset:
1363			/* No more Mr. Nice Guy. */
1364			cpuset_cpus_allowed_fallback(p);
1365			state = possible;
1366			break;
1367
1368		case possible:
1369			do_set_cpus_allowed(p, cpu_possible_mask);
1370			state = fail;
1371			break;
1372
1373		case fail:
1374			BUG();
1375			break;
1376		}
1377	}
1378
1379out:
1380	if (state != cpuset) {
1381		/*
1382		 * Don't tell them about moving exiting tasks or
1383		 * kernel threads (both mm NULL), since they never
1384		 * leave kernel.
1385		 */
1386		if (p->mm && printk_ratelimit()) {
1387			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1388					task_pid_nr(p), p->comm, cpu);
1389		}
1390	}
1391
1392	return dest_cpu;
1393}
1394
1395/*
1396 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1397 */
1398static inline
1399int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1400{
1401	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1402
1403	/*
1404	 * In order not to call set_task_cpu() on a blocking task we need
1405	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1406	 * cpu.
1407	 *
1408	 * Since this is common to all placement strategies, this lives here.
1409	 *
1410	 * [ this allows ->select_task() to simply return task_cpu(p) and
1411	 *   not worry about this generic constraint ]
1412	 */
1413	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1414		     !cpu_online(cpu)))
1415		cpu = select_fallback_rq(task_cpu(p), p);
1416
1417	return cpu;
1418}
1419
1420static void update_avg(u64 *avg, u64 sample)
1421{
1422	s64 diff = sample - *avg;
1423	*avg += diff >> 3;
1424}
1425#endif
1426
1427static void
1428ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1429{
1430#ifdef CONFIG_SCHEDSTATS
1431	struct rq *rq = this_rq();
1432
1433#ifdef CONFIG_SMP
1434	int this_cpu = smp_processor_id();
1435
1436	if (cpu == this_cpu) {
1437		schedstat_inc(rq, ttwu_local);
1438		schedstat_inc(p, se.statistics.nr_wakeups_local);
1439	} else {
1440		struct sched_domain *sd;
1441
1442		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1443		rcu_read_lock();
1444		for_each_domain(this_cpu, sd) {
1445			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1446				schedstat_inc(sd, ttwu_wake_remote);
1447				break;
1448			}
1449		}
1450		rcu_read_unlock();
1451	}
1452
1453	if (wake_flags & WF_MIGRATED)
1454		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1455
1456#endif /* CONFIG_SMP */
1457
1458	schedstat_inc(rq, ttwu_count);
1459	schedstat_inc(p, se.statistics.nr_wakeups);
1460
1461	if (wake_flags & WF_SYNC)
1462		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1463
1464#endif /* CONFIG_SCHEDSTATS */
1465}
1466
1467static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1468{
1469	activate_task(rq, p, en_flags);
1470	p->on_rq = 1;
1471
1472	/* if a worker is waking up, notify workqueue */
1473	if (p->flags & PF_WQ_WORKER)
1474		wq_worker_waking_up(p, cpu_of(rq));
1475}
1476
1477/*
1478 * Mark the task runnable and perform wakeup-preemption.
1479 */
1480static void
1481ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1482{
1483	check_preempt_curr(rq, p, wake_flags);
1484	trace_sched_wakeup(p, true);
1485
1486	p->state = TASK_RUNNING;
1487#ifdef CONFIG_SMP
1488	if (p->sched_class->task_woken)
1489		p->sched_class->task_woken(rq, p);
1490
1491	if (rq->idle_stamp) {
1492		u64 delta = rq_clock(rq) - rq->idle_stamp;
1493		u64 max = 2*rq->max_idle_balance_cost;
1494
1495		update_avg(&rq->avg_idle, delta);
1496
1497		if (rq->avg_idle > max)
1498			rq->avg_idle = max;
1499
1500		rq->idle_stamp = 0;
1501	}
1502#endif
1503}
1504
1505static void
1506ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1507{
1508#ifdef CONFIG_SMP
1509	if (p->sched_contributes_to_load)
1510		rq->nr_uninterruptible--;
1511#endif
1512
1513	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1514	ttwu_do_wakeup(rq, p, wake_flags);
1515}
1516
1517/*
1518 * Called in case the task @p isn't fully descheduled from its runqueue,
1519 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1520 * since all we need to do is flip p->state to TASK_RUNNING, since
1521 * the task is still ->on_rq.
1522 */
1523static int ttwu_remote(struct task_struct *p, int wake_flags)
1524{
1525	struct rq *rq;
1526	int ret = 0;
1527
1528	rq = __task_rq_lock(p);
1529	if (p->on_rq) {
1530		/* check_preempt_curr() may use rq clock */
1531		update_rq_clock(rq);
1532		ttwu_do_wakeup(rq, p, wake_flags);
1533		ret = 1;
1534	}
1535	__task_rq_unlock(rq);
1536
1537	return ret;
1538}
1539
1540#ifdef CONFIG_SMP
1541void sched_ttwu_pending(void)
1542{
1543	struct rq *rq = this_rq();
1544	struct llist_node *llist = llist_del_all(&rq->wake_list);
1545	struct task_struct *p;
1546	unsigned long flags;
1547
1548	if (!llist)
1549		return;
1550
1551	raw_spin_lock_irqsave(&rq->lock, flags);
1552
1553	while (llist) {
1554		p = llist_entry(llist, struct task_struct, wake_entry);
1555		llist = llist_next(llist);
1556		ttwu_do_activate(rq, p, 0);
1557	}
1558
1559	raw_spin_unlock_irqrestore(&rq->lock, flags);
1560}
1561
1562void scheduler_ipi(void)
1563{
1564	/*
1565	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1566	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1567	 * this IPI.
1568	 */
1569	preempt_fold_need_resched();
1570
1571	if (llist_empty(&this_rq()->wake_list)
1572			&& !tick_nohz_full_cpu(smp_processor_id())
1573			&& !got_nohz_idle_kick())
1574		return;
1575
1576	/*
1577	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1578	 * traditionally all their work was done from the interrupt return
1579	 * path. Now that we actually do some work, we need to make sure
1580	 * we do call them.
1581	 *
1582	 * Some archs already do call them, luckily irq_enter/exit nest
1583	 * properly.
1584	 *
1585	 * Arguably we should visit all archs and update all handlers,
1586	 * however a fair share of IPIs are still resched only so this would
1587	 * somewhat pessimize the simple resched case.
1588	 */
1589	irq_enter();
1590	tick_nohz_full_check();
1591	sched_ttwu_pending();
1592
1593	/*
1594	 * Check if someone kicked us for doing the nohz idle load balance.
1595	 */
1596	if (unlikely(got_nohz_idle_kick())) {
1597		this_rq()->idle_balance = 1;
1598		raise_softirq_irqoff(SCHED_SOFTIRQ);
1599	}
1600	irq_exit();
1601}
1602
1603static void ttwu_queue_remote(struct task_struct *p, int cpu)
1604{
1605	struct rq *rq = cpu_rq(cpu);
1606
1607	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1608		if (!set_nr_if_polling(rq->idle))
1609			smp_send_reschedule(cpu);
1610		else
1611			trace_sched_wake_idle_without_ipi(cpu);
1612	}
1613}
1614
1615bool cpus_share_cache(int this_cpu, int that_cpu)
1616{
1617	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1618}
1619#endif /* CONFIG_SMP */
1620
1621static void ttwu_queue(struct task_struct *p, int cpu)
1622{
1623	struct rq *rq = cpu_rq(cpu);
1624
1625#if defined(CONFIG_SMP)
1626	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1627		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1628		ttwu_queue_remote(p, cpu);
1629		return;
1630	}
1631#endif
1632
1633	raw_spin_lock(&rq->lock);
1634	ttwu_do_activate(rq, p, 0);
1635	raw_spin_unlock(&rq->lock);
1636}
1637
1638/**
1639 * try_to_wake_up - wake up a thread
1640 * @p: the thread to be awakened
1641 * @state: the mask of task states that can be woken
1642 * @wake_flags: wake modifier flags (WF_*)
1643 *
1644 * Put it on the run-queue if it's not already there. The "current"
1645 * thread is always on the run-queue (except when the actual
1646 * re-schedule is in progress), and as such you're allowed to do
1647 * the simpler "current->state = TASK_RUNNING" to mark yourself
1648 * runnable without the overhead of this.
1649 *
1650 * Return: %true if @p was woken up, %false if it was already running.
1651 * or @state didn't match @p's state.
1652 */
1653static int
1654try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1655{
1656	unsigned long flags;
1657	int cpu, success = 0;
1658
1659	/*
1660	 * If we are going to wake up a thread waiting for CONDITION we
1661	 * need to ensure that CONDITION=1 done by the caller can not be
1662	 * reordered with p->state check below. This pairs with mb() in
1663	 * set_current_state() the waiting thread does.
1664	 */
1665	smp_mb__before_spinlock();
1666	raw_spin_lock_irqsave(&p->pi_lock, flags);
1667	if (!(p->state & state))
1668		goto out;
1669
1670	success = 1; /* we're going to change ->state */
1671	cpu = task_cpu(p);
1672
1673	if (p->on_rq && ttwu_remote(p, wake_flags))
1674		goto stat;
1675
1676#ifdef CONFIG_SMP
1677	/*
1678	 * If the owning (remote) cpu is still in the middle of schedule() with
1679	 * this task as prev, wait until its done referencing the task.
1680	 */
1681	while (p->on_cpu)
1682		cpu_relax();
1683	/*
1684	 * Pairs with the smp_wmb() in finish_lock_switch().
1685	 */
1686	smp_rmb();
1687
1688	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1689	p->state = TASK_WAKING;
1690
1691	if (p->sched_class->task_waking)
1692		p->sched_class->task_waking(p);
1693
1694	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1695	if (task_cpu(p) != cpu) {
1696		wake_flags |= WF_MIGRATED;
1697		set_task_cpu(p, cpu);
1698	}
1699#endif /* CONFIG_SMP */
1700
1701	ttwu_queue(p, cpu);
1702stat:
1703	ttwu_stat(p, cpu, wake_flags);
1704out:
1705	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1706
1707	return success;
1708}
1709
1710/**
1711 * try_to_wake_up_local - try to wake up a local task with rq lock held
1712 * @p: the thread to be awakened
1713 *
1714 * Put @p on the run-queue if it's not already there. The caller must
1715 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1716 * the current task.
1717 */
1718static void try_to_wake_up_local(struct task_struct *p)
1719{
1720	struct rq *rq = task_rq(p);
1721
1722	if (WARN_ON_ONCE(rq != this_rq()) ||
1723	    WARN_ON_ONCE(p == current))
1724		return;
1725
1726	lockdep_assert_held(&rq->lock);
1727
1728	if (!raw_spin_trylock(&p->pi_lock)) {
1729		raw_spin_unlock(&rq->lock);
1730		raw_spin_lock(&p->pi_lock);
1731		raw_spin_lock(&rq->lock);
1732	}
1733
1734	if (!(p->state & TASK_NORMAL))
1735		goto out;
1736
1737	if (!p->on_rq)
1738		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1739
1740	ttwu_do_wakeup(rq, p, 0);
1741	ttwu_stat(p, smp_processor_id(), 0);
1742out:
1743	raw_spin_unlock(&p->pi_lock);
1744}
1745
1746/**
1747 * wake_up_process - Wake up a specific process
1748 * @p: The process to be woken up.
1749 *
1750 * Attempt to wake up the nominated process and move it to the set of runnable
1751 * processes.
1752 *
1753 * Return: 1 if the process was woken up, 0 if it was already running.
1754 *
1755 * It may be assumed that this function implies a write memory barrier before
1756 * changing the task state if and only if any tasks are woken up.
1757 */
1758int wake_up_process(struct task_struct *p)
1759{
1760	WARN_ON(task_is_stopped_or_traced(p));
1761	return try_to_wake_up(p, TASK_NORMAL, 0);
1762}
1763EXPORT_SYMBOL(wake_up_process);
1764
1765int wake_up_state(struct task_struct *p, unsigned int state)
1766{
1767	return try_to_wake_up(p, state, 0);
1768}
1769
1770/*
1771 * Perform scheduler related setup for a newly forked process p.
1772 * p is forked by current.
1773 *
1774 * __sched_fork() is basic setup used by init_idle() too:
1775 */
1776static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1777{
1778	p->on_rq			= 0;
1779
1780	p->se.on_rq			= 0;
1781	p->se.exec_start		= 0;
1782	p->se.sum_exec_runtime		= 0;
1783	p->se.prev_sum_exec_runtime	= 0;
1784	p->se.nr_migrations		= 0;
1785	p->se.vruntime			= 0;
1786	INIT_LIST_HEAD(&p->se.group_node);
1787
1788#ifdef CONFIG_SCHEDSTATS
1789	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1790#endif
1791
1792	RB_CLEAR_NODE(&p->dl.rb_node);
1793	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1794	p->dl.dl_runtime = p->dl.runtime = 0;
1795	p->dl.dl_deadline = p->dl.deadline = 0;
1796	p->dl.dl_period = 0;
1797	p->dl.flags = 0;
1798
1799	INIT_LIST_HEAD(&p->rt.run_list);
1800
1801#ifdef CONFIG_PREEMPT_NOTIFIERS
1802	INIT_HLIST_HEAD(&p->preempt_notifiers);
1803#endif
1804
1805#ifdef CONFIG_NUMA_BALANCING
1806	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1807		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1808		p->mm->numa_scan_seq = 0;
1809	}
1810
1811	if (clone_flags & CLONE_VM)
1812		p->numa_preferred_nid = current->numa_preferred_nid;
1813	else
1814		p->numa_preferred_nid = -1;
1815
1816	p->node_stamp = 0ULL;
1817	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1818	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1819	p->numa_work.next = &p->numa_work;
1820	p->numa_faults_memory = NULL;
1821	p->numa_faults_buffer_memory = NULL;
1822	p->last_task_numa_placement = 0;
1823	p->last_sum_exec_runtime = 0;
1824
1825	INIT_LIST_HEAD(&p->numa_entry);
1826	p->numa_group = NULL;
1827#endif /* CONFIG_NUMA_BALANCING */
1828}
1829
1830#ifdef CONFIG_NUMA_BALANCING
1831#ifdef CONFIG_SCHED_DEBUG
1832void set_numabalancing_state(bool enabled)
1833{
1834	if (enabled)
1835		sched_feat_set("NUMA");
1836	else
1837		sched_feat_set("NO_NUMA");
1838}
1839#else
1840__read_mostly bool numabalancing_enabled;
1841
1842void set_numabalancing_state(bool enabled)
1843{
1844	numabalancing_enabled = enabled;
1845}
1846#endif /* CONFIG_SCHED_DEBUG */
1847
1848#ifdef CONFIG_PROC_SYSCTL
1849int sysctl_numa_balancing(struct ctl_table *table, int write,
1850			 void __user *buffer, size_t *lenp, loff_t *ppos)
1851{
1852	struct ctl_table t;
1853	int err;
1854	int state = numabalancing_enabled;
1855
1856	if (write && !capable(CAP_SYS_ADMIN))
1857		return -EPERM;
1858
1859	t = *table;
1860	t.data = &state;
1861	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1862	if (err < 0)
1863		return err;
1864	if (write)
1865		set_numabalancing_state(state);
1866	return err;
1867}
1868#endif
1869#endif
1870
1871/*
1872 * fork()/clone()-time setup:
1873 */
1874int sched_fork(unsigned long clone_flags, struct task_struct *p)
1875{
1876	unsigned long flags;
1877	int cpu = get_cpu();
1878
1879	__sched_fork(clone_flags, p);
1880	/*
1881	 * We mark the process as running here. This guarantees that
1882	 * nobody will actually run it, and a signal or other external
1883	 * event cannot wake it up and insert it on the runqueue either.
1884	 */
1885	p->state = TASK_RUNNING;
1886
1887	/*
1888	 * Make sure we do not leak PI boosting priority to the child.
1889	 */
1890	p->prio = current->normal_prio;
1891
1892	/*
1893	 * Revert to default priority/policy on fork if requested.
1894	 */
1895	if (unlikely(p->sched_reset_on_fork)) {
1896		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1897			p->policy = SCHED_NORMAL;
1898			p->static_prio = NICE_TO_PRIO(0);
1899			p->rt_priority = 0;
1900		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1901			p->static_prio = NICE_TO_PRIO(0);
1902
1903		p->prio = p->normal_prio = __normal_prio(p);
1904		set_load_weight(p);
1905
1906		/*
1907		 * We don't need the reset flag anymore after the fork. It has
1908		 * fulfilled its duty:
1909		 */
1910		p->sched_reset_on_fork = 0;
1911	}
1912
1913	if (dl_prio(p->prio)) {
1914		put_cpu();
1915		return -EAGAIN;
1916	} else if (rt_prio(p->prio)) {
1917		p->sched_class = &rt_sched_class;
1918	} else {
1919		p->sched_class = &fair_sched_class;
1920	}
1921
1922	if (p->sched_class->task_fork)
1923		p->sched_class->task_fork(p);
1924
1925	/*
1926	 * The child is not yet in the pid-hash so no cgroup attach races,
1927	 * and the cgroup is pinned to this child due to cgroup_fork()
1928	 * is ran before sched_fork().
1929	 *
1930	 * Silence PROVE_RCU.
1931	 */
1932	raw_spin_lock_irqsave(&p->pi_lock, flags);
1933	set_task_cpu(p, cpu);
1934	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1935
1936#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1937	if (likely(sched_info_on()))
1938		memset(&p->sched_info, 0, sizeof(p->sched_info));
1939#endif
1940#if defined(CONFIG_SMP)
1941	p->on_cpu = 0;
1942#endif
1943	init_task_preempt_count(p);
1944#ifdef CONFIG_SMP
1945	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1946	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1947#endif
1948
1949	put_cpu();
1950	return 0;
1951}
1952
1953unsigned long to_ratio(u64 period, u64 runtime)
1954{
1955	if (runtime == RUNTIME_INF)
1956		return 1ULL << 20;
1957
1958	/*
1959	 * Doing this here saves a lot of checks in all
1960	 * the calling paths, and returning zero seems
1961	 * safe for them anyway.
1962	 */
1963	if (period == 0)
1964		return 0;
1965
1966	return div64_u64(runtime << 20, period);
1967}
1968
1969#ifdef CONFIG_SMP
1970inline struct dl_bw *dl_bw_of(int i)
1971{
1972	return &cpu_rq(i)->rd->dl_bw;
1973}
1974
1975static inline int dl_bw_cpus(int i)
1976{
1977	struct root_domain *rd = cpu_rq(i)->rd;
1978	int cpus = 0;
1979
1980	for_each_cpu_and(i, rd->span, cpu_active_mask)
1981		cpus++;
1982
1983	return cpus;
1984}
1985#else
1986inline struct dl_bw *dl_bw_of(int i)
1987{
1988	return &cpu_rq(i)->dl.dl_bw;
1989}
1990
1991static inline int dl_bw_cpus(int i)
1992{
1993	return 1;
1994}
1995#endif
1996
1997static inline
1998void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1999{
2000	dl_b->total_bw -= tsk_bw;
2001}
2002
2003static inline
2004void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2005{
2006	dl_b->total_bw += tsk_bw;
2007}
2008
2009static inline
2010bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2011{
2012	return dl_b->bw != -1 &&
2013	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2014}
2015
2016/*
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2021 *
2022 * This function is called while holding p's rq->lock.
2023 */
2024static int dl_overflow(struct task_struct *p, int policy,
2025		       const struct sched_attr *attr)
2026{
2027
2028	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2029	u64 period = attr->sched_period ?: attr->sched_deadline;
2030	u64 runtime = attr->sched_runtime;
2031	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2032	int cpus, err = -1;
2033
2034	if (new_bw == p->dl.dl_bw)
2035		return 0;
2036
2037	/*
2038	 * Either if a task, enters, leave, or stays -deadline but changes
2039	 * its parameters, we may need to update accordingly the total
2040	 * allocated bandwidth of the container.
2041	 */
2042	raw_spin_lock(&dl_b->lock);
2043	cpus = dl_bw_cpus(task_cpu(p));
2044	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2045	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2046		__dl_add(dl_b, new_bw);
2047		err = 0;
2048	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2049		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2050		__dl_clear(dl_b, p->dl.dl_bw);
2051		__dl_add(dl_b, new_bw);
2052		err = 0;
2053	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2054		__dl_clear(dl_b, p->dl.dl_bw);
2055		err = 0;
2056	}
2057	raw_spin_unlock(&dl_b->lock);
2058
2059	return err;
2060}
2061
2062extern void init_dl_bw(struct dl_bw *dl_b);
2063
2064/*
2065 * wake_up_new_task - wake up a newly created task for the first time.
2066 *
2067 * This function will do some initial scheduler statistics housekeeping
2068 * that must be done for every newly created context, then puts the task
2069 * on the runqueue and wakes it.
2070 */
2071void wake_up_new_task(struct task_struct *p)
2072{
2073	unsigned long flags;
2074	struct rq *rq;
2075
2076	raw_spin_lock_irqsave(&p->pi_lock, flags);
2077#ifdef CONFIG_SMP
2078	/*
2079	 * Fork balancing, do it here and not earlier because:
2080	 *  - cpus_allowed can change in the fork path
2081	 *  - any previously selected cpu might disappear through hotplug
2082	 */
2083	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2084#endif
2085
2086	/* Initialize new task's runnable average */
2087	init_task_runnable_average(p);
2088	rq = __task_rq_lock(p);
2089	activate_task(rq, p, 0);
2090	p->on_rq = 1;
2091	trace_sched_wakeup_new(p, true);
2092	check_preempt_curr(rq, p, WF_FORK);
2093#ifdef CONFIG_SMP
2094	if (p->sched_class->task_woken)
2095		p->sched_class->task_woken(rq, p);
2096#endif
2097	task_rq_unlock(rq, p, &flags);
2098}
2099
2100#ifdef CONFIG_PREEMPT_NOTIFIERS
2101
2102/**
2103 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2104 * @notifier: notifier struct to register
2105 */
2106void preempt_notifier_register(struct preempt_notifier *notifier)
2107{
2108	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2109}
2110EXPORT_SYMBOL_GPL(preempt_notifier_register);
2111
2112/**
2113 * preempt_notifier_unregister - no longer interested in preemption notifications
2114 * @notifier: notifier struct to unregister
2115 *
2116 * This is safe to call from within a preemption notifier.
2117 */
2118void preempt_notifier_unregister(struct preempt_notifier *notifier)
2119{
2120	hlist_del(&notifier->link);
2121}
2122EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2123
2124static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2125{
2126	struct preempt_notifier *notifier;
2127
2128	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2129		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2130}
2131
2132static void
2133fire_sched_out_preempt_notifiers(struct task_struct *curr,
2134				 struct task_struct *next)
2135{
2136	struct preempt_notifier *notifier;
2137
2138	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2139		notifier->ops->sched_out(notifier, next);
2140}
2141
2142#else /* !CONFIG_PREEMPT_NOTIFIERS */
2143
2144static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2145{
2146}
2147
2148static void
2149fire_sched_out_preempt_notifiers(struct task_struct *curr,
2150				 struct task_struct *next)
2151{
2152}
2153
2154#endif /* CONFIG_PREEMPT_NOTIFIERS */
2155
2156/**
2157 * prepare_task_switch - prepare to switch tasks
2158 * @rq: the runqueue preparing to switch
2159 * @prev: the current task that is being switched out
2160 * @next: the task we are going to switch to.
2161 *
2162 * This is called with the rq lock held and interrupts off. It must
2163 * be paired with a subsequent finish_task_switch after the context
2164 * switch.
2165 *
2166 * prepare_task_switch sets up locking and calls architecture specific
2167 * hooks.
2168 */
2169static inline void
2170prepare_task_switch(struct rq *rq, struct task_struct *prev,
2171		    struct task_struct *next)
2172{
2173	trace_sched_switch(prev, next);
2174	sched_info_switch(rq, prev, next);
2175	perf_event_task_sched_out(prev, next);
2176	fire_sched_out_preempt_notifiers(prev, next);
2177	prepare_lock_switch(rq, next);
2178	prepare_arch_switch(next);
2179}
2180
2181/**
2182 * finish_task_switch - clean up after a task-switch
2183 * @rq: runqueue associated with task-switch
2184 * @prev: the thread we just switched away from.
2185 *
2186 * finish_task_switch must be called after the context switch, paired
2187 * with a prepare_task_switch call before the context switch.
2188 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2189 * and do any other architecture-specific cleanup actions.
2190 *
2191 * Note that we may have delayed dropping an mm in context_switch(). If
2192 * so, we finish that here outside of the runqueue lock. (Doing it
2193 * with the lock held can cause deadlocks; see schedule() for
2194 * details.)
2195 */
2196static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2197	__releases(rq->lock)
2198{
2199	struct mm_struct *mm = rq->prev_mm;
2200	long prev_state;
2201
2202	rq->prev_mm = NULL;
2203
2204	/*
2205	 * A task struct has one reference for the use as "current".
2206	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2207	 * schedule one last time. The schedule call will never return, and
2208	 * the scheduled task must drop that reference.
2209	 * The test for TASK_DEAD must occur while the runqueue locks are
2210	 * still held, otherwise prev could be scheduled on another cpu, die
2211	 * there before we look at prev->state, and then the reference would
2212	 * be dropped twice.
2213	 *		Manfred Spraul <manfred@colorfullife.com>
2214	 */
2215	prev_state = prev->state;
2216	vtime_task_switch(prev);
2217	finish_arch_switch(prev);
2218	perf_event_task_sched_in(prev, current);
2219	finish_lock_switch(rq, prev);
2220	finish_arch_post_lock_switch();
2221
2222	fire_sched_in_preempt_notifiers(current);
2223	if (mm)
2224		mmdrop(mm);
2225	if (unlikely(prev_state == TASK_DEAD)) {
2226		if (prev->sched_class->task_dead)
2227			prev->sched_class->task_dead(prev);
2228
2229		/*
2230		 * Remove function-return probe instances associated with this
2231		 * task and put them back on the free list.
2232		 */
2233		kprobe_flush_task(prev);
2234		put_task_struct(prev);
2235	}
2236
2237	tick_nohz_task_switch(current);
2238}
2239
2240#ifdef CONFIG_SMP
2241
2242/* rq->lock is NOT held, but preemption is disabled */
2243static inline void post_schedule(struct rq *rq)
2244{
2245	if (rq->post_schedule) {
2246		unsigned long flags;
2247
2248		raw_spin_lock_irqsave(&rq->lock, flags);
2249		if (rq->curr->sched_class->post_schedule)
2250			rq->curr->sched_class->post_schedule(rq);
2251		raw_spin_unlock_irqrestore(&rq->lock, flags);
2252
2253		rq->post_schedule = 0;
2254	}
2255}
2256
2257#else
2258
2259static inline void post_schedule(struct rq *rq)
2260{
2261}
2262
2263#endif
2264
2265/**
2266 * schedule_tail - first thing a freshly forked thread must call.
2267 * @prev: the thread we just switched away from.
2268 */
2269asmlinkage __visible void schedule_tail(struct task_struct *prev)
2270	__releases(rq->lock)
2271{
2272	struct rq *rq = this_rq();
2273
2274	finish_task_switch(rq, prev);
2275
2276	/*
2277	 * FIXME: do we need to worry about rq being invalidated by the
2278	 * task_switch?
2279	 */
2280	post_schedule(rq);
2281
2282#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2283	/* In this case, finish_task_switch does not reenable preemption */
2284	preempt_enable();
2285#endif
2286	if (current->set_child_tid)
2287		put_user(task_pid_vnr(current), current->set_child_tid);
2288}
2289
2290/*
2291 * context_switch - switch to the new MM and the new
2292 * thread's register state.
2293 */
2294static inline void
2295context_switch(struct rq *rq, struct task_struct *prev,
2296	       struct task_struct *next)
2297{
2298	struct mm_struct *mm, *oldmm;
2299
2300	prepare_task_switch(rq, prev, next);
2301
2302	mm = next->mm;
2303	oldmm = prev->active_mm;
2304	/*
2305	 * For paravirt, this is coupled with an exit in switch_to to
2306	 * combine the page table reload and the switch backend into
2307	 * one hypercall.
2308	 */
2309	arch_start_context_switch(prev);
2310
2311	if (!mm) {
2312		next->active_mm = oldmm;
2313		atomic_inc(&oldmm->mm_count);
2314		enter_lazy_tlb(oldmm, next);
2315	} else
2316		switch_mm(oldmm, mm, next);
2317
2318	if (!prev->mm) {
2319		prev->active_mm = NULL;
2320		rq->prev_mm = oldmm;
2321	}
2322	/*
2323	 * Since the runqueue lock will be released by the next
2324	 * task (which is an invalid locking op but in the case
2325	 * of the scheduler it's an obvious special-case), so we
2326	 * do an early lockdep release here:
2327	 */
2328#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2329	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2330#endif
2331
2332	context_tracking_task_switch(prev, next);
2333	/* Here we just switch the register state and the stack. */
2334	switch_to(prev, next, prev);
2335
2336	barrier();
2337	/*
2338	 * this_rq must be evaluated again because prev may have moved
2339	 * CPUs since it called schedule(), thus the 'rq' on its stack
2340	 * frame will be invalid.
2341	 */
2342	finish_task_switch(this_rq(), prev);
2343}
2344
2345/*
2346 * nr_running and nr_context_switches:
2347 *
2348 * externally visible scheduler statistics: current number of runnable
2349 * threads, total number of context switches performed since bootup.
2350 */
2351unsigned long nr_running(void)
2352{
2353	unsigned long i, sum = 0;
2354
2355	for_each_online_cpu(i)
2356		sum += cpu_rq(i)->nr_running;
2357
2358	return sum;
2359}
2360
2361unsigned long long nr_context_switches(void)
2362{
2363	int i;
2364	unsigned long long sum = 0;
2365
2366	for_each_possible_cpu(i)
2367		sum += cpu_rq(i)->nr_switches;
2368
2369	return sum;
2370}
2371
2372unsigned long nr_iowait(void)
2373{
2374	unsigned long i, sum = 0;
2375
2376	for_each_possible_cpu(i)
2377		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2378
2379	return sum;
2380}
2381
2382unsigned long nr_iowait_cpu(int cpu)
2383{
2384	struct rq *this = cpu_rq(cpu);
2385	return atomic_read(&this->nr_iowait);
2386}
2387
2388#ifdef CONFIG_SMP
2389
2390/*
2391 * sched_exec - execve() is a valuable balancing opportunity, because at
2392 * this point the task has the smallest effective memory and cache footprint.
2393 */
2394void sched_exec(void)
2395{
2396	struct task_struct *p = current;
2397	unsigned long flags;
2398	int dest_cpu;
2399
2400	raw_spin_lock_irqsave(&p->pi_lock, flags);
2401	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2402	if (dest_cpu == smp_processor_id())
2403		goto unlock;
2404
2405	if (likely(cpu_active(dest_cpu))) {
2406		struct migration_arg arg = { p, dest_cpu };
2407
2408		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2409		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2410		return;
2411	}
2412unlock:
2413	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2414}
2415
2416#endif
2417
2418DEFINE_PER_CPU(struct kernel_stat, kstat);
2419DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2420
2421EXPORT_PER_CPU_SYMBOL(kstat);
2422EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2423
2424/*
2425 * Return any ns on the sched_clock that have not yet been accounted in
2426 * @p in case that task is currently running.
2427 *
2428 * Called with task_rq_lock() held on @rq.
2429 */
2430static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2431{
2432	u64 ns = 0;
2433
2434	if (task_current(rq, p)) {
2435		update_rq_clock(rq);
2436		ns = rq_clock_task(rq) - p->se.exec_start;
2437		if ((s64)ns < 0)
2438			ns = 0;
2439	}
2440
2441	return ns;
2442}
2443
2444unsigned long long task_delta_exec(struct task_struct *p)
2445{
2446	unsigned long flags;
2447	struct rq *rq;
2448	u64 ns = 0;
2449
2450	rq = task_rq_lock(p, &flags);
2451	ns = do_task_delta_exec(p, rq);
2452	task_rq_unlock(rq, p, &flags);
2453
2454	return ns;
2455}
2456
2457/*
2458 * Return accounted runtime for the task.
2459 * In case the task is currently running, return the runtime plus current's
2460 * pending runtime that have not been accounted yet.
2461 */
2462unsigned long long task_sched_runtime(struct task_struct *p)
2463{
2464	unsigned long flags;
2465	struct rq *rq;
2466	u64 ns = 0;
2467
2468#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2469	/*
2470	 * 64-bit doesn't need locks to atomically read a 64bit value.
2471	 * So we have a optimization chance when the task's delta_exec is 0.
2472	 * Reading ->on_cpu is racy, but this is ok.
2473	 *
2474	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2475	 * If we race with it entering cpu, unaccounted time is 0. This is
2476	 * indistinguishable from the read occurring a few cycles earlier.
2477	 */
2478	if (!p->on_cpu)
2479		return p->se.sum_exec_runtime;
2480#endif
2481
2482	rq = task_rq_lock(p, &flags);
2483	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2484	task_rq_unlock(rq, p, &flags);
2485
2486	return ns;
2487}
2488
2489/*
2490 * This function gets called by the timer code, with HZ frequency.
2491 * We call it with interrupts disabled.
2492 */
2493void scheduler_tick(void)
2494{
2495	int cpu = smp_processor_id();
2496	struct rq *rq = cpu_rq(cpu);
2497	struct task_struct *curr = rq->curr;
2498
2499	sched_clock_tick();
2500
2501	raw_spin_lock(&rq->lock);
2502	update_rq_clock(rq);
2503	curr->sched_class->task_tick(rq, curr, 0);
2504	update_cpu_load_active(rq);
2505	raw_spin_unlock(&rq->lock);
2506
2507	perf_event_task_tick();
2508
2509#ifdef CONFIG_SMP
2510	rq->idle_balance = idle_cpu(cpu);
2511	trigger_load_balance(rq);
2512#endif
2513	rq_last_tick_reset(rq);
2514}
2515
2516#ifdef CONFIG_NO_HZ_FULL
2517/**
2518 * scheduler_tick_max_deferment
2519 *
2520 * Keep at least one tick per second when a single
2521 * active task is running because the scheduler doesn't
2522 * yet completely support full dynticks environment.
2523 *
2524 * This makes sure that uptime, CFS vruntime, load
2525 * balancing, etc... continue to move forward, even
2526 * with a very low granularity.
2527 *
2528 * Return: Maximum deferment in nanoseconds.
2529 */
2530u64 scheduler_tick_max_deferment(void)
2531{
2532	struct rq *rq = this_rq();
2533	unsigned long next, now = ACCESS_ONCE(jiffies);
2534
2535	next = rq->last_sched_tick + HZ;
2536
2537	if (time_before_eq(next, now))
2538		return 0;
2539
2540	return jiffies_to_nsecs(next - now);
2541}
2542#endif
2543
2544notrace unsigned long get_parent_ip(unsigned long addr)
2545{
2546	if (in_lock_functions(addr)) {
2547		addr = CALLER_ADDR2;
2548		if (in_lock_functions(addr))
2549			addr = CALLER_ADDR3;
2550	}
2551	return addr;
2552}
2553
2554#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2555				defined(CONFIG_PREEMPT_TRACER))
2556
2557void preempt_count_add(int val)
2558{
2559#ifdef CONFIG_DEBUG_PREEMPT
2560	/*
2561	 * Underflow?
2562	 */
2563	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2564		return;
2565#endif
2566	__preempt_count_add(val);
2567#ifdef CONFIG_DEBUG_PREEMPT
2568	/*
2569	 * Spinlock count overflowing soon?
2570	 */
2571	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2572				PREEMPT_MASK - 10);
2573#endif
2574	if (preempt_count() == val) {
2575		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2576#ifdef CONFIG_DEBUG_PREEMPT
2577		current->preempt_disable_ip = ip;
2578#endif
2579		trace_preempt_off(CALLER_ADDR0, ip);
2580	}
2581}
2582EXPORT_SYMBOL(preempt_count_add);
2583NOKPROBE_SYMBOL(preempt_count_add);
2584
2585void preempt_count_sub(int val)
2586{
2587#ifdef CONFIG_DEBUG_PREEMPT
2588	/*
2589	 * Underflow?
2590	 */
2591	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2592		return;
2593	/*
2594	 * Is the spinlock portion underflowing?
2595	 */
2596	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2597			!(preempt_count() & PREEMPT_MASK)))
2598		return;
2599#endif
2600
2601	if (preempt_count() == val)
2602		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2603	__preempt_count_sub(val);
2604}
2605EXPORT_SYMBOL(preempt_count_sub);
2606NOKPROBE_SYMBOL(preempt_count_sub);
2607
2608#endif
2609
2610/*
2611 * Print scheduling while atomic bug:
2612 */
2613static noinline void __schedule_bug(struct task_struct *prev)
2614{
2615	if (oops_in_progress)
2616		return;
2617
2618	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2619		prev->comm, prev->pid, preempt_count());
2620
2621	debug_show_held_locks(prev);
2622	print_modules();
2623	if (irqs_disabled())
2624		print_irqtrace_events(prev);
2625#ifdef CONFIG_DEBUG_PREEMPT
2626	if (in_atomic_preempt_off()) {
2627		pr_err("Preemption disabled at:");
2628		print_ip_sym(current->preempt_disable_ip);
2629		pr_cont("\n");
2630	}
2631#endif
2632	dump_stack();
2633	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2634}
2635
2636/*
2637 * Various schedule()-time debugging checks and statistics:
2638 */
2639static inline void schedule_debug(struct task_struct *prev)
2640{
2641	/*
2642	 * Test if we are atomic. Since do_exit() needs to call into
2643	 * schedule() atomically, we ignore that path. Otherwise whine
2644	 * if we are scheduling when we should not.
2645	 */
2646	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2647		__schedule_bug(prev);
2648	rcu_sleep_check();
2649
2650	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2651
2652	schedstat_inc(this_rq(), sched_count);
2653}
2654
2655/*
2656 * Pick up the highest-prio task:
2657 */
2658static inline struct task_struct *
2659pick_next_task(struct rq *rq, struct task_struct *prev)
2660{
2661	const struct sched_class *class = &fair_sched_class;
2662	struct task_struct *p;
2663
2664	/*
2665	 * Optimization: we know that if all tasks are in
2666	 * the fair class we can call that function directly:
2667	 */
2668	if (likely(prev->sched_class == class &&
2669		   rq->nr_running == rq->cfs.h_nr_running)) {
2670		p = fair_sched_class.pick_next_task(rq, prev);
2671		if (unlikely(p == RETRY_TASK))
2672			goto again;
2673
2674		/* assumes fair_sched_class->next == idle_sched_class */
2675		if (unlikely(!p))
2676			p = idle_sched_class.pick_next_task(rq, prev);
2677
2678		return p;
2679	}
2680
2681again:
2682	for_each_class(class) {
2683		p = class->pick_next_task(rq, prev);
2684		if (p) {
2685			if (unlikely(p == RETRY_TASK))
2686				goto again;
2687			return p;
2688		}
2689	}
2690
2691	BUG(); /* the idle class will always have a runnable task */
2692}
2693
2694/*
2695 * __schedule() is the main scheduler function.
2696 *
2697 * The main means of driving the scheduler and thus entering this function are:
2698 *
2699 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2700 *
2701 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2702 *      paths. For example, see arch/x86/entry_64.S.
2703 *
2704 *      To drive preemption between tasks, the scheduler sets the flag in timer
2705 *      interrupt handler scheduler_tick().
2706 *
2707 *   3. Wakeups don't really cause entry into schedule(). They add a
2708 *      task to the run-queue and that's it.
2709 *
2710 *      Now, if the new task added to the run-queue preempts the current
2711 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2712 *      called on the nearest possible occasion:
2713 *
2714 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2715 *
2716 *         - in syscall or exception context, at the next outmost
2717 *           preempt_enable(). (this might be as soon as the wake_up()'s
2718 *           spin_unlock()!)
2719 *
2720 *         - in IRQ context, return from interrupt-handler to
2721 *           preemptible context
2722 *
2723 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2724 *         then at the next:
2725 *
2726 *          - cond_resched() call
2727 *          - explicit schedule() call
2728 *          - return from syscall or exception to user-space
2729 *          - return from interrupt-handler to user-space
2730 */
2731static void __sched __schedule(void)
2732{
2733	struct task_struct *prev, *next;
2734	unsigned long *switch_count;
2735	struct rq *rq;
2736	int cpu;
2737
2738need_resched:
2739	preempt_disable();
2740	cpu = smp_processor_id();
2741	rq = cpu_rq(cpu);
2742	rcu_note_context_switch(cpu);
2743	prev = rq->curr;
2744
2745	schedule_debug(prev);
2746
2747	if (sched_feat(HRTICK))
2748		hrtick_clear(rq);
2749
2750	/*
2751	 * Make sure that signal_pending_state()->signal_pending() below
2752	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2753	 * done by the caller to avoid the race with signal_wake_up().
2754	 */
2755	smp_mb__before_spinlock();
2756	raw_spin_lock_irq(&rq->lock);
2757
2758	switch_count = &prev->nivcsw;
2759	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2760		if (unlikely(signal_pending_state(prev->state, prev))) {
2761			prev->state = TASK_RUNNING;
2762		} else {
2763			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764			prev->on_rq = 0;
2765
2766			/*
2767			 * If a worker went to sleep, notify and ask workqueue
2768			 * whether it wants to wake up a task to maintain
2769			 * concurrency.
2770			 */
2771			if (prev->flags & PF_WQ_WORKER) {
2772				struct task_struct *to_wakeup;
2773
2774				to_wakeup = wq_worker_sleeping(prev, cpu);
2775				if (to_wakeup)
2776					try_to_wake_up_local(to_wakeup);
2777			}
2778		}
2779		switch_count = &prev->nvcsw;
2780	}
2781
2782	if (prev->on_rq || rq->skip_clock_update < 0)
2783		update_rq_clock(rq);
2784
2785	next = pick_next_task(rq, prev);
2786	clear_tsk_need_resched(prev);
2787	clear_preempt_need_resched();
2788	rq->skip_clock_update = 0;
2789
2790	if (likely(prev != next)) {
2791		rq->nr_switches++;
2792		rq->curr = next;
2793		++*switch_count;
2794
2795		context_switch(rq, prev, next); /* unlocks the rq */
2796		/*
2797		 * The context switch have flipped the stack from under us
2798		 * and restored the local variables which were saved when
2799		 * this task called schedule() in the past. prev == current
2800		 * is still correct, but it can be moved to another cpu/rq.
2801		 */
2802		cpu = smp_processor_id();
2803		rq = cpu_rq(cpu);
2804	} else
2805		raw_spin_unlock_irq(&rq->lock);
2806
2807	post_schedule(rq);
2808
2809	sched_preempt_enable_no_resched();
2810	if (need_resched())
2811		goto need_resched;
2812}
2813
2814static inline void sched_submit_work(struct task_struct *tsk)
2815{
2816	if (!tsk->state || tsk_is_pi_blocked(tsk))
2817		return;
2818	/*
2819	 * If we are going to sleep and we have plugged IO queued,
2820	 * make sure to submit it to avoid deadlocks.
2821	 */
2822	if (blk_needs_flush_plug(tsk))
2823		blk_schedule_flush_plug(tsk);
2824}
2825
2826asmlinkage __visible void __sched schedule(void)
2827{
2828	struct task_struct *tsk = current;
2829
2830	sched_submit_work(tsk);
2831	__schedule();
2832}
2833EXPORT_SYMBOL(schedule);
2834
2835#ifdef CONFIG_CONTEXT_TRACKING
2836asmlinkage __visible void __sched schedule_user(void)
2837{
2838	/*
2839	 * If we come here after a random call to set_need_resched(),
2840	 * or we have been woken up remotely but the IPI has not yet arrived,
2841	 * we haven't yet exited the RCU idle mode. Do it here manually until
2842	 * we find a better solution.
2843	 */
2844	user_exit();
2845	schedule();
2846	user_enter();
2847}
2848#endif
2849
2850/**
2851 * schedule_preempt_disabled - called with preemption disabled
2852 *
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2854 */
2855void __sched schedule_preempt_disabled(void)
2856{
2857	sched_preempt_enable_no_resched();
2858	schedule();
2859	preempt_disable();
2860}
2861
2862#ifdef CONFIG_PREEMPT
2863/*
2864 * this is the entry point to schedule() from in-kernel preemption
2865 * off of preempt_enable. Kernel preemptions off return from interrupt
2866 * occur there and call schedule directly.
2867 */
2868asmlinkage __visible void __sched notrace preempt_schedule(void)
2869{
2870	/*
2871	 * If there is a non-zero preempt_count or interrupts are disabled,
2872	 * we do not want to preempt the current task. Just return..
2873	 */
2874	if (likely(!preemptible()))
2875		return;
2876
2877	do {
2878		__preempt_count_add(PREEMPT_ACTIVE);
2879		__schedule();
2880		__preempt_count_sub(PREEMPT_ACTIVE);
2881
2882		/*
2883		 * Check again in case we missed a preemption opportunity
2884		 * between schedule and now.
2885		 */
2886		barrier();
2887	} while (need_resched());
2888}
2889NOKPROBE_SYMBOL(preempt_schedule);
2890EXPORT_SYMBOL(preempt_schedule);
2891#endif /* CONFIG_PREEMPT */
2892
2893/*
2894 * this is the entry point to schedule() from kernel preemption
2895 * off of irq context.
2896 * Note, that this is called and return with irqs disabled. This will
2897 * protect us against recursive calling from irq.
2898 */
2899asmlinkage __visible void __sched preempt_schedule_irq(void)
2900{
2901	enum ctx_state prev_state;
2902
2903	/* Catch callers which need to be fixed */
2904	BUG_ON(preempt_count() || !irqs_disabled());
2905
2906	prev_state = exception_enter();
2907
2908	do {
2909		__preempt_count_add(PREEMPT_ACTIVE);
2910		local_irq_enable();
2911		__schedule();
2912		local_irq_disable();
2913		__preempt_count_sub(PREEMPT_ACTIVE);
2914
2915		/*
2916		 * Check again in case we missed a preemption opportunity
2917		 * between schedule and now.
2918		 */
2919		barrier();
2920	} while (need_resched());
2921
2922	exception_exit(prev_state);
2923}
2924
2925int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2926			  void *key)
2927{
2928	return try_to_wake_up(curr->private, mode, wake_flags);
2929}
2930EXPORT_SYMBOL(default_wake_function);
2931
2932#ifdef CONFIG_RT_MUTEXES
2933
2934/*
2935 * rt_mutex_setprio - set the current priority of a task
2936 * @p: task
2937 * @prio: prio value (kernel-internal form)
2938 *
2939 * This function changes the 'effective' priority of a task. It does
2940 * not touch ->normal_prio like __setscheduler().
2941 *
2942 * Used by the rt_mutex code to implement priority inheritance
2943 * logic. Call site only calls if the priority of the task changed.
2944 */
2945void rt_mutex_setprio(struct task_struct *p, int prio)
2946{
2947	int oldprio, on_rq, running, enqueue_flag = 0;
2948	struct rq *rq;
2949	const struct sched_class *prev_class;
2950
2951	BUG_ON(prio > MAX_PRIO);
2952
2953	rq = __task_rq_lock(p);
2954
2955	/*
2956	 * Idle task boosting is a nono in general. There is one
2957	 * exception, when PREEMPT_RT and NOHZ is active:
2958	 *
2959	 * The idle task calls get_next_timer_interrupt() and holds
2960	 * the timer wheel base->lock on the CPU and another CPU wants
2961	 * to access the timer (probably to cancel it). We can safely
2962	 * ignore the boosting request, as the idle CPU runs this code
2963	 * with interrupts disabled and will complete the lock
2964	 * protected section without being interrupted. So there is no
2965	 * real need to boost.
2966	 */
2967	if (unlikely(p == rq->idle)) {
2968		WARN_ON(p != rq->curr);
2969		WARN_ON(p->pi_blocked_on);
2970		goto out_unlock;
2971	}
2972
2973	trace_sched_pi_setprio(p, prio);
2974	p->pi_top_task = rt_mutex_get_top_task(p);
2975	oldprio = p->prio;
2976	prev_class = p->sched_class;
2977	on_rq = p->on_rq;
2978	running = task_current(rq, p);
2979	if (on_rq)
2980		dequeue_task(rq, p, 0);
2981	if (running)
2982		p->sched_class->put_prev_task(rq, p);
2983
2984	/*
2985	 * Boosting condition are:
2986	 * 1. -rt task is running and holds mutex A
2987	 *      --> -dl task blocks on mutex A
2988	 *
2989	 * 2. -dl task is running and holds mutex A
2990	 *      --> -dl task blocks on mutex A and could preempt the
2991	 *          running task
2992	 */
2993	if (dl_prio(prio)) {
2994		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2995			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2996			p->dl.dl_boosted = 1;
2997			p->dl.dl_throttled = 0;
2998			enqueue_flag = ENQUEUE_REPLENISH;
2999		} else
3000			p->dl.dl_boosted = 0;
3001		p->sched_class = &dl_sched_class;
3002	} else if (rt_prio(prio)) {
3003		if (dl_prio(oldprio))
3004			p->dl.dl_boosted = 0;
3005		if (oldprio < prio)
3006			enqueue_flag = ENQUEUE_HEAD;
3007		p->sched_class = &rt_sched_class;
3008	} else {
3009		if (dl_prio(oldprio))
3010			p->dl.dl_boosted = 0;
3011		p->sched_class = &fair_sched_class;
3012	}
3013
3014	p->prio = prio;
3015
3016	if (running)
3017		p->sched_class->set_curr_task(rq);
3018	if (on_rq)
3019		enqueue_task(rq, p, enqueue_flag);
3020
3021	check_class_changed(rq, p, prev_class, oldprio);
3022out_unlock:
3023	__task_rq_unlock(rq);
3024}
3025#endif
3026
3027void set_user_nice(struct task_struct *p, long nice)
3028{
3029	int old_prio, delta, on_rq;
3030	unsigned long flags;
3031	struct rq *rq;
3032
3033	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3034		return;
3035	/*
3036	 * We have to be careful, if called from sys_setpriority(),
3037	 * the task might be in the middle of scheduling on another CPU.
3038	 */
3039	rq = task_rq_lock(p, &flags);
3040	/*
3041	 * The RT priorities are set via sched_setscheduler(), but we still
3042	 * allow the 'normal' nice value to be set - but as expected
3043	 * it wont have any effect on scheduling until the task is
3044	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3045	 */
3046	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3047		p->static_prio = NICE_TO_PRIO(nice);
3048		goto out_unlock;
3049	}
3050	on_rq = p->on_rq;
3051	if (on_rq)
3052		dequeue_task(rq, p, 0);
3053
3054	p->static_prio = NICE_TO_PRIO(nice);
3055	set_load_weight(p);
3056	old_prio = p->prio;
3057	p->prio = effective_prio(p);
3058	delta = p->prio - old_prio;
3059
3060	if (on_rq) {
3061		enqueue_task(rq, p, 0);
3062		/*
3063		 * If the task increased its priority or is running and
3064		 * lowered its priority, then reschedule its CPU:
3065		 */
3066		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3067			resched_task(rq->curr);
3068	}
3069out_unlock:
3070	task_rq_unlock(rq, p, &flags);
3071}
3072EXPORT_SYMBOL(set_user_nice);
3073
3074/*
3075 * can_nice - check if a task can reduce its nice value
3076 * @p: task
3077 * @nice: nice value
3078 */
3079int can_nice(const struct task_struct *p, const int nice)
3080{
3081	/* convert nice value [19,-20] to rlimit style value [1,40] */
3082	int nice_rlim = nice_to_rlimit(nice);
3083
3084	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3085		capable(CAP_SYS_NICE));
3086}
3087
3088#ifdef __ARCH_WANT_SYS_NICE
3089
3090/*
3091 * sys_nice - change the priority of the current process.
3092 * @increment: priority increment
3093 *
3094 * sys_setpriority is a more generic, but much slower function that
3095 * does similar things.
3096 */
3097SYSCALL_DEFINE1(nice, int, increment)
3098{
3099	long nice, retval;
3100
3101	/*
3102	 * Setpriority might change our priority at the same moment.
3103	 * We don't have to worry. Conceptually one call occurs first
3104	 * and we have a single winner.
3105	 */
3106	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3107	nice = task_nice(current) + increment;
3108
3109	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3110	if (increment < 0 && !can_nice(current, nice))
3111		return -EPERM;
3112
3113	retval = security_task_setnice(current, nice);
3114	if (retval)
3115		return retval;
3116
3117	set_user_nice(current, nice);
3118	return 0;
3119}
3120
3121#endif
3122
3123/**
3124 * task_prio - return the priority value of a given task.
3125 * @p: the task in question.
3126 *
3127 * Return: The priority value as seen by users in /proc.
3128 * RT tasks are offset by -200. Normal tasks are centered
3129 * around 0, value goes from -16 to +15.
3130 */
3131int task_prio(const struct task_struct *p)
3132{
3133	return p->prio - MAX_RT_PRIO;
3134}
3135
3136/**
3137 * idle_cpu - is a given cpu idle currently?
3138 * @cpu: the processor in question.
3139 *
3140 * Return: 1 if the CPU is currently idle. 0 otherwise.
3141 */
3142int idle_cpu(int cpu)
3143{
3144	struct rq *rq = cpu_rq(cpu);
3145
3146	if (rq->curr != rq->idle)
3147		return 0;
3148
3149	if (rq->nr_running)
3150		return 0;
3151
3152#ifdef CONFIG_SMP
3153	if (!llist_empty(&rq->wake_list))
3154		return 0;
3155#endif
3156
3157	return 1;
3158}
3159
3160/**
3161 * idle_task - return the idle task for a given cpu.
3162 * @cpu: the processor in question.
3163 *
3164 * Return: The idle task for the cpu @cpu.
3165 */
3166struct task_struct *idle_task(int cpu)
3167{
3168	return cpu_rq(cpu)->idle;
3169}
3170
3171/**
3172 * find_process_by_pid - find a process with a matching PID value.
3173 * @pid: the pid in question.
3174 *
3175 * The task of @pid, if found. %NULL otherwise.
3176 */
3177static struct task_struct *find_process_by_pid(pid_t pid)
3178{
3179	return pid ? find_task_by_vpid(pid) : current;
3180}
3181
3182/*
3183 * This function initializes the sched_dl_entity of a newly becoming
3184 * SCHED_DEADLINE task.
3185 *
3186 * Only the static values are considered here, the actual runtime and the
3187 * absolute deadline will be properly calculated when the task is enqueued
3188 * for the first time with its new policy.
3189 */
3190static void
3191__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3192{
3193	struct sched_dl_entity *dl_se = &p->dl;
3194
3195	init_dl_task_timer(dl_se);
3196	dl_se->dl_runtime = attr->sched_runtime;
3197	dl_se->dl_deadline = attr->sched_deadline;
3198	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3199	dl_se->flags = attr->sched_flags;
3200	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3201	dl_se->dl_throttled = 0;
3202	dl_se->dl_new = 1;
3203	dl_se->dl_yielded = 0;
3204}
3205
3206static void __setscheduler_params(struct task_struct *p,
3207		const struct sched_attr *attr)
3208{
3209	int policy = attr->sched_policy;
3210
3211	if (policy == -1) /* setparam */
3212		policy = p->policy;
3213
3214	p->policy = policy;
3215
3216	if (dl_policy(policy))
3217		__setparam_dl(p, attr);
3218	else if (fair_policy(policy))
3219		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3220
3221	/*
3222	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3223	 * !rt_policy. Always setting this ensures that things like
3224	 * getparam()/getattr() don't report silly values for !rt tasks.
3225	 */
3226	p->rt_priority = attr->sched_priority;
3227	p->normal_prio = normal_prio(p);
3228	set_load_weight(p);
3229}
3230
3231/* Actually do priority change: must hold pi & rq lock. */
3232static void __setscheduler(struct rq *rq, struct task_struct *p,
3233			   const struct sched_attr *attr)
3234{
3235	__setscheduler_params(p, attr);
3236
3237	/*
3238	 * If we get here, there was no pi waiters boosting the
3239	 * task. It is safe to use the normal prio.
3240	 */
3241	p->prio = normal_prio(p);
3242
3243	if (dl_prio(p->prio))
3244		p->sched_class = &dl_sched_class;
3245	else if (rt_prio(p->prio))
3246		p->sched_class = &rt_sched_class;
3247	else
3248		p->sched_class = &fair_sched_class;
3249}
3250
3251static void
3252__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3253{
3254	struct sched_dl_entity *dl_se = &p->dl;
3255
3256	attr->sched_priority = p->rt_priority;
3257	attr->sched_runtime = dl_se->dl_runtime;
3258	attr->sched_deadline = dl_se->dl_deadline;
3259	attr->sched_period = dl_se->dl_period;
3260	attr->sched_flags = dl_se->flags;
3261}
3262
3263/*
3264 * This function validates the new parameters of a -deadline task.
3265 * We ask for the deadline not being zero, and greater or equal
3266 * than the runtime, as well as the period of being zero or
3267 * greater than deadline. Furthermore, we have to be sure that
3268 * user parameters are above the internal resolution of 1us (we
3269 * check sched_runtime only since it is always the smaller one) and
3270 * below 2^63 ns (we have to check both sched_deadline and
3271 * sched_period, as the latter can be zero).
3272 */
3273static bool
3274__checkparam_dl(const struct sched_attr *attr)
3275{
3276	/* deadline != 0 */
3277	if (attr->sched_deadline == 0)
3278		return false;
3279
3280	/*
3281	 * Since we truncate DL_SCALE bits, make sure we're at least
3282	 * that big.
3283	 */
3284	if (attr->sched_runtime < (1ULL << DL_SCALE))
3285		return false;
3286
3287	/*
3288	 * Since we use the MSB for wrap-around and sign issues, make
3289	 * sure it's not set (mind that period can be equal to zero).
3290	 */
3291	if (attr->sched_deadline & (1ULL << 63) ||
3292	    attr->sched_period & (1ULL << 63))
3293		return false;
3294
3295	/* runtime <= deadline <= period (if period != 0) */
3296	if ((attr->sched_period != 0 &&
3297	     attr->sched_period < attr->sched_deadline) ||
3298	    attr->sched_deadline < attr->sched_runtime)
3299		return false;
3300
3301	return true;
3302}
3303
3304/*
3305 * check the target process has a UID that matches the current process's
3306 */
3307static bool check_same_owner(struct task_struct *p)
3308{
3309	const struct cred *cred = current_cred(), *pcred;
3310	bool match;
3311
3312	rcu_read_lock();
3313	pcred = __task_cred(p);
3314	match = (uid_eq(cred->euid, pcred->euid) ||
3315		 uid_eq(cred->euid, pcred->uid));
3316	rcu_read_unlock();
3317	return match;
3318}
3319
3320static int __sched_setscheduler(struct task_struct *p,
3321				const struct sched_attr *attr,
3322				bool user)
3323{
3324	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3325		      MAX_RT_PRIO - 1 - attr->sched_priority;
3326	int retval, oldprio, oldpolicy = -1, on_rq, running;
3327	int policy = attr->sched_policy;
3328	unsigned long flags;
3329	const struct sched_class *prev_class;
3330	struct rq *rq;
3331	int reset_on_fork;
3332
3333	/* may grab non-irq protected spin_locks */
3334	BUG_ON(in_interrupt());
3335recheck:
3336	/* double check policy once rq lock held */
3337	if (policy < 0) {
3338		reset_on_fork = p->sched_reset_on_fork;
3339		policy = oldpolicy = p->policy;
3340	} else {
3341		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3342
3343		if (policy != SCHED_DEADLINE &&
3344				policy != SCHED_FIFO && policy != SCHED_RR &&
3345				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3346				policy != SCHED_IDLE)
3347			return -EINVAL;
3348	}
3349
3350	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3351		return -EINVAL;
3352
3353	/*
3354	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3355	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3356	 * SCHED_BATCH and SCHED_IDLE is 0.
3357	 */
3358	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3359	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3360		return -EINVAL;
3361	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3362	    (rt_policy(policy) != (attr->sched_priority != 0)))
3363		return -EINVAL;
3364
3365	/*
3366	 * Allow unprivileged RT tasks to decrease priority:
3367	 */
3368	if (user && !capable(CAP_SYS_NICE)) {
3369		if (fair_policy(policy)) {
3370			if (attr->sched_nice < task_nice(p) &&
3371			    !can_nice(p, attr->sched_nice))
3372				return -EPERM;
3373		}
3374
3375		if (rt_policy(policy)) {
3376			unsigned long rlim_rtprio =
3377					task_rlimit(p, RLIMIT_RTPRIO);
3378
3379			/* can't set/change the rt policy */
3380			if (policy != p->policy && !rlim_rtprio)
3381				return -EPERM;
3382
3383			/* can't increase priority */
3384			if (attr->sched_priority > p->rt_priority &&
3385			    attr->sched_priority > rlim_rtprio)
3386				return -EPERM;
3387		}
3388
3389		 /*
3390		  * Can't set/change SCHED_DEADLINE policy at all for now
3391		  * (safest behavior); in the future we would like to allow
3392		  * unprivileged DL tasks to increase their relative deadline
3393		  * or reduce their runtime (both ways reducing utilization)
3394		  */
3395		if (dl_policy(policy))
3396			return -EPERM;
3397
3398		/*
3399		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3400		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3401		 */
3402		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3403			if (!can_nice(p, task_nice(p)))
3404				return -EPERM;
3405		}
3406
3407		/* can't change other user's priorities */
3408		if (!check_same_owner(p))
3409			return -EPERM;
3410
3411		/* Normal users shall not reset the sched_reset_on_fork flag */
3412		if (p->sched_reset_on_fork && !reset_on_fork)
3413			return -EPERM;
3414	}
3415
3416	if (user) {
3417		retval = security_task_setscheduler(p);
3418		if (retval)
3419			return retval;
3420	}
3421
3422	/*
3423	 * make sure no PI-waiters arrive (or leave) while we are
3424	 * changing the priority of the task:
3425	 *
3426	 * To be able to change p->policy safely, the appropriate
3427	 * runqueue lock must be held.
3428	 */
3429	rq = task_rq_lock(p, &flags);
3430
3431	/*
3432	 * Changing the policy of the stop threads its a very bad idea
3433	 */
3434	if (p == rq->stop) {
3435		task_rq_unlock(rq, p, &flags);
3436		return -EINVAL;
3437	}
3438
3439	/*
3440	 * If not changing anything there's no need to proceed further,
3441	 * but store a possible modification of reset_on_fork.
3442	 */
3443	if (unlikely(policy == p->policy)) {
3444		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3445			goto change;
3446		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3447			goto change;
3448		if (dl_policy(policy))
3449			goto change;
3450
3451		p->sched_reset_on_fork = reset_on_fork;
3452		task_rq_unlock(rq, p, &flags);
3453		return 0;
3454	}
3455change:
3456
3457	if (user) {
3458#ifdef CONFIG_RT_GROUP_SCHED
3459		/*
3460		 * Do not allow realtime tasks into groups that have no runtime
3461		 * assigned.
3462		 */
3463		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3464				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3465				!task_group_is_autogroup(task_group(p))) {
3466			task_rq_unlock(rq, p, &flags);
3467			return -EPERM;
3468		}
3469#endif
3470#ifdef CONFIG_SMP
3471		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3472			cpumask_t *span = rq->rd->span;
3473
3474			/*
3475			 * Don't allow tasks with an affinity mask smaller than
3476			 * the entire root_domain to become SCHED_DEADLINE. We
3477			 * will also fail if there's no bandwidth available.
3478			 */
3479			if (!cpumask_subset(span, &p->cpus_allowed) ||
3480			    rq->rd->dl_bw.bw == 0) {
3481				task_rq_unlock(rq, p, &flags);
3482				return -EPERM;
3483			}
3484		}
3485#endif
3486	}
3487
3488	/* recheck policy now with rq lock held */
3489	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3490		policy = oldpolicy = -1;
3491		task_rq_unlock(rq, p, &flags);
3492		goto recheck;
3493	}
3494
3495	/*
3496	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3497	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3498	 * is available.
3499	 */
3500	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3501		task_rq_unlock(rq, p, &flags);
3502		return -EBUSY;
3503	}
3504
3505	p->sched_reset_on_fork = reset_on_fork;
3506	oldprio = p->prio;
3507
3508	/*
3509	 * Special case for priority boosted tasks.
3510	 *
3511	 * If the new priority is lower or equal (user space view)
3512	 * than the current (boosted) priority, we just store the new
3513	 * normal parameters and do not touch the scheduler class and
3514	 * the runqueue. This will be done when the task deboost
3515	 * itself.
3516	 */
3517	if (rt_mutex_check_prio(p, newprio)) {
3518		__setscheduler_params(p, attr);
3519		task_rq_unlock(rq, p, &flags);
3520		return 0;
3521	}
3522
3523	on_rq = p->on_rq;
3524	running = task_current(rq, p);
3525	if (on_rq)
3526		dequeue_task(rq, p, 0);
3527	if (running)
3528		p->sched_class->put_prev_task(rq, p);
3529
3530	prev_class = p->sched_class;
3531	__setscheduler(rq, p, attr);
3532
3533	if (running)
3534		p->sched_class->set_curr_task(rq);
3535	if (on_rq) {
3536		/*
3537		 * We enqueue to tail when the priority of a task is
3538		 * increased (user space view).
3539		 */
3540		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3541	}
3542
3543	check_class_changed(rq, p, prev_class, oldprio);
3544	task_rq_unlock(rq, p, &flags);
3545
3546	rt_mutex_adjust_pi(p);
3547
3548	return 0;
3549}
3550
3551static int _sched_setscheduler(struct task_struct *p, int policy,
3552			       const struct sched_param *param, bool check)
3553{
3554	struct sched_attr attr = {
3555		.sched_policy   = policy,
3556		.sched_priority = param->sched_priority,
3557		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3558	};
3559
3560	/*
3561	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3562	 */
3563	if (policy & SCHED_RESET_ON_FORK) {
3564		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3565		policy &= ~SCHED_RESET_ON_FORK;
3566		attr.sched_policy = policy;
3567	}
3568
3569	return __sched_setscheduler(p, &attr, check);
3570}
3571/**
3572 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3573 * @p: the task in question.
3574 * @policy: new policy.
3575 * @param: structure containing the new RT priority.
3576 *
3577 * Return: 0 on success. An error code otherwise.
3578 *
3579 * NOTE that the task may be already dead.
3580 */
3581int sched_setscheduler(struct task_struct *p, int policy,
3582		       const struct sched_param *param)
3583{
3584	return _sched_setscheduler(p, policy, param, true);
3585}
3586EXPORT_SYMBOL_GPL(sched_setscheduler);
3587
3588int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3589{
3590	return __sched_setscheduler(p, attr, true);
3591}
3592EXPORT_SYMBOL_GPL(sched_setattr);
3593
3594/**
3595 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3596 * @p: the task in question.
3597 * @policy: new policy.
3598 * @param: structure containing the new RT priority.
3599 *
3600 * Just like sched_setscheduler, only don't bother checking if the
3601 * current context has permission.  For example, this is needed in
3602 * stop_machine(): we create temporary high priority worker threads,
3603 * but our caller might not have that capability.
3604 *
3605 * Return: 0 on success. An error code otherwise.
3606 */
3607int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3608			       const struct sched_param *param)
3609{
3610	return _sched_setscheduler(p, policy, param, false);
3611}
3612
3613static int
3614do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3615{
3616	struct sched_param lparam;
3617	struct task_struct *p;
3618	int retval;
3619
3620	if (!param || pid < 0)
3621		return -EINVAL;
3622	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3623		return -EFAULT;
3624
3625	rcu_read_lock();
3626	retval = -ESRCH;
3627	p = find_process_by_pid(pid);
3628	if (p != NULL)
3629		retval = sched_setscheduler(p, policy, &lparam);
3630	rcu_read_unlock();
3631
3632	return retval;
3633}
3634
3635/*
3636 * Mimics kernel/events/core.c perf_copy_attr().
3637 */
3638static int sched_copy_attr(struct sched_attr __user *uattr,
3639			   struct sched_attr *attr)
3640{
3641	u32 size;
3642	int ret;
3643
3644	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3645		return -EFAULT;
3646
3647	/*
3648	 * zero the full structure, so that a short copy will be nice.
3649	 */
3650	memset(attr, 0, sizeof(*attr));
3651
3652	ret = get_user(size, &uattr->size);
3653	if (ret)
3654		return ret;
3655
3656	if (size > PAGE_SIZE)	/* silly large */
3657		goto err_size;
3658
3659	if (!size)		/* abi compat */
3660		size = SCHED_ATTR_SIZE_VER0;
3661
3662	if (size < SCHED_ATTR_SIZE_VER0)
3663		goto err_size;
3664
3665	/*
3666	 * If we're handed a bigger struct than we know of,
3667	 * ensure all the unknown bits are 0 - i.e. new
3668	 * user-space does not rely on any kernel feature
3669	 * extensions we dont know about yet.
3670	 */
3671	if (size > sizeof(*attr)) {
3672		unsigned char __user *addr;
3673		unsigned char __user *end;
3674		unsigned char val;
3675
3676		addr = (void __user *)uattr + sizeof(*attr);
3677		end  = (void __user *)uattr + size;
3678
3679		for (; addr < end; addr++) {
3680			ret = get_user(val, addr);
3681			if (ret)
3682				return ret;
3683			if (val)
3684				goto err_size;
3685		}
3686		size = sizeof(*attr);
3687	}
3688
3689	ret = copy_from_user(attr, uattr, size);
3690	if (ret)
3691		return -EFAULT;
3692
3693	/*
3694	 * XXX: do we want to be lenient like existing syscalls; or do we want
3695	 * to be strict and return an error on out-of-bounds values?
3696	 */
3697	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3698
3699	return 0;
3700
3701err_size:
3702	put_user(sizeof(*attr), &uattr->size);
3703	return -E2BIG;
3704}
3705
3706/**
3707 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3708 * @pid: the pid in question.
3709 * @policy: new policy.
3710 * @param: structure containing the new RT priority.
3711 *
3712 * Return: 0 on success. An error code otherwise.
3713 */
3714SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3715		struct sched_param __user *, param)
3716{
3717	/* negative values for policy are not valid */
3718	if (policy < 0)
3719		return -EINVAL;
3720
3721	return do_sched_setscheduler(pid, policy, param);
3722}
3723
3724/**
3725 * sys_sched_setparam - set/change the RT priority of a thread
3726 * @pid: the pid in question.
3727 * @param: structure containing the new RT priority.
3728 *
3729 * Return: 0 on success. An error code otherwise.
3730 */
3731SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3732{
3733	return do_sched_setscheduler(pid, -1, param);
3734}
3735
3736/**
3737 * sys_sched_setattr - same as above, but with extended sched_attr
3738 * @pid: the pid in question.
3739 * @uattr: structure containing the extended parameters.
3740 * @flags: for future extension.
3741 */
3742SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3743			       unsigned int, flags)
3744{
3745	struct sched_attr attr;
3746	struct task_struct *p;
3747	int retval;
3748
3749	if (!uattr || pid < 0 || flags)
3750		return -EINVAL;
3751
3752	retval = sched_copy_attr(uattr, &attr);
3753	if (retval)
3754		return retval;
3755
3756	if ((int)attr.sched_policy < 0)
3757		return -EINVAL;
3758
3759	rcu_read_lock();
3760	retval = -ESRCH;
3761	p = find_process_by_pid(pid);
3762	if (p != NULL)
3763		retval = sched_setattr(p, &attr);
3764	rcu_read_unlock();
3765
3766	return retval;
3767}
3768
3769/**
3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771 * @pid: the pid in question.
3772 *
3773 * Return: On success, the policy of the thread. Otherwise, a negative error
3774 * code.
3775 */
3776SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3777{
3778	struct task_struct *p;
3779	int retval;
3780
3781	if (pid < 0)
3782		return -EINVAL;
3783
3784	retval = -ESRCH;
3785	rcu_read_lock();
3786	p = find_process_by_pid(pid);
3787	if (p) {
3788		retval = security_task_getscheduler(p);
3789		if (!retval)
3790			retval = p->policy
3791				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3792	}
3793	rcu_read_unlock();
3794	return retval;
3795}
3796
3797/**
3798 * sys_sched_getparam - get the RT priority of a thread
3799 * @pid: the pid in question.
3800 * @param: structure containing the RT priority.
3801 *
3802 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3803 * code.
3804 */
3805SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3806{
3807	struct sched_param lp = { .sched_priority = 0 };
3808	struct task_struct *p;
3809	int retval;
3810
3811	if (!param || pid < 0)
3812		return -EINVAL;
3813
3814	rcu_read_lock();
3815	p = find_process_by_pid(pid);
3816	retval = -ESRCH;
3817	if (!p)
3818		goto out_unlock;
3819
3820	retval = security_task_getscheduler(p);
3821	if (retval)
3822		goto out_unlock;
3823
3824	if (task_has_rt_policy(p))
3825		lp.sched_priority = p->rt_priority;
3826	rcu_read_unlock();
3827
3828	/*
3829	 * This one might sleep, we cannot do it with a spinlock held ...
3830	 */
3831	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3832
3833	return retval;
3834
3835out_unlock:
3836	rcu_read_unlock();
3837	return retval;
3838}
3839
3840static int sched_read_attr(struct sched_attr __user *uattr,
3841			   struct sched_attr *attr,
3842			   unsigned int usize)
3843{
3844	int ret;
3845
3846	if (!access_ok(VERIFY_WRITE, uattr, usize))
3847		return -EFAULT;
3848
3849	/*
3850	 * If we're handed a smaller struct than we know of,
3851	 * ensure all the unknown bits are 0 - i.e. old
3852	 * user-space does not get uncomplete information.
3853	 */
3854	if (usize < sizeof(*attr)) {
3855		unsigned char *addr;
3856		unsigned char *end;
3857
3858		addr = (void *)attr + usize;
3859		end  = (void *)attr + sizeof(*attr);
3860
3861		for (; addr < end; addr++) {
3862			if (*addr)
3863				return -EFBIG;
3864		}
3865
3866		attr->size = usize;
3867	}
3868
3869	ret = copy_to_user(uattr, attr, attr->size);
3870	if (ret)
3871		return -EFAULT;
3872
3873	return 0;
3874}
3875
3876/**
3877 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3878 * @pid: the pid in question.
3879 * @uattr: structure containing the extended parameters.
3880 * @size: sizeof(attr) for fwd/bwd comp.
3881 * @flags: for future extension.
3882 */
3883SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3884		unsigned int, size, unsigned int, flags)
3885{
3886	struct sched_attr attr = {
3887		.size = sizeof(struct sched_attr),
3888	};
3889	struct task_struct *p;
3890	int retval;
3891
3892	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3893	    size < SCHED_ATTR_SIZE_VER0 || flags)
3894		return -EINVAL;
3895
3896	rcu_read_lock();
3897	p = find_process_by_pid(pid);
3898	retval = -ESRCH;
3899	if (!p)
3900		goto out_unlock;
3901
3902	retval = security_task_getscheduler(p);
3903	if (retval)
3904		goto out_unlock;
3905
3906	attr.sched_policy = p->policy;
3907	if (p->sched_reset_on_fork)
3908		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3909	if (task_has_dl_policy(p))
3910		__getparam_dl(p, &attr);
3911	else if (task_has_rt_policy(p))
3912		attr.sched_priority = p->rt_priority;
3913	else
3914		attr.sched_nice = task_nice(p);
3915
3916	rcu_read_unlock();
3917
3918	retval = sched_read_attr(uattr, &attr, size);
3919	return retval;
3920
3921out_unlock:
3922	rcu_read_unlock();
3923	return retval;
3924}
3925
3926long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3927{
3928	cpumask_var_t cpus_allowed, new_mask;
3929	struct task_struct *p;
3930	int retval;
3931
3932	rcu_read_lock();
3933
3934	p = find_process_by_pid(pid);
3935	if (!p) {
3936		rcu_read_unlock();
3937		return -ESRCH;
3938	}
3939
3940	/* Prevent p going away */
3941	get_task_struct(p);
3942	rcu_read_unlock();
3943
3944	if (p->flags & PF_NO_SETAFFINITY) {
3945		retval = -EINVAL;
3946		goto out_put_task;
3947	}
3948	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3949		retval = -ENOMEM;
3950		goto out_put_task;
3951	}
3952	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3953		retval = -ENOMEM;
3954		goto out_free_cpus_allowed;
3955	}
3956	retval = -EPERM;
3957	if (!check_same_owner(p)) {
3958		rcu_read_lock();
3959		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3960			rcu_read_unlock();
3961			goto out_unlock;
3962		}
3963		rcu_read_unlock();
3964	}
3965
3966	retval = security_task_setscheduler(p);
3967	if (retval)
3968		goto out_unlock;
3969
3970
3971	cpuset_cpus_allowed(p, cpus_allowed);
3972	cpumask_and(new_mask, in_mask, cpus_allowed);
3973
3974	/*
3975	 * Since bandwidth control happens on root_domain basis,
3976	 * if admission test is enabled, we only admit -deadline
3977	 * tasks allowed to run on all the CPUs in the task's
3978	 * root_domain.
3979	 */
3980#ifdef CONFIG_SMP
3981	if (task_has_dl_policy(p)) {
3982		const struct cpumask *span = task_rq(p)->rd->span;
3983
3984		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3985			retval = -EBUSY;
3986			goto out_unlock;
3987		}
3988	}
3989#endif
3990again:
3991	retval = set_cpus_allowed_ptr(p, new_mask);
3992
3993	if (!retval) {
3994		cpuset_cpus_allowed(p, cpus_allowed);
3995		if (!cpumask_subset(new_mask, cpus_allowed)) {
3996			/*
3997			 * We must have raced with a concurrent cpuset
3998			 * update. Just reset the cpus_allowed to the
3999			 * cpuset's cpus_allowed
4000			 */
4001			cpumask_copy(new_mask, cpus_allowed);
4002			goto again;
4003		}
4004	}
4005out_unlock:
4006	free_cpumask_var(new_mask);
4007out_free_cpus_allowed:
4008	free_cpumask_var(cpus_allowed);
4009out_put_task:
4010	put_task_struct(p);
4011	return retval;
4012}
4013
4014static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4015			     struct cpumask *new_mask)
4016{
4017	if (len < cpumask_size())
4018		cpumask_clear(new_mask);
4019	else if (len > cpumask_size())
4020		len = cpumask_size();
4021
4022	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4023}
4024
4025/**
4026 * sys_sched_setaffinity - set the cpu affinity of a process
4027 * @pid: pid of the process
4028 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4029 * @user_mask_ptr: user-space pointer to the new cpu mask
4030 *
4031 * Return: 0 on success. An error code otherwise.
4032 */
4033SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4034		unsigned long __user *, user_mask_ptr)
4035{
4036	cpumask_var_t new_mask;
4037	int retval;
4038
4039	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4040		return -ENOMEM;
4041
4042	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4043	if (retval == 0)
4044		retval = sched_setaffinity(pid, new_mask);
4045	free_cpumask_var(new_mask);
4046	return retval;
4047}
4048
4049long sched_getaffinity(pid_t pid, struct cpumask *mask)
4050{
4051	struct task_struct *p;
4052	unsigned long flags;
4053	int retval;
4054
4055	rcu_read_lock();
4056
4057	retval = -ESRCH;
4058	p = find_process_by_pid(pid);
4059	if (!p)
4060		goto out_unlock;
4061
4062	retval = security_task_getscheduler(p);
4063	if (retval)
4064		goto out_unlock;
4065
4066	raw_spin_lock_irqsave(&p->pi_lock, flags);
4067	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4068	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4069
4070out_unlock:
4071	rcu_read_unlock();
4072
4073	return retval;
4074}
4075
4076/**
4077 * sys_sched_getaffinity - get the cpu affinity of a process
4078 * @pid: pid of the process
4079 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4080 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4081 *
4082 * Return: 0 on success. An error code otherwise.
4083 */
4084SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4085		unsigned long __user *, user_mask_ptr)
4086{
4087	int ret;
4088	cpumask_var_t mask;
4089
4090	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4091		return -EINVAL;
4092	if (len & (sizeof(unsigned long)-1))
4093		return -EINVAL;
4094
4095	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4096		return -ENOMEM;
4097
4098	ret = sched_getaffinity(pid, mask);
4099	if (ret == 0) {
4100		size_t retlen = min_t(size_t, len, cpumask_size());
4101
4102		if (copy_to_user(user_mask_ptr, mask, retlen))
4103			ret = -EFAULT;
4104		else
4105			ret = retlen;
4106	}
4107	free_cpumask_var(mask);
4108
4109	return ret;
4110}
4111
4112/**
4113 * sys_sched_yield - yield the current processor to other threads.
4114 *
4115 * This function yields the current CPU to other tasks. If there are no
4116 * other threads running on this CPU then this function will return.
4117 *
4118 * Return: 0.
4119 */
4120SYSCALL_DEFINE0(sched_yield)
4121{
4122	struct rq *rq = this_rq_lock();
4123
4124	schedstat_inc(rq, yld_count);
4125	current->sched_class->yield_task(rq);
4126
4127	/*
4128	 * Since we are going to call schedule() anyway, there's
4129	 * no need to preempt or enable interrupts:
4130	 */
4131	__release(rq->lock);
4132	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4133	do_raw_spin_unlock(&rq->lock);
4134	sched_preempt_enable_no_resched();
4135
4136	schedule();
4137
4138	return 0;
4139}
4140
4141static void __cond_resched(void)
4142{
4143	__preempt_count_add(PREEMPT_ACTIVE);
4144	__schedule();
4145	__preempt_count_sub(PREEMPT_ACTIVE);
4146}
4147
4148int __sched _cond_resched(void)
4149{
4150	if (should_resched()) {
4151		__cond_resched();
4152		return 1;
4153	}
4154	return 0;
4155}
4156EXPORT_SYMBOL(_cond_resched);
4157
4158/*
4159 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4160 * call schedule, and on return reacquire the lock.
4161 *
4162 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4163 * operations here to prevent schedule() from being called twice (once via
4164 * spin_unlock(), once by hand).
4165 */
4166int __cond_resched_lock(spinlock_t *lock)
4167{
4168	int resched = should_resched();
4169	int ret = 0;
4170
4171	lockdep_assert_held(lock);
4172
4173	if (spin_needbreak(lock) || resched) {
4174		spin_unlock(lock);
4175		if (resched)
4176			__cond_resched();
4177		else
4178			cpu_relax();
4179		ret = 1;
4180		spin_lock(lock);
4181	}
4182	return ret;
4183}
4184EXPORT_SYMBOL(__cond_resched_lock);
4185
4186int __sched __cond_resched_softirq(void)
4187{
4188	BUG_ON(!in_softirq());
4189
4190	if (should_resched()) {
4191		local_bh_enable();
4192		__cond_resched();
4193		local_bh_disable();
4194		return 1;
4195	}
4196	return 0;
4197}
4198EXPORT_SYMBOL(__cond_resched_softirq);
4199
4200/**
4201 * yield - yield the current processor to other threads.
4202 *
4203 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4204 *
4205 * The scheduler is at all times free to pick the calling task as the most
4206 * eligible task to run, if removing the yield() call from your code breaks
4207 * it, its already broken.
4208 *
4209 * Typical broken usage is:
4210 *
4211 * while (!event)
4212 * 	yield();
4213 *
4214 * where one assumes that yield() will let 'the other' process run that will
4215 * make event true. If the current task is a SCHED_FIFO task that will never
4216 * happen. Never use yield() as a progress guarantee!!
4217 *
4218 * If you want to use yield() to wait for something, use wait_event().
4219 * If you want to use yield() to be 'nice' for others, use cond_resched().
4220 * If you still want to use yield(), do not!
4221 */
4222void __sched yield(void)
4223{
4224	set_current_state(TASK_RUNNING);
4225	sys_sched_yield();
4226}
4227EXPORT_SYMBOL(yield);
4228
4229/**
4230 * yield_to - yield the current processor to another thread in
4231 * your thread group, or accelerate that thread toward the
4232 * processor it's on.
4233 * @p: target task
4234 * @preempt: whether task preemption is allowed or not
4235 *
4236 * It's the caller's job to ensure that the target task struct
4237 * can't go away on us before we can do any checks.
4238 *
4239 * Return:
4240 *	true (>0) if we indeed boosted the target task.
4241 *	false (0) if we failed to boost the target.
4242 *	-ESRCH if there's no task to yield to.
4243 */
4244int __sched yield_to(struct task_struct *p, bool preempt)
4245{
4246	struct task_struct *curr = current;
4247	struct rq *rq, *p_rq;
4248	unsigned long flags;
4249	int yielded = 0;
4250
4251	local_irq_save(flags);
4252	rq = this_rq();
4253
4254again:
4255	p_rq = task_rq(p);
4256	/*
4257	 * If we're the only runnable task on the rq and target rq also
4258	 * has only one task, there's absolutely no point in yielding.
4259	 */
4260	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4261		yielded = -ESRCH;
4262		goto out_irq;
4263	}
4264
4265	double_rq_lock(rq, p_rq);
4266	if (task_rq(p) != p_rq) {
4267		double_rq_unlock(rq, p_rq);
4268		goto again;
4269	}
4270
4271	if (!curr->sched_class->yield_to_task)
4272		goto out_unlock;
4273
4274	if (curr->sched_class != p->sched_class)
4275		goto out_unlock;
4276
4277	if (task_running(p_rq, p) || p->state)
4278		goto out_unlock;
4279
4280	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4281	if (yielded) {
4282		schedstat_inc(rq, yld_count);
4283		/*
4284		 * Make p's CPU reschedule; pick_next_entity takes care of
4285		 * fairness.
4286		 */
4287		if (preempt && rq != p_rq)
4288			resched_task(p_rq->curr);
4289	}
4290
4291out_unlock:
4292	double_rq_unlock(rq, p_rq);
4293out_irq:
4294	local_irq_restore(flags);
4295
4296	if (yielded > 0)
4297		schedule();
4298
4299	return yielded;
4300}
4301EXPORT_SYMBOL_GPL(yield_to);
4302
4303/*
4304 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4305 * that process accounting knows that this is a task in IO wait state.
4306 */
4307void __sched io_schedule(void)
4308{
4309	struct rq *rq = raw_rq();
4310
4311	delayacct_blkio_start();
4312	atomic_inc(&rq->nr_iowait);
4313	blk_flush_plug(current);
4314	current->in_iowait = 1;
4315	schedule();
4316	current->in_iowait = 0;
4317	atomic_dec(&rq->nr_iowait);
4318	delayacct_blkio_end();
4319}
4320EXPORT_SYMBOL(io_schedule);
4321
4322long __sched io_schedule_timeout(long timeout)
4323{
4324	struct rq *rq = raw_rq();
4325	long ret;
4326
4327	delayacct_blkio_start();
4328	atomic_inc(&rq->nr_iowait);
4329	blk_flush_plug(current);
4330	current->in_iowait = 1;
4331	ret = schedule_timeout(timeout);
4332	current->in_iowait = 0;
4333	atomic_dec(&rq->nr_iowait);
4334	delayacct_blkio_end();
4335	return ret;
4336}
4337
4338/**
4339 * sys_sched_get_priority_max - return maximum RT priority.
4340 * @policy: scheduling class.
4341 *
4342 * Return: On success, this syscall returns the maximum
4343 * rt_priority that can be used by a given scheduling class.
4344 * On failure, a negative error code is returned.
4345 */
4346SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4347{
4348	int ret = -EINVAL;
4349
4350	switch (policy) {
4351	case SCHED_FIFO:
4352	case SCHED_RR:
4353		ret = MAX_USER_RT_PRIO-1;
4354		break;
4355	case SCHED_DEADLINE:
4356	case SCHED_NORMAL:
4357	case SCHED_BATCH:
4358	case SCHED_IDLE:
4359		ret = 0;
4360		break;
4361	}
4362	return ret;
4363}
4364
4365/**
4366 * sys_sched_get_priority_min - return minimum RT priority.
4367 * @policy: scheduling class.
4368 *
4369 * Return: On success, this syscall returns the minimum
4370 * rt_priority that can be used by a given scheduling class.
4371 * On failure, a negative error code is returned.
4372 */
4373SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4374{
4375	int ret = -EINVAL;
4376
4377	switch (policy) {
4378	case SCHED_FIFO:
4379	case SCHED_RR:
4380		ret = 1;
4381		break;
4382	case SCHED_DEADLINE:
4383	case SCHED_NORMAL:
4384	case SCHED_BATCH:
4385	case SCHED_IDLE:
4386		ret = 0;
4387	}
4388	return ret;
4389}
4390
4391/**
4392 * sys_sched_rr_get_interval - return the default timeslice of a process.
4393 * @pid: pid of the process.
4394 * @interval: userspace pointer to the timeslice value.
4395 *
4396 * this syscall writes the default timeslice value of a given process
4397 * into the user-space timespec buffer. A value of '0' means infinity.
4398 *
4399 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4400 * an error code.
4401 */
4402SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4403		struct timespec __user *, interval)
4404{
4405	struct task_struct *p;
4406	unsigned int time_slice;
4407	unsigned long flags;
4408	struct rq *rq;
4409	int retval;
4410	struct timespec t;
4411
4412	if (pid < 0)
4413		return -EINVAL;
4414
4415	retval = -ESRCH;
4416	rcu_read_lock();
4417	p = find_process_by_pid(pid);
4418	if (!p)
4419		goto out_unlock;
4420
4421	retval = security_task_getscheduler(p);
4422	if (retval)
4423		goto out_unlock;
4424
4425	rq = task_rq_lock(p, &flags);
4426	time_slice = 0;
4427	if (p->sched_class->get_rr_interval)
4428		time_slice = p->sched_class->get_rr_interval(rq, p);
4429	task_rq_unlock(rq, p, &flags);
4430
4431	rcu_read_unlock();
4432	jiffies_to_timespec(time_slice, &t);
4433	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4434	return retval;
4435
4436out_unlock:
4437	rcu_read_unlock();
4438	return retval;
4439}
4440
4441static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4442
4443void sched_show_task(struct task_struct *p)
4444{
4445	unsigned long free = 0;
4446	int ppid;
4447	unsigned state;
4448
4449	state = p->state ? __ffs(p->state) + 1 : 0;
4450	printk(KERN_INFO "%-15.15s %c", p->comm,
4451		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4452#if BITS_PER_LONG == 32
4453	if (state == TASK_RUNNING)
4454		printk(KERN_CONT " running  ");
4455	else
4456		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4457#else
4458	if (state == TASK_RUNNING)
4459		printk(KERN_CONT "  running task    ");
4460	else
4461		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4462#endif
4463#ifdef CONFIG_DEBUG_STACK_USAGE
4464	free = stack_not_used(p);
4465#endif
4466	rcu_read_lock();
4467	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4468	rcu_read_unlock();
4469	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4470		task_pid_nr(p), ppid,
4471		(unsigned long)task_thread_info(p)->flags);
4472
4473	print_worker_info(KERN_INFO, p);
4474	show_stack(p, NULL);
4475}
4476
4477void show_state_filter(unsigned long state_filter)
4478{
4479	struct task_struct *g, *p;
4480
4481#if BITS_PER_LONG == 32
4482	printk(KERN_INFO
4483		"  task                PC stack   pid father\n");
4484#else
4485	printk(KERN_INFO
4486		"  task                        PC stack   pid father\n");
4487#endif
4488	rcu_read_lock();
4489	do_each_thread(g, p) {
4490		/*
4491		 * reset the NMI-timeout, listing all files on a slow
4492		 * console might take a lot of time:
4493		 */
4494		touch_nmi_watchdog();
4495		if (!state_filter || (p->state & state_filter))
4496			sched_show_task(p);
4497	} while_each_thread(g, p);
4498
4499	touch_all_softlockup_watchdogs();
4500
4501#ifdef CONFIG_SCHED_DEBUG
4502	sysrq_sched_debug_show();
4503#endif
4504	rcu_read_unlock();
4505	/*
4506	 * Only show locks if all tasks are dumped:
4507	 */
4508	if (!state_filter)
4509		debug_show_all_locks();
4510}
4511
4512void init_idle_bootup_task(struct task_struct *idle)
4513{
4514	idle->sched_class = &idle_sched_class;
4515}
4516
4517/**
4518 * init_idle - set up an idle thread for a given CPU
4519 * @idle: task in question
4520 * @cpu: cpu the idle task belongs to
4521 *
4522 * NOTE: this function does not set the idle thread's NEED_RESCHED
4523 * flag, to make booting more robust.
4524 */
4525void init_idle(struct task_struct *idle, int cpu)
4526{
4527	struct rq *rq = cpu_rq(cpu);
4528	unsigned long flags;
4529
4530	raw_spin_lock_irqsave(&rq->lock, flags);
4531
4532	__sched_fork(0, idle);
4533	idle->state = TASK_RUNNING;
4534	idle->se.exec_start = sched_clock();
4535
4536	do_set_cpus_allowed(idle, cpumask_of(cpu));
4537	/*
4538	 * We're having a chicken and egg problem, even though we are
4539	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4540	 * lockdep check in task_group() will fail.
4541	 *
4542	 * Similar case to sched_fork(). / Alternatively we could
4543	 * use task_rq_lock() here and obtain the other rq->lock.
4544	 *
4545	 * Silence PROVE_RCU
4546	 */
4547	rcu_read_lock();
4548	__set_task_cpu(idle, cpu);
4549	rcu_read_unlock();
4550
4551	rq->curr = rq->idle = idle;
4552	idle->on_rq = 1;
4553#if defined(CONFIG_SMP)
4554	idle->on_cpu = 1;
4555#endif
4556	raw_spin_unlock_irqrestore(&rq->lock, flags);
4557
4558	/* Set the preempt count _outside_ the spinlocks! */
4559	init_idle_preempt_count(idle, cpu);
4560
4561	/*
4562	 * The idle tasks have their own, simple scheduling class:
4563	 */
4564	idle->sched_class = &idle_sched_class;
4565	ftrace_graph_init_idle_task(idle, cpu);
4566	vtime_init_idle(idle, cpu);
4567#if defined(CONFIG_SMP)
4568	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4569#endif
4570}
4571
4572#ifdef CONFIG_SMP
4573void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4574{
4575	if (p->sched_class && p->sched_class->set_cpus_allowed)
4576		p->sched_class->set_cpus_allowed(p, new_mask);
4577
4578	cpumask_copy(&p->cpus_allowed, new_mask);
4579	p->nr_cpus_allowed = cpumask_weight(new_mask);
4580}
4581
4582/*
4583 * This is how migration works:
4584 *
4585 * 1) we invoke migration_cpu_stop() on the target CPU using
4586 *    stop_one_cpu().
4587 * 2) stopper starts to run (implicitly forcing the migrated thread
4588 *    off the CPU)
4589 * 3) it checks whether the migrated task is still in the wrong runqueue.
4590 * 4) if it's in the wrong runqueue then the migration thread removes
4591 *    it and puts it into the right queue.
4592 * 5) stopper completes and stop_one_cpu() returns and the migration
4593 *    is done.
4594 */
4595
4596/*
4597 * Change a given task's CPU affinity. Migrate the thread to a
4598 * proper CPU and schedule it away if the CPU it's executing on
4599 * is removed from the allowed bitmask.
4600 *
4601 * NOTE: the caller must have a valid reference to the task, the
4602 * task must not exit() & deallocate itself prematurely. The
4603 * call is not atomic; no spinlocks may be held.
4604 */
4605int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4606{
4607	unsigned long flags;
4608	struct rq *rq;
4609	unsigned int dest_cpu;
4610	int ret = 0;
4611
4612	rq = task_rq_lock(p, &flags);
4613
4614	if (cpumask_equal(&p->cpus_allowed, new_mask))
4615		goto out;
4616
4617	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4618		ret = -EINVAL;
4619		goto out;
4620	}
4621
4622	do_set_cpus_allowed(p, new_mask);
4623
4624	/* Can the task run on the task's current CPU? If so, we're done */
4625	if (cpumask_test_cpu(task_cpu(p), new_mask))
4626		goto out;
4627
4628	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4629	if (p->on_rq) {
4630		struct migration_arg arg = { p, dest_cpu };
4631		/* Need help from migration thread: drop lock and wait. */
4632		task_rq_unlock(rq, p, &flags);
4633		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4634		tlb_migrate_finish(p->mm);
4635		return 0;
4636	}
4637out:
4638	task_rq_unlock(rq, p, &flags);
4639
4640	return ret;
4641}
4642EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4643
4644/*
4645 * Move (not current) task off this cpu, onto dest cpu. We're doing
4646 * this because either it can't run here any more (set_cpus_allowed()
4647 * away from this CPU, or CPU going down), or because we're
4648 * attempting to rebalance this task on exec (sched_exec).
4649 *
4650 * So we race with normal scheduler movements, but that's OK, as long
4651 * as the task is no longer on this CPU.
4652 *
4653 * Returns non-zero if task was successfully migrated.
4654 */
4655static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4656{
4657	struct rq *rq_dest, *rq_src;
4658	int ret = 0;
4659
4660	if (unlikely(!cpu_active(dest_cpu)))
4661		return ret;
4662
4663	rq_src = cpu_rq(src_cpu);
4664	rq_dest = cpu_rq(dest_cpu);
4665
4666	raw_spin_lock(&p->pi_lock);
4667	double_rq_lock(rq_src, rq_dest);
4668	/* Already moved. */
4669	if (task_cpu(p) != src_cpu)
4670		goto done;
4671	/* Affinity changed (again). */
4672	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4673		goto fail;
4674
4675	/*
4676	 * If we're not on a rq, the next wake-up will ensure we're
4677	 * placed properly.
4678	 */
4679	if (p->on_rq) {
4680		dequeue_task(rq_src, p, 0);
4681		set_task_cpu(p, dest_cpu);
4682		enqueue_task(rq_dest, p, 0);
4683		check_preempt_curr(rq_dest, p, 0);
4684	}
4685done:
4686	ret = 1;
4687fail:
4688	double_rq_unlock(rq_src, rq_dest);
4689	raw_spin_unlock(&p->pi_lock);
4690	return ret;
4691}
4692
4693#ifdef CONFIG_NUMA_BALANCING
4694/* Migrate current task p to target_cpu */
4695int migrate_task_to(struct task_struct *p, int target_cpu)
4696{
4697	struct migration_arg arg = { p, target_cpu };
4698	int curr_cpu = task_cpu(p);
4699
4700	if (curr_cpu == target_cpu)
4701		return 0;
4702
4703	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4704		return -EINVAL;
4705
4706	/* TODO: This is not properly updating schedstats */
4707
4708	trace_sched_move_numa(p, curr_cpu, target_cpu);
4709	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4710}
4711
4712/*
4713 * Requeue a task on a given node and accurately track the number of NUMA
4714 * tasks on the runqueues
4715 */
4716void sched_setnuma(struct task_struct *p, int nid)
4717{
4718	struct rq *rq;
4719	unsigned long flags;
4720	bool on_rq, running;
4721
4722	rq = task_rq_lock(p, &flags);
4723	on_rq = p->on_rq;
4724	running = task_current(rq, p);
4725
4726	if (on_rq)
4727		dequeue_task(rq, p, 0);
4728	if (running)
4729		p->sched_class->put_prev_task(rq, p);
4730
4731	p->numa_preferred_nid = nid;
4732
4733	if (running)
4734		p->sched_class->set_curr_task(rq);
4735	if (on_rq)
4736		enqueue_task(rq, p, 0);
4737	task_rq_unlock(rq, p, &flags);
4738}
4739#endif
4740
4741/*
4742 * migration_cpu_stop - this will be executed by a highprio stopper thread
4743 * and performs thread migration by bumping thread off CPU then
4744 * 'pushing' onto another runqueue.
4745 */
4746static int migration_cpu_stop(void *data)
4747{
4748	struct migration_arg *arg = data;
4749
4750	/*
4751	 * The original target cpu might have gone down and we might
4752	 * be on another cpu but it doesn't matter.
4753	 */
4754	local_irq_disable();
4755	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4756	local_irq_enable();
4757	return 0;
4758}
4759
4760#ifdef CONFIG_HOTPLUG_CPU
4761
4762/*
4763 * Ensures that the idle task is using init_mm right before its cpu goes
4764 * offline.
4765 */
4766void idle_task_exit(void)
4767{
4768	struct mm_struct *mm = current->active_mm;
4769
4770	BUG_ON(cpu_online(smp_processor_id()));
4771
4772	if (mm != &init_mm) {
4773		switch_mm(mm, &init_mm, current);
4774		finish_arch_post_lock_switch();
4775	}
4776	mmdrop(mm);
4777}
4778
4779/*
4780 * Since this CPU is going 'away' for a while, fold any nr_active delta
4781 * we might have. Assumes we're called after migrate_tasks() so that the
4782 * nr_active count is stable.
4783 *
4784 * Also see the comment "Global load-average calculations".
4785 */
4786static void calc_load_migrate(struct rq *rq)
4787{
4788	long delta = calc_load_fold_active(rq);
4789	if (delta)
4790		atomic_long_add(delta, &calc_load_tasks);
4791}
4792
4793static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4794{
4795}
4796
4797static const struct sched_class fake_sched_class = {
4798	.put_prev_task = put_prev_task_fake,
4799};
4800
4801static struct task_struct fake_task = {
4802	/*
4803	 * Avoid pull_{rt,dl}_task()
4804	 */
4805	.prio = MAX_PRIO + 1,
4806	.sched_class = &fake_sched_class,
4807};
4808
4809/*
4810 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4811 * try_to_wake_up()->select_task_rq().
4812 *
4813 * Called with rq->lock held even though we'er in stop_machine() and
4814 * there's no concurrency possible, we hold the required locks anyway
4815 * because of lock validation efforts.
4816 */
4817static void migrate_tasks(unsigned int dead_cpu)
4818{
4819	struct rq *rq = cpu_rq(dead_cpu);
4820	struct task_struct *next, *stop = rq->stop;
4821	int dest_cpu;
4822
4823	/*
4824	 * Fudge the rq selection such that the below task selection loop
4825	 * doesn't get stuck on the currently eligible stop task.
4826	 *
4827	 * We're currently inside stop_machine() and the rq is either stuck
4828	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4829	 * either way we should never end up calling schedule() until we're
4830	 * done here.
4831	 */
4832	rq->stop = NULL;
4833
4834	/*
4835	 * put_prev_task() and pick_next_task() sched
4836	 * class method both need to have an up-to-date
4837	 * value of rq->clock[_task]
4838	 */
4839	update_rq_clock(rq);
4840
4841	for ( ; ; ) {
4842		/*
4843		 * There's this thread running, bail when that's the only
4844		 * remaining thread.
4845		 */
4846		if (rq->nr_running == 1)
4847			break;
4848
4849		next = pick_next_task(rq, &fake_task);
4850		BUG_ON(!next);
4851		next->sched_class->put_prev_task(rq, next);
4852
4853		/* Find suitable destination for @next, with force if needed. */
4854		dest_cpu = select_fallback_rq(dead_cpu, next);
4855		raw_spin_unlock(&rq->lock);
4856
4857		__migrate_task(next, dead_cpu, dest_cpu);
4858
4859		raw_spin_lock(&rq->lock);
4860	}
4861
4862	rq->stop = stop;
4863}
4864
4865#endif /* CONFIG_HOTPLUG_CPU */
4866
4867#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4868
4869static struct ctl_table sd_ctl_dir[] = {
4870	{
4871		.procname	= "sched_domain",
4872		.mode		= 0555,
4873	},
4874	{}
4875};
4876
4877static struct ctl_table sd_ctl_root[] = {
4878	{
4879		.procname	= "kernel",
4880		.mode		= 0555,
4881		.child		= sd_ctl_dir,
4882	},
4883	{}
4884};
4885
4886static struct ctl_table *sd_alloc_ctl_entry(int n)
4887{
4888	struct ctl_table *entry =
4889		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4890
4891	return entry;
4892}
4893
4894static void sd_free_ctl_entry(struct ctl_table **tablep)
4895{
4896	struct ctl_table *entry;
4897
4898	/*
4899	 * In the intermediate directories, both the child directory and
4900	 * procname are dynamically allocated and could fail but the mode
4901	 * will always be set. In the lowest directory the names are
4902	 * static strings and all have proc handlers.
4903	 */
4904	for (entry = *tablep; entry->mode; entry++) {
4905		if (entry->child)
4906			sd_free_ctl_entry(&entry->child);
4907		if (entry->proc_handler == NULL)
4908			kfree(entry->procname);
4909	}
4910
4911	kfree(*tablep);
4912	*tablep = NULL;
4913}
4914
4915static int min_load_idx = 0;
4916static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4917
4918static void
4919set_table_entry(struct ctl_table *entry,
4920		const char *procname, void *data, int maxlen,
4921		umode_t mode, proc_handler *proc_handler,
4922		bool load_idx)
4923{
4924	entry->procname = procname;
4925	entry->data = data;
4926	entry->maxlen = maxlen;
4927	entry->mode = mode;
4928	entry->proc_handler = proc_handler;
4929
4930	if (load_idx) {
4931		entry->extra1 = &min_load_idx;
4932		entry->extra2 = &max_load_idx;
4933	}
4934}
4935
4936static struct ctl_table *
4937sd_alloc_ctl_domain_table(struct sched_domain *sd)
4938{
4939	struct ctl_table *table = sd_alloc_ctl_entry(14);
4940
4941	if (table == NULL)
4942		return NULL;
4943
4944	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4945		sizeof(long), 0644, proc_doulongvec_minmax, false);
4946	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4947		sizeof(long), 0644, proc_doulongvec_minmax, false);
4948	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4949		sizeof(int), 0644, proc_dointvec_minmax, true);
4950	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4951		sizeof(int), 0644, proc_dointvec_minmax, true);
4952	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4953		sizeof(int), 0644, proc_dointvec_minmax, true);
4954	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4955		sizeof(int), 0644, proc_dointvec_minmax, true);
4956	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4957		sizeof(int), 0644, proc_dointvec_minmax, true);
4958	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4959		sizeof(int), 0644, proc_dointvec_minmax, false);
4960	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4961		sizeof(int), 0644, proc_dointvec_minmax, false);
4962	set_table_entry(&table[9], "cache_nice_tries",
4963		&sd->cache_nice_tries,
4964		sizeof(int), 0644, proc_dointvec_minmax, false);
4965	set_table_entry(&table[10], "flags", &sd->flags,
4966		sizeof(int), 0644, proc_dointvec_minmax, false);
4967	set_table_entry(&table[11], "max_newidle_lb_cost",
4968		&sd->max_newidle_lb_cost,
4969		sizeof(long), 0644, proc_doulongvec_minmax, false);
4970	set_table_entry(&table[12], "name", sd->name,
4971		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4972	/* &table[13] is terminator */
4973
4974	return table;
4975}
4976
4977static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4978{
4979	struct ctl_table *entry, *table;
4980	struct sched_domain *sd;
4981	int domain_num = 0, i;
4982	char buf[32];
4983
4984	for_each_domain(cpu, sd)
4985		domain_num++;
4986	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4987	if (table == NULL)
4988		return NULL;
4989
4990	i = 0;
4991	for_each_domain(cpu, sd) {
4992		snprintf(buf, 32, "domain%d", i);
4993		entry->procname = kstrdup(buf, GFP_KERNEL);
4994		entry->mode = 0555;
4995		entry->child = sd_alloc_ctl_domain_table(sd);
4996		entry++;
4997		i++;
4998	}
4999	return table;
5000}
5001
5002static struct ctl_table_header *sd_sysctl_header;
5003static void register_sched_domain_sysctl(void)
5004{
5005	int i, cpu_num = num_possible_cpus();
5006	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5007	char buf[32];
5008
5009	WARN_ON(sd_ctl_dir[0].child);
5010	sd_ctl_dir[0].child = entry;
5011
5012	if (entry == NULL)
5013		return;
5014
5015	for_each_possible_cpu(i) {
5016		snprintf(buf, 32, "cpu%d", i);
5017		entry->procname = kstrdup(buf, GFP_KERNEL);
5018		entry->mode = 0555;
5019		entry->child = sd_alloc_ctl_cpu_table(i);
5020		entry++;
5021	}
5022
5023	WARN_ON(sd_sysctl_header);
5024	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5025}
5026
5027/* may be called multiple times per register */
5028static void unregister_sched_domain_sysctl(void)
5029{
5030	if (sd_sysctl_header)
5031		unregister_sysctl_table(sd_sysctl_header);
5032	sd_sysctl_header = NULL;
5033	if (sd_ctl_dir[0].child)
5034		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5035}
5036#else
5037static void register_sched_domain_sysctl(void)
5038{
5039}
5040static void unregister_sched_domain_sysctl(void)
5041{
5042}
5043#endif
5044
5045static void set_rq_online(struct rq *rq)
5046{
5047	if (!rq->online) {
5048		const struct sched_class *class;
5049
5050		cpumask_set_cpu(rq->cpu, rq->rd->online);
5051		rq->online = 1;
5052
5053		for_each_class(class) {
5054			if (class->rq_online)
5055				class->rq_online(rq);
5056		}
5057	}
5058}
5059
5060static void set_rq_offline(struct rq *rq)
5061{
5062	if (rq->online) {
5063		const struct sched_class *class;
5064
5065		for_each_class(class) {
5066			if (class->rq_offline)
5067				class->rq_offline(rq);
5068		}
5069
5070		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5071		rq->online = 0;
5072	}
5073}
5074
5075/*
5076 * migration_call - callback that gets triggered when a CPU is added.
5077 * Here we can start up the necessary migration thread for the new CPU.
5078 */
5079static int
5080migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5081{
5082	int cpu = (long)hcpu;
5083	unsigned long flags;
5084	struct rq *rq = cpu_rq(cpu);
5085
5086	switch (action & ~CPU_TASKS_FROZEN) {
5087
5088	case CPU_UP_PREPARE:
5089		rq->calc_load_update = calc_load_update;
5090		break;
5091
5092	case CPU_ONLINE:
5093		/* Update our root-domain */
5094		raw_spin_lock_irqsave(&rq->lock, flags);
5095		if (rq->rd) {
5096			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5097
5098			set_rq_online(rq);
5099		}
5100		raw_spin_unlock_irqrestore(&rq->lock, flags);
5101		break;
5102
5103#ifdef CONFIG_HOTPLUG_CPU
5104	case CPU_DYING:
5105		sched_ttwu_pending();
5106		/* Update our root-domain */
5107		raw_spin_lock_irqsave(&rq->lock, flags);
5108		if (rq->rd) {
5109			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5110			set_rq_offline(rq);
5111		}
5112		migrate_tasks(cpu);
5113		BUG_ON(rq->nr_running != 1); /* the migration thread */
5114		raw_spin_unlock_irqrestore(&rq->lock, flags);
5115		break;
5116
5117	case CPU_DEAD:
5118		calc_load_migrate(rq);
5119		break;
5120#endif
5121	}
5122
5123	update_max_interval();
5124
5125	return NOTIFY_OK;
5126}
5127
5128/*
5129 * Register at high priority so that task migration (migrate_all_tasks)
5130 * happens before everything else.  This has to be lower priority than
5131 * the notifier in the perf_event subsystem, though.
5132 */
5133static struct notifier_block migration_notifier = {
5134	.notifier_call = migration_call,
5135	.priority = CPU_PRI_MIGRATION,
5136};
5137
5138static void __cpuinit set_cpu_rq_start_time(void)
5139{
5140	int cpu = smp_processor_id();
5141	struct rq *rq = cpu_rq(cpu);
5142	rq->age_stamp = sched_clock_cpu(cpu);
5143}
5144
5145static int sched_cpu_active(struct notifier_block *nfb,
5146				      unsigned long action, void *hcpu)
5147{
5148	switch (action & ~CPU_TASKS_FROZEN) {
5149	case CPU_STARTING:
5150		set_cpu_rq_start_time();
5151		return NOTIFY_OK;
5152	case CPU_DOWN_FAILED:
5153		set_cpu_active((long)hcpu, true);
5154		return NOTIFY_OK;
5155	default:
5156		return NOTIFY_DONE;
5157	}
5158}
5159
5160static int sched_cpu_inactive(struct notifier_block *nfb,
5161					unsigned long action, void *hcpu)
5162{
5163	unsigned long flags;
5164	long cpu = (long)hcpu;
5165
5166	switch (action & ~CPU_TASKS_FROZEN) {
5167	case CPU_DOWN_PREPARE:
5168		set_cpu_active(cpu, false);
5169
5170		/* explicitly allow suspend */
5171		if (!(action & CPU_TASKS_FROZEN)) {
5172			struct dl_bw *dl_b = dl_bw_of(cpu);
5173			bool overflow;
5174			int cpus;
5175
5176			raw_spin_lock_irqsave(&dl_b->lock, flags);
5177			cpus = dl_bw_cpus(cpu);
5178			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5179			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5180
5181			if (overflow)
5182				return notifier_from_errno(-EBUSY);
5183		}
5184		return NOTIFY_OK;
5185	}
5186
5187	return NOTIFY_DONE;
5188}
5189
5190static int __init migration_init(void)
5191{
5192	void *cpu = (void *)(long)smp_processor_id();
5193	int err;
5194
5195	/* Initialize migration for the boot CPU */
5196	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5197	BUG_ON(err == NOTIFY_BAD);
5198	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5199	register_cpu_notifier(&migration_notifier);
5200
5201	/* Register cpu active notifiers */
5202	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5203	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5204
5205	return 0;
5206}
5207early_initcall(migration_init);
5208#endif
5209
5210#ifdef CONFIG_SMP
5211
5212static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5213
5214#ifdef CONFIG_SCHED_DEBUG
5215
5216static __read_mostly int sched_debug_enabled;
5217
5218static int __init sched_debug_setup(char *str)
5219{
5220	sched_debug_enabled = 1;
5221
5222	return 0;
5223}
5224early_param("sched_debug", sched_debug_setup);
5225
5226static inline bool sched_debug(void)
5227{
5228	return sched_debug_enabled;
5229}
5230
5231static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5232				  struct cpumask *groupmask)
5233{
5234	struct sched_group *group = sd->groups;
5235	char str[256];
5236
5237	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5238	cpumask_clear(groupmask);
5239
5240	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5241
5242	if (!(sd->flags & SD_LOAD_BALANCE)) {
5243		printk("does not load-balance\n");
5244		if (sd->parent)
5245			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5246					" has parent");
5247		return -1;
5248	}
5249
5250	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5251
5252	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5253		printk(KERN_ERR "ERROR: domain->span does not contain "
5254				"CPU%d\n", cpu);
5255	}
5256	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5257		printk(KERN_ERR "ERROR: domain->groups does not contain"
5258				" CPU%d\n", cpu);
5259	}
5260
5261	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5262	do {
5263		if (!group) {
5264			printk("\n");
5265			printk(KERN_ERR "ERROR: group is NULL\n");
5266			break;
5267		}
5268
5269		/*
5270		 * Even though we initialize ->capacity to something semi-sane,
5271		 * we leave capacity_orig unset. This allows us to detect if
5272		 * domain iteration is still funny without causing /0 traps.
5273		 */
5274		if (!group->sgc->capacity_orig) {
5275			printk(KERN_CONT "\n");
5276			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5277			break;
5278		}
5279
5280		if (!cpumask_weight(sched_group_cpus(group))) {
5281			printk(KERN_CONT "\n");
5282			printk(KERN_ERR "ERROR: empty group\n");
5283			break;
5284		}
5285
5286		if (!(sd->flags & SD_OVERLAP) &&
5287		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5288			printk(KERN_CONT "\n");
5289			printk(KERN_ERR "ERROR: repeated CPUs\n");
5290			break;
5291		}
5292
5293		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5294
5295		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5296
5297		printk(KERN_CONT " %s", str);
5298		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5299			printk(KERN_CONT " (cpu_capacity = %d)",
5300				group->sgc->capacity);
5301		}
5302
5303		group = group->next;
5304	} while (group != sd->groups);
5305	printk(KERN_CONT "\n");
5306
5307	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5308		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5309
5310	if (sd->parent &&
5311	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5312		printk(KERN_ERR "ERROR: parent span is not a superset "
5313			"of domain->span\n");
5314	return 0;
5315}
5316
5317static void sched_domain_debug(struct sched_domain *sd, int cpu)
5318{
5319	int level = 0;
5320
5321	if (!sched_debug_enabled)
5322		return;
5323
5324	if (!sd) {
5325		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5326		return;
5327	}
5328
5329	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5330
5331	for (;;) {
5332		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5333			break;
5334		level++;
5335		sd = sd->parent;
5336		if (!sd)
5337			break;
5338	}
5339}
5340#else /* !CONFIG_SCHED_DEBUG */
5341# define sched_domain_debug(sd, cpu) do { } while (0)
5342static inline bool sched_debug(void)
5343{
5344	return false;
5345}
5346#endif /* CONFIG_SCHED_DEBUG */
5347
5348static int sd_degenerate(struct sched_domain *sd)
5349{
5350	if (cpumask_weight(sched_domain_span(sd)) == 1)
5351		return 1;
5352
5353	/* Following flags need at least 2 groups */
5354	if (sd->flags & (SD_LOAD_BALANCE |
5355			 SD_BALANCE_NEWIDLE |
5356			 SD_BALANCE_FORK |
5357			 SD_BALANCE_EXEC |
5358			 SD_SHARE_CPUCAPACITY |
5359			 SD_SHARE_PKG_RESOURCES |
5360			 SD_SHARE_POWERDOMAIN)) {
5361		if (sd->groups != sd->groups->next)
5362			return 0;
5363	}
5364
5365	/* Following flags don't use groups */
5366	if (sd->flags & (SD_WAKE_AFFINE))
5367		return 0;
5368
5369	return 1;
5370}
5371
5372static int
5373sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5374{
5375	unsigned long cflags = sd->flags, pflags = parent->flags;
5376
5377	if (sd_degenerate(parent))
5378		return 1;
5379
5380	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5381		return 0;
5382
5383	/* Flags needing groups don't count if only 1 group in parent */
5384	if (parent->groups == parent->groups->next) {
5385		pflags &= ~(SD_LOAD_BALANCE |
5386				SD_BALANCE_NEWIDLE |
5387				SD_BALANCE_FORK |
5388				SD_BALANCE_EXEC |
5389				SD_SHARE_CPUCAPACITY |
5390				SD_SHARE_PKG_RESOURCES |
5391				SD_PREFER_SIBLING |
5392				SD_SHARE_POWERDOMAIN);
5393		if (nr_node_ids == 1)
5394			pflags &= ~SD_SERIALIZE;
5395	}
5396	if (~cflags & pflags)
5397		return 0;
5398
5399	return 1;
5400}
5401
5402static void free_rootdomain(struct rcu_head *rcu)
5403{
5404	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5405
5406	cpupri_cleanup(&rd->cpupri);
5407	cpudl_cleanup(&rd->cpudl);
5408	free_cpumask_var(rd->dlo_mask);
5409	free_cpumask_var(rd->rto_mask);
5410	free_cpumask_var(rd->online);
5411	free_cpumask_var(rd->span);
5412	kfree(rd);
5413}
5414
5415static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5416{
5417	struct root_domain *old_rd = NULL;
5418	unsigned long flags;
5419
5420	raw_spin_lock_irqsave(&rq->lock, flags);
5421
5422	if (rq->rd) {
5423		old_rd = rq->rd;
5424
5425		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5426			set_rq_offline(rq);
5427
5428		cpumask_clear_cpu(rq->cpu, old_rd->span);
5429
5430		/*
5431		 * If we dont want to free the old_rd yet then
5432		 * set old_rd to NULL to skip the freeing later
5433		 * in this function:
5434		 */
5435		if (!atomic_dec_and_test(&old_rd->refcount))
5436			old_rd = NULL;
5437	}
5438
5439	atomic_inc(&rd->refcount);
5440	rq->rd = rd;
5441
5442	cpumask_set_cpu(rq->cpu, rd->span);
5443	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5444		set_rq_online(rq);
5445
5446	raw_spin_unlock_irqrestore(&rq->lock, flags);
5447
5448	if (old_rd)
5449		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5450}
5451
5452static int init_rootdomain(struct root_domain *rd)
5453{
5454	memset(rd, 0, sizeof(*rd));
5455
5456	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5457		goto out;
5458	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5459		goto free_span;
5460	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5461		goto free_online;
5462	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5463		goto free_dlo_mask;
5464
5465	init_dl_bw(&rd->dl_bw);
5466	if (cpudl_init(&rd->cpudl) != 0)
5467		goto free_dlo_mask;
5468
5469	if (cpupri_init(&rd->cpupri) != 0)
5470		goto free_rto_mask;
5471	return 0;
5472
5473free_rto_mask:
5474	free_cpumask_var(rd->rto_mask);
5475free_dlo_mask:
5476	free_cpumask_var(rd->dlo_mask);
5477free_online:
5478	free_cpumask_var(rd->online);
5479free_span:
5480	free_cpumask_var(rd->span);
5481out:
5482	return -ENOMEM;
5483}
5484
5485/*
5486 * By default the system creates a single root-domain with all cpus as
5487 * members (mimicking the global state we have today).
5488 */
5489struct root_domain def_root_domain;
5490
5491static void init_defrootdomain(void)
5492{
5493	init_rootdomain(&def_root_domain);
5494
5495	atomic_set(&def_root_domain.refcount, 1);
5496}
5497
5498static struct root_domain *alloc_rootdomain(void)
5499{
5500	struct root_domain *rd;
5501
5502	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5503	if (!rd)
5504		return NULL;
5505
5506	if (init_rootdomain(rd) != 0) {
5507		kfree(rd);
5508		return NULL;
5509	}
5510
5511	return rd;
5512}
5513
5514static void free_sched_groups(struct sched_group *sg, int free_sgc)
5515{
5516	struct sched_group *tmp, *first;
5517
5518	if (!sg)
5519		return;
5520
5521	first = sg;
5522	do {
5523		tmp = sg->next;
5524
5525		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5526			kfree(sg->sgc);
5527
5528		kfree(sg);
5529		sg = tmp;
5530	} while (sg != first);
5531}
5532
5533static void free_sched_domain(struct rcu_head *rcu)
5534{
5535	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5536
5537	/*
5538	 * If its an overlapping domain it has private groups, iterate and
5539	 * nuke them all.
5540	 */
5541	if (sd->flags & SD_OVERLAP) {
5542		free_sched_groups(sd->groups, 1);
5543	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5544		kfree(sd->groups->sgc);
5545		kfree(sd->groups);
5546	}
5547	kfree(sd);
5548}
5549
5550static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5551{
5552	call_rcu(&sd->rcu, free_sched_domain);
5553}
5554
5555static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5556{
5557	for (; sd; sd = sd->parent)
5558		destroy_sched_domain(sd, cpu);
5559}
5560
5561/*
5562 * Keep a special pointer to the highest sched_domain that has
5563 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5564 * allows us to avoid some pointer chasing select_idle_sibling().
5565 *
5566 * Also keep a unique ID per domain (we use the first cpu number in
5567 * the cpumask of the domain), this allows us to quickly tell if
5568 * two cpus are in the same cache domain, see cpus_share_cache().
5569 */
5570DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5571DEFINE_PER_CPU(int, sd_llc_size);
5572DEFINE_PER_CPU(int, sd_llc_id);
5573DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5574DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5575DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5576
5577static void update_top_cache_domain(int cpu)
5578{
5579	struct sched_domain *sd;
5580	struct sched_domain *busy_sd = NULL;
5581	int id = cpu;
5582	int size = 1;
5583
5584	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5585	if (sd) {
5586		id = cpumask_first(sched_domain_span(sd));
5587		size = cpumask_weight(sched_domain_span(sd));
5588		busy_sd = sd->parent; /* sd_busy */
5589	}
5590	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5591
5592	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5593	per_cpu(sd_llc_size, cpu) = size;
5594	per_cpu(sd_llc_id, cpu) = id;
5595
5596	sd = lowest_flag_domain(cpu, SD_NUMA);
5597	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5598
5599	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5600	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5601}
5602
5603/*
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5606 */
5607static void
5608cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5609{
5610	struct rq *rq = cpu_rq(cpu);
5611	struct sched_domain *tmp;
5612
5613	/* Remove the sched domains which do not contribute to scheduling. */
5614	for (tmp = sd; tmp; ) {
5615		struct sched_domain *parent = tmp->parent;
5616		if (!parent)
5617			break;
5618
5619		if (sd_parent_degenerate(tmp, parent)) {
5620			tmp->parent = parent->parent;
5621			if (parent->parent)
5622				parent->parent->child = tmp;
5623			/*
5624			 * Transfer SD_PREFER_SIBLING down in case of a
5625			 * degenerate parent; the spans match for this
5626			 * so the property transfers.
5627			 */
5628			if (parent->flags & SD_PREFER_SIBLING)
5629				tmp->flags |= SD_PREFER_SIBLING;
5630			destroy_sched_domain(parent, cpu);
5631		} else
5632			tmp = tmp->parent;
5633	}
5634
5635	if (sd && sd_degenerate(sd)) {
5636		tmp = sd;
5637		sd = sd->parent;
5638		destroy_sched_domain(tmp, cpu);
5639		if (sd)
5640			sd->child = NULL;
5641	}
5642
5643	sched_domain_debug(sd, cpu);
5644
5645	rq_attach_root(rq, rd);
5646	tmp = rq->sd;
5647	rcu_assign_pointer(rq->sd, sd);
5648	destroy_sched_domains(tmp, cpu);
5649
5650	update_top_cache_domain(cpu);
5651}
5652
5653/* cpus with isolated domains */
5654static cpumask_var_t cpu_isolated_map;
5655
5656/* Setup the mask of cpus configured for isolated domains */
5657static int __init isolated_cpu_setup(char *str)
5658{
5659	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5660	cpulist_parse(str, cpu_isolated_map);
5661	return 1;
5662}
5663
5664__setup("isolcpus=", isolated_cpu_setup);
5665
5666struct s_data {
5667	struct sched_domain ** __percpu sd;
5668	struct root_domain	*rd;
5669};
5670
5671enum s_alloc {
5672	sa_rootdomain,
5673	sa_sd,
5674	sa_sd_storage,
5675	sa_none,
5676};
5677
5678/*
5679 * Build an iteration mask that can exclude certain CPUs from the upwards
5680 * domain traversal.
5681 *
5682 * Asymmetric node setups can result in situations where the domain tree is of
5683 * unequal depth, make sure to skip domains that already cover the entire
5684 * range.
5685 *
5686 * In that case build_sched_domains() will have terminated the iteration early
5687 * and our sibling sd spans will be empty. Domains should always include the
5688 * cpu they're built on, so check that.
5689 *
5690 */
5691static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5692{
5693	const struct cpumask *span = sched_domain_span(sd);
5694	struct sd_data *sdd = sd->private;
5695	struct sched_domain *sibling;
5696	int i;
5697
5698	for_each_cpu(i, span) {
5699		sibling = *per_cpu_ptr(sdd->sd, i);
5700		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5701			continue;
5702
5703		cpumask_set_cpu(i, sched_group_mask(sg));
5704	}
5705}
5706
5707/*
5708 * Return the canonical balance cpu for this group, this is the first cpu
5709 * of this group that's also in the iteration mask.
5710 */
5711int group_balance_cpu(struct sched_group *sg)
5712{
5713	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5714}
5715
5716static int
5717build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5718{
5719	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5720	const struct cpumask *span = sched_domain_span(sd);
5721	struct cpumask *covered = sched_domains_tmpmask;
5722	struct sd_data *sdd = sd->private;
5723	struct sched_domain *child;
5724	int i;
5725
5726	cpumask_clear(covered);
5727
5728	for_each_cpu(i, span) {
5729		struct cpumask *sg_span;
5730
5731		if (cpumask_test_cpu(i, covered))
5732			continue;
5733
5734		child = *per_cpu_ptr(sdd->sd, i);
5735
5736		/* See the comment near build_group_mask(). */
5737		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5738			continue;
5739
5740		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5741				GFP_KERNEL, cpu_to_node(cpu));
5742
5743		if (!sg)
5744			goto fail;
5745
5746		sg_span = sched_group_cpus(sg);
5747		if (child->child) {
5748			child = child->child;
5749			cpumask_copy(sg_span, sched_domain_span(child));
5750		} else
5751			cpumask_set_cpu(i, sg_span);
5752
5753		cpumask_or(covered, covered, sg_span);
5754
5755		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5756		if (atomic_inc_return(&sg->sgc->ref) == 1)
5757			build_group_mask(sd, sg);
5758
5759		/*
5760		 * Initialize sgc->capacity such that even if we mess up the
5761		 * domains and no possible iteration will get us here, we won't
5762		 * die on a /0 trap.
5763		 */
5764		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5765		sg->sgc->capacity_orig = sg->sgc->capacity;
5766
5767		/*
5768		 * Make sure the first group of this domain contains the
5769		 * canonical balance cpu. Otherwise the sched_domain iteration
5770		 * breaks. See update_sg_lb_stats().
5771		 */
5772		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5773		    group_balance_cpu(sg) == cpu)
5774			groups = sg;
5775
5776		if (!first)
5777			first = sg;
5778		if (last)
5779			last->next = sg;
5780		last = sg;
5781		last->next = first;
5782	}
5783	sd->groups = groups;
5784
5785	return 0;
5786
5787fail:
5788	free_sched_groups(first, 0);
5789
5790	return -ENOMEM;
5791}
5792
5793static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5794{
5795	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5796	struct sched_domain *child = sd->child;
5797
5798	if (child)
5799		cpu = cpumask_first(sched_domain_span(child));
5800
5801	if (sg) {
5802		*sg = *per_cpu_ptr(sdd->sg, cpu);
5803		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5804		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5805	}
5806
5807	return cpu;
5808}
5809
5810/*
5811 * build_sched_groups will build a circular linked list of the groups
5812 * covered by the given span, and will set each group's ->cpumask correctly,
5813 * and ->cpu_capacity to 0.
5814 *
5815 * Assumes the sched_domain tree is fully constructed
5816 */
5817static int
5818build_sched_groups(struct sched_domain *sd, int cpu)
5819{
5820	struct sched_group *first = NULL, *last = NULL;
5821	struct sd_data *sdd = sd->private;
5822	const struct cpumask *span = sched_domain_span(sd);
5823	struct cpumask *covered;
5824	int i;
5825
5826	get_group(cpu, sdd, &sd->groups);
5827	atomic_inc(&sd->groups->ref);
5828
5829	if (cpu != cpumask_first(span))
5830		return 0;
5831
5832	lockdep_assert_held(&sched_domains_mutex);
5833	covered = sched_domains_tmpmask;
5834
5835	cpumask_clear(covered);
5836
5837	for_each_cpu(i, span) {
5838		struct sched_group *sg;
5839		int group, j;
5840
5841		if (cpumask_test_cpu(i, covered))
5842			continue;
5843
5844		group = get_group(i, sdd, &sg);
5845		cpumask_setall(sched_group_mask(sg));
5846
5847		for_each_cpu(j, span) {
5848			if (get_group(j, sdd, NULL) != group)
5849				continue;
5850
5851			cpumask_set_cpu(j, covered);
5852			cpumask_set_cpu(j, sched_group_cpus(sg));
5853		}
5854
5855		if (!first)
5856			first = sg;
5857		if (last)
5858			last->next = sg;
5859		last = sg;
5860	}
5861	last->next = first;
5862
5863	return 0;
5864}
5865
5866/*
5867 * Initialize sched groups cpu_capacity.
5868 *
5869 * cpu_capacity indicates the capacity of sched group, which is used while
5870 * distributing the load between different sched groups in a sched domain.
5871 * Typically cpu_capacity for all the groups in a sched domain will be same
5872 * unless there are asymmetries in the topology. If there are asymmetries,
5873 * group having more cpu_capacity will pickup more load compared to the
5874 * group having less cpu_capacity.
5875 */
5876static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5877{
5878	struct sched_group *sg = sd->groups;
5879
5880	WARN_ON(!sg);
5881
5882	do {
5883		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5884		sg = sg->next;
5885	} while (sg != sd->groups);
5886
5887	if (cpu != group_balance_cpu(sg))
5888		return;
5889
5890	update_group_capacity(sd, cpu);
5891	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5892}
5893
5894/*
5895 * Initializers for schedule domains
5896 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5897 */
5898
5899static int default_relax_domain_level = -1;
5900int sched_domain_level_max;
5901
5902static int __init setup_relax_domain_level(char *str)
5903{
5904	if (kstrtoint(str, 0, &default_relax_domain_level))
5905		pr_warn("Unable to set relax_domain_level\n");
5906
5907	return 1;
5908}
5909__setup("relax_domain_level=", setup_relax_domain_level);
5910
5911static void set_domain_attribute(struct sched_domain *sd,
5912				 struct sched_domain_attr *attr)
5913{
5914	int request;
5915
5916	if (!attr || attr->relax_domain_level < 0) {
5917		if (default_relax_domain_level < 0)
5918			return;
5919		else
5920			request = default_relax_domain_level;
5921	} else
5922		request = attr->relax_domain_level;
5923	if (request < sd->level) {
5924		/* turn off idle balance on this domain */
5925		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5926	} else {
5927		/* turn on idle balance on this domain */
5928		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5929	}
5930}
5931
5932static void __sdt_free(const struct cpumask *cpu_map);
5933static int __sdt_alloc(const struct cpumask *cpu_map);
5934
5935static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5936				 const struct cpumask *cpu_map)
5937{
5938	switch (what) {
5939	case sa_rootdomain:
5940		if (!atomic_read(&d->rd->refcount))
5941			free_rootdomain(&d->rd->rcu); /* fall through */
5942	case sa_sd:
5943		free_percpu(d->sd); /* fall through */
5944	case sa_sd_storage:
5945		__sdt_free(cpu_map); /* fall through */
5946	case sa_none:
5947		break;
5948	}
5949}
5950
5951static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5952						   const struct cpumask *cpu_map)
5953{
5954	memset(d, 0, sizeof(*d));
5955
5956	if (__sdt_alloc(cpu_map))
5957		return sa_sd_storage;
5958	d->sd = alloc_percpu(struct sched_domain *);
5959	if (!d->sd)
5960		return sa_sd_storage;
5961	d->rd = alloc_rootdomain();
5962	if (!d->rd)
5963		return sa_sd;
5964	return sa_rootdomain;
5965}
5966
5967/*
5968 * NULL the sd_data elements we've used to build the sched_domain and
5969 * sched_group structure so that the subsequent __free_domain_allocs()
5970 * will not free the data we're using.
5971 */
5972static void claim_allocations(int cpu, struct sched_domain *sd)
5973{
5974	struct sd_data *sdd = sd->private;
5975
5976	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5977	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5978
5979	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5980		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5981
5982	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5983		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5984}
5985
5986#ifdef CONFIG_NUMA
5987static int sched_domains_numa_levels;
5988static int *sched_domains_numa_distance;
5989static struct cpumask ***sched_domains_numa_masks;
5990static int sched_domains_curr_level;
5991#endif
5992
5993/*
5994 * SD_flags allowed in topology descriptions.
5995 *
5996 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
5997 * SD_SHARE_PKG_RESOURCES - describes shared caches
5998 * SD_NUMA                - describes NUMA topologies
5999 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6000 *
6001 * Odd one out:
6002 * SD_ASYM_PACKING        - describes SMT quirks
6003 */
6004#define TOPOLOGY_SD_FLAGS		\
6005	(SD_SHARE_CPUCAPACITY |		\
6006	 SD_SHARE_PKG_RESOURCES |	\
6007	 SD_NUMA |			\
6008	 SD_ASYM_PACKING |		\
6009	 SD_SHARE_POWERDOMAIN)
6010
6011static struct sched_domain *
6012sd_init(struct sched_domain_topology_level *tl, int cpu)
6013{
6014	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6015	int sd_weight, sd_flags = 0;
6016
6017#ifdef CONFIG_NUMA
6018	/*
6019	 * Ugly hack to pass state to sd_numa_mask()...
6020	 */
6021	sched_domains_curr_level = tl->numa_level;
6022#endif
6023
6024	sd_weight = cpumask_weight(tl->mask(cpu));
6025
6026	if (tl->sd_flags)
6027		sd_flags = (*tl->sd_flags)();
6028	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6029			"wrong sd_flags in topology description\n"))
6030		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6031
6032	*sd = (struct sched_domain){
6033		.min_interval		= sd_weight,
6034		.max_interval		= 2*sd_weight,
6035		.busy_factor		= 32,
6036		.imbalance_pct		= 125,
6037
6038		.cache_nice_tries	= 0,
6039		.busy_idx		= 0,
6040		.idle_idx		= 0,
6041		.newidle_idx		= 0,
6042		.wake_idx		= 0,
6043		.forkexec_idx		= 0,
6044
6045		.flags			= 1*SD_LOAD_BALANCE
6046					| 1*SD_BALANCE_NEWIDLE
6047					| 1*SD_BALANCE_EXEC
6048					| 1*SD_BALANCE_FORK
6049					| 0*SD_BALANCE_WAKE
6050					| 1*SD_WAKE_AFFINE
6051					| 0*SD_SHARE_CPUCAPACITY
6052					| 0*SD_SHARE_PKG_RESOURCES
6053					| 0*SD_SERIALIZE
6054					| 0*SD_PREFER_SIBLING
6055					| 0*SD_NUMA
6056					| sd_flags
6057					,
6058
6059		.last_balance		= jiffies,
6060		.balance_interval	= sd_weight,
6061		.smt_gain		= 0,
6062		.max_newidle_lb_cost	= 0,
6063		.next_decay_max_lb_cost	= jiffies,
6064#ifdef CONFIG_SCHED_DEBUG
6065		.name			= tl->name,
6066#endif
6067	};
6068
6069	/*
6070	 * Convert topological properties into behaviour.
6071	 */
6072
6073	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6074		sd->imbalance_pct = 110;
6075		sd->smt_gain = 1178; /* ~15% */
6076
6077	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6078		sd->imbalance_pct = 117;
6079		sd->cache_nice_tries = 1;
6080		sd->busy_idx = 2;
6081
6082#ifdef CONFIG_NUMA
6083	} else if (sd->flags & SD_NUMA) {
6084		sd->cache_nice_tries = 2;
6085		sd->busy_idx = 3;
6086		sd->idle_idx = 2;
6087
6088		sd->flags |= SD_SERIALIZE;
6089		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6090			sd->flags &= ~(SD_BALANCE_EXEC |
6091				       SD_BALANCE_FORK |
6092				       SD_WAKE_AFFINE);
6093		}
6094
6095#endif
6096	} else {
6097		sd->flags |= SD_PREFER_SIBLING;
6098		sd->cache_nice_tries = 1;
6099		sd->busy_idx = 2;
6100		sd->idle_idx = 1;
6101	}
6102
6103	sd->private = &tl->data;
6104
6105	return sd;
6106}
6107
6108/*
6109 * Topology list, bottom-up.
6110 */
6111static struct sched_domain_topology_level default_topology[] = {
6112#ifdef CONFIG_SCHED_SMT
6113	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6114#endif
6115#ifdef CONFIG_SCHED_MC
6116	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6117#endif
6118	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6119	{ NULL, },
6120};
6121
6122struct sched_domain_topology_level *sched_domain_topology = default_topology;
6123
6124#define for_each_sd_topology(tl)			\
6125	for (tl = sched_domain_topology; tl->mask; tl++)
6126
6127void set_sched_topology(struct sched_domain_topology_level *tl)
6128{
6129	sched_domain_topology = tl;
6130}
6131
6132#ifdef CONFIG_NUMA
6133
6134static const struct cpumask *sd_numa_mask(int cpu)
6135{
6136	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6137}
6138
6139static void sched_numa_warn(const char *str)
6140{
6141	static int done = false;
6142	int i,j;
6143
6144	if (done)
6145		return;
6146
6147	done = true;
6148
6149	printk(KERN_WARNING "ERROR: %s\n\n", str);
6150
6151	for (i = 0; i < nr_node_ids; i++) {
6152		printk(KERN_WARNING "  ");
6153		for (j = 0; j < nr_node_ids; j++)
6154			printk(KERN_CONT "%02d ", node_distance(i,j));
6155		printk(KERN_CONT "\n");
6156	}
6157	printk(KERN_WARNING "\n");
6158}
6159
6160static bool find_numa_distance(int distance)
6161{
6162	int i;
6163
6164	if (distance == node_distance(0, 0))
6165		return true;
6166
6167	for (i = 0; i < sched_domains_numa_levels; i++) {
6168		if (sched_domains_numa_distance[i] == distance)
6169			return true;
6170	}
6171
6172	return false;
6173}
6174
6175static void sched_init_numa(void)
6176{
6177	int next_distance, curr_distance = node_distance(0, 0);
6178	struct sched_domain_topology_level *tl;
6179	int level = 0;
6180	int i, j, k;
6181
6182	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6183	if (!sched_domains_numa_distance)
6184		return;
6185
6186	/*
6187	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6188	 * unique distances in the node_distance() table.
6189	 *
6190	 * Assumes node_distance(0,j) includes all distances in
6191	 * node_distance(i,j) in order to avoid cubic time.
6192	 */
6193	next_distance = curr_distance;
6194	for (i = 0; i < nr_node_ids; i++) {
6195		for (j = 0; j < nr_node_ids; j++) {
6196			for (k = 0; k < nr_node_ids; k++) {
6197				int distance = node_distance(i, k);
6198
6199				if (distance > curr_distance &&
6200				    (distance < next_distance ||
6201				     next_distance == curr_distance))
6202					next_distance = distance;
6203
6204				/*
6205				 * While not a strong assumption it would be nice to know
6206				 * about cases where if node A is connected to B, B is not
6207				 * equally connected to A.
6208				 */
6209				if (sched_debug() && node_distance(k, i) != distance)
6210					sched_numa_warn("Node-distance not symmetric");
6211
6212				if (sched_debug() && i && !find_numa_distance(distance))
6213					sched_numa_warn("Node-0 not representative");
6214			}
6215			if (next_distance != curr_distance) {
6216				sched_domains_numa_distance[level++] = next_distance;
6217				sched_domains_numa_levels = level;
6218				curr_distance = next_distance;
6219			} else break;
6220		}
6221
6222		/*
6223		 * In case of sched_debug() we verify the above assumption.
6224		 */
6225		if (!sched_debug())
6226			break;
6227	}
6228	/*
6229	 * 'level' contains the number of unique distances, excluding the
6230	 * identity distance node_distance(i,i).
6231	 *
6232	 * The sched_domains_numa_distance[] array includes the actual distance
6233	 * numbers.
6234	 */
6235
6236	/*
6237	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6238	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6239	 * the array will contain less then 'level' members. This could be
6240	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6241	 * in other functions.
6242	 *
6243	 * We reset it to 'level' at the end of this function.
6244	 */
6245	sched_domains_numa_levels = 0;
6246
6247	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6248	if (!sched_domains_numa_masks)
6249		return;
6250
6251	/*
6252	 * Now for each level, construct a mask per node which contains all
6253	 * cpus of nodes that are that many hops away from us.
6254	 */
6255	for (i = 0; i < level; i++) {
6256		sched_domains_numa_masks[i] =
6257			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6258		if (!sched_domains_numa_masks[i])
6259			return;
6260
6261		for (j = 0; j < nr_node_ids; j++) {
6262			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6263			if (!mask)
6264				return;
6265
6266			sched_domains_numa_masks[i][j] = mask;
6267
6268			for (k = 0; k < nr_node_ids; k++) {
6269				if (node_distance(j, k) > sched_domains_numa_distance[i])
6270					continue;
6271
6272				cpumask_or(mask, mask, cpumask_of_node(k));
6273			}
6274		}
6275	}
6276
6277	/* Compute default topology size */
6278	for (i = 0; sched_domain_topology[i].mask; i++);
6279
6280	tl = kzalloc((i + level + 1) *
6281			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6282	if (!tl)
6283		return;
6284
6285	/*
6286	 * Copy the default topology bits..
6287	 */
6288	for (i = 0; sched_domain_topology[i].mask; i++)
6289		tl[i] = sched_domain_topology[i];
6290
6291	/*
6292	 * .. and append 'j' levels of NUMA goodness.
6293	 */
6294	for (j = 0; j < level; i++, j++) {
6295		tl[i] = (struct sched_domain_topology_level){
6296			.mask = sd_numa_mask,
6297			.sd_flags = cpu_numa_flags,
6298			.flags = SDTL_OVERLAP,
6299			.numa_level = j,
6300			SD_INIT_NAME(NUMA)
6301		};
6302	}
6303
6304	sched_domain_topology = tl;
6305
6306	sched_domains_numa_levels = level;
6307}
6308
6309static void sched_domains_numa_masks_set(int cpu)
6310{
6311	int i, j;
6312	int node = cpu_to_node(cpu);
6313
6314	for (i = 0; i < sched_domains_numa_levels; i++) {
6315		for (j = 0; j < nr_node_ids; j++) {
6316			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6317				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6318		}
6319	}
6320}
6321
6322static void sched_domains_numa_masks_clear(int cpu)
6323{
6324	int i, j;
6325	for (i = 0; i < sched_domains_numa_levels; i++) {
6326		for (j = 0; j < nr_node_ids; j++)
6327			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6328	}
6329}
6330
6331/*
6332 * Update sched_domains_numa_masks[level][node] array when new cpus
6333 * are onlined.
6334 */
6335static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6336					   unsigned long action,
6337					   void *hcpu)
6338{
6339	int cpu = (long)hcpu;
6340
6341	switch (action & ~CPU_TASKS_FROZEN) {
6342	case CPU_ONLINE:
6343		sched_domains_numa_masks_set(cpu);
6344		break;
6345
6346	case CPU_DEAD:
6347		sched_domains_numa_masks_clear(cpu);
6348		break;
6349
6350	default:
6351		return NOTIFY_DONE;
6352	}
6353
6354	return NOTIFY_OK;
6355}
6356#else
6357static inline void sched_init_numa(void)
6358{
6359}
6360
6361static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6362					   unsigned long action,
6363					   void *hcpu)
6364{
6365	return 0;
6366}
6367#endif /* CONFIG_NUMA */
6368
6369static int __sdt_alloc(const struct cpumask *cpu_map)
6370{
6371	struct sched_domain_topology_level *tl;
6372	int j;
6373
6374	for_each_sd_topology(tl) {
6375		struct sd_data *sdd = &tl->data;
6376
6377		sdd->sd = alloc_percpu(struct sched_domain *);
6378		if (!sdd->sd)
6379			return -ENOMEM;
6380
6381		sdd->sg = alloc_percpu(struct sched_group *);
6382		if (!sdd->sg)
6383			return -ENOMEM;
6384
6385		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6386		if (!sdd->sgc)
6387			return -ENOMEM;
6388
6389		for_each_cpu(j, cpu_map) {
6390			struct sched_domain *sd;
6391			struct sched_group *sg;
6392			struct sched_group_capacity *sgc;
6393
6394		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6395					GFP_KERNEL, cpu_to_node(j));
6396			if (!sd)
6397				return -ENOMEM;
6398
6399			*per_cpu_ptr(sdd->sd, j) = sd;
6400
6401			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6402					GFP_KERNEL, cpu_to_node(j));
6403			if (!sg)
6404				return -ENOMEM;
6405
6406			sg->next = sg;
6407
6408			*per_cpu_ptr(sdd->sg, j) = sg;
6409
6410			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6411					GFP_KERNEL, cpu_to_node(j));
6412			if (!sgc)
6413				return -ENOMEM;
6414
6415			*per_cpu_ptr(sdd->sgc, j) = sgc;
6416		}
6417	}
6418
6419	return 0;
6420}
6421
6422static void __sdt_free(const struct cpumask *cpu_map)
6423{
6424	struct sched_domain_topology_level *tl;
6425	int j;
6426
6427	for_each_sd_topology(tl) {
6428		struct sd_data *sdd = &tl->data;
6429
6430		for_each_cpu(j, cpu_map) {
6431			struct sched_domain *sd;
6432
6433			if (sdd->sd) {
6434				sd = *per_cpu_ptr(sdd->sd, j);
6435				if (sd && (sd->flags & SD_OVERLAP))
6436					free_sched_groups(sd->groups, 0);
6437				kfree(*per_cpu_ptr(sdd->sd, j));
6438			}
6439
6440			if (sdd->sg)
6441				kfree(*per_cpu_ptr(sdd->sg, j));
6442			if (sdd->sgc)
6443				kfree(*per_cpu_ptr(sdd->sgc, j));
6444		}
6445		free_percpu(sdd->sd);
6446		sdd->sd = NULL;
6447		free_percpu(sdd->sg);
6448		sdd->sg = NULL;
6449		free_percpu(sdd->sgc);
6450		sdd->sgc = NULL;
6451	}
6452}
6453
6454struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6455		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6456		struct sched_domain *child, int cpu)
6457{
6458	struct sched_domain *sd = sd_init(tl, cpu);
6459	if (!sd)
6460		return child;
6461
6462	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6463	if (child) {
6464		sd->level = child->level + 1;
6465		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6466		child->parent = sd;
6467		sd->child = child;
6468	}
6469	set_domain_attribute(sd, attr);
6470
6471	return sd;
6472}
6473
6474/*
6475 * Build sched domains for a given set of cpus and attach the sched domains
6476 * to the individual cpus
6477 */
6478static int build_sched_domains(const struct cpumask *cpu_map,
6479			       struct sched_domain_attr *attr)
6480{
6481	enum s_alloc alloc_state;
6482	struct sched_domain *sd;
6483	struct s_data d;
6484	int i, ret = -ENOMEM;
6485
6486	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6487	if (alloc_state != sa_rootdomain)
6488		goto error;
6489
6490	/* Set up domains for cpus specified by the cpu_map. */
6491	for_each_cpu(i, cpu_map) {
6492		struct sched_domain_topology_level *tl;
6493
6494		sd = NULL;
6495		for_each_sd_topology(tl) {
6496			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6497			if (tl == sched_domain_topology)
6498				*per_cpu_ptr(d.sd, i) = sd;
6499			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6500				sd->flags |= SD_OVERLAP;
6501			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6502				break;
6503		}
6504	}
6505
6506	/* Build the groups for the domains */
6507	for_each_cpu(i, cpu_map) {
6508		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6509			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6510			if (sd->flags & SD_OVERLAP) {
6511				if (build_overlap_sched_groups(sd, i))
6512					goto error;
6513			} else {
6514				if (build_sched_groups(sd, i))
6515					goto error;
6516			}
6517		}
6518	}
6519
6520	/* Calculate CPU capacity for physical packages and nodes */
6521	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6522		if (!cpumask_test_cpu(i, cpu_map))
6523			continue;
6524
6525		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6526			claim_allocations(i, sd);
6527			init_sched_groups_capacity(i, sd);
6528		}
6529	}
6530
6531	/* Attach the domains */
6532	rcu_read_lock();
6533	for_each_cpu(i, cpu_map) {
6534		sd = *per_cpu_ptr(d.sd, i);
6535		cpu_attach_domain(sd, d.rd, i);
6536	}
6537	rcu_read_unlock();
6538
6539	ret = 0;
6540error:
6541	__free_domain_allocs(&d, alloc_state, cpu_map);
6542	return ret;
6543}
6544
6545static cpumask_var_t *doms_cur;	/* current sched domains */
6546static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6547static struct sched_domain_attr *dattr_cur;
6548				/* attribues of custom domains in 'doms_cur' */
6549
6550/*
6551 * Special case: If a kmalloc of a doms_cur partition (array of
6552 * cpumask) fails, then fallback to a single sched domain,
6553 * as determined by the single cpumask fallback_doms.
6554 */
6555static cpumask_var_t fallback_doms;
6556
6557/*
6558 * arch_update_cpu_topology lets virtualized architectures update the
6559 * cpu core maps. It is supposed to return 1 if the topology changed
6560 * or 0 if it stayed the same.
6561 */
6562int __weak arch_update_cpu_topology(void)
6563{
6564	return 0;
6565}
6566
6567cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6568{
6569	int i;
6570	cpumask_var_t *doms;
6571
6572	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6573	if (!doms)
6574		return NULL;
6575	for (i = 0; i < ndoms; i++) {
6576		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6577			free_sched_domains(doms, i);
6578			return NULL;
6579		}
6580	}
6581	return doms;
6582}
6583
6584void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6585{
6586	unsigned int i;
6587	for (i = 0; i < ndoms; i++)
6588		free_cpumask_var(doms[i]);
6589	kfree(doms);
6590}
6591
6592/*
6593 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6594 * For now this just excludes isolated cpus, but could be used to
6595 * exclude other special cases in the future.
6596 */
6597static int init_sched_domains(const struct cpumask *cpu_map)
6598{
6599	int err;
6600
6601	arch_update_cpu_topology();
6602	ndoms_cur = 1;
6603	doms_cur = alloc_sched_domains(ndoms_cur);
6604	if (!doms_cur)
6605		doms_cur = &fallback_doms;
6606	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6607	err = build_sched_domains(doms_cur[0], NULL);
6608	register_sched_domain_sysctl();
6609
6610	return err;
6611}
6612
6613/*
6614 * Detach sched domains from a group of cpus specified in cpu_map
6615 * These cpus will now be attached to the NULL domain
6616 */
6617static void detach_destroy_domains(const struct cpumask *cpu_map)
6618{
6619	int i;
6620
6621	rcu_read_lock();
6622	for_each_cpu(i, cpu_map)
6623		cpu_attach_domain(NULL, &def_root_domain, i);
6624	rcu_read_unlock();
6625}
6626
6627/* handle null as "default" */
6628static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6629			struct sched_domain_attr *new, int idx_new)
6630{
6631	struct sched_domain_attr tmp;
6632
6633	/* fast path */
6634	if (!new && !cur)
6635		return 1;
6636
6637	tmp = SD_ATTR_INIT;
6638	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6639			new ? (new + idx_new) : &tmp,
6640			sizeof(struct sched_domain_attr));
6641}
6642
6643/*
6644 * Partition sched domains as specified by the 'ndoms_new'
6645 * cpumasks in the array doms_new[] of cpumasks. This compares
6646 * doms_new[] to the current sched domain partitioning, doms_cur[].
6647 * It destroys each deleted domain and builds each new domain.
6648 *
6649 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6650 * The masks don't intersect (don't overlap.) We should setup one
6651 * sched domain for each mask. CPUs not in any of the cpumasks will
6652 * not be load balanced. If the same cpumask appears both in the
6653 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6654 * it as it is.
6655 *
6656 * The passed in 'doms_new' should be allocated using
6657 * alloc_sched_domains.  This routine takes ownership of it and will
6658 * free_sched_domains it when done with it. If the caller failed the
6659 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6660 * and partition_sched_domains() will fallback to the single partition
6661 * 'fallback_doms', it also forces the domains to be rebuilt.
6662 *
6663 * If doms_new == NULL it will be replaced with cpu_online_mask.
6664 * ndoms_new == 0 is a special case for destroying existing domains,
6665 * and it will not create the default domain.
6666 *
6667 * Call with hotplug lock held
6668 */
6669void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6670			     struct sched_domain_attr *dattr_new)
6671{
6672	int i, j, n;
6673	int new_topology;
6674
6675	mutex_lock(&sched_domains_mutex);
6676
6677	/* always unregister in case we don't destroy any domains */
6678	unregister_sched_domain_sysctl();
6679
6680	/* Let architecture update cpu core mappings. */
6681	new_topology = arch_update_cpu_topology();
6682
6683	n = doms_new ? ndoms_new : 0;
6684
6685	/* Destroy deleted domains */
6686	for (i = 0; i < ndoms_cur; i++) {
6687		for (j = 0; j < n && !new_topology; j++) {
6688			if (cpumask_equal(doms_cur[i], doms_new[j])
6689			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6690				goto match1;
6691		}
6692		/* no match - a current sched domain not in new doms_new[] */
6693		detach_destroy_domains(doms_cur[i]);
6694match1:
6695		;
6696	}
6697
6698	n = ndoms_cur;
6699	if (doms_new == NULL) {
6700		n = 0;
6701		doms_new = &fallback_doms;
6702		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6703		WARN_ON_ONCE(dattr_new);
6704	}
6705
6706	/* Build new domains */
6707	for (i = 0; i < ndoms_new; i++) {
6708		for (j = 0; j < n && !new_topology; j++) {
6709			if (cpumask_equal(doms_new[i], doms_cur[j])
6710			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6711				goto match2;
6712		}
6713		/* no match - add a new doms_new */
6714		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6715match2:
6716		;
6717	}
6718
6719	/* Remember the new sched domains */
6720	if (doms_cur != &fallback_doms)
6721		free_sched_domains(doms_cur, ndoms_cur);
6722	kfree(dattr_cur);	/* kfree(NULL) is safe */
6723	doms_cur = doms_new;
6724	dattr_cur = dattr_new;
6725	ndoms_cur = ndoms_new;
6726
6727	register_sched_domain_sysctl();
6728
6729	mutex_unlock(&sched_domains_mutex);
6730}
6731
6732static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6733
6734/*
6735 * Update cpusets according to cpu_active mask.  If cpusets are
6736 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6737 * around partition_sched_domains().
6738 *
6739 * If we come here as part of a suspend/resume, don't touch cpusets because we
6740 * want to restore it back to its original state upon resume anyway.
6741 */
6742static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6743			     void *hcpu)
6744{
6745	switch (action) {
6746	case CPU_ONLINE_FROZEN:
6747	case CPU_DOWN_FAILED_FROZEN:
6748
6749		/*
6750		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6751		 * resume sequence. As long as this is not the last online
6752		 * operation in the resume sequence, just build a single sched
6753		 * domain, ignoring cpusets.
6754		 */
6755		num_cpus_frozen--;
6756		if (likely(num_cpus_frozen)) {
6757			partition_sched_domains(1, NULL, NULL);
6758			break;
6759		}
6760
6761		/*
6762		 * This is the last CPU online operation. So fall through and
6763		 * restore the original sched domains by considering the
6764		 * cpuset configurations.
6765		 */
6766
6767	case CPU_ONLINE:
6768	case CPU_DOWN_FAILED:
6769		cpuset_update_active_cpus(true);
6770		break;
6771	default:
6772		return NOTIFY_DONE;
6773	}
6774	return NOTIFY_OK;
6775}
6776
6777static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6778			       void *hcpu)
6779{
6780	switch (action) {
6781	case CPU_DOWN_PREPARE:
6782		cpuset_update_active_cpus(false);
6783		break;
6784	case CPU_DOWN_PREPARE_FROZEN:
6785		num_cpus_frozen++;
6786		partition_sched_domains(1, NULL, NULL);
6787		break;
6788	default:
6789		return NOTIFY_DONE;
6790	}
6791	return NOTIFY_OK;
6792}
6793
6794void __init sched_init_smp(void)
6795{
6796	cpumask_var_t non_isolated_cpus;
6797
6798	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6799	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6800
6801	sched_init_numa();
6802
6803	/*
6804	 * There's no userspace yet to cause hotplug operations; hence all the
6805	 * cpu masks are stable and all blatant races in the below code cannot
6806	 * happen.
6807	 */
6808	mutex_lock(&sched_domains_mutex);
6809	init_sched_domains(cpu_active_mask);
6810	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6811	if (cpumask_empty(non_isolated_cpus))
6812		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6813	mutex_unlock(&sched_domains_mutex);
6814
6815	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6816	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6817	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6818
6819	init_hrtick();
6820
6821	/* Move init over to a non-isolated CPU */
6822	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6823		BUG();
6824	sched_init_granularity();
6825	free_cpumask_var(non_isolated_cpus);
6826
6827	init_sched_rt_class();
6828	init_sched_dl_class();
6829}
6830#else
6831void __init sched_init_smp(void)
6832{
6833	sched_init_granularity();
6834}
6835#endif /* CONFIG_SMP */
6836
6837const_debug unsigned int sysctl_timer_migration = 1;
6838
6839int in_sched_functions(unsigned long addr)
6840{
6841	return in_lock_functions(addr) ||
6842		(addr >= (unsigned long)__sched_text_start
6843		&& addr < (unsigned long)__sched_text_end);
6844}
6845
6846#ifdef CONFIG_CGROUP_SCHED
6847/*
6848 * Default task group.
6849 * Every task in system belongs to this group at bootup.
6850 */
6851struct task_group root_task_group;
6852LIST_HEAD(task_groups);
6853#endif
6854
6855DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6856
6857void __init sched_init(void)
6858{
6859	int i, j;
6860	unsigned long alloc_size = 0, ptr;
6861
6862#ifdef CONFIG_FAIR_GROUP_SCHED
6863	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6864#endif
6865#ifdef CONFIG_RT_GROUP_SCHED
6866	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6867#endif
6868#ifdef CONFIG_CPUMASK_OFFSTACK
6869	alloc_size += num_possible_cpus() * cpumask_size();
6870#endif
6871	if (alloc_size) {
6872		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6873
6874#ifdef CONFIG_FAIR_GROUP_SCHED
6875		root_task_group.se = (struct sched_entity **)ptr;
6876		ptr += nr_cpu_ids * sizeof(void **);
6877
6878		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6879		ptr += nr_cpu_ids * sizeof(void **);
6880
6881#endif /* CONFIG_FAIR_GROUP_SCHED */
6882#ifdef CONFIG_RT_GROUP_SCHED
6883		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6884		ptr += nr_cpu_ids * sizeof(void **);
6885
6886		root_task_group.rt_rq = (struct rt_rq **)ptr;
6887		ptr += nr_cpu_ids * sizeof(void **);
6888
6889#endif /* CONFIG_RT_GROUP_SCHED */
6890#ifdef CONFIG_CPUMASK_OFFSTACK
6891		for_each_possible_cpu(i) {
6892			per_cpu(load_balance_mask, i) = (void *)ptr;
6893			ptr += cpumask_size();
6894		}
6895#endif /* CONFIG_CPUMASK_OFFSTACK */
6896	}
6897
6898	init_rt_bandwidth(&def_rt_bandwidth,
6899			global_rt_period(), global_rt_runtime());
6900	init_dl_bandwidth(&def_dl_bandwidth,
6901			global_rt_period(), global_rt_runtime());
6902
6903#ifdef CONFIG_SMP
6904	init_defrootdomain();
6905#endif
6906
6907#ifdef CONFIG_RT_GROUP_SCHED
6908	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6909			global_rt_period(), global_rt_runtime());
6910#endif /* CONFIG_RT_GROUP_SCHED */
6911
6912#ifdef CONFIG_CGROUP_SCHED
6913	list_add(&root_task_group.list, &task_groups);
6914	INIT_LIST_HEAD(&root_task_group.children);
6915	INIT_LIST_HEAD(&root_task_group.siblings);
6916	autogroup_init(&init_task);
6917
6918#endif /* CONFIG_CGROUP_SCHED */
6919
6920	for_each_possible_cpu(i) {
6921		struct rq *rq;
6922
6923		rq = cpu_rq(i);
6924		raw_spin_lock_init(&rq->lock);
6925		rq->nr_running = 0;
6926		rq->calc_load_active = 0;
6927		rq->calc_load_update = jiffies + LOAD_FREQ;
6928		init_cfs_rq(&rq->cfs);
6929		init_rt_rq(&rq->rt, rq);
6930		init_dl_rq(&rq->dl, rq);
6931#ifdef CONFIG_FAIR_GROUP_SCHED
6932		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6933		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6934		/*
6935		 * How much cpu bandwidth does root_task_group get?
6936		 *
6937		 * In case of task-groups formed thr' the cgroup filesystem, it
6938		 * gets 100% of the cpu resources in the system. This overall
6939		 * system cpu resource is divided among the tasks of
6940		 * root_task_group and its child task-groups in a fair manner,
6941		 * based on each entity's (task or task-group's) weight
6942		 * (se->load.weight).
6943		 *
6944		 * In other words, if root_task_group has 10 tasks of weight
6945		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6946		 * then A0's share of the cpu resource is:
6947		 *
6948		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6949		 *
6950		 * We achieve this by letting root_task_group's tasks sit
6951		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6952		 */
6953		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6954		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6955#endif /* CONFIG_FAIR_GROUP_SCHED */
6956
6957		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6958#ifdef CONFIG_RT_GROUP_SCHED
6959		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6960#endif
6961
6962		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6963			rq->cpu_load[j] = 0;
6964
6965		rq->last_load_update_tick = jiffies;
6966
6967#ifdef CONFIG_SMP
6968		rq->sd = NULL;
6969		rq->rd = NULL;
6970		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6971		rq->post_schedule = 0;
6972		rq->active_balance = 0;
6973		rq->next_balance = jiffies;
6974		rq->push_cpu = 0;
6975		rq->cpu = i;
6976		rq->online = 0;
6977		rq->idle_stamp = 0;
6978		rq->avg_idle = 2*sysctl_sched_migration_cost;
6979		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6980
6981		INIT_LIST_HEAD(&rq->cfs_tasks);
6982
6983		rq_attach_root(rq, &def_root_domain);
6984#ifdef CONFIG_NO_HZ_COMMON
6985		rq->nohz_flags = 0;
6986#endif
6987#ifdef CONFIG_NO_HZ_FULL
6988		rq->last_sched_tick = 0;
6989#endif
6990#endif
6991		init_rq_hrtick(rq);
6992		atomic_set(&rq->nr_iowait, 0);
6993	}
6994
6995	set_load_weight(&init_task);
6996
6997#ifdef CONFIG_PREEMPT_NOTIFIERS
6998	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6999#endif
7000
7001	/*
7002	 * The boot idle thread does lazy MMU switching as well:
7003	 */
7004	atomic_inc(&init_mm.mm_count);
7005	enter_lazy_tlb(&init_mm, current);
7006
7007	/*
7008	 * Make us the idle thread. Technically, schedule() should not be
7009	 * called from this thread, however somewhere below it might be,
7010	 * but because we are the idle thread, we just pick up running again
7011	 * when this runqueue becomes "idle".
7012	 */
7013	init_idle(current, smp_processor_id());
7014
7015	calc_load_update = jiffies + LOAD_FREQ;
7016
7017	/*
7018	 * During early bootup we pretend to be a normal task:
7019	 */
7020	current->sched_class = &fair_sched_class;
7021
7022#ifdef CONFIG_SMP
7023	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7024	/* May be allocated at isolcpus cmdline parse time */
7025	if (cpu_isolated_map == NULL)
7026		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7027	idle_thread_set_boot_cpu();
7028	set_cpu_rq_start_time();
7029#endif
7030	init_sched_fair_class();
7031
7032	scheduler_running = 1;
7033}
7034
7035#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7036static inline int preempt_count_equals(int preempt_offset)
7037{
7038	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7039
7040	return (nested == preempt_offset);
7041}
7042
7043void __might_sleep(const char *file, int line, int preempt_offset)
7044{
7045	static unsigned long prev_jiffy;	/* ratelimiting */
7046
7047	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7048	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7049	     !is_idle_task(current)) ||
7050	    system_state != SYSTEM_RUNNING || oops_in_progress)
7051		return;
7052	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7053		return;
7054	prev_jiffy = jiffies;
7055
7056	printk(KERN_ERR
7057		"BUG: sleeping function called from invalid context at %s:%d\n",
7058			file, line);
7059	printk(KERN_ERR
7060		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7061			in_atomic(), irqs_disabled(),
7062			current->pid, current->comm);
7063
7064	debug_show_held_locks(current);
7065	if (irqs_disabled())
7066		print_irqtrace_events(current);
7067#ifdef CONFIG_DEBUG_PREEMPT
7068	if (!preempt_count_equals(preempt_offset)) {
7069		pr_err("Preemption disabled at:");
7070		print_ip_sym(current->preempt_disable_ip);
7071		pr_cont("\n");
7072	}
7073#endif
7074	dump_stack();
7075}
7076EXPORT_SYMBOL(__might_sleep);
7077#endif
7078
7079#ifdef CONFIG_MAGIC_SYSRQ
7080static void normalize_task(struct rq *rq, struct task_struct *p)
7081{
7082	const struct sched_class *prev_class = p->sched_class;
7083	struct sched_attr attr = {
7084		.sched_policy = SCHED_NORMAL,
7085	};
7086	int old_prio = p->prio;
7087	int on_rq;
7088
7089	on_rq = p->on_rq;
7090	if (on_rq)
7091		dequeue_task(rq, p, 0);
7092	__setscheduler(rq, p, &attr);
7093	if (on_rq) {
7094		enqueue_task(rq, p, 0);
7095		resched_task(rq->curr);
7096	}
7097
7098	check_class_changed(rq, p, prev_class, old_prio);
7099}
7100
7101void normalize_rt_tasks(void)
7102{
7103	struct task_struct *g, *p;
7104	unsigned long flags;
7105	struct rq *rq;
7106
7107	read_lock_irqsave(&tasklist_lock, flags);
7108	do_each_thread(g, p) {
7109		/*
7110		 * Only normalize user tasks:
7111		 */
7112		if (!p->mm)
7113			continue;
7114
7115		p->se.exec_start		= 0;
7116#ifdef CONFIG_SCHEDSTATS
7117		p->se.statistics.wait_start	= 0;
7118		p->se.statistics.sleep_start	= 0;
7119		p->se.statistics.block_start	= 0;
7120#endif
7121
7122		if (!dl_task(p) && !rt_task(p)) {
7123			/*
7124			 * Renice negative nice level userspace
7125			 * tasks back to 0:
7126			 */
7127			if (task_nice(p) < 0 && p->mm)
7128				set_user_nice(p, 0);
7129			continue;
7130		}
7131
7132		raw_spin_lock(&p->pi_lock);
7133		rq = __task_rq_lock(p);
7134
7135		normalize_task(rq, p);
7136
7137		__task_rq_unlock(rq);
7138		raw_spin_unlock(&p->pi_lock);
7139	} while_each_thread(g, p);
7140
7141	read_unlock_irqrestore(&tasklist_lock, flags);
7142}
7143
7144#endif /* CONFIG_MAGIC_SYSRQ */
7145
7146#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7147/*
7148 * These functions are only useful for the IA64 MCA handling, or kdb.
7149 *
7150 * They can only be called when the whole system has been
7151 * stopped - every CPU needs to be quiescent, and no scheduling
7152 * activity can take place. Using them for anything else would
7153 * be a serious bug, and as a result, they aren't even visible
7154 * under any other configuration.
7155 */
7156
7157/**
7158 * curr_task - return the current task for a given cpu.
7159 * @cpu: the processor in question.
7160 *
7161 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7162 *
7163 * Return: The current task for @cpu.
7164 */
7165struct task_struct *curr_task(int cpu)
7166{
7167	return cpu_curr(cpu);
7168}
7169
7170#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7171
7172#ifdef CONFIG_IA64
7173/**
7174 * set_curr_task - set the current task for a given cpu.
7175 * @cpu: the processor in question.
7176 * @p: the task pointer to set.
7177 *
7178 * Description: This function must only be used when non-maskable interrupts
7179 * are serviced on a separate stack. It allows the architecture to switch the
7180 * notion of the current task on a cpu in a non-blocking manner. This function
7181 * must be called with all CPU's synchronized, and interrupts disabled, the
7182 * and caller must save the original value of the current task (see
7183 * curr_task() above) and restore that value before reenabling interrupts and
7184 * re-starting the system.
7185 *
7186 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7187 */
7188void set_curr_task(int cpu, struct task_struct *p)
7189{
7190	cpu_curr(cpu) = p;
7191}
7192
7193#endif
7194
7195#ifdef CONFIG_CGROUP_SCHED
7196/* task_group_lock serializes the addition/removal of task groups */
7197static DEFINE_SPINLOCK(task_group_lock);
7198
7199static void free_sched_group(struct task_group *tg)
7200{
7201	free_fair_sched_group(tg);
7202	free_rt_sched_group(tg);
7203	autogroup_free(tg);
7204	kfree(tg);
7205}
7206
7207/* allocate runqueue etc for a new task group */
7208struct task_group *sched_create_group(struct task_group *parent)
7209{
7210	struct task_group *tg;
7211
7212	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7213	if (!tg)
7214		return ERR_PTR(-ENOMEM);
7215
7216	if (!alloc_fair_sched_group(tg, parent))
7217		goto err;
7218
7219	if (!alloc_rt_sched_group(tg, parent))
7220		goto err;
7221
7222	return tg;
7223
7224err:
7225	free_sched_group(tg);
7226	return ERR_PTR(-ENOMEM);
7227}
7228
7229void sched_online_group(struct task_group *tg, struct task_group *parent)
7230{
7231	unsigned long flags;
7232
7233	spin_lock_irqsave(&task_group_lock, flags);
7234	list_add_rcu(&tg->list, &task_groups);
7235
7236	WARN_ON(!parent); /* root should already exist */
7237
7238	tg->parent = parent;
7239	INIT_LIST_HEAD(&tg->children);
7240	list_add_rcu(&tg->siblings, &parent->children);
7241	spin_unlock_irqrestore(&task_group_lock, flags);
7242}
7243
7244/* rcu callback to free various structures associated with a task group */
7245static void free_sched_group_rcu(struct rcu_head *rhp)
7246{
7247	/* now it should be safe to free those cfs_rqs */
7248	free_sched_group(container_of(rhp, struct task_group, rcu));
7249}
7250
7251/* Destroy runqueue etc associated with a task group */
7252void sched_destroy_group(struct task_group *tg)
7253{
7254	/* wait for possible concurrent references to cfs_rqs complete */
7255	call_rcu(&tg->rcu, free_sched_group_rcu);
7256}
7257
7258void sched_offline_group(struct task_group *tg)
7259{
7260	unsigned long flags;
7261	int i;
7262
7263	/* end participation in shares distribution */
7264	for_each_possible_cpu(i)
7265		unregister_fair_sched_group(tg, i);
7266
7267	spin_lock_irqsave(&task_group_lock, flags);
7268	list_del_rcu(&tg->list);
7269	list_del_rcu(&tg->siblings);
7270	spin_unlock_irqrestore(&task_group_lock, flags);
7271}
7272
7273/* change task's runqueue when it moves between groups.
7274 *	The caller of this function should have put the task in its new group
7275 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7276 *	reflect its new group.
7277 */
7278void sched_move_task(struct task_struct *tsk)
7279{
7280	struct task_group *tg;
7281	int on_rq, running;
7282	unsigned long flags;
7283	struct rq *rq;
7284
7285	rq = task_rq_lock(tsk, &flags);
7286
7287	running = task_current(rq, tsk);
7288	on_rq = tsk->on_rq;
7289
7290	if (on_rq)
7291		dequeue_task(rq, tsk, 0);
7292	if (unlikely(running))
7293		tsk->sched_class->put_prev_task(rq, tsk);
7294
7295	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7296				lockdep_is_held(&tsk->sighand->siglock)),
7297			  struct task_group, css);
7298	tg = autogroup_task_group(tsk, tg);
7299	tsk->sched_task_group = tg;
7300
7301#ifdef CONFIG_FAIR_GROUP_SCHED
7302	if (tsk->sched_class->task_move_group)
7303		tsk->sched_class->task_move_group(tsk, on_rq);
7304	else
7305#endif
7306		set_task_rq(tsk, task_cpu(tsk));
7307
7308	if (unlikely(running))
7309		tsk->sched_class->set_curr_task(rq);
7310	if (on_rq)
7311		enqueue_task(rq, tsk, 0);
7312
7313	task_rq_unlock(rq, tsk, &flags);
7314}
7315#endif /* CONFIG_CGROUP_SCHED */
7316
7317#ifdef CONFIG_RT_GROUP_SCHED
7318/*
7319 * Ensure that the real time constraints are schedulable.
7320 */
7321static DEFINE_MUTEX(rt_constraints_mutex);
7322
7323/* Must be called with tasklist_lock held */
7324static inline int tg_has_rt_tasks(struct task_group *tg)
7325{
7326	struct task_struct *g, *p;
7327
7328	do_each_thread(g, p) {
7329		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7330			return 1;
7331	} while_each_thread(g, p);
7332
7333	return 0;
7334}
7335
7336struct rt_schedulable_data {
7337	struct task_group *tg;
7338	u64 rt_period;
7339	u64 rt_runtime;
7340};
7341
7342static int tg_rt_schedulable(struct task_group *tg, void *data)
7343{
7344	struct rt_schedulable_data *d = data;
7345	struct task_group *child;
7346	unsigned long total, sum = 0;
7347	u64 period, runtime;
7348
7349	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7350	runtime = tg->rt_bandwidth.rt_runtime;
7351
7352	if (tg == d->tg) {
7353		period = d->rt_period;
7354		runtime = d->rt_runtime;
7355	}
7356
7357	/*
7358	 * Cannot have more runtime than the period.
7359	 */
7360	if (runtime > period && runtime != RUNTIME_INF)
7361		return -EINVAL;
7362
7363	/*
7364	 * Ensure we don't starve existing RT tasks.
7365	 */
7366	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7367		return -EBUSY;
7368
7369	total = to_ratio(period, runtime);
7370
7371	/*
7372	 * Nobody can have more than the global setting allows.
7373	 */
7374	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7375		return -EINVAL;
7376
7377	/*
7378	 * The sum of our children's runtime should not exceed our own.
7379	 */
7380	list_for_each_entry_rcu(child, &tg->children, siblings) {
7381		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7382		runtime = child->rt_bandwidth.rt_runtime;
7383
7384		if (child == d->tg) {
7385			period = d->rt_period;
7386			runtime = d->rt_runtime;
7387		}
7388
7389		sum += to_ratio(period, runtime);
7390	}
7391
7392	if (sum > total)
7393		return -EINVAL;
7394
7395	return 0;
7396}
7397
7398static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7399{
7400	int ret;
7401
7402	struct rt_schedulable_data data = {
7403		.tg = tg,
7404		.rt_period = period,
7405		.rt_runtime = runtime,
7406	};
7407
7408	rcu_read_lock();
7409	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7410	rcu_read_unlock();
7411
7412	return ret;
7413}
7414
7415static int tg_set_rt_bandwidth(struct task_group *tg,
7416		u64 rt_period, u64 rt_runtime)
7417{
7418	int i, err = 0;
7419
7420	mutex_lock(&rt_constraints_mutex);
7421	read_lock(&tasklist_lock);
7422	err = __rt_schedulable(tg, rt_period, rt_runtime);
7423	if (err)
7424		goto unlock;
7425
7426	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7427	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7428	tg->rt_bandwidth.rt_runtime = rt_runtime;
7429
7430	for_each_possible_cpu(i) {
7431		struct rt_rq *rt_rq = tg->rt_rq[i];
7432
7433		raw_spin_lock(&rt_rq->rt_runtime_lock);
7434		rt_rq->rt_runtime = rt_runtime;
7435		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7436	}
7437	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7438unlock:
7439	read_unlock(&tasklist_lock);
7440	mutex_unlock(&rt_constraints_mutex);
7441
7442	return err;
7443}
7444
7445static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7446{
7447	u64 rt_runtime, rt_period;
7448
7449	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7450	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7451	if (rt_runtime_us < 0)
7452		rt_runtime = RUNTIME_INF;
7453
7454	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7455}
7456
7457static long sched_group_rt_runtime(struct task_group *tg)
7458{
7459	u64 rt_runtime_us;
7460
7461	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7462		return -1;
7463
7464	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7465	do_div(rt_runtime_us, NSEC_PER_USEC);
7466	return rt_runtime_us;
7467}
7468
7469static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7470{
7471	u64 rt_runtime, rt_period;
7472
7473	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7474	rt_runtime = tg->rt_bandwidth.rt_runtime;
7475
7476	if (rt_period == 0)
7477		return -EINVAL;
7478
7479	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7480}
7481
7482static long sched_group_rt_period(struct task_group *tg)
7483{
7484	u64 rt_period_us;
7485
7486	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7487	do_div(rt_period_us, NSEC_PER_USEC);
7488	return rt_period_us;
7489}
7490#endif /* CONFIG_RT_GROUP_SCHED */
7491
7492#ifdef CONFIG_RT_GROUP_SCHED
7493static int sched_rt_global_constraints(void)
7494{
7495	int ret = 0;
7496
7497	mutex_lock(&rt_constraints_mutex);
7498	read_lock(&tasklist_lock);
7499	ret = __rt_schedulable(NULL, 0, 0);
7500	read_unlock(&tasklist_lock);
7501	mutex_unlock(&rt_constraints_mutex);
7502
7503	return ret;
7504}
7505
7506static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7507{
7508	/* Don't accept realtime tasks when there is no way for them to run */
7509	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7510		return 0;
7511
7512	return 1;
7513}
7514
7515#else /* !CONFIG_RT_GROUP_SCHED */
7516static int sched_rt_global_constraints(void)
7517{
7518	unsigned long flags;
7519	int i, ret = 0;
7520
7521	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7522	for_each_possible_cpu(i) {
7523		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7524
7525		raw_spin_lock(&rt_rq->rt_runtime_lock);
7526		rt_rq->rt_runtime = global_rt_runtime();
7527		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7528	}
7529	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7530
7531	return ret;
7532}
7533#endif /* CONFIG_RT_GROUP_SCHED */
7534
7535static int sched_dl_global_constraints(void)
7536{
7537	u64 runtime = global_rt_runtime();
7538	u64 period = global_rt_period();
7539	u64 new_bw = to_ratio(period, runtime);
7540	int cpu, ret = 0;
7541	unsigned long flags;
7542
7543	/*
7544	 * Here we want to check the bandwidth not being set to some
7545	 * value smaller than the currently allocated bandwidth in
7546	 * any of the root_domains.
7547	 *
7548	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7549	 * cycling on root_domains... Discussion on different/better
7550	 * solutions is welcome!
7551	 */
7552	for_each_possible_cpu(cpu) {
7553		struct dl_bw *dl_b = dl_bw_of(cpu);
7554
7555		raw_spin_lock_irqsave(&dl_b->lock, flags);
7556		if (new_bw < dl_b->total_bw)
7557			ret = -EBUSY;
7558		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7559
7560		if (ret)
7561			break;
7562	}
7563
7564	return ret;
7565}
7566
7567static void sched_dl_do_global(void)
7568{
7569	u64 new_bw = -1;
7570	int cpu;
7571	unsigned long flags;
7572
7573	def_dl_bandwidth.dl_period = global_rt_period();
7574	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7575
7576	if (global_rt_runtime() != RUNTIME_INF)
7577		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7578
7579	/*
7580	 * FIXME: As above...
7581	 */
7582	for_each_possible_cpu(cpu) {
7583		struct dl_bw *dl_b = dl_bw_of(cpu);
7584
7585		raw_spin_lock_irqsave(&dl_b->lock, flags);
7586		dl_b->bw = new_bw;
7587		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7588	}
7589}
7590
7591static int sched_rt_global_validate(void)
7592{
7593	if (sysctl_sched_rt_period <= 0)
7594		return -EINVAL;
7595
7596	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7597		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7598		return -EINVAL;
7599
7600	return 0;
7601}
7602
7603static void sched_rt_do_global(void)
7604{
7605	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7606	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7607}
7608
7609int sched_rt_handler(struct ctl_table *table, int write,
7610		void __user *buffer, size_t *lenp,
7611		loff_t *ppos)
7612{
7613	int old_period, old_runtime;
7614	static DEFINE_MUTEX(mutex);
7615	int ret;
7616
7617	mutex_lock(&mutex);
7618	old_period = sysctl_sched_rt_period;
7619	old_runtime = sysctl_sched_rt_runtime;
7620
7621	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7622
7623	if (!ret && write) {
7624		ret = sched_rt_global_validate();
7625		if (ret)
7626			goto undo;
7627
7628		ret = sched_rt_global_constraints();
7629		if (ret)
7630			goto undo;
7631
7632		ret = sched_dl_global_constraints();
7633		if (ret)
7634			goto undo;
7635
7636		sched_rt_do_global();
7637		sched_dl_do_global();
7638	}
7639	if (0) {
7640undo:
7641		sysctl_sched_rt_period = old_period;
7642		sysctl_sched_rt_runtime = old_runtime;
7643	}
7644	mutex_unlock(&mutex);
7645
7646	return ret;
7647}
7648
7649int sched_rr_handler(struct ctl_table *table, int write,
7650		void __user *buffer, size_t *lenp,
7651		loff_t *ppos)
7652{
7653	int ret;
7654	static DEFINE_MUTEX(mutex);
7655
7656	mutex_lock(&mutex);
7657	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7658	/* make sure that internally we keep jiffies */
7659	/* also, writing zero resets timeslice to default */
7660	if (!ret && write) {
7661		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7662			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7663	}
7664	mutex_unlock(&mutex);
7665	return ret;
7666}
7667
7668#ifdef CONFIG_CGROUP_SCHED
7669
7670static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7671{
7672	return css ? container_of(css, struct task_group, css) : NULL;
7673}
7674
7675static struct cgroup_subsys_state *
7676cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7677{
7678	struct task_group *parent = css_tg(parent_css);
7679	struct task_group *tg;
7680
7681	if (!parent) {
7682		/* This is early initialization for the top cgroup */
7683		return &root_task_group.css;
7684	}
7685
7686	tg = sched_create_group(parent);
7687	if (IS_ERR(tg))
7688		return ERR_PTR(-ENOMEM);
7689
7690	return &tg->css;
7691}
7692
7693static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7694{
7695	struct task_group *tg = css_tg(css);
7696	struct task_group *parent = css_tg(css->parent);
7697
7698	if (parent)
7699		sched_online_group(tg, parent);
7700	return 0;
7701}
7702
7703static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7704{
7705	struct task_group *tg = css_tg(css);
7706
7707	sched_destroy_group(tg);
7708}
7709
7710static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7711{
7712	struct task_group *tg = css_tg(css);
7713
7714	sched_offline_group(tg);
7715}
7716
7717static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7718				 struct cgroup_taskset *tset)
7719{
7720	struct task_struct *task;
7721
7722	cgroup_taskset_for_each(task, tset) {
7723#ifdef CONFIG_RT_GROUP_SCHED
7724		if (!sched_rt_can_attach(css_tg(css), task))
7725			return -EINVAL;
7726#else
7727		/* We don't support RT-tasks being in separate groups */
7728		if (task->sched_class != &fair_sched_class)
7729			return -EINVAL;
7730#endif
7731	}
7732	return 0;
7733}
7734
7735static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7736			      struct cgroup_taskset *tset)
7737{
7738	struct task_struct *task;
7739
7740	cgroup_taskset_for_each(task, tset)
7741		sched_move_task(task);
7742}
7743
7744static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7745			    struct cgroup_subsys_state *old_css,
7746			    struct task_struct *task)
7747{
7748	/*
7749	 * cgroup_exit() is called in the copy_process() failure path.
7750	 * Ignore this case since the task hasn't ran yet, this avoids
7751	 * trying to poke a half freed task state from generic code.
7752	 */
7753	if (!(task->flags & PF_EXITING))
7754		return;
7755
7756	sched_move_task(task);
7757}
7758
7759#ifdef CONFIG_FAIR_GROUP_SCHED
7760static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7761				struct cftype *cftype, u64 shareval)
7762{
7763	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7764}
7765
7766static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7767			       struct cftype *cft)
7768{
7769	struct task_group *tg = css_tg(css);
7770
7771	return (u64) scale_load_down(tg->shares);
7772}
7773
7774#ifdef CONFIG_CFS_BANDWIDTH
7775static DEFINE_MUTEX(cfs_constraints_mutex);
7776
7777const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7778const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7779
7780static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7781
7782static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7783{
7784	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7785	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7786
7787	if (tg == &root_task_group)
7788		return -EINVAL;
7789
7790	/*
7791	 * Ensure we have at some amount of bandwidth every period.  This is
7792	 * to prevent reaching a state of large arrears when throttled via
7793	 * entity_tick() resulting in prolonged exit starvation.
7794	 */
7795	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7796		return -EINVAL;
7797
7798	/*
7799	 * Likewise, bound things on the otherside by preventing insane quota
7800	 * periods.  This also allows us to normalize in computing quota
7801	 * feasibility.
7802	 */
7803	if (period > max_cfs_quota_period)
7804		return -EINVAL;
7805
7806	mutex_lock(&cfs_constraints_mutex);
7807	ret = __cfs_schedulable(tg, period, quota);
7808	if (ret)
7809		goto out_unlock;
7810
7811	runtime_enabled = quota != RUNTIME_INF;
7812	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7813	/*
7814	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7815	 * before making related changes, and on->off must occur afterwards
7816	 */
7817	if (runtime_enabled && !runtime_was_enabled)
7818		cfs_bandwidth_usage_inc();
7819	raw_spin_lock_irq(&cfs_b->lock);
7820	cfs_b->period = ns_to_ktime(period);
7821	cfs_b->quota = quota;
7822
7823	__refill_cfs_bandwidth_runtime(cfs_b);
7824	/* restart the period timer (if active) to handle new period expiry */
7825	if (runtime_enabled && cfs_b->timer_active) {
7826		/* force a reprogram */
7827		__start_cfs_bandwidth(cfs_b, true);
7828	}
7829	raw_spin_unlock_irq(&cfs_b->lock);
7830
7831	for_each_possible_cpu(i) {
7832		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7833		struct rq *rq = cfs_rq->rq;
7834
7835		raw_spin_lock_irq(&rq->lock);
7836		cfs_rq->runtime_enabled = runtime_enabled;
7837		cfs_rq->runtime_remaining = 0;
7838
7839		if (cfs_rq->throttled)
7840			unthrottle_cfs_rq(cfs_rq);
7841		raw_spin_unlock_irq(&rq->lock);
7842	}
7843	if (runtime_was_enabled && !runtime_enabled)
7844		cfs_bandwidth_usage_dec();
7845out_unlock:
7846	mutex_unlock(&cfs_constraints_mutex);
7847
7848	return ret;
7849}
7850
7851int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7852{
7853	u64 quota, period;
7854
7855	period = ktime_to_ns(tg->cfs_bandwidth.period);
7856	if (cfs_quota_us < 0)
7857		quota = RUNTIME_INF;
7858	else
7859		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7860
7861	return tg_set_cfs_bandwidth(tg, period, quota);
7862}
7863
7864long tg_get_cfs_quota(struct task_group *tg)
7865{
7866	u64 quota_us;
7867
7868	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7869		return -1;
7870
7871	quota_us = tg->cfs_bandwidth.quota;
7872	do_div(quota_us, NSEC_PER_USEC);
7873
7874	return quota_us;
7875}
7876
7877int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7878{
7879	u64 quota, period;
7880
7881	period = (u64)cfs_period_us * NSEC_PER_USEC;
7882	quota = tg->cfs_bandwidth.quota;
7883
7884	return tg_set_cfs_bandwidth(tg, period, quota);
7885}
7886
7887long tg_get_cfs_period(struct task_group *tg)
7888{
7889	u64 cfs_period_us;
7890
7891	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7892	do_div(cfs_period_us, NSEC_PER_USEC);
7893
7894	return cfs_period_us;
7895}
7896
7897static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7898				  struct cftype *cft)
7899{
7900	return tg_get_cfs_quota(css_tg(css));
7901}
7902
7903static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7904				   struct cftype *cftype, s64 cfs_quota_us)
7905{
7906	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7907}
7908
7909static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7910				   struct cftype *cft)
7911{
7912	return tg_get_cfs_period(css_tg(css));
7913}
7914
7915static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7916				    struct cftype *cftype, u64 cfs_period_us)
7917{
7918	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7919}
7920
7921struct cfs_schedulable_data {
7922	struct task_group *tg;
7923	u64 period, quota;
7924};
7925
7926/*
7927 * normalize group quota/period to be quota/max_period
7928 * note: units are usecs
7929 */
7930static u64 normalize_cfs_quota(struct task_group *tg,
7931			       struct cfs_schedulable_data *d)
7932{
7933	u64 quota, period;
7934
7935	if (tg == d->tg) {
7936		period = d->period;
7937		quota = d->quota;
7938	} else {
7939		period = tg_get_cfs_period(tg);
7940		quota = tg_get_cfs_quota(tg);
7941	}
7942
7943	/* note: these should typically be equivalent */
7944	if (quota == RUNTIME_INF || quota == -1)
7945		return RUNTIME_INF;
7946
7947	return to_ratio(period, quota);
7948}
7949
7950static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7951{
7952	struct cfs_schedulable_data *d = data;
7953	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7954	s64 quota = 0, parent_quota = -1;
7955
7956	if (!tg->parent) {
7957		quota = RUNTIME_INF;
7958	} else {
7959		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7960
7961		quota = normalize_cfs_quota(tg, d);
7962		parent_quota = parent_b->hierarchal_quota;
7963
7964		/*
7965		 * ensure max(child_quota) <= parent_quota, inherit when no
7966		 * limit is set
7967		 */
7968		if (quota == RUNTIME_INF)
7969			quota = parent_quota;
7970		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7971			return -EINVAL;
7972	}
7973	cfs_b->hierarchal_quota = quota;
7974
7975	return 0;
7976}
7977
7978static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7979{
7980	int ret;
7981	struct cfs_schedulable_data data = {
7982		.tg = tg,
7983		.period = period,
7984		.quota = quota,
7985	};
7986
7987	if (quota != RUNTIME_INF) {
7988		do_div(data.period, NSEC_PER_USEC);
7989		do_div(data.quota, NSEC_PER_USEC);
7990	}
7991
7992	rcu_read_lock();
7993	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7994	rcu_read_unlock();
7995
7996	return ret;
7997}
7998
7999static int cpu_stats_show(struct seq_file *sf, void *v)
8000{
8001	struct task_group *tg = css_tg(seq_css(sf));
8002	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8003
8004	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8005	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8006	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8007
8008	return 0;
8009}
8010#endif /* CONFIG_CFS_BANDWIDTH */
8011#endif /* CONFIG_FAIR_GROUP_SCHED */
8012
8013#ifdef CONFIG_RT_GROUP_SCHED
8014static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8015				struct cftype *cft, s64 val)
8016{
8017	return sched_group_set_rt_runtime(css_tg(css), val);
8018}
8019
8020static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8021			       struct cftype *cft)
8022{
8023	return sched_group_rt_runtime(css_tg(css));
8024}
8025
8026static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8027				    struct cftype *cftype, u64 rt_period_us)
8028{
8029	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8030}
8031
8032static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8033				   struct cftype *cft)
8034{
8035	return sched_group_rt_period(css_tg(css));
8036}
8037#endif /* CONFIG_RT_GROUP_SCHED */
8038
8039static struct cftype cpu_files[] = {
8040#ifdef CONFIG_FAIR_GROUP_SCHED
8041	{
8042		.name = "shares",
8043		.read_u64 = cpu_shares_read_u64,
8044		.write_u64 = cpu_shares_write_u64,
8045	},
8046#endif
8047#ifdef CONFIG_CFS_BANDWIDTH
8048	{
8049		.name = "cfs_quota_us",
8050		.read_s64 = cpu_cfs_quota_read_s64,
8051		.write_s64 = cpu_cfs_quota_write_s64,
8052	},
8053	{
8054		.name = "cfs_period_us",
8055		.read_u64 = cpu_cfs_period_read_u64,
8056		.write_u64 = cpu_cfs_period_write_u64,
8057	},
8058	{
8059		.name = "stat",
8060		.seq_show = cpu_stats_show,
8061	},
8062#endif
8063#ifdef CONFIG_RT_GROUP_SCHED
8064	{
8065		.name = "rt_runtime_us",
8066		.read_s64 = cpu_rt_runtime_read,
8067		.write_s64 = cpu_rt_runtime_write,
8068	},
8069	{
8070		.name = "rt_period_us",
8071		.read_u64 = cpu_rt_period_read_uint,
8072		.write_u64 = cpu_rt_period_write_uint,
8073	},
8074#endif
8075	{ }	/* terminate */
8076};
8077
8078struct cgroup_subsys cpu_cgrp_subsys = {
8079	.css_alloc	= cpu_cgroup_css_alloc,
8080	.css_free	= cpu_cgroup_css_free,
8081	.css_online	= cpu_cgroup_css_online,
8082	.css_offline	= cpu_cgroup_css_offline,
8083	.can_attach	= cpu_cgroup_can_attach,
8084	.attach		= cpu_cgroup_attach,
8085	.exit		= cpu_cgroup_exit,
8086	.base_cftypes	= cpu_files,
8087	.early_init	= 1,
8088};
8089
8090#endif	/* CONFIG_CGROUP_SCHED */
8091
8092void dump_cpu_task(int cpu)
8093{
8094	pr_info("Task dump for CPU %d:\n", cpu);
8095	sched_show_task(cpu_curr(cpu));
8096}
8097