core.c revision 4a850cbefa9592ddde3670a41c10c9576a657c43
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	assert_raw_spin_locked(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id())
528		return;
529
530	/* NEED_RESCHED must be visible before we test polling */
531	smp_mb();
532	if (!tsk_is_polling(p))
533		smp_send_reschedule(cpu);
534}
535
536void resched_cpu(int cpu)
537{
538	struct rq *rq = cpu_rq(cpu);
539	unsigned long flags;
540
541	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542		return;
543	resched_task(cpu_curr(cpu));
544	raw_spin_unlock_irqrestore(&rq->lock, flags);
545}
546
547#ifdef CONFIG_NO_HZ_COMMON
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu.  This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558	int cpu = smp_processor_id();
559	int i;
560	struct sched_domain *sd;
561
562	rcu_read_lock();
563	for_each_domain(cpu, sd) {
564		for_each_cpu(i, sched_domain_span(sd)) {
565			if (!idle_cpu(i)) {
566				cpu = i;
567				goto unlock;
568			}
569		}
570	}
571unlock:
572	rcu_read_unlock();
573	return cpu;
574}
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585static void wake_up_idle_cpu(int cpu)
586{
587	struct rq *rq = cpu_rq(cpu);
588
589	if (cpu == smp_processor_id())
590		return;
591
592	/*
593	 * This is safe, as this function is called with the timer
594	 * wheel base lock of (cpu) held. When the CPU is on the way
595	 * to idle and has not yet set rq->curr to idle then it will
596	 * be serialized on the timer wheel base lock and take the new
597	 * timer into account automatically.
598	 */
599	if (rq->curr != rq->idle)
600		return;
601
602	/*
603	 * We can set TIF_RESCHED on the idle task of the other CPU
604	 * lockless. The worst case is that the other CPU runs the
605	 * idle task through an additional NOOP schedule()
606	 */
607	set_tsk_need_resched(rq->idle);
608
609	/* NEED_RESCHED must be visible before we test polling */
610	smp_mb();
611	if (!tsk_is_polling(rq->idle))
612		smp_send_reschedule(cpu);
613}
614
615static bool wake_up_full_nohz_cpu(int cpu)
616{
617	if (tick_nohz_full_cpu(cpu)) {
618		if (cpu != smp_processor_id() ||
619		    tick_nohz_tick_stopped())
620			smp_send_reschedule(cpu);
621		return true;
622	}
623
624	return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
629	if (!wake_up_full_nohz_cpu(cpu))
630		wake_up_idle_cpu(cpu);
631}
632
633static inline bool got_nohz_idle_kick(void)
634{
635	int cpu = smp_processor_id();
636
637	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638		return false;
639
640	if (idle_cpu(cpu) && !need_resched())
641		return true;
642
643	/*
644	 * We can't run Idle Load Balance on this CPU for this time so we
645	 * cancel it and clear NOHZ_BALANCE_KICK
646	 */
647	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648	return false;
649}
650
651#else /* CONFIG_NO_HZ_COMMON */
652
653static inline bool got_nohz_idle_kick(void)
654{
655	return false;
656}
657
658#endif /* CONFIG_NO_HZ_COMMON */
659
660#ifdef CONFIG_NO_HZ_FULL
661bool sched_can_stop_tick(void)
662{
663       struct rq *rq;
664
665       rq = this_rq();
666
667       /* Make sure rq->nr_running update is visible after the IPI */
668       smp_rmb();
669
670       /* More than one running task need preemption */
671       if (rq->nr_running > 1)
672               return false;
673
674       return true;
675}
676#endif /* CONFIG_NO_HZ_FULL */
677
678void sched_avg_update(struct rq *rq)
679{
680	s64 period = sched_avg_period();
681
682	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
683		/*
684		 * Inline assembly required to prevent the compiler
685		 * optimising this loop into a divmod call.
686		 * See __iter_div_u64_rem() for another example of this.
687		 */
688		asm("" : "+rm" (rq->age_stamp));
689		rq->age_stamp += period;
690		rq->rt_avg /= 2;
691	}
692}
693
694#else /* !CONFIG_SMP */
695void resched_task(struct task_struct *p)
696{
697	assert_raw_spin_locked(&task_rq(p)->lock);
698	set_tsk_need_resched(p);
699}
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711			     tg_visitor down, tg_visitor up, void *data)
712{
713	struct task_group *parent, *child;
714	int ret;
715
716	parent = from;
717
718down:
719	ret = (*down)(parent, data);
720	if (ret)
721		goto out;
722	list_for_each_entry_rcu(child, &parent->children, siblings) {
723		parent = child;
724		goto down;
725
726up:
727		continue;
728	}
729	ret = (*up)(parent, data);
730	if (ret || parent == from)
731		goto out;
732
733	child = parent;
734	parent = parent->parent;
735	if (parent)
736		goto up;
737out:
738	return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743	return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749	int prio = p->static_prio - MAX_RT_PRIO;
750	struct load_weight *load = &p->se.load;
751
752	/*
753	 * SCHED_IDLE tasks get minimal weight:
754	 */
755	if (p->policy == SCHED_IDLE) {
756		load->weight = scale_load(WEIGHT_IDLEPRIO);
757		load->inv_weight = WMULT_IDLEPRIO;
758		return;
759	}
760
761	load->weight = scale_load(prio_to_weight[prio]);
762	load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767	update_rq_clock(rq);
768	sched_info_queued(p);
769	p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_dequeued(p);
776	p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	if (task_contributes_to_load(p))
782		rq->nr_uninterruptible--;
783
784	enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789	if (task_contributes_to_load(p))
790		rq->nr_uninterruptible++;
791
792	dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802	s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807	/*
808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809	 * this case when a previous update_rq_clock() happened inside a
810	 * {soft,}irq region.
811	 *
812	 * When this happens, we stop ->clock_task and only update the
813	 * prev_irq_time stamp to account for the part that fit, so that a next
814	 * update will consume the rest. This ensures ->clock_task is
815	 * monotonic.
816	 *
817	 * It does however cause some slight miss-attribution of {soft,}irq
818	 * time, a more accurate solution would be to update the irq_time using
819	 * the current rq->clock timestamp, except that would require using
820	 * atomic ops.
821	 */
822	if (irq_delta > delta)
823		irq_delta = delta;
824
825	rq->prev_irq_time += irq_delta;
826	delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829	if (static_key_false((&paravirt_steal_rq_enabled))) {
830		u64 st;
831
832		steal = paravirt_steal_clock(cpu_of(rq));
833		steal -= rq->prev_steal_time_rq;
834
835		if (unlikely(steal > delta))
836			steal = delta;
837
838		st = steal_ticks(steal);
839		steal = st * TICK_NSEC;
840
841		rq->prev_steal_time_rq += steal;
842
843		delta -= steal;
844	}
845#endif
846
847	rq->clock_task += delta;
848
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851		sched_rt_avg_update(rq, irq_delta + steal);
852#endif
853}
854
855void sched_set_stop_task(int cpu, struct task_struct *stop)
856{
857	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858	struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860	if (stop) {
861		/*
862		 * Make it appear like a SCHED_FIFO task, its something
863		 * userspace knows about and won't get confused about.
864		 *
865		 * Also, it will make PI more or less work without too
866		 * much confusion -- but then, stop work should not
867		 * rely on PI working anyway.
868		 */
869		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871		stop->sched_class = &stop_sched_class;
872	}
873
874	cpu_rq(cpu)->stop = stop;
875
876	if (old_stop) {
877		/*
878		 * Reset it back to a normal scheduling class so that
879		 * it can die in pieces.
880		 */
881		old_stop->sched_class = &rt_sched_class;
882	}
883}
884
885/*
886 * __normal_prio - return the priority that is based on the static prio
887 */
888static inline int __normal_prio(struct task_struct *p)
889{
890	return p->static_prio;
891}
892
893/*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
900static inline int normal_prio(struct task_struct *p)
901{
902	int prio;
903
904	if (task_has_rt_policy(p))
905		prio = MAX_RT_PRIO-1 - p->rt_priority;
906	else
907		prio = __normal_prio(p);
908	return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
918static int effective_prio(struct task_struct *p)
919{
920	p->normal_prio = normal_prio(p);
921	/*
922	 * If we are RT tasks or we were boosted to RT priority,
923	 * keep the priority unchanged. Otherwise, update priority
924	 * to the normal priority:
925	 */
926	if (!rt_prio(p->prio))
927		return p->normal_prio;
928	return p->prio;
929}
930
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979void register_task_migration_notifier(struct notifier_block *n)
980{
981	atomic_notifier_chain_register(&task_migration_notifier, n);
982}
983
984#ifdef CONFIG_SMP
985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
986{
987#ifdef CONFIG_SCHED_DEBUG
988	/*
989	 * We should never call set_task_cpu() on a blocked task,
990	 * ttwu() will sort out the placement.
991	 */
992	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
994
995#ifdef CONFIG_LOCKDEP
996	/*
997	 * The caller should hold either p->pi_lock or rq->lock, when changing
998	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999	 *
1000	 * sched_move_task() holds both and thus holding either pins the cgroup,
1001	 * see task_group().
1002	 *
1003	 * Furthermore, all task_rq users should acquire both locks, see
1004	 * task_rq_lock().
1005	 */
1006	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007				      lockdep_is_held(&task_rq(p)->lock)));
1008#endif
1009#endif
1010
1011	trace_sched_migrate_task(p, new_cpu);
1012
1013	if (task_cpu(p) != new_cpu) {
1014		struct task_migration_notifier tmn;
1015
1016		if (p->sched_class->migrate_task_rq)
1017			p->sched_class->migrate_task_rq(p, new_cpu);
1018		p->se.nr_migrations++;
1019		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1020
1021		tmn.task = p;
1022		tmn.from_cpu = task_cpu(p);
1023		tmn.to_cpu = new_cpu;
1024
1025		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1026	}
1027
1028	__set_task_cpu(p, new_cpu);
1029}
1030
1031struct migration_arg {
1032	struct task_struct *task;
1033	int dest_cpu;
1034};
1035
1036static int migration_cpu_stop(void *data);
1037
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change.  If it changes, i.e. @p might have woken up,
1043 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count).  If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1055{
1056	unsigned long flags;
1057	int running, on_rq;
1058	unsigned long ncsw;
1059	struct rq *rq;
1060
1061	for (;;) {
1062		/*
1063		 * We do the initial early heuristics without holding
1064		 * any task-queue locks at all. We'll only try to get
1065		 * the runqueue lock when things look like they will
1066		 * work out!
1067		 */
1068		rq = task_rq(p);
1069
1070		/*
1071		 * If the task is actively running on another CPU
1072		 * still, just relax and busy-wait without holding
1073		 * any locks.
1074		 *
1075		 * NOTE! Since we don't hold any locks, it's not
1076		 * even sure that "rq" stays as the right runqueue!
1077		 * But we don't care, since "task_running()" will
1078		 * return false if the runqueue has changed and p
1079		 * is actually now running somewhere else!
1080		 */
1081		while (task_running(rq, p)) {
1082			if (match_state && unlikely(p->state != match_state))
1083				return 0;
1084			cpu_relax();
1085		}
1086
1087		/*
1088		 * Ok, time to look more closely! We need the rq
1089		 * lock now, to be *sure*. If we're wrong, we'll
1090		 * just go back and repeat.
1091		 */
1092		rq = task_rq_lock(p, &flags);
1093		trace_sched_wait_task(p);
1094		running = task_running(rq, p);
1095		on_rq = p->on_rq;
1096		ncsw = 0;
1097		if (!match_state || p->state == match_state)
1098			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1099		task_rq_unlock(rq, p, &flags);
1100
1101		/*
1102		 * If it changed from the expected state, bail out now.
1103		 */
1104		if (unlikely(!ncsw))
1105			break;
1106
1107		/*
1108		 * Was it really running after all now that we
1109		 * checked with the proper locks actually held?
1110		 *
1111		 * Oops. Go back and try again..
1112		 */
1113		if (unlikely(running)) {
1114			cpu_relax();
1115			continue;
1116		}
1117
1118		/*
1119		 * It's not enough that it's not actively running,
1120		 * it must be off the runqueue _entirely_, and not
1121		 * preempted!
1122		 *
1123		 * So if it was still runnable (but just not actively
1124		 * running right now), it's preempted, and we should
1125		 * yield - it could be a while.
1126		 */
1127		if (unlikely(on_rq)) {
1128			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130			set_current_state(TASK_UNINTERRUPTIBLE);
1131			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1132			continue;
1133		}
1134
1135		/*
1136		 * Ahh, all good. It wasn't running, and it wasn't
1137		 * runnable, which means that it will never become
1138		 * running in the future either. We're all done!
1139		 */
1140		break;
1141	}
1142
1143	return ncsw;
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesn't have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159void kick_process(struct task_struct *p)
1160{
1161	int cpu;
1162
1163	preempt_disable();
1164	cpu = task_cpu(p);
1165	if ((cpu != smp_processor_id()) && task_curr(p))
1166		smp_send_reschedule(cpu);
1167	preempt_enable();
1168}
1169EXPORT_SYMBOL_GPL(kick_process);
1170#endif /* CONFIG_SMP */
1171
1172#ifdef CONFIG_SMP
1173/*
1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1175 */
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
1178	int nid = cpu_to_node(cpu);
1179	const struct cpumask *nodemask = NULL;
1180	enum { cpuset, possible, fail } state = cpuset;
1181	int dest_cpu;
1182
1183	/*
1184	 * If the node that the cpu is on has been offlined, cpu_to_node()
1185	 * will return -1. There is no cpu on the node, and we should
1186	 * select the cpu on the other node.
1187	 */
1188	if (nid != -1) {
1189		nodemask = cpumask_of_node(nid);
1190
1191		/* Look for allowed, online CPU in same node. */
1192		for_each_cpu(dest_cpu, nodemask) {
1193			if (!cpu_online(dest_cpu))
1194				continue;
1195			if (!cpu_active(dest_cpu))
1196				continue;
1197			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198				return dest_cpu;
1199		}
1200	}
1201
1202	for (;;) {
1203		/* Any allowed, online CPU? */
1204		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1205			if (!cpu_online(dest_cpu))
1206				continue;
1207			if (!cpu_active(dest_cpu))
1208				continue;
1209			goto out;
1210		}
1211
1212		switch (state) {
1213		case cpuset:
1214			/* No more Mr. Nice Guy. */
1215			cpuset_cpus_allowed_fallback(p);
1216			state = possible;
1217			break;
1218
1219		case possible:
1220			do_set_cpus_allowed(p, cpu_possible_mask);
1221			state = fail;
1222			break;
1223
1224		case fail:
1225			BUG();
1226			break;
1227		}
1228	}
1229
1230out:
1231	if (state != cpuset) {
1232		/*
1233		 * Don't tell them about moving exiting tasks or
1234		 * kernel threads (both mm NULL), since they never
1235		 * leave kernel.
1236		 */
1237		if (p->mm && printk_ratelimit()) {
1238			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239					task_pid_nr(p), p->comm, cpu);
1240		}
1241	}
1242
1243	return dest_cpu;
1244}
1245
1246/*
1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1248 */
1249static inline
1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1251{
1252	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1253
1254	/*
1255	 * In order not to call set_task_cpu() on a blocking task we need
1256	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257	 * cpu.
1258	 *
1259	 * Since this is common to all placement strategies, this lives here.
1260	 *
1261	 * [ this allows ->select_task() to simply return task_cpu(p) and
1262	 *   not worry about this generic constraint ]
1263	 */
1264	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1265		     !cpu_online(cpu)))
1266		cpu = select_fallback_rq(task_cpu(p), p);
1267
1268	return cpu;
1269}
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273	s64 diff = sample - *avg;
1274	*avg += diff >> 3;
1275}
1276#endif
1277
1278static void
1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1280{
1281#ifdef CONFIG_SCHEDSTATS
1282	struct rq *rq = this_rq();
1283
1284#ifdef CONFIG_SMP
1285	int this_cpu = smp_processor_id();
1286
1287	if (cpu == this_cpu) {
1288		schedstat_inc(rq, ttwu_local);
1289		schedstat_inc(p, se.statistics.nr_wakeups_local);
1290	} else {
1291		struct sched_domain *sd;
1292
1293		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1294		rcu_read_lock();
1295		for_each_domain(this_cpu, sd) {
1296			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297				schedstat_inc(sd, ttwu_wake_remote);
1298				break;
1299			}
1300		}
1301		rcu_read_unlock();
1302	}
1303
1304	if (wake_flags & WF_MIGRATED)
1305		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
1307#endif /* CONFIG_SMP */
1308
1309	schedstat_inc(rq, ttwu_count);
1310	schedstat_inc(p, se.statistics.nr_wakeups);
1311
1312	if (wake_flags & WF_SYNC)
1313		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1314
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
1320	activate_task(rq, p, en_flags);
1321	p->on_rq = 1;
1322
1323	/* if a worker is waking up, notify workqueue */
1324	if (p->flags & PF_WQ_WORKER)
1325		wq_worker_waking_up(p, cpu_of(rq));
1326}
1327
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
1331static void
1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1333{
1334	check_preempt_curr(rq, p, wake_flags);
1335	trace_sched_wakeup(p, true);
1336
1337	p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339	if (p->sched_class->task_woken)
1340		p->sched_class->task_woken(rq, p);
1341
1342	if (rq->idle_stamp) {
1343		u64 delta = rq_clock(rq) - rq->idle_stamp;
1344		u64 max = 2*sysctl_sched_migration_cost;
1345
1346		if (delta > max)
1347			rq->avg_idle = max;
1348		else
1349			update_avg(&rq->avg_idle, delta);
1350		rq->idle_stamp = 0;
1351	}
1352#endif
1353}
1354
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359	if (p->sched_contributes_to_load)
1360		rq->nr_uninterruptible--;
1361#endif
1362
1363	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364	ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375	struct rq *rq;
1376	int ret = 0;
1377
1378	rq = __task_rq_lock(p);
1379	if (p->on_rq) {
1380		/* check_preempt_curr() may use rq clock */
1381		update_rq_clock(rq);
1382		ttwu_do_wakeup(rq, p, wake_flags);
1383		ret = 1;
1384	}
1385	__task_rq_unlock(rq);
1386
1387	return ret;
1388}
1389
1390#ifdef CONFIG_SMP
1391static void sched_ttwu_pending(void)
1392{
1393	struct rq *rq = this_rq();
1394	struct llist_node *llist = llist_del_all(&rq->wake_list);
1395	struct task_struct *p;
1396
1397	raw_spin_lock(&rq->lock);
1398
1399	while (llist) {
1400		p = llist_entry(llist, struct task_struct, wake_entry);
1401		llist = llist_next(llist);
1402		ttwu_do_activate(rq, p, 0);
1403	}
1404
1405	raw_spin_unlock(&rq->lock);
1406}
1407
1408void scheduler_ipi(void)
1409{
1410	if (llist_empty(&this_rq()->wake_list)
1411			&& !tick_nohz_full_cpu(smp_processor_id())
1412			&& !got_nohz_idle_kick())
1413		return;
1414
1415	/*
1416	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417	 * traditionally all their work was done from the interrupt return
1418	 * path. Now that we actually do some work, we need to make sure
1419	 * we do call them.
1420	 *
1421	 * Some archs already do call them, luckily irq_enter/exit nest
1422	 * properly.
1423	 *
1424	 * Arguably we should visit all archs and update all handlers,
1425	 * however a fair share of IPIs are still resched only so this would
1426	 * somewhat pessimize the simple resched case.
1427	 */
1428	irq_enter();
1429	tick_nohz_full_check();
1430	sched_ttwu_pending();
1431
1432	/*
1433	 * Check if someone kicked us for doing the nohz idle load balance.
1434	 */
1435	if (unlikely(got_nohz_idle_kick())) {
1436		this_rq()->idle_balance = 1;
1437		raise_softirq_irqoff(SCHED_SOFTIRQ);
1438	}
1439	irq_exit();
1440}
1441
1442static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443{
1444	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1445		smp_send_reschedule(cpu);
1446}
1447
1448bool cpus_share_cache(int this_cpu, int that_cpu)
1449{
1450	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451}
1452#endif /* CONFIG_SMP */
1453
1454static void ttwu_queue(struct task_struct *p, int cpu)
1455{
1456	struct rq *rq = cpu_rq(cpu);
1457
1458#if defined(CONFIG_SMP)
1459	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1460		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1461		ttwu_queue_remote(p, cpu);
1462		return;
1463	}
1464#endif
1465
1466	raw_spin_lock(&rq->lock);
1467	ttwu_do_activate(rq, p, 0);
1468	raw_spin_unlock(&rq->lock);
1469}
1470
1471/**
1472 * try_to_wake_up - wake up a thread
1473 * @p: the thread to be awakened
1474 * @state: the mask of task states that can be woken
1475 * @wake_flags: wake modifier flags (WF_*)
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1485 */
1486static int
1487try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1488{
1489	unsigned long flags;
1490	int cpu, success = 0;
1491
1492	smp_wmb();
1493	raw_spin_lock_irqsave(&p->pi_lock, flags);
1494	if (!(p->state & state))
1495		goto out;
1496
1497	success = 1; /* we're going to change ->state */
1498	cpu = task_cpu(p);
1499
1500	if (p->on_rq && ttwu_remote(p, wake_flags))
1501		goto stat;
1502
1503#ifdef CONFIG_SMP
1504	/*
1505	 * If the owning (remote) cpu is still in the middle of schedule() with
1506	 * this task as prev, wait until its done referencing the task.
1507	 */
1508	while (p->on_cpu)
1509		cpu_relax();
1510	/*
1511	 * Pairs with the smp_wmb() in finish_lock_switch().
1512	 */
1513	smp_rmb();
1514
1515	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516	p->state = TASK_WAKING;
1517
1518	if (p->sched_class->task_waking)
1519		p->sched_class->task_waking(p);
1520
1521	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522	if (task_cpu(p) != cpu) {
1523		wake_flags |= WF_MIGRATED;
1524		set_task_cpu(p, cpu);
1525	}
1526#endif /* CONFIG_SMP */
1527
1528	ttwu_queue(p, cpu);
1529stat:
1530	ttwu_stat(p, cpu, wake_flags);
1531out:
1532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534	return success;
1535}
1536
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547	struct rq *rq = task_rq(p);
1548
1549	if (WARN_ON_ONCE(rq != this_rq()) ||
1550	    WARN_ON_ONCE(p == current))
1551		return;
1552
1553	lockdep_assert_held(&rq->lock);
1554
1555	if (!raw_spin_trylock(&p->pi_lock)) {
1556		raw_spin_unlock(&rq->lock);
1557		raw_spin_lock(&p->pi_lock);
1558		raw_spin_lock(&rq->lock);
1559	}
1560
1561	if (!(p->state & TASK_NORMAL))
1562		goto out;
1563
1564	if (!p->on_rq)
1565		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567	ttwu_do_wakeup(rq, p, 0);
1568	ttwu_stat(p, smp_processor_id(), 0);
1569out:
1570	raw_spin_unlock(&p->pi_lock);
1571}
1572
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes.  Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
1584int wake_up_process(struct task_struct *p)
1585{
1586	WARN_ON(task_is_stopped_or_traced(p));
1587	return try_to_wake_up(p, TASK_NORMAL, 0);
1588}
1589EXPORT_SYMBOL(wake_up_process);
1590
1591int wake_up_state(struct task_struct *p, unsigned int state)
1592{
1593	return try_to_wake_up(p, state, 0);
1594}
1595
1596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602static void __sched_fork(struct task_struct *p)
1603{
1604	p->on_rq			= 0;
1605
1606	p->se.on_rq			= 0;
1607	p->se.exec_start		= 0;
1608	p->se.sum_exec_runtime		= 0;
1609	p->se.prev_sum_exec_runtime	= 0;
1610	p->se.nr_migrations		= 0;
1611	p->se.vruntime			= 0;
1612	INIT_LIST_HEAD(&p->se.group_node);
1613
1614/*
1615 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1616 * removed when useful for applications beyond shares distribution (e.g.
1617 * load-balance).
1618 */
1619#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1620	p->se.avg.runnable_avg_period = 0;
1621	p->se.avg.runnable_avg_sum = 0;
1622#endif
1623#ifdef CONFIG_SCHEDSTATS
1624	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1625#endif
1626
1627	INIT_LIST_HEAD(&p->rt.run_list);
1628
1629#ifdef CONFIG_PREEMPT_NOTIFIERS
1630	INIT_HLIST_HEAD(&p->preempt_notifiers);
1631#endif
1632
1633#ifdef CONFIG_NUMA_BALANCING
1634	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1635		p->mm->numa_next_scan = jiffies;
1636		p->mm->numa_next_reset = jiffies;
1637		p->mm->numa_scan_seq = 0;
1638	}
1639
1640	p->node_stamp = 0ULL;
1641	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1642	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1643	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1644	p->numa_work.next = &p->numa_work;
1645#endif /* CONFIG_NUMA_BALANCING */
1646}
1647
1648#ifdef CONFIG_NUMA_BALANCING
1649#ifdef CONFIG_SCHED_DEBUG
1650void set_numabalancing_state(bool enabled)
1651{
1652	if (enabled)
1653		sched_feat_set("NUMA");
1654	else
1655		sched_feat_set("NO_NUMA");
1656}
1657#else
1658__read_mostly bool numabalancing_enabled;
1659
1660void set_numabalancing_state(bool enabled)
1661{
1662	numabalancing_enabled = enabled;
1663}
1664#endif /* CONFIG_SCHED_DEBUG */
1665#endif /* CONFIG_NUMA_BALANCING */
1666
1667/*
1668 * fork()/clone()-time setup:
1669 */
1670void sched_fork(struct task_struct *p)
1671{
1672	unsigned long flags;
1673	int cpu = get_cpu();
1674
1675	__sched_fork(p);
1676	/*
1677	 * We mark the process as running here. This guarantees that
1678	 * nobody will actually run it, and a signal or other external
1679	 * event cannot wake it up and insert it on the runqueue either.
1680	 */
1681	p->state = TASK_RUNNING;
1682
1683	/*
1684	 * Make sure we do not leak PI boosting priority to the child.
1685	 */
1686	p->prio = current->normal_prio;
1687
1688	/*
1689	 * Revert to default priority/policy on fork if requested.
1690	 */
1691	if (unlikely(p->sched_reset_on_fork)) {
1692		if (task_has_rt_policy(p)) {
1693			p->policy = SCHED_NORMAL;
1694			p->static_prio = NICE_TO_PRIO(0);
1695			p->rt_priority = 0;
1696		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1697			p->static_prio = NICE_TO_PRIO(0);
1698
1699		p->prio = p->normal_prio = __normal_prio(p);
1700		set_load_weight(p);
1701
1702		/*
1703		 * We don't need the reset flag anymore after the fork. It has
1704		 * fulfilled its duty:
1705		 */
1706		p->sched_reset_on_fork = 0;
1707	}
1708
1709	if (!rt_prio(p->prio))
1710		p->sched_class = &fair_sched_class;
1711
1712	if (p->sched_class->task_fork)
1713		p->sched_class->task_fork(p);
1714
1715	/*
1716	 * The child is not yet in the pid-hash so no cgroup attach races,
1717	 * and the cgroup is pinned to this child due to cgroup_fork()
1718	 * is ran before sched_fork().
1719	 *
1720	 * Silence PROVE_RCU.
1721	 */
1722	raw_spin_lock_irqsave(&p->pi_lock, flags);
1723	set_task_cpu(p, cpu);
1724	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1725
1726#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1727	if (likely(sched_info_on()))
1728		memset(&p->sched_info, 0, sizeof(p->sched_info));
1729#endif
1730#if defined(CONFIG_SMP)
1731	p->on_cpu = 0;
1732#endif
1733#ifdef CONFIG_PREEMPT_COUNT
1734	/* Want to start with kernel preemption disabled. */
1735	task_thread_info(p)->preempt_count = 1;
1736#endif
1737#ifdef CONFIG_SMP
1738	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1739#endif
1740
1741	put_cpu();
1742}
1743
1744/*
1745 * wake_up_new_task - wake up a newly created task for the first time.
1746 *
1747 * This function will do some initial scheduler statistics housekeeping
1748 * that must be done for every newly created context, then puts the task
1749 * on the runqueue and wakes it.
1750 */
1751void wake_up_new_task(struct task_struct *p)
1752{
1753	unsigned long flags;
1754	struct rq *rq;
1755
1756	raw_spin_lock_irqsave(&p->pi_lock, flags);
1757#ifdef CONFIG_SMP
1758	/*
1759	 * Fork balancing, do it here and not earlier because:
1760	 *  - cpus_allowed can change in the fork path
1761	 *  - any previously selected cpu might disappear through hotplug
1762	 */
1763	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1764#endif
1765
1766	rq = __task_rq_lock(p);
1767	activate_task(rq, p, 0);
1768	p->on_rq = 1;
1769	trace_sched_wakeup_new(p, true);
1770	check_preempt_curr(rq, p, WF_FORK);
1771#ifdef CONFIG_SMP
1772	if (p->sched_class->task_woken)
1773		p->sched_class->task_woken(rq, p);
1774#endif
1775	task_rq_unlock(rq, p, &flags);
1776}
1777
1778#ifdef CONFIG_PREEMPT_NOTIFIERS
1779
1780/**
1781 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1782 * @notifier: notifier struct to register
1783 */
1784void preempt_notifier_register(struct preempt_notifier *notifier)
1785{
1786	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1787}
1788EXPORT_SYMBOL_GPL(preempt_notifier_register);
1789
1790/**
1791 * preempt_notifier_unregister - no longer interested in preemption notifications
1792 * @notifier: notifier struct to unregister
1793 *
1794 * This is safe to call from within a preemption notifier.
1795 */
1796void preempt_notifier_unregister(struct preempt_notifier *notifier)
1797{
1798	hlist_del(&notifier->link);
1799}
1800EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1801
1802static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1803{
1804	struct preempt_notifier *notifier;
1805
1806	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1807		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1808}
1809
1810static void
1811fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812				 struct task_struct *next)
1813{
1814	struct preempt_notifier *notifier;
1815
1816	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1817		notifier->ops->sched_out(notifier, next);
1818}
1819
1820#else /* !CONFIG_PREEMPT_NOTIFIERS */
1821
1822static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1823{
1824}
1825
1826static void
1827fire_sched_out_preempt_notifiers(struct task_struct *curr,
1828				 struct task_struct *next)
1829{
1830}
1831
1832#endif /* CONFIG_PREEMPT_NOTIFIERS */
1833
1834/**
1835 * prepare_task_switch - prepare to switch tasks
1836 * @rq: the runqueue preparing to switch
1837 * @prev: the current task that is being switched out
1838 * @next: the task we are going to switch to.
1839 *
1840 * This is called with the rq lock held and interrupts off. It must
1841 * be paired with a subsequent finish_task_switch after the context
1842 * switch.
1843 *
1844 * prepare_task_switch sets up locking and calls architecture specific
1845 * hooks.
1846 */
1847static inline void
1848prepare_task_switch(struct rq *rq, struct task_struct *prev,
1849		    struct task_struct *next)
1850{
1851	trace_sched_switch(prev, next);
1852	sched_info_switch(prev, next);
1853	perf_event_task_sched_out(prev, next);
1854	fire_sched_out_preempt_notifiers(prev, next);
1855	prepare_lock_switch(rq, next);
1856	prepare_arch_switch(next);
1857}
1858
1859/**
1860 * finish_task_switch - clean up after a task-switch
1861 * @rq: runqueue associated with task-switch
1862 * @prev: the thread we just switched away from.
1863 *
1864 * finish_task_switch must be called after the context switch, paired
1865 * with a prepare_task_switch call before the context switch.
1866 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1867 * and do any other architecture-specific cleanup actions.
1868 *
1869 * Note that we may have delayed dropping an mm in context_switch(). If
1870 * so, we finish that here outside of the runqueue lock. (Doing it
1871 * with the lock held can cause deadlocks; see schedule() for
1872 * details.)
1873 */
1874static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1875	__releases(rq->lock)
1876{
1877	struct mm_struct *mm = rq->prev_mm;
1878	long prev_state;
1879
1880	rq->prev_mm = NULL;
1881
1882	/*
1883	 * A task struct has one reference for the use as "current".
1884	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1885	 * schedule one last time. The schedule call will never return, and
1886	 * the scheduled task must drop that reference.
1887	 * The test for TASK_DEAD must occur while the runqueue locks are
1888	 * still held, otherwise prev could be scheduled on another cpu, die
1889	 * there before we look at prev->state, and then the reference would
1890	 * be dropped twice.
1891	 *		Manfred Spraul <manfred@colorfullife.com>
1892	 */
1893	prev_state = prev->state;
1894	vtime_task_switch(prev);
1895	finish_arch_switch(prev);
1896	perf_event_task_sched_in(prev, current);
1897	finish_lock_switch(rq, prev);
1898	finish_arch_post_lock_switch();
1899
1900	fire_sched_in_preempt_notifiers(current);
1901	if (mm)
1902		mmdrop(mm);
1903	if (unlikely(prev_state == TASK_DEAD)) {
1904		/*
1905		 * Remove function-return probe instances associated with this
1906		 * task and put them back on the free list.
1907		 */
1908		kprobe_flush_task(prev);
1909		put_task_struct(prev);
1910	}
1911
1912	tick_nohz_task_switch(current);
1913}
1914
1915#ifdef CONFIG_SMP
1916
1917/* assumes rq->lock is held */
1918static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1919{
1920	if (prev->sched_class->pre_schedule)
1921		prev->sched_class->pre_schedule(rq, prev);
1922}
1923
1924/* rq->lock is NOT held, but preemption is disabled */
1925static inline void post_schedule(struct rq *rq)
1926{
1927	if (rq->post_schedule) {
1928		unsigned long flags;
1929
1930		raw_spin_lock_irqsave(&rq->lock, flags);
1931		if (rq->curr->sched_class->post_schedule)
1932			rq->curr->sched_class->post_schedule(rq);
1933		raw_spin_unlock_irqrestore(&rq->lock, flags);
1934
1935		rq->post_schedule = 0;
1936	}
1937}
1938
1939#else
1940
1941static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1942{
1943}
1944
1945static inline void post_schedule(struct rq *rq)
1946{
1947}
1948
1949#endif
1950
1951/**
1952 * schedule_tail - first thing a freshly forked thread must call.
1953 * @prev: the thread we just switched away from.
1954 */
1955asmlinkage void schedule_tail(struct task_struct *prev)
1956	__releases(rq->lock)
1957{
1958	struct rq *rq = this_rq();
1959
1960	finish_task_switch(rq, prev);
1961
1962	/*
1963	 * FIXME: do we need to worry about rq being invalidated by the
1964	 * task_switch?
1965	 */
1966	post_schedule(rq);
1967
1968#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1969	/* In this case, finish_task_switch does not reenable preemption */
1970	preempt_enable();
1971#endif
1972	if (current->set_child_tid)
1973		put_user(task_pid_vnr(current), current->set_child_tid);
1974}
1975
1976/*
1977 * context_switch - switch to the new MM and the new
1978 * thread's register state.
1979 */
1980static inline void
1981context_switch(struct rq *rq, struct task_struct *prev,
1982	       struct task_struct *next)
1983{
1984	struct mm_struct *mm, *oldmm;
1985
1986	prepare_task_switch(rq, prev, next);
1987
1988	mm = next->mm;
1989	oldmm = prev->active_mm;
1990	/*
1991	 * For paravirt, this is coupled with an exit in switch_to to
1992	 * combine the page table reload and the switch backend into
1993	 * one hypercall.
1994	 */
1995	arch_start_context_switch(prev);
1996
1997	if (!mm) {
1998		next->active_mm = oldmm;
1999		atomic_inc(&oldmm->mm_count);
2000		enter_lazy_tlb(oldmm, next);
2001	} else
2002		switch_mm(oldmm, mm, next);
2003
2004	if (!prev->mm) {
2005		prev->active_mm = NULL;
2006		rq->prev_mm = oldmm;
2007	}
2008	/*
2009	 * Since the runqueue lock will be released by the next
2010	 * task (which is an invalid locking op but in the case
2011	 * of the scheduler it's an obvious special-case), so we
2012	 * do an early lockdep release here:
2013	 */
2014#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2015	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2016#endif
2017
2018	context_tracking_task_switch(prev, next);
2019	/* Here we just switch the register state and the stack. */
2020	switch_to(prev, next, prev);
2021
2022	barrier();
2023	/*
2024	 * this_rq must be evaluated again because prev may have moved
2025	 * CPUs since it called schedule(), thus the 'rq' on its stack
2026	 * frame will be invalid.
2027	 */
2028	finish_task_switch(this_rq(), prev);
2029}
2030
2031/*
2032 * nr_running and nr_context_switches:
2033 *
2034 * externally visible scheduler statistics: current number of runnable
2035 * threads, total number of context switches performed since bootup.
2036 */
2037unsigned long nr_running(void)
2038{
2039	unsigned long i, sum = 0;
2040
2041	for_each_online_cpu(i)
2042		sum += cpu_rq(i)->nr_running;
2043
2044	return sum;
2045}
2046
2047unsigned long long nr_context_switches(void)
2048{
2049	int i;
2050	unsigned long long sum = 0;
2051
2052	for_each_possible_cpu(i)
2053		sum += cpu_rq(i)->nr_switches;
2054
2055	return sum;
2056}
2057
2058unsigned long nr_iowait(void)
2059{
2060	unsigned long i, sum = 0;
2061
2062	for_each_possible_cpu(i)
2063		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2064
2065	return sum;
2066}
2067
2068unsigned long nr_iowait_cpu(int cpu)
2069{
2070	struct rq *this = cpu_rq(cpu);
2071	return atomic_read(&this->nr_iowait);
2072}
2073
2074#ifdef CONFIG_SMP
2075
2076/*
2077 * sched_exec - execve() is a valuable balancing opportunity, because at
2078 * this point the task has the smallest effective memory and cache footprint.
2079 */
2080void sched_exec(void)
2081{
2082	struct task_struct *p = current;
2083	unsigned long flags;
2084	int dest_cpu;
2085
2086	raw_spin_lock_irqsave(&p->pi_lock, flags);
2087	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2088	if (dest_cpu == smp_processor_id())
2089		goto unlock;
2090
2091	if (likely(cpu_active(dest_cpu))) {
2092		struct migration_arg arg = { p, dest_cpu };
2093
2094		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2095		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2096		return;
2097	}
2098unlock:
2099	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2100}
2101
2102#endif
2103
2104DEFINE_PER_CPU(struct kernel_stat, kstat);
2105DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2106
2107EXPORT_PER_CPU_SYMBOL(kstat);
2108EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2109
2110/*
2111 * Return any ns on the sched_clock that have not yet been accounted in
2112 * @p in case that task is currently running.
2113 *
2114 * Called with task_rq_lock() held on @rq.
2115 */
2116static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2117{
2118	u64 ns = 0;
2119
2120	if (task_current(rq, p)) {
2121		update_rq_clock(rq);
2122		ns = rq_clock_task(rq) - p->se.exec_start;
2123		if ((s64)ns < 0)
2124			ns = 0;
2125	}
2126
2127	return ns;
2128}
2129
2130unsigned long long task_delta_exec(struct task_struct *p)
2131{
2132	unsigned long flags;
2133	struct rq *rq;
2134	u64 ns = 0;
2135
2136	rq = task_rq_lock(p, &flags);
2137	ns = do_task_delta_exec(p, rq);
2138	task_rq_unlock(rq, p, &flags);
2139
2140	return ns;
2141}
2142
2143/*
2144 * Return accounted runtime for the task.
2145 * In case the task is currently running, return the runtime plus current's
2146 * pending runtime that have not been accounted yet.
2147 */
2148unsigned long long task_sched_runtime(struct task_struct *p)
2149{
2150	unsigned long flags;
2151	struct rq *rq;
2152	u64 ns = 0;
2153
2154	rq = task_rq_lock(p, &flags);
2155	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2156	task_rq_unlock(rq, p, &flags);
2157
2158	return ns;
2159}
2160
2161/*
2162 * This function gets called by the timer code, with HZ frequency.
2163 * We call it with interrupts disabled.
2164 */
2165void scheduler_tick(void)
2166{
2167	int cpu = smp_processor_id();
2168	struct rq *rq = cpu_rq(cpu);
2169	struct task_struct *curr = rq->curr;
2170
2171	sched_clock_tick();
2172
2173	raw_spin_lock(&rq->lock);
2174	update_rq_clock(rq);
2175	update_cpu_load_active(rq);
2176	curr->sched_class->task_tick(rq, curr, 0);
2177	raw_spin_unlock(&rq->lock);
2178
2179	perf_event_task_tick();
2180
2181#ifdef CONFIG_SMP
2182	rq->idle_balance = idle_cpu(cpu);
2183	trigger_load_balance(rq, cpu);
2184#endif
2185	rq_last_tick_reset(rq);
2186}
2187
2188#ifdef CONFIG_NO_HZ_FULL
2189/**
2190 * scheduler_tick_max_deferment
2191 *
2192 * Keep at least one tick per second when a single
2193 * active task is running because the scheduler doesn't
2194 * yet completely support full dynticks environment.
2195 *
2196 * This makes sure that uptime, CFS vruntime, load
2197 * balancing, etc... continue to move forward, even
2198 * with a very low granularity.
2199 */
2200u64 scheduler_tick_max_deferment(void)
2201{
2202	struct rq *rq = this_rq();
2203	unsigned long next, now = ACCESS_ONCE(jiffies);
2204
2205	next = rq->last_sched_tick + HZ;
2206
2207	if (time_before_eq(next, now))
2208		return 0;
2209
2210	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2211}
2212#endif
2213
2214notrace unsigned long get_parent_ip(unsigned long addr)
2215{
2216	if (in_lock_functions(addr)) {
2217		addr = CALLER_ADDR2;
2218		if (in_lock_functions(addr))
2219			addr = CALLER_ADDR3;
2220	}
2221	return addr;
2222}
2223
2224#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2225				defined(CONFIG_PREEMPT_TRACER))
2226
2227void __kprobes add_preempt_count(int val)
2228{
2229#ifdef CONFIG_DEBUG_PREEMPT
2230	/*
2231	 * Underflow?
2232	 */
2233	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2234		return;
2235#endif
2236	preempt_count() += val;
2237#ifdef CONFIG_DEBUG_PREEMPT
2238	/*
2239	 * Spinlock count overflowing soon?
2240	 */
2241	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2242				PREEMPT_MASK - 10);
2243#endif
2244	if (preempt_count() == val)
2245		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2246}
2247EXPORT_SYMBOL(add_preempt_count);
2248
2249void __kprobes sub_preempt_count(int val)
2250{
2251#ifdef CONFIG_DEBUG_PREEMPT
2252	/*
2253	 * Underflow?
2254	 */
2255	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2256		return;
2257	/*
2258	 * Is the spinlock portion underflowing?
2259	 */
2260	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2261			!(preempt_count() & PREEMPT_MASK)))
2262		return;
2263#endif
2264
2265	if (preempt_count() == val)
2266		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2267	preempt_count() -= val;
2268}
2269EXPORT_SYMBOL(sub_preempt_count);
2270
2271#endif
2272
2273/*
2274 * Print scheduling while atomic bug:
2275 */
2276static noinline void __schedule_bug(struct task_struct *prev)
2277{
2278	if (oops_in_progress)
2279		return;
2280
2281	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2282		prev->comm, prev->pid, preempt_count());
2283
2284	debug_show_held_locks(prev);
2285	print_modules();
2286	if (irqs_disabled())
2287		print_irqtrace_events(prev);
2288	dump_stack();
2289	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2290}
2291
2292/*
2293 * Various schedule()-time debugging checks and statistics:
2294 */
2295static inline void schedule_debug(struct task_struct *prev)
2296{
2297	/*
2298	 * Test if we are atomic. Since do_exit() needs to call into
2299	 * schedule() atomically, we ignore that path for now.
2300	 * Otherwise, whine if we are scheduling when we should not be.
2301	 */
2302	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2303		__schedule_bug(prev);
2304	rcu_sleep_check();
2305
2306	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2307
2308	schedstat_inc(this_rq(), sched_count);
2309}
2310
2311static void put_prev_task(struct rq *rq, struct task_struct *prev)
2312{
2313	if (prev->on_rq || rq->skip_clock_update < 0)
2314		update_rq_clock(rq);
2315	prev->sched_class->put_prev_task(rq, prev);
2316}
2317
2318/*
2319 * Pick up the highest-prio task:
2320 */
2321static inline struct task_struct *
2322pick_next_task(struct rq *rq)
2323{
2324	const struct sched_class *class;
2325	struct task_struct *p;
2326
2327	/*
2328	 * Optimization: we know that if all tasks are in
2329	 * the fair class we can call that function directly:
2330	 */
2331	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2332		p = fair_sched_class.pick_next_task(rq);
2333		if (likely(p))
2334			return p;
2335	}
2336
2337	for_each_class(class) {
2338		p = class->pick_next_task(rq);
2339		if (p)
2340			return p;
2341	}
2342
2343	BUG(); /* the idle class will always have a runnable task */
2344}
2345
2346/*
2347 * __schedule() is the main scheduler function.
2348 *
2349 * The main means of driving the scheduler and thus entering this function are:
2350 *
2351 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2352 *
2353 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2354 *      paths. For example, see arch/x86/entry_64.S.
2355 *
2356 *      To drive preemption between tasks, the scheduler sets the flag in timer
2357 *      interrupt handler scheduler_tick().
2358 *
2359 *   3. Wakeups don't really cause entry into schedule(). They add a
2360 *      task to the run-queue and that's it.
2361 *
2362 *      Now, if the new task added to the run-queue preempts the current
2363 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2364 *      called on the nearest possible occasion:
2365 *
2366 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2367 *
2368 *         - in syscall or exception context, at the next outmost
2369 *           preempt_enable(). (this might be as soon as the wake_up()'s
2370 *           spin_unlock()!)
2371 *
2372 *         - in IRQ context, return from interrupt-handler to
2373 *           preemptible context
2374 *
2375 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2376 *         then at the next:
2377 *
2378 *          - cond_resched() call
2379 *          - explicit schedule() call
2380 *          - return from syscall or exception to user-space
2381 *          - return from interrupt-handler to user-space
2382 */
2383static void __sched __schedule(void)
2384{
2385	struct task_struct *prev, *next;
2386	unsigned long *switch_count;
2387	struct rq *rq;
2388	int cpu;
2389
2390need_resched:
2391	preempt_disable();
2392	cpu = smp_processor_id();
2393	rq = cpu_rq(cpu);
2394	rcu_note_context_switch(cpu);
2395	prev = rq->curr;
2396
2397	schedule_debug(prev);
2398
2399	if (sched_feat(HRTICK))
2400		hrtick_clear(rq);
2401
2402	raw_spin_lock_irq(&rq->lock);
2403
2404	switch_count = &prev->nivcsw;
2405	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2406		if (unlikely(signal_pending_state(prev->state, prev))) {
2407			prev->state = TASK_RUNNING;
2408		} else {
2409			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2410			prev->on_rq = 0;
2411
2412			/*
2413			 * If a worker went to sleep, notify and ask workqueue
2414			 * whether it wants to wake up a task to maintain
2415			 * concurrency.
2416			 */
2417			if (prev->flags & PF_WQ_WORKER) {
2418				struct task_struct *to_wakeup;
2419
2420				to_wakeup = wq_worker_sleeping(prev, cpu);
2421				if (to_wakeup)
2422					try_to_wake_up_local(to_wakeup);
2423			}
2424		}
2425		switch_count = &prev->nvcsw;
2426	}
2427
2428	pre_schedule(rq, prev);
2429
2430	if (unlikely(!rq->nr_running))
2431		idle_balance(cpu, rq);
2432
2433	put_prev_task(rq, prev);
2434	next = pick_next_task(rq);
2435	clear_tsk_need_resched(prev);
2436	rq->skip_clock_update = 0;
2437
2438	if (likely(prev != next)) {
2439		rq->nr_switches++;
2440		rq->curr = next;
2441		++*switch_count;
2442
2443		context_switch(rq, prev, next); /* unlocks the rq */
2444		/*
2445		 * The context switch have flipped the stack from under us
2446		 * and restored the local variables which were saved when
2447		 * this task called schedule() in the past. prev == current
2448		 * is still correct, but it can be moved to another cpu/rq.
2449		 */
2450		cpu = smp_processor_id();
2451		rq = cpu_rq(cpu);
2452	} else
2453		raw_spin_unlock_irq(&rq->lock);
2454
2455	post_schedule(rq);
2456
2457	sched_preempt_enable_no_resched();
2458	if (need_resched())
2459		goto need_resched;
2460}
2461
2462static inline void sched_submit_work(struct task_struct *tsk)
2463{
2464	if (!tsk->state || tsk_is_pi_blocked(tsk))
2465		return;
2466	/*
2467	 * If we are going to sleep and we have plugged IO queued,
2468	 * make sure to submit it to avoid deadlocks.
2469	 */
2470	if (blk_needs_flush_plug(tsk))
2471		blk_schedule_flush_plug(tsk);
2472}
2473
2474asmlinkage void __sched schedule(void)
2475{
2476	struct task_struct *tsk = current;
2477
2478	sched_submit_work(tsk);
2479	__schedule();
2480}
2481EXPORT_SYMBOL(schedule);
2482
2483#ifdef CONFIG_CONTEXT_TRACKING
2484asmlinkage void __sched schedule_user(void)
2485{
2486	/*
2487	 * If we come here after a random call to set_need_resched(),
2488	 * or we have been woken up remotely but the IPI has not yet arrived,
2489	 * we haven't yet exited the RCU idle mode. Do it here manually until
2490	 * we find a better solution.
2491	 */
2492	user_exit();
2493	schedule();
2494	user_enter();
2495}
2496#endif
2497
2498/**
2499 * schedule_preempt_disabled - called with preemption disabled
2500 *
2501 * Returns with preemption disabled. Note: preempt_count must be 1
2502 */
2503void __sched schedule_preempt_disabled(void)
2504{
2505	sched_preempt_enable_no_resched();
2506	schedule();
2507	preempt_disable();
2508}
2509
2510#ifdef CONFIG_PREEMPT
2511/*
2512 * this is the entry point to schedule() from in-kernel preemption
2513 * off of preempt_enable. Kernel preemptions off return from interrupt
2514 * occur there and call schedule directly.
2515 */
2516asmlinkage void __sched notrace preempt_schedule(void)
2517{
2518	struct thread_info *ti = current_thread_info();
2519
2520	/*
2521	 * If there is a non-zero preempt_count or interrupts are disabled,
2522	 * we do not want to preempt the current task. Just return..
2523	 */
2524	if (likely(ti->preempt_count || irqs_disabled()))
2525		return;
2526
2527	do {
2528		add_preempt_count_notrace(PREEMPT_ACTIVE);
2529		__schedule();
2530		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2531
2532		/*
2533		 * Check again in case we missed a preemption opportunity
2534		 * between schedule and now.
2535		 */
2536		barrier();
2537	} while (need_resched());
2538}
2539EXPORT_SYMBOL(preempt_schedule);
2540
2541/*
2542 * this is the entry point to schedule() from kernel preemption
2543 * off of irq context.
2544 * Note, that this is called and return with irqs disabled. This will
2545 * protect us against recursive calling from irq.
2546 */
2547asmlinkage void __sched preempt_schedule_irq(void)
2548{
2549	struct thread_info *ti = current_thread_info();
2550	enum ctx_state prev_state;
2551
2552	/* Catch callers which need to be fixed */
2553	BUG_ON(ti->preempt_count || !irqs_disabled());
2554
2555	prev_state = exception_enter();
2556
2557	do {
2558		add_preempt_count(PREEMPT_ACTIVE);
2559		local_irq_enable();
2560		__schedule();
2561		local_irq_disable();
2562		sub_preempt_count(PREEMPT_ACTIVE);
2563
2564		/*
2565		 * Check again in case we missed a preemption opportunity
2566		 * between schedule and now.
2567		 */
2568		barrier();
2569	} while (need_resched());
2570
2571	exception_exit(prev_state);
2572}
2573
2574#endif /* CONFIG_PREEMPT */
2575
2576int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2577			  void *key)
2578{
2579	return try_to_wake_up(curr->private, mode, wake_flags);
2580}
2581EXPORT_SYMBOL(default_wake_function);
2582
2583/*
2584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2586 * number) then we wake all the non-exclusive tasks and one exclusive task.
2587 *
2588 * There are circumstances in which we can try to wake a task which has already
2589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2591 */
2592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2593			int nr_exclusive, int wake_flags, void *key)
2594{
2595	wait_queue_t *curr, *next;
2596
2597	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2598		unsigned flags = curr->flags;
2599
2600		if (curr->func(curr, mode, wake_flags, key) &&
2601				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2602			break;
2603	}
2604}
2605
2606/**
2607 * __wake_up - wake up threads blocked on a waitqueue.
2608 * @q: the waitqueue
2609 * @mode: which threads
2610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2611 * @key: is directly passed to the wakeup function
2612 *
2613 * It may be assumed that this function implies a write memory barrier before
2614 * changing the task state if and only if any tasks are woken up.
2615 */
2616void __wake_up(wait_queue_head_t *q, unsigned int mode,
2617			int nr_exclusive, void *key)
2618{
2619	unsigned long flags;
2620
2621	spin_lock_irqsave(&q->lock, flags);
2622	__wake_up_common(q, mode, nr_exclusive, 0, key);
2623	spin_unlock_irqrestore(&q->lock, flags);
2624}
2625EXPORT_SYMBOL(__wake_up);
2626
2627/*
2628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2629 */
2630void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2631{
2632	__wake_up_common(q, mode, nr, 0, NULL);
2633}
2634EXPORT_SYMBOL_GPL(__wake_up_locked);
2635
2636void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2637{
2638	__wake_up_common(q, mode, 1, 0, key);
2639}
2640EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2641
2642/**
2643 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2644 * @q: the waitqueue
2645 * @mode: which threads
2646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2647 * @key: opaque value to be passed to wakeup targets
2648 *
2649 * The sync wakeup differs that the waker knows that it will schedule
2650 * away soon, so while the target thread will be woken up, it will not
2651 * be migrated to another CPU - ie. the two threads are 'synchronized'
2652 * with each other. This can prevent needless bouncing between CPUs.
2653 *
2654 * On UP it can prevent extra preemption.
2655 *
2656 * It may be assumed that this function implies a write memory barrier before
2657 * changing the task state if and only if any tasks are woken up.
2658 */
2659void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2660			int nr_exclusive, void *key)
2661{
2662	unsigned long flags;
2663	int wake_flags = WF_SYNC;
2664
2665	if (unlikely(!q))
2666		return;
2667
2668	if (unlikely(!nr_exclusive))
2669		wake_flags = 0;
2670
2671	spin_lock_irqsave(&q->lock, flags);
2672	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2673	spin_unlock_irqrestore(&q->lock, flags);
2674}
2675EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2676
2677/*
2678 * __wake_up_sync - see __wake_up_sync_key()
2679 */
2680void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2681{
2682	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2683}
2684EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2685
2686/**
2687 * complete: - signals a single thread waiting on this completion
2688 * @x:  holds the state of this particular completion
2689 *
2690 * This will wake up a single thread waiting on this completion. Threads will be
2691 * awakened in the same order in which they were queued.
2692 *
2693 * See also complete_all(), wait_for_completion() and related routines.
2694 *
2695 * It may be assumed that this function implies a write memory barrier before
2696 * changing the task state if and only if any tasks are woken up.
2697 */
2698void complete(struct completion *x)
2699{
2700	unsigned long flags;
2701
2702	spin_lock_irqsave(&x->wait.lock, flags);
2703	x->done++;
2704	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2705	spin_unlock_irqrestore(&x->wait.lock, flags);
2706}
2707EXPORT_SYMBOL(complete);
2708
2709/**
2710 * complete_all: - signals all threads waiting on this completion
2711 * @x:  holds the state of this particular completion
2712 *
2713 * This will wake up all threads waiting on this particular completion event.
2714 *
2715 * It may be assumed that this function implies a write memory barrier before
2716 * changing the task state if and only if any tasks are woken up.
2717 */
2718void complete_all(struct completion *x)
2719{
2720	unsigned long flags;
2721
2722	spin_lock_irqsave(&x->wait.lock, flags);
2723	x->done += UINT_MAX/2;
2724	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2725	spin_unlock_irqrestore(&x->wait.lock, flags);
2726}
2727EXPORT_SYMBOL(complete_all);
2728
2729static inline long __sched
2730do_wait_for_common(struct completion *x,
2731		   long (*action)(long), long timeout, int state)
2732{
2733	if (!x->done) {
2734		DECLARE_WAITQUEUE(wait, current);
2735
2736		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2737		do {
2738			if (signal_pending_state(state, current)) {
2739				timeout = -ERESTARTSYS;
2740				break;
2741			}
2742			__set_current_state(state);
2743			spin_unlock_irq(&x->wait.lock);
2744			timeout = action(timeout);
2745			spin_lock_irq(&x->wait.lock);
2746		} while (!x->done && timeout);
2747		__remove_wait_queue(&x->wait, &wait);
2748		if (!x->done)
2749			return timeout;
2750	}
2751	x->done--;
2752	return timeout ?: 1;
2753}
2754
2755static inline long __sched
2756__wait_for_common(struct completion *x,
2757		  long (*action)(long), long timeout, int state)
2758{
2759	might_sleep();
2760
2761	spin_lock_irq(&x->wait.lock);
2762	timeout = do_wait_for_common(x, action, timeout, state);
2763	spin_unlock_irq(&x->wait.lock);
2764	return timeout;
2765}
2766
2767static long __sched
2768wait_for_common(struct completion *x, long timeout, int state)
2769{
2770	return __wait_for_common(x, schedule_timeout, timeout, state);
2771}
2772
2773static long __sched
2774wait_for_common_io(struct completion *x, long timeout, int state)
2775{
2776	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2777}
2778
2779/**
2780 * wait_for_completion: - waits for completion of a task
2781 * @x:  holds the state of this particular completion
2782 *
2783 * This waits to be signaled for completion of a specific task. It is NOT
2784 * interruptible and there is no timeout.
2785 *
2786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2787 * and interrupt capability. Also see complete().
2788 */
2789void __sched wait_for_completion(struct completion *x)
2790{
2791	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2792}
2793EXPORT_SYMBOL(wait_for_completion);
2794
2795/**
2796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2797 * @x:  holds the state of this particular completion
2798 * @timeout:  timeout value in jiffies
2799 *
2800 * This waits for either a completion of a specific task to be signaled or for a
2801 * specified timeout to expire. The timeout is in jiffies. It is not
2802 * interruptible.
2803 *
2804 * The return value is 0 if timed out, and positive (at least 1, or number of
2805 * jiffies left till timeout) if completed.
2806 */
2807unsigned long __sched
2808wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2809{
2810	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2811}
2812EXPORT_SYMBOL(wait_for_completion_timeout);
2813
2814/**
2815 * wait_for_completion_io: - waits for completion of a task
2816 * @x:  holds the state of this particular completion
2817 *
2818 * This waits to be signaled for completion of a specific task. It is NOT
2819 * interruptible and there is no timeout. The caller is accounted as waiting
2820 * for IO.
2821 */
2822void __sched wait_for_completion_io(struct completion *x)
2823{
2824	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2825}
2826EXPORT_SYMBOL(wait_for_completion_io);
2827
2828/**
2829 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2830 * @x:  holds the state of this particular completion
2831 * @timeout:  timeout value in jiffies
2832 *
2833 * This waits for either a completion of a specific task to be signaled or for a
2834 * specified timeout to expire. The timeout is in jiffies. It is not
2835 * interruptible. The caller is accounted as waiting for IO.
2836 *
2837 * The return value is 0 if timed out, and positive (at least 1, or number of
2838 * jiffies left till timeout) if completed.
2839 */
2840unsigned long __sched
2841wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2842{
2843	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2844}
2845EXPORT_SYMBOL(wait_for_completion_io_timeout);
2846
2847/**
2848 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2849 * @x:  holds the state of this particular completion
2850 *
2851 * This waits for completion of a specific task to be signaled. It is
2852 * interruptible.
2853 *
2854 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2855 */
2856int __sched wait_for_completion_interruptible(struct completion *x)
2857{
2858	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2859	if (t == -ERESTARTSYS)
2860		return t;
2861	return 0;
2862}
2863EXPORT_SYMBOL(wait_for_completion_interruptible);
2864
2865/**
2866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2867 * @x:  holds the state of this particular completion
2868 * @timeout:  timeout value in jiffies
2869 *
2870 * This waits for either a completion of a specific task to be signaled or for a
2871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2872 *
2873 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2874 * positive (at least 1, or number of jiffies left till timeout) if completed.
2875 */
2876long __sched
2877wait_for_completion_interruptible_timeout(struct completion *x,
2878					  unsigned long timeout)
2879{
2880	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2881}
2882EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2883
2884/**
2885 * wait_for_completion_killable: - waits for completion of a task (killable)
2886 * @x:  holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It can be
2889 * interrupted by a kill signal.
2890 *
2891 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2892 */
2893int __sched wait_for_completion_killable(struct completion *x)
2894{
2895	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2896	if (t == -ERESTARTSYS)
2897		return t;
2898	return 0;
2899}
2900EXPORT_SYMBOL(wait_for_completion_killable);
2901
2902/**
2903 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2904 * @x:  holds the state of this particular completion
2905 * @timeout:  timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be
2908 * signaled or for a specified timeout to expire. It can be
2909 * interrupted by a kill signal. The timeout is in jiffies.
2910 *
2911 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2912 * positive (at least 1, or number of jiffies left till timeout) if completed.
2913 */
2914long __sched
2915wait_for_completion_killable_timeout(struct completion *x,
2916				     unsigned long timeout)
2917{
2918	return wait_for_common(x, timeout, TASK_KILLABLE);
2919}
2920EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2921
2922/**
2923 *	try_wait_for_completion - try to decrement a completion without blocking
2924 *	@x:	completion structure
2925 *
2926 *	Returns: 0 if a decrement cannot be done without blocking
2927 *		 1 if a decrement succeeded.
2928 *
2929 *	If a completion is being used as a counting completion,
2930 *	attempt to decrement the counter without blocking. This
2931 *	enables us to avoid waiting if the resource the completion
2932 *	is protecting is not available.
2933 */
2934bool try_wait_for_completion(struct completion *x)
2935{
2936	unsigned long flags;
2937	int ret = 1;
2938
2939	spin_lock_irqsave(&x->wait.lock, flags);
2940	if (!x->done)
2941		ret = 0;
2942	else
2943		x->done--;
2944	spin_unlock_irqrestore(&x->wait.lock, flags);
2945	return ret;
2946}
2947EXPORT_SYMBOL(try_wait_for_completion);
2948
2949/**
2950 *	completion_done - Test to see if a completion has any waiters
2951 *	@x:	completion structure
2952 *
2953 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2954 *		 1 if there are no waiters.
2955 *
2956 */
2957bool completion_done(struct completion *x)
2958{
2959	unsigned long flags;
2960	int ret = 1;
2961
2962	spin_lock_irqsave(&x->wait.lock, flags);
2963	if (!x->done)
2964		ret = 0;
2965	spin_unlock_irqrestore(&x->wait.lock, flags);
2966	return ret;
2967}
2968EXPORT_SYMBOL(completion_done);
2969
2970static long __sched
2971sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2972{
2973	unsigned long flags;
2974	wait_queue_t wait;
2975
2976	init_waitqueue_entry(&wait, current);
2977
2978	__set_current_state(state);
2979
2980	spin_lock_irqsave(&q->lock, flags);
2981	__add_wait_queue(q, &wait);
2982	spin_unlock(&q->lock);
2983	timeout = schedule_timeout(timeout);
2984	spin_lock_irq(&q->lock);
2985	__remove_wait_queue(q, &wait);
2986	spin_unlock_irqrestore(&q->lock, flags);
2987
2988	return timeout;
2989}
2990
2991void __sched interruptible_sleep_on(wait_queue_head_t *q)
2992{
2993	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2994}
2995EXPORT_SYMBOL(interruptible_sleep_on);
2996
2997long __sched
2998interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2999{
3000	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3001}
3002EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3003
3004void __sched sleep_on(wait_queue_head_t *q)
3005{
3006	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3007}
3008EXPORT_SYMBOL(sleep_on);
3009
3010long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3011{
3012	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3013}
3014EXPORT_SYMBOL(sleep_on_timeout);
3015
3016#ifdef CONFIG_RT_MUTEXES
3017
3018/*
3019 * rt_mutex_setprio - set the current priority of a task
3020 * @p: task
3021 * @prio: prio value (kernel-internal form)
3022 *
3023 * This function changes the 'effective' priority of a task. It does
3024 * not touch ->normal_prio like __setscheduler().
3025 *
3026 * Used by the rt_mutex code to implement priority inheritance logic.
3027 */
3028void rt_mutex_setprio(struct task_struct *p, int prio)
3029{
3030	int oldprio, on_rq, running;
3031	struct rq *rq;
3032	const struct sched_class *prev_class;
3033
3034	BUG_ON(prio < 0 || prio > MAX_PRIO);
3035
3036	rq = __task_rq_lock(p);
3037
3038	/*
3039	 * Idle task boosting is a nono in general. There is one
3040	 * exception, when PREEMPT_RT and NOHZ is active:
3041	 *
3042	 * The idle task calls get_next_timer_interrupt() and holds
3043	 * the timer wheel base->lock on the CPU and another CPU wants
3044	 * to access the timer (probably to cancel it). We can safely
3045	 * ignore the boosting request, as the idle CPU runs this code
3046	 * with interrupts disabled and will complete the lock
3047	 * protected section without being interrupted. So there is no
3048	 * real need to boost.
3049	 */
3050	if (unlikely(p == rq->idle)) {
3051		WARN_ON(p != rq->curr);
3052		WARN_ON(p->pi_blocked_on);
3053		goto out_unlock;
3054	}
3055
3056	trace_sched_pi_setprio(p, prio);
3057	oldprio = p->prio;
3058	prev_class = p->sched_class;
3059	on_rq = p->on_rq;
3060	running = task_current(rq, p);
3061	if (on_rq)
3062		dequeue_task(rq, p, 0);
3063	if (running)
3064		p->sched_class->put_prev_task(rq, p);
3065
3066	if (rt_prio(prio))
3067		p->sched_class = &rt_sched_class;
3068	else
3069		p->sched_class = &fair_sched_class;
3070
3071	p->prio = prio;
3072
3073	if (running)
3074		p->sched_class->set_curr_task(rq);
3075	if (on_rq)
3076		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3077
3078	check_class_changed(rq, p, prev_class, oldprio);
3079out_unlock:
3080	__task_rq_unlock(rq);
3081}
3082#endif
3083void set_user_nice(struct task_struct *p, long nice)
3084{
3085	int old_prio, delta, on_rq;
3086	unsigned long flags;
3087	struct rq *rq;
3088
3089	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3090		return;
3091	/*
3092	 * We have to be careful, if called from sys_setpriority(),
3093	 * the task might be in the middle of scheduling on another CPU.
3094	 */
3095	rq = task_rq_lock(p, &flags);
3096	/*
3097	 * The RT priorities are set via sched_setscheduler(), but we still
3098	 * allow the 'normal' nice value to be set - but as expected
3099	 * it wont have any effect on scheduling until the task is
3100	 * SCHED_FIFO/SCHED_RR:
3101	 */
3102	if (task_has_rt_policy(p)) {
3103		p->static_prio = NICE_TO_PRIO(nice);
3104		goto out_unlock;
3105	}
3106	on_rq = p->on_rq;
3107	if (on_rq)
3108		dequeue_task(rq, p, 0);
3109
3110	p->static_prio = NICE_TO_PRIO(nice);
3111	set_load_weight(p);
3112	old_prio = p->prio;
3113	p->prio = effective_prio(p);
3114	delta = p->prio - old_prio;
3115
3116	if (on_rq) {
3117		enqueue_task(rq, p, 0);
3118		/*
3119		 * If the task increased its priority or is running and
3120		 * lowered its priority, then reschedule its CPU:
3121		 */
3122		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3123			resched_task(rq->curr);
3124	}
3125out_unlock:
3126	task_rq_unlock(rq, p, &flags);
3127}
3128EXPORT_SYMBOL(set_user_nice);
3129
3130/*
3131 * can_nice - check if a task can reduce its nice value
3132 * @p: task
3133 * @nice: nice value
3134 */
3135int can_nice(const struct task_struct *p, const int nice)
3136{
3137	/* convert nice value [19,-20] to rlimit style value [1,40] */
3138	int nice_rlim = 20 - nice;
3139
3140	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3141		capable(CAP_SYS_NICE));
3142}
3143
3144#ifdef __ARCH_WANT_SYS_NICE
3145
3146/*
3147 * sys_nice - change the priority of the current process.
3148 * @increment: priority increment
3149 *
3150 * sys_setpriority is a more generic, but much slower function that
3151 * does similar things.
3152 */
3153SYSCALL_DEFINE1(nice, int, increment)
3154{
3155	long nice, retval;
3156
3157	/*
3158	 * Setpriority might change our priority at the same moment.
3159	 * We don't have to worry. Conceptually one call occurs first
3160	 * and we have a single winner.
3161	 */
3162	if (increment < -40)
3163		increment = -40;
3164	if (increment > 40)
3165		increment = 40;
3166
3167	nice = TASK_NICE(current) + increment;
3168	if (nice < -20)
3169		nice = -20;
3170	if (nice > 19)
3171		nice = 19;
3172
3173	if (increment < 0 && !can_nice(current, nice))
3174		return -EPERM;
3175
3176	retval = security_task_setnice(current, nice);
3177	if (retval)
3178		return retval;
3179
3180	set_user_nice(current, nice);
3181	return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
3190 * This is the priority value as seen by users in /proc.
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
3194int task_prio(const struct task_struct *p)
3195{
3196	return p->prio - MAX_RT_PRIO;
3197}
3198
3199/**
3200 * task_nice - return the nice value of a given task.
3201 * @p: the task in question.
3202 */
3203int task_nice(const struct task_struct *p)
3204{
3205	return TASK_NICE(p);
3206}
3207EXPORT_SYMBOL(task_nice);
3208
3209/**
3210 * idle_cpu - is a given cpu idle currently?
3211 * @cpu: the processor in question.
3212 */
3213int idle_cpu(int cpu)
3214{
3215	struct rq *rq = cpu_rq(cpu);
3216
3217	if (rq->curr != rq->idle)
3218		return 0;
3219
3220	if (rq->nr_running)
3221		return 0;
3222
3223#ifdef CONFIG_SMP
3224	if (!llist_empty(&rq->wake_list))
3225		return 0;
3226#endif
3227
3228	return 1;
3229}
3230
3231/**
3232 * idle_task - return the idle task for a given cpu.
3233 * @cpu: the processor in question.
3234 */
3235struct task_struct *idle_task(int cpu)
3236{
3237	return cpu_rq(cpu)->idle;
3238}
3239
3240/**
3241 * find_process_by_pid - find a process with a matching PID value.
3242 * @pid: the pid in question.
3243 */
3244static struct task_struct *find_process_by_pid(pid_t pid)
3245{
3246	return pid ? find_task_by_vpid(pid) : current;
3247}
3248
3249/* Actually do priority change: must hold rq lock. */
3250static void
3251__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3252{
3253	p->policy = policy;
3254	p->rt_priority = prio;
3255	p->normal_prio = normal_prio(p);
3256	/* we are holding p->pi_lock already */
3257	p->prio = rt_mutex_getprio(p);
3258	if (rt_prio(p->prio))
3259		p->sched_class = &rt_sched_class;
3260	else
3261		p->sched_class = &fair_sched_class;
3262	set_load_weight(p);
3263}
3264
3265/*
3266 * check the target process has a UID that matches the current process's
3267 */
3268static bool check_same_owner(struct task_struct *p)
3269{
3270	const struct cred *cred = current_cred(), *pcred;
3271	bool match;
3272
3273	rcu_read_lock();
3274	pcred = __task_cred(p);
3275	match = (uid_eq(cred->euid, pcred->euid) ||
3276		 uid_eq(cred->euid, pcred->uid));
3277	rcu_read_unlock();
3278	return match;
3279}
3280
3281static int __sched_setscheduler(struct task_struct *p, int policy,
3282				const struct sched_param *param, bool user)
3283{
3284	int retval, oldprio, oldpolicy = -1, on_rq, running;
3285	unsigned long flags;
3286	const struct sched_class *prev_class;
3287	struct rq *rq;
3288	int reset_on_fork;
3289
3290	/* may grab non-irq protected spin_locks */
3291	BUG_ON(in_interrupt());
3292recheck:
3293	/* double check policy once rq lock held */
3294	if (policy < 0) {
3295		reset_on_fork = p->sched_reset_on_fork;
3296		policy = oldpolicy = p->policy;
3297	} else {
3298		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3299		policy &= ~SCHED_RESET_ON_FORK;
3300
3301		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3302				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3303				policy != SCHED_IDLE)
3304			return -EINVAL;
3305	}
3306
3307	/*
3308	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3309	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3310	 * SCHED_BATCH and SCHED_IDLE is 0.
3311	 */
3312	if (param->sched_priority < 0 ||
3313	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3314	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3315		return -EINVAL;
3316	if (rt_policy(policy) != (param->sched_priority != 0))
3317		return -EINVAL;
3318
3319	/*
3320	 * Allow unprivileged RT tasks to decrease priority:
3321	 */
3322	if (user && !capable(CAP_SYS_NICE)) {
3323		if (rt_policy(policy)) {
3324			unsigned long rlim_rtprio =
3325					task_rlimit(p, RLIMIT_RTPRIO);
3326
3327			/* can't set/change the rt policy */
3328			if (policy != p->policy && !rlim_rtprio)
3329				return -EPERM;
3330
3331			/* can't increase priority */
3332			if (param->sched_priority > p->rt_priority &&
3333			    param->sched_priority > rlim_rtprio)
3334				return -EPERM;
3335		}
3336
3337		/*
3338		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3339		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3340		 */
3341		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3342			if (!can_nice(p, TASK_NICE(p)))
3343				return -EPERM;
3344		}
3345
3346		/* can't change other user's priorities */
3347		if (!check_same_owner(p))
3348			return -EPERM;
3349
3350		/* Normal users shall not reset the sched_reset_on_fork flag */
3351		if (p->sched_reset_on_fork && !reset_on_fork)
3352			return -EPERM;
3353	}
3354
3355	if (user) {
3356		retval = security_task_setscheduler(p);
3357		if (retval)
3358			return retval;
3359	}
3360
3361	/*
3362	 * make sure no PI-waiters arrive (or leave) while we are
3363	 * changing the priority of the task:
3364	 *
3365	 * To be able to change p->policy safely, the appropriate
3366	 * runqueue lock must be held.
3367	 */
3368	rq = task_rq_lock(p, &flags);
3369
3370	/*
3371	 * Changing the policy of the stop threads its a very bad idea
3372	 */
3373	if (p == rq->stop) {
3374		task_rq_unlock(rq, p, &flags);
3375		return -EINVAL;
3376	}
3377
3378	/*
3379	 * If not changing anything there's no need to proceed further:
3380	 */
3381	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3382			param->sched_priority == p->rt_priority))) {
3383		task_rq_unlock(rq, p, &flags);
3384		return 0;
3385	}
3386
3387#ifdef CONFIG_RT_GROUP_SCHED
3388	if (user) {
3389		/*
3390		 * Do not allow realtime tasks into groups that have no runtime
3391		 * assigned.
3392		 */
3393		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395				!task_group_is_autogroup(task_group(p))) {
3396			task_rq_unlock(rq, p, &flags);
3397			return -EPERM;
3398		}
3399	}
3400#endif
3401
3402	/* recheck policy now with rq lock held */
3403	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3404		policy = oldpolicy = -1;
3405		task_rq_unlock(rq, p, &flags);
3406		goto recheck;
3407	}
3408	on_rq = p->on_rq;
3409	running = task_current(rq, p);
3410	if (on_rq)
3411		dequeue_task(rq, p, 0);
3412	if (running)
3413		p->sched_class->put_prev_task(rq, p);
3414
3415	p->sched_reset_on_fork = reset_on_fork;
3416
3417	oldprio = p->prio;
3418	prev_class = p->sched_class;
3419	__setscheduler(rq, p, policy, param->sched_priority);
3420
3421	if (running)
3422		p->sched_class->set_curr_task(rq);
3423	if (on_rq)
3424		enqueue_task(rq, p, 0);
3425
3426	check_class_changed(rq, p, prev_class, oldprio);
3427	task_rq_unlock(rq, p, &flags);
3428
3429	rt_mutex_adjust_pi(p);
3430
3431	return 0;
3432}
3433
3434/**
3435 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3436 * @p: the task in question.
3437 * @policy: new policy.
3438 * @param: structure containing the new RT priority.
3439 *
3440 * NOTE that the task may be already dead.
3441 */
3442int sched_setscheduler(struct task_struct *p, int policy,
3443		       const struct sched_param *param)
3444{
3445	return __sched_setscheduler(p, policy, param, true);
3446}
3447EXPORT_SYMBOL_GPL(sched_setscheduler);
3448
3449/**
3450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3451 * @p: the task in question.
3452 * @policy: new policy.
3453 * @param: structure containing the new RT priority.
3454 *
3455 * Just like sched_setscheduler, only don't bother checking if the
3456 * current context has permission.  For example, this is needed in
3457 * stop_machine(): we create temporary high priority worker threads,
3458 * but our caller might not have that capability.
3459 */
3460int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3461			       const struct sched_param *param)
3462{
3463	return __sched_setscheduler(p, policy, param, false);
3464}
3465
3466static int
3467do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3468{
3469	struct sched_param lparam;
3470	struct task_struct *p;
3471	int retval;
3472
3473	if (!param || pid < 0)
3474		return -EINVAL;
3475	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3476		return -EFAULT;
3477
3478	rcu_read_lock();
3479	retval = -ESRCH;
3480	p = find_process_by_pid(pid);
3481	if (p != NULL)
3482		retval = sched_setscheduler(p, policy, &lparam);
3483	rcu_read_unlock();
3484
3485	return retval;
3486}
3487
3488/**
3489 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3490 * @pid: the pid in question.
3491 * @policy: new policy.
3492 * @param: structure containing the new RT priority.
3493 */
3494SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3495		struct sched_param __user *, param)
3496{
3497	/* negative values for policy are not valid */
3498	if (policy < 0)
3499		return -EINVAL;
3500
3501	return do_sched_setscheduler(pid, policy, param);
3502}
3503
3504/**
3505 * sys_sched_setparam - set/change the RT priority of a thread
3506 * @pid: the pid in question.
3507 * @param: structure containing the new RT priority.
3508 */
3509SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3510{
3511	return do_sched_setscheduler(pid, -1, param);
3512}
3513
3514/**
3515 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3516 * @pid: the pid in question.
3517 */
3518SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3519{
3520	struct task_struct *p;
3521	int retval;
3522
3523	if (pid < 0)
3524		return -EINVAL;
3525
3526	retval = -ESRCH;
3527	rcu_read_lock();
3528	p = find_process_by_pid(pid);
3529	if (p) {
3530		retval = security_task_getscheduler(p);
3531		if (!retval)
3532			retval = p->policy
3533				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3534	}
3535	rcu_read_unlock();
3536	return retval;
3537}
3538
3539/**
3540 * sys_sched_getparam - get the RT priority of a thread
3541 * @pid: the pid in question.
3542 * @param: structure containing the RT priority.
3543 */
3544SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3545{
3546	struct sched_param lp;
3547	struct task_struct *p;
3548	int retval;
3549
3550	if (!param || pid < 0)
3551		return -EINVAL;
3552
3553	rcu_read_lock();
3554	p = find_process_by_pid(pid);
3555	retval = -ESRCH;
3556	if (!p)
3557		goto out_unlock;
3558
3559	retval = security_task_getscheduler(p);
3560	if (retval)
3561		goto out_unlock;
3562
3563	lp.sched_priority = p->rt_priority;
3564	rcu_read_unlock();
3565
3566	/*
3567	 * This one might sleep, we cannot do it with a spinlock held ...
3568	 */
3569	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3570
3571	return retval;
3572
3573out_unlock:
3574	rcu_read_unlock();
3575	return retval;
3576}
3577
3578long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3579{
3580	cpumask_var_t cpus_allowed, new_mask;
3581	struct task_struct *p;
3582	int retval;
3583
3584	get_online_cpus();
3585	rcu_read_lock();
3586
3587	p = find_process_by_pid(pid);
3588	if (!p) {
3589		rcu_read_unlock();
3590		put_online_cpus();
3591		return -ESRCH;
3592	}
3593
3594	/* Prevent p going away */
3595	get_task_struct(p);
3596	rcu_read_unlock();
3597
3598	if (p->flags & PF_NO_SETAFFINITY) {
3599		retval = -EINVAL;
3600		goto out_put_task;
3601	}
3602	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3603		retval = -ENOMEM;
3604		goto out_put_task;
3605	}
3606	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3607		retval = -ENOMEM;
3608		goto out_free_cpus_allowed;
3609	}
3610	retval = -EPERM;
3611	if (!check_same_owner(p)) {
3612		rcu_read_lock();
3613		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3614			rcu_read_unlock();
3615			goto out_unlock;
3616		}
3617		rcu_read_unlock();
3618	}
3619
3620	retval = security_task_setscheduler(p);
3621	if (retval)
3622		goto out_unlock;
3623
3624	cpuset_cpus_allowed(p, cpus_allowed);
3625	cpumask_and(new_mask, in_mask, cpus_allowed);
3626again:
3627	retval = set_cpus_allowed_ptr(p, new_mask);
3628
3629	if (!retval) {
3630		cpuset_cpus_allowed(p, cpus_allowed);
3631		if (!cpumask_subset(new_mask, cpus_allowed)) {
3632			/*
3633			 * We must have raced with a concurrent cpuset
3634			 * update. Just reset the cpus_allowed to the
3635			 * cpuset's cpus_allowed
3636			 */
3637			cpumask_copy(new_mask, cpus_allowed);
3638			goto again;
3639		}
3640	}
3641out_unlock:
3642	free_cpumask_var(new_mask);
3643out_free_cpus_allowed:
3644	free_cpumask_var(cpus_allowed);
3645out_put_task:
3646	put_task_struct(p);
3647	put_online_cpus();
3648	return retval;
3649}
3650
3651static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3652			     struct cpumask *new_mask)
3653{
3654	if (len < cpumask_size())
3655		cpumask_clear(new_mask);
3656	else if (len > cpumask_size())
3657		len = cpumask_size();
3658
3659	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3660}
3661
3662/**
3663 * sys_sched_setaffinity - set the cpu affinity of a process
3664 * @pid: pid of the process
3665 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3666 * @user_mask_ptr: user-space pointer to the new cpu mask
3667 */
3668SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3669		unsigned long __user *, user_mask_ptr)
3670{
3671	cpumask_var_t new_mask;
3672	int retval;
3673
3674	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3675		return -ENOMEM;
3676
3677	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3678	if (retval == 0)
3679		retval = sched_setaffinity(pid, new_mask);
3680	free_cpumask_var(new_mask);
3681	return retval;
3682}
3683
3684long sched_getaffinity(pid_t pid, struct cpumask *mask)
3685{
3686	struct task_struct *p;
3687	unsigned long flags;
3688	int retval;
3689
3690	get_online_cpus();
3691	rcu_read_lock();
3692
3693	retval = -ESRCH;
3694	p = find_process_by_pid(pid);
3695	if (!p)
3696		goto out_unlock;
3697
3698	retval = security_task_getscheduler(p);
3699	if (retval)
3700		goto out_unlock;
3701
3702	raw_spin_lock_irqsave(&p->pi_lock, flags);
3703	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3704	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3705
3706out_unlock:
3707	rcu_read_unlock();
3708	put_online_cpus();
3709
3710	return retval;
3711}
3712
3713/**
3714 * sys_sched_getaffinity - get the cpu affinity of a process
3715 * @pid: pid of the process
3716 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3717 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3718 */
3719SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3720		unsigned long __user *, user_mask_ptr)
3721{
3722	int ret;
3723	cpumask_var_t mask;
3724
3725	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3726		return -EINVAL;
3727	if (len & (sizeof(unsigned long)-1))
3728		return -EINVAL;
3729
3730	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3731		return -ENOMEM;
3732
3733	ret = sched_getaffinity(pid, mask);
3734	if (ret == 0) {
3735		size_t retlen = min_t(size_t, len, cpumask_size());
3736
3737		if (copy_to_user(user_mask_ptr, mask, retlen))
3738			ret = -EFAULT;
3739		else
3740			ret = retlen;
3741	}
3742	free_cpumask_var(mask);
3743
3744	return ret;
3745}
3746
3747/**
3748 * sys_sched_yield - yield the current processor to other threads.
3749 *
3750 * This function yields the current CPU to other tasks. If there are no
3751 * other threads running on this CPU then this function will return.
3752 */
3753SYSCALL_DEFINE0(sched_yield)
3754{
3755	struct rq *rq = this_rq_lock();
3756
3757	schedstat_inc(rq, yld_count);
3758	current->sched_class->yield_task(rq);
3759
3760	/*
3761	 * Since we are going to call schedule() anyway, there's
3762	 * no need to preempt or enable interrupts:
3763	 */
3764	__release(rq->lock);
3765	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3766	do_raw_spin_unlock(&rq->lock);
3767	sched_preempt_enable_no_resched();
3768
3769	schedule();
3770
3771	return 0;
3772}
3773
3774static inline int should_resched(void)
3775{
3776	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3777}
3778
3779static void __cond_resched(void)
3780{
3781	add_preempt_count(PREEMPT_ACTIVE);
3782	__schedule();
3783	sub_preempt_count(PREEMPT_ACTIVE);
3784}
3785
3786int __sched _cond_resched(void)
3787{
3788	if (should_resched()) {
3789		__cond_resched();
3790		return 1;
3791	}
3792	return 0;
3793}
3794EXPORT_SYMBOL(_cond_resched);
3795
3796/*
3797 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3798 * call schedule, and on return reacquire the lock.
3799 *
3800 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3801 * operations here to prevent schedule() from being called twice (once via
3802 * spin_unlock(), once by hand).
3803 */
3804int __cond_resched_lock(spinlock_t *lock)
3805{
3806	int resched = should_resched();
3807	int ret = 0;
3808
3809	lockdep_assert_held(lock);
3810
3811	if (spin_needbreak(lock) || resched) {
3812		spin_unlock(lock);
3813		if (resched)
3814			__cond_resched();
3815		else
3816			cpu_relax();
3817		ret = 1;
3818		spin_lock(lock);
3819	}
3820	return ret;
3821}
3822EXPORT_SYMBOL(__cond_resched_lock);
3823
3824int __sched __cond_resched_softirq(void)
3825{
3826	BUG_ON(!in_softirq());
3827
3828	if (should_resched()) {
3829		local_bh_enable();
3830		__cond_resched();
3831		local_bh_disable();
3832		return 1;
3833	}
3834	return 0;
3835}
3836EXPORT_SYMBOL(__cond_resched_softirq);
3837
3838/**
3839 * yield - yield the current processor to other threads.
3840 *
3841 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3842 *
3843 * The scheduler is at all times free to pick the calling task as the most
3844 * eligible task to run, if removing the yield() call from your code breaks
3845 * it, its already broken.
3846 *
3847 * Typical broken usage is:
3848 *
3849 * while (!event)
3850 * 	yield();
3851 *
3852 * where one assumes that yield() will let 'the other' process run that will
3853 * make event true. If the current task is a SCHED_FIFO task that will never
3854 * happen. Never use yield() as a progress guarantee!!
3855 *
3856 * If you want to use yield() to wait for something, use wait_event().
3857 * If you want to use yield() to be 'nice' for others, use cond_resched().
3858 * If you still want to use yield(), do not!
3859 */
3860void __sched yield(void)
3861{
3862	set_current_state(TASK_RUNNING);
3863	sys_sched_yield();
3864}
3865EXPORT_SYMBOL(yield);
3866
3867/**
3868 * yield_to - yield the current processor to another thread in
3869 * your thread group, or accelerate that thread toward the
3870 * processor it's on.
3871 * @p: target task
3872 * @preempt: whether task preemption is allowed or not
3873 *
3874 * It's the caller's job to ensure that the target task struct
3875 * can't go away on us before we can do any checks.
3876 *
3877 * Returns:
3878 *	true (>0) if we indeed boosted the target task.
3879 *	false (0) if we failed to boost the target.
3880 *	-ESRCH if there's no task to yield to.
3881 */
3882bool __sched yield_to(struct task_struct *p, bool preempt)
3883{
3884	struct task_struct *curr = current;
3885	struct rq *rq, *p_rq;
3886	unsigned long flags;
3887	int yielded = 0;
3888
3889	local_irq_save(flags);
3890	rq = this_rq();
3891
3892again:
3893	p_rq = task_rq(p);
3894	/*
3895	 * If we're the only runnable task on the rq and target rq also
3896	 * has only one task, there's absolutely no point in yielding.
3897	 */
3898	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3899		yielded = -ESRCH;
3900		goto out_irq;
3901	}
3902
3903	double_rq_lock(rq, p_rq);
3904	while (task_rq(p) != p_rq) {
3905		double_rq_unlock(rq, p_rq);
3906		goto again;
3907	}
3908
3909	if (!curr->sched_class->yield_to_task)
3910		goto out_unlock;
3911
3912	if (curr->sched_class != p->sched_class)
3913		goto out_unlock;
3914
3915	if (task_running(p_rq, p) || p->state)
3916		goto out_unlock;
3917
3918	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3919	if (yielded) {
3920		schedstat_inc(rq, yld_count);
3921		/*
3922		 * Make p's CPU reschedule; pick_next_entity takes care of
3923		 * fairness.
3924		 */
3925		if (preempt && rq != p_rq)
3926			resched_task(p_rq->curr);
3927	}
3928
3929out_unlock:
3930	double_rq_unlock(rq, p_rq);
3931out_irq:
3932	local_irq_restore(flags);
3933
3934	if (yielded > 0)
3935		schedule();
3936
3937	return yielded;
3938}
3939EXPORT_SYMBOL_GPL(yield_to);
3940
3941/*
3942 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3943 * that process accounting knows that this is a task in IO wait state.
3944 */
3945void __sched io_schedule(void)
3946{
3947	struct rq *rq = raw_rq();
3948
3949	delayacct_blkio_start();
3950	atomic_inc(&rq->nr_iowait);
3951	blk_flush_plug(current);
3952	current->in_iowait = 1;
3953	schedule();
3954	current->in_iowait = 0;
3955	atomic_dec(&rq->nr_iowait);
3956	delayacct_blkio_end();
3957}
3958EXPORT_SYMBOL(io_schedule);
3959
3960long __sched io_schedule_timeout(long timeout)
3961{
3962	struct rq *rq = raw_rq();
3963	long ret;
3964
3965	delayacct_blkio_start();
3966	atomic_inc(&rq->nr_iowait);
3967	blk_flush_plug(current);
3968	current->in_iowait = 1;
3969	ret = schedule_timeout(timeout);
3970	current->in_iowait = 0;
3971	atomic_dec(&rq->nr_iowait);
3972	delayacct_blkio_end();
3973	return ret;
3974}
3975
3976/**
3977 * sys_sched_get_priority_max - return maximum RT priority.
3978 * @policy: scheduling class.
3979 *
3980 * this syscall returns the maximum rt_priority that can be used
3981 * by a given scheduling class.
3982 */
3983SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3984{
3985	int ret = -EINVAL;
3986
3987	switch (policy) {
3988	case SCHED_FIFO:
3989	case SCHED_RR:
3990		ret = MAX_USER_RT_PRIO-1;
3991		break;
3992	case SCHED_NORMAL:
3993	case SCHED_BATCH:
3994	case SCHED_IDLE:
3995		ret = 0;
3996		break;
3997	}
3998	return ret;
3999}
4000
4001/**
4002 * sys_sched_get_priority_min - return minimum RT priority.
4003 * @policy: scheduling class.
4004 *
4005 * this syscall returns the minimum rt_priority that can be used
4006 * by a given scheduling class.
4007 */
4008SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4009{
4010	int ret = -EINVAL;
4011
4012	switch (policy) {
4013	case SCHED_FIFO:
4014	case SCHED_RR:
4015		ret = 1;
4016		break;
4017	case SCHED_NORMAL:
4018	case SCHED_BATCH:
4019	case SCHED_IDLE:
4020		ret = 0;
4021	}
4022	return ret;
4023}
4024
4025/**
4026 * sys_sched_rr_get_interval - return the default timeslice of a process.
4027 * @pid: pid of the process.
4028 * @interval: userspace pointer to the timeslice value.
4029 *
4030 * this syscall writes the default timeslice value of a given process
4031 * into the user-space timespec buffer. A value of '0' means infinity.
4032 */
4033SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4034		struct timespec __user *, interval)
4035{
4036	struct task_struct *p;
4037	unsigned int time_slice;
4038	unsigned long flags;
4039	struct rq *rq;
4040	int retval;
4041	struct timespec t;
4042
4043	if (pid < 0)
4044		return -EINVAL;
4045
4046	retval = -ESRCH;
4047	rcu_read_lock();
4048	p = find_process_by_pid(pid);
4049	if (!p)
4050		goto out_unlock;
4051
4052	retval = security_task_getscheduler(p);
4053	if (retval)
4054		goto out_unlock;
4055
4056	rq = task_rq_lock(p, &flags);
4057	time_slice = p->sched_class->get_rr_interval(rq, p);
4058	task_rq_unlock(rq, p, &flags);
4059
4060	rcu_read_unlock();
4061	jiffies_to_timespec(time_slice, &t);
4062	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4063	return retval;
4064
4065out_unlock:
4066	rcu_read_unlock();
4067	return retval;
4068}
4069
4070static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4071
4072void sched_show_task(struct task_struct *p)
4073{
4074	unsigned long free = 0;
4075	int ppid;
4076	unsigned state;
4077
4078	state = p->state ? __ffs(p->state) + 1 : 0;
4079	printk(KERN_INFO "%-15.15s %c", p->comm,
4080		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4081#if BITS_PER_LONG == 32
4082	if (state == TASK_RUNNING)
4083		printk(KERN_CONT " running  ");
4084	else
4085		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4086#else
4087	if (state == TASK_RUNNING)
4088		printk(KERN_CONT "  running task    ");
4089	else
4090		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4091#endif
4092#ifdef CONFIG_DEBUG_STACK_USAGE
4093	free = stack_not_used(p);
4094#endif
4095	rcu_read_lock();
4096	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4097	rcu_read_unlock();
4098	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4099		task_pid_nr(p), ppid,
4100		(unsigned long)task_thread_info(p)->flags);
4101
4102	print_worker_info(KERN_INFO, p);
4103	show_stack(p, NULL);
4104}
4105
4106void show_state_filter(unsigned long state_filter)
4107{
4108	struct task_struct *g, *p;
4109
4110#if BITS_PER_LONG == 32
4111	printk(KERN_INFO
4112		"  task                PC stack   pid father\n");
4113#else
4114	printk(KERN_INFO
4115		"  task                        PC stack   pid father\n");
4116#endif
4117	rcu_read_lock();
4118	do_each_thread(g, p) {
4119		/*
4120		 * reset the NMI-timeout, listing all files on a slow
4121		 * console might take a lot of time:
4122		 */
4123		touch_nmi_watchdog();
4124		if (!state_filter || (p->state & state_filter))
4125			sched_show_task(p);
4126	} while_each_thread(g, p);
4127
4128	touch_all_softlockup_watchdogs();
4129
4130#ifdef CONFIG_SCHED_DEBUG
4131	sysrq_sched_debug_show();
4132#endif
4133	rcu_read_unlock();
4134	/*
4135	 * Only show locks if all tasks are dumped:
4136	 */
4137	if (!state_filter)
4138		debug_show_all_locks();
4139}
4140
4141void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4142{
4143	idle->sched_class = &idle_sched_class;
4144}
4145
4146/**
4147 * init_idle - set up an idle thread for a given CPU
4148 * @idle: task in question
4149 * @cpu: cpu the idle task belongs to
4150 *
4151 * NOTE: this function does not set the idle thread's NEED_RESCHED
4152 * flag, to make booting more robust.
4153 */
4154void __cpuinit init_idle(struct task_struct *idle, int cpu)
4155{
4156	struct rq *rq = cpu_rq(cpu);
4157	unsigned long flags;
4158
4159	raw_spin_lock_irqsave(&rq->lock, flags);
4160
4161	__sched_fork(idle);
4162	idle->state = TASK_RUNNING;
4163	idle->se.exec_start = sched_clock();
4164
4165	do_set_cpus_allowed(idle, cpumask_of(cpu));
4166	/*
4167	 * We're having a chicken and egg problem, even though we are
4168	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4169	 * lockdep check in task_group() will fail.
4170	 *
4171	 * Similar case to sched_fork(). / Alternatively we could
4172	 * use task_rq_lock() here and obtain the other rq->lock.
4173	 *
4174	 * Silence PROVE_RCU
4175	 */
4176	rcu_read_lock();
4177	__set_task_cpu(idle, cpu);
4178	rcu_read_unlock();
4179
4180	rq->curr = rq->idle = idle;
4181#if defined(CONFIG_SMP)
4182	idle->on_cpu = 1;
4183#endif
4184	raw_spin_unlock_irqrestore(&rq->lock, flags);
4185
4186	/* Set the preempt count _outside_ the spinlocks! */
4187	task_thread_info(idle)->preempt_count = 0;
4188
4189	/*
4190	 * The idle tasks have their own, simple scheduling class:
4191	 */
4192	idle->sched_class = &idle_sched_class;
4193	ftrace_graph_init_idle_task(idle, cpu);
4194	vtime_init_idle(idle);
4195#if defined(CONFIG_SMP)
4196	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4197#endif
4198}
4199
4200#ifdef CONFIG_SMP
4201void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4202{
4203	if (p->sched_class && p->sched_class->set_cpus_allowed)
4204		p->sched_class->set_cpus_allowed(p, new_mask);
4205
4206	cpumask_copy(&p->cpus_allowed, new_mask);
4207	p->nr_cpus_allowed = cpumask_weight(new_mask);
4208}
4209
4210/*
4211 * This is how migration works:
4212 *
4213 * 1) we invoke migration_cpu_stop() on the target CPU using
4214 *    stop_one_cpu().
4215 * 2) stopper starts to run (implicitly forcing the migrated thread
4216 *    off the CPU)
4217 * 3) it checks whether the migrated task is still in the wrong runqueue.
4218 * 4) if it's in the wrong runqueue then the migration thread removes
4219 *    it and puts it into the right queue.
4220 * 5) stopper completes and stop_one_cpu() returns and the migration
4221 *    is done.
4222 */
4223
4224/*
4225 * Change a given task's CPU affinity. Migrate the thread to a
4226 * proper CPU and schedule it away if the CPU it's executing on
4227 * is removed from the allowed bitmask.
4228 *
4229 * NOTE: the caller must have a valid reference to the task, the
4230 * task must not exit() & deallocate itself prematurely. The
4231 * call is not atomic; no spinlocks may be held.
4232 */
4233int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4234{
4235	unsigned long flags;
4236	struct rq *rq;
4237	unsigned int dest_cpu;
4238	int ret = 0;
4239
4240	rq = task_rq_lock(p, &flags);
4241
4242	if (cpumask_equal(&p->cpus_allowed, new_mask))
4243		goto out;
4244
4245	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4246		ret = -EINVAL;
4247		goto out;
4248	}
4249
4250	do_set_cpus_allowed(p, new_mask);
4251
4252	/* Can the task run on the task's current CPU? If so, we're done */
4253	if (cpumask_test_cpu(task_cpu(p), new_mask))
4254		goto out;
4255
4256	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4257	if (p->on_rq) {
4258		struct migration_arg arg = { p, dest_cpu };
4259		/* Need help from migration thread: drop lock and wait. */
4260		task_rq_unlock(rq, p, &flags);
4261		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4262		tlb_migrate_finish(p->mm);
4263		return 0;
4264	}
4265out:
4266	task_rq_unlock(rq, p, &flags);
4267
4268	return ret;
4269}
4270EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4271
4272/*
4273 * Move (not current) task off this cpu, onto dest cpu. We're doing
4274 * this because either it can't run here any more (set_cpus_allowed()
4275 * away from this CPU, or CPU going down), or because we're
4276 * attempting to rebalance this task on exec (sched_exec).
4277 *
4278 * So we race with normal scheduler movements, but that's OK, as long
4279 * as the task is no longer on this CPU.
4280 *
4281 * Returns non-zero if task was successfully migrated.
4282 */
4283static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4284{
4285	struct rq *rq_dest, *rq_src;
4286	int ret = 0;
4287
4288	if (unlikely(!cpu_active(dest_cpu)))
4289		return ret;
4290
4291	rq_src = cpu_rq(src_cpu);
4292	rq_dest = cpu_rq(dest_cpu);
4293
4294	raw_spin_lock(&p->pi_lock);
4295	double_rq_lock(rq_src, rq_dest);
4296	/* Already moved. */
4297	if (task_cpu(p) != src_cpu)
4298		goto done;
4299	/* Affinity changed (again). */
4300	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4301		goto fail;
4302
4303	/*
4304	 * If we're not on a rq, the next wake-up will ensure we're
4305	 * placed properly.
4306	 */
4307	if (p->on_rq) {
4308		dequeue_task(rq_src, p, 0);
4309		set_task_cpu(p, dest_cpu);
4310		enqueue_task(rq_dest, p, 0);
4311		check_preempt_curr(rq_dest, p, 0);
4312	}
4313done:
4314	ret = 1;
4315fail:
4316	double_rq_unlock(rq_src, rq_dest);
4317	raw_spin_unlock(&p->pi_lock);
4318	return ret;
4319}
4320
4321/*
4322 * migration_cpu_stop - this will be executed by a highprio stopper thread
4323 * and performs thread migration by bumping thread off CPU then
4324 * 'pushing' onto another runqueue.
4325 */
4326static int migration_cpu_stop(void *data)
4327{
4328	struct migration_arg *arg = data;
4329
4330	/*
4331	 * The original target cpu might have gone down and we might
4332	 * be on another cpu but it doesn't matter.
4333	 */
4334	local_irq_disable();
4335	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4336	local_irq_enable();
4337	return 0;
4338}
4339
4340#ifdef CONFIG_HOTPLUG_CPU
4341
4342/*
4343 * Ensures that the idle task is using init_mm right before its cpu goes
4344 * offline.
4345 */
4346void idle_task_exit(void)
4347{
4348	struct mm_struct *mm = current->active_mm;
4349
4350	BUG_ON(cpu_online(smp_processor_id()));
4351
4352	if (mm != &init_mm)
4353		switch_mm(mm, &init_mm, current);
4354	mmdrop(mm);
4355}
4356
4357/*
4358 * Since this CPU is going 'away' for a while, fold any nr_active delta
4359 * we might have. Assumes we're called after migrate_tasks() so that the
4360 * nr_active count is stable.
4361 *
4362 * Also see the comment "Global load-average calculations".
4363 */
4364static void calc_load_migrate(struct rq *rq)
4365{
4366	long delta = calc_load_fold_active(rq);
4367	if (delta)
4368		atomic_long_add(delta, &calc_load_tasks);
4369}
4370
4371/*
4372 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4373 * try_to_wake_up()->select_task_rq().
4374 *
4375 * Called with rq->lock held even though we'er in stop_machine() and
4376 * there's no concurrency possible, we hold the required locks anyway
4377 * because of lock validation efforts.
4378 */
4379static void migrate_tasks(unsigned int dead_cpu)
4380{
4381	struct rq *rq = cpu_rq(dead_cpu);
4382	struct task_struct *next, *stop = rq->stop;
4383	int dest_cpu;
4384
4385	/*
4386	 * Fudge the rq selection such that the below task selection loop
4387	 * doesn't get stuck on the currently eligible stop task.
4388	 *
4389	 * We're currently inside stop_machine() and the rq is either stuck
4390	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4391	 * either way we should never end up calling schedule() until we're
4392	 * done here.
4393	 */
4394	rq->stop = NULL;
4395
4396	/*
4397	 * put_prev_task() and pick_next_task() sched
4398	 * class method both need to have an up-to-date
4399	 * value of rq->clock[_task]
4400	 */
4401	update_rq_clock(rq);
4402
4403	for ( ; ; ) {
4404		/*
4405		 * There's this thread running, bail when that's the only
4406		 * remaining thread.
4407		 */
4408		if (rq->nr_running == 1)
4409			break;
4410
4411		next = pick_next_task(rq);
4412		BUG_ON(!next);
4413		next->sched_class->put_prev_task(rq, next);
4414
4415		/* Find suitable destination for @next, with force if needed. */
4416		dest_cpu = select_fallback_rq(dead_cpu, next);
4417		raw_spin_unlock(&rq->lock);
4418
4419		__migrate_task(next, dead_cpu, dest_cpu);
4420
4421		raw_spin_lock(&rq->lock);
4422	}
4423
4424	rq->stop = stop;
4425}
4426
4427#endif /* CONFIG_HOTPLUG_CPU */
4428
4429#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4430
4431static struct ctl_table sd_ctl_dir[] = {
4432	{
4433		.procname	= "sched_domain",
4434		.mode		= 0555,
4435	},
4436	{}
4437};
4438
4439static struct ctl_table sd_ctl_root[] = {
4440	{
4441		.procname	= "kernel",
4442		.mode		= 0555,
4443		.child		= sd_ctl_dir,
4444	},
4445	{}
4446};
4447
4448static struct ctl_table *sd_alloc_ctl_entry(int n)
4449{
4450	struct ctl_table *entry =
4451		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4452
4453	return entry;
4454}
4455
4456static void sd_free_ctl_entry(struct ctl_table **tablep)
4457{
4458	struct ctl_table *entry;
4459
4460	/*
4461	 * In the intermediate directories, both the child directory and
4462	 * procname are dynamically allocated and could fail but the mode
4463	 * will always be set. In the lowest directory the names are
4464	 * static strings and all have proc handlers.
4465	 */
4466	for (entry = *tablep; entry->mode; entry++) {
4467		if (entry->child)
4468			sd_free_ctl_entry(&entry->child);
4469		if (entry->proc_handler == NULL)
4470			kfree(entry->procname);
4471	}
4472
4473	kfree(*tablep);
4474	*tablep = NULL;
4475}
4476
4477static int min_load_idx = 0;
4478static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4479
4480static void
4481set_table_entry(struct ctl_table *entry,
4482		const char *procname, void *data, int maxlen,
4483		umode_t mode, proc_handler *proc_handler,
4484		bool load_idx)
4485{
4486	entry->procname = procname;
4487	entry->data = data;
4488	entry->maxlen = maxlen;
4489	entry->mode = mode;
4490	entry->proc_handler = proc_handler;
4491
4492	if (load_idx) {
4493		entry->extra1 = &min_load_idx;
4494		entry->extra2 = &max_load_idx;
4495	}
4496}
4497
4498static struct ctl_table *
4499sd_alloc_ctl_domain_table(struct sched_domain *sd)
4500{
4501	struct ctl_table *table = sd_alloc_ctl_entry(13);
4502
4503	if (table == NULL)
4504		return NULL;
4505
4506	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4507		sizeof(long), 0644, proc_doulongvec_minmax, false);
4508	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4509		sizeof(long), 0644, proc_doulongvec_minmax, false);
4510	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4511		sizeof(int), 0644, proc_dointvec_minmax, true);
4512	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4513		sizeof(int), 0644, proc_dointvec_minmax, true);
4514	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4515		sizeof(int), 0644, proc_dointvec_minmax, true);
4516	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4517		sizeof(int), 0644, proc_dointvec_minmax, true);
4518	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4519		sizeof(int), 0644, proc_dointvec_minmax, true);
4520	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4521		sizeof(int), 0644, proc_dointvec_minmax, false);
4522	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4523		sizeof(int), 0644, proc_dointvec_minmax, false);
4524	set_table_entry(&table[9], "cache_nice_tries",
4525		&sd->cache_nice_tries,
4526		sizeof(int), 0644, proc_dointvec_minmax, false);
4527	set_table_entry(&table[10], "flags", &sd->flags,
4528		sizeof(int), 0644, proc_dointvec_minmax, false);
4529	set_table_entry(&table[11], "name", sd->name,
4530		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4531	/* &table[12] is terminator */
4532
4533	return table;
4534}
4535
4536static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4537{
4538	struct ctl_table *entry, *table;
4539	struct sched_domain *sd;
4540	int domain_num = 0, i;
4541	char buf[32];
4542
4543	for_each_domain(cpu, sd)
4544		domain_num++;
4545	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4546	if (table == NULL)
4547		return NULL;
4548
4549	i = 0;
4550	for_each_domain(cpu, sd) {
4551		snprintf(buf, 32, "domain%d", i);
4552		entry->procname = kstrdup(buf, GFP_KERNEL);
4553		entry->mode = 0555;
4554		entry->child = sd_alloc_ctl_domain_table(sd);
4555		entry++;
4556		i++;
4557	}
4558	return table;
4559}
4560
4561static struct ctl_table_header *sd_sysctl_header;
4562static void register_sched_domain_sysctl(void)
4563{
4564	int i, cpu_num = num_possible_cpus();
4565	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4566	char buf[32];
4567
4568	WARN_ON(sd_ctl_dir[0].child);
4569	sd_ctl_dir[0].child = entry;
4570
4571	if (entry == NULL)
4572		return;
4573
4574	for_each_possible_cpu(i) {
4575		snprintf(buf, 32, "cpu%d", i);
4576		entry->procname = kstrdup(buf, GFP_KERNEL);
4577		entry->mode = 0555;
4578		entry->child = sd_alloc_ctl_cpu_table(i);
4579		entry++;
4580	}
4581
4582	WARN_ON(sd_sysctl_header);
4583	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4584}
4585
4586/* may be called multiple times per register */
4587static void unregister_sched_domain_sysctl(void)
4588{
4589	if (sd_sysctl_header)
4590		unregister_sysctl_table(sd_sysctl_header);
4591	sd_sysctl_header = NULL;
4592	if (sd_ctl_dir[0].child)
4593		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4594}
4595#else
4596static void register_sched_domain_sysctl(void)
4597{
4598}
4599static void unregister_sched_domain_sysctl(void)
4600{
4601}
4602#endif
4603
4604static void set_rq_online(struct rq *rq)
4605{
4606	if (!rq->online) {
4607		const struct sched_class *class;
4608
4609		cpumask_set_cpu(rq->cpu, rq->rd->online);
4610		rq->online = 1;
4611
4612		for_each_class(class) {
4613			if (class->rq_online)
4614				class->rq_online(rq);
4615		}
4616	}
4617}
4618
4619static void set_rq_offline(struct rq *rq)
4620{
4621	if (rq->online) {
4622		const struct sched_class *class;
4623
4624		for_each_class(class) {
4625			if (class->rq_offline)
4626				class->rq_offline(rq);
4627		}
4628
4629		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4630		rq->online = 0;
4631	}
4632}
4633
4634/*
4635 * migration_call - callback that gets triggered when a CPU is added.
4636 * Here we can start up the necessary migration thread for the new CPU.
4637 */
4638static int __cpuinit
4639migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4640{
4641	int cpu = (long)hcpu;
4642	unsigned long flags;
4643	struct rq *rq = cpu_rq(cpu);
4644
4645	switch (action & ~CPU_TASKS_FROZEN) {
4646
4647	case CPU_UP_PREPARE:
4648		rq->calc_load_update = calc_load_update;
4649		break;
4650
4651	case CPU_ONLINE:
4652		/* Update our root-domain */
4653		raw_spin_lock_irqsave(&rq->lock, flags);
4654		if (rq->rd) {
4655			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4656
4657			set_rq_online(rq);
4658		}
4659		raw_spin_unlock_irqrestore(&rq->lock, flags);
4660		break;
4661
4662#ifdef CONFIG_HOTPLUG_CPU
4663	case CPU_DYING:
4664		sched_ttwu_pending();
4665		/* Update our root-domain */
4666		raw_spin_lock_irqsave(&rq->lock, flags);
4667		if (rq->rd) {
4668			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4669			set_rq_offline(rq);
4670		}
4671		migrate_tasks(cpu);
4672		BUG_ON(rq->nr_running != 1); /* the migration thread */
4673		raw_spin_unlock_irqrestore(&rq->lock, flags);
4674		break;
4675
4676	case CPU_DEAD:
4677		calc_load_migrate(rq);
4678		break;
4679#endif
4680	}
4681
4682	update_max_interval();
4683
4684	return NOTIFY_OK;
4685}
4686
4687/*
4688 * Register at high priority so that task migration (migrate_all_tasks)
4689 * happens before everything else.  This has to be lower priority than
4690 * the notifier in the perf_event subsystem, though.
4691 */
4692static struct notifier_block __cpuinitdata migration_notifier = {
4693	.notifier_call = migration_call,
4694	.priority = CPU_PRI_MIGRATION,
4695};
4696
4697static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4698				      unsigned long action, void *hcpu)
4699{
4700	switch (action & ~CPU_TASKS_FROZEN) {
4701	case CPU_STARTING:
4702	case CPU_DOWN_FAILED:
4703		set_cpu_active((long)hcpu, true);
4704		return NOTIFY_OK;
4705	default:
4706		return NOTIFY_DONE;
4707	}
4708}
4709
4710static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4711					unsigned long action, void *hcpu)
4712{
4713	switch (action & ~CPU_TASKS_FROZEN) {
4714	case CPU_DOWN_PREPARE:
4715		set_cpu_active((long)hcpu, false);
4716		return NOTIFY_OK;
4717	default:
4718		return NOTIFY_DONE;
4719	}
4720}
4721
4722static int __init migration_init(void)
4723{
4724	void *cpu = (void *)(long)smp_processor_id();
4725	int err;
4726
4727	/* Initialize migration for the boot CPU */
4728	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4729	BUG_ON(err == NOTIFY_BAD);
4730	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4731	register_cpu_notifier(&migration_notifier);
4732
4733	/* Register cpu active notifiers */
4734	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4735	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4736
4737	return 0;
4738}
4739early_initcall(migration_init);
4740#endif
4741
4742#ifdef CONFIG_SMP
4743
4744static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4745
4746#ifdef CONFIG_SCHED_DEBUG
4747
4748static __read_mostly int sched_debug_enabled;
4749
4750static int __init sched_debug_setup(char *str)
4751{
4752	sched_debug_enabled = 1;
4753
4754	return 0;
4755}
4756early_param("sched_debug", sched_debug_setup);
4757
4758static inline bool sched_debug(void)
4759{
4760	return sched_debug_enabled;
4761}
4762
4763static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4764				  struct cpumask *groupmask)
4765{
4766	struct sched_group *group = sd->groups;
4767	char str[256];
4768
4769	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4770	cpumask_clear(groupmask);
4771
4772	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4773
4774	if (!(sd->flags & SD_LOAD_BALANCE)) {
4775		printk("does not load-balance\n");
4776		if (sd->parent)
4777			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4778					" has parent");
4779		return -1;
4780	}
4781
4782	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4783
4784	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4785		printk(KERN_ERR "ERROR: domain->span does not contain "
4786				"CPU%d\n", cpu);
4787	}
4788	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4789		printk(KERN_ERR "ERROR: domain->groups does not contain"
4790				" CPU%d\n", cpu);
4791	}
4792
4793	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4794	do {
4795		if (!group) {
4796			printk("\n");
4797			printk(KERN_ERR "ERROR: group is NULL\n");
4798			break;
4799		}
4800
4801		/*
4802		 * Even though we initialize ->power to something semi-sane,
4803		 * we leave power_orig unset. This allows us to detect if
4804		 * domain iteration is still funny without causing /0 traps.
4805		 */
4806		if (!group->sgp->power_orig) {
4807			printk(KERN_CONT "\n");
4808			printk(KERN_ERR "ERROR: domain->cpu_power not "
4809					"set\n");
4810			break;
4811		}
4812
4813		if (!cpumask_weight(sched_group_cpus(group))) {
4814			printk(KERN_CONT "\n");
4815			printk(KERN_ERR "ERROR: empty group\n");
4816			break;
4817		}
4818
4819		if (!(sd->flags & SD_OVERLAP) &&
4820		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4821			printk(KERN_CONT "\n");
4822			printk(KERN_ERR "ERROR: repeated CPUs\n");
4823			break;
4824		}
4825
4826		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4827
4828		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4829
4830		printk(KERN_CONT " %s", str);
4831		if (group->sgp->power != SCHED_POWER_SCALE) {
4832			printk(KERN_CONT " (cpu_power = %d)",
4833				group->sgp->power);
4834		}
4835
4836		group = group->next;
4837	} while (group != sd->groups);
4838	printk(KERN_CONT "\n");
4839
4840	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4841		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4842
4843	if (sd->parent &&
4844	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4845		printk(KERN_ERR "ERROR: parent span is not a superset "
4846			"of domain->span\n");
4847	return 0;
4848}
4849
4850static void sched_domain_debug(struct sched_domain *sd, int cpu)
4851{
4852	int level = 0;
4853
4854	if (!sched_debug_enabled)
4855		return;
4856
4857	if (!sd) {
4858		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4859		return;
4860	}
4861
4862	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4863
4864	for (;;) {
4865		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4866			break;
4867		level++;
4868		sd = sd->parent;
4869		if (!sd)
4870			break;
4871	}
4872}
4873#else /* !CONFIG_SCHED_DEBUG */
4874# define sched_domain_debug(sd, cpu) do { } while (0)
4875static inline bool sched_debug(void)
4876{
4877	return false;
4878}
4879#endif /* CONFIG_SCHED_DEBUG */
4880
4881static int sd_degenerate(struct sched_domain *sd)
4882{
4883	if (cpumask_weight(sched_domain_span(sd)) == 1)
4884		return 1;
4885
4886	/* Following flags need at least 2 groups */
4887	if (sd->flags & (SD_LOAD_BALANCE |
4888			 SD_BALANCE_NEWIDLE |
4889			 SD_BALANCE_FORK |
4890			 SD_BALANCE_EXEC |
4891			 SD_SHARE_CPUPOWER |
4892			 SD_SHARE_PKG_RESOURCES)) {
4893		if (sd->groups != sd->groups->next)
4894			return 0;
4895	}
4896
4897	/* Following flags don't use groups */
4898	if (sd->flags & (SD_WAKE_AFFINE))
4899		return 0;
4900
4901	return 1;
4902}
4903
4904static int
4905sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4906{
4907	unsigned long cflags = sd->flags, pflags = parent->flags;
4908
4909	if (sd_degenerate(parent))
4910		return 1;
4911
4912	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4913		return 0;
4914
4915	/* Flags needing groups don't count if only 1 group in parent */
4916	if (parent->groups == parent->groups->next) {
4917		pflags &= ~(SD_LOAD_BALANCE |
4918				SD_BALANCE_NEWIDLE |
4919				SD_BALANCE_FORK |
4920				SD_BALANCE_EXEC |
4921				SD_SHARE_CPUPOWER |
4922				SD_SHARE_PKG_RESOURCES);
4923		if (nr_node_ids == 1)
4924			pflags &= ~SD_SERIALIZE;
4925	}
4926	if (~cflags & pflags)
4927		return 0;
4928
4929	return 1;
4930}
4931
4932static void free_rootdomain(struct rcu_head *rcu)
4933{
4934	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4935
4936	cpupri_cleanup(&rd->cpupri);
4937	free_cpumask_var(rd->rto_mask);
4938	free_cpumask_var(rd->online);
4939	free_cpumask_var(rd->span);
4940	kfree(rd);
4941}
4942
4943static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4944{
4945	struct root_domain *old_rd = NULL;
4946	unsigned long flags;
4947
4948	raw_spin_lock_irqsave(&rq->lock, flags);
4949
4950	if (rq->rd) {
4951		old_rd = rq->rd;
4952
4953		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4954			set_rq_offline(rq);
4955
4956		cpumask_clear_cpu(rq->cpu, old_rd->span);
4957
4958		/*
4959		 * If we dont want to free the old_rt yet then
4960		 * set old_rd to NULL to skip the freeing later
4961		 * in this function:
4962		 */
4963		if (!atomic_dec_and_test(&old_rd->refcount))
4964			old_rd = NULL;
4965	}
4966
4967	atomic_inc(&rd->refcount);
4968	rq->rd = rd;
4969
4970	cpumask_set_cpu(rq->cpu, rd->span);
4971	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4972		set_rq_online(rq);
4973
4974	raw_spin_unlock_irqrestore(&rq->lock, flags);
4975
4976	if (old_rd)
4977		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4978}
4979
4980static int init_rootdomain(struct root_domain *rd)
4981{
4982	memset(rd, 0, sizeof(*rd));
4983
4984	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4985		goto out;
4986	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4987		goto free_span;
4988	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4989		goto free_online;
4990
4991	if (cpupri_init(&rd->cpupri) != 0)
4992		goto free_rto_mask;
4993	return 0;
4994
4995free_rto_mask:
4996	free_cpumask_var(rd->rto_mask);
4997free_online:
4998	free_cpumask_var(rd->online);
4999free_span:
5000	free_cpumask_var(rd->span);
5001out:
5002	return -ENOMEM;
5003}
5004
5005/*
5006 * By default the system creates a single root-domain with all cpus as
5007 * members (mimicking the global state we have today).
5008 */
5009struct root_domain def_root_domain;
5010
5011static void init_defrootdomain(void)
5012{
5013	init_rootdomain(&def_root_domain);
5014
5015	atomic_set(&def_root_domain.refcount, 1);
5016}
5017
5018static struct root_domain *alloc_rootdomain(void)
5019{
5020	struct root_domain *rd;
5021
5022	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5023	if (!rd)
5024		return NULL;
5025
5026	if (init_rootdomain(rd) != 0) {
5027		kfree(rd);
5028		return NULL;
5029	}
5030
5031	return rd;
5032}
5033
5034static void free_sched_groups(struct sched_group *sg, int free_sgp)
5035{
5036	struct sched_group *tmp, *first;
5037
5038	if (!sg)
5039		return;
5040
5041	first = sg;
5042	do {
5043		tmp = sg->next;
5044
5045		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5046			kfree(sg->sgp);
5047
5048		kfree(sg);
5049		sg = tmp;
5050	} while (sg != first);
5051}
5052
5053static void free_sched_domain(struct rcu_head *rcu)
5054{
5055	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5056
5057	/*
5058	 * If its an overlapping domain it has private groups, iterate and
5059	 * nuke them all.
5060	 */
5061	if (sd->flags & SD_OVERLAP) {
5062		free_sched_groups(sd->groups, 1);
5063	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5064		kfree(sd->groups->sgp);
5065		kfree(sd->groups);
5066	}
5067	kfree(sd);
5068}
5069
5070static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5071{
5072	call_rcu(&sd->rcu, free_sched_domain);
5073}
5074
5075static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5076{
5077	for (; sd; sd = sd->parent)
5078		destroy_sched_domain(sd, cpu);
5079}
5080
5081/*
5082 * Keep a special pointer to the highest sched_domain that has
5083 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5084 * allows us to avoid some pointer chasing select_idle_sibling().
5085 *
5086 * Also keep a unique ID per domain (we use the first cpu number in
5087 * the cpumask of the domain), this allows us to quickly tell if
5088 * two cpus are in the same cache domain, see cpus_share_cache().
5089 */
5090DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5091DEFINE_PER_CPU(int, sd_llc_id);
5092
5093static void update_top_cache_domain(int cpu)
5094{
5095	struct sched_domain *sd;
5096	int id = cpu;
5097
5098	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5099	if (sd)
5100		id = cpumask_first(sched_domain_span(sd));
5101
5102	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5103	per_cpu(sd_llc_id, cpu) = id;
5104}
5105
5106/*
5107 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5108 * hold the hotplug lock.
5109 */
5110static void
5111cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5112{
5113	struct rq *rq = cpu_rq(cpu);
5114	struct sched_domain *tmp;
5115
5116	/* Remove the sched domains which do not contribute to scheduling. */
5117	for (tmp = sd; tmp; ) {
5118		struct sched_domain *parent = tmp->parent;
5119		if (!parent)
5120			break;
5121
5122		if (sd_parent_degenerate(tmp, parent)) {
5123			tmp->parent = parent->parent;
5124			if (parent->parent)
5125				parent->parent->child = tmp;
5126			destroy_sched_domain(parent, cpu);
5127		} else
5128			tmp = tmp->parent;
5129	}
5130
5131	if (sd && sd_degenerate(sd)) {
5132		tmp = sd;
5133		sd = sd->parent;
5134		destroy_sched_domain(tmp, cpu);
5135		if (sd)
5136			sd->child = NULL;
5137	}
5138
5139	sched_domain_debug(sd, cpu);
5140
5141	rq_attach_root(rq, rd);
5142	tmp = rq->sd;
5143	rcu_assign_pointer(rq->sd, sd);
5144	destroy_sched_domains(tmp, cpu);
5145
5146	update_top_cache_domain(cpu);
5147}
5148
5149/* cpus with isolated domains */
5150static cpumask_var_t cpu_isolated_map;
5151
5152/* Setup the mask of cpus configured for isolated domains */
5153static int __init isolated_cpu_setup(char *str)
5154{
5155	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5156	cpulist_parse(str, cpu_isolated_map);
5157	return 1;
5158}
5159
5160__setup("isolcpus=", isolated_cpu_setup);
5161
5162static const struct cpumask *cpu_cpu_mask(int cpu)
5163{
5164	return cpumask_of_node(cpu_to_node(cpu));
5165}
5166
5167struct sd_data {
5168	struct sched_domain **__percpu sd;
5169	struct sched_group **__percpu sg;
5170	struct sched_group_power **__percpu sgp;
5171};
5172
5173struct s_data {
5174	struct sched_domain ** __percpu sd;
5175	struct root_domain	*rd;
5176};
5177
5178enum s_alloc {
5179	sa_rootdomain,
5180	sa_sd,
5181	sa_sd_storage,
5182	sa_none,
5183};
5184
5185struct sched_domain_topology_level;
5186
5187typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5188typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5189
5190#define SDTL_OVERLAP	0x01
5191
5192struct sched_domain_topology_level {
5193	sched_domain_init_f init;
5194	sched_domain_mask_f mask;
5195	int		    flags;
5196	int		    numa_level;
5197	struct sd_data      data;
5198};
5199
5200/*
5201 * Build an iteration mask that can exclude certain CPUs from the upwards
5202 * domain traversal.
5203 *
5204 * Asymmetric node setups can result in situations where the domain tree is of
5205 * unequal depth, make sure to skip domains that already cover the entire
5206 * range.
5207 *
5208 * In that case build_sched_domains() will have terminated the iteration early
5209 * and our sibling sd spans will be empty. Domains should always include the
5210 * cpu they're built on, so check that.
5211 *
5212 */
5213static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5214{
5215	const struct cpumask *span = sched_domain_span(sd);
5216	struct sd_data *sdd = sd->private;
5217	struct sched_domain *sibling;
5218	int i;
5219
5220	for_each_cpu(i, span) {
5221		sibling = *per_cpu_ptr(sdd->sd, i);
5222		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5223			continue;
5224
5225		cpumask_set_cpu(i, sched_group_mask(sg));
5226	}
5227}
5228
5229/*
5230 * Return the canonical balance cpu for this group, this is the first cpu
5231 * of this group that's also in the iteration mask.
5232 */
5233int group_balance_cpu(struct sched_group *sg)
5234{
5235	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5236}
5237
5238static int
5239build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5240{
5241	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5242	const struct cpumask *span = sched_domain_span(sd);
5243	struct cpumask *covered = sched_domains_tmpmask;
5244	struct sd_data *sdd = sd->private;
5245	struct sched_domain *child;
5246	int i;
5247
5248	cpumask_clear(covered);
5249
5250	for_each_cpu(i, span) {
5251		struct cpumask *sg_span;
5252
5253		if (cpumask_test_cpu(i, covered))
5254			continue;
5255
5256		child = *per_cpu_ptr(sdd->sd, i);
5257
5258		/* See the comment near build_group_mask(). */
5259		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5260			continue;
5261
5262		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5263				GFP_KERNEL, cpu_to_node(cpu));
5264
5265		if (!sg)
5266			goto fail;
5267
5268		sg_span = sched_group_cpus(sg);
5269		if (child->child) {
5270			child = child->child;
5271			cpumask_copy(sg_span, sched_domain_span(child));
5272		} else
5273			cpumask_set_cpu(i, sg_span);
5274
5275		cpumask_or(covered, covered, sg_span);
5276
5277		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5278		if (atomic_inc_return(&sg->sgp->ref) == 1)
5279			build_group_mask(sd, sg);
5280
5281		/*
5282		 * Initialize sgp->power such that even if we mess up the
5283		 * domains and no possible iteration will get us here, we won't
5284		 * die on a /0 trap.
5285		 */
5286		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5287
5288		/*
5289		 * Make sure the first group of this domain contains the
5290		 * canonical balance cpu. Otherwise the sched_domain iteration
5291		 * breaks. See update_sg_lb_stats().
5292		 */
5293		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5294		    group_balance_cpu(sg) == cpu)
5295			groups = sg;
5296
5297		if (!first)
5298			first = sg;
5299		if (last)
5300			last->next = sg;
5301		last = sg;
5302		last->next = first;
5303	}
5304	sd->groups = groups;
5305
5306	return 0;
5307
5308fail:
5309	free_sched_groups(first, 0);
5310
5311	return -ENOMEM;
5312}
5313
5314static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5315{
5316	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5317	struct sched_domain *child = sd->child;
5318
5319	if (child)
5320		cpu = cpumask_first(sched_domain_span(child));
5321
5322	if (sg) {
5323		*sg = *per_cpu_ptr(sdd->sg, cpu);
5324		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5325		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5326	}
5327
5328	return cpu;
5329}
5330
5331/*
5332 * build_sched_groups will build a circular linked list of the groups
5333 * covered by the given span, and will set each group's ->cpumask correctly,
5334 * and ->cpu_power to 0.
5335 *
5336 * Assumes the sched_domain tree is fully constructed
5337 */
5338static int
5339build_sched_groups(struct sched_domain *sd, int cpu)
5340{
5341	struct sched_group *first = NULL, *last = NULL;
5342	struct sd_data *sdd = sd->private;
5343	const struct cpumask *span = sched_domain_span(sd);
5344	struct cpumask *covered;
5345	int i;
5346
5347	get_group(cpu, sdd, &sd->groups);
5348	atomic_inc(&sd->groups->ref);
5349
5350	if (cpu != cpumask_first(sched_domain_span(sd)))
5351		return 0;
5352
5353	lockdep_assert_held(&sched_domains_mutex);
5354	covered = sched_domains_tmpmask;
5355
5356	cpumask_clear(covered);
5357
5358	for_each_cpu(i, span) {
5359		struct sched_group *sg;
5360		int group = get_group(i, sdd, &sg);
5361		int j;
5362
5363		if (cpumask_test_cpu(i, covered))
5364			continue;
5365
5366		cpumask_clear(sched_group_cpus(sg));
5367		sg->sgp->power = 0;
5368		cpumask_setall(sched_group_mask(sg));
5369
5370		for_each_cpu(j, span) {
5371			if (get_group(j, sdd, NULL) != group)
5372				continue;
5373
5374			cpumask_set_cpu(j, covered);
5375			cpumask_set_cpu(j, sched_group_cpus(sg));
5376		}
5377
5378		if (!first)
5379			first = sg;
5380		if (last)
5381			last->next = sg;
5382		last = sg;
5383	}
5384	last->next = first;
5385
5386	return 0;
5387}
5388
5389/*
5390 * Initialize sched groups cpu_power.
5391 *
5392 * cpu_power indicates the capacity of sched group, which is used while
5393 * distributing the load between different sched groups in a sched domain.
5394 * Typically cpu_power for all the groups in a sched domain will be same unless
5395 * there are asymmetries in the topology. If there are asymmetries, group
5396 * having more cpu_power will pickup more load compared to the group having
5397 * less cpu_power.
5398 */
5399static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5400{
5401	struct sched_group *sg = sd->groups;
5402
5403	WARN_ON(!sd || !sg);
5404
5405	do {
5406		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5407		sg = sg->next;
5408	} while (sg != sd->groups);
5409
5410	if (cpu != group_balance_cpu(sg))
5411		return;
5412
5413	update_group_power(sd, cpu);
5414	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5415}
5416
5417int __weak arch_sd_sibling_asym_packing(void)
5418{
5419       return 0*SD_ASYM_PACKING;
5420}
5421
5422/*
5423 * Initializers for schedule domains
5424 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5425 */
5426
5427#ifdef CONFIG_SCHED_DEBUG
5428# define SD_INIT_NAME(sd, type)		sd->name = #type
5429#else
5430# define SD_INIT_NAME(sd, type)		do { } while (0)
5431#endif
5432
5433#define SD_INIT_FUNC(type)						\
5434static noinline struct sched_domain *					\
5435sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5436{									\
5437	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5438	*sd = SD_##type##_INIT;						\
5439	SD_INIT_NAME(sd, type);						\
5440	sd->private = &tl->data;					\
5441	return sd;							\
5442}
5443
5444SD_INIT_FUNC(CPU)
5445#ifdef CONFIG_SCHED_SMT
5446 SD_INIT_FUNC(SIBLING)
5447#endif
5448#ifdef CONFIG_SCHED_MC
5449 SD_INIT_FUNC(MC)
5450#endif
5451#ifdef CONFIG_SCHED_BOOK
5452 SD_INIT_FUNC(BOOK)
5453#endif
5454
5455static int default_relax_domain_level = -1;
5456int sched_domain_level_max;
5457
5458static int __init setup_relax_domain_level(char *str)
5459{
5460	if (kstrtoint(str, 0, &default_relax_domain_level))
5461		pr_warn("Unable to set relax_domain_level\n");
5462
5463	return 1;
5464}
5465__setup("relax_domain_level=", setup_relax_domain_level);
5466
5467static void set_domain_attribute(struct sched_domain *sd,
5468				 struct sched_domain_attr *attr)
5469{
5470	int request;
5471
5472	if (!attr || attr->relax_domain_level < 0) {
5473		if (default_relax_domain_level < 0)
5474			return;
5475		else
5476			request = default_relax_domain_level;
5477	} else
5478		request = attr->relax_domain_level;
5479	if (request < sd->level) {
5480		/* turn off idle balance on this domain */
5481		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5482	} else {
5483		/* turn on idle balance on this domain */
5484		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5485	}
5486}
5487
5488static void __sdt_free(const struct cpumask *cpu_map);
5489static int __sdt_alloc(const struct cpumask *cpu_map);
5490
5491static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5492				 const struct cpumask *cpu_map)
5493{
5494	switch (what) {
5495	case sa_rootdomain:
5496		if (!atomic_read(&d->rd->refcount))
5497			free_rootdomain(&d->rd->rcu); /* fall through */
5498	case sa_sd:
5499		free_percpu(d->sd); /* fall through */
5500	case sa_sd_storage:
5501		__sdt_free(cpu_map); /* fall through */
5502	case sa_none:
5503		break;
5504	}
5505}
5506
5507static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5508						   const struct cpumask *cpu_map)
5509{
5510	memset(d, 0, sizeof(*d));
5511
5512	if (__sdt_alloc(cpu_map))
5513		return sa_sd_storage;
5514	d->sd = alloc_percpu(struct sched_domain *);
5515	if (!d->sd)
5516		return sa_sd_storage;
5517	d->rd = alloc_rootdomain();
5518	if (!d->rd)
5519		return sa_sd;
5520	return sa_rootdomain;
5521}
5522
5523/*
5524 * NULL the sd_data elements we've used to build the sched_domain and
5525 * sched_group structure so that the subsequent __free_domain_allocs()
5526 * will not free the data we're using.
5527 */
5528static void claim_allocations(int cpu, struct sched_domain *sd)
5529{
5530	struct sd_data *sdd = sd->private;
5531
5532	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5533	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5534
5535	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5536		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5537
5538	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5539		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5540}
5541
5542#ifdef CONFIG_SCHED_SMT
5543static const struct cpumask *cpu_smt_mask(int cpu)
5544{
5545	return topology_thread_cpumask(cpu);
5546}
5547#endif
5548
5549/*
5550 * Topology list, bottom-up.
5551 */
5552static struct sched_domain_topology_level default_topology[] = {
5553#ifdef CONFIG_SCHED_SMT
5554	{ sd_init_SIBLING, cpu_smt_mask, },
5555#endif
5556#ifdef CONFIG_SCHED_MC
5557	{ sd_init_MC, cpu_coregroup_mask, },
5558#endif
5559#ifdef CONFIG_SCHED_BOOK
5560	{ sd_init_BOOK, cpu_book_mask, },
5561#endif
5562	{ sd_init_CPU, cpu_cpu_mask, },
5563	{ NULL, },
5564};
5565
5566static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5567
5568#ifdef CONFIG_NUMA
5569
5570static int sched_domains_numa_levels;
5571static int *sched_domains_numa_distance;
5572static struct cpumask ***sched_domains_numa_masks;
5573static int sched_domains_curr_level;
5574
5575static inline int sd_local_flags(int level)
5576{
5577	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5578		return 0;
5579
5580	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5581}
5582
5583static struct sched_domain *
5584sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5585{
5586	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5587	int level = tl->numa_level;
5588	int sd_weight = cpumask_weight(
5589			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5590
5591	*sd = (struct sched_domain){
5592		.min_interval		= sd_weight,
5593		.max_interval		= 2*sd_weight,
5594		.busy_factor		= 32,
5595		.imbalance_pct		= 125,
5596		.cache_nice_tries	= 2,
5597		.busy_idx		= 3,
5598		.idle_idx		= 2,
5599		.newidle_idx		= 0,
5600		.wake_idx		= 0,
5601		.forkexec_idx		= 0,
5602
5603		.flags			= 1*SD_LOAD_BALANCE
5604					| 1*SD_BALANCE_NEWIDLE
5605					| 0*SD_BALANCE_EXEC
5606					| 0*SD_BALANCE_FORK
5607					| 0*SD_BALANCE_WAKE
5608					| 0*SD_WAKE_AFFINE
5609					| 0*SD_SHARE_CPUPOWER
5610					| 0*SD_SHARE_PKG_RESOURCES
5611					| 1*SD_SERIALIZE
5612					| 0*SD_PREFER_SIBLING
5613					| sd_local_flags(level)
5614					,
5615		.last_balance		= jiffies,
5616		.balance_interval	= sd_weight,
5617	};
5618	SD_INIT_NAME(sd, NUMA);
5619	sd->private = &tl->data;
5620
5621	/*
5622	 * Ugly hack to pass state to sd_numa_mask()...
5623	 */
5624	sched_domains_curr_level = tl->numa_level;
5625
5626	return sd;
5627}
5628
5629static const struct cpumask *sd_numa_mask(int cpu)
5630{
5631	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5632}
5633
5634static void sched_numa_warn(const char *str)
5635{
5636	static int done = false;
5637	int i,j;
5638
5639	if (done)
5640		return;
5641
5642	done = true;
5643
5644	printk(KERN_WARNING "ERROR: %s\n\n", str);
5645
5646	for (i = 0; i < nr_node_ids; i++) {
5647		printk(KERN_WARNING "  ");
5648		for (j = 0; j < nr_node_ids; j++)
5649			printk(KERN_CONT "%02d ", node_distance(i,j));
5650		printk(KERN_CONT "\n");
5651	}
5652	printk(KERN_WARNING "\n");
5653}
5654
5655static bool find_numa_distance(int distance)
5656{
5657	int i;
5658
5659	if (distance == node_distance(0, 0))
5660		return true;
5661
5662	for (i = 0; i < sched_domains_numa_levels; i++) {
5663		if (sched_domains_numa_distance[i] == distance)
5664			return true;
5665	}
5666
5667	return false;
5668}
5669
5670static void sched_init_numa(void)
5671{
5672	int next_distance, curr_distance = node_distance(0, 0);
5673	struct sched_domain_topology_level *tl;
5674	int level = 0;
5675	int i, j, k;
5676
5677	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5678	if (!sched_domains_numa_distance)
5679		return;
5680
5681	/*
5682	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5683	 * unique distances in the node_distance() table.
5684	 *
5685	 * Assumes node_distance(0,j) includes all distances in
5686	 * node_distance(i,j) in order to avoid cubic time.
5687	 */
5688	next_distance = curr_distance;
5689	for (i = 0; i < nr_node_ids; i++) {
5690		for (j = 0; j < nr_node_ids; j++) {
5691			for (k = 0; k < nr_node_ids; k++) {
5692				int distance = node_distance(i, k);
5693
5694				if (distance > curr_distance &&
5695				    (distance < next_distance ||
5696				     next_distance == curr_distance))
5697					next_distance = distance;
5698
5699				/*
5700				 * While not a strong assumption it would be nice to know
5701				 * about cases where if node A is connected to B, B is not
5702				 * equally connected to A.
5703				 */
5704				if (sched_debug() && node_distance(k, i) != distance)
5705					sched_numa_warn("Node-distance not symmetric");
5706
5707				if (sched_debug() && i && !find_numa_distance(distance))
5708					sched_numa_warn("Node-0 not representative");
5709			}
5710			if (next_distance != curr_distance) {
5711				sched_domains_numa_distance[level++] = next_distance;
5712				sched_domains_numa_levels = level;
5713				curr_distance = next_distance;
5714			} else break;
5715		}
5716
5717		/*
5718		 * In case of sched_debug() we verify the above assumption.
5719		 */
5720		if (!sched_debug())
5721			break;
5722	}
5723	/*
5724	 * 'level' contains the number of unique distances, excluding the
5725	 * identity distance node_distance(i,i).
5726	 *
5727	 * The sched_domains_numa_distance[] array includes the actual distance
5728	 * numbers.
5729	 */
5730
5731	/*
5732	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5733	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5734	 * the array will contain less then 'level' members. This could be
5735	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5736	 * in other functions.
5737	 *
5738	 * We reset it to 'level' at the end of this function.
5739	 */
5740	sched_domains_numa_levels = 0;
5741
5742	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5743	if (!sched_domains_numa_masks)
5744		return;
5745
5746	/*
5747	 * Now for each level, construct a mask per node which contains all
5748	 * cpus of nodes that are that many hops away from us.
5749	 */
5750	for (i = 0; i < level; i++) {
5751		sched_domains_numa_masks[i] =
5752			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5753		if (!sched_domains_numa_masks[i])
5754			return;
5755
5756		for (j = 0; j < nr_node_ids; j++) {
5757			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5758			if (!mask)
5759				return;
5760
5761			sched_domains_numa_masks[i][j] = mask;
5762
5763			for (k = 0; k < nr_node_ids; k++) {
5764				if (node_distance(j, k) > sched_domains_numa_distance[i])
5765					continue;
5766
5767				cpumask_or(mask, mask, cpumask_of_node(k));
5768			}
5769		}
5770	}
5771
5772	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5773			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5774	if (!tl)
5775		return;
5776
5777	/*
5778	 * Copy the default topology bits..
5779	 */
5780	for (i = 0; default_topology[i].init; i++)
5781		tl[i] = default_topology[i];
5782
5783	/*
5784	 * .. and append 'j' levels of NUMA goodness.
5785	 */
5786	for (j = 0; j < level; i++, j++) {
5787		tl[i] = (struct sched_domain_topology_level){
5788			.init = sd_numa_init,
5789			.mask = sd_numa_mask,
5790			.flags = SDTL_OVERLAP,
5791			.numa_level = j,
5792		};
5793	}
5794
5795	sched_domain_topology = tl;
5796
5797	sched_domains_numa_levels = level;
5798}
5799
5800static void sched_domains_numa_masks_set(int cpu)
5801{
5802	int i, j;
5803	int node = cpu_to_node(cpu);
5804
5805	for (i = 0; i < sched_domains_numa_levels; i++) {
5806		for (j = 0; j < nr_node_ids; j++) {
5807			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5808				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5809		}
5810	}
5811}
5812
5813static void sched_domains_numa_masks_clear(int cpu)
5814{
5815	int i, j;
5816	for (i = 0; i < sched_domains_numa_levels; i++) {
5817		for (j = 0; j < nr_node_ids; j++)
5818			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5819	}
5820}
5821
5822/*
5823 * Update sched_domains_numa_masks[level][node] array when new cpus
5824 * are onlined.
5825 */
5826static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5827					   unsigned long action,
5828					   void *hcpu)
5829{
5830	int cpu = (long)hcpu;
5831
5832	switch (action & ~CPU_TASKS_FROZEN) {
5833	case CPU_ONLINE:
5834		sched_domains_numa_masks_set(cpu);
5835		break;
5836
5837	case CPU_DEAD:
5838		sched_domains_numa_masks_clear(cpu);
5839		break;
5840
5841	default:
5842		return NOTIFY_DONE;
5843	}
5844
5845	return NOTIFY_OK;
5846}
5847#else
5848static inline void sched_init_numa(void)
5849{
5850}
5851
5852static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5853					   unsigned long action,
5854					   void *hcpu)
5855{
5856	return 0;
5857}
5858#endif /* CONFIG_NUMA */
5859
5860static int __sdt_alloc(const struct cpumask *cpu_map)
5861{
5862	struct sched_domain_topology_level *tl;
5863	int j;
5864
5865	for (tl = sched_domain_topology; tl->init; tl++) {
5866		struct sd_data *sdd = &tl->data;
5867
5868		sdd->sd = alloc_percpu(struct sched_domain *);
5869		if (!sdd->sd)
5870			return -ENOMEM;
5871
5872		sdd->sg = alloc_percpu(struct sched_group *);
5873		if (!sdd->sg)
5874			return -ENOMEM;
5875
5876		sdd->sgp = alloc_percpu(struct sched_group_power *);
5877		if (!sdd->sgp)
5878			return -ENOMEM;
5879
5880		for_each_cpu(j, cpu_map) {
5881			struct sched_domain *sd;
5882			struct sched_group *sg;
5883			struct sched_group_power *sgp;
5884
5885		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5886					GFP_KERNEL, cpu_to_node(j));
5887			if (!sd)
5888				return -ENOMEM;
5889
5890			*per_cpu_ptr(sdd->sd, j) = sd;
5891
5892			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5893					GFP_KERNEL, cpu_to_node(j));
5894			if (!sg)
5895				return -ENOMEM;
5896
5897			sg->next = sg;
5898
5899			*per_cpu_ptr(sdd->sg, j) = sg;
5900
5901			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5902					GFP_KERNEL, cpu_to_node(j));
5903			if (!sgp)
5904				return -ENOMEM;
5905
5906			*per_cpu_ptr(sdd->sgp, j) = sgp;
5907		}
5908	}
5909
5910	return 0;
5911}
5912
5913static void __sdt_free(const struct cpumask *cpu_map)
5914{
5915	struct sched_domain_topology_level *tl;
5916	int j;
5917
5918	for (tl = sched_domain_topology; tl->init; tl++) {
5919		struct sd_data *sdd = &tl->data;
5920
5921		for_each_cpu(j, cpu_map) {
5922			struct sched_domain *sd;
5923
5924			if (sdd->sd) {
5925				sd = *per_cpu_ptr(sdd->sd, j);
5926				if (sd && (sd->flags & SD_OVERLAP))
5927					free_sched_groups(sd->groups, 0);
5928				kfree(*per_cpu_ptr(sdd->sd, j));
5929			}
5930
5931			if (sdd->sg)
5932				kfree(*per_cpu_ptr(sdd->sg, j));
5933			if (sdd->sgp)
5934				kfree(*per_cpu_ptr(sdd->sgp, j));
5935		}
5936		free_percpu(sdd->sd);
5937		sdd->sd = NULL;
5938		free_percpu(sdd->sg);
5939		sdd->sg = NULL;
5940		free_percpu(sdd->sgp);
5941		sdd->sgp = NULL;
5942	}
5943}
5944
5945struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5946		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5947		struct sched_domain *child, int cpu)
5948{
5949	struct sched_domain *sd = tl->init(tl, cpu);
5950	if (!sd)
5951		return child;
5952
5953	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5954	if (child) {
5955		sd->level = child->level + 1;
5956		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5957		child->parent = sd;
5958	}
5959	sd->child = child;
5960	set_domain_attribute(sd, attr);
5961
5962	return sd;
5963}
5964
5965/*
5966 * Build sched domains for a given set of cpus and attach the sched domains
5967 * to the individual cpus
5968 */
5969static int build_sched_domains(const struct cpumask *cpu_map,
5970			       struct sched_domain_attr *attr)
5971{
5972	enum s_alloc alloc_state = sa_none;
5973	struct sched_domain *sd;
5974	struct s_data d;
5975	int i, ret = -ENOMEM;
5976
5977	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5978	if (alloc_state != sa_rootdomain)
5979		goto error;
5980
5981	/* Set up domains for cpus specified by the cpu_map. */
5982	for_each_cpu(i, cpu_map) {
5983		struct sched_domain_topology_level *tl;
5984
5985		sd = NULL;
5986		for (tl = sched_domain_topology; tl->init; tl++) {
5987			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5988			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5989				sd->flags |= SD_OVERLAP;
5990			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5991				break;
5992		}
5993
5994		while (sd->child)
5995			sd = sd->child;
5996
5997		*per_cpu_ptr(d.sd, i) = sd;
5998	}
5999
6000	/* Build the groups for the domains */
6001	for_each_cpu(i, cpu_map) {
6002		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6003			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6004			if (sd->flags & SD_OVERLAP) {
6005				if (build_overlap_sched_groups(sd, i))
6006					goto error;
6007			} else {
6008				if (build_sched_groups(sd, i))
6009					goto error;
6010			}
6011		}
6012	}
6013
6014	/* Calculate CPU power for physical packages and nodes */
6015	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6016		if (!cpumask_test_cpu(i, cpu_map))
6017			continue;
6018
6019		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6020			claim_allocations(i, sd);
6021			init_sched_groups_power(i, sd);
6022		}
6023	}
6024
6025	/* Attach the domains */
6026	rcu_read_lock();
6027	for_each_cpu(i, cpu_map) {
6028		sd = *per_cpu_ptr(d.sd, i);
6029		cpu_attach_domain(sd, d.rd, i);
6030	}
6031	rcu_read_unlock();
6032
6033	ret = 0;
6034error:
6035	__free_domain_allocs(&d, alloc_state, cpu_map);
6036	return ret;
6037}
6038
6039static cpumask_var_t *doms_cur;	/* current sched domains */
6040static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6041static struct sched_domain_attr *dattr_cur;
6042				/* attribues of custom domains in 'doms_cur' */
6043
6044/*
6045 * Special case: If a kmalloc of a doms_cur partition (array of
6046 * cpumask) fails, then fallback to a single sched domain,
6047 * as determined by the single cpumask fallback_doms.
6048 */
6049static cpumask_var_t fallback_doms;
6050
6051/*
6052 * arch_update_cpu_topology lets virtualized architectures update the
6053 * cpu core maps. It is supposed to return 1 if the topology changed
6054 * or 0 if it stayed the same.
6055 */
6056int __attribute__((weak)) arch_update_cpu_topology(void)
6057{
6058	return 0;
6059}
6060
6061cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6062{
6063	int i;
6064	cpumask_var_t *doms;
6065
6066	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6067	if (!doms)
6068		return NULL;
6069	for (i = 0; i < ndoms; i++) {
6070		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6071			free_sched_domains(doms, i);
6072			return NULL;
6073		}
6074	}
6075	return doms;
6076}
6077
6078void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6079{
6080	unsigned int i;
6081	for (i = 0; i < ndoms; i++)
6082		free_cpumask_var(doms[i]);
6083	kfree(doms);
6084}
6085
6086/*
6087 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6088 * For now this just excludes isolated cpus, but could be used to
6089 * exclude other special cases in the future.
6090 */
6091static int init_sched_domains(const struct cpumask *cpu_map)
6092{
6093	int err;
6094
6095	arch_update_cpu_topology();
6096	ndoms_cur = 1;
6097	doms_cur = alloc_sched_domains(ndoms_cur);
6098	if (!doms_cur)
6099		doms_cur = &fallback_doms;
6100	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6101	err = build_sched_domains(doms_cur[0], NULL);
6102	register_sched_domain_sysctl();
6103
6104	return err;
6105}
6106
6107/*
6108 * Detach sched domains from a group of cpus specified in cpu_map
6109 * These cpus will now be attached to the NULL domain
6110 */
6111static void detach_destroy_domains(const struct cpumask *cpu_map)
6112{
6113	int i;
6114
6115	rcu_read_lock();
6116	for_each_cpu(i, cpu_map)
6117		cpu_attach_domain(NULL, &def_root_domain, i);
6118	rcu_read_unlock();
6119}
6120
6121/* handle null as "default" */
6122static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6123			struct sched_domain_attr *new, int idx_new)
6124{
6125	struct sched_domain_attr tmp;
6126
6127	/* fast path */
6128	if (!new && !cur)
6129		return 1;
6130
6131	tmp = SD_ATTR_INIT;
6132	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6133			new ? (new + idx_new) : &tmp,
6134			sizeof(struct sched_domain_attr));
6135}
6136
6137/*
6138 * Partition sched domains as specified by the 'ndoms_new'
6139 * cpumasks in the array doms_new[] of cpumasks. This compares
6140 * doms_new[] to the current sched domain partitioning, doms_cur[].
6141 * It destroys each deleted domain and builds each new domain.
6142 *
6143 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6144 * The masks don't intersect (don't overlap.) We should setup one
6145 * sched domain for each mask. CPUs not in any of the cpumasks will
6146 * not be load balanced. If the same cpumask appears both in the
6147 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6148 * it as it is.
6149 *
6150 * The passed in 'doms_new' should be allocated using
6151 * alloc_sched_domains.  This routine takes ownership of it and will
6152 * free_sched_domains it when done with it. If the caller failed the
6153 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6154 * and partition_sched_domains() will fallback to the single partition
6155 * 'fallback_doms', it also forces the domains to be rebuilt.
6156 *
6157 * If doms_new == NULL it will be replaced with cpu_online_mask.
6158 * ndoms_new == 0 is a special case for destroying existing domains,
6159 * and it will not create the default domain.
6160 *
6161 * Call with hotplug lock held
6162 */
6163void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6164			     struct sched_domain_attr *dattr_new)
6165{
6166	int i, j, n;
6167	int new_topology;
6168
6169	mutex_lock(&sched_domains_mutex);
6170
6171	/* always unregister in case we don't destroy any domains */
6172	unregister_sched_domain_sysctl();
6173
6174	/* Let architecture update cpu core mappings. */
6175	new_topology = arch_update_cpu_topology();
6176
6177	n = doms_new ? ndoms_new : 0;
6178
6179	/* Destroy deleted domains */
6180	for (i = 0; i < ndoms_cur; i++) {
6181		for (j = 0; j < n && !new_topology; j++) {
6182			if (cpumask_equal(doms_cur[i], doms_new[j])
6183			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6184				goto match1;
6185		}
6186		/* no match - a current sched domain not in new doms_new[] */
6187		detach_destroy_domains(doms_cur[i]);
6188match1:
6189		;
6190	}
6191
6192	if (doms_new == NULL) {
6193		ndoms_cur = 0;
6194		doms_new = &fallback_doms;
6195		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6196		WARN_ON_ONCE(dattr_new);
6197	}
6198
6199	/* Build new domains */
6200	for (i = 0; i < ndoms_new; i++) {
6201		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6202			if (cpumask_equal(doms_new[i], doms_cur[j])
6203			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6204				goto match2;
6205		}
6206		/* no match - add a new doms_new */
6207		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6208match2:
6209		;
6210	}
6211
6212	/* Remember the new sched domains */
6213	if (doms_cur != &fallback_doms)
6214		free_sched_domains(doms_cur, ndoms_cur);
6215	kfree(dattr_cur);	/* kfree(NULL) is safe */
6216	doms_cur = doms_new;
6217	dattr_cur = dattr_new;
6218	ndoms_cur = ndoms_new;
6219
6220	register_sched_domain_sysctl();
6221
6222	mutex_unlock(&sched_domains_mutex);
6223}
6224
6225static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6226
6227/*
6228 * Update cpusets according to cpu_active mask.  If cpusets are
6229 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6230 * around partition_sched_domains().
6231 *
6232 * If we come here as part of a suspend/resume, don't touch cpusets because we
6233 * want to restore it back to its original state upon resume anyway.
6234 */
6235static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6236			     void *hcpu)
6237{
6238	switch (action) {
6239	case CPU_ONLINE_FROZEN:
6240	case CPU_DOWN_FAILED_FROZEN:
6241
6242		/*
6243		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6244		 * resume sequence. As long as this is not the last online
6245		 * operation in the resume sequence, just build a single sched
6246		 * domain, ignoring cpusets.
6247		 */
6248		num_cpus_frozen--;
6249		if (likely(num_cpus_frozen)) {
6250			partition_sched_domains(1, NULL, NULL);
6251			break;
6252		}
6253
6254		/*
6255		 * This is the last CPU online operation. So fall through and
6256		 * restore the original sched domains by considering the
6257		 * cpuset configurations.
6258		 */
6259
6260	case CPU_ONLINE:
6261	case CPU_DOWN_FAILED:
6262		cpuset_update_active_cpus(true);
6263		break;
6264	default:
6265		return NOTIFY_DONE;
6266	}
6267	return NOTIFY_OK;
6268}
6269
6270static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6271			       void *hcpu)
6272{
6273	switch (action) {
6274	case CPU_DOWN_PREPARE:
6275		cpuset_update_active_cpus(false);
6276		break;
6277	case CPU_DOWN_PREPARE_FROZEN:
6278		num_cpus_frozen++;
6279		partition_sched_domains(1, NULL, NULL);
6280		break;
6281	default:
6282		return NOTIFY_DONE;
6283	}
6284	return NOTIFY_OK;
6285}
6286
6287void __init sched_init_smp(void)
6288{
6289	cpumask_var_t non_isolated_cpus;
6290
6291	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6292	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6293
6294	sched_init_numa();
6295
6296	get_online_cpus();
6297	mutex_lock(&sched_domains_mutex);
6298	init_sched_domains(cpu_active_mask);
6299	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6300	if (cpumask_empty(non_isolated_cpus))
6301		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6302	mutex_unlock(&sched_domains_mutex);
6303	put_online_cpus();
6304
6305	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6306	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6307	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6308
6309	init_hrtick();
6310
6311	/* Move init over to a non-isolated CPU */
6312	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6313		BUG();
6314	sched_init_granularity();
6315	free_cpumask_var(non_isolated_cpus);
6316
6317	init_sched_rt_class();
6318}
6319#else
6320void __init sched_init_smp(void)
6321{
6322	sched_init_granularity();
6323}
6324#endif /* CONFIG_SMP */
6325
6326const_debug unsigned int sysctl_timer_migration = 1;
6327
6328int in_sched_functions(unsigned long addr)
6329{
6330	return in_lock_functions(addr) ||
6331		(addr >= (unsigned long)__sched_text_start
6332		&& addr < (unsigned long)__sched_text_end);
6333}
6334
6335#ifdef CONFIG_CGROUP_SCHED
6336/*
6337 * Default task group.
6338 * Every task in system belongs to this group at bootup.
6339 */
6340struct task_group root_task_group;
6341LIST_HEAD(task_groups);
6342#endif
6343
6344DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6345
6346void __init sched_init(void)
6347{
6348	int i, j;
6349	unsigned long alloc_size = 0, ptr;
6350
6351#ifdef CONFIG_FAIR_GROUP_SCHED
6352	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6353#endif
6354#ifdef CONFIG_RT_GROUP_SCHED
6355	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6356#endif
6357#ifdef CONFIG_CPUMASK_OFFSTACK
6358	alloc_size += num_possible_cpus() * cpumask_size();
6359#endif
6360	if (alloc_size) {
6361		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6362
6363#ifdef CONFIG_FAIR_GROUP_SCHED
6364		root_task_group.se = (struct sched_entity **)ptr;
6365		ptr += nr_cpu_ids * sizeof(void **);
6366
6367		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6368		ptr += nr_cpu_ids * sizeof(void **);
6369
6370#endif /* CONFIG_FAIR_GROUP_SCHED */
6371#ifdef CONFIG_RT_GROUP_SCHED
6372		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6373		ptr += nr_cpu_ids * sizeof(void **);
6374
6375		root_task_group.rt_rq = (struct rt_rq **)ptr;
6376		ptr += nr_cpu_ids * sizeof(void **);
6377
6378#endif /* CONFIG_RT_GROUP_SCHED */
6379#ifdef CONFIG_CPUMASK_OFFSTACK
6380		for_each_possible_cpu(i) {
6381			per_cpu(load_balance_mask, i) = (void *)ptr;
6382			ptr += cpumask_size();
6383		}
6384#endif /* CONFIG_CPUMASK_OFFSTACK */
6385	}
6386
6387#ifdef CONFIG_SMP
6388	init_defrootdomain();
6389#endif
6390
6391	init_rt_bandwidth(&def_rt_bandwidth,
6392			global_rt_period(), global_rt_runtime());
6393
6394#ifdef CONFIG_RT_GROUP_SCHED
6395	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6396			global_rt_period(), global_rt_runtime());
6397#endif /* CONFIG_RT_GROUP_SCHED */
6398
6399#ifdef CONFIG_CGROUP_SCHED
6400	list_add(&root_task_group.list, &task_groups);
6401	INIT_LIST_HEAD(&root_task_group.children);
6402	INIT_LIST_HEAD(&root_task_group.siblings);
6403	autogroup_init(&init_task);
6404
6405#endif /* CONFIG_CGROUP_SCHED */
6406
6407	for_each_possible_cpu(i) {
6408		struct rq *rq;
6409
6410		rq = cpu_rq(i);
6411		raw_spin_lock_init(&rq->lock);
6412		rq->nr_running = 0;
6413		rq->calc_load_active = 0;
6414		rq->calc_load_update = jiffies + LOAD_FREQ;
6415		init_cfs_rq(&rq->cfs);
6416		init_rt_rq(&rq->rt, rq);
6417#ifdef CONFIG_FAIR_GROUP_SCHED
6418		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6419		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6420		/*
6421		 * How much cpu bandwidth does root_task_group get?
6422		 *
6423		 * In case of task-groups formed thr' the cgroup filesystem, it
6424		 * gets 100% of the cpu resources in the system. This overall
6425		 * system cpu resource is divided among the tasks of
6426		 * root_task_group and its child task-groups in a fair manner,
6427		 * based on each entity's (task or task-group's) weight
6428		 * (se->load.weight).
6429		 *
6430		 * In other words, if root_task_group has 10 tasks of weight
6431		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6432		 * then A0's share of the cpu resource is:
6433		 *
6434		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6435		 *
6436		 * We achieve this by letting root_task_group's tasks sit
6437		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6438		 */
6439		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6440		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6441#endif /* CONFIG_FAIR_GROUP_SCHED */
6442
6443		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6444#ifdef CONFIG_RT_GROUP_SCHED
6445		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6446		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6447#endif
6448
6449		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6450			rq->cpu_load[j] = 0;
6451
6452		rq->last_load_update_tick = jiffies;
6453
6454#ifdef CONFIG_SMP
6455		rq->sd = NULL;
6456		rq->rd = NULL;
6457		rq->cpu_power = SCHED_POWER_SCALE;
6458		rq->post_schedule = 0;
6459		rq->active_balance = 0;
6460		rq->next_balance = jiffies;
6461		rq->push_cpu = 0;
6462		rq->cpu = i;
6463		rq->online = 0;
6464		rq->idle_stamp = 0;
6465		rq->avg_idle = 2*sysctl_sched_migration_cost;
6466
6467		INIT_LIST_HEAD(&rq->cfs_tasks);
6468
6469		rq_attach_root(rq, &def_root_domain);
6470#ifdef CONFIG_NO_HZ_COMMON
6471		rq->nohz_flags = 0;
6472#endif
6473#ifdef CONFIG_NO_HZ_FULL
6474		rq->last_sched_tick = 0;
6475#endif
6476#endif
6477		init_rq_hrtick(rq);
6478		atomic_set(&rq->nr_iowait, 0);
6479	}
6480
6481	set_load_weight(&init_task);
6482
6483#ifdef CONFIG_PREEMPT_NOTIFIERS
6484	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6485#endif
6486
6487#ifdef CONFIG_RT_MUTEXES
6488	plist_head_init(&init_task.pi_waiters);
6489#endif
6490
6491	/*
6492	 * The boot idle thread does lazy MMU switching as well:
6493	 */
6494	atomic_inc(&init_mm.mm_count);
6495	enter_lazy_tlb(&init_mm, current);
6496
6497	/*
6498	 * Make us the idle thread. Technically, schedule() should not be
6499	 * called from this thread, however somewhere below it might be,
6500	 * but because we are the idle thread, we just pick up running again
6501	 * when this runqueue becomes "idle".
6502	 */
6503	init_idle(current, smp_processor_id());
6504
6505	calc_load_update = jiffies + LOAD_FREQ;
6506
6507	/*
6508	 * During early bootup we pretend to be a normal task:
6509	 */
6510	current->sched_class = &fair_sched_class;
6511
6512#ifdef CONFIG_SMP
6513	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6514	/* May be allocated at isolcpus cmdline parse time */
6515	if (cpu_isolated_map == NULL)
6516		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6517	idle_thread_set_boot_cpu();
6518#endif
6519	init_sched_fair_class();
6520
6521	scheduler_running = 1;
6522}
6523
6524#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6525static inline int preempt_count_equals(int preempt_offset)
6526{
6527	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6528
6529	return (nested == preempt_offset);
6530}
6531
6532void __might_sleep(const char *file, int line, int preempt_offset)
6533{
6534	static unsigned long prev_jiffy;	/* ratelimiting */
6535
6536	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6537	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6538	    system_state != SYSTEM_RUNNING || oops_in_progress)
6539		return;
6540	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6541		return;
6542	prev_jiffy = jiffies;
6543
6544	printk(KERN_ERR
6545		"BUG: sleeping function called from invalid context at %s:%d\n",
6546			file, line);
6547	printk(KERN_ERR
6548		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6549			in_atomic(), irqs_disabled(),
6550			current->pid, current->comm);
6551
6552	debug_show_held_locks(current);
6553	if (irqs_disabled())
6554		print_irqtrace_events(current);
6555	dump_stack();
6556}
6557EXPORT_SYMBOL(__might_sleep);
6558#endif
6559
6560#ifdef CONFIG_MAGIC_SYSRQ
6561static void normalize_task(struct rq *rq, struct task_struct *p)
6562{
6563	const struct sched_class *prev_class = p->sched_class;
6564	int old_prio = p->prio;
6565	int on_rq;
6566
6567	on_rq = p->on_rq;
6568	if (on_rq)
6569		dequeue_task(rq, p, 0);
6570	__setscheduler(rq, p, SCHED_NORMAL, 0);
6571	if (on_rq) {
6572		enqueue_task(rq, p, 0);
6573		resched_task(rq->curr);
6574	}
6575
6576	check_class_changed(rq, p, prev_class, old_prio);
6577}
6578
6579void normalize_rt_tasks(void)
6580{
6581	struct task_struct *g, *p;
6582	unsigned long flags;
6583	struct rq *rq;
6584
6585	read_lock_irqsave(&tasklist_lock, flags);
6586	do_each_thread(g, p) {
6587		/*
6588		 * Only normalize user tasks:
6589		 */
6590		if (!p->mm)
6591			continue;
6592
6593		p->se.exec_start		= 0;
6594#ifdef CONFIG_SCHEDSTATS
6595		p->se.statistics.wait_start	= 0;
6596		p->se.statistics.sleep_start	= 0;
6597		p->se.statistics.block_start	= 0;
6598#endif
6599
6600		if (!rt_task(p)) {
6601			/*
6602			 * Renice negative nice level userspace
6603			 * tasks back to 0:
6604			 */
6605			if (TASK_NICE(p) < 0 && p->mm)
6606				set_user_nice(p, 0);
6607			continue;
6608		}
6609
6610		raw_spin_lock(&p->pi_lock);
6611		rq = __task_rq_lock(p);
6612
6613		normalize_task(rq, p);
6614
6615		__task_rq_unlock(rq);
6616		raw_spin_unlock(&p->pi_lock);
6617	} while_each_thread(g, p);
6618
6619	read_unlock_irqrestore(&tasklist_lock, flags);
6620}
6621
6622#endif /* CONFIG_MAGIC_SYSRQ */
6623
6624#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6625/*
6626 * These functions are only useful for the IA64 MCA handling, or kdb.
6627 *
6628 * They can only be called when the whole system has been
6629 * stopped - every CPU needs to be quiescent, and no scheduling
6630 * activity can take place. Using them for anything else would
6631 * be a serious bug, and as a result, they aren't even visible
6632 * under any other configuration.
6633 */
6634
6635/**
6636 * curr_task - return the current task for a given cpu.
6637 * @cpu: the processor in question.
6638 *
6639 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6640 */
6641struct task_struct *curr_task(int cpu)
6642{
6643	return cpu_curr(cpu);
6644}
6645
6646#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6647
6648#ifdef CONFIG_IA64
6649/**
6650 * set_curr_task - set the current task for a given cpu.
6651 * @cpu: the processor in question.
6652 * @p: the task pointer to set.
6653 *
6654 * Description: This function must only be used when non-maskable interrupts
6655 * are serviced on a separate stack. It allows the architecture to switch the
6656 * notion of the current task on a cpu in a non-blocking manner. This function
6657 * must be called with all CPU's synchronized, and interrupts disabled, the
6658 * and caller must save the original value of the current task (see
6659 * curr_task() above) and restore that value before reenabling interrupts and
6660 * re-starting the system.
6661 *
6662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6663 */
6664void set_curr_task(int cpu, struct task_struct *p)
6665{
6666	cpu_curr(cpu) = p;
6667}
6668
6669#endif
6670
6671#ifdef CONFIG_CGROUP_SCHED
6672/* task_group_lock serializes the addition/removal of task groups */
6673static DEFINE_SPINLOCK(task_group_lock);
6674
6675static void free_sched_group(struct task_group *tg)
6676{
6677	free_fair_sched_group(tg);
6678	free_rt_sched_group(tg);
6679	autogroup_free(tg);
6680	kfree(tg);
6681}
6682
6683/* allocate runqueue etc for a new task group */
6684struct task_group *sched_create_group(struct task_group *parent)
6685{
6686	struct task_group *tg;
6687
6688	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6689	if (!tg)
6690		return ERR_PTR(-ENOMEM);
6691
6692	if (!alloc_fair_sched_group(tg, parent))
6693		goto err;
6694
6695	if (!alloc_rt_sched_group(tg, parent))
6696		goto err;
6697
6698	return tg;
6699
6700err:
6701	free_sched_group(tg);
6702	return ERR_PTR(-ENOMEM);
6703}
6704
6705void sched_online_group(struct task_group *tg, struct task_group *parent)
6706{
6707	unsigned long flags;
6708
6709	spin_lock_irqsave(&task_group_lock, flags);
6710	list_add_rcu(&tg->list, &task_groups);
6711
6712	WARN_ON(!parent); /* root should already exist */
6713
6714	tg->parent = parent;
6715	INIT_LIST_HEAD(&tg->children);
6716	list_add_rcu(&tg->siblings, &parent->children);
6717	spin_unlock_irqrestore(&task_group_lock, flags);
6718}
6719
6720/* rcu callback to free various structures associated with a task group */
6721static void free_sched_group_rcu(struct rcu_head *rhp)
6722{
6723	/* now it should be safe to free those cfs_rqs */
6724	free_sched_group(container_of(rhp, struct task_group, rcu));
6725}
6726
6727/* Destroy runqueue etc associated with a task group */
6728void sched_destroy_group(struct task_group *tg)
6729{
6730	/* wait for possible concurrent references to cfs_rqs complete */
6731	call_rcu(&tg->rcu, free_sched_group_rcu);
6732}
6733
6734void sched_offline_group(struct task_group *tg)
6735{
6736	unsigned long flags;
6737	int i;
6738
6739	/* end participation in shares distribution */
6740	for_each_possible_cpu(i)
6741		unregister_fair_sched_group(tg, i);
6742
6743	spin_lock_irqsave(&task_group_lock, flags);
6744	list_del_rcu(&tg->list);
6745	list_del_rcu(&tg->siblings);
6746	spin_unlock_irqrestore(&task_group_lock, flags);
6747}
6748
6749/* change task's runqueue when it moves between groups.
6750 *	The caller of this function should have put the task in its new group
6751 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6752 *	reflect its new group.
6753 */
6754void sched_move_task(struct task_struct *tsk)
6755{
6756	struct task_group *tg;
6757	int on_rq, running;
6758	unsigned long flags;
6759	struct rq *rq;
6760
6761	rq = task_rq_lock(tsk, &flags);
6762
6763	running = task_current(rq, tsk);
6764	on_rq = tsk->on_rq;
6765
6766	if (on_rq)
6767		dequeue_task(rq, tsk, 0);
6768	if (unlikely(running))
6769		tsk->sched_class->put_prev_task(rq, tsk);
6770
6771	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6772				lockdep_is_held(&tsk->sighand->siglock)),
6773			  struct task_group, css);
6774	tg = autogroup_task_group(tsk, tg);
6775	tsk->sched_task_group = tg;
6776
6777#ifdef CONFIG_FAIR_GROUP_SCHED
6778	if (tsk->sched_class->task_move_group)
6779		tsk->sched_class->task_move_group(tsk, on_rq);
6780	else
6781#endif
6782		set_task_rq(tsk, task_cpu(tsk));
6783
6784	if (unlikely(running))
6785		tsk->sched_class->set_curr_task(rq);
6786	if (on_rq)
6787		enqueue_task(rq, tsk, 0);
6788
6789	task_rq_unlock(rq, tsk, &flags);
6790}
6791#endif /* CONFIG_CGROUP_SCHED */
6792
6793#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6794static unsigned long to_ratio(u64 period, u64 runtime)
6795{
6796	if (runtime == RUNTIME_INF)
6797		return 1ULL << 20;
6798
6799	return div64_u64(runtime << 20, period);
6800}
6801#endif
6802
6803#ifdef CONFIG_RT_GROUP_SCHED
6804/*
6805 * Ensure that the real time constraints are schedulable.
6806 */
6807static DEFINE_MUTEX(rt_constraints_mutex);
6808
6809/* Must be called with tasklist_lock held */
6810static inline int tg_has_rt_tasks(struct task_group *tg)
6811{
6812	struct task_struct *g, *p;
6813
6814	do_each_thread(g, p) {
6815		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6816			return 1;
6817	} while_each_thread(g, p);
6818
6819	return 0;
6820}
6821
6822struct rt_schedulable_data {
6823	struct task_group *tg;
6824	u64 rt_period;
6825	u64 rt_runtime;
6826};
6827
6828static int tg_rt_schedulable(struct task_group *tg, void *data)
6829{
6830	struct rt_schedulable_data *d = data;
6831	struct task_group *child;
6832	unsigned long total, sum = 0;
6833	u64 period, runtime;
6834
6835	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6836	runtime = tg->rt_bandwidth.rt_runtime;
6837
6838	if (tg == d->tg) {
6839		period = d->rt_period;
6840		runtime = d->rt_runtime;
6841	}
6842
6843	/*
6844	 * Cannot have more runtime than the period.
6845	 */
6846	if (runtime > period && runtime != RUNTIME_INF)
6847		return -EINVAL;
6848
6849	/*
6850	 * Ensure we don't starve existing RT tasks.
6851	 */
6852	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6853		return -EBUSY;
6854
6855	total = to_ratio(period, runtime);
6856
6857	/*
6858	 * Nobody can have more than the global setting allows.
6859	 */
6860	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6861		return -EINVAL;
6862
6863	/*
6864	 * The sum of our children's runtime should not exceed our own.
6865	 */
6866	list_for_each_entry_rcu(child, &tg->children, siblings) {
6867		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6868		runtime = child->rt_bandwidth.rt_runtime;
6869
6870		if (child == d->tg) {
6871			period = d->rt_period;
6872			runtime = d->rt_runtime;
6873		}
6874
6875		sum += to_ratio(period, runtime);
6876	}
6877
6878	if (sum > total)
6879		return -EINVAL;
6880
6881	return 0;
6882}
6883
6884static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6885{
6886	int ret;
6887
6888	struct rt_schedulable_data data = {
6889		.tg = tg,
6890		.rt_period = period,
6891		.rt_runtime = runtime,
6892	};
6893
6894	rcu_read_lock();
6895	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6896	rcu_read_unlock();
6897
6898	return ret;
6899}
6900
6901static int tg_set_rt_bandwidth(struct task_group *tg,
6902		u64 rt_period, u64 rt_runtime)
6903{
6904	int i, err = 0;
6905
6906	mutex_lock(&rt_constraints_mutex);
6907	read_lock(&tasklist_lock);
6908	err = __rt_schedulable(tg, rt_period, rt_runtime);
6909	if (err)
6910		goto unlock;
6911
6912	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6913	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6914	tg->rt_bandwidth.rt_runtime = rt_runtime;
6915
6916	for_each_possible_cpu(i) {
6917		struct rt_rq *rt_rq = tg->rt_rq[i];
6918
6919		raw_spin_lock(&rt_rq->rt_runtime_lock);
6920		rt_rq->rt_runtime = rt_runtime;
6921		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6922	}
6923	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6924unlock:
6925	read_unlock(&tasklist_lock);
6926	mutex_unlock(&rt_constraints_mutex);
6927
6928	return err;
6929}
6930
6931static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6932{
6933	u64 rt_runtime, rt_period;
6934
6935	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6936	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6937	if (rt_runtime_us < 0)
6938		rt_runtime = RUNTIME_INF;
6939
6940	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6941}
6942
6943static long sched_group_rt_runtime(struct task_group *tg)
6944{
6945	u64 rt_runtime_us;
6946
6947	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6948		return -1;
6949
6950	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6951	do_div(rt_runtime_us, NSEC_PER_USEC);
6952	return rt_runtime_us;
6953}
6954
6955static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6956{
6957	u64 rt_runtime, rt_period;
6958
6959	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6960	rt_runtime = tg->rt_bandwidth.rt_runtime;
6961
6962	if (rt_period == 0)
6963		return -EINVAL;
6964
6965	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6966}
6967
6968static long sched_group_rt_period(struct task_group *tg)
6969{
6970	u64 rt_period_us;
6971
6972	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6973	do_div(rt_period_us, NSEC_PER_USEC);
6974	return rt_period_us;
6975}
6976
6977static int sched_rt_global_constraints(void)
6978{
6979	u64 runtime, period;
6980	int ret = 0;
6981
6982	if (sysctl_sched_rt_period <= 0)
6983		return -EINVAL;
6984
6985	runtime = global_rt_runtime();
6986	period = global_rt_period();
6987
6988	/*
6989	 * Sanity check on the sysctl variables.
6990	 */
6991	if (runtime > period && runtime != RUNTIME_INF)
6992		return -EINVAL;
6993
6994	mutex_lock(&rt_constraints_mutex);
6995	read_lock(&tasklist_lock);
6996	ret = __rt_schedulable(NULL, 0, 0);
6997	read_unlock(&tasklist_lock);
6998	mutex_unlock(&rt_constraints_mutex);
6999
7000	return ret;
7001}
7002
7003static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7004{
7005	/* Don't accept realtime tasks when there is no way for them to run */
7006	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7007		return 0;
7008
7009	return 1;
7010}
7011
7012#else /* !CONFIG_RT_GROUP_SCHED */
7013static int sched_rt_global_constraints(void)
7014{
7015	unsigned long flags;
7016	int i;
7017
7018	if (sysctl_sched_rt_period <= 0)
7019		return -EINVAL;
7020
7021	/*
7022	 * There's always some RT tasks in the root group
7023	 * -- migration, kstopmachine etc..
7024	 */
7025	if (sysctl_sched_rt_runtime == 0)
7026		return -EBUSY;
7027
7028	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7029	for_each_possible_cpu(i) {
7030		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7031
7032		raw_spin_lock(&rt_rq->rt_runtime_lock);
7033		rt_rq->rt_runtime = global_rt_runtime();
7034		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7035	}
7036	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7037
7038	return 0;
7039}
7040#endif /* CONFIG_RT_GROUP_SCHED */
7041
7042int sched_rr_handler(struct ctl_table *table, int write,
7043		void __user *buffer, size_t *lenp,
7044		loff_t *ppos)
7045{
7046	int ret;
7047	static DEFINE_MUTEX(mutex);
7048
7049	mutex_lock(&mutex);
7050	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7051	/* make sure that internally we keep jiffies */
7052	/* also, writing zero resets timeslice to default */
7053	if (!ret && write) {
7054		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7055			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7056	}
7057	mutex_unlock(&mutex);
7058	return ret;
7059}
7060
7061int sched_rt_handler(struct ctl_table *table, int write,
7062		void __user *buffer, size_t *lenp,
7063		loff_t *ppos)
7064{
7065	int ret;
7066	int old_period, old_runtime;
7067	static DEFINE_MUTEX(mutex);
7068
7069	mutex_lock(&mutex);
7070	old_period = sysctl_sched_rt_period;
7071	old_runtime = sysctl_sched_rt_runtime;
7072
7073	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7074
7075	if (!ret && write) {
7076		ret = sched_rt_global_constraints();
7077		if (ret) {
7078			sysctl_sched_rt_period = old_period;
7079			sysctl_sched_rt_runtime = old_runtime;
7080		} else {
7081			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7082			def_rt_bandwidth.rt_period =
7083				ns_to_ktime(global_rt_period());
7084		}
7085	}
7086	mutex_unlock(&mutex);
7087
7088	return ret;
7089}
7090
7091#ifdef CONFIG_CGROUP_SCHED
7092
7093/* return corresponding task_group object of a cgroup */
7094static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7095{
7096	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7097			    struct task_group, css);
7098}
7099
7100static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7101{
7102	struct task_group *tg, *parent;
7103
7104	if (!cgrp->parent) {
7105		/* This is early initialization for the top cgroup */
7106		return &root_task_group.css;
7107	}
7108
7109	parent = cgroup_tg(cgrp->parent);
7110	tg = sched_create_group(parent);
7111	if (IS_ERR(tg))
7112		return ERR_PTR(-ENOMEM);
7113
7114	return &tg->css;
7115}
7116
7117static int cpu_cgroup_css_online(struct cgroup *cgrp)
7118{
7119	struct task_group *tg = cgroup_tg(cgrp);
7120	struct task_group *parent;
7121
7122	if (!cgrp->parent)
7123		return 0;
7124
7125	parent = cgroup_tg(cgrp->parent);
7126	sched_online_group(tg, parent);
7127	return 0;
7128}
7129
7130static void cpu_cgroup_css_free(struct cgroup *cgrp)
7131{
7132	struct task_group *tg = cgroup_tg(cgrp);
7133
7134	sched_destroy_group(tg);
7135}
7136
7137static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7138{
7139	struct task_group *tg = cgroup_tg(cgrp);
7140
7141	sched_offline_group(tg);
7142}
7143
7144static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7145				 struct cgroup_taskset *tset)
7146{
7147	struct task_struct *task;
7148
7149	cgroup_taskset_for_each(task, cgrp, tset) {
7150#ifdef CONFIG_RT_GROUP_SCHED
7151		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7152			return -EINVAL;
7153#else
7154		/* We don't support RT-tasks being in separate groups */
7155		if (task->sched_class != &fair_sched_class)
7156			return -EINVAL;
7157#endif
7158	}
7159	return 0;
7160}
7161
7162static void cpu_cgroup_attach(struct cgroup *cgrp,
7163			      struct cgroup_taskset *tset)
7164{
7165	struct task_struct *task;
7166
7167	cgroup_taskset_for_each(task, cgrp, tset)
7168		sched_move_task(task);
7169}
7170
7171static void
7172cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7173		struct task_struct *task)
7174{
7175	/*
7176	 * cgroup_exit() is called in the copy_process() failure path.
7177	 * Ignore this case since the task hasn't ran yet, this avoids
7178	 * trying to poke a half freed task state from generic code.
7179	 */
7180	if (!(task->flags & PF_EXITING))
7181		return;
7182
7183	sched_move_task(task);
7184}
7185
7186#ifdef CONFIG_FAIR_GROUP_SCHED
7187static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7188				u64 shareval)
7189{
7190	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7191}
7192
7193static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7194{
7195	struct task_group *tg = cgroup_tg(cgrp);
7196
7197	return (u64) scale_load_down(tg->shares);
7198}
7199
7200#ifdef CONFIG_CFS_BANDWIDTH
7201static DEFINE_MUTEX(cfs_constraints_mutex);
7202
7203const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7204const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7205
7206static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7207
7208static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7209{
7210	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7211	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7212
7213	if (tg == &root_task_group)
7214		return -EINVAL;
7215
7216	/*
7217	 * Ensure we have at some amount of bandwidth every period.  This is
7218	 * to prevent reaching a state of large arrears when throttled via
7219	 * entity_tick() resulting in prolonged exit starvation.
7220	 */
7221	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7222		return -EINVAL;
7223
7224	/*
7225	 * Likewise, bound things on the otherside by preventing insane quota
7226	 * periods.  This also allows us to normalize in computing quota
7227	 * feasibility.
7228	 */
7229	if (period > max_cfs_quota_period)
7230		return -EINVAL;
7231
7232	mutex_lock(&cfs_constraints_mutex);
7233	ret = __cfs_schedulable(tg, period, quota);
7234	if (ret)
7235		goto out_unlock;
7236
7237	runtime_enabled = quota != RUNTIME_INF;
7238	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7239	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7240	raw_spin_lock_irq(&cfs_b->lock);
7241	cfs_b->period = ns_to_ktime(period);
7242	cfs_b->quota = quota;
7243
7244	__refill_cfs_bandwidth_runtime(cfs_b);
7245	/* restart the period timer (if active) to handle new period expiry */
7246	if (runtime_enabled && cfs_b->timer_active) {
7247		/* force a reprogram */
7248		cfs_b->timer_active = 0;
7249		__start_cfs_bandwidth(cfs_b);
7250	}
7251	raw_spin_unlock_irq(&cfs_b->lock);
7252
7253	for_each_possible_cpu(i) {
7254		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7255		struct rq *rq = cfs_rq->rq;
7256
7257		raw_spin_lock_irq(&rq->lock);
7258		cfs_rq->runtime_enabled = runtime_enabled;
7259		cfs_rq->runtime_remaining = 0;
7260
7261		if (cfs_rq->throttled)
7262			unthrottle_cfs_rq(cfs_rq);
7263		raw_spin_unlock_irq(&rq->lock);
7264	}
7265out_unlock:
7266	mutex_unlock(&cfs_constraints_mutex);
7267
7268	return ret;
7269}
7270
7271int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7272{
7273	u64 quota, period;
7274
7275	period = ktime_to_ns(tg->cfs_bandwidth.period);
7276	if (cfs_quota_us < 0)
7277		quota = RUNTIME_INF;
7278	else
7279		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7280
7281	return tg_set_cfs_bandwidth(tg, period, quota);
7282}
7283
7284long tg_get_cfs_quota(struct task_group *tg)
7285{
7286	u64 quota_us;
7287
7288	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7289		return -1;
7290
7291	quota_us = tg->cfs_bandwidth.quota;
7292	do_div(quota_us, NSEC_PER_USEC);
7293
7294	return quota_us;
7295}
7296
7297int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7298{
7299	u64 quota, period;
7300
7301	period = (u64)cfs_period_us * NSEC_PER_USEC;
7302	quota = tg->cfs_bandwidth.quota;
7303
7304	return tg_set_cfs_bandwidth(tg, period, quota);
7305}
7306
7307long tg_get_cfs_period(struct task_group *tg)
7308{
7309	u64 cfs_period_us;
7310
7311	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7312	do_div(cfs_period_us, NSEC_PER_USEC);
7313
7314	return cfs_period_us;
7315}
7316
7317static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7318{
7319	return tg_get_cfs_quota(cgroup_tg(cgrp));
7320}
7321
7322static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7323				s64 cfs_quota_us)
7324{
7325	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7326}
7327
7328static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7329{
7330	return tg_get_cfs_period(cgroup_tg(cgrp));
7331}
7332
7333static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7334				u64 cfs_period_us)
7335{
7336	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7337}
7338
7339struct cfs_schedulable_data {
7340	struct task_group *tg;
7341	u64 period, quota;
7342};
7343
7344/*
7345 * normalize group quota/period to be quota/max_period
7346 * note: units are usecs
7347 */
7348static u64 normalize_cfs_quota(struct task_group *tg,
7349			       struct cfs_schedulable_data *d)
7350{
7351	u64 quota, period;
7352
7353	if (tg == d->tg) {
7354		period = d->period;
7355		quota = d->quota;
7356	} else {
7357		period = tg_get_cfs_period(tg);
7358		quota = tg_get_cfs_quota(tg);
7359	}
7360
7361	/* note: these should typically be equivalent */
7362	if (quota == RUNTIME_INF || quota == -1)
7363		return RUNTIME_INF;
7364
7365	return to_ratio(period, quota);
7366}
7367
7368static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7369{
7370	struct cfs_schedulable_data *d = data;
7371	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7372	s64 quota = 0, parent_quota = -1;
7373
7374	if (!tg->parent) {
7375		quota = RUNTIME_INF;
7376	} else {
7377		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7378
7379		quota = normalize_cfs_quota(tg, d);
7380		parent_quota = parent_b->hierarchal_quota;
7381
7382		/*
7383		 * ensure max(child_quota) <= parent_quota, inherit when no
7384		 * limit is set
7385		 */
7386		if (quota == RUNTIME_INF)
7387			quota = parent_quota;
7388		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7389			return -EINVAL;
7390	}
7391	cfs_b->hierarchal_quota = quota;
7392
7393	return 0;
7394}
7395
7396static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7397{
7398	int ret;
7399	struct cfs_schedulable_data data = {
7400		.tg = tg,
7401		.period = period,
7402		.quota = quota,
7403	};
7404
7405	if (quota != RUNTIME_INF) {
7406		do_div(data.period, NSEC_PER_USEC);
7407		do_div(data.quota, NSEC_PER_USEC);
7408	}
7409
7410	rcu_read_lock();
7411	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7412	rcu_read_unlock();
7413
7414	return ret;
7415}
7416
7417static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7418		struct cgroup_map_cb *cb)
7419{
7420	struct task_group *tg = cgroup_tg(cgrp);
7421	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7422
7423	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7424	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7425	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7426
7427	return 0;
7428}
7429#endif /* CONFIG_CFS_BANDWIDTH */
7430#endif /* CONFIG_FAIR_GROUP_SCHED */
7431
7432#ifdef CONFIG_RT_GROUP_SCHED
7433static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7434				s64 val)
7435{
7436	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7437}
7438
7439static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7440{
7441	return sched_group_rt_runtime(cgroup_tg(cgrp));
7442}
7443
7444static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7445		u64 rt_period_us)
7446{
7447	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7448}
7449
7450static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7451{
7452	return sched_group_rt_period(cgroup_tg(cgrp));
7453}
7454#endif /* CONFIG_RT_GROUP_SCHED */
7455
7456static struct cftype cpu_files[] = {
7457#ifdef CONFIG_FAIR_GROUP_SCHED
7458	{
7459		.name = "shares",
7460		.read_u64 = cpu_shares_read_u64,
7461		.write_u64 = cpu_shares_write_u64,
7462	},
7463#endif
7464#ifdef CONFIG_CFS_BANDWIDTH
7465	{
7466		.name = "cfs_quota_us",
7467		.read_s64 = cpu_cfs_quota_read_s64,
7468		.write_s64 = cpu_cfs_quota_write_s64,
7469	},
7470	{
7471		.name = "cfs_period_us",
7472		.read_u64 = cpu_cfs_period_read_u64,
7473		.write_u64 = cpu_cfs_period_write_u64,
7474	},
7475	{
7476		.name = "stat",
7477		.read_map = cpu_stats_show,
7478	},
7479#endif
7480#ifdef CONFIG_RT_GROUP_SCHED
7481	{
7482		.name = "rt_runtime_us",
7483		.read_s64 = cpu_rt_runtime_read,
7484		.write_s64 = cpu_rt_runtime_write,
7485	},
7486	{
7487		.name = "rt_period_us",
7488		.read_u64 = cpu_rt_period_read_uint,
7489		.write_u64 = cpu_rt_period_write_uint,
7490	},
7491#endif
7492	{ }	/* terminate */
7493};
7494
7495struct cgroup_subsys cpu_cgroup_subsys = {
7496	.name		= "cpu",
7497	.css_alloc	= cpu_cgroup_css_alloc,
7498	.css_free	= cpu_cgroup_css_free,
7499	.css_online	= cpu_cgroup_css_online,
7500	.css_offline	= cpu_cgroup_css_offline,
7501	.can_attach	= cpu_cgroup_can_attach,
7502	.attach		= cpu_cgroup_attach,
7503	.exit		= cpu_cgroup_exit,
7504	.subsys_id	= cpu_cgroup_subsys_id,
7505	.base_cftypes	= cpu_files,
7506	.early_init	= 1,
7507};
7508
7509#endif	/* CONFIG_CGROUP_SCHED */
7510
7511void dump_cpu_task(int cpu)
7512{
7513	pr_info("Task dump for CPU %d:\n", cpu);
7514	sched_show_task(cpu_curr(cpu));
7515}
7516