core.c revision 4ca9b72b71f10147bd21969c1805f5b2c4ca7b7b
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74
75#include <asm/tlb.h>
76#include <asm/irq_regs.h>
77#ifdef CONFIG_PARAVIRT
78#include <asm/paravirt.h>
79#endif
80
81#include "sched.h"
82#include "../workqueue_sched.h"
83
84#define CREATE_TRACE_POINTS
85#include <trace/events/sched.h>
86
87void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88{
89	unsigned long delta;
90	ktime_t soft, hard, now;
91
92	for (;;) {
93		if (hrtimer_active(period_timer))
94			break;
95
96		now = hrtimer_cb_get_time(period_timer);
97		hrtimer_forward(period_timer, now, period);
98
99		soft = hrtimer_get_softexpires(period_timer);
100		hard = hrtimer_get_expires(period_timer);
101		delta = ktime_to_ns(ktime_sub(hard, soft));
102		__hrtimer_start_range_ns(period_timer, soft, delta,
103					 HRTIMER_MODE_ABS_PINNED, 0);
104	}
105}
106
107DEFINE_MUTEX(sched_domains_mutex);
108DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109
110static void update_rq_clock_task(struct rq *rq, s64 delta);
111
112void update_rq_clock(struct rq *rq)
113{
114	s64 delta;
115
116	if (rq->skip_clock_update > 0)
117		return;
118
119	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
120	rq->clock += delta;
121	update_rq_clock_task(rq, delta);
122}
123
124/*
125 * Debugging: various feature bits
126 */
127
128#define SCHED_FEAT(name, enabled)	\
129	(1UL << __SCHED_FEAT_##name) * enabled |
130
131const_debug unsigned int sysctl_sched_features =
132#include "features.h"
133	0;
134
135#undef SCHED_FEAT
136
137#ifdef CONFIG_SCHED_DEBUG
138#define SCHED_FEAT(name, enabled)	\
139	#name ,
140
141static __read_mostly char *sched_feat_names[] = {
142#include "features.h"
143	NULL
144};
145
146#undef SCHED_FEAT
147
148static int sched_feat_show(struct seq_file *m, void *v)
149{
150	int i;
151
152	for (i = 0; i < __SCHED_FEAT_NR; i++) {
153		if (!(sysctl_sched_features & (1UL << i)))
154			seq_puts(m, "NO_");
155		seq_printf(m, "%s ", sched_feat_names[i]);
156	}
157	seq_puts(m, "\n");
158
159	return 0;
160}
161
162#ifdef HAVE_JUMP_LABEL
163
164#define jump_label_key__true  jump_label_key_enabled
165#define jump_label_key__false jump_label_key_disabled
166
167#define SCHED_FEAT(name, enabled)	\
168	jump_label_key__##enabled ,
169
170struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
171#include "features.h"
172};
173
174#undef SCHED_FEAT
175
176static void sched_feat_disable(int i)
177{
178	if (jump_label_enabled(&sched_feat_keys[i]))
179		jump_label_dec(&sched_feat_keys[i]);
180}
181
182static void sched_feat_enable(int i)
183{
184	if (!jump_label_enabled(&sched_feat_keys[i]))
185		jump_label_inc(&sched_feat_keys[i]);
186}
187#else
188static void sched_feat_disable(int i) { };
189static void sched_feat_enable(int i) { };
190#endif /* HAVE_JUMP_LABEL */
191
192static ssize_t
193sched_feat_write(struct file *filp, const char __user *ubuf,
194		size_t cnt, loff_t *ppos)
195{
196	char buf[64];
197	char *cmp;
198	int neg = 0;
199	int i;
200
201	if (cnt > 63)
202		cnt = 63;
203
204	if (copy_from_user(&buf, ubuf, cnt))
205		return -EFAULT;
206
207	buf[cnt] = 0;
208	cmp = strstrip(buf);
209
210	if (strncmp(cmp, "NO_", 3) == 0) {
211		neg = 1;
212		cmp += 3;
213	}
214
215	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217			if (neg) {
218				sysctl_sched_features &= ~(1UL << i);
219				sched_feat_disable(i);
220			} else {
221				sysctl_sched_features |= (1UL << i);
222				sched_feat_enable(i);
223			}
224			break;
225		}
226	}
227
228	if (i == __SCHED_FEAT_NR)
229		return -EINVAL;
230
231	*ppos += cnt;
232
233	return cnt;
234}
235
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238	return single_open(filp, sched_feat_show, NULL);
239}
240
241static const struct file_operations sched_feat_fops = {
242	.open		= sched_feat_open,
243	.write		= sched_feat_write,
244	.read		= seq_read,
245	.llseek		= seq_lseek,
246	.release	= single_release,
247};
248
249static __init int sched_init_debug(void)
250{
251	debugfs_create_file("sched_features", 0644, NULL, NULL,
252			&sched_feat_fops);
253
254	return 0;
255}
256late_initcall(sched_init_debug);
257#endif /* CONFIG_SCHED_DEBUG */
258
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273/*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277unsigned int sysctl_sched_rt_period = 1000000;
278
279__read_mostly int scheduler_running;
280
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
286
287
288
289/*
290 * __task_rq_lock - lock the rq @p resides on.
291 */
292static inline struct rq *__task_rq_lock(struct task_struct *p)
293	__acquires(rq->lock)
294{
295	struct rq *rq;
296
297	lockdep_assert_held(&p->pi_lock);
298
299	for (;;) {
300		rq = task_rq(p);
301		raw_spin_lock(&rq->lock);
302		if (likely(rq == task_rq(p)))
303			return rq;
304		raw_spin_unlock(&rq->lock);
305	}
306}
307
308/*
309 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
310 */
311static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312	__acquires(p->pi_lock)
313	__acquires(rq->lock)
314{
315	struct rq *rq;
316
317	for (;;) {
318		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319		rq = task_rq(p);
320		raw_spin_lock(&rq->lock);
321		if (likely(rq == task_rq(p)))
322			return rq;
323		raw_spin_unlock(&rq->lock);
324		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
325	}
326}
327
328static void __task_rq_unlock(struct rq *rq)
329	__releases(rq->lock)
330{
331	raw_spin_unlock(&rq->lock);
332}
333
334static inline void
335task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
336	__releases(rq->lock)
337	__releases(p->pi_lock)
338{
339	raw_spin_unlock(&rq->lock);
340	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
341}
342
343/*
344 * this_rq_lock - lock this runqueue and disable interrupts.
345 */
346static struct rq *this_rq_lock(void)
347	__acquires(rq->lock)
348{
349	struct rq *rq;
350
351	local_irq_disable();
352	rq = this_rq();
353	raw_spin_lock(&rq->lock);
354
355	return rq;
356}
357
358#ifdef CONFIG_SCHED_HRTICK
359/*
360 * Use HR-timers to deliver accurate preemption points.
361 *
362 * Its all a bit involved since we cannot program an hrt while holding the
363 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
364 * reschedule event.
365 *
366 * When we get rescheduled we reprogram the hrtick_timer outside of the
367 * rq->lock.
368 */
369
370static void hrtick_clear(struct rq *rq)
371{
372	if (hrtimer_active(&rq->hrtick_timer))
373		hrtimer_cancel(&rq->hrtick_timer);
374}
375
376/*
377 * High-resolution timer tick.
378 * Runs from hardirq context with interrupts disabled.
379 */
380static enum hrtimer_restart hrtick(struct hrtimer *timer)
381{
382	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
383
384	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385
386	raw_spin_lock(&rq->lock);
387	update_rq_clock(rq);
388	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389	raw_spin_unlock(&rq->lock);
390
391	return HRTIMER_NORESTART;
392}
393
394#ifdef CONFIG_SMP
395/*
396 * called from hardirq (IPI) context
397 */
398static void __hrtick_start(void *arg)
399{
400	struct rq *rq = arg;
401
402	raw_spin_lock(&rq->lock);
403	hrtimer_restart(&rq->hrtick_timer);
404	rq->hrtick_csd_pending = 0;
405	raw_spin_unlock(&rq->lock);
406}
407
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413void hrtick_start(struct rq *rq, u64 delay)
414{
415	struct hrtimer *timer = &rq->hrtick_timer;
416	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417
418	hrtimer_set_expires(timer, time);
419
420	if (rq == this_rq()) {
421		hrtimer_restart(timer);
422	} else if (!rq->hrtick_csd_pending) {
423		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424		rq->hrtick_csd_pending = 1;
425	}
426}
427
428static int
429hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
430{
431	int cpu = (int)(long)hcpu;
432
433	switch (action) {
434	case CPU_UP_CANCELED:
435	case CPU_UP_CANCELED_FROZEN:
436	case CPU_DOWN_PREPARE:
437	case CPU_DOWN_PREPARE_FROZEN:
438	case CPU_DEAD:
439	case CPU_DEAD_FROZEN:
440		hrtick_clear(cpu_rq(cpu));
441		return NOTIFY_OK;
442	}
443
444	return NOTIFY_DONE;
445}
446
447static __init void init_hrtick(void)
448{
449	hotcpu_notifier(hotplug_hrtick, 0);
450}
451#else
452/*
453 * Called to set the hrtick timer state.
454 *
455 * called with rq->lock held and irqs disabled
456 */
457void hrtick_start(struct rq *rq, u64 delay)
458{
459	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460			HRTIMER_MODE_REL_PINNED, 0);
461}
462
463static inline void init_hrtick(void)
464{
465}
466#endif /* CONFIG_SMP */
467
468static void init_rq_hrtick(struct rq *rq)
469{
470#ifdef CONFIG_SMP
471	rq->hrtick_csd_pending = 0;
472
473	rq->hrtick_csd.flags = 0;
474	rq->hrtick_csd.func = __hrtick_start;
475	rq->hrtick_csd.info = rq;
476#endif
477
478	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
479	rq->hrtick_timer.function = hrtick;
480}
481#else	/* CONFIG_SCHED_HRTICK */
482static inline void hrtick_clear(struct rq *rq)
483{
484}
485
486static inline void init_rq_hrtick(struct rq *rq)
487{
488}
489
490static inline void init_hrtick(void)
491{
492}
493#endif	/* CONFIG_SCHED_HRTICK */
494
495/*
496 * resched_task - mark a task 'to be rescheduled now'.
497 *
498 * On UP this means the setting of the need_resched flag, on SMP it
499 * might also involve a cross-CPU call to trigger the scheduler on
500 * the target CPU.
501 */
502#ifdef CONFIG_SMP
503
504#ifndef tsk_is_polling
505#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
506#endif
507
508void resched_task(struct task_struct *p)
509{
510	int cpu;
511
512	assert_raw_spin_locked(&task_rq(p)->lock);
513
514	if (test_tsk_need_resched(p))
515		return;
516
517	set_tsk_need_resched(p);
518
519	cpu = task_cpu(p);
520	if (cpu == smp_processor_id())
521		return;
522
523	/* NEED_RESCHED must be visible before we test polling */
524	smp_mb();
525	if (!tsk_is_polling(p))
526		smp_send_reschedule(cpu);
527}
528
529void resched_cpu(int cpu)
530{
531	struct rq *rq = cpu_rq(cpu);
532	unsigned long flags;
533
534	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
535		return;
536	resched_task(cpu_curr(cpu));
537	raw_spin_unlock_irqrestore(&rq->lock, flags);
538}
539
540#ifdef CONFIG_NO_HZ
541/*
542 * In the semi idle case, use the nearest busy cpu for migrating timers
543 * from an idle cpu.  This is good for power-savings.
544 *
545 * We don't do similar optimization for completely idle system, as
546 * selecting an idle cpu will add more delays to the timers than intended
547 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
548 */
549int get_nohz_timer_target(void)
550{
551	int cpu = smp_processor_id();
552	int i;
553	struct sched_domain *sd;
554
555	rcu_read_lock();
556	for_each_domain(cpu, sd) {
557		for_each_cpu(i, sched_domain_span(sd)) {
558			if (!idle_cpu(i)) {
559				cpu = i;
560				goto unlock;
561			}
562		}
563	}
564unlock:
565	rcu_read_unlock();
566	return cpu;
567}
568/*
569 * When add_timer_on() enqueues a timer into the timer wheel of an
570 * idle CPU then this timer might expire before the next timer event
571 * which is scheduled to wake up that CPU. In case of a completely
572 * idle system the next event might even be infinite time into the
573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574 * leaves the inner idle loop so the newly added timer is taken into
575 * account when the CPU goes back to idle and evaluates the timer
576 * wheel for the next timer event.
577 */
578void wake_up_idle_cpu(int cpu)
579{
580	struct rq *rq = cpu_rq(cpu);
581
582	if (cpu == smp_processor_id())
583		return;
584
585	/*
586	 * This is safe, as this function is called with the timer
587	 * wheel base lock of (cpu) held. When the CPU is on the way
588	 * to idle and has not yet set rq->curr to idle then it will
589	 * be serialized on the timer wheel base lock and take the new
590	 * timer into account automatically.
591	 */
592	if (rq->curr != rq->idle)
593		return;
594
595	/*
596	 * We can set TIF_RESCHED on the idle task of the other CPU
597	 * lockless. The worst case is that the other CPU runs the
598	 * idle task through an additional NOOP schedule()
599	 */
600	set_tsk_need_resched(rq->idle);
601
602	/* NEED_RESCHED must be visible before we test polling */
603	smp_mb();
604	if (!tsk_is_polling(rq->idle))
605		smp_send_reschedule(cpu);
606}
607
608static inline bool got_nohz_idle_kick(void)
609{
610	int cpu = smp_processor_id();
611	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612}
613
614#else /* CONFIG_NO_HZ */
615
616static inline bool got_nohz_idle_kick(void)
617{
618	return false;
619}
620
621#endif /* CONFIG_NO_HZ */
622
623void sched_avg_update(struct rq *rq)
624{
625	s64 period = sched_avg_period();
626
627	while ((s64)(rq->clock - rq->age_stamp) > period) {
628		/*
629		 * Inline assembly required to prevent the compiler
630		 * optimising this loop into a divmod call.
631		 * See __iter_div_u64_rem() for another example of this.
632		 */
633		asm("" : "+rm" (rq->age_stamp));
634		rq->age_stamp += period;
635		rq->rt_avg /= 2;
636	}
637}
638
639#else /* !CONFIG_SMP */
640void resched_task(struct task_struct *p)
641{
642	assert_raw_spin_locked(&task_rq(p)->lock);
643	set_tsk_need_resched(p);
644}
645#endif /* CONFIG_SMP */
646
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649/*
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
654 */
655int walk_tg_tree_from(struct task_group *from,
656			     tg_visitor down, tg_visitor up, void *data)
657{
658	struct task_group *parent, *child;
659	int ret;
660
661	parent = from;
662
663down:
664	ret = (*down)(parent, data);
665	if (ret)
666		goto out;
667	list_for_each_entry_rcu(child, &parent->children, siblings) {
668		parent = child;
669		goto down;
670
671up:
672		continue;
673	}
674	ret = (*up)(parent, data);
675	if (ret || parent == from)
676		goto out;
677
678	child = parent;
679	parent = parent->parent;
680	if (parent)
681		goto up;
682out:
683	return ret;
684}
685
686int tg_nop(struct task_group *tg, void *data)
687{
688	return 0;
689}
690#endif
691
692void update_cpu_load(struct rq *this_rq);
693
694static void set_load_weight(struct task_struct *p)
695{
696	int prio = p->static_prio - MAX_RT_PRIO;
697	struct load_weight *load = &p->se.load;
698
699	/*
700	 * SCHED_IDLE tasks get minimal weight:
701	 */
702	if (p->policy == SCHED_IDLE) {
703		load->weight = scale_load(WEIGHT_IDLEPRIO);
704		load->inv_weight = WMULT_IDLEPRIO;
705		return;
706	}
707
708	load->weight = scale_load(prio_to_weight[prio]);
709	load->inv_weight = prio_to_wmult[prio];
710}
711
712static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713{
714	update_rq_clock(rq);
715	sched_info_queued(p);
716	p->sched_class->enqueue_task(rq, p, flags);
717}
718
719static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720{
721	update_rq_clock(rq);
722	sched_info_dequeued(p);
723	p->sched_class->dequeue_task(rq, p, flags);
724}
725
726void activate_task(struct rq *rq, struct task_struct *p, int flags)
727{
728	if (task_contributes_to_load(p))
729		rq->nr_uninterruptible--;
730
731	enqueue_task(rq, p, flags);
732}
733
734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735{
736	if (task_contributes_to_load(p))
737		rq->nr_uninterruptible++;
738
739	dequeue_task(rq, p, flags);
740}
741
742#ifdef CONFIG_IRQ_TIME_ACCOUNTING
743
744/*
745 * There are no locks covering percpu hardirq/softirq time.
746 * They are only modified in account_system_vtime, on corresponding CPU
747 * with interrupts disabled. So, writes are safe.
748 * They are read and saved off onto struct rq in update_rq_clock().
749 * This may result in other CPU reading this CPU's irq time and can
750 * race with irq/account_system_vtime on this CPU. We would either get old
751 * or new value with a side effect of accounting a slice of irq time to wrong
752 * task when irq is in progress while we read rq->clock. That is a worthy
753 * compromise in place of having locks on each irq in account_system_time.
754 */
755static DEFINE_PER_CPU(u64, cpu_hardirq_time);
756static DEFINE_PER_CPU(u64, cpu_softirq_time);
757
758static DEFINE_PER_CPU(u64, irq_start_time);
759static int sched_clock_irqtime;
760
761void enable_sched_clock_irqtime(void)
762{
763	sched_clock_irqtime = 1;
764}
765
766void disable_sched_clock_irqtime(void)
767{
768	sched_clock_irqtime = 0;
769}
770
771#ifndef CONFIG_64BIT
772static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
773
774static inline void irq_time_write_begin(void)
775{
776	__this_cpu_inc(irq_time_seq.sequence);
777	smp_wmb();
778}
779
780static inline void irq_time_write_end(void)
781{
782	smp_wmb();
783	__this_cpu_inc(irq_time_seq.sequence);
784}
785
786static inline u64 irq_time_read(int cpu)
787{
788	u64 irq_time;
789	unsigned seq;
790
791	do {
792		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
793		irq_time = per_cpu(cpu_softirq_time, cpu) +
794			   per_cpu(cpu_hardirq_time, cpu);
795	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
796
797	return irq_time;
798}
799#else /* CONFIG_64BIT */
800static inline void irq_time_write_begin(void)
801{
802}
803
804static inline void irq_time_write_end(void)
805{
806}
807
808static inline u64 irq_time_read(int cpu)
809{
810	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
811}
812#endif /* CONFIG_64BIT */
813
814/*
815 * Called before incrementing preempt_count on {soft,}irq_enter
816 * and before decrementing preempt_count on {soft,}irq_exit.
817 */
818void account_system_vtime(struct task_struct *curr)
819{
820	unsigned long flags;
821	s64 delta;
822	int cpu;
823
824	if (!sched_clock_irqtime)
825		return;
826
827	local_irq_save(flags);
828
829	cpu = smp_processor_id();
830	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
831	__this_cpu_add(irq_start_time, delta);
832
833	irq_time_write_begin();
834	/*
835	 * We do not account for softirq time from ksoftirqd here.
836	 * We want to continue accounting softirq time to ksoftirqd thread
837	 * in that case, so as not to confuse scheduler with a special task
838	 * that do not consume any time, but still wants to run.
839	 */
840	if (hardirq_count())
841		__this_cpu_add(cpu_hardirq_time, delta);
842	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
843		__this_cpu_add(cpu_softirq_time, delta);
844
845	irq_time_write_end();
846	local_irq_restore(flags);
847}
848EXPORT_SYMBOL_GPL(account_system_vtime);
849
850#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
851
852#ifdef CONFIG_PARAVIRT
853static inline u64 steal_ticks(u64 steal)
854{
855	if (unlikely(steal > NSEC_PER_SEC))
856		return div_u64(steal, TICK_NSEC);
857
858	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
859}
860#endif
861
862static void update_rq_clock_task(struct rq *rq, s64 delta)
863{
864/*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869	s64 steal = 0, irq_delta = 0;
870#endif
871#ifdef CONFIG_IRQ_TIME_ACCOUNTING
872	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873
874	/*
875	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876	 * this case when a previous update_rq_clock() happened inside a
877	 * {soft,}irq region.
878	 *
879	 * When this happens, we stop ->clock_task and only update the
880	 * prev_irq_time stamp to account for the part that fit, so that a next
881	 * update will consume the rest. This ensures ->clock_task is
882	 * monotonic.
883	 *
884	 * It does however cause some slight miss-attribution of {soft,}irq
885	 * time, a more accurate solution would be to update the irq_time using
886	 * the current rq->clock timestamp, except that would require using
887	 * atomic ops.
888	 */
889	if (irq_delta > delta)
890		irq_delta = delta;
891
892	rq->prev_irq_time += irq_delta;
893	delta -= irq_delta;
894#endif
895#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896	if (static_branch((&paravirt_steal_rq_enabled))) {
897		u64 st;
898
899		steal = paravirt_steal_clock(cpu_of(rq));
900		steal -= rq->prev_steal_time_rq;
901
902		if (unlikely(steal > delta))
903			steal = delta;
904
905		st = steal_ticks(steal);
906		steal = st * TICK_NSEC;
907
908		rq->prev_steal_time_rq += steal;
909
910		delta -= steal;
911	}
912#endif
913
914	rq->clock_task += delta;
915
916#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
918		sched_rt_avg_update(rq, irq_delta + steal);
919#endif
920}
921
922#ifdef CONFIG_IRQ_TIME_ACCOUNTING
923static int irqtime_account_hi_update(void)
924{
925	u64 *cpustat = kcpustat_this_cpu->cpustat;
926	unsigned long flags;
927	u64 latest_ns;
928	int ret = 0;
929
930	local_irq_save(flags);
931	latest_ns = this_cpu_read(cpu_hardirq_time);
932	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
933		ret = 1;
934	local_irq_restore(flags);
935	return ret;
936}
937
938static int irqtime_account_si_update(void)
939{
940	u64 *cpustat = kcpustat_this_cpu->cpustat;
941	unsigned long flags;
942	u64 latest_ns;
943	int ret = 0;
944
945	local_irq_save(flags);
946	latest_ns = this_cpu_read(cpu_softirq_time);
947	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
948		ret = 1;
949	local_irq_restore(flags);
950	return ret;
951}
952
953#else /* CONFIG_IRQ_TIME_ACCOUNTING */
954
955#define sched_clock_irqtime	(0)
956
957#endif
958
959void sched_set_stop_task(int cpu, struct task_struct *stop)
960{
961	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
962	struct task_struct *old_stop = cpu_rq(cpu)->stop;
963
964	if (stop) {
965		/*
966		 * Make it appear like a SCHED_FIFO task, its something
967		 * userspace knows about and won't get confused about.
968		 *
969		 * Also, it will make PI more or less work without too
970		 * much confusion -- but then, stop work should not
971		 * rely on PI working anyway.
972		 */
973		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
974
975		stop->sched_class = &stop_sched_class;
976	}
977
978	cpu_rq(cpu)->stop = stop;
979
980	if (old_stop) {
981		/*
982		 * Reset it back to a normal scheduling class so that
983		 * it can die in pieces.
984		 */
985		old_stop->sched_class = &rt_sched_class;
986	}
987}
988
989/*
990 * __normal_prio - return the priority that is based on the static prio
991 */
992static inline int __normal_prio(struct task_struct *p)
993{
994	return p->static_prio;
995}
996
997/*
998 * Calculate the expected normal priority: i.e. priority
999 * without taking RT-inheritance into account. Might be
1000 * boosted by interactivity modifiers. Changes upon fork,
1001 * setprio syscalls, and whenever the interactivity
1002 * estimator recalculates.
1003 */
1004static inline int normal_prio(struct task_struct *p)
1005{
1006	int prio;
1007
1008	if (task_has_rt_policy(p))
1009		prio = MAX_RT_PRIO-1 - p->rt_priority;
1010	else
1011		prio = __normal_prio(p);
1012	return prio;
1013}
1014
1015/*
1016 * Calculate the current priority, i.e. the priority
1017 * taken into account by the scheduler. This value might
1018 * be boosted by RT tasks, or might be boosted by
1019 * interactivity modifiers. Will be RT if the task got
1020 * RT-boosted. If not then it returns p->normal_prio.
1021 */
1022static int effective_prio(struct task_struct *p)
1023{
1024	p->normal_prio = normal_prio(p);
1025	/*
1026	 * If we are RT tasks or we were boosted to RT priority,
1027	 * keep the priority unchanged. Otherwise, update priority
1028	 * to the normal priority:
1029	 */
1030	if (!rt_prio(p->prio))
1031		return p->normal_prio;
1032	return p->prio;
1033}
1034
1035/**
1036 * task_curr - is this task currently executing on a CPU?
1037 * @p: the task in question.
1038 */
1039inline int task_curr(const struct task_struct *p)
1040{
1041	return cpu_curr(task_cpu(p)) == p;
1042}
1043
1044static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1045				       const struct sched_class *prev_class,
1046				       int oldprio)
1047{
1048	if (prev_class != p->sched_class) {
1049		if (prev_class->switched_from)
1050			prev_class->switched_from(rq, p);
1051		p->sched_class->switched_to(rq, p);
1052	} else if (oldprio != p->prio)
1053		p->sched_class->prio_changed(rq, p, oldprio);
1054}
1055
1056void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1057{
1058	const struct sched_class *class;
1059
1060	if (p->sched_class == rq->curr->sched_class) {
1061		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1062	} else {
1063		for_each_class(class) {
1064			if (class == rq->curr->sched_class)
1065				break;
1066			if (class == p->sched_class) {
1067				resched_task(rq->curr);
1068				break;
1069			}
1070		}
1071	}
1072
1073	/*
1074	 * A queue event has occurred, and we're going to schedule.  In
1075	 * this case, we can save a useless back to back clock update.
1076	 */
1077	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1078		rq->skip_clock_update = 1;
1079}
1080
1081#ifdef CONFIG_SMP
1082void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1083{
1084#ifdef CONFIG_SCHED_DEBUG
1085	/*
1086	 * We should never call set_task_cpu() on a blocked task,
1087	 * ttwu() will sort out the placement.
1088	 */
1089	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1090			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1091
1092#ifdef CONFIG_LOCKDEP
1093	/*
1094	 * The caller should hold either p->pi_lock or rq->lock, when changing
1095	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1096	 *
1097	 * sched_move_task() holds both and thus holding either pins the cgroup,
1098	 * see set_task_rq().
1099	 *
1100	 * Furthermore, all task_rq users should acquire both locks, see
1101	 * task_rq_lock().
1102	 */
1103	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1104				      lockdep_is_held(&task_rq(p)->lock)));
1105#endif
1106#endif
1107
1108	trace_sched_migrate_task(p, new_cpu);
1109
1110	if (task_cpu(p) != new_cpu) {
1111		p->se.nr_migrations++;
1112		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1113	}
1114
1115	__set_task_cpu(p, new_cpu);
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int dest_cpu;
1266	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1267
1268	/* Look for allowed, online CPU in same node. */
1269	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1270		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1271			return dest_cpu;
1272
1273	/* Any allowed, online CPU? */
1274	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1275	if (dest_cpu < nr_cpu_ids)
1276		return dest_cpu;
1277
1278	/* No more Mr. Nice Guy. */
1279	dest_cpu = cpuset_cpus_allowed_fallback(p);
1280	/*
1281	 * Don't tell them about moving exiting tasks or
1282	 * kernel threads (both mm NULL), since they never
1283	 * leave kernel.
1284	 */
1285	if (p->mm && printk_ratelimit()) {
1286		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
1287				task_pid_nr(p), p->comm, cpu);
1288	}
1289
1290	return dest_cpu;
1291}
1292
1293/*
1294 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1295 */
1296static inline
1297int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1298{
1299	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1300
1301	/*
1302	 * In order not to call set_task_cpu() on a blocking task we need
1303	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1304	 * cpu.
1305	 *
1306	 * Since this is common to all placement strategies, this lives here.
1307	 *
1308	 * [ this allows ->select_task() to simply return task_cpu(p) and
1309	 *   not worry about this generic constraint ]
1310	 */
1311	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1312		     !cpu_online(cpu)))
1313		cpu = select_fallback_rq(task_cpu(p), p);
1314
1315	return cpu;
1316}
1317
1318static void update_avg(u64 *avg, u64 sample)
1319{
1320	s64 diff = sample - *avg;
1321	*avg += diff >> 3;
1322}
1323#endif
1324
1325static void
1326ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1327{
1328#ifdef CONFIG_SCHEDSTATS
1329	struct rq *rq = this_rq();
1330
1331#ifdef CONFIG_SMP
1332	int this_cpu = smp_processor_id();
1333
1334	if (cpu == this_cpu) {
1335		schedstat_inc(rq, ttwu_local);
1336		schedstat_inc(p, se.statistics.nr_wakeups_local);
1337	} else {
1338		struct sched_domain *sd;
1339
1340		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1341		rcu_read_lock();
1342		for_each_domain(this_cpu, sd) {
1343			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1344				schedstat_inc(sd, ttwu_wake_remote);
1345				break;
1346			}
1347		}
1348		rcu_read_unlock();
1349	}
1350
1351	if (wake_flags & WF_MIGRATED)
1352		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1353
1354#endif /* CONFIG_SMP */
1355
1356	schedstat_inc(rq, ttwu_count);
1357	schedstat_inc(p, se.statistics.nr_wakeups);
1358
1359	if (wake_flags & WF_SYNC)
1360		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1361
1362#endif /* CONFIG_SCHEDSTATS */
1363}
1364
1365static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1366{
1367	activate_task(rq, p, en_flags);
1368	p->on_rq = 1;
1369
1370	/* if a worker is waking up, notify workqueue */
1371	if (p->flags & PF_WQ_WORKER)
1372		wq_worker_waking_up(p, cpu_of(rq));
1373}
1374
1375/*
1376 * Mark the task runnable and perform wakeup-preemption.
1377 */
1378static void
1379ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1380{
1381	trace_sched_wakeup(p, true);
1382	check_preempt_curr(rq, p, wake_flags);
1383
1384	p->state = TASK_RUNNING;
1385#ifdef CONFIG_SMP
1386	if (p->sched_class->task_woken)
1387		p->sched_class->task_woken(rq, p);
1388
1389	if (rq->idle_stamp) {
1390		u64 delta = rq->clock - rq->idle_stamp;
1391		u64 max = 2*sysctl_sched_migration_cost;
1392
1393		if (delta > max)
1394			rq->avg_idle = max;
1395		else
1396			update_avg(&rq->avg_idle, delta);
1397		rq->idle_stamp = 0;
1398	}
1399#endif
1400}
1401
1402static void
1403ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1404{
1405#ifdef CONFIG_SMP
1406	if (p->sched_contributes_to_load)
1407		rq->nr_uninterruptible--;
1408#endif
1409
1410	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1411	ttwu_do_wakeup(rq, p, wake_flags);
1412}
1413
1414/*
1415 * Called in case the task @p isn't fully descheduled from its runqueue,
1416 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1417 * since all we need to do is flip p->state to TASK_RUNNING, since
1418 * the task is still ->on_rq.
1419 */
1420static int ttwu_remote(struct task_struct *p, int wake_flags)
1421{
1422	struct rq *rq;
1423	int ret = 0;
1424
1425	rq = __task_rq_lock(p);
1426	if (p->on_rq) {
1427		ttwu_do_wakeup(rq, p, wake_flags);
1428		ret = 1;
1429	}
1430	__task_rq_unlock(rq);
1431
1432	return ret;
1433}
1434
1435#ifdef CONFIG_SMP
1436static void sched_ttwu_pending(void)
1437{
1438	struct rq *rq = this_rq();
1439	struct llist_node *llist = llist_del_all(&rq->wake_list);
1440	struct task_struct *p;
1441
1442	raw_spin_lock(&rq->lock);
1443
1444	while (llist) {
1445		p = llist_entry(llist, struct task_struct, wake_entry);
1446		llist = llist_next(llist);
1447		ttwu_do_activate(rq, p, 0);
1448	}
1449
1450	raw_spin_unlock(&rq->lock);
1451}
1452
1453void scheduler_ipi(void)
1454{
1455	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1456		return;
1457
1458	/*
1459	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1460	 * traditionally all their work was done from the interrupt return
1461	 * path. Now that we actually do some work, we need to make sure
1462	 * we do call them.
1463	 *
1464	 * Some archs already do call them, luckily irq_enter/exit nest
1465	 * properly.
1466	 *
1467	 * Arguably we should visit all archs and update all handlers,
1468	 * however a fair share of IPIs are still resched only so this would
1469	 * somewhat pessimize the simple resched case.
1470	 */
1471	irq_enter();
1472	sched_ttwu_pending();
1473
1474	/*
1475	 * Check if someone kicked us for doing the nohz idle load balance.
1476	 */
1477	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1478		this_rq()->idle_balance = 1;
1479		raise_softirq_irqoff(SCHED_SOFTIRQ);
1480	}
1481	irq_exit();
1482}
1483
1484static void ttwu_queue_remote(struct task_struct *p, int cpu)
1485{
1486	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1487		smp_send_reschedule(cpu);
1488}
1489
1490#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1491static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1492{
1493	struct rq *rq;
1494	int ret = 0;
1495
1496	rq = __task_rq_lock(p);
1497	if (p->on_cpu) {
1498		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1499		ttwu_do_wakeup(rq, p, wake_flags);
1500		ret = 1;
1501	}
1502	__task_rq_unlock(rq);
1503
1504	return ret;
1505
1506}
1507#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1508
1509static inline int ttwu_share_cache(int this_cpu, int that_cpu)
1510{
1511	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1512}
1513#endif /* CONFIG_SMP */
1514
1515static void ttwu_queue(struct task_struct *p, int cpu)
1516{
1517	struct rq *rq = cpu_rq(cpu);
1518
1519#if defined(CONFIG_SMP)
1520	if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1521		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1522		ttwu_queue_remote(p, cpu);
1523		return;
1524	}
1525#endif
1526
1527	raw_spin_lock(&rq->lock);
1528	ttwu_do_activate(rq, p, 0);
1529	raw_spin_unlock(&rq->lock);
1530}
1531
1532/**
1533 * try_to_wake_up - wake up a thread
1534 * @p: the thread to be awakened
1535 * @state: the mask of task states that can be woken
1536 * @wake_flags: wake modifier flags (WF_*)
1537 *
1538 * Put it on the run-queue if it's not already there. The "current"
1539 * thread is always on the run-queue (except when the actual
1540 * re-schedule is in progress), and as such you're allowed to do
1541 * the simpler "current->state = TASK_RUNNING" to mark yourself
1542 * runnable without the overhead of this.
1543 *
1544 * Returns %true if @p was woken up, %false if it was already running
1545 * or @state didn't match @p's state.
1546 */
1547static int
1548try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1549{
1550	unsigned long flags;
1551	int cpu, success = 0;
1552
1553	smp_wmb();
1554	raw_spin_lock_irqsave(&p->pi_lock, flags);
1555	if (!(p->state & state))
1556		goto out;
1557
1558	success = 1; /* we're going to change ->state */
1559	cpu = task_cpu(p);
1560
1561	if (p->on_rq && ttwu_remote(p, wake_flags))
1562		goto stat;
1563
1564#ifdef CONFIG_SMP
1565	/*
1566	 * If the owning (remote) cpu is still in the middle of schedule() with
1567	 * this task as prev, wait until its done referencing the task.
1568	 */
1569	while (p->on_cpu) {
1570#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1571		/*
1572		 * In case the architecture enables interrupts in
1573		 * context_switch(), we cannot busy wait, since that
1574		 * would lead to deadlocks when an interrupt hits and
1575		 * tries to wake up @prev. So bail and do a complete
1576		 * remote wakeup.
1577		 */
1578		if (ttwu_activate_remote(p, wake_flags))
1579			goto stat;
1580#else
1581		cpu_relax();
1582#endif
1583	}
1584	/*
1585	 * Pairs with the smp_wmb() in finish_lock_switch().
1586	 */
1587	smp_rmb();
1588
1589	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1590	p->state = TASK_WAKING;
1591
1592	if (p->sched_class->task_waking)
1593		p->sched_class->task_waking(p);
1594
1595	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1596	if (task_cpu(p) != cpu) {
1597		wake_flags |= WF_MIGRATED;
1598		set_task_cpu(p, cpu);
1599	}
1600#endif /* CONFIG_SMP */
1601
1602	ttwu_queue(p, cpu);
1603stat:
1604	ttwu_stat(p, cpu, wake_flags);
1605out:
1606	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1607
1608	return success;
1609}
1610
1611/**
1612 * try_to_wake_up_local - try to wake up a local task with rq lock held
1613 * @p: the thread to be awakened
1614 *
1615 * Put @p on the run-queue if it's not already there. The caller must
1616 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1617 * the current task.
1618 */
1619static void try_to_wake_up_local(struct task_struct *p)
1620{
1621	struct rq *rq = task_rq(p);
1622
1623	BUG_ON(rq != this_rq());
1624	BUG_ON(p == current);
1625	lockdep_assert_held(&rq->lock);
1626
1627	if (!raw_spin_trylock(&p->pi_lock)) {
1628		raw_spin_unlock(&rq->lock);
1629		raw_spin_lock(&p->pi_lock);
1630		raw_spin_lock(&rq->lock);
1631	}
1632
1633	if (!(p->state & TASK_NORMAL))
1634		goto out;
1635
1636	if (!p->on_rq)
1637		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1638
1639	ttwu_do_wakeup(rq, p, 0);
1640	ttwu_stat(p, smp_processor_id(), 0);
1641out:
1642	raw_spin_unlock(&p->pi_lock);
1643}
1644
1645/**
1646 * wake_up_process - Wake up a specific process
1647 * @p: The process to be woken up.
1648 *
1649 * Attempt to wake up the nominated process and move it to the set of runnable
1650 * processes.  Returns 1 if the process was woken up, 0 if it was already
1651 * running.
1652 *
1653 * It may be assumed that this function implies a write memory barrier before
1654 * changing the task state if and only if any tasks are woken up.
1655 */
1656int wake_up_process(struct task_struct *p)
1657{
1658	return try_to_wake_up(p, TASK_ALL, 0);
1659}
1660EXPORT_SYMBOL(wake_up_process);
1661
1662int wake_up_state(struct task_struct *p, unsigned int state)
1663{
1664	return try_to_wake_up(p, state, 0);
1665}
1666
1667/*
1668 * Perform scheduler related setup for a newly forked process p.
1669 * p is forked by current.
1670 *
1671 * __sched_fork() is basic setup used by init_idle() too:
1672 */
1673static void __sched_fork(struct task_struct *p)
1674{
1675	p->on_rq			= 0;
1676
1677	p->se.on_rq			= 0;
1678	p->se.exec_start		= 0;
1679	p->se.sum_exec_runtime		= 0;
1680	p->se.prev_sum_exec_runtime	= 0;
1681	p->se.nr_migrations		= 0;
1682	p->se.vruntime			= 0;
1683	INIT_LIST_HEAD(&p->se.group_node);
1684
1685#ifdef CONFIG_SCHEDSTATS
1686	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1687#endif
1688
1689	INIT_LIST_HEAD(&p->rt.run_list);
1690
1691#ifdef CONFIG_PREEMPT_NOTIFIERS
1692	INIT_HLIST_HEAD(&p->preempt_notifiers);
1693#endif
1694}
1695
1696/*
1697 * fork()/clone()-time setup:
1698 */
1699void sched_fork(struct task_struct *p)
1700{
1701	unsigned long flags;
1702	int cpu = get_cpu();
1703
1704	__sched_fork(p);
1705	/*
1706	 * We mark the process as running here. This guarantees that
1707	 * nobody will actually run it, and a signal or other external
1708	 * event cannot wake it up and insert it on the runqueue either.
1709	 */
1710	p->state = TASK_RUNNING;
1711
1712	/*
1713	 * Make sure we do not leak PI boosting priority to the child.
1714	 */
1715	p->prio = current->normal_prio;
1716
1717	/*
1718	 * Revert to default priority/policy on fork if requested.
1719	 */
1720	if (unlikely(p->sched_reset_on_fork)) {
1721		if (task_has_rt_policy(p)) {
1722			p->policy = SCHED_NORMAL;
1723			p->static_prio = NICE_TO_PRIO(0);
1724			p->rt_priority = 0;
1725		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1726			p->static_prio = NICE_TO_PRIO(0);
1727
1728		p->prio = p->normal_prio = __normal_prio(p);
1729		set_load_weight(p);
1730
1731		/*
1732		 * We don't need the reset flag anymore after the fork. It has
1733		 * fulfilled its duty:
1734		 */
1735		p->sched_reset_on_fork = 0;
1736	}
1737
1738	if (!rt_prio(p->prio))
1739		p->sched_class = &fair_sched_class;
1740
1741	if (p->sched_class->task_fork)
1742		p->sched_class->task_fork(p);
1743
1744	/*
1745	 * The child is not yet in the pid-hash so no cgroup attach races,
1746	 * and the cgroup is pinned to this child due to cgroup_fork()
1747	 * is ran before sched_fork().
1748	 *
1749	 * Silence PROVE_RCU.
1750	 */
1751	raw_spin_lock_irqsave(&p->pi_lock, flags);
1752	set_task_cpu(p, cpu);
1753	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1754
1755#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1756	if (likely(sched_info_on()))
1757		memset(&p->sched_info, 0, sizeof(p->sched_info));
1758#endif
1759#if defined(CONFIG_SMP)
1760	p->on_cpu = 0;
1761#endif
1762#ifdef CONFIG_PREEMPT_COUNT
1763	/* Want to start with kernel preemption disabled. */
1764	task_thread_info(p)->preempt_count = 1;
1765#endif
1766#ifdef CONFIG_SMP
1767	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1768#endif
1769
1770	put_cpu();
1771}
1772
1773/*
1774 * wake_up_new_task - wake up a newly created task for the first time.
1775 *
1776 * This function will do some initial scheduler statistics housekeeping
1777 * that must be done for every newly created context, then puts the task
1778 * on the runqueue and wakes it.
1779 */
1780void wake_up_new_task(struct task_struct *p)
1781{
1782	unsigned long flags;
1783	struct rq *rq;
1784
1785	raw_spin_lock_irqsave(&p->pi_lock, flags);
1786#ifdef CONFIG_SMP
1787	/*
1788	 * Fork balancing, do it here and not earlier because:
1789	 *  - cpus_allowed can change in the fork path
1790	 *  - any previously selected cpu might disappear through hotplug
1791	 */
1792	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1793#endif
1794
1795	rq = __task_rq_lock(p);
1796	activate_task(rq, p, 0);
1797	p->on_rq = 1;
1798	trace_sched_wakeup_new(p, true);
1799	check_preempt_curr(rq, p, WF_FORK);
1800#ifdef CONFIG_SMP
1801	if (p->sched_class->task_woken)
1802		p->sched_class->task_woken(rq, p);
1803#endif
1804	task_rq_unlock(rq, p, &flags);
1805}
1806
1807#ifdef CONFIG_PREEMPT_NOTIFIERS
1808
1809/**
1810 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1811 * @notifier: notifier struct to register
1812 */
1813void preempt_notifier_register(struct preempt_notifier *notifier)
1814{
1815	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1816}
1817EXPORT_SYMBOL_GPL(preempt_notifier_register);
1818
1819/**
1820 * preempt_notifier_unregister - no longer interested in preemption notifications
1821 * @notifier: notifier struct to unregister
1822 *
1823 * This is safe to call from within a preemption notifier.
1824 */
1825void preempt_notifier_unregister(struct preempt_notifier *notifier)
1826{
1827	hlist_del(&notifier->link);
1828}
1829EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1830
1831static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1832{
1833	struct preempt_notifier *notifier;
1834	struct hlist_node *node;
1835
1836	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1837		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1838}
1839
1840static void
1841fire_sched_out_preempt_notifiers(struct task_struct *curr,
1842				 struct task_struct *next)
1843{
1844	struct preempt_notifier *notifier;
1845	struct hlist_node *node;
1846
1847	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1848		notifier->ops->sched_out(notifier, next);
1849}
1850
1851#else /* !CONFIG_PREEMPT_NOTIFIERS */
1852
1853static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1854{
1855}
1856
1857static void
1858fire_sched_out_preempt_notifiers(struct task_struct *curr,
1859				 struct task_struct *next)
1860{
1861}
1862
1863#endif /* CONFIG_PREEMPT_NOTIFIERS */
1864
1865/**
1866 * prepare_task_switch - prepare to switch tasks
1867 * @rq: the runqueue preparing to switch
1868 * @prev: the current task that is being switched out
1869 * @next: the task we are going to switch to.
1870 *
1871 * This is called with the rq lock held and interrupts off. It must
1872 * be paired with a subsequent finish_task_switch after the context
1873 * switch.
1874 *
1875 * prepare_task_switch sets up locking and calls architecture specific
1876 * hooks.
1877 */
1878static inline void
1879prepare_task_switch(struct rq *rq, struct task_struct *prev,
1880		    struct task_struct *next)
1881{
1882	sched_info_switch(prev, next);
1883	perf_event_task_sched_out(prev, next);
1884	fire_sched_out_preempt_notifiers(prev, next);
1885	prepare_lock_switch(rq, next);
1886	prepare_arch_switch(next);
1887	trace_sched_switch(prev, next);
1888}
1889
1890/**
1891 * finish_task_switch - clean up after a task-switch
1892 * @rq: runqueue associated with task-switch
1893 * @prev: the thread we just switched away from.
1894 *
1895 * finish_task_switch must be called after the context switch, paired
1896 * with a prepare_task_switch call before the context switch.
1897 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1898 * and do any other architecture-specific cleanup actions.
1899 *
1900 * Note that we may have delayed dropping an mm in context_switch(). If
1901 * so, we finish that here outside of the runqueue lock. (Doing it
1902 * with the lock held can cause deadlocks; see schedule() for
1903 * details.)
1904 */
1905static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1906	__releases(rq->lock)
1907{
1908	struct mm_struct *mm = rq->prev_mm;
1909	long prev_state;
1910
1911	rq->prev_mm = NULL;
1912
1913	/*
1914	 * A task struct has one reference for the use as "current".
1915	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1916	 * schedule one last time. The schedule call will never return, and
1917	 * the scheduled task must drop that reference.
1918	 * The test for TASK_DEAD must occur while the runqueue locks are
1919	 * still held, otherwise prev could be scheduled on another cpu, die
1920	 * there before we look at prev->state, and then the reference would
1921	 * be dropped twice.
1922	 *		Manfred Spraul <manfred@colorfullife.com>
1923	 */
1924	prev_state = prev->state;
1925	finish_arch_switch(prev);
1926#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1927	local_irq_disable();
1928#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1929	perf_event_task_sched_in(prev, current);
1930#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1931	local_irq_enable();
1932#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1933	finish_lock_switch(rq, prev);
1934	trace_sched_stat_sleeptime(current, rq->clock);
1935
1936	fire_sched_in_preempt_notifiers(current);
1937	if (mm)
1938		mmdrop(mm);
1939	if (unlikely(prev_state == TASK_DEAD)) {
1940		/*
1941		 * Remove function-return probe instances associated with this
1942		 * task and put them back on the free list.
1943		 */
1944		kprobe_flush_task(prev);
1945		put_task_struct(prev);
1946	}
1947}
1948
1949#ifdef CONFIG_SMP
1950
1951/* assumes rq->lock is held */
1952static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953{
1954	if (prev->sched_class->pre_schedule)
1955		prev->sched_class->pre_schedule(rq, prev);
1956}
1957
1958/* rq->lock is NOT held, but preemption is disabled */
1959static inline void post_schedule(struct rq *rq)
1960{
1961	if (rq->post_schedule) {
1962		unsigned long flags;
1963
1964		raw_spin_lock_irqsave(&rq->lock, flags);
1965		if (rq->curr->sched_class->post_schedule)
1966			rq->curr->sched_class->post_schedule(rq);
1967		raw_spin_unlock_irqrestore(&rq->lock, flags);
1968
1969		rq->post_schedule = 0;
1970	}
1971}
1972
1973#else
1974
1975static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void post_schedule(struct rq *rq)
1980{
1981}
1982
1983#endif
1984
1985/**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
1989asmlinkage void schedule_tail(struct task_struct *prev)
1990	__releases(rq->lock)
1991{
1992	struct rq *rq = this_rq();
1993
1994	finish_task_switch(rq, prev);
1995
1996	/*
1997	 * FIXME: do we need to worry about rq being invalidated by the
1998	 * task_switch?
1999	 */
2000	post_schedule(rq);
2001
2002#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003	/* In this case, finish_task_switch does not reenable preemption */
2004	preempt_enable();
2005#endif
2006	if (current->set_child_tid)
2007		put_user(task_pid_vnr(current), current->set_child_tid);
2008}
2009
2010/*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
2014static inline void
2015context_switch(struct rq *rq, struct task_struct *prev,
2016	       struct task_struct *next)
2017{
2018	struct mm_struct *mm, *oldmm;
2019
2020	prepare_task_switch(rq, prev, next);
2021
2022	mm = next->mm;
2023	oldmm = prev->active_mm;
2024	/*
2025	 * For paravirt, this is coupled with an exit in switch_to to
2026	 * combine the page table reload and the switch backend into
2027	 * one hypercall.
2028	 */
2029	arch_start_context_switch(prev);
2030
2031	if (!mm) {
2032		next->active_mm = oldmm;
2033		atomic_inc(&oldmm->mm_count);
2034		enter_lazy_tlb(oldmm, next);
2035	} else
2036		switch_mm(oldmm, mm, next);
2037
2038	if (!prev->mm) {
2039		prev->active_mm = NULL;
2040		rq->prev_mm = oldmm;
2041	}
2042	/*
2043	 * Since the runqueue lock will be released by the next
2044	 * task (which is an invalid locking op but in the case
2045	 * of the scheduler it's an obvious special-case), so we
2046	 * do an early lockdep release here:
2047	 */
2048#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050#endif
2051
2052	/* Here we just switch the register state and the stack. */
2053	switch_to(prev, next, prev);
2054
2055	barrier();
2056	/*
2057	 * this_rq must be evaluated again because prev may have moved
2058	 * CPUs since it called schedule(), thus the 'rq' on its stack
2059	 * frame will be invalid.
2060	 */
2061	finish_task_switch(this_rq(), prev);
2062}
2063
2064/*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071unsigned long nr_running(void)
2072{
2073	unsigned long i, sum = 0;
2074
2075	for_each_online_cpu(i)
2076		sum += cpu_rq(i)->nr_running;
2077
2078	return sum;
2079}
2080
2081unsigned long nr_uninterruptible(void)
2082{
2083	unsigned long i, sum = 0;
2084
2085	for_each_possible_cpu(i)
2086		sum += cpu_rq(i)->nr_uninterruptible;
2087
2088	/*
2089	 * Since we read the counters lockless, it might be slightly
2090	 * inaccurate. Do not allow it to go below zero though:
2091	 */
2092	if (unlikely((long)sum < 0))
2093		sum = 0;
2094
2095	return sum;
2096}
2097
2098unsigned long long nr_context_switches(void)
2099{
2100	int i;
2101	unsigned long long sum = 0;
2102
2103	for_each_possible_cpu(i)
2104		sum += cpu_rq(i)->nr_switches;
2105
2106	return sum;
2107}
2108
2109unsigned long nr_iowait(void)
2110{
2111	unsigned long i, sum = 0;
2112
2113	for_each_possible_cpu(i)
2114		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115
2116	return sum;
2117}
2118
2119unsigned long nr_iowait_cpu(int cpu)
2120{
2121	struct rq *this = cpu_rq(cpu);
2122	return atomic_read(&this->nr_iowait);
2123}
2124
2125unsigned long this_cpu_load(void)
2126{
2127	struct rq *this = this_rq();
2128	return this->cpu_load[0];
2129}
2130
2131
2132/* Variables and functions for calc_load */
2133static atomic_long_t calc_load_tasks;
2134static unsigned long calc_load_update;
2135unsigned long avenrun[3];
2136EXPORT_SYMBOL(avenrun);
2137
2138static long calc_load_fold_active(struct rq *this_rq)
2139{
2140	long nr_active, delta = 0;
2141
2142	nr_active = this_rq->nr_running;
2143	nr_active += (long) this_rq->nr_uninterruptible;
2144
2145	if (nr_active != this_rq->calc_load_active) {
2146		delta = nr_active - this_rq->calc_load_active;
2147		this_rq->calc_load_active = nr_active;
2148	}
2149
2150	return delta;
2151}
2152
2153static unsigned long
2154calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155{
2156	load *= exp;
2157	load += active * (FIXED_1 - exp);
2158	load += 1UL << (FSHIFT - 1);
2159	return load >> FSHIFT;
2160}
2161
2162#ifdef CONFIG_NO_HZ
2163/*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168static atomic_long_t calc_load_tasks_idle;
2169
2170void calc_load_account_idle(struct rq *this_rq)
2171{
2172	long delta;
2173
2174	delta = calc_load_fold_active(this_rq);
2175	if (delta)
2176		atomic_long_add(delta, &calc_load_tasks_idle);
2177}
2178
2179static long calc_load_fold_idle(void)
2180{
2181	long delta = 0;
2182
2183	/*
2184	 * Its got a race, we don't care...
2185	 */
2186	if (atomic_long_read(&calc_load_tasks_idle))
2187		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189	return delta;
2190}
2191
2192/**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x:         base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n:         power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207static unsigned long
2208fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209{
2210	unsigned long result = 1UL << frac_bits;
2211
2212	if (n) for (;;) {
2213		if (n & 1) {
2214			result *= x;
2215			result += 1UL << (frac_bits - 1);
2216			result >>= frac_bits;
2217		}
2218		n >>= 1;
2219		if (!n)
2220			break;
2221		x *= x;
2222		x += 1UL << (frac_bits - 1);
2223		x >>= frac_bits;
2224	}
2225
2226	return result;
2227}
2228
2229/*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 *  ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 *    = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 *              n         1 - x^(n+1)
2249 *     S_n := \Sum x^i = -------------
2250 *             i=0          1 - x
2251 */
2252static unsigned long
2253calc_load_n(unsigned long load, unsigned long exp,
2254	    unsigned long active, unsigned int n)
2255{
2256
2257	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258}
2259
2260/*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269static void calc_global_nohz(unsigned long ticks)
2270{
2271	long delta, active, n;
2272
2273	if (time_before(jiffies, calc_load_update))
2274		return;
2275
2276	/*
2277	 * If we crossed a calc_load_update boundary, make sure to fold
2278	 * any pending idle changes, the respective CPUs might have
2279	 * missed the tick driven calc_load_account_active() update
2280	 * due to NO_HZ.
2281	 */
2282	delta = calc_load_fold_idle();
2283	if (delta)
2284		atomic_long_add(delta, &calc_load_tasks);
2285
2286	/*
2287	 * If we were idle for multiple load cycles, apply them.
2288	 */
2289	if (ticks >= LOAD_FREQ) {
2290		n = ticks / LOAD_FREQ;
2291
2292		active = atomic_long_read(&calc_load_tasks);
2293		active = active > 0 ? active * FIXED_1 : 0;
2294
2295		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2296		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2297		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2298
2299		calc_load_update += n * LOAD_FREQ;
2300	}
2301
2302	/*
2303	 * Its possible the remainder of the above division also crosses
2304	 * a LOAD_FREQ period, the regular check in calc_global_load()
2305	 * which comes after this will take care of that.
2306	 *
2307	 * Consider us being 11 ticks before a cycle completion, and us
2308	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
2309	 * age us 4 cycles, and the test in calc_global_load() will
2310	 * pick up the final one.
2311	 */
2312}
2313#else
2314void calc_load_account_idle(struct rq *this_rq)
2315{
2316}
2317
2318static inline long calc_load_fold_idle(void)
2319{
2320	return 0;
2321}
2322
2323static void calc_global_nohz(unsigned long ticks)
2324{
2325}
2326#endif
2327
2328/**
2329 * get_avenrun - get the load average array
2330 * @loads:	pointer to dest load array
2331 * @offset:	offset to add
2332 * @shift:	shift count to shift the result left
2333 *
2334 * These values are estimates at best, so no need for locking.
2335 */
2336void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2337{
2338	loads[0] = (avenrun[0] + offset) << shift;
2339	loads[1] = (avenrun[1] + offset) << shift;
2340	loads[2] = (avenrun[2] + offset) << shift;
2341}
2342
2343/*
2344 * calc_load - update the avenrun load estimates 10 ticks after the
2345 * CPUs have updated calc_load_tasks.
2346 */
2347void calc_global_load(unsigned long ticks)
2348{
2349	long active;
2350
2351	calc_global_nohz(ticks);
2352
2353	if (time_before(jiffies, calc_load_update + 10))
2354		return;
2355
2356	active = atomic_long_read(&calc_load_tasks);
2357	active = active > 0 ? active * FIXED_1 : 0;
2358
2359	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2360	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2361	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2362
2363	calc_load_update += LOAD_FREQ;
2364}
2365
2366/*
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
2369 */
2370static void calc_load_account_active(struct rq *this_rq)
2371{
2372	long delta;
2373
2374	if (time_before(jiffies, this_rq->calc_load_update))
2375		return;
2376
2377	delta  = calc_load_fold_active(this_rq);
2378	delta += calc_load_fold_idle();
2379	if (delta)
2380		atomic_long_add(delta, &calc_load_tasks);
2381
2382	this_rq->calc_load_update += LOAD_FREQ;
2383}
2384
2385/*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412#define DEGRADE_SHIFT		7
2413static const unsigned char
2414		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415static const unsigned char
2416		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417					{0, 0, 0, 0, 0, 0, 0, 0},
2418					{64, 32, 8, 0, 0, 0, 0, 0},
2419					{96, 72, 40, 12, 1, 0, 0},
2420					{112, 98, 75, 43, 15, 1, 0},
2421					{120, 112, 98, 76, 45, 16, 2} };
2422
2423/*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428static unsigned long
2429decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430{
2431	int j = 0;
2432
2433	if (!missed_updates)
2434		return load;
2435
2436	if (missed_updates >= degrade_zero_ticks[idx])
2437		return 0;
2438
2439	if (idx == 1)
2440		return load >> missed_updates;
2441
2442	while (missed_updates) {
2443		if (missed_updates % 2)
2444			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446		missed_updates >>= 1;
2447		j++;
2448	}
2449	return load;
2450}
2451
2452/*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457void update_cpu_load(struct rq *this_rq)
2458{
2459	unsigned long this_load = this_rq->load.weight;
2460	unsigned long curr_jiffies = jiffies;
2461	unsigned long pending_updates;
2462	int i, scale;
2463
2464	this_rq->nr_load_updates++;
2465
2466	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467	if (curr_jiffies == this_rq->last_load_update_tick)
2468		return;
2469
2470	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471	this_rq->last_load_update_tick = curr_jiffies;
2472
2473	/* Update our load: */
2474	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476		unsigned long old_load, new_load;
2477
2478		/* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480		old_load = this_rq->cpu_load[i];
2481		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482		new_load = this_load;
2483		/*
2484		 * Round up the averaging division if load is increasing. This
2485		 * prevents us from getting stuck on 9 if the load is 10, for
2486		 * example.
2487		 */
2488		if (new_load > old_load)
2489			new_load += scale - 1;
2490
2491		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492	}
2493
2494	sched_avg_update(this_rq);
2495}
2496
2497static void update_cpu_load_active(struct rq *this_rq)
2498{
2499	update_cpu_load(this_rq);
2500
2501	calc_load_account_active(this_rq);
2502}
2503
2504#ifdef CONFIG_SMP
2505
2506/*
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
2509 */
2510void sched_exec(void)
2511{
2512	struct task_struct *p = current;
2513	unsigned long flags;
2514	int dest_cpu;
2515
2516	raw_spin_lock_irqsave(&p->pi_lock, flags);
2517	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518	if (dest_cpu == smp_processor_id())
2519		goto unlock;
2520
2521	if (likely(cpu_active(dest_cpu))) {
2522		struct migration_arg arg = { p, dest_cpu };
2523
2524		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2526		return;
2527	}
2528unlock:
2529	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530}
2531
2532#endif
2533
2534DEFINE_PER_CPU(struct kernel_stat, kstat);
2535DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536
2537EXPORT_PER_CPU_SYMBOL(kstat);
2538EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2539
2540/*
2541 * Return any ns on the sched_clock that have not yet been accounted in
2542 * @p in case that task is currently running.
2543 *
2544 * Called with task_rq_lock() held on @rq.
2545 */
2546static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547{
2548	u64 ns = 0;
2549
2550	if (task_current(rq, p)) {
2551		update_rq_clock(rq);
2552		ns = rq->clock_task - p->se.exec_start;
2553		if ((s64)ns < 0)
2554			ns = 0;
2555	}
2556
2557	return ns;
2558}
2559
2560unsigned long long task_delta_exec(struct task_struct *p)
2561{
2562	unsigned long flags;
2563	struct rq *rq;
2564	u64 ns = 0;
2565
2566	rq = task_rq_lock(p, &flags);
2567	ns = do_task_delta_exec(p, rq);
2568	task_rq_unlock(rq, p, &flags);
2569
2570	return ns;
2571}
2572
2573/*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578unsigned long long task_sched_runtime(struct task_struct *p)
2579{
2580	unsigned long flags;
2581	struct rq *rq;
2582	u64 ns = 0;
2583
2584	rq = task_rq_lock(p, &flags);
2585	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586	task_rq_unlock(rq, p, &flags);
2587
2588	return ns;
2589}
2590
2591#ifdef CONFIG_CGROUP_CPUACCT
2592struct cgroup_subsys cpuacct_subsys;
2593struct cpuacct root_cpuacct;
2594#endif
2595
2596static inline void task_group_account_field(struct task_struct *p, int index,
2597					    u64 tmp)
2598{
2599#ifdef CONFIG_CGROUP_CPUACCT
2600	struct kernel_cpustat *kcpustat;
2601	struct cpuacct *ca;
2602#endif
2603	/*
2604	 * Since all updates are sure to touch the root cgroup, we
2605	 * get ourselves ahead and touch it first. If the root cgroup
2606	 * is the only cgroup, then nothing else should be necessary.
2607	 *
2608	 */
2609	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611#ifdef CONFIG_CGROUP_CPUACCT
2612	if (unlikely(!cpuacct_subsys.active))
2613		return;
2614
2615	rcu_read_lock();
2616	ca = task_ca(p);
2617	while (ca && (ca != &root_cpuacct)) {
2618		kcpustat = this_cpu_ptr(ca->cpustat);
2619		kcpustat->cpustat[index] += tmp;
2620		ca = parent_ca(ca);
2621	}
2622	rcu_read_unlock();
2623#endif
2624}
2625
2626
2627/*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
2630 * @cputime: the cpu time spent in user space since the last update
2631 * @cputime_scaled: cputime scaled by cpu frequency
2632 */
2633void account_user_time(struct task_struct *p, cputime_t cputime,
2634		       cputime_t cputime_scaled)
2635{
2636	int index;
2637
2638	/* Add user time to process. */
2639	p->utime += cputime;
2640	p->utimescaled += cputime_scaled;
2641	account_group_user_time(p, cputime);
2642
2643	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644
2645	/* Add user time to cpustat. */
2646	task_group_account_field(p, index, (__force u64) cputime);
2647
2648	/* Account for user time used */
2649	acct_update_integrals(p);
2650}
2651
2652/*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
2656 * @cputime_scaled: cputime scaled by cpu frequency
2657 */
2658static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659			       cputime_t cputime_scaled)
2660{
2661	u64 *cpustat = kcpustat_this_cpu->cpustat;
2662
2663	/* Add guest time to process. */
2664	p->utime += cputime;
2665	p->utimescaled += cputime_scaled;
2666	account_group_user_time(p, cputime);
2667	p->gtime += cputime;
2668
2669	/* Add guest time to cpustat. */
2670	if (TASK_NICE(p) > 0) {
2671		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673	} else {
2674		cpustat[CPUTIME_USER] += (__force u64) cputime;
2675		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676	}
2677}
2678
2679/*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686static inline
2687void __account_system_time(struct task_struct *p, cputime_t cputime,
2688			cputime_t cputime_scaled, int index)
2689{
2690	/* Add system time to process. */
2691	p->stime += cputime;
2692	p->stimescaled += cputime_scaled;
2693	account_group_system_time(p, cputime);
2694
2695	/* Add system time to cpustat. */
2696	task_group_account_field(p, index, (__force u64) cputime);
2697
2698	/* Account for system time used */
2699	acct_update_integrals(p);
2700}
2701
2702/*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
2707 * @cputime_scaled: cputime scaled by cpu frequency
2708 */
2709void account_system_time(struct task_struct *p, int hardirq_offset,
2710			 cputime_t cputime, cputime_t cputime_scaled)
2711{
2712	int index;
2713
2714	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715		account_guest_time(p, cputime, cputime_scaled);
2716		return;
2717	}
2718
2719	if (hardirq_count() - hardirq_offset)
2720		index = CPUTIME_IRQ;
2721	else if (in_serving_softirq())
2722		index = CPUTIME_SOFTIRQ;
2723	else
2724		index = CPUTIME_SYSTEM;
2725
2726	__account_system_time(p, cputime, cputime_scaled, index);
2727}
2728
2729/*
2730 * Account for involuntary wait time.
2731 * @cputime: the cpu time spent in involuntary wait
2732 */
2733void account_steal_time(cputime_t cputime)
2734{
2735	u64 *cpustat = kcpustat_this_cpu->cpustat;
2736
2737	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738}
2739
2740/*
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
2743 */
2744void account_idle_time(cputime_t cputime)
2745{
2746	u64 *cpustat = kcpustat_this_cpu->cpustat;
2747	struct rq *rq = this_rq();
2748
2749	if (atomic_read(&rq->nr_iowait) > 0)
2750		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751	else
2752		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2753}
2754
2755static __always_inline bool steal_account_process_tick(void)
2756{
2757#ifdef CONFIG_PARAVIRT
2758	if (static_branch(&paravirt_steal_enabled)) {
2759		u64 steal, st = 0;
2760
2761		steal = paravirt_steal_clock(smp_processor_id());
2762		steal -= this_rq()->prev_steal_time;
2763
2764		st = steal_ticks(steal);
2765		this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767		account_steal_time(st);
2768		return st;
2769	}
2770#endif
2771	return false;
2772}
2773
2774#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
2776#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777/*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 *   - check for guest_time
2790 *   - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799						struct rq *rq)
2800{
2801	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802	u64 *cpustat = kcpustat_this_cpu->cpustat;
2803
2804	if (steal_account_process_tick())
2805		return;
2806
2807	if (irqtime_account_hi_update()) {
2808		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809	} else if (irqtime_account_si_update()) {
2810		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811	} else if (this_cpu_ksoftirqd() == p) {
2812		/*
2813		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814		 * So, we have to handle it separately here.
2815		 * Also, p->stime needs to be updated for ksoftirqd.
2816		 */
2817		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818					CPUTIME_SOFTIRQ);
2819	} else if (user_tick) {
2820		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821	} else if (p == rq->idle) {
2822		account_idle_time(cputime_one_jiffy);
2823	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2824		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825	} else {
2826		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827					CPUTIME_SYSTEM);
2828	}
2829}
2830
2831static void irqtime_account_idle_ticks(int ticks)
2832{
2833	int i;
2834	struct rq *rq = this_rq();
2835
2836	for (i = 0; i < ticks; i++)
2837		irqtime_account_process_tick(current, 0, rq);
2838}
2839#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840static void irqtime_account_idle_ticks(int ticks) {}
2841static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842						struct rq *rq) {}
2843#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844
2845/*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850void account_process_tick(struct task_struct *p, int user_tick)
2851{
2852	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853	struct rq *rq = this_rq();
2854
2855	if (sched_clock_irqtime) {
2856		irqtime_account_process_tick(p, user_tick, rq);
2857		return;
2858	}
2859
2860	if (steal_account_process_tick())
2861		return;
2862
2863	if (user_tick)
2864		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867				    one_jiffy_scaled);
2868	else
2869		account_idle_time(cputime_one_jiffy);
2870}
2871
2872/*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877void account_steal_ticks(unsigned long ticks)
2878{
2879	account_steal_time(jiffies_to_cputime(ticks));
2880}
2881
2882/*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886void account_idle_ticks(unsigned long ticks)
2887{
2888
2889	if (sched_clock_irqtime) {
2890		irqtime_account_idle_ticks(ticks);
2891		return;
2892	}
2893
2894	account_idle_time(jiffies_to_cputime(ticks));
2895}
2896
2897#endif
2898
2899/*
2900 * Use precise platform statistics if available:
2901 */
2902#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904{
2905	*ut = p->utime;
2906	*st = p->stime;
2907}
2908
2909void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910{
2911	struct task_cputime cputime;
2912
2913	thread_group_cputime(p, &cputime);
2914
2915	*ut = cputime.utime;
2916	*st = cputime.stime;
2917}
2918#else
2919
2920#ifndef nsecs_to_cputime
2921# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2922#endif
2923
2924void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925{
2926	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927
2928	/*
2929	 * Use CFS's precise accounting:
2930	 */
2931	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932
2933	if (total) {
2934		u64 temp = (__force u64) rtime;
2935
2936		temp *= (__force u64) utime;
2937		do_div(temp, (__force u32) total);
2938		utime = (__force cputime_t) temp;
2939	} else
2940		utime = rtime;
2941
2942	/*
2943	 * Compare with previous values, to keep monotonicity:
2944	 */
2945	p->prev_utime = max(p->prev_utime, utime);
2946	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947
2948	*ut = p->prev_utime;
2949	*st = p->prev_stime;
2950}
2951
2952/*
2953 * Must be called with siglock held.
2954 */
2955void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956{
2957	struct signal_struct *sig = p->signal;
2958	struct task_cputime cputime;
2959	cputime_t rtime, utime, total;
2960
2961	thread_group_cputime(p, &cputime);
2962
2963	total = cputime.utime + cputime.stime;
2964	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965
2966	if (total) {
2967		u64 temp = (__force u64) rtime;
2968
2969		temp *= (__force u64) cputime.utime;
2970		do_div(temp, (__force u32) total);
2971		utime = (__force cputime_t) temp;
2972	} else
2973		utime = rtime;
2974
2975	sig->prev_utime = max(sig->prev_utime, utime);
2976	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977
2978	*ut = sig->prev_utime;
2979	*st = sig->prev_stime;
2980}
2981#endif
2982
2983/*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
2986 */
2987void scheduler_tick(void)
2988{
2989	int cpu = smp_processor_id();
2990	struct rq *rq = cpu_rq(cpu);
2991	struct task_struct *curr = rq->curr;
2992
2993	sched_clock_tick();
2994
2995	raw_spin_lock(&rq->lock);
2996	update_rq_clock(rq);
2997	update_cpu_load_active(rq);
2998	curr->sched_class->task_tick(rq, curr, 0);
2999	raw_spin_unlock(&rq->lock);
3000
3001	perf_event_task_tick();
3002
3003#ifdef CONFIG_SMP
3004	rq->idle_balance = idle_cpu(cpu);
3005	trigger_load_balance(rq, cpu);
3006#endif
3007}
3008
3009notrace unsigned long get_parent_ip(unsigned long addr)
3010{
3011	if (in_lock_functions(addr)) {
3012		addr = CALLER_ADDR2;
3013		if (in_lock_functions(addr))
3014			addr = CALLER_ADDR3;
3015	}
3016	return addr;
3017}
3018
3019#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020				defined(CONFIG_PREEMPT_TRACER))
3021
3022void __kprobes add_preempt_count(int val)
3023{
3024#ifdef CONFIG_DEBUG_PREEMPT
3025	/*
3026	 * Underflow?
3027	 */
3028	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029		return;
3030#endif
3031	preempt_count() += val;
3032#ifdef CONFIG_DEBUG_PREEMPT
3033	/*
3034	 * Spinlock count overflowing soon?
3035	 */
3036	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037				PREEMPT_MASK - 10);
3038#endif
3039	if (preempt_count() == val)
3040		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041}
3042EXPORT_SYMBOL(add_preempt_count);
3043
3044void __kprobes sub_preempt_count(int val)
3045{
3046#ifdef CONFIG_DEBUG_PREEMPT
3047	/*
3048	 * Underflow?
3049	 */
3050	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051		return;
3052	/*
3053	 * Is the spinlock portion underflowing?
3054	 */
3055	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056			!(preempt_count() & PREEMPT_MASK)))
3057		return;
3058#endif
3059
3060	if (preempt_count() == val)
3061		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3062	preempt_count() -= val;
3063}
3064EXPORT_SYMBOL(sub_preempt_count);
3065
3066#endif
3067
3068/*
3069 * Print scheduling while atomic bug:
3070 */
3071static noinline void __schedule_bug(struct task_struct *prev)
3072{
3073	struct pt_regs *regs = get_irq_regs();
3074
3075	if (oops_in_progress)
3076		return;
3077
3078	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079		prev->comm, prev->pid, preempt_count());
3080
3081	debug_show_held_locks(prev);
3082	print_modules();
3083	if (irqs_disabled())
3084		print_irqtrace_events(prev);
3085
3086	if (regs)
3087		show_regs(regs);
3088	else
3089		dump_stack();
3090}
3091
3092/*
3093 * Various schedule()-time debugging checks and statistics:
3094 */
3095static inline void schedule_debug(struct task_struct *prev)
3096{
3097	/*
3098	 * Test if we are atomic. Since do_exit() needs to call into
3099	 * schedule() atomically, we ignore that path for now.
3100	 * Otherwise, whine if we are scheduling when we should not be.
3101	 */
3102	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3103		__schedule_bug(prev);
3104	rcu_sleep_check();
3105
3106	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
3108	schedstat_inc(this_rq(), sched_count);
3109}
3110
3111static void put_prev_task(struct rq *rq, struct task_struct *prev)
3112{
3113	if (prev->on_rq || rq->skip_clock_update < 0)
3114		update_rq_clock(rq);
3115	prev->sched_class->put_prev_task(rq, prev);
3116}
3117
3118/*
3119 * Pick up the highest-prio task:
3120 */
3121static inline struct task_struct *
3122pick_next_task(struct rq *rq)
3123{
3124	const struct sched_class *class;
3125	struct task_struct *p;
3126
3127	/*
3128	 * Optimization: we know that if all tasks are in
3129	 * the fair class we can call that function directly:
3130	 */
3131	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3132		p = fair_sched_class.pick_next_task(rq);
3133		if (likely(p))
3134			return p;
3135	}
3136
3137	for_each_class(class) {
3138		p = class->pick_next_task(rq);
3139		if (p)
3140			return p;
3141	}
3142
3143	BUG(); /* the idle class will always have a runnable task */
3144}
3145
3146/*
3147 * __schedule() is the main scheduler function.
3148 */
3149static void __sched __schedule(void)
3150{
3151	struct task_struct *prev, *next;
3152	unsigned long *switch_count;
3153	struct rq *rq;
3154	int cpu;
3155
3156need_resched:
3157	preempt_disable();
3158	cpu = smp_processor_id();
3159	rq = cpu_rq(cpu);
3160	rcu_note_context_switch(cpu);
3161	prev = rq->curr;
3162
3163	schedule_debug(prev);
3164
3165	if (sched_feat(HRTICK))
3166		hrtick_clear(rq);
3167
3168	raw_spin_lock_irq(&rq->lock);
3169
3170	switch_count = &prev->nivcsw;
3171	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3172		if (unlikely(signal_pending_state(prev->state, prev))) {
3173			prev->state = TASK_RUNNING;
3174		} else {
3175			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176			prev->on_rq = 0;
3177
3178			/*
3179			 * If a worker went to sleep, notify and ask workqueue
3180			 * whether it wants to wake up a task to maintain
3181			 * concurrency.
3182			 */
3183			if (prev->flags & PF_WQ_WORKER) {
3184				struct task_struct *to_wakeup;
3185
3186				to_wakeup = wq_worker_sleeping(prev, cpu);
3187				if (to_wakeup)
3188					try_to_wake_up_local(to_wakeup);
3189			}
3190		}
3191		switch_count = &prev->nvcsw;
3192	}
3193
3194	pre_schedule(rq, prev);
3195
3196	if (unlikely(!rq->nr_running))
3197		idle_balance(cpu, rq);
3198
3199	put_prev_task(rq, prev);
3200	next = pick_next_task(rq);
3201	clear_tsk_need_resched(prev);
3202	rq->skip_clock_update = 0;
3203
3204	if (likely(prev != next)) {
3205		rq->nr_switches++;
3206		rq->curr = next;
3207		++*switch_count;
3208
3209		context_switch(rq, prev, next); /* unlocks the rq */
3210		/*
3211		 * The context switch have flipped the stack from under us
3212		 * and restored the local variables which were saved when
3213		 * this task called schedule() in the past. prev == current
3214		 * is still correct, but it can be moved to another cpu/rq.
3215		 */
3216		cpu = smp_processor_id();
3217		rq = cpu_rq(cpu);
3218	} else
3219		raw_spin_unlock_irq(&rq->lock);
3220
3221	post_schedule(rq);
3222
3223	preempt_enable_no_resched();
3224	if (need_resched())
3225		goto need_resched;
3226}
3227
3228static inline void sched_submit_work(struct task_struct *tsk)
3229{
3230	if (!tsk->state)
3231		return;
3232	/*
3233	 * If we are going to sleep and we have plugged IO queued,
3234	 * make sure to submit it to avoid deadlocks.
3235	 */
3236	if (blk_needs_flush_plug(tsk))
3237		blk_schedule_flush_plug(tsk);
3238}
3239
3240asmlinkage void __sched schedule(void)
3241{
3242	struct task_struct *tsk = current;
3243
3244	sched_submit_work(tsk);
3245	__schedule();
3246}
3247EXPORT_SYMBOL(schedule);
3248
3249#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3250
3251static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3252{
3253	if (lock->owner != owner)
3254		return false;
3255
3256	/*
3257	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3258	 * lock->owner still matches owner, if that fails, owner might
3259	 * point to free()d memory, if it still matches, the rcu_read_lock()
3260	 * ensures the memory stays valid.
3261	 */
3262	barrier();
3263
3264	return owner->on_cpu;
3265}
3266
3267/*
3268 * Look out! "owner" is an entirely speculative pointer
3269 * access and not reliable.
3270 */
3271int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3272{
3273	if (!sched_feat(OWNER_SPIN))
3274		return 0;
3275
3276	rcu_read_lock();
3277	while (owner_running(lock, owner)) {
3278		if (need_resched())
3279			break;
3280
3281		arch_mutex_cpu_relax();
3282	}
3283	rcu_read_unlock();
3284
3285	/*
3286	 * We break out the loop above on need_resched() and when the
3287	 * owner changed, which is a sign for heavy contention. Return
3288	 * success only when lock->owner is NULL.
3289	 */
3290	return lock->owner == NULL;
3291}
3292#endif
3293
3294#ifdef CONFIG_PREEMPT
3295/*
3296 * this is the entry point to schedule() from in-kernel preemption
3297 * off of preempt_enable. Kernel preemptions off return from interrupt
3298 * occur there and call schedule directly.
3299 */
3300asmlinkage void __sched notrace preempt_schedule(void)
3301{
3302	struct thread_info *ti = current_thread_info();
3303
3304	/*
3305	 * If there is a non-zero preempt_count or interrupts are disabled,
3306	 * we do not want to preempt the current task. Just return..
3307	 */
3308	if (likely(ti->preempt_count || irqs_disabled()))
3309		return;
3310
3311	do {
3312		add_preempt_count_notrace(PREEMPT_ACTIVE);
3313		__schedule();
3314		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3315
3316		/*
3317		 * Check again in case we missed a preemption opportunity
3318		 * between schedule and now.
3319		 */
3320		barrier();
3321	} while (need_resched());
3322}
3323EXPORT_SYMBOL(preempt_schedule);
3324
3325/*
3326 * this is the entry point to schedule() from kernel preemption
3327 * off of irq context.
3328 * Note, that this is called and return with irqs disabled. This will
3329 * protect us against recursive calling from irq.
3330 */
3331asmlinkage void __sched preempt_schedule_irq(void)
3332{
3333	struct thread_info *ti = current_thread_info();
3334
3335	/* Catch callers which need to be fixed */
3336	BUG_ON(ti->preempt_count || !irqs_disabled());
3337
3338	do {
3339		add_preempt_count(PREEMPT_ACTIVE);
3340		local_irq_enable();
3341		__schedule();
3342		local_irq_disable();
3343		sub_preempt_count(PREEMPT_ACTIVE);
3344
3345		/*
3346		 * Check again in case we missed a preemption opportunity
3347		 * between schedule and now.
3348		 */
3349		barrier();
3350	} while (need_resched());
3351}
3352
3353#endif /* CONFIG_PREEMPT */
3354
3355int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3356			  void *key)
3357{
3358	return try_to_wake_up(curr->private, mode, wake_flags);
3359}
3360EXPORT_SYMBOL(default_wake_function);
3361
3362/*
3363 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3364 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3365 * number) then we wake all the non-exclusive tasks and one exclusive task.
3366 *
3367 * There are circumstances in which we can try to wake a task which has already
3368 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3369 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3370 */
3371static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3372			int nr_exclusive, int wake_flags, void *key)
3373{
3374	wait_queue_t *curr, *next;
3375
3376	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3377		unsigned flags = curr->flags;
3378
3379		if (curr->func(curr, mode, wake_flags, key) &&
3380				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3381			break;
3382	}
3383}
3384
3385/**
3386 * __wake_up - wake up threads blocked on a waitqueue.
3387 * @q: the waitqueue
3388 * @mode: which threads
3389 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3390 * @key: is directly passed to the wakeup function
3391 *
3392 * It may be assumed that this function implies a write memory barrier before
3393 * changing the task state if and only if any tasks are woken up.
3394 */
3395void __wake_up(wait_queue_head_t *q, unsigned int mode,
3396			int nr_exclusive, void *key)
3397{
3398	unsigned long flags;
3399
3400	spin_lock_irqsave(&q->lock, flags);
3401	__wake_up_common(q, mode, nr_exclusive, 0, key);
3402	spin_unlock_irqrestore(&q->lock, flags);
3403}
3404EXPORT_SYMBOL(__wake_up);
3405
3406/*
3407 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3408 */
3409void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3410{
3411	__wake_up_common(q, mode, 1, 0, NULL);
3412}
3413EXPORT_SYMBOL_GPL(__wake_up_locked);
3414
3415void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3416{
3417	__wake_up_common(q, mode, 1, 0, key);
3418}
3419EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3420
3421/**
3422 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3423 * @q: the waitqueue
3424 * @mode: which threads
3425 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3426 * @key: opaque value to be passed to wakeup targets
3427 *
3428 * The sync wakeup differs that the waker knows that it will schedule
3429 * away soon, so while the target thread will be woken up, it will not
3430 * be migrated to another CPU - ie. the two threads are 'synchronized'
3431 * with each other. This can prevent needless bouncing between CPUs.
3432 *
3433 * On UP it can prevent extra preemption.
3434 *
3435 * It may be assumed that this function implies a write memory barrier before
3436 * changing the task state if and only if any tasks are woken up.
3437 */
3438void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3439			int nr_exclusive, void *key)
3440{
3441	unsigned long flags;
3442	int wake_flags = WF_SYNC;
3443
3444	if (unlikely(!q))
3445		return;
3446
3447	if (unlikely(!nr_exclusive))
3448		wake_flags = 0;
3449
3450	spin_lock_irqsave(&q->lock, flags);
3451	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3452	spin_unlock_irqrestore(&q->lock, flags);
3453}
3454EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3455
3456/*
3457 * __wake_up_sync - see __wake_up_sync_key()
3458 */
3459void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3460{
3461	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3462}
3463EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3464
3465/**
3466 * complete: - signals a single thread waiting on this completion
3467 * @x:  holds the state of this particular completion
3468 *
3469 * This will wake up a single thread waiting on this completion. Threads will be
3470 * awakened in the same order in which they were queued.
3471 *
3472 * See also complete_all(), wait_for_completion() and related routines.
3473 *
3474 * It may be assumed that this function implies a write memory barrier before
3475 * changing the task state if and only if any tasks are woken up.
3476 */
3477void complete(struct completion *x)
3478{
3479	unsigned long flags;
3480
3481	spin_lock_irqsave(&x->wait.lock, flags);
3482	x->done++;
3483	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3484	spin_unlock_irqrestore(&x->wait.lock, flags);
3485}
3486EXPORT_SYMBOL(complete);
3487
3488/**
3489 * complete_all: - signals all threads waiting on this completion
3490 * @x:  holds the state of this particular completion
3491 *
3492 * This will wake up all threads waiting on this particular completion event.
3493 *
3494 * It may be assumed that this function implies a write memory barrier before
3495 * changing the task state if and only if any tasks are woken up.
3496 */
3497void complete_all(struct completion *x)
3498{
3499	unsigned long flags;
3500
3501	spin_lock_irqsave(&x->wait.lock, flags);
3502	x->done += UINT_MAX/2;
3503	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3504	spin_unlock_irqrestore(&x->wait.lock, flags);
3505}
3506EXPORT_SYMBOL(complete_all);
3507
3508static inline long __sched
3509do_wait_for_common(struct completion *x, long timeout, int state)
3510{
3511	if (!x->done) {
3512		DECLARE_WAITQUEUE(wait, current);
3513
3514		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3515		do {
3516			if (signal_pending_state(state, current)) {
3517				timeout = -ERESTARTSYS;
3518				break;
3519			}
3520			__set_current_state(state);
3521			spin_unlock_irq(&x->wait.lock);
3522			timeout = schedule_timeout(timeout);
3523			spin_lock_irq(&x->wait.lock);
3524		} while (!x->done && timeout);
3525		__remove_wait_queue(&x->wait, &wait);
3526		if (!x->done)
3527			return timeout;
3528	}
3529	x->done--;
3530	return timeout ?: 1;
3531}
3532
3533static long __sched
3534wait_for_common(struct completion *x, long timeout, int state)
3535{
3536	might_sleep();
3537
3538	spin_lock_irq(&x->wait.lock);
3539	timeout = do_wait_for_common(x, timeout, state);
3540	spin_unlock_irq(&x->wait.lock);
3541	return timeout;
3542}
3543
3544/**
3545 * wait_for_completion: - waits for completion of a task
3546 * @x:  holds the state of this particular completion
3547 *
3548 * This waits to be signaled for completion of a specific task. It is NOT
3549 * interruptible and there is no timeout.
3550 *
3551 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3552 * and interrupt capability. Also see complete().
3553 */
3554void __sched wait_for_completion(struct completion *x)
3555{
3556	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3557}
3558EXPORT_SYMBOL(wait_for_completion);
3559
3560/**
3561 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3562 * @x:  holds the state of this particular completion
3563 * @timeout:  timeout value in jiffies
3564 *
3565 * This waits for either a completion of a specific task to be signaled or for a
3566 * specified timeout to expire. The timeout is in jiffies. It is not
3567 * interruptible.
3568 *
3569 * The return value is 0 if timed out, and positive (at least 1, or number of
3570 * jiffies left till timeout) if completed.
3571 */
3572unsigned long __sched
3573wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3574{
3575	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3576}
3577EXPORT_SYMBOL(wait_for_completion_timeout);
3578
3579/**
3580 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3581 * @x:  holds the state of this particular completion
3582 *
3583 * This waits for completion of a specific task to be signaled. It is
3584 * interruptible.
3585 *
3586 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3587 */
3588int __sched wait_for_completion_interruptible(struct completion *x)
3589{
3590	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3591	if (t == -ERESTARTSYS)
3592		return t;
3593	return 0;
3594}
3595EXPORT_SYMBOL(wait_for_completion_interruptible);
3596
3597/**
3598 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3599 * @x:  holds the state of this particular completion
3600 * @timeout:  timeout value in jiffies
3601 *
3602 * This waits for either a completion of a specific task to be signaled or for a
3603 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3604 *
3605 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3606 * positive (at least 1, or number of jiffies left till timeout) if completed.
3607 */
3608long __sched
3609wait_for_completion_interruptible_timeout(struct completion *x,
3610					  unsigned long timeout)
3611{
3612	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3613}
3614EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3615
3616/**
3617 * wait_for_completion_killable: - waits for completion of a task (killable)
3618 * @x:  holds the state of this particular completion
3619 *
3620 * This waits to be signaled for completion of a specific task. It can be
3621 * interrupted by a kill signal.
3622 *
3623 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3624 */
3625int __sched wait_for_completion_killable(struct completion *x)
3626{
3627	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3628	if (t == -ERESTARTSYS)
3629		return t;
3630	return 0;
3631}
3632EXPORT_SYMBOL(wait_for_completion_killable);
3633
3634/**
3635 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3636 * @x:  holds the state of this particular completion
3637 * @timeout:  timeout value in jiffies
3638 *
3639 * This waits for either a completion of a specific task to be
3640 * signaled or for a specified timeout to expire. It can be
3641 * interrupted by a kill signal. The timeout is in jiffies.
3642 *
3643 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3644 * positive (at least 1, or number of jiffies left till timeout) if completed.
3645 */
3646long __sched
3647wait_for_completion_killable_timeout(struct completion *x,
3648				     unsigned long timeout)
3649{
3650	return wait_for_common(x, timeout, TASK_KILLABLE);
3651}
3652EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3653
3654/**
3655 *	try_wait_for_completion - try to decrement a completion without blocking
3656 *	@x:	completion structure
3657 *
3658 *	Returns: 0 if a decrement cannot be done without blocking
3659 *		 1 if a decrement succeeded.
3660 *
3661 *	If a completion is being used as a counting completion,
3662 *	attempt to decrement the counter without blocking. This
3663 *	enables us to avoid waiting if the resource the completion
3664 *	is protecting is not available.
3665 */
3666bool try_wait_for_completion(struct completion *x)
3667{
3668	unsigned long flags;
3669	int ret = 1;
3670
3671	spin_lock_irqsave(&x->wait.lock, flags);
3672	if (!x->done)
3673		ret = 0;
3674	else
3675		x->done--;
3676	spin_unlock_irqrestore(&x->wait.lock, flags);
3677	return ret;
3678}
3679EXPORT_SYMBOL(try_wait_for_completion);
3680
3681/**
3682 *	completion_done - Test to see if a completion has any waiters
3683 *	@x:	completion structure
3684 *
3685 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3686 *		 1 if there are no waiters.
3687 *
3688 */
3689bool completion_done(struct completion *x)
3690{
3691	unsigned long flags;
3692	int ret = 1;
3693
3694	spin_lock_irqsave(&x->wait.lock, flags);
3695	if (!x->done)
3696		ret = 0;
3697	spin_unlock_irqrestore(&x->wait.lock, flags);
3698	return ret;
3699}
3700EXPORT_SYMBOL(completion_done);
3701
3702static long __sched
3703sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3704{
3705	unsigned long flags;
3706	wait_queue_t wait;
3707
3708	init_waitqueue_entry(&wait, current);
3709
3710	__set_current_state(state);
3711
3712	spin_lock_irqsave(&q->lock, flags);
3713	__add_wait_queue(q, &wait);
3714	spin_unlock(&q->lock);
3715	timeout = schedule_timeout(timeout);
3716	spin_lock_irq(&q->lock);
3717	__remove_wait_queue(q, &wait);
3718	spin_unlock_irqrestore(&q->lock, flags);
3719
3720	return timeout;
3721}
3722
3723void __sched interruptible_sleep_on(wait_queue_head_t *q)
3724{
3725	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3726}
3727EXPORT_SYMBOL(interruptible_sleep_on);
3728
3729long __sched
3730interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3731{
3732	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3733}
3734EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3735
3736void __sched sleep_on(wait_queue_head_t *q)
3737{
3738	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3739}
3740EXPORT_SYMBOL(sleep_on);
3741
3742long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743{
3744	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3745}
3746EXPORT_SYMBOL(sleep_on_timeout);
3747
3748#ifdef CONFIG_RT_MUTEXES
3749
3750/*
3751 * rt_mutex_setprio - set the current priority of a task
3752 * @p: task
3753 * @prio: prio value (kernel-internal form)
3754 *
3755 * This function changes the 'effective' priority of a task. It does
3756 * not touch ->normal_prio like __setscheduler().
3757 *
3758 * Used by the rt_mutex code to implement priority inheritance logic.
3759 */
3760void rt_mutex_setprio(struct task_struct *p, int prio)
3761{
3762	int oldprio, on_rq, running;
3763	struct rq *rq;
3764	const struct sched_class *prev_class;
3765
3766	BUG_ON(prio < 0 || prio > MAX_PRIO);
3767
3768	rq = __task_rq_lock(p);
3769
3770	trace_sched_pi_setprio(p, prio);
3771	oldprio = p->prio;
3772	prev_class = p->sched_class;
3773	on_rq = p->on_rq;
3774	running = task_current(rq, p);
3775	if (on_rq)
3776		dequeue_task(rq, p, 0);
3777	if (running)
3778		p->sched_class->put_prev_task(rq, p);
3779
3780	if (rt_prio(prio))
3781		p->sched_class = &rt_sched_class;
3782	else
3783		p->sched_class = &fair_sched_class;
3784
3785	p->prio = prio;
3786
3787	if (running)
3788		p->sched_class->set_curr_task(rq);
3789	if (on_rq)
3790		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3791
3792	check_class_changed(rq, p, prev_class, oldprio);
3793	__task_rq_unlock(rq);
3794}
3795
3796#endif
3797
3798void set_user_nice(struct task_struct *p, long nice)
3799{
3800	int old_prio, delta, on_rq;
3801	unsigned long flags;
3802	struct rq *rq;
3803
3804	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3805		return;
3806	/*
3807	 * We have to be careful, if called from sys_setpriority(),
3808	 * the task might be in the middle of scheduling on another CPU.
3809	 */
3810	rq = task_rq_lock(p, &flags);
3811	/*
3812	 * The RT priorities are set via sched_setscheduler(), but we still
3813	 * allow the 'normal' nice value to be set - but as expected
3814	 * it wont have any effect on scheduling until the task is
3815	 * SCHED_FIFO/SCHED_RR:
3816	 */
3817	if (task_has_rt_policy(p)) {
3818		p->static_prio = NICE_TO_PRIO(nice);
3819		goto out_unlock;
3820	}
3821	on_rq = p->on_rq;
3822	if (on_rq)
3823		dequeue_task(rq, p, 0);
3824
3825	p->static_prio = NICE_TO_PRIO(nice);
3826	set_load_weight(p);
3827	old_prio = p->prio;
3828	p->prio = effective_prio(p);
3829	delta = p->prio - old_prio;
3830
3831	if (on_rq) {
3832		enqueue_task(rq, p, 0);
3833		/*
3834		 * If the task increased its priority or is running and
3835		 * lowered its priority, then reschedule its CPU:
3836		 */
3837		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3838			resched_task(rq->curr);
3839	}
3840out_unlock:
3841	task_rq_unlock(rq, p, &flags);
3842}
3843EXPORT_SYMBOL(set_user_nice);
3844
3845/*
3846 * can_nice - check if a task can reduce its nice value
3847 * @p: task
3848 * @nice: nice value
3849 */
3850int can_nice(const struct task_struct *p, const int nice)
3851{
3852	/* convert nice value [19,-20] to rlimit style value [1,40] */
3853	int nice_rlim = 20 - nice;
3854
3855	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3856		capable(CAP_SYS_NICE));
3857}
3858
3859#ifdef __ARCH_WANT_SYS_NICE
3860
3861/*
3862 * sys_nice - change the priority of the current process.
3863 * @increment: priority increment
3864 *
3865 * sys_setpriority is a more generic, but much slower function that
3866 * does similar things.
3867 */
3868SYSCALL_DEFINE1(nice, int, increment)
3869{
3870	long nice, retval;
3871
3872	/*
3873	 * Setpriority might change our priority at the same moment.
3874	 * We don't have to worry. Conceptually one call occurs first
3875	 * and we have a single winner.
3876	 */
3877	if (increment < -40)
3878		increment = -40;
3879	if (increment > 40)
3880		increment = 40;
3881
3882	nice = TASK_NICE(current) + increment;
3883	if (nice < -20)
3884		nice = -20;
3885	if (nice > 19)
3886		nice = 19;
3887
3888	if (increment < 0 && !can_nice(current, nice))
3889		return -EPERM;
3890
3891	retval = security_task_setnice(current, nice);
3892	if (retval)
3893		return retval;
3894
3895	set_user_nice(current, nice);
3896	return 0;
3897}
3898
3899#endif
3900
3901/**
3902 * task_prio - return the priority value of a given task.
3903 * @p: the task in question.
3904 *
3905 * This is the priority value as seen by users in /proc.
3906 * RT tasks are offset by -200. Normal tasks are centered
3907 * around 0, value goes from -16 to +15.
3908 */
3909int task_prio(const struct task_struct *p)
3910{
3911	return p->prio - MAX_RT_PRIO;
3912}
3913
3914/**
3915 * task_nice - return the nice value of a given task.
3916 * @p: the task in question.
3917 */
3918int task_nice(const struct task_struct *p)
3919{
3920	return TASK_NICE(p);
3921}
3922EXPORT_SYMBOL(task_nice);
3923
3924/**
3925 * idle_cpu - is a given cpu idle currently?
3926 * @cpu: the processor in question.
3927 */
3928int idle_cpu(int cpu)
3929{
3930	struct rq *rq = cpu_rq(cpu);
3931
3932	if (rq->curr != rq->idle)
3933		return 0;
3934
3935	if (rq->nr_running)
3936		return 0;
3937
3938#ifdef CONFIG_SMP
3939	if (!llist_empty(&rq->wake_list))
3940		return 0;
3941#endif
3942
3943	return 1;
3944}
3945
3946/**
3947 * idle_task - return the idle task for a given cpu.
3948 * @cpu: the processor in question.
3949 */
3950struct task_struct *idle_task(int cpu)
3951{
3952	return cpu_rq(cpu)->idle;
3953}
3954
3955/**
3956 * find_process_by_pid - find a process with a matching PID value.
3957 * @pid: the pid in question.
3958 */
3959static struct task_struct *find_process_by_pid(pid_t pid)
3960{
3961	return pid ? find_task_by_vpid(pid) : current;
3962}
3963
3964/* Actually do priority change: must hold rq lock. */
3965static void
3966__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3967{
3968	p->policy = policy;
3969	p->rt_priority = prio;
3970	p->normal_prio = normal_prio(p);
3971	/* we are holding p->pi_lock already */
3972	p->prio = rt_mutex_getprio(p);
3973	if (rt_prio(p->prio))
3974		p->sched_class = &rt_sched_class;
3975	else
3976		p->sched_class = &fair_sched_class;
3977	set_load_weight(p);
3978}
3979
3980/*
3981 * check the target process has a UID that matches the current process's
3982 */
3983static bool check_same_owner(struct task_struct *p)
3984{
3985	const struct cred *cred = current_cred(), *pcred;
3986	bool match;
3987
3988	rcu_read_lock();
3989	pcred = __task_cred(p);
3990	if (cred->user->user_ns == pcred->user->user_ns)
3991		match = (cred->euid == pcred->euid ||
3992			 cred->euid == pcred->uid);
3993	else
3994		match = false;
3995	rcu_read_unlock();
3996	return match;
3997}
3998
3999static int __sched_setscheduler(struct task_struct *p, int policy,
4000				const struct sched_param *param, bool user)
4001{
4002	int retval, oldprio, oldpolicy = -1, on_rq, running;
4003	unsigned long flags;
4004	const struct sched_class *prev_class;
4005	struct rq *rq;
4006	int reset_on_fork;
4007
4008	/* may grab non-irq protected spin_locks */
4009	BUG_ON(in_interrupt());
4010recheck:
4011	/* double check policy once rq lock held */
4012	if (policy < 0) {
4013		reset_on_fork = p->sched_reset_on_fork;
4014		policy = oldpolicy = p->policy;
4015	} else {
4016		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4017		policy &= ~SCHED_RESET_ON_FORK;
4018
4019		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4020				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4021				policy != SCHED_IDLE)
4022			return -EINVAL;
4023	}
4024
4025	/*
4026	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4027	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4028	 * SCHED_BATCH and SCHED_IDLE is 0.
4029	 */
4030	if (param->sched_priority < 0 ||
4031	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4032	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4033		return -EINVAL;
4034	if (rt_policy(policy) != (param->sched_priority != 0))
4035		return -EINVAL;
4036
4037	/*
4038	 * Allow unprivileged RT tasks to decrease priority:
4039	 */
4040	if (user && !capable(CAP_SYS_NICE)) {
4041		if (rt_policy(policy)) {
4042			unsigned long rlim_rtprio =
4043					task_rlimit(p, RLIMIT_RTPRIO);
4044
4045			/* can't set/change the rt policy */
4046			if (policy != p->policy && !rlim_rtprio)
4047				return -EPERM;
4048
4049			/* can't increase priority */
4050			if (param->sched_priority > p->rt_priority &&
4051			    param->sched_priority > rlim_rtprio)
4052				return -EPERM;
4053		}
4054
4055		/*
4056		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4057		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4058		 */
4059		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4060			if (!can_nice(p, TASK_NICE(p)))
4061				return -EPERM;
4062		}
4063
4064		/* can't change other user's priorities */
4065		if (!check_same_owner(p))
4066			return -EPERM;
4067
4068		/* Normal users shall not reset the sched_reset_on_fork flag */
4069		if (p->sched_reset_on_fork && !reset_on_fork)
4070			return -EPERM;
4071	}
4072
4073	if (user) {
4074		retval = security_task_setscheduler(p);
4075		if (retval)
4076			return retval;
4077	}
4078
4079	/*
4080	 * make sure no PI-waiters arrive (or leave) while we are
4081	 * changing the priority of the task:
4082	 *
4083	 * To be able to change p->policy safely, the appropriate
4084	 * runqueue lock must be held.
4085	 */
4086	rq = task_rq_lock(p, &flags);
4087
4088	/*
4089	 * Changing the policy of the stop threads its a very bad idea
4090	 */
4091	if (p == rq->stop) {
4092		task_rq_unlock(rq, p, &flags);
4093		return -EINVAL;
4094	}
4095
4096	/*
4097	 * If not changing anything there's no need to proceed further:
4098	 */
4099	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4100			param->sched_priority == p->rt_priority))) {
4101
4102		__task_rq_unlock(rq);
4103		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4104		return 0;
4105	}
4106
4107#ifdef CONFIG_RT_GROUP_SCHED
4108	if (user) {
4109		/*
4110		 * Do not allow realtime tasks into groups that have no runtime
4111		 * assigned.
4112		 */
4113		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4114				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4115				!task_group_is_autogroup(task_group(p))) {
4116			task_rq_unlock(rq, p, &flags);
4117			return -EPERM;
4118		}
4119	}
4120#endif
4121
4122	/* recheck policy now with rq lock held */
4123	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4124		policy = oldpolicy = -1;
4125		task_rq_unlock(rq, p, &flags);
4126		goto recheck;
4127	}
4128	on_rq = p->on_rq;
4129	running = task_current(rq, p);
4130	if (on_rq)
4131		dequeue_task(rq, p, 0);
4132	if (running)
4133		p->sched_class->put_prev_task(rq, p);
4134
4135	p->sched_reset_on_fork = reset_on_fork;
4136
4137	oldprio = p->prio;
4138	prev_class = p->sched_class;
4139	__setscheduler(rq, p, policy, param->sched_priority);
4140
4141	if (running)
4142		p->sched_class->set_curr_task(rq);
4143	if (on_rq)
4144		enqueue_task(rq, p, 0);
4145
4146	check_class_changed(rq, p, prev_class, oldprio);
4147	task_rq_unlock(rq, p, &flags);
4148
4149	rt_mutex_adjust_pi(p);
4150
4151	return 0;
4152}
4153
4154/**
4155 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4156 * @p: the task in question.
4157 * @policy: new policy.
4158 * @param: structure containing the new RT priority.
4159 *
4160 * NOTE that the task may be already dead.
4161 */
4162int sched_setscheduler(struct task_struct *p, int policy,
4163		       const struct sched_param *param)
4164{
4165	return __sched_setscheduler(p, policy, param, true);
4166}
4167EXPORT_SYMBOL_GPL(sched_setscheduler);
4168
4169/**
4170 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4171 * @p: the task in question.
4172 * @policy: new policy.
4173 * @param: structure containing the new RT priority.
4174 *
4175 * Just like sched_setscheduler, only don't bother checking if the
4176 * current context has permission.  For example, this is needed in
4177 * stop_machine(): we create temporary high priority worker threads,
4178 * but our caller might not have that capability.
4179 */
4180int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4181			       const struct sched_param *param)
4182{
4183	return __sched_setscheduler(p, policy, param, false);
4184}
4185
4186static int
4187do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4188{
4189	struct sched_param lparam;
4190	struct task_struct *p;
4191	int retval;
4192
4193	if (!param || pid < 0)
4194		return -EINVAL;
4195	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4196		return -EFAULT;
4197
4198	rcu_read_lock();
4199	retval = -ESRCH;
4200	p = find_process_by_pid(pid);
4201	if (p != NULL)
4202		retval = sched_setscheduler(p, policy, &lparam);
4203	rcu_read_unlock();
4204
4205	return retval;
4206}
4207
4208/**
4209 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4210 * @pid: the pid in question.
4211 * @policy: new policy.
4212 * @param: structure containing the new RT priority.
4213 */
4214SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4215		struct sched_param __user *, param)
4216{
4217	/* negative values for policy are not valid */
4218	if (policy < 0)
4219		return -EINVAL;
4220
4221	return do_sched_setscheduler(pid, policy, param);
4222}
4223
4224/**
4225 * sys_sched_setparam - set/change the RT priority of a thread
4226 * @pid: the pid in question.
4227 * @param: structure containing the new RT priority.
4228 */
4229SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4230{
4231	return do_sched_setscheduler(pid, -1, param);
4232}
4233
4234/**
4235 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4236 * @pid: the pid in question.
4237 */
4238SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4239{
4240	struct task_struct *p;
4241	int retval;
4242
4243	if (pid < 0)
4244		return -EINVAL;
4245
4246	retval = -ESRCH;
4247	rcu_read_lock();
4248	p = find_process_by_pid(pid);
4249	if (p) {
4250		retval = security_task_getscheduler(p);
4251		if (!retval)
4252			retval = p->policy
4253				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4254	}
4255	rcu_read_unlock();
4256	return retval;
4257}
4258
4259/**
4260 * sys_sched_getparam - get the RT priority of a thread
4261 * @pid: the pid in question.
4262 * @param: structure containing the RT priority.
4263 */
4264SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4265{
4266	struct sched_param lp;
4267	struct task_struct *p;
4268	int retval;
4269
4270	if (!param || pid < 0)
4271		return -EINVAL;
4272
4273	rcu_read_lock();
4274	p = find_process_by_pid(pid);
4275	retval = -ESRCH;
4276	if (!p)
4277		goto out_unlock;
4278
4279	retval = security_task_getscheduler(p);
4280	if (retval)
4281		goto out_unlock;
4282
4283	lp.sched_priority = p->rt_priority;
4284	rcu_read_unlock();
4285
4286	/*
4287	 * This one might sleep, we cannot do it with a spinlock held ...
4288	 */
4289	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4290
4291	return retval;
4292
4293out_unlock:
4294	rcu_read_unlock();
4295	return retval;
4296}
4297
4298long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4299{
4300	cpumask_var_t cpus_allowed, new_mask;
4301	struct task_struct *p;
4302	int retval;
4303
4304	get_online_cpus();
4305	rcu_read_lock();
4306
4307	p = find_process_by_pid(pid);
4308	if (!p) {
4309		rcu_read_unlock();
4310		put_online_cpus();
4311		return -ESRCH;
4312	}
4313
4314	/* Prevent p going away */
4315	get_task_struct(p);
4316	rcu_read_unlock();
4317
4318	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4319		retval = -ENOMEM;
4320		goto out_put_task;
4321	}
4322	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4323		retval = -ENOMEM;
4324		goto out_free_cpus_allowed;
4325	}
4326	retval = -EPERM;
4327	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4328		goto out_unlock;
4329
4330	retval = security_task_setscheduler(p);
4331	if (retval)
4332		goto out_unlock;
4333
4334	cpuset_cpus_allowed(p, cpus_allowed);
4335	cpumask_and(new_mask, in_mask, cpus_allowed);
4336again:
4337	retval = set_cpus_allowed_ptr(p, new_mask);
4338
4339	if (!retval) {
4340		cpuset_cpus_allowed(p, cpus_allowed);
4341		if (!cpumask_subset(new_mask, cpus_allowed)) {
4342			/*
4343			 * We must have raced with a concurrent cpuset
4344			 * update. Just reset the cpus_allowed to the
4345			 * cpuset's cpus_allowed
4346			 */
4347			cpumask_copy(new_mask, cpus_allowed);
4348			goto again;
4349		}
4350	}
4351out_unlock:
4352	free_cpumask_var(new_mask);
4353out_free_cpus_allowed:
4354	free_cpumask_var(cpus_allowed);
4355out_put_task:
4356	put_task_struct(p);
4357	put_online_cpus();
4358	return retval;
4359}
4360
4361static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4362			     struct cpumask *new_mask)
4363{
4364	if (len < cpumask_size())
4365		cpumask_clear(new_mask);
4366	else if (len > cpumask_size())
4367		len = cpumask_size();
4368
4369	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4370}
4371
4372/**
4373 * sys_sched_setaffinity - set the cpu affinity of a process
4374 * @pid: pid of the process
4375 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4376 * @user_mask_ptr: user-space pointer to the new cpu mask
4377 */
4378SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4379		unsigned long __user *, user_mask_ptr)
4380{
4381	cpumask_var_t new_mask;
4382	int retval;
4383
4384	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4385		return -ENOMEM;
4386
4387	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4388	if (retval == 0)
4389		retval = sched_setaffinity(pid, new_mask);
4390	free_cpumask_var(new_mask);
4391	return retval;
4392}
4393
4394long sched_getaffinity(pid_t pid, struct cpumask *mask)
4395{
4396	struct task_struct *p;
4397	unsigned long flags;
4398	int retval;
4399
4400	get_online_cpus();
4401	rcu_read_lock();
4402
4403	retval = -ESRCH;
4404	p = find_process_by_pid(pid);
4405	if (!p)
4406		goto out_unlock;
4407
4408	retval = security_task_getscheduler(p);
4409	if (retval)
4410		goto out_unlock;
4411
4412	raw_spin_lock_irqsave(&p->pi_lock, flags);
4413	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4414	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4415
4416out_unlock:
4417	rcu_read_unlock();
4418	put_online_cpus();
4419
4420	return retval;
4421}
4422
4423/**
4424 * sys_sched_getaffinity - get the cpu affinity of a process
4425 * @pid: pid of the process
4426 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4427 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4428 */
4429SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4430		unsigned long __user *, user_mask_ptr)
4431{
4432	int ret;
4433	cpumask_var_t mask;
4434
4435	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4436		return -EINVAL;
4437	if (len & (sizeof(unsigned long)-1))
4438		return -EINVAL;
4439
4440	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4441		return -ENOMEM;
4442
4443	ret = sched_getaffinity(pid, mask);
4444	if (ret == 0) {
4445		size_t retlen = min_t(size_t, len, cpumask_size());
4446
4447		if (copy_to_user(user_mask_ptr, mask, retlen))
4448			ret = -EFAULT;
4449		else
4450			ret = retlen;
4451	}
4452	free_cpumask_var(mask);
4453
4454	return ret;
4455}
4456
4457/**
4458 * sys_sched_yield - yield the current processor to other threads.
4459 *
4460 * This function yields the current CPU to other tasks. If there are no
4461 * other threads running on this CPU then this function will return.
4462 */
4463SYSCALL_DEFINE0(sched_yield)
4464{
4465	struct rq *rq = this_rq_lock();
4466
4467	schedstat_inc(rq, yld_count);
4468	current->sched_class->yield_task(rq);
4469
4470	/*
4471	 * Since we are going to call schedule() anyway, there's
4472	 * no need to preempt or enable interrupts:
4473	 */
4474	__release(rq->lock);
4475	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4476	do_raw_spin_unlock(&rq->lock);
4477	preempt_enable_no_resched();
4478
4479	schedule();
4480
4481	return 0;
4482}
4483
4484static inline int should_resched(void)
4485{
4486	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4487}
4488
4489static void __cond_resched(void)
4490{
4491	add_preempt_count(PREEMPT_ACTIVE);
4492	__schedule();
4493	sub_preempt_count(PREEMPT_ACTIVE);
4494}
4495
4496int __sched _cond_resched(void)
4497{
4498	if (should_resched()) {
4499		__cond_resched();
4500		return 1;
4501	}
4502	return 0;
4503}
4504EXPORT_SYMBOL(_cond_resched);
4505
4506/*
4507 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4508 * call schedule, and on return reacquire the lock.
4509 *
4510 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4511 * operations here to prevent schedule() from being called twice (once via
4512 * spin_unlock(), once by hand).
4513 */
4514int __cond_resched_lock(spinlock_t *lock)
4515{
4516	int resched = should_resched();
4517	int ret = 0;
4518
4519	lockdep_assert_held(lock);
4520
4521	if (spin_needbreak(lock) || resched) {
4522		spin_unlock(lock);
4523		if (resched)
4524			__cond_resched();
4525		else
4526			cpu_relax();
4527		ret = 1;
4528		spin_lock(lock);
4529	}
4530	return ret;
4531}
4532EXPORT_SYMBOL(__cond_resched_lock);
4533
4534int __sched __cond_resched_softirq(void)
4535{
4536	BUG_ON(!in_softirq());
4537
4538	if (should_resched()) {
4539		local_bh_enable();
4540		__cond_resched();
4541		local_bh_disable();
4542		return 1;
4543	}
4544	return 0;
4545}
4546EXPORT_SYMBOL(__cond_resched_softirq);
4547
4548/**
4549 * yield - yield the current processor to other threads.
4550 *
4551 * This is a shortcut for kernel-space yielding - it marks the
4552 * thread runnable and calls sys_sched_yield().
4553 */
4554void __sched yield(void)
4555{
4556	set_current_state(TASK_RUNNING);
4557	sys_sched_yield();
4558}
4559EXPORT_SYMBOL(yield);
4560
4561/**
4562 * yield_to - yield the current processor to another thread in
4563 * your thread group, or accelerate that thread toward the
4564 * processor it's on.
4565 * @p: target task
4566 * @preempt: whether task preemption is allowed or not
4567 *
4568 * It's the caller's job to ensure that the target task struct
4569 * can't go away on us before we can do any checks.
4570 *
4571 * Returns true if we indeed boosted the target task.
4572 */
4573bool __sched yield_to(struct task_struct *p, bool preempt)
4574{
4575	struct task_struct *curr = current;
4576	struct rq *rq, *p_rq;
4577	unsigned long flags;
4578	bool yielded = 0;
4579
4580	local_irq_save(flags);
4581	rq = this_rq();
4582
4583again:
4584	p_rq = task_rq(p);
4585	double_rq_lock(rq, p_rq);
4586	while (task_rq(p) != p_rq) {
4587		double_rq_unlock(rq, p_rq);
4588		goto again;
4589	}
4590
4591	if (!curr->sched_class->yield_to_task)
4592		goto out;
4593
4594	if (curr->sched_class != p->sched_class)
4595		goto out;
4596
4597	if (task_running(p_rq, p) || p->state)
4598		goto out;
4599
4600	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4601	if (yielded) {
4602		schedstat_inc(rq, yld_count);
4603		/*
4604		 * Make p's CPU reschedule; pick_next_entity takes care of
4605		 * fairness.
4606		 */
4607		if (preempt && rq != p_rq)
4608			resched_task(p_rq->curr);
4609	} else {
4610		/*
4611		 * We might have set it in task_yield_fair(), but are
4612		 * not going to schedule(), so don't want to skip
4613		 * the next update.
4614		 */
4615		rq->skip_clock_update = 0;
4616	}
4617
4618out:
4619	double_rq_unlock(rq, p_rq);
4620	local_irq_restore(flags);
4621
4622	if (yielded)
4623		schedule();
4624
4625	return yielded;
4626}
4627EXPORT_SYMBOL_GPL(yield_to);
4628
4629/*
4630 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4631 * that process accounting knows that this is a task in IO wait state.
4632 */
4633void __sched io_schedule(void)
4634{
4635	struct rq *rq = raw_rq();
4636
4637	delayacct_blkio_start();
4638	atomic_inc(&rq->nr_iowait);
4639	blk_flush_plug(current);
4640	current->in_iowait = 1;
4641	schedule();
4642	current->in_iowait = 0;
4643	atomic_dec(&rq->nr_iowait);
4644	delayacct_blkio_end();
4645}
4646EXPORT_SYMBOL(io_schedule);
4647
4648long __sched io_schedule_timeout(long timeout)
4649{
4650	struct rq *rq = raw_rq();
4651	long ret;
4652
4653	delayacct_blkio_start();
4654	atomic_inc(&rq->nr_iowait);
4655	blk_flush_plug(current);
4656	current->in_iowait = 1;
4657	ret = schedule_timeout(timeout);
4658	current->in_iowait = 0;
4659	atomic_dec(&rq->nr_iowait);
4660	delayacct_blkio_end();
4661	return ret;
4662}
4663
4664/**
4665 * sys_sched_get_priority_max - return maximum RT priority.
4666 * @policy: scheduling class.
4667 *
4668 * this syscall returns the maximum rt_priority that can be used
4669 * by a given scheduling class.
4670 */
4671SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4672{
4673	int ret = -EINVAL;
4674
4675	switch (policy) {
4676	case SCHED_FIFO:
4677	case SCHED_RR:
4678		ret = MAX_USER_RT_PRIO-1;
4679		break;
4680	case SCHED_NORMAL:
4681	case SCHED_BATCH:
4682	case SCHED_IDLE:
4683		ret = 0;
4684		break;
4685	}
4686	return ret;
4687}
4688
4689/**
4690 * sys_sched_get_priority_min - return minimum RT priority.
4691 * @policy: scheduling class.
4692 *
4693 * this syscall returns the minimum rt_priority that can be used
4694 * by a given scheduling class.
4695 */
4696SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4697{
4698	int ret = -EINVAL;
4699
4700	switch (policy) {
4701	case SCHED_FIFO:
4702	case SCHED_RR:
4703		ret = 1;
4704		break;
4705	case SCHED_NORMAL:
4706	case SCHED_BATCH:
4707	case SCHED_IDLE:
4708		ret = 0;
4709	}
4710	return ret;
4711}
4712
4713/**
4714 * sys_sched_rr_get_interval - return the default timeslice of a process.
4715 * @pid: pid of the process.
4716 * @interval: userspace pointer to the timeslice value.
4717 *
4718 * this syscall writes the default timeslice value of a given process
4719 * into the user-space timespec buffer. A value of '0' means infinity.
4720 */
4721SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4722		struct timespec __user *, interval)
4723{
4724	struct task_struct *p;
4725	unsigned int time_slice;
4726	unsigned long flags;
4727	struct rq *rq;
4728	int retval;
4729	struct timespec t;
4730
4731	if (pid < 0)
4732		return -EINVAL;
4733
4734	retval = -ESRCH;
4735	rcu_read_lock();
4736	p = find_process_by_pid(pid);
4737	if (!p)
4738		goto out_unlock;
4739
4740	retval = security_task_getscheduler(p);
4741	if (retval)
4742		goto out_unlock;
4743
4744	rq = task_rq_lock(p, &flags);
4745	time_slice = p->sched_class->get_rr_interval(rq, p);
4746	task_rq_unlock(rq, p, &flags);
4747
4748	rcu_read_unlock();
4749	jiffies_to_timespec(time_slice, &t);
4750	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4751	return retval;
4752
4753out_unlock:
4754	rcu_read_unlock();
4755	return retval;
4756}
4757
4758static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4759
4760void sched_show_task(struct task_struct *p)
4761{
4762	unsigned long free = 0;
4763	unsigned state;
4764
4765	state = p->state ? __ffs(p->state) + 1 : 0;
4766	printk(KERN_INFO "%-15.15s %c", p->comm,
4767		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4768#if BITS_PER_LONG == 32
4769	if (state == TASK_RUNNING)
4770		printk(KERN_CONT " running  ");
4771	else
4772		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4773#else
4774	if (state == TASK_RUNNING)
4775		printk(KERN_CONT "  running task    ");
4776	else
4777		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4778#endif
4779#ifdef CONFIG_DEBUG_STACK_USAGE
4780	free = stack_not_used(p);
4781#endif
4782	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4783		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4784		(unsigned long)task_thread_info(p)->flags);
4785
4786	show_stack(p, NULL);
4787}
4788
4789void show_state_filter(unsigned long state_filter)
4790{
4791	struct task_struct *g, *p;
4792
4793#if BITS_PER_LONG == 32
4794	printk(KERN_INFO
4795		"  task                PC stack   pid father\n");
4796#else
4797	printk(KERN_INFO
4798		"  task                        PC stack   pid father\n");
4799#endif
4800	rcu_read_lock();
4801	do_each_thread(g, p) {
4802		/*
4803		 * reset the NMI-timeout, listing all files on a slow
4804		 * console might take a lot of time:
4805		 */
4806		touch_nmi_watchdog();
4807		if (!state_filter || (p->state & state_filter))
4808			sched_show_task(p);
4809	} while_each_thread(g, p);
4810
4811	touch_all_softlockup_watchdogs();
4812
4813#ifdef CONFIG_SCHED_DEBUG
4814	sysrq_sched_debug_show();
4815#endif
4816	rcu_read_unlock();
4817	/*
4818	 * Only show locks if all tasks are dumped:
4819	 */
4820	if (!state_filter)
4821		debug_show_all_locks();
4822}
4823
4824void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4825{
4826	idle->sched_class = &idle_sched_class;
4827}
4828
4829/**
4830 * init_idle - set up an idle thread for a given CPU
4831 * @idle: task in question
4832 * @cpu: cpu the idle task belongs to
4833 *
4834 * NOTE: this function does not set the idle thread's NEED_RESCHED
4835 * flag, to make booting more robust.
4836 */
4837void __cpuinit init_idle(struct task_struct *idle, int cpu)
4838{
4839	struct rq *rq = cpu_rq(cpu);
4840	unsigned long flags;
4841
4842	raw_spin_lock_irqsave(&rq->lock, flags);
4843
4844	__sched_fork(idle);
4845	idle->state = TASK_RUNNING;
4846	idle->se.exec_start = sched_clock();
4847
4848	do_set_cpus_allowed(idle, cpumask_of(cpu));
4849	/*
4850	 * We're having a chicken and egg problem, even though we are
4851	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4852	 * lockdep check in task_group() will fail.
4853	 *
4854	 * Similar case to sched_fork(). / Alternatively we could
4855	 * use task_rq_lock() here and obtain the other rq->lock.
4856	 *
4857	 * Silence PROVE_RCU
4858	 */
4859	rcu_read_lock();
4860	__set_task_cpu(idle, cpu);
4861	rcu_read_unlock();
4862
4863	rq->curr = rq->idle = idle;
4864#if defined(CONFIG_SMP)
4865	idle->on_cpu = 1;
4866#endif
4867	raw_spin_unlock_irqrestore(&rq->lock, flags);
4868
4869	/* Set the preempt count _outside_ the spinlocks! */
4870	task_thread_info(idle)->preempt_count = 0;
4871
4872	/*
4873	 * The idle tasks have their own, simple scheduling class:
4874	 */
4875	idle->sched_class = &idle_sched_class;
4876	ftrace_graph_init_idle_task(idle, cpu);
4877#if defined(CONFIG_SMP)
4878	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4879#endif
4880}
4881
4882#ifdef CONFIG_SMP
4883void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4884{
4885	if (p->sched_class && p->sched_class->set_cpus_allowed)
4886		p->sched_class->set_cpus_allowed(p, new_mask);
4887
4888	cpumask_copy(&p->cpus_allowed, new_mask);
4889	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4890}
4891
4892/*
4893 * This is how migration works:
4894 *
4895 * 1) we invoke migration_cpu_stop() on the target CPU using
4896 *    stop_one_cpu().
4897 * 2) stopper starts to run (implicitly forcing the migrated thread
4898 *    off the CPU)
4899 * 3) it checks whether the migrated task is still in the wrong runqueue.
4900 * 4) if it's in the wrong runqueue then the migration thread removes
4901 *    it and puts it into the right queue.
4902 * 5) stopper completes and stop_one_cpu() returns and the migration
4903 *    is done.
4904 */
4905
4906/*
4907 * Change a given task's CPU affinity. Migrate the thread to a
4908 * proper CPU and schedule it away if the CPU it's executing on
4909 * is removed from the allowed bitmask.
4910 *
4911 * NOTE: the caller must have a valid reference to the task, the
4912 * task must not exit() & deallocate itself prematurely. The
4913 * call is not atomic; no spinlocks may be held.
4914 */
4915int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4916{
4917	unsigned long flags;
4918	struct rq *rq;
4919	unsigned int dest_cpu;
4920	int ret = 0;
4921
4922	rq = task_rq_lock(p, &flags);
4923
4924	if (cpumask_equal(&p->cpus_allowed, new_mask))
4925		goto out;
4926
4927	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4928		ret = -EINVAL;
4929		goto out;
4930	}
4931
4932	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4933		ret = -EINVAL;
4934		goto out;
4935	}
4936
4937	do_set_cpus_allowed(p, new_mask);
4938
4939	/* Can the task run on the task's current CPU? If so, we're done */
4940	if (cpumask_test_cpu(task_cpu(p), new_mask))
4941		goto out;
4942
4943	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4944	if (p->on_rq) {
4945		struct migration_arg arg = { p, dest_cpu };
4946		/* Need help from migration thread: drop lock and wait. */
4947		task_rq_unlock(rq, p, &flags);
4948		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4949		tlb_migrate_finish(p->mm);
4950		return 0;
4951	}
4952out:
4953	task_rq_unlock(rq, p, &flags);
4954
4955	return ret;
4956}
4957EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4958
4959/*
4960 * Move (not current) task off this cpu, onto dest cpu. We're doing
4961 * this because either it can't run here any more (set_cpus_allowed()
4962 * away from this CPU, or CPU going down), or because we're
4963 * attempting to rebalance this task on exec (sched_exec).
4964 *
4965 * So we race with normal scheduler movements, but that's OK, as long
4966 * as the task is no longer on this CPU.
4967 *
4968 * Returns non-zero if task was successfully migrated.
4969 */
4970static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4971{
4972	struct rq *rq_dest, *rq_src;
4973	int ret = 0;
4974
4975	if (unlikely(!cpu_active(dest_cpu)))
4976		return ret;
4977
4978	rq_src = cpu_rq(src_cpu);
4979	rq_dest = cpu_rq(dest_cpu);
4980
4981	raw_spin_lock(&p->pi_lock);
4982	double_rq_lock(rq_src, rq_dest);
4983	/* Already moved. */
4984	if (task_cpu(p) != src_cpu)
4985		goto done;
4986	/* Affinity changed (again). */
4987	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4988		goto fail;
4989
4990	/*
4991	 * If we're not on a rq, the next wake-up will ensure we're
4992	 * placed properly.
4993	 */
4994	if (p->on_rq) {
4995		dequeue_task(rq_src, p, 0);
4996		set_task_cpu(p, dest_cpu);
4997		enqueue_task(rq_dest, p, 0);
4998		check_preempt_curr(rq_dest, p, 0);
4999	}
5000done:
5001	ret = 1;
5002fail:
5003	double_rq_unlock(rq_src, rq_dest);
5004	raw_spin_unlock(&p->pi_lock);
5005	return ret;
5006}
5007
5008/*
5009 * migration_cpu_stop - this will be executed by a highprio stopper thread
5010 * and performs thread migration by bumping thread off CPU then
5011 * 'pushing' onto another runqueue.
5012 */
5013static int migration_cpu_stop(void *data)
5014{
5015	struct migration_arg *arg = data;
5016
5017	/*
5018	 * The original target cpu might have gone down and we might
5019	 * be on another cpu but it doesn't matter.
5020	 */
5021	local_irq_disable();
5022	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5023	local_irq_enable();
5024	return 0;
5025}
5026
5027#ifdef CONFIG_HOTPLUG_CPU
5028
5029/*
5030 * Ensures that the idle task is using init_mm right before its cpu goes
5031 * offline.
5032 */
5033void idle_task_exit(void)
5034{
5035	struct mm_struct *mm = current->active_mm;
5036
5037	BUG_ON(cpu_online(smp_processor_id()));
5038
5039	if (mm != &init_mm)
5040		switch_mm(mm, &init_mm, current);
5041	mmdrop(mm);
5042}
5043
5044/*
5045 * While a dead CPU has no uninterruptible tasks queued at this point,
5046 * it might still have a nonzero ->nr_uninterruptible counter, because
5047 * for performance reasons the counter is not stricly tracking tasks to
5048 * their home CPUs. So we just add the counter to another CPU's counter,
5049 * to keep the global sum constant after CPU-down:
5050 */
5051static void migrate_nr_uninterruptible(struct rq *rq_src)
5052{
5053	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5054
5055	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5056	rq_src->nr_uninterruptible = 0;
5057}
5058
5059/*
5060 * remove the tasks which were accounted by rq from calc_load_tasks.
5061 */
5062static void calc_global_load_remove(struct rq *rq)
5063{
5064	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5065	rq->calc_load_active = 0;
5066}
5067
5068/*
5069 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5070 * try_to_wake_up()->select_task_rq().
5071 *
5072 * Called with rq->lock held even though we'er in stop_machine() and
5073 * there's no concurrency possible, we hold the required locks anyway
5074 * because of lock validation efforts.
5075 */
5076static void migrate_tasks(unsigned int dead_cpu)
5077{
5078	struct rq *rq = cpu_rq(dead_cpu);
5079	struct task_struct *next, *stop = rq->stop;
5080	int dest_cpu;
5081
5082	/*
5083	 * Fudge the rq selection such that the below task selection loop
5084	 * doesn't get stuck on the currently eligible stop task.
5085	 *
5086	 * We're currently inside stop_machine() and the rq is either stuck
5087	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5088	 * either way we should never end up calling schedule() until we're
5089	 * done here.
5090	 */
5091	rq->stop = NULL;
5092
5093	/* Ensure any throttled groups are reachable by pick_next_task */
5094	unthrottle_offline_cfs_rqs(rq);
5095
5096	for ( ; ; ) {
5097		/*
5098		 * There's this thread running, bail when that's the only
5099		 * remaining thread.
5100		 */
5101		if (rq->nr_running == 1)
5102			break;
5103
5104		next = pick_next_task(rq);
5105		BUG_ON(!next);
5106		next->sched_class->put_prev_task(rq, next);
5107
5108		/* Find suitable destination for @next, with force if needed. */
5109		dest_cpu = select_fallback_rq(dead_cpu, next);
5110		raw_spin_unlock(&rq->lock);
5111
5112		__migrate_task(next, dead_cpu, dest_cpu);
5113
5114		raw_spin_lock(&rq->lock);
5115	}
5116
5117	rq->stop = stop;
5118}
5119
5120#endif /* CONFIG_HOTPLUG_CPU */
5121
5122#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5123
5124static struct ctl_table sd_ctl_dir[] = {
5125	{
5126		.procname	= "sched_domain",
5127		.mode		= 0555,
5128	},
5129	{}
5130};
5131
5132static struct ctl_table sd_ctl_root[] = {
5133	{
5134		.procname	= "kernel",
5135		.mode		= 0555,
5136		.child		= sd_ctl_dir,
5137	},
5138	{}
5139};
5140
5141static struct ctl_table *sd_alloc_ctl_entry(int n)
5142{
5143	struct ctl_table *entry =
5144		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5145
5146	return entry;
5147}
5148
5149static void sd_free_ctl_entry(struct ctl_table **tablep)
5150{
5151	struct ctl_table *entry;
5152
5153	/*
5154	 * In the intermediate directories, both the child directory and
5155	 * procname are dynamically allocated and could fail but the mode
5156	 * will always be set. In the lowest directory the names are
5157	 * static strings and all have proc handlers.
5158	 */
5159	for (entry = *tablep; entry->mode; entry++) {
5160		if (entry->child)
5161			sd_free_ctl_entry(&entry->child);
5162		if (entry->proc_handler == NULL)
5163			kfree(entry->procname);
5164	}
5165
5166	kfree(*tablep);
5167	*tablep = NULL;
5168}
5169
5170static void
5171set_table_entry(struct ctl_table *entry,
5172		const char *procname, void *data, int maxlen,
5173		umode_t mode, proc_handler *proc_handler)
5174{
5175	entry->procname = procname;
5176	entry->data = data;
5177	entry->maxlen = maxlen;
5178	entry->mode = mode;
5179	entry->proc_handler = proc_handler;
5180}
5181
5182static struct ctl_table *
5183sd_alloc_ctl_domain_table(struct sched_domain *sd)
5184{
5185	struct ctl_table *table = sd_alloc_ctl_entry(13);
5186
5187	if (table == NULL)
5188		return NULL;
5189
5190	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5191		sizeof(long), 0644, proc_doulongvec_minmax);
5192	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5193		sizeof(long), 0644, proc_doulongvec_minmax);
5194	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5195		sizeof(int), 0644, proc_dointvec_minmax);
5196	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5197		sizeof(int), 0644, proc_dointvec_minmax);
5198	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5199		sizeof(int), 0644, proc_dointvec_minmax);
5200	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5201		sizeof(int), 0644, proc_dointvec_minmax);
5202	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5203		sizeof(int), 0644, proc_dointvec_minmax);
5204	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5205		sizeof(int), 0644, proc_dointvec_minmax);
5206	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5207		sizeof(int), 0644, proc_dointvec_minmax);
5208	set_table_entry(&table[9], "cache_nice_tries",
5209		&sd->cache_nice_tries,
5210		sizeof(int), 0644, proc_dointvec_minmax);
5211	set_table_entry(&table[10], "flags", &sd->flags,
5212		sizeof(int), 0644, proc_dointvec_minmax);
5213	set_table_entry(&table[11], "name", sd->name,
5214		CORENAME_MAX_SIZE, 0444, proc_dostring);
5215	/* &table[12] is terminator */
5216
5217	return table;
5218}
5219
5220static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5221{
5222	struct ctl_table *entry, *table;
5223	struct sched_domain *sd;
5224	int domain_num = 0, i;
5225	char buf[32];
5226
5227	for_each_domain(cpu, sd)
5228		domain_num++;
5229	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5230	if (table == NULL)
5231		return NULL;
5232
5233	i = 0;
5234	for_each_domain(cpu, sd) {
5235		snprintf(buf, 32, "domain%d", i);
5236		entry->procname = kstrdup(buf, GFP_KERNEL);
5237		entry->mode = 0555;
5238		entry->child = sd_alloc_ctl_domain_table(sd);
5239		entry++;
5240		i++;
5241	}
5242	return table;
5243}
5244
5245static struct ctl_table_header *sd_sysctl_header;
5246static void register_sched_domain_sysctl(void)
5247{
5248	int i, cpu_num = num_possible_cpus();
5249	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5250	char buf[32];
5251
5252	WARN_ON(sd_ctl_dir[0].child);
5253	sd_ctl_dir[0].child = entry;
5254
5255	if (entry == NULL)
5256		return;
5257
5258	for_each_possible_cpu(i) {
5259		snprintf(buf, 32, "cpu%d", i);
5260		entry->procname = kstrdup(buf, GFP_KERNEL);
5261		entry->mode = 0555;
5262		entry->child = sd_alloc_ctl_cpu_table(i);
5263		entry++;
5264	}
5265
5266	WARN_ON(sd_sysctl_header);
5267	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5268}
5269
5270/* may be called multiple times per register */
5271static void unregister_sched_domain_sysctl(void)
5272{
5273	if (sd_sysctl_header)
5274		unregister_sysctl_table(sd_sysctl_header);
5275	sd_sysctl_header = NULL;
5276	if (sd_ctl_dir[0].child)
5277		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5278}
5279#else
5280static void register_sched_domain_sysctl(void)
5281{
5282}
5283static void unregister_sched_domain_sysctl(void)
5284{
5285}
5286#endif
5287
5288static void set_rq_online(struct rq *rq)
5289{
5290	if (!rq->online) {
5291		const struct sched_class *class;
5292
5293		cpumask_set_cpu(rq->cpu, rq->rd->online);
5294		rq->online = 1;
5295
5296		for_each_class(class) {
5297			if (class->rq_online)
5298				class->rq_online(rq);
5299		}
5300	}
5301}
5302
5303static void set_rq_offline(struct rq *rq)
5304{
5305	if (rq->online) {
5306		const struct sched_class *class;
5307
5308		for_each_class(class) {
5309			if (class->rq_offline)
5310				class->rq_offline(rq);
5311		}
5312
5313		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5314		rq->online = 0;
5315	}
5316}
5317
5318/*
5319 * migration_call - callback that gets triggered when a CPU is added.
5320 * Here we can start up the necessary migration thread for the new CPU.
5321 */
5322static int __cpuinit
5323migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5324{
5325	int cpu = (long)hcpu;
5326	unsigned long flags;
5327	struct rq *rq = cpu_rq(cpu);
5328
5329	switch (action & ~CPU_TASKS_FROZEN) {
5330
5331	case CPU_UP_PREPARE:
5332		rq->calc_load_update = calc_load_update;
5333		break;
5334
5335	case CPU_ONLINE:
5336		/* Update our root-domain */
5337		raw_spin_lock_irqsave(&rq->lock, flags);
5338		if (rq->rd) {
5339			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5340
5341			set_rq_online(rq);
5342		}
5343		raw_spin_unlock_irqrestore(&rq->lock, flags);
5344		break;
5345
5346#ifdef CONFIG_HOTPLUG_CPU
5347	case CPU_DYING:
5348		sched_ttwu_pending();
5349		/* Update our root-domain */
5350		raw_spin_lock_irqsave(&rq->lock, flags);
5351		if (rq->rd) {
5352			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5353			set_rq_offline(rq);
5354		}
5355		migrate_tasks(cpu);
5356		BUG_ON(rq->nr_running != 1); /* the migration thread */
5357		raw_spin_unlock_irqrestore(&rq->lock, flags);
5358
5359		migrate_nr_uninterruptible(rq);
5360		calc_global_load_remove(rq);
5361		break;
5362#endif
5363	}
5364
5365	update_max_interval();
5366
5367	return NOTIFY_OK;
5368}
5369
5370/*
5371 * Register at high priority so that task migration (migrate_all_tasks)
5372 * happens before everything else.  This has to be lower priority than
5373 * the notifier in the perf_event subsystem, though.
5374 */
5375static struct notifier_block __cpuinitdata migration_notifier = {
5376	.notifier_call = migration_call,
5377	.priority = CPU_PRI_MIGRATION,
5378};
5379
5380static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5381				      unsigned long action, void *hcpu)
5382{
5383	switch (action & ~CPU_TASKS_FROZEN) {
5384	case CPU_ONLINE:
5385	case CPU_DOWN_FAILED:
5386		set_cpu_active((long)hcpu, true);
5387		return NOTIFY_OK;
5388	default:
5389		return NOTIFY_DONE;
5390	}
5391}
5392
5393static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5394					unsigned long action, void *hcpu)
5395{
5396	switch (action & ~CPU_TASKS_FROZEN) {
5397	case CPU_DOWN_PREPARE:
5398		set_cpu_active((long)hcpu, false);
5399		return NOTIFY_OK;
5400	default:
5401		return NOTIFY_DONE;
5402	}
5403}
5404
5405static int __init migration_init(void)
5406{
5407	void *cpu = (void *)(long)smp_processor_id();
5408	int err;
5409
5410	/* Initialize migration for the boot CPU */
5411	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5412	BUG_ON(err == NOTIFY_BAD);
5413	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5414	register_cpu_notifier(&migration_notifier);
5415
5416	/* Register cpu active notifiers */
5417	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5418	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5419
5420	return 0;
5421}
5422early_initcall(migration_init);
5423#endif
5424
5425#ifdef CONFIG_SMP
5426
5427static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5428
5429#ifdef CONFIG_SCHED_DEBUG
5430
5431static __read_mostly int sched_domain_debug_enabled;
5432
5433static int __init sched_domain_debug_setup(char *str)
5434{
5435	sched_domain_debug_enabled = 1;
5436
5437	return 0;
5438}
5439early_param("sched_debug", sched_domain_debug_setup);
5440
5441static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5442				  struct cpumask *groupmask)
5443{
5444	struct sched_group *group = sd->groups;
5445	char str[256];
5446
5447	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5448	cpumask_clear(groupmask);
5449
5450	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5451
5452	if (!(sd->flags & SD_LOAD_BALANCE)) {
5453		printk("does not load-balance\n");
5454		if (sd->parent)
5455			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5456					" has parent");
5457		return -1;
5458	}
5459
5460	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5461
5462	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5463		printk(KERN_ERR "ERROR: domain->span does not contain "
5464				"CPU%d\n", cpu);
5465	}
5466	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5467		printk(KERN_ERR "ERROR: domain->groups does not contain"
5468				" CPU%d\n", cpu);
5469	}
5470
5471	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5472	do {
5473		if (!group) {
5474			printk("\n");
5475			printk(KERN_ERR "ERROR: group is NULL\n");
5476			break;
5477		}
5478
5479		if (!group->sgp->power) {
5480			printk(KERN_CONT "\n");
5481			printk(KERN_ERR "ERROR: domain->cpu_power not "
5482					"set\n");
5483			break;
5484		}
5485
5486		if (!cpumask_weight(sched_group_cpus(group))) {
5487			printk(KERN_CONT "\n");
5488			printk(KERN_ERR "ERROR: empty group\n");
5489			break;
5490		}
5491
5492		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5493			printk(KERN_CONT "\n");
5494			printk(KERN_ERR "ERROR: repeated CPUs\n");
5495			break;
5496		}
5497
5498		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5499
5500		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5501
5502		printk(KERN_CONT " %s", str);
5503		if (group->sgp->power != SCHED_POWER_SCALE) {
5504			printk(KERN_CONT " (cpu_power = %d)",
5505				group->sgp->power);
5506		}
5507
5508		group = group->next;
5509	} while (group != sd->groups);
5510	printk(KERN_CONT "\n");
5511
5512	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5513		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5514
5515	if (sd->parent &&
5516	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5517		printk(KERN_ERR "ERROR: parent span is not a superset "
5518			"of domain->span\n");
5519	return 0;
5520}
5521
5522static void sched_domain_debug(struct sched_domain *sd, int cpu)
5523{
5524	int level = 0;
5525
5526	if (!sched_domain_debug_enabled)
5527		return;
5528
5529	if (!sd) {
5530		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5531		return;
5532	}
5533
5534	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5535
5536	for (;;) {
5537		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5538			break;
5539		level++;
5540		sd = sd->parent;
5541		if (!sd)
5542			break;
5543	}
5544}
5545#else /* !CONFIG_SCHED_DEBUG */
5546# define sched_domain_debug(sd, cpu) do { } while (0)
5547#endif /* CONFIG_SCHED_DEBUG */
5548
5549static int sd_degenerate(struct sched_domain *sd)
5550{
5551	if (cpumask_weight(sched_domain_span(sd)) == 1)
5552		return 1;
5553
5554	/* Following flags need at least 2 groups */
5555	if (sd->flags & (SD_LOAD_BALANCE |
5556			 SD_BALANCE_NEWIDLE |
5557			 SD_BALANCE_FORK |
5558			 SD_BALANCE_EXEC |
5559			 SD_SHARE_CPUPOWER |
5560			 SD_SHARE_PKG_RESOURCES)) {
5561		if (sd->groups != sd->groups->next)
5562			return 0;
5563	}
5564
5565	/* Following flags don't use groups */
5566	if (sd->flags & (SD_WAKE_AFFINE))
5567		return 0;
5568
5569	return 1;
5570}
5571
5572static int
5573sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5574{
5575	unsigned long cflags = sd->flags, pflags = parent->flags;
5576
5577	if (sd_degenerate(parent))
5578		return 1;
5579
5580	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5581		return 0;
5582
5583	/* Flags needing groups don't count if only 1 group in parent */
5584	if (parent->groups == parent->groups->next) {
5585		pflags &= ~(SD_LOAD_BALANCE |
5586				SD_BALANCE_NEWIDLE |
5587				SD_BALANCE_FORK |
5588				SD_BALANCE_EXEC |
5589				SD_SHARE_CPUPOWER |
5590				SD_SHARE_PKG_RESOURCES);
5591		if (nr_node_ids == 1)
5592			pflags &= ~SD_SERIALIZE;
5593	}
5594	if (~cflags & pflags)
5595		return 0;
5596
5597	return 1;
5598}
5599
5600static void free_rootdomain(struct rcu_head *rcu)
5601{
5602	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5603
5604	cpupri_cleanup(&rd->cpupri);
5605	free_cpumask_var(rd->rto_mask);
5606	free_cpumask_var(rd->online);
5607	free_cpumask_var(rd->span);
5608	kfree(rd);
5609}
5610
5611static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5612{
5613	struct root_domain *old_rd = NULL;
5614	unsigned long flags;
5615
5616	raw_spin_lock_irqsave(&rq->lock, flags);
5617
5618	if (rq->rd) {
5619		old_rd = rq->rd;
5620
5621		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5622			set_rq_offline(rq);
5623
5624		cpumask_clear_cpu(rq->cpu, old_rd->span);
5625
5626		/*
5627		 * If we dont want to free the old_rt yet then
5628		 * set old_rd to NULL to skip the freeing later
5629		 * in this function:
5630		 */
5631		if (!atomic_dec_and_test(&old_rd->refcount))
5632			old_rd = NULL;
5633	}
5634
5635	atomic_inc(&rd->refcount);
5636	rq->rd = rd;
5637
5638	cpumask_set_cpu(rq->cpu, rd->span);
5639	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5640		set_rq_online(rq);
5641
5642	raw_spin_unlock_irqrestore(&rq->lock, flags);
5643
5644	if (old_rd)
5645		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5646}
5647
5648static int init_rootdomain(struct root_domain *rd)
5649{
5650	memset(rd, 0, sizeof(*rd));
5651
5652	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5653		goto out;
5654	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5655		goto free_span;
5656	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5657		goto free_online;
5658
5659	if (cpupri_init(&rd->cpupri) != 0)
5660		goto free_rto_mask;
5661	return 0;
5662
5663free_rto_mask:
5664	free_cpumask_var(rd->rto_mask);
5665free_online:
5666	free_cpumask_var(rd->online);
5667free_span:
5668	free_cpumask_var(rd->span);
5669out:
5670	return -ENOMEM;
5671}
5672
5673/*
5674 * By default the system creates a single root-domain with all cpus as
5675 * members (mimicking the global state we have today).
5676 */
5677struct root_domain def_root_domain;
5678
5679static void init_defrootdomain(void)
5680{
5681	init_rootdomain(&def_root_domain);
5682
5683	atomic_set(&def_root_domain.refcount, 1);
5684}
5685
5686static struct root_domain *alloc_rootdomain(void)
5687{
5688	struct root_domain *rd;
5689
5690	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5691	if (!rd)
5692		return NULL;
5693
5694	if (init_rootdomain(rd) != 0) {
5695		kfree(rd);
5696		return NULL;
5697	}
5698
5699	return rd;
5700}
5701
5702static void free_sched_groups(struct sched_group *sg, int free_sgp)
5703{
5704	struct sched_group *tmp, *first;
5705
5706	if (!sg)
5707		return;
5708
5709	first = sg;
5710	do {
5711		tmp = sg->next;
5712
5713		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5714			kfree(sg->sgp);
5715
5716		kfree(sg);
5717		sg = tmp;
5718	} while (sg != first);
5719}
5720
5721static void free_sched_domain(struct rcu_head *rcu)
5722{
5723	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5724
5725	/*
5726	 * If its an overlapping domain it has private groups, iterate and
5727	 * nuke them all.
5728	 */
5729	if (sd->flags & SD_OVERLAP) {
5730		free_sched_groups(sd->groups, 1);
5731	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5732		kfree(sd->groups->sgp);
5733		kfree(sd->groups);
5734	}
5735	kfree(sd);
5736}
5737
5738static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5739{
5740	call_rcu(&sd->rcu, free_sched_domain);
5741}
5742
5743static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5744{
5745	for (; sd; sd = sd->parent)
5746		destroy_sched_domain(sd, cpu);
5747}
5748
5749/*
5750 * Keep a special pointer to the highest sched_domain that has
5751 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5752 * allows us to avoid some pointer chasing select_idle_sibling().
5753 *
5754 * Also keep a unique ID per domain (we use the first cpu number in
5755 * the cpumask of the domain), this allows us to quickly tell if
5756 * two cpus are in the same cache domain, see ttwu_share_cache().
5757 */
5758DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5759DEFINE_PER_CPU(int, sd_llc_id);
5760
5761static void update_top_cache_domain(int cpu)
5762{
5763	struct sched_domain *sd;
5764	int id = cpu;
5765
5766	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5767	if (sd)
5768		id = cpumask_first(sched_domain_span(sd));
5769
5770	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5771	per_cpu(sd_llc_id, cpu) = id;
5772}
5773
5774/*
5775 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5776 * hold the hotplug lock.
5777 */
5778static void
5779cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5780{
5781	struct rq *rq = cpu_rq(cpu);
5782	struct sched_domain *tmp;
5783
5784	/* Remove the sched domains which do not contribute to scheduling. */
5785	for (tmp = sd; tmp; ) {
5786		struct sched_domain *parent = tmp->parent;
5787		if (!parent)
5788			break;
5789
5790		if (sd_parent_degenerate(tmp, parent)) {
5791			tmp->parent = parent->parent;
5792			if (parent->parent)
5793				parent->parent->child = tmp;
5794			destroy_sched_domain(parent, cpu);
5795		} else
5796			tmp = tmp->parent;
5797	}
5798
5799	if (sd && sd_degenerate(sd)) {
5800		tmp = sd;
5801		sd = sd->parent;
5802		destroy_sched_domain(tmp, cpu);
5803		if (sd)
5804			sd->child = NULL;
5805	}
5806
5807	sched_domain_debug(sd, cpu);
5808
5809	rq_attach_root(rq, rd);
5810	tmp = rq->sd;
5811	rcu_assign_pointer(rq->sd, sd);
5812	destroy_sched_domains(tmp, cpu);
5813
5814	update_top_cache_domain(cpu);
5815}
5816
5817/* cpus with isolated domains */
5818static cpumask_var_t cpu_isolated_map;
5819
5820/* Setup the mask of cpus configured for isolated domains */
5821static int __init isolated_cpu_setup(char *str)
5822{
5823	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5824	cpulist_parse(str, cpu_isolated_map);
5825	return 1;
5826}
5827
5828__setup("isolcpus=", isolated_cpu_setup);
5829
5830#ifdef CONFIG_NUMA
5831
5832/**
5833 * find_next_best_node - find the next node to include in a sched_domain
5834 * @node: node whose sched_domain we're building
5835 * @used_nodes: nodes already in the sched_domain
5836 *
5837 * Find the next node to include in a given scheduling domain. Simply
5838 * finds the closest node not already in the @used_nodes map.
5839 *
5840 * Should use nodemask_t.
5841 */
5842static int find_next_best_node(int node, nodemask_t *used_nodes)
5843{
5844	int i, n, val, min_val, best_node = -1;
5845
5846	min_val = INT_MAX;
5847
5848	for (i = 0; i < nr_node_ids; i++) {
5849		/* Start at @node */
5850		n = (node + i) % nr_node_ids;
5851
5852		if (!nr_cpus_node(n))
5853			continue;
5854
5855		/* Skip already used nodes */
5856		if (node_isset(n, *used_nodes))
5857			continue;
5858
5859		/* Simple min distance search */
5860		val = node_distance(node, n);
5861
5862		if (val < min_val) {
5863			min_val = val;
5864			best_node = n;
5865		}
5866	}
5867
5868	if (best_node != -1)
5869		node_set(best_node, *used_nodes);
5870	return best_node;
5871}
5872
5873/**
5874 * sched_domain_node_span - get a cpumask for a node's sched_domain
5875 * @node: node whose cpumask we're constructing
5876 * @span: resulting cpumask
5877 *
5878 * Given a node, construct a good cpumask for its sched_domain to span. It
5879 * should be one that prevents unnecessary balancing, but also spreads tasks
5880 * out optimally.
5881 */
5882static void sched_domain_node_span(int node, struct cpumask *span)
5883{
5884	nodemask_t used_nodes;
5885	int i;
5886
5887	cpumask_clear(span);
5888	nodes_clear(used_nodes);
5889
5890	cpumask_or(span, span, cpumask_of_node(node));
5891	node_set(node, used_nodes);
5892
5893	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5894		int next_node = find_next_best_node(node, &used_nodes);
5895		if (next_node < 0)
5896			break;
5897		cpumask_or(span, span, cpumask_of_node(next_node));
5898	}
5899}
5900
5901static const struct cpumask *cpu_node_mask(int cpu)
5902{
5903	lockdep_assert_held(&sched_domains_mutex);
5904
5905	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5906
5907	return sched_domains_tmpmask;
5908}
5909
5910static const struct cpumask *cpu_allnodes_mask(int cpu)
5911{
5912	return cpu_possible_mask;
5913}
5914#endif /* CONFIG_NUMA */
5915
5916static const struct cpumask *cpu_cpu_mask(int cpu)
5917{
5918	return cpumask_of_node(cpu_to_node(cpu));
5919}
5920
5921int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5922
5923struct sd_data {
5924	struct sched_domain **__percpu sd;
5925	struct sched_group **__percpu sg;
5926	struct sched_group_power **__percpu sgp;
5927};
5928
5929struct s_data {
5930	struct sched_domain ** __percpu sd;
5931	struct root_domain	*rd;
5932};
5933
5934enum s_alloc {
5935	sa_rootdomain,
5936	sa_sd,
5937	sa_sd_storage,
5938	sa_none,
5939};
5940
5941struct sched_domain_topology_level;
5942
5943typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5944typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5945
5946#define SDTL_OVERLAP	0x01
5947
5948struct sched_domain_topology_level {
5949	sched_domain_init_f init;
5950	sched_domain_mask_f mask;
5951	int		    flags;
5952	struct sd_data      data;
5953};
5954
5955static int
5956build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5957{
5958	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5959	const struct cpumask *span = sched_domain_span(sd);
5960	struct cpumask *covered = sched_domains_tmpmask;
5961	struct sd_data *sdd = sd->private;
5962	struct sched_domain *child;
5963	int i;
5964
5965	cpumask_clear(covered);
5966
5967	for_each_cpu(i, span) {
5968		struct cpumask *sg_span;
5969
5970		if (cpumask_test_cpu(i, covered))
5971			continue;
5972
5973		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5974				GFP_KERNEL, cpu_to_node(cpu));
5975
5976		if (!sg)
5977			goto fail;
5978
5979		sg_span = sched_group_cpus(sg);
5980
5981		child = *per_cpu_ptr(sdd->sd, i);
5982		if (child->child) {
5983			child = child->child;
5984			cpumask_copy(sg_span, sched_domain_span(child));
5985		} else
5986			cpumask_set_cpu(i, sg_span);
5987
5988		cpumask_or(covered, covered, sg_span);
5989
5990		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
5991		atomic_inc(&sg->sgp->ref);
5992
5993		if (cpumask_test_cpu(cpu, sg_span))
5994			groups = sg;
5995
5996		if (!first)
5997			first = sg;
5998		if (last)
5999			last->next = sg;
6000		last = sg;
6001		last->next = first;
6002	}
6003	sd->groups = groups;
6004
6005	return 0;
6006
6007fail:
6008	free_sched_groups(first, 0);
6009
6010	return -ENOMEM;
6011}
6012
6013static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6014{
6015	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6016	struct sched_domain *child = sd->child;
6017
6018	if (child)
6019		cpu = cpumask_first(sched_domain_span(child));
6020
6021	if (sg) {
6022		*sg = *per_cpu_ptr(sdd->sg, cpu);
6023		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6024		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6025	}
6026
6027	return cpu;
6028}
6029
6030/*
6031 * build_sched_groups will build a circular linked list of the groups
6032 * covered by the given span, and will set each group's ->cpumask correctly,
6033 * and ->cpu_power to 0.
6034 *
6035 * Assumes the sched_domain tree is fully constructed
6036 */
6037static int
6038build_sched_groups(struct sched_domain *sd, int cpu)
6039{
6040	struct sched_group *first = NULL, *last = NULL;
6041	struct sd_data *sdd = sd->private;
6042	const struct cpumask *span = sched_domain_span(sd);
6043	struct cpumask *covered;
6044	int i;
6045
6046	get_group(cpu, sdd, &sd->groups);
6047	atomic_inc(&sd->groups->ref);
6048
6049	if (cpu != cpumask_first(sched_domain_span(sd)))
6050		return 0;
6051
6052	lockdep_assert_held(&sched_domains_mutex);
6053	covered = sched_domains_tmpmask;
6054
6055	cpumask_clear(covered);
6056
6057	for_each_cpu(i, span) {
6058		struct sched_group *sg;
6059		int group = get_group(i, sdd, &sg);
6060		int j;
6061
6062		if (cpumask_test_cpu(i, covered))
6063			continue;
6064
6065		cpumask_clear(sched_group_cpus(sg));
6066		sg->sgp->power = 0;
6067
6068		for_each_cpu(j, span) {
6069			if (get_group(j, sdd, NULL) != group)
6070				continue;
6071
6072			cpumask_set_cpu(j, covered);
6073			cpumask_set_cpu(j, sched_group_cpus(sg));
6074		}
6075
6076		if (!first)
6077			first = sg;
6078		if (last)
6079			last->next = sg;
6080		last = sg;
6081	}
6082	last->next = first;
6083
6084	return 0;
6085}
6086
6087/*
6088 * Initialize sched groups cpu_power.
6089 *
6090 * cpu_power indicates the capacity of sched group, which is used while
6091 * distributing the load between different sched groups in a sched domain.
6092 * Typically cpu_power for all the groups in a sched domain will be same unless
6093 * there are asymmetries in the topology. If there are asymmetries, group
6094 * having more cpu_power will pickup more load compared to the group having
6095 * less cpu_power.
6096 */
6097static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6098{
6099	struct sched_group *sg = sd->groups;
6100
6101	WARN_ON(!sd || !sg);
6102
6103	do {
6104		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6105		sg = sg->next;
6106	} while (sg != sd->groups);
6107
6108	if (cpu != group_first_cpu(sg))
6109		return;
6110
6111	update_group_power(sd, cpu);
6112	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6113}
6114
6115int __weak arch_sd_sibling_asym_packing(void)
6116{
6117       return 0*SD_ASYM_PACKING;
6118}
6119
6120/*
6121 * Initializers for schedule domains
6122 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6123 */
6124
6125#ifdef CONFIG_SCHED_DEBUG
6126# define SD_INIT_NAME(sd, type)		sd->name = #type
6127#else
6128# define SD_INIT_NAME(sd, type)		do { } while (0)
6129#endif
6130
6131#define SD_INIT_FUNC(type)						\
6132static noinline struct sched_domain *					\
6133sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6134{									\
6135	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6136	*sd = SD_##type##_INIT;						\
6137	SD_INIT_NAME(sd, type);						\
6138	sd->private = &tl->data;					\
6139	return sd;							\
6140}
6141
6142SD_INIT_FUNC(CPU)
6143#ifdef CONFIG_NUMA
6144 SD_INIT_FUNC(ALLNODES)
6145 SD_INIT_FUNC(NODE)
6146#endif
6147#ifdef CONFIG_SCHED_SMT
6148 SD_INIT_FUNC(SIBLING)
6149#endif
6150#ifdef CONFIG_SCHED_MC
6151 SD_INIT_FUNC(MC)
6152#endif
6153#ifdef CONFIG_SCHED_BOOK
6154 SD_INIT_FUNC(BOOK)
6155#endif
6156
6157static int default_relax_domain_level = -1;
6158int sched_domain_level_max;
6159
6160static int __init setup_relax_domain_level(char *str)
6161{
6162	unsigned long val;
6163
6164	val = simple_strtoul(str, NULL, 0);
6165	if (val < sched_domain_level_max)
6166		default_relax_domain_level = val;
6167
6168	return 1;
6169}
6170__setup("relax_domain_level=", setup_relax_domain_level);
6171
6172static void set_domain_attribute(struct sched_domain *sd,
6173				 struct sched_domain_attr *attr)
6174{
6175	int request;
6176
6177	if (!attr || attr->relax_domain_level < 0) {
6178		if (default_relax_domain_level < 0)
6179			return;
6180		else
6181			request = default_relax_domain_level;
6182	} else
6183		request = attr->relax_domain_level;
6184	if (request < sd->level) {
6185		/* turn off idle balance on this domain */
6186		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6187	} else {
6188		/* turn on idle balance on this domain */
6189		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6190	}
6191}
6192
6193static void __sdt_free(const struct cpumask *cpu_map);
6194static int __sdt_alloc(const struct cpumask *cpu_map);
6195
6196static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6197				 const struct cpumask *cpu_map)
6198{
6199	switch (what) {
6200	case sa_rootdomain:
6201		if (!atomic_read(&d->rd->refcount))
6202			free_rootdomain(&d->rd->rcu); /* fall through */
6203	case sa_sd:
6204		free_percpu(d->sd); /* fall through */
6205	case sa_sd_storage:
6206		__sdt_free(cpu_map); /* fall through */
6207	case sa_none:
6208		break;
6209	}
6210}
6211
6212static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6213						   const struct cpumask *cpu_map)
6214{
6215	memset(d, 0, sizeof(*d));
6216
6217	if (__sdt_alloc(cpu_map))
6218		return sa_sd_storage;
6219	d->sd = alloc_percpu(struct sched_domain *);
6220	if (!d->sd)
6221		return sa_sd_storage;
6222	d->rd = alloc_rootdomain();
6223	if (!d->rd)
6224		return sa_sd;
6225	return sa_rootdomain;
6226}
6227
6228/*
6229 * NULL the sd_data elements we've used to build the sched_domain and
6230 * sched_group structure so that the subsequent __free_domain_allocs()
6231 * will not free the data we're using.
6232 */
6233static void claim_allocations(int cpu, struct sched_domain *sd)
6234{
6235	struct sd_data *sdd = sd->private;
6236
6237	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6238	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6239
6240	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6241		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6242
6243	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6244		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6245}
6246
6247#ifdef CONFIG_SCHED_SMT
6248static const struct cpumask *cpu_smt_mask(int cpu)
6249{
6250	return topology_thread_cpumask(cpu);
6251}
6252#endif
6253
6254/*
6255 * Topology list, bottom-up.
6256 */
6257static struct sched_domain_topology_level default_topology[] = {
6258#ifdef CONFIG_SCHED_SMT
6259	{ sd_init_SIBLING, cpu_smt_mask, },
6260#endif
6261#ifdef CONFIG_SCHED_MC
6262	{ sd_init_MC, cpu_coregroup_mask, },
6263#endif
6264#ifdef CONFIG_SCHED_BOOK
6265	{ sd_init_BOOK, cpu_book_mask, },
6266#endif
6267	{ sd_init_CPU, cpu_cpu_mask, },
6268#ifdef CONFIG_NUMA
6269	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6270	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6271#endif
6272	{ NULL, },
6273};
6274
6275static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6276
6277static int __sdt_alloc(const struct cpumask *cpu_map)
6278{
6279	struct sched_domain_topology_level *tl;
6280	int j;
6281
6282	for (tl = sched_domain_topology; tl->init; tl++) {
6283		struct sd_data *sdd = &tl->data;
6284
6285		sdd->sd = alloc_percpu(struct sched_domain *);
6286		if (!sdd->sd)
6287			return -ENOMEM;
6288
6289		sdd->sg = alloc_percpu(struct sched_group *);
6290		if (!sdd->sg)
6291			return -ENOMEM;
6292
6293		sdd->sgp = alloc_percpu(struct sched_group_power *);
6294		if (!sdd->sgp)
6295			return -ENOMEM;
6296
6297		for_each_cpu(j, cpu_map) {
6298			struct sched_domain *sd;
6299			struct sched_group *sg;
6300			struct sched_group_power *sgp;
6301
6302		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6303					GFP_KERNEL, cpu_to_node(j));
6304			if (!sd)
6305				return -ENOMEM;
6306
6307			*per_cpu_ptr(sdd->sd, j) = sd;
6308
6309			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6310					GFP_KERNEL, cpu_to_node(j));
6311			if (!sg)
6312				return -ENOMEM;
6313
6314			*per_cpu_ptr(sdd->sg, j) = sg;
6315
6316			sgp = kzalloc_node(sizeof(struct sched_group_power),
6317					GFP_KERNEL, cpu_to_node(j));
6318			if (!sgp)
6319				return -ENOMEM;
6320
6321			*per_cpu_ptr(sdd->sgp, j) = sgp;
6322		}
6323	}
6324
6325	return 0;
6326}
6327
6328static void __sdt_free(const struct cpumask *cpu_map)
6329{
6330	struct sched_domain_topology_level *tl;
6331	int j;
6332
6333	for (tl = sched_domain_topology; tl->init; tl++) {
6334		struct sd_data *sdd = &tl->data;
6335
6336		for_each_cpu(j, cpu_map) {
6337			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6338			if (sd && (sd->flags & SD_OVERLAP))
6339				free_sched_groups(sd->groups, 0);
6340			kfree(*per_cpu_ptr(sdd->sd, j));
6341			kfree(*per_cpu_ptr(sdd->sg, j));
6342			kfree(*per_cpu_ptr(sdd->sgp, j));
6343		}
6344		free_percpu(sdd->sd);
6345		free_percpu(sdd->sg);
6346		free_percpu(sdd->sgp);
6347	}
6348}
6349
6350struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6351		struct s_data *d, const struct cpumask *cpu_map,
6352		struct sched_domain_attr *attr, struct sched_domain *child,
6353		int cpu)
6354{
6355	struct sched_domain *sd = tl->init(tl, cpu);
6356	if (!sd)
6357		return child;
6358
6359	set_domain_attribute(sd, attr);
6360	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6361	if (child) {
6362		sd->level = child->level + 1;
6363		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6364		child->parent = sd;
6365	}
6366	sd->child = child;
6367
6368	return sd;
6369}
6370
6371/*
6372 * Build sched domains for a given set of cpus and attach the sched domains
6373 * to the individual cpus
6374 */
6375static int build_sched_domains(const struct cpumask *cpu_map,
6376			       struct sched_domain_attr *attr)
6377{
6378	enum s_alloc alloc_state = sa_none;
6379	struct sched_domain *sd;
6380	struct s_data d;
6381	int i, ret = -ENOMEM;
6382
6383	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6384	if (alloc_state != sa_rootdomain)
6385		goto error;
6386
6387	/* Set up domains for cpus specified by the cpu_map. */
6388	for_each_cpu(i, cpu_map) {
6389		struct sched_domain_topology_level *tl;
6390
6391		sd = NULL;
6392		for (tl = sched_domain_topology; tl->init; tl++) {
6393			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6394			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6395				sd->flags |= SD_OVERLAP;
6396			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6397				break;
6398		}
6399
6400		while (sd->child)
6401			sd = sd->child;
6402
6403		*per_cpu_ptr(d.sd, i) = sd;
6404	}
6405
6406	/* Build the groups for the domains */
6407	for_each_cpu(i, cpu_map) {
6408		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6409			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6410			if (sd->flags & SD_OVERLAP) {
6411				if (build_overlap_sched_groups(sd, i))
6412					goto error;
6413			} else {
6414				if (build_sched_groups(sd, i))
6415					goto error;
6416			}
6417		}
6418	}
6419
6420	/* Calculate CPU power for physical packages and nodes */
6421	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6422		if (!cpumask_test_cpu(i, cpu_map))
6423			continue;
6424
6425		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6426			claim_allocations(i, sd);
6427			init_sched_groups_power(i, sd);
6428		}
6429	}
6430
6431	/* Attach the domains */
6432	rcu_read_lock();
6433	for_each_cpu(i, cpu_map) {
6434		sd = *per_cpu_ptr(d.sd, i);
6435		cpu_attach_domain(sd, d.rd, i);
6436	}
6437	rcu_read_unlock();
6438
6439	ret = 0;
6440error:
6441	__free_domain_allocs(&d, alloc_state, cpu_map);
6442	return ret;
6443}
6444
6445static cpumask_var_t *doms_cur;	/* current sched domains */
6446static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6447static struct sched_domain_attr *dattr_cur;
6448				/* attribues of custom domains in 'doms_cur' */
6449
6450/*
6451 * Special case: If a kmalloc of a doms_cur partition (array of
6452 * cpumask) fails, then fallback to a single sched domain,
6453 * as determined by the single cpumask fallback_doms.
6454 */
6455static cpumask_var_t fallback_doms;
6456
6457/*
6458 * arch_update_cpu_topology lets virtualized architectures update the
6459 * cpu core maps. It is supposed to return 1 if the topology changed
6460 * or 0 if it stayed the same.
6461 */
6462int __attribute__((weak)) arch_update_cpu_topology(void)
6463{
6464	return 0;
6465}
6466
6467cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6468{
6469	int i;
6470	cpumask_var_t *doms;
6471
6472	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6473	if (!doms)
6474		return NULL;
6475	for (i = 0; i < ndoms; i++) {
6476		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6477			free_sched_domains(doms, i);
6478			return NULL;
6479		}
6480	}
6481	return doms;
6482}
6483
6484void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6485{
6486	unsigned int i;
6487	for (i = 0; i < ndoms; i++)
6488		free_cpumask_var(doms[i]);
6489	kfree(doms);
6490}
6491
6492/*
6493 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6494 * For now this just excludes isolated cpus, but could be used to
6495 * exclude other special cases in the future.
6496 */
6497static int init_sched_domains(const struct cpumask *cpu_map)
6498{
6499	int err;
6500
6501	arch_update_cpu_topology();
6502	ndoms_cur = 1;
6503	doms_cur = alloc_sched_domains(ndoms_cur);
6504	if (!doms_cur)
6505		doms_cur = &fallback_doms;
6506	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6507	dattr_cur = NULL;
6508	err = build_sched_domains(doms_cur[0], NULL);
6509	register_sched_domain_sysctl();
6510
6511	return err;
6512}
6513
6514/*
6515 * Detach sched domains from a group of cpus specified in cpu_map
6516 * These cpus will now be attached to the NULL domain
6517 */
6518static void detach_destroy_domains(const struct cpumask *cpu_map)
6519{
6520	int i;
6521
6522	rcu_read_lock();
6523	for_each_cpu(i, cpu_map)
6524		cpu_attach_domain(NULL, &def_root_domain, i);
6525	rcu_read_unlock();
6526}
6527
6528/* handle null as "default" */
6529static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6530			struct sched_domain_attr *new, int idx_new)
6531{
6532	struct sched_domain_attr tmp;
6533
6534	/* fast path */
6535	if (!new && !cur)
6536		return 1;
6537
6538	tmp = SD_ATTR_INIT;
6539	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6540			new ? (new + idx_new) : &tmp,
6541			sizeof(struct sched_domain_attr));
6542}
6543
6544/*
6545 * Partition sched domains as specified by the 'ndoms_new'
6546 * cpumasks in the array doms_new[] of cpumasks. This compares
6547 * doms_new[] to the current sched domain partitioning, doms_cur[].
6548 * It destroys each deleted domain and builds each new domain.
6549 *
6550 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6551 * The masks don't intersect (don't overlap.) We should setup one
6552 * sched domain for each mask. CPUs not in any of the cpumasks will
6553 * not be load balanced. If the same cpumask appears both in the
6554 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6555 * it as it is.
6556 *
6557 * The passed in 'doms_new' should be allocated using
6558 * alloc_sched_domains.  This routine takes ownership of it and will
6559 * free_sched_domains it when done with it. If the caller failed the
6560 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6561 * and partition_sched_domains() will fallback to the single partition
6562 * 'fallback_doms', it also forces the domains to be rebuilt.
6563 *
6564 * If doms_new == NULL it will be replaced with cpu_online_mask.
6565 * ndoms_new == 0 is a special case for destroying existing domains,
6566 * and it will not create the default domain.
6567 *
6568 * Call with hotplug lock held
6569 */
6570void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6571			     struct sched_domain_attr *dattr_new)
6572{
6573	int i, j, n;
6574	int new_topology;
6575
6576	mutex_lock(&sched_domains_mutex);
6577
6578	/* always unregister in case we don't destroy any domains */
6579	unregister_sched_domain_sysctl();
6580
6581	/* Let architecture update cpu core mappings. */
6582	new_topology = arch_update_cpu_topology();
6583
6584	n = doms_new ? ndoms_new : 0;
6585
6586	/* Destroy deleted domains */
6587	for (i = 0; i < ndoms_cur; i++) {
6588		for (j = 0; j < n && !new_topology; j++) {
6589			if (cpumask_equal(doms_cur[i], doms_new[j])
6590			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6591				goto match1;
6592		}
6593		/* no match - a current sched domain not in new doms_new[] */
6594		detach_destroy_domains(doms_cur[i]);
6595match1:
6596		;
6597	}
6598
6599	if (doms_new == NULL) {
6600		ndoms_cur = 0;
6601		doms_new = &fallback_doms;
6602		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6603		WARN_ON_ONCE(dattr_new);
6604	}
6605
6606	/* Build new domains */
6607	for (i = 0; i < ndoms_new; i++) {
6608		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6609			if (cpumask_equal(doms_new[i], doms_cur[j])
6610			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6611				goto match2;
6612		}
6613		/* no match - add a new doms_new */
6614		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6615match2:
6616		;
6617	}
6618
6619	/* Remember the new sched domains */
6620	if (doms_cur != &fallback_doms)
6621		free_sched_domains(doms_cur, ndoms_cur);
6622	kfree(dattr_cur);	/* kfree(NULL) is safe */
6623	doms_cur = doms_new;
6624	dattr_cur = dattr_new;
6625	ndoms_cur = ndoms_new;
6626
6627	register_sched_domain_sysctl();
6628
6629	mutex_unlock(&sched_domains_mutex);
6630}
6631
6632#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6633static void reinit_sched_domains(void)
6634{
6635	get_online_cpus();
6636
6637	/* Destroy domains first to force the rebuild */
6638	partition_sched_domains(0, NULL, NULL);
6639
6640	rebuild_sched_domains();
6641	put_online_cpus();
6642}
6643
6644static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6645{
6646	unsigned int level = 0;
6647
6648	if (sscanf(buf, "%u", &level) != 1)
6649		return -EINVAL;
6650
6651	/*
6652	 * level is always be positive so don't check for
6653	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6654	 * What happens on 0 or 1 byte write,
6655	 * need to check for count as well?
6656	 */
6657
6658	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6659		return -EINVAL;
6660
6661	if (smt)
6662		sched_smt_power_savings = level;
6663	else
6664		sched_mc_power_savings = level;
6665
6666	reinit_sched_domains();
6667
6668	return count;
6669}
6670
6671#ifdef CONFIG_SCHED_MC
6672static ssize_t sched_mc_power_savings_show(struct device *dev,
6673					   struct device_attribute *attr,
6674					   char *buf)
6675{
6676	return sprintf(buf, "%u\n", sched_mc_power_savings);
6677}
6678static ssize_t sched_mc_power_savings_store(struct device *dev,
6679					    struct device_attribute *attr,
6680					    const char *buf, size_t count)
6681{
6682	return sched_power_savings_store(buf, count, 0);
6683}
6684static DEVICE_ATTR(sched_mc_power_savings, 0644,
6685		   sched_mc_power_savings_show,
6686		   sched_mc_power_savings_store);
6687#endif
6688
6689#ifdef CONFIG_SCHED_SMT
6690static ssize_t sched_smt_power_savings_show(struct device *dev,
6691					    struct device_attribute *attr,
6692					    char *buf)
6693{
6694	return sprintf(buf, "%u\n", sched_smt_power_savings);
6695}
6696static ssize_t sched_smt_power_savings_store(struct device *dev,
6697					    struct device_attribute *attr,
6698					     const char *buf, size_t count)
6699{
6700	return sched_power_savings_store(buf, count, 1);
6701}
6702static DEVICE_ATTR(sched_smt_power_savings, 0644,
6703		   sched_smt_power_savings_show,
6704		   sched_smt_power_savings_store);
6705#endif
6706
6707int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6708{
6709	int err = 0;
6710
6711#ifdef CONFIG_SCHED_SMT
6712	if (smt_capable())
6713		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6714#endif
6715#ifdef CONFIG_SCHED_MC
6716	if (!err && mc_capable())
6717		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6718#endif
6719	return err;
6720}
6721#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6722
6723/*
6724 * Update cpusets according to cpu_active mask.  If cpusets are
6725 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6726 * around partition_sched_domains().
6727 */
6728static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6729			     void *hcpu)
6730{
6731	switch (action & ~CPU_TASKS_FROZEN) {
6732	case CPU_ONLINE:
6733	case CPU_DOWN_FAILED:
6734		cpuset_update_active_cpus();
6735		return NOTIFY_OK;
6736	default:
6737		return NOTIFY_DONE;
6738	}
6739}
6740
6741static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6742			       void *hcpu)
6743{
6744	switch (action & ~CPU_TASKS_FROZEN) {
6745	case CPU_DOWN_PREPARE:
6746		cpuset_update_active_cpus();
6747		return NOTIFY_OK;
6748	default:
6749		return NOTIFY_DONE;
6750	}
6751}
6752
6753void __init sched_init_smp(void)
6754{
6755	cpumask_var_t non_isolated_cpus;
6756
6757	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6758	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6759
6760	get_online_cpus();
6761	mutex_lock(&sched_domains_mutex);
6762	init_sched_domains(cpu_active_mask);
6763	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6764	if (cpumask_empty(non_isolated_cpus))
6765		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6766	mutex_unlock(&sched_domains_mutex);
6767	put_online_cpus();
6768
6769	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6770	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6771
6772	/* RT runtime code needs to handle some hotplug events */
6773	hotcpu_notifier(update_runtime, 0);
6774
6775	init_hrtick();
6776
6777	/* Move init over to a non-isolated CPU */
6778	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6779		BUG();
6780	sched_init_granularity();
6781	free_cpumask_var(non_isolated_cpus);
6782
6783	init_sched_rt_class();
6784}
6785#else
6786void __init sched_init_smp(void)
6787{
6788	sched_init_granularity();
6789}
6790#endif /* CONFIG_SMP */
6791
6792const_debug unsigned int sysctl_timer_migration = 1;
6793
6794int in_sched_functions(unsigned long addr)
6795{
6796	return in_lock_functions(addr) ||
6797		(addr >= (unsigned long)__sched_text_start
6798		&& addr < (unsigned long)__sched_text_end);
6799}
6800
6801#ifdef CONFIG_CGROUP_SCHED
6802struct task_group root_task_group;
6803#endif
6804
6805DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6806
6807void __init sched_init(void)
6808{
6809	int i, j;
6810	unsigned long alloc_size = 0, ptr;
6811
6812#ifdef CONFIG_FAIR_GROUP_SCHED
6813	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6814#endif
6815#ifdef CONFIG_RT_GROUP_SCHED
6816	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6817#endif
6818#ifdef CONFIG_CPUMASK_OFFSTACK
6819	alloc_size += num_possible_cpus() * cpumask_size();
6820#endif
6821	if (alloc_size) {
6822		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6823
6824#ifdef CONFIG_FAIR_GROUP_SCHED
6825		root_task_group.se = (struct sched_entity **)ptr;
6826		ptr += nr_cpu_ids * sizeof(void **);
6827
6828		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6829		ptr += nr_cpu_ids * sizeof(void **);
6830
6831#endif /* CONFIG_FAIR_GROUP_SCHED */
6832#ifdef CONFIG_RT_GROUP_SCHED
6833		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6834		ptr += nr_cpu_ids * sizeof(void **);
6835
6836		root_task_group.rt_rq = (struct rt_rq **)ptr;
6837		ptr += nr_cpu_ids * sizeof(void **);
6838
6839#endif /* CONFIG_RT_GROUP_SCHED */
6840#ifdef CONFIG_CPUMASK_OFFSTACK
6841		for_each_possible_cpu(i) {
6842			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6843			ptr += cpumask_size();
6844		}
6845#endif /* CONFIG_CPUMASK_OFFSTACK */
6846	}
6847
6848#ifdef CONFIG_SMP
6849	init_defrootdomain();
6850#endif
6851
6852	init_rt_bandwidth(&def_rt_bandwidth,
6853			global_rt_period(), global_rt_runtime());
6854
6855#ifdef CONFIG_RT_GROUP_SCHED
6856	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6857			global_rt_period(), global_rt_runtime());
6858#endif /* CONFIG_RT_GROUP_SCHED */
6859
6860#ifdef CONFIG_CGROUP_SCHED
6861	list_add(&root_task_group.list, &task_groups);
6862	INIT_LIST_HEAD(&root_task_group.children);
6863	INIT_LIST_HEAD(&root_task_group.siblings);
6864	autogroup_init(&init_task);
6865
6866#endif /* CONFIG_CGROUP_SCHED */
6867
6868#ifdef CONFIG_CGROUP_CPUACCT
6869	root_cpuacct.cpustat = &kernel_cpustat;
6870	root_cpuacct.cpuusage = alloc_percpu(u64);
6871	/* Too early, not expected to fail */
6872	BUG_ON(!root_cpuacct.cpuusage);
6873#endif
6874	for_each_possible_cpu(i) {
6875		struct rq *rq;
6876
6877		rq = cpu_rq(i);
6878		raw_spin_lock_init(&rq->lock);
6879		rq->nr_running = 0;
6880		rq->calc_load_active = 0;
6881		rq->calc_load_update = jiffies + LOAD_FREQ;
6882		init_cfs_rq(&rq->cfs);
6883		init_rt_rq(&rq->rt, rq);
6884#ifdef CONFIG_FAIR_GROUP_SCHED
6885		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6886		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6887		/*
6888		 * How much cpu bandwidth does root_task_group get?
6889		 *
6890		 * In case of task-groups formed thr' the cgroup filesystem, it
6891		 * gets 100% of the cpu resources in the system. This overall
6892		 * system cpu resource is divided among the tasks of
6893		 * root_task_group and its child task-groups in a fair manner,
6894		 * based on each entity's (task or task-group's) weight
6895		 * (se->load.weight).
6896		 *
6897		 * In other words, if root_task_group has 10 tasks of weight
6898		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6899		 * then A0's share of the cpu resource is:
6900		 *
6901		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6902		 *
6903		 * We achieve this by letting root_task_group's tasks sit
6904		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6905		 */
6906		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6907		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6908#endif /* CONFIG_FAIR_GROUP_SCHED */
6909
6910		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6911#ifdef CONFIG_RT_GROUP_SCHED
6912		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6913		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6914#endif
6915
6916		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6917			rq->cpu_load[j] = 0;
6918
6919		rq->last_load_update_tick = jiffies;
6920
6921#ifdef CONFIG_SMP
6922		rq->sd = NULL;
6923		rq->rd = NULL;
6924		rq->cpu_power = SCHED_POWER_SCALE;
6925		rq->post_schedule = 0;
6926		rq->active_balance = 0;
6927		rq->next_balance = jiffies;
6928		rq->push_cpu = 0;
6929		rq->cpu = i;
6930		rq->online = 0;
6931		rq->idle_stamp = 0;
6932		rq->avg_idle = 2*sysctl_sched_migration_cost;
6933		rq_attach_root(rq, &def_root_domain);
6934#ifdef CONFIG_NO_HZ
6935		rq->nohz_flags = 0;
6936#endif
6937#endif
6938		init_rq_hrtick(rq);
6939		atomic_set(&rq->nr_iowait, 0);
6940	}
6941
6942	set_load_weight(&init_task);
6943
6944#ifdef CONFIG_PREEMPT_NOTIFIERS
6945	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6946#endif
6947
6948#ifdef CONFIG_RT_MUTEXES
6949	plist_head_init(&init_task.pi_waiters);
6950#endif
6951
6952	/*
6953	 * The boot idle thread does lazy MMU switching as well:
6954	 */
6955	atomic_inc(&init_mm.mm_count);
6956	enter_lazy_tlb(&init_mm, current);
6957
6958	/*
6959	 * Make us the idle thread. Technically, schedule() should not be
6960	 * called from this thread, however somewhere below it might be,
6961	 * but because we are the idle thread, we just pick up running again
6962	 * when this runqueue becomes "idle".
6963	 */
6964	init_idle(current, smp_processor_id());
6965
6966	calc_load_update = jiffies + LOAD_FREQ;
6967
6968	/*
6969	 * During early bootup we pretend to be a normal task:
6970	 */
6971	current->sched_class = &fair_sched_class;
6972
6973#ifdef CONFIG_SMP
6974	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6975	/* May be allocated at isolcpus cmdline parse time */
6976	if (cpu_isolated_map == NULL)
6977		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6978#endif
6979	init_sched_fair_class();
6980
6981	scheduler_running = 1;
6982}
6983
6984#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6985static inline int preempt_count_equals(int preempt_offset)
6986{
6987	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6988
6989	return (nested == preempt_offset);
6990}
6991
6992void __might_sleep(const char *file, int line, int preempt_offset)
6993{
6994	static unsigned long prev_jiffy;	/* ratelimiting */
6995
6996	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6997	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6998	    system_state != SYSTEM_RUNNING || oops_in_progress)
6999		return;
7000	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7001		return;
7002	prev_jiffy = jiffies;
7003
7004	printk(KERN_ERR
7005		"BUG: sleeping function called from invalid context at %s:%d\n",
7006			file, line);
7007	printk(KERN_ERR
7008		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7009			in_atomic(), irqs_disabled(),
7010			current->pid, current->comm);
7011
7012	debug_show_held_locks(current);
7013	if (irqs_disabled())
7014		print_irqtrace_events(current);
7015	dump_stack();
7016}
7017EXPORT_SYMBOL(__might_sleep);
7018#endif
7019
7020#ifdef CONFIG_MAGIC_SYSRQ
7021static void normalize_task(struct rq *rq, struct task_struct *p)
7022{
7023	const struct sched_class *prev_class = p->sched_class;
7024	int old_prio = p->prio;
7025	int on_rq;
7026
7027	on_rq = p->on_rq;
7028	if (on_rq)
7029		dequeue_task(rq, p, 0);
7030	__setscheduler(rq, p, SCHED_NORMAL, 0);
7031	if (on_rq) {
7032		enqueue_task(rq, p, 0);
7033		resched_task(rq->curr);
7034	}
7035
7036	check_class_changed(rq, p, prev_class, old_prio);
7037}
7038
7039void normalize_rt_tasks(void)
7040{
7041	struct task_struct *g, *p;
7042	unsigned long flags;
7043	struct rq *rq;
7044
7045	read_lock_irqsave(&tasklist_lock, flags);
7046	do_each_thread(g, p) {
7047		/*
7048		 * Only normalize user tasks:
7049		 */
7050		if (!p->mm)
7051			continue;
7052
7053		p->se.exec_start		= 0;
7054#ifdef CONFIG_SCHEDSTATS
7055		p->se.statistics.wait_start	= 0;
7056		p->se.statistics.sleep_start	= 0;
7057		p->se.statistics.block_start	= 0;
7058#endif
7059
7060		if (!rt_task(p)) {
7061			/*
7062			 * Renice negative nice level userspace
7063			 * tasks back to 0:
7064			 */
7065			if (TASK_NICE(p) < 0 && p->mm)
7066				set_user_nice(p, 0);
7067			continue;
7068		}
7069
7070		raw_spin_lock(&p->pi_lock);
7071		rq = __task_rq_lock(p);
7072
7073		normalize_task(rq, p);
7074
7075		__task_rq_unlock(rq);
7076		raw_spin_unlock(&p->pi_lock);
7077	} while_each_thread(g, p);
7078
7079	read_unlock_irqrestore(&tasklist_lock, flags);
7080}
7081
7082#endif /* CONFIG_MAGIC_SYSRQ */
7083
7084#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7085/*
7086 * These functions are only useful for the IA64 MCA handling, or kdb.
7087 *
7088 * They can only be called when the whole system has been
7089 * stopped - every CPU needs to be quiescent, and no scheduling
7090 * activity can take place. Using them for anything else would
7091 * be a serious bug, and as a result, they aren't even visible
7092 * under any other configuration.
7093 */
7094
7095/**
7096 * curr_task - return the current task for a given cpu.
7097 * @cpu: the processor in question.
7098 *
7099 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7100 */
7101struct task_struct *curr_task(int cpu)
7102{
7103	return cpu_curr(cpu);
7104}
7105
7106#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7107
7108#ifdef CONFIG_IA64
7109/**
7110 * set_curr_task - set the current task for a given cpu.
7111 * @cpu: the processor in question.
7112 * @p: the task pointer to set.
7113 *
7114 * Description: This function must only be used when non-maskable interrupts
7115 * are serviced on a separate stack. It allows the architecture to switch the
7116 * notion of the current task on a cpu in a non-blocking manner. This function
7117 * must be called with all CPU's synchronized, and interrupts disabled, the
7118 * and caller must save the original value of the current task (see
7119 * curr_task() above) and restore that value before reenabling interrupts and
7120 * re-starting the system.
7121 *
7122 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7123 */
7124void set_curr_task(int cpu, struct task_struct *p)
7125{
7126	cpu_curr(cpu) = p;
7127}
7128
7129#endif
7130
7131#ifdef CONFIG_CGROUP_SCHED
7132/* task_group_lock serializes the addition/removal of task groups */
7133static DEFINE_SPINLOCK(task_group_lock);
7134
7135static void free_sched_group(struct task_group *tg)
7136{
7137	free_fair_sched_group(tg);
7138	free_rt_sched_group(tg);
7139	autogroup_free(tg);
7140	kfree(tg);
7141}
7142
7143/* allocate runqueue etc for a new task group */
7144struct task_group *sched_create_group(struct task_group *parent)
7145{
7146	struct task_group *tg;
7147	unsigned long flags;
7148
7149	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7150	if (!tg)
7151		return ERR_PTR(-ENOMEM);
7152
7153	if (!alloc_fair_sched_group(tg, parent))
7154		goto err;
7155
7156	if (!alloc_rt_sched_group(tg, parent))
7157		goto err;
7158
7159	spin_lock_irqsave(&task_group_lock, flags);
7160	list_add_rcu(&tg->list, &task_groups);
7161
7162	WARN_ON(!parent); /* root should already exist */
7163
7164	tg->parent = parent;
7165	INIT_LIST_HEAD(&tg->children);
7166	list_add_rcu(&tg->siblings, &parent->children);
7167	spin_unlock_irqrestore(&task_group_lock, flags);
7168
7169	return tg;
7170
7171err:
7172	free_sched_group(tg);
7173	return ERR_PTR(-ENOMEM);
7174}
7175
7176/* rcu callback to free various structures associated with a task group */
7177static void free_sched_group_rcu(struct rcu_head *rhp)
7178{
7179	/* now it should be safe to free those cfs_rqs */
7180	free_sched_group(container_of(rhp, struct task_group, rcu));
7181}
7182
7183/* Destroy runqueue etc associated with a task group */
7184void sched_destroy_group(struct task_group *tg)
7185{
7186	unsigned long flags;
7187	int i;
7188
7189	/* end participation in shares distribution */
7190	for_each_possible_cpu(i)
7191		unregister_fair_sched_group(tg, i);
7192
7193	spin_lock_irqsave(&task_group_lock, flags);
7194	list_del_rcu(&tg->list);
7195	list_del_rcu(&tg->siblings);
7196	spin_unlock_irqrestore(&task_group_lock, flags);
7197
7198	/* wait for possible concurrent references to cfs_rqs complete */
7199	call_rcu(&tg->rcu, free_sched_group_rcu);
7200}
7201
7202/* change task's runqueue when it moves between groups.
7203 *	The caller of this function should have put the task in its new group
7204 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7205 *	reflect its new group.
7206 */
7207void sched_move_task(struct task_struct *tsk)
7208{
7209	int on_rq, running;
7210	unsigned long flags;
7211	struct rq *rq;
7212
7213	rq = task_rq_lock(tsk, &flags);
7214
7215	running = task_current(rq, tsk);
7216	on_rq = tsk->on_rq;
7217
7218	if (on_rq)
7219		dequeue_task(rq, tsk, 0);
7220	if (unlikely(running))
7221		tsk->sched_class->put_prev_task(rq, tsk);
7222
7223#ifdef CONFIG_FAIR_GROUP_SCHED
7224	if (tsk->sched_class->task_move_group)
7225		tsk->sched_class->task_move_group(tsk, on_rq);
7226	else
7227#endif
7228		set_task_rq(tsk, task_cpu(tsk));
7229
7230	if (unlikely(running))
7231		tsk->sched_class->set_curr_task(rq);
7232	if (on_rq)
7233		enqueue_task(rq, tsk, 0);
7234
7235	task_rq_unlock(rq, tsk, &flags);
7236}
7237#endif /* CONFIG_CGROUP_SCHED */
7238
7239#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7240static unsigned long to_ratio(u64 period, u64 runtime)
7241{
7242	if (runtime == RUNTIME_INF)
7243		return 1ULL << 20;
7244
7245	return div64_u64(runtime << 20, period);
7246}
7247#endif
7248
7249#ifdef CONFIG_RT_GROUP_SCHED
7250/*
7251 * Ensure that the real time constraints are schedulable.
7252 */
7253static DEFINE_MUTEX(rt_constraints_mutex);
7254
7255/* Must be called with tasklist_lock held */
7256static inline int tg_has_rt_tasks(struct task_group *tg)
7257{
7258	struct task_struct *g, *p;
7259
7260	do_each_thread(g, p) {
7261		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7262			return 1;
7263	} while_each_thread(g, p);
7264
7265	return 0;
7266}
7267
7268struct rt_schedulable_data {
7269	struct task_group *tg;
7270	u64 rt_period;
7271	u64 rt_runtime;
7272};
7273
7274static int tg_rt_schedulable(struct task_group *tg, void *data)
7275{
7276	struct rt_schedulable_data *d = data;
7277	struct task_group *child;
7278	unsigned long total, sum = 0;
7279	u64 period, runtime;
7280
7281	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7282	runtime = tg->rt_bandwidth.rt_runtime;
7283
7284	if (tg == d->tg) {
7285		period = d->rt_period;
7286		runtime = d->rt_runtime;
7287	}
7288
7289	/*
7290	 * Cannot have more runtime than the period.
7291	 */
7292	if (runtime > period && runtime != RUNTIME_INF)
7293		return -EINVAL;
7294
7295	/*
7296	 * Ensure we don't starve existing RT tasks.
7297	 */
7298	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7299		return -EBUSY;
7300
7301	total = to_ratio(period, runtime);
7302
7303	/*
7304	 * Nobody can have more than the global setting allows.
7305	 */
7306	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7307		return -EINVAL;
7308
7309	/*
7310	 * The sum of our children's runtime should not exceed our own.
7311	 */
7312	list_for_each_entry_rcu(child, &tg->children, siblings) {
7313		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7314		runtime = child->rt_bandwidth.rt_runtime;
7315
7316		if (child == d->tg) {
7317			period = d->rt_period;
7318			runtime = d->rt_runtime;
7319		}
7320
7321		sum += to_ratio(period, runtime);
7322	}
7323
7324	if (sum > total)
7325		return -EINVAL;
7326
7327	return 0;
7328}
7329
7330static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7331{
7332	int ret;
7333
7334	struct rt_schedulable_data data = {
7335		.tg = tg,
7336		.rt_period = period,
7337		.rt_runtime = runtime,
7338	};
7339
7340	rcu_read_lock();
7341	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7342	rcu_read_unlock();
7343
7344	return ret;
7345}
7346
7347static int tg_set_rt_bandwidth(struct task_group *tg,
7348		u64 rt_period, u64 rt_runtime)
7349{
7350	int i, err = 0;
7351
7352	mutex_lock(&rt_constraints_mutex);
7353	read_lock(&tasklist_lock);
7354	err = __rt_schedulable(tg, rt_period, rt_runtime);
7355	if (err)
7356		goto unlock;
7357
7358	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7359	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7360	tg->rt_bandwidth.rt_runtime = rt_runtime;
7361
7362	for_each_possible_cpu(i) {
7363		struct rt_rq *rt_rq = tg->rt_rq[i];
7364
7365		raw_spin_lock(&rt_rq->rt_runtime_lock);
7366		rt_rq->rt_runtime = rt_runtime;
7367		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7368	}
7369	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7370unlock:
7371	read_unlock(&tasklist_lock);
7372	mutex_unlock(&rt_constraints_mutex);
7373
7374	return err;
7375}
7376
7377int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7378{
7379	u64 rt_runtime, rt_period;
7380
7381	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7382	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7383	if (rt_runtime_us < 0)
7384		rt_runtime = RUNTIME_INF;
7385
7386	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7387}
7388
7389long sched_group_rt_runtime(struct task_group *tg)
7390{
7391	u64 rt_runtime_us;
7392
7393	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7394		return -1;
7395
7396	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7397	do_div(rt_runtime_us, NSEC_PER_USEC);
7398	return rt_runtime_us;
7399}
7400
7401int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7402{
7403	u64 rt_runtime, rt_period;
7404
7405	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7406	rt_runtime = tg->rt_bandwidth.rt_runtime;
7407
7408	if (rt_period == 0)
7409		return -EINVAL;
7410
7411	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7412}
7413
7414long sched_group_rt_period(struct task_group *tg)
7415{
7416	u64 rt_period_us;
7417
7418	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7419	do_div(rt_period_us, NSEC_PER_USEC);
7420	return rt_period_us;
7421}
7422
7423static int sched_rt_global_constraints(void)
7424{
7425	u64 runtime, period;
7426	int ret = 0;
7427
7428	if (sysctl_sched_rt_period <= 0)
7429		return -EINVAL;
7430
7431	runtime = global_rt_runtime();
7432	period = global_rt_period();
7433
7434	/*
7435	 * Sanity check on the sysctl variables.
7436	 */
7437	if (runtime > period && runtime != RUNTIME_INF)
7438		return -EINVAL;
7439
7440	mutex_lock(&rt_constraints_mutex);
7441	read_lock(&tasklist_lock);
7442	ret = __rt_schedulable(NULL, 0, 0);
7443	read_unlock(&tasklist_lock);
7444	mutex_unlock(&rt_constraints_mutex);
7445
7446	return ret;
7447}
7448
7449int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7450{
7451	/* Don't accept realtime tasks when there is no way for them to run */
7452	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7453		return 0;
7454
7455	return 1;
7456}
7457
7458#else /* !CONFIG_RT_GROUP_SCHED */
7459static int sched_rt_global_constraints(void)
7460{
7461	unsigned long flags;
7462	int i;
7463
7464	if (sysctl_sched_rt_period <= 0)
7465		return -EINVAL;
7466
7467	/*
7468	 * There's always some RT tasks in the root group
7469	 * -- migration, kstopmachine etc..
7470	 */
7471	if (sysctl_sched_rt_runtime == 0)
7472		return -EBUSY;
7473
7474	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7475	for_each_possible_cpu(i) {
7476		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7477
7478		raw_spin_lock(&rt_rq->rt_runtime_lock);
7479		rt_rq->rt_runtime = global_rt_runtime();
7480		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7481	}
7482	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7483
7484	return 0;
7485}
7486#endif /* CONFIG_RT_GROUP_SCHED */
7487
7488int sched_rt_handler(struct ctl_table *table, int write,
7489		void __user *buffer, size_t *lenp,
7490		loff_t *ppos)
7491{
7492	int ret;
7493	int old_period, old_runtime;
7494	static DEFINE_MUTEX(mutex);
7495
7496	mutex_lock(&mutex);
7497	old_period = sysctl_sched_rt_period;
7498	old_runtime = sysctl_sched_rt_runtime;
7499
7500	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7501
7502	if (!ret && write) {
7503		ret = sched_rt_global_constraints();
7504		if (ret) {
7505			sysctl_sched_rt_period = old_period;
7506			sysctl_sched_rt_runtime = old_runtime;
7507		} else {
7508			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7509			def_rt_bandwidth.rt_period =
7510				ns_to_ktime(global_rt_period());
7511		}
7512	}
7513	mutex_unlock(&mutex);
7514
7515	return ret;
7516}
7517
7518#ifdef CONFIG_CGROUP_SCHED
7519
7520/* return corresponding task_group object of a cgroup */
7521static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7522{
7523	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7524			    struct task_group, css);
7525}
7526
7527static struct cgroup_subsys_state *
7528cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7529{
7530	struct task_group *tg, *parent;
7531
7532	if (!cgrp->parent) {
7533		/* This is early initialization for the top cgroup */
7534		return &root_task_group.css;
7535	}
7536
7537	parent = cgroup_tg(cgrp->parent);
7538	tg = sched_create_group(parent);
7539	if (IS_ERR(tg))
7540		return ERR_PTR(-ENOMEM);
7541
7542	return &tg->css;
7543}
7544
7545static void
7546cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7547{
7548	struct task_group *tg = cgroup_tg(cgrp);
7549
7550	sched_destroy_group(tg);
7551}
7552
7553static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7554				 struct cgroup_taskset *tset)
7555{
7556	struct task_struct *task;
7557
7558	cgroup_taskset_for_each(task, cgrp, tset) {
7559#ifdef CONFIG_RT_GROUP_SCHED
7560		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7561			return -EINVAL;
7562#else
7563		/* We don't support RT-tasks being in separate groups */
7564		if (task->sched_class != &fair_sched_class)
7565			return -EINVAL;
7566#endif
7567	}
7568	return 0;
7569}
7570
7571static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7572			      struct cgroup_taskset *tset)
7573{
7574	struct task_struct *task;
7575
7576	cgroup_taskset_for_each(task, cgrp, tset)
7577		sched_move_task(task);
7578}
7579
7580static void
7581cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7582		struct cgroup *old_cgrp, struct task_struct *task)
7583{
7584	/*
7585	 * cgroup_exit() is called in the copy_process() failure path.
7586	 * Ignore this case since the task hasn't ran yet, this avoids
7587	 * trying to poke a half freed task state from generic code.
7588	 */
7589	if (!(task->flags & PF_EXITING))
7590		return;
7591
7592	sched_move_task(task);
7593}
7594
7595#ifdef CONFIG_FAIR_GROUP_SCHED
7596static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7597				u64 shareval)
7598{
7599	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7600}
7601
7602static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7603{
7604	struct task_group *tg = cgroup_tg(cgrp);
7605
7606	return (u64) scale_load_down(tg->shares);
7607}
7608
7609#ifdef CONFIG_CFS_BANDWIDTH
7610static DEFINE_MUTEX(cfs_constraints_mutex);
7611
7612const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7613const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7614
7615static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7616
7617static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7618{
7619	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7620	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7621
7622	if (tg == &root_task_group)
7623		return -EINVAL;
7624
7625	/*
7626	 * Ensure we have at some amount of bandwidth every period.  This is
7627	 * to prevent reaching a state of large arrears when throttled via
7628	 * entity_tick() resulting in prolonged exit starvation.
7629	 */
7630	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7631		return -EINVAL;
7632
7633	/*
7634	 * Likewise, bound things on the otherside by preventing insane quota
7635	 * periods.  This also allows us to normalize in computing quota
7636	 * feasibility.
7637	 */
7638	if (period > max_cfs_quota_period)
7639		return -EINVAL;
7640
7641	mutex_lock(&cfs_constraints_mutex);
7642	ret = __cfs_schedulable(tg, period, quota);
7643	if (ret)
7644		goto out_unlock;
7645
7646	runtime_enabled = quota != RUNTIME_INF;
7647	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7648	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7649	raw_spin_lock_irq(&cfs_b->lock);
7650	cfs_b->period = ns_to_ktime(period);
7651	cfs_b->quota = quota;
7652
7653	__refill_cfs_bandwidth_runtime(cfs_b);
7654	/* restart the period timer (if active) to handle new period expiry */
7655	if (runtime_enabled && cfs_b->timer_active) {
7656		/* force a reprogram */
7657		cfs_b->timer_active = 0;
7658		__start_cfs_bandwidth(cfs_b);
7659	}
7660	raw_spin_unlock_irq(&cfs_b->lock);
7661
7662	for_each_possible_cpu(i) {
7663		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7664		struct rq *rq = cfs_rq->rq;
7665
7666		raw_spin_lock_irq(&rq->lock);
7667		cfs_rq->runtime_enabled = runtime_enabled;
7668		cfs_rq->runtime_remaining = 0;
7669
7670		if (cfs_rq->throttled)
7671			unthrottle_cfs_rq(cfs_rq);
7672		raw_spin_unlock_irq(&rq->lock);
7673	}
7674out_unlock:
7675	mutex_unlock(&cfs_constraints_mutex);
7676
7677	return ret;
7678}
7679
7680int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7681{
7682	u64 quota, period;
7683
7684	period = ktime_to_ns(tg->cfs_bandwidth.period);
7685	if (cfs_quota_us < 0)
7686		quota = RUNTIME_INF;
7687	else
7688		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7689
7690	return tg_set_cfs_bandwidth(tg, period, quota);
7691}
7692
7693long tg_get_cfs_quota(struct task_group *tg)
7694{
7695	u64 quota_us;
7696
7697	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7698		return -1;
7699
7700	quota_us = tg->cfs_bandwidth.quota;
7701	do_div(quota_us, NSEC_PER_USEC);
7702
7703	return quota_us;
7704}
7705
7706int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7707{
7708	u64 quota, period;
7709
7710	period = (u64)cfs_period_us * NSEC_PER_USEC;
7711	quota = tg->cfs_bandwidth.quota;
7712
7713	return tg_set_cfs_bandwidth(tg, period, quota);
7714}
7715
7716long tg_get_cfs_period(struct task_group *tg)
7717{
7718	u64 cfs_period_us;
7719
7720	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7721	do_div(cfs_period_us, NSEC_PER_USEC);
7722
7723	return cfs_period_us;
7724}
7725
7726static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7727{
7728	return tg_get_cfs_quota(cgroup_tg(cgrp));
7729}
7730
7731static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7732				s64 cfs_quota_us)
7733{
7734	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7735}
7736
7737static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7738{
7739	return tg_get_cfs_period(cgroup_tg(cgrp));
7740}
7741
7742static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7743				u64 cfs_period_us)
7744{
7745	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7746}
7747
7748struct cfs_schedulable_data {
7749	struct task_group *tg;
7750	u64 period, quota;
7751};
7752
7753/*
7754 * normalize group quota/period to be quota/max_period
7755 * note: units are usecs
7756 */
7757static u64 normalize_cfs_quota(struct task_group *tg,
7758			       struct cfs_schedulable_data *d)
7759{
7760	u64 quota, period;
7761
7762	if (tg == d->tg) {
7763		period = d->period;
7764		quota = d->quota;
7765	} else {
7766		period = tg_get_cfs_period(tg);
7767		quota = tg_get_cfs_quota(tg);
7768	}
7769
7770	/* note: these should typically be equivalent */
7771	if (quota == RUNTIME_INF || quota == -1)
7772		return RUNTIME_INF;
7773
7774	return to_ratio(period, quota);
7775}
7776
7777static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7778{
7779	struct cfs_schedulable_data *d = data;
7780	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7781	s64 quota = 0, parent_quota = -1;
7782
7783	if (!tg->parent) {
7784		quota = RUNTIME_INF;
7785	} else {
7786		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7787
7788		quota = normalize_cfs_quota(tg, d);
7789		parent_quota = parent_b->hierarchal_quota;
7790
7791		/*
7792		 * ensure max(child_quota) <= parent_quota, inherit when no
7793		 * limit is set
7794		 */
7795		if (quota == RUNTIME_INF)
7796			quota = parent_quota;
7797		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7798			return -EINVAL;
7799	}
7800	cfs_b->hierarchal_quota = quota;
7801
7802	return 0;
7803}
7804
7805static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7806{
7807	int ret;
7808	struct cfs_schedulable_data data = {
7809		.tg = tg,
7810		.period = period,
7811		.quota = quota,
7812	};
7813
7814	if (quota != RUNTIME_INF) {
7815		do_div(data.period, NSEC_PER_USEC);
7816		do_div(data.quota, NSEC_PER_USEC);
7817	}
7818
7819	rcu_read_lock();
7820	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7821	rcu_read_unlock();
7822
7823	return ret;
7824}
7825
7826static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7827		struct cgroup_map_cb *cb)
7828{
7829	struct task_group *tg = cgroup_tg(cgrp);
7830	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7831
7832	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7833	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7834	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7835
7836	return 0;
7837}
7838#endif /* CONFIG_CFS_BANDWIDTH */
7839#endif /* CONFIG_FAIR_GROUP_SCHED */
7840
7841#ifdef CONFIG_RT_GROUP_SCHED
7842static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7843				s64 val)
7844{
7845	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7846}
7847
7848static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7849{
7850	return sched_group_rt_runtime(cgroup_tg(cgrp));
7851}
7852
7853static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7854		u64 rt_period_us)
7855{
7856	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7857}
7858
7859static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7860{
7861	return sched_group_rt_period(cgroup_tg(cgrp));
7862}
7863#endif /* CONFIG_RT_GROUP_SCHED */
7864
7865static struct cftype cpu_files[] = {
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867	{
7868		.name = "shares",
7869		.read_u64 = cpu_shares_read_u64,
7870		.write_u64 = cpu_shares_write_u64,
7871	},
7872#endif
7873#ifdef CONFIG_CFS_BANDWIDTH
7874	{
7875		.name = "cfs_quota_us",
7876		.read_s64 = cpu_cfs_quota_read_s64,
7877		.write_s64 = cpu_cfs_quota_write_s64,
7878	},
7879	{
7880		.name = "cfs_period_us",
7881		.read_u64 = cpu_cfs_period_read_u64,
7882		.write_u64 = cpu_cfs_period_write_u64,
7883	},
7884	{
7885		.name = "stat",
7886		.read_map = cpu_stats_show,
7887	},
7888#endif
7889#ifdef CONFIG_RT_GROUP_SCHED
7890	{
7891		.name = "rt_runtime_us",
7892		.read_s64 = cpu_rt_runtime_read,
7893		.write_s64 = cpu_rt_runtime_write,
7894	},
7895	{
7896		.name = "rt_period_us",
7897		.read_u64 = cpu_rt_period_read_uint,
7898		.write_u64 = cpu_rt_period_write_uint,
7899	},
7900#endif
7901};
7902
7903static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7904{
7905	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7906}
7907
7908struct cgroup_subsys cpu_cgroup_subsys = {
7909	.name		= "cpu",
7910	.create		= cpu_cgroup_create,
7911	.destroy	= cpu_cgroup_destroy,
7912	.can_attach	= cpu_cgroup_can_attach,
7913	.attach		= cpu_cgroup_attach,
7914	.exit		= cpu_cgroup_exit,
7915	.populate	= cpu_cgroup_populate,
7916	.subsys_id	= cpu_cgroup_subsys_id,
7917	.early_init	= 1,
7918};
7919
7920#endif	/* CONFIG_CGROUP_SCHED */
7921
7922#ifdef CONFIG_CGROUP_CPUACCT
7923
7924/*
7925 * CPU accounting code for task groups.
7926 *
7927 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7928 * (balbir@in.ibm.com).
7929 */
7930
7931/* create a new cpu accounting group */
7932static struct cgroup_subsys_state *cpuacct_create(
7933	struct cgroup_subsys *ss, struct cgroup *cgrp)
7934{
7935	struct cpuacct *ca;
7936
7937	if (!cgrp->parent)
7938		return &root_cpuacct.css;
7939
7940	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7941	if (!ca)
7942		goto out;
7943
7944	ca->cpuusage = alloc_percpu(u64);
7945	if (!ca->cpuusage)
7946		goto out_free_ca;
7947
7948	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7949	if (!ca->cpustat)
7950		goto out_free_cpuusage;
7951
7952	return &ca->css;
7953
7954out_free_cpuusage:
7955	free_percpu(ca->cpuusage);
7956out_free_ca:
7957	kfree(ca);
7958out:
7959	return ERR_PTR(-ENOMEM);
7960}
7961
7962/* destroy an existing cpu accounting group */
7963static void
7964cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7965{
7966	struct cpuacct *ca = cgroup_ca(cgrp);
7967
7968	free_percpu(ca->cpustat);
7969	free_percpu(ca->cpuusage);
7970	kfree(ca);
7971}
7972
7973static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7974{
7975	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7976	u64 data;
7977
7978#ifndef CONFIG_64BIT
7979	/*
7980	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7981	 */
7982	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7983	data = *cpuusage;
7984	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7985#else
7986	data = *cpuusage;
7987#endif
7988
7989	return data;
7990}
7991
7992static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7993{
7994	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7995
7996#ifndef CONFIG_64BIT
7997	/*
7998	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7999	 */
8000	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8001	*cpuusage = val;
8002	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8003#else
8004	*cpuusage = val;
8005#endif
8006}
8007
8008/* return total cpu usage (in nanoseconds) of a group */
8009static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8010{
8011	struct cpuacct *ca = cgroup_ca(cgrp);
8012	u64 totalcpuusage = 0;
8013	int i;
8014
8015	for_each_present_cpu(i)
8016		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8017
8018	return totalcpuusage;
8019}
8020
8021static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8022								u64 reset)
8023{
8024	struct cpuacct *ca = cgroup_ca(cgrp);
8025	int err = 0;
8026	int i;
8027
8028	if (reset) {
8029		err = -EINVAL;
8030		goto out;
8031	}
8032
8033	for_each_present_cpu(i)
8034		cpuacct_cpuusage_write(ca, i, 0);
8035
8036out:
8037	return err;
8038}
8039
8040static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8041				   struct seq_file *m)
8042{
8043	struct cpuacct *ca = cgroup_ca(cgroup);
8044	u64 percpu;
8045	int i;
8046
8047	for_each_present_cpu(i) {
8048		percpu = cpuacct_cpuusage_read(ca, i);
8049		seq_printf(m, "%llu ", (unsigned long long) percpu);
8050	}
8051	seq_printf(m, "\n");
8052	return 0;
8053}
8054
8055static const char *cpuacct_stat_desc[] = {
8056	[CPUACCT_STAT_USER] = "user",
8057	[CPUACCT_STAT_SYSTEM] = "system",
8058};
8059
8060static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8061			      struct cgroup_map_cb *cb)
8062{
8063	struct cpuacct *ca = cgroup_ca(cgrp);
8064	int cpu;
8065	s64 val = 0;
8066
8067	for_each_online_cpu(cpu) {
8068		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8069		val += kcpustat->cpustat[CPUTIME_USER];
8070		val += kcpustat->cpustat[CPUTIME_NICE];
8071	}
8072	val = cputime64_to_clock_t(val);
8073	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8074
8075	val = 0;
8076	for_each_online_cpu(cpu) {
8077		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8078		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8079		val += kcpustat->cpustat[CPUTIME_IRQ];
8080		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8081	}
8082
8083	val = cputime64_to_clock_t(val);
8084	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8085
8086	return 0;
8087}
8088
8089static struct cftype files[] = {
8090	{
8091		.name = "usage",
8092		.read_u64 = cpuusage_read,
8093		.write_u64 = cpuusage_write,
8094	},
8095	{
8096		.name = "usage_percpu",
8097		.read_seq_string = cpuacct_percpu_seq_read,
8098	},
8099	{
8100		.name = "stat",
8101		.read_map = cpuacct_stats_show,
8102	},
8103};
8104
8105static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8106{
8107	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8108}
8109
8110/*
8111 * charge this task's execution time to its accounting group.
8112 *
8113 * called with rq->lock held.
8114 */
8115void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8116{
8117	struct cpuacct *ca;
8118	int cpu;
8119
8120	if (unlikely(!cpuacct_subsys.active))
8121		return;
8122
8123	cpu = task_cpu(tsk);
8124
8125	rcu_read_lock();
8126
8127	ca = task_ca(tsk);
8128
8129	for (; ca; ca = parent_ca(ca)) {
8130		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8131		*cpuusage += cputime;
8132	}
8133
8134	rcu_read_unlock();
8135}
8136
8137struct cgroup_subsys cpuacct_subsys = {
8138	.name = "cpuacct",
8139	.create = cpuacct_create,
8140	.destroy = cpuacct_destroy,
8141	.populate = cpuacct_populate,
8142	.subsys_id = cpuacct_subsys_id,
8143};
8144#endif	/* CONFIG_CGROUP_CPUACCT */
8145