core.c revision 5bfd126e80dca70431aef8fdbc1cf14535f3c338
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	rq->clock += delta;
127	update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled)	\
135	(1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139	0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled)	\
145	#name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155	int i;
156
157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158		if (!(sysctl_sched_features & (1UL << i)))
159			seq_puts(m, "NO_");
160		seq_printf(m, "%s ", sched_feat_names[i]);
161	}
162	seq_puts(m, "\n");
163
164	return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled)	\
173	jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183	if (static_key_enabled(&sched_feat_keys[i]))
184		static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189	if (!static_key_enabled(&sched_feat_keys[i]))
190		static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199	int i;
200	int neg = 0;
201
202	if (strncmp(cmp, "NO_", 3) == 0) {
203		neg = 1;
204		cmp += 3;
205	}
206
207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209			if (neg) {
210				sysctl_sched_features &= ~(1UL << i);
211				sched_feat_disable(i);
212			} else {
213				sysctl_sched_features |= (1UL << i);
214				sched_feat_enable(i);
215			}
216			break;
217		}
218	}
219
220	return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225		size_t cnt, loff_t *ppos)
226{
227	char buf[64];
228	char *cmp;
229	int i;
230
231	if (cnt > 63)
232		cnt = 63;
233
234	if (copy_from_user(&buf, ubuf, cnt))
235		return -EFAULT;
236
237	buf[cnt] = 0;
238	cmp = strstrip(buf);
239
240	i = sched_feat_set(cmp);
241	if (i == __SCHED_FEAT_NR)
242		return -EINVAL;
243
244	*ppos += cnt;
245
246	return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251	return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255	.open		= sched_feat_open,
256	.write		= sched_feat_write,
257	.read		= seq_read,
258	.llseek		= seq_lseek,
259	.release	= single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264	debugfs_create_file("sched_features", 0644, NULL, NULL,
265			&sched_feat_fops);
266
267	return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402	struct hrtimer *timer = &rq->hrtick_timer;
403	ktime_t time = hrtimer_get_softexpires(timer);
404
405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413	struct rq *rq = arg;
414
415	raw_spin_lock(&rq->lock);
416	__hrtick_restart(rq);
417	rq->hrtick_csd_pending = 0;
418	raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428	struct hrtimer *timer = &rq->hrtick_timer;
429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431	hrtimer_set_expires(timer, time);
432
433	if (rq == this_rq()) {
434		__hrtick_restart(rq);
435	} else if (!rq->hrtick_csd_pending) {
436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437		rq->hrtick_csd_pending = 1;
438	}
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444	int cpu = (int)(long)hcpu;
445
446	switch (action) {
447	case CPU_UP_CANCELED:
448	case CPU_UP_CANCELED_FROZEN:
449	case CPU_DOWN_PREPARE:
450	case CPU_DOWN_PREPARE_FROZEN:
451	case CPU_DEAD:
452	case CPU_DEAD_FROZEN:
453		hrtick_clear(cpu_rq(cpu));
454		return NOTIFY_OK;
455	}
456
457	return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462	hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473			HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484	rq->hrtick_csd_pending = 0;
485
486	rq->hrtick_csd.flags = 0;
487	rq->hrtick_csd.func = __hrtick_start;
488	rq->hrtick_csd.info = rq;
489#endif
490
491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492	rq->hrtick_timer.function = hrtick;
493}
494#else	/* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif	/* CONFIG_SCHED_HRTICK */
507
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	lockdep_assert_held(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id()) {
528		set_preempt_need_resched();
529		return;
530	}
531
532	/* NEED_RESCHED must be visible before we test polling */
533	smp_mb();
534	if (!tsk_is_polling(p))
535		smp_send_reschedule(cpu);
536}
537
538void resched_cpu(int cpu)
539{
540	struct rq *rq = cpu_rq(cpu);
541	unsigned long flags;
542
543	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544		return;
545	resched_task(cpu_curr(cpu));
546	raw_spin_unlock_irqrestore(&rq->lock, flags);
547}
548
549#ifdef CONFIG_SMP
550#ifdef CONFIG_NO_HZ_COMMON
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu.  This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559int get_nohz_timer_target(int pinned)
560{
561	int cpu = smp_processor_id();
562	int i;
563	struct sched_domain *sd;
564
565	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566		return cpu;
567
568	rcu_read_lock();
569	for_each_domain(cpu, sd) {
570		for_each_cpu(i, sched_domain_span(sd)) {
571			if (!idle_cpu(i)) {
572				cpu = i;
573				goto unlock;
574			}
575		}
576	}
577unlock:
578	rcu_read_unlock();
579	return cpu;
580}
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591static void wake_up_idle_cpu(int cpu)
592{
593	struct rq *rq = cpu_rq(cpu);
594
595	if (cpu == smp_processor_id())
596		return;
597
598	/*
599	 * This is safe, as this function is called with the timer
600	 * wheel base lock of (cpu) held. When the CPU is on the way
601	 * to idle and has not yet set rq->curr to idle then it will
602	 * be serialized on the timer wheel base lock and take the new
603	 * timer into account automatically.
604	 */
605	if (rq->curr != rq->idle)
606		return;
607
608	/*
609	 * We can set TIF_RESCHED on the idle task of the other CPU
610	 * lockless. The worst case is that the other CPU runs the
611	 * idle task through an additional NOOP schedule()
612	 */
613	set_tsk_need_resched(rq->idle);
614
615	/* NEED_RESCHED must be visible before we test polling */
616	smp_mb();
617	if (!tsk_is_polling(rq->idle))
618		smp_send_reschedule(cpu);
619}
620
621static bool wake_up_full_nohz_cpu(int cpu)
622{
623	if (tick_nohz_full_cpu(cpu)) {
624		if (cpu != smp_processor_id() ||
625		    tick_nohz_tick_stopped())
626			smp_send_reschedule(cpu);
627		return true;
628	}
629
630	return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
635	if (!wake_up_full_nohz_cpu(cpu))
636		wake_up_idle_cpu(cpu);
637}
638
639static inline bool got_nohz_idle_kick(void)
640{
641	int cpu = smp_processor_id();
642
643	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644		return false;
645
646	if (idle_cpu(cpu) && !need_resched())
647		return true;
648
649	/*
650	 * We can't run Idle Load Balance on this CPU for this time so we
651	 * cancel it and clear NOHZ_BALANCE_KICK
652	 */
653	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654	return false;
655}
656
657#else /* CONFIG_NO_HZ_COMMON */
658
659static inline bool got_nohz_idle_kick(void)
660{
661	return false;
662}
663
664#endif /* CONFIG_NO_HZ_COMMON */
665
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669       struct rq *rq;
670
671       rq = this_rq();
672
673       /* Make sure rq->nr_running update is visible after the IPI */
674       smp_rmb();
675
676       /* More than one running task need preemption */
677       if (rq->nr_running > 1)
678               return false;
679
680       return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
683
684void sched_avg_update(struct rq *rq)
685{
686	s64 period = sched_avg_period();
687
688	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689		/*
690		 * Inline assembly required to prevent the compiler
691		 * optimising this loop into a divmod call.
692		 * See __iter_div_u64_rem() for another example of this.
693		 */
694		asm("" : "+rm" (rq->age_stamp));
695		rq->age_stamp += period;
696		rq->rt_avg /= 2;
697	}
698}
699
700#endif /* CONFIG_SMP */
701
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704/*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710int walk_tg_tree_from(struct task_group *from,
711			     tg_visitor down, tg_visitor up, void *data)
712{
713	struct task_group *parent, *child;
714	int ret;
715
716	parent = from;
717
718down:
719	ret = (*down)(parent, data);
720	if (ret)
721		goto out;
722	list_for_each_entry_rcu(child, &parent->children, siblings) {
723		parent = child;
724		goto down;
725
726up:
727		continue;
728	}
729	ret = (*up)(parent, data);
730	if (ret || parent == from)
731		goto out;
732
733	child = parent;
734	parent = parent->parent;
735	if (parent)
736		goto up;
737out:
738	return ret;
739}
740
741int tg_nop(struct task_group *tg, void *data)
742{
743	return 0;
744}
745#endif
746
747static void set_load_weight(struct task_struct *p)
748{
749	int prio = p->static_prio - MAX_RT_PRIO;
750	struct load_weight *load = &p->se.load;
751
752	/*
753	 * SCHED_IDLE tasks get minimal weight:
754	 */
755	if (p->policy == SCHED_IDLE) {
756		load->weight = scale_load(WEIGHT_IDLEPRIO);
757		load->inv_weight = WMULT_IDLEPRIO;
758		return;
759	}
760
761	load->weight = scale_load(prio_to_weight[prio]);
762	load->inv_weight = prio_to_wmult[prio];
763}
764
765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766{
767	update_rq_clock(rq);
768	sched_info_queued(rq, p);
769	p->sched_class->enqueue_task(rq, p, flags);
770}
771
772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773{
774	update_rq_clock(rq);
775	sched_info_dequeued(rq, p);
776	p->sched_class->dequeue_task(rq, p, flags);
777}
778
779void activate_task(struct rq *rq, struct task_struct *p, int flags)
780{
781	if (task_contributes_to_load(p))
782		rq->nr_uninterruptible--;
783
784	enqueue_task(rq, p, flags);
785}
786
787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788{
789	if (task_contributes_to_load(p))
790		rq->nr_uninterruptible++;
791
792	dequeue_task(rq, p, flags);
793}
794
795static void update_rq_clock_task(struct rq *rq, s64 delta)
796{
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802	s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
805	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807	/*
808	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809	 * this case when a previous update_rq_clock() happened inside a
810	 * {soft,}irq region.
811	 *
812	 * When this happens, we stop ->clock_task and only update the
813	 * prev_irq_time stamp to account for the part that fit, so that a next
814	 * update will consume the rest. This ensures ->clock_task is
815	 * monotonic.
816	 *
817	 * It does however cause some slight miss-attribution of {soft,}irq
818	 * time, a more accurate solution would be to update the irq_time using
819	 * the current rq->clock timestamp, except that would require using
820	 * atomic ops.
821	 */
822	if (irq_delta > delta)
823		irq_delta = delta;
824
825	rq->prev_irq_time += irq_delta;
826	delta -= irq_delta;
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829	if (static_key_false((&paravirt_steal_rq_enabled))) {
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		rq->prev_steal_time_rq += steal;
837		delta -= steal;
838	}
839#endif
840
841	rq->clock_task += delta;
842
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845		sched_rt_avg_update(rq, irq_delta + steal);
846#endif
847}
848
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852	struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854	if (stop) {
855		/*
856		 * Make it appear like a SCHED_FIFO task, its something
857		 * userspace knows about and won't get confused about.
858		 *
859		 * Also, it will make PI more or less work without too
860		 * much confusion -- but then, stop work should not
861		 * rely on PI working anyway.
862		 */
863		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865		stop->sched_class = &stop_sched_class;
866	}
867
868	cpu_rq(cpu)->stop = stop;
869
870	if (old_stop) {
871		/*
872		 * Reset it back to a normal scheduling class so that
873		 * it can die in pieces.
874		 */
875		old_stop->sched_class = &rt_sched_class;
876	}
877}
878
879/*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882static inline int __normal_prio(struct task_struct *p)
883{
884	return p->static_prio;
885}
886
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894static inline int normal_prio(struct task_struct *p)
895{
896	int prio;
897
898	if (task_has_dl_policy(p))
899		prio = MAX_DL_PRIO-1;
900	else if (task_has_rt_policy(p))
901		prio = MAX_RT_PRIO-1 - p->rt_priority;
902	else
903		prio = __normal_prio(p);
904	return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914static int effective_prio(struct task_struct *p)
915{
916	p->normal_prio = normal_prio(p);
917	/*
918	 * If we are RT tasks or we were boosted to RT priority,
919	 * keep the priority unchanged. Otherwise, update priority
920	 * to the normal priority:
921	 */
922	if (!rt_prio(p->prio))
923		return p->normal_prio;
924	return p->prio;
925}
926
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933inline int task_curr(const struct task_struct *p)
934{
935	return cpu_curr(task_cpu(p)) == p;
936}
937
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939				       const struct sched_class *prev_class,
940				       int oldprio)
941{
942	if (prev_class != p->sched_class) {
943		if (prev_class->switched_from)
944			prev_class->switched_from(rq, p);
945		p->sched_class->switched_to(rq, p);
946	} else if (oldprio != p->prio || dl_task(p))
947		p->sched_class->prio_changed(rq, p, oldprio);
948}
949
950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951{
952	const struct sched_class *class;
953
954	if (p->sched_class == rq->curr->sched_class) {
955		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956	} else {
957		for_each_class(class) {
958			if (class == rq->curr->sched_class)
959				break;
960			if (class == p->sched_class) {
961				resched_task(rq->curr);
962				break;
963			}
964		}
965	}
966
967	/*
968	 * A queue event has occurred, and we're going to schedule.  In
969	 * this case, we can save a useless back to back clock update.
970	 */
971	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972		rq->skip_clock_update = 1;
973}
974
975#ifdef CONFIG_SMP
976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977{
978#ifdef CONFIG_SCHED_DEBUG
979	/*
980	 * We should never call set_task_cpu() on a blocked task,
981	 * ttwu() will sort out the placement.
982	 */
983	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984			!(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986#ifdef CONFIG_LOCKDEP
987	/*
988	 * The caller should hold either p->pi_lock or rq->lock, when changing
989	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990	 *
991	 * sched_move_task() holds both and thus holding either pins the cgroup,
992	 * see task_group().
993	 *
994	 * Furthermore, all task_rq users should acquire both locks, see
995	 * task_rq_lock().
996	 */
997	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998				      lockdep_is_held(&task_rq(p)->lock)));
999#endif
1000#endif
1001
1002	trace_sched_migrate_task(p, new_cpu);
1003
1004	if (task_cpu(p) != new_cpu) {
1005		if (p->sched_class->migrate_task_rq)
1006			p->sched_class->migrate_task_rq(p, new_cpu);
1007		p->se.nr_migrations++;
1008		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009	}
1010
1011	__set_task_cpu(p, new_cpu);
1012}
1013
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016	if (p->on_rq) {
1017		struct rq *src_rq, *dst_rq;
1018
1019		src_rq = task_rq(p);
1020		dst_rq = cpu_rq(cpu);
1021
1022		deactivate_task(src_rq, p, 0);
1023		set_task_cpu(p, cpu);
1024		activate_task(dst_rq, p, 0);
1025		check_preempt_curr(dst_rq, p, 0);
1026	} else {
1027		/*
1028		 * Task isn't running anymore; make it appear like we migrated
1029		 * it before it went to sleep. This means on wakeup we make the
1030		 * previous cpu our targer instead of where it really is.
1031		 */
1032		p->wake_cpu = cpu;
1033	}
1034}
1035
1036struct migration_swap_arg {
1037	struct task_struct *src_task, *dst_task;
1038	int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043	struct migration_swap_arg *arg = data;
1044	struct rq *src_rq, *dst_rq;
1045	int ret = -EAGAIN;
1046
1047	src_rq = cpu_rq(arg->src_cpu);
1048	dst_rq = cpu_rq(arg->dst_cpu);
1049
1050	double_raw_lock(&arg->src_task->pi_lock,
1051			&arg->dst_task->pi_lock);
1052	double_rq_lock(src_rq, dst_rq);
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072	raw_spin_unlock(&arg->dst_task->pi_lock);
1073	raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075	return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083	struct migration_swap_arg arg;
1084	int ret = -EINVAL;
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	/*
1097	 * These three tests are all lockless; this is OK since all of them
1098	 * will be re-checked with proper locks held further down the line.
1099	 */
1100	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101		goto out;
1102
1103	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104		goto out;
1105
1106	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107		goto out;
1108
1109	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
1113	return ret;
1114}
1115
1116struct migration_arg {
1117	struct task_struct *task;
1118	int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change.  If it changes, i.e. @p might have woken up,
1128 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count).  If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141	unsigned long flags;
1142	int running, on_rq;
1143	unsigned long ncsw;
1144	struct rq *rq;
1145
1146	for (;;) {
1147		/*
1148		 * We do the initial early heuristics without holding
1149		 * any task-queue locks at all. We'll only try to get
1150		 * the runqueue lock when things look like they will
1151		 * work out!
1152		 */
1153		rq = task_rq(p);
1154
1155		/*
1156		 * If the task is actively running on another CPU
1157		 * still, just relax and busy-wait without holding
1158		 * any locks.
1159		 *
1160		 * NOTE! Since we don't hold any locks, it's not
1161		 * even sure that "rq" stays as the right runqueue!
1162		 * But we don't care, since "task_running()" will
1163		 * return false if the runqueue has changed and p
1164		 * is actually now running somewhere else!
1165		 */
1166		while (task_running(rq, p)) {
1167			if (match_state && unlikely(p->state != match_state))
1168				return 0;
1169			cpu_relax();
1170		}
1171
1172		/*
1173		 * Ok, time to look more closely! We need the rq
1174		 * lock now, to be *sure*. If we're wrong, we'll
1175		 * just go back and repeat.
1176		 */
1177		rq = task_rq_lock(p, &flags);
1178		trace_sched_wait_task(p);
1179		running = task_running(rq, p);
1180		on_rq = p->on_rq;
1181		ncsw = 0;
1182		if (!match_state || p->state == match_state)
1183			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184		task_rq_unlock(rq, p, &flags);
1185
1186		/*
1187		 * If it changed from the expected state, bail out now.
1188		 */
1189		if (unlikely(!ncsw))
1190			break;
1191
1192		/*
1193		 * Was it really running after all now that we
1194		 * checked with the proper locks actually held?
1195		 *
1196		 * Oops. Go back and try again..
1197		 */
1198		if (unlikely(running)) {
1199			cpu_relax();
1200			continue;
1201		}
1202
1203		/*
1204		 * It's not enough that it's not actively running,
1205		 * it must be off the runqueue _entirely_, and not
1206		 * preempted!
1207		 *
1208		 * So if it was still runnable (but just not actively
1209		 * running right now), it's preempted, and we should
1210		 * yield - it could be a while.
1211		 */
1212		if (unlikely(on_rq)) {
1213			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215			set_current_state(TASK_UNINTERRUPTIBLE);
1216			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217			continue;
1218		}
1219
1220		/*
1221		 * Ahh, all good. It wasn't running, and it wasn't
1222		 * runnable, which means that it will never become
1223		 * running in the future either. We're all done!
1224		 */
1225		break;
1226	}
1227
1228	return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246	int cpu;
1247
1248	preempt_disable();
1249	cpu = task_cpu(p);
1250	if ((cpu != smp_processor_id()) && task_curr(p))
1251		smp_send_reschedule(cpu);
1252	preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263	int nid = cpu_to_node(cpu);
1264	const struct cpumask *nodemask = NULL;
1265	enum { cpuset, possible, fail } state = cpuset;
1266	int dest_cpu;
1267
1268	/*
1269	 * If the node that the cpu is on has been offlined, cpu_to_node()
1270	 * will return -1. There is no cpu on the node, and we should
1271	 * select the cpu on the other node.
1272	 */
1273	if (nid != -1) {
1274		nodemask = cpumask_of_node(nid);
1275
1276		/* Look for allowed, online CPU in same node. */
1277		for_each_cpu(dest_cpu, nodemask) {
1278			if (!cpu_online(dest_cpu))
1279				continue;
1280			if (!cpu_active(dest_cpu))
1281				continue;
1282			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283				return dest_cpu;
1284		}
1285	}
1286
1287	for (;;) {
1288		/* Any allowed, online CPU? */
1289		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
1294			goto out;
1295		}
1296
1297		switch (state) {
1298		case cpuset:
1299			/* No more Mr. Nice Guy. */
1300			cpuset_cpus_allowed_fallback(p);
1301			state = possible;
1302			break;
1303
1304		case possible:
1305			do_set_cpus_allowed(p, cpu_possible_mask);
1306			state = fail;
1307			break;
1308
1309		case fail:
1310			BUG();
1311			break;
1312		}
1313	}
1314
1315out:
1316	if (state != cpuset) {
1317		/*
1318		 * Don't tell them about moving exiting tasks or
1319		 * kernel threads (both mm NULL), since they never
1320		 * leave kernel.
1321		 */
1322		if (p->mm && printk_ratelimit()) {
1323			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324					task_pid_nr(p), p->comm, cpu);
1325		}
1326	}
1327
1328	return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339	/*
1340	 * In order not to call set_task_cpu() on a blocking task we need
1341	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342	 * cpu.
1343	 *
1344	 * Since this is common to all placement strategies, this lives here.
1345	 *
1346	 * [ this allows ->select_task() to simply return task_cpu(p) and
1347	 *   not worry about this generic constraint ]
1348	 */
1349	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350		     !cpu_online(cpu)))
1351		cpu = select_fallback_rq(task_cpu(p), p);
1352
1353	return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358	s64 diff = sample - *avg;
1359	*avg += diff >> 3;
1360}
1361#endif
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367	struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370	int this_cpu = smp_processor_id();
1371
1372	if (cpu == this_cpu) {
1373		schedstat_inc(rq, ttwu_local);
1374		schedstat_inc(p, se.statistics.nr_wakeups_local);
1375	} else {
1376		struct sched_domain *sd;
1377
1378		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379		rcu_read_lock();
1380		for_each_domain(this_cpu, sd) {
1381			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382				schedstat_inc(sd, ttwu_wake_remote);
1383				break;
1384			}
1385		}
1386		rcu_read_unlock();
1387	}
1388
1389	if (wake_flags & WF_MIGRATED)
1390		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394	schedstat_inc(rq, ttwu_count);
1395	schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397	if (wake_flags & WF_SYNC)
1398		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405	activate_task(rq, p, en_flags);
1406	p->on_rq = 1;
1407
1408	/* if a worker is waking up, notify workqueue */
1409	if (p->flags & PF_WQ_WORKER)
1410		wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419	check_preempt_curr(rq, p, wake_flags);
1420	trace_sched_wakeup(p, true);
1421
1422	p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424	if (p->sched_class->task_woken)
1425		p->sched_class->task_woken(rq, p);
1426
1427	if (rq->idle_stamp) {
1428		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429		u64 max = 2*rq->max_idle_balance_cost;
1430
1431		update_avg(&rq->avg_idle, delta);
1432
1433		if (rq->avg_idle > max)
1434			rq->avg_idle = max;
1435
1436		rq->idle_stamp = 0;
1437	}
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445	if (p->sched_contributes_to_load)
1446		rq->nr_uninterruptible--;
1447#endif
1448
1449	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450	ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461	struct rq *rq;
1462	int ret = 0;
1463
1464	rq = __task_rq_lock(p);
1465	if (p->on_rq) {
1466		/* check_preempt_curr() may use rq clock */
1467		update_rq_clock(rq);
1468		ttwu_do_wakeup(rq, p, wake_flags);
1469		ret = 1;
1470	}
1471	__task_rq_unlock(rq);
1472
1473	return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
1479	struct rq *rq = this_rq();
1480	struct llist_node *llist = llist_del_all(&rq->wake_list);
1481	struct task_struct *p;
1482
1483	raw_spin_lock(&rq->lock);
1484
1485	while (llist) {
1486		p = llist_entry(llist, struct task_struct, wake_entry);
1487		llist = llist_next(llist);
1488		ttwu_do_activate(rq, p, 0);
1489	}
1490
1491	raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
1496	/*
1497	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499	 * this IPI.
1500	 */
1501	preempt_fold_need_resched();
1502
1503	if (llist_empty(&this_rq()->wake_list)
1504			&& !tick_nohz_full_cpu(smp_processor_id())
1505			&& !got_nohz_idle_kick())
1506		return;
1507
1508	/*
1509	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510	 * traditionally all their work was done from the interrupt return
1511	 * path. Now that we actually do some work, we need to make sure
1512	 * we do call them.
1513	 *
1514	 * Some archs already do call them, luckily irq_enter/exit nest
1515	 * properly.
1516	 *
1517	 * Arguably we should visit all archs and update all handlers,
1518	 * however a fair share of IPIs are still resched only so this would
1519	 * somewhat pessimize the simple resched case.
1520	 */
1521	irq_enter();
1522	tick_nohz_full_check();
1523	sched_ttwu_pending();
1524
1525	/*
1526	 * Check if someone kicked us for doing the nohz idle load balance.
1527	 */
1528	if (unlikely(got_nohz_idle_kick())) {
1529		this_rq()->idle_balance = 1;
1530		raise_softirq_irqoff(SCHED_SOFTIRQ);
1531	}
1532	irq_exit();
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
1537	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538		smp_send_reschedule(cpu);
1539}
1540
1541bool cpus_share_cache(int this_cpu, int that_cpu)
1542{
1543	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
1545#endif /* CONFIG_SMP */
1546
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549	struct rq *rq = cpu_rq(cpu);
1550
1551#if defined(CONFIG_SMP)
1552	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554		ttwu_queue_remote(p, cpu);
1555		return;
1556	}
1557#endif
1558
1559	raw_spin_lock(&rq->lock);
1560	ttwu_do_activate(rq, p, 0);
1561	raw_spin_unlock(&rq->lock);
1562}
1563
1564/**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581{
1582	unsigned long flags;
1583	int cpu, success = 0;
1584
1585	/*
1586	 * If we are going to wake up a thread waiting for CONDITION we
1587	 * need to ensure that CONDITION=1 done by the caller can not be
1588	 * reordered with p->state check below. This pairs with mb() in
1589	 * set_current_state() the waiting thread does.
1590	 */
1591	smp_mb__before_spinlock();
1592	raw_spin_lock_irqsave(&p->pi_lock, flags);
1593	if (!(p->state & state))
1594		goto out;
1595
1596	success = 1; /* we're going to change ->state */
1597	cpu = task_cpu(p);
1598
1599	if (p->on_rq && ttwu_remote(p, wake_flags))
1600		goto stat;
1601
1602#ifdef CONFIG_SMP
1603	/*
1604	 * If the owning (remote) cpu is still in the middle of schedule() with
1605	 * this task as prev, wait until its done referencing the task.
1606	 */
1607	while (p->on_cpu)
1608		cpu_relax();
1609	/*
1610	 * Pairs with the smp_wmb() in finish_lock_switch().
1611	 */
1612	smp_rmb();
1613
1614	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615	p->state = TASK_WAKING;
1616
1617	if (p->sched_class->task_waking)
1618		p->sched_class->task_waking(p);
1619
1620	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621	if (task_cpu(p) != cpu) {
1622		wake_flags |= WF_MIGRATED;
1623		set_task_cpu(p, cpu);
1624	}
1625#endif /* CONFIG_SMP */
1626
1627	ttwu_queue(p, cpu);
1628stat:
1629	ttwu_stat(p, cpu, wake_flags);
1630out:
1631	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633	return success;
1634}
1635
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646	struct rq *rq = task_rq(p);
1647
1648	if (WARN_ON_ONCE(rq != this_rq()) ||
1649	    WARN_ON_ONCE(p == current))
1650		return;
1651
1652	lockdep_assert_held(&rq->lock);
1653
1654	if (!raw_spin_trylock(&p->pi_lock)) {
1655		raw_spin_unlock(&rq->lock);
1656		raw_spin_lock(&p->pi_lock);
1657		raw_spin_lock(&rq->lock);
1658	}
1659
1660	if (!(p->state & TASK_NORMAL))
1661		goto out;
1662
1663	if (!p->on_rq)
1664		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666	ttwu_do_wakeup(rq, p, 0);
1667	ttwu_stat(p, smp_processor_id(), 0);
1668out:
1669	raw_spin_unlock(&p->pi_lock);
1670}
1671
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684int wake_up_process(struct task_struct *p)
1685{
1686	WARN_ON(task_is_stopped_or_traced(p));
1687	return try_to_wake_up(p, TASK_NORMAL, 0);
1688}
1689EXPORT_SYMBOL(wake_up_process);
1690
1691int wake_up_state(struct task_struct *p, unsigned int state)
1692{
1693	return try_to_wake_up(p, state, 0);
1694}
1695
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703{
1704	p->on_rq			= 0;
1705
1706	p->se.on_rq			= 0;
1707	p->se.exec_start		= 0;
1708	p->se.sum_exec_runtime		= 0;
1709	p->se.prev_sum_exec_runtime	= 0;
1710	p->se.nr_migrations		= 0;
1711	p->se.vruntime			= 0;
1712	INIT_LIST_HEAD(&p->se.group_node);
1713
1714#ifdef CONFIG_SCHEDSTATS
1715	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716#endif
1717
1718	RB_CLEAR_NODE(&p->dl.rb_node);
1719	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720	p->dl.dl_runtime = p->dl.runtime = 0;
1721	p->dl.dl_deadline = p->dl.deadline = 0;
1722	p->dl.dl_period = 0;
1723	p->dl.flags = 0;
1724
1725	INIT_LIST_HEAD(&p->rt.run_list);
1726
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728	INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734		p->mm->numa_scan_seq = 0;
1735	}
1736
1737	if (clone_flags & CLONE_VM)
1738		p->numa_preferred_nid = current->numa_preferred_nid;
1739	else
1740		p->numa_preferred_nid = -1;
1741
1742	p->node_stamp = 0ULL;
1743	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745	p->numa_work.next = &p->numa_work;
1746	p->numa_faults_memory = NULL;
1747	p->numa_faults_buffer_memory = NULL;
1748	p->last_task_numa_placement = 0;
1749	p->last_sum_exec_runtime = 0;
1750
1751	INIT_LIST_HEAD(&p->numa_entry);
1752	p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760	if (enabled)
1761		sched_feat_set("NUMA");
1762	else
1763		sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770	numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778	struct ctl_table t;
1779	int err;
1780	int state = numabalancing_enabled;
1781
1782	if (write && !capable(CAP_SYS_ADMIN))
1783		return -EPERM;
1784
1785	t = *table;
1786	t.data = &state;
1787	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788	if (err < 0)
1789		return err;
1790	if (write)
1791		set_numabalancing_state(state);
1792	return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802	unsigned long flags;
1803	int cpu = get_cpu();
1804
1805	__sched_fork(clone_flags, p);
1806	/*
1807	 * We mark the process as running here. This guarantees that
1808	 * nobody will actually run it, and a signal or other external
1809	 * event cannot wake it up and insert it on the runqueue either.
1810	 */
1811	p->state = TASK_RUNNING;
1812
1813	/*
1814	 * Make sure we do not leak PI boosting priority to the child.
1815	 */
1816	p->prio = current->normal_prio;
1817
1818	/*
1819	 * Revert to default priority/policy on fork if requested.
1820	 */
1821	if (unlikely(p->sched_reset_on_fork)) {
1822		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823			p->policy = SCHED_NORMAL;
1824			p->static_prio = NICE_TO_PRIO(0);
1825			p->rt_priority = 0;
1826		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827			p->static_prio = NICE_TO_PRIO(0);
1828
1829		p->prio = p->normal_prio = __normal_prio(p);
1830		set_load_weight(p);
1831
1832		/*
1833		 * We don't need the reset flag anymore after the fork. It has
1834		 * fulfilled its duty:
1835		 */
1836		p->sched_reset_on_fork = 0;
1837	}
1838
1839	if (dl_prio(p->prio)) {
1840		put_cpu();
1841		return -EAGAIN;
1842	} else if (rt_prio(p->prio)) {
1843		p->sched_class = &rt_sched_class;
1844	} else {
1845		p->sched_class = &fair_sched_class;
1846	}
1847
1848	if (p->sched_class->task_fork)
1849		p->sched_class->task_fork(p);
1850
1851	/*
1852	 * The child is not yet in the pid-hash so no cgroup attach races,
1853	 * and the cgroup is pinned to this child due to cgroup_fork()
1854	 * is ran before sched_fork().
1855	 *
1856	 * Silence PROVE_RCU.
1857	 */
1858	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859	set_task_cpu(p, cpu);
1860	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863	if (likely(sched_info_on()))
1864		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867	p->on_cpu = 0;
1868#endif
1869	init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875	put_cpu();
1876	return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881	if (runtime == RUNTIME_INF)
1882		return 1ULL << 20;
1883
1884	/*
1885	 * Doing this here saves a lot of checks in all
1886	 * the calling paths, and returning zero seems
1887	 * safe for them anyway.
1888	 */
1889	if (period == 0)
1890		return 0;
1891
1892	return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898	return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903	struct root_domain *rd = cpu_rq(i)->rd;
1904	int cpus = 0;
1905
1906	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907		cpus++;
1908
1909	return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914	return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919	return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926	dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932	dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938	return dl_b->bw != -1 &&
1939	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951		       const struct sched_attr *attr)
1952{
1953
1954	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955	u64 period = attr->sched_period ?: attr->sched_deadline;
1956	u64 runtime = attr->sched_runtime;
1957	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958	int cpus, err = -1;
1959
1960	if (new_bw == p->dl.dl_bw)
1961		return 0;
1962
1963	/*
1964	 * Either if a task, enters, leave, or stays -deadline but changes
1965	 * its parameters, we may need to update accordingly the total
1966	 * allocated bandwidth of the container.
1967	 */
1968	raw_spin_lock(&dl_b->lock);
1969	cpus = dl_bw_cpus(task_cpu(p));
1970	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972		__dl_add(dl_b, new_bw);
1973		err = 0;
1974	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976		__dl_clear(dl_b, p->dl.dl_bw);
1977		__dl_add(dl_b, new_bw);
1978		err = 0;
1979	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980		__dl_clear(dl_b, p->dl.dl_bw);
1981		err = 0;
1982	}
1983	raw_spin_unlock(&dl_b->lock);
1984
1985	return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999	unsigned long flags;
2000	struct rq *rq;
2001
2002	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004	/*
2005	 * Fork balancing, do it here and not earlier because:
2006	 *  - cpus_allowed can change in the fork path
2007	 *  - any previously selected cpu might disappear through hotplug
2008	 */
2009	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012	/* Initialize new task's runnable average */
2013	init_task_runnable_average(p);
2014	rq = __task_rq_lock(p);
2015	activate_task(rq, p, 0);
2016	p->on_rq = 1;
2017	trace_sched_wakeup_new(p, true);
2018	check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020	if (p->sched_class->task_woken)
2021		p->sched_class->task_woken(rq, p);
2022#endif
2023	task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046	hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052	struct preempt_notifier *notifier;
2053
2054	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060				 struct task_struct *next)
2061{
2062	struct preempt_notifier *notifier;
2063
2064	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065		notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076				 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097		    struct task_struct *next)
2098{
2099	trace_sched_switch(prev, next);
2100	sched_info_switch(rq, prev, next);
2101	perf_event_task_sched_out(prev, next);
2102	fire_sched_out_preempt_notifiers(prev, next);
2103	prepare_lock_switch(rq, next);
2104	prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123	__releases(rq->lock)
2124{
2125	struct mm_struct *mm = rq->prev_mm;
2126	long prev_state;
2127
2128	rq->prev_mm = NULL;
2129
2130	/*
2131	 * A task struct has one reference for the use as "current".
2132	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133	 * schedule one last time. The schedule call will never return, and
2134	 * the scheduled task must drop that reference.
2135	 * The test for TASK_DEAD must occur while the runqueue locks are
2136	 * still held, otherwise prev could be scheduled on another cpu, die
2137	 * there before we look at prev->state, and then the reference would
2138	 * be dropped twice.
2139	 *		Manfred Spraul <manfred@colorfullife.com>
2140	 */
2141	prev_state = prev->state;
2142	vtime_task_switch(prev);
2143	finish_arch_switch(prev);
2144	perf_event_task_sched_in(prev, current);
2145	finish_lock_switch(rq, prev);
2146	finish_arch_post_lock_switch();
2147
2148	fire_sched_in_preempt_notifiers(current);
2149	if (mm)
2150		mmdrop(mm);
2151	if (unlikely(prev_state == TASK_DEAD)) {
2152		if (prev->sched_class->task_dead)
2153			prev->sched_class->task_dead(prev);
2154
2155		/*
2156		 * Remove function-return probe instances associated with this
2157		 * task and put them back on the free list.
2158		 */
2159		kprobe_flush_task(prev);
2160		put_task_struct(prev);
2161	}
2162
2163	tick_nohz_task_switch(current);
2164}
2165
2166#ifdef CONFIG_SMP
2167
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171	if (rq->post_schedule) {
2172		unsigned long flags;
2173
2174		raw_spin_lock_irqsave(&rq->lock, flags);
2175		if (rq->curr->sched_class->post_schedule)
2176			rq->curr->sched_class->post_schedule(rq);
2177		raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179		rq->post_schedule = 0;
2180	}
2181}
2182
2183#else
2184
2185static inline void post_schedule(struct rq *rq)
2186{
2187}
2188
2189#endif
2190
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195asmlinkage void schedule_tail(struct task_struct *prev)
2196	__releases(rq->lock)
2197{
2198	struct rq *rq = this_rq();
2199
2200	finish_task_switch(rq, prev);
2201
2202	/*
2203	 * FIXME: do we need to worry about rq being invalidated by the
2204	 * task_switch?
2205	 */
2206	post_schedule(rq);
2207
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209	/* In this case, finish_task_switch does not reenable preemption */
2210	preempt_enable();
2211#endif
2212	if (current->set_child_tid)
2213		put_user(task_pid_vnr(current), current->set_child_tid);
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220static inline void
2221context_switch(struct rq *rq, struct task_struct *prev,
2222	       struct task_struct *next)
2223{
2224	struct mm_struct *mm, *oldmm;
2225
2226	prepare_task_switch(rq, prev, next);
2227
2228	mm = next->mm;
2229	oldmm = prev->active_mm;
2230	/*
2231	 * For paravirt, this is coupled with an exit in switch_to to
2232	 * combine the page table reload and the switch backend into
2233	 * one hypercall.
2234	 */
2235	arch_start_context_switch(prev);
2236
2237	if (!mm) {
2238		next->active_mm = oldmm;
2239		atomic_inc(&oldmm->mm_count);
2240		enter_lazy_tlb(oldmm, next);
2241	} else
2242		switch_mm(oldmm, mm, next);
2243
2244	if (!prev->mm) {
2245		prev->active_mm = NULL;
2246		rq->prev_mm = oldmm;
2247	}
2248	/*
2249	 * Since the runqueue lock will be released by the next
2250	 * task (which is an invalid locking op but in the case
2251	 * of the scheduler it's an obvious special-case), so we
2252	 * do an early lockdep release here:
2253	 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256#endif
2257
2258	context_tracking_task_switch(prev, next);
2259	/* Here we just switch the register state and the stack. */
2260	switch_to(prev, next, prev);
2261
2262	barrier();
2263	/*
2264	 * this_rq must be evaluated again because prev may have moved
2265	 * CPUs since it called schedule(), thus the 'rq' on its stack
2266	 * frame will be invalid.
2267	 */
2268	finish_task_switch(this_rq(), prev);
2269}
2270
2271/*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277unsigned long nr_running(void)
2278{
2279	unsigned long i, sum = 0;
2280
2281	for_each_online_cpu(i)
2282		sum += cpu_rq(i)->nr_running;
2283
2284	return sum;
2285}
2286
2287unsigned long long nr_context_switches(void)
2288{
2289	int i;
2290	unsigned long long sum = 0;
2291
2292	for_each_possible_cpu(i)
2293		sum += cpu_rq(i)->nr_switches;
2294
2295	return sum;
2296}
2297
2298unsigned long nr_iowait(void)
2299{
2300	unsigned long i, sum = 0;
2301
2302	for_each_possible_cpu(i)
2303		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305	return sum;
2306}
2307
2308unsigned long nr_iowait_cpu(int cpu)
2309{
2310	struct rq *this = cpu_rq(cpu);
2311	return atomic_read(&this->nr_iowait);
2312}
2313
2314#ifdef CONFIG_SMP
2315
2316/*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320void sched_exec(void)
2321{
2322	struct task_struct *p = current;
2323	unsigned long flags;
2324	int dest_cpu;
2325
2326	raw_spin_lock_irqsave(&p->pi_lock, flags);
2327	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328	if (dest_cpu == smp_processor_id())
2329		goto unlock;
2330
2331	if (likely(cpu_active(dest_cpu))) {
2332		struct migration_arg arg = { p, dest_cpu };
2333
2334		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336		return;
2337	}
2338unlock:
2339	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340}
2341
2342#endif
2343
2344DEFINE_PER_CPU(struct kernel_stat, kstat);
2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350/*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358	u64 ns = 0;
2359
2360	if (task_current(rq, p)) {
2361		update_rq_clock(rq);
2362		ns = rq_clock_task(rq) - p->se.exec_start;
2363		if ((s64)ns < 0)
2364			ns = 0;
2365	}
2366
2367	return ns;
2368}
2369
2370unsigned long long task_delta_exec(struct task_struct *p)
2371{
2372	unsigned long flags;
2373	struct rq *rq;
2374	u64 ns = 0;
2375
2376	rq = task_rq_lock(p, &flags);
2377	ns = do_task_delta_exec(p, rq);
2378	task_rq_unlock(rq, p, &flags);
2379
2380	return ns;
2381}
2382
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390	unsigned long flags;
2391	struct rq *rq;
2392	u64 ns = 0;
2393
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395	/*
2396	 * 64-bit doesn't need locks to atomically read a 64bit value.
2397	 * So we have a optimization chance when the task's delta_exec is 0.
2398	 * Reading ->on_cpu is racy, but this is ok.
2399	 *
2400	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401	 * If we race with it entering cpu, unaccounted time is 0. This is
2402	 * indistinguishable from the read occurring a few cycles earlier.
2403	 */
2404	if (!p->on_cpu)
2405		return p->se.sum_exec_runtime;
2406#endif
2407
2408	rq = task_rq_lock(p, &flags);
2409	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410	task_rq_unlock(rq, p, &flags);
2411
2412	return ns;
2413}
2414
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419void scheduler_tick(void)
2420{
2421	int cpu = smp_processor_id();
2422	struct rq *rq = cpu_rq(cpu);
2423	struct task_struct *curr = rq->curr;
2424
2425	sched_clock_tick();
2426
2427	raw_spin_lock(&rq->lock);
2428	update_rq_clock(rq);
2429	curr->sched_class->task_tick(rq, curr, 0);
2430	update_cpu_load_active(rq);
2431	raw_spin_unlock(&rq->lock);
2432
2433	perf_event_task_tick();
2434
2435#ifdef CONFIG_SMP
2436	rq->idle_balance = idle_cpu(cpu);
2437	trigger_load_balance(rq);
2438#endif
2439	rq_last_tick_reset(rq);
2440}
2441
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458	struct rq *rq = this_rq();
2459	unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461	next = rq->last_sched_tick + HZ;
2462
2463	if (time_before_eq(next, now))
2464		return 0;
2465
2466	return jiffies_to_nsecs(next - now);
2467}
2468#endif
2469
2470notrace unsigned long get_parent_ip(unsigned long addr)
2471{
2472	if (in_lock_functions(addr)) {
2473		addr = CALLER_ADDR2;
2474		if (in_lock_functions(addr))
2475			addr = CALLER_ADDR3;
2476	}
2477	return addr;
2478}
2479
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481				defined(CONFIG_PREEMPT_TRACER))
2482
2483void __kprobes preempt_count_add(int val)
2484{
2485#ifdef CONFIG_DEBUG_PREEMPT
2486	/*
2487	 * Underflow?
2488	 */
2489	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490		return;
2491#endif
2492	__preempt_count_add(val);
2493#ifdef CONFIG_DEBUG_PREEMPT
2494	/*
2495	 * Spinlock count overflowing soon?
2496	 */
2497	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498				PREEMPT_MASK - 10);
2499#endif
2500	if (preempt_count() == val) {
2501		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503		current->preempt_disable_ip = ip;
2504#endif
2505		trace_preempt_off(CALLER_ADDR0, ip);
2506	}
2507}
2508EXPORT_SYMBOL(preempt_count_add);
2509
2510void __kprobes preempt_count_sub(int val)
2511{
2512#ifdef CONFIG_DEBUG_PREEMPT
2513	/*
2514	 * Underflow?
2515	 */
2516	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517		return;
2518	/*
2519	 * Is the spinlock portion underflowing?
2520	 */
2521	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522			!(preempt_count() & PREEMPT_MASK)))
2523		return;
2524#endif
2525
2526	if (preempt_count() == val)
2527		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528	__preempt_count_sub(val);
2529}
2530EXPORT_SYMBOL(preempt_count_sub);
2531
2532#endif
2533
2534/*
2535 * Print scheduling while atomic bug:
2536 */
2537static noinline void __schedule_bug(struct task_struct *prev)
2538{
2539	if (oops_in_progress)
2540		return;
2541
2542	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543		prev->comm, prev->pid, preempt_count());
2544
2545	debug_show_held_locks(prev);
2546	print_modules();
2547	if (irqs_disabled())
2548		print_irqtrace_events(prev);
2549#ifdef CONFIG_DEBUG_PREEMPT
2550	if (in_atomic_preempt_off()) {
2551		pr_err("Preemption disabled at:");
2552		print_ip_sym(current->preempt_disable_ip);
2553		pr_cont("\n");
2554	}
2555#endif
2556	dump_stack();
2557	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558}
2559
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
2565	/*
2566	 * Test if we are atomic. Since do_exit() needs to call into
2567	 * schedule() atomically, we ignore that path. Otherwise whine
2568	 * if we are scheduling when we should not.
2569	 */
2570	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571		__schedule_bug(prev);
2572	rcu_sleep_check();
2573
2574	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576	schedstat_inc(this_rq(), sched_count);
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
2583pick_next_task(struct rq *rq, struct task_struct *prev)
2584{
2585	const struct sched_class *class = &fair_sched_class;
2586	struct task_struct *p;
2587
2588	/*
2589	 * Optimization: we know that if all tasks are in
2590	 * the fair class we can call that function directly:
2591	 */
2592	if (likely(prev->sched_class == class &&
2593		   rq->nr_running == rq->cfs.h_nr_running)) {
2594		p = fair_sched_class.pick_next_task(rq, prev);
2595		if (likely(p && p != RETRY_TASK))
2596			return p;
2597	}
2598
2599again:
2600	for_each_class(class) {
2601		p = class->pick_next_task(rq, prev);
2602		if (p) {
2603			if (unlikely(p == RETRY_TASK))
2604				goto again;
2605			return p;
2606		}
2607	}
2608
2609	BUG(); /* the idle class will always have a runnable task */
2610}
2611
2612/*
2613 * __schedule() is the main scheduler function.
2614 *
2615 * The main means of driving the scheduler and thus entering this function are:
2616 *
2617 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 *
2619 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620 *      paths. For example, see arch/x86/entry_64.S.
2621 *
2622 *      To drive preemption between tasks, the scheduler sets the flag in timer
2623 *      interrupt handler scheduler_tick().
2624 *
2625 *   3. Wakeups don't really cause entry into schedule(). They add a
2626 *      task to the run-queue and that's it.
2627 *
2628 *      Now, if the new task added to the run-queue preempts the current
2629 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630 *      called on the nearest possible occasion:
2631 *
2632 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 *
2634 *         - in syscall or exception context, at the next outmost
2635 *           preempt_enable(). (this might be as soon as the wake_up()'s
2636 *           spin_unlock()!)
2637 *
2638 *         - in IRQ context, return from interrupt-handler to
2639 *           preemptible context
2640 *
2641 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642 *         then at the next:
2643 *
2644 *          - cond_resched() call
2645 *          - explicit schedule() call
2646 *          - return from syscall or exception to user-space
2647 *          - return from interrupt-handler to user-space
2648 */
2649static void __sched __schedule(void)
2650{
2651	struct task_struct *prev, *next;
2652	unsigned long *switch_count;
2653	struct rq *rq;
2654	int cpu;
2655
2656need_resched:
2657	preempt_disable();
2658	cpu = smp_processor_id();
2659	rq = cpu_rq(cpu);
2660	rcu_note_context_switch(cpu);
2661	prev = rq->curr;
2662
2663	schedule_debug(prev);
2664
2665	if (sched_feat(HRTICK))
2666		hrtick_clear(rq);
2667
2668	/*
2669	 * Make sure that signal_pending_state()->signal_pending() below
2670	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671	 * done by the caller to avoid the race with signal_wake_up().
2672	 */
2673	smp_mb__before_spinlock();
2674	raw_spin_lock_irq(&rq->lock);
2675
2676	switch_count = &prev->nivcsw;
2677	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2678		if (unlikely(signal_pending_state(prev->state, prev))) {
2679			prev->state = TASK_RUNNING;
2680		} else {
2681			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682			prev->on_rq = 0;
2683
2684			/*
2685			 * If a worker went to sleep, notify and ask workqueue
2686			 * whether it wants to wake up a task to maintain
2687			 * concurrency.
2688			 */
2689			if (prev->flags & PF_WQ_WORKER) {
2690				struct task_struct *to_wakeup;
2691
2692				to_wakeup = wq_worker_sleeping(prev, cpu);
2693				if (to_wakeup)
2694					try_to_wake_up_local(to_wakeup);
2695			}
2696		}
2697		switch_count = &prev->nvcsw;
2698	}
2699
2700	if (prev->on_rq || rq->skip_clock_update < 0)
2701		update_rq_clock(rq);
2702
2703	next = pick_next_task(rq, prev);
2704	clear_tsk_need_resched(prev);
2705	clear_preempt_need_resched();
2706	rq->skip_clock_update = 0;
2707
2708	if (likely(prev != next)) {
2709		rq->nr_switches++;
2710		rq->curr = next;
2711		++*switch_count;
2712
2713		context_switch(rq, prev, next); /* unlocks the rq */
2714		/*
2715		 * The context switch have flipped the stack from under us
2716		 * and restored the local variables which were saved when
2717		 * this task called schedule() in the past. prev == current
2718		 * is still correct, but it can be moved to another cpu/rq.
2719		 */
2720		cpu = smp_processor_id();
2721		rq = cpu_rq(cpu);
2722	} else
2723		raw_spin_unlock_irq(&rq->lock);
2724
2725	post_schedule(rq);
2726
2727	sched_preempt_enable_no_resched();
2728	if (need_resched())
2729		goto need_resched;
2730}
2731
2732static inline void sched_submit_work(struct task_struct *tsk)
2733{
2734	if (!tsk->state || tsk_is_pi_blocked(tsk))
2735		return;
2736	/*
2737	 * If we are going to sleep and we have plugged IO queued,
2738	 * make sure to submit it to avoid deadlocks.
2739	 */
2740	if (blk_needs_flush_plug(tsk))
2741		blk_schedule_flush_plug(tsk);
2742}
2743
2744asmlinkage void __sched schedule(void)
2745{
2746	struct task_struct *tsk = current;
2747
2748	sched_submit_work(tsk);
2749	__schedule();
2750}
2751EXPORT_SYMBOL(schedule);
2752
2753#ifdef CONFIG_CONTEXT_TRACKING
2754asmlinkage void __sched schedule_user(void)
2755{
2756	/*
2757	 * If we come here after a random call to set_need_resched(),
2758	 * or we have been woken up remotely but the IPI has not yet arrived,
2759	 * we haven't yet exited the RCU idle mode. Do it here manually until
2760	 * we find a better solution.
2761	 */
2762	user_exit();
2763	schedule();
2764	user_enter();
2765}
2766#endif
2767
2768/**
2769 * schedule_preempt_disabled - called with preemption disabled
2770 *
2771 * Returns with preemption disabled. Note: preempt_count must be 1
2772 */
2773void __sched schedule_preempt_disabled(void)
2774{
2775	sched_preempt_enable_no_resched();
2776	schedule();
2777	preempt_disable();
2778}
2779
2780#ifdef CONFIG_PREEMPT
2781/*
2782 * this is the entry point to schedule() from in-kernel preemption
2783 * off of preempt_enable. Kernel preemptions off return from interrupt
2784 * occur there and call schedule directly.
2785 */
2786asmlinkage void __sched notrace preempt_schedule(void)
2787{
2788	/*
2789	 * If there is a non-zero preempt_count or interrupts are disabled,
2790	 * we do not want to preempt the current task. Just return..
2791	 */
2792	if (likely(!preemptible()))
2793		return;
2794
2795	do {
2796		__preempt_count_add(PREEMPT_ACTIVE);
2797		__schedule();
2798		__preempt_count_sub(PREEMPT_ACTIVE);
2799
2800		/*
2801		 * Check again in case we missed a preemption opportunity
2802		 * between schedule and now.
2803		 */
2804		barrier();
2805	} while (need_resched());
2806}
2807EXPORT_SYMBOL(preempt_schedule);
2808#endif /* CONFIG_PREEMPT */
2809
2810/*
2811 * this is the entry point to schedule() from kernel preemption
2812 * off of irq context.
2813 * Note, that this is called and return with irqs disabled. This will
2814 * protect us against recursive calling from irq.
2815 */
2816asmlinkage void __sched preempt_schedule_irq(void)
2817{
2818	enum ctx_state prev_state;
2819
2820	/* Catch callers which need to be fixed */
2821	BUG_ON(preempt_count() || !irqs_disabled());
2822
2823	prev_state = exception_enter();
2824
2825	do {
2826		__preempt_count_add(PREEMPT_ACTIVE);
2827		local_irq_enable();
2828		__schedule();
2829		local_irq_disable();
2830		__preempt_count_sub(PREEMPT_ACTIVE);
2831
2832		/*
2833		 * Check again in case we missed a preemption opportunity
2834		 * between schedule and now.
2835		 */
2836		barrier();
2837	} while (need_resched());
2838
2839	exception_exit(prev_state);
2840}
2841
2842int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2843			  void *key)
2844{
2845	return try_to_wake_up(curr->private, mode, wake_flags);
2846}
2847EXPORT_SYMBOL(default_wake_function);
2848
2849#ifdef CONFIG_RT_MUTEXES
2850
2851/*
2852 * rt_mutex_setprio - set the current priority of a task
2853 * @p: task
2854 * @prio: prio value (kernel-internal form)
2855 *
2856 * This function changes the 'effective' priority of a task. It does
2857 * not touch ->normal_prio like __setscheduler().
2858 *
2859 * Used by the rt_mutex code to implement priority inheritance
2860 * logic. Call site only calls if the priority of the task changed.
2861 */
2862void rt_mutex_setprio(struct task_struct *p, int prio)
2863{
2864	int oldprio, on_rq, running, enqueue_flag = 0;
2865	struct rq *rq;
2866	const struct sched_class *prev_class;
2867
2868	BUG_ON(prio > MAX_PRIO);
2869
2870	rq = __task_rq_lock(p);
2871
2872	/*
2873	 * Idle task boosting is a nono in general. There is one
2874	 * exception, when PREEMPT_RT and NOHZ is active:
2875	 *
2876	 * The idle task calls get_next_timer_interrupt() and holds
2877	 * the timer wheel base->lock on the CPU and another CPU wants
2878	 * to access the timer (probably to cancel it). We can safely
2879	 * ignore the boosting request, as the idle CPU runs this code
2880	 * with interrupts disabled and will complete the lock
2881	 * protected section without being interrupted. So there is no
2882	 * real need to boost.
2883	 */
2884	if (unlikely(p == rq->idle)) {
2885		WARN_ON(p != rq->curr);
2886		WARN_ON(p->pi_blocked_on);
2887		goto out_unlock;
2888	}
2889
2890	trace_sched_pi_setprio(p, prio);
2891	p->pi_top_task = rt_mutex_get_top_task(p);
2892	oldprio = p->prio;
2893	prev_class = p->sched_class;
2894	on_rq = p->on_rq;
2895	running = task_current(rq, p);
2896	if (on_rq)
2897		dequeue_task(rq, p, 0);
2898	if (running)
2899		p->sched_class->put_prev_task(rq, p);
2900
2901	/*
2902	 * Boosting condition are:
2903	 * 1. -rt task is running and holds mutex A
2904	 *      --> -dl task blocks on mutex A
2905	 *
2906	 * 2. -dl task is running and holds mutex A
2907	 *      --> -dl task blocks on mutex A and could preempt the
2908	 *          running task
2909	 */
2910	if (dl_prio(prio)) {
2911		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2912			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2913			p->dl.dl_boosted = 1;
2914			p->dl.dl_throttled = 0;
2915			enqueue_flag = ENQUEUE_REPLENISH;
2916		} else
2917			p->dl.dl_boosted = 0;
2918		p->sched_class = &dl_sched_class;
2919	} else if (rt_prio(prio)) {
2920		if (dl_prio(oldprio))
2921			p->dl.dl_boosted = 0;
2922		if (oldprio < prio)
2923			enqueue_flag = ENQUEUE_HEAD;
2924		p->sched_class = &rt_sched_class;
2925	} else {
2926		if (dl_prio(oldprio))
2927			p->dl.dl_boosted = 0;
2928		p->sched_class = &fair_sched_class;
2929	}
2930
2931	p->prio = prio;
2932
2933	if (running)
2934		p->sched_class->set_curr_task(rq);
2935	if (on_rq)
2936		enqueue_task(rq, p, enqueue_flag);
2937
2938	check_class_changed(rq, p, prev_class, oldprio);
2939out_unlock:
2940	__task_rq_unlock(rq);
2941}
2942#endif
2943
2944void set_user_nice(struct task_struct *p, long nice)
2945{
2946	int old_prio, delta, on_rq;
2947	unsigned long flags;
2948	struct rq *rq;
2949
2950	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2951		return;
2952	/*
2953	 * We have to be careful, if called from sys_setpriority(),
2954	 * the task might be in the middle of scheduling on another CPU.
2955	 */
2956	rq = task_rq_lock(p, &flags);
2957	/*
2958	 * The RT priorities are set via sched_setscheduler(), but we still
2959	 * allow the 'normal' nice value to be set - but as expected
2960	 * it wont have any effect on scheduling until the task is
2961	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2962	 */
2963	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2964		p->static_prio = NICE_TO_PRIO(nice);
2965		goto out_unlock;
2966	}
2967	on_rq = p->on_rq;
2968	if (on_rq)
2969		dequeue_task(rq, p, 0);
2970
2971	p->static_prio = NICE_TO_PRIO(nice);
2972	set_load_weight(p);
2973	old_prio = p->prio;
2974	p->prio = effective_prio(p);
2975	delta = p->prio - old_prio;
2976
2977	if (on_rq) {
2978		enqueue_task(rq, p, 0);
2979		/*
2980		 * If the task increased its priority or is running and
2981		 * lowered its priority, then reschedule its CPU:
2982		 */
2983		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2984			resched_task(rq->curr);
2985	}
2986out_unlock:
2987	task_rq_unlock(rq, p, &flags);
2988}
2989EXPORT_SYMBOL(set_user_nice);
2990
2991/*
2992 * can_nice - check if a task can reduce its nice value
2993 * @p: task
2994 * @nice: nice value
2995 */
2996int can_nice(const struct task_struct *p, const int nice)
2997{
2998	/* convert nice value [19,-20] to rlimit style value [1,40] */
2999	int nice_rlim = 20 - nice;
3000
3001	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3002		capable(CAP_SYS_NICE));
3003}
3004
3005#ifdef __ARCH_WANT_SYS_NICE
3006
3007/*
3008 * sys_nice - change the priority of the current process.
3009 * @increment: priority increment
3010 *
3011 * sys_setpriority is a more generic, but much slower function that
3012 * does similar things.
3013 */
3014SYSCALL_DEFINE1(nice, int, increment)
3015{
3016	long nice, retval;
3017
3018	/*
3019	 * Setpriority might change our priority at the same moment.
3020	 * We don't have to worry. Conceptually one call occurs first
3021	 * and we have a single winner.
3022	 */
3023	if (increment < -40)
3024		increment = -40;
3025	if (increment > 40)
3026		increment = 40;
3027
3028	nice = task_nice(current) + increment;
3029	if (nice < MIN_NICE)
3030		nice = MIN_NICE;
3031	if (nice > MAX_NICE)
3032		nice = MAX_NICE;
3033
3034	if (increment < 0 && !can_nice(current, nice))
3035		return -EPERM;
3036
3037	retval = security_task_setnice(current, nice);
3038	if (retval)
3039		return retval;
3040
3041	set_user_nice(current, nice);
3042	return 0;
3043}
3044
3045#endif
3046
3047/**
3048 * task_prio - return the priority value of a given task.
3049 * @p: the task in question.
3050 *
3051 * Return: The priority value as seen by users in /proc.
3052 * RT tasks are offset by -200. Normal tasks are centered
3053 * around 0, value goes from -16 to +15.
3054 */
3055int task_prio(const struct task_struct *p)
3056{
3057	return p->prio - MAX_RT_PRIO;
3058}
3059
3060/**
3061 * idle_cpu - is a given cpu idle currently?
3062 * @cpu: the processor in question.
3063 *
3064 * Return: 1 if the CPU is currently idle. 0 otherwise.
3065 */
3066int idle_cpu(int cpu)
3067{
3068	struct rq *rq = cpu_rq(cpu);
3069
3070	if (rq->curr != rq->idle)
3071		return 0;
3072
3073	if (rq->nr_running)
3074		return 0;
3075
3076#ifdef CONFIG_SMP
3077	if (!llist_empty(&rq->wake_list))
3078		return 0;
3079#endif
3080
3081	return 1;
3082}
3083
3084/**
3085 * idle_task - return the idle task for a given cpu.
3086 * @cpu: the processor in question.
3087 *
3088 * Return: The idle task for the cpu @cpu.
3089 */
3090struct task_struct *idle_task(int cpu)
3091{
3092	return cpu_rq(cpu)->idle;
3093}
3094
3095/**
3096 * find_process_by_pid - find a process with a matching PID value.
3097 * @pid: the pid in question.
3098 *
3099 * The task of @pid, if found. %NULL otherwise.
3100 */
3101static struct task_struct *find_process_by_pid(pid_t pid)
3102{
3103	return pid ? find_task_by_vpid(pid) : current;
3104}
3105
3106/*
3107 * This function initializes the sched_dl_entity of a newly becoming
3108 * SCHED_DEADLINE task.
3109 *
3110 * Only the static values are considered here, the actual runtime and the
3111 * absolute deadline will be properly calculated when the task is enqueued
3112 * for the first time with its new policy.
3113 */
3114static void
3115__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3116{
3117	struct sched_dl_entity *dl_se = &p->dl;
3118
3119	init_dl_task_timer(dl_se);
3120	dl_se->dl_runtime = attr->sched_runtime;
3121	dl_se->dl_deadline = attr->sched_deadline;
3122	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3123	dl_se->flags = attr->sched_flags;
3124	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3125	dl_se->dl_throttled = 0;
3126	dl_se->dl_new = 1;
3127	dl_se->dl_yielded = 0;
3128}
3129
3130static void __setscheduler_params(struct task_struct *p,
3131		const struct sched_attr *attr)
3132{
3133	int policy = attr->sched_policy;
3134
3135	if (policy == -1) /* setparam */
3136		policy = p->policy;
3137
3138	p->policy = policy;
3139
3140	if (dl_policy(policy))
3141		__setparam_dl(p, attr);
3142	else if (fair_policy(policy))
3143		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3144
3145	/*
3146	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3147	 * !rt_policy. Always setting this ensures that things like
3148	 * getparam()/getattr() don't report silly values for !rt tasks.
3149	 */
3150	p->rt_priority = attr->sched_priority;
3151	p->normal_prio = normal_prio(p);
3152	set_load_weight(p);
3153}
3154
3155/* Actually do priority change: must hold pi & rq lock. */
3156static void __setscheduler(struct rq *rq, struct task_struct *p,
3157			   const struct sched_attr *attr)
3158{
3159	__setscheduler_params(p, attr);
3160
3161	/*
3162	 * If we get here, there was no pi waiters boosting the
3163	 * task. It is safe to use the normal prio.
3164	 */
3165	p->prio = normal_prio(p);
3166
3167	if (dl_prio(p->prio))
3168		p->sched_class = &dl_sched_class;
3169	else if (rt_prio(p->prio))
3170		p->sched_class = &rt_sched_class;
3171	else
3172		p->sched_class = &fair_sched_class;
3173}
3174
3175static void
3176__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3177{
3178	struct sched_dl_entity *dl_se = &p->dl;
3179
3180	attr->sched_priority = p->rt_priority;
3181	attr->sched_runtime = dl_se->dl_runtime;
3182	attr->sched_deadline = dl_se->dl_deadline;
3183	attr->sched_period = dl_se->dl_period;
3184	attr->sched_flags = dl_se->flags;
3185}
3186
3187/*
3188 * This function validates the new parameters of a -deadline task.
3189 * We ask for the deadline not being zero, and greater or equal
3190 * than the runtime, as well as the period of being zero or
3191 * greater than deadline. Furthermore, we have to be sure that
3192 * user parameters are above the internal resolution (1us); we
3193 * check sched_runtime only since it is always the smaller one.
3194 */
3195static bool
3196__checkparam_dl(const struct sched_attr *attr)
3197{
3198	return attr && attr->sched_deadline != 0 &&
3199		(attr->sched_period == 0 ||
3200		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3201		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3202		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3203}
3204
3205/*
3206 * check the target process has a UID that matches the current process's
3207 */
3208static bool check_same_owner(struct task_struct *p)
3209{
3210	const struct cred *cred = current_cred(), *pcred;
3211	bool match;
3212
3213	rcu_read_lock();
3214	pcred = __task_cred(p);
3215	match = (uid_eq(cred->euid, pcred->euid) ||
3216		 uid_eq(cred->euid, pcred->uid));
3217	rcu_read_unlock();
3218	return match;
3219}
3220
3221static int __sched_setscheduler(struct task_struct *p,
3222				const struct sched_attr *attr,
3223				bool user)
3224{
3225	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3226		      MAX_RT_PRIO - 1 - attr->sched_priority;
3227	int retval, oldprio, oldpolicy = -1, on_rq, running;
3228	int policy = attr->sched_policy;
3229	unsigned long flags;
3230	const struct sched_class *prev_class;
3231	struct rq *rq;
3232	int reset_on_fork;
3233
3234	/* may grab non-irq protected spin_locks */
3235	BUG_ON(in_interrupt());
3236recheck:
3237	/* double check policy once rq lock held */
3238	if (policy < 0) {
3239		reset_on_fork = p->sched_reset_on_fork;
3240		policy = oldpolicy = p->policy;
3241	} else {
3242		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3243
3244		if (policy != SCHED_DEADLINE &&
3245				policy != SCHED_FIFO && policy != SCHED_RR &&
3246				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3247				policy != SCHED_IDLE)
3248			return -EINVAL;
3249	}
3250
3251	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3252		return -EINVAL;
3253
3254	/*
3255	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3256	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3257	 * SCHED_BATCH and SCHED_IDLE is 0.
3258	 */
3259	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3260	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3261		return -EINVAL;
3262	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3263	    (rt_policy(policy) != (attr->sched_priority != 0)))
3264		return -EINVAL;
3265
3266	/*
3267	 * Allow unprivileged RT tasks to decrease priority:
3268	 */
3269	if (user && !capable(CAP_SYS_NICE)) {
3270		if (fair_policy(policy)) {
3271			if (attr->sched_nice < task_nice(p) &&
3272			    !can_nice(p, attr->sched_nice))
3273				return -EPERM;
3274		}
3275
3276		if (rt_policy(policy)) {
3277			unsigned long rlim_rtprio =
3278					task_rlimit(p, RLIMIT_RTPRIO);
3279
3280			/* can't set/change the rt policy */
3281			if (policy != p->policy && !rlim_rtprio)
3282				return -EPERM;
3283
3284			/* can't increase priority */
3285			if (attr->sched_priority > p->rt_priority &&
3286			    attr->sched_priority > rlim_rtprio)
3287				return -EPERM;
3288		}
3289
3290		 /*
3291		  * Can't set/change SCHED_DEADLINE policy at all for now
3292		  * (safest behavior); in the future we would like to allow
3293		  * unprivileged DL tasks to increase their relative deadline
3294		  * or reduce their runtime (both ways reducing utilization)
3295		  */
3296		if (dl_policy(policy))
3297			return -EPERM;
3298
3299		/*
3300		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3301		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3302		 */
3303		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3304			if (!can_nice(p, task_nice(p)))
3305				return -EPERM;
3306		}
3307
3308		/* can't change other user's priorities */
3309		if (!check_same_owner(p))
3310			return -EPERM;
3311
3312		/* Normal users shall not reset the sched_reset_on_fork flag */
3313		if (p->sched_reset_on_fork && !reset_on_fork)
3314			return -EPERM;
3315	}
3316
3317	if (user) {
3318		retval = security_task_setscheduler(p);
3319		if (retval)
3320			return retval;
3321	}
3322
3323	/*
3324	 * make sure no PI-waiters arrive (or leave) while we are
3325	 * changing the priority of the task:
3326	 *
3327	 * To be able to change p->policy safely, the appropriate
3328	 * runqueue lock must be held.
3329	 */
3330	rq = task_rq_lock(p, &flags);
3331
3332	/*
3333	 * Changing the policy of the stop threads its a very bad idea
3334	 */
3335	if (p == rq->stop) {
3336		task_rq_unlock(rq, p, &flags);
3337		return -EINVAL;
3338	}
3339
3340	/*
3341	 * If not changing anything there's no need to proceed further,
3342	 * but store a possible modification of reset_on_fork.
3343	 */
3344	if (unlikely(policy == p->policy)) {
3345		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3346			goto change;
3347		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3348			goto change;
3349		if (dl_policy(policy))
3350			goto change;
3351
3352		p->sched_reset_on_fork = reset_on_fork;
3353		task_rq_unlock(rq, p, &flags);
3354		return 0;
3355	}
3356change:
3357
3358	if (user) {
3359#ifdef CONFIG_RT_GROUP_SCHED
3360		/*
3361		 * Do not allow realtime tasks into groups that have no runtime
3362		 * assigned.
3363		 */
3364		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3365				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3366				!task_group_is_autogroup(task_group(p))) {
3367			task_rq_unlock(rq, p, &flags);
3368			return -EPERM;
3369		}
3370#endif
3371#ifdef CONFIG_SMP
3372		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3373			cpumask_t *span = rq->rd->span;
3374
3375			/*
3376			 * Don't allow tasks with an affinity mask smaller than
3377			 * the entire root_domain to become SCHED_DEADLINE. We
3378			 * will also fail if there's no bandwidth available.
3379			 */
3380			if (!cpumask_subset(span, &p->cpus_allowed) ||
3381			    rq->rd->dl_bw.bw == 0) {
3382				task_rq_unlock(rq, p, &flags);
3383				return -EPERM;
3384			}
3385		}
3386#endif
3387	}
3388
3389	/* recheck policy now with rq lock held */
3390	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3391		policy = oldpolicy = -1;
3392		task_rq_unlock(rq, p, &flags);
3393		goto recheck;
3394	}
3395
3396	/*
3397	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3398	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3399	 * is available.
3400	 */
3401	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3402		task_rq_unlock(rq, p, &flags);
3403		return -EBUSY;
3404	}
3405
3406	p->sched_reset_on_fork = reset_on_fork;
3407	oldprio = p->prio;
3408
3409	/*
3410	 * Special case for priority boosted tasks.
3411	 *
3412	 * If the new priority is lower or equal (user space view)
3413	 * than the current (boosted) priority, we just store the new
3414	 * normal parameters and do not touch the scheduler class and
3415	 * the runqueue. This will be done when the task deboost
3416	 * itself.
3417	 */
3418	if (rt_mutex_check_prio(p, newprio)) {
3419		__setscheduler_params(p, attr);
3420		task_rq_unlock(rq, p, &flags);
3421		return 0;
3422	}
3423
3424	on_rq = p->on_rq;
3425	running = task_current(rq, p);
3426	if (on_rq)
3427		dequeue_task(rq, p, 0);
3428	if (running)
3429		p->sched_class->put_prev_task(rq, p);
3430
3431	prev_class = p->sched_class;
3432	__setscheduler(rq, p, attr);
3433
3434	if (running)
3435		p->sched_class->set_curr_task(rq);
3436	if (on_rq) {
3437		/*
3438		 * We enqueue to tail when the priority of a task is
3439		 * increased (user space view).
3440		 */
3441		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3442	}
3443
3444	check_class_changed(rq, p, prev_class, oldprio);
3445	task_rq_unlock(rq, p, &flags);
3446
3447	rt_mutex_adjust_pi(p);
3448
3449	return 0;
3450}
3451
3452static int _sched_setscheduler(struct task_struct *p, int policy,
3453			       const struct sched_param *param, bool check)
3454{
3455	struct sched_attr attr = {
3456		.sched_policy   = policy,
3457		.sched_priority = param->sched_priority,
3458		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3459	};
3460
3461	/*
3462	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3463	 */
3464	if (policy & SCHED_RESET_ON_FORK) {
3465		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3466		policy &= ~SCHED_RESET_ON_FORK;
3467		attr.sched_policy = policy;
3468	}
3469
3470	return __sched_setscheduler(p, &attr, check);
3471}
3472/**
3473 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3474 * @p: the task in question.
3475 * @policy: new policy.
3476 * @param: structure containing the new RT priority.
3477 *
3478 * Return: 0 on success. An error code otherwise.
3479 *
3480 * NOTE that the task may be already dead.
3481 */
3482int sched_setscheduler(struct task_struct *p, int policy,
3483		       const struct sched_param *param)
3484{
3485	return _sched_setscheduler(p, policy, param, true);
3486}
3487EXPORT_SYMBOL_GPL(sched_setscheduler);
3488
3489int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3490{
3491	return __sched_setscheduler(p, attr, true);
3492}
3493EXPORT_SYMBOL_GPL(sched_setattr);
3494
3495/**
3496 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3497 * @p: the task in question.
3498 * @policy: new policy.
3499 * @param: structure containing the new RT priority.
3500 *
3501 * Just like sched_setscheduler, only don't bother checking if the
3502 * current context has permission.  For example, this is needed in
3503 * stop_machine(): we create temporary high priority worker threads,
3504 * but our caller might not have that capability.
3505 *
3506 * Return: 0 on success. An error code otherwise.
3507 */
3508int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3509			       const struct sched_param *param)
3510{
3511	return _sched_setscheduler(p, policy, param, false);
3512}
3513
3514static int
3515do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3516{
3517	struct sched_param lparam;
3518	struct task_struct *p;
3519	int retval;
3520
3521	if (!param || pid < 0)
3522		return -EINVAL;
3523	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3524		return -EFAULT;
3525
3526	rcu_read_lock();
3527	retval = -ESRCH;
3528	p = find_process_by_pid(pid);
3529	if (p != NULL)
3530		retval = sched_setscheduler(p, policy, &lparam);
3531	rcu_read_unlock();
3532
3533	return retval;
3534}
3535
3536/*
3537 * Mimics kernel/events/core.c perf_copy_attr().
3538 */
3539static int sched_copy_attr(struct sched_attr __user *uattr,
3540			   struct sched_attr *attr)
3541{
3542	u32 size;
3543	int ret;
3544
3545	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3546		return -EFAULT;
3547
3548	/*
3549	 * zero the full structure, so that a short copy will be nice.
3550	 */
3551	memset(attr, 0, sizeof(*attr));
3552
3553	ret = get_user(size, &uattr->size);
3554	if (ret)
3555		return ret;
3556
3557	if (size > PAGE_SIZE)	/* silly large */
3558		goto err_size;
3559
3560	if (!size)		/* abi compat */
3561		size = SCHED_ATTR_SIZE_VER0;
3562
3563	if (size < SCHED_ATTR_SIZE_VER0)
3564		goto err_size;
3565
3566	/*
3567	 * If we're handed a bigger struct than we know of,
3568	 * ensure all the unknown bits are 0 - i.e. new
3569	 * user-space does not rely on any kernel feature
3570	 * extensions we dont know about yet.
3571	 */
3572	if (size > sizeof(*attr)) {
3573		unsigned char __user *addr;
3574		unsigned char __user *end;
3575		unsigned char val;
3576
3577		addr = (void __user *)uattr + sizeof(*attr);
3578		end  = (void __user *)uattr + size;
3579
3580		for (; addr < end; addr++) {
3581			ret = get_user(val, addr);
3582			if (ret)
3583				return ret;
3584			if (val)
3585				goto err_size;
3586		}
3587		size = sizeof(*attr);
3588	}
3589
3590	ret = copy_from_user(attr, uattr, size);
3591	if (ret)
3592		return -EFAULT;
3593
3594	/*
3595	 * XXX: do we want to be lenient like existing syscalls; or do we want
3596	 * to be strict and return an error on out-of-bounds values?
3597	 */
3598	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3599
3600out:
3601	return ret;
3602
3603err_size:
3604	put_user(sizeof(*attr), &uattr->size);
3605	ret = -E2BIG;
3606	goto out;
3607}
3608
3609/**
3610 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3611 * @pid: the pid in question.
3612 * @policy: new policy.
3613 * @param: structure containing the new RT priority.
3614 *
3615 * Return: 0 on success. An error code otherwise.
3616 */
3617SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3618		struct sched_param __user *, param)
3619{
3620	/* negative values for policy are not valid */
3621	if (policy < 0)
3622		return -EINVAL;
3623
3624	return do_sched_setscheduler(pid, policy, param);
3625}
3626
3627/**
3628 * sys_sched_setparam - set/change the RT priority of a thread
3629 * @pid: the pid in question.
3630 * @param: structure containing the new RT priority.
3631 *
3632 * Return: 0 on success. An error code otherwise.
3633 */
3634SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3635{
3636	return do_sched_setscheduler(pid, -1, param);
3637}
3638
3639/**
3640 * sys_sched_setattr - same as above, but with extended sched_attr
3641 * @pid: the pid in question.
3642 * @uattr: structure containing the extended parameters.
3643 * @flags: for future extension.
3644 */
3645SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3646			       unsigned int, flags)
3647{
3648	struct sched_attr attr;
3649	struct task_struct *p;
3650	int retval;
3651
3652	if (!uattr || pid < 0 || flags)
3653		return -EINVAL;
3654
3655	if (sched_copy_attr(uattr, &attr))
3656		return -EFAULT;
3657
3658	rcu_read_lock();
3659	retval = -ESRCH;
3660	p = find_process_by_pid(pid);
3661	if (p != NULL)
3662		retval = sched_setattr(p, &attr);
3663	rcu_read_unlock();
3664
3665	return retval;
3666}
3667
3668/**
3669 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3670 * @pid: the pid in question.
3671 *
3672 * Return: On success, the policy of the thread. Otherwise, a negative error
3673 * code.
3674 */
3675SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3676{
3677	struct task_struct *p;
3678	int retval;
3679
3680	if (pid < 0)
3681		return -EINVAL;
3682
3683	retval = -ESRCH;
3684	rcu_read_lock();
3685	p = find_process_by_pid(pid);
3686	if (p) {
3687		retval = security_task_getscheduler(p);
3688		if (!retval)
3689			retval = p->policy
3690				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3691	}
3692	rcu_read_unlock();
3693	return retval;
3694}
3695
3696/**
3697 * sys_sched_getparam - get the RT priority of a thread
3698 * @pid: the pid in question.
3699 * @param: structure containing the RT priority.
3700 *
3701 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3702 * code.
3703 */
3704SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3705{
3706	struct sched_param lp;
3707	struct task_struct *p;
3708	int retval;
3709
3710	if (!param || pid < 0)
3711		return -EINVAL;
3712
3713	rcu_read_lock();
3714	p = find_process_by_pid(pid);
3715	retval = -ESRCH;
3716	if (!p)
3717		goto out_unlock;
3718
3719	retval = security_task_getscheduler(p);
3720	if (retval)
3721		goto out_unlock;
3722
3723	if (task_has_dl_policy(p)) {
3724		retval = -EINVAL;
3725		goto out_unlock;
3726	}
3727	lp.sched_priority = p->rt_priority;
3728	rcu_read_unlock();
3729
3730	/*
3731	 * This one might sleep, we cannot do it with a spinlock held ...
3732	 */
3733	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3734
3735	return retval;
3736
3737out_unlock:
3738	rcu_read_unlock();
3739	return retval;
3740}
3741
3742static int sched_read_attr(struct sched_attr __user *uattr,
3743			   struct sched_attr *attr,
3744			   unsigned int usize)
3745{
3746	int ret;
3747
3748	if (!access_ok(VERIFY_WRITE, uattr, usize))
3749		return -EFAULT;
3750
3751	/*
3752	 * If we're handed a smaller struct than we know of,
3753	 * ensure all the unknown bits are 0 - i.e. old
3754	 * user-space does not get uncomplete information.
3755	 */
3756	if (usize < sizeof(*attr)) {
3757		unsigned char *addr;
3758		unsigned char *end;
3759
3760		addr = (void *)attr + usize;
3761		end  = (void *)attr + sizeof(*attr);
3762
3763		for (; addr < end; addr++) {
3764			if (*addr)
3765				goto err_size;
3766		}
3767
3768		attr->size = usize;
3769	}
3770
3771	ret = copy_to_user(uattr, attr, attr->size);
3772	if (ret)
3773		return -EFAULT;
3774
3775out:
3776	return ret;
3777
3778err_size:
3779	ret = -E2BIG;
3780	goto out;
3781}
3782
3783/**
3784 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3785 * @pid: the pid in question.
3786 * @uattr: structure containing the extended parameters.
3787 * @size: sizeof(attr) for fwd/bwd comp.
3788 * @flags: for future extension.
3789 */
3790SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3791		unsigned int, size, unsigned int, flags)
3792{
3793	struct sched_attr attr = {
3794		.size = sizeof(struct sched_attr),
3795	};
3796	struct task_struct *p;
3797	int retval;
3798
3799	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3800	    size < SCHED_ATTR_SIZE_VER0 || flags)
3801		return -EINVAL;
3802
3803	rcu_read_lock();
3804	p = find_process_by_pid(pid);
3805	retval = -ESRCH;
3806	if (!p)
3807		goto out_unlock;
3808
3809	retval = security_task_getscheduler(p);
3810	if (retval)
3811		goto out_unlock;
3812
3813	attr.sched_policy = p->policy;
3814	if (p->sched_reset_on_fork)
3815		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3816	if (task_has_dl_policy(p))
3817		__getparam_dl(p, &attr);
3818	else if (task_has_rt_policy(p))
3819		attr.sched_priority = p->rt_priority;
3820	else
3821		attr.sched_nice = task_nice(p);
3822
3823	rcu_read_unlock();
3824
3825	retval = sched_read_attr(uattr, &attr, size);
3826	return retval;
3827
3828out_unlock:
3829	rcu_read_unlock();
3830	return retval;
3831}
3832
3833long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3834{
3835	cpumask_var_t cpus_allowed, new_mask;
3836	struct task_struct *p;
3837	int retval;
3838
3839	rcu_read_lock();
3840
3841	p = find_process_by_pid(pid);
3842	if (!p) {
3843		rcu_read_unlock();
3844		return -ESRCH;
3845	}
3846
3847	/* Prevent p going away */
3848	get_task_struct(p);
3849	rcu_read_unlock();
3850
3851	if (p->flags & PF_NO_SETAFFINITY) {
3852		retval = -EINVAL;
3853		goto out_put_task;
3854	}
3855	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3856		retval = -ENOMEM;
3857		goto out_put_task;
3858	}
3859	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3860		retval = -ENOMEM;
3861		goto out_free_cpus_allowed;
3862	}
3863	retval = -EPERM;
3864	if (!check_same_owner(p)) {
3865		rcu_read_lock();
3866		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3867			rcu_read_unlock();
3868			goto out_unlock;
3869		}
3870		rcu_read_unlock();
3871	}
3872
3873	retval = security_task_setscheduler(p);
3874	if (retval)
3875		goto out_unlock;
3876
3877
3878	cpuset_cpus_allowed(p, cpus_allowed);
3879	cpumask_and(new_mask, in_mask, cpus_allowed);
3880
3881	/*
3882	 * Since bandwidth control happens on root_domain basis,
3883	 * if admission test is enabled, we only admit -deadline
3884	 * tasks allowed to run on all the CPUs in the task's
3885	 * root_domain.
3886	 */
3887#ifdef CONFIG_SMP
3888	if (task_has_dl_policy(p)) {
3889		const struct cpumask *span = task_rq(p)->rd->span;
3890
3891		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3892			retval = -EBUSY;
3893			goto out_unlock;
3894		}
3895	}
3896#endif
3897again:
3898	retval = set_cpus_allowed_ptr(p, new_mask);
3899
3900	if (!retval) {
3901		cpuset_cpus_allowed(p, cpus_allowed);
3902		if (!cpumask_subset(new_mask, cpus_allowed)) {
3903			/*
3904			 * We must have raced with a concurrent cpuset
3905			 * update. Just reset the cpus_allowed to the
3906			 * cpuset's cpus_allowed
3907			 */
3908			cpumask_copy(new_mask, cpus_allowed);
3909			goto again;
3910		}
3911	}
3912out_unlock:
3913	free_cpumask_var(new_mask);
3914out_free_cpus_allowed:
3915	free_cpumask_var(cpus_allowed);
3916out_put_task:
3917	put_task_struct(p);
3918	return retval;
3919}
3920
3921static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3922			     struct cpumask *new_mask)
3923{
3924	if (len < cpumask_size())
3925		cpumask_clear(new_mask);
3926	else if (len > cpumask_size())
3927		len = cpumask_size();
3928
3929	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3930}
3931
3932/**
3933 * sys_sched_setaffinity - set the cpu affinity of a process
3934 * @pid: pid of the process
3935 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3936 * @user_mask_ptr: user-space pointer to the new cpu mask
3937 *
3938 * Return: 0 on success. An error code otherwise.
3939 */
3940SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3941		unsigned long __user *, user_mask_ptr)
3942{
3943	cpumask_var_t new_mask;
3944	int retval;
3945
3946	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3947		return -ENOMEM;
3948
3949	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3950	if (retval == 0)
3951		retval = sched_setaffinity(pid, new_mask);
3952	free_cpumask_var(new_mask);
3953	return retval;
3954}
3955
3956long sched_getaffinity(pid_t pid, struct cpumask *mask)
3957{
3958	struct task_struct *p;
3959	unsigned long flags;
3960	int retval;
3961
3962	rcu_read_lock();
3963
3964	retval = -ESRCH;
3965	p = find_process_by_pid(pid);
3966	if (!p)
3967		goto out_unlock;
3968
3969	retval = security_task_getscheduler(p);
3970	if (retval)
3971		goto out_unlock;
3972
3973	raw_spin_lock_irqsave(&p->pi_lock, flags);
3974	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3975	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3976
3977out_unlock:
3978	rcu_read_unlock();
3979
3980	return retval;
3981}
3982
3983/**
3984 * sys_sched_getaffinity - get the cpu affinity of a process
3985 * @pid: pid of the process
3986 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3987 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3988 *
3989 * Return: 0 on success. An error code otherwise.
3990 */
3991SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3992		unsigned long __user *, user_mask_ptr)
3993{
3994	int ret;
3995	cpumask_var_t mask;
3996
3997	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3998		return -EINVAL;
3999	if (len & (sizeof(unsigned long)-1))
4000		return -EINVAL;
4001
4002	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4003		return -ENOMEM;
4004
4005	ret = sched_getaffinity(pid, mask);
4006	if (ret == 0) {
4007		size_t retlen = min_t(size_t, len, cpumask_size());
4008
4009		if (copy_to_user(user_mask_ptr, mask, retlen))
4010			ret = -EFAULT;
4011		else
4012			ret = retlen;
4013	}
4014	free_cpumask_var(mask);
4015
4016	return ret;
4017}
4018
4019/**
4020 * sys_sched_yield - yield the current processor to other threads.
4021 *
4022 * This function yields the current CPU to other tasks. If there are no
4023 * other threads running on this CPU then this function will return.
4024 *
4025 * Return: 0.
4026 */
4027SYSCALL_DEFINE0(sched_yield)
4028{
4029	struct rq *rq = this_rq_lock();
4030
4031	schedstat_inc(rq, yld_count);
4032	current->sched_class->yield_task(rq);
4033
4034	/*
4035	 * Since we are going to call schedule() anyway, there's
4036	 * no need to preempt or enable interrupts:
4037	 */
4038	__release(rq->lock);
4039	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4040	do_raw_spin_unlock(&rq->lock);
4041	sched_preempt_enable_no_resched();
4042
4043	schedule();
4044
4045	return 0;
4046}
4047
4048static void __cond_resched(void)
4049{
4050	__preempt_count_add(PREEMPT_ACTIVE);
4051	__schedule();
4052	__preempt_count_sub(PREEMPT_ACTIVE);
4053}
4054
4055int __sched _cond_resched(void)
4056{
4057	if (should_resched()) {
4058		__cond_resched();
4059		return 1;
4060	}
4061	return 0;
4062}
4063EXPORT_SYMBOL(_cond_resched);
4064
4065/*
4066 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4067 * call schedule, and on return reacquire the lock.
4068 *
4069 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4070 * operations here to prevent schedule() from being called twice (once via
4071 * spin_unlock(), once by hand).
4072 */
4073int __cond_resched_lock(spinlock_t *lock)
4074{
4075	int resched = should_resched();
4076	int ret = 0;
4077
4078	lockdep_assert_held(lock);
4079
4080	if (spin_needbreak(lock) || resched) {
4081		spin_unlock(lock);
4082		if (resched)
4083			__cond_resched();
4084		else
4085			cpu_relax();
4086		ret = 1;
4087		spin_lock(lock);
4088	}
4089	return ret;
4090}
4091EXPORT_SYMBOL(__cond_resched_lock);
4092
4093int __sched __cond_resched_softirq(void)
4094{
4095	BUG_ON(!in_softirq());
4096
4097	if (should_resched()) {
4098		local_bh_enable();
4099		__cond_resched();
4100		local_bh_disable();
4101		return 1;
4102	}
4103	return 0;
4104}
4105EXPORT_SYMBOL(__cond_resched_softirq);
4106
4107/**
4108 * yield - yield the current processor to other threads.
4109 *
4110 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4111 *
4112 * The scheduler is at all times free to pick the calling task as the most
4113 * eligible task to run, if removing the yield() call from your code breaks
4114 * it, its already broken.
4115 *
4116 * Typical broken usage is:
4117 *
4118 * while (!event)
4119 * 	yield();
4120 *
4121 * where one assumes that yield() will let 'the other' process run that will
4122 * make event true. If the current task is a SCHED_FIFO task that will never
4123 * happen. Never use yield() as a progress guarantee!!
4124 *
4125 * If you want to use yield() to wait for something, use wait_event().
4126 * If you want to use yield() to be 'nice' for others, use cond_resched().
4127 * If you still want to use yield(), do not!
4128 */
4129void __sched yield(void)
4130{
4131	set_current_state(TASK_RUNNING);
4132	sys_sched_yield();
4133}
4134EXPORT_SYMBOL(yield);
4135
4136/**
4137 * yield_to - yield the current processor to another thread in
4138 * your thread group, or accelerate that thread toward the
4139 * processor it's on.
4140 * @p: target task
4141 * @preempt: whether task preemption is allowed or not
4142 *
4143 * It's the caller's job to ensure that the target task struct
4144 * can't go away on us before we can do any checks.
4145 *
4146 * Return:
4147 *	true (>0) if we indeed boosted the target task.
4148 *	false (0) if we failed to boost the target.
4149 *	-ESRCH if there's no task to yield to.
4150 */
4151bool __sched yield_to(struct task_struct *p, bool preempt)
4152{
4153	struct task_struct *curr = current;
4154	struct rq *rq, *p_rq;
4155	unsigned long flags;
4156	int yielded = 0;
4157
4158	local_irq_save(flags);
4159	rq = this_rq();
4160
4161again:
4162	p_rq = task_rq(p);
4163	/*
4164	 * If we're the only runnable task on the rq and target rq also
4165	 * has only one task, there's absolutely no point in yielding.
4166	 */
4167	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4168		yielded = -ESRCH;
4169		goto out_irq;
4170	}
4171
4172	double_rq_lock(rq, p_rq);
4173	if (task_rq(p) != p_rq) {
4174		double_rq_unlock(rq, p_rq);
4175		goto again;
4176	}
4177
4178	if (!curr->sched_class->yield_to_task)
4179		goto out_unlock;
4180
4181	if (curr->sched_class != p->sched_class)
4182		goto out_unlock;
4183
4184	if (task_running(p_rq, p) || p->state)
4185		goto out_unlock;
4186
4187	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4188	if (yielded) {
4189		schedstat_inc(rq, yld_count);
4190		/*
4191		 * Make p's CPU reschedule; pick_next_entity takes care of
4192		 * fairness.
4193		 */
4194		if (preempt && rq != p_rq)
4195			resched_task(p_rq->curr);
4196	}
4197
4198out_unlock:
4199	double_rq_unlock(rq, p_rq);
4200out_irq:
4201	local_irq_restore(flags);
4202
4203	if (yielded > 0)
4204		schedule();
4205
4206	return yielded;
4207}
4208EXPORT_SYMBOL_GPL(yield_to);
4209
4210/*
4211 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4212 * that process accounting knows that this is a task in IO wait state.
4213 */
4214void __sched io_schedule(void)
4215{
4216	struct rq *rq = raw_rq();
4217
4218	delayacct_blkio_start();
4219	atomic_inc(&rq->nr_iowait);
4220	blk_flush_plug(current);
4221	current->in_iowait = 1;
4222	schedule();
4223	current->in_iowait = 0;
4224	atomic_dec(&rq->nr_iowait);
4225	delayacct_blkio_end();
4226}
4227EXPORT_SYMBOL(io_schedule);
4228
4229long __sched io_schedule_timeout(long timeout)
4230{
4231	struct rq *rq = raw_rq();
4232	long ret;
4233
4234	delayacct_blkio_start();
4235	atomic_inc(&rq->nr_iowait);
4236	blk_flush_plug(current);
4237	current->in_iowait = 1;
4238	ret = schedule_timeout(timeout);
4239	current->in_iowait = 0;
4240	atomic_dec(&rq->nr_iowait);
4241	delayacct_blkio_end();
4242	return ret;
4243}
4244
4245/**
4246 * sys_sched_get_priority_max - return maximum RT priority.
4247 * @policy: scheduling class.
4248 *
4249 * Return: On success, this syscall returns the maximum
4250 * rt_priority that can be used by a given scheduling class.
4251 * On failure, a negative error code is returned.
4252 */
4253SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4254{
4255	int ret = -EINVAL;
4256
4257	switch (policy) {
4258	case SCHED_FIFO:
4259	case SCHED_RR:
4260		ret = MAX_USER_RT_PRIO-1;
4261		break;
4262	case SCHED_DEADLINE:
4263	case SCHED_NORMAL:
4264	case SCHED_BATCH:
4265	case SCHED_IDLE:
4266		ret = 0;
4267		break;
4268	}
4269	return ret;
4270}
4271
4272/**
4273 * sys_sched_get_priority_min - return minimum RT priority.
4274 * @policy: scheduling class.
4275 *
4276 * Return: On success, this syscall returns the minimum
4277 * rt_priority that can be used by a given scheduling class.
4278 * On failure, a negative error code is returned.
4279 */
4280SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4281{
4282	int ret = -EINVAL;
4283
4284	switch (policy) {
4285	case SCHED_FIFO:
4286	case SCHED_RR:
4287		ret = 1;
4288		break;
4289	case SCHED_DEADLINE:
4290	case SCHED_NORMAL:
4291	case SCHED_BATCH:
4292	case SCHED_IDLE:
4293		ret = 0;
4294	}
4295	return ret;
4296}
4297
4298/**
4299 * sys_sched_rr_get_interval - return the default timeslice of a process.
4300 * @pid: pid of the process.
4301 * @interval: userspace pointer to the timeslice value.
4302 *
4303 * this syscall writes the default timeslice value of a given process
4304 * into the user-space timespec buffer. A value of '0' means infinity.
4305 *
4306 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4307 * an error code.
4308 */
4309SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4310		struct timespec __user *, interval)
4311{
4312	struct task_struct *p;
4313	unsigned int time_slice;
4314	unsigned long flags;
4315	struct rq *rq;
4316	int retval;
4317	struct timespec t;
4318
4319	if (pid < 0)
4320		return -EINVAL;
4321
4322	retval = -ESRCH;
4323	rcu_read_lock();
4324	p = find_process_by_pid(pid);
4325	if (!p)
4326		goto out_unlock;
4327
4328	retval = security_task_getscheduler(p);
4329	if (retval)
4330		goto out_unlock;
4331
4332	rq = task_rq_lock(p, &flags);
4333	time_slice = 0;
4334	if (p->sched_class->get_rr_interval)
4335		time_slice = p->sched_class->get_rr_interval(rq, p);
4336	task_rq_unlock(rq, p, &flags);
4337
4338	rcu_read_unlock();
4339	jiffies_to_timespec(time_slice, &t);
4340	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4341	return retval;
4342
4343out_unlock:
4344	rcu_read_unlock();
4345	return retval;
4346}
4347
4348static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4349
4350void sched_show_task(struct task_struct *p)
4351{
4352	unsigned long free = 0;
4353	int ppid;
4354	unsigned state;
4355
4356	state = p->state ? __ffs(p->state) + 1 : 0;
4357	printk(KERN_INFO "%-15.15s %c", p->comm,
4358		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4359#if BITS_PER_LONG == 32
4360	if (state == TASK_RUNNING)
4361		printk(KERN_CONT " running  ");
4362	else
4363		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4364#else
4365	if (state == TASK_RUNNING)
4366		printk(KERN_CONT "  running task    ");
4367	else
4368		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4369#endif
4370#ifdef CONFIG_DEBUG_STACK_USAGE
4371	free = stack_not_used(p);
4372#endif
4373	rcu_read_lock();
4374	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4375	rcu_read_unlock();
4376	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4377		task_pid_nr(p), ppid,
4378		(unsigned long)task_thread_info(p)->flags);
4379
4380	print_worker_info(KERN_INFO, p);
4381	show_stack(p, NULL);
4382}
4383
4384void show_state_filter(unsigned long state_filter)
4385{
4386	struct task_struct *g, *p;
4387
4388#if BITS_PER_LONG == 32
4389	printk(KERN_INFO
4390		"  task                PC stack   pid father\n");
4391#else
4392	printk(KERN_INFO
4393		"  task                        PC stack   pid father\n");
4394#endif
4395	rcu_read_lock();
4396	do_each_thread(g, p) {
4397		/*
4398		 * reset the NMI-timeout, listing all files on a slow
4399		 * console might take a lot of time:
4400		 */
4401		touch_nmi_watchdog();
4402		if (!state_filter || (p->state & state_filter))
4403			sched_show_task(p);
4404	} while_each_thread(g, p);
4405
4406	touch_all_softlockup_watchdogs();
4407
4408#ifdef CONFIG_SCHED_DEBUG
4409	sysrq_sched_debug_show();
4410#endif
4411	rcu_read_unlock();
4412	/*
4413	 * Only show locks if all tasks are dumped:
4414	 */
4415	if (!state_filter)
4416		debug_show_all_locks();
4417}
4418
4419void init_idle_bootup_task(struct task_struct *idle)
4420{
4421	idle->sched_class = &idle_sched_class;
4422}
4423
4424/**
4425 * init_idle - set up an idle thread for a given CPU
4426 * @idle: task in question
4427 * @cpu: cpu the idle task belongs to
4428 *
4429 * NOTE: this function does not set the idle thread's NEED_RESCHED
4430 * flag, to make booting more robust.
4431 */
4432void init_idle(struct task_struct *idle, int cpu)
4433{
4434	struct rq *rq = cpu_rq(cpu);
4435	unsigned long flags;
4436
4437	raw_spin_lock_irqsave(&rq->lock, flags);
4438
4439	__sched_fork(0, idle);
4440	idle->state = TASK_RUNNING;
4441	idle->se.exec_start = sched_clock();
4442
4443	do_set_cpus_allowed(idle, cpumask_of(cpu));
4444	/*
4445	 * We're having a chicken and egg problem, even though we are
4446	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4447	 * lockdep check in task_group() will fail.
4448	 *
4449	 * Similar case to sched_fork(). / Alternatively we could
4450	 * use task_rq_lock() here and obtain the other rq->lock.
4451	 *
4452	 * Silence PROVE_RCU
4453	 */
4454	rcu_read_lock();
4455	__set_task_cpu(idle, cpu);
4456	rcu_read_unlock();
4457
4458	rq->curr = rq->idle = idle;
4459	idle->on_rq = 1;
4460#if defined(CONFIG_SMP)
4461	idle->on_cpu = 1;
4462#endif
4463	raw_spin_unlock_irqrestore(&rq->lock, flags);
4464
4465	/* Set the preempt count _outside_ the spinlocks! */
4466	init_idle_preempt_count(idle, cpu);
4467
4468	/*
4469	 * The idle tasks have their own, simple scheduling class:
4470	 */
4471	idle->sched_class = &idle_sched_class;
4472	ftrace_graph_init_idle_task(idle, cpu);
4473	vtime_init_idle(idle, cpu);
4474#if defined(CONFIG_SMP)
4475	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4476#endif
4477}
4478
4479#ifdef CONFIG_SMP
4480void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4481{
4482	if (p->sched_class && p->sched_class->set_cpus_allowed)
4483		p->sched_class->set_cpus_allowed(p, new_mask);
4484
4485	cpumask_copy(&p->cpus_allowed, new_mask);
4486	p->nr_cpus_allowed = cpumask_weight(new_mask);
4487}
4488
4489/*
4490 * This is how migration works:
4491 *
4492 * 1) we invoke migration_cpu_stop() on the target CPU using
4493 *    stop_one_cpu().
4494 * 2) stopper starts to run (implicitly forcing the migrated thread
4495 *    off the CPU)
4496 * 3) it checks whether the migrated task is still in the wrong runqueue.
4497 * 4) if it's in the wrong runqueue then the migration thread removes
4498 *    it and puts it into the right queue.
4499 * 5) stopper completes and stop_one_cpu() returns and the migration
4500 *    is done.
4501 */
4502
4503/*
4504 * Change a given task's CPU affinity. Migrate the thread to a
4505 * proper CPU and schedule it away if the CPU it's executing on
4506 * is removed from the allowed bitmask.
4507 *
4508 * NOTE: the caller must have a valid reference to the task, the
4509 * task must not exit() & deallocate itself prematurely. The
4510 * call is not atomic; no spinlocks may be held.
4511 */
4512int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4513{
4514	unsigned long flags;
4515	struct rq *rq;
4516	unsigned int dest_cpu;
4517	int ret = 0;
4518
4519	rq = task_rq_lock(p, &flags);
4520
4521	if (cpumask_equal(&p->cpus_allowed, new_mask))
4522		goto out;
4523
4524	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4525		ret = -EINVAL;
4526		goto out;
4527	}
4528
4529	do_set_cpus_allowed(p, new_mask);
4530
4531	/* Can the task run on the task's current CPU? If so, we're done */
4532	if (cpumask_test_cpu(task_cpu(p), new_mask))
4533		goto out;
4534
4535	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4536	if (p->on_rq) {
4537		struct migration_arg arg = { p, dest_cpu };
4538		/* Need help from migration thread: drop lock and wait. */
4539		task_rq_unlock(rq, p, &flags);
4540		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4541		tlb_migrate_finish(p->mm);
4542		return 0;
4543	}
4544out:
4545	task_rq_unlock(rq, p, &flags);
4546
4547	return ret;
4548}
4549EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4550
4551/*
4552 * Move (not current) task off this cpu, onto dest cpu. We're doing
4553 * this because either it can't run here any more (set_cpus_allowed()
4554 * away from this CPU, or CPU going down), or because we're
4555 * attempting to rebalance this task on exec (sched_exec).
4556 *
4557 * So we race with normal scheduler movements, but that's OK, as long
4558 * as the task is no longer on this CPU.
4559 *
4560 * Returns non-zero if task was successfully migrated.
4561 */
4562static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4563{
4564	struct rq *rq_dest, *rq_src;
4565	int ret = 0;
4566
4567	if (unlikely(!cpu_active(dest_cpu)))
4568		return ret;
4569
4570	rq_src = cpu_rq(src_cpu);
4571	rq_dest = cpu_rq(dest_cpu);
4572
4573	raw_spin_lock(&p->pi_lock);
4574	double_rq_lock(rq_src, rq_dest);
4575	/* Already moved. */
4576	if (task_cpu(p) != src_cpu)
4577		goto done;
4578	/* Affinity changed (again). */
4579	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4580		goto fail;
4581
4582	/*
4583	 * If we're not on a rq, the next wake-up will ensure we're
4584	 * placed properly.
4585	 */
4586	if (p->on_rq) {
4587		dequeue_task(rq_src, p, 0);
4588		set_task_cpu(p, dest_cpu);
4589		enqueue_task(rq_dest, p, 0);
4590		check_preempt_curr(rq_dest, p, 0);
4591	}
4592done:
4593	ret = 1;
4594fail:
4595	double_rq_unlock(rq_src, rq_dest);
4596	raw_spin_unlock(&p->pi_lock);
4597	return ret;
4598}
4599
4600#ifdef CONFIG_NUMA_BALANCING
4601/* Migrate current task p to target_cpu */
4602int migrate_task_to(struct task_struct *p, int target_cpu)
4603{
4604	struct migration_arg arg = { p, target_cpu };
4605	int curr_cpu = task_cpu(p);
4606
4607	if (curr_cpu == target_cpu)
4608		return 0;
4609
4610	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4611		return -EINVAL;
4612
4613	/* TODO: This is not properly updating schedstats */
4614
4615	trace_sched_move_numa(p, curr_cpu, target_cpu);
4616	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4617}
4618
4619/*
4620 * Requeue a task on a given node and accurately track the number of NUMA
4621 * tasks on the runqueues
4622 */
4623void sched_setnuma(struct task_struct *p, int nid)
4624{
4625	struct rq *rq;
4626	unsigned long flags;
4627	bool on_rq, running;
4628
4629	rq = task_rq_lock(p, &flags);
4630	on_rq = p->on_rq;
4631	running = task_current(rq, p);
4632
4633	if (on_rq)
4634		dequeue_task(rq, p, 0);
4635	if (running)
4636		p->sched_class->put_prev_task(rq, p);
4637
4638	p->numa_preferred_nid = nid;
4639
4640	if (running)
4641		p->sched_class->set_curr_task(rq);
4642	if (on_rq)
4643		enqueue_task(rq, p, 0);
4644	task_rq_unlock(rq, p, &flags);
4645}
4646#endif
4647
4648/*
4649 * migration_cpu_stop - this will be executed by a highprio stopper thread
4650 * and performs thread migration by bumping thread off CPU then
4651 * 'pushing' onto another runqueue.
4652 */
4653static int migration_cpu_stop(void *data)
4654{
4655	struct migration_arg *arg = data;
4656
4657	/*
4658	 * The original target cpu might have gone down and we might
4659	 * be on another cpu but it doesn't matter.
4660	 */
4661	local_irq_disable();
4662	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4663	local_irq_enable();
4664	return 0;
4665}
4666
4667#ifdef CONFIG_HOTPLUG_CPU
4668
4669/*
4670 * Ensures that the idle task is using init_mm right before its cpu goes
4671 * offline.
4672 */
4673void idle_task_exit(void)
4674{
4675	struct mm_struct *mm = current->active_mm;
4676
4677	BUG_ON(cpu_online(smp_processor_id()));
4678
4679	if (mm != &init_mm) {
4680		switch_mm(mm, &init_mm, current);
4681		finish_arch_post_lock_switch();
4682	}
4683	mmdrop(mm);
4684}
4685
4686/*
4687 * Since this CPU is going 'away' for a while, fold any nr_active delta
4688 * we might have. Assumes we're called after migrate_tasks() so that the
4689 * nr_active count is stable.
4690 *
4691 * Also see the comment "Global load-average calculations".
4692 */
4693static void calc_load_migrate(struct rq *rq)
4694{
4695	long delta = calc_load_fold_active(rq);
4696	if (delta)
4697		atomic_long_add(delta, &calc_load_tasks);
4698}
4699
4700static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4701{
4702}
4703
4704static const struct sched_class fake_sched_class = {
4705	.put_prev_task = put_prev_task_fake,
4706};
4707
4708static struct task_struct fake_task = {
4709	/*
4710	 * Avoid pull_{rt,dl}_task()
4711	 */
4712	.prio = MAX_PRIO + 1,
4713	.sched_class = &fake_sched_class,
4714};
4715
4716/*
4717 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4718 * try_to_wake_up()->select_task_rq().
4719 *
4720 * Called with rq->lock held even though we'er in stop_machine() and
4721 * there's no concurrency possible, we hold the required locks anyway
4722 * because of lock validation efforts.
4723 */
4724static void migrate_tasks(unsigned int dead_cpu)
4725{
4726	struct rq *rq = cpu_rq(dead_cpu);
4727	struct task_struct *next, *stop = rq->stop;
4728	int dest_cpu;
4729
4730	/*
4731	 * Fudge the rq selection such that the below task selection loop
4732	 * doesn't get stuck on the currently eligible stop task.
4733	 *
4734	 * We're currently inside stop_machine() and the rq is either stuck
4735	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4736	 * either way we should never end up calling schedule() until we're
4737	 * done here.
4738	 */
4739	rq->stop = NULL;
4740
4741	/*
4742	 * put_prev_task() and pick_next_task() sched
4743	 * class method both need to have an up-to-date
4744	 * value of rq->clock[_task]
4745	 */
4746	update_rq_clock(rq);
4747
4748	for ( ; ; ) {
4749		/*
4750		 * There's this thread running, bail when that's the only
4751		 * remaining thread.
4752		 */
4753		if (rq->nr_running == 1)
4754			break;
4755
4756		next = pick_next_task(rq, &fake_task);
4757		BUG_ON(!next);
4758		next->sched_class->put_prev_task(rq, next);
4759
4760		/* Find suitable destination for @next, with force if needed. */
4761		dest_cpu = select_fallback_rq(dead_cpu, next);
4762		raw_spin_unlock(&rq->lock);
4763
4764		__migrate_task(next, dead_cpu, dest_cpu);
4765
4766		raw_spin_lock(&rq->lock);
4767	}
4768
4769	rq->stop = stop;
4770}
4771
4772#endif /* CONFIG_HOTPLUG_CPU */
4773
4774#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4775
4776static struct ctl_table sd_ctl_dir[] = {
4777	{
4778		.procname	= "sched_domain",
4779		.mode		= 0555,
4780	},
4781	{}
4782};
4783
4784static struct ctl_table sd_ctl_root[] = {
4785	{
4786		.procname	= "kernel",
4787		.mode		= 0555,
4788		.child		= sd_ctl_dir,
4789	},
4790	{}
4791};
4792
4793static struct ctl_table *sd_alloc_ctl_entry(int n)
4794{
4795	struct ctl_table *entry =
4796		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4797
4798	return entry;
4799}
4800
4801static void sd_free_ctl_entry(struct ctl_table **tablep)
4802{
4803	struct ctl_table *entry;
4804
4805	/*
4806	 * In the intermediate directories, both the child directory and
4807	 * procname are dynamically allocated and could fail but the mode
4808	 * will always be set. In the lowest directory the names are
4809	 * static strings and all have proc handlers.
4810	 */
4811	for (entry = *tablep; entry->mode; entry++) {
4812		if (entry->child)
4813			sd_free_ctl_entry(&entry->child);
4814		if (entry->proc_handler == NULL)
4815			kfree(entry->procname);
4816	}
4817
4818	kfree(*tablep);
4819	*tablep = NULL;
4820}
4821
4822static int min_load_idx = 0;
4823static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4824
4825static void
4826set_table_entry(struct ctl_table *entry,
4827		const char *procname, void *data, int maxlen,
4828		umode_t mode, proc_handler *proc_handler,
4829		bool load_idx)
4830{
4831	entry->procname = procname;
4832	entry->data = data;
4833	entry->maxlen = maxlen;
4834	entry->mode = mode;
4835	entry->proc_handler = proc_handler;
4836
4837	if (load_idx) {
4838		entry->extra1 = &min_load_idx;
4839		entry->extra2 = &max_load_idx;
4840	}
4841}
4842
4843static struct ctl_table *
4844sd_alloc_ctl_domain_table(struct sched_domain *sd)
4845{
4846	struct ctl_table *table = sd_alloc_ctl_entry(14);
4847
4848	if (table == NULL)
4849		return NULL;
4850
4851	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4852		sizeof(long), 0644, proc_doulongvec_minmax, false);
4853	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4854		sizeof(long), 0644, proc_doulongvec_minmax, false);
4855	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4856		sizeof(int), 0644, proc_dointvec_minmax, true);
4857	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4858		sizeof(int), 0644, proc_dointvec_minmax, true);
4859	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4860		sizeof(int), 0644, proc_dointvec_minmax, true);
4861	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4862		sizeof(int), 0644, proc_dointvec_minmax, true);
4863	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4864		sizeof(int), 0644, proc_dointvec_minmax, true);
4865	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4866		sizeof(int), 0644, proc_dointvec_minmax, false);
4867	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4868		sizeof(int), 0644, proc_dointvec_minmax, false);
4869	set_table_entry(&table[9], "cache_nice_tries",
4870		&sd->cache_nice_tries,
4871		sizeof(int), 0644, proc_dointvec_minmax, false);
4872	set_table_entry(&table[10], "flags", &sd->flags,
4873		sizeof(int), 0644, proc_dointvec_minmax, false);
4874	set_table_entry(&table[11], "max_newidle_lb_cost",
4875		&sd->max_newidle_lb_cost,
4876		sizeof(long), 0644, proc_doulongvec_minmax, false);
4877	set_table_entry(&table[12], "name", sd->name,
4878		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4879	/* &table[13] is terminator */
4880
4881	return table;
4882}
4883
4884static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4885{
4886	struct ctl_table *entry, *table;
4887	struct sched_domain *sd;
4888	int domain_num = 0, i;
4889	char buf[32];
4890
4891	for_each_domain(cpu, sd)
4892		domain_num++;
4893	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4894	if (table == NULL)
4895		return NULL;
4896
4897	i = 0;
4898	for_each_domain(cpu, sd) {
4899		snprintf(buf, 32, "domain%d", i);
4900		entry->procname = kstrdup(buf, GFP_KERNEL);
4901		entry->mode = 0555;
4902		entry->child = sd_alloc_ctl_domain_table(sd);
4903		entry++;
4904		i++;
4905	}
4906	return table;
4907}
4908
4909static struct ctl_table_header *sd_sysctl_header;
4910static void register_sched_domain_sysctl(void)
4911{
4912	int i, cpu_num = num_possible_cpus();
4913	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4914	char buf[32];
4915
4916	WARN_ON(sd_ctl_dir[0].child);
4917	sd_ctl_dir[0].child = entry;
4918
4919	if (entry == NULL)
4920		return;
4921
4922	for_each_possible_cpu(i) {
4923		snprintf(buf, 32, "cpu%d", i);
4924		entry->procname = kstrdup(buf, GFP_KERNEL);
4925		entry->mode = 0555;
4926		entry->child = sd_alloc_ctl_cpu_table(i);
4927		entry++;
4928	}
4929
4930	WARN_ON(sd_sysctl_header);
4931	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4932}
4933
4934/* may be called multiple times per register */
4935static void unregister_sched_domain_sysctl(void)
4936{
4937	if (sd_sysctl_header)
4938		unregister_sysctl_table(sd_sysctl_header);
4939	sd_sysctl_header = NULL;
4940	if (sd_ctl_dir[0].child)
4941		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4942}
4943#else
4944static void register_sched_domain_sysctl(void)
4945{
4946}
4947static void unregister_sched_domain_sysctl(void)
4948{
4949}
4950#endif
4951
4952static void set_rq_online(struct rq *rq)
4953{
4954	if (!rq->online) {
4955		const struct sched_class *class;
4956
4957		cpumask_set_cpu(rq->cpu, rq->rd->online);
4958		rq->online = 1;
4959
4960		for_each_class(class) {
4961			if (class->rq_online)
4962				class->rq_online(rq);
4963		}
4964	}
4965}
4966
4967static void set_rq_offline(struct rq *rq)
4968{
4969	if (rq->online) {
4970		const struct sched_class *class;
4971
4972		for_each_class(class) {
4973			if (class->rq_offline)
4974				class->rq_offline(rq);
4975		}
4976
4977		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4978		rq->online = 0;
4979	}
4980}
4981
4982/*
4983 * migration_call - callback that gets triggered when a CPU is added.
4984 * Here we can start up the necessary migration thread for the new CPU.
4985 */
4986static int
4987migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4988{
4989	int cpu = (long)hcpu;
4990	unsigned long flags;
4991	struct rq *rq = cpu_rq(cpu);
4992
4993	switch (action & ~CPU_TASKS_FROZEN) {
4994
4995	case CPU_UP_PREPARE:
4996		rq->calc_load_update = calc_load_update;
4997		break;
4998
4999	case CPU_ONLINE:
5000		/* Update our root-domain */
5001		raw_spin_lock_irqsave(&rq->lock, flags);
5002		if (rq->rd) {
5003			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5004
5005			set_rq_online(rq);
5006		}
5007		raw_spin_unlock_irqrestore(&rq->lock, flags);
5008		break;
5009
5010#ifdef CONFIG_HOTPLUG_CPU
5011	case CPU_DYING:
5012		sched_ttwu_pending();
5013		/* Update our root-domain */
5014		raw_spin_lock_irqsave(&rq->lock, flags);
5015		if (rq->rd) {
5016			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5017			set_rq_offline(rq);
5018		}
5019		migrate_tasks(cpu);
5020		BUG_ON(rq->nr_running != 1); /* the migration thread */
5021		raw_spin_unlock_irqrestore(&rq->lock, flags);
5022		break;
5023
5024	case CPU_DEAD:
5025		calc_load_migrate(rq);
5026		break;
5027#endif
5028	}
5029
5030	update_max_interval();
5031
5032	return NOTIFY_OK;
5033}
5034
5035/*
5036 * Register at high priority so that task migration (migrate_all_tasks)
5037 * happens before everything else.  This has to be lower priority than
5038 * the notifier in the perf_event subsystem, though.
5039 */
5040static struct notifier_block migration_notifier = {
5041	.notifier_call = migration_call,
5042	.priority = CPU_PRI_MIGRATION,
5043};
5044
5045static int sched_cpu_active(struct notifier_block *nfb,
5046				      unsigned long action, void *hcpu)
5047{
5048	switch (action & ~CPU_TASKS_FROZEN) {
5049	case CPU_STARTING:
5050	case CPU_DOWN_FAILED:
5051		set_cpu_active((long)hcpu, true);
5052		return NOTIFY_OK;
5053	default:
5054		return NOTIFY_DONE;
5055	}
5056}
5057
5058static int sched_cpu_inactive(struct notifier_block *nfb,
5059					unsigned long action, void *hcpu)
5060{
5061	unsigned long flags;
5062	long cpu = (long)hcpu;
5063
5064	switch (action & ~CPU_TASKS_FROZEN) {
5065	case CPU_DOWN_PREPARE:
5066		set_cpu_active(cpu, false);
5067
5068		/* explicitly allow suspend */
5069		if (!(action & CPU_TASKS_FROZEN)) {
5070			struct dl_bw *dl_b = dl_bw_of(cpu);
5071			bool overflow;
5072			int cpus;
5073
5074			raw_spin_lock_irqsave(&dl_b->lock, flags);
5075			cpus = dl_bw_cpus(cpu);
5076			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5077			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5078
5079			if (overflow)
5080				return notifier_from_errno(-EBUSY);
5081		}
5082		return NOTIFY_OK;
5083	}
5084
5085	return NOTIFY_DONE;
5086}
5087
5088static int __init migration_init(void)
5089{
5090	void *cpu = (void *)(long)smp_processor_id();
5091	int err;
5092
5093	/* Initialize migration for the boot CPU */
5094	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5095	BUG_ON(err == NOTIFY_BAD);
5096	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5097	register_cpu_notifier(&migration_notifier);
5098
5099	/* Register cpu active notifiers */
5100	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5101	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5102
5103	return 0;
5104}
5105early_initcall(migration_init);
5106#endif
5107
5108#ifdef CONFIG_SMP
5109
5110static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5111
5112#ifdef CONFIG_SCHED_DEBUG
5113
5114static __read_mostly int sched_debug_enabled;
5115
5116static int __init sched_debug_setup(char *str)
5117{
5118	sched_debug_enabled = 1;
5119
5120	return 0;
5121}
5122early_param("sched_debug", sched_debug_setup);
5123
5124static inline bool sched_debug(void)
5125{
5126	return sched_debug_enabled;
5127}
5128
5129static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5130				  struct cpumask *groupmask)
5131{
5132	struct sched_group *group = sd->groups;
5133	char str[256];
5134
5135	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5136	cpumask_clear(groupmask);
5137
5138	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5139
5140	if (!(sd->flags & SD_LOAD_BALANCE)) {
5141		printk("does not load-balance\n");
5142		if (sd->parent)
5143			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5144					" has parent");
5145		return -1;
5146	}
5147
5148	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5149
5150	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5151		printk(KERN_ERR "ERROR: domain->span does not contain "
5152				"CPU%d\n", cpu);
5153	}
5154	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5155		printk(KERN_ERR "ERROR: domain->groups does not contain"
5156				" CPU%d\n", cpu);
5157	}
5158
5159	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5160	do {
5161		if (!group) {
5162			printk("\n");
5163			printk(KERN_ERR "ERROR: group is NULL\n");
5164			break;
5165		}
5166
5167		/*
5168		 * Even though we initialize ->power to something semi-sane,
5169		 * we leave power_orig unset. This allows us to detect if
5170		 * domain iteration is still funny without causing /0 traps.
5171		 */
5172		if (!group->sgp->power_orig) {
5173			printk(KERN_CONT "\n");
5174			printk(KERN_ERR "ERROR: domain->cpu_power not "
5175					"set\n");
5176			break;
5177		}
5178
5179		if (!cpumask_weight(sched_group_cpus(group))) {
5180			printk(KERN_CONT "\n");
5181			printk(KERN_ERR "ERROR: empty group\n");
5182			break;
5183		}
5184
5185		if (!(sd->flags & SD_OVERLAP) &&
5186		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5187			printk(KERN_CONT "\n");
5188			printk(KERN_ERR "ERROR: repeated CPUs\n");
5189			break;
5190		}
5191
5192		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5193
5194		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5195
5196		printk(KERN_CONT " %s", str);
5197		if (group->sgp->power != SCHED_POWER_SCALE) {
5198			printk(KERN_CONT " (cpu_power = %d)",
5199				group->sgp->power);
5200		}
5201
5202		group = group->next;
5203	} while (group != sd->groups);
5204	printk(KERN_CONT "\n");
5205
5206	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5207		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5208
5209	if (sd->parent &&
5210	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5211		printk(KERN_ERR "ERROR: parent span is not a superset "
5212			"of domain->span\n");
5213	return 0;
5214}
5215
5216static void sched_domain_debug(struct sched_domain *sd, int cpu)
5217{
5218	int level = 0;
5219
5220	if (!sched_debug_enabled)
5221		return;
5222
5223	if (!sd) {
5224		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5225		return;
5226	}
5227
5228	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5229
5230	for (;;) {
5231		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5232			break;
5233		level++;
5234		sd = sd->parent;
5235		if (!sd)
5236			break;
5237	}
5238}
5239#else /* !CONFIG_SCHED_DEBUG */
5240# define sched_domain_debug(sd, cpu) do { } while (0)
5241static inline bool sched_debug(void)
5242{
5243	return false;
5244}
5245#endif /* CONFIG_SCHED_DEBUG */
5246
5247static int sd_degenerate(struct sched_domain *sd)
5248{
5249	if (cpumask_weight(sched_domain_span(sd)) == 1)
5250		return 1;
5251
5252	/* Following flags need at least 2 groups */
5253	if (sd->flags & (SD_LOAD_BALANCE |
5254			 SD_BALANCE_NEWIDLE |
5255			 SD_BALANCE_FORK |
5256			 SD_BALANCE_EXEC |
5257			 SD_SHARE_CPUPOWER |
5258			 SD_SHARE_PKG_RESOURCES)) {
5259		if (sd->groups != sd->groups->next)
5260			return 0;
5261	}
5262
5263	/* Following flags don't use groups */
5264	if (sd->flags & (SD_WAKE_AFFINE))
5265		return 0;
5266
5267	return 1;
5268}
5269
5270static int
5271sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5272{
5273	unsigned long cflags = sd->flags, pflags = parent->flags;
5274
5275	if (sd_degenerate(parent))
5276		return 1;
5277
5278	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5279		return 0;
5280
5281	/* Flags needing groups don't count if only 1 group in parent */
5282	if (parent->groups == parent->groups->next) {
5283		pflags &= ~(SD_LOAD_BALANCE |
5284				SD_BALANCE_NEWIDLE |
5285				SD_BALANCE_FORK |
5286				SD_BALANCE_EXEC |
5287				SD_SHARE_CPUPOWER |
5288				SD_SHARE_PKG_RESOURCES |
5289				SD_PREFER_SIBLING);
5290		if (nr_node_ids == 1)
5291			pflags &= ~SD_SERIALIZE;
5292	}
5293	if (~cflags & pflags)
5294		return 0;
5295
5296	return 1;
5297}
5298
5299static void free_rootdomain(struct rcu_head *rcu)
5300{
5301	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5302
5303	cpupri_cleanup(&rd->cpupri);
5304	cpudl_cleanup(&rd->cpudl);
5305	free_cpumask_var(rd->dlo_mask);
5306	free_cpumask_var(rd->rto_mask);
5307	free_cpumask_var(rd->online);
5308	free_cpumask_var(rd->span);
5309	kfree(rd);
5310}
5311
5312static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5313{
5314	struct root_domain *old_rd = NULL;
5315	unsigned long flags;
5316
5317	raw_spin_lock_irqsave(&rq->lock, flags);
5318
5319	if (rq->rd) {
5320		old_rd = rq->rd;
5321
5322		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5323			set_rq_offline(rq);
5324
5325		cpumask_clear_cpu(rq->cpu, old_rd->span);
5326
5327		/*
5328		 * If we dont want to free the old_rd yet then
5329		 * set old_rd to NULL to skip the freeing later
5330		 * in this function:
5331		 */
5332		if (!atomic_dec_and_test(&old_rd->refcount))
5333			old_rd = NULL;
5334	}
5335
5336	atomic_inc(&rd->refcount);
5337	rq->rd = rd;
5338
5339	cpumask_set_cpu(rq->cpu, rd->span);
5340	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5341		set_rq_online(rq);
5342
5343	raw_spin_unlock_irqrestore(&rq->lock, flags);
5344
5345	if (old_rd)
5346		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5347}
5348
5349static int init_rootdomain(struct root_domain *rd)
5350{
5351	memset(rd, 0, sizeof(*rd));
5352
5353	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5354		goto out;
5355	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5356		goto free_span;
5357	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5358		goto free_online;
5359	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5360		goto free_dlo_mask;
5361
5362	init_dl_bw(&rd->dl_bw);
5363	if (cpudl_init(&rd->cpudl) != 0)
5364		goto free_dlo_mask;
5365
5366	if (cpupri_init(&rd->cpupri) != 0)
5367		goto free_rto_mask;
5368	return 0;
5369
5370free_rto_mask:
5371	free_cpumask_var(rd->rto_mask);
5372free_dlo_mask:
5373	free_cpumask_var(rd->dlo_mask);
5374free_online:
5375	free_cpumask_var(rd->online);
5376free_span:
5377	free_cpumask_var(rd->span);
5378out:
5379	return -ENOMEM;
5380}
5381
5382/*
5383 * By default the system creates a single root-domain with all cpus as
5384 * members (mimicking the global state we have today).
5385 */
5386struct root_domain def_root_domain;
5387
5388static void init_defrootdomain(void)
5389{
5390	init_rootdomain(&def_root_domain);
5391
5392	atomic_set(&def_root_domain.refcount, 1);
5393}
5394
5395static struct root_domain *alloc_rootdomain(void)
5396{
5397	struct root_domain *rd;
5398
5399	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5400	if (!rd)
5401		return NULL;
5402
5403	if (init_rootdomain(rd) != 0) {
5404		kfree(rd);
5405		return NULL;
5406	}
5407
5408	return rd;
5409}
5410
5411static void free_sched_groups(struct sched_group *sg, int free_sgp)
5412{
5413	struct sched_group *tmp, *first;
5414
5415	if (!sg)
5416		return;
5417
5418	first = sg;
5419	do {
5420		tmp = sg->next;
5421
5422		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5423			kfree(sg->sgp);
5424
5425		kfree(sg);
5426		sg = tmp;
5427	} while (sg != first);
5428}
5429
5430static void free_sched_domain(struct rcu_head *rcu)
5431{
5432	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5433
5434	/*
5435	 * If its an overlapping domain it has private groups, iterate and
5436	 * nuke them all.
5437	 */
5438	if (sd->flags & SD_OVERLAP) {
5439		free_sched_groups(sd->groups, 1);
5440	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5441		kfree(sd->groups->sgp);
5442		kfree(sd->groups);
5443	}
5444	kfree(sd);
5445}
5446
5447static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5448{
5449	call_rcu(&sd->rcu, free_sched_domain);
5450}
5451
5452static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5453{
5454	for (; sd; sd = sd->parent)
5455		destroy_sched_domain(sd, cpu);
5456}
5457
5458/*
5459 * Keep a special pointer to the highest sched_domain that has
5460 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5461 * allows us to avoid some pointer chasing select_idle_sibling().
5462 *
5463 * Also keep a unique ID per domain (we use the first cpu number in
5464 * the cpumask of the domain), this allows us to quickly tell if
5465 * two cpus are in the same cache domain, see cpus_share_cache().
5466 */
5467DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5468DEFINE_PER_CPU(int, sd_llc_size);
5469DEFINE_PER_CPU(int, sd_llc_id);
5470DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5471DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5472DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5473
5474static void update_top_cache_domain(int cpu)
5475{
5476	struct sched_domain *sd;
5477	struct sched_domain *busy_sd = NULL;
5478	int id = cpu;
5479	int size = 1;
5480
5481	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5482	if (sd) {
5483		id = cpumask_first(sched_domain_span(sd));
5484		size = cpumask_weight(sched_domain_span(sd));
5485		busy_sd = sd->parent; /* sd_busy */
5486	}
5487	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5488
5489	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5490	per_cpu(sd_llc_size, cpu) = size;
5491	per_cpu(sd_llc_id, cpu) = id;
5492
5493	sd = lowest_flag_domain(cpu, SD_NUMA);
5494	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5495
5496	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5497	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5498}
5499
5500/*
5501 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5502 * hold the hotplug lock.
5503 */
5504static void
5505cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5506{
5507	struct rq *rq = cpu_rq(cpu);
5508	struct sched_domain *tmp;
5509
5510	/* Remove the sched domains which do not contribute to scheduling. */
5511	for (tmp = sd; tmp; ) {
5512		struct sched_domain *parent = tmp->parent;
5513		if (!parent)
5514			break;
5515
5516		if (sd_parent_degenerate(tmp, parent)) {
5517			tmp->parent = parent->parent;
5518			if (parent->parent)
5519				parent->parent->child = tmp;
5520			/*
5521			 * Transfer SD_PREFER_SIBLING down in case of a
5522			 * degenerate parent; the spans match for this
5523			 * so the property transfers.
5524			 */
5525			if (parent->flags & SD_PREFER_SIBLING)
5526				tmp->flags |= SD_PREFER_SIBLING;
5527			destroy_sched_domain(parent, cpu);
5528		} else
5529			tmp = tmp->parent;
5530	}
5531
5532	if (sd && sd_degenerate(sd)) {
5533		tmp = sd;
5534		sd = sd->parent;
5535		destroy_sched_domain(tmp, cpu);
5536		if (sd)
5537			sd->child = NULL;
5538	}
5539
5540	sched_domain_debug(sd, cpu);
5541
5542	rq_attach_root(rq, rd);
5543	tmp = rq->sd;
5544	rcu_assign_pointer(rq->sd, sd);
5545	destroy_sched_domains(tmp, cpu);
5546
5547	update_top_cache_domain(cpu);
5548}
5549
5550/* cpus with isolated domains */
5551static cpumask_var_t cpu_isolated_map;
5552
5553/* Setup the mask of cpus configured for isolated domains */
5554static int __init isolated_cpu_setup(char *str)
5555{
5556	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5557	cpulist_parse(str, cpu_isolated_map);
5558	return 1;
5559}
5560
5561__setup("isolcpus=", isolated_cpu_setup);
5562
5563static const struct cpumask *cpu_cpu_mask(int cpu)
5564{
5565	return cpumask_of_node(cpu_to_node(cpu));
5566}
5567
5568struct sd_data {
5569	struct sched_domain **__percpu sd;
5570	struct sched_group **__percpu sg;
5571	struct sched_group_power **__percpu sgp;
5572};
5573
5574struct s_data {
5575	struct sched_domain ** __percpu sd;
5576	struct root_domain	*rd;
5577};
5578
5579enum s_alloc {
5580	sa_rootdomain,
5581	sa_sd,
5582	sa_sd_storage,
5583	sa_none,
5584};
5585
5586struct sched_domain_topology_level;
5587
5588typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5589typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5590
5591#define SDTL_OVERLAP	0x01
5592
5593struct sched_domain_topology_level {
5594	sched_domain_init_f init;
5595	sched_domain_mask_f mask;
5596	int		    flags;
5597	int		    numa_level;
5598	struct sd_data      data;
5599};
5600
5601/*
5602 * Build an iteration mask that can exclude certain CPUs from the upwards
5603 * domain traversal.
5604 *
5605 * Asymmetric node setups can result in situations where the domain tree is of
5606 * unequal depth, make sure to skip domains that already cover the entire
5607 * range.
5608 *
5609 * In that case build_sched_domains() will have terminated the iteration early
5610 * and our sibling sd spans will be empty. Domains should always include the
5611 * cpu they're built on, so check that.
5612 *
5613 */
5614static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5615{
5616	const struct cpumask *span = sched_domain_span(sd);
5617	struct sd_data *sdd = sd->private;
5618	struct sched_domain *sibling;
5619	int i;
5620
5621	for_each_cpu(i, span) {
5622		sibling = *per_cpu_ptr(sdd->sd, i);
5623		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5624			continue;
5625
5626		cpumask_set_cpu(i, sched_group_mask(sg));
5627	}
5628}
5629
5630/*
5631 * Return the canonical balance cpu for this group, this is the first cpu
5632 * of this group that's also in the iteration mask.
5633 */
5634int group_balance_cpu(struct sched_group *sg)
5635{
5636	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5637}
5638
5639static int
5640build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5641{
5642	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5643	const struct cpumask *span = sched_domain_span(sd);
5644	struct cpumask *covered = sched_domains_tmpmask;
5645	struct sd_data *sdd = sd->private;
5646	struct sched_domain *child;
5647	int i;
5648
5649	cpumask_clear(covered);
5650
5651	for_each_cpu(i, span) {
5652		struct cpumask *sg_span;
5653
5654		if (cpumask_test_cpu(i, covered))
5655			continue;
5656
5657		child = *per_cpu_ptr(sdd->sd, i);
5658
5659		/* See the comment near build_group_mask(). */
5660		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5661			continue;
5662
5663		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5664				GFP_KERNEL, cpu_to_node(cpu));
5665
5666		if (!sg)
5667			goto fail;
5668
5669		sg_span = sched_group_cpus(sg);
5670		if (child->child) {
5671			child = child->child;
5672			cpumask_copy(sg_span, sched_domain_span(child));
5673		} else
5674			cpumask_set_cpu(i, sg_span);
5675
5676		cpumask_or(covered, covered, sg_span);
5677
5678		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5679		if (atomic_inc_return(&sg->sgp->ref) == 1)
5680			build_group_mask(sd, sg);
5681
5682		/*
5683		 * Initialize sgp->power such that even if we mess up the
5684		 * domains and no possible iteration will get us here, we won't
5685		 * die on a /0 trap.
5686		 */
5687		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5688		sg->sgp->power_orig = sg->sgp->power;
5689
5690		/*
5691		 * Make sure the first group of this domain contains the
5692		 * canonical balance cpu. Otherwise the sched_domain iteration
5693		 * breaks. See update_sg_lb_stats().
5694		 */
5695		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5696		    group_balance_cpu(sg) == cpu)
5697			groups = sg;
5698
5699		if (!first)
5700			first = sg;
5701		if (last)
5702			last->next = sg;
5703		last = sg;
5704		last->next = first;
5705	}
5706	sd->groups = groups;
5707
5708	return 0;
5709
5710fail:
5711	free_sched_groups(first, 0);
5712
5713	return -ENOMEM;
5714}
5715
5716static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5717{
5718	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5719	struct sched_domain *child = sd->child;
5720
5721	if (child)
5722		cpu = cpumask_first(sched_domain_span(child));
5723
5724	if (sg) {
5725		*sg = *per_cpu_ptr(sdd->sg, cpu);
5726		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5727		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5728	}
5729
5730	return cpu;
5731}
5732
5733/*
5734 * build_sched_groups will build a circular linked list of the groups
5735 * covered by the given span, and will set each group's ->cpumask correctly,
5736 * and ->cpu_power to 0.
5737 *
5738 * Assumes the sched_domain tree is fully constructed
5739 */
5740static int
5741build_sched_groups(struct sched_domain *sd, int cpu)
5742{
5743	struct sched_group *first = NULL, *last = NULL;
5744	struct sd_data *sdd = sd->private;
5745	const struct cpumask *span = sched_domain_span(sd);
5746	struct cpumask *covered;
5747	int i;
5748
5749	get_group(cpu, sdd, &sd->groups);
5750	atomic_inc(&sd->groups->ref);
5751
5752	if (cpu != cpumask_first(span))
5753		return 0;
5754
5755	lockdep_assert_held(&sched_domains_mutex);
5756	covered = sched_domains_tmpmask;
5757
5758	cpumask_clear(covered);
5759
5760	for_each_cpu(i, span) {
5761		struct sched_group *sg;
5762		int group, j;
5763
5764		if (cpumask_test_cpu(i, covered))
5765			continue;
5766
5767		group = get_group(i, sdd, &sg);
5768		cpumask_clear(sched_group_cpus(sg));
5769		sg->sgp->power = 0;
5770		cpumask_setall(sched_group_mask(sg));
5771
5772		for_each_cpu(j, span) {
5773			if (get_group(j, sdd, NULL) != group)
5774				continue;
5775
5776			cpumask_set_cpu(j, covered);
5777			cpumask_set_cpu(j, sched_group_cpus(sg));
5778		}
5779
5780		if (!first)
5781			first = sg;
5782		if (last)
5783			last->next = sg;
5784		last = sg;
5785	}
5786	last->next = first;
5787
5788	return 0;
5789}
5790
5791/*
5792 * Initialize sched groups cpu_power.
5793 *
5794 * cpu_power indicates the capacity of sched group, which is used while
5795 * distributing the load between different sched groups in a sched domain.
5796 * Typically cpu_power for all the groups in a sched domain will be same unless
5797 * there are asymmetries in the topology. If there are asymmetries, group
5798 * having more cpu_power will pickup more load compared to the group having
5799 * less cpu_power.
5800 */
5801static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5802{
5803	struct sched_group *sg = sd->groups;
5804
5805	WARN_ON(!sg);
5806
5807	do {
5808		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5809		sg = sg->next;
5810	} while (sg != sd->groups);
5811
5812	if (cpu != group_balance_cpu(sg))
5813		return;
5814
5815	update_group_power(sd, cpu);
5816	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5817}
5818
5819int __weak arch_sd_sibling_asym_packing(void)
5820{
5821       return 0*SD_ASYM_PACKING;
5822}
5823
5824/*
5825 * Initializers for schedule domains
5826 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5827 */
5828
5829#ifdef CONFIG_SCHED_DEBUG
5830# define SD_INIT_NAME(sd, type)		sd->name = #type
5831#else
5832# define SD_INIT_NAME(sd, type)		do { } while (0)
5833#endif
5834
5835#define SD_INIT_FUNC(type)						\
5836static noinline struct sched_domain *					\
5837sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5838{									\
5839	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5840	*sd = SD_##type##_INIT;						\
5841	SD_INIT_NAME(sd, type);						\
5842	sd->private = &tl->data;					\
5843	return sd;							\
5844}
5845
5846SD_INIT_FUNC(CPU)
5847#ifdef CONFIG_SCHED_SMT
5848 SD_INIT_FUNC(SIBLING)
5849#endif
5850#ifdef CONFIG_SCHED_MC
5851 SD_INIT_FUNC(MC)
5852#endif
5853#ifdef CONFIG_SCHED_BOOK
5854 SD_INIT_FUNC(BOOK)
5855#endif
5856
5857static int default_relax_domain_level = -1;
5858int sched_domain_level_max;
5859
5860static int __init setup_relax_domain_level(char *str)
5861{
5862	if (kstrtoint(str, 0, &default_relax_domain_level))
5863		pr_warn("Unable to set relax_domain_level\n");
5864
5865	return 1;
5866}
5867__setup("relax_domain_level=", setup_relax_domain_level);
5868
5869static void set_domain_attribute(struct sched_domain *sd,
5870				 struct sched_domain_attr *attr)
5871{
5872	int request;
5873
5874	if (!attr || attr->relax_domain_level < 0) {
5875		if (default_relax_domain_level < 0)
5876			return;
5877		else
5878			request = default_relax_domain_level;
5879	} else
5880		request = attr->relax_domain_level;
5881	if (request < sd->level) {
5882		/* turn off idle balance on this domain */
5883		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5884	} else {
5885		/* turn on idle balance on this domain */
5886		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5887	}
5888}
5889
5890static void __sdt_free(const struct cpumask *cpu_map);
5891static int __sdt_alloc(const struct cpumask *cpu_map);
5892
5893static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5894				 const struct cpumask *cpu_map)
5895{
5896	switch (what) {
5897	case sa_rootdomain:
5898		if (!atomic_read(&d->rd->refcount))
5899			free_rootdomain(&d->rd->rcu); /* fall through */
5900	case sa_sd:
5901		free_percpu(d->sd); /* fall through */
5902	case sa_sd_storage:
5903		__sdt_free(cpu_map); /* fall through */
5904	case sa_none:
5905		break;
5906	}
5907}
5908
5909static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5910						   const struct cpumask *cpu_map)
5911{
5912	memset(d, 0, sizeof(*d));
5913
5914	if (__sdt_alloc(cpu_map))
5915		return sa_sd_storage;
5916	d->sd = alloc_percpu(struct sched_domain *);
5917	if (!d->sd)
5918		return sa_sd_storage;
5919	d->rd = alloc_rootdomain();
5920	if (!d->rd)
5921		return sa_sd;
5922	return sa_rootdomain;
5923}
5924
5925/*
5926 * NULL the sd_data elements we've used to build the sched_domain and
5927 * sched_group structure so that the subsequent __free_domain_allocs()
5928 * will not free the data we're using.
5929 */
5930static void claim_allocations(int cpu, struct sched_domain *sd)
5931{
5932	struct sd_data *sdd = sd->private;
5933
5934	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5935	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5936
5937	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5938		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5939
5940	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5941		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5942}
5943
5944#ifdef CONFIG_SCHED_SMT
5945static const struct cpumask *cpu_smt_mask(int cpu)
5946{
5947	return topology_thread_cpumask(cpu);
5948}
5949#endif
5950
5951/*
5952 * Topology list, bottom-up.
5953 */
5954static struct sched_domain_topology_level default_topology[] = {
5955#ifdef CONFIG_SCHED_SMT
5956	{ sd_init_SIBLING, cpu_smt_mask, },
5957#endif
5958#ifdef CONFIG_SCHED_MC
5959	{ sd_init_MC, cpu_coregroup_mask, },
5960#endif
5961#ifdef CONFIG_SCHED_BOOK
5962	{ sd_init_BOOK, cpu_book_mask, },
5963#endif
5964	{ sd_init_CPU, cpu_cpu_mask, },
5965	{ NULL, },
5966};
5967
5968static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5969
5970#define for_each_sd_topology(tl)			\
5971	for (tl = sched_domain_topology; tl->init; tl++)
5972
5973#ifdef CONFIG_NUMA
5974
5975static int sched_domains_numa_levels;
5976static int *sched_domains_numa_distance;
5977static struct cpumask ***sched_domains_numa_masks;
5978static int sched_domains_curr_level;
5979
5980static inline int sd_local_flags(int level)
5981{
5982	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5983		return 0;
5984
5985	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5986}
5987
5988static struct sched_domain *
5989sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5990{
5991	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5992	int level = tl->numa_level;
5993	int sd_weight = cpumask_weight(
5994			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5995
5996	*sd = (struct sched_domain){
5997		.min_interval		= sd_weight,
5998		.max_interval		= 2*sd_weight,
5999		.busy_factor		= 32,
6000		.imbalance_pct		= 125,
6001		.cache_nice_tries	= 2,
6002		.busy_idx		= 3,
6003		.idle_idx		= 2,
6004		.newidle_idx		= 0,
6005		.wake_idx		= 0,
6006		.forkexec_idx		= 0,
6007
6008		.flags			= 1*SD_LOAD_BALANCE
6009					| 1*SD_BALANCE_NEWIDLE
6010					| 0*SD_BALANCE_EXEC
6011					| 0*SD_BALANCE_FORK
6012					| 0*SD_BALANCE_WAKE
6013					| 0*SD_WAKE_AFFINE
6014					| 0*SD_SHARE_CPUPOWER
6015					| 0*SD_SHARE_PKG_RESOURCES
6016					| 1*SD_SERIALIZE
6017					| 0*SD_PREFER_SIBLING
6018					| 1*SD_NUMA
6019					| sd_local_flags(level)
6020					,
6021		.last_balance		= jiffies,
6022		.balance_interval	= sd_weight,
6023	};
6024	SD_INIT_NAME(sd, NUMA);
6025	sd->private = &tl->data;
6026
6027	/*
6028	 * Ugly hack to pass state to sd_numa_mask()...
6029	 */
6030	sched_domains_curr_level = tl->numa_level;
6031
6032	return sd;
6033}
6034
6035static const struct cpumask *sd_numa_mask(int cpu)
6036{
6037	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6038}
6039
6040static void sched_numa_warn(const char *str)
6041{
6042	static int done = false;
6043	int i,j;
6044
6045	if (done)
6046		return;
6047
6048	done = true;
6049
6050	printk(KERN_WARNING "ERROR: %s\n\n", str);
6051
6052	for (i = 0; i < nr_node_ids; i++) {
6053		printk(KERN_WARNING "  ");
6054		for (j = 0; j < nr_node_ids; j++)
6055			printk(KERN_CONT "%02d ", node_distance(i,j));
6056		printk(KERN_CONT "\n");
6057	}
6058	printk(KERN_WARNING "\n");
6059}
6060
6061static bool find_numa_distance(int distance)
6062{
6063	int i;
6064
6065	if (distance == node_distance(0, 0))
6066		return true;
6067
6068	for (i = 0; i < sched_domains_numa_levels; i++) {
6069		if (sched_domains_numa_distance[i] == distance)
6070			return true;
6071	}
6072
6073	return false;
6074}
6075
6076static void sched_init_numa(void)
6077{
6078	int next_distance, curr_distance = node_distance(0, 0);
6079	struct sched_domain_topology_level *tl;
6080	int level = 0;
6081	int i, j, k;
6082
6083	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6084	if (!sched_domains_numa_distance)
6085		return;
6086
6087	/*
6088	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6089	 * unique distances in the node_distance() table.
6090	 *
6091	 * Assumes node_distance(0,j) includes all distances in
6092	 * node_distance(i,j) in order to avoid cubic time.
6093	 */
6094	next_distance = curr_distance;
6095	for (i = 0; i < nr_node_ids; i++) {
6096		for (j = 0; j < nr_node_ids; j++) {
6097			for (k = 0; k < nr_node_ids; k++) {
6098				int distance = node_distance(i, k);
6099
6100				if (distance > curr_distance &&
6101				    (distance < next_distance ||
6102				     next_distance == curr_distance))
6103					next_distance = distance;
6104
6105				/*
6106				 * While not a strong assumption it would be nice to know
6107				 * about cases where if node A is connected to B, B is not
6108				 * equally connected to A.
6109				 */
6110				if (sched_debug() && node_distance(k, i) != distance)
6111					sched_numa_warn("Node-distance not symmetric");
6112
6113				if (sched_debug() && i && !find_numa_distance(distance))
6114					sched_numa_warn("Node-0 not representative");
6115			}
6116			if (next_distance != curr_distance) {
6117				sched_domains_numa_distance[level++] = next_distance;
6118				sched_domains_numa_levels = level;
6119				curr_distance = next_distance;
6120			} else break;
6121		}
6122
6123		/*
6124		 * In case of sched_debug() we verify the above assumption.
6125		 */
6126		if (!sched_debug())
6127			break;
6128	}
6129	/*
6130	 * 'level' contains the number of unique distances, excluding the
6131	 * identity distance node_distance(i,i).
6132	 *
6133	 * The sched_domains_numa_distance[] array includes the actual distance
6134	 * numbers.
6135	 */
6136
6137	/*
6138	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6139	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6140	 * the array will contain less then 'level' members. This could be
6141	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6142	 * in other functions.
6143	 *
6144	 * We reset it to 'level' at the end of this function.
6145	 */
6146	sched_domains_numa_levels = 0;
6147
6148	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6149	if (!sched_domains_numa_masks)
6150		return;
6151
6152	/*
6153	 * Now for each level, construct a mask per node which contains all
6154	 * cpus of nodes that are that many hops away from us.
6155	 */
6156	for (i = 0; i < level; i++) {
6157		sched_domains_numa_masks[i] =
6158			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6159		if (!sched_domains_numa_masks[i])
6160			return;
6161
6162		for (j = 0; j < nr_node_ids; j++) {
6163			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6164			if (!mask)
6165				return;
6166
6167			sched_domains_numa_masks[i][j] = mask;
6168
6169			for (k = 0; k < nr_node_ids; k++) {
6170				if (node_distance(j, k) > sched_domains_numa_distance[i])
6171					continue;
6172
6173				cpumask_or(mask, mask, cpumask_of_node(k));
6174			}
6175		}
6176	}
6177
6178	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6179			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6180	if (!tl)
6181		return;
6182
6183	/*
6184	 * Copy the default topology bits..
6185	 */
6186	for (i = 0; default_topology[i].init; i++)
6187		tl[i] = default_topology[i];
6188
6189	/*
6190	 * .. and append 'j' levels of NUMA goodness.
6191	 */
6192	for (j = 0; j < level; i++, j++) {
6193		tl[i] = (struct sched_domain_topology_level){
6194			.init = sd_numa_init,
6195			.mask = sd_numa_mask,
6196			.flags = SDTL_OVERLAP,
6197			.numa_level = j,
6198		};
6199	}
6200
6201	sched_domain_topology = tl;
6202
6203	sched_domains_numa_levels = level;
6204}
6205
6206static void sched_domains_numa_masks_set(int cpu)
6207{
6208	int i, j;
6209	int node = cpu_to_node(cpu);
6210
6211	for (i = 0; i < sched_domains_numa_levels; i++) {
6212		for (j = 0; j < nr_node_ids; j++) {
6213			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6214				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6215		}
6216	}
6217}
6218
6219static void sched_domains_numa_masks_clear(int cpu)
6220{
6221	int i, j;
6222	for (i = 0; i < sched_domains_numa_levels; i++) {
6223		for (j = 0; j < nr_node_ids; j++)
6224			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6225	}
6226}
6227
6228/*
6229 * Update sched_domains_numa_masks[level][node] array when new cpus
6230 * are onlined.
6231 */
6232static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6233					   unsigned long action,
6234					   void *hcpu)
6235{
6236	int cpu = (long)hcpu;
6237
6238	switch (action & ~CPU_TASKS_FROZEN) {
6239	case CPU_ONLINE:
6240		sched_domains_numa_masks_set(cpu);
6241		break;
6242
6243	case CPU_DEAD:
6244		sched_domains_numa_masks_clear(cpu);
6245		break;
6246
6247	default:
6248		return NOTIFY_DONE;
6249	}
6250
6251	return NOTIFY_OK;
6252}
6253#else
6254static inline void sched_init_numa(void)
6255{
6256}
6257
6258static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6259					   unsigned long action,
6260					   void *hcpu)
6261{
6262	return 0;
6263}
6264#endif /* CONFIG_NUMA */
6265
6266static int __sdt_alloc(const struct cpumask *cpu_map)
6267{
6268	struct sched_domain_topology_level *tl;
6269	int j;
6270
6271	for_each_sd_topology(tl) {
6272		struct sd_data *sdd = &tl->data;
6273
6274		sdd->sd = alloc_percpu(struct sched_domain *);
6275		if (!sdd->sd)
6276			return -ENOMEM;
6277
6278		sdd->sg = alloc_percpu(struct sched_group *);
6279		if (!sdd->sg)
6280			return -ENOMEM;
6281
6282		sdd->sgp = alloc_percpu(struct sched_group_power *);
6283		if (!sdd->sgp)
6284			return -ENOMEM;
6285
6286		for_each_cpu(j, cpu_map) {
6287			struct sched_domain *sd;
6288			struct sched_group *sg;
6289			struct sched_group_power *sgp;
6290
6291		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6292					GFP_KERNEL, cpu_to_node(j));
6293			if (!sd)
6294				return -ENOMEM;
6295
6296			*per_cpu_ptr(sdd->sd, j) = sd;
6297
6298			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6299					GFP_KERNEL, cpu_to_node(j));
6300			if (!sg)
6301				return -ENOMEM;
6302
6303			sg->next = sg;
6304
6305			*per_cpu_ptr(sdd->sg, j) = sg;
6306
6307			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6308					GFP_KERNEL, cpu_to_node(j));
6309			if (!sgp)
6310				return -ENOMEM;
6311
6312			*per_cpu_ptr(sdd->sgp, j) = sgp;
6313		}
6314	}
6315
6316	return 0;
6317}
6318
6319static void __sdt_free(const struct cpumask *cpu_map)
6320{
6321	struct sched_domain_topology_level *tl;
6322	int j;
6323
6324	for_each_sd_topology(tl) {
6325		struct sd_data *sdd = &tl->data;
6326
6327		for_each_cpu(j, cpu_map) {
6328			struct sched_domain *sd;
6329
6330			if (sdd->sd) {
6331				sd = *per_cpu_ptr(sdd->sd, j);
6332				if (sd && (sd->flags & SD_OVERLAP))
6333					free_sched_groups(sd->groups, 0);
6334				kfree(*per_cpu_ptr(sdd->sd, j));
6335			}
6336
6337			if (sdd->sg)
6338				kfree(*per_cpu_ptr(sdd->sg, j));
6339			if (sdd->sgp)
6340				kfree(*per_cpu_ptr(sdd->sgp, j));
6341		}
6342		free_percpu(sdd->sd);
6343		sdd->sd = NULL;
6344		free_percpu(sdd->sg);
6345		sdd->sg = NULL;
6346		free_percpu(sdd->sgp);
6347		sdd->sgp = NULL;
6348	}
6349}
6350
6351struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6352		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6353		struct sched_domain *child, int cpu)
6354{
6355	struct sched_domain *sd = tl->init(tl, cpu);
6356	if (!sd)
6357		return child;
6358
6359	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6360	if (child) {
6361		sd->level = child->level + 1;
6362		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6363		child->parent = sd;
6364		sd->child = child;
6365	}
6366	set_domain_attribute(sd, attr);
6367
6368	return sd;
6369}
6370
6371/*
6372 * Build sched domains for a given set of cpus and attach the sched domains
6373 * to the individual cpus
6374 */
6375static int build_sched_domains(const struct cpumask *cpu_map,
6376			       struct sched_domain_attr *attr)
6377{
6378	enum s_alloc alloc_state;
6379	struct sched_domain *sd;
6380	struct s_data d;
6381	int i, ret = -ENOMEM;
6382
6383	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6384	if (alloc_state != sa_rootdomain)
6385		goto error;
6386
6387	/* Set up domains for cpus specified by the cpu_map. */
6388	for_each_cpu(i, cpu_map) {
6389		struct sched_domain_topology_level *tl;
6390
6391		sd = NULL;
6392		for_each_sd_topology(tl) {
6393			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6394			if (tl == sched_domain_topology)
6395				*per_cpu_ptr(d.sd, i) = sd;
6396			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6397				sd->flags |= SD_OVERLAP;
6398			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6399				break;
6400		}
6401	}
6402
6403	/* Build the groups for the domains */
6404	for_each_cpu(i, cpu_map) {
6405		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6406			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6407			if (sd->flags & SD_OVERLAP) {
6408				if (build_overlap_sched_groups(sd, i))
6409					goto error;
6410			} else {
6411				if (build_sched_groups(sd, i))
6412					goto error;
6413			}
6414		}
6415	}
6416
6417	/* Calculate CPU power for physical packages and nodes */
6418	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6419		if (!cpumask_test_cpu(i, cpu_map))
6420			continue;
6421
6422		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6423			claim_allocations(i, sd);
6424			init_sched_groups_power(i, sd);
6425		}
6426	}
6427
6428	/* Attach the domains */
6429	rcu_read_lock();
6430	for_each_cpu(i, cpu_map) {
6431		sd = *per_cpu_ptr(d.sd, i);
6432		cpu_attach_domain(sd, d.rd, i);
6433	}
6434	rcu_read_unlock();
6435
6436	ret = 0;
6437error:
6438	__free_domain_allocs(&d, alloc_state, cpu_map);
6439	return ret;
6440}
6441
6442static cpumask_var_t *doms_cur;	/* current sched domains */
6443static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6444static struct sched_domain_attr *dattr_cur;
6445				/* attribues of custom domains in 'doms_cur' */
6446
6447/*
6448 * Special case: If a kmalloc of a doms_cur partition (array of
6449 * cpumask) fails, then fallback to a single sched domain,
6450 * as determined by the single cpumask fallback_doms.
6451 */
6452static cpumask_var_t fallback_doms;
6453
6454/*
6455 * arch_update_cpu_topology lets virtualized architectures update the
6456 * cpu core maps. It is supposed to return 1 if the topology changed
6457 * or 0 if it stayed the same.
6458 */
6459int __weak arch_update_cpu_topology(void)
6460{
6461	return 0;
6462}
6463
6464cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6465{
6466	int i;
6467	cpumask_var_t *doms;
6468
6469	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6470	if (!doms)
6471		return NULL;
6472	for (i = 0; i < ndoms; i++) {
6473		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6474			free_sched_domains(doms, i);
6475			return NULL;
6476		}
6477	}
6478	return doms;
6479}
6480
6481void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6482{
6483	unsigned int i;
6484	for (i = 0; i < ndoms; i++)
6485		free_cpumask_var(doms[i]);
6486	kfree(doms);
6487}
6488
6489/*
6490 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6491 * For now this just excludes isolated cpus, but could be used to
6492 * exclude other special cases in the future.
6493 */
6494static int init_sched_domains(const struct cpumask *cpu_map)
6495{
6496	int err;
6497
6498	arch_update_cpu_topology();
6499	ndoms_cur = 1;
6500	doms_cur = alloc_sched_domains(ndoms_cur);
6501	if (!doms_cur)
6502		doms_cur = &fallback_doms;
6503	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6504	err = build_sched_domains(doms_cur[0], NULL);
6505	register_sched_domain_sysctl();
6506
6507	return err;
6508}
6509
6510/*
6511 * Detach sched domains from a group of cpus specified in cpu_map
6512 * These cpus will now be attached to the NULL domain
6513 */
6514static void detach_destroy_domains(const struct cpumask *cpu_map)
6515{
6516	int i;
6517
6518	rcu_read_lock();
6519	for_each_cpu(i, cpu_map)
6520		cpu_attach_domain(NULL, &def_root_domain, i);
6521	rcu_read_unlock();
6522}
6523
6524/* handle null as "default" */
6525static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6526			struct sched_domain_attr *new, int idx_new)
6527{
6528	struct sched_domain_attr tmp;
6529
6530	/* fast path */
6531	if (!new && !cur)
6532		return 1;
6533
6534	tmp = SD_ATTR_INIT;
6535	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6536			new ? (new + idx_new) : &tmp,
6537			sizeof(struct sched_domain_attr));
6538}
6539
6540/*
6541 * Partition sched domains as specified by the 'ndoms_new'
6542 * cpumasks in the array doms_new[] of cpumasks. This compares
6543 * doms_new[] to the current sched domain partitioning, doms_cur[].
6544 * It destroys each deleted domain and builds each new domain.
6545 *
6546 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6547 * The masks don't intersect (don't overlap.) We should setup one
6548 * sched domain for each mask. CPUs not in any of the cpumasks will
6549 * not be load balanced. If the same cpumask appears both in the
6550 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6551 * it as it is.
6552 *
6553 * The passed in 'doms_new' should be allocated using
6554 * alloc_sched_domains.  This routine takes ownership of it and will
6555 * free_sched_domains it when done with it. If the caller failed the
6556 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6557 * and partition_sched_domains() will fallback to the single partition
6558 * 'fallback_doms', it also forces the domains to be rebuilt.
6559 *
6560 * If doms_new == NULL it will be replaced with cpu_online_mask.
6561 * ndoms_new == 0 is a special case for destroying existing domains,
6562 * and it will not create the default domain.
6563 *
6564 * Call with hotplug lock held
6565 */
6566void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6567			     struct sched_domain_attr *dattr_new)
6568{
6569	int i, j, n;
6570	int new_topology;
6571
6572	mutex_lock(&sched_domains_mutex);
6573
6574	/* always unregister in case we don't destroy any domains */
6575	unregister_sched_domain_sysctl();
6576
6577	/* Let architecture update cpu core mappings. */
6578	new_topology = arch_update_cpu_topology();
6579
6580	n = doms_new ? ndoms_new : 0;
6581
6582	/* Destroy deleted domains */
6583	for (i = 0; i < ndoms_cur; i++) {
6584		for (j = 0; j < n && !new_topology; j++) {
6585			if (cpumask_equal(doms_cur[i], doms_new[j])
6586			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6587				goto match1;
6588		}
6589		/* no match - a current sched domain not in new doms_new[] */
6590		detach_destroy_domains(doms_cur[i]);
6591match1:
6592		;
6593	}
6594
6595	n = ndoms_cur;
6596	if (doms_new == NULL) {
6597		n = 0;
6598		doms_new = &fallback_doms;
6599		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6600		WARN_ON_ONCE(dattr_new);
6601	}
6602
6603	/* Build new domains */
6604	for (i = 0; i < ndoms_new; i++) {
6605		for (j = 0; j < n && !new_topology; j++) {
6606			if (cpumask_equal(doms_new[i], doms_cur[j])
6607			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6608				goto match2;
6609		}
6610		/* no match - add a new doms_new */
6611		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6612match2:
6613		;
6614	}
6615
6616	/* Remember the new sched domains */
6617	if (doms_cur != &fallback_doms)
6618		free_sched_domains(doms_cur, ndoms_cur);
6619	kfree(dattr_cur);	/* kfree(NULL) is safe */
6620	doms_cur = doms_new;
6621	dattr_cur = dattr_new;
6622	ndoms_cur = ndoms_new;
6623
6624	register_sched_domain_sysctl();
6625
6626	mutex_unlock(&sched_domains_mutex);
6627}
6628
6629static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6630
6631/*
6632 * Update cpusets according to cpu_active mask.  If cpusets are
6633 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6634 * around partition_sched_domains().
6635 *
6636 * If we come here as part of a suspend/resume, don't touch cpusets because we
6637 * want to restore it back to its original state upon resume anyway.
6638 */
6639static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6640			     void *hcpu)
6641{
6642	switch (action) {
6643	case CPU_ONLINE_FROZEN:
6644	case CPU_DOWN_FAILED_FROZEN:
6645
6646		/*
6647		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6648		 * resume sequence. As long as this is not the last online
6649		 * operation in the resume sequence, just build a single sched
6650		 * domain, ignoring cpusets.
6651		 */
6652		num_cpus_frozen--;
6653		if (likely(num_cpus_frozen)) {
6654			partition_sched_domains(1, NULL, NULL);
6655			break;
6656		}
6657
6658		/*
6659		 * This is the last CPU online operation. So fall through and
6660		 * restore the original sched domains by considering the
6661		 * cpuset configurations.
6662		 */
6663
6664	case CPU_ONLINE:
6665	case CPU_DOWN_FAILED:
6666		cpuset_update_active_cpus(true);
6667		break;
6668	default:
6669		return NOTIFY_DONE;
6670	}
6671	return NOTIFY_OK;
6672}
6673
6674static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6675			       void *hcpu)
6676{
6677	switch (action) {
6678	case CPU_DOWN_PREPARE:
6679		cpuset_update_active_cpus(false);
6680		break;
6681	case CPU_DOWN_PREPARE_FROZEN:
6682		num_cpus_frozen++;
6683		partition_sched_domains(1, NULL, NULL);
6684		break;
6685	default:
6686		return NOTIFY_DONE;
6687	}
6688	return NOTIFY_OK;
6689}
6690
6691void __init sched_init_smp(void)
6692{
6693	cpumask_var_t non_isolated_cpus;
6694
6695	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6696	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6697
6698	sched_init_numa();
6699
6700	/*
6701	 * There's no userspace yet to cause hotplug operations; hence all the
6702	 * cpu masks are stable and all blatant races in the below code cannot
6703	 * happen.
6704	 */
6705	mutex_lock(&sched_domains_mutex);
6706	init_sched_domains(cpu_active_mask);
6707	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6708	if (cpumask_empty(non_isolated_cpus))
6709		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6710	mutex_unlock(&sched_domains_mutex);
6711
6712	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6713	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6714	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6715
6716	init_hrtick();
6717
6718	/* Move init over to a non-isolated CPU */
6719	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6720		BUG();
6721	sched_init_granularity();
6722	free_cpumask_var(non_isolated_cpus);
6723
6724	init_sched_rt_class();
6725	init_sched_dl_class();
6726}
6727#else
6728void __init sched_init_smp(void)
6729{
6730	sched_init_granularity();
6731}
6732#endif /* CONFIG_SMP */
6733
6734const_debug unsigned int sysctl_timer_migration = 1;
6735
6736int in_sched_functions(unsigned long addr)
6737{
6738	return in_lock_functions(addr) ||
6739		(addr >= (unsigned long)__sched_text_start
6740		&& addr < (unsigned long)__sched_text_end);
6741}
6742
6743#ifdef CONFIG_CGROUP_SCHED
6744/*
6745 * Default task group.
6746 * Every task in system belongs to this group at bootup.
6747 */
6748struct task_group root_task_group;
6749LIST_HEAD(task_groups);
6750#endif
6751
6752DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6753
6754void __init sched_init(void)
6755{
6756	int i, j;
6757	unsigned long alloc_size = 0, ptr;
6758
6759#ifdef CONFIG_FAIR_GROUP_SCHED
6760	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6761#endif
6762#ifdef CONFIG_RT_GROUP_SCHED
6763	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6764#endif
6765#ifdef CONFIG_CPUMASK_OFFSTACK
6766	alloc_size += num_possible_cpus() * cpumask_size();
6767#endif
6768	if (alloc_size) {
6769		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6770
6771#ifdef CONFIG_FAIR_GROUP_SCHED
6772		root_task_group.se = (struct sched_entity **)ptr;
6773		ptr += nr_cpu_ids * sizeof(void **);
6774
6775		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6776		ptr += nr_cpu_ids * sizeof(void **);
6777
6778#endif /* CONFIG_FAIR_GROUP_SCHED */
6779#ifdef CONFIG_RT_GROUP_SCHED
6780		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6781		ptr += nr_cpu_ids * sizeof(void **);
6782
6783		root_task_group.rt_rq = (struct rt_rq **)ptr;
6784		ptr += nr_cpu_ids * sizeof(void **);
6785
6786#endif /* CONFIG_RT_GROUP_SCHED */
6787#ifdef CONFIG_CPUMASK_OFFSTACK
6788		for_each_possible_cpu(i) {
6789			per_cpu(load_balance_mask, i) = (void *)ptr;
6790			ptr += cpumask_size();
6791		}
6792#endif /* CONFIG_CPUMASK_OFFSTACK */
6793	}
6794
6795	init_rt_bandwidth(&def_rt_bandwidth,
6796			global_rt_period(), global_rt_runtime());
6797	init_dl_bandwidth(&def_dl_bandwidth,
6798			global_rt_period(), global_rt_runtime());
6799
6800#ifdef CONFIG_SMP
6801	init_defrootdomain();
6802#endif
6803
6804#ifdef CONFIG_RT_GROUP_SCHED
6805	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6806			global_rt_period(), global_rt_runtime());
6807#endif /* CONFIG_RT_GROUP_SCHED */
6808
6809#ifdef CONFIG_CGROUP_SCHED
6810	list_add(&root_task_group.list, &task_groups);
6811	INIT_LIST_HEAD(&root_task_group.children);
6812	INIT_LIST_HEAD(&root_task_group.siblings);
6813	autogroup_init(&init_task);
6814
6815#endif /* CONFIG_CGROUP_SCHED */
6816
6817	for_each_possible_cpu(i) {
6818		struct rq *rq;
6819
6820		rq = cpu_rq(i);
6821		raw_spin_lock_init(&rq->lock);
6822		rq->nr_running = 0;
6823		rq->calc_load_active = 0;
6824		rq->calc_load_update = jiffies + LOAD_FREQ;
6825		init_cfs_rq(&rq->cfs);
6826		init_rt_rq(&rq->rt, rq);
6827		init_dl_rq(&rq->dl, rq);
6828#ifdef CONFIG_FAIR_GROUP_SCHED
6829		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6830		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6831		/*
6832		 * How much cpu bandwidth does root_task_group get?
6833		 *
6834		 * In case of task-groups formed thr' the cgroup filesystem, it
6835		 * gets 100% of the cpu resources in the system. This overall
6836		 * system cpu resource is divided among the tasks of
6837		 * root_task_group and its child task-groups in a fair manner,
6838		 * based on each entity's (task or task-group's) weight
6839		 * (se->load.weight).
6840		 *
6841		 * In other words, if root_task_group has 10 tasks of weight
6842		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6843		 * then A0's share of the cpu resource is:
6844		 *
6845		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6846		 *
6847		 * We achieve this by letting root_task_group's tasks sit
6848		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6849		 */
6850		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6851		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6852#endif /* CONFIG_FAIR_GROUP_SCHED */
6853
6854		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6855#ifdef CONFIG_RT_GROUP_SCHED
6856		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6857#endif
6858
6859		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6860			rq->cpu_load[j] = 0;
6861
6862		rq->last_load_update_tick = jiffies;
6863
6864#ifdef CONFIG_SMP
6865		rq->sd = NULL;
6866		rq->rd = NULL;
6867		rq->cpu_power = SCHED_POWER_SCALE;
6868		rq->post_schedule = 0;
6869		rq->active_balance = 0;
6870		rq->next_balance = jiffies;
6871		rq->push_cpu = 0;
6872		rq->cpu = i;
6873		rq->online = 0;
6874		rq->idle_stamp = 0;
6875		rq->avg_idle = 2*sysctl_sched_migration_cost;
6876		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6877
6878		INIT_LIST_HEAD(&rq->cfs_tasks);
6879
6880		rq_attach_root(rq, &def_root_domain);
6881#ifdef CONFIG_NO_HZ_COMMON
6882		rq->nohz_flags = 0;
6883#endif
6884#ifdef CONFIG_NO_HZ_FULL
6885		rq->last_sched_tick = 0;
6886#endif
6887#endif
6888		init_rq_hrtick(rq);
6889		atomic_set(&rq->nr_iowait, 0);
6890	}
6891
6892	set_load_weight(&init_task);
6893
6894#ifdef CONFIG_PREEMPT_NOTIFIERS
6895	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6896#endif
6897
6898	/*
6899	 * The boot idle thread does lazy MMU switching as well:
6900	 */
6901	atomic_inc(&init_mm.mm_count);
6902	enter_lazy_tlb(&init_mm, current);
6903
6904	/*
6905	 * Make us the idle thread. Technically, schedule() should not be
6906	 * called from this thread, however somewhere below it might be,
6907	 * but because we are the idle thread, we just pick up running again
6908	 * when this runqueue becomes "idle".
6909	 */
6910	init_idle(current, smp_processor_id());
6911
6912	calc_load_update = jiffies + LOAD_FREQ;
6913
6914	/*
6915	 * During early bootup we pretend to be a normal task:
6916	 */
6917	current->sched_class = &fair_sched_class;
6918
6919#ifdef CONFIG_SMP
6920	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6921	/* May be allocated at isolcpus cmdline parse time */
6922	if (cpu_isolated_map == NULL)
6923		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6924	idle_thread_set_boot_cpu();
6925#endif
6926	init_sched_fair_class();
6927
6928	scheduler_running = 1;
6929}
6930
6931#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6932static inline int preempt_count_equals(int preempt_offset)
6933{
6934	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6935
6936	return (nested == preempt_offset);
6937}
6938
6939void __might_sleep(const char *file, int line, int preempt_offset)
6940{
6941	static unsigned long prev_jiffy;	/* ratelimiting */
6942
6943	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6944	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6945	     !is_idle_task(current)) ||
6946	    system_state != SYSTEM_RUNNING || oops_in_progress)
6947		return;
6948	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6949		return;
6950	prev_jiffy = jiffies;
6951
6952	printk(KERN_ERR
6953		"BUG: sleeping function called from invalid context at %s:%d\n",
6954			file, line);
6955	printk(KERN_ERR
6956		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6957			in_atomic(), irqs_disabled(),
6958			current->pid, current->comm);
6959
6960	debug_show_held_locks(current);
6961	if (irqs_disabled())
6962		print_irqtrace_events(current);
6963#ifdef CONFIG_DEBUG_PREEMPT
6964	if (!preempt_count_equals(preempt_offset)) {
6965		pr_err("Preemption disabled at:");
6966		print_ip_sym(current->preempt_disable_ip);
6967		pr_cont("\n");
6968	}
6969#endif
6970	dump_stack();
6971}
6972EXPORT_SYMBOL(__might_sleep);
6973#endif
6974
6975#ifdef CONFIG_MAGIC_SYSRQ
6976static void normalize_task(struct rq *rq, struct task_struct *p)
6977{
6978	const struct sched_class *prev_class = p->sched_class;
6979	struct sched_attr attr = {
6980		.sched_policy = SCHED_NORMAL,
6981	};
6982	int old_prio = p->prio;
6983	int on_rq;
6984
6985	on_rq = p->on_rq;
6986	if (on_rq)
6987		dequeue_task(rq, p, 0);
6988	__setscheduler(rq, p, &attr);
6989	if (on_rq) {
6990		enqueue_task(rq, p, 0);
6991		resched_task(rq->curr);
6992	}
6993
6994	check_class_changed(rq, p, prev_class, old_prio);
6995}
6996
6997void normalize_rt_tasks(void)
6998{
6999	struct task_struct *g, *p;
7000	unsigned long flags;
7001	struct rq *rq;
7002
7003	read_lock_irqsave(&tasklist_lock, flags);
7004	do_each_thread(g, p) {
7005		/*
7006		 * Only normalize user tasks:
7007		 */
7008		if (!p->mm)
7009			continue;
7010
7011		p->se.exec_start		= 0;
7012#ifdef CONFIG_SCHEDSTATS
7013		p->se.statistics.wait_start	= 0;
7014		p->se.statistics.sleep_start	= 0;
7015		p->se.statistics.block_start	= 0;
7016#endif
7017
7018		if (!dl_task(p) && !rt_task(p)) {
7019			/*
7020			 * Renice negative nice level userspace
7021			 * tasks back to 0:
7022			 */
7023			if (task_nice(p) < 0 && p->mm)
7024				set_user_nice(p, 0);
7025			continue;
7026		}
7027
7028		raw_spin_lock(&p->pi_lock);
7029		rq = __task_rq_lock(p);
7030
7031		normalize_task(rq, p);
7032
7033		__task_rq_unlock(rq);
7034		raw_spin_unlock(&p->pi_lock);
7035	} while_each_thread(g, p);
7036
7037	read_unlock_irqrestore(&tasklist_lock, flags);
7038}
7039
7040#endif /* CONFIG_MAGIC_SYSRQ */
7041
7042#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7043/*
7044 * These functions are only useful for the IA64 MCA handling, or kdb.
7045 *
7046 * They can only be called when the whole system has been
7047 * stopped - every CPU needs to be quiescent, and no scheduling
7048 * activity can take place. Using them for anything else would
7049 * be a serious bug, and as a result, they aren't even visible
7050 * under any other configuration.
7051 */
7052
7053/**
7054 * curr_task - return the current task for a given cpu.
7055 * @cpu: the processor in question.
7056 *
7057 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7058 *
7059 * Return: The current task for @cpu.
7060 */
7061struct task_struct *curr_task(int cpu)
7062{
7063	return cpu_curr(cpu);
7064}
7065
7066#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7067
7068#ifdef CONFIG_IA64
7069/**
7070 * set_curr_task - set the current task for a given cpu.
7071 * @cpu: the processor in question.
7072 * @p: the task pointer to set.
7073 *
7074 * Description: This function must only be used when non-maskable interrupts
7075 * are serviced on a separate stack. It allows the architecture to switch the
7076 * notion of the current task on a cpu in a non-blocking manner. This function
7077 * must be called with all CPU's synchronized, and interrupts disabled, the
7078 * and caller must save the original value of the current task (see
7079 * curr_task() above) and restore that value before reenabling interrupts and
7080 * re-starting the system.
7081 *
7082 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7083 */
7084void set_curr_task(int cpu, struct task_struct *p)
7085{
7086	cpu_curr(cpu) = p;
7087}
7088
7089#endif
7090
7091#ifdef CONFIG_CGROUP_SCHED
7092/* task_group_lock serializes the addition/removal of task groups */
7093static DEFINE_SPINLOCK(task_group_lock);
7094
7095static void free_sched_group(struct task_group *tg)
7096{
7097	free_fair_sched_group(tg);
7098	free_rt_sched_group(tg);
7099	autogroup_free(tg);
7100	kfree(tg);
7101}
7102
7103/* allocate runqueue etc for a new task group */
7104struct task_group *sched_create_group(struct task_group *parent)
7105{
7106	struct task_group *tg;
7107
7108	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7109	if (!tg)
7110		return ERR_PTR(-ENOMEM);
7111
7112	if (!alloc_fair_sched_group(tg, parent))
7113		goto err;
7114
7115	if (!alloc_rt_sched_group(tg, parent))
7116		goto err;
7117
7118	return tg;
7119
7120err:
7121	free_sched_group(tg);
7122	return ERR_PTR(-ENOMEM);
7123}
7124
7125void sched_online_group(struct task_group *tg, struct task_group *parent)
7126{
7127	unsigned long flags;
7128
7129	spin_lock_irqsave(&task_group_lock, flags);
7130	list_add_rcu(&tg->list, &task_groups);
7131
7132	WARN_ON(!parent); /* root should already exist */
7133
7134	tg->parent = parent;
7135	INIT_LIST_HEAD(&tg->children);
7136	list_add_rcu(&tg->siblings, &parent->children);
7137	spin_unlock_irqrestore(&task_group_lock, flags);
7138}
7139
7140/* rcu callback to free various structures associated with a task group */
7141static void free_sched_group_rcu(struct rcu_head *rhp)
7142{
7143	/* now it should be safe to free those cfs_rqs */
7144	free_sched_group(container_of(rhp, struct task_group, rcu));
7145}
7146
7147/* Destroy runqueue etc associated with a task group */
7148void sched_destroy_group(struct task_group *tg)
7149{
7150	/* wait for possible concurrent references to cfs_rqs complete */
7151	call_rcu(&tg->rcu, free_sched_group_rcu);
7152}
7153
7154void sched_offline_group(struct task_group *tg)
7155{
7156	unsigned long flags;
7157	int i;
7158
7159	/* end participation in shares distribution */
7160	for_each_possible_cpu(i)
7161		unregister_fair_sched_group(tg, i);
7162
7163	spin_lock_irqsave(&task_group_lock, flags);
7164	list_del_rcu(&tg->list);
7165	list_del_rcu(&tg->siblings);
7166	spin_unlock_irqrestore(&task_group_lock, flags);
7167}
7168
7169/* change task's runqueue when it moves between groups.
7170 *	The caller of this function should have put the task in its new group
7171 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7172 *	reflect its new group.
7173 */
7174void sched_move_task(struct task_struct *tsk)
7175{
7176	struct task_group *tg;
7177	int on_rq, running;
7178	unsigned long flags;
7179	struct rq *rq;
7180
7181	rq = task_rq_lock(tsk, &flags);
7182
7183	running = task_current(rq, tsk);
7184	on_rq = tsk->on_rq;
7185
7186	if (on_rq)
7187		dequeue_task(rq, tsk, 0);
7188	if (unlikely(running))
7189		tsk->sched_class->put_prev_task(rq, tsk);
7190
7191	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7192				lockdep_is_held(&tsk->sighand->siglock)),
7193			  struct task_group, css);
7194	tg = autogroup_task_group(tsk, tg);
7195	tsk->sched_task_group = tg;
7196
7197#ifdef CONFIG_FAIR_GROUP_SCHED
7198	if (tsk->sched_class->task_move_group)
7199		tsk->sched_class->task_move_group(tsk, on_rq);
7200	else
7201#endif
7202		set_task_rq(tsk, task_cpu(tsk));
7203
7204	if (unlikely(running))
7205		tsk->sched_class->set_curr_task(rq);
7206	if (on_rq)
7207		enqueue_task(rq, tsk, 0);
7208
7209	task_rq_unlock(rq, tsk, &flags);
7210}
7211#endif /* CONFIG_CGROUP_SCHED */
7212
7213#ifdef CONFIG_RT_GROUP_SCHED
7214/*
7215 * Ensure that the real time constraints are schedulable.
7216 */
7217static DEFINE_MUTEX(rt_constraints_mutex);
7218
7219/* Must be called with tasklist_lock held */
7220static inline int tg_has_rt_tasks(struct task_group *tg)
7221{
7222	struct task_struct *g, *p;
7223
7224	do_each_thread(g, p) {
7225		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7226			return 1;
7227	} while_each_thread(g, p);
7228
7229	return 0;
7230}
7231
7232struct rt_schedulable_data {
7233	struct task_group *tg;
7234	u64 rt_period;
7235	u64 rt_runtime;
7236};
7237
7238static int tg_rt_schedulable(struct task_group *tg, void *data)
7239{
7240	struct rt_schedulable_data *d = data;
7241	struct task_group *child;
7242	unsigned long total, sum = 0;
7243	u64 period, runtime;
7244
7245	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7246	runtime = tg->rt_bandwidth.rt_runtime;
7247
7248	if (tg == d->tg) {
7249		period = d->rt_period;
7250		runtime = d->rt_runtime;
7251	}
7252
7253	/*
7254	 * Cannot have more runtime than the period.
7255	 */
7256	if (runtime > period && runtime != RUNTIME_INF)
7257		return -EINVAL;
7258
7259	/*
7260	 * Ensure we don't starve existing RT tasks.
7261	 */
7262	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7263		return -EBUSY;
7264
7265	total = to_ratio(period, runtime);
7266
7267	/*
7268	 * Nobody can have more than the global setting allows.
7269	 */
7270	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7271		return -EINVAL;
7272
7273	/*
7274	 * The sum of our children's runtime should not exceed our own.
7275	 */
7276	list_for_each_entry_rcu(child, &tg->children, siblings) {
7277		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7278		runtime = child->rt_bandwidth.rt_runtime;
7279
7280		if (child == d->tg) {
7281			period = d->rt_period;
7282			runtime = d->rt_runtime;
7283		}
7284
7285		sum += to_ratio(period, runtime);
7286	}
7287
7288	if (sum > total)
7289		return -EINVAL;
7290
7291	return 0;
7292}
7293
7294static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7295{
7296	int ret;
7297
7298	struct rt_schedulable_data data = {
7299		.tg = tg,
7300		.rt_period = period,
7301		.rt_runtime = runtime,
7302	};
7303
7304	rcu_read_lock();
7305	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7306	rcu_read_unlock();
7307
7308	return ret;
7309}
7310
7311static int tg_set_rt_bandwidth(struct task_group *tg,
7312		u64 rt_period, u64 rt_runtime)
7313{
7314	int i, err = 0;
7315
7316	mutex_lock(&rt_constraints_mutex);
7317	read_lock(&tasklist_lock);
7318	err = __rt_schedulable(tg, rt_period, rt_runtime);
7319	if (err)
7320		goto unlock;
7321
7322	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7323	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7324	tg->rt_bandwidth.rt_runtime = rt_runtime;
7325
7326	for_each_possible_cpu(i) {
7327		struct rt_rq *rt_rq = tg->rt_rq[i];
7328
7329		raw_spin_lock(&rt_rq->rt_runtime_lock);
7330		rt_rq->rt_runtime = rt_runtime;
7331		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7332	}
7333	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7334unlock:
7335	read_unlock(&tasklist_lock);
7336	mutex_unlock(&rt_constraints_mutex);
7337
7338	return err;
7339}
7340
7341static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7342{
7343	u64 rt_runtime, rt_period;
7344
7345	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7346	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7347	if (rt_runtime_us < 0)
7348		rt_runtime = RUNTIME_INF;
7349
7350	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7351}
7352
7353static long sched_group_rt_runtime(struct task_group *tg)
7354{
7355	u64 rt_runtime_us;
7356
7357	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7358		return -1;
7359
7360	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7361	do_div(rt_runtime_us, NSEC_PER_USEC);
7362	return rt_runtime_us;
7363}
7364
7365static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7366{
7367	u64 rt_runtime, rt_period;
7368
7369	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7370	rt_runtime = tg->rt_bandwidth.rt_runtime;
7371
7372	if (rt_period == 0)
7373		return -EINVAL;
7374
7375	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7376}
7377
7378static long sched_group_rt_period(struct task_group *tg)
7379{
7380	u64 rt_period_us;
7381
7382	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7383	do_div(rt_period_us, NSEC_PER_USEC);
7384	return rt_period_us;
7385}
7386#endif /* CONFIG_RT_GROUP_SCHED */
7387
7388#ifdef CONFIG_RT_GROUP_SCHED
7389static int sched_rt_global_constraints(void)
7390{
7391	int ret = 0;
7392
7393	mutex_lock(&rt_constraints_mutex);
7394	read_lock(&tasklist_lock);
7395	ret = __rt_schedulable(NULL, 0, 0);
7396	read_unlock(&tasklist_lock);
7397	mutex_unlock(&rt_constraints_mutex);
7398
7399	return ret;
7400}
7401
7402static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7403{
7404	/* Don't accept realtime tasks when there is no way for them to run */
7405	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7406		return 0;
7407
7408	return 1;
7409}
7410
7411#else /* !CONFIG_RT_GROUP_SCHED */
7412static int sched_rt_global_constraints(void)
7413{
7414	unsigned long flags;
7415	int i, ret = 0;
7416
7417	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7418	for_each_possible_cpu(i) {
7419		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7420
7421		raw_spin_lock(&rt_rq->rt_runtime_lock);
7422		rt_rq->rt_runtime = global_rt_runtime();
7423		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7424	}
7425	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7426
7427	return ret;
7428}
7429#endif /* CONFIG_RT_GROUP_SCHED */
7430
7431static int sched_dl_global_constraints(void)
7432{
7433	u64 runtime = global_rt_runtime();
7434	u64 period = global_rt_period();
7435	u64 new_bw = to_ratio(period, runtime);
7436	int cpu, ret = 0;
7437	unsigned long flags;
7438
7439	/*
7440	 * Here we want to check the bandwidth not being set to some
7441	 * value smaller than the currently allocated bandwidth in
7442	 * any of the root_domains.
7443	 *
7444	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7445	 * cycling on root_domains... Discussion on different/better
7446	 * solutions is welcome!
7447	 */
7448	for_each_possible_cpu(cpu) {
7449		struct dl_bw *dl_b = dl_bw_of(cpu);
7450
7451		raw_spin_lock_irqsave(&dl_b->lock, flags);
7452		if (new_bw < dl_b->total_bw)
7453			ret = -EBUSY;
7454		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7455
7456		if (ret)
7457			break;
7458	}
7459
7460	return ret;
7461}
7462
7463static void sched_dl_do_global(void)
7464{
7465	u64 new_bw = -1;
7466	int cpu;
7467	unsigned long flags;
7468
7469	def_dl_bandwidth.dl_period = global_rt_period();
7470	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7471
7472	if (global_rt_runtime() != RUNTIME_INF)
7473		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7474
7475	/*
7476	 * FIXME: As above...
7477	 */
7478	for_each_possible_cpu(cpu) {
7479		struct dl_bw *dl_b = dl_bw_of(cpu);
7480
7481		raw_spin_lock_irqsave(&dl_b->lock, flags);
7482		dl_b->bw = new_bw;
7483		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7484	}
7485}
7486
7487static int sched_rt_global_validate(void)
7488{
7489	if (sysctl_sched_rt_period <= 0)
7490		return -EINVAL;
7491
7492	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7493		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7494		return -EINVAL;
7495
7496	return 0;
7497}
7498
7499static void sched_rt_do_global(void)
7500{
7501	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7502	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7503}
7504
7505int sched_rt_handler(struct ctl_table *table, int write,
7506		void __user *buffer, size_t *lenp,
7507		loff_t *ppos)
7508{
7509	int old_period, old_runtime;
7510	static DEFINE_MUTEX(mutex);
7511	int ret;
7512
7513	mutex_lock(&mutex);
7514	old_period = sysctl_sched_rt_period;
7515	old_runtime = sysctl_sched_rt_runtime;
7516
7517	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7518
7519	if (!ret && write) {
7520		ret = sched_rt_global_validate();
7521		if (ret)
7522			goto undo;
7523
7524		ret = sched_rt_global_constraints();
7525		if (ret)
7526			goto undo;
7527
7528		ret = sched_dl_global_constraints();
7529		if (ret)
7530			goto undo;
7531
7532		sched_rt_do_global();
7533		sched_dl_do_global();
7534	}
7535	if (0) {
7536undo:
7537		sysctl_sched_rt_period = old_period;
7538		sysctl_sched_rt_runtime = old_runtime;
7539	}
7540	mutex_unlock(&mutex);
7541
7542	return ret;
7543}
7544
7545int sched_rr_handler(struct ctl_table *table, int write,
7546		void __user *buffer, size_t *lenp,
7547		loff_t *ppos)
7548{
7549	int ret;
7550	static DEFINE_MUTEX(mutex);
7551
7552	mutex_lock(&mutex);
7553	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7554	/* make sure that internally we keep jiffies */
7555	/* also, writing zero resets timeslice to default */
7556	if (!ret && write) {
7557		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7558			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7559	}
7560	mutex_unlock(&mutex);
7561	return ret;
7562}
7563
7564#ifdef CONFIG_CGROUP_SCHED
7565
7566static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7567{
7568	return css ? container_of(css, struct task_group, css) : NULL;
7569}
7570
7571static struct cgroup_subsys_state *
7572cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7573{
7574	struct task_group *parent = css_tg(parent_css);
7575	struct task_group *tg;
7576
7577	if (!parent) {
7578		/* This is early initialization for the top cgroup */
7579		return &root_task_group.css;
7580	}
7581
7582	tg = sched_create_group(parent);
7583	if (IS_ERR(tg))
7584		return ERR_PTR(-ENOMEM);
7585
7586	return &tg->css;
7587}
7588
7589static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7590{
7591	struct task_group *tg = css_tg(css);
7592	struct task_group *parent = css_tg(css_parent(css));
7593
7594	if (parent)
7595		sched_online_group(tg, parent);
7596	return 0;
7597}
7598
7599static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7600{
7601	struct task_group *tg = css_tg(css);
7602
7603	sched_destroy_group(tg);
7604}
7605
7606static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7607{
7608	struct task_group *tg = css_tg(css);
7609
7610	sched_offline_group(tg);
7611}
7612
7613static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7614				 struct cgroup_taskset *tset)
7615{
7616	struct task_struct *task;
7617
7618	cgroup_taskset_for_each(task, tset) {
7619#ifdef CONFIG_RT_GROUP_SCHED
7620		if (!sched_rt_can_attach(css_tg(css), task))
7621			return -EINVAL;
7622#else
7623		/* We don't support RT-tasks being in separate groups */
7624		if (task->sched_class != &fair_sched_class)
7625			return -EINVAL;
7626#endif
7627	}
7628	return 0;
7629}
7630
7631static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7632			      struct cgroup_taskset *tset)
7633{
7634	struct task_struct *task;
7635
7636	cgroup_taskset_for_each(task, tset)
7637		sched_move_task(task);
7638}
7639
7640static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7641			    struct cgroup_subsys_state *old_css,
7642			    struct task_struct *task)
7643{
7644	/*
7645	 * cgroup_exit() is called in the copy_process() failure path.
7646	 * Ignore this case since the task hasn't ran yet, this avoids
7647	 * trying to poke a half freed task state from generic code.
7648	 */
7649	if (!(task->flags & PF_EXITING))
7650		return;
7651
7652	sched_move_task(task);
7653}
7654
7655#ifdef CONFIG_FAIR_GROUP_SCHED
7656static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7657				struct cftype *cftype, u64 shareval)
7658{
7659	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7660}
7661
7662static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7663			       struct cftype *cft)
7664{
7665	struct task_group *tg = css_tg(css);
7666
7667	return (u64) scale_load_down(tg->shares);
7668}
7669
7670#ifdef CONFIG_CFS_BANDWIDTH
7671static DEFINE_MUTEX(cfs_constraints_mutex);
7672
7673const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7674const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7675
7676static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7677
7678static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7679{
7680	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7681	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7682
7683	if (tg == &root_task_group)
7684		return -EINVAL;
7685
7686	/*
7687	 * Ensure we have at some amount of bandwidth every period.  This is
7688	 * to prevent reaching a state of large arrears when throttled via
7689	 * entity_tick() resulting in prolonged exit starvation.
7690	 */
7691	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7692		return -EINVAL;
7693
7694	/*
7695	 * Likewise, bound things on the otherside by preventing insane quota
7696	 * periods.  This also allows us to normalize in computing quota
7697	 * feasibility.
7698	 */
7699	if (period > max_cfs_quota_period)
7700		return -EINVAL;
7701
7702	mutex_lock(&cfs_constraints_mutex);
7703	ret = __cfs_schedulable(tg, period, quota);
7704	if (ret)
7705		goto out_unlock;
7706
7707	runtime_enabled = quota != RUNTIME_INF;
7708	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7709	/*
7710	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7711	 * before making related changes, and on->off must occur afterwards
7712	 */
7713	if (runtime_enabled && !runtime_was_enabled)
7714		cfs_bandwidth_usage_inc();
7715	raw_spin_lock_irq(&cfs_b->lock);
7716	cfs_b->period = ns_to_ktime(period);
7717	cfs_b->quota = quota;
7718
7719	__refill_cfs_bandwidth_runtime(cfs_b);
7720	/* restart the period timer (if active) to handle new period expiry */
7721	if (runtime_enabled && cfs_b->timer_active) {
7722		/* force a reprogram */
7723		cfs_b->timer_active = 0;
7724		__start_cfs_bandwidth(cfs_b);
7725	}
7726	raw_spin_unlock_irq(&cfs_b->lock);
7727
7728	for_each_possible_cpu(i) {
7729		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7730		struct rq *rq = cfs_rq->rq;
7731
7732		raw_spin_lock_irq(&rq->lock);
7733		cfs_rq->runtime_enabled = runtime_enabled;
7734		cfs_rq->runtime_remaining = 0;
7735
7736		if (cfs_rq->throttled)
7737			unthrottle_cfs_rq(cfs_rq);
7738		raw_spin_unlock_irq(&rq->lock);
7739	}
7740	if (runtime_was_enabled && !runtime_enabled)
7741		cfs_bandwidth_usage_dec();
7742out_unlock:
7743	mutex_unlock(&cfs_constraints_mutex);
7744
7745	return ret;
7746}
7747
7748int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7749{
7750	u64 quota, period;
7751
7752	period = ktime_to_ns(tg->cfs_bandwidth.period);
7753	if (cfs_quota_us < 0)
7754		quota = RUNTIME_INF;
7755	else
7756		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7757
7758	return tg_set_cfs_bandwidth(tg, period, quota);
7759}
7760
7761long tg_get_cfs_quota(struct task_group *tg)
7762{
7763	u64 quota_us;
7764
7765	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7766		return -1;
7767
7768	quota_us = tg->cfs_bandwidth.quota;
7769	do_div(quota_us, NSEC_PER_USEC);
7770
7771	return quota_us;
7772}
7773
7774int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7775{
7776	u64 quota, period;
7777
7778	period = (u64)cfs_period_us * NSEC_PER_USEC;
7779	quota = tg->cfs_bandwidth.quota;
7780
7781	return tg_set_cfs_bandwidth(tg, period, quota);
7782}
7783
7784long tg_get_cfs_period(struct task_group *tg)
7785{
7786	u64 cfs_period_us;
7787
7788	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7789	do_div(cfs_period_us, NSEC_PER_USEC);
7790
7791	return cfs_period_us;
7792}
7793
7794static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7795				  struct cftype *cft)
7796{
7797	return tg_get_cfs_quota(css_tg(css));
7798}
7799
7800static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7801				   struct cftype *cftype, s64 cfs_quota_us)
7802{
7803	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7804}
7805
7806static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7807				   struct cftype *cft)
7808{
7809	return tg_get_cfs_period(css_tg(css));
7810}
7811
7812static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7813				    struct cftype *cftype, u64 cfs_period_us)
7814{
7815	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7816}
7817
7818struct cfs_schedulable_data {
7819	struct task_group *tg;
7820	u64 period, quota;
7821};
7822
7823/*
7824 * normalize group quota/period to be quota/max_period
7825 * note: units are usecs
7826 */
7827static u64 normalize_cfs_quota(struct task_group *tg,
7828			       struct cfs_schedulable_data *d)
7829{
7830	u64 quota, period;
7831
7832	if (tg == d->tg) {
7833		period = d->period;
7834		quota = d->quota;
7835	} else {
7836		period = tg_get_cfs_period(tg);
7837		quota = tg_get_cfs_quota(tg);
7838	}
7839
7840	/* note: these should typically be equivalent */
7841	if (quota == RUNTIME_INF || quota == -1)
7842		return RUNTIME_INF;
7843
7844	return to_ratio(period, quota);
7845}
7846
7847static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7848{
7849	struct cfs_schedulable_data *d = data;
7850	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7851	s64 quota = 0, parent_quota = -1;
7852
7853	if (!tg->parent) {
7854		quota = RUNTIME_INF;
7855	} else {
7856		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7857
7858		quota = normalize_cfs_quota(tg, d);
7859		parent_quota = parent_b->hierarchal_quota;
7860
7861		/*
7862		 * ensure max(child_quota) <= parent_quota, inherit when no
7863		 * limit is set
7864		 */
7865		if (quota == RUNTIME_INF)
7866			quota = parent_quota;
7867		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7868			return -EINVAL;
7869	}
7870	cfs_b->hierarchal_quota = quota;
7871
7872	return 0;
7873}
7874
7875static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7876{
7877	int ret;
7878	struct cfs_schedulable_data data = {
7879		.tg = tg,
7880		.period = period,
7881		.quota = quota,
7882	};
7883
7884	if (quota != RUNTIME_INF) {
7885		do_div(data.period, NSEC_PER_USEC);
7886		do_div(data.quota, NSEC_PER_USEC);
7887	}
7888
7889	rcu_read_lock();
7890	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7891	rcu_read_unlock();
7892
7893	return ret;
7894}
7895
7896static int cpu_stats_show(struct seq_file *sf, void *v)
7897{
7898	struct task_group *tg = css_tg(seq_css(sf));
7899	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7900
7901	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7902	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7903	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7904
7905	return 0;
7906}
7907#endif /* CONFIG_CFS_BANDWIDTH */
7908#endif /* CONFIG_FAIR_GROUP_SCHED */
7909
7910#ifdef CONFIG_RT_GROUP_SCHED
7911static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7912				struct cftype *cft, s64 val)
7913{
7914	return sched_group_set_rt_runtime(css_tg(css), val);
7915}
7916
7917static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7918			       struct cftype *cft)
7919{
7920	return sched_group_rt_runtime(css_tg(css));
7921}
7922
7923static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7924				    struct cftype *cftype, u64 rt_period_us)
7925{
7926	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7927}
7928
7929static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7930				   struct cftype *cft)
7931{
7932	return sched_group_rt_period(css_tg(css));
7933}
7934#endif /* CONFIG_RT_GROUP_SCHED */
7935
7936static struct cftype cpu_files[] = {
7937#ifdef CONFIG_FAIR_GROUP_SCHED
7938	{
7939		.name = "shares",
7940		.read_u64 = cpu_shares_read_u64,
7941		.write_u64 = cpu_shares_write_u64,
7942	},
7943#endif
7944#ifdef CONFIG_CFS_BANDWIDTH
7945	{
7946		.name = "cfs_quota_us",
7947		.read_s64 = cpu_cfs_quota_read_s64,
7948		.write_s64 = cpu_cfs_quota_write_s64,
7949	},
7950	{
7951		.name = "cfs_period_us",
7952		.read_u64 = cpu_cfs_period_read_u64,
7953		.write_u64 = cpu_cfs_period_write_u64,
7954	},
7955	{
7956		.name = "stat",
7957		.seq_show = cpu_stats_show,
7958	},
7959#endif
7960#ifdef CONFIG_RT_GROUP_SCHED
7961	{
7962		.name = "rt_runtime_us",
7963		.read_s64 = cpu_rt_runtime_read,
7964		.write_s64 = cpu_rt_runtime_write,
7965	},
7966	{
7967		.name = "rt_period_us",
7968		.read_u64 = cpu_rt_period_read_uint,
7969		.write_u64 = cpu_rt_period_write_uint,
7970	},
7971#endif
7972	{ }	/* terminate */
7973};
7974
7975struct cgroup_subsys cpu_cgrp_subsys = {
7976	.css_alloc	= cpu_cgroup_css_alloc,
7977	.css_free	= cpu_cgroup_css_free,
7978	.css_online	= cpu_cgroup_css_online,
7979	.css_offline	= cpu_cgroup_css_offline,
7980	.can_attach	= cpu_cgroup_can_attach,
7981	.attach		= cpu_cgroup_attach,
7982	.exit		= cpu_cgroup_exit,
7983	.base_cftypes	= cpu_files,
7984	.early_init	= 1,
7985};
7986
7987#endif	/* CONFIG_CGROUP_SCHED */
7988
7989void dump_cpu_task(int cpu)
7990{
7991	pr_info("Task dump for CPU %d:\n", cpu);
7992	sched_show_task(cpu_curr(cpu));
7993}
7994