core.c revision 5cd038f53ed9ec7a17ab7d536a727363080f4210
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	if (delta < 0)
143		return;
144	rq->clock += delta;
145	update_rq_clock_task(rq, delta);
146}
147
148/*
149 * Debugging: various feature bits
150 */
151
152#define SCHED_FEAT(name, enabled)	\
153	(1UL << __SCHED_FEAT_##name) * enabled |
154
155const_debug unsigned int sysctl_sched_features =
156#include "features.h"
157	0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled)	\
163	#name ,
164
165static const char * const sched_feat_names[] = {
166#include "features.h"
167};
168
169#undef SCHED_FEAT
170
171static int sched_feat_show(struct seq_file *m, void *v)
172{
173	int i;
174
175	for (i = 0; i < __SCHED_FEAT_NR; i++) {
176		if (!(sysctl_sched_features & (1UL << i)))
177			seq_puts(m, "NO_");
178		seq_printf(m, "%s ", sched_feat_names[i]);
179	}
180	seq_puts(m, "\n");
181
182	return 0;
183}
184
185#ifdef HAVE_JUMP_LABEL
186
187#define jump_label_key__true  STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
189
190#define SCHED_FEAT(name, enabled)	\
191	jump_label_key__##enabled ,
192
193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
201	if (static_key_enabled(&sched_feat_keys[i]))
202		static_key_slow_dec(&sched_feat_keys[i]);
203}
204
205static void sched_feat_enable(int i)
206{
207	if (!static_key_enabled(&sched_feat_keys[i]))
208		static_key_slow_inc(&sched_feat_keys[i]);
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
215static int sched_feat_set(char *cmp)
216{
217	int i;
218	int neg = 0;
219
220	if (strncmp(cmp, "NO_", 3) == 0) {
221		neg = 1;
222		cmp += 3;
223	}
224
225	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227			if (neg) {
228				sysctl_sched_features &= ~(1UL << i);
229				sched_feat_disable(i);
230			} else {
231				sysctl_sched_features |= (1UL << i);
232				sched_feat_enable(i);
233			}
234			break;
235		}
236	}
237
238	return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243		size_t cnt, loff_t *ppos)
244{
245	char buf[64];
246	char *cmp;
247	int i;
248	struct inode *inode;
249
250	if (cnt > 63)
251		cnt = 63;
252
253	if (copy_from_user(&buf, ubuf, cnt))
254		return -EFAULT;
255
256	buf[cnt] = 0;
257	cmp = strstrip(buf);
258
259	/* Ensure the static_key remains in a consistent state */
260	inode = file_inode(filp);
261	mutex_lock(&inode->i_mutex);
262	i = sched_feat_set(cmp);
263	mutex_unlock(&inode->i_mutex);
264	if (i == __SCHED_FEAT_NR)
265		return -EINVAL;
266
267	*ppos += cnt;
268
269	return cnt;
270}
271
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274	return single_open(filp, sched_feat_show, NULL);
275}
276
277static const struct file_operations sched_feat_fops = {
278	.open		= sched_feat_open,
279	.write		= sched_feat_write,
280	.read		= seq_read,
281	.llseek		= seq_lseek,
282	.release	= single_release,
283};
284
285static __init int sched_init_debug(void)
286{
287	debugfs_create_file("sched_features", 0644, NULL, NULL,
288			&sched_feat_fops);
289
290	return 0;
291}
292late_initcall(sched_init_debug);
293#endif /* CONFIG_SCHED_DEBUG */
294
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
309/*
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
312 */
313unsigned int sysctl_sched_rt_period = 1000000;
314
315__read_mostly int scheduler_running;
316
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
322
323/*
324 * __task_rq_lock - lock the rq @p resides on.
325 */
326static inline struct rq *__task_rq_lock(struct task_struct *p)
327	__acquires(rq->lock)
328{
329	struct rq *rq;
330
331	lockdep_assert_held(&p->pi_lock);
332
333	for (;;) {
334		rq = task_rq(p);
335		raw_spin_lock(&rq->lock);
336		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
337			return rq;
338		raw_spin_unlock(&rq->lock);
339
340		while (unlikely(task_on_rq_migrating(p)))
341			cpu_relax();
342	}
343}
344
345/*
346 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
347 */
348static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
349	__acquires(p->pi_lock)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	for (;;) {
355		raw_spin_lock_irqsave(&p->pi_lock, *flags);
356		rq = task_rq(p);
357		raw_spin_lock(&rq->lock);
358		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
359			return rq;
360		raw_spin_unlock(&rq->lock);
361		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362
363		while (unlikely(task_on_rq_migrating(p)))
364			cpu_relax();
365	}
366}
367
368static void __task_rq_unlock(struct rq *rq)
369	__releases(rq->lock)
370{
371	raw_spin_unlock(&rq->lock);
372}
373
374static inline void
375task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
376	__releases(rq->lock)
377	__releases(p->pi_lock)
378{
379	raw_spin_unlock(&rq->lock);
380	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
381}
382
383/*
384 * this_rq_lock - lock this runqueue and disable interrupts.
385 */
386static struct rq *this_rq_lock(void)
387	__acquires(rq->lock)
388{
389	struct rq *rq;
390
391	local_irq_disable();
392	rq = this_rq();
393	raw_spin_lock(&rq->lock);
394
395	return rq;
396}
397
398#ifdef CONFIG_SCHED_HRTICK
399/*
400 * Use HR-timers to deliver accurate preemption points.
401 */
402
403static void hrtick_clear(struct rq *rq)
404{
405	if (hrtimer_active(&rq->hrtick_timer))
406		hrtimer_cancel(&rq->hrtick_timer);
407}
408
409/*
410 * High-resolution timer tick.
411 * Runs from hardirq context with interrupts disabled.
412 */
413static enum hrtimer_restart hrtick(struct hrtimer *timer)
414{
415	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
416
417	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
418
419	raw_spin_lock(&rq->lock);
420	update_rq_clock(rq);
421	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
422	raw_spin_unlock(&rq->lock);
423
424	return HRTIMER_NORESTART;
425}
426
427#ifdef CONFIG_SMP
428
429static int __hrtick_restart(struct rq *rq)
430{
431	struct hrtimer *timer = &rq->hrtick_timer;
432	ktime_t time = hrtimer_get_softexpires(timer);
433
434	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
435}
436
437/*
438 * called from hardirq (IPI) context
439 */
440static void __hrtick_start(void *arg)
441{
442	struct rq *rq = arg;
443
444	raw_spin_lock(&rq->lock);
445	__hrtick_restart(rq);
446	rq->hrtick_csd_pending = 0;
447	raw_spin_unlock(&rq->lock);
448}
449
450/*
451 * Called to set the hrtick timer state.
452 *
453 * called with rq->lock held and irqs disabled
454 */
455void hrtick_start(struct rq *rq, u64 delay)
456{
457	struct hrtimer *timer = &rq->hrtick_timer;
458	ktime_t time;
459	s64 delta;
460
461	/*
462	 * Don't schedule slices shorter than 10000ns, that just
463	 * doesn't make sense and can cause timer DoS.
464	 */
465	delta = max_t(s64, delay, 10000LL);
466	time = ktime_add_ns(timer->base->get_time(), delta);
467
468	hrtimer_set_expires(timer, time);
469
470	if (rq == this_rq()) {
471		__hrtick_restart(rq);
472	} else if (!rq->hrtick_csd_pending) {
473		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
474		rq->hrtick_csd_pending = 1;
475	}
476}
477
478static int
479hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
480{
481	int cpu = (int)(long)hcpu;
482
483	switch (action) {
484	case CPU_UP_CANCELED:
485	case CPU_UP_CANCELED_FROZEN:
486	case CPU_DOWN_PREPARE:
487	case CPU_DOWN_PREPARE_FROZEN:
488	case CPU_DEAD:
489	case CPU_DEAD_FROZEN:
490		hrtick_clear(cpu_rq(cpu));
491		return NOTIFY_OK;
492	}
493
494	return NOTIFY_DONE;
495}
496
497static __init void init_hrtick(void)
498{
499	hotcpu_notifier(hotplug_hrtick, 0);
500}
501#else
502/*
503 * Called to set the hrtick timer state.
504 *
505 * called with rq->lock held and irqs disabled
506 */
507void hrtick_start(struct rq *rq, u64 delay)
508{
509	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
510			HRTIMER_MODE_REL_PINNED, 0);
511}
512
513static inline void init_hrtick(void)
514{
515}
516#endif /* CONFIG_SMP */
517
518static void init_rq_hrtick(struct rq *rq)
519{
520#ifdef CONFIG_SMP
521	rq->hrtick_csd_pending = 0;
522
523	rq->hrtick_csd.flags = 0;
524	rq->hrtick_csd.func = __hrtick_start;
525	rq->hrtick_csd.info = rq;
526#endif
527
528	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
529	rq->hrtick_timer.function = hrtick;
530}
531#else	/* CONFIG_SCHED_HRTICK */
532static inline void hrtick_clear(struct rq *rq)
533{
534}
535
536static inline void init_rq_hrtick(struct rq *rq)
537{
538}
539
540static inline void init_hrtick(void)
541{
542}
543#endif	/* CONFIG_SCHED_HRTICK */
544
545/*
546 * cmpxchg based fetch_or, macro so it works for different integer types
547 */
548#define fetch_or(ptr, val)						\
549({	typeof(*(ptr)) __old, __val = *(ptr);				\
550 	for (;;) {							\
551 		__old = cmpxchg((ptr), __val, __val | (val));		\
552 		if (__old == __val)					\
553 			break;						\
554 		__val = __old;						\
555 	}								\
556 	__old;								\
557})
558
559#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
560/*
561 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
562 * this avoids any races wrt polling state changes and thereby avoids
563 * spurious IPIs.
564 */
565static bool set_nr_and_not_polling(struct task_struct *p)
566{
567	struct thread_info *ti = task_thread_info(p);
568	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
569}
570
571/*
572 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
573 *
574 * If this returns true, then the idle task promises to call
575 * sched_ttwu_pending() and reschedule soon.
576 */
577static bool set_nr_if_polling(struct task_struct *p)
578{
579	struct thread_info *ti = task_thread_info(p);
580	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
581
582	for (;;) {
583		if (!(val & _TIF_POLLING_NRFLAG))
584			return false;
585		if (val & _TIF_NEED_RESCHED)
586			return true;
587		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
588		if (old == val)
589			break;
590		val = old;
591	}
592	return true;
593}
594
595#else
596static bool set_nr_and_not_polling(struct task_struct *p)
597{
598	set_tsk_need_resched(p);
599	return true;
600}
601
602#ifdef CONFIG_SMP
603static bool set_nr_if_polling(struct task_struct *p)
604{
605	return false;
606}
607#endif
608#endif
609
610/*
611 * resched_curr - mark rq's current task 'to be rescheduled now'.
612 *
613 * On UP this means the setting of the need_resched flag, on SMP it
614 * might also involve a cross-CPU call to trigger the scheduler on
615 * the target CPU.
616 */
617void resched_curr(struct rq *rq)
618{
619	struct task_struct *curr = rq->curr;
620	int cpu;
621
622	lockdep_assert_held(&rq->lock);
623
624	if (test_tsk_need_resched(curr))
625		return;
626
627	cpu = cpu_of(rq);
628
629	if (cpu == smp_processor_id()) {
630		set_tsk_need_resched(curr);
631		set_preempt_need_resched();
632		return;
633	}
634
635	if (set_nr_and_not_polling(curr))
636		smp_send_reschedule(cpu);
637	else
638		trace_sched_wake_idle_without_ipi(cpu);
639}
640
641void resched_cpu(int cpu)
642{
643	struct rq *rq = cpu_rq(cpu);
644	unsigned long flags;
645
646	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
647		return;
648	resched_curr(rq);
649	raw_spin_unlock_irqrestore(&rq->lock, flags);
650}
651
652#ifdef CONFIG_SMP
653#ifdef CONFIG_NO_HZ_COMMON
654/*
655 * In the semi idle case, use the nearest busy cpu for migrating timers
656 * from an idle cpu.  This is good for power-savings.
657 *
658 * We don't do similar optimization for completely idle system, as
659 * selecting an idle cpu will add more delays to the timers than intended
660 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
661 */
662int get_nohz_timer_target(int pinned)
663{
664	int cpu = smp_processor_id();
665	int i;
666	struct sched_domain *sd;
667
668	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
669		return cpu;
670
671	rcu_read_lock();
672	for_each_domain(cpu, sd) {
673		for_each_cpu(i, sched_domain_span(sd)) {
674			if (!idle_cpu(i)) {
675				cpu = i;
676				goto unlock;
677			}
678		}
679	}
680unlock:
681	rcu_read_unlock();
682	return cpu;
683}
684/*
685 * When add_timer_on() enqueues a timer into the timer wheel of an
686 * idle CPU then this timer might expire before the next timer event
687 * which is scheduled to wake up that CPU. In case of a completely
688 * idle system the next event might even be infinite time into the
689 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
690 * leaves the inner idle loop so the newly added timer is taken into
691 * account when the CPU goes back to idle and evaluates the timer
692 * wheel for the next timer event.
693 */
694static void wake_up_idle_cpu(int cpu)
695{
696	struct rq *rq = cpu_rq(cpu);
697
698	if (cpu == smp_processor_id())
699		return;
700
701	if (set_nr_and_not_polling(rq->idle))
702		smp_send_reschedule(cpu);
703	else
704		trace_sched_wake_idle_without_ipi(cpu);
705}
706
707static bool wake_up_full_nohz_cpu(int cpu)
708{
709	/*
710	 * We just need the target to call irq_exit() and re-evaluate
711	 * the next tick. The nohz full kick at least implies that.
712	 * If needed we can still optimize that later with an
713	 * empty IRQ.
714	 */
715	if (tick_nohz_full_cpu(cpu)) {
716		if (cpu != smp_processor_id() ||
717		    tick_nohz_tick_stopped())
718			tick_nohz_full_kick_cpu(cpu);
719		return true;
720	}
721
722	return false;
723}
724
725void wake_up_nohz_cpu(int cpu)
726{
727	if (!wake_up_full_nohz_cpu(cpu))
728		wake_up_idle_cpu(cpu);
729}
730
731static inline bool got_nohz_idle_kick(void)
732{
733	int cpu = smp_processor_id();
734
735	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
736		return false;
737
738	if (idle_cpu(cpu) && !need_resched())
739		return true;
740
741	/*
742	 * We can't run Idle Load Balance on this CPU for this time so we
743	 * cancel it and clear NOHZ_BALANCE_KICK
744	 */
745	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
746	return false;
747}
748
749#else /* CONFIG_NO_HZ_COMMON */
750
751static inline bool got_nohz_idle_kick(void)
752{
753	return false;
754}
755
756#endif /* CONFIG_NO_HZ_COMMON */
757
758#ifdef CONFIG_NO_HZ_FULL
759bool sched_can_stop_tick(void)
760{
761	/*
762	 * More than one running task need preemption.
763	 * nr_running update is assumed to be visible
764	 * after IPI is sent from wakers.
765	 */
766	if (this_rq()->nr_running > 1)
767		return false;
768
769	return true;
770}
771#endif /* CONFIG_NO_HZ_FULL */
772
773void sched_avg_update(struct rq *rq)
774{
775	s64 period = sched_avg_period();
776
777	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
778		/*
779		 * Inline assembly required to prevent the compiler
780		 * optimising this loop into a divmod call.
781		 * See __iter_div_u64_rem() for another example of this.
782		 */
783		asm("" : "+rm" (rq->age_stamp));
784		rq->age_stamp += period;
785		rq->rt_avg /= 2;
786	}
787}
788
789#endif /* CONFIG_SMP */
790
791#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
792			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
793/*
794 * Iterate task_group tree rooted at *from, calling @down when first entering a
795 * node and @up when leaving it for the final time.
796 *
797 * Caller must hold rcu_lock or sufficient equivalent.
798 */
799int walk_tg_tree_from(struct task_group *from,
800			     tg_visitor down, tg_visitor up, void *data)
801{
802	struct task_group *parent, *child;
803	int ret;
804
805	parent = from;
806
807down:
808	ret = (*down)(parent, data);
809	if (ret)
810		goto out;
811	list_for_each_entry_rcu(child, &parent->children, siblings) {
812		parent = child;
813		goto down;
814
815up:
816		continue;
817	}
818	ret = (*up)(parent, data);
819	if (ret || parent == from)
820		goto out;
821
822	child = parent;
823	parent = parent->parent;
824	if (parent)
825		goto up;
826out:
827	return ret;
828}
829
830int tg_nop(struct task_group *tg, void *data)
831{
832	return 0;
833}
834#endif
835
836static void set_load_weight(struct task_struct *p)
837{
838	int prio = p->static_prio - MAX_RT_PRIO;
839	struct load_weight *load = &p->se.load;
840
841	/*
842	 * SCHED_IDLE tasks get minimal weight:
843	 */
844	if (p->policy == SCHED_IDLE) {
845		load->weight = scale_load(WEIGHT_IDLEPRIO);
846		load->inv_weight = WMULT_IDLEPRIO;
847		return;
848	}
849
850	load->weight = scale_load(prio_to_weight[prio]);
851	load->inv_weight = prio_to_wmult[prio];
852}
853
854static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
855{
856	update_rq_clock(rq);
857	sched_info_queued(rq, p);
858	p->sched_class->enqueue_task(rq, p, flags);
859}
860
861static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862{
863	update_rq_clock(rq);
864	sched_info_dequeued(rq, p);
865	p->sched_class->dequeue_task(rq, p, flags);
866}
867
868void activate_task(struct rq *rq, struct task_struct *p, int flags)
869{
870	if (task_contributes_to_load(p))
871		rq->nr_uninterruptible--;
872
873	enqueue_task(rq, p, flags);
874}
875
876void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
877{
878	if (task_contributes_to_load(p))
879		rq->nr_uninterruptible++;
880
881	dequeue_task(rq, p, flags);
882}
883
884static void update_rq_clock_task(struct rq *rq, s64 delta)
885{
886/*
887 * In theory, the compile should just see 0 here, and optimize out the call
888 * to sched_rt_avg_update. But I don't trust it...
889 */
890#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
891	s64 steal = 0, irq_delta = 0;
892#endif
893#ifdef CONFIG_IRQ_TIME_ACCOUNTING
894	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
895
896	/*
897	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
898	 * this case when a previous update_rq_clock() happened inside a
899	 * {soft,}irq region.
900	 *
901	 * When this happens, we stop ->clock_task and only update the
902	 * prev_irq_time stamp to account for the part that fit, so that a next
903	 * update will consume the rest. This ensures ->clock_task is
904	 * monotonic.
905	 *
906	 * It does however cause some slight miss-attribution of {soft,}irq
907	 * time, a more accurate solution would be to update the irq_time using
908	 * the current rq->clock timestamp, except that would require using
909	 * atomic ops.
910	 */
911	if (irq_delta > delta)
912		irq_delta = delta;
913
914	rq->prev_irq_time += irq_delta;
915	delta -= irq_delta;
916#endif
917#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
918	if (static_key_false((&paravirt_steal_rq_enabled))) {
919		steal = paravirt_steal_clock(cpu_of(rq));
920		steal -= rq->prev_steal_time_rq;
921
922		if (unlikely(steal > delta))
923			steal = delta;
924
925		rq->prev_steal_time_rq += steal;
926		delta -= steal;
927	}
928#endif
929
930	rq->clock_task += delta;
931
932#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
933	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
934		sched_rt_avg_update(rq, irq_delta + steal);
935#endif
936}
937
938void sched_set_stop_task(int cpu, struct task_struct *stop)
939{
940	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
941	struct task_struct *old_stop = cpu_rq(cpu)->stop;
942
943	if (stop) {
944		/*
945		 * Make it appear like a SCHED_FIFO task, its something
946		 * userspace knows about and won't get confused about.
947		 *
948		 * Also, it will make PI more or less work without too
949		 * much confusion -- but then, stop work should not
950		 * rely on PI working anyway.
951		 */
952		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
953
954		stop->sched_class = &stop_sched_class;
955	}
956
957	cpu_rq(cpu)->stop = stop;
958
959	if (old_stop) {
960		/*
961		 * Reset it back to a normal scheduling class so that
962		 * it can die in pieces.
963		 */
964		old_stop->sched_class = &rt_sched_class;
965	}
966}
967
968/*
969 * __normal_prio - return the priority that is based on the static prio
970 */
971static inline int __normal_prio(struct task_struct *p)
972{
973	return p->static_prio;
974}
975
976/*
977 * Calculate the expected normal priority: i.e. priority
978 * without taking RT-inheritance into account. Might be
979 * boosted by interactivity modifiers. Changes upon fork,
980 * setprio syscalls, and whenever the interactivity
981 * estimator recalculates.
982 */
983static inline int normal_prio(struct task_struct *p)
984{
985	int prio;
986
987	if (task_has_dl_policy(p))
988		prio = MAX_DL_PRIO-1;
989	else if (task_has_rt_policy(p))
990		prio = MAX_RT_PRIO-1 - p->rt_priority;
991	else
992		prio = __normal_prio(p);
993	return prio;
994}
995
996/*
997 * Calculate the current priority, i.e. the priority
998 * taken into account by the scheduler. This value might
999 * be boosted by RT tasks, or might be boosted by
1000 * interactivity modifiers. Will be RT if the task got
1001 * RT-boosted. If not then it returns p->normal_prio.
1002 */
1003static int effective_prio(struct task_struct *p)
1004{
1005	p->normal_prio = normal_prio(p);
1006	/*
1007	 * If we are RT tasks or we were boosted to RT priority,
1008	 * keep the priority unchanged. Otherwise, update priority
1009	 * to the normal priority:
1010	 */
1011	if (!rt_prio(p->prio))
1012		return p->normal_prio;
1013	return p->prio;
1014}
1015
1016/**
1017 * task_curr - is this task currently executing on a CPU?
1018 * @p: the task in question.
1019 *
1020 * Return: 1 if the task is currently executing. 0 otherwise.
1021 */
1022inline int task_curr(const struct task_struct *p)
1023{
1024	return cpu_curr(task_cpu(p)) == p;
1025}
1026
1027static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1028				       const struct sched_class *prev_class,
1029				       int oldprio)
1030{
1031	if (prev_class != p->sched_class) {
1032		if (prev_class->switched_from)
1033			prev_class->switched_from(rq, p);
1034		p->sched_class->switched_to(rq, p);
1035	} else if (oldprio != p->prio || dl_task(p))
1036		p->sched_class->prio_changed(rq, p, oldprio);
1037}
1038
1039void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1040{
1041	const struct sched_class *class;
1042
1043	if (p->sched_class == rq->curr->sched_class) {
1044		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1045	} else {
1046		for_each_class(class) {
1047			if (class == rq->curr->sched_class)
1048				break;
1049			if (class == p->sched_class) {
1050				resched_curr(rq);
1051				break;
1052			}
1053		}
1054	}
1055
1056	/*
1057	 * A queue event has occurred, and we're going to schedule.  In
1058	 * this case, we can save a useless back to back clock update.
1059	 */
1060	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1061		rq->skip_clock_update = 1;
1062}
1063
1064#ifdef CONFIG_SMP
1065void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1066{
1067#ifdef CONFIG_SCHED_DEBUG
1068	/*
1069	 * We should never call set_task_cpu() on a blocked task,
1070	 * ttwu() will sort out the placement.
1071	 */
1072	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1073			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1074
1075#ifdef CONFIG_LOCKDEP
1076	/*
1077	 * The caller should hold either p->pi_lock or rq->lock, when changing
1078	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1079	 *
1080	 * sched_move_task() holds both and thus holding either pins the cgroup,
1081	 * see task_group().
1082	 *
1083	 * Furthermore, all task_rq users should acquire both locks, see
1084	 * task_rq_lock().
1085	 */
1086	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1087				      lockdep_is_held(&task_rq(p)->lock)));
1088#endif
1089#endif
1090
1091	trace_sched_migrate_task(p, new_cpu);
1092
1093	if (task_cpu(p) != new_cpu) {
1094		if (p->sched_class->migrate_task_rq)
1095			p->sched_class->migrate_task_rq(p, new_cpu);
1096		p->se.nr_migrations++;
1097		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1098	}
1099
1100	__set_task_cpu(p, new_cpu);
1101}
1102
1103static void __migrate_swap_task(struct task_struct *p, int cpu)
1104{
1105	if (task_on_rq_queued(p)) {
1106		struct rq *src_rq, *dst_rq;
1107
1108		src_rq = task_rq(p);
1109		dst_rq = cpu_rq(cpu);
1110
1111		deactivate_task(src_rq, p, 0);
1112		set_task_cpu(p, cpu);
1113		activate_task(dst_rq, p, 0);
1114		check_preempt_curr(dst_rq, p, 0);
1115	} else {
1116		/*
1117		 * Task isn't running anymore; make it appear like we migrated
1118		 * it before it went to sleep. This means on wakeup we make the
1119		 * previous cpu our targer instead of where it really is.
1120		 */
1121		p->wake_cpu = cpu;
1122	}
1123}
1124
1125struct migration_swap_arg {
1126	struct task_struct *src_task, *dst_task;
1127	int src_cpu, dst_cpu;
1128};
1129
1130static int migrate_swap_stop(void *data)
1131{
1132	struct migration_swap_arg *arg = data;
1133	struct rq *src_rq, *dst_rq;
1134	int ret = -EAGAIN;
1135
1136	src_rq = cpu_rq(arg->src_cpu);
1137	dst_rq = cpu_rq(arg->dst_cpu);
1138
1139	double_raw_lock(&arg->src_task->pi_lock,
1140			&arg->dst_task->pi_lock);
1141	double_rq_lock(src_rq, dst_rq);
1142	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1143		goto unlock;
1144
1145	if (task_cpu(arg->src_task) != arg->src_cpu)
1146		goto unlock;
1147
1148	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1149		goto unlock;
1150
1151	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1152		goto unlock;
1153
1154	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1155	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1156
1157	ret = 0;
1158
1159unlock:
1160	double_rq_unlock(src_rq, dst_rq);
1161	raw_spin_unlock(&arg->dst_task->pi_lock);
1162	raw_spin_unlock(&arg->src_task->pi_lock);
1163
1164	return ret;
1165}
1166
1167/*
1168 * Cross migrate two tasks
1169 */
1170int migrate_swap(struct task_struct *cur, struct task_struct *p)
1171{
1172	struct migration_swap_arg arg;
1173	int ret = -EINVAL;
1174
1175	arg = (struct migration_swap_arg){
1176		.src_task = cur,
1177		.src_cpu = task_cpu(cur),
1178		.dst_task = p,
1179		.dst_cpu = task_cpu(p),
1180	};
1181
1182	if (arg.src_cpu == arg.dst_cpu)
1183		goto out;
1184
1185	/*
1186	 * These three tests are all lockless; this is OK since all of them
1187	 * will be re-checked with proper locks held further down the line.
1188	 */
1189	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1190		goto out;
1191
1192	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1193		goto out;
1194
1195	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1196		goto out;
1197
1198	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1199	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1200
1201out:
1202	return ret;
1203}
1204
1205struct migration_arg {
1206	struct task_struct *task;
1207	int dest_cpu;
1208};
1209
1210static int migration_cpu_stop(void *data);
1211
1212/*
1213 * wait_task_inactive - wait for a thread to unschedule.
1214 *
1215 * If @match_state is nonzero, it's the @p->state value just checked and
1216 * not expected to change.  If it changes, i.e. @p might have woken up,
1217 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1218 * we return a positive number (its total switch count).  If a second call
1219 * a short while later returns the same number, the caller can be sure that
1220 * @p has remained unscheduled the whole time.
1221 *
1222 * The caller must ensure that the task *will* unschedule sometime soon,
1223 * else this function might spin for a *long* time. This function can't
1224 * be called with interrupts off, or it may introduce deadlock with
1225 * smp_call_function() if an IPI is sent by the same process we are
1226 * waiting to become inactive.
1227 */
1228unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1229{
1230	unsigned long flags;
1231	int running, queued;
1232	unsigned long ncsw;
1233	struct rq *rq;
1234
1235	for (;;) {
1236		/*
1237		 * We do the initial early heuristics without holding
1238		 * any task-queue locks at all. We'll only try to get
1239		 * the runqueue lock when things look like they will
1240		 * work out!
1241		 */
1242		rq = task_rq(p);
1243
1244		/*
1245		 * If the task is actively running on another CPU
1246		 * still, just relax and busy-wait without holding
1247		 * any locks.
1248		 *
1249		 * NOTE! Since we don't hold any locks, it's not
1250		 * even sure that "rq" stays as the right runqueue!
1251		 * But we don't care, since "task_running()" will
1252		 * return false if the runqueue has changed and p
1253		 * is actually now running somewhere else!
1254		 */
1255		while (task_running(rq, p)) {
1256			if (match_state && unlikely(p->state != match_state))
1257				return 0;
1258			cpu_relax();
1259		}
1260
1261		/*
1262		 * Ok, time to look more closely! We need the rq
1263		 * lock now, to be *sure*. If we're wrong, we'll
1264		 * just go back and repeat.
1265		 */
1266		rq = task_rq_lock(p, &flags);
1267		trace_sched_wait_task(p);
1268		running = task_running(rq, p);
1269		queued = task_on_rq_queued(p);
1270		ncsw = 0;
1271		if (!match_state || p->state == match_state)
1272			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1273		task_rq_unlock(rq, p, &flags);
1274
1275		/*
1276		 * If it changed from the expected state, bail out now.
1277		 */
1278		if (unlikely(!ncsw))
1279			break;
1280
1281		/*
1282		 * Was it really running after all now that we
1283		 * checked with the proper locks actually held?
1284		 *
1285		 * Oops. Go back and try again..
1286		 */
1287		if (unlikely(running)) {
1288			cpu_relax();
1289			continue;
1290		}
1291
1292		/*
1293		 * It's not enough that it's not actively running,
1294		 * it must be off the runqueue _entirely_, and not
1295		 * preempted!
1296		 *
1297		 * So if it was still runnable (but just not actively
1298		 * running right now), it's preempted, and we should
1299		 * yield - it could be a while.
1300		 */
1301		if (unlikely(queued)) {
1302			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1303
1304			set_current_state(TASK_UNINTERRUPTIBLE);
1305			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1306			continue;
1307		}
1308
1309		/*
1310		 * Ahh, all good. It wasn't running, and it wasn't
1311		 * runnable, which means that it will never become
1312		 * running in the future either. We're all done!
1313		 */
1314		break;
1315	}
1316
1317	return ncsw;
1318}
1319
1320/***
1321 * kick_process - kick a running thread to enter/exit the kernel
1322 * @p: the to-be-kicked thread
1323 *
1324 * Cause a process which is running on another CPU to enter
1325 * kernel-mode, without any delay. (to get signals handled.)
1326 *
1327 * NOTE: this function doesn't have to take the runqueue lock,
1328 * because all it wants to ensure is that the remote task enters
1329 * the kernel. If the IPI races and the task has been migrated
1330 * to another CPU then no harm is done and the purpose has been
1331 * achieved as well.
1332 */
1333void kick_process(struct task_struct *p)
1334{
1335	int cpu;
1336
1337	preempt_disable();
1338	cpu = task_cpu(p);
1339	if ((cpu != smp_processor_id()) && task_curr(p))
1340		smp_send_reschedule(cpu);
1341	preempt_enable();
1342}
1343EXPORT_SYMBOL_GPL(kick_process);
1344#endif /* CONFIG_SMP */
1345
1346#ifdef CONFIG_SMP
1347/*
1348 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1349 */
1350static int select_fallback_rq(int cpu, struct task_struct *p)
1351{
1352	int nid = cpu_to_node(cpu);
1353	const struct cpumask *nodemask = NULL;
1354	enum { cpuset, possible, fail } state = cpuset;
1355	int dest_cpu;
1356
1357	/*
1358	 * If the node that the cpu is on has been offlined, cpu_to_node()
1359	 * will return -1. There is no cpu on the node, and we should
1360	 * select the cpu on the other node.
1361	 */
1362	if (nid != -1) {
1363		nodemask = cpumask_of_node(nid);
1364
1365		/* Look for allowed, online CPU in same node. */
1366		for_each_cpu(dest_cpu, nodemask) {
1367			if (!cpu_online(dest_cpu))
1368				continue;
1369			if (!cpu_active(dest_cpu))
1370				continue;
1371			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1372				return dest_cpu;
1373		}
1374	}
1375
1376	for (;;) {
1377		/* Any allowed, online CPU? */
1378		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1379			if (!cpu_online(dest_cpu))
1380				continue;
1381			if (!cpu_active(dest_cpu))
1382				continue;
1383			goto out;
1384		}
1385
1386		switch (state) {
1387		case cpuset:
1388			/* No more Mr. Nice Guy. */
1389			cpuset_cpus_allowed_fallback(p);
1390			state = possible;
1391			break;
1392
1393		case possible:
1394			do_set_cpus_allowed(p, cpu_possible_mask);
1395			state = fail;
1396			break;
1397
1398		case fail:
1399			BUG();
1400			break;
1401		}
1402	}
1403
1404out:
1405	if (state != cpuset) {
1406		/*
1407		 * Don't tell them about moving exiting tasks or
1408		 * kernel threads (both mm NULL), since they never
1409		 * leave kernel.
1410		 */
1411		if (p->mm && printk_ratelimit()) {
1412			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1413					task_pid_nr(p), p->comm, cpu);
1414		}
1415	}
1416
1417	return dest_cpu;
1418}
1419
1420/*
1421 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1422 */
1423static inline
1424int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1425{
1426	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1427
1428	/*
1429	 * In order not to call set_task_cpu() on a blocking task we need
1430	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1431	 * cpu.
1432	 *
1433	 * Since this is common to all placement strategies, this lives here.
1434	 *
1435	 * [ this allows ->select_task() to simply return task_cpu(p) and
1436	 *   not worry about this generic constraint ]
1437	 */
1438	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1439		     !cpu_online(cpu)))
1440		cpu = select_fallback_rq(task_cpu(p), p);
1441
1442	return cpu;
1443}
1444
1445static void update_avg(u64 *avg, u64 sample)
1446{
1447	s64 diff = sample - *avg;
1448	*avg += diff >> 3;
1449}
1450#endif
1451
1452static void
1453ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1454{
1455#ifdef CONFIG_SCHEDSTATS
1456	struct rq *rq = this_rq();
1457
1458#ifdef CONFIG_SMP
1459	int this_cpu = smp_processor_id();
1460
1461	if (cpu == this_cpu) {
1462		schedstat_inc(rq, ttwu_local);
1463		schedstat_inc(p, se.statistics.nr_wakeups_local);
1464	} else {
1465		struct sched_domain *sd;
1466
1467		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1468		rcu_read_lock();
1469		for_each_domain(this_cpu, sd) {
1470			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1471				schedstat_inc(sd, ttwu_wake_remote);
1472				break;
1473			}
1474		}
1475		rcu_read_unlock();
1476	}
1477
1478	if (wake_flags & WF_MIGRATED)
1479		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1480
1481#endif /* CONFIG_SMP */
1482
1483	schedstat_inc(rq, ttwu_count);
1484	schedstat_inc(p, se.statistics.nr_wakeups);
1485
1486	if (wake_flags & WF_SYNC)
1487		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1488
1489#endif /* CONFIG_SCHEDSTATS */
1490}
1491
1492static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1493{
1494	activate_task(rq, p, en_flags);
1495	p->on_rq = TASK_ON_RQ_QUEUED;
1496
1497	/* if a worker is waking up, notify workqueue */
1498	if (p->flags & PF_WQ_WORKER)
1499		wq_worker_waking_up(p, cpu_of(rq));
1500}
1501
1502/*
1503 * Mark the task runnable and perform wakeup-preemption.
1504 */
1505static void
1506ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1507{
1508	check_preempt_curr(rq, p, wake_flags);
1509	trace_sched_wakeup(p, true);
1510
1511	p->state = TASK_RUNNING;
1512#ifdef CONFIG_SMP
1513	if (p->sched_class->task_woken)
1514		p->sched_class->task_woken(rq, p);
1515
1516	if (rq->idle_stamp) {
1517		u64 delta = rq_clock(rq) - rq->idle_stamp;
1518		u64 max = 2*rq->max_idle_balance_cost;
1519
1520		update_avg(&rq->avg_idle, delta);
1521
1522		if (rq->avg_idle > max)
1523			rq->avg_idle = max;
1524
1525		rq->idle_stamp = 0;
1526	}
1527#endif
1528}
1529
1530static void
1531ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1532{
1533#ifdef CONFIG_SMP
1534	if (p->sched_contributes_to_load)
1535		rq->nr_uninterruptible--;
1536#endif
1537
1538	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1539	ttwu_do_wakeup(rq, p, wake_flags);
1540}
1541
1542/*
1543 * Called in case the task @p isn't fully descheduled from its runqueue,
1544 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1545 * since all we need to do is flip p->state to TASK_RUNNING, since
1546 * the task is still ->on_rq.
1547 */
1548static int ttwu_remote(struct task_struct *p, int wake_flags)
1549{
1550	struct rq *rq;
1551	int ret = 0;
1552
1553	rq = __task_rq_lock(p);
1554	if (task_on_rq_queued(p)) {
1555		/* check_preempt_curr() may use rq clock */
1556		update_rq_clock(rq);
1557		ttwu_do_wakeup(rq, p, wake_flags);
1558		ret = 1;
1559	}
1560	__task_rq_unlock(rq);
1561
1562	return ret;
1563}
1564
1565#ifdef CONFIG_SMP
1566void sched_ttwu_pending(void)
1567{
1568	struct rq *rq = this_rq();
1569	struct llist_node *llist = llist_del_all(&rq->wake_list);
1570	struct task_struct *p;
1571	unsigned long flags;
1572
1573	if (!llist)
1574		return;
1575
1576	raw_spin_lock_irqsave(&rq->lock, flags);
1577
1578	while (llist) {
1579		p = llist_entry(llist, struct task_struct, wake_entry);
1580		llist = llist_next(llist);
1581		ttwu_do_activate(rq, p, 0);
1582	}
1583
1584	raw_spin_unlock_irqrestore(&rq->lock, flags);
1585}
1586
1587void scheduler_ipi(void)
1588{
1589	/*
1590	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1591	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1592	 * this IPI.
1593	 */
1594	preempt_fold_need_resched();
1595
1596	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1597		return;
1598
1599	/*
1600	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1601	 * traditionally all their work was done from the interrupt return
1602	 * path. Now that we actually do some work, we need to make sure
1603	 * we do call them.
1604	 *
1605	 * Some archs already do call them, luckily irq_enter/exit nest
1606	 * properly.
1607	 *
1608	 * Arguably we should visit all archs and update all handlers,
1609	 * however a fair share of IPIs are still resched only so this would
1610	 * somewhat pessimize the simple resched case.
1611	 */
1612	irq_enter();
1613	sched_ttwu_pending();
1614
1615	/*
1616	 * Check if someone kicked us for doing the nohz idle load balance.
1617	 */
1618	if (unlikely(got_nohz_idle_kick())) {
1619		this_rq()->idle_balance = 1;
1620		raise_softirq_irqoff(SCHED_SOFTIRQ);
1621	}
1622	irq_exit();
1623}
1624
1625static void ttwu_queue_remote(struct task_struct *p, int cpu)
1626{
1627	struct rq *rq = cpu_rq(cpu);
1628
1629	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1630		if (!set_nr_if_polling(rq->idle))
1631			smp_send_reschedule(cpu);
1632		else
1633			trace_sched_wake_idle_without_ipi(cpu);
1634	}
1635}
1636
1637bool cpus_share_cache(int this_cpu, int that_cpu)
1638{
1639	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1640}
1641#endif /* CONFIG_SMP */
1642
1643static void ttwu_queue(struct task_struct *p, int cpu)
1644{
1645	struct rq *rq = cpu_rq(cpu);
1646
1647#if defined(CONFIG_SMP)
1648	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1649		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1650		ttwu_queue_remote(p, cpu);
1651		return;
1652	}
1653#endif
1654
1655	raw_spin_lock(&rq->lock);
1656	ttwu_do_activate(rq, p, 0);
1657	raw_spin_unlock(&rq->lock);
1658}
1659
1660/**
1661 * try_to_wake_up - wake up a thread
1662 * @p: the thread to be awakened
1663 * @state: the mask of task states that can be woken
1664 * @wake_flags: wake modifier flags (WF_*)
1665 *
1666 * Put it on the run-queue if it's not already there. The "current"
1667 * thread is always on the run-queue (except when the actual
1668 * re-schedule is in progress), and as such you're allowed to do
1669 * the simpler "current->state = TASK_RUNNING" to mark yourself
1670 * runnable without the overhead of this.
1671 *
1672 * Return: %true if @p was woken up, %false if it was already running.
1673 * or @state didn't match @p's state.
1674 */
1675static int
1676try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1677{
1678	unsigned long flags;
1679	int cpu, success = 0;
1680
1681	/*
1682	 * If we are going to wake up a thread waiting for CONDITION we
1683	 * need to ensure that CONDITION=1 done by the caller can not be
1684	 * reordered with p->state check below. This pairs with mb() in
1685	 * set_current_state() the waiting thread does.
1686	 */
1687	smp_mb__before_spinlock();
1688	raw_spin_lock_irqsave(&p->pi_lock, flags);
1689	if (!(p->state & state))
1690		goto out;
1691
1692	success = 1; /* we're going to change ->state */
1693	cpu = task_cpu(p);
1694
1695	if (p->on_rq && ttwu_remote(p, wake_flags))
1696		goto stat;
1697
1698#ifdef CONFIG_SMP
1699	/*
1700	 * If the owning (remote) cpu is still in the middle of schedule() with
1701	 * this task as prev, wait until its done referencing the task.
1702	 */
1703	while (p->on_cpu)
1704		cpu_relax();
1705	/*
1706	 * Pairs with the smp_wmb() in finish_lock_switch().
1707	 */
1708	smp_rmb();
1709
1710	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1711	p->state = TASK_WAKING;
1712
1713	if (p->sched_class->task_waking)
1714		p->sched_class->task_waking(p);
1715
1716	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1717	if (task_cpu(p) != cpu) {
1718		wake_flags |= WF_MIGRATED;
1719		set_task_cpu(p, cpu);
1720	}
1721#endif /* CONFIG_SMP */
1722
1723	ttwu_queue(p, cpu);
1724stat:
1725	ttwu_stat(p, cpu, wake_flags);
1726out:
1727	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1728
1729	return success;
1730}
1731
1732/**
1733 * try_to_wake_up_local - try to wake up a local task with rq lock held
1734 * @p: the thread to be awakened
1735 *
1736 * Put @p on the run-queue if it's not already there. The caller must
1737 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1738 * the current task.
1739 */
1740static void try_to_wake_up_local(struct task_struct *p)
1741{
1742	struct rq *rq = task_rq(p);
1743
1744	if (WARN_ON_ONCE(rq != this_rq()) ||
1745	    WARN_ON_ONCE(p == current))
1746		return;
1747
1748	lockdep_assert_held(&rq->lock);
1749
1750	if (!raw_spin_trylock(&p->pi_lock)) {
1751		raw_spin_unlock(&rq->lock);
1752		raw_spin_lock(&p->pi_lock);
1753		raw_spin_lock(&rq->lock);
1754	}
1755
1756	if (!(p->state & TASK_NORMAL))
1757		goto out;
1758
1759	if (!task_on_rq_queued(p))
1760		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1761
1762	ttwu_do_wakeup(rq, p, 0);
1763	ttwu_stat(p, smp_processor_id(), 0);
1764out:
1765	raw_spin_unlock(&p->pi_lock);
1766}
1767
1768/**
1769 * wake_up_process - Wake up a specific process
1770 * @p: The process to be woken up.
1771 *
1772 * Attempt to wake up the nominated process and move it to the set of runnable
1773 * processes.
1774 *
1775 * Return: 1 if the process was woken up, 0 if it was already running.
1776 *
1777 * It may be assumed that this function implies a write memory barrier before
1778 * changing the task state if and only if any tasks are woken up.
1779 */
1780int wake_up_process(struct task_struct *p)
1781{
1782	WARN_ON(task_is_stopped_or_traced(p));
1783	return try_to_wake_up(p, TASK_NORMAL, 0);
1784}
1785EXPORT_SYMBOL(wake_up_process);
1786
1787int wake_up_state(struct task_struct *p, unsigned int state)
1788{
1789	return try_to_wake_up(p, state, 0);
1790}
1791
1792/*
1793 * Perform scheduler related setup for a newly forked process p.
1794 * p is forked by current.
1795 *
1796 * __sched_fork() is basic setup used by init_idle() too:
1797 */
1798static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1799{
1800	p->on_rq			= 0;
1801
1802	p->se.on_rq			= 0;
1803	p->se.exec_start		= 0;
1804	p->se.sum_exec_runtime		= 0;
1805	p->se.prev_sum_exec_runtime	= 0;
1806	p->se.nr_migrations		= 0;
1807	p->se.vruntime			= 0;
1808	INIT_LIST_HEAD(&p->se.group_node);
1809
1810#ifdef CONFIG_SCHEDSTATS
1811	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1812#endif
1813
1814	RB_CLEAR_NODE(&p->dl.rb_node);
1815	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1816	p->dl.dl_runtime = p->dl.runtime = 0;
1817	p->dl.dl_deadline = p->dl.deadline = 0;
1818	p->dl.dl_period = 0;
1819	p->dl.flags = 0;
1820
1821	INIT_LIST_HEAD(&p->rt.run_list);
1822
1823#ifdef CONFIG_PREEMPT_NOTIFIERS
1824	INIT_HLIST_HEAD(&p->preempt_notifiers);
1825#endif
1826
1827#ifdef CONFIG_NUMA_BALANCING
1828	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1829		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1830		p->mm->numa_scan_seq = 0;
1831	}
1832
1833	if (clone_flags & CLONE_VM)
1834		p->numa_preferred_nid = current->numa_preferred_nid;
1835	else
1836		p->numa_preferred_nid = -1;
1837
1838	p->node_stamp = 0ULL;
1839	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1840	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1841	p->numa_work.next = &p->numa_work;
1842	p->numa_faults_memory = NULL;
1843	p->numa_faults_buffer_memory = NULL;
1844	p->last_task_numa_placement = 0;
1845	p->last_sum_exec_runtime = 0;
1846
1847	INIT_LIST_HEAD(&p->numa_entry);
1848	p->numa_group = NULL;
1849#endif /* CONFIG_NUMA_BALANCING */
1850}
1851
1852#ifdef CONFIG_NUMA_BALANCING
1853#ifdef CONFIG_SCHED_DEBUG
1854void set_numabalancing_state(bool enabled)
1855{
1856	if (enabled)
1857		sched_feat_set("NUMA");
1858	else
1859		sched_feat_set("NO_NUMA");
1860}
1861#else
1862__read_mostly bool numabalancing_enabled;
1863
1864void set_numabalancing_state(bool enabled)
1865{
1866	numabalancing_enabled = enabled;
1867}
1868#endif /* CONFIG_SCHED_DEBUG */
1869
1870#ifdef CONFIG_PROC_SYSCTL
1871int sysctl_numa_balancing(struct ctl_table *table, int write,
1872			 void __user *buffer, size_t *lenp, loff_t *ppos)
1873{
1874	struct ctl_table t;
1875	int err;
1876	int state = numabalancing_enabled;
1877
1878	if (write && !capable(CAP_SYS_ADMIN))
1879		return -EPERM;
1880
1881	t = *table;
1882	t.data = &state;
1883	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1884	if (err < 0)
1885		return err;
1886	if (write)
1887		set_numabalancing_state(state);
1888	return err;
1889}
1890#endif
1891#endif
1892
1893/*
1894 * fork()/clone()-time setup:
1895 */
1896int sched_fork(unsigned long clone_flags, struct task_struct *p)
1897{
1898	unsigned long flags;
1899	int cpu = get_cpu();
1900
1901	__sched_fork(clone_flags, p);
1902	/*
1903	 * We mark the process as running here. This guarantees that
1904	 * nobody will actually run it, and a signal or other external
1905	 * event cannot wake it up and insert it on the runqueue either.
1906	 */
1907	p->state = TASK_RUNNING;
1908
1909	/*
1910	 * Make sure we do not leak PI boosting priority to the child.
1911	 */
1912	p->prio = current->normal_prio;
1913
1914	/*
1915	 * Revert to default priority/policy on fork if requested.
1916	 */
1917	if (unlikely(p->sched_reset_on_fork)) {
1918		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1919			p->policy = SCHED_NORMAL;
1920			p->static_prio = NICE_TO_PRIO(0);
1921			p->rt_priority = 0;
1922		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1923			p->static_prio = NICE_TO_PRIO(0);
1924
1925		p->prio = p->normal_prio = __normal_prio(p);
1926		set_load_weight(p);
1927
1928		/*
1929		 * We don't need the reset flag anymore after the fork. It has
1930		 * fulfilled its duty:
1931		 */
1932		p->sched_reset_on_fork = 0;
1933	}
1934
1935	if (dl_prio(p->prio)) {
1936		put_cpu();
1937		return -EAGAIN;
1938	} else if (rt_prio(p->prio)) {
1939		p->sched_class = &rt_sched_class;
1940	} else {
1941		p->sched_class = &fair_sched_class;
1942	}
1943
1944	if (p->sched_class->task_fork)
1945		p->sched_class->task_fork(p);
1946
1947	/*
1948	 * The child is not yet in the pid-hash so no cgroup attach races,
1949	 * and the cgroup is pinned to this child due to cgroup_fork()
1950	 * is ran before sched_fork().
1951	 *
1952	 * Silence PROVE_RCU.
1953	 */
1954	raw_spin_lock_irqsave(&p->pi_lock, flags);
1955	set_task_cpu(p, cpu);
1956	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1957
1958#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1959	if (likely(sched_info_on()))
1960		memset(&p->sched_info, 0, sizeof(p->sched_info));
1961#endif
1962#if defined(CONFIG_SMP)
1963	p->on_cpu = 0;
1964#endif
1965	init_task_preempt_count(p);
1966#ifdef CONFIG_SMP
1967	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1968	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1969#endif
1970
1971	put_cpu();
1972	return 0;
1973}
1974
1975unsigned long to_ratio(u64 period, u64 runtime)
1976{
1977	if (runtime == RUNTIME_INF)
1978		return 1ULL << 20;
1979
1980	/*
1981	 * Doing this here saves a lot of checks in all
1982	 * the calling paths, and returning zero seems
1983	 * safe for them anyway.
1984	 */
1985	if (period == 0)
1986		return 0;
1987
1988	return div64_u64(runtime << 20, period);
1989}
1990
1991#ifdef CONFIG_SMP
1992inline struct dl_bw *dl_bw_of(int i)
1993{
1994	return &cpu_rq(i)->rd->dl_bw;
1995}
1996
1997static inline int dl_bw_cpus(int i)
1998{
1999	struct root_domain *rd = cpu_rq(i)->rd;
2000	int cpus = 0;
2001
2002	for_each_cpu_and(i, rd->span, cpu_active_mask)
2003		cpus++;
2004
2005	return cpus;
2006}
2007#else
2008inline struct dl_bw *dl_bw_of(int i)
2009{
2010	return &cpu_rq(i)->dl.dl_bw;
2011}
2012
2013static inline int dl_bw_cpus(int i)
2014{
2015	return 1;
2016}
2017#endif
2018
2019static inline
2020void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2021{
2022	dl_b->total_bw -= tsk_bw;
2023}
2024
2025static inline
2026void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2027{
2028	dl_b->total_bw += tsk_bw;
2029}
2030
2031static inline
2032bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2033{
2034	return dl_b->bw != -1 &&
2035	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2036}
2037
2038/*
2039 * We must be sure that accepting a new task (or allowing changing the
2040 * parameters of an existing one) is consistent with the bandwidth
2041 * constraints. If yes, this function also accordingly updates the currently
2042 * allocated bandwidth to reflect the new situation.
2043 *
2044 * This function is called while holding p's rq->lock.
2045 */
2046static int dl_overflow(struct task_struct *p, int policy,
2047		       const struct sched_attr *attr)
2048{
2049
2050	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2051	u64 period = attr->sched_period ?: attr->sched_deadline;
2052	u64 runtime = attr->sched_runtime;
2053	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2054	int cpus, err = -1;
2055
2056	if (new_bw == p->dl.dl_bw)
2057		return 0;
2058
2059	/*
2060	 * Either if a task, enters, leave, or stays -deadline but changes
2061	 * its parameters, we may need to update accordingly the total
2062	 * allocated bandwidth of the container.
2063	 */
2064	raw_spin_lock(&dl_b->lock);
2065	cpus = dl_bw_cpus(task_cpu(p));
2066	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2067	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2068		__dl_add(dl_b, new_bw);
2069		err = 0;
2070	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2071		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2072		__dl_clear(dl_b, p->dl.dl_bw);
2073		__dl_add(dl_b, new_bw);
2074		err = 0;
2075	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2076		__dl_clear(dl_b, p->dl.dl_bw);
2077		err = 0;
2078	}
2079	raw_spin_unlock(&dl_b->lock);
2080
2081	return err;
2082}
2083
2084extern void init_dl_bw(struct dl_bw *dl_b);
2085
2086/*
2087 * wake_up_new_task - wake up a newly created task for the first time.
2088 *
2089 * This function will do some initial scheduler statistics housekeeping
2090 * that must be done for every newly created context, then puts the task
2091 * on the runqueue and wakes it.
2092 */
2093void wake_up_new_task(struct task_struct *p)
2094{
2095	unsigned long flags;
2096	struct rq *rq;
2097
2098	raw_spin_lock_irqsave(&p->pi_lock, flags);
2099#ifdef CONFIG_SMP
2100	/*
2101	 * Fork balancing, do it here and not earlier because:
2102	 *  - cpus_allowed can change in the fork path
2103	 *  - any previously selected cpu might disappear through hotplug
2104	 */
2105	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2106#endif
2107
2108	/* Initialize new task's runnable average */
2109	init_task_runnable_average(p);
2110	rq = __task_rq_lock(p);
2111	activate_task(rq, p, 0);
2112	p->on_rq = TASK_ON_RQ_QUEUED;
2113	trace_sched_wakeup_new(p, true);
2114	check_preempt_curr(rq, p, WF_FORK);
2115#ifdef CONFIG_SMP
2116	if (p->sched_class->task_woken)
2117		p->sched_class->task_woken(rq, p);
2118#endif
2119	task_rq_unlock(rq, p, &flags);
2120}
2121
2122#ifdef CONFIG_PREEMPT_NOTIFIERS
2123
2124/**
2125 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2126 * @notifier: notifier struct to register
2127 */
2128void preempt_notifier_register(struct preempt_notifier *notifier)
2129{
2130	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2131}
2132EXPORT_SYMBOL_GPL(preempt_notifier_register);
2133
2134/**
2135 * preempt_notifier_unregister - no longer interested in preemption notifications
2136 * @notifier: notifier struct to unregister
2137 *
2138 * This is safe to call from within a preemption notifier.
2139 */
2140void preempt_notifier_unregister(struct preempt_notifier *notifier)
2141{
2142	hlist_del(&notifier->link);
2143}
2144EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2145
2146static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2147{
2148	struct preempt_notifier *notifier;
2149
2150	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2151		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2152}
2153
2154static void
2155fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156				 struct task_struct *next)
2157{
2158	struct preempt_notifier *notifier;
2159
2160	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2161		notifier->ops->sched_out(notifier, next);
2162}
2163
2164#else /* !CONFIG_PREEMPT_NOTIFIERS */
2165
2166static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2167{
2168}
2169
2170static void
2171fire_sched_out_preempt_notifiers(struct task_struct *curr,
2172				 struct task_struct *next)
2173{
2174}
2175
2176#endif /* CONFIG_PREEMPT_NOTIFIERS */
2177
2178/**
2179 * prepare_task_switch - prepare to switch tasks
2180 * @rq: the runqueue preparing to switch
2181 * @prev: the current task that is being switched out
2182 * @next: the task we are going to switch to.
2183 *
2184 * This is called with the rq lock held and interrupts off. It must
2185 * be paired with a subsequent finish_task_switch after the context
2186 * switch.
2187 *
2188 * prepare_task_switch sets up locking and calls architecture specific
2189 * hooks.
2190 */
2191static inline void
2192prepare_task_switch(struct rq *rq, struct task_struct *prev,
2193		    struct task_struct *next)
2194{
2195	trace_sched_switch(prev, next);
2196	sched_info_switch(rq, prev, next);
2197	perf_event_task_sched_out(prev, next);
2198	fire_sched_out_preempt_notifiers(prev, next);
2199	prepare_lock_switch(rq, next);
2200	prepare_arch_switch(next);
2201}
2202
2203/**
2204 * finish_task_switch - clean up after a task-switch
2205 * @rq: runqueue associated with task-switch
2206 * @prev: the thread we just switched away from.
2207 *
2208 * finish_task_switch must be called after the context switch, paired
2209 * with a prepare_task_switch call before the context switch.
2210 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2211 * and do any other architecture-specific cleanup actions.
2212 *
2213 * Note that we may have delayed dropping an mm in context_switch(). If
2214 * so, we finish that here outside of the runqueue lock. (Doing it
2215 * with the lock held can cause deadlocks; see schedule() for
2216 * details.)
2217 */
2218static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2219	__releases(rq->lock)
2220{
2221	struct mm_struct *mm = rq->prev_mm;
2222	long prev_state;
2223
2224	rq->prev_mm = NULL;
2225
2226	/*
2227	 * A task struct has one reference for the use as "current".
2228	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2229	 * schedule one last time. The schedule call will never return, and
2230	 * the scheduled task must drop that reference.
2231	 * The test for TASK_DEAD must occur while the runqueue locks are
2232	 * still held, otherwise prev could be scheduled on another cpu, die
2233	 * there before we look at prev->state, and then the reference would
2234	 * be dropped twice.
2235	 *		Manfred Spraul <manfred@colorfullife.com>
2236	 */
2237	prev_state = prev->state;
2238	vtime_task_switch(prev);
2239	finish_arch_switch(prev);
2240	perf_event_task_sched_in(prev, current);
2241	finish_lock_switch(rq, prev);
2242	finish_arch_post_lock_switch();
2243
2244	fire_sched_in_preempt_notifiers(current);
2245	if (mm)
2246		mmdrop(mm);
2247	if (unlikely(prev_state == TASK_DEAD)) {
2248		if (prev->sched_class->task_dead)
2249			prev->sched_class->task_dead(prev);
2250
2251		/*
2252		 * Remove function-return probe instances associated with this
2253		 * task and put them back on the free list.
2254		 */
2255		kprobe_flush_task(prev);
2256		put_task_struct(prev);
2257	}
2258
2259	tick_nohz_task_switch(current);
2260}
2261
2262#ifdef CONFIG_SMP
2263
2264/* rq->lock is NOT held, but preemption is disabled */
2265static inline void post_schedule(struct rq *rq)
2266{
2267	if (rq->post_schedule) {
2268		unsigned long flags;
2269
2270		raw_spin_lock_irqsave(&rq->lock, flags);
2271		if (rq->curr->sched_class->post_schedule)
2272			rq->curr->sched_class->post_schedule(rq);
2273		raw_spin_unlock_irqrestore(&rq->lock, flags);
2274
2275		rq->post_schedule = 0;
2276	}
2277}
2278
2279#else
2280
2281static inline void post_schedule(struct rq *rq)
2282{
2283}
2284
2285#endif
2286
2287/**
2288 * schedule_tail - first thing a freshly forked thread must call.
2289 * @prev: the thread we just switched away from.
2290 */
2291asmlinkage __visible void schedule_tail(struct task_struct *prev)
2292	__releases(rq->lock)
2293{
2294	struct rq *rq = this_rq();
2295
2296	finish_task_switch(rq, prev);
2297
2298	/*
2299	 * FIXME: do we need to worry about rq being invalidated by the
2300	 * task_switch?
2301	 */
2302	post_schedule(rq);
2303
2304#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2305	/* In this case, finish_task_switch does not reenable preemption */
2306	preempt_enable();
2307#endif
2308	if (current->set_child_tid)
2309		put_user(task_pid_vnr(current), current->set_child_tid);
2310}
2311
2312/*
2313 * context_switch - switch to the new MM and the new
2314 * thread's register state.
2315 */
2316static inline void
2317context_switch(struct rq *rq, struct task_struct *prev,
2318	       struct task_struct *next)
2319{
2320	struct mm_struct *mm, *oldmm;
2321
2322	prepare_task_switch(rq, prev, next);
2323
2324	mm = next->mm;
2325	oldmm = prev->active_mm;
2326	/*
2327	 * For paravirt, this is coupled with an exit in switch_to to
2328	 * combine the page table reload and the switch backend into
2329	 * one hypercall.
2330	 */
2331	arch_start_context_switch(prev);
2332
2333	if (!mm) {
2334		next->active_mm = oldmm;
2335		atomic_inc(&oldmm->mm_count);
2336		enter_lazy_tlb(oldmm, next);
2337	} else
2338		switch_mm(oldmm, mm, next);
2339
2340	if (!prev->mm) {
2341		prev->active_mm = NULL;
2342		rq->prev_mm = oldmm;
2343	}
2344	/*
2345	 * Since the runqueue lock will be released by the next
2346	 * task (which is an invalid locking op but in the case
2347	 * of the scheduler it's an obvious special-case), so we
2348	 * do an early lockdep release here:
2349	 */
2350#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2351	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2352#endif
2353
2354	context_tracking_task_switch(prev, next);
2355	/* Here we just switch the register state and the stack. */
2356	switch_to(prev, next, prev);
2357
2358	barrier();
2359	/*
2360	 * this_rq must be evaluated again because prev may have moved
2361	 * CPUs since it called schedule(), thus the 'rq' on its stack
2362	 * frame will be invalid.
2363	 */
2364	finish_task_switch(this_rq(), prev);
2365}
2366
2367/*
2368 * nr_running and nr_context_switches:
2369 *
2370 * externally visible scheduler statistics: current number of runnable
2371 * threads, total number of context switches performed since bootup.
2372 */
2373unsigned long nr_running(void)
2374{
2375	unsigned long i, sum = 0;
2376
2377	for_each_online_cpu(i)
2378		sum += cpu_rq(i)->nr_running;
2379
2380	return sum;
2381}
2382
2383unsigned long long nr_context_switches(void)
2384{
2385	int i;
2386	unsigned long long sum = 0;
2387
2388	for_each_possible_cpu(i)
2389		sum += cpu_rq(i)->nr_switches;
2390
2391	return sum;
2392}
2393
2394unsigned long nr_iowait(void)
2395{
2396	unsigned long i, sum = 0;
2397
2398	for_each_possible_cpu(i)
2399		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2400
2401	return sum;
2402}
2403
2404unsigned long nr_iowait_cpu(int cpu)
2405{
2406	struct rq *this = cpu_rq(cpu);
2407	return atomic_read(&this->nr_iowait);
2408}
2409
2410void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2411{
2412	struct rq *this = this_rq();
2413	*nr_waiters = atomic_read(&this->nr_iowait);
2414	*load = this->cpu_load[0];
2415}
2416
2417#ifdef CONFIG_SMP
2418
2419/*
2420 * sched_exec - execve() is a valuable balancing opportunity, because at
2421 * this point the task has the smallest effective memory and cache footprint.
2422 */
2423void sched_exec(void)
2424{
2425	struct task_struct *p = current;
2426	unsigned long flags;
2427	int dest_cpu;
2428
2429	raw_spin_lock_irqsave(&p->pi_lock, flags);
2430	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2431	if (dest_cpu == smp_processor_id())
2432		goto unlock;
2433
2434	if (likely(cpu_active(dest_cpu))) {
2435		struct migration_arg arg = { p, dest_cpu };
2436
2437		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2438		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2439		return;
2440	}
2441unlock:
2442	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2443}
2444
2445#endif
2446
2447DEFINE_PER_CPU(struct kernel_stat, kstat);
2448DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2449
2450EXPORT_PER_CPU_SYMBOL(kstat);
2451EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2452
2453/*
2454 * Return any ns on the sched_clock that have not yet been accounted in
2455 * @p in case that task is currently running.
2456 *
2457 * Called with task_rq_lock() held on @rq.
2458 */
2459static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2460{
2461	u64 ns = 0;
2462
2463	/*
2464	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2465	 * project cycles that may never be accounted to this
2466	 * thread, breaking clock_gettime().
2467	 */
2468	if (task_current(rq, p) && task_on_rq_queued(p)) {
2469		update_rq_clock(rq);
2470		ns = rq_clock_task(rq) - p->se.exec_start;
2471		if ((s64)ns < 0)
2472			ns = 0;
2473	}
2474
2475	return ns;
2476}
2477
2478unsigned long long task_delta_exec(struct task_struct *p)
2479{
2480	unsigned long flags;
2481	struct rq *rq;
2482	u64 ns = 0;
2483
2484	rq = task_rq_lock(p, &flags);
2485	ns = do_task_delta_exec(p, rq);
2486	task_rq_unlock(rq, p, &flags);
2487
2488	return ns;
2489}
2490
2491/*
2492 * Return accounted runtime for the task.
2493 * In case the task is currently running, return the runtime plus current's
2494 * pending runtime that have not been accounted yet.
2495 */
2496unsigned long long task_sched_runtime(struct task_struct *p)
2497{
2498	unsigned long flags;
2499	struct rq *rq;
2500	u64 ns = 0;
2501
2502#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2503	/*
2504	 * 64-bit doesn't need locks to atomically read a 64bit value.
2505	 * So we have a optimization chance when the task's delta_exec is 0.
2506	 * Reading ->on_cpu is racy, but this is ok.
2507	 *
2508	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2509	 * If we race with it entering cpu, unaccounted time is 0. This is
2510	 * indistinguishable from the read occurring a few cycles earlier.
2511	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2512	 * been accounted, so we're correct here as well.
2513	 */
2514	if (!p->on_cpu || !task_on_rq_queued(p))
2515		return p->se.sum_exec_runtime;
2516#endif
2517
2518	rq = task_rq_lock(p, &flags);
2519	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2520	task_rq_unlock(rq, p, &flags);
2521
2522	return ns;
2523}
2524
2525/*
2526 * This function gets called by the timer code, with HZ frequency.
2527 * We call it with interrupts disabled.
2528 */
2529void scheduler_tick(void)
2530{
2531	int cpu = smp_processor_id();
2532	struct rq *rq = cpu_rq(cpu);
2533	struct task_struct *curr = rq->curr;
2534
2535	sched_clock_tick();
2536
2537	raw_spin_lock(&rq->lock);
2538	update_rq_clock(rq);
2539	curr->sched_class->task_tick(rq, curr, 0);
2540	update_cpu_load_active(rq);
2541	raw_spin_unlock(&rq->lock);
2542
2543	perf_event_task_tick();
2544
2545#ifdef CONFIG_SMP
2546	rq->idle_balance = idle_cpu(cpu);
2547	trigger_load_balance(rq);
2548#endif
2549	rq_last_tick_reset(rq);
2550}
2551
2552#ifdef CONFIG_NO_HZ_FULL
2553/**
2554 * scheduler_tick_max_deferment
2555 *
2556 * Keep at least one tick per second when a single
2557 * active task is running because the scheduler doesn't
2558 * yet completely support full dynticks environment.
2559 *
2560 * This makes sure that uptime, CFS vruntime, load
2561 * balancing, etc... continue to move forward, even
2562 * with a very low granularity.
2563 *
2564 * Return: Maximum deferment in nanoseconds.
2565 */
2566u64 scheduler_tick_max_deferment(void)
2567{
2568	struct rq *rq = this_rq();
2569	unsigned long next, now = ACCESS_ONCE(jiffies);
2570
2571	next = rq->last_sched_tick + HZ;
2572
2573	if (time_before_eq(next, now))
2574		return 0;
2575
2576	return jiffies_to_nsecs(next - now);
2577}
2578#endif
2579
2580notrace unsigned long get_parent_ip(unsigned long addr)
2581{
2582	if (in_lock_functions(addr)) {
2583		addr = CALLER_ADDR2;
2584		if (in_lock_functions(addr))
2585			addr = CALLER_ADDR3;
2586	}
2587	return addr;
2588}
2589
2590#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2591				defined(CONFIG_PREEMPT_TRACER))
2592
2593void preempt_count_add(int val)
2594{
2595#ifdef CONFIG_DEBUG_PREEMPT
2596	/*
2597	 * Underflow?
2598	 */
2599	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2600		return;
2601#endif
2602	__preempt_count_add(val);
2603#ifdef CONFIG_DEBUG_PREEMPT
2604	/*
2605	 * Spinlock count overflowing soon?
2606	 */
2607	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2608				PREEMPT_MASK - 10);
2609#endif
2610	if (preempt_count() == val) {
2611		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2612#ifdef CONFIG_DEBUG_PREEMPT
2613		current->preempt_disable_ip = ip;
2614#endif
2615		trace_preempt_off(CALLER_ADDR0, ip);
2616	}
2617}
2618EXPORT_SYMBOL(preempt_count_add);
2619NOKPROBE_SYMBOL(preempt_count_add);
2620
2621void preempt_count_sub(int val)
2622{
2623#ifdef CONFIG_DEBUG_PREEMPT
2624	/*
2625	 * Underflow?
2626	 */
2627	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2628		return;
2629	/*
2630	 * Is the spinlock portion underflowing?
2631	 */
2632	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2633			!(preempt_count() & PREEMPT_MASK)))
2634		return;
2635#endif
2636
2637	if (preempt_count() == val)
2638		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2639	__preempt_count_sub(val);
2640}
2641EXPORT_SYMBOL(preempt_count_sub);
2642NOKPROBE_SYMBOL(preempt_count_sub);
2643
2644#endif
2645
2646/*
2647 * Print scheduling while atomic bug:
2648 */
2649static noinline void __schedule_bug(struct task_struct *prev)
2650{
2651	if (oops_in_progress)
2652		return;
2653
2654	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2655		prev->comm, prev->pid, preempt_count());
2656
2657	debug_show_held_locks(prev);
2658	print_modules();
2659	if (irqs_disabled())
2660		print_irqtrace_events(prev);
2661#ifdef CONFIG_DEBUG_PREEMPT
2662	if (in_atomic_preempt_off()) {
2663		pr_err("Preemption disabled at:");
2664		print_ip_sym(current->preempt_disable_ip);
2665		pr_cont("\n");
2666	}
2667#endif
2668	dump_stack();
2669	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2670}
2671
2672/*
2673 * Various schedule()-time debugging checks and statistics:
2674 */
2675static inline void schedule_debug(struct task_struct *prev)
2676{
2677	/*
2678	 * Test if we are atomic. Since do_exit() needs to call into
2679	 * schedule() atomically, we ignore that path. Otherwise whine
2680	 * if we are scheduling when we should not.
2681	 */
2682	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2683		__schedule_bug(prev);
2684	rcu_sleep_check();
2685
2686	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2687
2688	schedstat_inc(this_rq(), sched_count);
2689}
2690
2691/*
2692 * Pick up the highest-prio task:
2693 */
2694static inline struct task_struct *
2695pick_next_task(struct rq *rq, struct task_struct *prev)
2696{
2697	const struct sched_class *class = &fair_sched_class;
2698	struct task_struct *p;
2699
2700	/*
2701	 * Optimization: we know that if all tasks are in
2702	 * the fair class we can call that function directly:
2703	 */
2704	if (likely(prev->sched_class == class &&
2705		   rq->nr_running == rq->cfs.h_nr_running)) {
2706		p = fair_sched_class.pick_next_task(rq, prev);
2707		if (unlikely(p == RETRY_TASK))
2708			goto again;
2709
2710		/* assumes fair_sched_class->next == idle_sched_class */
2711		if (unlikely(!p))
2712			p = idle_sched_class.pick_next_task(rq, prev);
2713
2714		return p;
2715	}
2716
2717again:
2718	for_each_class(class) {
2719		p = class->pick_next_task(rq, prev);
2720		if (p) {
2721			if (unlikely(p == RETRY_TASK))
2722				goto again;
2723			return p;
2724		}
2725	}
2726
2727	BUG(); /* the idle class will always have a runnable task */
2728}
2729
2730/*
2731 * __schedule() is the main scheduler function.
2732 *
2733 * The main means of driving the scheduler and thus entering this function are:
2734 *
2735 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2736 *
2737 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2738 *      paths. For example, see arch/x86/entry_64.S.
2739 *
2740 *      To drive preemption between tasks, the scheduler sets the flag in timer
2741 *      interrupt handler scheduler_tick().
2742 *
2743 *   3. Wakeups don't really cause entry into schedule(). They add a
2744 *      task to the run-queue and that's it.
2745 *
2746 *      Now, if the new task added to the run-queue preempts the current
2747 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2748 *      called on the nearest possible occasion:
2749 *
2750 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2751 *
2752 *         - in syscall or exception context, at the next outmost
2753 *           preempt_enable(). (this might be as soon as the wake_up()'s
2754 *           spin_unlock()!)
2755 *
2756 *         - in IRQ context, return from interrupt-handler to
2757 *           preemptible context
2758 *
2759 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2760 *         then at the next:
2761 *
2762 *          - cond_resched() call
2763 *          - explicit schedule() call
2764 *          - return from syscall or exception to user-space
2765 *          - return from interrupt-handler to user-space
2766 */
2767static void __sched __schedule(void)
2768{
2769	struct task_struct *prev, *next;
2770	unsigned long *switch_count;
2771	struct rq *rq;
2772	int cpu;
2773
2774need_resched:
2775	preempt_disable();
2776	cpu = smp_processor_id();
2777	rq = cpu_rq(cpu);
2778	rcu_note_context_switch(cpu);
2779	prev = rq->curr;
2780
2781	schedule_debug(prev);
2782
2783	if (sched_feat(HRTICK))
2784		hrtick_clear(rq);
2785
2786	/*
2787	 * Make sure that signal_pending_state()->signal_pending() below
2788	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2789	 * done by the caller to avoid the race with signal_wake_up().
2790	 */
2791	smp_mb__before_spinlock();
2792	raw_spin_lock_irq(&rq->lock);
2793
2794	switch_count = &prev->nivcsw;
2795	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2796		if (unlikely(signal_pending_state(prev->state, prev))) {
2797			prev->state = TASK_RUNNING;
2798		} else {
2799			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2800			prev->on_rq = 0;
2801
2802			/*
2803			 * If a worker went to sleep, notify and ask workqueue
2804			 * whether it wants to wake up a task to maintain
2805			 * concurrency.
2806			 */
2807			if (prev->flags & PF_WQ_WORKER) {
2808				struct task_struct *to_wakeup;
2809
2810				to_wakeup = wq_worker_sleeping(prev, cpu);
2811				if (to_wakeup)
2812					try_to_wake_up_local(to_wakeup);
2813			}
2814		}
2815		switch_count = &prev->nvcsw;
2816	}
2817
2818	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2819		update_rq_clock(rq);
2820
2821	next = pick_next_task(rq, prev);
2822	clear_tsk_need_resched(prev);
2823	clear_preempt_need_resched();
2824	rq->skip_clock_update = 0;
2825
2826	if (likely(prev != next)) {
2827		rq->nr_switches++;
2828		rq->curr = next;
2829		++*switch_count;
2830
2831		context_switch(rq, prev, next); /* unlocks the rq */
2832		/*
2833		 * The context switch have flipped the stack from under us
2834		 * and restored the local variables which were saved when
2835		 * this task called schedule() in the past. prev == current
2836		 * is still correct, but it can be moved to another cpu/rq.
2837		 */
2838		cpu = smp_processor_id();
2839		rq = cpu_rq(cpu);
2840	} else
2841		raw_spin_unlock_irq(&rq->lock);
2842
2843	post_schedule(rq);
2844
2845	sched_preempt_enable_no_resched();
2846	if (need_resched())
2847		goto need_resched;
2848}
2849
2850static inline void sched_submit_work(struct task_struct *tsk)
2851{
2852	if (!tsk->state || tsk_is_pi_blocked(tsk))
2853		return;
2854	/*
2855	 * If we are going to sleep and we have plugged IO queued,
2856	 * make sure to submit it to avoid deadlocks.
2857	 */
2858	if (blk_needs_flush_plug(tsk))
2859		blk_schedule_flush_plug(tsk);
2860}
2861
2862asmlinkage __visible void __sched schedule(void)
2863{
2864	struct task_struct *tsk = current;
2865
2866	sched_submit_work(tsk);
2867	__schedule();
2868}
2869EXPORT_SYMBOL(schedule);
2870
2871#ifdef CONFIG_CONTEXT_TRACKING
2872asmlinkage __visible void __sched schedule_user(void)
2873{
2874	/*
2875	 * If we come here after a random call to set_need_resched(),
2876	 * or we have been woken up remotely but the IPI has not yet arrived,
2877	 * we haven't yet exited the RCU idle mode. Do it here manually until
2878	 * we find a better solution.
2879	 */
2880	user_exit();
2881	schedule();
2882	user_enter();
2883}
2884#endif
2885
2886/**
2887 * schedule_preempt_disabled - called with preemption disabled
2888 *
2889 * Returns with preemption disabled. Note: preempt_count must be 1
2890 */
2891void __sched schedule_preempt_disabled(void)
2892{
2893	sched_preempt_enable_no_resched();
2894	schedule();
2895	preempt_disable();
2896}
2897
2898#ifdef CONFIG_PREEMPT
2899/*
2900 * this is the entry point to schedule() from in-kernel preemption
2901 * off of preempt_enable. Kernel preemptions off return from interrupt
2902 * occur there and call schedule directly.
2903 */
2904asmlinkage __visible void __sched notrace preempt_schedule(void)
2905{
2906	/*
2907	 * If there is a non-zero preempt_count or interrupts are disabled,
2908	 * we do not want to preempt the current task. Just return..
2909	 */
2910	if (likely(!preemptible()))
2911		return;
2912
2913	do {
2914		__preempt_count_add(PREEMPT_ACTIVE);
2915		__schedule();
2916		__preempt_count_sub(PREEMPT_ACTIVE);
2917
2918		/*
2919		 * Check again in case we missed a preemption opportunity
2920		 * between schedule and now.
2921		 */
2922		barrier();
2923	} while (need_resched());
2924}
2925NOKPROBE_SYMBOL(preempt_schedule);
2926EXPORT_SYMBOL(preempt_schedule);
2927#endif /* CONFIG_PREEMPT */
2928
2929/*
2930 * this is the entry point to schedule() from kernel preemption
2931 * off of irq context.
2932 * Note, that this is called and return with irqs disabled. This will
2933 * protect us against recursive calling from irq.
2934 */
2935asmlinkage __visible void __sched preempt_schedule_irq(void)
2936{
2937	enum ctx_state prev_state;
2938
2939	/* Catch callers which need to be fixed */
2940	BUG_ON(preempt_count() || !irqs_disabled());
2941
2942	prev_state = exception_enter();
2943
2944	do {
2945		__preempt_count_add(PREEMPT_ACTIVE);
2946		local_irq_enable();
2947		__schedule();
2948		local_irq_disable();
2949		__preempt_count_sub(PREEMPT_ACTIVE);
2950
2951		/*
2952		 * Check again in case we missed a preemption opportunity
2953		 * between schedule and now.
2954		 */
2955		barrier();
2956	} while (need_resched());
2957
2958	exception_exit(prev_state);
2959}
2960
2961int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2962			  void *key)
2963{
2964	return try_to_wake_up(curr->private, mode, wake_flags);
2965}
2966EXPORT_SYMBOL(default_wake_function);
2967
2968#ifdef CONFIG_RT_MUTEXES
2969
2970/*
2971 * rt_mutex_setprio - set the current priority of a task
2972 * @p: task
2973 * @prio: prio value (kernel-internal form)
2974 *
2975 * This function changes the 'effective' priority of a task. It does
2976 * not touch ->normal_prio like __setscheduler().
2977 *
2978 * Used by the rt_mutex code to implement priority inheritance
2979 * logic. Call site only calls if the priority of the task changed.
2980 */
2981void rt_mutex_setprio(struct task_struct *p, int prio)
2982{
2983	int oldprio, queued, running, enqueue_flag = 0;
2984	struct rq *rq;
2985	const struct sched_class *prev_class;
2986
2987	BUG_ON(prio > MAX_PRIO);
2988
2989	rq = __task_rq_lock(p);
2990
2991	/*
2992	 * Idle task boosting is a nono in general. There is one
2993	 * exception, when PREEMPT_RT and NOHZ is active:
2994	 *
2995	 * The idle task calls get_next_timer_interrupt() and holds
2996	 * the timer wheel base->lock on the CPU and another CPU wants
2997	 * to access the timer (probably to cancel it). We can safely
2998	 * ignore the boosting request, as the idle CPU runs this code
2999	 * with interrupts disabled and will complete the lock
3000	 * protected section without being interrupted. So there is no
3001	 * real need to boost.
3002	 */
3003	if (unlikely(p == rq->idle)) {
3004		WARN_ON(p != rq->curr);
3005		WARN_ON(p->pi_blocked_on);
3006		goto out_unlock;
3007	}
3008
3009	trace_sched_pi_setprio(p, prio);
3010	oldprio = p->prio;
3011	prev_class = p->sched_class;
3012	queued = task_on_rq_queued(p);
3013	running = task_current(rq, p);
3014	if (queued)
3015		dequeue_task(rq, p, 0);
3016	if (running)
3017		p->sched_class->put_prev_task(rq, p);
3018
3019	/*
3020	 * Boosting condition are:
3021	 * 1. -rt task is running and holds mutex A
3022	 *      --> -dl task blocks on mutex A
3023	 *
3024	 * 2. -dl task is running and holds mutex A
3025	 *      --> -dl task blocks on mutex A and could preempt the
3026	 *          running task
3027	 */
3028	if (dl_prio(prio)) {
3029		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3030		if (!dl_prio(p->normal_prio) ||
3031		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3032			p->dl.dl_boosted = 1;
3033			p->dl.dl_throttled = 0;
3034			enqueue_flag = ENQUEUE_REPLENISH;
3035		} else
3036			p->dl.dl_boosted = 0;
3037		p->sched_class = &dl_sched_class;
3038	} else if (rt_prio(prio)) {
3039		if (dl_prio(oldprio))
3040			p->dl.dl_boosted = 0;
3041		if (oldprio < prio)
3042			enqueue_flag = ENQUEUE_HEAD;
3043		p->sched_class = &rt_sched_class;
3044	} else {
3045		if (dl_prio(oldprio))
3046			p->dl.dl_boosted = 0;
3047		p->sched_class = &fair_sched_class;
3048	}
3049
3050	p->prio = prio;
3051
3052	if (running)
3053		p->sched_class->set_curr_task(rq);
3054	if (queued)
3055		enqueue_task(rq, p, enqueue_flag);
3056
3057	check_class_changed(rq, p, prev_class, oldprio);
3058out_unlock:
3059	__task_rq_unlock(rq);
3060}
3061#endif
3062
3063void set_user_nice(struct task_struct *p, long nice)
3064{
3065	int old_prio, delta, queued;
3066	unsigned long flags;
3067	struct rq *rq;
3068
3069	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3070		return;
3071	/*
3072	 * We have to be careful, if called from sys_setpriority(),
3073	 * the task might be in the middle of scheduling on another CPU.
3074	 */
3075	rq = task_rq_lock(p, &flags);
3076	/*
3077	 * The RT priorities are set via sched_setscheduler(), but we still
3078	 * allow the 'normal' nice value to be set - but as expected
3079	 * it wont have any effect on scheduling until the task is
3080	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3081	 */
3082	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3083		p->static_prio = NICE_TO_PRIO(nice);
3084		goto out_unlock;
3085	}
3086	queued = task_on_rq_queued(p);
3087	if (queued)
3088		dequeue_task(rq, p, 0);
3089
3090	p->static_prio = NICE_TO_PRIO(nice);
3091	set_load_weight(p);
3092	old_prio = p->prio;
3093	p->prio = effective_prio(p);
3094	delta = p->prio - old_prio;
3095
3096	if (queued) {
3097		enqueue_task(rq, p, 0);
3098		/*
3099		 * If the task increased its priority or is running and
3100		 * lowered its priority, then reschedule its CPU:
3101		 */
3102		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3103			resched_curr(rq);
3104	}
3105out_unlock:
3106	task_rq_unlock(rq, p, &flags);
3107}
3108EXPORT_SYMBOL(set_user_nice);
3109
3110/*
3111 * can_nice - check if a task can reduce its nice value
3112 * @p: task
3113 * @nice: nice value
3114 */
3115int can_nice(const struct task_struct *p, const int nice)
3116{
3117	/* convert nice value [19,-20] to rlimit style value [1,40] */
3118	int nice_rlim = nice_to_rlimit(nice);
3119
3120	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3121		capable(CAP_SYS_NICE));
3122}
3123
3124#ifdef __ARCH_WANT_SYS_NICE
3125
3126/*
3127 * sys_nice - change the priority of the current process.
3128 * @increment: priority increment
3129 *
3130 * sys_setpriority is a more generic, but much slower function that
3131 * does similar things.
3132 */
3133SYSCALL_DEFINE1(nice, int, increment)
3134{
3135	long nice, retval;
3136
3137	/*
3138	 * Setpriority might change our priority at the same moment.
3139	 * We don't have to worry. Conceptually one call occurs first
3140	 * and we have a single winner.
3141	 */
3142	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3143	nice = task_nice(current) + increment;
3144
3145	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3146	if (increment < 0 && !can_nice(current, nice))
3147		return -EPERM;
3148
3149	retval = security_task_setnice(current, nice);
3150	if (retval)
3151		return retval;
3152
3153	set_user_nice(current, nice);
3154	return 0;
3155}
3156
3157#endif
3158
3159/**
3160 * task_prio - return the priority value of a given task.
3161 * @p: the task in question.
3162 *
3163 * Return: The priority value as seen by users in /proc.
3164 * RT tasks are offset by -200. Normal tasks are centered
3165 * around 0, value goes from -16 to +15.
3166 */
3167int task_prio(const struct task_struct *p)
3168{
3169	return p->prio - MAX_RT_PRIO;
3170}
3171
3172/**
3173 * idle_cpu - is a given cpu idle currently?
3174 * @cpu: the processor in question.
3175 *
3176 * Return: 1 if the CPU is currently idle. 0 otherwise.
3177 */
3178int idle_cpu(int cpu)
3179{
3180	struct rq *rq = cpu_rq(cpu);
3181
3182	if (rq->curr != rq->idle)
3183		return 0;
3184
3185	if (rq->nr_running)
3186		return 0;
3187
3188#ifdef CONFIG_SMP
3189	if (!llist_empty(&rq->wake_list))
3190		return 0;
3191#endif
3192
3193	return 1;
3194}
3195
3196/**
3197 * idle_task - return the idle task for a given cpu.
3198 * @cpu: the processor in question.
3199 *
3200 * Return: The idle task for the cpu @cpu.
3201 */
3202struct task_struct *idle_task(int cpu)
3203{
3204	return cpu_rq(cpu)->idle;
3205}
3206
3207/**
3208 * find_process_by_pid - find a process with a matching PID value.
3209 * @pid: the pid in question.
3210 *
3211 * The task of @pid, if found. %NULL otherwise.
3212 */
3213static struct task_struct *find_process_by_pid(pid_t pid)
3214{
3215	return pid ? find_task_by_vpid(pid) : current;
3216}
3217
3218/*
3219 * This function initializes the sched_dl_entity of a newly becoming
3220 * SCHED_DEADLINE task.
3221 *
3222 * Only the static values are considered here, the actual runtime and the
3223 * absolute deadline will be properly calculated when the task is enqueued
3224 * for the first time with its new policy.
3225 */
3226static void
3227__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3228{
3229	struct sched_dl_entity *dl_se = &p->dl;
3230
3231	init_dl_task_timer(dl_se);
3232	dl_se->dl_runtime = attr->sched_runtime;
3233	dl_se->dl_deadline = attr->sched_deadline;
3234	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3235	dl_se->flags = attr->sched_flags;
3236	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3237	dl_se->dl_throttled = 0;
3238	dl_se->dl_new = 1;
3239	dl_se->dl_yielded = 0;
3240}
3241
3242/*
3243 * sched_setparam() passes in -1 for its policy, to let the functions
3244 * it calls know not to change it.
3245 */
3246#define SETPARAM_POLICY	-1
3247
3248static void __setscheduler_params(struct task_struct *p,
3249		const struct sched_attr *attr)
3250{
3251	int policy = attr->sched_policy;
3252
3253	if (policy == SETPARAM_POLICY)
3254		policy = p->policy;
3255
3256	p->policy = policy;
3257
3258	if (dl_policy(policy))
3259		__setparam_dl(p, attr);
3260	else if (fair_policy(policy))
3261		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3262
3263	/*
3264	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3265	 * !rt_policy. Always setting this ensures that things like
3266	 * getparam()/getattr() don't report silly values for !rt tasks.
3267	 */
3268	p->rt_priority = attr->sched_priority;
3269	p->normal_prio = normal_prio(p);
3270	set_load_weight(p);
3271}
3272
3273/* Actually do priority change: must hold pi & rq lock. */
3274static void __setscheduler(struct rq *rq, struct task_struct *p,
3275			   const struct sched_attr *attr)
3276{
3277	__setscheduler_params(p, attr);
3278
3279	/*
3280	 * If we get here, there was no pi waiters boosting the
3281	 * task. It is safe to use the normal prio.
3282	 */
3283	p->prio = normal_prio(p);
3284
3285	if (dl_prio(p->prio))
3286		p->sched_class = &dl_sched_class;
3287	else if (rt_prio(p->prio))
3288		p->sched_class = &rt_sched_class;
3289	else
3290		p->sched_class = &fair_sched_class;
3291}
3292
3293static void
3294__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3295{
3296	struct sched_dl_entity *dl_se = &p->dl;
3297
3298	attr->sched_priority = p->rt_priority;
3299	attr->sched_runtime = dl_se->dl_runtime;
3300	attr->sched_deadline = dl_se->dl_deadline;
3301	attr->sched_period = dl_se->dl_period;
3302	attr->sched_flags = dl_se->flags;
3303}
3304
3305/*
3306 * This function validates the new parameters of a -deadline task.
3307 * We ask for the deadline not being zero, and greater or equal
3308 * than the runtime, as well as the period of being zero or
3309 * greater than deadline. Furthermore, we have to be sure that
3310 * user parameters are above the internal resolution of 1us (we
3311 * check sched_runtime only since it is always the smaller one) and
3312 * below 2^63 ns (we have to check both sched_deadline and
3313 * sched_period, as the latter can be zero).
3314 */
3315static bool
3316__checkparam_dl(const struct sched_attr *attr)
3317{
3318	/* deadline != 0 */
3319	if (attr->sched_deadline == 0)
3320		return false;
3321
3322	/*
3323	 * Since we truncate DL_SCALE bits, make sure we're at least
3324	 * that big.
3325	 */
3326	if (attr->sched_runtime < (1ULL << DL_SCALE))
3327		return false;
3328
3329	/*
3330	 * Since we use the MSB for wrap-around and sign issues, make
3331	 * sure it's not set (mind that period can be equal to zero).
3332	 */
3333	if (attr->sched_deadline & (1ULL << 63) ||
3334	    attr->sched_period & (1ULL << 63))
3335		return false;
3336
3337	/* runtime <= deadline <= period (if period != 0) */
3338	if ((attr->sched_period != 0 &&
3339	     attr->sched_period < attr->sched_deadline) ||
3340	    attr->sched_deadline < attr->sched_runtime)
3341		return false;
3342
3343	return true;
3344}
3345
3346/*
3347 * check the target process has a UID that matches the current process's
3348 */
3349static bool check_same_owner(struct task_struct *p)
3350{
3351	const struct cred *cred = current_cred(), *pcred;
3352	bool match;
3353
3354	rcu_read_lock();
3355	pcred = __task_cred(p);
3356	match = (uid_eq(cred->euid, pcred->euid) ||
3357		 uid_eq(cred->euid, pcred->uid));
3358	rcu_read_unlock();
3359	return match;
3360}
3361
3362static int __sched_setscheduler(struct task_struct *p,
3363				const struct sched_attr *attr,
3364				bool user)
3365{
3366	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3367		      MAX_RT_PRIO - 1 - attr->sched_priority;
3368	int retval, oldprio, oldpolicy = -1, queued, running;
3369	int policy = attr->sched_policy;
3370	unsigned long flags;
3371	const struct sched_class *prev_class;
3372	struct rq *rq;
3373	int reset_on_fork;
3374
3375	/* may grab non-irq protected spin_locks */
3376	BUG_ON(in_interrupt());
3377recheck:
3378	/* double check policy once rq lock held */
3379	if (policy < 0) {
3380		reset_on_fork = p->sched_reset_on_fork;
3381		policy = oldpolicy = p->policy;
3382	} else {
3383		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3384
3385		if (policy != SCHED_DEADLINE &&
3386				policy != SCHED_FIFO && policy != SCHED_RR &&
3387				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3388				policy != SCHED_IDLE)
3389			return -EINVAL;
3390	}
3391
3392	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3393		return -EINVAL;
3394
3395	/*
3396	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3397	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3398	 * SCHED_BATCH and SCHED_IDLE is 0.
3399	 */
3400	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3401	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3402		return -EINVAL;
3403	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3404	    (rt_policy(policy) != (attr->sched_priority != 0)))
3405		return -EINVAL;
3406
3407	/*
3408	 * Allow unprivileged RT tasks to decrease priority:
3409	 */
3410	if (user && !capable(CAP_SYS_NICE)) {
3411		if (fair_policy(policy)) {
3412			if (attr->sched_nice < task_nice(p) &&
3413			    !can_nice(p, attr->sched_nice))
3414				return -EPERM;
3415		}
3416
3417		if (rt_policy(policy)) {
3418			unsigned long rlim_rtprio =
3419					task_rlimit(p, RLIMIT_RTPRIO);
3420
3421			/* can't set/change the rt policy */
3422			if (policy != p->policy && !rlim_rtprio)
3423				return -EPERM;
3424
3425			/* can't increase priority */
3426			if (attr->sched_priority > p->rt_priority &&
3427			    attr->sched_priority > rlim_rtprio)
3428				return -EPERM;
3429		}
3430
3431		 /*
3432		  * Can't set/change SCHED_DEADLINE policy at all for now
3433		  * (safest behavior); in the future we would like to allow
3434		  * unprivileged DL tasks to increase their relative deadline
3435		  * or reduce their runtime (both ways reducing utilization)
3436		  */
3437		if (dl_policy(policy))
3438			return -EPERM;
3439
3440		/*
3441		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3442		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3443		 */
3444		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3445			if (!can_nice(p, task_nice(p)))
3446				return -EPERM;
3447		}
3448
3449		/* can't change other user's priorities */
3450		if (!check_same_owner(p))
3451			return -EPERM;
3452
3453		/* Normal users shall not reset the sched_reset_on_fork flag */
3454		if (p->sched_reset_on_fork && !reset_on_fork)
3455			return -EPERM;
3456	}
3457
3458	if (user) {
3459		retval = security_task_setscheduler(p);
3460		if (retval)
3461			return retval;
3462	}
3463
3464	/*
3465	 * make sure no PI-waiters arrive (or leave) while we are
3466	 * changing the priority of the task:
3467	 *
3468	 * To be able to change p->policy safely, the appropriate
3469	 * runqueue lock must be held.
3470	 */
3471	rq = task_rq_lock(p, &flags);
3472
3473	/*
3474	 * Changing the policy of the stop threads its a very bad idea
3475	 */
3476	if (p == rq->stop) {
3477		task_rq_unlock(rq, p, &flags);
3478		return -EINVAL;
3479	}
3480
3481	/*
3482	 * If not changing anything there's no need to proceed further,
3483	 * but store a possible modification of reset_on_fork.
3484	 */
3485	if (unlikely(policy == p->policy)) {
3486		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3487			goto change;
3488		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3489			goto change;
3490		if (dl_policy(policy))
3491			goto change;
3492
3493		p->sched_reset_on_fork = reset_on_fork;
3494		task_rq_unlock(rq, p, &flags);
3495		return 0;
3496	}
3497change:
3498
3499	if (user) {
3500#ifdef CONFIG_RT_GROUP_SCHED
3501		/*
3502		 * Do not allow realtime tasks into groups that have no runtime
3503		 * assigned.
3504		 */
3505		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3506				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3507				!task_group_is_autogroup(task_group(p))) {
3508			task_rq_unlock(rq, p, &flags);
3509			return -EPERM;
3510		}
3511#endif
3512#ifdef CONFIG_SMP
3513		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3514			cpumask_t *span = rq->rd->span;
3515
3516			/*
3517			 * Don't allow tasks with an affinity mask smaller than
3518			 * the entire root_domain to become SCHED_DEADLINE. We
3519			 * will also fail if there's no bandwidth available.
3520			 */
3521			if (!cpumask_subset(span, &p->cpus_allowed) ||
3522			    rq->rd->dl_bw.bw == 0) {
3523				task_rq_unlock(rq, p, &flags);
3524				return -EPERM;
3525			}
3526		}
3527#endif
3528	}
3529
3530	/* recheck policy now with rq lock held */
3531	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3532		policy = oldpolicy = -1;
3533		task_rq_unlock(rq, p, &flags);
3534		goto recheck;
3535	}
3536
3537	/*
3538	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3539	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3540	 * is available.
3541	 */
3542	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3543		task_rq_unlock(rq, p, &flags);
3544		return -EBUSY;
3545	}
3546
3547	p->sched_reset_on_fork = reset_on_fork;
3548	oldprio = p->prio;
3549
3550	/*
3551	 * Special case for priority boosted tasks.
3552	 *
3553	 * If the new priority is lower or equal (user space view)
3554	 * than the current (boosted) priority, we just store the new
3555	 * normal parameters and do not touch the scheduler class and
3556	 * the runqueue. This will be done when the task deboost
3557	 * itself.
3558	 */
3559	if (rt_mutex_check_prio(p, newprio)) {
3560		__setscheduler_params(p, attr);
3561		task_rq_unlock(rq, p, &flags);
3562		return 0;
3563	}
3564
3565	queued = task_on_rq_queued(p);
3566	running = task_current(rq, p);
3567	if (queued)
3568		dequeue_task(rq, p, 0);
3569	if (running)
3570		p->sched_class->put_prev_task(rq, p);
3571
3572	prev_class = p->sched_class;
3573	__setscheduler(rq, p, attr);
3574
3575	if (running)
3576		p->sched_class->set_curr_task(rq);
3577	if (queued) {
3578		/*
3579		 * We enqueue to tail when the priority of a task is
3580		 * increased (user space view).
3581		 */
3582		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3583	}
3584
3585	check_class_changed(rq, p, prev_class, oldprio);
3586	task_rq_unlock(rq, p, &flags);
3587
3588	rt_mutex_adjust_pi(p);
3589
3590	return 0;
3591}
3592
3593static int _sched_setscheduler(struct task_struct *p, int policy,
3594			       const struct sched_param *param, bool check)
3595{
3596	struct sched_attr attr = {
3597		.sched_policy   = policy,
3598		.sched_priority = param->sched_priority,
3599		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3600	};
3601
3602	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3603	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3604		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3605		policy &= ~SCHED_RESET_ON_FORK;
3606		attr.sched_policy = policy;
3607	}
3608
3609	return __sched_setscheduler(p, &attr, check);
3610}
3611/**
3612 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3613 * @p: the task in question.
3614 * @policy: new policy.
3615 * @param: structure containing the new RT priority.
3616 *
3617 * Return: 0 on success. An error code otherwise.
3618 *
3619 * NOTE that the task may be already dead.
3620 */
3621int sched_setscheduler(struct task_struct *p, int policy,
3622		       const struct sched_param *param)
3623{
3624	return _sched_setscheduler(p, policy, param, true);
3625}
3626EXPORT_SYMBOL_GPL(sched_setscheduler);
3627
3628int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3629{
3630	return __sched_setscheduler(p, attr, true);
3631}
3632EXPORT_SYMBOL_GPL(sched_setattr);
3633
3634/**
3635 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3636 * @p: the task in question.
3637 * @policy: new policy.
3638 * @param: structure containing the new RT priority.
3639 *
3640 * Just like sched_setscheduler, only don't bother checking if the
3641 * current context has permission.  For example, this is needed in
3642 * stop_machine(): we create temporary high priority worker threads,
3643 * but our caller might not have that capability.
3644 *
3645 * Return: 0 on success. An error code otherwise.
3646 */
3647int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3648			       const struct sched_param *param)
3649{
3650	return _sched_setscheduler(p, policy, param, false);
3651}
3652
3653static int
3654do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3655{
3656	struct sched_param lparam;
3657	struct task_struct *p;
3658	int retval;
3659
3660	if (!param || pid < 0)
3661		return -EINVAL;
3662	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3663		return -EFAULT;
3664
3665	rcu_read_lock();
3666	retval = -ESRCH;
3667	p = find_process_by_pid(pid);
3668	if (p != NULL)
3669		retval = sched_setscheduler(p, policy, &lparam);
3670	rcu_read_unlock();
3671
3672	return retval;
3673}
3674
3675/*
3676 * Mimics kernel/events/core.c perf_copy_attr().
3677 */
3678static int sched_copy_attr(struct sched_attr __user *uattr,
3679			   struct sched_attr *attr)
3680{
3681	u32 size;
3682	int ret;
3683
3684	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3685		return -EFAULT;
3686
3687	/*
3688	 * zero the full structure, so that a short copy will be nice.
3689	 */
3690	memset(attr, 0, sizeof(*attr));
3691
3692	ret = get_user(size, &uattr->size);
3693	if (ret)
3694		return ret;
3695
3696	if (size > PAGE_SIZE)	/* silly large */
3697		goto err_size;
3698
3699	if (!size)		/* abi compat */
3700		size = SCHED_ATTR_SIZE_VER0;
3701
3702	if (size < SCHED_ATTR_SIZE_VER0)
3703		goto err_size;
3704
3705	/*
3706	 * If we're handed a bigger struct than we know of,
3707	 * ensure all the unknown bits are 0 - i.e. new
3708	 * user-space does not rely on any kernel feature
3709	 * extensions we dont know about yet.
3710	 */
3711	if (size > sizeof(*attr)) {
3712		unsigned char __user *addr;
3713		unsigned char __user *end;
3714		unsigned char val;
3715
3716		addr = (void __user *)uattr + sizeof(*attr);
3717		end  = (void __user *)uattr + size;
3718
3719		for (; addr < end; addr++) {
3720			ret = get_user(val, addr);
3721			if (ret)
3722				return ret;
3723			if (val)
3724				goto err_size;
3725		}
3726		size = sizeof(*attr);
3727	}
3728
3729	ret = copy_from_user(attr, uattr, size);
3730	if (ret)
3731		return -EFAULT;
3732
3733	/*
3734	 * XXX: do we want to be lenient like existing syscalls; or do we want
3735	 * to be strict and return an error on out-of-bounds values?
3736	 */
3737	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3738
3739	return 0;
3740
3741err_size:
3742	put_user(sizeof(*attr), &uattr->size);
3743	return -E2BIG;
3744}
3745
3746/**
3747 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3748 * @pid: the pid in question.
3749 * @policy: new policy.
3750 * @param: structure containing the new RT priority.
3751 *
3752 * Return: 0 on success. An error code otherwise.
3753 */
3754SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3755		struct sched_param __user *, param)
3756{
3757	/* negative values for policy are not valid */
3758	if (policy < 0)
3759		return -EINVAL;
3760
3761	return do_sched_setscheduler(pid, policy, param);
3762}
3763
3764/**
3765 * sys_sched_setparam - set/change the RT priority of a thread
3766 * @pid: the pid in question.
3767 * @param: structure containing the new RT priority.
3768 *
3769 * Return: 0 on success. An error code otherwise.
3770 */
3771SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3772{
3773	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3774}
3775
3776/**
3777 * sys_sched_setattr - same as above, but with extended sched_attr
3778 * @pid: the pid in question.
3779 * @uattr: structure containing the extended parameters.
3780 * @flags: for future extension.
3781 */
3782SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3783			       unsigned int, flags)
3784{
3785	struct sched_attr attr;
3786	struct task_struct *p;
3787	int retval;
3788
3789	if (!uattr || pid < 0 || flags)
3790		return -EINVAL;
3791
3792	retval = sched_copy_attr(uattr, &attr);
3793	if (retval)
3794		return retval;
3795
3796	if ((int)attr.sched_policy < 0)
3797		return -EINVAL;
3798
3799	rcu_read_lock();
3800	retval = -ESRCH;
3801	p = find_process_by_pid(pid);
3802	if (p != NULL)
3803		retval = sched_setattr(p, &attr);
3804	rcu_read_unlock();
3805
3806	return retval;
3807}
3808
3809/**
3810 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3811 * @pid: the pid in question.
3812 *
3813 * Return: On success, the policy of the thread. Otherwise, a negative error
3814 * code.
3815 */
3816SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3817{
3818	struct task_struct *p;
3819	int retval;
3820
3821	if (pid < 0)
3822		return -EINVAL;
3823
3824	retval = -ESRCH;
3825	rcu_read_lock();
3826	p = find_process_by_pid(pid);
3827	if (p) {
3828		retval = security_task_getscheduler(p);
3829		if (!retval)
3830			retval = p->policy
3831				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3832	}
3833	rcu_read_unlock();
3834	return retval;
3835}
3836
3837/**
3838 * sys_sched_getparam - get the RT priority of a thread
3839 * @pid: the pid in question.
3840 * @param: structure containing the RT priority.
3841 *
3842 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3843 * code.
3844 */
3845SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3846{
3847	struct sched_param lp = { .sched_priority = 0 };
3848	struct task_struct *p;
3849	int retval;
3850
3851	if (!param || pid < 0)
3852		return -EINVAL;
3853
3854	rcu_read_lock();
3855	p = find_process_by_pid(pid);
3856	retval = -ESRCH;
3857	if (!p)
3858		goto out_unlock;
3859
3860	retval = security_task_getscheduler(p);
3861	if (retval)
3862		goto out_unlock;
3863
3864	if (task_has_rt_policy(p))
3865		lp.sched_priority = p->rt_priority;
3866	rcu_read_unlock();
3867
3868	/*
3869	 * This one might sleep, we cannot do it with a spinlock held ...
3870	 */
3871	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3872
3873	return retval;
3874
3875out_unlock:
3876	rcu_read_unlock();
3877	return retval;
3878}
3879
3880static int sched_read_attr(struct sched_attr __user *uattr,
3881			   struct sched_attr *attr,
3882			   unsigned int usize)
3883{
3884	int ret;
3885
3886	if (!access_ok(VERIFY_WRITE, uattr, usize))
3887		return -EFAULT;
3888
3889	/*
3890	 * If we're handed a smaller struct than we know of,
3891	 * ensure all the unknown bits are 0 - i.e. old
3892	 * user-space does not get uncomplete information.
3893	 */
3894	if (usize < sizeof(*attr)) {
3895		unsigned char *addr;
3896		unsigned char *end;
3897
3898		addr = (void *)attr + usize;
3899		end  = (void *)attr + sizeof(*attr);
3900
3901		for (; addr < end; addr++) {
3902			if (*addr)
3903				return -EFBIG;
3904		}
3905
3906		attr->size = usize;
3907	}
3908
3909	ret = copy_to_user(uattr, attr, attr->size);
3910	if (ret)
3911		return -EFAULT;
3912
3913	return 0;
3914}
3915
3916/**
3917 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3918 * @pid: the pid in question.
3919 * @uattr: structure containing the extended parameters.
3920 * @size: sizeof(attr) for fwd/bwd comp.
3921 * @flags: for future extension.
3922 */
3923SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3924		unsigned int, size, unsigned int, flags)
3925{
3926	struct sched_attr attr = {
3927		.size = sizeof(struct sched_attr),
3928	};
3929	struct task_struct *p;
3930	int retval;
3931
3932	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3933	    size < SCHED_ATTR_SIZE_VER0 || flags)
3934		return -EINVAL;
3935
3936	rcu_read_lock();
3937	p = find_process_by_pid(pid);
3938	retval = -ESRCH;
3939	if (!p)
3940		goto out_unlock;
3941
3942	retval = security_task_getscheduler(p);
3943	if (retval)
3944		goto out_unlock;
3945
3946	attr.sched_policy = p->policy;
3947	if (p->sched_reset_on_fork)
3948		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3949	if (task_has_dl_policy(p))
3950		__getparam_dl(p, &attr);
3951	else if (task_has_rt_policy(p))
3952		attr.sched_priority = p->rt_priority;
3953	else
3954		attr.sched_nice = task_nice(p);
3955
3956	rcu_read_unlock();
3957
3958	retval = sched_read_attr(uattr, &attr, size);
3959	return retval;
3960
3961out_unlock:
3962	rcu_read_unlock();
3963	return retval;
3964}
3965
3966long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3967{
3968	cpumask_var_t cpus_allowed, new_mask;
3969	struct task_struct *p;
3970	int retval;
3971
3972	rcu_read_lock();
3973
3974	p = find_process_by_pid(pid);
3975	if (!p) {
3976		rcu_read_unlock();
3977		return -ESRCH;
3978	}
3979
3980	/* Prevent p going away */
3981	get_task_struct(p);
3982	rcu_read_unlock();
3983
3984	if (p->flags & PF_NO_SETAFFINITY) {
3985		retval = -EINVAL;
3986		goto out_put_task;
3987	}
3988	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3989		retval = -ENOMEM;
3990		goto out_put_task;
3991	}
3992	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3993		retval = -ENOMEM;
3994		goto out_free_cpus_allowed;
3995	}
3996	retval = -EPERM;
3997	if (!check_same_owner(p)) {
3998		rcu_read_lock();
3999		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4000			rcu_read_unlock();
4001			goto out_unlock;
4002		}
4003		rcu_read_unlock();
4004	}
4005
4006	retval = security_task_setscheduler(p);
4007	if (retval)
4008		goto out_unlock;
4009
4010
4011	cpuset_cpus_allowed(p, cpus_allowed);
4012	cpumask_and(new_mask, in_mask, cpus_allowed);
4013
4014	/*
4015	 * Since bandwidth control happens on root_domain basis,
4016	 * if admission test is enabled, we only admit -deadline
4017	 * tasks allowed to run on all the CPUs in the task's
4018	 * root_domain.
4019	 */
4020#ifdef CONFIG_SMP
4021	if (task_has_dl_policy(p)) {
4022		const struct cpumask *span = task_rq(p)->rd->span;
4023
4024		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4025			retval = -EBUSY;
4026			goto out_unlock;
4027		}
4028	}
4029#endif
4030again:
4031	retval = set_cpus_allowed_ptr(p, new_mask);
4032
4033	if (!retval) {
4034		cpuset_cpus_allowed(p, cpus_allowed);
4035		if (!cpumask_subset(new_mask, cpus_allowed)) {
4036			/*
4037			 * We must have raced with a concurrent cpuset
4038			 * update. Just reset the cpus_allowed to the
4039			 * cpuset's cpus_allowed
4040			 */
4041			cpumask_copy(new_mask, cpus_allowed);
4042			goto again;
4043		}
4044	}
4045out_unlock:
4046	free_cpumask_var(new_mask);
4047out_free_cpus_allowed:
4048	free_cpumask_var(cpus_allowed);
4049out_put_task:
4050	put_task_struct(p);
4051	return retval;
4052}
4053
4054static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4055			     struct cpumask *new_mask)
4056{
4057	if (len < cpumask_size())
4058		cpumask_clear(new_mask);
4059	else if (len > cpumask_size())
4060		len = cpumask_size();
4061
4062	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4063}
4064
4065/**
4066 * sys_sched_setaffinity - set the cpu affinity of a process
4067 * @pid: pid of the process
4068 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4069 * @user_mask_ptr: user-space pointer to the new cpu mask
4070 *
4071 * Return: 0 on success. An error code otherwise.
4072 */
4073SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4074		unsigned long __user *, user_mask_ptr)
4075{
4076	cpumask_var_t new_mask;
4077	int retval;
4078
4079	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4080		return -ENOMEM;
4081
4082	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4083	if (retval == 0)
4084		retval = sched_setaffinity(pid, new_mask);
4085	free_cpumask_var(new_mask);
4086	return retval;
4087}
4088
4089long sched_getaffinity(pid_t pid, struct cpumask *mask)
4090{
4091	struct task_struct *p;
4092	unsigned long flags;
4093	int retval;
4094
4095	rcu_read_lock();
4096
4097	retval = -ESRCH;
4098	p = find_process_by_pid(pid);
4099	if (!p)
4100		goto out_unlock;
4101
4102	retval = security_task_getscheduler(p);
4103	if (retval)
4104		goto out_unlock;
4105
4106	raw_spin_lock_irqsave(&p->pi_lock, flags);
4107	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4108	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4109
4110out_unlock:
4111	rcu_read_unlock();
4112
4113	return retval;
4114}
4115
4116/**
4117 * sys_sched_getaffinity - get the cpu affinity of a process
4118 * @pid: pid of the process
4119 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4120 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4121 *
4122 * Return: 0 on success. An error code otherwise.
4123 */
4124SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4125		unsigned long __user *, user_mask_ptr)
4126{
4127	int ret;
4128	cpumask_var_t mask;
4129
4130	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4131		return -EINVAL;
4132	if (len & (sizeof(unsigned long)-1))
4133		return -EINVAL;
4134
4135	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4136		return -ENOMEM;
4137
4138	ret = sched_getaffinity(pid, mask);
4139	if (ret == 0) {
4140		size_t retlen = min_t(size_t, len, cpumask_size());
4141
4142		if (copy_to_user(user_mask_ptr, mask, retlen))
4143			ret = -EFAULT;
4144		else
4145			ret = retlen;
4146	}
4147	free_cpumask_var(mask);
4148
4149	return ret;
4150}
4151
4152/**
4153 * sys_sched_yield - yield the current processor to other threads.
4154 *
4155 * This function yields the current CPU to other tasks. If there are no
4156 * other threads running on this CPU then this function will return.
4157 *
4158 * Return: 0.
4159 */
4160SYSCALL_DEFINE0(sched_yield)
4161{
4162	struct rq *rq = this_rq_lock();
4163
4164	schedstat_inc(rq, yld_count);
4165	current->sched_class->yield_task(rq);
4166
4167	/*
4168	 * Since we are going to call schedule() anyway, there's
4169	 * no need to preempt or enable interrupts:
4170	 */
4171	__release(rq->lock);
4172	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4173	do_raw_spin_unlock(&rq->lock);
4174	sched_preempt_enable_no_resched();
4175
4176	schedule();
4177
4178	return 0;
4179}
4180
4181static void __cond_resched(void)
4182{
4183	__preempt_count_add(PREEMPT_ACTIVE);
4184	__schedule();
4185	__preempt_count_sub(PREEMPT_ACTIVE);
4186}
4187
4188int __sched _cond_resched(void)
4189{
4190	if (should_resched()) {
4191		__cond_resched();
4192		return 1;
4193	}
4194	return 0;
4195}
4196EXPORT_SYMBOL(_cond_resched);
4197
4198/*
4199 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4200 * call schedule, and on return reacquire the lock.
4201 *
4202 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4203 * operations here to prevent schedule() from being called twice (once via
4204 * spin_unlock(), once by hand).
4205 */
4206int __cond_resched_lock(spinlock_t *lock)
4207{
4208	int resched = should_resched();
4209	int ret = 0;
4210
4211	lockdep_assert_held(lock);
4212
4213	if (spin_needbreak(lock) || resched) {
4214		spin_unlock(lock);
4215		if (resched)
4216			__cond_resched();
4217		else
4218			cpu_relax();
4219		ret = 1;
4220		spin_lock(lock);
4221	}
4222	return ret;
4223}
4224EXPORT_SYMBOL(__cond_resched_lock);
4225
4226int __sched __cond_resched_softirq(void)
4227{
4228	BUG_ON(!in_softirq());
4229
4230	if (should_resched()) {
4231		local_bh_enable();
4232		__cond_resched();
4233		local_bh_disable();
4234		return 1;
4235	}
4236	return 0;
4237}
4238EXPORT_SYMBOL(__cond_resched_softirq);
4239
4240/**
4241 * yield - yield the current processor to other threads.
4242 *
4243 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4244 *
4245 * The scheduler is at all times free to pick the calling task as the most
4246 * eligible task to run, if removing the yield() call from your code breaks
4247 * it, its already broken.
4248 *
4249 * Typical broken usage is:
4250 *
4251 * while (!event)
4252 * 	yield();
4253 *
4254 * where one assumes that yield() will let 'the other' process run that will
4255 * make event true. If the current task is a SCHED_FIFO task that will never
4256 * happen. Never use yield() as a progress guarantee!!
4257 *
4258 * If you want to use yield() to wait for something, use wait_event().
4259 * If you want to use yield() to be 'nice' for others, use cond_resched().
4260 * If you still want to use yield(), do not!
4261 */
4262void __sched yield(void)
4263{
4264	set_current_state(TASK_RUNNING);
4265	sys_sched_yield();
4266}
4267EXPORT_SYMBOL(yield);
4268
4269/**
4270 * yield_to - yield the current processor to another thread in
4271 * your thread group, or accelerate that thread toward the
4272 * processor it's on.
4273 * @p: target task
4274 * @preempt: whether task preemption is allowed or not
4275 *
4276 * It's the caller's job to ensure that the target task struct
4277 * can't go away on us before we can do any checks.
4278 *
4279 * Return:
4280 *	true (>0) if we indeed boosted the target task.
4281 *	false (0) if we failed to boost the target.
4282 *	-ESRCH if there's no task to yield to.
4283 */
4284int __sched yield_to(struct task_struct *p, bool preempt)
4285{
4286	struct task_struct *curr = current;
4287	struct rq *rq, *p_rq;
4288	unsigned long flags;
4289	int yielded = 0;
4290
4291	local_irq_save(flags);
4292	rq = this_rq();
4293
4294again:
4295	p_rq = task_rq(p);
4296	/*
4297	 * If we're the only runnable task on the rq and target rq also
4298	 * has only one task, there's absolutely no point in yielding.
4299	 */
4300	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4301		yielded = -ESRCH;
4302		goto out_irq;
4303	}
4304
4305	double_rq_lock(rq, p_rq);
4306	if (task_rq(p) != p_rq) {
4307		double_rq_unlock(rq, p_rq);
4308		goto again;
4309	}
4310
4311	if (!curr->sched_class->yield_to_task)
4312		goto out_unlock;
4313
4314	if (curr->sched_class != p->sched_class)
4315		goto out_unlock;
4316
4317	if (task_running(p_rq, p) || p->state)
4318		goto out_unlock;
4319
4320	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4321	if (yielded) {
4322		schedstat_inc(rq, yld_count);
4323		/*
4324		 * Make p's CPU reschedule; pick_next_entity takes care of
4325		 * fairness.
4326		 */
4327		if (preempt && rq != p_rq)
4328			resched_curr(p_rq);
4329	}
4330
4331out_unlock:
4332	double_rq_unlock(rq, p_rq);
4333out_irq:
4334	local_irq_restore(flags);
4335
4336	if (yielded > 0)
4337		schedule();
4338
4339	return yielded;
4340}
4341EXPORT_SYMBOL_GPL(yield_to);
4342
4343/*
4344 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4345 * that process accounting knows that this is a task in IO wait state.
4346 */
4347void __sched io_schedule(void)
4348{
4349	struct rq *rq = raw_rq();
4350
4351	delayacct_blkio_start();
4352	atomic_inc(&rq->nr_iowait);
4353	blk_flush_plug(current);
4354	current->in_iowait = 1;
4355	schedule();
4356	current->in_iowait = 0;
4357	atomic_dec(&rq->nr_iowait);
4358	delayacct_blkio_end();
4359}
4360EXPORT_SYMBOL(io_schedule);
4361
4362long __sched io_schedule_timeout(long timeout)
4363{
4364	struct rq *rq = raw_rq();
4365	long ret;
4366
4367	delayacct_blkio_start();
4368	atomic_inc(&rq->nr_iowait);
4369	blk_flush_plug(current);
4370	current->in_iowait = 1;
4371	ret = schedule_timeout(timeout);
4372	current->in_iowait = 0;
4373	atomic_dec(&rq->nr_iowait);
4374	delayacct_blkio_end();
4375	return ret;
4376}
4377
4378/**
4379 * sys_sched_get_priority_max - return maximum RT priority.
4380 * @policy: scheduling class.
4381 *
4382 * Return: On success, this syscall returns the maximum
4383 * rt_priority that can be used by a given scheduling class.
4384 * On failure, a negative error code is returned.
4385 */
4386SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4387{
4388	int ret = -EINVAL;
4389
4390	switch (policy) {
4391	case SCHED_FIFO:
4392	case SCHED_RR:
4393		ret = MAX_USER_RT_PRIO-1;
4394		break;
4395	case SCHED_DEADLINE:
4396	case SCHED_NORMAL:
4397	case SCHED_BATCH:
4398	case SCHED_IDLE:
4399		ret = 0;
4400		break;
4401	}
4402	return ret;
4403}
4404
4405/**
4406 * sys_sched_get_priority_min - return minimum RT priority.
4407 * @policy: scheduling class.
4408 *
4409 * Return: On success, this syscall returns the minimum
4410 * rt_priority that can be used by a given scheduling class.
4411 * On failure, a negative error code is returned.
4412 */
4413SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4414{
4415	int ret = -EINVAL;
4416
4417	switch (policy) {
4418	case SCHED_FIFO:
4419	case SCHED_RR:
4420		ret = 1;
4421		break;
4422	case SCHED_DEADLINE:
4423	case SCHED_NORMAL:
4424	case SCHED_BATCH:
4425	case SCHED_IDLE:
4426		ret = 0;
4427	}
4428	return ret;
4429}
4430
4431/**
4432 * sys_sched_rr_get_interval - return the default timeslice of a process.
4433 * @pid: pid of the process.
4434 * @interval: userspace pointer to the timeslice value.
4435 *
4436 * this syscall writes the default timeslice value of a given process
4437 * into the user-space timespec buffer. A value of '0' means infinity.
4438 *
4439 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4440 * an error code.
4441 */
4442SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4443		struct timespec __user *, interval)
4444{
4445	struct task_struct *p;
4446	unsigned int time_slice;
4447	unsigned long flags;
4448	struct rq *rq;
4449	int retval;
4450	struct timespec t;
4451
4452	if (pid < 0)
4453		return -EINVAL;
4454
4455	retval = -ESRCH;
4456	rcu_read_lock();
4457	p = find_process_by_pid(pid);
4458	if (!p)
4459		goto out_unlock;
4460
4461	retval = security_task_getscheduler(p);
4462	if (retval)
4463		goto out_unlock;
4464
4465	rq = task_rq_lock(p, &flags);
4466	time_slice = 0;
4467	if (p->sched_class->get_rr_interval)
4468		time_slice = p->sched_class->get_rr_interval(rq, p);
4469	task_rq_unlock(rq, p, &flags);
4470
4471	rcu_read_unlock();
4472	jiffies_to_timespec(time_slice, &t);
4473	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4474	return retval;
4475
4476out_unlock:
4477	rcu_read_unlock();
4478	return retval;
4479}
4480
4481static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4482
4483void sched_show_task(struct task_struct *p)
4484{
4485	unsigned long free = 0;
4486	int ppid;
4487	unsigned state;
4488
4489	state = p->state ? __ffs(p->state) + 1 : 0;
4490	printk(KERN_INFO "%-15.15s %c", p->comm,
4491		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4492#if BITS_PER_LONG == 32
4493	if (state == TASK_RUNNING)
4494		printk(KERN_CONT " running  ");
4495	else
4496		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4497#else
4498	if (state == TASK_RUNNING)
4499		printk(KERN_CONT "  running task    ");
4500	else
4501		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4502#endif
4503#ifdef CONFIG_DEBUG_STACK_USAGE
4504	free = stack_not_used(p);
4505#endif
4506	rcu_read_lock();
4507	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4508	rcu_read_unlock();
4509	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4510		task_pid_nr(p), ppid,
4511		(unsigned long)task_thread_info(p)->flags);
4512
4513	print_worker_info(KERN_INFO, p);
4514	show_stack(p, NULL);
4515}
4516
4517void show_state_filter(unsigned long state_filter)
4518{
4519	struct task_struct *g, *p;
4520
4521#if BITS_PER_LONG == 32
4522	printk(KERN_INFO
4523		"  task                PC stack   pid father\n");
4524#else
4525	printk(KERN_INFO
4526		"  task                        PC stack   pid father\n");
4527#endif
4528	rcu_read_lock();
4529	for_each_process_thread(g, p) {
4530		/*
4531		 * reset the NMI-timeout, listing all files on a slow
4532		 * console might take a lot of time:
4533		 */
4534		touch_nmi_watchdog();
4535		if (!state_filter || (p->state & state_filter))
4536			sched_show_task(p);
4537	}
4538
4539	touch_all_softlockup_watchdogs();
4540
4541#ifdef CONFIG_SCHED_DEBUG
4542	sysrq_sched_debug_show();
4543#endif
4544	rcu_read_unlock();
4545	/*
4546	 * Only show locks if all tasks are dumped:
4547	 */
4548	if (!state_filter)
4549		debug_show_all_locks();
4550}
4551
4552void init_idle_bootup_task(struct task_struct *idle)
4553{
4554	idle->sched_class = &idle_sched_class;
4555}
4556
4557/**
4558 * init_idle - set up an idle thread for a given CPU
4559 * @idle: task in question
4560 * @cpu: cpu the idle task belongs to
4561 *
4562 * NOTE: this function does not set the idle thread's NEED_RESCHED
4563 * flag, to make booting more robust.
4564 */
4565void init_idle(struct task_struct *idle, int cpu)
4566{
4567	struct rq *rq = cpu_rq(cpu);
4568	unsigned long flags;
4569
4570	raw_spin_lock_irqsave(&rq->lock, flags);
4571
4572	__sched_fork(0, idle);
4573	idle->state = TASK_RUNNING;
4574	idle->se.exec_start = sched_clock();
4575
4576	do_set_cpus_allowed(idle, cpumask_of(cpu));
4577	/*
4578	 * We're having a chicken and egg problem, even though we are
4579	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4580	 * lockdep check in task_group() will fail.
4581	 *
4582	 * Similar case to sched_fork(). / Alternatively we could
4583	 * use task_rq_lock() here and obtain the other rq->lock.
4584	 *
4585	 * Silence PROVE_RCU
4586	 */
4587	rcu_read_lock();
4588	__set_task_cpu(idle, cpu);
4589	rcu_read_unlock();
4590
4591	rq->curr = rq->idle = idle;
4592	idle->on_rq = TASK_ON_RQ_QUEUED;
4593#if defined(CONFIG_SMP)
4594	idle->on_cpu = 1;
4595#endif
4596	raw_spin_unlock_irqrestore(&rq->lock, flags);
4597
4598	/* Set the preempt count _outside_ the spinlocks! */
4599	init_idle_preempt_count(idle, cpu);
4600
4601	/*
4602	 * The idle tasks have their own, simple scheduling class:
4603	 */
4604	idle->sched_class = &idle_sched_class;
4605	ftrace_graph_init_idle_task(idle, cpu);
4606	vtime_init_idle(idle, cpu);
4607#if defined(CONFIG_SMP)
4608	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4609#endif
4610}
4611
4612#ifdef CONFIG_SMP
4613void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4614{
4615	if (p->sched_class && p->sched_class->set_cpus_allowed)
4616		p->sched_class->set_cpus_allowed(p, new_mask);
4617
4618	cpumask_copy(&p->cpus_allowed, new_mask);
4619	p->nr_cpus_allowed = cpumask_weight(new_mask);
4620}
4621
4622/*
4623 * This is how migration works:
4624 *
4625 * 1) we invoke migration_cpu_stop() on the target CPU using
4626 *    stop_one_cpu().
4627 * 2) stopper starts to run (implicitly forcing the migrated thread
4628 *    off the CPU)
4629 * 3) it checks whether the migrated task is still in the wrong runqueue.
4630 * 4) if it's in the wrong runqueue then the migration thread removes
4631 *    it and puts it into the right queue.
4632 * 5) stopper completes and stop_one_cpu() returns and the migration
4633 *    is done.
4634 */
4635
4636/*
4637 * Change a given task's CPU affinity. Migrate the thread to a
4638 * proper CPU and schedule it away if the CPU it's executing on
4639 * is removed from the allowed bitmask.
4640 *
4641 * NOTE: the caller must have a valid reference to the task, the
4642 * task must not exit() & deallocate itself prematurely. The
4643 * call is not atomic; no spinlocks may be held.
4644 */
4645int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4646{
4647	unsigned long flags;
4648	struct rq *rq;
4649	unsigned int dest_cpu;
4650	int ret = 0;
4651
4652	rq = task_rq_lock(p, &flags);
4653
4654	if (cpumask_equal(&p->cpus_allowed, new_mask))
4655		goto out;
4656
4657	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4658		ret = -EINVAL;
4659		goto out;
4660	}
4661
4662	do_set_cpus_allowed(p, new_mask);
4663
4664	/* Can the task run on the task's current CPU? If so, we're done */
4665	if (cpumask_test_cpu(task_cpu(p), new_mask))
4666		goto out;
4667
4668	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4669	if (task_on_rq_queued(p) || p->state == TASK_WAKING) {
4670		struct migration_arg arg = { p, dest_cpu };
4671		/* Need help from migration thread: drop lock and wait. */
4672		task_rq_unlock(rq, p, &flags);
4673		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4674		tlb_migrate_finish(p->mm);
4675		return 0;
4676	}
4677out:
4678	task_rq_unlock(rq, p, &flags);
4679
4680	return ret;
4681}
4682EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4683
4684/*
4685 * Move (not current) task off this cpu, onto dest cpu. We're doing
4686 * this because either it can't run here any more (set_cpus_allowed()
4687 * away from this CPU, or CPU going down), or because we're
4688 * attempting to rebalance this task on exec (sched_exec).
4689 *
4690 * So we race with normal scheduler movements, but that's OK, as long
4691 * as the task is no longer on this CPU.
4692 *
4693 * Returns non-zero if task was successfully migrated.
4694 */
4695static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4696{
4697	struct rq *rq;
4698	int ret = 0;
4699
4700	if (unlikely(!cpu_active(dest_cpu)))
4701		return ret;
4702
4703	rq = cpu_rq(src_cpu);
4704
4705	raw_spin_lock(&p->pi_lock);
4706	raw_spin_lock(&rq->lock);
4707	/* Already moved. */
4708	if (task_cpu(p) != src_cpu)
4709		goto done;
4710
4711	/* Affinity changed (again). */
4712	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4713		goto fail;
4714
4715	/*
4716	 * If we're not on a rq, the next wake-up will ensure we're
4717	 * placed properly.
4718	 */
4719	if (task_on_rq_queued(p)) {
4720		dequeue_task(rq, p, 0);
4721		p->on_rq = TASK_ON_RQ_MIGRATING;
4722		set_task_cpu(p, dest_cpu);
4723		raw_spin_unlock(&rq->lock);
4724
4725		rq = cpu_rq(dest_cpu);
4726		raw_spin_lock(&rq->lock);
4727		BUG_ON(task_rq(p) != rq);
4728		p->on_rq = TASK_ON_RQ_QUEUED;
4729		enqueue_task(rq, p, 0);
4730		check_preempt_curr(rq, p, 0);
4731	}
4732done:
4733	ret = 1;
4734fail:
4735	raw_spin_unlock(&rq->lock);
4736	raw_spin_unlock(&p->pi_lock);
4737	return ret;
4738}
4739
4740#ifdef CONFIG_NUMA_BALANCING
4741/* Migrate current task p to target_cpu */
4742int migrate_task_to(struct task_struct *p, int target_cpu)
4743{
4744	struct migration_arg arg = { p, target_cpu };
4745	int curr_cpu = task_cpu(p);
4746
4747	if (curr_cpu == target_cpu)
4748		return 0;
4749
4750	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4751		return -EINVAL;
4752
4753	/* TODO: This is not properly updating schedstats */
4754
4755	trace_sched_move_numa(p, curr_cpu, target_cpu);
4756	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4757}
4758
4759/*
4760 * Requeue a task on a given node and accurately track the number of NUMA
4761 * tasks on the runqueues
4762 */
4763void sched_setnuma(struct task_struct *p, int nid)
4764{
4765	struct rq *rq;
4766	unsigned long flags;
4767	bool queued, running;
4768
4769	rq = task_rq_lock(p, &flags);
4770	queued = task_on_rq_queued(p);
4771	running = task_current(rq, p);
4772
4773	if (queued)
4774		dequeue_task(rq, p, 0);
4775	if (running)
4776		p->sched_class->put_prev_task(rq, p);
4777
4778	p->numa_preferred_nid = nid;
4779
4780	if (running)
4781		p->sched_class->set_curr_task(rq);
4782	if (queued)
4783		enqueue_task(rq, p, 0);
4784	task_rq_unlock(rq, p, &flags);
4785}
4786#endif
4787
4788/*
4789 * migration_cpu_stop - this will be executed by a highprio stopper thread
4790 * and performs thread migration by bumping thread off CPU then
4791 * 'pushing' onto another runqueue.
4792 */
4793static int migration_cpu_stop(void *data)
4794{
4795	struct migration_arg *arg = data;
4796
4797	/*
4798	 * The original target cpu might have gone down and we might
4799	 * be on another cpu but it doesn't matter.
4800	 */
4801	local_irq_disable();
4802	/*
4803	 * We need to explicitly wake pending tasks before running
4804	 * __migrate_task() such that we will not miss enforcing cpus_allowed
4805	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4806	 */
4807	sched_ttwu_pending();
4808	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4809	local_irq_enable();
4810	return 0;
4811}
4812
4813#ifdef CONFIG_HOTPLUG_CPU
4814
4815/*
4816 * Ensures that the idle task is using init_mm right before its cpu goes
4817 * offline.
4818 */
4819void idle_task_exit(void)
4820{
4821	struct mm_struct *mm = current->active_mm;
4822
4823	BUG_ON(cpu_online(smp_processor_id()));
4824
4825	if (mm != &init_mm) {
4826		switch_mm(mm, &init_mm, current);
4827		finish_arch_post_lock_switch();
4828	}
4829	mmdrop(mm);
4830}
4831
4832/*
4833 * Since this CPU is going 'away' for a while, fold any nr_active delta
4834 * we might have. Assumes we're called after migrate_tasks() so that the
4835 * nr_active count is stable.
4836 *
4837 * Also see the comment "Global load-average calculations".
4838 */
4839static void calc_load_migrate(struct rq *rq)
4840{
4841	long delta = calc_load_fold_active(rq);
4842	if (delta)
4843		atomic_long_add(delta, &calc_load_tasks);
4844}
4845
4846static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4847{
4848}
4849
4850static const struct sched_class fake_sched_class = {
4851	.put_prev_task = put_prev_task_fake,
4852};
4853
4854static struct task_struct fake_task = {
4855	/*
4856	 * Avoid pull_{rt,dl}_task()
4857	 */
4858	.prio = MAX_PRIO + 1,
4859	.sched_class = &fake_sched_class,
4860};
4861
4862/*
4863 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4864 * try_to_wake_up()->select_task_rq().
4865 *
4866 * Called with rq->lock held even though we'er in stop_machine() and
4867 * there's no concurrency possible, we hold the required locks anyway
4868 * because of lock validation efforts.
4869 */
4870static void migrate_tasks(unsigned int dead_cpu)
4871{
4872	struct rq *rq = cpu_rq(dead_cpu);
4873	struct task_struct *next, *stop = rq->stop;
4874	int dest_cpu;
4875
4876	/*
4877	 * Fudge the rq selection such that the below task selection loop
4878	 * doesn't get stuck on the currently eligible stop task.
4879	 *
4880	 * We're currently inside stop_machine() and the rq is either stuck
4881	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4882	 * either way we should never end up calling schedule() until we're
4883	 * done here.
4884	 */
4885	rq->stop = NULL;
4886
4887	/*
4888	 * put_prev_task() and pick_next_task() sched
4889	 * class method both need to have an up-to-date
4890	 * value of rq->clock[_task]
4891	 */
4892	update_rq_clock(rq);
4893
4894	for ( ; ; ) {
4895		/*
4896		 * There's this thread running, bail when that's the only
4897		 * remaining thread.
4898		 */
4899		if (rq->nr_running == 1)
4900			break;
4901
4902		next = pick_next_task(rq, &fake_task);
4903		BUG_ON(!next);
4904		next->sched_class->put_prev_task(rq, next);
4905
4906		/* Find suitable destination for @next, with force if needed. */
4907		dest_cpu = select_fallback_rq(dead_cpu, next);
4908		raw_spin_unlock(&rq->lock);
4909
4910		__migrate_task(next, dead_cpu, dest_cpu);
4911
4912		raw_spin_lock(&rq->lock);
4913	}
4914
4915	rq->stop = stop;
4916}
4917
4918#endif /* CONFIG_HOTPLUG_CPU */
4919
4920#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4921
4922static struct ctl_table sd_ctl_dir[] = {
4923	{
4924		.procname	= "sched_domain",
4925		.mode		= 0555,
4926	},
4927	{}
4928};
4929
4930static struct ctl_table sd_ctl_root[] = {
4931	{
4932		.procname	= "kernel",
4933		.mode		= 0555,
4934		.child		= sd_ctl_dir,
4935	},
4936	{}
4937};
4938
4939static struct ctl_table *sd_alloc_ctl_entry(int n)
4940{
4941	struct ctl_table *entry =
4942		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4943
4944	return entry;
4945}
4946
4947static void sd_free_ctl_entry(struct ctl_table **tablep)
4948{
4949	struct ctl_table *entry;
4950
4951	/*
4952	 * In the intermediate directories, both the child directory and
4953	 * procname are dynamically allocated and could fail but the mode
4954	 * will always be set. In the lowest directory the names are
4955	 * static strings and all have proc handlers.
4956	 */
4957	for (entry = *tablep; entry->mode; entry++) {
4958		if (entry->child)
4959			sd_free_ctl_entry(&entry->child);
4960		if (entry->proc_handler == NULL)
4961			kfree(entry->procname);
4962	}
4963
4964	kfree(*tablep);
4965	*tablep = NULL;
4966}
4967
4968static int min_load_idx = 0;
4969static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4970
4971static void
4972set_table_entry(struct ctl_table *entry,
4973		const char *procname, void *data, int maxlen,
4974		umode_t mode, proc_handler *proc_handler,
4975		bool load_idx)
4976{
4977	entry->procname = procname;
4978	entry->data = data;
4979	entry->maxlen = maxlen;
4980	entry->mode = mode;
4981	entry->proc_handler = proc_handler;
4982
4983	if (load_idx) {
4984		entry->extra1 = &min_load_idx;
4985		entry->extra2 = &max_load_idx;
4986	}
4987}
4988
4989static struct ctl_table *
4990sd_alloc_ctl_domain_table(struct sched_domain *sd)
4991{
4992	struct ctl_table *table = sd_alloc_ctl_entry(14);
4993
4994	if (table == NULL)
4995		return NULL;
4996
4997	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4998		sizeof(long), 0644, proc_doulongvec_minmax, false);
4999	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5000		sizeof(long), 0644, proc_doulongvec_minmax, false);
5001	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5002		sizeof(int), 0644, proc_dointvec_minmax, true);
5003	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5004		sizeof(int), 0644, proc_dointvec_minmax, true);
5005	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5006		sizeof(int), 0644, proc_dointvec_minmax, true);
5007	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5008		sizeof(int), 0644, proc_dointvec_minmax, true);
5009	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5010		sizeof(int), 0644, proc_dointvec_minmax, true);
5011	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5012		sizeof(int), 0644, proc_dointvec_minmax, false);
5013	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5014		sizeof(int), 0644, proc_dointvec_minmax, false);
5015	set_table_entry(&table[9], "cache_nice_tries",
5016		&sd->cache_nice_tries,
5017		sizeof(int), 0644, proc_dointvec_minmax, false);
5018	set_table_entry(&table[10], "flags", &sd->flags,
5019		sizeof(int), 0644, proc_dointvec_minmax, false);
5020	set_table_entry(&table[11], "max_newidle_lb_cost",
5021		&sd->max_newidle_lb_cost,
5022		sizeof(long), 0644, proc_doulongvec_minmax, false);
5023	set_table_entry(&table[12], "name", sd->name,
5024		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5025	/* &table[13] is terminator */
5026
5027	return table;
5028}
5029
5030static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5031{
5032	struct ctl_table *entry, *table;
5033	struct sched_domain *sd;
5034	int domain_num = 0, i;
5035	char buf[32];
5036
5037	for_each_domain(cpu, sd)
5038		domain_num++;
5039	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5040	if (table == NULL)
5041		return NULL;
5042
5043	i = 0;
5044	for_each_domain(cpu, sd) {
5045		snprintf(buf, 32, "domain%d", i);
5046		entry->procname = kstrdup(buf, GFP_KERNEL);
5047		entry->mode = 0555;
5048		entry->child = sd_alloc_ctl_domain_table(sd);
5049		entry++;
5050		i++;
5051	}
5052	return table;
5053}
5054
5055static struct ctl_table_header *sd_sysctl_header;
5056static void register_sched_domain_sysctl(void)
5057{
5058	int i, cpu_num = num_possible_cpus();
5059	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5060	char buf[32];
5061
5062	WARN_ON(sd_ctl_dir[0].child);
5063	sd_ctl_dir[0].child = entry;
5064
5065	if (entry == NULL)
5066		return;
5067
5068	for_each_possible_cpu(i) {
5069		snprintf(buf, 32, "cpu%d", i);
5070		entry->procname = kstrdup(buf, GFP_KERNEL);
5071		entry->mode = 0555;
5072		entry->child = sd_alloc_ctl_cpu_table(i);
5073		entry++;
5074	}
5075
5076	WARN_ON(sd_sysctl_header);
5077	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5078}
5079
5080/* may be called multiple times per register */
5081static void unregister_sched_domain_sysctl(void)
5082{
5083	if (sd_sysctl_header)
5084		unregister_sysctl_table(sd_sysctl_header);
5085	sd_sysctl_header = NULL;
5086	if (sd_ctl_dir[0].child)
5087		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5088}
5089#else
5090static void register_sched_domain_sysctl(void)
5091{
5092}
5093static void unregister_sched_domain_sysctl(void)
5094{
5095}
5096#endif
5097
5098static void set_rq_online(struct rq *rq)
5099{
5100	if (!rq->online) {
5101		const struct sched_class *class;
5102
5103		cpumask_set_cpu(rq->cpu, rq->rd->online);
5104		rq->online = 1;
5105
5106		for_each_class(class) {
5107			if (class->rq_online)
5108				class->rq_online(rq);
5109		}
5110	}
5111}
5112
5113static void set_rq_offline(struct rq *rq)
5114{
5115	if (rq->online) {
5116		const struct sched_class *class;
5117
5118		for_each_class(class) {
5119			if (class->rq_offline)
5120				class->rq_offline(rq);
5121		}
5122
5123		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5124		rq->online = 0;
5125	}
5126}
5127
5128/*
5129 * migration_call - callback that gets triggered when a CPU is added.
5130 * Here we can start up the necessary migration thread for the new CPU.
5131 */
5132static int
5133migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5134{
5135	int cpu = (long)hcpu;
5136	unsigned long flags;
5137	struct rq *rq = cpu_rq(cpu);
5138
5139	switch (action & ~CPU_TASKS_FROZEN) {
5140
5141	case CPU_UP_PREPARE:
5142		rq->calc_load_update = calc_load_update;
5143		break;
5144
5145	case CPU_ONLINE:
5146		/* Update our root-domain */
5147		raw_spin_lock_irqsave(&rq->lock, flags);
5148		if (rq->rd) {
5149			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5150
5151			set_rq_online(rq);
5152		}
5153		raw_spin_unlock_irqrestore(&rq->lock, flags);
5154		break;
5155
5156#ifdef CONFIG_HOTPLUG_CPU
5157	case CPU_DYING:
5158		sched_ttwu_pending();
5159		/* Update our root-domain */
5160		raw_spin_lock_irqsave(&rq->lock, flags);
5161		if (rq->rd) {
5162			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5163			set_rq_offline(rq);
5164		}
5165		migrate_tasks(cpu);
5166		BUG_ON(rq->nr_running != 1); /* the migration thread */
5167		raw_spin_unlock_irqrestore(&rq->lock, flags);
5168		break;
5169
5170	case CPU_DEAD:
5171		calc_load_migrate(rq);
5172		break;
5173#endif
5174	}
5175
5176	update_max_interval();
5177
5178	return NOTIFY_OK;
5179}
5180
5181/*
5182 * Register at high priority so that task migration (migrate_all_tasks)
5183 * happens before everything else.  This has to be lower priority than
5184 * the notifier in the perf_event subsystem, though.
5185 */
5186static struct notifier_block migration_notifier = {
5187	.notifier_call = migration_call,
5188	.priority = CPU_PRI_MIGRATION,
5189};
5190
5191static void __cpuinit set_cpu_rq_start_time(void)
5192{
5193	int cpu = smp_processor_id();
5194	struct rq *rq = cpu_rq(cpu);
5195	rq->age_stamp = sched_clock_cpu(cpu);
5196}
5197
5198static int sched_cpu_active(struct notifier_block *nfb,
5199				      unsigned long action, void *hcpu)
5200{
5201	switch (action & ~CPU_TASKS_FROZEN) {
5202	case CPU_STARTING:
5203		set_cpu_rq_start_time();
5204		return NOTIFY_OK;
5205	case CPU_DOWN_FAILED:
5206		set_cpu_active((long)hcpu, true);
5207		return NOTIFY_OK;
5208	default:
5209		return NOTIFY_DONE;
5210	}
5211}
5212
5213static int sched_cpu_inactive(struct notifier_block *nfb,
5214					unsigned long action, void *hcpu)
5215{
5216	unsigned long flags;
5217	long cpu = (long)hcpu;
5218
5219	switch (action & ~CPU_TASKS_FROZEN) {
5220	case CPU_DOWN_PREPARE:
5221		set_cpu_active(cpu, false);
5222
5223		/* explicitly allow suspend */
5224		if (!(action & CPU_TASKS_FROZEN)) {
5225			struct dl_bw *dl_b = dl_bw_of(cpu);
5226			bool overflow;
5227			int cpus;
5228
5229			raw_spin_lock_irqsave(&dl_b->lock, flags);
5230			cpus = dl_bw_cpus(cpu);
5231			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5232			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5233
5234			if (overflow)
5235				return notifier_from_errno(-EBUSY);
5236		}
5237		return NOTIFY_OK;
5238	}
5239
5240	return NOTIFY_DONE;
5241}
5242
5243static int __init migration_init(void)
5244{
5245	void *cpu = (void *)(long)smp_processor_id();
5246	int err;
5247
5248	/* Initialize migration for the boot CPU */
5249	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5250	BUG_ON(err == NOTIFY_BAD);
5251	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5252	register_cpu_notifier(&migration_notifier);
5253
5254	/* Register cpu active notifiers */
5255	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5256	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5257
5258	return 0;
5259}
5260early_initcall(migration_init);
5261#endif
5262
5263#ifdef CONFIG_SMP
5264
5265static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5266
5267#ifdef CONFIG_SCHED_DEBUG
5268
5269static __read_mostly int sched_debug_enabled;
5270
5271static int __init sched_debug_setup(char *str)
5272{
5273	sched_debug_enabled = 1;
5274
5275	return 0;
5276}
5277early_param("sched_debug", sched_debug_setup);
5278
5279static inline bool sched_debug(void)
5280{
5281	return sched_debug_enabled;
5282}
5283
5284static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5285				  struct cpumask *groupmask)
5286{
5287	struct sched_group *group = sd->groups;
5288	char str[256];
5289
5290	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5291	cpumask_clear(groupmask);
5292
5293	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5294
5295	if (!(sd->flags & SD_LOAD_BALANCE)) {
5296		printk("does not load-balance\n");
5297		if (sd->parent)
5298			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5299					" has parent");
5300		return -1;
5301	}
5302
5303	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5304
5305	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5306		printk(KERN_ERR "ERROR: domain->span does not contain "
5307				"CPU%d\n", cpu);
5308	}
5309	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5310		printk(KERN_ERR "ERROR: domain->groups does not contain"
5311				" CPU%d\n", cpu);
5312	}
5313
5314	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5315	do {
5316		if (!group) {
5317			printk("\n");
5318			printk(KERN_ERR "ERROR: group is NULL\n");
5319			break;
5320		}
5321
5322		/*
5323		 * Even though we initialize ->capacity to something semi-sane,
5324		 * we leave capacity_orig unset. This allows us to detect if
5325		 * domain iteration is still funny without causing /0 traps.
5326		 */
5327		if (!group->sgc->capacity_orig) {
5328			printk(KERN_CONT "\n");
5329			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5330			break;
5331		}
5332
5333		if (!cpumask_weight(sched_group_cpus(group))) {
5334			printk(KERN_CONT "\n");
5335			printk(KERN_ERR "ERROR: empty group\n");
5336			break;
5337		}
5338
5339		if (!(sd->flags & SD_OVERLAP) &&
5340		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5341			printk(KERN_CONT "\n");
5342			printk(KERN_ERR "ERROR: repeated CPUs\n");
5343			break;
5344		}
5345
5346		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5347
5348		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5349
5350		printk(KERN_CONT " %s", str);
5351		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5352			printk(KERN_CONT " (cpu_capacity = %d)",
5353				group->sgc->capacity);
5354		}
5355
5356		group = group->next;
5357	} while (group != sd->groups);
5358	printk(KERN_CONT "\n");
5359
5360	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5361		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5362
5363	if (sd->parent &&
5364	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5365		printk(KERN_ERR "ERROR: parent span is not a superset "
5366			"of domain->span\n");
5367	return 0;
5368}
5369
5370static void sched_domain_debug(struct sched_domain *sd, int cpu)
5371{
5372	int level = 0;
5373
5374	if (!sched_debug_enabled)
5375		return;
5376
5377	if (!sd) {
5378		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5379		return;
5380	}
5381
5382	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5383
5384	for (;;) {
5385		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5386			break;
5387		level++;
5388		sd = sd->parent;
5389		if (!sd)
5390			break;
5391	}
5392}
5393#else /* !CONFIG_SCHED_DEBUG */
5394# define sched_domain_debug(sd, cpu) do { } while (0)
5395static inline bool sched_debug(void)
5396{
5397	return false;
5398}
5399#endif /* CONFIG_SCHED_DEBUG */
5400
5401static int sd_degenerate(struct sched_domain *sd)
5402{
5403	if (cpumask_weight(sched_domain_span(sd)) == 1)
5404		return 1;
5405
5406	/* Following flags need at least 2 groups */
5407	if (sd->flags & (SD_LOAD_BALANCE |
5408			 SD_BALANCE_NEWIDLE |
5409			 SD_BALANCE_FORK |
5410			 SD_BALANCE_EXEC |
5411			 SD_SHARE_CPUCAPACITY |
5412			 SD_SHARE_PKG_RESOURCES |
5413			 SD_SHARE_POWERDOMAIN)) {
5414		if (sd->groups != sd->groups->next)
5415			return 0;
5416	}
5417
5418	/* Following flags don't use groups */
5419	if (sd->flags & (SD_WAKE_AFFINE))
5420		return 0;
5421
5422	return 1;
5423}
5424
5425static int
5426sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5427{
5428	unsigned long cflags = sd->flags, pflags = parent->flags;
5429
5430	if (sd_degenerate(parent))
5431		return 1;
5432
5433	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5434		return 0;
5435
5436	/* Flags needing groups don't count if only 1 group in parent */
5437	if (parent->groups == parent->groups->next) {
5438		pflags &= ~(SD_LOAD_BALANCE |
5439				SD_BALANCE_NEWIDLE |
5440				SD_BALANCE_FORK |
5441				SD_BALANCE_EXEC |
5442				SD_SHARE_CPUCAPACITY |
5443				SD_SHARE_PKG_RESOURCES |
5444				SD_PREFER_SIBLING |
5445				SD_SHARE_POWERDOMAIN);
5446		if (nr_node_ids == 1)
5447			pflags &= ~SD_SERIALIZE;
5448	}
5449	if (~cflags & pflags)
5450		return 0;
5451
5452	return 1;
5453}
5454
5455static void free_rootdomain(struct rcu_head *rcu)
5456{
5457	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5458
5459	cpupri_cleanup(&rd->cpupri);
5460	cpudl_cleanup(&rd->cpudl);
5461	free_cpumask_var(rd->dlo_mask);
5462	free_cpumask_var(rd->rto_mask);
5463	free_cpumask_var(rd->online);
5464	free_cpumask_var(rd->span);
5465	kfree(rd);
5466}
5467
5468static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5469{
5470	struct root_domain *old_rd = NULL;
5471	unsigned long flags;
5472
5473	raw_spin_lock_irqsave(&rq->lock, flags);
5474
5475	if (rq->rd) {
5476		old_rd = rq->rd;
5477
5478		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5479			set_rq_offline(rq);
5480
5481		cpumask_clear_cpu(rq->cpu, old_rd->span);
5482
5483		/*
5484		 * If we dont want to free the old_rd yet then
5485		 * set old_rd to NULL to skip the freeing later
5486		 * in this function:
5487		 */
5488		if (!atomic_dec_and_test(&old_rd->refcount))
5489			old_rd = NULL;
5490	}
5491
5492	atomic_inc(&rd->refcount);
5493	rq->rd = rd;
5494
5495	cpumask_set_cpu(rq->cpu, rd->span);
5496	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5497		set_rq_online(rq);
5498
5499	raw_spin_unlock_irqrestore(&rq->lock, flags);
5500
5501	if (old_rd)
5502		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5503}
5504
5505static int init_rootdomain(struct root_domain *rd)
5506{
5507	memset(rd, 0, sizeof(*rd));
5508
5509	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5510		goto out;
5511	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5512		goto free_span;
5513	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5514		goto free_online;
5515	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5516		goto free_dlo_mask;
5517
5518	init_dl_bw(&rd->dl_bw);
5519	if (cpudl_init(&rd->cpudl) != 0)
5520		goto free_dlo_mask;
5521
5522	if (cpupri_init(&rd->cpupri) != 0)
5523		goto free_rto_mask;
5524	return 0;
5525
5526free_rto_mask:
5527	free_cpumask_var(rd->rto_mask);
5528free_dlo_mask:
5529	free_cpumask_var(rd->dlo_mask);
5530free_online:
5531	free_cpumask_var(rd->online);
5532free_span:
5533	free_cpumask_var(rd->span);
5534out:
5535	return -ENOMEM;
5536}
5537
5538/*
5539 * By default the system creates a single root-domain with all cpus as
5540 * members (mimicking the global state we have today).
5541 */
5542struct root_domain def_root_domain;
5543
5544static void init_defrootdomain(void)
5545{
5546	init_rootdomain(&def_root_domain);
5547
5548	atomic_set(&def_root_domain.refcount, 1);
5549}
5550
5551static struct root_domain *alloc_rootdomain(void)
5552{
5553	struct root_domain *rd;
5554
5555	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5556	if (!rd)
5557		return NULL;
5558
5559	if (init_rootdomain(rd) != 0) {
5560		kfree(rd);
5561		return NULL;
5562	}
5563
5564	return rd;
5565}
5566
5567static void free_sched_groups(struct sched_group *sg, int free_sgc)
5568{
5569	struct sched_group *tmp, *first;
5570
5571	if (!sg)
5572		return;
5573
5574	first = sg;
5575	do {
5576		tmp = sg->next;
5577
5578		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5579			kfree(sg->sgc);
5580
5581		kfree(sg);
5582		sg = tmp;
5583	} while (sg != first);
5584}
5585
5586static void free_sched_domain(struct rcu_head *rcu)
5587{
5588	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5589
5590	/*
5591	 * If its an overlapping domain it has private groups, iterate and
5592	 * nuke them all.
5593	 */
5594	if (sd->flags & SD_OVERLAP) {
5595		free_sched_groups(sd->groups, 1);
5596	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5597		kfree(sd->groups->sgc);
5598		kfree(sd->groups);
5599	}
5600	kfree(sd);
5601}
5602
5603static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5604{
5605	call_rcu(&sd->rcu, free_sched_domain);
5606}
5607
5608static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5609{
5610	for (; sd; sd = sd->parent)
5611		destroy_sched_domain(sd, cpu);
5612}
5613
5614/*
5615 * Keep a special pointer to the highest sched_domain that has
5616 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5617 * allows us to avoid some pointer chasing select_idle_sibling().
5618 *
5619 * Also keep a unique ID per domain (we use the first cpu number in
5620 * the cpumask of the domain), this allows us to quickly tell if
5621 * two cpus are in the same cache domain, see cpus_share_cache().
5622 */
5623DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5624DEFINE_PER_CPU(int, sd_llc_size);
5625DEFINE_PER_CPU(int, sd_llc_id);
5626DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5627DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5628DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5629
5630static void update_top_cache_domain(int cpu)
5631{
5632	struct sched_domain *sd;
5633	struct sched_domain *busy_sd = NULL;
5634	int id = cpu;
5635	int size = 1;
5636
5637	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5638	if (sd) {
5639		id = cpumask_first(sched_domain_span(sd));
5640		size = cpumask_weight(sched_domain_span(sd));
5641		busy_sd = sd->parent; /* sd_busy */
5642	}
5643	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5644
5645	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5646	per_cpu(sd_llc_size, cpu) = size;
5647	per_cpu(sd_llc_id, cpu) = id;
5648
5649	sd = lowest_flag_domain(cpu, SD_NUMA);
5650	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5651
5652	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5653	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5654}
5655
5656/*
5657 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5658 * hold the hotplug lock.
5659 */
5660static void
5661cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5662{
5663	struct rq *rq = cpu_rq(cpu);
5664	struct sched_domain *tmp;
5665
5666	/* Remove the sched domains which do not contribute to scheduling. */
5667	for (tmp = sd; tmp; ) {
5668		struct sched_domain *parent = tmp->parent;
5669		if (!parent)
5670			break;
5671
5672		if (sd_parent_degenerate(tmp, parent)) {
5673			tmp->parent = parent->parent;
5674			if (parent->parent)
5675				parent->parent->child = tmp;
5676			/*
5677			 * Transfer SD_PREFER_SIBLING down in case of a
5678			 * degenerate parent; the spans match for this
5679			 * so the property transfers.
5680			 */
5681			if (parent->flags & SD_PREFER_SIBLING)
5682				tmp->flags |= SD_PREFER_SIBLING;
5683			destroy_sched_domain(parent, cpu);
5684		} else
5685			tmp = tmp->parent;
5686	}
5687
5688	if (sd && sd_degenerate(sd)) {
5689		tmp = sd;
5690		sd = sd->parent;
5691		destroy_sched_domain(tmp, cpu);
5692		if (sd)
5693			sd->child = NULL;
5694	}
5695
5696	sched_domain_debug(sd, cpu);
5697
5698	rq_attach_root(rq, rd);
5699	tmp = rq->sd;
5700	rcu_assign_pointer(rq->sd, sd);
5701	destroy_sched_domains(tmp, cpu);
5702
5703	update_top_cache_domain(cpu);
5704}
5705
5706/* cpus with isolated domains */
5707static cpumask_var_t cpu_isolated_map;
5708
5709/* Setup the mask of cpus configured for isolated domains */
5710static int __init isolated_cpu_setup(char *str)
5711{
5712	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5713	cpulist_parse(str, cpu_isolated_map);
5714	return 1;
5715}
5716
5717__setup("isolcpus=", isolated_cpu_setup);
5718
5719struct s_data {
5720	struct sched_domain ** __percpu sd;
5721	struct root_domain	*rd;
5722};
5723
5724enum s_alloc {
5725	sa_rootdomain,
5726	sa_sd,
5727	sa_sd_storage,
5728	sa_none,
5729};
5730
5731/*
5732 * Build an iteration mask that can exclude certain CPUs from the upwards
5733 * domain traversal.
5734 *
5735 * Asymmetric node setups can result in situations where the domain tree is of
5736 * unequal depth, make sure to skip domains that already cover the entire
5737 * range.
5738 *
5739 * In that case build_sched_domains() will have terminated the iteration early
5740 * and our sibling sd spans will be empty. Domains should always include the
5741 * cpu they're built on, so check that.
5742 *
5743 */
5744static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5745{
5746	const struct cpumask *span = sched_domain_span(sd);
5747	struct sd_data *sdd = sd->private;
5748	struct sched_domain *sibling;
5749	int i;
5750
5751	for_each_cpu(i, span) {
5752		sibling = *per_cpu_ptr(sdd->sd, i);
5753		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5754			continue;
5755
5756		cpumask_set_cpu(i, sched_group_mask(sg));
5757	}
5758}
5759
5760/*
5761 * Return the canonical balance cpu for this group, this is the first cpu
5762 * of this group that's also in the iteration mask.
5763 */
5764int group_balance_cpu(struct sched_group *sg)
5765{
5766	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5767}
5768
5769static int
5770build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5771{
5772	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5773	const struct cpumask *span = sched_domain_span(sd);
5774	struct cpumask *covered = sched_domains_tmpmask;
5775	struct sd_data *sdd = sd->private;
5776	struct sched_domain *sibling;
5777	int i;
5778
5779	cpumask_clear(covered);
5780
5781	for_each_cpu(i, span) {
5782		struct cpumask *sg_span;
5783
5784		if (cpumask_test_cpu(i, covered))
5785			continue;
5786
5787		sibling = *per_cpu_ptr(sdd->sd, i);
5788
5789		/* See the comment near build_group_mask(). */
5790		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5791			continue;
5792
5793		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5794				GFP_KERNEL, cpu_to_node(cpu));
5795
5796		if (!sg)
5797			goto fail;
5798
5799		sg_span = sched_group_cpus(sg);
5800		if (sibling->child)
5801			cpumask_copy(sg_span, sched_domain_span(sibling->child));
5802		else
5803			cpumask_set_cpu(i, sg_span);
5804
5805		cpumask_or(covered, covered, sg_span);
5806
5807		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5808		if (atomic_inc_return(&sg->sgc->ref) == 1)
5809			build_group_mask(sd, sg);
5810
5811		/*
5812		 * Initialize sgc->capacity such that even if we mess up the
5813		 * domains and no possible iteration will get us here, we won't
5814		 * die on a /0 trap.
5815		 */
5816		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5817		sg->sgc->capacity_orig = sg->sgc->capacity;
5818
5819		/*
5820		 * Make sure the first group of this domain contains the
5821		 * canonical balance cpu. Otherwise the sched_domain iteration
5822		 * breaks. See update_sg_lb_stats().
5823		 */
5824		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5825		    group_balance_cpu(sg) == cpu)
5826			groups = sg;
5827
5828		if (!first)
5829			first = sg;
5830		if (last)
5831			last->next = sg;
5832		last = sg;
5833		last->next = first;
5834	}
5835	sd->groups = groups;
5836
5837	return 0;
5838
5839fail:
5840	free_sched_groups(first, 0);
5841
5842	return -ENOMEM;
5843}
5844
5845static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5846{
5847	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5848	struct sched_domain *child = sd->child;
5849
5850	if (child)
5851		cpu = cpumask_first(sched_domain_span(child));
5852
5853	if (sg) {
5854		*sg = *per_cpu_ptr(sdd->sg, cpu);
5855		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5856		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5857	}
5858
5859	return cpu;
5860}
5861
5862/*
5863 * build_sched_groups will build a circular linked list of the groups
5864 * covered by the given span, and will set each group's ->cpumask correctly,
5865 * and ->cpu_capacity to 0.
5866 *
5867 * Assumes the sched_domain tree is fully constructed
5868 */
5869static int
5870build_sched_groups(struct sched_domain *sd, int cpu)
5871{
5872	struct sched_group *first = NULL, *last = NULL;
5873	struct sd_data *sdd = sd->private;
5874	const struct cpumask *span = sched_domain_span(sd);
5875	struct cpumask *covered;
5876	int i;
5877
5878	get_group(cpu, sdd, &sd->groups);
5879	atomic_inc(&sd->groups->ref);
5880
5881	if (cpu != cpumask_first(span))
5882		return 0;
5883
5884	lockdep_assert_held(&sched_domains_mutex);
5885	covered = sched_domains_tmpmask;
5886
5887	cpumask_clear(covered);
5888
5889	for_each_cpu(i, span) {
5890		struct sched_group *sg;
5891		int group, j;
5892
5893		if (cpumask_test_cpu(i, covered))
5894			continue;
5895
5896		group = get_group(i, sdd, &sg);
5897		cpumask_setall(sched_group_mask(sg));
5898
5899		for_each_cpu(j, span) {
5900			if (get_group(j, sdd, NULL) != group)
5901				continue;
5902
5903			cpumask_set_cpu(j, covered);
5904			cpumask_set_cpu(j, sched_group_cpus(sg));
5905		}
5906
5907		if (!first)
5908			first = sg;
5909		if (last)
5910			last->next = sg;
5911		last = sg;
5912	}
5913	last->next = first;
5914
5915	return 0;
5916}
5917
5918/*
5919 * Initialize sched groups cpu_capacity.
5920 *
5921 * cpu_capacity indicates the capacity of sched group, which is used while
5922 * distributing the load between different sched groups in a sched domain.
5923 * Typically cpu_capacity for all the groups in a sched domain will be same
5924 * unless there are asymmetries in the topology. If there are asymmetries,
5925 * group having more cpu_capacity will pickup more load compared to the
5926 * group having less cpu_capacity.
5927 */
5928static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5929{
5930	struct sched_group *sg = sd->groups;
5931
5932	WARN_ON(!sg);
5933
5934	do {
5935		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5936		sg = sg->next;
5937	} while (sg != sd->groups);
5938
5939	if (cpu != group_balance_cpu(sg))
5940		return;
5941
5942	update_group_capacity(sd, cpu);
5943	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5944}
5945
5946/*
5947 * Initializers for schedule domains
5948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5949 */
5950
5951static int default_relax_domain_level = -1;
5952int sched_domain_level_max;
5953
5954static int __init setup_relax_domain_level(char *str)
5955{
5956	if (kstrtoint(str, 0, &default_relax_domain_level))
5957		pr_warn("Unable to set relax_domain_level\n");
5958
5959	return 1;
5960}
5961__setup("relax_domain_level=", setup_relax_domain_level);
5962
5963static void set_domain_attribute(struct sched_domain *sd,
5964				 struct sched_domain_attr *attr)
5965{
5966	int request;
5967
5968	if (!attr || attr->relax_domain_level < 0) {
5969		if (default_relax_domain_level < 0)
5970			return;
5971		else
5972			request = default_relax_domain_level;
5973	} else
5974		request = attr->relax_domain_level;
5975	if (request < sd->level) {
5976		/* turn off idle balance on this domain */
5977		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5978	} else {
5979		/* turn on idle balance on this domain */
5980		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5981	}
5982}
5983
5984static void __sdt_free(const struct cpumask *cpu_map);
5985static int __sdt_alloc(const struct cpumask *cpu_map);
5986
5987static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5988				 const struct cpumask *cpu_map)
5989{
5990	switch (what) {
5991	case sa_rootdomain:
5992		if (!atomic_read(&d->rd->refcount))
5993			free_rootdomain(&d->rd->rcu); /* fall through */
5994	case sa_sd:
5995		free_percpu(d->sd); /* fall through */
5996	case sa_sd_storage:
5997		__sdt_free(cpu_map); /* fall through */
5998	case sa_none:
5999		break;
6000	}
6001}
6002
6003static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6004						   const struct cpumask *cpu_map)
6005{
6006	memset(d, 0, sizeof(*d));
6007
6008	if (__sdt_alloc(cpu_map))
6009		return sa_sd_storage;
6010	d->sd = alloc_percpu(struct sched_domain *);
6011	if (!d->sd)
6012		return sa_sd_storage;
6013	d->rd = alloc_rootdomain();
6014	if (!d->rd)
6015		return sa_sd;
6016	return sa_rootdomain;
6017}
6018
6019/*
6020 * NULL the sd_data elements we've used to build the sched_domain and
6021 * sched_group structure so that the subsequent __free_domain_allocs()
6022 * will not free the data we're using.
6023 */
6024static void claim_allocations(int cpu, struct sched_domain *sd)
6025{
6026	struct sd_data *sdd = sd->private;
6027
6028	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6029	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6030
6031	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6032		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6033
6034	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6035		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6036}
6037
6038#ifdef CONFIG_NUMA
6039static int sched_domains_numa_levels;
6040static int *sched_domains_numa_distance;
6041static struct cpumask ***sched_domains_numa_masks;
6042static int sched_domains_curr_level;
6043#endif
6044
6045/*
6046 * SD_flags allowed in topology descriptions.
6047 *
6048 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6049 * SD_SHARE_PKG_RESOURCES - describes shared caches
6050 * SD_NUMA                - describes NUMA topologies
6051 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6052 *
6053 * Odd one out:
6054 * SD_ASYM_PACKING        - describes SMT quirks
6055 */
6056#define TOPOLOGY_SD_FLAGS		\
6057	(SD_SHARE_CPUCAPACITY |		\
6058	 SD_SHARE_PKG_RESOURCES |	\
6059	 SD_NUMA |			\
6060	 SD_ASYM_PACKING |		\
6061	 SD_SHARE_POWERDOMAIN)
6062
6063static struct sched_domain *
6064sd_init(struct sched_domain_topology_level *tl, int cpu)
6065{
6066	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6067	int sd_weight, sd_flags = 0;
6068
6069#ifdef CONFIG_NUMA
6070	/*
6071	 * Ugly hack to pass state to sd_numa_mask()...
6072	 */
6073	sched_domains_curr_level = tl->numa_level;
6074#endif
6075
6076	sd_weight = cpumask_weight(tl->mask(cpu));
6077
6078	if (tl->sd_flags)
6079		sd_flags = (*tl->sd_flags)();
6080	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6081			"wrong sd_flags in topology description\n"))
6082		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6083
6084	*sd = (struct sched_domain){
6085		.min_interval		= sd_weight,
6086		.max_interval		= 2*sd_weight,
6087		.busy_factor		= 32,
6088		.imbalance_pct		= 125,
6089
6090		.cache_nice_tries	= 0,
6091		.busy_idx		= 0,
6092		.idle_idx		= 0,
6093		.newidle_idx		= 0,
6094		.wake_idx		= 0,
6095		.forkexec_idx		= 0,
6096
6097		.flags			= 1*SD_LOAD_BALANCE
6098					| 1*SD_BALANCE_NEWIDLE
6099					| 1*SD_BALANCE_EXEC
6100					| 1*SD_BALANCE_FORK
6101					| 0*SD_BALANCE_WAKE
6102					| 1*SD_WAKE_AFFINE
6103					| 0*SD_SHARE_CPUCAPACITY
6104					| 0*SD_SHARE_PKG_RESOURCES
6105					| 0*SD_SERIALIZE
6106					| 0*SD_PREFER_SIBLING
6107					| 0*SD_NUMA
6108					| sd_flags
6109					,
6110
6111		.last_balance		= jiffies,
6112		.balance_interval	= sd_weight,
6113		.smt_gain		= 0,
6114		.max_newidle_lb_cost	= 0,
6115		.next_decay_max_lb_cost	= jiffies,
6116#ifdef CONFIG_SCHED_DEBUG
6117		.name			= tl->name,
6118#endif
6119	};
6120
6121	/*
6122	 * Convert topological properties into behaviour.
6123	 */
6124
6125	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6126		sd->imbalance_pct = 110;
6127		sd->smt_gain = 1178; /* ~15% */
6128
6129	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6130		sd->imbalance_pct = 117;
6131		sd->cache_nice_tries = 1;
6132		sd->busy_idx = 2;
6133
6134#ifdef CONFIG_NUMA
6135	} else if (sd->flags & SD_NUMA) {
6136		sd->cache_nice_tries = 2;
6137		sd->busy_idx = 3;
6138		sd->idle_idx = 2;
6139
6140		sd->flags |= SD_SERIALIZE;
6141		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6142			sd->flags &= ~(SD_BALANCE_EXEC |
6143				       SD_BALANCE_FORK |
6144				       SD_WAKE_AFFINE);
6145		}
6146
6147#endif
6148	} else {
6149		sd->flags |= SD_PREFER_SIBLING;
6150		sd->cache_nice_tries = 1;
6151		sd->busy_idx = 2;
6152		sd->idle_idx = 1;
6153	}
6154
6155	sd->private = &tl->data;
6156
6157	return sd;
6158}
6159
6160/*
6161 * Topology list, bottom-up.
6162 */
6163static struct sched_domain_topology_level default_topology[] = {
6164#ifdef CONFIG_SCHED_SMT
6165	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6166#endif
6167#ifdef CONFIG_SCHED_MC
6168	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6169#endif
6170	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6171	{ NULL, },
6172};
6173
6174struct sched_domain_topology_level *sched_domain_topology = default_topology;
6175
6176#define for_each_sd_topology(tl)			\
6177	for (tl = sched_domain_topology; tl->mask; tl++)
6178
6179void set_sched_topology(struct sched_domain_topology_level *tl)
6180{
6181	sched_domain_topology = tl;
6182}
6183
6184#ifdef CONFIG_NUMA
6185
6186static const struct cpumask *sd_numa_mask(int cpu)
6187{
6188	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6189}
6190
6191static void sched_numa_warn(const char *str)
6192{
6193	static int done = false;
6194	int i,j;
6195
6196	if (done)
6197		return;
6198
6199	done = true;
6200
6201	printk(KERN_WARNING "ERROR: %s\n\n", str);
6202
6203	for (i = 0; i < nr_node_ids; i++) {
6204		printk(KERN_WARNING "  ");
6205		for (j = 0; j < nr_node_ids; j++)
6206			printk(KERN_CONT "%02d ", node_distance(i,j));
6207		printk(KERN_CONT "\n");
6208	}
6209	printk(KERN_WARNING "\n");
6210}
6211
6212static bool find_numa_distance(int distance)
6213{
6214	int i;
6215
6216	if (distance == node_distance(0, 0))
6217		return true;
6218
6219	for (i = 0; i < sched_domains_numa_levels; i++) {
6220		if (sched_domains_numa_distance[i] == distance)
6221			return true;
6222	}
6223
6224	return false;
6225}
6226
6227static void sched_init_numa(void)
6228{
6229	int next_distance, curr_distance = node_distance(0, 0);
6230	struct sched_domain_topology_level *tl;
6231	int level = 0;
6232	int i, j, k;
6233
6234	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6235	if (!sched_domains_numa_distance)
6236		return;
6237
6238	/*
6239	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6240	 * unique distances in the node_distance() table.
6241	 *
6242	 * Assumes node_distance(0,j) includes all distances in
6243	 * node_distance(i,j) in order to avoid cubic time.
6244	 */
6245	next_distance = curr_distance;
6246	for (i = 0; i < nr_node_ids; i++) {
6247		for (j = 0; j < nr_node_ids; j++) {
6248			for (k = 0; k < nr_node_ids; k++) {
6249				int distance = node_distance(i, k);
6250
6251				if (distance > curr_distance &&
6252				    (distance < next_distance ||
6253				     next_distance == curr_distance))
6254					next_distance = distance;
6255
6256				/*
6257				 * While not a strong assumption it would be nice to know
6258				 * about cases where if node A is connected to B, B is not
6259				 * equally connected to A.
6260				 */
6261				if (sched_debug() && node_distance(k, i) != distance)
6262					sched_numa_warn("Node-distance not symmetric");
6263
6264				if (sched_debug() && i && !find_numa_distance(distance))
6265					sched_numa_warn("Node-0 not representative");
6266			}
6267			if (next_distance != curr_distance) {
6268				sched_domains_numa_distance[level++] = next_distance;
6269				sched_domains_numa_levels = level;
6270				curr_distance = next_distance;
6271			} else break;
6272		}
6273
6274		/*
6275		 * In case of sched_debug() we verify the above assumption.
6276		 */
6277		if (!sched_debug())
6278			break;
6279	}
6280	/*
6281	 * 'level' contains the number of unique distances, excluding the
6282	 * identity distance node_distance(i,i).
6283	 *
6284	 * The sched_domains_numa_distance[] array includes the actual distance
6285	 * numbers.
6286	 */
6287
6288	/*
6289	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6290	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6291	 * the array will contain less then 'level' members. This could be
6292	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6293	 * in other functions.
6294	 *
6295	 * We reset it to 'level' at the end of this function.
6296	 */
6297	sched_domains_numa_levels = 0;
6298
6299	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6300	if (!sched_domains_numa_masks)
6301		return;
6302
6303	/*
6304	 * Now for each level, construct a mask per node which contains all
6305	 * cpus of nodes that are that many hops away from us.
6306	 */
6307	for (i = 0; i < level; i++) {
6308		sched_domains_numa_masks[i] =
6309			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6310		if (!sched_domains_numa_masks[i])
6311			return;
6312
6313		for (j = 0; j < nr_node_ids; j++) {
6314			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6315			if (!mask)
6316				return;
6317
6318			sched_domains_numa_masks[i][j] = mask;
6319
6320			for (k = 0; k < nr_node_ids; k++) {
6321				if (node_distance(j, k) > sched_domains_numa_distance[i])
6322					continue;
6323
6324				cpumask_or(mask, mask, cpumask_of_node(k));
6325			}
6326		}
6327	}
6328
6329	/* Compute default topology size */
6330	for (i = 0; sched_domain_topology[i].mask; i++);
6331
6332	tl = kzalloc((i + level + 1) *
6333			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6334	if (!tl)
6335		return;
6336
6337	/*
6338	 * Copy the default topology bits..
6339	 */
6340	for (i = 0; sched_domain_topology[i].mask; i++)
6341		tl[i] = sched_domain_topology[i];
6342
6343	/*
6344	 * .. and append 'j' levels of NUMA goodness.
6345	 */
6346	for (j = 0; j < level; i++, j++) {
6347		tl[i] = (struct sched_domain_topology_level){
6348			.mask = sd_numa_mask,
6349			.sd_flags = cpu_numa_flags,
6350			.flags = SDTL_OVERLAP,
6351			.numa_level = j,
6352			SD_INIT_NAME(NUMA)
6353		};
6354	}
6355
6356	sched_domain_topology = tl;
6357
6358	sched_domains_numa_levels = level;
6359}
6360
6361static void sched_domains_numa_masks_set(int cpu)
6362{
6363	int i, j;
6364	int node = cpu_to_node(cpu);
6365
6366	for (i = 0; i < sched_domains_numa_levels; i++) {
6367		for (j = 0; j < nr_node_ids; j++) {
6368			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6369				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6370		}
6371	}
6372}
6373
6374static void sched_domains_numa_masks_clear(int cpu)
6375{
6376	int i, j;
6377	for (i = 0; i < sched_domains_numa_levels; i++) {
6378		for (j = 0; j < nr_node_ids; j++)
6379			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6380	}
6381}
6382
6383/*
6384 * Update sched_domains_numa_masks[level][node] array when new cpus
6385 * are onlined.
6386 */
6387static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6388					   unsigned long action,
6389					   void *hcpu)
6390{
6391	int cpu = (long)hcpu;
6392
6393	switch (action & ~CPU_TASKS_FROZEN) {
6394	case CPU_ONLINE:
6395		sched_domains_numa_masks_set(cpu);
6396		break;
6397
6398	case CPU_DEAD:
6399		sched_domains_numa_masks_clear(cpu);
6400		break;
6401
6402	default:
6403		return NOTIFY_DONE;
6404	}
6405
6406	return NOTIFY_OK;
6407}
6408#else
6409static inline void sched_init_numa(void)
6410{
6411}
6412
6413static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6414					   unsigned long action,
6415					   void *hcpu)
6416{
6417	return 0;
6418}
6419#endif /* CONFIG_NUMA */
6420
6421static int __sdt_alloc(const struct cpumask *cpu_map)
6422{
6423	struct sched_domain_topology_level *tl;
6424	int j;
6425
6426	for_each_sd_topology(tl) {
6427		struct sd_data *sdd = &tl->data;
6428
6429		sdd->sd = alloc_percpu(struct sched_domain *);
6430		if (!sdd->sd)
6431			return -ENOMEM;
6432
6433		sdd->sg = alloc_percpu(struct sched_group *);
6434		if (!sdd->sg)
6435			return -ENOMEM;
6436
6437		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6438		if (!sdd->sgc)
6439			return -ENOMEM;
6440
6441		for_each_cpu(j, cpu_map) {
6442			struct sched_domain *sd;
6443			struct sched_group *sg;
6444			struct sched_group_capacity *sgc;
6445
6446		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6447					GFP_KERNEL, cpu_to_node(j));
6448			if (!sd)
6449				return -ENOMEM;
6450
6451			*per_cpu_ptr(sdd->sd, j) = sd;
6452
6453			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6454					GFP_KERNEL, cpu_to_node(j));
6455			if (!sg)
6456				return -ENOMEM;
6457
6458			sg->next = sg;
6459
6460			*per_cpu_ptr(sdd->sg, j) = sg;
6461
6462			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6463					GFP_KERNEL, cpu_to_node(j));
6464			if (!sgc)
6465				return -ENOMEM;
6466
6467			*per_cpu_ptr(sdd->sgc, j) = sgc;
6468		}
6469	}
6470
6471	return 0;
6472}
6473
6474static void __sdt_free(const struct cpumask *cpu_map)
6475{
6476	struct sched_domain_topology_level *tl;
6477	int j;
6478
6479	for_each_sd_topology(tl) {
6480		struct sd_data *sdd = &tl->data;
6481
6482		for_each_cpu(j, cpu_map) {
6483			struct sched_domain *sd;
6484
6485			if (sdd->sd) {
6486				sd = *per_cpu_ptr(sdd->sd, j);
6487				if (sd && (sd->flags & SD_OVERLAP))
6488					free_sched_groups(sd->groups, 0);
6489				kfree(*per_cpu_ptr(sdd->sd, j));
6490			}
6491
6492			if (sdd->sg)
6493				kfree(*per_cpu_ptr(sdd->sg, j));
6494			if (sdd->sgc)
6495				kfree(*per_cpu_ptr(sdd->sgc, j));
6496		}
6497		free_percpu(sdd->sd);
6498		sdd->sd = NULL;
6499		free_percpu(sdd->sg);
6500		sdd->sg = NULL;
6501		free_percpu(sdd->sgc);
6502		sdd->sgc = NULL;
6503	}
6504}
6505
6506struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6507		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6508		struct sched_domain *child, int cpu)
6509{
6510	struct sched_domain *sd = sd_init(tl, cpu);
6511	if (!sd)
6512		return child;
6513
6514	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6515	if (child) {
6516		sd->level = child->level + 1;
6517		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6518		child->parent = sd;
6519		sd->child = child;
6520
6521		if (!cpumask_subset(sched_domain_span(child),
6522				    sched_domain_span(sd))) {
6523			pr_err("BUG: arch topology borken\n");
6524#ifdef CONFIG_SCHED_DEBUG
6525			pr_err("     the %s domain not a subset of the %s domain\n",
6526					child->name, sd->name);
6527#endif
6528			/* Fixup, ensure @sd has at least @child cpus. */
6529			cpumask_or(sched_domain_span(sd),
6530				   sched_domain_span(sd),
6531				   sched_domain_span(child));
6532		}
6533
6534	}
6535	set_domain_attribute(sd, attr);
6536
6537	return sd;
6538}
6539
6540/*
6541 * Build sched domains for a given set of cpus and attach the sched domains
6542 * to the individual cpus
6543 */
6544static int build_sched_domains(const struct cpumask *cpu_map,
6545			       struct sched_domain_attr *attr)
6546{
6547	enum s_alloc alloc_state;
6548	struct sched_domain *sd;
6549	struct s_data d;
6550	int i, ret = -ENOMEM;
6551
6552	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6553	if (alloc_state != sa_rootdomain)
6554		goto error;
6555
6556	/* Set up domains for cpus specified by the cpu_map. */
6557	for_each_cpu(i, cpu_map) {
6558		struct sched_domain_topology_level *tl;
6559
6560		sd = NULL;
6561		for_each_sd_topology(tl) {
6562			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6563			if (tl == sched_domain_topology)
6564				*per_cpu_ptr(d.sd, i) = sd;
6565			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6566				sd->flags |= SD_OVERLAP;
6567			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6568				break;
6569		}
6570	}
6571
6572	/* Build the groups for the domains */
6573	for_each_cpu(i, cpu_map) {
6574		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6575			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6576			if (sd->flags & SD_OVERLAP) {
6577				if (build_overlap_sched_groups(sd, i))
6578					goto error;
6579			} else {
6580				if (build_sched_groups(sd, i))
6581					goto error;
6582			}
6583		}
6584	}
6585
6586	/* Calculate CPU capacity for physical packages and nodes */
6587	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6588		if (!cpumask_test_cpu(i, cpu_map))
6589			continue;
6590
6591		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6592			claim_allocations(i, sd);
6593			init_sched_groups_capacity(i, sd);
6594		}
6595	}
6596
6597	/* Attach the domains */
6598	rcu_read_lock();
6599	for_each_cpu(i, cpu_map) {
6600		sd = *per_cpu_ptr(d.sd, i);
6601		cpu_attach_domain(sd, d.rd, i);
6602	}
6603	rcu_read_unlock();
6604
6605	ret = 0;
6606error:
6607	__free_domain_allocs(&d, alloc_state, cpu_map);
6608	return ret;
6609}
6610
6611static cpumask_var_t *doms_cur;	/* current sched domains */
6612static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6613static struct sched_domain_attr *dattr_cur;
6614				/* attribues of custom domains in 'doms_cur' */
6615
6616/*
6617 * Special case: If a kmalloc of a doms_cur partition (array of
6618 * cpumask) fails, then fallback to a single sched domain,
6619 * as determined by the single cpumask fallback_doms.
6620 */
6621static cpumask_var_t fallback_doms;
6622
6623/*
6624 * arch_update_cpu_topology lets virtualized architectures update the
6625 * cpu core maps. It is supposed to return 1 if the topology changed
6626 * or 0 if it stayed the same.
6627 */
6628int __weak arch_update_cpu_topology(void)
6629{
6630	return 0;
6631}
6632
6633cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6634{
6635	int i;
6636	cpumask_var_t *doms;
6637
6638	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6639	if (!doms)
6640		return NULL;
6641	for (i = 0; i < ndoms; i++) {
6642		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6643			free_sched_domains(doms, i);
6644			return NULL;
6645		}
6646	}
6647	return doms;
6648}
6649
6650void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6651{
6652	unsigned int i;
6653	for (i = 0; i < ndoms; i++)
6654		free_cpumask_var(doms[i]);
6655	kfree(doms);
6656}
6657
6658/*
6659 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6660 * For now this just excludes isolated cpus, but could be used to
6661 * exclude other special cases in the future.
6662 */
6663static int init_sched_domains(const struct cpumask *cpu_map)
6664{
6665	int err;
6666
6667	arch_update_cpu_topology();
6668	ndoms_cur = 1;
6669	doms_cur = alloc_sched_domains(ndoms_cur);
6670	if (!doms_cur)
6671		doms_cur = &fallback_doms;
6672	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6673	err = build_sched_domains(doms_cur[0], NULL);
6674	register_sched_domain_sysctl();
6675
6676	return err;
6677}
6678
6679/*
6680 * Detach sched domains from a group of cpus specified in cpu_map
6681 * These cpus will now be attached to the NULL domain
6682 */
6683static void detach_destroy_domains(const struct cpumask *cpu_map)
6684{
6685	int i;
6686
6687	rcu_read_lock();
6688	for_each_cpu(i, cpu_map)
6689		cpu_attach_domain(NULL, &def_root_domain, i);
6690	rcu_read_unlock();
6691}
6692
6693/* handle null as "default" */
6694static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6695			struct sched_domain_attr *new, int idx_new)
6696{
6697	struct sched_domain_attr tmp;
6698
6699	/* fast path */
6700	if (!new && !cur)
6701		return 1;
6702
6703	tmp = SD_ATTR_INIT;
6704	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6705			new ? (new + idx_new) : &tmp,
6706			sizeof(struct sched_domain_attr));
6707}
6708
6709/*
6710 * Partition sched domains as specified by the 'ndoms_new'
6711 * cpumasks in the array doms_new[] of cpumasks. This compares
6712 * doms_new[] to the current sched domain partitioning, doms_cur[].
6713 * It destroys each deleted domain and builds each new domain.
6714 *
6715 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6716 * The masks don't intersect (don't overlap.) We should setup one
6717 * sched domain for each mask. CPUs not in any of the cpumasks will
6718 * not be load balanced. If the same cpumask appears both in the
6719 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6720 * it as it is.
6721 *
6722 * The passed in 'doms_new' should be allocated using
6723 * alloc_sched_domains.  This routine takes ownership of it and will
6724 * free_sched_domains it when done with it. If the caller failed the
6725 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6726 * and partition_sched_domains() will fallback to the single partition
6727 * 'fallback_doms', it also forces the domains to be rebuilt.
6728 *
6729 * If doms_new == NULL it will be replaced with cpu_online_mask.
6730 * ndoms_new == 0 is a special case for destroying existing domains,
6731 * and it will not create the default domain.
6732 *
6733 * Call with hotplug lock held
6734 */
6735void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6736			     struct sched_domain_attr *dattr_new)
6737{
6738	int i, j, n;
6739	int new_topology;
6740
6741	mutex_lock(&sched_domains_mutex);
6742
6743	/* always unregister in case we don't destroy any domains */
6744	unregister_sched_domain_sysctl();
6745
6746	/* Let architecture update cpu core mappings. */
6747	new_topology = arch_update_cpu_topology();
6748
6749	n = doms_new ? ndoms_new : 0;
6750
6751	/* Destroy deleted domains */
6752	for (i = 0; i < ndoms_cur; i++) {
6753		for (j = 0; j < n && !new_topology; j++) {
6754			if (cpumask_equal(doms_cur[i], doms_new[j])
6755			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6756				goto match1;
6757		}
6758		/* no match - a current sched domain not in new doms_new[] */
6759		detach_destroy_domains(doms_cur[i]);
6760match1:
6761		;
6762	}
6763
6764	n = ndoms_cur;
6765	if (doms_new == NULL) {
6766		n = 0;
6767		doms_new = &fallback_doms;
6768		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6769		WARN_ON_ONCE(dattr_new);
6770	}
6771
6772	/* Build new domains */
6773	for (i = 0; i < ndoms_new; i++) {
6774		for (j = 0; j < n && !new_topology; j++) {
6775			if (cpumask_equal(doms_new[i], doms_cur[j])
6776			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6777				goto match2;
6778		}
6779		/* no match - add a new doms_new */
6780		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6781match2:
6782		;
6783	}
6784
6785	/* Remember the new sched domains */
6786	if (doms_cur != &fallback_doms)
6787		free_sched_domains(doms_cur, ndoms_cur);
6788	kfree(dattr_cur);	/* kfree(NULL) is safe */
6789	doms_cur = doms_new;
6790	dattr_cur = dattr_new;
6791	ndoms_cur = ndoms_new;
6792
6793	register_sched_domain_sysctl();
6794
6795	mutex_unlock(&sched_domains_mutex);
6796}
6797
6798static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6799
6800/*
6801 * Update cpusets according to cpu_active mask.  If cpusets are
6802 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6803 * around partition_sched_domains().
6804 *
6805 * If we come here as part of a suspend/resume, don't touch cpusets because we
6806 * want to restore it back to its original state upon resume anyway.
6807 */
6808static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6809			     void *hcpu)
6810{
6811	switch (action) {
6812	case CPU_ONLINE_FROZEN:
6813	case CPU_DOWN_FAILED_FROZEN:
6814
6815		/*
6816		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6817		 * resume sequence. As long as this is not the last online
6818		 * operation in the resume sequence, just build a single sched
6819		 * domain, ignoring cpusets.
6820		 */
6821		num_cpus_frozen--;
6822		if (likely(num_cpus_frozen)) {
6823			partition_sched_domains(1, NULL, NULL);
6824			break;
6825		}
6826
6827		/*
6828		 * This is the last CPU online operation. So fall through and
6829		 * restore the original sched domains by considering the
6830		 * cpuset configurations.
6831		 */
6832
6833	case CPU_ONLINE:
6834	case CPU_DOWN_FAILED:
6835		cpuset_update_active_cpus(true);
6836		break;
6837	default:
6838		return NOTIFY_DONE;
6839	}
6840	return NOTIFY_OK;
6841}
6842
6843static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6844			       void *hcpu)
6845{
6846	switch (action) {
6847	case CPU_DOWN_PREPARE:
6848		cpuset_update_active_cpus(false);
6849		break;
6850	case CPU_DOWN_PREPARE_FROZEN:
6851		num_cpus_frozen++;
6852		partition_sched_domains(1, NULL, NULL);
6853		break;
6854	default:
6855		return NOTIFY_DONE;
6856	}
6857	return NOTIFY_OK;
6858}
6859
6860void __init sched_init_smp(void)
6861{
6862	cpumask_var_t non_isolated_cpus;
6863
6864	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6865	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6866
6867	sched_init_numa();
6868
6869	/*
6870	 * There's no userspace yet to cause hotplug operations; hence all the
6871	 * cpu masks are stable and all blatant races in the below code cannot
6872	 * happen.
6873	 */
6874	mutex_lock(&sched_domains_mutex);
6875	init_sched_domains(cpu_active_mask);
6876	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6877	if (cpumask_empty(non_isolated_cpus))
6878		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6879	mutex_unlock(&sched_domains_mutex);
6880
6881	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6882	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6883	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6884
6885	init_hrtick();
6886
6887	/* Move init over to a non-isolated CPU */
6888	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6889		BUG();
6890	sched_init_granularity();
6891	free_cpumask_var(non_isolated_cpus);
6892
6893	init_sched_rt_class();
6894	init_sched_dl_class();
6895}
6896#else
6897void __init sched_init_smp(void)
6898{
6899	sched_init_granularity();
6900}
6901#endif /* CONFIG_SMP */
6902
6903const_debug unsigned int sysctl_timer_migration = 1;
6904
6905int in_sched_functions(unsigned long addr)
6906{
6907	return in_lock_functions(addr) ||
6908		(addr >= (unsigned long)__sched_text_start
6909		&& addr < (unsigned long)__sched_text_end);
6910}
6911
6912#ifdef CONFIG_CGROUP_SCHED
6913/*
6914 * Default task group.
6915 * Every task in system belongs to this group at bootup.
6916 */
6917struct task_group root_task_group;
6918LIST_HEAD(task_groups);
6919#endif
6920
6921DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6922
6923void __init sched_init(void)
6924{
6925	int i, j;
6926	unsigned long alloc_size = 0, ptr;
6927
6928#ifdef CONFIG_FAIR_GROUP_SCHED
6929	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6930#endif
6931#ifdef CONFIG_RT_GROUP_SCHED
6932	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6933#endif
6934#ifdef CONFIG_CPUMASK_OFFSTACK
6935	alloc_size += num_possible_cpus() * cpumask_size();
6936#endif
6937	if (alloc_size) {
6938		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6939
6940#ifdef CONFIG_FAIR_GROUP_SCHED
6941		root_task_group.se = (struct sched_entity **)ptr;
6942		ptr += nr_cpu_ids * sizeof(void **);
6943
6944		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6945		ptr += nr_cpu_ids * sizeof(void **);
6946
6947#endif /* CONFIG_FAIR_GROUP_SCHED */
6948#ifdef CONFIG_RT_GROUP_SCHED
6949		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6950		ptr += nr_cpu_ids * sizeof(void **);
6951
6952		root_task_group.rt_rq = (struct rt_rq **)ptr;
6953		ptr += nr_cpu_ids * sizeof(void **);
6954
6955#endif /* CONFIG_RT_GROUP_SCHED */
6956#ifdef CONFIG_CPUMASK_OFFSTACK
6957		for_each_possible_cpu(i) {
6958			per_cpu(load_balance_mask, i) = (void *)ptr;
6959			ptr += cpumask_size();
6960		}
6961#endif /* CONFIG_CPUMASK_OFFSTACK */
6962	}
6963
6964	init_rt_bandwidth(&def_rt_bandwidth,
6965			global_rt_period(), global_rt_runtime());
6966	init_dl_bandwidth(&def_dl_bandwidth,
6967			global_rt_period(), global_rt_runtime());
6968
6969#ifdef CONFIG_SMP
6970	init_defrootdomain();
6971#endif
6972
6973#ifdef CONFIG_RT_GROUP_SCHED
6974	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6975			global_rt_period(), global_rt_runtime());
6976#endif /* CONFIG_RT_GROUP_SCHED */
6977
6978#ifdef CONFIG_CGROUP_SCHED
6979	list_add(&root_task_group.list, &task_groups);
6980	INIT_LIST_HEAD(&root_task_group.children);
6981	INIT_LIST_HEAD(&root_task_group.siblings);
6982	autogroup_init(&init_task);
6983
6984#endif /* CONFIG_CGROUP_SCHED */
6985
6986	for_each_possible_cpu(i) {
6987		struct rq *rq;
6988
6989		rq = cpu_rq(i);
6990		raw_spin_lock_init(&rq->lock);
6991		rq->nr_running = 0;
6992		rq->calc_load_active = 0;
6993		rq->calc_load_update = jiffies + LOAD_FREQ;
6994		init_cfs_rq(&rq->cfs);
6995		init_rt_rq(&rq->rt, rq);
6996		init_dl_rq(&rq->dl, rq);
6997#ifdef CONFIG_FAIR_GROUP_SCHED
6998		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6999		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7000		/*
7001		 * How much cpu bandwidth does root_task_group get?
7002		 *
7003		 * In case of task-groups formed thr' the cgroup filesystem, it
7004		 * gets 100% of the cpu resources in the system. This overall
7005		 * system cpu resource is divided among the tasks of
7006		 * root_task_group and its child task-groups in a fair manner,
7007		 * based on each entity's (task or task-group's) weight
7008		 * (se->load.weight).
7009		 *
7010		 * In other words, if root_task_group has 10 tasks of weight
7011		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7012		 * then A0's share of the cpu resource is:
7013		 *
7014		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7015		 *
7016		 * We achieve this by letting root_task_group's tasks sit
7017		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7018		 */
7019		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7020		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7021#endif /* CONFIG_FAIR_GROUP_SCHED */
7022
7023		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7024#ifdef CONFIG_RT_GROUP_SCHED
7025		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7026#endif
7027
7028		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7029			rq->cpu_load[j] = 0;
7030
7031		rq->last_load_update_tick = jiffies;
7032
7033#ifdef CONFIG_SMP
7034		rq->sd = NULL;
7035		rq->rd = NULL;
7036		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7037		rq->post_schedule = 0;
7038		rq->active_balance = 0;
7039		rq->next_balance = jiffies;
7040		rq->push_cpu = 0;
7041		rq->cpu = i;
7042		rq->online = 0;
7043		rq->idle_stamp = 0;
7044		rq->avg_idle = 2*sysctl_sched_migration_cost;
7045		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7046
7047		INIT_LIST_HEAD(&rq->cfs_tasks);
7048
7049		rq_attach_root(rq, &def_root_domain);
7050#ifdef CONFIG_NO_HZ_COMMON
7051		rq->nohz_flags = 0;
7052#endif
7053#ifdef CONFIG_NO_HZ_FULL
7054		rq->last_sched_tick = 0;
7055#endif
7056#endif
7057		init_rq_hrtick(rq);
7058		atomic_set(&rq->nr_iowait, 0);
7059	}
7060
7061	set_load_weight(&init_task);
7062
7063#ifdef CONFIG_PREEMPT_NOTIFIERS
7064	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7065#endif
7066
7067	/*
7068	 * The boot idle thread does lazy MMU switching as well:
7069	 */
7070	atomic_inc(&init_mm.mm_count);
7071	enter_lazy_tlb(&init_mm, current);
7072
7073	/*
7074	 * Make us the idle thread. Technically, schedule() should not be
7075	 * called from this thread, however somewhere below it might be,
7076	 * but because we are the idle thread, we just pick up running again
7077	 * when this runqueue becomes "idle".
7078	 */
7079	init_idle(current, smp_processor_id());
7080
7081	calc_load_update = jiffies + LOAD_FREQ;
7082
7083	/*
7084	 * During early bootup we pretend to be a normal task:
7085	 */
7086	current->sched_class = &fair_sched_class;
7087
7088#ifdef CONFIG_SMP
7089	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7090	/* May be allocated at isolcpus cmdline parse time */
7091	if (cpu_isolated_map == NULL)
7092		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7093	idle_thread_set_boot_cpu();
7094	set_cpu_rq_start_time();
7095#endif
7096	init_sched_fair_class();
7097
7098	scheduler_running = 1;
7099}
7100
7101#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7102static inline int preempt_count_equals(int preempt_offset)
7103{
7104	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7105
7106	return (nested == preempt_offset);
7107}
7108
7109void __might_sleep(const char *file, int line, int preempt_offset)
7110{
7111	static unsigned long prev_jiffy;	/* ratelimiting */
7112
7113	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7114	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7115	     !is_idle_task(current)) ||
7116	    system_state != SYSTEM_RUNNING || oops_in_progress)
7117		return;
7118	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7119		return;
7120	prev_jiffy = jiffies;
7121
7122	printk(KERN_ERR
7123		"BUG: sleeping function called from invalid context at %s:%d\n",
7124			file, line);
7125	printk(KERN_ERR
7126		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7127			in_atomic(), irqs_disabled(),
7128			current->pid, current->comm);
7129
7130	debug_show_held_locks(current);
7131	if (irqs_disabled())
7132		print_irqtrace_events(current);
7133#ifdef CONFIG_DEBUG_PREEMPT
7134	if (!preempt_count_equals(preempt_offset)) {
7135		pr_err("Preemption disabled at:");
7136		print_ip_sym(current->preempt_disable_ip);
7137		pr_cont("\n");
7138	}
7139#endif
7140	dump_stack();
7141}
7142EXPORT_SYMBOL(__might_sleep);
7143#endif
7144
7145#ifdef CONFIG_MAGIC_SYSRQ
7146static void normalize_task(struct rq *rq, struct task_struct *p)
7147{
7148	const struct sched_class *prev_class = p->sched_class;
7149	struct sched_attr attr = {
7150		.sched_policy = SCHED_NORMAL,
7151	};
7152	int old_prio = p->prio;
7153	int queued;
7154
7155	queued = task_on_rq_queued(p);
7156	if (queued)
7157		dequeue_task(rq, p, 0);
7158	__setscheduler(rq, p, &attr);
7159	if (queued) {
7160		enqueue_task(rq, p, 0);
7161		resched_curr(rq);
7162	}
7163
7164	check_class_changed(rq, p, prev_class, old_prio);
7165}
7166
7167void normalize_rt_tasks(void)
7168{
7169	struct task_struct *g, *p;
7170	unsigned long flags;
7171	struct rq *rq;
7172
7173	read_lock_irqsave(&tasklist_lock, flags);
7174	for_each_process_thread(g, p) {
7175		/*
7176		 * Only normalize user tasks:
7177		 */
7178		if (!p->mm)
7179			continue;
7180
7181		p->se.exec_start		= 0;
7182#ifdef CONFIG_SCHEDSTATS
7183		p->se.statistics.wait_start	= 0;
7184		p->se.statistics.sleep_start	= 0;
7185		p->se.statistics.block_start	= 0;
7186#endif
7187
7188		if (!dl_task(p) && !rt_task(p)) {
7189			/*
7190			 * Renice negative nice level userspace
7191			 * tasks back to 0:
7192			 */
7193			if (task_nice(p) < 0 && p->mm)
7194				set_user_nice(p, 0);
7195			continue;
7196		}
7197
7198		raw_spin_lock(&p->pi_lock);
7199		rq = __task_rq_lock(p);
7200
7201		normalize_task(rq, p);
7202
7203		__task_rq_unlock(rq);
7204		raw_spin_unlock(&p->pi_lock);
7205	}
7206	read_unlock_irqrestore(&tasklist_lock, flags);
7207}
7208
7209#endif /* CONFIG_MAGIC_SYSRQ */
7210
7211#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7212/*
7213 * These functions are only useful for the IA64 MCA handling, or kdb.
7214 *
7215 * They can only be called when the whole system has been
7216 * stopped - every CPU needs to be quiescent, and no scheduling
7217 * activity can take place. Using them for anything else would
7218 * be a serious bug, and as a result, they aren't even visible
7219 * under any other configuration.
7220 */
7221
7222/**
7223 * curr_task - return the current task for a given cpu.
7224 * @cpu: the processor in question.
7225 *
7226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7227 *
7228 * Return: The current task for @cpu.
7229 */
7230struct task_struct *curr_task(int cpu)
7231{
7232	return cpu_curr(cpu);
7233}
7234
7235#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7236
7237#ifdef CONFIG_IA64
7238/**
7239 * set_curr_task - set the current task for a given cpu.
7240 * @cpu: the processor in question.
7241 * @p: the task pointer to set.
7242 *
7243 * Description: This function must only be used when non-maskable interrupts
7244 * are serviced on a separate stack. It allows the architecture to switch the
7245 * notion of the current task on a cpu in a non-blocking manner. This function
7246 * must be called with all CPU's synchronized, and interrupts disabled, the
7247 * and caller must save the original value of the current task (see
7248 * curr_task() above) and restore that value before reenabling interrupts and
7249 * re-starting the system.
7250 *
7251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7252 */
7253void set_curr_task(int cpu, struct task_struct *p)
7254{
7255	cpu_curr(cpu) = p;
7256}
7257
7258#endif
7259
7260#ifdef CONFIG_CGROUP_SCHED
7261/* task_group_lock serializes the addition/removal of task groups */
7262static DEFINE_SPINLOCK(task_group_lock);
7263
7264static void free_sched_group(struct task_group *tg)
7265{
7266	free_fair_sched_group(tg);
7267	free_rt_sched_group(tg);
7268	autogroup_free(tg);
7269	kfree(tg);
7270}
7271
7272/* allocate runqueue etc for a new task group */
7273struct task_group *sched_create_group(struct task_group *parent)
7274{
7275	struct task_group *tg;
7276
7277	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7278	if (!tg)
7279		return ERR_PTR(-ENOMEM);
7280
7281	if (!alloc_fair_sched_group(tg, parent))
7282		goto err;
7283
7284	if (!alloc_rt_sched_group(tg, parent))
7285		goto err;
7286
7287	return tg;
7288
7289err:
7290	free_sched_group(tg);
7291	return ERR_PTR(-ENOMEM);
7292}
7293
7294void sched_online_group(struct task_group *tg, struct task_group *parent)
7295{
7296	unsigned long flags;
7297
7298	spin_lock_irqsave(&task_group_lock, flags);
7299	list_add_rcu(&tg->list, &task_groups);
7300
7301	WARN_ON(!parent); /* root should already exist */
7302
7303	tg->parent = parent;
7304	INIT_LIST_HEAD(&tg->children);
7305	list_add_rcu(&tg->siblings, &parent->children);
7306	spin_unlock_irqrestore(&task_group_lock, flags);
7307}
7308
7309/* rcu callback to free various structures associated with a task group */
7310static void free_sched_group_rcu(struct rcu_head *rhp)
7311{
7312	/* now it should be safe to free those cfs_rqs */
7313	free_sched_group(container_of(rhp, struct task_group, rcu));
7314}
7315
7316/* Destroy runqueue etc associated with a task group */
7317void sched_destroy_group(struct task_group *tg)
7318{
7319	/* wait for possible concurrent references to cfs_rqs complete */
7320	call_rcu(&tg->rcu, free_sched_group_rcu);
7321}
7322
7323void sched_offline_group(struct task_group *tg)
7324{
7325	unsigned long flags;
7326	int i;
7327
7328	/* end participation in shares distribution */
7329	for_each_possible_cpu(i)
7330		unregister_fair_sched_group(tg, i);
7331
7332	spin_lock_irqsave(&task_group_lock, flags);
7333	list_del_rcu(&tg->list);
7334	list_del_rcu(&tg->siblings);
7335	spin_unlock_irqrestore(&task_group_lock, flags);
7336}
7337
7338/* change task's runqueue when it moves between groups.
7339 *	The caller of this function should have put the task in its new group
7340 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7341 *	reflect its new group.
7342 */
7343void sched_move_task(struct task_struct *tsk)
7344{
7345	struct task_group *tg;
7346	int queued, running;
7347	unsigned long flags;
7348	struct rq *rq;
7349
7350	rq = task_rq_lock(tsk, &flags);
7351
7352	running = task_current(rq, tsk);
7353	queued = task_on_rq_queued(tsk);
7354
7355	if (queued)
7356		dequeue_task(rq, tsk, 0);
7357	if (unlikely(running))
7358		tsk->sched_class->put_prev_task(rq, tsk);
7359
7360	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7361				lockdep_is_held(&tsk->sighand->siglock)),
7362			  struct task_group, css);
7363	tg = autogroup_task_group(tsk, tg);
7364	tsk->sched_task_group = tg;
7365
7366#ifdef CONFIG_FAIR_GROUP_SCHED
7367	if (tsk->sched_class->task_move_group)
7368		tsk->sched_class->task_move_group(tsk, queued);
7369	else
7370#endif
7371		set_task_rq(tsk, task_cpu(tsk));
7372
7373	if (unlikely(running))
7374		tsk->sched_class->set_curr_task(rq);
7375	if (queued)
7376		enqueue_task(rq, tsk, 0);
7377
7378	task_rq_unlock(rq, tsk, &flags);
7379}
7380#endif /* CONFIG_CGROUP_SCHED */
7381
7382#ifdef CONFIG_RT_GROUP_SCHED
7383/*
7384 * Ensure that the real time constraints are schedulable.
7385 */
7386static DEFINE_MUTEX(rt_constraints_mutex);
7387
7388/* Must be called with tasklist_lock held */
7389static inline int tg_has_rt_tasks(struct task_group *tg)
7390{
7391	struct task_struct *g, *p;
7392
7393	for_each_process_thread(g, p) {
7394		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7395			return 1;
7396	}
7397
7398	return 0;
7399}
7400
7401struct rt_schedulable_data {
7402	struct task_group *tg;
7403	u64 rt_period;
7404	u64 rt_runtime;
7405};
7406
7407static int tg_rt_schedulable(struct task_group *tg, void *data)
7408{
7409	struct rt_schedulable_data *d = data;
7410	struct task_group *child;
7411	unsigned long total, sum = 0;
7412	u64 period, runtime;
7413
7414	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7415	runtime = tg->rt_bandwidth.rt_runtime;
7416
7417	if (tg == d->tg) {
7418		period = d->rt_period;
7419		runtime = d->rt_runtime;
7420	}
7421
7422	/*
7423	 * Cannot have more runtime than the period.
7424	 */
7425	if (runtime > period && runtime != RUNTIME_INF)
7426		return -EINVAL;
7427
7428	/*
7429	 * Ensure we don't starve existing RT tasks.
7430	 */
7431	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7432		return -EBUSY;
7433
7434	total = to_ratio(period, runtime);
7435
7436	/*
7437	 * Nobody can have more than the global setting allows.
7438	 */
7439	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7440		return -EINVAL;
7441
7442	/*
7443	 * The sum of our children's runtime should not exceed our own.
7444	 */
7445	list_for_each_entry_rcu(child, &tg->children, siblings) {
7446		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7447		runtime = child->rt_bandwidth.rt_runtime;
7448
7449		if (child == d->tg) {
7450			period = d->rt_period;
7451			runtime = d->rt_runtime;
7452		}
7453
7454		sum += to_ratio(period, runtime);
7455	}
7456
7457	if (sum > total)
7458		return -EINVAL;
7459
7460	return 0;
7461}
7462
7463static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7464{
7465	int ret;
7466
7467	struct rt_schedulable_data data = {
7468		.tg = tg,
7469		.rt_period = period,
7470		.rt_runtime = runtime,
7471	};
7472
7473	rcu_read_lock();
7474	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7475	rcu_read_unlock();
7476
7477	return ret;
7478}
7479
7480static int tg_set_rt_bandwidth(struct task_group *tg,
7481		u64 rt_period, u64 rt_runtime)
7482{
7483	int i, err = 0;
7484
7485	mutex_lock(&rt_constraints_mutex);
7486	read_lock(&tasklist_lock);
7487	err = __rt_schedulable(tg, rt_period, rt_runtime);
7488	if (err)
7489		goto unlock;
7490
7491	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7492	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7493	tg->rt_bandwidth.rt_runtime = rt_runtime;
7494
7495	for_each_possible_cpu(i) {
7496		struct rt_rq *rt_rq = tg->rt_rq[i];
7497
7498		raw_spin_lock(&rt_rq->rt_runtime_lock);
7499		rt_rq->rt_runtime = rt_runtime;
7500		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7501	}
7502	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7503unlock:
7504	read_unlock(&tasklist_lock);
7505	mutex_unlock(&rt_constraints_mutex);
7506
7507	return err;
7508}
7509
7510static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7511{
7512	u64 rt_runtime, rt_period;
7513
7514	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7515	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7516	if (rt_runtime_us < 0)
7517		rt_runtime = RUNTIME_INF;
7518
7519	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7520}
7521
7522static long sched_group_rt_runtime(struct task_group *tg)
7523{
7524	u64 rt_runtime_us;
7525
7526	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7527		return -1;
7528
7529	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7530	do_div(rt_runtime_us, NSEC_PER_USEC);
7531	return rt_runtime_us;
7532}
7533
7534static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7535{
7536	u64 rt_runtime, rt_period;
7537
7538	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7539	rt_runtime = tg->rt_bandwidth.rt_runtime;
7540
7541	if (rt_period == 0)
7542		return -EINVAL;
7543
7544	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7545}
7546
7547static long sched_group_rt_period(struct task_group *tg)
7548{
7549	u64 rt_period_us;
7550
7551	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7552	do_div(rt_period_us, NSEC_PER_USEC);
7553	return rt_period_us;
7554}
7555#endif /* CONFIG_RT_GROUP_SCHED */
7556
7557#ifdef CONFIG_RT_GROUP_SCHED
7558static int sched_rt_global_constraints(void)
7559{
7560	int ret = 0;
7561
7562	mutex_lock(&rt_constraints_mutex);
7563	read_lock(&tasklist_lock);
7564	ret = __rt_schedulable(NULL, 0, 0);
7565	read_unlock(&tasklist_lock);
7566	mutex_unlock(&rt_constraints_mutex);
7567
7568	return ret;
7569}
7570
7571static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7572{
7573	/* Don't accept realtime tasks when there is no way for them to run */
7574	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7575		return 0;
7576
7577	return 1;
7578}
7579
7580#else /* !CONFIG_RT_GROUP_SCHED */
7581static int sched_rt_global_constraints(void)
7582{
7583	unsigned long flags;
7584	int i, ret = 0;
7585
7586	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7587	for_each_possible_cpu(i) {
7588		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7589
7590		raw_spin_lock(&rt_rq->rt_runtime_lock);
7591		rt_rq->rt_runtime = global_rt_runtime();
7592		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7593	}
7594	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7595
7596	return ret;
7597}
7598#endif /* CONFIG_RT_GROUP_SCHED */
7599
7600static int sched_dl_global_constraints(void)
7601{
7602	u64 runtime = global_rt_runtime();
7603	u64 period = global_rt_period();
7604	u64 new_bw = to_ratio(period, runtime);
7605	int cpu, ret = 0;
7606	unsigned long flags;
7607
7608	/*
7609	 * Here we want to check the bandwidth not being set to some
7610	 * value smaller than the currently allocated bandwidth in
7611	 * any of the root_domains.
7612	 *
7613	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7614	 * cycling on root_domains... Discussion on different/better
7615	 * solutions is welcome!
7616	 */
7617	for_each_possible_cpu(cpu) {
7618		struct dl_bw *dl_b = dl_bw_of(cpu);
7619
7620		raw_spin_lock_irqsave(&dl_b->lock, flags);
7621		if (new_bw < dl_b->total_bw)
7622			ret = -EBUSY;
7623		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7624
7625		if (ret)
7626			break;
7627	}
7628
7629	return ret;
7630}
7631
7632static void sched_dl_do_global(void)
7633{
7634	u64 new_bw = -1;
7635	int cpu;
7636	unsigned long flags;
7637
7638	def_dl_bandwidth.dl_period = global_rt_period();
7639	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7640
7641	if (global_rt_runtime() != RUNTIME_INF)
7642		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7643
7644	/*
7645	 * FIXME: As above...
7646	 */
7647	for_each_possible_cpu(cpu) {
7648		struct dl_bw *dl_b = dl_bw_of(cpu);
7649
7650		raw_spin_lock_irqsave(&dl_b->lock, flags);
7651		dl_b->bw = new_bw;
7652		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7653	}
7654}
7655
7656static int sched_rt_global_validate(void)
7657{
7658	if (sysctl_sched_rt_period <= 0)
7659		return -EINVAL;
7660
7661	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7662		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7663		return -EINVAL;
7664
7665	return 0;
7666}
7667
7668static void sched_rt_do_global(void)
7669{
7670	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7671	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7672}
7673
7674int sched_rt_handler(struct ctl_table *table, int write,
7675		void __user *buffer, size_t *lenp,
7676		loff_t *ppos)
7677{
7678	int old_period, old_runtime;
7679	static DEFINE_MUTEX(mutex);
7680	int ret;
7681
7682	mutex_lock(&mutex);
7683	old_period = sysctl_sched_rt_period;
7684	old_runtime = sysctl_sched_rt_runtime;
7685
7686	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7687
7688	if (!ret && write) {
7689		ret = sched_rt_global_validate();
7690		if (ret)
7691			goto undo;
7692
7693		ret = sched_rt_global_constraints();
7694		if (ret)
7695			goto undo;
7696
7697		ret = sched_dl_global_constraints();
7698		if (ret)
7699			goto undo;
7700
7701		sched_rt_do_global();
7702		sched_dl_do_global();
7703	}
7704	if (0) {
7705undo:
7706		sysctl_sched_rt_period = old_period;
7707		sysctl_sched_rt_runtime = old_runtime;
7708	}
7709	mutex_unlock(&mutex);
7710
7711	return ret;
7712}
7713
7714int sched_rr_handler(struct ctl_table *table, int write,
7715		void __user *buffer, size_t *lenp,
7716		loff_t *ppos)
7717{
7718	int ret;
7719	static DEFINE_MUTEX(mutex);
7720
7721	mutex_lock(&mutex);
7722	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7723	/* make sure that internally we keep jiffies */
7724	/* also, writing zero resets timeslice to default */
7725	if (!ret && write) {
7726		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7727			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7728	}
7729	mutex_unlock(&mutex);
7730	return ret;
7731}
7732
7733#ifdef CONFIG_CGROUP_SCHED
7734
7735static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7736{
7737	return css ? container_of(css, struct task_group, css) : NULL;
7738}
7739
7740static struct cgroup_subsys_state *
7741cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7742{
7743	struct task_group *parent = css_tg(parent_css);
7744	struct task_group *tg;
7745
7746	if (!parent) {
7747		/* This is early initialization for the top cgroup */
7748		return &root_task_group.css;
7749	}
7750
7751	tg = sched_create_group(parent);
7752	if (IS_ERR(tg))
7753		return ERR_PTR(-ENOMEM);
7754
7755	return &tg->css;
7756}
7757
7758static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7759{
7760	struct task_group *tg = css_tg(css);
7761	struct task_group *parent = css_tg(css->parent);
7762
7763	if (parent)
7764		sched_online_group(tg, parent);
7765	return 0;
7766}
7767
7768static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7769{
7770	struct task_group *tg = css_tg(css);
7771
7772	sched_destroy_group(tg);
7773}
7774
7775static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7776{
7777	struct task_group *tg = css_tg(css);
7778
7779	sched_offline_group(tg);
7780}
7781
7782static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7783				 struct cgroup_taskset *tset)
7784{
7785	struct task_struct *task;
7786
7787	cgroup_taskset_for_each(task, tset) {
7788#ifdef CONFIG_RT_GROUP_SCHED
7789		if (!sched_rt_can_attach(css_tg(css), task))
7790			return -EINVAL;
7791#else
7792		/* We don't support RT-tasks being in separate groups */
7793		if (task->sched_class != &fair_sched_class)
7794			return -EINVAL;
7795#endif
7796	}
7797	return 0;
7798}
7799
7800static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7801			      struct cgroup_taskset *tset)
7802{
7803	struct task_struct *task;
7804
7805	cgroup_taskset_for_each(task, tset)
7806		sched_move_task(task);
7807}
7808
7809static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7810			    struct cgroup_subsys_state *old_css,
7811			    struct task_struct *task)
7812{
7813	/*
7814	 * cgroup_exit() is called in the copy_process() failure path.
7815	 * Ignore this case since the task hasn't ran yet, this avoids
7816	 * trying to poke a half freed task state from generic code.
7817	 */
7818	if (!(task->flags & PF_EXITING))
7819		return;
7820
7821	sched_move_task(task);
7822}
7823
7824#ifdef CONFIG_FAIR_GROUP_SCHED
7825static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7826				struct cftype *cftype, u64 shareval)
7827{
7828	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7829}
7830
7831static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7832			       struct cftype *cft)
7833{
7834	struct task_group *tg = css_tg(css);
7835
7836	return (u64) scale_load_down(tg->shares);
7837}
7838
7839#ifdef CONFIG_CFS_BANDWIDTH
7840static DEFINE_MUTEX(cfs_constraints_mutex);
7841
7842const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7843const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7844
7845static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7846
7847static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7848{
7849	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7850	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7851
7852	if (tg == &root_task_group)
7853		return -EINVAL;
7854
7855	/*
7856	 * Ensure we have at some amount of bandwidth every period.  This is
7857	 * to prevent reaching a state of large arrears when throttled via
7858	 * entity_tick() resulting in prolonged exit starvation.
7859	 */
7860	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7861		return -EINVAL;
7862
7863	/*
7864	 * Likewise, bound things on the otherside by preventing insane quota
7865	 * periods.  This also allows us to normalize in computing quota
7866	 * feasibility.
7867	 */
7868	if (period > max_cfs_quota_period)
7869		return -EINVAL;
7870
7871	/*
7872	 * Prevent race between setting of cfs_rq->runtime_enabled and
7873	 * unthrottle_offline_cfs_rqs().
7874	 */
7875	get_online_cpus();
7876	mutex_lock(&cfs_constraints_mutex);
7877	ret = __cfs_schedulable(tg, period, quota);
7878	if (ret)
7879		goto out_unlock;
7880
7881	runtime_enabled = quota != RUNTIME_INF;
7882	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7883	/*
7884	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7885	 * before making related changes, and on->off must occur afterwards
7886	 */
7887	if (runtime_enabled && !runtime_was_enabled)
7888		cfs_bandwidth_usage_inc();
7889	raw_spin_lock_irq(&cfs_b->lock);
7890	cfs_b->period = ns_to_ktime(period);
7891	cfs_b->quota = quota;
7892
7893	__refill_cfs_bandwidth_runtime(cfs_b);
7894	/* restart the period timer (if active) to handle new period expiry */
7895	if (runtime_enabled && cfs_b->timer_active) {
7896		/* force a reprogram */
7897		__start_cfs_bandwidth(cfs_b, true);
7898	}
7899	raw_spin_unlock_irq(&cfs_b->lock);
7900
7901	for_each_online_cpu(i) {
7902		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7903		struct rq *rq = cfs_rq->rq;
7904
7905		raw_spin_lock_irq(&rq->lock);
7906		cfs_rq->runtime_enabled = runtime_enabled;
7907		cfs_rq->runtime_remaining = 0;
7908
7909		if (cfs_rq->throttled)
7910			unthrottle_cfs_rq(cfs_rq);
7911		raw_spin_unlock_irq(&rq->lock);
7912	}
7913	if (runtime_was_enabled && !runtime_enabled)
7914		cfs_bandwidth_usage_dec();
7915out_unlock:
7916	mutex_unlock(&cfs_constraints_mutex);
7917	put_online_cpus();
7918
7919	return ret;
7920}
7921
7922int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7923{
7924	u64 quota, period;
7925
7926	period = ktime_to_ns(tg->cfs_bandwidth.period);
7927	if (cfs_quota_us < 0)
7928		quota = RUNTIME_INF;
7929	else
7930		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7931
7932	return tg_set_cfs_bandwidth(tg, period, quota);
7933}
7934
7935long tg_get_cfs_quota(struct task_group *tg)
7936{
7937	u64 quota_us;
7938
7939	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7940		return -1;
7941
7942	quota_us = tg->cfs_bandwidth.quota;
7943	do_div(quota_us, NSEC_PER_USEC);
7944
7945	return quota_us;
7946}
7947
7948int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7949{
7950	u64 quota, period;
7951
7952	period = (u64)cfs_period_us * NSEC_PER_USEC;
7953	quota = tg->cfs_bandwidth.quota;
7954
7955	return tg_set_cfs_bandwidth(tg, period, quota);
7956}
7957
7958long tg_get_cfs_period(struct task_group *tg)
7959{
7960	u64 cfs_period_us;
7961
7962	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7963	do_div(cfs_period_us, NSEC_PER_USEC);
7964
7965	return cfs_period_us;
7966}
7967
7968static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7969				  struct cftype *cft)
7970{
7971	return tg_get_cfs_quota(css_tg(css));
7972}
7973
7974static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7975				   struct cftype *cftype, s64 cfs_quota_us)
7976{
7977	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7978}
7979
7980static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7981				   struct cftype *cft)
7982{
7983	return tg_get_cfs_period(css_tg(css));
7984}
7985
7986static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7987				    struct cftype *cftype, u64 cfs_period_us)
7988{
7989	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7990}
7991
7992struct cfs_schedulable_data {
7993	struct task_group *tg;
7994	u64 period, quota;
7995};
7996
7997/*
7998 * normalize group quota/period to be quota/max_period
7999 * note: units are usecs
8000 */
8001static u64 normalize_cfs_quota(struct task_group *tg,
8002			       struct cfs_schedulable_data *d)
8003{
8004	u64 quota, period;
8005
8006	if (tg == d->tg) {
8007		period = d->period;
8008		quota = d->quota;
8009	} else {
8010		period = tg_get_cfs_period(tg);
8011		quota = tg_get_cfs_quota(tg);
8012	}
8013
8014	/* note: these should typically be equivalent */
8015	if (quota == RUNTIME_INF || quota == -1)
8016		return RUNTIME_INF;
8017
8018	return to_ratio(period, quota);
8019}
8020
8021static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8022{
8023	struct cfs_schedulable_data *d = data;
8024	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8025	s64 quota = 0, parent_quota = -1;
8026
8027	if (!tg->parent) {
8028		quota = RUNTIME_INF;
8029	} else {
8030		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8031
8032		quota = normalize_cfs_quota(tg, d);
8033		parent_quota = parent_b->hierarchal_quota;
8034
8035		/*
8036		 * ensure max(child_quota) <= parent_quota, inherit when no
8037		 * limit is set
8038		 */
8039		if (quota == RUNTIME_INF)
8040			quota = parent_quota;
8041		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8042			return -EINVAL;
8043	}
8044	cfs_b->hierarchal_quota = quota;
8045
8046	return 0;
8047}
8048
8049static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8050{
8051	int ret;
8052	struct cfs_schedulable_data data = {
8053		.tg = tg,
8054		.period = period,
8055		.quota = quota,
8056	};
8057
8058	if (quota != RUNTIME_INF) {
8059		do_div(data.period, NSEC_PER_USEC);
8060		do_div(data.quota, NSEC_PER_USEC);
8061	}
8062
8063	rcu_read_lock();
8064	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8065	rcu_read_unlock();
8066
8067	return ret;
8068}
8069
8070static int cpu_stats_show(struct seq_file *sf, void *v)
8071{
8072	struct task_group *tg = css_tg(seq_css(sf));
8073	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8074
8075	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8076	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8077	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8078
8079	return 0;
8080}
8081#endif /* CONFIG_CFS_BANDWIDTH */
8082#endif /* CONFIG_FAIR_GROUP_SCHED */
8083
8084#ifdef CONFIG_RT_GROUP_SCHED
8085static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8086				struct cftype *cft, s64 val)
8087{
8088	return sched_group_set_rt_runtime(css_tg(css), val);
8089}
8090
8091static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8092			       struct cftype *cft)
8093{
8094	return sched_group_rt_runtime(css_tg(css));
8095}
8096
8097static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8098				    struct cftype *cftype, u64 rt_period_us)
8099{
8100	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8101}
8102
8103static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8104				   struct cftype *cft)
8105{
8106	return sched_group_rt_period(css_tg(css));
8107}
8108#endif /* CONFIG_RT_GROUP_SCHED */
8109
8110static struct cftype cpu_files[] = {
8111#ifdef CONFIG_FAIR_GROUP_SCHED
8112	{
8113		.name = "shares",
8114		.read_u64 = cpu_shares_read_u64,
8115		.write_u64 = cpu_shares_write_u64,
8116	},
8117#endif
8118#ifdef CONFIG_CFS_BANDWIDTH
8119	{
8120		.name = "cfs_quota_us",
8121		.read_s64 = cpu_cfs_quota_read_s64,
8122		.write_s64 = cpu_cfs_quota_write_s64,
8123	},
8124	{
8125		.name = "cfs_period_us",
8126		.read_u64 = cpu_cfs_period_read_u64,
8127		.write_u64 = cpu_cfs_period_write_u64,
8128	},
8129	{
8130		.name = "stat",
8131		.seq_show = cpu_stats_show,
8132	},
8133#endif
8134#ifdef CONFIG_RT_GROUP_SCHED
8135	{
8136		.name = "rt_runtime_us",
8137		.read_s64 = cpu_rt_runtime_read,
8138		.write_s64 = cpu_rt_runtime_write,
8139	},
8140	{
8141		.name = "rt_period_us",
8142		.read_u64 = cpu_rt_period_read_uint,
8143		.write_u64 = cpu_rt_period_write_uint,
8144	},
8145#endif
8146	{ }	/* terminate */
8147};
8148
8149struct cgroup_subsys cpu_cgrp_subsys = {
8150	.css_alloc	= cpu_cgroup_css_alloc,
8151	.css_free	= cpu_cgroup_css_free,
8152	.css_online	= cpu_cgroup_css_online,
8153	.css_offline	= cpu_cgroup_css_offline,
8154	.can_attach	= cpu_cgroup_can_attach,
8155	.attach		= cpu_cgroup_attach,
8156	.exit		= cpu_cgroup_exit,
8157	.legacy_cftypes	= cpu_files,
8158	.early_init	= 1,
8159};
8160
8161#endif	/* CONFIG_CGROUP_SCHED */
8162
8163void dump_cpu_task(int cpu)
8164{
8165	pr_info("Task dump for CPU %d:\n", cpu);
8166	sched_show_task(cpu_curr(cpu));
8167}
8168