core.c revision 5cd08fbfdb6baa9fe98f530b76898fc5725a6289
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96	smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104	smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110{
111	unsigned long delta;
112	ktime_t soft, hard, now;
113
114	for (;;) {
115		if (hrtimer_active(period_timer))
116			break;
117
118		now = hrtimer_cb_get_time(period_timer);
119		hrtimer_forward(period_timer, now, period);
120
121		soft = hrtimer_get_softexpires(period_timer);
122		hard = hrtimer_get_expires(period_timer);
123		delta = ktime_to_ns(ktime_sub(hard, soft));
124		__hrtimer_start_range_ns(period_timer, soft, delta,
125					 HRTIMER_MODE_ABS_PINNED, 0);
126	}
127}
128
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134void update_rq_clock(struct rq *rq)
135{
136	s64 delta;
137
138	if (rq->skip_clock_update > 0)
139		return;
140
141	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142	if (delta < 0)
143		return;
144	rq->clock += delta;
145	update_rq_clock_task(rq, delta);
146}
147
148/*
149 * Debugging: various feature bits
150 */
151
152#define SCHED_FEAT(name, enabled)	\
153	(1UL << __SCHED_FEAT_##name) * enabled |
154
155const_debug unsigned int sysctl_sched_features =
156#include "features.h"
157	0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled)	\
163	#name ,
164
165static const char * const sched_feat_names[] = {
166#include "features.h"
167};
168
169#undef SCHED_FEAT
170
171static int sched_feat_show(struct seq_file *m, void *v)
172{
173	int i;
174
175	for (i = 0; i < __SCHED_FEAT_NR; i++) {
176		if (!(sysctl_sched_features & (1UL << i)))
177			seq_puts(m, "NO_");
178		seq_printf(m, "%s ", sched_feat_names[i]);
179	}
180	seq_puts(m, "\n");
181
182	return 0;
183}
184
185#ifdef HAVE_JUMP_LABEL
186
187#define jump_label_key__true  STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
189
190#define SCHED_FEAT(name, enabled)	\
191	jump_label_key__##enabled ,
192
193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
201	if (static_key_enabled(&sched_feat_keys[i]))
202		static_key_slow_dec(&sched_feat_keys[i]);
203}
204
205static void sched_feat_enable(int i)
206{
207	if (!static_key_enabled(&sched_feat_keys[i]))
208		static_key_slow_inc(&sched_feat_keys[i]);
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
215static int sched_feat_set(char *cmp)
216{
217	int i;
218	int neg = 0;
219
220	if (strncmp(cmp, "NO_", 3) == 0) {
221		neg = 1;
222		cmp += 3;
223	}
224
225	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227			if (neg) {
228				sysctl_sched_features &= ~(1UL << i);
229				sched_feat_disable(i);
230			} else {
231				sysctl_sched_features |= (1UL << i);
232				sched_feat_enable(i);
233			}
234			break;
235		}
236	}
237
238	return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243		size_t cnt, loff_t *ppos)
244{
245	char buf[64];
246	char *cmp;
247	int i;
248	struct inode *inode;
249
250	if (cnt > 63)
251		cnt = 63;
252
253	if (copy_from_user(&buf, ubuf, cnt))
254		return -EFAULT;
255
256	buf[cnt] = 0;
257	cmp = strstrip(buf);
258
259	/* Ensure the static_key remains in a consistent state */
260	inode = file_inode(filp);
261	mutex_lock(&inode->i_mutex);
262	i = sched_feat_set(cmp);
263	mutex_unlock(&inode->i_mutex);
264	if (i == __SCHED_FEAT_NR)
265		return -EINVAL;
266
267	*ppos += cnt;
268
269	return cnt;
270}
271
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274	return single_open(filp, sched_feat_show, NULL);
275}
276
277static const struct file_operations sched_feat_fops = {
278	.open		= sched_feat_open,
279	.write		= sched_feat_write,
280	.read		= seq_read,
281	.llseek		= seq_lseek,
282	.release	= single_release,
283};
284
285static __init int sched_init_debug(void)
286{
287	debugfs_create_file("sched_features", 0644, NULL, NULL,
288			&sched_feat_fops);
289
290	return 0;
291}
292late_initcall(sched_init_debug);
293#endif /* CONFIG_SCHED_DEBUG */
294
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
309/*
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
312 */
313unsigned int sysctl_sched_rt_period = 1000000;
314
315__read_mostly int scheduler_running;
316
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
322
323/*
324 * __task_rq_lock - lock the rq @p resides on.
325 */
326static inline struct rq *__task_rq_lock(struct task_struct *p)
327	__acquires(rq->lock)
328{
329	struct rq *rq;
330
331	lockdep_assert_held(&p->pi_lock);
332
333	for (;;) {
334		rq = task_rq(p);
335		raw_spin_lock(&rq->lock);
336		if (likely(rq == task_rq(p)))
337			return rq;
338		raw_spin_unlock(&rq->lock);
339	}
340}
341
342/*
343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
344 */
345static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346	__acquires(p->pi_lock)
347	__acquires(rq->lock)
348{
349	struct rq *rq;
350
351	for (;;) {
352		raw_spin_lock_irqsave(&p->pi_lock, *flags);
353		rq = task_rq(p);
354		raw_spin_lock(&rq->lock);
355		if (likely(rq == task_rq(p)))
356			return rq;
357		raw_spin_unlock(&rq->lock);
358		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
359	}
360}
361
362static void __task_rq_unlock(struct rq *rq)
363	__releases(rq->lock)
364{
365	raw_spin_unlock(&rq->lock);
366}
367
368static inline void
369task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
370	__releases(rq->lock)
371	__releases(p->pi_lock)
372{
373	raw_spin_unlock(&rq->lock);
374	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
375}
376
377/*
378 * this_rq_lock - lock this runqueue and disable interrupts.
379 */
380static struct rq *this_rq_lock(void)
381	__acquires(rq->lock)
382{
383	struct rq *rq;
384
385	local_irq_disable();
386	rq = this_rq();
387	raw_spin_lock(&rq->lock);
388
389	return rq;
390}
391
392#ifdef CONFIG_SCHED_HRTICK
393/*
394 * Use HR-timers to deliver accurate preemption points.
395 */
396
397static void hrtick_clear(struct rq *rq)
398{
399	if (hrtimer_active(&rq->hrtick_timer))
400		hrtimer_cancel(&rq->hrtick_timer);
401}
402
403/*
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
406 */
407static enum hrtimer_restart hrtick(struct hrtimer *timer)
408{
409	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410
411	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412
413	raw_spin_lock(&rq->lock);
414	update_rq_clock(rq);
415	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416	raw_spin_unlock(&rq->lock);
417
418	return HRTIMER_NORESTART;
419}
420
421#ifdef CONFIG_SMP
422
423static int __hrtick_restart(struct rq *rq)
424{
425	struct hrtimer *timer = &rq->hrtick_timer;
426	ktime_t time = hrtimer_get_softexpires(timer);
427
428	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429}
430
431/*
432 * called from hardirq (IPI) context
433 */
434static void __hrtick_start(void *arg)
435{
436	struct rq *rq = arg;
437
438	raw_spin_lock(&rq->lock);
439	__hrtick_restart(rq);
440	rq->hrtick_csd_pending = 0;
441	raw_spin_unlock(&rq->lock);
442}
443
444/*
445 * Called to set the hrtick timer state.
446 *
447 * called with rq->lock held and irqs disabled
448 */
449void hrtick_start(struct rq *rq, u64 delay)
450{
451	struct hrtimer *timer = &rq->hrtick_timer;
452	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
453
454	hrtimer_set_expires(timer, time);
455
456	if (rq == this_rq()) {
457		__hrtick_restart(rq);
458	} else if (!rq->hrtick_csd_pending) {
459		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460		rq->hrtick_csd_pending = 1;
461	}
462}
463
464static int
465hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466{
467	int cpu = (int)(long)hcpu;
468
469	switch (action) {
470	case CPU_UP_CANCELED:
471	case CPU_UP_CANCELED_FROZEN:
472	case CPU_DOWN_PREPARE:
473	case CPU_DOWN_PREPARE_FROZEN:
474	case CPU_DEAD:
475	case CPU_DEAD_FROZEN:
476		hrtick_clear(cpu_rq(cpu));
477		return NOTIFY_OK;
478	}
479
480	return NOTIFY_DONE;
481}
482
483static __init void init_hrtick(void)
484{
485	hotcpu_notifier(hotplug_hrtick, 0);
486}
487#else
488/*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
493void hrtick_start(struct rq *rq, u64 delay)
494{
495	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496			HRTIMER_MODE_REL_PINNED, 0);
497}
498
499static inline void init_hrtick(void)
500{
501}
502#endif /* CONFIG_SMP */
503
504static void init_rq_hrtick(struct rq *rq)
505{
506#ifdef CONFIG_SMP
507	rq->hrtick_csd_pending = 0;
508
509	rq->hrtick_csd.flags = 0;
510	rq->hrtick_csd.func = __hrtick_start;
511	rq->hrtick_csd.info = rq;
512#endif
513
514	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515	rq->hrtick_timer.function = hrtick;
516}
517#else	/* CONFIG_SCHED_HRTICK */
518static inline void hrtick_clear(struct rq *rq)
519{
520}
521
522static inline void init_rq_hrtick(struct rq *rq)
523{
524}
525
526static inline void init_hrtick(void)
527{
528}
529#endif	/* CONFIG_SCHED_HRTICK */
530
531/*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534#define fetch_or(ptr, val)						\
535({	typeof(*(ptr)) __old, __val = *(ptr);				\
536 	for (;;) {							\
537 		__old = cmpxchg((ptr), __val, __val | (val));		\
538 		if (__old == __val)					\
539 			break;						\
540 		__val = __old;						\
541 	}								\
542 	__old;								\
543})
544
545#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
546/*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551static bool set_nr_and_not_polling(struct task_struct *p)
552{
553	struct thread_info *ti = task_thread_info(p);
554	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555}
556
557/*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563static bool set_nr_if_polling(struct task_struct *p)
564{
565	struct thread_info *ti = task_thread_info(p);
566	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568	for (;;) {
569		if (!(val & _TIF_POLLING_NRFLAG))
570			return false;
571		if (val & _TIF_NEED_RESCHED)
572			return true;
573		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574		if (old == val)
575			break;
576		val = old;
577	}
578	return true;
579}
580
581#else
582static bool set_nr_and_not_polling(struct task_struct *p)
583{
584	set_tsk_need_resched(p);
585	return true;
586}
587
588#ifdef CONFIG_SMP
589static bool set_nr_if_polling(struct task_struct *p)
590{
591	return false;
592}
593#endif
594#endif
595
596/*
597 * resched_curr - mark rq's current task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603void resched_curr(struct rq *rq)
604{
605	struct task_struct *curr = rq->curr;
606	int cpu;
607
608	lockdep_assert_held(&rq->lock);
609
610	if (test_tsk_need_resched(curr))
611		return;
612
613	cpu = cpu_of(rq);
614
615	if (cpu == smp_processor_id()) {
616		set_tsk_need_resched(curr);
617		set_preempt_need_resched();
618		return;
619	}
620
621	if (set_nr_and_not_polling(curr))
622		smp_send_reschedule(cpu);
623	else
624		trace_sched_wake_idle_without_ipi(cpu);
625}
626
627void resched_cpu(int cpu)
628{
629	struct rq *rq = cpu_rq(cpu);
630	unsigned long flags;
631
632	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
633		return;
634	resched_curr(rq);
635	raw_spin_unlock_irqrestore(&rq->lock, flags);
636}
637
638#ifdef CONFIG_SMP
639#ifdef CONFIG_NO_HZ_COMMON
640/*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu.  This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
648int get_nohz_timer_target(int pinned)
649{
650	int cpu = smp_processor_id();
651	int i;
652	struct sched_domain *sd;
653
654	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655		return cpu;
656
657	rcu_read_lock();
658	for_each_domain(cpu, sd) {
659		for_each_cpu(i, sched_domain_span(sd)) {
660			if (!idle_cpu(i)) {
661				cpu = i;
662				goto unlock;
663			}
664		}
665	}
666unlock:
667	rcu_read_unlock();
668	return cpu;
669}
670/*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
680static void wake_up_idle_cpu(int cpu)
681{
682	struct rq *rq = cpu_rq(cpu);
683
684	if (cpu == smp_processor_id())
685		return;
686
687	if (set_nr_and_not_polling(rq->idle))
688		smp_send_reschedule(cpu);
689	else
690		trace_sched_wake_idle_without_ipi(cpu);
691}
692
693static bool wake_up_full_nohz_cpu(int cpu)
694{
695	/*
696	 * We just need the target to call irq_exit() and re-evaluate
697	 * the next tick. The nohz full kick at least implies that.
698	 * If needed we can still optimize that later with an
699	 * empty IRQ.
700	 */
701	if (tick_nohz_full_cpu(cpu)) {
702		if (cpu != smp_processor_id() ||
703		    tick_nohz_tick_stopped())
704			tick_nohz_full_kick_cpu(cpu);
705		return true;
706	}
707
708	return false;
709}
710
711void wake_up_nohz_cpu(int cpu)
712{
713	if (!wake_up_full_nohz_cpu(cpu))
714		wake_up_idle_cpu(cpu);
715}
716
717static inline bool got_nohz_idle_kick(void)
718{
719	int cpu = smp_processor_id();
720
721	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722		return false;
723
724	if (idle_cpu(cpu) && !need_resched())
725		return true;
726
727	/*
728	 * We can't run Idle Load Balance on this CPU for this time so we
729	 * cancel it and clear NOHZ_BALANCE_KICK
730	 */
731	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732	return false;
733}
734
735#else /* CONFIG_NO_HZ_COMMON */
736
737static inline bool got_nohz_idle_kick(void)
738{
739	return false;
740}
741
742#endif /* CONFIG_NO_HZ_COMMON */
743
744#ifdef CONFIG_NO_HZ_FULL
745bool sched_can_stop_tick(void)
746{
747	/*
748	 * More than one running task need preemption.
749	 * nr_running update is assumed to be visible
750	 * after IPI is sent from wakers.
751	 */
752	if (this_rq()->nr_running > 1)
753		return false;
754
755	return true;
756}
757#endif /* CONFIG_NO_HZ_FULL */
758
759void sched_avg_update(struct rq *rq)
760{
761	s64 period = sched_avg_period();
762
763	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
764		/*
765		 * Inline assembly required to prevent the compiler
766		 * optimising this loop into a divmod call.
767		 * See __iter_div_u64_rem() for another example of this.
768		 */
769		asm("" : "+rm" (rq->age_stamp));
770		rq->age_stamp += period;
771		rq->rt_avg /= 2;
772	}
773}
774
775#endif /* CONFIG_SMP */
776
777#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
779/*
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
784 */
785int walk_tg_tree_from(struct task_group *from,
786			     tg_visitor down, tg_visitor up, void *data)
787{
788	struct task_group *parent, *child;
789	int ret;
790
791	parent = from;
792
793down:
794	ret = (*down)(parent, data);
795	if (ret)
796		goto out;
797	list_for_each_entry_rcu(child, &parent->children, siblings) {
798		parent = child;
799		goto down;
800
801up:
802		continue;
803	}
804	ret = (*up)(parent, data);
805	if (ret || parent == from)
806		goto out;
807
808	child = parent;
809	parent = parent->parent;
810	if (parent)
811		goto up;
812out:
813	return ret;
814}
815
816int tg_nop(struct task_group *tg, void *data)
817{
818	return 0;
819}
820#endif
821
822static void set_load_weight(struct task_struct *p)
823{
824	int prio = p->static_prio - MAX_RT_PRIO;
825	struct load_weight *load = &p->se.load;
826
827	/*
828	 * SCHED_IDLE tasks get minimal weight:
829	 */
830	if (p->policy == SCHED_IDLE) {
831		load->weight = scale_load(WEIGHT_IDLEPRIO);
832		load->inv_weight = WMULT_IDLEPRIO;
833		return;
834	}
835
836	load->weight = scale_load(prio_to_weight[prio]);
837	load->inv_weight = prio_to_wmult[prio];
838}
839
840static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
841{
842	update_rq_clock(rq);
843	sched_info_queued(rq, p);
844	p->sched_class->enqueue_task(rq, p, flags);
845}
846
847static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
848{
849	update_rq_clock(rq);
850	sched_info_dequeued(rq, p);
851	p->sched_class->dequeue_task(rq, p, flags);
852}
853
854void activate_task(struct rq *rq, struct task_struct *p, int flags)
855{
856	if (task_contributes_to_load(p))
857		rq->nr_uninterruptible--;
858
859	enqueue_task(rq, p, flags);
860}
861
862void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
863{
864	if (task_contributes_to_load(p))
865		rq->nr_uninterruptible++;
866
867	dequeue_task(rq, p, flags);
868}
869
870static void update_rq_clock_task(struct rq *rq, s64 delta)
871{
872/*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877	s64 steal = 0, irq_delta = 0;
878#endif
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
880	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
881
882	/*
883	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884	 * this case when a previous update_rq_clock() happened inside a
885	 * {soft,}irq region.
886	 *
887	 * When this happens, we stop ->clock_task and only update the
888	 * prev_irq_time stamp to account for the part that fit, so that a next
889	 * update will consume the rest. This ensures ->clock_task is
890	 * monotonic.
891	 *
892	 * It does however cause some slight miss-attribution of {soft,}irq
893	 * time, a more accurate solution would be to update the irq_time using
894	 * the current rq->clock timestamp, except that would require using
895	 * atomic ops.
896	 */
897	if (irq_delta > delta)
898		irq_delta = delta;
899
900	rq->prev_irq_time += irq_delta;
901	delta -= irq_delta;
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904	if (static_key_false((&paravirt_steal_rq_enabled))) {
905		steal = paravirt_steal_clock(cpu_of(rq));
906		steal -= rq->prev_steal_time_rq;
907
908		if (unlikely(steal > delta))
909			steal = delta;
910
911		rq->prev_steal_time_rq += steal;
912		delta -= steal;
913	}
914#endif
915
916	rq->clock_task += delta;
917
918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920		sched_rt_avg_update(rq, irq_delta + steal);
921#endif
922}
923
924void sched_set_stop_task(int cpu, struct task_struct *stop)
925{
926	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927	struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929	if (stop) {
930		/*
931		 * Make it appear like a SCHED_FIFO task, its something
932		 * userspace knows about and won't get confused about.
933		 *
934		 * Also, it will make PI more or less work without too
935		 * much confusion -- but then, stop work should not
936		 * rely on PI working anyway.
937		 */
938		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940		stop->sched_class = &stop_sched_class;
941	}
942
943	cpu_rq(cpu)->stop = stop;
944
945	if (old_stop) {
946		/*
947		 * Reset it back to a normal scheduling class so that
948		 * it can die in pieces.
949		 */
950		old_stop->sched_class = &rt_sched_class;
951	}
952}
953
954/*
955 * __normal_prio - return the priority that is based on the static prio
956 */
957static inline int __normal_prio(struct task_struct *p)
958{
959	return p->static_prio;
960}
961
962/*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
969static inline int normal_prio(struct task_struct *p)
970{
971	int prio;
972
973	if (task_has_dl_policy(p))
974		prio = MAX_DL_PRIO-1;
975	else if (task_has_rt_policy(p))
976		prio = MAX_RT_PRIO-1 - p->rt_priority;
977	else
978		prio = __normal_prio(p);
979	return prio;
980}
981
982/*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
989static int effective_prio(struct task_struct *p)
990{
991	p->normal_prio = normal_prio(p);
992	/*
993	 * If we are RT tasks or we were boosted to RT priority,
994	 * keep the priority unchanged. Otherwise, update priority
995	 * to the normal priority:
996	 */
997	if (!rt_prio(p->prio))
998		return p->normal_prio;
999	return p->prio;
1000}
1001
1002/**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1007 */
1008inline int task_curr(const struct task_struct *p)
1009{
1010	return cpu_curr(task_cpu(p)) == p;
1011}
1012
1013static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014				       const struct sched_class *prev_class,
1015				       int oldprio)
1016{
1017	if (prev_class != p->sched_class) {
1018		if (prev_class->switched_from)
1019			prev_class->switched_from(rq, p);
1020		p->sched_class->switched_to(rq, p);
1021	} else if (oldprio != p->prio || dl_task(p))
1022		p->sched_class->prio_changed(rq, p, oldprio);
1023}
1024
1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026{
1027	const struct sched_class *class;
1028
1029	if (p->sched_class == rq->curr->sched_class) {
1030		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031	} else {
1032		for_each_class(class) {
1033			if (class == rq->curr->sched_class)
1034				break;
1035			if (class == p->sched_class) {
1036				resched_curr(rq);
1037				break;
1038			}
1039		}
1040	}
1041
1042	/*
1043	 * A queue event has occurred, and we're going to schedule.  In
1044	 * this case, we can save a useless back to back clock update.
1045	 */
1046	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1047		rq->skip_clock_update = 1;
1048}
1049
1050#ifdef CONFIG_SMP
1051void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1052{
1053#ifdef CONFIG_SCHED_DEBUG
1054	/*
1055	 * We should never call set_task_cpu() on a blocked task,
1056	 * ttwu() will sort out the placement.
1057	 */
1058	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1060
1061#ifdef CONFIG_LOCKDEP
1062	/*
1063	 * The caller should hold either p->pi_lock or rq->lock, when changing
1064	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065	 *
1066	 * sched_move_task() holds both and thus holding either pins the cgroup,
1067	 * see task_group().
1068	 *
1069	 * Furthermore, all task_rq users should acquire both locks, see
1070	 * task_rq_lock().
1071	 */
1072	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073				      lockdep_is_held(&task_rq(p)->lock)));
1074#endif
1075#endif
1076
1077	trace_sched_migrate_task(p, new_cpu);
1078
1079	if (task_cpu(p) != new_cpu) {
1080		if (p->sched_class->migrate_task_rq)
1081			p->sched_class->migrate_task_rq(p, new_cpu);
1082		p->se.nr_migrations++;
1083		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1084	}
1085
1086	__set_task_cpu(p, new_cpu);
1087}
1088
1089static void __migrate_swap_task(struct task_struct *p, int cpu)
1090{
1091	if (p->on_rq) {
1092		struct rq *src_rq, *dst_rq;
1093
1094		src_rq = task_rq(p);
1095		dst_rq = cpu_rq(cpu);
1096
1097		deactivate_task(src_rq, p, 0);
1098		set_task_cpu(p, cpu);
1099		activate_task(dst_rq, p, 0);
1100		check_preempt_curr(dst_rq, p, 0);
1101	} else {
1102		/*
1103		 * Task isn't running anymore; make it appear like we migrated
1104		 * it before it went to sleep. This means on wakeup we make the
1105		 * previous cpu our targer instead of where it really is.
1106		 */
1107		p->wake_cpu = cpu;
1108	}
1109}
1110
1111struct migration_swap_arg {
1112	struct task_struct *src_task, *dst_task;
1113	int src_cpu, dst_cpu;
1114};
1115
1116static int migrate_swap_stop(void *data)
1117{
1118	struct migration_swap_arg *arg = data;
1119	struct rq *src_rq, *dst_rq;
1120	int ret = -EAGAIN;
1121
1122	src_rq = cpu_rq(arg->src_cpu);
1123	dst_rq = cpu_rq(arg->dst_cpu);
1124
1125	double_raw_lock(&arg->src_task->pi_lock,
1126			&arg->dst_task->pi_lock);
1127	double_rq_lock(src_rq, dst_rq);
1128	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129		goto unlock;
1130
1131	if (task_cpu(arg->src_task) != arg->src_cpu)
1132		goto unlock;
1133
1134	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135		goto unlock;
1136
1137	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138		goto unlock;
1139
1140	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1141	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1142
1143	ret = 0;
1144
1145unlock:
1146	double_rq_unlock(src_rq, dst_rq);
1147	raw_spin_unlock(&arg->dst_task->pi_lock);
1148	raw_spin_unlock(&arg->src_task->pi_lock);
1149
1150	return ret;
1151}
1152
1153/*
1154 * Cross migrate two tasks
1155 */
1156int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157{
1158	struct migration_swap_arg arg;
1159	int ret = -EINVAL;
1160
1161	arg = (struct migration_swap_arg){
1162		.src_task = cur,
1163		.src_cpu = task_cpu(cur),
1164		.dst_task = p,
1165		.dst_cpu = task_cpu(p),
1166	};
1167
1168	if (arg.src_cpu == arg.dst_cpu)
1169		goto out;
1170
1171	/*
1172	 * These three tests are all lockless; this is OK since all of them
1173	 * will be re-checked with proper locks held further down the line.
1174	 */
1175	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176		goto out;
1177
1178	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179		goto out;
1180
1181	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182		goto out;
1183
1184	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186
1187out:
1188	return ret;
1189}
1190
1191struct migration_arg {
1192	struct task_struct *task;
1193	int dest_cpu;
1194};
1195
1196static int migration_cpu_stop(void *data);
1197
1198/*
1199 * wait_task_inactive - wait for a thread to unschedule.
1200 *
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change.  If it changes, i.e. @p might have woken up,
1203 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count).  If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1207 *
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1213 */
1214unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1215{
1216	unsigned long flags;
1217	int running, on_rq;
1218	unsigned long ncsw;
1219	struct rq *rq;
1220
1221	for (;;) {
1222		/*
1223		 * We do the initial early heuristics without holding
1224		 * any task-queue locks at all. We'll only try to get
1225		 * the runqueue lock when things look like they will
1226		 * work out!
1227		 */
1228		rq = task_rq(p);
1229
1230		/*
1231		 * If the task is actively running on another CPU
1232		 * still, just relax and busy-wait without holding
1233		 * any locks.
1234		 *
1235		 * NOTE! Since we don't hold any locks, it's not
1236		 * even sure that "rq" stays as the right runqueue!
1237		 * But we don't care, since "task_running()" will
1238		 * return false if the runqueue has changed and p
1239		 * is actually now running somewhere else!
1240		 */
1241		while (task_running(rq, p)) {
1242			if (match_state && unlikely(p->state != match_state))
1243				return 0;
1244			cpu_relax();
1245		}
1246
1247		/*
1248		 * Ok, time to look more closely! We need the rq
1249		 * lock now, to be *sure*. If we're wrong, we'll
1250		 * just go back and repeat.
1251		 */
1252		rq = task_rq_lock(p, &flags);
1253		trace_sched_wait_task(p);
1254		running = task_running(rq, p);
1255		on_rq = p->on_rq;
1256		ncsw = 0;
1257		if (!match_state || p->state == match_state)
1258			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259		task_rq_unlock(rq, p, &flags);
1260
1261		/*
1262		 * If it changed from the expected state, bail out now.
1263		 */
1264		if (unlikely(!ncsw))
1265			break;
1266
1267		/*
1268		 * Was it really running after all now that we
1269		 * checked with the proper locks actually held?
1270		 *
1271		 * Oops. Go back and try again..
1272		 */
1273		if (unlikely(running)) {
1274			cpu_relax();
1275			continue;
1276		}
1277
1278		/*
1279		 * It's not enough that it's not actively running,
1280		 * it must be off the runqueue _entirely_, and not
1281		 * preempted!
1282		 *
1283		 * So if it was still runnable (but just not actively
1284		 * running right now), it's preempted, and we should
1285		 * yield - it could be a while.
1286		 */
1287		if (unlikely(on_rq)) {
1288			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289
1290			set_current_state(TASK_UNINTERRUPTIBLE);
1291			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292			continue;
1293		}
1294
1295		/*
1296		 * Ahh, all good. It wasn't running, and it wasn't
1297		 * runnable, which means that it will never become
1298		 * running in the future either. We're all done!
1299		 */
1300		break;
1301	}
1302
1303	return ncsw;
1304}
1305
1306/***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1309 *
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1312 *
1313 * NOTE: this function doesn't have to take the runqueue lock,
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1318 */
1319void kick_process(struct task_struct *p)
1320{
1321	int cpu;
1322
1323	preempt_disable();
1324	cpu = task_cpu(p);
1325	if ((cpu != smp_processor_id()) && task_curr(p))
1326		smp_send_reschedule(cpu);
1327	preempt_enable();
1328}
1329EXPORT_SYMBOL_GPL(kick_process);
1330#endif /* CONFIG_SMP */
1331
1332#ifdef CONFIG_SMP
1333/*
1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1335 */
1336static int select_fallback_rq(int cpu, struct task_struct *p)
1337{
1338	int nid = cpu_to_node(cpu);
1339	const struct cpumask *nodemask = NULL;
1340	enum { cpuset, possible, fail } state = cpuset;
1341	int dest_cpu;
1342
1343	/*
1344	 * If the node that the cpu is on has been offlined, cpu_to_node()
1345	 * will return -1. There is no cpu on the node, and we should
1346	 * select the cpu on the other node.
1347	 */
1348	if (nid != -1) {
1349		nodemask = cpumask_of_node(nid);
1350
1351		/* Look for allowed, online CPU in same node. */
1352		for_each_cpu(dest_cpu, nodemask) {
1353			if (!cpu_online(dest_cpu))
1354				continue;
1355			if (!cpu_active(dest_cpu))
1356				continue;
1357			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358				return dest_cpu;
1359		}
1360	}
1361
1362	for (;;) {
1363		/* Any allowed, online CPU? */
1364		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365			if (!cpu_online(dest_cpu))
1366				continue;
1367			if (!cpu_active(dest_cpu))
1368				continue;
1369			goto out;
1370		}
1371
1372		switch (state) {
1373		case cpuset:
1374			/* No more Mr. Nice Guy. */
1375			cpuset_cpus_allowed_fallback(p);
1376			state = possible;
1377			break;
1378
1379		case possible:
1380			do_set_cpus_allowed(p, cpu_possible_mask);
1381			state = fail;
1382			break;
1383
1384		case fail:
1385			BUG();
1386			break;
1387		}
1388	}
1389
1390out:
1391	if (state != cpuset) {
1392		/*
1393		 * Don't tell them about moving exiting tasks or
1394		 * kernel threads (both mm NULL), since they never
1395		 * leave kernel.
1396		 */
1397		if (p->mm && printk_ratelimit()) {
1398			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399					task_pid_nr(p), p->comm, cpu);
1400		}
1401	}
1402
1403	return dest_cpu;
1404}
1405
1406/*
1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408 */
1409static inline
1410int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1411{
1412	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1413
1414	/*
1415	 * In order not to call set_task_cpu() on a blocking task we need
1416	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417	 * cpu.
1418	 *
1419	 * Since this is common to all placement strategies, this lives here.
1420	 *
1421	 * [ this allows ->select_task() to simply return task_cpu(p) and
1422	 *   not worry about this generic constraint ]
1423	 */
1424	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1425		     !cpu_online(cpu)))
1426		cpu = select_fallback_rq(task_cpu(p), p);
1427
1428	return cpu;
1429}
1430
1431static void update_avg(u64 *avg, u64 sample)
1432{
1433	s64 diff = sample - *avg;
1434	*avg += diff >> 3;
1435}
1436#endif
1437
1438static void
1439ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1440{
1441#ifdef CONFIG_SCHEDSTATS
1442	struct rq *rq = this_rq();
1443
1444#ifdef CONFIG_SMP
1445	int this_cpu = smp_processor_id();
1446
1447	if (cpu == this_cpu) {
1448		schedstat_inc(rq, ttwu_local);
1449		schedstat_inc(p, se.statistics.nr_wakeups_local);
1450	} else {
1451		struct sched_domain *sd;
1452
1453		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454		rcu_read_lock();
1455		for_each_domain(this_cpu, sd) {
1456			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457				schedstat_inc(sd, ttwu_wake_remote);
1458				break;
1459			}
1460		}
1461		rcu_read_unlock();
1462	}
1463
1464	if (wake_flags & WF_MIGRATED)
1465		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466
1467#endif /* CONFIG_SMP */
1468
1469	schedstat_inc(rq, ttwu_count);
1470	schedstat_inc(p, se.statistics.nr_wakeups);
1471
1472	if (wake_flags & WF_SYNC)
1473		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1474
1475#endif /* CONFIG_SCHEDSTATS */
1476}
1477
1478static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479{
1480	activate_task(rq, p, en_flags);
1481	p->on_rq = 1;
1482
1483	/* if a worker is waking up, notify workqueue */
1484	if (p->flags & PF_WQ_WORKER)
1485		wq_worker_waking_up(p, cpu_of(rq));
1486}
1487
1488/*
1489 * Mark the task runnable and perform wakeup-preemption.
1490 */
1491static void
1492ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1493{
1494	check_preempt_curr(rq, p, wake_flags);
1495	trace_sched_wakeup(p, true);
1496
1497	p->state = TASK_RUNNING;
1498#ifdef CONFIG_SMP
1499	if (p->sched_class->task_woken)
1500		p->sched_class->task_woken(rq, p);
1501
1502	if (rq->idle_stamp) {
1503		u64 delta = rq_clock(rq) - rq->idle_stamp;
1504		u64 max = 2*rq->max_idle_balance_cost;
1505
1506		update_avg(&rq->avg_idle, delta);
1507
1508		if (rq->avg_idle > max)
1509			rq->avg_idle = max;
1510
1511		rq->idle_stamp = 0;
1512	}
1513#endif
1514}
1515
1516static void
1517ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518{
1519#ifdef CONFIG_SMP
1520	if (p->sched_contributes_to_load)
1521		rq->nr_uninterruptible--;
1522#endif
1523
1524	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525	ttwu_do_wakeup(rq, p, wake_flags);
1526}
1527
1528/*
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1533 */
1534static int ttwu_remote(struct task_struct *p, int wake_flags)
1535{
1536	struct rq *rq;
1537	int ret = 0;
1538
1539	rq = __task_rq_lock(p);
1540	if (p->on_rq) {
1541		/* check_preempt_curr() may use rq clock */
1542		update_rq_clock(rq);
1543		ttwu_do_wakeup(rq, p, wake_flags);
1544		ret = 1;
1545	}
1546	__task_rq_unlock(rq);
1547
1548	return ret;
1549}
1550
1551#ifdef CONFIG_SMP
1552void sched_ttwu_pending(void)
1553{
1554	struct rq *rq = this_rq();
1555	struct llist_node *llist = llist_del_all(&rq->wake_list);
1556	struct task_struct *p;
1557	unsigned long flags;
1558
1559	if (!llist)
1560		return;
1561
1562	raw_spin_lock_irqsave(&rq->lock, flags);
1563
1564	while (llist) {
1565		p = llist_entry(llist, struct task_struct, wake_entry);
1566		llist = llist_next(llist);
1567		ttwu_do_activate(rq, p, 0);
1568	}
1569
1570	raw_spin_unlock_irqrestore(&rq->lock, flags);
1571}
1572
1573void scheduler_ipi(void)
1574{
1575	/*
1576	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578	 * this IPI.
1579	 */
1580	preempt_fold_need_resched();
1581
1582	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583		return;
1584
1585	/*
1586	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587	 * traditionally all their work was done from the interrupt return
1588	 * path. Now that we actually do some work, we need to make sure
1589	 * we do call them.
1590	 *
1591	 * Some archs already do call them, luckily irq_enter/exit nest
1592	 * properly.
1593	 *
1594	 * Arguably we should visit all archs and update all handlers,
1595	 * however a fair share of IPIs are still resched only so this would
1596	 * somewhat pessimize the simple resched case.
1597	 */
1598	irq_enter();
1599	sched_ttwu_pending();
1600
1601	/*
1602	 * Check if someone kicked us for doing the nohz idle load balance.
1603	 */
1604	if (unlikely(got_nohz_idle_kick())) {
1605		this_rq()->idle_balance = 1;
1606		raise_softirq_irqoff(SCHED_SOFTIRQ);
1607	}
1608	irq_exit();
1609}
1610
1611static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612{
1613	struct rq *rq = cpu_rq(cpu);
1614
1615	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616		if (!set_nr_if_polling(rq->idle))
1617			smp_send_reschedule(cpu);
1618		else
1619			trace_sched_wake_idle_without_ipi(cpu);
1620	}
1621}
1622
1623bool cpus_share_cache(int this_cpu, int that_cpu)
1624{
1625	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626}
1627#endif /* CONFIG_SMP */
1628
1629static void ttwu_queue(struct task_struct *p, int cpu)
1630{
1631	struct rq *rq = cpu_rq(cpu);
1632
1633#if defined(CONFIG_SMP)
1634	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636		ttwu_queue_remote(p, cpu);
1637		return;
1638	}
1639#endif
1640
1641	raw_spin_lock(&rq->lock);
1642	ttwu_do_activate(rq, p, 0);
1643	raw_spin_unlock(&rq->lock);
1644}
1645
1646/**
1647 * try_to_wake_up - wake up a thread
1648 * @p: the thread to be awakened
1649 * @state: the mask of task states that can be woken
1650 * @wake_flags: wake modifier flags (WF_*)
1651 *
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1657 *
1658 * Return: %true if @p was woken up, %false if it was already running.
1659 * or @state didn't match @p's state.
1660 */
1661static int
1662try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1663{
1664	unsigned long flags;
1665	int cpu, success = 0;
1666
1667	/*
1668	 * If we are going to wake up a thread waiting for CONDITION we
1669	 * need to ensure that CONDITION=1 done by the caller can not be
1670	 * reordered with p->state check below. This pairs with mb() in
1671	 * set_current_state() the waiting thread does.
1672	 */
1673	smp_mb__before_spinlock();
1674	raw_spin_lock_irqsave(&p->pi_lock, flags);
1675	if (!(p->state & state))
1676		goto out;
1677
1678	success = 1; /* we're going to change ->state */
1679	cpu = task_cpu(p);
1680
1681	if (p->on_rq && ttwu_remote(p, wake_flags))
1682		goto stat;
1683
1684#ifdef CONFIG_SMP
1685	/*
1686	 * If the owning (remote) cpu is still in the middle of schedule() with
1687	 * this task as prev, wait until its done referencing the task.
1688	 */
1689	while (p->on_cpu)
1690		cpu_relax();
1691	/*
1692	 * Pairs with the smp_wmb() in finish_lock_switch().
1693	 */
1694	smp_rmb();
1695
1696	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1697	p->state = TASK_WAKING;
1698
1699	if (p->sched_class->task_waking)
1700		p->sched_class->task_waking(p);
1701
1702	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703	if (task_cpu(p) != cpu) {
1704		wake_flags |= WF_MIGRATED;
1705		set_task_cpu(p, cpu);
1706	}
1707#endif /* CONFIG_SMP */
1708
1709	ttwu_queue(p, cpu);
1710stat:
1711	ttwu_stat(p, cpu, wake_flags);
1712out:
1713	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1714
1715	return success;
1716}
1717
1718/**
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1721 *
1722 * Put @p on the run-queue if it's not already there. The caller must
1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724 * the current task.
1725 */
1726static void try_to_wake_up_local(struct task_struct *p)
1727{
1728	struct rq *rq = task_rq(p);
1729
1730	if (WARN_ON_ONCE(rq != this_rq()) ||
1731	    WARN_ON_ONCE(p == current))
1732		return;
1733
1734	lockdep_assert_held(&rq->lock);
1735
1736	if (!raw_spin_trylock(&p->pi_lock)) {
1737		raw_spin_unlock(&rq->lock);
1738		raw_spin_lock(&p->pi_lock);
1739		raw_spin_lock(&rq->lock);
1740	}
1741
1742	if (!(p->state & TASK_NORMAL))
1743		goto out;
1744
1745	if (!p->on_rq)
1746		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747
1748	ttwu_do_wakeup(rq, p, 0);
1749	ttwu_stat(p, smp_processor_id(), 0);
1750out:
1751	raw_spin_unlock(&p->pi_lock);
1752}
1753
1754/**
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1757 *
1758 * Attempt to wake up the nominated process and move it to the set of runnable
1759 * processes.
1760 *
1761 * Return: 1 if the process was woken up, 0 if it was already running.
1762 *
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1765 */
1766int wake_up_process(struct task_struct *p)
1767{
1768	WARN_ON(task_is_stopped_or_traced(p));
1769	return try_to_wake_up(p, TASK_NORMAL, 0);
1770}
1771EXPORT_SYMBOL(wake_up_process);
1772
1773int wake_up_state(struct task_struct *p, unsigned int state)
1774{
1775	return try_to_wake_up(p, state, 0);
1776}
1777
1778/*
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
1781 *
1782 * __sched_fork() is basic setup used by init_idle() too:
1783 */
1784static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1785{
1786	p->on_rq			= 0;
1787
1788	p->se.on_rq			= 0;
1789	p->se.exec_start		= 0;
1790	p->se.sum_exec_runtime		= 0;
1791	p->se.prev_sum_exec_runtime	= 0;
1792	p->se.nr_migrations		= 0;
1793	p->se.vruntime			= 0;
1794	INIT_LIST_HEAD(&p->se.group_node);
1795
1796#ifdef CONFIG_SCHEDSTATS
1797	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1798#endif
1799
1800	RB_CLEAR_NODE(&p->dl.rb_node);
1801	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802	p->dl.dl_runtime = p->dl.runtime = 0;
1803	p->dl.dl_deadline = p->dl.deadline = 0;
1804	p->dl.dl_period = 0;
1805	p->dl.flags = 0;
1806
1807	INIT_LIST_HEAD(&p->rt.run_list);
1808
1809#ifdef CONFIG_PREEMPT_NOTIFIERS
1810	INIT_HLIST_HEAD(&p->preempt_notifiers);
1811#endif
1812
1813#ifdef CONFIG_NUMA_BALANCING
1814	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816		p->mm->numa_scan_seq = 0;
1817	}
1818
1819	if (clone_flags & CLONE_VM)
1820		p->numa_preferred_nid = current->numa_preferred_nid;
1821	else
1822		p->numa_preferred_nid = -1;
1823
1824	p->node_stamp = 0ULL;
1825	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827	p->numa_work.next = &p->numa_work;
1828	p->numa_faults_memory = NULL;
1829	p->numa_faults_buffer_memory = NULL;
1830	p->last_task_numa_placement = 0;
1831	p->last_sum_exec_runtime = 0;
1832
1833	INIT_LIST_HEAD(&p->numa_entry);
1834	p->numa_group = NULL;
1835#endif /* CONFIG_NUMA_BALANCING */
1836}
1837
1838#ifdef CONFIG_NUMA_BALANCING
1839#ifdef CONFIG_SCHED_DEBUG
1840void set_numabalancing_state(bool enabled)
1841{
1842	if (enabled)
1843		sched_feat_set("NUMA");
1844	else
1845		sched_feat_set("NO_NUMA");
1846}
1847#else
1848__read_mostly bool numabalancing_enabled;
1849
1850void set_numabalancing_state(bool enabled)
1851{
1852	numabalancing_enabled = enabled;
1853}
1854#endif /* CONFIG_SCHED_DEBUG */
1855
1856#ifdef CONFIG_PROC_SYSCTL
1857int sysctl_numa_balancing(struct ctl_table *table, int write,
1858			 void __user *buffer, size_t *lenp, loff_t *ppos)
1859{
1860	struct ctl_table t;
1861	int err;
1862	int state = numabalancing_enabled;
1863
1864	if (write && !capable(CAP_SYS_ADMIN))
1865		return -EPERM;
1866
1867	t = *table;
1868	t.data = &state;
1869	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870	if (err < 0)
1871		return err;
1872	if (write)
1873		set_numabalancing_state(state);
1874	return err;
1875}
1876#endif
1877#endif
1878
1879/*
1880 * fork()/clone()-time setup:
1881 */
1882int sched_fork(unsigned long clone_flags, struct task_struct *p)
1883{
1884	unsigned long flags;
1885	int cpu = get_cpu();
1886
1887	__sched_fork(clone_flags, p);
1888	/*
1889	 * We mark the process as running here. This guarantees that
1890	 * nobody will actually run it, and a signal or other external
1891	 * event cannot wake it up and insert it on the runqueue either.
1892	 */
1893	p->state = TASK_RUNNING;
1894
1895	/*
1896	 * Make sure we do not leak PI boosting priority to the child.
1897	 */
1898	p->prio = current->normal_prio;
1899
1900	/*
1901	 * Revert to default priority/policy on fork if requested.
1902	 */
1903	if (unlikely(p->sched_reset_on_fork)) {
1904		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905			p->policy = SCHED_NORMAL;
1906			p->static_prio = NICE_TO_PRIO(0);
1907			p->rt_priority = 0;
1908		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1909			p->static_prio = NICE_TO_PRIO(0);
1910
1911		p->prio = p->normal_prio = __normal_prio(p);
1912		set_load_weight(p);
1913
1914		/*
1915		 * We don't need the reset flag anymore after the fork. It has
1916		 * fulfilled its duty:
1917		 */
1918		p->sched_reset_on_fork = 0;
1919	}
1920
1921	if (dl_prio(p->prio)) {
1922		put_cpu();
1923		return -EAGAIN;
1924	} else if (rt_prio(p->prio)) {
1925		p->sched_class = &rt_sched_class;
1926	} else {
1927		p->sched_class = &fair_sched_class;
1928	}
1929
1930	if (p->sched_class->task_fork)
1931		p->sched_class->task_fork(p);
1932
1933	/*
1934	 * The child is not yet in the pid-hash so no cgroup attach races,
1935	 * and the cgroup is pinned to this child due to cgroup_fork()
1936	 * is ran before sched_fork().
1937	 *
1938	 * Silence PROVE_RCU.
1939	 */
1940	raw_spin_lock_irqsave(&p->pi_lock, flags);
1941	set_task_cpu(p, cpu);
1942	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1943
1944#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1945	if (likely(sched_info_on()))
1946		memset(&p->sched_info, 0, sizeof(p->sched_info));
1947#endif
1948#if defined(CONFIG_SMP)
1949	p->on_cpu = 0;
1950#endif
1951	init_task_preempt_count(p);
1952#ifdef CONFIG_SMP
1953	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955#endif
1956
1957	put_cpu();
1958	return 0;
1959}
1960
1961unsigned long to_ratio(u64 period, u64 runtime)
1962{
1963	if (runtime == RUNTIME_INF)
1964		return 1ULL << 20;
1965
1966	/*
1967	 * Doing this here saves a lot of checks in all
1968	 * the calling paths, and returning zero seems
1969	 * safe for them anyway.
1970	 */
1971	if (period == 0)
1972		return 0;
1973
1974	return div64_u64(runtime << 20, period);
1975}
1976
1977#ifdef CONFIG_SMP
1978inline struct dl_bw *dl_bw_of(int i)
1979{
1980	return &cpu_rq(i)->rd->dl_bw;
1981}
1982
1983static inline int dl_bw_cpus(int i)
1984{
1985	struct root_domain *rd = cpu_rq(i)->rd;
1986	int cpus = 0;
1987
1988	for_each_cpu_and(i, rd->span, cpu_active_mask)
1989		cpus++;
1990
1991	return cpus;
1992}
1993#else
1994inline struct dl_bw *dl_bw_of(int i)
1995{
1996	return &cpu_rq(i)->dl.dl_bw;
1997}
1998
1999static inline int dl_bw_cpus(int i)
2000{
2001	return 1;
2002}
2003#endif
2004
2005static inline
2006void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007{
2008	dl_b->total_bw -= tsk_bw;
2009}
2010
2011static inline
2012void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013{
2014	dl_b->total_bw += tsk_bw;
2015}
2016
2017static inline
2018bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019{
2020	return dl_b->bw != -1 &&
2021	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022}
2023
2024/*
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2029 *
2030 * This function is called while holding p's rq->lock.
2031 */
2032static int dl_overflow(struct task_struct *p, int policy,
2033		       const struct sched_attr *attr)
2034{
2035
2036	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037	u64 period = attr->sched_period ?: attr->sched_deadline;
2038	u64 runtime = attr->sched_runtime;
2039	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040	int cpus, err = -1;
2041
2042	if (new_bw == p->dl.dl_bw)
2043		return 0;
2044
2045	/*
2046	 * Either if a task, enters, leave, or stays -deadline but changes
2047	 * its parameters, we may need to update accordingly the total
2048	 * allocated bandwidth of the container.
2049	 */
2050	raw_spin_lock(&dl_b->lock);
2051	cpus = dl_bw_cpus(task_cpu(p));
2052	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054		__dl_add(dl_b, new_bw);
2055		err = 0;
2056	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058		__dl_clear(dl_b, p->dl.dl_bw);
2059		__dl_add(dl_b, new_bw);
2060		err = 0;
2061	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062		__dl_clear(dl_b, p->dl.dl_bw);
2063		err = 0;
2064	}
2065	raw_spin_unlock(&dl_b->lock);
2066
2067	return err;
2068}
2069
2070extern void init_dl_bw(struct dl_bw *dl_b);
2071
2072/*
2073 * wake_up_new_task - wake up a newly created task for the first time.
2074 *
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2078 */
2079void wake_up_new_task(struct task_struct *p)
2080{
2081	unsigned long flags;
2082	struct rq *rq;
2083
2084	raw_spin_lock_irqsave(&p->pi_lock, flags);
2085#ifdef CONFIG_SMP
2086	/*
2087	 * Fork balancing, do it here and not earlier because:
2088	 *  - cpus_allowed can change in the fork path
2089	 *  - any previously selected cpu might disappear through hotplug
2090	 */
2091	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092#endif
2093
2094	/* Initialize new task's runnable average */
2095	init_task_runnable_average(p);
2096	rq = __task_rq_lock(p);
2097	activate_task(rq, p, 0);
2098	p->on_rq = 1;
2099	trace_sched_wakeup_new(p, true);
2100	check_preempt_curr(rq, p, WF_FORK);
2101#ifdef CONFIG_SMP
2102	if (p->sched_class->task_woken)
2103		p->sched_class->task_woken(rq, p);
2104#endif
2105	task_rq_unlock(rq, p, &flags);
2106}
2107
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109
2110/**
2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2112 * @notifier: notifier struct to register
2113 */
2114void preempt_notifier_register(struct preempt_notifier *notifier)
2115{
2116	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117}
2118EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119
2120/**
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
2122 * @notifier: notifier struct to unregister
2123 *
2124 * This is safe to call from within a preemption notifier.
2125 */
2126void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127{
2128	hlist_del(&notifier->link);
2129}
2130EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131
2132static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133{
2134	struct preempt_notifier *notifier;
2135
2136	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138}
2139
2140static void
2141fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142				 struct task_struct *next)
2143{
2144	struct preempt_notifier *notifier;
2145
2146	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147		notifier->ops->sched_out(notifier, next);
2148}
2149
2150#else /* !CONFIG_PREEMPT_NOTIFIERS */
2151
2152static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153{
2154}
2155
2156static void
2157fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158				 struct task_struct *next)
2159{
2160}
2161
2162#endif /* CONFIG_PREEMPT_NOTIFIERS */
2163
2164/**
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
2167 * @prev: the current task that is being switched out
2168 * @next: the task we are going to switch to.
2169 *
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2173 *
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2176 */
2177static inline void
2178prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179		    struct task_struct *next)
2180{
2181	trace_sched_switch(prev, next);
2182	sched_info_switch(rq, prev, next);
2183	perf_event_task_sched_out(prev, next);
2184	fire_sched_out_preempt_notifiers(prev, next);
2185	prepare_lock_switch(rq, next);
2186	prepare_arch_switch(next);
2187}
2188
2189/**
2190 * finish_task_switch - clean up after a task-switch
2191 * @rq: runqueue associated with task-switch
2192 * @prev: the thread we just switched away from.
2193 *
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
2198 *
2199 * Note that we may have delayed dropping an mm in context_switch(). If
2200 * so, we finish that here outside of the runqueue lock. (Doing it
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2203 */
2204static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2205	__releases(rq->lock)
2206{
2207	struct mm_struct *mm = rq->prev_mm;
2208	long prev_state;
2209
2210	rq->prev_mm = NULL;
2211
2212	/*
2213	 * A task struct has one reference for the use as "current".
2214	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215	 * schedule one last time. The schedule call will never return, and
2216	 * the scheduled task must drop that reference.
2217	 * The test for TASK_DEAD must occur while the runqueue locks are
2218	 * still held, otherwise prev could be scheduled on another cpu, die
2219	 * there before we look at prev->state, and then the reference would
2220	 * be dropped twice.
2221	 *		Manfred Spraul <manfred@colorfullife.com>
2222	 */
2223	prev_state = prev->state;
2224	vtime_task_switch(prev);
2225	finish_arch_switch(prev);
2226	perf_event_task_sched_in(prev, current);
2227	finish_lock_switch(rq, prev);
2228	finish_arch_post_lock_switch();
2229
2230	fire_sched_in_preempt_notifiers(current);
2231	if (mm)
2232		mmdrop(mm);
2233	if (unlikely(prev_state == TASK_DEAD)) {
2234		if (prev->sched_class->task_dead)
2235			prev->sched_class->task_dead(prev);
2236
2237		/*
2238		 * Remove function-return probe instances associated with this
2239		 * task and put them back on the free list.
2240		 */
2241		kprobe_flush_task(prev);
2242		put_task_struct(prev);
2243	}
2244
2245	tick_nohz_task_switch(current);
2246}
2247
2248#ifdef CONFIG_SMP
2249
2250/* rq->lock is NOT held, but preemption is disabled */
2251static inline void post_schedule(struct rq *rq)
2252{
2253	if (rq->post_schedule) {
2254		unsigned long flags;
2255
2256		raw_spin_lock_irqsave(&rq->lock, flags);
2257		if (rq->curr->sched_class->post_schedule)
2258			rq->curr->sched_class->post_schedule(rq);
2259		raw_spin_unlock_irqrestore(&rq->lock, flags);
2260
2261		rq->post_schedule = 0;
2262	}
2263}
2264
2265#else
2266
2267static inline void post_schedule(struct rq *rq)
2268{
2269}
2270
2271#endif
2272
2273/**
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2276 */
2277asmlinkage __visible void schedule_tail(struct task_struct *prev)
2278	__releases(rq->lock)
2279{
2280	struct rq *rq = this_rq();
2281
2282	finish_task_switch(rq, prev);
2283
2284	/*
2285	 * FIXME: do we need to worry about rq being invalidated by the
2286	 * task_switch?
2287	 */
2288	post_schedule(rq);
2289
2290#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291	/* In this case, finish_task_switch does not reenable preemption */
2292	preempt_enable();
2293#endif
2294	if (current->set_child_tid)
2295		put_user(task_pid_vnr(current), current->set_child_tid);
2296}
2297
2298/*
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2301 */
2302static inline void
2303context_switch(struct rq *rq, struct task_struct *prev,
2304	       struct task_struct *next)
2305{
2306	struct mm_struct *mm, *oldmm;
2307
2308	prepare_task_switch(rq, prev, next);
2309
2310	mm = next->mm;
2311	oldmm = prev->active_mm;
2312	/*
2313	 * For paravirt, this is coupled with an exit in switch_to to
2314	 * combine the page table reload and the switch backend into
2315	 * one hypercall.
2316	 */
2317	arch_start_context_switch(prev);
2318
2319	if (!mm) {
2320		next->active_mm = oldmm;
2321		atomic_inc(&oldmm->mm_count);
2322		enter_lazy_tlb(oldmm, next);
2323	} else
2324		switch_mm(oldmm, mm, next);
2325
2326	if (!prev->mm) {
2327		prev->active_mm = NULL;
2328		rq->prev_mm = oldmm;
2329	}
2330	/*
2331	 * Since the runqueue lock will be released by the next
2332	 * task (which is an invalid locking op but in the case
2333	 * of the scheduler it's an obvious special-case), so we
2334	 * do an early lockdep release here:
2335	 */
2336#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338#endif
2339
2340	context_tracking_task_switch(prev, next);
2341	/* Here we just switch the register state and the stack. */
2342	switch_to(prev, next, prev);
2343
2344	barrier();
2345	/*
2346	 * this_rq must be evaluated again because prev may have moved
2347	 * CPUs since it called schedule(), thus the 'rq' on its stack
2348	 * frame will be invalid.
2349	 */
2350	finish_task_switch(this_rq(), prev);
2351}
2352
2353/*
2354 * nr_running and nr_context_switches:
2355 *
2356 * externally visible scheduler statistics: current number of runnable
2357 * threads, total number of context switches performed since bootup.
2358 */
2359unsigned long nr_running(void)
2360{
2361	unsigned long i, sum = 0;
2362
2363	for_each_online_cpu(i)
2364		sum += cpu_rq(i)->nr_running;
2365
2366	return sum;
2367}
2368
2369unsigned long long nr_context_switches(void)
2370{
2371	int i;
2372	unsigned long long sum = 0;
2373
2374	for_each_possible_cpu(i)
2375		sum += cpu_rq(i)->nr_switches;
2376
2377	return sum;
2378}
2379
2380unsigned long nr_iowait(void)
2381{
2382	unsigned long i, sum = 0;
2383
2384	for_each_possible_cpu(i)
2385		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2386
2387	return sum;
2388}
2389
2390unsigned long nr_iowait_cpu(int cpu)
2391{
2392	struct rq *this = cpu_rq(cpu);
2393	return atomic_read(&this->nr_iowait);
2394}
2395
2396#ifdef CONFIG_SMP
2397
2398/*
2399 * sched_exec - execve() is a valuable balancing opportunity, because at
2400 * this point the task has the smallest effective memory and cache footprint.
2401 */
2402void sched_exec(void)
2403{
2404	struct task_struct *p = current;
2405	unsigned long flags;
2406	int dest_cpu;
2407
2408	raw_spin_lock_irqsave(&p->pi_lock, flags);
2409	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2410	if (dest_cpu == smp_processor_id())
2411		goto unlock;
2412
2413	if (likely(cpu_active(dest_cpu))) {
2414		struct migration_arg arg = { p, dest_cpu };
2415
2416		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2417		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2418		return;
2419	}
2420unlock:
2421	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2422}
2423
2424#endif
2425
2426DEFINE_PER_CPU(struct kernel_stat, kstat);
2427DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2428
2429EXPORT_PER_CPU_SYMBOL(kstat);
2430EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2431
2432/*
2433 * Return any ns on the sched_clock that have not yet been accounted in
2434 * @p in case that task is currently running.
2435 *
2436 * Called with task_rq_lock() held on @rq.
2437 */
2438static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2439{
2440	u64 ns = 0;
2441
2442	/*
2443	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2444	 * project cycles that may never be accounted to this
2445	 * thread, breaking clock_gettime().
2446	 */
2447	if (task_current(rq, p) && p->on_rq) {
2448		update_rq_clock(rq);
2449		ns = rq_clock_task(rq) - p->se.exec_start;
2450		if ((s64)ns < 0)
2451			ns = 0;
2452	}
2453
2454	return ns;
2455}
2456
2457unsigned long long task_delta_exec(struct task_struct *p)
2458{
2459	unsigned long flags;
2460	struct rq *rq;
2461	u64 ns = 0;
2462
2463	rq = task_rq_lock(p, &flags);
2464	ns = do_task_delta_exec(p, rq);
2465	task_rq_unlock(rq, p, &flags);
2466
2467	return ns;
2468}
2469
2470/*
2471 * Return accounted runtime for the task.
2472 * In case the task is currently running, return the runtime plus current's
2473 * pending runtime that have not been accounted yet.
2474 */
2475unsigned long long task_sched_runtime(struct task_struct *p)
2476{
2477	unsigned long flags;
2478	struct rq *rq;
2479	u64 ns = 0;
2480
2481#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2482	/*
2483	 * 64-bit doesn't need locks to atomically read a 64bit value.
2484	 * So we have a optimization chance when the task's delta_exec is 0.
2485	 * Reading ->on_cpu is racy, but this is ok.
2486	 *
2487	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2488	 * If we race with it entering cpu, unaccounted time is 0. This is
2489	 * indistinguishable from the read occurring a few cycles earlier.
2490	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2491	 * been accounted, so we're correct here as well.
2492	 */
2493	if (!p->on_cpu || !p->on_rq)
2494		return p->se.sum_exec_runtime;
2495#endif
2496
2497	rq = task_rq_lock(p, &flags);
2498	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2499	task_rq_unlock(rq, p, &flags);
2500
2501	return ns;
2502}
2503
2504/*
2505 * This function gets called by the timer code, with HZ frequency.
2506 * We call it with interrupts disabled.
2507 */
2508void scheduler_tick(void)
2509{
2510	int cpu = smp_processor_id();
2511	struct rq *rq = cpu_rq(cpu);
2512	struct task_struct *curr = rq->curr;
2513
2514	sched_clock_tick();
2515
2516	raw_spin_lock(&rq->lock);
2517	update_rq_clock(rq);
2518	curr->sched_class->task_tick(rq, curr, 0);
2519	update_cpu_load_active(rq);
2520	raw_spin_unlock(&rq->lock);
2521
2522	perf_event_task_tick();
2523
2524#ifdef CONFIG_SMP
2525	rq->idle_balance = idle_cpu(cpu);
2526	trigger_load_balance(rq);
2527#endif
2528	rq_last_tick_reset(rq);
2529}
2530
2531#ifdef CONFIG_NO_HZ_FULL
2532/**
2533 * scheduler_tick_max_deferment
2534 *
2535 * Keep at least one tick per second when a single
2536 * active task is running because the scheduler doesn't
2537 * yet completely support full dynticks environment.
2538 *
2539 * This makes sure that uptime, CFS vruntime, load
2540 * balancing, etc... continue to move forward, even
2541 * with a very low granularity.
2542 *
2543 * Return: Maximum deferment in nanoseconds.
2544 */
2545u64 scheduler_tick_max_deferment(void)
2546{
2547	struct rq *rq = this_rq();
2548	unsigned long next, now = ACCESS_ONCE(jiffies);
2549
2550	next = rq->last_sched_tick + HZ;
2551
2552	if (time_before_eq(next, now))
2553		return 0;
2554
2555	return jiffies_to_nsecs(next - now);
2556}
2557#endif
2558
2559notrace unsigned long get_parent_ip(unsigned long addr)
2560{
2561	if (in_lock_functions(addr)) {
2562		addr = CALLER_ADDR2;
2563		if (in_lock_functions(addr))
2564			addr = CALLER_ADDR3;
2565	}
2566	return addr;
2567}
2568
2569#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2570				defined(CONFIG_PREEMPT_TRACER))
2571
2572void preempt_count_add(int val)
2573{
2574#ifdef CONFIG_DEBUG_PREEMPT
2575	/*
2576	 * Underflow?
2577	 */
2578	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2579		return;
2580#endif
2581	__preempt_count_add(val);
2582#ifdef CONFIG_DEBUG_PREEMPT
2583	/*
2584	 * Spinlock count overflowing soon?
2585	 */
2586	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2587				PREEMPT_MASK - 10);
2588#endif
2589	if (preempt_count() == val) {
2590		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2591#ifdef CONFIG_DEBUG_PREEMPT
2592		current->preempt_disable_ip = ip;
2593#endif
2594		trace_preempt_off(CALLER_ADDR0, ip);
2595	}
2596}
2597EXPORT_SYMBOL(preempt_count_add);
2598NOKPROBE_SYMBOL(preempt_count_add);
2599
2600void preempt_count_sub(int val)
2601{
2602#ifdef CONFIG_DEBUG_PREEMPT
2603	/*
2604	 * Underflow?
2605	 */
2606	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2607		return;
2608	/*
2609	 * Is the spinlock portion underflowing?
2610	 */
2611	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2612			!(preempt_count() & PREEMPT_MASK)))
2613		return;
2614#endif
2615
2616	if (preempt_count() == val)
2617		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2618	__preempt_count_sub(val);
2619}
2620EXPORT_SYMBOL(preempt_count_sub);
2621NOKPROBE_SYMBOL(preempt_count_sub);
2622
2623#endif
2624
2625/*
2626 * Print scheduling while atomic bug:
2627 */
2628static noinline void __schedule_bug(struct task_struct *prev)
2629{
2630	if (oops_in_progress)
2631		return;
2632
2633	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2634		prev->comm, prev->pid, preempt_count());
2635
2636	debug_show_held_locks(prev);
2637	print_modules();
2638	if (irqs_disabled())
2639		print_irqtrace_events(prev);
2640#ifdef CONFIG_DEBUG_PREEMPT
2641	if (in_atomic_preempt_off()) {
2642		pr_err("Preemption disabled at:");
2643		print_ip_sym(current->preempt_disable_ip);
2644		pr_cont("\n");
2645	}
2646#endif
2647	dump_stack();
2648	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2649}
2650
2651/*
2652 * Various schedule()-time debugging checks and statistics:
2653 */
2654static inline void schedule_debug(struct task_struct *prev)
2655{
2656	/*
2657	 * Test if we are atomic. Since do_exit() needs to call into
2658	 * schedule() atomically, we ignore that path. Otherwise whine
2659	 * if we are scheduling when we should not.
2660	 */
2661	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2662		__schedule_bug(prev);
2663	rcu_sleep_check();
2664
2665	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2666
2667	schedstat_inc(this_rq(), sched_count);
2668}
2669
2670/*
2671 * Pick up the highest-prio task:
2672 */
2673static inline struct task_struct *
2674pick_next_task(struct rq *rq, struct task_struct *prev)
2675{
2676	const struct sched_class *class = &fair_sched_class;
2677	struct task_struct *p;
2678
2679	/*
2680	 * Optimization: we know that if all tasks are in
2681	 * the fair class we can call that function directly:
2682	 */
2683	if (likely(prev->sched_class == class &&
2684		   rq->nr_running == rq->cfs.h_nr_running)) {
2685		p = fair_sched_class.pick_next_task(rq, prev);
2686		if (unlikely(p == RETRY_TASK))
2687			goto again;
2688
2689		/* assumes fair_sched_class->next == idle_sched_class */
2690		if (unlikely(!p))
2691			p = idle_sched_class.pick_next_task(rq, prev);
2692
2693		return p;
2694	}
2695
2696again:
2697	for_each_class(class) {
2698		p = class->pick_next_task(rq, prev);
2699		if (p) {
2700			if (unlikely(p == RETRY_TASK))
2701				goto again;
2702			return p;
2703		}
2704	}
2705
2706	BUG(); /* the idle class will always have a runnable task */
2707}
2708
2709/*
2710 * __schedule() is the main scheduler function.
2711 *
2712 * The main means of driving the scheduler and thus entering this function are:
2713 *
2714 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2715 *
2716 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2717 *      paths. For example, see arch/x86/entry_64.S.
2718 *
2719 *      To drive preemption between tasks, the scheduler sets the flag in timer
2720 *      interrupt handler scheduler_tick().
2721 *
2722 *   3. Wakeups don't really cause entry into schedule(). They add a
2723 *      task to the run-queue and that's it.
2724 *
2725 *      Now, if the new task added to the run-queue preempts the current
2726 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2727 *      called on the nearest possible occasion:
2728 *
2729 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2730 *
2731 *         - in syscall or exception context, at the next outmost
2732 *           preempt_enable(). (this might be as soon as the wake_up()'s
2733 *           spin_unlock()!)
2734 *
2735 *         - in IRQ context, return from interrupt-handler to
2736 *           preemptible context
2737 *
2738 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2739 *         then at the next:
2740 *
2741 *          - cond_resched() call
2742 *          - explicit schedule() call
2743 *          - return from syscall or exception to user-space
2744 *          - return from interrupt-handler to user-space
2745 */
2746static void __sched __schedule(void)
2747{
2748	struct task_struct *prev, *next;
2749	unsigned long *switch_count;
2750	struct rq *rq;
2751	int cpu;
2752
2753need_resched:
2754	preempt_disable();
2755	cpu = smp_processor_id();
2756	rq = cpu_rq(cpu);
2757	rcu_note_context_switch(cpu);
2758	prev = rq->curr;
2759
2760	schedule_debug(prev);
2761
2762	if (sched_feat(HRTICK))
2763		hrtick_clear(rq);
2764
2765	/*
2766	 * Make sure that signal_pending_state()->signal_pending() below
2767	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2768	 * done by the caller to avoid the race with signal_wake_up().
2769	 */
2770	smp_mb__before_spinlock();
2771	raw_spin_lock_irq(&rq->lock);
2772
2773	switch_count = &prev->nivcsw;
2774	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2775		if (unlikely(signal_pending_state(prev->state, prev))) {
2776			prev->state = TASK_RUNNING;
2777		} else {
2778			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2779			prev->on_rq = 0;
2780
2781			/*
2782			 * If a worker went to sleep, notify and ask workqueue
2783			 * whether it wants to wake up a task to maintain
2784			 * concurrency.
2785			 */
2786			if (prev->flags & PF_WQ_WORKER) {
2787				struct task_struct *to_wakeup;
2788
2789				to_wakeup = wq_worker_sleeping(prev, cpu);
2790				if (to_wakeup)
2791					try_to_wake_up_local(to_wakeup);
2792			}
2793		}
2794		switch_count = &prev->nvcsw;
2795	}
2796
2797	if (prev->on_rq || rq->skip_clock_update < 0)
2798		update_rq_clock(rq);
2799
2800	next = pick_next_task(rq, prev);
2801	clear_tsk_need_resched(prev);
2802	clear_preempt_need_resched();
2803	rq->skip_clock_update = 0;
2804
2805	if (likely(prev != next)) {
2806		rq->nr_switches++;
2807		rq->curr = next;
2808		++*switch_count;
2809
2810		context_switch(rq, prev, next); /* unlocks the rq */
2811		/*
2812		 * The context switch have flipped the stack from under us
2813		 * and restored the local variables which were saved when
2814		 * this task called schedule() in the past. prev == current
2815		 * is still correct, but it can be moved to another cpu/rq.
2816		 */
2817		cpu = smp_processor_id();
2818		rq = cpu_rq(cpu);
2819	} else
2820		raw_spin_unlock_irq(&rq->lock);
2821
2822	post_schedule(rq);
2823
2824	sched_preempt_enable_no_resched();
2825	if (need_resched())
2826		goto need_resched;
2827}
2828
2829static inline void sched_submit_work(struct task_struct *tsk)
2830{
2831	if (!tsk->state || tsk_is_pi_blocked(tsk))
2832		return;
2833	/*
2834	 * If we are going to sleep and we have plugged IO queued,
2835	 * make sure to submit it to avoid deadlocks.
2836	 */
2837	if (blk_needs_flush_plug(tsk))
2838		blk_schedule_flush_plug(tsk);
2839}
2840
2841asmlinkage __visible void __sched schedule(void)
2842{
2843	struct task_struct *tsk = current;
2844
2845	sched_submit_work(tsk);
2846	__schedule();
2847}
2848EXPORT_SYMBOL(schedule);
2849
2850#ifdef CONFIG_CONTEXT_TRACKING
2851asmlinkage __visible void __sched schedule_user(void)
2852{
2853	/*
2854	 * If we come here after a random call to set_need_resched(),
2855	 * or we have been woken up remotely but the IPI has not yet arrived,
2856	 * we haven't yet exited the RCU idle mode. Do it here manually until
2857	 * we find a better solution.
2858	 */
2859	user_exit();
2860	schedule();
2861	user_enter();
2862}
2863#endif
2864
2865/**
2866 * schedule_preempt_disabled - called with preemption disabled
2867 *
2868 * Returns with preemption disabled. Note: preempt_count must be 1
2869 */
2870void __sched schedule_preempt_disabled(void)
2871{
2872	sched_preempt_enable_no_resched();
2873	schedule();
2874	preempt_disable();
2875}
2876
2877#ifdef CONFIG_PREEMPT
2878/*
2879 * this is the entry point to schedule() from in-kernel preemption
2880 * off of preempt_enable. Kernel preemptions off return from interrupt
2881 * occur there and call schedule directly.
2882 */
2883asmlinkage __visible void __sched notrace preempt_schedule(void)
2884{
2885	/*
2886	 * If there is a non-zero preempt_count or interrupts are disabled,
2887	 * we do not want to preempt the current task. Just return..
2888	 */
2889	if (likely(!preemptible()))
2890		return;
2891
2892	do {
2893		__preempt_count_add(PREEMPT_ACTIVE);
2894		__schedule();
2895		__preempt_count_sub(PREEMPT_ACTIVE);
2896
2897		/*
2898		 * Check again in case we missed a preemption opportunity
2899		 * between schedule and now.
2900		 */
2901		barrier();
2902	} while (need_resched());
2903}
2904NOKPROBE_SYMBOL(preempt_schedule);
2905EXPORT_SYMBOL(preempt_schedule);
2906#endif /* CONFIG_PREEMPT */
2907
2908/*
2909 * this is the entry point to schedule() from kernel preemption
2910 * off of irq context.
2911 * Note, that this is called and return with irqs disabled. This will
2912 * protect us against recursive calling from irq.
2913 */
2914asmlinkage __visible void __sched preempt_schedule_irq(void)
2915{
2916	enum ctx_state prev_state;
2917
2918	/* Catch callers which need to be fixed */
2919	BUG_ON(preempt_count() || !irqs_disabled());
2920
2921	prev_state = exception_enter();
2922
2923	do {
2924		__preempt_count_add(PREEMPT_ACTIVE);
2925		local_irq_enable();
2926		__schedule();
2927		local_irq_disable();
2928		__preempt_count_sub(PREEMPT_ACTIVE);
2929
2930		/*
2931		 * Check again in case we missed a preemption opportunity
2932		 * between schedule and now.
2933		 */
2934		barrier();
2935	} while (need_resched());
2936
2937	exception_exit(prev_state);
2938}
2939
2940int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2941			  void *key)
2942{
2943	return try_to_wake_up(curr->private, mode, wake_flags);
2944}
2945EXPORT_SYMBOL(default_wake_function);
2946
2947#ifdef CONFIG_RT_MUTEXES
2948
2949/*
2950 * rt_mutex_setprio - set the current priority of a task
2951 * @p: task
2952 * @prio: prio value (kernel-internal form)
2953 *
2954 * This function changes the 'effective' priority of a task. It does
2955 * not touch ->normal_prio like __setscheduler().
2956 *
2957 * Used by the rt_mutex code to implement priority inheritance
2958 * logic. Call site only calls if the priority of the task changed.
2959 */
2960void rt_mutex_setprio(struct task_struct *p, int prio)
2961{
2962	int oldprio, on_rq, running, enqueue_flag = 0;
2963	struct rq *rq;
2964	const struct sched_class *prev_class;
2965
2966	BUG_ON(prio > MAX_PRIO);
2967
2968	rq = __task_rq_lock(p);
2969
2970	/*
2971	 * Idle task boosting is a nono in general. There is one
2972	 * exception, when PREEMPT_RT and NOHZ is active:
2973	 *
2974	 * The idle task calls get_next_timer_interrupt() and holds
2975	 * the timer wheel base->lock on the CPU and another CPU wants
2976	 * to access the timer (probably to cancel it). We can safely
2977	 * ignore the boosting request, as the idle CPU runs this code
2978	 * with interrupts disabled and will complete the lock
2979	 * protected section without being interrupted. So there is no
2980	 * real need to boost.
2981	 */
2982	if (unlikely(p == rq->idle)) {
2983		WARN_ON(p != rq->curr);
2984		WARN_ON(p->pi_blocked_on);
2985		goto out_unlock;
2986	}
2987
2988	trace_sched_pi_setprio(p, prio);
2989	oldprio = p->prio;
2990	prev_class = p->sched_class;
2991	on_rq = p->on_rq;
2992	running = task_current(rq, p);
2993	if (on_rq)
2994		dequeue_task(rq, p, 0);
2995	if (running)
2996		p->sched_class->put_prev_task(rq, p);
2997
2998	/*
2999	 * Boosting condition are:
3000	 * 1. -rt task is running and holds mutex A
3001	 *      --> -dl task blocks on mutex A
3002	 *
3003	 * 2. -dl task is running and holds mutex A
3004	 *      --> -dl task blocks on mutex A and could preempt the
3005	 *          running task
3006	 */
3007	if (dl_prio(prio)) {
3008		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3009		if (!dl_prio(p->normal_prio) ||
3010		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3011			p->dl.dl_boosted = 1;
3012			p->dl.dl_throttled = 0;
3013			enqueue_flag = ENQUEUE_REPLENISH;
3014		} else
3015			p->dl.dl_boosted = 0;
3016		p->sched_class = &dl_sched_class;
3017	} else if (rt_prio(prio)) {
3018		if (dl_prio(oldprio))
3019			p->dl.dl_boosted = 0;
3020		if (oldprio < prio)
3021			enqueue_flag = ENQUEUE_HEAD;
3022		p->sched_class = &rt_sched_class;
3023	} else {
3024		if (dl_prio(oldprio))
3025			p->dl.dl_boosted = 0;
3026		p->sched_class = &fair_sched_class;
3027	}
3028
3029	p->prio = prio;
3030
3031	if (running)
3032		p->sched_class->set_curr_task(rq);
3033	if (on_rq)
3034		enqueue_task(rq, p, enqueue_flag);
3035
3036	check_class_changed(rq, p, prev_class, oldprio);
3037out_unlock:
3038	__task_rq_unlock(rq);
3039}
3040#endif
3041
3042void set_user_nice(struct task_struct *p, long nice)
3043{
3044	int old_prio, delta, on_rq;
3045	unsigned long flags;
3046	struct rq *rq;
3047
3048	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3049		return;
3050	/*
3051	 * We have to be careful, if called from sys_setpriority(),
3052	 * the task might be in the middle of scheduling on another CPU.
3053	 */
3054	rq = task_rq_lock(p, &flags);
3055	/*
3056	 * The RT priorities are set via sched_setscheduler(), but we still
3057	 * allow the 'normal' nice value to be set - but as expected
3058	 * it wont have any effect on scheduling until the task is
3059	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3060	 */
3061	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3062		p->static_prio = NICE_TO_PRIO(nice);
3063		goto out_unlock;
3064	}
3065	on_rq = p->on_rq;
3066	if (on_rq)
3067		dequeue_task(rq, p, 0);
3068
3069	p->static_prio = NICE_TO_PRIO(nice);
3070	set_load_weight(p);
3071	old_prio = p->prio;
3072	p->prio = effective_prio(p);
3073	delta = p->prio - old_prio;
3074
3075	if (on_rq) {
3076		enqueue_task(rq, p, 0);
3077		/*
3078		 * If the task increased its priority or is running and
3079		 * lowered its priority, then reschedule its CPU:
3080		 */
3081		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3082			resched_curr(rq);
3083	}
3084out_unlock:
3085	task_rq_unlock(rq, p, &flags);
3086}
3087EXPORT_SYMBOL(set_user_nice);
3088
3089/*
3090 * can_nice - check if a task can reduce its nice value
3091 * @p: task
3092 * @nice: nice value
3093 */
3094int can_nice(const struct task_struct *p, const int nice)
3095{
3096	/* convert nice value [19,-20] to rlimit style value [1,40] */
3097	int nice_rlim = nice_to_rlimit(nice);
3098
3099	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3100		capable(CAP_SYS_NICE));
3101}
3102
3103#ifdef __ARCH_WANT_SYS_NICE
3104
3105/*
3106 * sys_nice - change the priority of the current process.
3107 * @increment: priority increment
3108 *
3109 * sys_setpriority is a more generic, but much slower function that
3110 * does similar things.
3111 */
3112SYSCALL_DEFINE1(nice, int, increment)
3113{
3114	long nice, retval;
3115
3116	/*
3117	 * Setpriority might change our priority at the same moment.
3118	 * We don't have to worry. Conceptually one call occurs first
3119	 * and we have a single winner.
3120	 */
3121	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3122	nice = task_nice(current) + increment;
3123
3124	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3125	if (increment < 0 && !can_nice(current, nice))
3126		return -EPERM;
3127
3128	retval = security_task_setnice(current, nice);
3129	if (retval)
3130		return retval;
3131
3132	set_user_nice(current, nice);
3133	return 0;
3134}
3135
3136#endif
3137
3138/**
3139 * task_prio - return the priority value of a given task.
3140 * @p: the task in question.
3141 *
3142 * Return: The priority value as seen by users in /proc.
3143 * RT tasks are offset by -200. Normal tasks are centered
3144 * around 0, value goes from -16 to +15.
3145 */
3146int task_prio(const struct task_struct *p)
3147{
3148	return p->prio - MAX_RT_PRIO;
3149}
3150
3151/**
3152 * idle_cpu - is a given cpu idle currently?
3153 * @cpu: the processor in question.
3154 *
3155 * Return: 1 if the CPU is currently idle. 0 otherwise.
3156 */
3157int idle_cpu(int cpu)
3158{
3159	struct rq *rq = cpu_rq(cpu);
3160
3161	if (rq->curr != rq->idle)
3162		return 0;
3163
3164	if (rq->nr_running)
3165		return 0;
3166
3167#ifdef CONFIG_SMP
3168	if (!llist_empty(&rq->wake_list))
3169		return 0;
3170#endif
3171
3172	return 1;
3173}
3174
3175/**
3176 * idle_task - return the idle task for a given cpu.
3177 * @cpu: the processor in question.
3178 *
3179 * Return: The idle task for the cpu @cpu.
3180 */
3181struct task_struct *idle_task(int cpu)
3182{
3183	return cpu_rq(cpu)->idle;
3184}
3185
3186/**
3187 * find_process_by_pid - find a process with a matching PID value.
3188 * @pid: the pid in question.
3189 *
3190 * The task of @pid, if found. %NULL otherwise.
3191 */
3192static struct task_struct *find_process_by_pid(pid_t pid)
3193{
3194	return pid ? find_task_by_vpid(pid) : current;
3195}
3196
3197/*
3198 * This function initializes the sched_dl_entity of a newly becoming
3199 * SCHED_DEADLINE task.
3200 *
3201 * Only the static values are considered here, the actual runtime and the
3202 * absolute deadline will be properly calculated when the task is enqueued
3203 * for the first time with its new policy.
3204 */
3205static void
3206__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3207{
3208	struct sched_dl_entity *dl_se = &p->dl;
3209
3210	init_dl_task_timer(dl_se);
3211	dl_se->dl_runtime = attr->sched_runtime;
3212	dl_se->dl_deadline = attr->sched_deadline;
3213	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3214	dl_se->flags = attr->sched_flags;
3215	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3216	dl_se->dl_throttled = 0;
3217	dl_se->dl_new = 1;
3218	dl_se->dl_yielded = 0;
3219}
3220
3221static void __setscheduler_params(struct task_struct *p,
3222		const struct sched_attr *attr)
3223{
3224	int policy = attr->sched_policy;
3225
3226	if (policy == -1) /* setparam */
3227		policy = p->policy;
3228
3229	p->policy = policy;
3230
3231	if (dl_policy(policy))
3232		__setparam_dl(p, attr);
3233	else if (fair_policy(policy))
3234		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3235
3236	/*
3237	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3238	 * !rt_policy. Always setting this ensures that things like
3239	 * getparam()/getattr() don't report silly values for !rt tasks.
3240	 */
3241	p->rt_priority = attr->sched_priority;
3242	p->normal_prio = normal_prio(p);
3243	set_load_weight(p);
3244}
3245
3246/* Actually do priority change: must hold pi & rq lock. */
3247static void __setscheduler(struct rq *rq, struct task_struct *p,
3248			   const struct sched_attr *attr)
3249{
3250	__setscheduler_params(p, attr);
3251
3252	/*
3253	 * If we get here, there was no pi waiters boosting the
3254	 * task. It is safe to use the normal prio.
3255	 */
3256	p->prio = normal_prio(p);
3257
3258	if (dl_prio(p->prio))
3259		p->sched_class = &dl_sched_class;
3260	else if (rt_prio(p->prio))
3261		p->sched_class = &rt_sched_class;
3262	else
3263		p->sched_class = &fair_sched_class;
3264}
3265
3266static void
3267__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3268{
3269	struct sched_dl_entity *dl_se = &p->dl;
3270
3271	attr->sched_priority = p->rt_priority;
3272	attr->sched_runtime = dl_se->dl_runtime;
3273	attr->sched_deadline = dl_se->dl_deadline;
3274	attr->sched_period = dl_se->dl_period;
3275	attr->sched_flags = dl_se->flags;
3276}
3277
3278/*
3279 * This function validates the new parameters of a -deadline task.
3280 * We ask for the deadline not being zero, and greater or equal
3281 * than the runtime, as well as the period of being zero or
3282 * greater than deadline. Furthermore, we have to be sure that
3283 * user parameters are above the internal resolution of 1us (we
3284 * check sched_runtime only since it is always the smaller one) and
3285 * below 2^63 ns (we have to check both sched_deadline and
3286 * sched_period, as the latter can be zero).
3287 */
3288static bool
3289__checkparam_dl(const struct sched_attr *attr)
3290{
3291	/* deadline != 0 */
3292	if (attr->sched_deadline == 0)
3293		return false;
3294
3295	/*
3296	 * Since we truncate DL_SCALE bits, make sure we're at least
3297	 * that big.
3298	 */
3299	if (attr->sched_runtime < (1ULL << DL_SCALE))
3300		return false;
3301
3302	/*
3303	 * Since we use the MSB for wrap-around and sign issues, make
3304	 * sure it's not set (mind that period can be equal to zero).
3305	 */
3306	if (attr->sched_deadline & (1ULL << 63) ||
3307	    attr->sched_period & (1ULL << 63))
3308		return false;
3309
3310	/* runtime <= deadline <= period (if period != 0) */
3311	if ((attr->sched_period != 0 &&
3312	     attr->sched_period < attr->sched_deadline) ||
3313	    attr->sched_deadline < attr->sched_runtime)
3314		return false;
3315
3316	return true;
3317}
3318
3319/*
3320 * check the target process has a UID that matches the current process's
3321 */
3322static bool check_same_owner(struct task_struct *p)
3323{
3324	const struct cred *cred = current_cred(), *pcred;
3325	bool match;
3326
3327	rcu_read_lock();
3328	pcred = __task_cred(p);
3329	match = (uid_eq(cred->euid, pcred->euid) ||
3330		 uid_eq(cred->euid, pcred->uid));
3331	rcu_read_unlock();
3332	return match;
3333}
3334
3335static int __sched_setscheduler(struct task_struct *p,
3336				const struct sched_attr *attr,
3337				bool user)
3338{
3339	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3340		      MAX_RT_PRIO - 1 - attr->sched_priority;
3341	int retval, oldprio, oldpolicy = -1, on_rq, running;
3342	int policy = attr->sched_policy;
3343	unsigned long flags;
3344	const struct sched_class *prev_class;
3345	struct rq *rq;
3346	int reset_on_fork;
3347
3348	/* may grab non-irq protected spin_locks */
3349	BUG_ON(in_interrupt());
3350recheck:
3351	/* double check policy once rq lock held */
3352	if (policy < 0) {
3353		reset_on_fork = p->sched_reset_on_fork;
3354		policy = oldpolicy = p->policy;
3355	} else {
3356		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3357
3358		if (policy != SCHED_DEADLINE &&
3359				policy != SCHED_FIFO && policy != SCHED_RR &&
3360				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3361				policy != SCHED_IDLE)
3362			return -EINVAL;
3363	}
3364
3365	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3366		return -EINVAL;
3367
3368	/*
3369	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3370	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3371	 * SCHED_BATCH and SCHED_IDLE is 0.
3372	 */
3373	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3374	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3375		return -EINVAL;
3376	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3377	    (rt_policy(policy) != (attr->sched_priority != 0)))
3378		return -EINVAL;
3379
3380	/*
3381	 * Allow unprivileged RT tasks to decrease priority:
3382	 */
3383	if (user && !capable(CAP_SYS_NICE)) {
3384		if (fair_policy(policy)) {
3385			if (attr->sched_nice < task_nice(p) &&
3386			    !can_nice(p, attr->sched_nice))
3387				return -EPERM;
3388		}
3389
3390		if (rt_policy(policy)) {
3391			unsigned long rlim_rtprio =
3392					task_rlimit(p, RLIMIT_RTPRIO);
3393
3394			/* can't set/change the rt policy */
3395			if (policy != p->policy && !rlim_rtprio)
3396				return -EPERM;
3397
3398			/* can't increase priority */
3399			if (attr->sched_priority > p->rt_priority &&
3400			    attr->sched_priority > rlim_rtprio)
3401				return -EPERM;
3402		}
3403
3404		 /*
3405		  * Can't set/change SCHED_DEADLINE policy at all for now
3406		  * (safest behavior); in the future we would like to allow
3407		  * unprivileged DL tasks to increase their relative deadline
3408		  * or reduce their runtime (both ways reducing utilization)
3409		  */
3410		if (dl_policy(policy))
3411			return -EPERM;
3412
3413		/*
3414		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3415		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3416		 */
3417		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3418			if (!can_nice(p, task_nice(p)))
3419				return -EPERM;
3420		}
3421
3422		/* can't change other user's priorities */
3423		if (!check_same_owner(p))
3424			return -EPERM;
3425
3426		/* Normal users shall not reset the sched_reset_on_fork flag */
3427		if (p->sched_reset_on_fork && !reset_on_fork)
3428			return -EPERM;
3429	}
3430
3431	if (user) {
3432		retval = security_task_setscheduler(p);
3433		if (retval)
3434			return retval;
3435	}
3436
3437	/*
3438	 * make sure no PI-waiters arrive (or leave) while we are
3439	 * changing the priority of the task:
3440	 *
3441	 * To be able to change p->policy safely, the appropriate
3442	 * runqueue lock must be held.
3443	 */
3444	rq = task_rq_lock(p, &flags);
3445
3446	/*
3447	 * Changing the policy of the stop threads its a very bad idea
3448	 */
3449	if (p == rq->stop) {
3450		task_rq_unlock(rq, p, &flags);
3451		return -EINVAL;
3452	}
3453
3454	/*
3455	 * If not changing anything there's no need to proceed further,
3456	 * but store a possible modification of reset_on_fork.
3457	 */
3458	if (unlikely(policy == p->policy)) {
3459		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3460			goto change;
3461		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3462			goto change;
3463		if (dl_policy(policy))
3464			goto change;
3465
3466		p->sched_reset_on_fork = reset_on_fork;
3467		task_rq_unlock(rq, p, &flags);
3468		return 0;
3469	}
3470change:
3471
3472	if (user) {
3473#ifdef CONFIG_RT_GROUP_SCHED
3474		/*
3475		 * Do not allow realtime tasks into groups that have no runtime
3476		 * assigned.
3477		 */
3478		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3479				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3480				!task_group_is_autogroup(task_group(p))) {
3481			task_rq_unlock(rq, p, &flags);
3482			return -EPERM;
3483		}
3484#endif
3485#ifdef CONFIG_SMP
3486		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3487			cpumask_t *span = rq->rd->span;
3488
3489			/*
3490			 * Don't allow tasks with an affinity mask smaller than
3491			 * the entire root_domain to become SCHED_DEADLINE. We
3492			 * will also fail if there's no bandwidth available.
3493			 */
3494			if (!cpumask_subset(span, &p->cpus_allowed) ||
3495			    rq->rd->dl_bw.bw == 0) {
3496				task_rq_unlock(rq, p, &flags);
3497				return -EPERM;
3498			}
3499		}
3500#endif
3501	}
3502
3503	/* recheck policy now with rq lock held */
3504	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3505		policy = oldpolicy = -1;
3506		task_rq_unlock(rq, p, &flags);
3507		goto recheck;
3508	}
3509
3510	/*
3511	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3512	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3513	 * is available.
3514	 */
3515	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3516		task_rq_unlock(rq, p, &flags);
3517		return -EBUSY;
3518	}
3519
3520	p->sched_reset_on_fork = reset_on_fork;
3521	oldprio = p->prio;
3522
3523	/*
3524	 * Special case for priority boosted tasks.
3525	 *
3526	 * If the new priority is lower or equal (user space view)
3527	 * than the current (boosted) priority, we just store the new
3528	 * normal parameters and do not touch the scheduler class and
3529	 * the runqueue. This will be done when the task deboost
3530	 * itself.
3531	 */
3532	if (rt_mutex_check_prio(p, newprio)) {
3533		__setscheduler_params(p, attr);
3534		task_rq_unlock(rq, p, &flags);
3535		return 0;
3536	}
3537
3538	on_rq = p->on_rq;
3539	running = task_current(rq, p);
3540	if (on_rq)
3541		dequeue_task(rq, p, 0);
3542	if (running)
3543		p->sched_class->put_prev_task(rq, p);
3544
3545	prev_class = p->sched_class;
3546	__setscheduler(rq, p, attr);
3547
3548	if (running)
3549		p->sched_class->set_curr_task(rq);
3550	if (on_rq) {
3551		/*
3552		 * We enqueue to tail when the priority of a task is
3553		 * increased (user space view).
3554		 */
3555		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3556	}
3557
3558	check_class_changed(rq, p, prev_class, oldprio);
3559	task_rq_unlock(rq, p, &flags);
3560
3561	rt_mutex_adjust_pi(p);
3562
3563	return 0;
3564}
3565
3566static int _sched_setscheduler(struct task_struct *p, int policy,
3567			       const struct sched_param *param, bool check)
3568{
3569	struct sched_attr attr = {
3570		.sched_policy   = policy,
3571		.sched_priority = param->sched_priority,
3572		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3573	};
3574
3575	/*
3576	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3577	 */
3578	if (policy & SCHED_RESET_ON_FORK) {
3579		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3580		policy &= ~SCHED_RESET_ON_FORK;
3581		attr.sched_policy = policy;
3582	}
3583
3584	return __sched_setscheduler(p, &attr, check);
3585}
3586/**
3587 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3588 * @p: the task in question.
3589 * @policy: new policy.
3590 * @param: structure containing the new RT priority.
3591 *
3592 * Return: 0 on success. An error code otherwise.
3593 *
3594 * NOTE that the task may be already dead.
3595 */
3596int sched_setscheduler(struct task_struct *p, int policy,
3597		       const struct sched_param *param)
3598{
3599	return _sched_setscheduler(p, policy, param, true);
3600}
3601EXPORT_SYMBOL_GPL(sched_setscheduler);
3602
3603int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3604{
3605	return __sched_setscheduler(p, attr, true);
3606}
3607EXPORT_SYMBOL_GPL(sched_setattr);
3608
3609/**
3610 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3611 * @p: the task in question.
3612 * @policy: new policy.
3613 * @param: structure containing the new RT priority.
3614 *
3615 * Just like sched_setscheduler, only don't bother checking if the
3616 * current context has permission.  For example, this is needed in
3617 * stop_machine(): we create temporary high priority worker threads,
3618 * but our caller might not have that capability.
3619 *
3620 * Return: 0 on success. An error code otherwise.
3621 */
3622int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3623			       const struct sched_param *param)
3624{
3625	return _sched_setscheduler(p, policy, param, false);
3626}
3627
3628static int
3629do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3630{
3631	struct sched_param lparam;
3632	struct task_struct *p;
3633	int retval;
3634
3635	if (!param || pid < 0)
3636		return -EINVAL;
3637	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3638		return -EFAULT;
3639
3640	rcu_read_lock();
3641	retval = -ESRCH;
3642	p = find_process_by_pid(pid);
3643	if (p != NULL)
3644		retval = sched_setscheduler(p, policy, &lparam);
3645	rcu_read_unlock();
3646
3647	return retval;
3648}
3649
3650/*
3651 * Mimics kernel/events/core.c perf_copy_attr().
3652 */
3653static int sched_copy_attr(struct sched_attr __user *uattr,
3654			   struct sched_attr *attr)
3655{
3656	u32 size;
3657	int ret;
3658
3659	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3660		return -EFAULT;
3661
3662	/*
3663	 * zero the full structure, so that a short copy will be nice.
3664	 */
3665	memset(attr, 0, sizeof(*attr));
3666
3667	ret = get_user(size, &uattr->size);
3668	if (ret)
3669		return ret;
3670
3671	if (size > PAGE_SIZE)	/* silly large */
3672		goto err_size;
3673
3674	if (!size)		/* abi compat */
3675		size = SCHED_ATTR_SIZE_VER0;
3676
3677	if (size < SCHED_ATTR_SIZE_VER0)
3678		goto err_size;
3679
3680	/*
3681	 * If we're handed a bigger struct than we know of,
3682	 * ensure all the unknown bits are 0 - i.e. new
3683	 * user-space does not rely on any kernel feature
3684	 * extensions we dont know about yet.
3685	 */
3686	if (size > sizeof(*attr)) {
3687		unsigned char __user *addr;
3688		unsigned char __user *end;
3689		unsigned char val;
3690
3691		addr = (void __user *)uattr + sizeof(*attr);
3692		end  = (void __user *)uattr + size;
3693
3694		for (; addr < end; addr++) {
3695			ret = get_user(val, addr);
3696			if (ret)
3697				return ret;
3698			if (val)
3699				goto err_size;
3700		}
3701		size = sizeof(*attr);
3702	}
3703
3704	ret = copy_from_user(attr, uattr, size);
3705	if (ret)
3706		return -EFAULT;
3707
3708	/*
3709	 * XXX: do we want to be lenient like existing syscalls; or do we want
3710	 * to be strict and return an error on out-of-bounds values?
3711	 */
3712	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3713
3714	return 0;
3715
3716err_size:
3717	put_user(sizeof(*attr), &uattr->size);
3718	return -E2BIG;
3719}
3720
3721/**
3722 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3723 * @pid: the pid in question.
3724 * @policy: new policy.
3725 * @param: structure containing the new RT priority.
3726 *
3727 * Return: 0 on success. An error code otherwise.
3728 */
3729SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3730		struct sched_param __user *, param)
3731{
3732	/* negative values for policy are not valid */
3733	if (policy < 0)
3734		return -EINVAL;
3735
3736	return do_sched_setscheduler(pid, policy, param);
3737}
3738
3739/**
3740 * sys_sched_setparam - set/change the RT priority of a thread
3741 * @pid: the pid in question.
3742 * @param: structure containing the new RT priority.
3743 *
3744 * Return: 0 on success. An error code otherwise.
3745 */
3746SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3747{
3748	return do_sched_setscheduler(pid, -1, param);
3749}
3750
3751/**
3752 * sys_sched_setattr - same as above, but with extended sched_attr
3753 * @pid: the pid in question.
3754 * @uattr: structure containing the extended parameters.
3755 * @flags: for future extension.
3756 */
3757SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3758			       unsigned int, flags)
3759{
3760	struct sched_attr attr;
3761	struct task_struct *p;
3762	int retval;
3763
3764	if (!uattr || pid < 0 || flags)
3765		return -EINVAL;
3766
3767	retval = sched_copy_attr(uattr, &attr);
3768	if (retval)
3769		return retval;
3770
3771	if ((int)attr.sched_policy < 0)
3772		return -EINVAL;
3773
3774	rcu_read_lock();
3775	retval = -ESRCH;
3776	p = find_process_by_pid(pid);
3777	if (p != NULL)
3778		retval = sched_setattr(p, &attr);
3779	rcu_read_unlock();
3780
3781	return retval;
3782}
3783
3784/**
3785 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3786 * @pid: the pid in question.
3787 *
3788 * Return: On success, the policy of the thread. Otherwise, a negative error
3789 * code.
3790 */
3791SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3792{
3793	struct task_struct *p;
3794	int retval;
3795
3796	if (pid < 0)
3797		return -EINVAL;
3798
3799	retval = -ESRCH;
3800	rcu_read_lock();
3801	p = find_process_by_pid(pid);
3802	if (p) {
3803		retval = security_task_getscheduler(p);
3804		if (!retval)
3805			retval = p->policy
3806				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3807	}
3808	rcu_read_unlock();
3809	return retval;
3810}
3811
3812/**
3813 * sys_sched_getparam - get the RT priority of a thread
3814 * @pid: the pid in question.
3815 * @param: structure containing the RT priority.
3816 *
3817 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3818 * code.
3819 */
3820SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3821{
3822	struct sched_param lp = { .sched_priority = 0 };
3823	struct task_struct *p;
3824	int retval;
3825
3826	if (!param || pid < 0)
3827		return -EINVAL;
3828
3829	rcu_read_lock();
3830	p = find_process_by_pid(pid);
3831	retval = -ESRCH;
3832	if (!p)
3833		goto out_unlock;
3834
3835	retval = security_task_getscheduler(p);
3836	if (retval)
3837		goto out_unlock;
3838
3839	if (task_has_rt_policy(p))
3840		lp.sched_priority = p->rt_priority;
3841	rcu_read_unlock();
3842
3843	/*
3844	 * This one might sleep, we cannot do it with a spinlock held ...
3845	 */
3846	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3847
3848	return retval;
3849
3850out_unlock:
3851	rcu_read_unlock();
3852	return retval;
3853}
3854
3855static int sched_read_attr(struct sched_attr __user *uattr,
3856			   struct sched_attr *attr,
3857			   unsigned int usize)
3858{
3859	int ret;
3860
3861	if (!access_ok(VERIFY_WRITE, uattr, usize))
3862		return -EFAULT;
3863
3864	/*
3865	 * If we're handed a smaller struct than we know of,
3866	 * ensure all the unknown bits are 0 - i.e. old
3867	 * user-space does not get uncomplete information.
3868	 */
3869	if (usize < sizeof(*attr)) {
3870		unsigned char *addr;
3871		unsigned char *end;
3872
3873		addr = (void *)attr + usize;
3874		end  = (void *)attr + sizeof(*attr);
3875
3876		for (; addr < end; addr++) {
3877			if (*addr)
3878				return -EFBIG;
3879		}
3880
3881		attr->size = usize;
3882	}
3883
3884	ret = copy_to_user(uattr, attr, attr->size);
3885	if (ret)
3886		return -EFAULT;
3887
3888	return 0;
3889}
3890
3891/**
3892 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3893 * @pid: the pid in question.
3894 * @uattr: structure containing the extended parameters.
3895 * @size: sizeof(attr) for fwd/bwd comp.
3896 * @flags: for future extension.
3897 */
3898SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3899		unsigned int, size, unsigned int, flags)
3900{
3901	struct sched_attr attr = {
3902		.size = sizeof(struct sched_attr),
3903	};
3904	struct task_struct *p;
3905	int retval;
3906
3907	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3908	    size < SCHED_ATTR_SIZE_VER0 || flags)
3909		return -EINVAL;
3910
3911	rcu_read_lock();
3912	p = find_process_by_pid(pid);
3913	retval = -ESRCH;
3914	if (!p)
3915		goto out_unlock;
3916
3917	retval = security_task_getscheduler(p);
3918	if (retval)
3919		goto out_unlock;
3920
3921	attr.sched_policy = p->policy;
3922	if (p->sched_reset_on_fork)
3923		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3924	if (task_has_dl_policy(p))
3925		__getparam_dl(p, &attr);
3926	else if (task_has_rt_policy(p))
3927		attr.sched_priority = p->rt_priority;
3928	else
3929		attr.sched_nice = task_nice(p);
3930
3931	rcu_read_unlock();
3932
3933	retval = sched_read_attr(uattr, &attr, size);
3934	return retval;
3935
3936out_unlock:
3937	rcu_read_unlock();
3938	return retval;
3939}
3940
3941long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3942{
3943	cpumask_var_t cpus_allowed, new_mask;
3944	struct task_struct *p;
3945	int retval;
3946
3947	rcu_read_lock();
3948
3949	p = find_process_by_pid(pid);
3950	if (!p) {
3951		rcu_read_unlock();
3952		return -ESRCH;
3953	}
3954
3955	/* Prevent p going away */
3956	get_task_struct(p);
3957	rcu_read_unlock();
3958
3959	if (p->flags & PF_NO_SETAFFINITY) {
3960		retval = -EINVAL;
3961		goto out_put_task;
3962	}
3963	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3964		retval = -ENOMEM;
3965		goto out_put_task;
3966	}
3967	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3968		retval = -ENOMEM;
3969		goto out_free_cpus_allowed;
3970	}
3971	retval = -EPERM;
3972	if (!check_same_owner(p)) {
3973		rcu_read_lock();
3974		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3975			rcu_read_unlock();
3976			goto out_unlock;
3977		}
3978		rcu_read_unlock();
3979	}
3980
3981	retval = security_task_setscheduler(p);
3982	if (retval)
3983		goto out_unlock;
3984
3985
3986	cpuset_cpus_allowed(p, cpus_allowed);
3987	cpumask_and(new_mask, in_mask, cpus_allowed);
3988
3989	/*
3990	 * Since bandwidth control happens on root_domain basis,
3991	 * if admission test is enabled, we only admit -deadline
3992	 * tasks allowed to run on all the CPUs in the task's
3993	 * root_domain.
3994	 */
3995#ifdef CONFIG_SMP
3996	if (task_has_dl_policy(p)) {
3997		const struct cpumask *span = task_rq(p)->rd->span;
3998
3999		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4000			retval = -EBUSY;
4001			goto out_unlock;
4002		}
4003	}
4004#endif
4005again:
4006	retval = set_cpus_allowed_ptr(p, new_mask);
4007
4008	if (!retval) {
4009		cpuset_cpus_allowed(p, cpus_allowed);
4010		if (!cpumask_subset(new_mask, cpus_allowed)) {
4011			/*
4012			 * We must have raced with a concurrent cpuset
4013			 * update. Just reset the cpus_allowed to the
4014			 * cpuset's cpus_allowed
4015			 */
4016			cpumask_copy(new_mask, cpus_allowed);
4017			goto again;
4018		}
4019	}
4020out_unlock:
4021	free_cpumask_var(new_mask);
4022out_free_cpus_allowed:
4023	free_cpumask_var(cpus_allowed);
4024out_put_task:
4025	put_task_struct(p);
4026	return retval;
4027}
4028
4029static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4030			     struct cpumask *new_mask)
4031{
4032	if (len < cpumask_size())
4033		cpumask_clear(new_mask);
4034	else if (len > cpumask_size())
4035		len = cpumask_size();
4036
4037	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4038}
4039
4040/**
4041 * sys_sched_setaffinity - set the cpu affinity of a process
4042 * @pid: pid of the process
4043 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4044 * @user_mask_ptr: user-space pointer to the new cpu mask
4045 *
4046 * Return: 0 on success. An error code otherwise.
4047 */
4048SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4049		unsigned long __user *, user_mask_ptr)
4050{
4051	cpumask_var_t new_mask;
4052	int retval;
4053
4054	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4055		return -ENOMEM;
4056
4057	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4058	if (retval == 0)
4059		retval = sched_setaffinity(pid, new_mask);
4060	free_cpumask_var(new_mask);
4061	return retval;
4062}
4063
4064long sched_getaffinity(pid_t pid, struct cpumask *mask)
4065{
4066	struct task_struct *p;
4067	unsigned long flags;
4068	int retval;
4069
4070	rcu_read_lock();
4071
4072	retval = -ESRCH;
4073	p = find_process_by_pid(pid);
4074	if (!p)
4075		goto out_unlock;
4076
4077	retval = security_task_getscheduler(p);
4078	if (retval)
4079		goto out_unlock;
4080
4081	raw_spin_lock_irqsave(&p->pi_lock, flags);
4082	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4083	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4084
4085out_unlock:
4086	rcu_read_unlock();
4087
4088	return retval;
4089}
4090
4091/**
4092 * sys_sched_getaffinity - get the cpu affinity of a process
4093 * @pid: pid of the process
4094 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4095 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4096 *
4097 * Return: 0 on success. An error code otherwise.
4098 */
4099SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4100		unsigned long __user *, user_mask_ptr)
4101{
4102	int ret;
4103	cpumask_var_t mask;
4104
4105	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4106		return -EINVAL;
4107	if (len & (sizeof(unsigned long)-1))
4108		return -EINVAL;
4109
4110	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4111		return -ENOMEM;
4112
4113	ret = sched_getaffinity(pid, mask);
4114	if (ret == 0) {
4115		size_t retlen = min_t(size_t, len, cpumask_size());
4116
4117		if (copy_to_user(user_mask_ptr, mask, retlen))
4118			ret = -EFAULT;
4119		else
4120			ret = retlen;
4121	}
4122	free_cpumask_var(mask);
4123
4124	return ret;
4125}
4126
4127/**
4128 * sys_sched_yield - yield the current processor to other threads.
4129 *
4130 * This function yields the current CPU to other tasks. If there are no
4131 * other threads running on this CPU then this function will return.
4132 *
4133 * Return: 0.
4134 */
4135SYSCALL_DEFINE0(sched_yield)
4136{
4137	struct rq *rq = this_rq_lock();
4138
4139	schedstat_inc(rq, yld_count);
4140	current->sched_class->yield_task(rq);
4141
4142	/*
4143	 * Since we are going to call schedule() anyway, there's
4144	 * no need to preempt or enable interrupts:
4145	 */
4146	__release(rq->lock);
4147	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4148	do_raw_spin_unlock(&rq->lock);
4149	sched_preempt_enable_no_resched();
4150
4151	schedule();
4152
4153	return 0;
4154}
4155
4156static void __cond_resched(void)
4157{
4158	__preempt_count_add(PREEMPT_ACTIVE);
4159	__schedule();
4160	__preempt_count_sub(PREEMPT_ACTIVE);
4161}
4162
4163int __sched _cond_resched(void)
4164{
4165	rcu_cond_resched();
4166	if (should_resched()) {
4167		__cond_resched();
4168		return 1;
4169	}
4170	return 0;
4171}
4172EXPORT_SYMBOL(_cond_resched);
4173
4174/*
4175 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4176 * call schedule, and on return reacquire the lock.
4177 *
4178 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4179 * operations here to prevent schedule() from being called twice (once via
4180 * spin_unlock(), once by hand).
4181 */
4182int __cond_resched_lock(spinlock_t *lock)
4183{
4184	bool need_rcu_resched = rcu_should_resched();
4185	int resched = should_resched();
4186	int ret = 0;
4187
4188	lockdep_assert_held(lock);
4189
4190	if (spin_needbreak(lock) || resched || need_rcu_resched) {
4191		spin_unlock(lock);
4192		if (resched)
4193			__cond_resched();
4194		else if (unlikely(need_rcu_resched))
4195			rcu_resched();
4196		else
4197			cpu_relax();
4198		ret = 1;
4199		spin_lock(lock);
4200	}
4201	return ret;
4202}
4203EXPORT_SYMBOL(__cond_resched_lock);
4204
4205int __sched __cond_resched_softirq(void)
4206{
4207	BUG_ON(!in_softirq());
4208
4209	rcu_cond_resched();  /* BH disabled OK, just recording QSes. */
4210	if (should_resched()) {
4211		local_bh_enable();
4212		__cond_resched();
4213		local_bh_disable();
4214		return 1;
4215	}
4216	return 0;
4217}
4218EXPORT_SYMBOL(__cond_resched_softirq);
4219
4220/**
4221 * yield - yield the current processor to other threads.
4222 *
4223 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4224 *
4225 * The scheduler is at all times free to pick the calling task as the most
4226 * eligible task to run, if removing the yield() call from your code breaks
4227 * it, its already broken.
4228 *
4229 * Typical broken usage is:
4230 *
4231 * while (!event)
4232 * 	yield();
4233 *
4234 * where one assumes that yield() will let 'the other' process run that will
4235 * make event true. If the current task is a SCHED_FIFO task that will never
4236 * happen. Never use yield() as a progress guarantee!!
4237 *
4238 * If you want to use yield() to wait for something, use wait_event().
4239 * If you want to use yield() to be 'nice' for others, use cond_resched().
4240 * If you still want to use yield(), do not!
4241 */
4242void __sched yield(void)
4243{
4244	set_current_state(TASK_RUNNING);
4245	sys_sched_yield();
4246}
4247EXPORT_SYMBOL(yield);
4248
4249/**
4250 * yield_to - yield the current processor to another thread in
4251 * your thread group, or accelerate that thread toward the
4252 * processor it's on.
4253 * @p: target task
4254 * @preempt: whether task preemption is allowed or not
4255 *
4256 * It's the caller's job to ensure that the target task struct
4257 * can't go away on us before we can do any checks.
4258 *
4259 * Return:
4260 *	true (>0) if we indeed boosted the target task.
4261 *	false (0) if we failed to boost the target.
4262 *	-ESRCH if there's no task to yield to.
4263 */
4264int __sched yield_to(struct task_struct *p, bool preempt)
4265{
4266	struct task_struct *curr = current;
4267	struct rq *rq, *p_rq;
4268	unsigned long flags;
4269	int yielded = 0;
4270
4271	local_irq_save(flags);
4272	rq = this_rq();
4273
4274again:
4275	p_rq = task_rq(p);
4276	/*
4277	 * If we're the only runnable task on the rq and target rq also
4278	 * has only one task, there's absolutely no point in yielding.
4279	 */
4280	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4281		yielded = -ESRCH;
4282		goto out_irq;
4283	}
4284
4285	double_rq_lock(rq, p_rq);
4286	if (task_rq(p) != p_rq) {
4287		double_rq_unlock(rq, p_rq);
4288		goto again;
4289	}
4290
4291	if (!curr->sched_class->yield_to_task)
4292		goto out_unlock;
4293
4294	if (curr->sched_class != p->sched_class)
4295		goto out_unlock;
4296
4297	if (task_running(p_rq, p) || p->state)
4298		goto out_unlock;
4299
4300	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4301	if (yielded) {
4302		schedstat_inc(rq, yld_count);
4303		/*
4304		 * Make p's CPU reschedule; pick_next_entity takes care of
4305		 * fairness.
4306		 */
4307		if (preempt && rq != p_rq)
4308			resched_curr(p_rq);
4309	}
4310
4311out_unlock:
4312	double_rq_unlock(rq, p_rq);
4313out_irq:
4314	local_irq_restore(flags);
4315
4316	if (yielded > 0)
4317		schedule();
4318
4319	return yielded;
4320}
4321EXPORT_SYMBOL_GPL(yield_to);
4322
4323/*
4324 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4325 * that process accounting knows that this is a task in IO wait state.
4326 */
4327void __sched io_schedule(void)
4328{
4329	struct rq *rq = raw_rq();
4330
4331	delayacct_blkio_start();
4332	atomic_inc(&rq->nr_iowait);
4333	blk_flush_plug(current);
4334	current->in_iowait = 1;
4335	schedule();
4336	current->in_iowait = 0;
4337	atomic_dec(&rq->nr_iowait);
4338	delayacct_blkio_end();
4339}
4340EXPORT_SYMBOL(io_schedule);
4341
4342long __sched io_schedule_timeout(long timeout)
4343{
4344	struct rq *rq = raw_rq();
4345	long ret;
4346
4347	delayacct_blkio_start();
4348	atomic_inc(&rq->nr_iowait);
4349	blk_flush_plug(current);
4350	current->in_iowait = 1;
4351	ret = schedule_timeout(timeout);
4352	current->in_iowait = 0;
4353	atomic_dec(&rq->nr_iowait);
4354	delayacct_blkio_end();
4355	return ret;
4356}
4357
4358/**
4359 * sys_sched_get_priority_max - return maximum RT priority.
4360 * @policy: scheduling class.
4361 *
4362 * Return: On success, this syscall returns the maximum
4363 * rt_priority that can be used by a given scheduling class.
4364 * On failure, a negative error code is returned.
4365 */
4366SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4367{
4368	int ret = -EINVAL;
4369
4370	switch (policy) {
4371	case SCHED_FIFO:
4372	case SCHED_RR:
4373		ret = MAX_USER_RT_PRIO-1;
4374		break;
4375	case SCHED_DEADLINE:
4376	case SCHED_NORMAL:
4377	case SCHED_BATCH:
4378	case SCHED_IDLE:
4379		ret = 0;
4380		break;
4381	}
4382	return ret;
4383}
4384
4385/**
4386 * sys_sched_get_priority_min - return minimum RT priority.
4387 * @policy: scheduling class.
4388 *
4389 * Return: On success, this syscall returns the minimum
4390 * rt_priority that can be used by a given scheduling class.
4391 * On failure, a negative error code is returned.
4392 */
4393SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4394{
4395	int ret = -EINVAL;
4396
4397	switch (policy) {
4398	case SCHED_FIFO:
4399	case SCHED_RR:
4400		ret = 1;
4401		break;
4402	case SCHED_DEADLINE:
4403	case SCHED_NORMAL:
4404	case SCHED_BATCH:
4405	case SCHED_IDLE:
4406		ret = 0;
4407	}
4408	return ret;
4409}
4410
4411/**
4412 * sys_sched_rr_get_interval - return the default timeslice of a process.
4413 * @pid: pid of the process.
4414 * @interval: userspace pointer to the timeslice value.
4415 *
4416 * this syscall writes the default timeslice value of a given process
4417 * into the user-space timespec buffer. A value of '0' means infinity.
4418 *
4419 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4420 * an error code.
4421 */
4422SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4423		struct timespec __user *, interval)
4424{
4425	struct task_struct *p;
4426	unsigned int time_slice;
4427	unsigned long flags;
4428	struct rq *rq;
4429	int retval;
4430	struct timespec t;
4431
4432	if (pid < 0)
4433		return -EINVAL;
4434
4435	retval = -ESRCH;
4436	rcu_read_lock();
4437	p = find_process_by_pid(pid);
4438	if (!p)
4439		goto out_unlock;
4440
4441	retval = security_task_getscheduler(p);
4442	if (retval)
4443		goto out_unlock;
4444
4445	rq = task_rq_lock(p, &flags);
4446	time_slice = 0;
4447	if (p->sched_class->get_rr_interval)
4448		time_slice = p->sched_class->get_rr_interval(rq, p);
4449	task_rq_unlock(rq, p, &flags);
4450
4451	rcu_read_unlock();
4452	jiffies_to_timespec(time_slice, &t);
4453	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4454	return retval;
4455
4456out_unlock:
4457	rcu_read_unlock();
4458	return retval;
4459}
4460
4461static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4462
4463void sched_show_task(struct task_struct *p)
4464{
4465	unsigned long free = 0;
4466	int ppid;
4467	unsigned state;
4468
4469	state = p->state ? __ffs(p->state) + 1 : 0;
4470	printk(KERN_INFO "%-15.15s %c", p->comm,
4471		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4472#if BITS_PER_LONG == 32
4473	if (state == TASK_RUNNING)
4474		printk(KERN_CONT " running  ");
4475	else
4476		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4477#else
4478	if (state == TASK_RUNNING)
4479		printk(KERN_CONT "  running task    ");
4480	else
4481		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4482#endif
4483#ifdef CONFIG_DEBUG_STACK_USAGE
4484	free = stack_not_used(p);
4485#endif
4486	rcu_read_lock();
4487	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4488	rcu_read_unlock();
4489	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4490		task_pid_nr(p), ppid,
4491		(unsigned long)task_thread_info(p)->flags);
4492
4493	print_worker_info(KERN_INFO, p);
4494	show_stack(p, NULL);
4495}
4496
4497void show_state_filter(unsigned long state_filter)
4498{
4499	struct task_struct *g, *p;
4500
4501#if BITS_PER_LONG == 32
4502	printk(KERN_INFO
4503		"  task                PC stack   pid father\n");
4504#else
4505	printk(KERN_INFO
4506		"  task                        PC stack   pid father\n");
4507#endif
4508	rcu_read_lock();
4509	do_each_thread(g, p) {
4510		/*
4511		 * reset the NMI-timeout, listing all files on a slow
4512		 * console might take a lot of time:
4513		 */
4514		touch_nmi_watchdog();
4515		if (!state_filter || (p->state & state_filter))
4516			sched_show_task(p);
4517	} while_each_thread(g, p);
4518
4519	touch_all_softlockup_watchdogs();
4520
4521#ifdef CONFIG_SCHED_DEBUG
4522	sysrq_sched_debug_show();
4523#endif
4524	rcu_read_unlock();
4525	/*
4526	 * Only show locks if all tasks are dumped:
4527	 */
4528	if (!state_filter)
4529		debug_show_all_locks();
4530}
4531
4532void init_idle_bootup_task(struct task_struct *idle)
4533{
4534	idle->sched_class = &idle_sched_class;
4535}
4536
4537/**
4538 * init_idle - set up an idle thread for a given CPU
4539 * @idle: task in question
4540 * @cpu: cpu the idle task belongs to
4541 *
4542 * NOTE: this function does not set the idle thread's NEED_RESCHED
4543 * flag, to make booting more robust.
4544 */
4545void init_idle(struct task_struct *idle, int cpu)
4546{
4547	struct rq *rq = cpu_rq(cpu);
4548	unsigned long flags;
4549
4550	raw_spin_lock_irqsave(&rq->lock, flags);
4551
4552	__sched_fork(0, idle);
4553	idle->state = TASK_RUNNING;
4554	idle->se.exec_start = sched_clock();
4555
4556	do_set_cpus_allowed(idle, cpumask_of(cpu));
4557	/*
4558	 * We're having a chicken and egg problem, even though we are
4559	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4560	 * lockdep check in task_group() will fail.
4561	 *
4562	 * Similar case to sched_fork(). / Alternatively we could
4563	 * use task_rq_lock() here and obtain the other rq->lock.
4564	 *
4565	 * Silence PROVE_RCU
4566	 */
4567	rcu_read_lock();
4568	__set_task_cpu(idle, cpu);
4569	rcu_read_unlock();
4570
4571	rq->curr = rq->idle = idle;
4572	idle->on_rq = 1;
4573#if defined(CONFIG_SMP)
4574	idle->on_cpu = 1;
4575#endif
4576	raw_spin_unlock_irqrestore(&rq->lock, flags);
4577
4578	/* Set the preempt count _outside_ the spinlocks! */
4579	init_idle_preempt_count(idle, cpu);
4580
4581	/*
4582	 * The idle tasks have their own, simple scheduling class:
4583	 */
4584	idle->sched_class = &idle_sched_class;
4585	ftrace_graph_init_idle_task(idle, cpu);
4586	vtime_init_idle(idle, cpu);
4587#if defined(CONFIG_SMP)
4588	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4589#endif
4590}
4591
4592#ifdef CONFIG_SMP
4593void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4594{
4595	if (p->sched_class && p->sched_class->set_cpus_allowed)
4596		p->sched_class->set_cpus_allowed(p, new_mask);
4597
4598	cpumask_copy(&p->cpus_allowed, new_mask);
4599	p->nr_cpus_allowed = cpumask_weight(new_mask);
4600}
4601
4602/*
4603 * This is how migration works:
4604 *
4605 * 1) we invoke migration_cpu_stop() on the target CPU using
4606 *    stop_one_cpu().
4607 * 2) stopper starts to run (implicitly forcing the migrated thread
4608 *    off the CPU)
4609 * 3) it checks whether the migrated task is still in the wrong runqueue.
4610 * 4) if it's in the wrong runqueue then the migration thread removes
4611 *    it and puts it into the right queue.
4612 * 5) stopper completes and stop_one_cpu() returns and the migration
4613 *    is done.
4614 */
4615
4616/*
4617 * Change a given task's CPU affinity. Migrate the thread to a
4618 * proper CPU and schedule it away if the CPU it's executing on
4619 * is removed from the allowed bitmask.
4620 *
4621 * NOTE: the caller must have a valid reference to the task, the
4622 * task must not exit() & deallocate itself prematurely. The
4623 * call is not atomic; no spinlocks may be held.
4624 */
4625int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4626{
4627	unsigned long flags;
4628	struct rq *rq;
4629	unsigned int dest_cpu;
4630	int ret = 0;
4631
4632	rq = task_rq_lock(p, &flags);
4633
4634	if (cpumask_equal(&p->cpus_allowed, new_mask))
4635		goto out;
4636
4637	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4638		ret = -EINVAL;
4639		goto out;
4640	}
4641
4642	do_set_cpus_allowed(p, new_mask);
4643
4644	/* Can the task run on the task's current CPU? If so, we're done */
4645	if (cpumask_test_cpu(task_cpu(p), new_mask))
4646		goto out;
4647
4648	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4649	if (p->on_rq) {
4650		struct migration_arg arg = { p, dest_cpu };
4651		/* Need help from migration thread: drop lock and wait. */
4652		task_rq_unlock(rq, p, &flags);
4653		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4654		tlb_migrate_finish(p->mm);
4655		return 0;
4656	}
4657out:
4658	task_rq_unlock(rq, p, &flags);
4659
4660	return ret;
4661}
4662EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4663
4664/*
4665 * Move (not current) task off this cpu, onto dest cpu. We're doing
4666 * this because either it can't run here any more (set_cpus_allowed()
4667 * away from this CPU, or CPU going down), or because we're
4668 * attempting to rebalance this task on exec (sched_exec).
4669 *
4670 * So we race with normal scheduler movements, but that's OK, as long
4671 * as the task is no longer on this CPU.
4672 *
4673 * Returns non-zero if task was successfully migrated.
4674 */
4675static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4676{
4677	struct rq *rq_dest, *rq_src;
4678	int ret = 0;
4679
4680	if (unlikely(!cpu_active(dest_cpu)))
4681		return ret;
4682
4683	rq_src = cpu_rq(src_cpu);
4684	rq_dest = cpu_rq(dest_cpu);
4685
4686	raw_spin_lock(&p->pi_lock);
4687	double_rq_lock(rq_src, rq_dest);
4688	/* Already moved. */
4689	if (task_cpu(p) != src_cpu)
4690		goto done;
4691	/* Affinity changed (again). */
4692	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4693		goto fail;
4694
4695	/*
4696	 * If we're not on a rq, the next wake-up will ensure we're
4697	 * placed properly.
4698	 */
4699	if (p->on_rq) {
4700		dequeue_task(rq_src, p, 0);
4701		set_task_cpu(p, dest_cpu);
4702		enqueue_task(rq_dest, p, 0);
4703		check_preempt_curr(rq_dest, p, 0);
4704	}
4705done:
4706	ret = 1;
4707fail:
4708	double_rq_unlock(rq_src, rq_dest);
4709	raw_spin_unlock(&p->pi_lock);
4710	return ret;
4711}
4712
4713#ifdef CONFIG_NUMA_BALANCING
4714/* Migrate current task p to target_cpu */
4715int migrate_task_to(struct task_struct *p, int target_cpu)
4716{
4717	struct migration_arg arg = { p, target_cpu };
4718	int curr_cpu = task_cpu(p);
4719
4720	if (curr_cpu == target_cpu)
4721		return 0;
4722
4723	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4724		return -EINVAL;
4725
4726	/* TODO: This is not properly updating schedstats */
4727
4728	trace_sched_move_numa(p, curr_cpu, target_cpu);
4729	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4730}
4731
4732/*
4733 * Requeue a task on a given node and accurately track the number of NUMA
4734 * tasks on the runqueues
4735 */
4736void sched_setnuma(struct task_struct *p, int nid)
4737{
4738	struct rq *rq;
4739	unsigned long flags;
4740	bool on_rq, running;
4741
4742	rq = task_rq_lock(p, &flags);
4743	on_rq = p->on_rq;
4744	running = task_current(rq, p);
4745
4746	if (on_rq)
4747		dequeue_task(rq, p, 0);
4748	if (running)
4749		p->sched_class->put_prev_task(rq, p);
4750
4751	p->numa_preferred_nid = nid;
4752
4753	if (running)
4754		p->sched_class->set_curr_task(rq);
4755	if (on_rq)
4756		enqueue_task(rq, p, 0);
4757	task_rq_unlock(rq, p, &flags);
4758}
4759#endif
4760
4761/*
4762 * migration_cpu_stop - this will be executed by a highprio stopper thread
4763 * and performs thread migration by bumping thread off CPU then
4764 * 'pushing' onto another runqueue.
4765 */
4766static int migration_cpu_stop(void *data)
4767{
4768	struct migration_arg *arg = data;
4769
4770	/*
4771	 * The original target cpu might have gone down and we might
4772	 * be on another cpu but it doesn't matter.
4773	 */
4774	local_irq_disable();
4775	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4776	local_irq_enable();
4777	return 0;
4778}
4779
4780#ifdef CONFIG_HOTPLUG_CPU
4781
4782/*
4783 * Ensures that the idle task is using init_mm right before its cpu goes
4784 * offline.
4785 */
4786void idle_task_exit(void)
4787{
4788	struct mm_struct *mm = current->active_mm;
4789
4790	BUG_ON(cpu_online(smp_processor_id()));
4791
4792	if (mm != &init_mm) {
4793		switch_mm(mm, &init_mm, current);
4794		finish_arch_post_lock_switch();
4795	}
4796	mmdrop(mm);
4797}
4798
4799/*
4800 * Since this CPU is going 'away' for a while, fold any nr_active delta
4801 * we might have. Assumes we're called after migrate_tasks() so that the
4802 * nr_active count is stable.
4803 *
4804 * Also see the comment "Global load-average calculations".
4805 */
4806static void calc_load_migrate(struct rq *rq)
4807{
4808	long delta = calc_load_fold_active(rq);
4809	if (delta)
4810		atomic_long_add(delta, &calc_load_tasks);
4811}
4812
4813static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4814{
4815}
4816
4817static const struct sched_class fake_sched_class = {
4818	.put_prev_task = put_prev_task_fake,
4819};
4820
4821static struct task_struct fake_task = {
4822	/*
4823	 * Avoid pull_{rt,dl}_task()
4824	 */
4825	.prio = MAX_PRIO + 1,
4826	.sched_class = &fake_sched_class,
4827};
4828
4829/*
4830 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4831 * try_to_wake_up()->select_task_rq().
4832 *
4833 * Called with rq->lock held even though we'er in stop_machine() and
4834 * there's no concurrency possible, we hold the required locks anyway
4835 * because of lock validation efforts.
4836 */
4837static void migrate_tasks(unsigned int dead_cpu)
4838{
4839	struct rq *rq = cpu_rq(dead_cpu);
4840	struct task_struct *next, *stop = rq->stop;
4841	int dest_cpu;
4842
4843	/*
4844	 * Fudge the rq selection such that the below task selection loop
4845	 * doesn't get stuck on the currently eligible stop task.
4846	 *
4847	 * We're currently inside stop_machine() and the rq is either stuck
4848	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4849	 * either way we should never end up calling schedule() until we're
4850	 * done here.
4851	 */
4852	rq->stop = NULL;
4853
4854	/*
4855	 * put_prev_task() and pick_next_task() sched
4856	 * class method both need to have an up-to-date
4857	 * value of rq->clock[_task]
4858	 */
4859	update_rq_clock(rq);
4860
4861	for ( ; ; ) {
4862		/*
4863		 * There's this thread running, bail when that's the only
4864		 * remaining thread.
4865		 */
4866		if (rq->nr_running == 1)
4867			break;
4868
4869		next = pick_next_task(rq, &fake_task);
4870		BUG_ON(!next);
4871		next->sched_class->put_prev_task(rq, next);
4872
4873		/* Find suitable destination for @next, with force if needed. */
4874		dest_cpu = select_fallback_rq(dead_cpu, next);
4875		raw_spin_unlock(&rq->lock);
4876
4877		__migrate_task(next, dead_cpu, dest_cpu);
4878
4879		raw_spin_lock(&rq->lock);
4880	}
4881
4882	rq->stop = stop;
4883}
4884
4885#endif /* CONFIG_HOTPLUG_CPU */
4886
4887#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4888
4889static struct ctl_table sd_ctl_dir[] = {
4890	{
4891		.procname	= "sched_domain",
4892		.mode		= 0555,
4893	},
4894	{}
4895};
4896
4897static struct ctl_table sd_ctl_root[] = {
4898	{
4899		.procname	= "kernel",
4900		.mode		= 0555,
4901		.child		= sd_ctl_dir,
4902	},
4903	{}
4904};
4905
4906static struct ctl_table *sd_alloc_ctl_entry(int n)
4907{
4908	struct ctl_table *entry =
4909		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4910
4911	return entry;
4912}
4913
4914static void sd_free_ctl_entry(struct ctl_table **tablep)
4915{
4916	struct ctl_table *entry;
4917
4918	/*
4919	 * In the intermediate directories, both the child directory and
4920	 * procname are dynamically allocated and could fail but the mode
4921	 * will always be set. In the lowest directory the names are
4922	 * static strings and all have proc handlers.
4923	 */
4924	for (entry = *tablep; entry->mode; entry++) {
4925		if (entry->child)
4926			sd_free_ctl_entry(&entry->child);
4927		if (entry->proc_handler == NULL)
4928			kfree(entry->procname);
4929	}
4930
4931	kfree(*tablep);
4932	*tablep = NULL;
4933}
4934
4935static int min_load_idx = 0;
4936static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4937
4938static void
4939set_table_entry(struct ctl_table *entry,
4940		const char *procname, void *data, int maxlen,
4941		umode_t mode, proc_handler *proc_handler,
4942		bool load_idx)
4943{
4944	entry->procname = procname;
4945	entry->data = data;
4946	entry->maxlen = maxlen;
4947	entry->mode = mode;
4948	entry->proc_handler = proc_handler;
4949
4950	if (load_idx) {
4951		entry->extra1 = &min_load_idx;
4952		entry->extra2 = &max_load_idx;
4953	}
4954}
4955
4956static struct ctl_table *
4957sd_alloc_ctl_domain_table(struct sched_domain *sd)
4958{
4959	struct ctl_table *table = sd_alloc_ctl_entry(14);
4960
4961	if (table == NULL)
4962		return NULL;
4963
4964	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4965		sizeof(long), 0644, proc_doulongvec_minmax, false);
4966	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4967		sizeof(long), 0644, proc_doulongvec_minmax, false);
4968	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4969		sizeof(int), 0644, proc_dointvec_minmax, true);
4970	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4971		sizeof(int), 0644, proc_dointvec_minmax, true);
4972	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4973		sizeof(int), 0644, proc_dointvec_minmax, true);
4974	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4975		sizeof(int), 0644, proc_dointvec_minmax, true);
4976	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4977		sizeof(int), 0644, proc_dointvec_minmax, true);
4978	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4979		sizeof(int), 0644, proc_dointvec_minmax, false);
4980	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4981		sizeof(int), 0644, proc_dointvec_minmax, false);
4982	set_table_entry(&table[9], "cache_nice_tries",
4983		&sd->cache_nice_tries,
4984		sizeof(int), 0644, proc_dointvec_minmax, false);
4985	set_table_entry(&table[10], "flags", &sd->flags,
4986		sizeof(int), 0644, proc_dointvec_minmax, false);
4987	set_table_entry(&table[11], "max_newidle_lb_cost",
4988		&sd->max_newidle_lb_cost,
4989		sizeof(long), 0644, proc_doulongvec_minmax, false);
4990	set_table_entry(&table[12], "name", sd->name,
4991		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4992	/* &table[13] is terminator */
4993
4994	return table;
4995}
4996
4997static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4998{
4999	struct ctl_table *entry, *table;
5000	struct sched_domain *sd;
5001	int domain_num = 0, i;
5002	char buf[32];
5003
5004	for_each_domain(cpu, sd)
5005		domain_num++;
5006	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5007	if (table == NULL)
5008		return NULL;
5009
5010	i = 0;
5011	for_each_domain(cpu, sd) {
5012		snprintf(buf, 32, "domain%d", i);
5013		entry->procname = kstrdup(buf, GFP_KERNEL);
5014		entry->mode = 0555;
5015		entry->child = sd_alloc_ctl_domain_table(sd);
5016		entry++;
5017		i++;
5018	}
5019	return table;
5020}
5021
5022static struct ctl_table_header *sd_sysctl_header;
5023static void register_sched_domain_sysctl(void)
5024{
5025	int i, cpu_num = num_possible_cpus();
5026	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5027	char buf[32];
5028
5029	WARN_ON(sd_ctl_dir[0].child);
5030	sd_ctl_dir[0].child = entry;
5031
5032	if (entry == NULL)
5033		return;
5034
5035	for_each_possible_cpu(i) {
5036		snprintf(buf, 32, "cpu%d", i);
5037		entry->procname = kstrdup(buf, GFP_KERNEL);
5038		entry->mode = 0555;
5039		entry->child = sd_alloc_ctl_cpu_table(i);
5040		entry++;
5041	}
5042
5043	WARN_ON(sd_sysctl_header);
5044	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5045}
5046
5047/* may be called multiple times per register */
5048static void unregister_sched_domain_sysctl(void)
5049{
5050	if (sd_sysctl_header)
5051		unregister_sysctl_table(sd_sysctl_header);
5052	sd_sysctl_header = NULL;
5053	if (sd_ctl_dir[0].child)
5054		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5055}
5056#else
5057static void register_sched_domain_sysctl(void)
5058{
5059}
5060static void unregister_sched_domain_sysctl(void)
5061{
5062}
5063#endif
5064
5065static void set_rq_online(struct rq *rq)
5066{
5067	if (!rq->online) {
5068		const struct sched_class *class;
5069
5070		cpumask_set_cpu(rq->cpu, rq->rd->online);
5071		rq->online = 1;
5072
5073		for_each_class(class) {
5074			if (class->rq_online)
5075				class->rq_online(rq);
5076		}
5077	}
5078}
5079
5080static void set_rq_offline(struct rq *rq)
5081{
5082	if (rq->online) {
5083		const struct sched_class *class;
5084
5085		for_each_class(class) {
5086			if (class->rq_offline)
5087				class->rq_offline(rq);
5088		}
5089
5090		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5091		rq->online = 0;
5092	}
5093}
5094
5095/*
5096 * migration_call - callback that gets triggered when a CPU is added.
5097 * Here we can start up the necessary migration thread for the new CPU.
5098 */
5099static int
5100migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5101{
5102	int cpu = (long)hcpu;
5103	unsigned long flags;
5104	struct rq *rq = cpu_rq(cpu);
5105
5106	switch (action & ~CPU_TASKS_FROZEN) {
5107
5108	case CPU_UP_PREPARE:
5109		rq->calc_load_update = calc_load_update;
5110		break;
5111
5112	case CPU_ONLINE:
5113		/* Update our root-domain */
5114		raw_spin_lock_irqsave(&rq->lock, flags);
5115		if (rq->rd) {
5116			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5117
5118			set_rq_online(rq);
5119		}
5120		raw_spin_unlock_irqrestore(&rq->lock, flags);
5121		break;
5122
5123#ifdef CONFIG_HOTPLUG_CPU
5124	case CPU_DYING:
5125		sched_ttwu_pending();
5126		/* Update our root-domain */
5127		raw_spin_lock_irqsave(&rq->lock, flags);
5128		if (rq->rd) {
5129			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5130			set_rq_offline(rq);
5131		}
5132		migrate_tasks(cpu);
5133		BUG_ON(rq->nr_running != 1); /* the migration thread */
5134		raw_spin_unlock_irqrestore(&rq->lock, flags);
5135		break;
5136
5137	case CPU_DEAD:
5138		calc_load_migrate(rq);
5139		break;
5140#endif
5141	}
5142
5143	update_max_interval();
5144
5145	return NOTIFY_OK;
5146}
5147
5148/*
5149 * Register at high priority so that task migration (migrate_all_tasks)
5150 * happens before everything else.  This has to be lower priority than
5151 * the notifier in the perf_event subsystem, though.
5152 */
5153static struct notifier_block migration_notifier = {
5154	.notifier_call = migration_call,
5155	.priority = CPU_PRI_MIGRATION,
5156};
5157
5158static void __cpuinit set_cpu_rq_start_time(void)
5159{
5160	int cpu = smp_processor_id();
5161	struct rq *rq = cpu_rq(cpu);
5162	rq->age_stamp = sched_clock_cpu(cpu);
5163}
5164
5165static int sched_cpu_active(struct notifier_block *nfb,
5166				      unsigned long action, void *hcpu)
5167{
5168	switch (action & ~CPU_TASKS_FROZEN) {
5169	case CPU_STARTING:
5170		set_cpu_rq_start_time();
5171		return NOTIFY_OK;
5172	case CPU_DOWN_FAILED:
5173		set_cpu_active((long)hcpu, true);
5174		return NOTIFY_OK;
5175	default:
5176		return NOTIFY_DONE;
5177	}
5178}
5179
5180static int sched_cpu_inactive(struct notifier_block *nfb,
5181					unsigned long action, void *hcpu)
5182{
5183	unsigned long flags;
5184	long cpu = (long)hcpu;
5185
5186	switch (action & ~CPU_TASKS_FROZEN) {
5187	case CPU_DOWN_PREPARE:
5188		set_cpu_active(cpu, false);
5189
5190		/* explicitly allow suspend */
5191		if (!(action & CPU_TASKS_FROZEN)) {
5192			struct dl_bw *dl_b = dl_bw_of(cpu);
5193			bool overflow;
5194			int cpus;
5195
5196			raw_spin_lock_irqsave(&dl_b->lock, flags);
5197			cpus = dl_bw_cpus(cpu);
5198			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5199			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5200
5201			if (overflow)
5202				return notifier_from_errno(-EBUSY);
5203		}
5204		return NOTIFY_OK;
5205	}
5206
5207	return NOTIFY_DONE;
5208}
5209
5210static int __init migration_init(void)
5211{
5212	void *cpu = (void *)(long)smp_processor_id();
5213	int err;
5214
5215	/* Initialize migration for the boot CPU */
5216	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5217	BUG_ON(err == NOTIFY_BAD);
5218	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5219	register_cpu_notifier(&migration_notifier);
5220
5221	/* Register cpu active notifiers */
5222	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5223	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5224
5225	return 0;
5226}
5227early_initcall(migration_init);
5228#endif
5229
5230#ifdef CONFIG_SMP
5231
5232static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5233
5234#ifdef CONFIG_SCHED_DEBUG
5235
5236static __read_mostly int sched_debug_enabled;
5237
5238static int __init sched_debug_setup(char *str)
5239{
5240	sched_debug_enabled = 1;
5241
5242	return 0;
5243}
5244early_param("sched_debug", sched_debug_setup);
5245
5246static inline bool sched_debug(void)
5247{
5248	return sched_debug_enabled;
5249}
5250
5251static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5252				  struct cpumask *groupmask)
5253{
5254	struct sched_group *group = sd->groups;
5255	char str[256];
5256
5257	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5258	cpumask_clear(groupmask);
5259
5260	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5261
5262	if (!(sd->flags & SD_LOAD_BALANCE)) {
5263		printk("does not load-balance\n");
5264		if (sd->parent)
5265			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5266					" has parent");
5267		return -1;
5268	}
5269
5270	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5271
5272	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5273		printk(KERN_ERR "ERROR: domain->span does not contain "
5274				"CPU%d\n", cpu);
5275	}
5276	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5277		printk(KERN_ERR "ERROR: domain->groups does not contain"
5278				" CPU%d\n", cpu);
5279	}
5280
5281	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5282	do {
5283		if (!group) {
5284			printk("\n");
5285			printk(KERN_ERR "ERROR: group is NULL\n");
5286			break;
5287		}
5288
5289		/*
5290		 * Even though we initialize ->capacity to something semi-sane,
5291		 * we leave capacity_orig unset. This allows us to detect if
5292		 * domain iteration is still funny without causing /0 traps.
5293		 */
5294		if (!group->sgc->capacity_orig) {
5295			printk(KERN_CONT "\n");
5296			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5297			break;
5298		}
5299
5300		if (!cpumask_weight(sched_group_cpus(group))) {
5301			printk(KERN_CONT "\n");
5302			printk(KERN_ERR "ERROR: empty group\n");
5303			break;
5304		}
5305
5306		if (!(sd->flags & SD_OVERLAP) &&
5307		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5308			printk(KERN_CONT "\n");
5309			printk(KERN_ERR "ERROR: repeated CPUs\n");
5310			break;
5311		}
5312
5313		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5314
5315		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5316
5317		printk(KERN_CONT " %s", str);
5318		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5319			printk(KERN_CONT " (cpu_capacity = %d)",
5320				group->sgc->capacity);
5321		}
5322
5323		group = group->next;
5324	} while (group != sd->groups);
5325	printk(KERN_CONT "\n");
5326
5327	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5328		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5329
5330	if (sd->parent &&
5331	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5332		printk(KERN_ERR "ERROR: parent span is not a superset "
5333			"of domain->span\n");
5334	return 0;
5335}
5336
5337static void sched_domain_debug(struct sched_domain *sd, int cpu)
5338{
5339	int level = 0;
5340
5341	if (!sched_debug_enabled)
5342		return;
5343
5344	if (!sd) {
5345		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5346		return;
5347	}
5348
5349	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5350
5351	for (;;) {
5352		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5353			break;
5354		level++;
5355		sd = sd->parent;
5356		if (!sd)
5357			break;
5358	}
5359}
5360#else /* !CONFIG_SCHED_DEBUG */
5361# define sched_domain_debug(sd, cpu) do { } while (0)
5362static inline bool sched_debug(void)
5363{
5364	return false;
5365}
5366#endif /* CONFIG_SCHED_DEBUG */
5367
5368static int sd_degenerate(struct sched_domain *sd)
5369{
5370	if (cpumask_weight(sched_domain_span(sd)) == 1)
5371		return 1;
5372
5373	/* Following flags need at least 2 groups */
5374	if (sd->flags & (SD_LOAD_BALANCE |
5375			 SD_BALANCE_NEWIDLE |
5376			 SD_BALANCE_FORK |
5377			 SD_BALANCE_EXEC |
5378			 SD_SHARE_CPUCAPACITY |
5379			 SD_SHARE_PKG_RESOURCES |
5380			 SD_SHARE_POWERDOMAIN)) {
5381		if (sd->groups != sd->groups->next)
5382			return 0;
5383	}
5384
5385	/* Following flags don't use groups */
5386	if (sd->flags & (SD_WAKE_AFFINE))
5387		return 0;
5388
5389	return 1;
5390}
5391
5392static int
5393sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5394{
5395	unsigned long cflags = sd->flags, pflags = parent->flags;
5396
5397	if (sd_degenerate(parent))
5398		return 1;
5399
5400	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5401		return 0;
5402
5403	/* Flags needing groups don't count if only 1 group in parent */
5404	if (parent->groups == parent->groups->next) {
5405		pflags &= ~(SD_LOAD_BALANCE |
5406				SD_BALANCE_NEWIDLE |
5407				SD_BALANCE_FORK |
5408				SD_BALANCE_EXEC |
5409				SD_SHARE_CPUCAPACITY |
5410				SD_SHARE_PKG_RESOURCES |
5411				SD_PREFER_SIBLING |
5412				SD_SHARE_POWERDOMAIN);
5413		if (nr_node_ids == 1)
5414			pflags &= ~SD_SERIALIZE;
5415	}
5416	if (~cflags & pflags)
5417		return 0;
5418
5419	return 1;
5420}
5421
5422static void free_rootdomain(struct rcu_head *rcu)
5423{
5424	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5425
5426	cpupri_cleanup(&rd->cpupri);
5427	cpudl_cleanup(&rd->cpudl);
5428	free_cpumask_var(rd->dlo_mask);
5429	free_cpumask_var(rd->rto_mask);
5430	free_cpumask_var(rd->online);
5431	free_cpumask_var(rd->span);
5432	kfree(rd);
5433}
5434
5435static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5436{
5437	struct root_domain *old_rd = NULL;
5438	unsigned long flags;
5439
5440	raw_spin_lock_irqsave(&rq->lock, flags);
5441
5442	if (rq->rd) {
5443		old_rd = rq->rd;
5444
5445		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5446			set_rq_offline(rq);
5447
5448		cpumask_clear_cpu(rq->cpu, old_rd->span);
5449
5450		/*
5451		 * If we dont want to free the old_rd yet then
5452		 * set old_rd to NULL to skip the freeing later
5453		 * in this function:
5454		 */
5455		if (!atomic_dec_and_test(&old_rd->refcount))
5456			old_rd = NULL;
5457	}
5458
5459	atomic_inc(&rd->refcount);
5460	rq->rd = rd;
5461
5462	cpumask_set_cpu(rq->cpu, rd->span);
5463	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5464		set_rq_online(rq);
5465
5466	raw_spin_unlock_irqrestore(&rq->lock, flags);
5467
5468	if (old_rd)
5469		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5470}
5471
5472static int init_rootdomain(struct root_domain *rd)
5473{
5474	memset(rd, 0, sizeof(*rd));
5475
5476	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5477		goto out;
5478	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5479		goto free_span;
5480	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5481		goto free_online;
5482	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5483		goto free_dlo_mask;
5484
5485	init_dl_bw(&rd->dl_bw);
5486	if (cpudl_init(&rd->cpudl) != 0)
5487		goto free_dlo_mask;
5488
5489	if (cpupri_init(&rd->cpupri) != 0)
5490		goto free_rto_mask;
5491	return 0;
5492
5493free_rto_mask:
5494	free_cpumask_var(rd->rto_mask);
5495free_dlo_mask:
5496	free_cpumask_var(rd->dlo_mask);
5497free_online:
5498	free_cpumask_var(rd->online);
5499free_span:
5500	free_cpumask_var(rd->span);
5501out:
5502	return -ENOMEM;
5503}
5504
5505/*
5506 * By default the system creates a single root-domain with all cpus as
5507 * members (mimicking the global state we have today).
5508 */
5509struct root_domain def_root_domain;
5510
5511static void init_defrootdomain(void)
5512{
5513	init_rootdomain(&def_root_domain);
5514
5515	atomic_set(&def_root_domain.refcount, 1);
5516}
5517
5518static struct root_domain *alloc_rootdomain(void)
5519{
5520	struct root_domain *rd;
5521
5522	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5523	if (!rd)
5524		return NULL;
5525
5526	if (init_rootdomain(rd) != 0) {
5527		kfree(rd);
5528		return NULL;
5529	}
5530
5531	return rd;
5532}
5533
5534static void free_sched_groups(struct sched_group *sg, int free_sgc)
5535{
5536	struct sched_group *tmp, *first;
5537
5538	if (!sg)
5539		return;
5540
5541	first = sg;
5542	do {
5543		tmp = sg->next;
5544
5545		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5546			kfree(sg->sgc);
5547
5548		kfree(sg);
5549		sg = tmp;
5550	} while (sg != first);
5551}
5552
5553static void free_sched_domain(struct rcu_head *rcu)
5554{
5555	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5556
5557	/*
5558	 * If its an overlapping domain it has private groups, iterate and
5559	 * nuke them all.
5560	 */
5561	if (sd->flags & SD_OVERLAP) {
5562		free_sched_groups(sd->groups, 1);
5563	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5564		kfree(sd->groups->sgc);
5565		kfree(sd->groups);
5566	}
5567	kfree(sd);
5568}
5569
5570static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5571{
5572	call_rcu(&sd->rcu, free_sched_domain);
5573}
5574
5575static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5576{
5577	for (; sd; sd = sd->parent)
5578		destroy_sched_domain(sd, cpu);
5579}
5580
5581/*
5582 * Keep a special pointer to the highest sched_domain that has
5583 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5584 * allows us to avoid some pointer chasing select_idle_sibling().
5585 *
5586 * Also keep a unique ID per domain (we use the first cpu number in
5587 * the cpumask of the domain), this allows us to quickly tell if
5588 * two cpus are in the same cache domain, see cpus_share_cache().
5589 */
5590DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5591DEFINE_PER_CPU(int, sd_llc_size);
5592DEFINE_PER_CPU(int, sd_llc_id);
5593DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5594DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5595DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5596
5597static void update_top_cache_domain(int cpu)
5598{
5599	struct sched_domain *sd;
5600	struct sched_domain *busy_sd = NULL;
5601	int id = cpu;
5602	int size = 1;
5603
5604	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5605	if (sd) {
5606		id = cpumask_first(sched_domain_span(sd));
5607		size = cpumask_weight(sched_domain_span(sd));
5608		busy_sd = sd->parent; /* sd_busy */
5609	}
5610	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5611
5612	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5613	per_cpu(sd_llc_size, cpu) = size;
5614	per_cpu(sd_llc_id, cpu) = id;
5615
5616	sd = lowest_flag_domain(cpu, SD_NUMA);
5617	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5618
5619	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5620	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5621}
5622
5623/*
5624 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5625 * hold the hotplug lock.
5626 */
5627static void
5628cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5629{
5630	struct rq *rq = cpu_rq(cpu);
5631	struct sched_domain *tmp;
5632
5633	/* Remove the sched domains which do not contribute to scheduling. */
5634	for (tmp = sd; tmp; ) {
5635		struct sched_domain *parent = tmp->parent;
5636		if (!parent)
5637			break;
5638
5639		if (sd_parent_degenerate(tmp, parent)) {
5640			tmp->parent = parent->parent;
5641			if (parent->parent)
5642				parent->parent->child = tmp;
5643			/*
5644			 * Transfer SD_PREFER_SIBLING down in case of a
5645			 * degenerate parent; the spans match for this
5646			 * so the property transfers.
5647			 */
5648			if (parent->flags & SD_PREFER_SIBLING)
5649				tmp->flags |= SD_PREFER_SIBLING;
5650			destroy_sched_domain(parent, cpu);
5651		} else
5652			tmp = tmp->parent;
5653	}
5654
5655	if (sd && sd_degenerate(sd)) {
5656		tmp = sd;
5657		sd = sd->parent;
5658		destroy_sched_domain(tmp, cpu);
5659		if (sd)
5660			sd->child = NULL;
5661	}
5662
5663	sched_domain_debug(sd, cpu);
5664
5665	rq_attach_root(rq, rd);
5666	tmp = rq->sd;
5667	rcu_assign_pointer(rq->sd, sd);
5668	destroy_sched_domains(tmp, cpu);
5669
5670	update_top_cache_domain(cpu);
5671}
5672
5673/* cpus with isolated domains */
5674static cpumask_var_t cpu_isolated_map;
5675
5676/* Setup the mask of cpus configured for isolated domains */
5677static int __init isolated_cpu_setup(char *str)
5678{
5679	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5680	cpulist_parse(str, cpu_isolated_map);
5681	return 1;
5682}
5683
5684__setup("isolcpus=", isolated_cpu_setup);
5685
5686struct s_data {
5687	struct sched_domain ** __percpu sd;
5688	struct root_domain	*rd;
5689};
5690
5691enum s_alloc {
5692	sa_rootdomain,
5693	sa_sd,
5694	sa_sd_storage,
5695	sa_none,
5696};
5697
5698/*
5699 * Build an iteration mask that can exclude certain CPUs from the upwards
5700 * domain traversal.
5701 *
5702 * Asymmetric node setups can result in situations where the domain tree is of
5703 * unequal depth, make sure to skip domains that already cover the entire
5704 * range.
5705 *
5706 * In that case build_sched_domains() will have terminated the iteration early
5707 * and our sibling sd spans will be empty. Domains should always include the
5708 * cpu they're built on, so check that.
5709 *
5710 */
5711static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5712{
5713	const struct cpumask *span = sched_domain_span(sd);
5714	struct sd_data *sdd = sd->private;
5715	struct sched_domain *sibling;
5716	int i;
5717
5718	for_each_cpu(i, span) {
5719		sibling = *per_cpu_ptr(sdd->sd, i);
5720		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5721			continue;
5722
5723		cpumask_set_cpu(i, sched_group_mask(sg));
5724	}
5725}
5726
5727/*
5728 * Return the canonical balance cpu for this group, this is the first cpu
5729 * of this group that's also in the iteration mask.
5730 */
5731int group_balance_cpu(struct sched_group *sg)
5732{
5733	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5734}
5735
5736static int
5737build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5738{
5739	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5740	const struct cpumask *span = sched_domain_span(sd);
5741	struct cpumask *covered = sched_domains_tmpmask;
5742	struct sd_data *sdd = sd->private;
5743	struct sched_domain *child;
5744	int i;
5745
5746	cpumask_clear(covered);
5747
5748	for_each_cpu(i, span) {
5749		struct cpumask *sg_span;
5750
5751		if (cpumask_test_cpu(i, covered))
5752			continue;
5753
5754		child = *per_cpu_ptr(sdd->sd, i);
5755
5756		/* See the comment near build_group_mask(). */
5757		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5758			continue;
5759
5760		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5761				GFP_KERNEL, cpu_to_node(cpu));
5762
5763		if (!sg)
5764			goto fail;
5765
5766		sg_span = sched_group_cpus(sg);
5767		if (child->child) {
5768			child = child->child;
5769			cpumask_copy(sg_span, sched_domain_span(child));
5770		} else
5771			cpumask_set_cpu(i, sg_span);
5772
5773		cpumask_or(covered, covered, sg_span);
5774
5775		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5776		if (atomic_inc_return(&sg->sgc->ref) == 1)
5777			build_group_mask(sd, sg);
5778
5779		/*
5780		 * Initialize sgc->capacity such that even if we mess up the
5781		 * domains and no possible iteration will get us here, we won't
5782		 * die on a /0 trap.
5783		 */
5784		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5785		sg->sgc->capacity_orig = sg->sgc->capacity;
5786
5787		/*
5788		 * Make sure the first group of this domain contains the
5789		 * canonical balance cpu. Otherwise the sched_domain iteration
5790		 * breaks. See update_sg_lb_stats().
5791		 */
5792		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5793		    group_balance_cpu(sg) == cpu)
5794			groups = sg;
5795
5796		if (!first)
5797			first = sg;
5798		if (last)
5799			last->next = sg;
5800		last = sg;
5801		last->next = first;
5802	}
5803	sd->groups = groups;
5804
5805	return 0;
5806
5807fail:
5808	free_sched_groups(first, 0);
5809
5810	return -ENOMEM;
5811}
5812
5813static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5814{
5815	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5816	struct sched_domain *child = sd->child;
5817
5818	if (child)
5819		cpu = cpumask_first(sched_domain_span(child));
5820
5821	if (sg) {
5822		*sg = *per_cpu_ptr(sdd->sg, cpu);
5823		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5824		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5825	}
5826
5827	return cpu;
5828}
5829
5830/*
5831 * build_sched_groups will build a circular linked list of the groups
5832 * covered by the given span, and will set each group's ->cpumask correctly,
5833 * and ->cpu_capacity to 0.
5834 *
5835 * Assumes the sched_domain tree is fully constructed
5836 */
5837static int
5838build_sched_groups(struct sched_domain *sd, int cpu)
5839{
5840	struct sched_group *first = NULL, *last = NULL;
5841	struct sd_data *sdd = sd->private;
5842	const struct cpumask *span = sched_domain_span(sd);
5843	struct cpumask *covered;
5844	int i;
5845
5846	get_group(cpu, sdd, &sd->groups);
5847	atomic_inc(&sd->groups->ref);
5848
5849	if (cpu != cpumask_first(span))
5850		return 0;
5851
5852	lockdep_assert_held(&sched_domains_mutex);
5853	covered = sched_domains_tmpmask;
5854
5855	cpumask_clear(covered);
5856
5857	for_each_cpu(i, span) {
5858		struct sched_group *sg;
5859		int group, j;
5860
5861		if (cpumask_test_cpu(i, covered))
5862			continue;
5863
5864		group = get_group(i, sdd, &sg);
5865		cpumask_setall(sched_group_mask(sg));
5866
5867		for_each_cpu(j, span) {
5868			if (get_group(j, sdd, NULL) != group)
5869				continue;
5870
5871			cpumask_set_cpu(j, covered);
5872			cpumask_set_cpu(j, sched_group_cpus(sg));
5873		}
5874
5875		if (!first)
5876			first = sg;
5877		if (last)
5878			last->next = sg;
5879		last = sg;
5880	}
5881	last->next = first;
5882
5883	return 0;
5884}
5885
5886/*
5887 * Initialize sched groups cpu_capacity.
5888 *
5889 * cpu_capacity indicates the capacity of sched group, which is used while
5890 * distributing the load between different sched groups in a sched domain.
5891 * Typically cpu_capacity for all the groups in a sched domain will be same
5892 * unless there are asymmetries in the topology. If there are asymmetries,
5893 * group having more cpu_capacity will pickup more load compared to the
5894 * group having less cpu_capacity.
5895 */
5896static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5897{
5898	struct sched_group *sg = sd->groups;
5899
5900	WARN_ON(!sg);
5901
5902	do {
5903		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5904		sg = sg->next;
5905	} while (sg != sd->groups);
5906
5907	if (cpu != group_balance_cpu(sg))
5908		return;
5909
5910	update_group_capacity(sd, cpu);
5911	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5912}
5913
5914/*
5915 * Initializers for schedule domains
5916 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5917 */
5918
5919static int default_relax_domain_level = -1;
5920int sched_domain_level_max;
5921
5922static int __init setup_relax_domain_level(char *str)
5923{
5924	if (kstrtoint(str, 0, &default_relax_domain_level))
5925		pr_warn("Unable to set relax_domain_level\n");
5926
5927	return 1;
5928}
5929__setup("relax_domain_level=", setup_relax_domain_level);
5930
5931static void set_domain_attribute(struct sched_domain *sd,
5932				 struct sched_domain_attr *attr)
5933{
5934	int request;
5935
5936	if (!attr || attr->relax_domain_level < 0) {
5937		if (default_relax_domain_level < 0)
5938			return;
5939		else
5940			request = default_relax_domain_level;
5941	} else
5942		request = attr->relax_domain_level;
5943	if (request < sd->level) {
5944		/* turn off idle balance on this domain */
5945		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5946	} else {
5947		/* turn on idle balance on this domain */
5948		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5949	}
5950}
5951
5952static void __sdt_free(const struct cpumask *cpu_map);
5953static int __sdt_alloc(const struct cpumask *cpu_map);
5954
5955static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5956				 const struct cpumask *cpu_map)
5957{
5958	switch (what) {
5959	case sa_rootdomain:
5960		if (!atomic_read(&d->rd->refcount))
5961			free_rootdomain(&d->rd->rcu); /* fall through */
5962	case sa_sd:
5963		free_percpu(d->sd); /* fall through */
5964	case sa_sd_storage:
5965		__sdt_free(cpu_map); /* fall through */
5966	case sa_none:
5967		break;
5968	}
5969}
5970
5971static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5972						   const struct cpumask *cpu_map)
5973{
5974	memset(d, 0, sizeof(*d));
5975
5976	if (__sdt_alloc(cpu_map))
5977		return sa_sd_storage;
5978	d->sd = alloc_percpu(struct sched_domain *);
5979	if (!d->sd)
5980		return sa_sd_storage;
5981	d->rd = alloc_rootdomain();
5982	if (!d->rd)
5983		return sa_sd;
5984	return sa_rootdomain;
5985}
5986
5987/*
5988 * NULL the sd_data elements we've used to build the sched_domain and
5989 * sched_group structure so that the subsequent __free_domain_allocs()
5990 * will not free the data we're using.
5991 */
5992static void claim_allocations(int cpu, struct sched_domain *sd)
5993{
5994	struct sd_data *sdd = sd->private;
5995
5996	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5997	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5998
5999	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6000		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6001
6002	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6003		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6004}
6005
6006#ifdef CONFIG_NUMA
6007static int sched_domains_numa_levels;
6008static int *sched_domains_numa_distance;
6009static struct cpumask ***sched_domains_numa_masks;
6010static int sched_domains_curr_level;
6011#endif
6012
6013/*
6014 * SD_flags allowed in topology descriptions.
6015 *
6016 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6017 * SD_SHARE_PKG_RESOURCES - describes shared caches
6018 * SD_NUMA                - describes NUMA topologies
6019 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6020 *
6021 * Odd one out:
6022 * SD_ASYM_PACKING        - describes SMT quirks
6023 */
6024#define TOPOLOGY_SD_FLAGS		\
6025	(SD_SHARE_CPUCAPACITY |		\
6026	 SD_SHARE_PKG_RESOURCES |	\
6027	 SD_NUMA |			\
6028	 SD_ASYM_PACKING |		\
6029	 SD_SHARE_POWERDOMAIN)
6030
6031static struct sched_domain *
6032sd_init(struct sched_domain_topology_level *tl, int cpu)
6033{
6034	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6035	int sd_weight, sd_flags = 0;
6036
6037#ifdef CONFIG_NUMA
6038	/*
6039	 * Ugly hack to pass state to sd_numa_mask()...
6040	 */
6041	sched_domains_curr_level = tl->numa_level;
6042#endif
6043
6044	sd_weight = cpumask_weight(tl->mask(cpu));
6045
6046	if (tl->sd_flags)
6047		sd_flags = (*tl->sd_flags)();
6048	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6049			"wrong sd_flags in topology description\n"))
6050		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6051
6052	*sd = (struct sched_domain){
6053		.min_interval		= sd_weight,
6054		.max_interval		= 2*sd_weight,
6055		.busy_factor		= 32,
6056		.imbalance_pct		= 125,
6057
6058		.cache_nice_tries	= 0,
6059		.busy_idx		= 0,
6060		.idle_idx		= 0,
6061		.newidle_idx		= 0,
6062		.wake_idx		= 0,
6063		.forkexec_idx		= 0,
6064
6065		.flags			= 1*SD_LOAD_BALANCE
6066					| 1*SD_BALANCE_NEWIDLE
6067					| 1*SD_BALANCE_EXEC
6068					| 1*SD_BALANCE_FORK
6069					| 0*SD_BALANCE_WAKE
6070					| 1*SD_WAKE_AFFINE
6071					| 0*SD_SHARE_CPUCAPACITY
6072					| 0*SD_SHARE_PKG_RESOURCES
6073					| 0*SD_SERIALIZE
6074					| 0*SD_PREFER_SIBLING
6075					| 0*SD_NUMA
6076					| sd_flags
6077					,
6078
6079		.last_balance		= jiffies,
6080		.balance_interval	= sd_weight,
6081		.smt_gain		= 0,
6082		.max_newidle_lb_cost	= 0,
6083		.next_decay_max_lb_cost	= jiffies,
6084#ifdef CONFIG_SCHED_DEBUG
6085		.name			= tl->name,
6086#endif
6087	};
6088
6089	/*
6090	 * Convert topological properties into behaviour.
6091	 */
6092
6093	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6094		sd->imbalance_pct = 110;
6095		sd->smt_gain = 1178; /* ~15% */
6096
6097	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6098		sd->imbalance_pct = 117;
6099		sd->cache_nice_tries = 1;
6100		sd->busy_idx = 2;
6101
6102#ifdef CONFIG_NUMA
6103	} else if (sd->flags & SD_NUMA) {
6104		sd->cache_nice_tries = 2;
6105		sd->busy_idx = 3;
6106		sd->idle_idx = 2;
6107
6108		sd->flags |= SD_SERIALIZE;
6109		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6110			sd->flags &= ~(SD_BALANCE_EXEC |
6111				       SD_BALANCE_FORK |
6112				       SD_WAKE_AFFINE);
6113		}
6114
6115#endif
6116	} else {
6117		sd->flags |= SD_PREFER_SIBLING;
6118		sd->cache_nice_tries = 1;
6119		sd->busy_idx = 2;
6120		sd->idle_idx = 1;
6121	}
6122
6123	sd->private = &tl->data;
6124
6125	return sd;
6126}
6127
6128/*
6129 * Topology list, bottom-up.
6130 */
6131static struct sched_domain_topology_level default_topology[] = {
6132#ifdef CONFIG_SCHED_SMT
6133	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6134#endif
6135#ifdef CONFIG_SCHED_MC
6136	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6137#endif
6138	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6139	{ NULL, },
6140};
6141
6142struct sched_domain_topology_level *sched_domain_topology = default_topology;
6143
6144#define for_each_sd_topology(tl)			\
6145	for (tl = sched_domain_topology; tl->mask; tl++)
6146
6147void set_sched_topology(struct sched_domain_topology_level *tl)
6148{
6149	sched_domain_topology = tl;
6150}
6151
6152#ifdef CONFIG_NUMA
6153
6154static const struct cpumask *sd_numa_mask(int cpu)
6155{
6156	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6157}
6158
6159static void sched_numa_warn(const char *str)
6160{
6161	static int done = false;
6162	int i,j;
6163
6164	if (done)
6165		return;
6166
6167	done = true;
6168
6169	printk(KERN_WARNING "ERROR: %s\n\n", str);
6170
6171	for (i = 0; i < nr_node_ids; i++) {
6172		printk(KERN_WARNING "  ");
6173		for (j = 0; j < nr_node_ids; j++)
6174			printk(KERN_CONT "%02d ", node_distance(i,j));
6175		printk(KERN_CONT "\n");
6176	}
6177	printk(KERN_WARNING "\n");
6178}
6179
6180static bool find_numa_distance(int distance)
6181{
6182	int i;
6183
6184	if (distance == node_distance(0, 0))
6185		return true;
6186
6187	for (i = 0; i < sched_domains_numa_levels; i++) {
6188		if (sched_domains_numa_distance[i] == distance)
6189			return true;
6190	}
6191
6192	return false;
6193}
6194
6195static void sched_init_numa(void)
6196{
6197	int next_distance, curr_distance = node_distance(0, 0);
6198	struct sched_domain_topology_level *tl;
6199	int level = 0;
6200	int i, j, k;
6201
6202	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6203	if (!sched_domains_numa_distance)
6204		return;
6205
6206	/*
6207	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6208	 * unique distances in the node_distance() table.
6209	 *
6210	 * Assumes node_distance(0,j) includes all distances in
6211	 * node_distance(i,j) in order to avoid cubic time.
6212	 */
6213	next_distance = curr_distance;
6214	for (i = 0; i < nr_node_ids; i++) {
6215		for (j = 0; j < nr_node_ids; j++) {
6216			for (k = 0; k < nr_node_ids; k++) {
6217				int distance = node_distance(i, k);
6218
6219				if (distance > curr_distance &&
6220				    (distance < next_distance ||
6221				     next_distance == curr_distance))
6222					next_distance = distance;
6223
6224				/*
6225				 * While not a strong assumption it would be nice to know
6226				 * about cases where if node A is connected to B, B is not
6227				 * equally connected to A.
6228				 */
6229				if (sched_debug() && node_distance(k, i) != distance)
6230					sched_numa_warn("Node-distance not symmetric");
6231
6232				if (sched_debug() && i && !find_numa_distance(distance))
6233					sched_numa_warn("Node-0 not representative");
6234			}
6235			if (next_distance != curr_distance) {
6236				sched_domains_numa_distance[level++] = next_distance;
6237				sched_domains_numa_levels = level;
6238				curr_distance = next_distance;
6239			} else break;
6240		}
6241
6242		/*
6243		 * In case of sched_debug() we verify the above assumption.
6244		 */
6245		if (!sched_debug())
6246			break;
6247	}
6248	/*
6249	 * 'level' contains the number of unique distances, excluding the
6250	 * identity distance node_distance(i,i).
6251	 *
6252	 * The sched_domains_numa_distance[] array includes the actual distance
6253	 * numbers.
6254	 */
6255
6256	/*
6257	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6258	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6259	 * the array will contain less then 'level' members. This could be
6260	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6261	 * in other functions.
6262	 *
6263	 * We reset it to 'level' at the end of this function.
6264	 */
6265	sched_domains_numa_levels = 0;
6266
6267	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6268	if (!sched_domains_numa_masks)
6269		return;
6270
6271	/*
6272	 * Now for each level, construct a mask per node which contains all
6273	 * cpus of nodes that are that many hops away from us.
6274	 */
6275	for (i = 0; i < level; i++) {
6276		sched_domains_numa_masks[i] =
6277			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6278		if (!sched_domains_numa_masks[i])
6279			return;
6280
6281		for (j = 0; j < nr_node_ids; j++) {
6282			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6283			if (!mask)
6284				return;
6285
6286			sched_domains_numa_masks[i][j] = mask;
6287
6288			for (k = 0; k < nr_node_ids; k++) {
6289				if (node_distance(j, k) > sched_domains_numa_distance[i])
6290					continue;
6291
6292				cpumask_or(mask, mask, cpumask_of_node(k));
6293			}
6294		}
6295	}
6296
6297	/* Compute default topology size */
6298	for (i = 0; sched_domain_topology[i].mask; i++);
6299
6300	tl = kzalloc((i + level + 1) *
6301			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6302	if (!tl)
6303		return;
6304
6305	/*
6306	 * Copy the default topology bits..
6307	 */
6308	for (i = 0; sched_domain_topology[i].mask; i++)
6309		tl[i] = sched_domain_topology[i];
6310
6311	/*
6312	 * .. and append 'j' levels of NUMA goodness.
6313	 */
6314	for (j = 0; j < level; i++, j++) {
6315		tl[i] = (struct sched_domain_topology_level){
6316			.mask = sd_numa_mask,
6317			.sd_flags = cpu_numa_flags,
6318			.flags = SDTL_OVERLAP,
6319			.numa_level = j,
6320			SD_INIT_NAME(NUMA)
6321		};
6322	}
6323
6324	sched_domain_topology = tl;
6325
6326	sched_domains_numa_levels = level;
6327}
6328
6329static void sched_domains_numa_masks_set(int cpu)
6330{
6331	int i, j;
6332	int node = cpu_to_node(cpu);
6333
6334	for (i = 0; i < sched_domains_numa_levels; i++) {
6335		for (j = 0; j < nr_node_ids; j++) {
6336			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6337				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6338		}
6339	}
6340}
6341
6342static void sched_domains_numa_masks_clear(int cpu)
6343{
6344	int i, j;
6345	for (i = 0; i < sched_domains_numa_levels; i++) {
6346		for (j = 0; j < nr_node_ids; j++)
6347			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6348	}
6349}
6350
6351/*
6352 * Update sched_domains_numa_masks[level][node] array when new cpus
6353 * are onlined.
6354 */
6355static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6356					   unsigned long action,
6357					   void *hcpu)
6358{
6359	int cpu = (long)hcpu;
6360
6361	switch (action & ~CPU_TASKS_FROZEN) {
6362	case CPU_ONLINE:
6363		sched_domains_numa_masks_set(cpu);
6364		break;
6365
6366	case CPU_DEAD:
6367		sched_domains_numa_masks_clear(cpu);
6368		break;
6369
6370	default:
6371		return NOTIFY_DONE;
6372	}
6373
6374	return NOTIFY_OK;
6375}
6376#else
6377static inline void sched_init_numa(void)
6378{
6379}
6380
6381static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6382					   unsigned long action,
6383					   void *hcpu)
6384{
6385	return 0;
6386}
6387#endif /* CONFIG_NUMA */
6388
6389static int __sdt_alloc(const struct cpumask *cpu_map)
6390{
6391	struct sched_domain_topology_level *tl;
6392	int j;
6393
6394	for_each_sd_topology(tl) {
6395		struct sd_data *sdd = &tl->data;
6396
6397		sdd->sd = alloc_percpu(struct sched_domain *);
6398		if (!sdd->sd)
6399			return -ENOMEM;
6400
6401		sdd->sg = alloc_percpu(struct sched_group *);
6402		if (!sdd->sg)
6403			return -ENOMEM;
6404
6405		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6406		if (!sdd->sgc)
6407			return -ENOMEM;
6408
6409		for_each_cpu(j, cpu_map) {
6410			struct sched_domain *sd;
6411			struct sched_group *sg;
6412			struct sched_group_capacity *sgc;
6413
6414		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6415					GFP_KERNEL, cpu_to_node(j));
6416			if (!sd)
6417				return -ENOMEM;
6418
6419			*per_cpu_ptr(sdd->sd, j) = sd;
6420
6421			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6422					GFP_KERNEL, cpu_to_node(j));
6423			if (!sg)
6424				return -ENOMEM;
6425
6426			sg->next = sg;
6427
6428			*per_cpu_ptr(sdd->sg, j) = sg;
6429
6430			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6431					GFP_KERNEL, cpu_to_node(j));
6432			if (!sgc)
6433				return -ENOMEM;
6434
6435			*per_cpu_ptr(sdd->sgc, j) = sgc;
6436		}
6437	}
6438
6439	return 0;
6440}
6441
6442static void __sdt_free(const struct cpumask *cpu_map)
6443{
6444	struct sched_domain_topology_level *tl;
6445	int j;
6446
6447	for_each_sd_topology(tl) {
6448		struct sd_data *sdd = &tl->data;
6449
6450		for_each_cpu(j, cpu_map) {
6451			struct sched_domain *sd;
6452
6453			if (sdd->sd) {
6454				sd = *per_cpu_ptr(sdd->sd, j);
6455				if (sd && (sd->flags & SD_OVERLAP))
6456					free_sched_groups(sd->groups, 0);
6457				kfree(*per_cpu_ptr(sdd->sd, j));
6458			}
6459
6460			if (sdd->sg)
6461				kfree(*per_cpu_ptr(sdd->sg, j));
6462			if (sdd->sgc)
6463				kfree(*per_cpu_ptr(sdd->sgc, j));
6464		}
6465		free_percpu(sdd->sd);
6466		sdd->sd = NULL;
6467		free_percpu(sdd->sg);
6468		sdd->sg = NULL;
6469		free_percpu(sdd->sgc);
6470		sdd->sgc = NULL;
6471	}
6472}
6473
6474struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6475		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6476		struct sched_domain *child, int cpu)
6477{
6478	struct sched_domain *sd = sd_init(tl, cpu);
6479	if (!sd)
6480		return child;
6481
6482	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6483	if (child) {
6484		sd->level = child->level + 1;
6485		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6486		child->parent = sd;
6487		sd->child = child;
6488	}
6489	set_domain_attribute(sd, attr);
6490
6491	return sd;
6492}
6493
6494/*
6495 * Build sched domains for a given set of cpus and attach the sched domains
6496 * to the individual cpus
6497 */
6498static int build_sched_domains(const struct cpumask *cpu_map,
6499			       struct sched_domain_attr *attr)
6500{
6501	enum s_alloc alloc_state;
6502	struct sched_domain *sd;
6503	struct s_data d;
6504	int i, ret = -ENOMEM;
6505
6506	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6507	if (alloc_state != sa_rootdomain)
6508		goto error;
6509
6510	/* Set up domains for cpus specified by the cpu_map. */
6511	for_each_cpu(i, cpu_map) {
6512		struct sched_domain_topology_level *tl;
6513
6514		sd = NULL;
6515		for_each_sd_topology(tl) {
6516			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6517			if (tl == sched_domain_topology)
6518				*per_cpu_ptr(d.sd, i) = sd;
6519			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6520				sd->flags |= SD_OVERLAP;
6521			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6522				break;
6523		}
6524	}
6525
6526	/* Build the groups for the domains */
6527	for_each_cpu(i, cpu_map) {
6528		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6529			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6530			if (sd->flags & SD_OVERLAP) {
6531				if (build_overlap_sched_groups(sd, i))
6532					goto error;
6533			} else {
6534				if (build_sched_groups(sd, i))
6535					goto error;
6536			}
6537		}
6538	}
6539
6540	/* Calculate CPU capacity for physical packages and nodes */
6541	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6542		if (!cpumask_test_cpu(i, cpu_map))
6543			continue;
6544
6545		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6546			claim_allocations(i, sd);
6547			init_sched_groups_capacity(i, sd);
6548		}
6549	}
6550
6551	/* Attach the domains */
6552	rcu_read_lock();
6553	for_each_cpu(i, cpu_map) {
6554		sd = *per_cpu_ptr(d.sd, i);
6555		cpu_attach_domain(sd, d.rd, i);
6556	}
6557	rcu_read_unlock();
6558
6559	ret = 0;
6560error:
6561	__free_domain_allocs(&d, alloc_state, cpu_map);
6562	return ret;
6563}
6564
6565static cpumask_var_t *doms_cur;	/* current sched domains */
6566static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6567static struct sched_domain_attr *dattr_cur;
6568				/* attribues of custom domains in 'doms_cur' */
6569
6570/*
6571 * Special case: If a kmalloc of a doms_cur partition (array of
6572 * cpumask) fails, then fallback to a single sched domain,
6573 * as determined by the single cpumask fallback_doms.
6574 */
6575static cpumask_var_t fallback_doms;
6576
6577/*
6578 * arch_update_cpu_topology lets virtualized architectures update the
6579 * cpu core maps. It is supposed to return 1 if the topology changed
6580 * or 0 if it stayed the same.
6581 */
6582int __weak arch_update_cpu_topology(void)
6583{
6584	return 0;
6585}
6586
6587cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6588{
6589	int i;
6590	cpumask_var_t *doms;
6591
6592	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6593	if (!doms)
6594		return NULL;
6595	for (i = 0; i < ndoms; i++) {
6596		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6597			free_sched_domains(doms, i);
6598			return NULL;
6599		}
6600	}
6601	return doms;
6602}
6603
6604void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6605{
6606	unsigned int i;
6607	for (i = 0; i < ndoms; i++)
6608		free_cpumask_var(doms[i]);
6609	kfree(doms);
6610}
6611
6612/*
6613 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6614 * For now this just excludes isolated cpus, but could be used to
6615 * exclude other special cases in the future.
6616 */
6617static int init_sched_domains(const struct cpumask *cpu_map)
6618{
6619	int err;
6620
6621	arch_update_cpu_topology();
6622	ndoms_cur = 1;
6623	doms_cur = alloc_sched_domains(ndoms_cur);
6624	if (!doms_cur)
6625		doms_cur = &fallback_doms;
6626	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6627	err = build_sched_domains(doms_cur[0], NULL);
6628	register_sched_domain_sysctl();
6629
6630	return err;
6631}
6632
6633/*
6634 * Detach sched domains from a group of cpus specified in cpu_map
6635 * These cpus will now be attached to the NULL domain
6636 */
6637static void detach_destroy_domains(const struct cpumask *cpu_map)
6638{
6639	int i;
6640
6641	rcu_read_lock();
6642	for_each_cpu(i, cpu_map)
6643		cpu_attach_domain(NULL, &def_root_domain, i);
6644	rcu_read_unlock();
6645}
6646
6647/* handle null as "default" */
6648static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6649			struct sched_domain_attr *new, int idx_new)
6650{
6651	struct sched_domain_attr tmp;
6652
6653	/* fast path */
6654	if (!new && !cur)
6655		return 1;
6656
6657	tmp = SD_ATTR_INIT;
6658	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6659			new ? (new + idx_new) : &tmp,
6660			sizeof(struct sched_domain_attr));
6661}
6662
6663/*
6664 * Partition sched domains as specified by the 'ndoms_new'
6665 * cpumasks in the array doms_new[] of cpumasks. This compares
6666 * doms_new[] to the current sched domain partitioning, doms_cur[].
6667 * It destroys each deleted domain and builds each new domain.
6668 *
6669 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6670 * The masks don't intersect (don't overlap.) We should setup one
6671 * sched domain for each mask. CPUs not in any of the cpumasks will
6672 * not be load balanced. If the same cpumask appears both in the
6673 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6674 * it as it is.
6675 *
6676 * The passed in 'doms_new' should be allocated using
6677 * alloc_sched_domains.  This routine takes ownership of it and will
6678 * free_sched_domains it when done with it. If the caller failed the
6679 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6680 * and partition_sched_domains() will fallback to the single partition
6681 * 'fallback_doms', it also forces the domains to be rebuilt.
6682 *
6683 * If doms_new == NULL it will be replaced with cpu_online_mask.
6684 * ndoms_new == 0 is a special case for destroying existing domains,
6685 * and it will not create the default domain.
6686 *
6687 * Call with hotplug lock held
6688 */
6689void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6690			     struct sched_domain_attr *dattr_new)
6691{
6692	int i, j, n;
6693	int new_topology;
6694
6695	mutex_lock(&sched_domains_mutex);
6696
6697	/* always unregister in case we don't destroy any domains */
6698	unregister_sched_domain_sysctl();
6699
6700	/* Let architecture update cpu core mappings. */
6701	new_topology = arch_update_cpu_topology();
6702
6703	n = doms_new ? ndoms_new : 0;
6704
6705	/* Destroy deleted domains */
6706	for (i = 0; i < ndoms_cur; i++) {
6707		for (j = 0; j < n && !new_topology; j++) {
6708			if (cpumask_equal(doms_cur[i], doms_new[j])
6709			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6710				goto match1;
6711		}
6712		/* no match - a current sched domain not in new doms_new[] */
6713		detach_destroy_domains(doms_cur[i]);
6714match1:
6715		;
6716	}
6717
6718	n = ndoms_cur;
6719	if (doms_new == NULL) {
6720		n = 0;
6721		doms_new = &fallback_doms;
6722		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6723		WARN_ON_ONCE(dattr_new);
6724	}
6725
6726	/* Build new domains */
6727	for (i = 0; i < ndoms_new; i++) {
6728		for (j = 0; j < n && !new_topology; j++) {
6729			if (cpumask_equal(doms_new[i], doms_cur[j])
6730			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6731				goto match2;
6732		}
6733		/* no match - add a new doms_new */
6734		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6735match2:
6736		;
6737	}
6738
6739	/* Remember the new sched domains */
6740	if (doms_cur != &fallback_doms)
6741		free_sched_domains(doms_cur, ndoms_cur);
6742	kfree(dattr_cur);	/* kfree(NULL) is safe */
6743	doms_cur = doms_new;
6744	dattr_cur = dattr_new;
6745	ndoms_cur = ndoms_new;
6746
6747	register_sched_domain_sysctl();
6748
6749	mutex_unlock(&sched_domains_mutex);
6750}
6751
6752static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6753
6754/*
6755 * Update cpusets according to cpu_active mask.  If cpusets are
6756 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6757 * around partition_sched_domains().
6758 *
6759 * If we come here as part of a suspend/resume, don't touch cpusets because we
6760 * want to restore it back to its original state upon resume anyway.
6761 */
6762static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6763			     void *hcpu)
6764{
6765	switch (action) {
6766	case CPU_ONLINE_FROZEN:
6767	case CPU_DOWN_FAILED_FROZEN:
6768
6769		/*
6770		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6771		 * resume sequence. As long as this is not the last online
6772		 * operation in the resume sequence, just build a single sched
6773		 * domain, ignoring cpusets.
6774		 */
6775		num_cpus_frozen--;
6776		if (likely(num_cpus_frozen)) {
6777			partition_sched_domains(1, NULL, NULL);
6778			break;
6779		}
6780
6781		/*
6782		 * This is the last CPU online operation. So fall through and
6783		 * restore the original sched domains by considering the
6784		 * cpuset configurations.
6785		 */
6786
6787	case CPU_ONLINE:
6788	case CPU_DOWN_FAILED:
6789		cpuset_update_active_cpus(true);
6790		break;
6791	default:
6792		return NOTIFY_DONE;
6793	}
6794	return NOTIFY_OK;
6795}
6796
6797static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6798			       void *hcpu)
6799{
6800	switch (action) {
6801	case CPU_DOWN_PREPARE:
6802		cpuset_update_active_cpus(false);
6803		break;
6804	case CPU_DOWN_PREPARE_FROZEN:
6805		num_cpus_frozen++;
6806		partition_sched_domains(1, NULL, NULL);
6807		break;
6808	default:
6809		return NOTIFY_DONE;
6810	}
6811	return NOTIFY_OK;
6812}
6813
6814void __init sched_init_smp(void)
6815{
6816	cpumask_var_t non_isolated_cpus;
6817
6818	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6819	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6820
6821	sched_init_numa();
6822
6823	/*
6824	 * There's no userspace yet to cause hotplug operations; hence all the
6825	 * cpu masks are stable and all blatant races in the below code cannot
6826	 * happen.
6827	 */
6828	mutex_lock(&sched_domains_mutex);
6829	init_sched_domains(cpu_active_mask);
6830	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6831	if (cpumask_empty(non_isolated_cpus))
6832		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6833	mutex_unlock(&sched_domains_mutex);
6834
6835	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6836	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6837	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6838
6839	init_hrtick();
6840
6841	/* Move init over to a non-isolated CPU */
6842	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6843		BUG();
6844	sched_init_granularity();
6845	free_cpumask_var(non_isolated_cpus);
6846
6847	init_sched_rt_class();
6848	init_sched_dl_class();
6849}
6850#else
6851void __init sched_init_smp(void)
6852{
6853	sched_init_granularity();
6854}
6855#endif /* CONFIG_SMP */
6856
6857const_debug unsigned int sysctl_timer_migration = 1;
6858
6859int in_sched_functions(unsigned long addr)
6860{
6861	return in_lock_functions(addr) ||
6862		(addr >= (unsigned long)__sched_text_start
6863		&& addr < (unsigned long)__sched_text_end);
6864}
6865
6866#ifdef CONFIG_CGROUP_SCHED
6867/*
6868 * Default task group.
6869 * Every task in system belongs to this group at bootup.
6870 */
6871struct task_group root_task_group;
6872LIST_HEAD(task_groups);
6873#endif
6874
6875DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6876
6877void __init sched_init(void)
6878{
6879	int i, j;
6880	unsigned long alloc_size = 0, ptr;
6881
6882#ifdef CONFIG_FAIR_GROUP_SCHED
6883	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6884#endif
6885#ifdef CONFIG_RT_GROUP_SCHED
6886	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6887#endif
6888#ifdef CONFIG_CPUMASK_OFFSTACK
6889	alloc_size += num_possible_cpus() * cpumask_size();
6890#endif
6891	if (alloc_size) {
6892		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6893
6894#ifdef CONFIG_FAIR_GROUP_SCHED
6895		root_task_group.se = (struct sched_entity **)ptr;
6896		ptr += nr_cpu_ids * sizeof(void **);
6897
6898		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6899		ptr += nr_cpu_ids * sizeof(void **);
6900
6901#endif /* CONFIG_FAIR_GROUP_SCHED */
6902#ifdef CONFIG_RT_GROUP_SCHED
6903		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6904		ptr += nr_cpu_ids * sizeof(void **);
6905
6906		root_task_group.rt_rq = (struct rt_rq **)ptr;
6907		ptr += nr_cpu_ids * sizeof(void **);
6908
6909#endif /* CONFIG_RT_GROUP_SCHED */
6910#ifdef CONFIG_CPUMASK_OFFSTACK
6911		for_each_possible_cpu(i) {
6912			per_cpu(load_balance_mask, i) = (void *)ptr;
6913			ptr += cpumask_size();
6914		}
6915#endif /* CONFIG_CPUMASK_OFFSTACK */
6916	}
6917
6918	init_rt_bandwidth(&def_rt_bandwidth,
6919			global_rt_period(), global_rt_runtime());
6920	init_dl_bandwidth(&def_dl_bandwidth,
6921			global_rt_period(), global_rt_runtime());
6922
6923#ifdef CONFIG_SMP
6924	init_defrootdomain();
6925#endif
6926
6927#ifdef CONFIG_RT_GROUP_SCHED
6928	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6929			global_rt_period(), global_rt_runtime());
6930#endif /* CONFIG_RT_GROUP_SCHED */
6931
6932#ifdef CONFIG_CGROUP_SCHED
6933	list_add(&root_task_group.list, &task_groups);
6934	INIT_LIST_HEAD(&root_task_group.children);
6935	INIT_LIST_HEAD(&root_task_group.siblings);
6936	autogroup_init(&init_task);
6937
6938#endif /* CONFIG_CGROUP_SCHED */
6939
6940	for_each_possible_cpu(i) {
6941		struct rq *rq;
6942
6943		rq = cpu_rq(i);
6944		raw_spin_lock_init(&rq->lock);
6945		rq->nr_running = 0;
6946		rq->calc_load_active = 0;
6947		rq->calc_load_update = jiffies + LOAD_FREQ;
6948		init_cfs_rq(&rq->cfs);
6949		init_rt_rq(&rq->rt, rq);
6950		init_dl_rq(&rq->dl, rq);
6951#ifdef CONFIG_FAIR_GROUP_SCHED
6952		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6953		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6954		/*
6955		 * How much cpu bandwidth does root_task_group get?
6956		 *
6957		 * In case of task-groups formed thr' the cgroup filesystem, it
6958		 * gets 100% of the cpu resources in the system. This overall
6959		 * system cpu resource is divided among the tasks of
6960		 * root_task_group and its child task-groups in a fair manner,
6961		 * based on each entity's (task or task-group's) weight
6962		 * (se->load.weight).
6963		 *
6964		 * In other words, if root_task_group has 10 tasks of weight
6965		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6966		 * then A0's share of the cpu resource is:
6967		 *
6968		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6969		 *
6970		 * We achieve this by letting root_task_group's tasks sit
6971		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6972		 */
6973		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6974		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6975#endif /* CONFIG_FAIR_GROUP_SCHED */
6976
6977		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6978#ifdef CONFIG_RT_GROUP_SCHED
6979		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6980#endif
6981
6982		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6983			rq->cpu_load[j] = 0;
6984
6985		rq->last_load_update_tick = jiffies;
6986
6987#ifdef CONFIG_SMP
6988		rq->sd = NULL;
6989		rq->rd = NULL;
6990		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6991		rq->post_schedule = 0;
6992		rq->active_balance = 0;
6993		rq->next_balance = jiffies;
6994		rq->push_cpu = 0;
6995		rq->cpu = i;
6996		rq->online = 0;
6997		rq->idle_stamp = 0;
6998		rq->avg_idle = 2*sysctl_sched_migration_cost;
6999		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7000
7001		INIT_LIST_HEAD(&rq->cfs_tasks);
7002
7003		rq_attach_root(rq, &def_root_domain);
7004#ifdef CONFIG_NO_HZ_COMMON
7005		rq->nohz_flags = 0;
7006#endif
7007#ifdef CONFIG_NO_HZ_FULL
7008		rq->last_sched_tick = 0;
7009#endif
7010#endif
7011		init_rq_hrtick(rq);
7012		atomic_set(&rq->nr_iowait, 0);
7013	}
7014
7015	set_load_weight(&init_task);
7016
7017#ifdef CONFIG_PREEMPT_NOTIFIERS
7018	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7019#endif
7020
7021	/*
7022	 * The boot idle thread does lazy MMU switching as well:
7023	 */
7024	atomic_inc(&init_mm.mm_count);
7025	enter_lazy_tlb(&init_mm, current);
7026
7027	/*
7028	 * Make us the idle thread. Technically, schedule() should not be
7029	 * called from this thread, however somewhere below it might be,
7030	 * but because we are the idle thread, we just pick up running again
7031	 * when this runqueue becomes "idle".
7032	 */
7033	init_idle(current, smp_processor_id());
7034
7035	calc_load_update = jiffies + LOAD_FREQ;
7036
7037	/*
7038	 * During early bootup we pretend to be a normal task:
7039	 */
7040	current->sched_class = &fair_sched_class;
7041
7042#ifdef CONFIG_SMP
7043	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7044	/* May be allocated at isolcpus cmdline parse time */
7045	if (cpu_isolated_map == NULL)
7046		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7047	idle_thread_set_boot_cpu();
7048	set_cpu_rq_start_time();
7049#endif
7050	init_sched_fair_class();
7051
7052	scheduler_running = 1;
7053}
7054
7055#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7056static inline int preempt_count_equals(int preempt_offset)
7057{
7058	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7059
7060	return (nested == preempt_offset);
7061}
7062
7063void __might_sleep(const char *file, int line, int preempt_offset)
7064{
7065	static unsigned long prev_jiffy;	/* ratelimiting */
7066
7067	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7068	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7069	     !is_idle_task(current)) ||
7070	    system_state != SYSTEM_RUNNING || oops_in_progress)
7071		return;
7072	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7073		return;
7074	prev_jiffy = jiffies;
7075
7076	printk(KERN_ERR
7077		"BUG: sleeping function called from invalid context at %s:%d\n",
7078			file, line);
7079	printk(KERN_ERR
7080		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7081			in_atomic(), irqs_disabled(),
7082			current->pid, current->comm);
7083
7084	debug_show_held_locks(current);
7085	if (irqs_disabled())
7086		print_irqtrace_events(current);
7087#ifdef CONFIG_DEBUG_PREEMPT
7088	if (!preempt_count_equals(preempt_offset)) {
7089		pr_err("Preemption disabled at:");
7090		print_ip_sym(current->preempt_disable_ip);
7091		pr_cont("\n");
7092	}
7093#endif
7094	dump_stack();
7095}
7096EXPORT_SYMBOL(__might_sleep);
7097#endif
7098
7099#ifdef CONFIG_MAGIC_SYSRQ
7100static void normalize_task(struct rq *rq, struct task_struct *p)
7101{
7102	const struct sched_class *prev_class = p->sched_class;
7103	struct sched_attr attr = {
7104		.sched_policy = SCHED_NORMAL,
7105	};
7106	int old_prio = p->prio;
7107	int on_rq;
7108
7109	on_rq = p->on_rq;
7110	if (on_rq)
7111		dequeue_task(rq, p, 0);
7112	__setscheduler(rq, p, &attr);
7113	if (on_rq) {
7114		enqueue_task(rq, p, 0);
7115		resched_curr(rq);
7116	}
7117
7118	check_class_changed(rq, p, prev_class, old_prio);
7119}
7120
7121void normalize_rt_tasks(void)
7122{
7123	struct task_struct *g, *p;
7124	unsigned long flags;
7125	struct rq *rq;
7126
7127	read_lock_irqsave(&tasklist_lock, flags);
7128	do_each_thread(g, p) {
7129		/*
7130		 * Only normalize user tasks:
7131		 */
7132		if (!p->mm)
7133			continue;
7134
7135		p->se.exec_start		= 0;
7136#ifdef CONFIG_SCHEDSTATS
7137		p->se.statistics.wait_start	= 0;
7138		p->se.statistics.sleep_start	= 0;
7139		p->se.statistics.block_start	= 0;
7140#endif
7141
7142		if (!dl_task(p) && !rt_task(p)) {
7143			/*
7144			 * Renice negative nice level userspace
7145			 * tasks back to 0:
7146			 */
7147			if (task_nice(p) < 0 && p->mm)
7148				set_user_nice(p, 0);
7149			continue;
7150		}
7151
7152		raw_spin_lock(&p->pi_lock);
7153		rq = __task_rq_lock(p);
7154
7155		normalize_task(rq, p);
7156
7157		__task_rq_unlock(rq);
7158		raw_spin_unlock(&p->pi_lock);
7159	} while_each_thread(g, p);
7160
7161	read_unlock_irqrestore(&tasklist_lock, flags);
7162}
7163
7164#endif /* CONFIG_MAGIC_SYSRQ */
7165
7166#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7167/*
7168 * These functions are only useful for the IA64 MCA handling, or kdb.
7169 *
7170 * They can only be called when the whole system has been
7171 * stopped - every CPU needs to be quiescent, and no scheduling
7172 * activity can take place. Using them for anything else would
7173 * be a serious bug, and as a result, they aren't even visible
7174 * under any other configuration.
7175 */
7176
7177/**
7178 * curr_task - return the current task for a given cpu.
7179 * @cpu: the processor in question.
7180 *
7181 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7182 *
7183 * Return: The current task for @cpu.
7184 */
7185struct task_struct *curr_task(int cpu)
7186{
7187	return cpu_curr(cpu);
7188}
7189
7190#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7191
7192#ifdef CONFIG_IA64
7193/**
7194 * set_curr_task - set the current task for a given cpu.
7195 * @cpu: the processor in question.
7196 * @p: the task pointer to set.
7197 *
7198 * Description: This function must only be used when non-maskable interrupts
7199 * are serviced on a separate stack. It allows the architecture to switch the
7200 * notion of the current task on a cpu in a non-blocking manner. This function
7201 * must be called with all CPU's synchronized, and interrupts disabled, the
7202 * and caller must save the original value of the current task (see
7203 * curr_task() above) and restore that value before reenabling interrupts and
7204 * re-starting the system.
7205 *
7206 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7207 */
7208void set_curr_task(int cpu, struct task_struct *p)
7209{
7210	cpu_curr(cpu) = p;
7211}
7212
7213#endif
7214
7215#ifdef CONFIG_CGROUP_SCHED
7216/* task_group_lock serializes the addition/removal of task groups */
7217static DEFINE_SPINLOCK(task_group_lock);
7218
7219static void free_sched_group(struct task_group *tg)
7220{
7221	free_fair_sched_group(tg);
7222	free_rt_sched_group(tg);
7223	autogroup_free(tg);
7224	kfree(tg);
7225}
7226
7227/* allocate runqueue etc for a new task group */
7228struct task_group *sched_create_group(struct task_group *parent)
7229{
7230	struct task_group *tg;
7231
7232	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7233	if (!tg)
7234		return ERR_PTR(-ENOMEM);
7235
7236	if (!alloc_fair_sched_group(tg, parent))
7237		goto err;
7238
7239	if (!alloc_rt_sched_group(tg, parent))
7240		goto err;
7241
7242	return tg;
7243
7244err:
7245	free_sched_group(tg);
7246	return ERR_PTR(-ENOMEM);
7247}
7248
7249void sched_online_group(struct task_group *tg, struct task_group *parent)
7250{
7251	unsigned long flags;
7252
7253	spin_lock_irqsave(&task_group_lock, flags);
7254	list_add_rcu(&tg->list, &task_groups);
7255
7256	WARN_ON(!parent); /* root should already exist */
7257
7258	tg->parent = parent;
7259	INIT_LIST_HEAD(&tg->children);
7260	list_add_rcu(&tg->siblings, &parent->children);
7261	spin_unlock_irqrestore(&task_group_lock, flags);
7262}
7263
7264/* rcu callback to free various structures associated with a task group */
7265static void free_sched_group_rcu(struct rcu_head *rhp)
7266{
7267	/* now it should be safe to free those cfs_rqs */
7268	free_sched_group(container_of(rhp, struct task_group, rcu));
7269}
7270
7271/* Destroy runqueue etc associated with a task group */
7272void sched_destroy_group(struct task_group *tg)
7273{
7274	/* wait for possible concurrent references to cfs_rqs complete */
7275	call_rcu(&tg->rcu, free_sched_group_rcu);
7276}
7277
7278void sched_offline_group(struct task_group *tg)
7279{
7280	unsigned long flags;
7281	int i;
7282
7283	/* end participation in shares distribution */
7284	for_each_possible_cpu(i)
7285		unregister_fair_sched_group(tg, i);
7286
7287	spin_lock_irqsave(&task_group_lock, flags);
7288	list_del_rcu(&tg->list);
7289	list_del_rcu(&tg->siblings);
7290	spin_unlock_irqrestore(&task_group_lock, flags);
7291}
7292
7293/* change task's runqueue when it moves between groups.
7294 *	The caller of this function should have put the task in its new group
7295 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7296 *	reflect its new group.
7297 */
7298void sched_move_task(struct task_struct *tsk)
7299{
7300	struct task_group *tg;
7301	int on_rq, running;
7302	unsigned long flags;
7303	struct rq *rq;
7304
7305	rq = task_rq_lock(tsk, &flags);
7306
7307	running = task_current(rq, tsk);
7308	on_rq = tsk->on_rq;
7309
7310	if (on_rq)
7311		dequeue_task(rq, tsk, 0);
7312	if (unlikely(running))
7313		tsk->sched_class->put_prev_task(rq, tsk);
7314
7315	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7316				lockdep_is_held(&tsk->sighand->siglock)),
7317			  struct task_group, css);
7318	tg = autogroup_task_group(tsk, tg);
7319	tsk->sched_task_group = tg;
7320
7321#ifdef CONFIG_FAIR_GROUP_SCHED
7322	if (tsk->sched_class->task_move_group)
7323		tsk->sched_class->task_move_group(tsk, on_rq);
7324	else
7325#endif
7326		set_task_rq(tsk, task_cpu(tsk));
7327
7328	if (unlikely(running))
7329		tsk->sched_class->set_curr_task(rq);
7330	if (on_rq)
7331		enqueue_task(rq, tsk, 0);
7332
7333	task_rq_unlock(rq, tsk, &flags);
7334}
7335#endif /* CONFIG_CGROUP_SCHED */
7336
7337#ifdef CONFIG_RT_GROUP_SCHED
7338/*
7339 * Ensure that the real time constraints are schedulable.
7340 */
7341static DEFINE_MUTEX(rt_constraints_mutex);
7342
7343/* Must be called with tasklist_lock held */
7344static inline int tg_has_rt_tasks(struct task_group *tg)
7345{
7346	struct task_struct *g, *p;
7347
7348	do_each_thread(g, p) {
7349		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7350			return 1;
7351	} while_each_thread(g, p);
7352
7353	return 0;
7354}
7355
7356struct rt_schedulable_data {
7357	struct task_group *tg;
7358	u64 rt_period;
7359	u64 rt_runtime;
7360};
7361
7362static int tg_rt_schedulable(struct task_group *tg, void *data)
7363{
7364	struct rt_schedulable_data *d = data;
7365	struct task_group *child;
7366	unsigned long total, sum = 0;
7367	u64 period, runtime;
7368
7369	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7370	runtime = tg->rt_bandwidth.rt_runtime;
7371
7372	if (tg == d->tg) {
7373		period = d->rt_period;
7374		runtime = d->rt_runtime;
7375	}
7376
7377	/*
7378	 * Cannot have more runtime than the period.
7379	 */
7380	if (runtime > period && runtime != RUNTIME_INF)
7381		return -EINVAL;
7382
7383	/*
7384	 * Ensure we don't starve existing RT tasks.
7385	 */
7386	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7387		return -EBUSY;
7388
7389	total = to_ratio(period, runtime);
7390
7391	/*
7392	 * Nobody can have more than the global setting allows.
7393	 */
7394	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7395		return -EINVAL;
7396
7397	/*
7398	 * The sum of our children's runtime should not exceed our own.
7399	 */
7400	list_for_each_entry_rcu(child, &tg->children, siblings) {
7401		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7402		runtime = child->rt_bandwidth.rt_runtime;
7403
7404		if (child == d->tg) {
7405			period = d->rt_period;
7406			runtime = d->rt_runtime;
7407		}
7408
7409		sum += to_ratio(period, runtime);
7410	}
7411
7412	if (sum > total)
7413		return -EINVAL;
7414
7415	return 0;
7416}
7417
7418static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7419{
7420	int ret;
7421
7422	struct rt_schedulable_data data = {
7423		.tg = tg,
7424		.rt_period = period,
7425		.rt_runtime = runtime,
7426	};
7427
7428	rcu_read_lock();
7429	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7430	rcu_read_unlock();
7431
7432	return ret;
7433}
7434
7435static int tg_set_rt_bandwidth(struct task_group *tg,
7436		u64 rt_period, u64 rt_runtime)
7437{
7438	int i, err = 0;
7439
7440	mutex_lock(&rt_constraints_mutex);
7441	read_lock(&tasklist_lock);
7442	err = __rt_schedulable(tg, rt_period, rt_runtime);
7443	if (err)
7444		goto unlock;
7445
7446	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7447	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7448	tg->rt_bandwidth.rt_runtime = rt_runtime;
7449
7450	for_each_possible_cpu(i) {
7451		struct rt_rq *rt_rq = tg->rt_rq[i];
7452
7453		raw_spin_lock(&rt_rq->rt_runtime_lock);
7454		rt_rq->rt_runtime = rt_runtime;
7455		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7456	}
7457	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7458unlock:
7459	read_unlock(&tasklist_lock);
7460	mutex_unlock(&rt_constraints_mutex);
7461
7462	return err;
7463}
7464
7465static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7466{
7467	u64 rt_runtime, rt_period;
7468
7469	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7470	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7471	if (rt_runtime_us < 0)
7472		rt_runtime = RUNTIME_INF;
7473
7474	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7475}
7476
7477static long sched_group_rt_runtime(struct task_group *tg)
7478{
7479	u64 rt_runtime_us;
7480
7481	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7482		return -1;
7483
7484	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7485	do_div(rt_runtime_us, NSEC_PER_USEC);
7486	return rt_runtime_us;
7487}
7488
7489static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7490{
7491	u64 rt_runtime, rt_period;
7492
7493	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7494	rt_runtime = tg->rt_bandwidth.rt_runtime;
7495
7496	if (rt_period == 0)
7497		return -EINVAL;
7498
7499	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7500}
7501
7502static long sched_group_rt_period(struct task_group *tg)
7503{
7504	u64 rt_period_us;
7505
7506	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7507	do_div(rt_period_us, NSEC_PER_USEC);
7508	return rt_period_us;
7509}
7510#endif /* CONFIG_RT_GROUP_SCHED */
7511
7512#ifdef CONFIG_RT_GROUP_SCHED
7513static int sched_rt_global_constraints(void)
7514{
7515	int ret = 0;
7516
7517	mutex_lock(&rt_constraints_mutex);
7518	read_lock(&tasklist_lock);
7519	ret = __rt_schedulable(NULL, 0, 0);
7520	read_unlock(&tasklist_lock);
7521	mutex_unlock(&rt_constraints_mutex);
7522
7523	return ret;
7524}
7525
7526static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7527{
7528	/* Don't accept realtime tasks when there is no way for them to run */
7529	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7530		return 0;
7531
7532	return 1;
7533}
7534
7535#else /* !CONFIG_RT_GROUP_SCHED */
7536static int sched_rt_global_constraints(void)
7537{
7538	unsigned long flags;
7539	int i, ret = 0;
7540
7541	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7542	for_each_possible_cpu(i) {
7543		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7544
7545		raw_spin_lock(&rt_rq->rt_runtime_lock);
7546		rt_rq->rt_runtime = global_rt_runtime();
7547		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7548	}
7549	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7550
7551	return ret;
7552}
7553#endif /* CONFIG_RT_GROUP_SCHED */
7554
7555static int sched_dl_global_constraints(void)
7556{
7557	u64 runtime = global_rt_runtime();
7558	u64 period = global_rt_period();
7559	u64 new_bw = to_ratio(period, runtime);
7560	int cpu, ret = 0;
7561	unsigned long flags;
7562
7563	/*
7564	 * Here we want to check the bandwidth not being set to some
7565	 * value smaller than the currently allocated bandwidth in
7566	 * any of the root_domains.
7567	 *
7568	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7569	 * cycling on root_domains... Discussion on different/better
7570	 * solutions is welcome!
7571	 */
7572	for_each_possible_cpu(cpu) {
7573		struct dl_bw *dl_b = dl_bw_of(cpu);
7574
7575		raw_spin_lock_irqsave(&dl_b->lock, flags);
7576		if (new_bw < dl_b->total_bw)
7577			ret = -EBUSY;
7578		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7579
7580		if (ret)
7581			break;
7582	}
7583
7584	return ret;
7585}
7586
7587static void sched_dl_do_global(void)
7588{
7589	u64 new_bw = -1;
7590	int cpu;
7591	unsigned long flags;
7592
7593	def_dl_bandwidth.dl_period = global_rt_period();
7594	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7595
7596	if (global_rt_runtime() != RUNTIME_INF)
7597		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7598
7599	/*
7600	 * FIXME: As above...
7601	 */
7602	for_each_possible_cpu(cpu) {
7603		struct dl_bw *dl_b = dl_bw_of(cpu);
7604
7605		raw_spin_lock_irqsave(&dl_b->lock, flags);
7606		dl_b->bw = new_bw;
7607		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7608	}
7609}
7610
7611static int sched_rt_global_validate(void)
7612{
7613	if (sysctl_sched_rt_period <= 0)
7614		return -EINVAL;
7615
7616	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7617		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7618		return -EINVAL;
7619
7620	return 0;
7621}
7622
7623static void sched_rt_do_global(void)
7624{
7625	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7626	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7627}
7628
7629int sched_rt_handler(struct ctl_table *table, int write,
7630		void __user *buffer, size_t *lenp,
7631		loff_t *ppos)
7632{
7633	int old_period, old_runtime;
7634	static DEFINE_MUTEX(mutex);
7635	int ret;
7636
7637	mutex_lock(&mutex);
7638	old_period = sysctl_sched_rt_period;
7639	old_runtime = sysctl_sched_rt_runtime;
7640
7641	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7642
7643	if (!ret && write) {
7644		ret = sched_rt_global_validate();
7645		if (ret)
7646			goto undo;
7647
7648		ret = sched_rt_global_constraints();
7649		if (ret)
7650			goto undo;
7651
7652		ret = sched_dl_global_constraints();
7653		if (ret)
7654			goto undo;
7655
7656		sched_rt_do_global();
7657		sched_dl_do_global();
7658	}
7659	if (0) {
7660undo:
7661		sysctl_sched_rt_period = old_period;
7662		sysctl_sched_rt_runtime = old_runtime;
7663	}
7664	mutex_unlock(&mutex);
7665
7666	return ret;
7667}
7668
7669int sched_rr_handler(struct ctl_table *table, int write,
7670		void __user *buffer, size_t *lenp,
7671		loff_t *ppos)
7672{
7673	int ret;
7674	static DEFINE_MUTEX(mutex);
7675
7676	mutex_lock(&mutex);
7677	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7678	/* make sure that internally we keep jiffies */
7679	/* also, writing zero resets timeslice to default */
7680	if (!ret && write) {
7681		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7682			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7683	}
7684	mutex_unlock(&mutex);
7685	return ret;
7686}
7687
7688#ifdef CONFIG_CGROUP_SCHED
7689
7690static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7691{
7692	return css ? container_of(css, struct task_group, css) : NULL;
7693}
7694
7695static struct cgroup_subsys_state *
7696cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7697{
7698	struct task_group *parent = css_tg(parent_css);
7699	struct task_group *tg;
7700
7701	if (!parent) {
7702		/* This is early initialization for the top cgroup */
7703		return &root_task_group.css;
7704	}
7705
7706	tg = sched_create_group(parent);
7707	if (IS_ERR(tg))
7708		return ERR_PTR(-ENOMEM);
7709
7710	return &tg->css;
7711}
7712
7713static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7714{
7715	struct task_group *tg = css_tg(css);
7716	struct task_group *parent = css_tg(css->parent);
7717
7718	if (parent)
7719		sched_online_group(tg, parent);
7720	return 0;
7721}
7722
7723static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7724{
7725	struct task_group *tg = css_tg(css);
7726
7727	sched_destroy_group(tg);
7728}
7729
7730static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7731{
7732	struct task_group *tg = css_tg(css);
7733
7734	sched_offline_group(tg);
7735}
7736
7737static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7738				 struct cgroup_taskset *tset)
7739{
7740	struct task_struct *task;
7741
7742	cgroup_taskset_for_each(task, tset) {
7743#ifdef CONFIG_RT_GROUP_SCHED
7744		if (!sched_rt_can_attach(css_tg(css), task))
7745			return -EINVAL;
7746#else
7747		/* We don't support RT-tasks being in separate groups */
7748		if (task->sched_class != &fair_sched_class)
7749			return -EINVAL;
7750#endif
7751	}
7752	return 0;
7753}
7754
7755static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7756			      struct cgroup_taskset *tset)
7757{
7758	struct task_struct *task;
7759
7760	cgroup_taskset_for_each(task, tset)
7761		sched_move_task(task);
7762}
7763
7764static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7765			    struct cgroup_subsys_state *old_css,
7766			    struct task_struct *task)
7767{
7768	/*
7769	 * cgroup_exit() is called in the copy_process() failure path.
7770	 * Ignore this case since the task hasn't ran yet, this avoids
7771	 * trying to poke a half freed task state from generic code.
7772	 */
7773	if (!(task->flags & PF_EXITING))
7774		return;
7775
7776	sched_move_task(task);
7777}
7778
7779#ifdef CONFIG_FAIR_GROUP_SCHED
7780static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7781				struct cftype *cftype, u64 shareval)
7782{
7783	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7784}
7785
7786static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7787			       struct cftype *cft)
7788{
7789	struct task_group *tg = css_tg(css);
7790
7791	return (u64) scale_load_down(tg->shares);
7792}
7793
7794#ifdef CONFIG_CFS_BANDWIDTH
7795static DEFINE_MUTEX(cfs_constraints_mutex);
7796
7797const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7798const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7799
7800static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7801
7802static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7803{
7804	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7805	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7806
7807	if (tg == &root_task_group)
7808		return -EINVAL;
7809
7810	/*
7811	 * Ensure we have at some amount of bandwidth every period.  This is
7812	 * to prevent reaching a state of large arrears when throttled via
7813	 * entity_tick() resulting in prolonged exit starvation.
7814	 */
7815	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7816		return -EINVAL;
7817
7818	/*
7819	 * Likewise, bound things on the otherside by preventing insane quota
7820	 * periods.  This also allows us to normalize in computing quota
7821	 * feasibility.
7822	 */
7823	if (period > max_cfs_quota_period)
7824		return -EINVAL;
7825
7826	/*
7827	 * Prevent race between setting of cfs_rq->runtime_enabled and
7828	 * unthrottle_offline_cfs_rqs().
7829	 */
7830	get_online_cpus();
7831	mutex_lock(&cfs_constraints_mutex);
7832	ret = __cfs_schedulable(tg, period, quota);
7833	if (ret)
7834		goto out_unlock;
7835
7836	runtime_enabled = quota != RUNTIME_INF;
7837	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7838	/*
7839	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7840	 * before making related changes, and on->off must occur afterwards
7841	 */
7842	if (runtime_enabled && !runtime_was_enabled)
7843		cfs_bandwidth_usage_inc();
7844	raw_spin_lock_irq(&cfs_b->lock);
7845	cfs_b->period = ns_to_ktime(period);
7846	cfs_b->quota = quota;
7847
7848	__refill_cfs_bandwidth_runtime(cfs_b);
7849	/* restart the period timer (if active) to handle new period expiry */
7850	if (runtime_enabled && cfs_b->timer_active) {
7851		/* force a reprogram */
7852		__start_cfs_bandwidth(cfs_b, true);
7853	}
7854	raw_spin_unlock_irq(&cfs_b->lock);
7855
7856	for_each_online_cpu(i) {
7857		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7858		struct rq *rq = cfs_rq->rq;
7859
7860		raw_spin_lock_irq(&rq->lock);
7861		cfs_rq->runtime_enabled = runtime_enabled;
7862		cfs_rq->runtime_remaining = 0;
7863
7864		if (cfs_rq->throttled)
7865			unthrottle_cfs_rq(cfs_rq);
7866		raw_spin_unlock_irq(&rq->lock);
7867	}
7868	if (runtime_was_enabled && !runtime_enabled)
7869		cfs_bandwidth_usage_dec();
7870out_unlock:
7871	mutex_unlock(&cfs_constraints_mutex);
7872	put_online_cpus();
7873
7874	return ret;
7875}
7876
7877int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7878{
7879	u64 quota, period;
7880
7881	period = ktime_to_ns(tg->cfs_bandwidth.period);
7882	if (cfs_quota_us < 0)
7883		quota = RUNTIME_INF;
7884	else
7885		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7886
7887	return tg_set_cfs_bandwidth(tg, period, quota);
7888}
7889
7890long tg_get_cfs_quota(struct task_group *tg)
7891{
7892	u64 quota_us;
7893
7894	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7895		return -1;
7896
7897	quota_us = tg->cfs_bandwidth.quota;
7898	do_div(quota_us, NSEC_PER_USEC);
7899
7900	return quota_us;
7901}
7902
7903int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7904{
7905	u64 quota, period;
7906
7907	period = (u64)cfs_period_us * NSEC_PER_USEC;
7908	quota = tg->cfs_bandwidth.quota;
7909
7910	return tg_set_cfs_bandwidth(tg, period, quota);
7911}
7912
7913long tg_get_cfs_period(struct task_group *tg)
7914{
7915	u64 cfs_period_us;
7916
7917	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7918	do_div(cfs_period_us, NSEC_PER_USEC);
7919
7920	return cfs_period_us;
7921}
7922
7923static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7924				  struct cftype *cft)
7925{
7926	return tg_get_cfs_quota(css_tg(css));
7927}
7928
7929static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7930				   struct cftype *cftype, s64 cfs_quota_us)
7931{
7932	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7933}
7934
7935static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7936				   struct cftype *cft)
7937{
7938	return tg_get_cfs_period(css_tg(css));
7939}
7940
7941static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7942				    struct cftype *cftype, u64 cfs_period_us)
7943{
7944	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7945}
7946
7947struct cfs_schedulable_data {
7948	struct task_group *tg;
7949	u64 period, quota;
7950};
7951
7952/*
7953 * normalize group quota/period to be quota/max_period
7954 * note: units are usecs
7955 */
7956static u64 normalize_cfs_quota(struct task_group *tg,
7957			       struct cfs_schedulable_data *d)
7958{
7959	u64 quota, period;
7960
7961	if (tg == d->tg) {
7962		period = d->period;
7963		quota = d->quota;
7964	} else {
7965		period = tg_get_cfs_period(tg);
7966		quota = tg_get_cfs_quota(tg);
7967	}
7968
7969	/* note: these should typically be equivalent */
7970	if (quota == RUNTIME_INF || quota == -1)
7971		return RUNTIME_INF;
7972
7973	return to_ratio(period, quota);
7974}
7975
7976static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7977{
7978	struct cfs_schedulable_data *d = data;
7979	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7980	s64 quota = 0, parent_quota = -1;
7981
7982	if (!tg->parent) {
7983		quota = RUNTIME_INF;
7984	} else {
7985		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7986
7987		quota = normalize_cfs_quota(tg, d);
7988		parent_quota = parent_b->hierarchal_quota;
7989
7990		/*
7991		 * ensure max(child_quota) <= parent_quota, inherit when no
7992		 * limit is set
7993		 */
7994		if (quota == RUNTIME_INF)
7995			quota = parent_quota;
7996		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7997			return -EINVAL;
7998	}
7999	cfs_b->hierarchal_quota = quota;
8000
8001	return 0;
8002}
8003
8004static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8005{
8006	int ret;
8007	struct cfs_schedulable_data data = {
8008		.tg = tg,
8009		.period = period,
8010		.quota = quota,
8011	};
8012
8013	if (quota != RUNTIME_INF) {
8014		do_div(data.period, NSEC_PER_USEC);
8015		do_div(data.quota, NSEC_PER_USEC);
8016	}
8017
8018	rcu_read_lock();
8019	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8020	rcu_read_unlock();
8021
8022	return ret;
8023}
8024
8025static int cpu_stats_show(struct seq_file *sf, void *v)
8026{
8027	struct task_group *tg = css_tg(seq_css(sf));
8028	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8029
8030	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8031	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8032	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8033
8034	return 0;
8035}
8036#endif /* CONFIG_CFS_BANDWIDTH */
8037#endif /* CONFIG_FAIR_GROUP_SCHED */
8038
8039#ifdef CONFIG_RT_GROUP_SCHED
8040static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8041				struct cftype *cft, s64 val)
8042{
8043	return sched_group_set_rt_runtime(css_tg(css), val);
8044}
8045
8046static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8047			       struct cftype *cft)
8048{
8049	return sched_group_rt_runtime(css_tg(css));
8050}
8051
8052static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8053				    struct cftype *cftype, u64 rt_period_us)
8054{
8055	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8056}
8057
8058static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8059				   struct cftype *cft)
8060{
8061	return sched_group_rt_period(css_tg(css));
8062}
8063#endif /* CONFIG_RT_GROUP_SCHED */
8064
8065static struct cftype cpu_files[] = {
8066#ifdef CONFIG_FAIR_GROUP_SCHED
8067	{
8068		.name = "shares",
8069		.read_u64 = cpu_shares_read_u64,
8070		.write_u64 = cpu_shares_write_u64,
8071	},
8072#endif
8073#ifdef CONFIG_CFS_BANDWIDTH
8074	{
8075		.name = "cfs_quota_us",
8076		.read_s64 = cpu_cfs_quota_read_s64,
8077		.write_s64 = cpu_cfs_quota_write_s64,
8078	},
8079	{
8080		.name = "cfs_period_us",
8081		.read_u64 = cpu_cfs_period_read_u64,
8082		.write_u64 = cpu_cfs_period_write_u64,
8083	},
8084	{
8085		.name = "stat",
8086		.seq_show = cpu_stats_show,
8087	},
8088#endif
8089#ifdef CONFIG_RT_GROUP_SCHED
8090	{
8091		.name = "rt_runtime_us",
8092		.read_s64 = cpu_rt_runtime_read,
8093		.write_s64 = cpu_rt_runtime_write,
8094	},
8095	{
8096		.name = "rt_period_us",
8097		.read_u64 = cpu_rt_period_read_uint,
8098		.write_u64 = cpu_rt_period_write_uint,
8099	},
8100#endif
8101	{ }	/* terminate */
8102};
8103
8104struct cgroup_subsys cpu_cgrp_subsys = {
8105	.css_alloc	= cpu_cgroup_css_alloc,
8106	.css_free	= cpu_cgroup_css_free,
8107	.css_online	= cpu_cgroup_css_online,
8108	.css_offline	= cpu_cgroup_css_offline,
8109	.can_attach	= cpu_cgroup_can_attach,
8110	.attach		= cpu_cgroup_attach,
8111	.exit		= cpu_cgroup_exit,
8112	.base_cftypes	= cpu_files,
8113	.early_init	= 1,
8114};
8115
8116#endif	/* CONFIG_CGROUP_SCHED */
8117
8118void dump_cpu_task(int cpu)
8119{
8120	pr_info("Task dump for CPU %d:\n", cpu);
8121	sched_show_task(cpu_curr(cpu));
8122}
8123