core.c revision 5d4dfddd4f02b028d6ddaaa04d75d3b0cad1c9ae
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94{
95	unsigned long delta;
96	ktime_t soft, hard, now;
97
98	for (;;) {
99		if (hrtimer_active(period_timer))
100			break;
101
102		now = hrtimer_cb_get_time(period_timer);
103		hrtimer_forward(period_timer, now, period);
104
105		soft = hrtimer_get_softexpires(period_timer);
106		hard = hrtimer_get_expires(period_timer);
107		delta = ktime_to_ns(ktime_sub(hard, soft));
108		__hrtimer_start_range_ns(period_timer, soft, delta,
109					 HRTIMER_MODE_ABS_PINNED, 0);
110	}
111}
112
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118void update_rq_clock(struct rq *rq)
119{
120	s64 delta;
121
122	if (rq->skip_clock_update > 0)
123		return;
124
125	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126	rq->clock += delta;
127	update_rq_clock_task(rq, delta);
128}
129
130/*
131 * Debugging: various feature bits
132 */
133
134#define SCHED_FEAT(name, enabled)	\
135	(1UL << __SCHED_FEAT_##name) * enabled |
136
137const_debug unsigned int sysctl_sched_features =
138#include "features.h"
139	0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled)	\
145	#name ,
146
147static const char * const sched_feat_names[] = {
148#include "features.h"
149};
150
151#undef SCHED_FEAT
152
153static int sched_feat_show(struct seq_file *m, void *v)
154{
155	int i;
156
157	for (i = 0; i < __SCHED_FEAT_NR; i++) {
158		if (!(sysctl_sched_features & (1UL << i)))
159			seq_puts(m, "NO_");
160		seq_printf(m, "%s ", sched_feat_names[i]);
161	}
162	seq_puts(m, "\n");
163
164	return 0;
165}
166
167#ifdef HAVE_JUMP_LABEL
168
169#define jump_label_key__true  STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172#define SCHED_FEAT(name, enabled)	\
173	jump_label_key__##enabled ,
174
175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
183	if (static_key_enabled(&sched_feat_keys[i]))
184		static_key_slow_dec(&sched_feat_keys[i]);
185}
186
187static void sched_feat_enable(int i)
188{
189	if (!static_key_enabled(&sched_feat_keys[i]))
190		static_key_slow_inc(&sched_feat_keys[i]);
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
197static int sched_feat_set(char *cmp)
198{
199	int i;
200	int neg = 0;
201
202	if (strncmp(cmp, "NO_", 3) == 0) {
203		neg = 1;
204		cmp += 3;
205	}
206
207	for (i = 0; i < __SCHED_FEAT_NR; i++) {
208		if (strcmp(cmp, sched_feat_names[i]) == 0) {
209			if (neg) {
210				sysctl_sched_features &= ~(1UL << i);
211				sched_feat_disable(i);
212			} else {
213				sysctl_sched_features |= (1UL << i);
214				sched_feat_enable(i);
215			}
216			break;
217		}
218	}
219
220	return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225		size_t cnt, loff_t *ppos)
226{
227	char buf[64];
228	char *cmp;
229	int i;
230
231	if (cnt > 63)
232		cnt = 63;
233
234	if (copy_from_user(&buf, ubuf, cnt))
235		return -EFAULT;
236
237	buf[cnt] = 0;
238	cmp = strstrip(buf);
239
240	i = sched_feat_set(cmp);
241	if (i == __SCHED_FEAT_NR)
242		return -EINVAL;
243
244	*ppos += cnt;
245
246	return cnt;
247}
248
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251	return single_open(filp, sched_feat_show, NULL);
252}
253
254static const struct file_operations sched_feat_fops = {
255	.open		= sched_feat_open,
256	.write		= sched_feat_write,
257	.read		= seq_read,
258	.llseek		= seq_lseek,
259	.release	= single_release,
260};
261
262static __init int sched_init_debug(void)
263{
264	debugfs_create_file("sched_features", 0644, NULL, NULL,
265			&sched_feat_fops);
266
267	return 0;
268}
269late_initcall(sched_init_debug);
270#endif /* CONFIG_SCHED_DEBUG */
271
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286/*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290unsigned int sysctl_sched_rt_period = 1000000;
291
292__read_mostly int scheduler_running;
293
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
299
300/*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303static inline struct rq *__task_rq_lock(struct task_struct *p)
304	__acquires(rq->lock)
305{
306	struct rq *rq;
307
308	lockdep_assert_held(&p->pi_lock);
309
310	for (;;) {
311		rq = task_rq(p);
312		raw_spin_lock(&rq->lock);
313		if (likely(rq == task_rq(p)))
314			return rq;
315		raw_spin_unlock(&rq->lock);
316	}
317}
318
319/*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323	__acquires(p->pi_lock)
324	__acquires(rq->lock)
325{
326	struct rq *rq;
327
328	for (;;) {
329		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330		rq = task_rq(p);
331		raw_spin_lock(&rq->lock);
332		if (likely(rq == task_rq(p)))
333			return rq;
334		raw_spin_unlock(&rq->lock);
335		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336	}
337}
338
339static void __task_rq_unlock(struct rq *rq)
340	__releases(rq->lock)
341{
342	raw_spin_unlock(&rq->lock);
343}
344
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347	__releases(rq->lock)
348	__releases(p->pi_lock)
349{
350	raw_spin_unlock(&rq->lock);
351	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352}
353
354/*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357static struct rq *this_rq_lock(void)
358	__acquires(rq->lock)
359{
360	struct rq *rq;
361
362	local_irq_disable();
363	rq = this_rq();
364	raw_spin_lock(&rq->lock);
365
366	return rq;
367}
368
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374static void hrtick_clear(struct rq *rq)
375{
376	if (hrtimer_active(&rq->hrtick_timer))
377		hrtimer_cancel(&rq->hrtick_timer);
378}
379
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390	raw_spin_lock(&rq->lock);
391	update_rq_clock(rq);
392	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393	raw_spin_unlock(&rq->lock);
394
395	return HRTIMER_NORESTART;
396}
397
398#ifdef CONFIG_SMP
399
400static int __hrtick_restart(struct rq *rq)
401{
402	struct hrtimer *timer = &rq->hrtick_timer;
403	ktime_t time = hrtimer_get_softexpires(timer);
404
405	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
412{
413	struct rq *rq = arg;
414
415	raw_spin_lock(&rq->lock);
416	__hrtick_restart(rq);
417	rq->hrtick_csd_pending = 0;
418	raw_spin_unlock(&rq->lock);
419}
420
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426void hrtick_start(struct rq *rq, u64 delay)
427{
428	struct hrtimer *timer = &rq->hrtick_timer;
429	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431	hrtimer_set_expires(timer, time);
432
433	if (rq == this_rq()) {
434		__hrtick_restart(rq);
435	} else if (!rq->hrtick_csd_pending) {
436		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437		rq->hrtick_csd_pending = 1;
438	}
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444	int cpu = (int)(long)hcpu;
445
446	switch (action) {
447	case CPU_UP_CANCELED:
448	case CPU_UP_CANCELED_FROZEN:
449	case CPU_DOWN_PREPARE:
450	case CPU_DOWN_PREPARE_FROZEN:
451	case CPU_DEAD:
452	case CPU_DEAD_FROZEN:
453		hrtick_clear(cpu_rq(cpu));
454		return NOTIFY_OK;
455	}
456
457	return NOTIFY_DONE;
458}
459
460static __init void init_hrtick(void)
461{
462	hotcpu_notifier(hotplug_hrtick, 0);
463}
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470void hrtick_start(struct rq *rq, u64 delay)
471{
472	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473			HRTIMER_MODE_REL_PINNED, 0);
474}
475
476static inline void init_hrtick(void)
477{
478}
479#endif /* CONFIG_SMP */
480
481static void init_rq_hrtick(struct rq *rq)
482{
483#ifdef CONFIG_SMP
484	rq->hrtick_csd_pending = 0;
485
486	rq->hrtick_csd.flags = 0;
487	rq->hrtick_csd.func = __hrtick_start;
488	rq->hrtick_csd.info = rq;
489#endif
490
491	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492	rq->hrtick_timer.function = hrtick;
493}
494#else	/* CONFIG_SCHED_HRTICK */
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
503static inline void init_hrtick(void)
504{
505}
506#endif	/* CONFIG_SCHED_HRTICK */
507
508/*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511#define fetch_or(ptr, val)						\
512({	typeof(*(ptr)) __old, __val = *(ptr);				\
513 	for (;;) {							\
514 		__old = cmpxchg((ptr), __val, __val | (val));		\
515 		if (__old == __val)					\
516 			break;						\
517 		__val = __old;						\
518 	}								\
519 	__old;								\
520})
521
522#ifdef TIF_POLLING_NRFLAG
523/*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528static bool set_nr_and_not_polling(struct task_struct *p)
529{
530	struct thread_info *ti = task_thread_info(p);
531	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532}
533#else
534static bool set_nr_and_not_polling(struct task_struct *p)
535{
536	set_tsk_need_resched(p);
537	return true;
538}
539#endif
540
541/*
542 * resched_task - mark a task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
548void resched_task(struct task_struct *p)
549{
550	int cpu;
551
552	lockdep_assert_held(&task_rq(p)->lock);
553
554	if (test_tsk_need_resched(p))
555		return;
556
557	cpu = task_cpu(p);
558
559	if (cpu == smp_processor_id()) {
560		set_tsk_need_resched(p);
561		set_preempt_need_resched();
562		return;
563	}
564
565	if (set_nr_and_not_polling(p))
566		smp_send_reschedule(cpu);
567}
568
569void resched_cpu(int cpu)
570{
571	struct rq *rq = cpu_rq(cpu);
572	unsigned long flags;
573
574	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
575		return;
576	resched_task(cpu_curr(cpu));
577	raw_spin_unlock_irqrestore(&rq->lock, flags);
578}
579
580#ifdef CONFIG_SMP
581#ifdef CONFIG_NO_HZ_COMMON
582/*
583 * In the semi idle case, use the nearest busy cpu for migrating timers
584 * from an idle cpu.  This is good for power-savings.
585 *
586 * We don't do similar optimization for completely idle system, as
587 * selecting an idle cpu will add more delays to the timers than intended
588 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
589 */
590int get_nohz_timer_target(int pinned)
591{
592	int cpu = smp_processor_id();
593	int i;
594	struct sched_domain *sd;
595
596	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
597		return cpu;
598
599	rcu_read_lock();
600	for_each_domain(cpu, sd) {
601		for_each_cpu(i, sched_domain_span(sd)) {
602			if (!idle_cpu(i)) {
603				cpu = i;
604				goto unlock;
605			}
606		}
607	}
608unlock:
609	rcu_read_unlock();
610	return cpu;
611}
612/*
613 * When add_timer_on() enqueues a timer into the timer wheel of an
614 * idle CPU then this timer might expire before the next timer event
615 * which is scheduled to wake up that CPU. In case of a completely
616 * idle system the next event might even be infinite time into the
617 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
618 * leaves the inner idle loop so the newly added timer is taken into
619 * account when the CPU goes back to idle and evaluates the timer
620 * wheel for the next timer event.
621 */
622static void wake_up_idle_cpu(int cpu)
623{
624	struct rq *rq = cpu_rq(cpu);
625
626	if (cpu == smp_processor_id())
627		return;
628
629	/*
630	 * This is safe, as this function is called with the timer
631	 * wheel base lock of (cpu) held. When the CPU is on the way
632	 * to idle and has not yet set rq->curr to idle then it will
633	 * be serialized on the timer wheel base lock and take the new
634	 * timer into account automatically.
635	 */
636	if (rq->curr != rq->idle)
637		return;
638
639	/*
640	 * We can set TIF_RESCHED on the idle task of the other CPU
641	 * lockless. The worst case is that the other CPU runs the
642	 * idle task through an additional NOOP schedule()
643	 */
644	set_tsk_need_resched(rq->idle);
645
646	/* NEED_RESCHED must be visible before we test polling */
647	smp_mb();
648	if (!tsk_is_polling(rq->idle))
649		smp_send_reschedule(cpu);
650}
651
652static bool wake_up_full_nohz_cpu(int cpu)
653{
654	if (tick_nohz_full_cpu(cpu)) {
655		if (cpu != smp_processor_id() ||
656		    tick_nohz_tick_stopped())
657			smp_send_reschedule(cpu);
658		return true;
659	}
660
661	return false;
662}
663
664void wake_up_nohz_cpu(int cpu)
665{
666	if (!wake_up_full_nohz_cpu(cpu))
667		wake_up_idle_cpu(cpu);
668}
669
670static inline bool got_nohz_idle_kick(void)
671{
672	int cpu = smp_processor_id();
673
674	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
675		return false;
676
677	if (idle_cpu(cpu) && !need_resched())
678		return true;
679
680	/*
681	 * We can't run Idle Load Balance on this CPU for this time so we
682	 * cancel it and clear NOHZ_BALANCE_KICK
683	 */
684	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
685	return false;
686}
687
688#else /* CONFIG_NO_HZ_COMMON */
689
690static inline bool got_nohz_idle_kick(void)
691{
692	return false;
693}
694
695#endif /* CONFIG_NO_HZ_COMMON */
696
697#ifdef CONFIG_NO_HZ_FULL
698bool sched_can_stop_tick(void)
699{
700       struct rq *rq;
701
702       rq = this_rq();
703
704       /* Make sure rq->nr_running update is visible after the IPI */
705       smp_rmb();
706
707       /* More than one running task need preemption */
708       if (rq->nr_running > 1)
709               return false;
710
711       return true;
712}
713#endif /* CONFIG_NO_HZ_FULL */
714
715void sched_avg_update(struct rq *rq)
716{
717	s64 period = sched_avg_period();
718
719	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
720		/*
721		 * Inline assembly required to prevent the compiler
722		 * optimising this loop into a divmod call.
723		 * See __iter_div_u64_rem() for another example of this.
724		 */
725		asm("" : "+rm" (rq->age_stamp));
726		rq->age_stamp += period;
727		rq->rt_avg /= 2;
728	}
729}
730
731#endif /* CONFIG_SMP */
732
733#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
734			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
735/*
736 * Iterate task_group tree rooted at *from, calling @down when first entering a
737 * node and @up when leaving it for the final time.
738 *
739 * Caller must hold rcu_lock or sufficient equivalent.
740 */
741int walk_tg_tree_from(struct task_group *from,
742			     tg_visitor down, tg_visitor up, void *data)
743{
744	struct task_group *parent, *child;
745	int ret;
746
747	parent = from;
748
749down:
750	ret = (*down)(parent, data);
751	if (ret)
752		goto out;
753	list_for_each_entry_rcu(child, &parent->children, siblings) {
754		parent = child;
755		goto down;
756
757up:
758		continue;
759	}
760	ret = (*up)(parent, data);
761	if (ret || parent == from)
762		goto out;
763
764	child = parent;
765	parent = parent->parent;
766	if (parent)
767		goto up;
768out:
769	return ret;
770}
771
772int tg_nop(struct task_group *tg, void *data)
773{
774	return 0;
775}
776#endif
777
778static void set_load_weight(struct task_struct *p)
779{
780	int prio = p->static_prio - MAX_RT_PRIO;
781	struct load_weight *load = &p->se.load;
782
783	/*
784	 * SCHED_IDLE tasks get minimal weight:
785	 */
786	if (p->policy == SCHED_IDLE) {
787		load->weight = scale_load(WEIGHT_IDLEPRIO);
788		load->inv_weight = WMULT_IDLEPRIO;
789		return;
790	}
791
792	load->weight = scale_load(prio_to_weight[prio]);
793	load->inv_weight = prio_to_wmult[prio];
794}
795
796static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
797{
798	update_rq_clock(rq);
799	sched_info_queued(rq, p);
800	p->sched_class->enqueue_task(rq, p, flags);
801}
802
803static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
804{
805	update_rq_clock(rq);
806	sched_info_dequeued(rq, p);
807	p->sched_class->dequeue_task(rq, p, flags);
808}
809
810void activate_task(struct rq *rq, struct task_struct *p, int flags)
811{
812	if (task_contributes_to_load(p))
813		rq->nr_uninterruptible--;
814
815	enqueue_task(rq, p, flags);
816}
817
818void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
819{
820	if (task_contributes_to_load(p))
821		rq->nr_uninterruptible++;
822
823	dequeue_task(rq, p, flags);
824}
825
826static void update_rq_clock_task(struct rq *rq, s64 delta)
827{
828/*
829 * In theory, the compile should just see 0 here, and optimize out the call
830 * to sched_rt_avg_update. But I don't trust it...
831 */
832#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
833	s64 steal = 0, irq_delta = 0;
834#endif
835#ifdef CONFIG_IRQ_TIME_ACCOUNTING
836	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
837
838	/*
839	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
840	 * this case when a previous update_rq_clock() happened inside a
841	 * {soft,}irq region.
842	 *
843	 * When this happens, we stop ->clock_task and only update the
844	 * prev_irq_time stamp to account for the part that fit, so that a next
845	 * update will consume the rest. This ensures ->clock_task is
846	 * monotonic.
847	 *
848	 * It does however cause some slight miss-attribution of {soft,}irq
849	 * time, a more accurate solution would be to update the irq_time using
850	 * the current rq->clock timestamp, except that would require using
851	 * atomic ops.
852	 */
853	if (irq_delta > delta)
854		irq_delta = delta;
855
856	rq->prev_irq_time += irq_delta;
857	delta -= irq_delta;
858#endif
859#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
860	if (static_key_false((&paravirt_steal_rq_enabled))) {
861		steal = paravirt_steal_clock(cpu_of(rq));
862		steal -= rq->prev_steal_time_rq;
863
864		if (unlikely(steal > delta))
865			steal = delta;
866
867		rq->prev_steal_time_rq += steal;
868		delta -= steal;
869	}
870#endif
871
872	rq->clock_task += delta;
873
874#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
876		sched_rt_avg_update(rq, irq_delta + steal);
877#endif
878}
879
880void sched_set_stop_task(int cpu, struct task_struct *stop)
881{
882	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
883	struct task_struct *old_stop = cpu_rq(cpu)->stop;
884
885	if (stop) {
886		/*
887		 * Make it appear like a SCHED_FIFO task, its something
888		 * userspace knows about and won't get confused about.
889		 *
890		 * Also, it will make PI more or less work without too
891		 * much confusion -- but then, stop work should not
892		 * rely on PI working anyway.
893		 */
894		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
895
896		stop->sched_class = &stop_sched_class;
897	}
898
899	cpu_rq(cpu)->stop = stop;
900
901	if (old_stop) {
902		/*
903		 * Reset it back to a normal scheduling class so that
904		 * it can die in pieces.
905		 */
906		old_stop->sched_class = &rt_sched_class;
907	}
908}
909
910/*
911 * __normal_prio - return the priority that is based on the static prio
912 */
913static inline int __normal_prio(struct task_struct *p)
914{
915	return p->static_prio;
916}
917
918/*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
925static inline int normal_prio(struct task_struct *p)
926{
927	int prio;
928
929	if (task_has_dl_policy(p))
930		prio = MAX_DL_PRIO-1;
931	else if (task_has_rt_policy(p))
932		prio = MAX_RT_PRIO-1 - p->rt_priority;
933	else
934		prio = __normal_prio(p);
935	return prio;
936}
937
938/*
939 * Calculate the current priority, i.e. the priority
940 * taken into account by the scheduler. This value might
941 * be boosted by RT tasks, or might be boosted by
942 * interactivity modifiers. Will be RT if the task got
943 * RT-boosted. If not then it returns p->normal_prio.
944 */
945static int effective_prio(struct task_struct *p)
946{
947	p->normal_prio = normal_prio(p);
948	/*
949	 * If we are RT tasks or we were boosted to RT priority,
950	 * keep the priority unchanged. Otherwise, update priority
951	 * to the normal priority:
952	 */
953	if (!rt_prio(p->prio))
954		return p->normal_prio;
955	return p->prio;
956}
957
958/**
959 * task_curr - is this task currently executing on a CPU?
960 * @p: the task in question.
961 *
962 * Return: 1 if the task is currently executing. 0 otherwise.
963 */
964inline int task_curr(const struct task_struct *p)
965{
966	return cpu_curr(task_cpu(p)) == p;
967}
968
969static inline void check_class_changed(struct rq *rq, struct task_struct *p,
970				       const struct sched_class *prev_class,
971				       int oldprio)
972{
973	if (prev_class != p->sched_class) {
974		if (prev_class->switched_from)
975			prev_class->switched_from(rq, p);
976		p->sched_class->switched_to(rq, p);
977	} else if (oldprio != p->prio || dl_task(p))
978		p->sched_class->prio_changed(rq, p, oldprio);
979}
980
981void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
982{
983	const struct sched_class *class;
984
985	if (p->sched_class == rq->curr->sched_class) {
986		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
987	} else {
988		for_each_class(class) {
989			if (class == rq->curr->sched_class)
990				break;
991			if (class == p->sched_class) {
992				resched_task(rq->curr);
993				break;
994			}
995		}
996	}
997
998	/*
999	 * A queue event has occurred, and we're going to schedule.  In
1000	 * this case, we can save a useless back to back clock update.
1001	 */
1002	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1003		rq->skip_clock_update = 1;
1004}
1005
1006#ifdef CONFIG_SMP
1007void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1008{
1009#ifdef CONFIG_SCHED_DEBUG
1010	/*
1011	 * We should never call set_task_cpu() on a blocked task,
1012	 * ttwu() will sort out the placement.
1013	 */
1014	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1015			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1016
1017#ifdef CONFIG_LOCKDEP
1018	/*
1019	 * The caller should hold either p->pi_lock or rq->lock, when changing
1020	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1021	 *
1022	 * sched_move_task() holds both and thus holding either pins the cgroup,
1023	 * see task_group().
1024	 *
1025	 * Furthermore, all task_rq users should acquire both locks, see
1026	 * task_rq_lock().
1027	 */
1028	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1029				      lockdep_is_held(&task_rq(p)->lock)));
1030#endif
1031#endif
1032
1033	trace_sched_migrate_task(p, new_cpu);
1034
1035	if (task_cpu(p) != new_cpu) {
1036		if (p->sched_class->migrate_task_rq)
1037			p->sched_class->migrate_task_rq(p, new_cpu);
1038		p->se.nr_migrations++;
1039		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1040	}
1041
1042	__set_task_cpu(p, new_cpu);
1043}
1044
1045static void __migrate_swap_task(struct task_struct *p, int cpu)
1046{
1047	if (p->on_rq) {
1048		struct rq *src_rq, *dst_rq;
1049
1050		src_rq = task_rq(p);
1051		dst_rq = cpu_rq(cpu);
1052
1053		deactivate_task(src_rq, p, 0);
1054		set_task_cpu(p, cpu);
1055		activate_task(dst_rq, p, 0);
1056		check_preempt_curr(dst_rq, p, 0);
1057	} else {
1058		/*
1059		 * Task isn't running anymore; make it appear like we migrated
1060		 * it before it went to sleep. This means on wakeup we make the
1061		 * previous cpu our targer instead of where it really is.
1062		 */
1063		p->wake_cpu = cpu;
1064	}
1065}
1066
1067struct migration_swap_arg {
1068	struct task_struct *src_task, *dst_task;
1069	int src_cpu, dst_cpu;
1070};
1071
1072static int migrate_swap_stop(void *data)
1073{
1074	struct migration_swap_arg *arg = data;
1075	struct rq *src_rq, *dst_rq;
1076	int ret = -EAGAIN;
1077
1078	src_rq = cpu_rq(arg->src_cpu);
1079	dst_rq = cpu_rq(arg->dst_cpu);
1080
1081	double_raw_lock(&arg->src_task->pi_lock,
1082			&arg->dst_task->pi_lock);
1083	double_rq_lock(src_rq, dst_rq);
1084	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1085		goto unlock;
1086
1087	if (task_cpu(arg->src_task) != arg->src_cpu)
1088		goto unlock;
1089
1090	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1091		goto unlock;
1092
1093	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1094		goto unlock;
1095
1096	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1097	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1098
1099	ret = 0;
1100
1101unlock:
1102	double_rq_unlock(src_rq, dst_rq);
1103	raw_spin_unlock(&arg->dst_task->pi_lock);
1104	raw_spin_unlock(&arg->src_task->pi_lock);
1105
1106	return ret;
1107}
1108
1109/*
1110 * Cross migrate two tasks
1111 */
1112int migrate_swap(struct task_struct *cur, struct task_struct *p)
1113{
1114	struct migration_swap_arg arg;
1115	int ret = -EINVAL;
1116
1117	arg = (struct migration_swap_arg){
1118		.src_task = cur,
1119		.src_cpu = task_cpu(cur),
1120		.dst_task = p,
1121		.dst_cpu = task_cpu(p),
1122	};
1123
1124	if (arg.src_cpu == arg.dst_cpu)
1125		goto out;
1126
1127	/*
1128	 * These three tests are all lockless; this is OK since all of them
1129	 * will be re-checked with proper locks held further down the line.
1130	 */
1131	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1132		goto out;
1133
1134	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1135		goto out;
1136
1137	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1138		goto out;
1139
1140	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1141	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1142
1143out:
1144	return ret;
1145}
1146
1147struct migration_arg {
1148	struct task_struct *task;
1149	int dest_cpu;
1150};
1151
1152static int migration_cpu_stop(void *data);
1153
1154/*
1155 * wait_task_inactive - wait for a thread to unschedule.
1156 *
1157 * If @match_state is nonzero, it's the @p->state value just checked and
1158 * not expected to change.  If it changes, i.e. @p might have woken up,
1159 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1160 * we return a positive number (its total switch count).  If a second call
1161 * a short while later returns the same number, the caller can be sure that
1162 * @p has remained unscheduled the whole time.
1163 *
1164 * The caller must ensure that the task *will* unschedule sometime soon,
1165 * else this function might spin for a *long* time. This function can't
1166 * be called with interrupts off, or it may introduce deadlock with
1167 * smp_call_function() if an IPI is sent by the same process we are
1168 * waiting to become inactive.
1169 */
1170unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1171{
1172	unsigned long flags;
1173	int running, on_rq;
1174	unsigned long ncsw;
1175	struct rq *rq;
1176
1177	for (;;) {
1178		/*
1179		 * We do the initial early heuristics without holding
1180		 * any task-queue locks at all. We'll only try to get
1181		 * the runqueue lock when things look like they will
1182		 * work out!
1183		 */
1184		rq = task_rq(p);
1185
1186		/*
1187		 * If the task is actively running on another CPU
1188		 * still, just relax and busy-wait without holding
1189		 * any locks.
1190		 *
1191		 * NOTE! Since we don't hold any locks, it's not
1192		 * even sure that "rq" stays as the right runqueue!
1193		 * But we don't care, since "task_running()" will
1194		 * return false if the runqueue has changed and p
1195		 * is actually now running somewhere else!
1196		 */
1197		while (task_running(rq, p)) {
1198			if (match_state && unlikely(p->state != match_state))
1199				return 0;
1200			cpu_relax();
1201		}
1202
1203		/*
1204		 * Ok, time to look more closely! We need the rq
1205		 * lock now, to be *sure*. If we're wrong, we'll
1206		 * just go back and repeat.
1207		 */
1208		rq = task_rq_lock(p, &flags);
1209		trace_sched_wait_task(p);
1210		running = task_running(rq, p);
1211		on_rq = p->on_rq;
1212		ncsw = 0;
1213		if (!match_state || p->state == match_state)
1214			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1215		task_rq_unlock(rq, p, &flags);
1216
1217		/*
1218		 * If it changed from the expected state, bail out now.
1219		 */
1220		if (unlikely(!ncsw))
1221			break;
1222
1223		/*
1224		 * Was it really running after all now that we
1225		 * checked with the proper locks actually held?
1226		 *
1227		 * Oops. Go back and try again..
1228		 */
1229		if (unlikely(running)) {
1230			cpu_relax();
1231			continue;
1232		}
1233
1234		/*
1235		 * It's not enough that it's not actively running,
1236		 * it must be off the runqueue _entirely_, and not
1237		 * preempted!
1238		 *
1239		 * So if it was still runnable (but just not actively
1240		 * running right now), it's preempted, and we should
1241		 * yield - it could be a while.
1242		 */
1243		if (unlikely(on_rq)) {
1244			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1245
1246			set_current_state(TASK_UNINTERRUPTIBLE);
1247			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1248			continue;
1249		}
1250
1251		/*
1252		 * Ahh, all good. It wasn't running, and it wasn't
1253		 * runnable, which means that it will never become
1254		 * running in the future either. We're all done!
1255		 */
1256		break;
1257	}
1258
1259	return ncsw;
1260}
1261
1262/***
1263 * kick_process - kick a running thread to enter/exit the kernel
1264 * @p: the to-be-kicked thread
1265 *
1266 * Cause a process which is running on another CPU to enter
1267 * kernel-mode, without any delay. (to get signals handled.)
1268 *
1269 * NOTE: this function doesn't have to take the runqueue lock,
1270 * because all it wants to ensure is that the remote task enters
1271 * the kernel. If the IPI races and the task has been migrated
1272 * to another CPU then no harm is done and the purpose has been
1273 * achieved as well.
1274 */
1275void kick_process(struct task_struct *p)
1276{
1277	int cpu;
1278
1279	preempt_disable();
1280	cpu = task_cpu(p);
1281	if ((cpu != smp_processor_id()) && task_curr(p))
1282		smp_send_reschedule(cpu);
1283	preempt_enable();
1284}
1285EXPORT_SYMBOL_GPL(kick_process);
1286#endif /* CONFIG_SMP */
1287
1288#ifdef CONFIG_SMP
1289/*
1290 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1291 */
1292static int select_fallback_rq(int cpu, struct task_struct *p)
1293{
1294	int nid = cpu_to_node(cpu);
1295	const struct cpumask *nodemask = NULL;
1296	enum { cpuset, possible, fail } state = cpuset;
1297	int dest_cpu;
1298
1299	/*
1300	 * If the node that the cpu is on has been offlined, cpu_to_node()
1301	 * will return -1. There is no cpu on the node, and we should
1302	 * select the cpu on the other node.
1303	 */
1304	if (nid != -1) {
1305		nodemask = cpumask_of_node(nid);
1306
1307		/* Look for allowed, online CPU in same node. */
1308		for_each_cpu(dest_cpu, nodemask) {
1309			if (!cpu_online(dest_cpu))
1310				continue;
1311			if (!cpu_active(dest_cpu))
1312				continue;
1313			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1314				return dest_cpu;
1315		}
1316	}
1317
1318	for (;;) {
1319		/* Any allowed, online CPU? */
1320		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1321			if (!cpu_online(dest_cpu))
1322				continue;
1323			if (!cpu_active(dest_cpu))
1324				continue;
1325			goto out;
1326		}
1327
1328		switch (state) {
1329		case cpuset:
1330			/* No more Mr. Nice Guy. */
1331			cpuset_cpus_allowed_fallback(p);
1332			state = possible;
1333			break;
1334
1335		case possible:
1336			do_set_cpus_allowed(p, cpu_possible_mask);
1337			state = fail;
1338			break;
1339
1340		case fail:
1341			BUG();
1342			break;
1343		}
1344	}
1345
1346out:
1347	if (state != cpuset) {
1348		/*
1349		 * Don't tell them about moving exiting tasks or
1350		 * kernel threads (both mm NULL), since they never
1351		 * leave kernel.
1352		 */
1353		if (p->mm && printk_ratelimit()) {
1354			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1355					task_pid_nr(p), p->comm, cpu);
1356		}
1357	}
1358
1359	return dest_cpu;
1360}
1361
1362/*
1363 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1364 */
1365static inline
1366int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1367{
1368	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1369
1370	/*
1371	 * In order not to call set_task_cpu() on a blocking task we need
1372	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1373	 * cpu.
1374	 *
1375	 * Since this is common to all placement strategies, this lives here.
1376	 *
1377	 * [ this allows ->select_task() to simply return task_cpu(p) and
1378	 *   not worry about this generic constraint ]
1379	 */
1380	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1381		     !cpu_online(cpu)))
1382		cpu = select_fallback_rq(task_cpu(p), p);
1383
1384	return cpu;
1385}
1386
1387static void update_avg(u64 *avg, u64 sample)
1388{
1389	s64 diff = sample - *avg;
1390	*avg += diff >> 3;
1391}
1392#endif
1393
1394static void
1395ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1396{
1397#ifdef CONFIG_SCHEDSTATS
1398	struct rq *rq = this_rq();
1399
1400#ifdef CONFIG_SMP
1401	int this_cpu = smp_processor_id();
1402
1403	if (cpu == this_cpu) {
1404		schedstat_inc(rq, ttwu_local);
1405		schedstat_inc(p, se.statistics.nr_wakeups_local);
1406	} else {
1407		struct sched_domain *sd;
1408
1409		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1410		rcu_read_lock();
1411		for_each_domain(this_cpu, sd) {
1412			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1413				schedstat_inc(sd, ttwu_wake_remote);
1414				break;
1415			}
1416		}
1417		rcu_read_unlock();
1418	}
1419
1420	if (wake_flags & WF_MIGRATED)
1421		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1422
1423#endif /* CONFIG_SMP */
1424
1425	schedstat_inc(rq, ttwu_count);
1426	schedstat_inc(p, se.statistics.nr_wakeups);
1427
1428	if (wake_flags & WF_SYNC)
1429		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1430
1431#endif /* CONFIG_SCHEDSTATS */
1432}
1433
1434static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1435{
1436	activate_task(rq, p, en_flags);
1437	p->on_rq = 1;
1438
1439	/* if a worker is waking up, notify workqueue */
1440	if (p->flags & PF_WQ_WORKER)
1441		wq_worker_waking_up(p, cpu_of(rq));
1442}
1443
1444/*
1445 * Mark the task runnable and perform wakeup-preemption.
1446 */
1447static void
1448ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1449{
1450	check_preempt_curr(rq, p, wake_flags);
1451	trace_sched_wakeup(p, true);
1452
1453	p->state = TASK_RUNNING;
1454#ifdef CONFIG_SMP
1455	if (p->sched_class->task_woken)
1456		p->sched_class->task_woken(rq, p);
1457
1458	if (rq->idle_stamp) {
1459		u64 delta = rq_clock(rq) - rq->idle_stamp;
1460		u64 max = 2*rq->max_idle_balance_cost;
1461
1462		update_avg(&rq->avg_idle, delta);
1463
1464		if (rq->avg_idle > max)
1465			rq->avg_idle = max;
1466
1467		rq->idle_stamp = 0;
1468	}
1469#endif
1470}
1471
1472static void
1473ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1474{
1475#ifdef CONFIG_SMP
1476	if (p->sched_contributes_to_load)
1477		rq->nr_uninterruptible--;
1478#endif
1479
1480	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1481	ttwu_do_wakeup(rq, p, wake_flags);
1482}
1483
1484/*
1485 * Called in case the task @p isn't fully descheduled from its runqueue,
1486 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1487 * since all we need to do is flip p->state to TASK_RUNNING, since
1488 * the task is still ->on_rq.
1489 */
1490static int ttwu_remote(struct task_struct *p, int wake_flags)
1491{
1492	struct rq *rq;
1493	int ret = 0;
1494
1495	rq = __task_rq_lock(p);
1496	if (p->on_rq) {
1497		/* check_preempt_curr() may use rq clock */
1498		update_rq_clock(rq);
1499		ttwu_do_wakeup(rq, p, wake_flags);
1500		ret = 1;
1501	}
1502	__task_rq_unlock(rq);
1503
1504	return ret;
1505}
1506
1507#ifdef CONFIG_SMP
1508static void sched_ttwu_pending(void)
1509{
1510	struct rq *rq = this_rq();
1511	struct llist_node *llist = llist_del_all(&rq->wake_list);
1512	struct task_struct *p;
1513
1514	raw_spin_lock(&rq->lock);
1515
1516	while (llist) {
1517		p = llist_entry(llist, struct task_struct, wake_entry);
1518		llist = llist_next(llist);
1519		ttwu_do_activate(rq, p, 0);
1520	}
1521
1522	raw_spin_unlock(&rq->lock);
1523}
1524
1525void scheduler_ipi(void)
1526{
1527	/*
1528	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1529	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1530	 * this IPI.
1531	 */
1532	preempt_fold_need_resched();
1533
1534	if (llist_empty(&this_rq()->wake_list)
1535			&& !tick_nohz_full_cpu(smp_processor_id())
1536			&& !got_nohz_idle_kick())
1537		return;
1538
1539	/*
1540	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1541	 * traditionally all their work was done from the interrupt return
1542	 * path. Now that we actually do some work, we need to make sure
1543	 * we do call them.
1544	 *
1545	 * Some archs already do call them, luckily irq_enter/exit nest
1546	 * properly.
1547	 *
1548	 * Arguably we should visit all archs and update all handlers,
1549	 * however a fair share of IPIs are still resched only so this would
1550	 * somewhat pessimize the simple resched case.
1551	 */
1552	irq_enter();
1553	tick_nohz_full_check();
1554	sched_ttwu_pending();
1555
1556	/*
1557	 * Check if someone kicked us for doing the nohz idle load balance.
1558	 */
1559	if (unlikely(got_nohz_idle_kick())) {
1560		this_rq()->idle_balance = 1;
1561		raise_softirq_irqoff(SCHED_SOFTIRQ);
1562	}
1563	irq_exit();
1564}
1565
1566static void ttwu_queue_remote(struct task_struct *p, int cpu)
1567{
1568	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1569		smp_send_reschedule(cpu);
1570}
1571
1572bool cpus_share_cache(int this_cpu, int that_cpu)
1573{
1574	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1575}
1576#endif /* CONFIG_SMP */
1577
1578static void ttwu_queue(struct task_struct *p, int cpu)
1579{
1580	struct rq *rq = cpu_rq(cpu);
1581
1582#if defined(CONFIG_SMP)
1583	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1584		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1585		ttwu_queue_remote(p, cpu);
1586		return;
1587	}
1588#endif
1589
1590	raw_spin_lock(&rq->lock);
1591	ttwu_do_activate(rq, p, 0);
1592	raw_spin_unlock(&rq->lock);
1593}
1594
1595/**
1596 * try_to_wake_up - wake up a thread
1597 * @p: the thread to be awakened
1598 * @state: the mask of task states that can be woken
1599 * @wake_flags: wake modifier flags (WF_*)
1600 *
1601 * Put it on the run-queue if it's not already there. The "current"
1602 * thread is always on the run-queue (except when the actual
1603 * re-schedule is in progress), and as such you're allowed to do
1604 * the simpler "current->state = TASK_RUNNING" to mark yourself
1605 * runnable without the overhead of this.
1606 *
1607 * Return: %true if @p was woken up, %false if it was already running.
1608 * or @state didn't match @p's state.
1609 */
1610static int
1611try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1612{
1613	unsigned long flags;
1614	int cpu, success = 0;
1615
1616	/*
1617	 * If we are going to wake up a thread waiting for CONDITION we
1618	 * need to ensure that CONDITION=1 done by the caller can not be
1619	 * reordered with p->state check below. This pairs with mb() in
1620	 * set_current_state() the waiting thread does.
1621	 */
1622	smp_mb__before_spinlock();
1623	raw_spin_lock_irqsave(&p->pi_lock, flags);
1624	if (!(p->state & state))
1625		goto out;
1626
1627	success = 1; /* we're going to change ->state */
1628	cpu = task_cpu(p);
1629
1630	if (p->on_rq && ttwu_remote(p, wake_flags))
1631		goto stat;
1632
1633#ifdef CONFIG_SMP
1634	/*
1635	 * If the owning (remote) cpu is still in the middle of schedule() with
1636	 * this task as prev, wait until its done referencing the task.
1637	 */
1638	while (p->on_cpu)
1639		cpu_relax();
1640	/*
1641	 * Pairs with the smp_wmb() in finish_lock_switch().
1642	 */
1643	smp_rmb();
1644
1645	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1646	p->state = TASK_WAKING;
1647
1648	if (p->sched_class->task_waking)
1649		p->sched_class->task_waking(p);
1650
1651	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1652	if (task_cpu(p) != cpu) {
1653		wake_flags |= WF_MIGRATED;
1654		set_task_cpu(p, cpu);
1655	}
1656#endif /* CONFIG_SMP */
1657
1658	ttwu_queue(p, cpu);
1659stat:
1660	ttwu_stat(p, cpu, wake_flags);
1661out:
1662	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1663
1664	return success;
1665}
1666
1667/**
1668 * try_to_wake_up_local - try to wake up a local task with rq lock held
1669 * @p: the thread to be awakened
1670 *
1671 * Put @p on the run-queue if it's not already there. The caller must
1672 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1673 * the current task.
1674 */
1675static void try_to_wake_up_local(struct task_struct *p)
1676{
1677	struct rq *rq = task_rq(p);
1678
1679	if (WARN_ON_ONCE(rq != this_rq()) ||
1680	    WARN_ON_ONCE(p == current))
1681		return;
1682
1683	lockdep_assert_held(&rq->lock);
1684
1685	if (!raw_spin_trylock(&p->pi_lock)) {
1686		raw_spin_unlock(&rq->lock);
1687		raw_spin_lock(&p->pi_lock);
1688		raw_spin_lock(&rq->lock);
1689	}
1690
1691	if (!(p->state & TASK_NORMAL))
1692		goto out;
1693
1694	if (!p->on_rq)
1695		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1696
1697	ttwu_do_wakeup(rq, p, 0);
1698	ttwu_stat(p, smp_processor_id(), 0);
1699out:
1700	raw_spin_unlock(&p->pi_lock);
1701}
1702
1703/**
1704 * wake_up_process - Wake up a specific process
1705 * @p: The process to be woken up.
1706 *
1707 * Attempt to wake up the nominated process and move it to the set of runnable
1708 * processes.
1709 *
1710 * Return: 1 if the process was woken up, 0 if it was already running.
1711 *
1712 * It may be assumed that this function implies a write memory barrier before
1713 * changing the task state if and only if any tasks are woken up.
1714 */
1715int wake_up_process(struct task_struct *p)
1716{
1717	WARN_ON(task_is_stopped_or_traced(p));
1718	return try_to_wake_up(p, TASK_NORMAL, 0);
1719}
1720EXPORT_SYMBOL(wake_up_process);
1721
1722int wake_up_state(struct task_struct *p, unsigned int state)
1723{
1724	return try_to_wake_up(p, state, 0);
1725}
1726
1727/*
1728 * Perform scheduler related setup for a newly forked process p.
1729 * p is forked by current.
1730 *
1731 * __sched_fork() is basic setup used by init_idle() too:
1732 */
1733static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1734{
1735	p->on_rq			= 0;
1736
1737	p->se.on_rq			= 0;
1738	p->se.exec_start		= 0;
1739	p->se.sum_exec_runtime		= 0;
1740	p->se.prev_sum_exec_runtime	= 0;
1741	p->se.nr_migrations		= 0;
1742	p->se.vruntime			= 0;
1743	INIT_LIST_HEAD(&p->se.group_node);
1744
1745#ifdef CONFIG_SCHEDSTATS
1746	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1747#endif
1748
1749	RB_CLEAR_NODE(&p->dl.rb_node);
1750	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1751	p->dl.dl_runtime = p->dl.runtime = 0;
1752	p->dl.dl_deadline = p->dl.deadline = 0;
1753	p->dl.dl_period = 0;
1754	p->dl.flags = 0;
1755
1756	INIT_LIST_HEAD(&p->rt.run_list);
1757
1758#ifdef CONFIG_PREEMPT_NOTIFIERS
1759	INIT_HLIST_HEAD(&p->preempt_notifiers);
1760#endif
1761
1762#ifdef CONFIG_NUMA_BALANCING
1763	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1764		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1765		p->mm->numa_scan_seq = 0;
1766	}
1767
1768	if (clone_flags & CLONE_VM)
1769		p->numa_preferred_nid = current->numa_preferred_nid;
1770	else
1771		p->numa_preferred_nid = -1;
1772
1773	p->node_stamp = 0ULL;
1774	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1775	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1776	p->numa_work.next = &p->numa_work;
1777	p->numa_faults_memory = NULL;
1778	p->numa_faults_buffer_memory = NULL;
1779	p->last_task_numa_placement = 0;
1780	p->last_sum_exec_runtime = 0;
1781
1782	INIT_LIST_HEAD(&p->numa_entry);
1783	p->numa_group = NULL;
1784#endif /* CONFIG_NUMA_BALANCING */
1785}
1786
1787#ifdef CONFIG_NUMA_BALANCING
1788#ifdef CONFIG_SCHED_DEBUG
1789void set_numabalancing_state(bool enabled)
1790{
1791	if (enabled)
1792		sched_feat_set("NUMA");
1793	else
1794		sched_feat_set("NO_NUMA");
1795}
1796#else
1797__read_mostly bool numabalancing_enabled;
1798
1799void set_numabalancing_state(bool enabled)
1800{
1801	numabalancing_enabled = enabled;
1802}
1803#endif /* CONFIG_SCHED_DEBUG */
1804
1805#ifdef CONFIG_PROC_SYSCTL
1806int sysctl_numa_balancing(struct ctl_table *table, int write,
1807			 void __user *buffer, size_t *lenp, loff_t *ppos)
1808{
1809	struct ctl_table t;
1810	int err;
1811	int state = numabalancing_enabled;
1812
1813	if (write && !capable(CAP_SYS_ADMIN))
1814		return -EPERM;
1815
1816	t = *table;
1817	t.data = &state;
1818	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1819	if (err < 0)
1820		return err;
1821	if (write)
1822		set_numabalancing_state(state);
1823	return err;
1824}
1825#endif
1826#endif
1827
1828/*
1829 * fork()/clone()-time setup:
1830 */
1831int sched_fork(unsigned long clone_flags, struct task_struct *p)
1832{
1833	unsigned long flags;
1834	int cpu = get_cpu();
1835
1836	__sched_fork(clone_flags, p);
1837	/*
1838	 * We mark the process as running here. This guarantees that
1839	 * nobody will actually run it, and a signal or other external
1840	 * event cannot wake it up and insert it on the runqueue either.
1841	 */
1842	p->state = TASK_RUNNING;
1843
1844	/*
1845	 * Make sure we do not leak PI boosting priority to the child.
1846	 */
1847	p->prio = current->normal_prio;
1848
1849	/*
1850	 * Revert to default priority/policy on fork if requested.
1851	 */
1852	if (unlikely(p->sched_reset_on_fork)) {
1853		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1854			p->policy = SCHED_NORMAL;
1855			p->static_prio = NICE_TO_PRIO(0);
1856			p->rt_priority = 0;
1857		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1858			p->static_prio = NICE_TO_PRIO(0);
1859
1860		p->prio = p->normal_prio = __normal_prio(p);
1861		set_load_weight(p);
1862
1863		/*
1864		 * We don't need the reset flag anymore after the fork. It has
1865		 * fulfilled its duty:
1866		 */
1867		p->sched_reset_on_fork = 0;
1868	}
1869
1870	if (dl_prio(p->prio)) {
1871		put_cpu();
1872		return -EAGAIN;
1873	} else if (rt_prio(p->prio)) {
1874		p->sched_class = &rt_sched_class;
1875	} else {
1876		p->sched_class = &fair_sched_class;
1877	}
1878
1879	if (p->sched_class->task_fork)
1880		p->sched_class->task_fork(p);
1881
1882	/*
1883	 * The child is not yet in the pid-hash so no cgroup attach races,
1884	 * and the cgroup is pinned to this child due to cgroup_fork()
1885	 * is ran before sched_fork().
1886	 *
1887	 * Silence PROVE_RCU.
1888	 */
1889	raw_spin_lock_irqsave(&p->pi_lock, flags);
1890	set_task_cpu(p, cpu);
1891	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1892
1893#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1894	if (likely(sched_info_on()))
1895		memset(&p->sched_info, 0, sizeof(p->sched_info));
1896#endif
1897#if defined(CONFIG_SMP)
1898	p->on_cpu = 0;
1899#endif
1900	init_task_preempt_count(p);
1901#ifdef CONFIG_SMP
1902	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1903	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1904#endif
1905
1906	put_cpu();
1907	return 0;
1908}
1909
1910unsigned long to_ratio(u64 period, u64 runtime)
1911{
1912	if (runtime == RUNTIME_INF)
1913		return 1ULL << 20;
1914
1915	/*
1916	 * Doing this here saves a lot of checks in all
1917	 * the calling paths, and returning zero seems
1918	 * safe for them anyway.
1919	 */
1920	if (period == 0)
1921		return 0;
1922
1923	return div64_u64(runtime << 20, period);
1924}
1925
1926#ifdef CONFIG_SMP
1927inline struct dl_bw *dl_bw_of(int i)
1928{
1929	return &cpu_rq(i)->rd->dl_bw;
1930}
1931
1932static inline int dl_bw_cpus(int i)
1933{
1934	struct root_domain *rd = cpu_rq(i)->rd;
1935	int cpus = 0;
1936
1937	for_each_cpu_and(i, rd->span, cpu_active_mask)
1938		cpus++;
1939
1940	return cpus;
1941}
1942#else
1943inline struct dl_bw *dl_bw_of(int i)
1944{
1945	return &cpu_rq(i)->dl.dl_bw;
1946}
1947
1948static inline int dl_bw_cpus(int i)
1949{
1950	return 1;
1951}
1952#endif
1953
1954static inline
1955void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1956{
1957	dl_b->total_bw -= tsk_bw;
1958}
1959
1960static inline
1961void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1962{
1963	dl_b->total_bw += tsk_bw;
1964}
1965
1966static inline
1967bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1968{
1969	return dl_b->bw != -1 &&
1970	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1971}
1972
1973/*
1974 * We must be sure that accepting a new task (or allowing changing the
1975 * parameters of an existing one) is consistent with the bandwidth
1976 * constraints. If yes, this function also accordingly updates the currently
1977 * allocated bandwidth to reflect the new situation.
1978 *
1979 * This function is called while holding p's rq->lock.
1980 */
1981static int dl_overflow(struct task_struct *p, int policy,
1982		       const struct sched_attr *attr)
1983{
1984
1985	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1986	u64 period = attr->sched_period ?: attr->sched_deadline;
1987	u64 runtime = attr->sched_runtime;
1988	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1989	int cpus, err = -1;
1990
1991	if (new_bw == p->dl.dl_bw)
1992		return 0;
1993
1994	/*
1995	 * Either if a task, enters, leave, or stays -deadline but changes
1996	 * its parameters, we may need to update accordingly the total
1997	 * allocated bandwidth of the container.
1998	 */
1999	raw_spin_lock(&dl_b->lock);
2000	cpus = dl_bw_cpus(task_cpu(p));
2001	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2002	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2003		__dl_add(dl_b, new_bw);
2004		err = 0;
2005	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2006		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2007		__dl_clear(dl_b, p->dl.dl_bw);
2008		__dl_add(dl_b, new_bw);
2009		err = 0;
2010	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2011		__dl_clear(dl_b, p->dl.dl_bw);
2012		err = 0;
2013	}
2014	raw_spin_unlock(&dl_b->lock);
2015
2016	return err;
2017}
2018
2019extern void init_dl_bw(struct dl_bw *dl_b);
2020
2021/*
2022 * wake_up_new_task - wake up a newly created task for the first time.
2023 *
2024 * This function will do some initial scheduler statistics housekeeping
2025 * that must be done for every newly created context, then puts the task
2026 * on the runqueue and wakes it.
2027 */
2028void wake_up_new_task(struct task_struct *p)
2029{
2030	unsigned long flags;
2031	struct rq *rq;
2032
2033	raw_spin_lock_irqsave(&p->pi_lock, flags);
2034#ifdef CONFIG_SMP
2035	/*
2036	 * Fork balancing, do it here and not earlier because:
2037	 *  - cpus_allowed can change in the fork path
2038	 *  - any previously selected cpu might disappear through hotplug
2039	 */
2040	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2041#endif
2042
2043	/* Initialize new task's runnable average */
2044	init_task_runnable_average(p);
2045	rq = __task_rq_lock(p);
2046	activate_task(rq, p, 0);
2047	p->on_rq = 1;
2048	trace_sched_wakeup_new(p, true);
2049	check_preempt_curr(rq, p, WF_FORK);
2050#ifdef CONFIG_SMP
2051	if (p->sched_class->task_woken)
2052		p->sched_class->task_woken(rq, p);
2053#endif
2054	task_rq_unlock(rq, p, &flags);
2055}
2056
2057#ifdef CONFIG_PREEMPT_NOTIFIERS
2058
2059/**
2060 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2061 * @notifier: notifier struct to register
2062 */
2063void preempt_notifier_register(struct preempt_notifier *notifier)
2064{
2065	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2066}
2067EXPORT_SYMBOL_GPL(preempt_notifier_register);
2068
2069/**
2070 * preempt_notifier_unregister - no longer interested in preemption notifications
2071 * @notifier: notifier struct to unregister
2072 *
2073 * This is safe to call from within a preemption notifier.
2074 */
2075void preempt_notifier_unregister(struct preempt_notifier *notifier)
2076{
2077	hlist_del(&notifier->link);
2078}
2079EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2080
2081static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2082{
2083	struct preempt_notifier *notifier;
2084
2085	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2086		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2087}
2088
2089static void
2090fire_sched_out_preempt_notifiers(struct task_struct *curr,
2091				 struct task_struct *next)
2092{
2093	struct preempt_notifier *notifier;
2094
2095	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2096		notifier->ops->sched_out(notifier, next);
2097}
2098
2099#else /* !CONFIG_PREEMPT_NOTIFIERS */
2100
2101static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2102{
2103}
2104
2105static void
2106fire_sched_out_preempt_notifiers(struct task_struct *curr,
2107				 struct task_struct *next)
2108{
2109}
2110
2111#endif /* CONFIG_PREEMPT_NOTIFIERS */
2112
2113/**
2114 * prepare_task_switch - prepare to switch tasks
2115 * @rq: the runqueue preparing to switch
2116 * @prev: the current task that is being switched out
2117 * @next: the task we are going to switch to.
2118 *
2119 * This is called with the rq lock held and interrupts off. It must
2120 * be paired with a subsequent finish_task_switch after the context
2121 * switch.
2122 *
2123 * prepare_task_switch sets up locking and calls architecture specific
2124 * hooks.
2125 */
2126static inline void
2127prepare_task_switch(struct rq *rq, struct task_struct *prev,
2128		    struct task_struct *next)
2129{
2130	trace_sched_switch(prev, next);
2131	sched_info_switch(rq, prev, next);
2132	perf_event_task_sched_out(prev, next);
2133	fire_sched_out_preempt_notifiers(prev, next);
2134	prepare_lock_switch(rq, next);
2135	prepare_arch_switch(next);
2136}
2137
2138/**
2139 * finish_task_switch - clean up after a task-switch
2140 * @rq: runqueue associated with task-switch
2141 * @prev: the thread we just switched away from.
2142 *
2143 * finish_task_switch must be called after the context switch, paired
2144 * with a prepare_task_switch call before the context switch.
2145 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2146 * and do any other architecture-specific cleanup actions.
2147 *
2148 * Note that we may have delayed dropping an mm in context_switch(). If
2149 * so, we finish that here outside of the runqueue lock. (Doing it
2150 * with the lock held can cause deadlocks; see schedule() for
2151 * details.)
2152 */
2153static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2154	__releases(rq->lock)
2155{
2156	struct mm_struct *mm = rq->prev_mm;
2157	long prev_state;
2158
2159	rq->prev_mm = NULL;
2160
2161	/*
2162	 * A task struct has one reference for the use as "current".
2163	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2164	 * schedule one last time. The schedule call will never return, and
2165	 * the scheduled task must drop that reference.
2166	 * The test for TASK_DEAD must occur while the runqueue locks are
2167	 * still held, otherwise prev could be scheduled on another cpu, die
2168	 * there before we look at prev->state, and then the reference would
2169	 * be dropped twice.
2170	 *		Manfred Spraul <manfred@colorfullife.com>
2171	 */
2172	prev_state = prev->state;
2173	vtime_task_switch(prev);
2174	finish_arch_switch(prev);
2175	perf_event_task_sched_in(prev, current);
2176	finish_lock_switch(rq, prev);
2177	finish_arch_post_lock_switch();
2178
2179	fire_sched_in_preempt_notifiers(current);
2180	if (mm)
2181		mmdrop(mm);
2182	if (unlikely(prev_state == TASK_DEAD)) {
2183		if (prev->sched_class->task_dead)
2184			prev->sched_class->task_dead(prev);
2185
2186		/*
2187		 * Remove function-return probe instances associated with this
2188		 * task and put them back on the free list.
2189		 */
2190		kprobe_flush_task(prev);
2191		put_task_struct(prev);
2192	}
2193
2194	tick_nohz_task_switch(current);
2195}
2196
2197#ifdef CONFIG_SMP
2198
2199/* rq->lock is NOT held, but preemption is disabled */
2200static inline void post_schedule(struct rq *rq)
2201{
2202	if (rq->post_schedule) {
2203		unsigned long flags;
2204
2205		raw_spin_lock_irqsave(&rq->lock, flags);
2206		if (rq->curr->sched_class->post_schedule)
2207			rq->curr->sched_class->post_schedule(rq);
2208		raw_spin_unlock_irqrestore(&rq->lock, flags);
2209
2210		rq->post_schedule = 0;
2211	}
2212}
2213
2214#else
2215
2216static inline void post_schedule(struct rq *rq)
2217{
2218}
2219
2220#endif
2221
2222/**
2223 * schedule_tail - first thing a freshly forked thread must call.
2224 * @prev: the thread we just switched away from.
2225 */
2226asmlinkage __visible void schedule_tail(struct task_struct *prev)
2227	__releases(rq->lock)
2228{
2229	struct rq *rq = this_rq();
2230
2231	finish_task_switch(rq, prev);
2232
2233	/*
2234	 * FIXME: do we need to worry about rq being invalidated by the
2235	 * task_switch?
2236	 */
2237	post_schedule(rq);
2238
2239#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2240	/* In this case, finish_task_switch does not reenable preemption */
2241	preempt_enable();
2242#endif
2243	if (current->set_child_tid)
2244		put_user(task_pid_vnr(current), current->set_child_tid);
2245}
2246
2247/*
2248 * context_switch - switch to the new MM and the new
2249 * thread's register state.
2250 */
2251static inline void
2252context_switch(struct rq *rq, struct task_struct *prev,
2253	       struct task_struct *next)
2254{
2255	struct mm_struct *mm, *oldmm;
2256
2257	prepare_task_switch(rq, prev, next);
2258
2259	mm = next->mm;
2260	oldmm = prev->active_mm;
2261	/*
2262	 * For paravirt, this is coupled with an exit in switch_to to
2263	 * combine the page table reload and the switch backend into
2264	 * one hypercall.
2265	 */
2266	arch_start_context_switch(prev);
2267
2268	if (!mm) {
2269		next->active_mm = oldmm;
2270		atomic_inc(&oldmm->mm_count);
2271		enter_lazy_tlb(oldmm, next);
2272	} else
2273		switch_mm(oldmm, mm, next);
2274
2275	if (!prev->mm) {
2276		prev->active_mm = NULL;
2277		rq->prev_mm = oldmm;
2278	}
2279	/*
2280	 * Since the runqueue lock will be released by the next
2281	 * task (which is an invalid locking op but in the case
2282	 * of the scheduler it's an obvious special-case), so we
2283	 * do an early lockdep release here:
2284	 */
2285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2286	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2287#endif
2288
2289	context_tracking_task_switch(prev, next);
2290	/* Here we just switch the register state and the stack. */
2291	switch_to(prev, next, prev);
2292
2293	barrier();
2294	/*
2295	 * this_rq must be evaluated again because prev may have moved
2296	 * CPUs since it called schedule(), thus the 'rq' on its stack
2297	 * frame will be invalid.
2298	 */
2299	finish_task_switch(this_rq(), prev);
2300}
2301
2302/*
2303 * nr_running and nr_context_switches:
2304 *
2305 * externally visible scheduler statistics: current number of runnable
2306 * threads, total number of context switches performed since bootup.
2307 */
2308unsigned long nr_running(void)
2309{
2310	unsigned long i, sum = 0;
2311
2312	for_each_online_cpu(i)
2313		sum += cpu_rq(i)->nr_running;
2314
2315	return sum;
2316}
2317
2318unsigned long long nr_context_switches(void)
2319{
2320	int i;
2321	unsigned long long sum = 0;
2322
2323	for_each_possible_cpu(i)
2324		sum += cpu_rq(i)->nr_switches;
2325
2326	return sum;
2327}
2328
2329unsigned long nr_iowait(void)
2330{
2331	unsigned long i, sum = 0;
2332
2333	for_each_possible_cpu(i)
2334		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2335
2336	return sum;
2337}
2338
2339unsigned long nr_iowait_cpu(int cpu)
2340{
2341	struct rq *this = cpu_rq(cpu);
2342	return atomic_read(&this->nr_iowait);
2343}
2344
2345#ifdef CONFIG_SMP
2346
2347/*
2348 * sched_exec - execve() is a valuable balancing opportunity, because at
2349 * this point the task has the smallest effective memory and cache footprint.
2350 */
2351void sched_exec(void)
2352{
2353	struct task_struct *p = current;
2354	unsigned long flags;
2355	int dest_cpu;
2356
2357	raw_spin_lock_irqsave(&p->pi_lock, flags);
2358	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2359	if (dest_cpu == smp_processor_id())
2360		goto unlock;
2361
2362	if (likely(cpu_active(dest_cpu))) {
2363		struct migration_arg arg = { p, dest_cpu };
2364
2365		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2366		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2367		return;
2368	}
2369unlock:
2370	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2371}
2372
2373#endif
2374
2375DEFINE_PER_CPU(struct kernel_stat, kstat);
2376DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2377
2378EXPORT_PER_CPU_SYMBOL(kstat);
2379EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2380
2381/*
2382 * Return any ns on the sched_clock that have not yet been accounted in
2383 * @p in case that task is currently running.
2384 *
2385 * Called with task_rq_lock() held on @rq.
2386 */
2387static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2388{
2389	u64 ns = 0;
2390
2391	if (task_current(rq, p)) {
2392		update_rq_clock(rq);
2393		ns = rq_clock_task(rq) - p->se.exec_start;
2394		if ((s64)ns < 0)
2395			ns = 0;
2396	}
2397
2398	return ns;
2399}
2400
2401unsigned long long task_delta_exec(struct task_struct *p)
2402{
2403	unsigned long flags;
2404	struct rq *rq;
2405	u64 ns = 0;
2406
2407	rq = task_rq_lock(p, &flags);
2408	ns = do_task_delta_exec(p, rq);
2409	task_rq_unlock(rq, p, &flags);
2410
2411	return ns;
2412}
2413
2414/*
2415 * Return accounted runtime for the task.
2416 * In case the task is currently running, return the runtime plus current's
2417 * pending runtime that have not been accounted yet.
2418 */
2419unsigned long long task_sched_runtime(struct task_struct *p)
2420{
2421	unsigned long flags;
2422	struct rq *rq;
2423	u64 ns = 0;
2424
2425#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2426	/*
2427	 * 64-bit doesn't need locks to atomically read a 64bit value.
2428	 * So we have a optimization chance when the task's delta_exec is 0.
2429	 * Reading ->on_cpu is racy, but this is ok.
2430	 *
2431	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2432	 * If we race with it entering cpu, unaccounted time is 0. This is
2433	 * indistinguishable from the read occurring a few cycles earlier.
2434	 */
2435	if (!p->on_cpu)
2436		return p->se.sum_exec_runtime;
2437#endif
2438
2439	rq = task_rq_lock(p, &flags);
2440	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2441	task_rq_unlock(rq, p, &flags);
2442
2443	return ns;
2444}
2445
2446/*
2447 * This function gets called by the timer code, with HZ frequency.
2448 * We call it with interrupts disabled.
2449 */
2450void scheduler_tick(void)
2451{
2452	int cpu = smp_processor_id();
2453	struct rq *rq = cpu_rq(cpu);
2454	struct task_struct *curr = rq->curr;
2455
2456	sched_clock_tick();
2457
2458	raw_spin_lock(&rq->lock);
2459	update_rq_clock(rq);
2460	curr->sched_class->task_tick(rq, curr, 0);
2461	update_cpu_load_active(rq);
2462	raw_spin_unlock(&rq->lock);
2463
2464	perf_event_task_tick();
2465
2466#ifdef CONFIG_SMP
2467	rq->idle_balance = idle_cpu(cpu);
2468	trigger_load_balance(rq);
2469#endif
2470	rq_last_tick_reset(rq);
2471}
2472
2473#ifdef CONFIG_NO_HZ_FULL
2474/**
2475 * scheduler_tick_max_deferment
2476 *
2477 * Keep at least one tick per second when a single
2478 * active task is running because the scheduler doesn't
2479 * yet completely support full dynticks environment.
2480 *
2481 * This makes sure that uptime, CFS vruntime, load
2482 * balancing, etc... continue to move forward, even
2483 * with a very low granularity.
2484 *
2485 * Return: Maximum deferment in nanoseconds.
2486 */
2487u64 scheduler_tick_max_deferment(void)
2488{
2489	struct rq *rq = this_rq();
2490	unsigned long next, now = ACCESS_ONCE(jiffies);
2491
2492	next = rq->last_sched_tick + HZ;
2493
2494	if (time_before_eq(next, now))
2495		return 0;
2496
2497	return jiffies_to_nsecs(next - now);
2498}
2499#endif
2500
2501notrace unsigned long get_parent_ip(unsigned long addr)
2502{
2503	if (in_lock_functions(addr)) {
2504		addr = CALLER_ADDR2;
2505		if (in_lock_functions(addr))
2506			addr = CALLER_ADDR3;
2507	}
2508	return addr;
2509}
2510
2511#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2512				defined(CONFIG_PREEMPT_TRACER))
2513
2514void __kprobes preempt_count_add(int val)
2515{
2516#ifdef CONFIG_DEBUG_PREEMPT
2517	/*
2518	 * Underflow?
2519	 */
2520	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2521		return;
2522#endif
2523	__preempt_count_add(val);
2524#ifdef CONFIG_DEBUG_PREEMPT
2525	/*
2526	 * Spinlock count overflowing soon?
2527	 */
2528	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2529				PREEMPT_MASK - 10);
2530#endif
2531	if (preempt_count() == val) {
2532		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2533#ifdef CONFIG_DEBUG_PREEMPT
2534		current->preempt_disable_ip = ip;
2535#endif
2536		trace_preempt_off(CALLER_ADDR0, ip);
2537	}
2538}
2539EXPORT_SYMBOL(preempt_count_add);
2540
2541void __kprobes preempt_count_sub(int val)
2542{
2543#ifdef CONFIG_DEBUG_PREEMPT
2544	/*
2545	 * Underflow?
2546	 */
2547	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2548		return;
2549	/*
2550	 * Is the spinlock portion underflowing?
2551	 */
2552	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2553			!(preempt_count() & PREEMPT_MASK)))
2554		return;
2555#endif
2556
2557	if (preempt_count() == val)
2558		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2559	__preempt_count_sub(val);
2560}
2561EXPORT_SYMBOL(preempt_count_sub);
2562
2563#endif
2564
2565/*
2566 * Print scheduling while atomic bug:
2567 */
2568static noinline void __schedule_bug(struct task_struct *prev)
2569{
2570	if (oops_in_progress)
2571		return;
2572
2573	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2574		prev->comm, prev->pid, preempt_count());
2575
2576	debug_show_held_locks(prev);
2577	print_modules();
2578	if (irqs_disabled())
2579		print_irqtrace_events(prev);
2580#ifdef CONFIG_DEBUG_PREEMPT
2581	if (in_atomic_preempt_off()) {
2582		pr_err("Preemption disabled at:");
2583		print_ip_sym(current->preempt_disable_ip);
2584		pr_cont("\n");
2585	}
2586#endif
2587	dump_stack();
2588	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2589}
2590
2591/*
2592 * Various schedule()-time debugging checks and statistics:
2593 */
2594static inline void schedule_debug(struct task_struct *prev)
2595{
2596	/*
2597	 * Test if we are atomic. Since do_exit() needs to call into
2598	 * schedule() atomically, we ignore that path. Otherwise whine
2599	 * if we are scheduling when we should not.
2600	 */
2601	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2602		__schedule_bug(prev);
2603	rcu_sleep_check();
2604
2605	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2606
2607	schedstat_inc(this_rq(), sched_count);
2608}
2609
2610/*
2611 * Pick up the highest-prio task:
2612 */
2613static inline struct task_struct *
2614pick_next_task(struct rq *rq, struct task_struct *prev)
2615{
2616	const struct sched_class *class = &fair_sched_class;
2617	struct task_struct *p;
2618
2619	/*
2620	 * Optimization: we know that if all tasks are in
2621	 * the fair class we can call that function directly:
2622	 */
2623	if (likely(prev->sched_class == class &&
2624		   rq->nr_running == rq->cfs.h_nr_running)) {
2625		p = fair_sched_class.pick_next_task(rq, prev);
2626		if (unlikely(p == RETRY_TASK))
2627			goto again;
2628
2629		/* assumes fair_sched_class->next == idle_sched_class */
2630		if (unlikely(!p))
2631			p = idle_sched_class.pick_next_task(rq, prev);
2632
2633		return p;
2634	}
2635
2636again:
2637	for_each_class(class) {
2638		p = class->pick_next_task(rq, prev);
2639		if (p) {
2640			if (unlikely(p == RETRY_TASK))
2641				goto again;
2642			return p;
2643		}
2644	}
2645
2646	BUG(); /* the idle class will always have a runnable task */
2647}
2648
2649/*
2650 * __schedule() is the main scheduler function.
2651 *
2652 * The main means of driving the scheduler and thus entering this function are:
2653 *
2654 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2655 *
2656 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2657 *      paths. For example, see arch/x86/entry_64.S.
2658 *
2659 *      To drive preemption between tasks, the scheduler sets the flag in timer
2660 *      interrupt handler scheduler_tick().
2661 *
2662 *   3. Wakeups don't really cause entry into schedule(). They add a
2663 *      task to the run-queue and that's it.
2664 *
2665 *      Now, if the new task added to the run-queue preempts the current
2666 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2667 *      called on the nearest possible occasion:
2668 *
2669 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2670 *
2671 *         - in syscall or exception context, at the next outmost
2672 *           preempt_enable(). (this might be as soon as the wake_up()'s
2673 *           spin_unlock()!)
2674 *
2675 *         - in IRQ context, return from interrupt-handler to
2676 *           preemptible context
2677 *
2678 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2679 *         then at the next:
2680 *
2681 *          - cond_resched() call
2682 *          - explicit schedule() call
2683 *          - return from syscall or exception to user-space
2684 *          - return from interrupt-handler to user-space
2685 */
2686static void __sched __schedule(void)
2687{
2688	struct task_struct *prev, *next;
2689	unsigned long *switch_count;
2690	struct rq *rq;
2691	int cpu;
2692
2693need_resched:
2694	preempt_disable();
2695	cpu = smp_processor_id();
2696	rq = cpu_rq(cpu);
2697	rcu_note_context_switch(cpu);
2698	prev = rq->curr;
2699
2700	schedule_debug(prev);
2701
2702	if (sched_feat(HRTICK))
2703		hrtick_clear(rq);
2704
2705	/*
2706	 * Make sure that signal_pending_state()->signal_pending() below
2707	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2708	 * done by the caller to avoid the race with signal_wake_up().
2709	 */
2710	smp_mb__before_spinlock();
2711	raw_spin_lock_irq(&rq->lock);
2712
2713	switch_count = &prev->nivcsw;
2714	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2715		if (unlikely(signal_pending_state(prev->state, prev))) {
2716			prev->state = TASK_RUNNING;
2717		} else {
2718			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2719			prev->on_rq = 0;
2720
2721			/*
2722			 * If a worker went to sleep, notify and ask workqueue
2723			 * whether it wants to wake up a task to maintain
2724			 * concurrency.
2725			 */
2726			if (prev->flags & PF_WQ_WORKER) {
2727				struct task_struct *to_wakeup;
2728
2729				to_wakeup = wq_worker_sleeping(prev, cpu);
2730				if (to_wakeup)
2731					try_to_wake_up_local(to_wakeup);
2732			}
2733		}
2734		switch_count = &prev->nvcsw;
2735	}
2736
2737	if (prev->on_rq || rq->skip_clock_update < 0)
2738		update_rq_clock(rq);
2739
2740	next = pick_next_task(rq, prev);
2741	clear_tsk_need_resched(prev);
2742	clear_preempt_need_resched();
2743	rq->skip_clock_update = 0;
2744
2745	if (likely(prev != next)) {
2746		rq->nr_switches++;
2747		rq->curr = next;
2748		++*switch_count;
2749
2750		context_switch(rq, prev, next); /* unlocks the rq */
2751		/*
2752		 * The context switch have flipped the stack from under us
2753		 * and restored the local variables which were saved when
2754		 * this task called schedule() in the past. prev == current
2755		 * is still correct, but it can be moved to another cpu/rq.
2756		 */
2757		cpu = smp_processor_id();
2758		rq = cpu_rq(cpu);
2759	} else
2760		raw_spin_unlock_irq(&rq->lock);
2761
2762	post_schedule(rq);
2763
2764	sched_preempt_enable_no_resched();
2765	if (need_resched())
2766		goto need_resched;
2767}
2768
2769static inline void sched_submit_work(struct task_struct *tsk)
2770{
2771	if (!tsk->state || tsk_is_pi_blocked(tsk))
2772		return;
2773	/*
2774	 * If we are going to sleep and we have plugged IO queued,
2775	 * make sure to submit it to avoid deadlocks.
2776	 */
2777	if (blk_needs_flush_plug(tsk))
2778		blk_schedule_flush_plug(tsk);
2779}
2780
2781asmlinkage __visible void __sched schedule(void)
2782{
2783	struct task_struct *tsk = current;
2784
2785	sched_submit_work(tsk);
2786	__schedule();
2787}
2788EXPORT_SYMBOL(schedule);
2789
2790#ifdef CONFIG_CONTEXT_TRACKING
2791asmlinkage __visible void __sched schedule_user(void)
2792{
2793	/*
2794	 * If we come here after a random call to set_need_resched(),
2795	 * or we have been woken up remotely but the IPI has not yet arrived,
2796	 * we haven't yet exited the RCU idle mode. Do it here manually until
2797	 * we find a better solution.
2798	 */
2799	user_exit();
2800	schedule();
2801	user_enter();
2802}
2803#endif
2804
2805/**
2806 * schedule_preempt_disabled - called with preemption disabled
2807 *
2808 * Returns with preemption disabled. Note: preempt_count must be 1
2809 */
2810void __sched schedule_preempt_disabled(void)
2811{
2812	sched_preempt_enable_no_resched();
2813	schedule();
2814	preempt_disable();
2815}
2816
2817#ifdef CONFIG_PREEMPT
2818/*
2819 * this is the entry point to schedule() from in-kernel preemption
2820 * off of preempt_enable. Kernel preemptions off return from interrupt
2821 * occur there and call schedule directly.
2822 */
2823asmlinkage __visible void __sched notrace preempt_schedule(void)
2824{
2825	/*
2826	 * If there is a non-zero preempt_count or interrupts are disabled,
2827	 * we do not want to preempt the current task. Just return..
2828	 */
2829	if (likely(!preemptible()))
2830		return;
2831
2832	do {
2833		__preempt_count_add(PREEMPT_ACTIVE);
2834		__schedule();
2835		__preempt_count_sub(PREEMPT_ACTIVE);
2836
2837		/*
2838		 * Check again in case we missed a preemption opportunity
2839		 * between schedule and now.
2840		 */
2841		barrier();
2842	} while (need_resched());
2843}
2844EXPORT_SYMBOL(preempt_schedule);
2845#endif /* CONFIG_PREEMPT */
2846
2847/*
2848 * this is the entry point to schedule() from kernel preemption
2849 * off of irq context.
2850 * Note, that this is called and return with irqs disabled. This will
2851 * protect us against recursive calling from irq.
2852 */
2853asmlinkage __visible void __sched preempt_schedule_irq(void)
2854{
2855	enum ctx_state prev_state;
2856
2857	/* Catch callers which need to be fixed */
2858	BUG_ON(preempt_count() || !irqs_disabled());
2859
2860	prev_state = exception_enter();
2861
2862	do {
2863		__preempt_count_add(PREEMPT_ACTIVE);
2864		local_irq_enable();
2865		__schedule();
2866		local_irq_disable();
2867		__preempt_count_sub(PREEMPT_ACTIVE);
2868
2869		/*
2870		 * Check again in case we missed a preemption opportunity
2871		 * between schedule and now.
2872		 */
2873		barrier();
2874	} while (need_resched());
2875
2876	exception_exit(prev_state);
2877}
2878
2879int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2880			  void *key)
2881{
2882	return try_to_wake_up(curr->private, mode, wake_flags);
2883}
2884EXPORT_SYMBOL(default_wake_function);
2885
2886#ifdef CONFIG_RT_MUTEXES
2887
2888/*
2889 * rt_mutex_setprio - set the current priority of a task
2890 * @p: task
2891 * @prio: prio value (kernel-internal form)
2892 *
2893 * This function changes the 'effective' priority of a task. It does
2894 * not touch ->normal_prio like __setscheduler().
2895 *
2896 * Used by the rt_mutex code to implement priority inheritance
2897 * logic. Call site only calls if the priority of the task changed.
2898 */
2899void rt_mutex_setprio(struct task_struct *p, int prio)
2900{
2901	int oldprio, on_rq, running, enqueue_flag = 0;
2902	struct rq *rq;
2903	const struct sched_class *prev_class;
2904
2905	BUG_ON(prio > MAX_PRIO);
2906
2907	rq = __task_rq_lock(p);
2908
2909	/*
2910	 * Idle task boosting is a nono in general. There is one
2911	 * exception, when PREEMPT_RT and NOHZ is active:
2912	 *
2913	 * The idle task calls get_next_timer_interrupt() and holds
2914	 * the timer wheel base->lock on the CPU and another CPU wants
2915	 * to access the timer (probably to cancel it). We can safely
2916	 * ignore the boosting request, as the idle CPU runs this code
2917	 * with interrupts disabled and will complete the lock
2918	 * protected section without being interrupted. So there is no
2919	 * real need to boost.
2920	 */
2921	if (unlikely(p == rq->idle)) {
2922		WARN_ON(p != rq->curr);
2923		WARN_ON(p->pi_blocked_on);
2924		goto out_unlock;
2925	}
2926
2927	trace_sched_pi_setprio(p, prio);
2928	p->pi_top_task = rt_mutex_get_top_task(p);
2929	oldprio = p->prio;
2930	prev_class = p->sched_class;
2931	on_rq = p->on_rq;
2932	running = task_current(rq, p);
2933	if (on_rq)
2934		dequeue_task(rq, p, 0);
2935	if (running)
2936		p->sched_class->put_prev_task(rq, p);
2937
2938	/*
2939	 * Boosting condition are:
2940	 * 1. -rt task is running and holds mutex A
2941	 *      --> -dl task blocks on mutex A
2942	 *
2943	 * 2. -dl task is running and holds mutex A
2944	 *      --> -dl task blocks on mutex A and could preempt the
2945	 *          running task
2946	 */
2947	if (dl_prio(prio)) {
2948		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2949			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2950			p->dl.dl_boosted = 1;
2951			p->dl.dl_throttled = 0;
2952			enqueue_flag = ENQUEUE_REPLENISH;
2953		} else
2954			p->dl.dl_boosted = 0;
2955		p->sched_class = &dl_sched_class;
2956	} else if (rt_prio(prio)) {
2957		if (dl_prio(oldprio))
2958			p->dl.dl_boosted = 0;
2959		if (oldprio < prio)
2960			enqueue_flag = ENQUEUE_HEAD;
2961		p->sched_class = &rt_sched_class;
2962	} else {
2963		if (dl_prio(oldprio))
2964			p->dl.dl_boosted = 0;
2965		p->sched_class = &fair_sched_class;
2966	}
2967
2968	p->prio = prio;
2969
2970	if (running)
2971		p->sched_class->set_curr_task(rq);
2972	if (on_rq)
2973		enqueue_task(rq, p, enqueue_flag);
2974
2975	check_class_changed(rq, p, prev_class, oldprio);
2976out_unlock:
2977	__task_rq_unlock(rq);
2978}
2979#endif
2980
2981void set_user_nice(struct task_struct *p, long nice)
2982{
2983	int old_prio, delta, on_rq;
2984	unsigned long flags;
2985	struct rq *rq;
2986
2987	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2988		return;
2989	/*
2990	 * We have to be careful, if called from sys_setpriority(),
2991	 * the task might be in the middle of scheduling on another CPU.
2992	 */
2993	rq = task_rq_lock(p, &flags);
2994	/*
2995	 * The RT priorities are set via sched_setscheduler(), but we still
2996	 * allow the 'normal' nice value to be set - but as expected
2997	 * it wont have any effect on scheduling until the task is
2998	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2999	 */
3000	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3001		p->static_prio = NICE_TO_PRIO(nice);
3002		goto out_unlock;
3003	}
3004	on_rq = p->on_rq;
3005	if (on_rq)
3006		dequeue_task(rq, p, 0);
3007
3008	p->static_prio = NICE_TO_PRIO(nice);
3009	set_load_weight(p);
3010	old_prio = p->prio;
3011	p->prio = effective_prio(p);
3012	delta = p->prio - old_prio;
3013
3014	if (on_rq) {
3015		enqueue_task(rq, p, 0);
3016		/*
3017		 * If the task increased its priority or is running and
3018		 * lowered its priority, then reschedule its CPU:
3019		 */
3020		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3021			resched_task(rq->curr);
3022	}
3023out_unlock:
3024	task_rq_unlock(rq, p, &flags);
3025}
3026EXPORT_SYMBOL(set_user_nice);
3027
3028/*
3029 * can_nice - check if a task can reduce its nice value
3030 * @p: task
3031 * @nice: nice value
3032 */
3033int can_nice(const struct task_struct *p, const int nice)
3034{
3035	/* convert nice value [19,-20] to rlimit style value [1,40] */
3036	int nice_rlim = nice_to_rlimit(nice);
3037
3038	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3039		capable(CAP_SYS_NICE));
3040}
3041
3042#ifdef __ARCH_WANT_SYS_NICE
3043
3044/*
3045 * sys_nice - change the priority of the current process.
3046 * @increment: priority increment
3047 *
3048 * sys_setpriority is a more generic, but much slower function that
3049 * does similar things.
3050 */
3051SYSCALL_DEFINE1(nice, int, increment)
3052{
3053	long nice, retval;
3054
3055	/*
3056	 * Setpriority might change our priority at the same moment.
3057	 * We don't have to worry. Conceptually one call occurs first
3058	 * and we have a single winner.
3059	 */
3060	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3061	nice = task_nice(current) + increment;
3062
3063	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3064	if (increment < 0 && !can_nice(current, nice))
3065		return -EPERM;
3066
3067	retval = security_task_setnice(current, nice);
3068	if (retval)
3069		return retval;
3070
3071	set_user_nice(current, nice);
3072	return 0;
3073}
3074
3075#endif
3076
3077/**
3078 * task_prio - return the priority value of a given task.
3079 * @p: the task in question.
3080 *
3081 * Return: The priority value as seen by users in /proc.
3082 * RT tasks are offset by -200. Normal tasks are centered
3083 * around 0, value goes from -16 to +15.
3084 */
3085int task_prio(const struct task_struct *p)
3086{
3087	return p->prio - MAX_RT_PRIO;
3088}
3089
3090/**
3091 * idle_cpu - is a given cpu idle currently?
3092 * @cpu: the processor in question.
3093 *
3094 * Return: 1 if the CPU is currently idle. 0 otherwise.
3095 */
3096int idle_cpu(int cpu)
3097{
3098	struct rq *rq = cpu_rq(cpu);
3099
3100	if (rq->curr != rq->idle)
3101		return 0;
3102
3103	if (rq->nr_running)
3104		return 0;
3105
3106#ifdef CONFIG_SMP
3107	if (!llist_empty(&rq->wake_list))
3108		return 0;
3109#endif
3110
3111	return 1;
3112}
3113
3114/**
3115 * idle_task - return the idle task for a given cpu.
3116 * @cpu: the processor in question.
3117 *
3118 * Return: The idle task for the cpu @cpu.
3119 */
3120struct task_struct *idle_task(int cpu)
3121{
3122	return cpu_rq(cpu)->idle;
3123}
3124
3125/**
3126 * find_process_by_pid - find a process with a matching PID value.
3127 * @pid: the pid in question.
3128 *
3129 * The task of @pid, if found. %NULL otherwise.
3130 */
3131static struct task_struct *find_process_by_pid(pid_t pid)
3132{
3133	return pid ? find_task_by_vpid(pid) : current;
3134}
3135
3136/*
3137 * This function initializes the sched_dl_entity of a newly becoming
3138 * SCHED_DEADLINE task.
3139 *
3140 * Only the static values are considered here, the actual runtime and the
3141 * absolute deadline will be properly calculated when the task is enqueued
3142 * for the first time with its new policy.
3143 */
3144static void
3145__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3146{
3147	struct sched_dl_entity *dl_se = &p->dl;
3148
3149	init_dl_task_timer(dl_se);
3150	dl_se->dl_runtime = attr->sched_runtime;
3151	dl_se->dl_deadline = attr->sched_deadline;
3152	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3153	dl_se->flags = attr->sched_flags;
3154	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3155	dl_se->dl_throttled = 0;
3156	dl_se->dl_new = 1;
3157	dl_se->dl_yielded = 0;
3158}
3159
3160static void __setscheduler_params(struct task_struct *p,
3161		const struct sched_attr *attr)
3162{
3163	int policy = attr->sched_policy;
3164
3165	if (policy == -1) /* setparam */
3166		policy = p->policy;
3167
3168	p->policy = policy;
3169
3170	if (dl_policy(policy))
3171		__setparam_dl(p, attr);
3172	else if (fair_policy(policy))
3173		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3174
3175	/*
3176	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3177	 * !rt_policy. Always setting this ensures that things like
3178	 * getparam()/getattr() don't report silly values for !rt tasks.
3179	 */
3180	p->rt_priority = attr->sched_priority;
3181	p->normal_prio = normal_prio(p);
3182	set_load_weight(p);
3183}
3184
3185/* Actually do priority change: must hold pi & rq lock. */
3186static void __setscheduler(struct rq *rq, struct task_struct *p,
3187			   const struct sched_attr *attr)
3188{
3189	__setscheduler_params(p, attr);
3190
3191	/*
3192	 * If we get here, there was no pi waiters boosting the
3193	 * task. It is safe to use the normal prio.
3194	 */
3195	p->prio = normal_prio(p);
3196
3197	if (dl_prio(p->prio))
3198		p->sched_class = &dl_sched_class;
3199	else if (rt_prio(p->prio))
3200		p->sched_class = &rt_sched_class;
3201	else
3202		p->sched_class = &fair_sched_class;
3203}
3204
3205static void
3206__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3207{
3208	struct sched_dl_entity *dl_se = &p->dl;
3209
3210	attr->sched_priority = p->rt_priority;
3211	attr->sched_runtime = dl_se->dl_runtime;
3212	attr->sched_deadline = dl_se->dl_deadline;
3213	attr->sched_period = dl_se->dl_period;
3214	attr->sched_flags = dl_se->flags;
3215}
3216
3217/*
3218 * This function validates the new parameters of a -deadline task.
3219 * We ask for the deadline not being zero, and greater or equal
3220 * than the runtime, as well as the period of being zero or
3221 * greater than deadline. Furthermore, we have to be sure that
3222 * user parameters are above the internal resolution of 1us (we
3223 * check sched_runtime only since it is always the smaller one) and
3224 * below 2^63 ns (we have to check both sched_deadline and
3225 * sched_period, as the latter can be zero).
3226 */
3227static bool
3228__checkparam_dl(const struct sched_attr *attr)
3229{
3230	/* deadline != 0 */
3231	if (attr->sched_deadline == 0)
3232		return false;
3233
3234	/*
3235	 * Since we truncate DL_SCALE bits, make sure we're at least
3236	 * that big.
3237	 */
3238	if (attr->sched_runtime < (1ULL << DL_SCALE))
3239		return false;
3240
3241	/*
3242	 * Since we use the MSB for wrap-around and sign issues, make
3243	 * sure it's not set (mind that period can be equal to zero).
3244	 */
3245	if (attr->sched_deadline & (1ULL << 63) ||
3246	    attr->sched_period & (1ULL << 63))
3247		return false;
3248
3249	/* runtime <= deadline <= period (if period != 0) */
3250	if ((attr->sched_period != 0 &&
3251	     attr->sched_period < attr->sched_deadline) ||
3252	    attr->sched_deadline < attr->sched_runtime)
3253		return false;
3254
3255	return true;
3256}
3257
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263	const struct cred *cred = current_cred(), *pcred;
3264	bool match;
3265
3266	rcu_read_lock();
3267	pcred = __task_cred(p);
3268	match = (uid_eq(cred->euid, pcred->euid) ||
3269		 uid_eq(cred->euid, pcred->uid));
3270	rcu_read_unlock();
3271	return match;
3272}
3273
3274static int __sched_setscheduler(struct task_struct *p,
3275				const struct sched_attr *attr,
3276				bool user)
3277{
3278	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3279		      MAX_RT_PRIO - 1 - attr->sched_priority;
3280	int retval, oldprio, oldpolicy = -1, on_rq, running;
3281	int policy = attr->sched_policy;
3282	unsigned long flags;
3283	const struct sched_class *prev_class;
3284	struct rq *rq;
3285	int reset_on_fork;
3286
3287	/* may grab non-irq protected spin_locks */
3288	BUG_ON(in_interrupt());
3289recheck:
3290	/* double check policy once rq lock held */
3291	if (policy < 0) {
3292		reset_on_fork = p->sched_reset_on_fork;
3293		policy = oldpolicy = p->policy;
3294	} else {
3295		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3296
3297		if (policy != SCHED_DEADLINE &&
3298				policy != SCHED_FIFO && policy != SCHED_RR &&
3299				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3300				policy != SCHED_IDLE)
3301			return -EINVAL;
3302	}
3303
3304	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3305		return -EINVAL;
3306
3307	/*
3308	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3309	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3310	 * SCHED_BATCH and SCHED_IDLE is 0.
3311	 */
3312	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3313	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3314		return -EINVAL;
3315	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3316	    (rt_policy(policy) != (attr->sched_priority != 0)))
3317		return -EINVAL;
3318
3319	/*
3320	 * Allow unprivileged RT tasks to decrease priority:
3321	 */
3322	if (user && !capable(CAP_SYS_NICE)) {
3323		if (fair_policy(policy)) {
3324			if (attr->sched_nice < task_nice(p) &&
3325			    !can_nice(p, attr->sched_nice))
3326				return -EPERM;
3327		}
3328
3329		if (rt_policy(policy)) {
3330			unsigned long rlim_rtprio =
3331					task_rlimit(p, RLIMIT_RTPRIO);
3332
3333			/* can't set/change the rt policy */
3334			if (policy != p->policy && !rlim_rtprio)
3335				return -EPERM;
3336
3337			/* can't increase priority */
3338			if (attr->sched_priority > p->rt_priority &&
3339			    attr->sched_priority > rlim_rtprio)
3340				return -EPERM;
3341		}
3342
3343		 /*
3344		  * Can't set/change SCHED_DEADLINE policy at all for now
3345		  * (safest behavior); in the future we would like to allow
3346		  * unprivileged DL tasks to increase their relative deadline
3347		  * or reduce their runtime (both ways reducing utilization)
3348		  */
3349		if (dl_policy(policy))
3350			return -EPERM;
3351
3352		/*
3353		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3354		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3355		 */
3356		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3357			if (!can_nice(p, task_nice(p)))
3358				return -EPERM;
3359		}
3360
3361		/* can't change other user's priorities */
3362		if (!check_same_owner(p))
3363			return -EPERM;
3364
3365		/* Normal users shall not reset the sched_reset_on_fork flag */
3366		if (p->sched_reset_on_fork && !reset_on_fork)
3367			return -EPERM;
3368	}
3369
3370	if (user) {
3371		retval = security_task_setscheduler(p);
3372		if (retval)
3373			return retval;
3374	}
3375
3376	/*
3377	 * make sure no PI-waiters arrive (or leave) while we are
3378	 * changing the priority of the task:
3379	 *
3380	 * To be able to change p->policy safely, the appropriate
3381	 * runqueue lock must be held.
3382	 */
3383	rq = task_rq_lock(p, &flags);
3384
3385	/*
3386	 * Changing the policy of the stop threads its a very bad idea
3387	 */
3388	if (p == rq->stop) {
3389		task_rq_unlock(rq, p, &flags);
3390		return -EINVAL;
3391	}
3392
3393	/*
3394	 * If not changing anything there's no need to proceed further,
3395	 * but store a possible modification of reset_on_fork.
3396	 */
3397	if (unlikely(policy == p->policy)) {
3398		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3399			goto change;
3400		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3401			goto change;
3402		if (dl_policy(policy))
3403			goto change;
3404
3405		p->sched_reset_on_fork = reset_on_fork;
3406		task_rq_unlock(rq, p, &flags);
3407		return 0;
3408	}
3409change:
3410
3411	if (user) {
3412#ifdef CONFIG_RT_GROUP_SCHED
3413		/*
3414		 * Do not allow realtime tasks into groups that have no runtime
3415		 * assigned.
3416		 */
3417		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3418				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3419				!task_group_is_autogroup(task_group(p))) {
3420			task_rq_unlock(rq, p, &flags);
3421			return -EPERM;
3422		}
3423#endif
3424#ifdef CONFIG_SMP
3425		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3426			cpumask_t *span = rq->rd->span;
3427
3428			/*
3429			 * Don't allow tasks with an affinity mask smaller than
3430			 * the entire root_domain to become SCHED_DEADLINE. We
3431			 * will also fail if there's no bandwidth available.
3432			 */
3433			if (!cpumask_subset(span, &p->cpus_allowed) ||
3434			    rq->rd->dl_bw.bw == 0) {
3435				task_rq_unlock(rq, p, &flags);
3436				return -EPERM;
3437			}
3438		}
3439#endif
3440	}
3441
3442	/* recheck policy now with rq lock held */
3443	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3444		policy = oldpolicy = -1;
3445		task_rq_unlock(rq, p, &flags);
3446		goto recheck;
3447	}
3448
3449	/*
3450	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3451	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3452	 * is available.
3453	 */
3454	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3455		task_rq_unlock(rq, p, &flags);
3456		return -EBUSY;
3457	}
3458
3459	p->sched_reset_on_fork = reset_on_fork;
3460	oldprio = p->prio;
3461
3462	/*
3463	 * Special case for priority boosted tasks.
3464	 *
3465	 * If the new priority is lower or equal (user space view)
3466	 * than the current (boosted) priority, we just store the new
3467	 * normal parameters and do not touch the scheduler class and
3468	 * the runqueue. This will be done when the task deboost
3469	 * itself.
3470	 */
3471	if (rt_mutex_check_prio(p, newprio)) {
3472		__setscheduler_params(p, attr);
3473		task_rq_unlock(rq, p, &flags);
3474		return 0;
3475	}
3476
3477	on_rq = p->on_rq;
3478	running = task_current(rq, p);
3479	if (on_rq)
3480		dequeue_task(rq, p, 0);
3481	if (running)
3482		p->sched_class->put_prev_task(rq, p);
3483
3484	prev_class = p->sched_class;
3485	__setscheduler(rq, p, attr);
3486
3487	if (running)
3488		p->sched_class->set_curr_task(rq);
3489	if (on_rq) {
3490		/*
3491		 * We enqueue to tail when the priority of a task is
3492		 * increased (user space view).
3493		 */
3494		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3495	}
3496
3497	check_class_changed(rq, p, prev_class, oldprio);
3498	task_rq_unlock(rq, p, &flags);
3499
3500	rt_mutex_adjust_pi(p);
3501
3502	return 0;
3503}
3504
3505static int _sched_setscheduler(struct task_struct *p, int policy,
3506			       const struct sched_param *param, bool check)
3507{
3508	struct sched_attr attr = {
3509		.sched_policy   = policy,
3510		.sched_priority = param->sched_priority,
3511		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3512	};
3513
3514	/*
3515	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3516	 */
3517	if (policy & SCHED_RESET_ON_FORK) {
3518		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3519		policy &= ~SCHED_RESET_ON_FORK;
3520		attr.sched_policy = policy;
3521	}
3522
3523	return __sched_setscheduler(p, &attr, check);
3524}
3525/**
3526 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3527 * @p: the task in question.
3528 * @policy: new policy.
3529 * @param: structure containing the new RT priority.
3530 *
3531 * Return: 0 on success. An error code otherwise.
3532 *
3533 * NOTE that the task may be already dead.
3534 */
3535int sched_setscheduler(struct task_struct *p, int policy,
3536		       const struct sched_param *param)
3537{
3538	return _sched_setscheduler(p, policy, param, true);
3539}
3540EXPORT_SYMBOL_GPL(sched_setscheduler);
3541
3542int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3543{
3544	return __sched_setscheduler(p, attr, true);
3545}
3546EXPORT_SYMBOL_GPL(sched_setattr);
3547
3548/**
3549 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3550 * @p: the task in question.
3551 * @policy: new policy.
3552 * @param: structure containing the new RT priority.
3553 *
3554 * Just like sched_setscheduler, only don't bother checking if the
3555 * current context has permission.  For example, this is needed in
3556 * stop_machine(): we create temporary high priority worker threads,
3557 * but our caller might not have that capability.
3558 *
3559 * Return: 0 on success. An error code otherwise.
3560 */
3561int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3562			       const struct sched_param *param)
3563{
3564	return _sched_setscheduler(p, policy, param, false);
3565}
3566
3567static int
3568do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3569{
3570	struct sched_param lparam;
3571	struct task_struct *p;
3572	int retval;
3573
3574	if (!param || pid < 0)
3575		return -EINVAL;
3576	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3577		return -EFAULT;
3578
3579	rcu_read_lock();
3580	retval = -ESRCH;
3581	p = find_process_by_pid(pid);
3582	if (p != NULL)
3583		retval = sched_setscheduler(p, policy, &lparam);
3584	rcu_read_unlock();
3585
3586	return retval;
3587}
3588
3589/*
3590 * Mimics kernel/events/core.c perf_copy_attr().
3591 */
3592static int sched_copy_attr(struct sched_attr __user *uattr,
3593			   struct sched_attr *attr)
3594{
3595	u32 size;
3596	int ret;
3597
3598	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3599		return -EFAULT;
3600
3601	/*
3602	 * zero the full structure, so that a short copy will be nice.
3603	 */
3604	memset(attr, 0, sizeof(*attr));
3605
3606	ret = get_user(size, &uattr->size);
3607	if (ret)
3608		return ret;
3609
3610	if (size > PAGE_SIZE)	/* silly large */
3611		goto err_size;
3612
3613	if (!size)		/* abi compat */
3614		size = SCHED_ATTR_SIZE_VER0;
3615
3616	if (size < SCHED_ATTR_SIZE_VER0)
3617		goto err_size;
3618
3619	/*
3620	 * If we're handed a bigger struct than we know of,
3621	 * ensure all the unknown bits are 0 - i.e. new
3622	 * user-space does not rely on any kernel feature
3623	 * extensions we dont know about yet.
3624	 */
3625	if (size > sizeof(*attr)) {
3626		unsigned char __user *addr;
3627		unsigned char __user *end;
3628		unsigned char val;
3629
3630		addr = (void __user *)uattr + sizeof(*attr);
3631		end  = (void __user *)uattr + size;
3632
3633		for (; addr < end; addr++) {
3634			ret = get_user(val, addr);
3635			if (ret)
3636				return ret;
3637			if (val)
3638				goto err_size;
3639		}
3640		size = sizeof(*attr);
3641	}
3642
3643	ret = copy_from_user(attr, uattr, size);
3644	if (ret)
3645		return -EFAULT;
3646
3647	/*
3648	 * XXX: do we want to be lenient like existing syscalls; or do we want
3649	 * to be strict and return an error on out-of-bounds values?
3650	 */
3651	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3652
3653	return 0;
3654
3655err_size:
3656	put_user(sizeof(*attr), &uattr->size);
3657	return -E2BIG;
3658}
3659
3660/**
3661 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3662 * @pid: the pid in question.
3663 * @policy: new policy.
3664 * @param: structure containing the new RT priority.
3665 *
3666 * Return: 0 on success. An error code otherwise.
3667 */
3668SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3669		struct sched_param __user *, param)
3670{
3671	/* negative values for policy are not valid */
3672	if (policy < 0)
3673		return -EINVAL;
3674
3675	return do_sched_setscheduler(pid, policy, param);
3676}
3677
3678/**
3679 * sys_sched_setparam - set/change the RT priority of a thread
3680 * @pid: the pid in question.
3681 * @param: structure containing the new RT priority.
3682 *
3683 * Return: 0 on success. An error code otherwise.
3684 */
3685SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3686{
3687	return do_sched_setscheduler(pid, -1, param);
3688}
3689
3690/**
3691 * sys_sched_setattr - same as above, but with extended sched_attr
3692 * @pid: the pid in question.
3693 * @uattr: structure containing the extended parameters.
3694 * @flags: for future extension.
3695 */
3696SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3697			       unsigned int, flags)
3698{
3699	struct sched_attr attr;
3700	struct task_struct *p;
3701	int retval;
3702
3703	if (!uattr || pid < 0 || flags)
3704		return -EINVAL;
3705
3706	retval = sched_copy_attr(uattr, &attr);
3707	if (retval)
3708		return retval;
3709
3710	if (attr.sched_policy < 0)
3711		return -EINVAL;
3712
3713	rcu_read_lock();
3714	retval = -ESRCH;
3715	p = find_process_by_pid(pid);
3716	if (p != NULL)
3717		retval = sched_setattr(p, &attr);
3718	rcu_read_unlock();
3719
3720	return retval;
3721}
3722
3723/**
3724 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3725 * @pid: the pid in question.
3726 *
3727 * Return: On success, the policy of the thread. Otherwise, a negative error
3728 * code.
3729 */
3730SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3731{
3732	struct task_struct *p;
3733	int retval;
3734
3735	if (pid < 0)
3736		return -EINVAL;
3737
3738	retval = -ESRCH;
3739	rcu_read_lock();
3740	p = find_process_by_pid(pid);
3741	if (p) {
3742		retval = security_task_getscheduler(p);
3743		if (!retval)
3744			retval = p->policy
3745				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3746	}
3747	rcu_read_unlock();
3748	return retval;
3749}
3750
3751/**
3752 * sys_sched_getparam - get the RT priority of a thread
3753 * @pid: the pid in question.
3754 * @param: structure containing the RT priority.
3755 *
3756 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3757 * code.
3758 */
3759SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3760{
3761	struct sched_param lp = { .sched_priority = 0 };
3762	struct task_struct *p;
3763	int retval;
3764
3765	if (!param || pid < 0)
3766		return -EINVAL;
3767
3768	rcu_read_lock();
3769	p = find_process_by_pid(pid);
3770	retval = -ESRCH;
3771	if (!p)
3772		goto out_unlock;
3773
3774	retval = security_task_getscheduler(p);
3775	if (retval)
3776		goto out_unlock;
3777
3778	if (task_has_rt_policy(p))
3779		lp.sched_priority = p->rt_priority;
3780	rcu_read_unlock();
3781
3782	/*
3783	 * This one might sleep, we cannot do it with a spinlock held ...
3784	 */
3785	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3786
3787	return retval;
3788
3789out_unlock:
3790	rcu_read_unlock();
3791	return retval;
3792}
3793
3794static int sched_read_attr(struct sched_attr __user *uattr,
3795			   struct sched_attr *attr,
3796			   unsigned int usize)
3797{
3798	int ret;
3799
3800	if (!access_ok(VERIFY_WRITE, uattr, usize))
3801		return -EFAULT;
3802
3803	/*
3804	 * If we're handed a smaller struct than we know of,
3805	 * ensure all the unknown bits are 0 - i.e. old
3806	 * user-space does not get uncomplete information.
3807	 */
3808	if (usize < sizeof(*attr)) {
3809		unsigned char *addr;
3810		unsigned char *end;
3811
3812		addr = (void *)attr + usize;
3813		end  = (void *)attr + sizeof(*attr);
3814
3815		for (; addr < end; addr++) {
3816			if (*addr)
3817				return -EFBIG;
3818		}
3819
3820		attr->size = usize;
3821	}
3822
3823	ret = copy_to_user(uattr, attr, attr->size);
3824	if (ret)
3825		return -EFAULT;
3826
3827	return 0;
3828}
3829
3830/**
3831 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3832 * @pid: the pid in question.
3833 * @uattr: structure containing the extended parameters.
3834 * @size: sizeof(attr) for fwd/bwd comp.
3835 * @flags: for future extension.
3836 */
3837SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3838		unsigned int, size, unsigned int, flags)
3839{
3840	struct sched_attr attr = {
3841		.size = sizeof(struct sched_attr),
3842	};
3843	struct task_struct *p;
3844	int retval;
3845
3846	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3847	    size < SCHED_ATTR_SIZE_VER0 || flags)
3848		return -EINVAL;
3849
3850	rcu_read_lock();
3851	p = find_process_by_pid(pid);
3852	retval = -ESRCH;
3853	if (!p)
3854		goto out_unlock;
3855
3856	retval = security_task_getscheduler(p);
3857	if (retval)
3858		goto out_unlock;
3859
3860	attr.sched_policy = p->policy;
3861	if (p->sched_reset_on_fork)
3862		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3863	if (task_has_dl_policy(p))
3864		__getparam_dl(p, &attr);
3865	else if (task_has_rt_policy(p))
3866		attr.sched_priority = p->rt_priority;
3867	else
3868		attr.sched_nice = task_nice(p);
3869
3870	rcu_read_unlock();
3871
3872	retval = sched_read_attr(uattr, &attr, size);
3873	return retval;
3874
3875out_unlock:
3876	rcu_read_unlock();
3877	return retval;
3878}
3879
3880long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3881{
3882	cpumask_var_t cpus_allowed, new_mask;
3883	struct task_struct *p;
3884	int retval;
3885
3886	rcu_read_lock();
3887
3888	p = find_process_by_pid(pid);
3889	if (!p) {
3890		rcu_read_unlock();
3891		return -ESRCH;
3892	}
3893
3894	/* Prevent p going away */
3895	get_task_struct(p);
3896	rcu_read_unlock();
3897
3898	if (p->flags & PF_NO_SETAFFINITY) {
3899		retval = -EINVAL;
3900		goto out_put_task;
3901	}
3902	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3903		retval = -ENOMEM;
3904		goto out_put_task;
3905	}
3906	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3907		retval = -ENOMEM;
3908		goto out_free_cpus_allowed;
3909	}
3910	retval = -EPERM;
3911	if (!check_same_owner(p)) {
3912		rcu_read_lock();
3913		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3914			rcu_read_unlock();
3915			goto out_unlock;
3916		}
3917		rcu_read_unlock();
3918	}
3919
3920	retval = security_task_setscheduler(p);
3921	if (retval)
3922		goto out_unlock;
3923
3924
3925	cpuset_cpus_allowed(p, cpus_allowed);
3926	cpumask_and(new_mask, in_mask, cpus_allowed);
3927
3928	/*
3929	 * Since bandwidth control happens on root_domain basis,
3930	 * if admission test is enabled, we only admit -deadline
3931	 * tasks allowed to run on all the CPUs in the task's
3932	 * root_domain.
3933	 */
3934#ifdef CONFIG_SMP
3935	if (task_has_dl_policy(p)) {
3936		const struct cpumask *span = task_rq(p)->rd->span;
3937
3938		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3939			retval = -EBUSY;
3940			goto out_unlock;
3941		}
3942	}
3943#endif
3944again:
3945	retval = set_cpus_allowed_ptr(p, new_mask);
3946
3947	if (!retval) {
3948		cpuset_cpus_allowed(p, cpus_allowed);
3949		if (!cpumask_subset(new_mask, cpus_allowed)) {
3950			/*
3951			 * We must have raced with a concurrent cpuset
3952			 * update. Just reset the cpus_allowed to the
3953			 * cpuset's cpus_allowed
3954			 */
3955			cpumask_copy(new_mask, cpus_allowed);
3956			goto again;
3957		}
3958	}
3959out_unlock:
3960	free_cpumask_var(new_mask);
3961out_free_cpus_allowed:
3962	free_cpumask_var(cpus_allowed);
3963out_put_task:
3964	put_task_struct(p);
3965	return retval;
3966}
3967
3968static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3969			     struct cpumask *new_mask)
3970{
3971	if (len < cpumask_size())
3972		cpumask_clear(new_mask);
3973	else if (len > cpumask_size())
3974		len = cpumask_size();
3975
3976	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3977}
3978
3979/**
3980 * sys_sched_setaffinity - set the cpu affinity of a process
3981 * @pid: pid of the process
3982 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3983 * @user_mask_ptr: user-space pointer to the new cpu mask
3984 *
3985 * Return: 0 on success. An error code otherwise.
3986 */
3987SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3988		unsigned long __user *, user_mask_ptr)
3989{
3990	cpumask_var_t new_mask;
3991	int retval;
3992
3993	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3994		return -ENOMEM;
3995
3996	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3997	if (retval == 0)
3998		retval = sched_setaffinity(pid, new_mask);
3999	free_cpumask_var(new_mask);
4000	return retval;
4001}
4002
4003long sched_getaffinity(pid_t pid, struct cpumask *mask)
4004{
4005	struct task_struct *p;
4006	unsigned long flags;
4007	int retval;
4008
4009	rcu_read_lock();
4010
4011	retval = -ESRCH;
4012	p = find_process_by_pid(pid);
4013	if (!p)
4014		goto out_unlock;
4015
4016	retval = security_task_getscheduler(p);
4017	if (retval)
4018		goto out_unlock;
4019
4020	raw_spin_lock_irqsave(&p->pi_lock, flags);
4021	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4022	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4023
4024out_unlock:
4025	rcu_read_unlock();
4026
4027	return retval;
4028}
4029
4030/**
4031 * sys_sched_getaffinity - get the cpu affinity of a process
4032 * @pid: pid of the process
4033 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4034 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4035 *
4036 * Return: 0 on success. An error code otherwise.
4037 */
4038SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4039		unsigned long __user *, user_mask_ptr)
4040{
4041	int ret;
4042	cpumask_var_t mask;
4043
4044	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4045		return -EINVAL;
4046	if (len & (sizeof(unsigned long)-1))
4047		return -EINVAL;
4048
4049	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4050		return -ENOMEM;
4051
4052	ret = sched_getaffinity(pid, mask);
4053	if (ret == 0) {
4054		size_t retlen = min_t(size_t, len, cpumask_size());
4055
4056		if (copy_to_user(user_mask_ptr, mask, retlen))
4057			ret = -EFAULT;
4058		else
4059			ret = retlen;
4060	}
4061	free_cpumask_var(mask);
4062
4063	return ret;
4064}
4065
4066/**
4067 * sys_sched_yield - yield the current processor to other threads.
4068 *
4069 * This function yields the current CPU to other tasks. If there are no
4070 * other threads running on this CPU then this function will return.
4071 *
4072 * Return: 0.
4073 */
4074SYSCALL_DEFINE0(sched_yield)
4075{
4076	struct rq *rq = this_rq_lock();
4077
4078	schedstat_inc(rq, yld_count);
4079	current->sched_class->yield_task(rq);
4080
4081	/*
4082	 * Since we are going to call schedule() anyway, there's
4083	 * no need to preempt or enable interrupts:
4084	 */
4085	__release(rq->lock);
4086	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4087	do_raw_spin_unlock(&rq->lock);
4088	sched_preempt_enable_no_resched();
4089
4090	schedule();
4091
4092	return 0;
4093}
4094
4095static void __cond_resched(void)
4096{
4097	__preempt_count_add(PREEMPT_ACTIVE);
4098	__schedule();
4099	__preempt_count_sub(PREEMPT_ACTIVE);
4100}
4101
4102int __sched _cond_resched(void)
4103{
4104	if (should_resched()) {
4105		__cond_resched();
4106		return 1;
4107	}
4108	return 0;
4109}
4110EXPORT_SYMBOL(_cond_resched);
4111
4112/*
4113 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4114 * call schedule, and on return reacquire the lock.
4115 *
4116 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4117 * operations here to prevent schedule() from being called twice (once via
4118 * spin_unlock(), once by hand).
4119 */
4120int __cond_resched_lock(spinlock_t *lock)
4121{
4122	int resched = should_resched();
4123	int ret = 0;
4124
4125	lockdep_assert_held(lock);
4126
4127	if (spin_needbreak(lock) || resched) {
4128		spin_unlock(lock);
4129		if (resched)
4130			__cond_resched();
4131		else
4132			cpu_relax();
4133		ret = 1;
4134		spin_lock(lock);
4135	}
4136	return ret;
4137}
4138EXPORT_SYMBOL(__cond_resched_lock);
4139
4140int __sched __cond_resched_softirq(void)
4141{
4142	BUG_ON(!in_softirq());
4143
4144	if (should_resched()) {
4145		local_bh_enable();
4146		__cond_resched();
4147		local_bh_disable();
4148		return 1;
4149	}
4150	return 0;
4151}
4152EXPORT_SYMBOL(__cond_resched_softirq);
4153
4154/**
4155 * yield - yield the current processor to other threads.
4156 *
4157 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4158 *
4159 * The scheduler is at all times free to pick the calling task as the most
4160 * eligible task to run, if removing the yield() call from your code breaks
4161 * it, its already broken.
4162 *
4163 * Typical broken usage is:
4164 *
4165 * while (!event)
4166 * 	yield();
4167 *
4168 * where one assumes that yield() will let 'the other' process run that will
4169 * make event true. If the current task is a SCHED_FIFO task that will never
4170 * happen. Never use yield() as a progress guarantee!!
4171 *
4172 * If you want to use yield() to wait for something, use wait_event().
4173 * If you want to use yield() to be 'nice' for others, use cond_resched().
4174 * If you still want to use yield(), do not!
4175 */
4176void __sched yield(void)
4177{
4178	set_current_state(TASK_RUNNING);
4179	sys_sched_yield();
4180}
4181EXPORT_SYMBOL(yield);
4182
4183/**
4184 * yield_to - yield the current processor to another thread in
4185 * your thread group, or accelerate that thread toward the
4186 * processor it's on.
4187 * @p: target task
4188 * @preempt: whether task preemption is allowed or not
4189 *
4190 * It's the caller's job to ensure that the target task struct
4191 * can't go away on us before we can do any checks.
4192 *
4193 * Return:
4194 *	true (>0) if we indeed boosted the target task.
4195 *	false (0) if we failed to boost the target.
4196 *	-ESRCH if there's no task to yield to.
4197 */
4198int __sched yield_to(struct task_struct *p, bool preempt)
4199{
4200	struct task_struct *curr = current;
4201	struct rq *rq, *p_rq;
4202	unsigned long flags;
4203	int yielded = 0;
4204
4205	local_irq_save(flags);
4206	rq = this_rq();
4207
4208again:
4209	p_rq = task_rq(p);
4210	/*
4211	 * If we're the only runnable task on the rq and target rq also
4212	 * has only one task, there's absolutely no point in yielding.
4213	 */
4214	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4215		yielded = -ESRCH;
4216		goto out_irq;
4217	}
4218
4219	double_rq_lock(rq, p_rq);
4220	if (task_rq(p) != p_rq) {
4221		double_rq_unlock(rq, p_rq);
4222		goto again;
4223	}
4224
4225	if (!curr->sched_class->yield_to_task)
4226		goto out_unlock;
4227
4228	if (curr->sched_class != p->sched_class)
4229		goto out_unlock;
4230
4231	if (task_running(p_rq, p) || p->state)
4232		goto out_unlock;
4233
4234	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4235	if (yielded) {
4236		schedstat_inc(rq, yld_count);
4237		/*
4238		 * Make p's CPU reschedule; pick_next_entity takes care of
4239		 * fairness.
4240		 */
4241		if (preempt && rq != p_rq)
4242			resched_task(p_rq->curr);
4243	}
4244
4245out_unlock:
4246	double_rq_unlock(rq, p_rq);
4247out_irq:
4248	local_irq_restore(flags);
4249
4250	if (yielded > 0)
4251		schedule();
4252
4253	return yielded;
4254}
4255EXPORT_SYMBOL_GPL(yield_to);
4256
4257/*
4258 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4259 * that process accounting knows that this is a task in IO wait state.
4260 */
4261void __sched io_schedule(void)
4262{
4263	struct rq *rq = raw_rq();
4264
4265	delayacct_blkio_start();
4266	atomic_inc(&rq->nr_iowait);
4267	blk_flush_plug(current);
4268	current->in_iowait = 1;
4269	schedule();
4270	current->in_iowait = 0;
4271	atomic_dec(&rq->nr_iowait);
4272	delayacct_blkio_end();
4273}
4274EXPORT_SYMBOL(io_schedule);
4275
4276long __sched io_schedule_timeout(long timeout)
4277{
4278	struct rq *rq = raw_rq();
4279	long ret;
4280
4281	delayacct_blkio_start();
4282	atomic_inc(&rq->nr_iowait);
4283	blk_flush_plug(current);
4284	current->in_iowait = 1;
4285	ret = schedule_timeout(timeout);
4286	current->in_iowait = 0;
4287	atomic_dec(&rq->nr_iowait);
4288	delayacct_blkio_end();
4289	return ret;
4290}
4291
4292/**
4293 * sys_sched_get_priority_max - return maximum RT priority.
4294 * @policy: scheduling class.
4295 *
4296 * Return: On success, this syscall returns the maximum
4297 * rt_priority that can be used by a given scheduling class.
4298 * On failure, a negative error code is returned.
4299 */
4300SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4301{
4302	int ret = -EINVAL;
4303
4304	switch (policy) {
4305	case SCHED_FIFO:
4306	case SCHED_RR:
4307		ret = MAX_USER_RT_PRIO-1;
4308		break;
4309	case SCHED_DEADLINE:
4310	case SCHED_NORMAL:
4311	case SCHED_BATCH:
4312	case SCHED_IDLE:
4313		ret = 0;
4314		break;
4315	}
4316	return ret;
4317}
4318
4319/**
4320 * sys_sched_get_priority_min - return minimum RT priority.
4321 * @policy: scheduling class.
4322 *
4323 * Return: On success, this syscall returns the minimum
4324 * rt_priority that can be used by a given scheduling class.
4325 * On failure, a negative error code is returned.
4326 */
4327SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4328{
4329	int ret = -EINVAL;
4330
4331	switch (policy) {
4332	case SCHED_FIFO:
4333	case SCHED_RR:
4334		ret = 1;
4335		break;
4336	case SCHED_DEADLINE:
4337	case SCHED_NORMAL:
4338	case SCHED_BATCH:
4339	case SCHED_IDLE:
4340		ret = 0;
4341	}
4342	return ret;
4343}
4344
4345/**
4346 * sys_sched_rr_get_interval - return the default timeslice of a process.
4347 * @pid: pid of the process.
4348 * @interval: userspace pointer to the timeslice value.
4349 *
4350 * this syscall writes the default timeslice value of a given process
4351 * into the user-space timespec buffer. A value of '0' means infinity.
4352 *
4353 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4354 * an error code.
4355 */
4356SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4357		struct timespec __user *, interval)
4358{
4359	struct task_struct *p;
4360	unsigned int time_slice;
4361	unsigned long flags;
4362	struct rq *rq;
4363	int retval;
4364	struct timespec t;
4365
4366	if (pid < 0)
4367		return -EINVAL;
4368
4369	retval = -ESRCH;
4370	rcu_read_lock();
4371	p = find_process_by_pid(pid);
4372	if (!p)
4373		goto out_unlock;
4374
4375	retval = security_task_getscheduler(p);
4376	if (retval)
4377		goto out_unlock;
4378
4379	rq = task_rq_lock(p, &flags);
4380	time_slice = 0;
4381	if (p->sched_class->get_rr_interval)
4382		time_slice = p->sched_class->get_rr_interval(rq, p);
4383	task_rq_unlock(rq, p, &flags);
4384
4385	rcu_read_unlock();
4386	jiffies_to_timespec(time_slice, &t);
4387	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4388	return retval;
4389
4390out_unlock:
4391	rcu_read_unlock();
4392	return retval;
4393}
4394
4395static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4396
4397void sched_show_task(struct task_struct *p)
4398{
4399	unsigned long free = 0;
4400	int ppid;
4401	unsigned state;
4402
4403	state = p->state ? __ffs(p->state) + 1 : 0;
4404	printk(KERN_INFO "%-15.15s %c", p->comm,
4405		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4406#if BITS_PER_LONG == 32
4407	if (state == TASK_RUNNING)
4408		printk(KERN_CONT " running  ");
4409	else
4410		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4411#else
4412	if (state == TASK_RUNNING)
4413		printk(KERN_CONT "  running task    ");
4414	else
4415		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4416#endif
4417#ifdef CONFIG_DEBUG_STACK_USAGE
4418	free = stack_not_used(p);
4419#endif
4420	rcu_read_lock();
4421	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4422	rcu_read_unlock();
4423	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4424		task_pid_nr(p), ppid,
4425		(unsigned long)task_thread_info(p)->flags);
4426
4427	print_worker_info(KERN_INFO, p);
4428	show_stack(p, NULL);
4429}
4430
4431void show_state_filter(unsigned long state_filter)
4432{
4433	struct task_struct *g, *p;
4434
4435#if BITS_PER_LONG == 32
4436	printk(KERN_INFO
4437		"  task                PC stack   pid father\n");
4438#else
4439	printk(KERN_INFO
4440		"  task                        PC stack   pid father\n");
4441#endif
4442	rcu_read_lock();
4443	do_each_thread(g, p) {
4444		/*
4445		 * reset the NMI-timeout, listing all files on a slow
4446		 * console might take a lot of time:
4447		 */
4448		touch_nmi_watchdog();
4449		if (!state_filter || (p->state & state_filter))
4450			sched_show_task(p);
4451	} while_each_thread(g, p);
4452
4453	touch_all_softlockup_watchdogs();
4454
4455#ifdef CONFIG_SCHED_DEBUG
4456	sysrq_sched_debug_show();
4457#endif
4458	rcu_read_unlock();
4459	/*
4460	 * Only show locks if all tasks are dumped:
4461	 */
4462	if (!state_filter)
4463		debug_show_all_locks();
4464}
4465
4466void init_idle_bootup_task(struct task_struct *idle)
4467{
4468	idle->sched_class = &idle_sched_class;
4469}
4470
4471/**
4472 * init_idle - set up an idle thread for a given CPU
4473 * @idle: task in question
4474 * @cpu: cpu the idle task belongs to
4475 *
4476 * NOTE: this function does not set the idle thread's NEED_RESCHED
4477 * flag, to make booting more robust.
4478 */
4479void init_idle(struct task_struct *idle, int cpu)
4480{
4481	struct rq *rq = cpu_rq(cpu);
4482	unsigned long flags;
4483
4484	raw_spin_lock_irqsave(&rq->lock, flags);
4485
4486	__sched_fork(0, idle);
4487	idle->state = TASK_RUNNING;
4488	idle->se.exec_start = sched_clock();
4489
4490	do_set_cpus_allowed(idle, cpumask_of(cpu));
4491	/*
4492	 * We're having a chicken and egg problem, even though we are
4493	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4494	 * lockdep check in task_group() will fail.
4495	 *
4496	 * Similar case to sched_fork(). / Alternatively we could
4497	 * use task_rq_lock() here and obtain the other rq->lock.
4498	 *
4499	 * Silence PROVE_RCU
4500	 */
4501	rcu_read_lock();
4502	__set_task_cpu(idle, cpu);
4503	rcu_read_unlock();
4504
4505	rq->curr = rq->idle = idle;
4506	idle->on_rq = 1;
4507#if defined(CONFIG_SMP)
4508	idle->on_cpu = 1;
4509#endif
4510	raw_spin_unlock_irqrestore(&rq->lock, flags);
4511
4512	/* Set the preempt count _outside_ the spinlocks! */
4513	init_idle_preempt_count(idle, cpu);
4514
4515	/*
4516	 * The idle tasks have their own, simple scheduling class:
4517	 */
4518	idle->sched_class = &idle_sched_class;
4519	ftrace_graph_init_idle_task(idle, cpu);
4520	vtime_init_idle(idle, cpu);
4521#if defined(CONFIG_SMP)
4522	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4523#endif
4524}
4525
4526#ifdef CONFIG_SMP
4527void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4528{
4529	if (p->sched_class && p->sched_class->set_cpus_allowed)
4530		p->sched_class->set_cpus_allowed(p, new_mask);
4531
4532	cpumask_copy(&p->cpus_allowed, new_mask);
4533	p->nr_cpus_allowed = cpumask_weight(new_mask);
4534}
4535
4536/*
4537 * This is how migration works:
4538 *
4539 * 1) we invoke migration_cpu_stop() on the target CPU using
4540 *    stop_one_cpu().
4541 * 2) stopper starts to run (implicitly forcing the migrated thread
4542 *    off the CPU)
4543 * 3) it checks whether the migrated task is still in the wrong runqueue.
4544 * 4) if it's in the wrong runqueue then the migration thread removes
4545 *    it and puts it into the right queue.
4546 * 5) stopper completes and stop_one_cpu() returns and the migration
4547 *    is done.
4548 */
4549
4550/*
4551 * Change a given task's CPU affinity. Migrate the thread to a
4552 * proper CPU and schedule it away if the CPU it's executing on
4553 * is removed from the allowed bitmask.
4554 *
4555 * NOTE: the caller must have a valid reference to the task, the
4556 * task must not exit() & deallocate itself prematurely. The
4557 * call is not atomic; no spinlocks may be held.
4558 */
4559int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4560{
4561	unsigned long flags;
4562	struct rq *rq;
4563	unsigned int dest_cpu;
4564	int ret = 0;
4565
4566	rq = task_rq_lock(p, &flags);
4567
4568	if (cpumask_equal(&p->cpus_allowed, new_mask))
4569		goto out;
4570
4571	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4572		ret = -EINVAL;
4573		goto out;
4574	}
4575
4576	do_set_cpus_allowed(p, new_mask);
4577
4578	/* Can the task run on the task's current CPU? If so, we're done */
4579	if (cpumask_test_cpu(task_cpu(p), new_mask))
4580		goto out;
4581
4582	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4583	if (p->on_rq) {
4584		struct migration_arg arg = { p, dest_cpu };
4585		/* Need help from migration thread: drop lock and wait. */
4586		task_rq_unlock(rq, p, &flags);
4587		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4588		tlb_migrate_finish(p->mm);
4589		return 0;
4590	}
4591out:
4592	task_rq_unlock(rq, p, &flags);
4593
4594	return ret;
4595}
4596EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4597
4598/*
4599 * Move (not current) task off this cpu, onto dest cpu. We're doing
4600 * this because either it can't run here any more (set_cpus_allowed()
4601 * away from this CPU, or CPU going down), or because we're
4602 * attempting to rebalance this task on exec (sched_exec).
4603 *
4604 * So we race with normal scheduler movements, but that's OK, as long
4605 * as the task is no longer on this CPU.
4606 *
4607 * Returns non-zero if task was successfully migrated.
4608 */
4609static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4610{
4611	struct rq *rq_dest, *rq_src;
4612	int ret = 0;
4613
4614	if (unlikely(!cpu_active(dest_cpu)))
4615		return ret;
4616
4617	rq_src = cpu_rq(src_cpu);
4618	rq_dest = cpu_rq(dest_cpu);
4619
4620	raw_spin_lock(&p->pi_lock);
4621	double_rq_lock(rq_src, rq_dest);
4622	/* Already moved. */
4623	if (task_cpu(p) != src_cpu)
4624		goto done;
4625	/* Affinity changed (again). */
4626	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4627		goto fail;
4628
4629	/*
4630	 * If we're not on a rq, the next wake-up will ensure we're
4631	 * placed properly.
4632	 */
4633	if (p->on_rq) {
4634		dequeue_task(rq_src, p, 0);
4635		set_task_cpu(p, dest_cpu);
4636		enqueue_task(rq_dest, p, 0);
4637		check_preempt_curr(rq_dest, p, 0);
4638	}
4639done:
4640	ret = 1;
4641fail:
4642	double_rq_unlock(rq_src, rq_dest);
4643	raw_spin_unlock(&p->pi_lock);
4644	return ret;
4645}
4646
4647#ifdef CONFIG_NUMA_BALANCING
4648/* Migrate current task p to target_cpu */
4649int migrate_task_to(struct task_struct *p, int target_cpu)
4650{
4651	struct migration_arg arg = { p, target_cpu };
4652	int curr_cpu = task_cpu(p);
4653
4654	if (curr_cpu == target_cpu)
4655		return 0;
4656
4657	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4658		return -EINVAL;
4659
4660	/* TODO: This is not properly updating schedstats */
4661
4662	trace_sched_move_numa(p, curr_cpu, target_cpu);
4663	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4664}
4665
4666/*
4667 * Requeue a task on a given node and accurately track the number of NUMA
4668 * tasks on the runqueues
4669 */
4670void sched_setnuma(struct task_struct *p, int nid)
4671{
4672	struct rq *rq;
4673	unsigned long flags;
4674	bool on_rq, running;
4675
4676	rq = task_rq_lock(p, &flags);
4677	on_rq = p->on_rq;
4678	running = task_current(rq, p);
4679
4680	if (on_rq)
4681		dequeue_task(rq, p, 0);
4682	if (running)
4683		p->sched_class->put_prev_task(rq, p);
4684
4685	p->numa_preferred_nid = nid;
4686
4687	if (running)
4688		p->sched_class->set_curr_task(rq);
4689	if (on_rq)
4690		enqueue_task(rq, p, 0);
4691	task_rq_unlock(rq, p, &flags);
4692}
4693#endif
4694
4695/*
4696 * migration_cpu_stop - this will be executed by a highprio stopper thread
4697 * and performs thread migration by bumping thread off CPU then
4698 * 'pushing' onto another runqueue.
4699 */
4700static int migration_cpu_stop(void *data)
4701{
4702	struct migration_arg *arg = data;
4703
4704	/*
4705	 * The original target cpu might have gone down and we might
4706	 * be on another cpu but it doesn't matter.
4707	 */
4708	local_irq_disable();
4709	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4710	local_irq_enable();
4711	return 0;
4712}
4713
4714#ifdef CONFIG_HOTPLUG_CPU
4715
4716/*
4717 * Ensures that the idle task is using init_mm right before its cpu goes
4718 * offline.
4719 */
4720void idle_task_exit(void)
4721{
4722	struct mm_struct *mm = current->active_mm;
4723
4724	BUG_ON(cpu_online(smp_processor_id()));
4725
4726	if (mm != &init_mm) {
4727		switch_mm(mm, &init_mm, current);
4728		finish_arch_post_lock_switch();
4729	}
4730	mmdrop(mm);
4731}
4732
4733/*
4734 * Since this CPU is going 'away' for a while, fold any nr_active delta
4735 * we might have. Assumes we're called after migrate_tasks() so that the
4736 * nr_active count is stable.
4737 *
4738 * Also see the comment "Global load-average calculations".
4739 */
4740static void calc_load_migrate(struct rq *rq)
4741{
4742	long delta = calc_load_fold_active(rq);
4743	if (delta)
4744		atomic_long_add(delta, &calc_load_tasks);
4745}
4746
4747static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4748{
4749}
4750
4751static const struct sched_class fake_sched_class = {
4752	.put_prev_task = put_prev_task_fake,
4753};
4754
4755static struct task_struct fake_task = {
4756	/*
4757	 * Avoid pull_{rt,dl}_task()
4758	 */
4759	.prio = MAX_PRIO + 1,
4760	.sched_class = &fake_sched_class,
4761};
4762
4763/*
4764 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4765 * try_to_wake_up()->select_task_rq().
4766 *
4767 * Called with rq->lock held even though we'er in stop_machine() and
4768 * there's no concurrency possible, we hold the required locks anyway
4769 * because of lock validation efforts.
4770 */
4771static void migrate_tasks(unsigned int dead_cpu)
4772{
4773	struct rq *rq = cpu_rq(dead_cpu);
4774	struct task_struct *next, *stop = rq->stop;
4775	int dest_cpu;
4776
4777	/*
4778	 * Fudge the rq selection such that the below task selection loop
4779	 * doesn't get stuck on the currently eligible stop task.
4780	 *
4781	 * We're currently inside stop_machine() and the rq is either stuck
4782	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4783	 * either way we should never end up calling schedule() until we're
4784	 * done here.
4785	 */
4786	rq->stop = NULL;
4787
4788	/*
4789	 * put_prev_task() and pick_next_task() sched
4790	 * class method both need to have an up-to-date
4791	 * value of rq->clock[_task]
4792	 */
4793	update_rq_clock(rq);
4794
4795	for ( ; ; ) {
4796		/*
4797		 * There's this thread running, bail when that's the only
4798		 * remaining thread.
4799		 */
4800		if (rq->nr_running == 1)
4801			break;
4802
4803		next = pick_next_task(rq, &fake_task);
4804		BUG_ON(!next);
4805		next->sched_class->put_prev_task(rq, next);
4806
4807		/* Find suitable destination for @next, with force if needed. */
4808		dest_cpu = select_fallback_rq(dead_cpu, next);
4809		raw_spin_unlock(&rq->lock);
4810
4811		__migrate_task(next, dead_cpu, dest_cpu);
4812
4813		raw_spin_lock(&rq->lock);
4814	}
4815
4816	rq->stop = stop;
4817}
4818
4819#endif /* CONFIG_HOTPLUG_CPU */
4820
4821#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4822
4823static struct ctl_table sd_ctl_dir[] = {
4824	{
4825		.procname	= "sched_domain",
4826		.mode		= 0555,
4827	},
4828	{}
4829};
4830
4831static struct ctl_table sd_ctl_root[] = {
4832	{
4833		.procname	= "kernel",
4834		.mode		= 0555,
4835		.child		= sd_ctl_dir,
4836	},
4837	{}
4838};
4839
4840static struct ctl_table *sd_alloc_ctl_entry(int n)
4841{
4842	struct ctl_table *entry =
4843		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4844
4845	return entry;
4846}
4847
4848static void sd_free_ctl_entry(struct ctl_table **tablep)
4849{
4850	struct ctl_table *entry;
4851
4852	/*
4853	 * In the intermediate directories, both the child directory and
4854	 * procname are dynamically allocated and could fail but the mode
4855	 * will always be set. In the lowest directory the names are
4856	 * static strings and all have proc handlers.
4857	 */
4858	for (entry = *tablep; entry->mode; entry++) {
4859		if (entry->child)
4860			sd_free_ctl_entry(&entry->child);
4861		if (entry->proc_handler == NULL)
4862			kfree(entry->procname);
4863	}
4864
4865	kfree(*tablep);
4866	*tablep = NULL;
4867}
4868
4869static int min_load_idx = 0;
4870static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4871
4872static void
4873set_table_entry(struct ctl_table *entry,
4874		const char *procname, void *data, int maxlen,
4875		umode_t mode, proc_handler *proc_handler,
4876		bool load_idx)
4877{
4878	entry->procname = procname;
4879	entry->data = data;
4880	entry->maxlen = maxlen;
4881	entry->mode = mode;
4882	entry->proc_handler = proc_handler;
4883
4884	if (load_idx) {
4885		entry->extra1 = &min_load_idx;
4886		entry->extra2 = &max_load_idx;
4887	}
4888}
4889
4890static struct ctl_table *
4891sd_alloc_ctl_domain_table(struct sched_domain *sd)
4892{
4893	struct ctl_table *table = sd_alloc_ctl_entry(14);
4894
4895	if (table == NULL)
4896		return NULL;
4897
4898	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4899		sizeof(long), 0644, proc_doulongvec_minmax, false);
4900	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4901		sizeof(long), 0644, proc_doulongvec_minmax, false);
4902	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4903		sizeof(int), 0644, proc_dointvec_minmax, true);
4904	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4905		sizeof(int), 0644, proc_dointvec_minmax, true);
4906	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4907		sizeof(int), 0644, proc_dointvec_minmax, true);
4908	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4909		sizeof(int), 0644, proc_dointvec_minmax, true);
4910	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4911		sizeof(int), 0644, proc_dointvec_minmax, true);
4912	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4913		sizeof(int), 0644, proc_dointvec_minmax, false);
4914	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4915		sizeof(int), 0644, proc_dointvec_minmax, false);
4916	set_table_entry(&table[9], "cache_nice_tries",
4917		&sd->cache_nice_tries,
4918		sizeof(int), 0644, proc_dointvec_minmax, false);
4919	set_table_entry(&table[10], "flags", &sd->flags,
4920		sizeof(int), 0644, proc_dointvec_minmax, false);
4921	set_table_entry(&table[11], "max_newidle_lb_cost",
4922		&sd->max_newidle_lb_cost,
4923		sizeof(long), 0644, proc_doulongvec_minmax, false);
4924	set_table_entry(&table[12], "name", sd->name,
4925		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4926	/* &table[13] is terminator */
4927
4928	return table;
4929}
4930
4931static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4932{
4933	struct ctl_table *entry, *table;
4934	struct sched_domain *sd;
4935	int domain_num = 0, i;
4936	char buf[32];
4937
4938	for_each_domain(cpu, sd)
4939		domain_num++;
4940	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4941	if (table == NULL)
4942		return NULL;
4943
4944	i = 0;
4945	for_each_domain(cpu, sd) {
4946		snprintf(buf, 32, "domain%d", i);
4947		entry->procname = kstrdup(buf, GFP_KERNEL);
4948		entry->mode = 0555;
4949		entry->child = sd_alloc_ctl_domain_table(sd);
4950		entry++;
4951		i++;
4952	}
4953	return table;
4954}
4955
4956static struct ctl_table_header *sd_sysctl_header;
4957static void register_sched_domain_sysctl(void)
4958{
4959	int i, cpu_num = num_possible_cpus();
4960	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4961	char buf[32];
4962
4963	WARN_ON(sd_ctl_dir[0].child);
4964	sd_ctl_dir[0].child = entry;
4965
4966	if (entry == NULL)
4967		return;
4968
4969	for_each_possible_cpu(i) {
4970		snprintf(buf, 32, "cpu%d", i);
4971		entry->procname = kstrdup(buf, GFP_KERNEL);
4972		entry->mode = 0555;
4973		entry->child = sd_alloc_ctl_cpu_table(i);
4974		entry++;
4975	}
4976
4977	WARN_ON(sd_sysctl_header);
4978	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4979}
4980
4981/* may be called multiple times per register */
4982static void unregister_sched_domain_sysctl(void)
4983{
4984	if (sd_sysctl_header)
4985		unregister_sysctl_table(sd_sysctl_header);
4986	sd_sysctl_header = NULL;
4987	if (sd_ctl_dir[0].child)
4988		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4989}
4990#else
4991static void register_sched_domain_sysctl(void)
4992{
4993}
4994static void unregister_sched_domain_sysctl(void)
4995{
4996}
4997#endif
4998
4999static void set_rq_online(struct rq *rq)
5000{
5001	if (!rq->online) {
5002		const struct sched_class *class;
5003
5004		cpumask_set_cpu(rq->cpu, rq->rd->online);
5005		rq->online = 1;
5006
5007		for_each_class(class) {
5008			if (class->rq_online)
5009				class->rq_online(rq);
5010		}
5011	}
5012}
5013
5014static void set_rq_offline(struct rq *rq)
5015{
5016	if (rq->online) {
5017		const struct sched_class *class;
5018
5019		for_each_class(class) {
5020			if (class->rq_offline)
5021				class->rq_offline(rq);
5022		}
5023
5024		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5025		rq->online = 0;
5026	}
5027}
5028
5029/*
5030 * migration_call - callback that gets triggered when a CPU is added.
5031 * Here we can start up the necessary migration thread for the new CPU.
5032 */
5033static int
5034migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5035{
5036	int cpu = (long)hcpu;
5037	unsigned long flags;
5038	struct rq *rq = cpu_rq(cpu);
5039
5040	switch (action & ~CPU_TASKS_FROZEN) {
5041
5042	case CPU_UP_PREPARE:
5043		rq->calc_load_update = calc_load_update;
5044		break;
5045
5046	case CPU_ONLINE:
5047		/* Update our root-domain */
5048		raw_spin_lock_irqsave(&rq->lock, flags);
5049		if (rq->rd) {
5050			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5051
5052			set_rq_online(rq);
5053		}
5054		raw_spin_unlock_irqrestore(&rq->lock, flags);
5055		break;
5056
5057#ifdef CONFIG_HOTPLUG_CPU
5058	case CPU_DYING:
5059		sched_ttwu_pending();
5060		/* Update our root-domain */
5061		raw_spin_lock_irqsave(&rq->lock, flags);
5062		if (rq->rd) {
5063			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5064			set_rq_offline(rq);
5065		}
5066		migrate_tasks(cpu);
5067		BUG_ON(rq->nr_running != 1); /* the migration thread */
5068		raw_spin_unlock_irqrestore(&rq->lock, flags);
5069		break;
5070
5071	case CPU_DEAD:
5072		calc_load_migrate(rq);
5073		break;
5074#endif
5075	}
5076
5077	update_max_interval();
5078
5079	return NOTIFY_OK;
5080}
5081
5082/*
5083 * Register at high priority so that task migration (migrate_all_tasks)
5084 * happens before everything else.  This has to be lower priority than
5085 * the notifier in the perf_event subsystem, though.
5086 */
5087static struct notifier_block migration_notifier = {
5088	.notifier_call = migration_call,
5089	.priority = CPU_PRI_MIGRATION,
5090};
5091
5092static void __cpuinit set_cpu_rq_start_time(void)
5093{
5094	int cpu = smp_processor_id();
5095	struct rq *rq = cpu_rq(cpu);
5096	rq->age_stamp = sched_clock_cpu(cpu);
5097}
5098
5099static int sched_cpu_active(struct notifier_block *nfb,
5100				      unsigned long action, void *hcpu)
5101{
5102	switch (action & ~CPU_TASKS_FROZEN) {
5103	case CPU_STARTING:
5104		set_cpu_rq_start_time();
5105		return NOTIFY_OK;
5106	case CPU_DOWN_FAILED:
5107		set_cpu_active((long)hcpu, true);
5108		return NOTIFY_OK;
5109	default:
5110		return NOTIFY_DONE;
5111	}
5112}
5113
5114static int sched_cpu_inactive(struct notifier_block *nfb,
5115					unsigned long action, void *hcpu)
5116{
5117	unsigned long flags;
5118	long cpu = (long)hcpu;
5119
5120	switch (action & ~CPU_TASKS_FROZEN) {
5121	case CPU_DOWN_PREPARE:
5122		set_cpu_active(cpu, false);
5123
5124		/* explicitly allow suspend */
5125		if (!(action & CPU_TASKS_FROZEN)) {
5126			struct dl_bw *dl_b = dl_bw_of(cpu);
5127			bool overflow;
5128			int cpus;
5129
5130			raw_spin_lock_irqsave(&dl_b->lock, flags);
5131			cpus = dl_bw_cpus(cpu);
5132			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5133			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5134
5135			if (overflow)
5136				return notifier_from_errno(-EBUSY);
5137		}
5138		return NOTIFY_OK;
5139	}
5140
5141	return NOTIFY_DONE;
5142}
5143
5144static int __init migration_init(void)
5145{
5146	void *cpu = (void *)(long)smp_processor_id();
5147	int err;
5148
5149	/* Initialize migration for the boot CPU */
5150	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5151	BUG_ON(err == NOTIFY_BAD);
5152	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5153	register_cpu_notifier(&migration_notifier);
5154
5155	/* Register cpu active notifiers */
5156	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5157	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5158
5159	return 0;
5160}
5161early_initcall(migration_init);
5162#endif
5163
5164#ifdef CONFIG_SMP
5165
5166static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5167
5168#ifdef CONFIG_SCHED_DEBUG
5169
5170static __read_mostly int sched_debug_enabled;
5171
5172static int __init sched_debug_setup(char *str)
5173{
5174	sched_debug_enabled = 1;
5175
5176	return 0;
5177}
5178early_param("sched_debug", sched_debug_setup);
5179
5180static inline bool sched_debug(void)
5181{
5182	return sched_debug_enabled;
5183}
5184
5185static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5186				  struct cpumask *groupmask)
5187{
5188	struct sched_group *group = sd->groups;
5189	char str[256];
5190
5191	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5192	cpumask_clear(groupmask);
5193
5194	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5195
5196	if (!(sd->flags & SD_LOAD_BALANCE)) {
5197		printk("does not load-balance\n");
5198		if (sd->parent)
5199			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5200					" has parent");
5201		return -1;
5202	}
5203
5204	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5205
5206	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5207		printk(KERN_ERR "ERROR: domain->span does not contain "
5208				"CPU%d\n", cpu);
5209	}
5210	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5211		printk(KERN_ERR "ERROR: domain->groups does not contain"
5212				" CPU%d\n", cpu);
5213	}
5214
5215	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5216	do {
5217		if (!group) {
5218			printk("\n");
5219			printk(KERN_ERR "ERROR: group is NULL\n");
5220			break;
5221		}
5222
5223		/*
5224		 * Even though we initialize ->capacity to something semi-sane,
5225		 * we leave capacity_orig unset. This allows us to detect if
5226		 * domain iteration is still funny without causing /0 traps.
5227		 */
5228		if (!group->sgc->capacity_orig) {
5229			printk(KERN_CONT "\n");
5230			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5231			break;
5232		}
5233
5234		if (!cpumask_weight(sched_group_cpus(group))) {
5235			printk(KERN_CONT "\n");
5236			printk(KERN_ERR "ERROR: empty group\n");
5237			break;
5238		}
5239
5240		if (!(sd->flags & SD_OVERLAP) &&
5241		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5242			printk(KERN_CONT "\n");
5243			printk(KERN_ERR "ERROR: repeated CPUs\n");
5244			break;
5245		}
5246
5247		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5248
5249		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5250
5251		printk(KERN_CONT " %s", str);
5252		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5253			printk(KERN_CONT " (cpu_capacity = %d)",
5254				group->sgc->capacity);
5255		}
5256
5257		group = group->next;
5258	} while (group != sd->groups);
5259	printk(KERN_CONT "\n");
5260
5261	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5262		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5263
5264	if (sd->parent &&
5265	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5266		printk(KERN_ERR "ERROR: parent span is not a superset "
5267			"of domain->span\n");
5268	return 0;
5269}
5270
5271static void sched_domain_debug(struct sched_domain *sd, int cpu)
5272{
5273	int level = 0;
5274
5275	if (!sched_debug_enabled)
5276		return;
5277
5278	if (!sd) {
5279		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5280		return;
5281	}
5282
5283	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5284
5285	for (;;) {
5286		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5287			break;
5288		level++;
5289		sd = sd->parent;
5290		if (!sd)
5291			break;
5292	}
5293}
5294#else /* !CONFIG_SCHED_DEBUG */
5295# define sched_domain_debug(sd, cpu) do { } while (0)
5296static inline bool sched_debug(void)
5297{
5298	return false;
5299}
5300#endif /* CONFIG_SCHED_DEBUG */
5301
5302static int sd_degenerate(struct sched_domain *sd)
5303{
5304	if (cpumask_weight(sched_domain_span(sd)) == 1)
5305		return 1;
5306
5307	/* Following flags need at least 2 groups */
5308	if (sd->flags & (SD_LOAD_BALANCE |
5309			 SD_BALANCE_NEWIDLE |
5310			 SD_BALANCE_FORK |
5311			 SD_BALANCE_EXEC |
5312			 SD_SHARE_CPUCAPACITY |
5313			 SD_SHARE_PKG_RESOURCES |
5314			 SD_SHARE_POWERDOMAIN)) {
5315		if (sd->groups != sd->groups->next)
5316			return 0;
5317	}
5318
5319	/* Following flags don't use groups */
5320	if (sd->flags & (SD_WAKE_AFFINE))
5321		return 0;
5322
5323	return 1;
5324}
5325
5326static int
5327sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5328{
5329	unsigned long cflags = sd->flags, pflags = parent->flags;
5330
5331	if (sd_degenerate(parent))
5332		return 1;
5333
5334	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5335		return 0;
5336
5337	/* Flags needing groups don't count if only 1 group in parent */
5338	if (parent->groups == parent->groups->next) {
5339		pflags &= ~(SD_LOAD_BALANCE |
5340				SD_BALANCE_NEWIDLE |
5341				SD_BALANCE_FORK |
5342				SD_BALANCE_EXEC |
5343				SD_SHARE_CPUCAPACITY |
5344				SD_SHARE_PKG_RESOURCES |
5345				SD_PREFER_SIBLING |
5346				SD_SHARE_POWERDOMAIN);
5347		if (nr_node_ids == 1)
5348			pflags &= ~SD_SERIALIZE;
5349	}
5350	if (~cflags & pflags)
5351		return 0;
5352
5353	return 1;
5354}
5355
5356static void free_rootdomain(struct rcu_head *rcu)
5357{
5358	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5359
5360	cpupri_cleanup(&rd->cpupri);
5361	cpudl_cleanup(&rd->cpudl);
5362	free_cpumask_var(rd->dlo_mask);
5363	free_cpumask_var(rd->rto_mask);
5364	free_cpumask_var(rd->online);
5365	free_cpumask_var(rd->span);
5366	kfree(rd);
5367}
5368
5369static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5370{
5371	struct root_domain *old_rd = NULL;
5372	unsigned long flags;
5373
5374	raw_spin_lock_irqsave(&rq->lock, flags);
5375
5376	if (rq->rd) {
5377		old_rd = rq->rd;
5378
5379		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5380			set_rq_offline(rq);
5381
5382		cpumask_clear_cpu(rq->cpu, old_rd->span);
5383
5384		/*
5385		 * If we dont want to free the old_rd yet then
5386		 * set old_rd to NULL to skip the freeing later
5387		 * in this function:
5388		 */
5389		if (!atomic_dec_and_test(&old_rd->refcount))
5390			old_rd = NULL;
5391	}
5392
5393	atomic_inc(&rd->refcount);
5394	rq->rd = rd;
5395
5396	cpumask_set_cpu(rq->cpu, rd->span);
5397	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5398		set_rq_online(rq);
5399
5400	raw_spin_unlock_irqrestore(&rq->lock, flags);
5401
5402	if (old_rd)
5403		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5404}
5405
5406static int init_rootdomain(struct root_domain *rd)
5407{
5408	memset(rd, 0, sizeof(*rd));
5409
5410	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5411		goto out;
5412	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5413		goto free_span;
5414	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5415		goto free_online;
5416	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5417		goto free_dlo_mask;
5418
5419	init_dl_bw(&rd->dl_bw);
5420	if (cpudl_init(&rd->cpudl) != 0)
5421		goto free_dlo_mask;
5422
5423	if (cpupri_init(&rd->cpupri) != 0)
5424		goto free_rto_mask;
5425	return 0;
5426
5427free_rto_mask:
5428	free_cpumask_var(rd->rto_mask);
5429free_dlo_mask:
5430	free_cpumask_var(rd->dlo_mask);
5431free_online:
5432	free_cpumask_var(rd->online);
5433free_span:
5434	free_cpumask_var(rd->span);
5435out:
5436	return -ENOMEM;
5437}
5438
5439/*
5440 * By default the system creates a single root-domain with all cpus as
5441 * members (mimicking the global state we have today).
5442 */
5443struct root_domain def_root_domain;
5444
5445static void init_defrootdomain(void)
5446{
5447	init_rootdomain(&def_root_domain);
5448
5449	atomic_set(&def_root_domain.refcount, 1);
5450}
5451
5452static struct root_domain *alloc_rootdomain(void)
5453{
5454	struct root_domain *rd;
5455
5456	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5457	if (!rd)
5458		return NULL;
5459
5460	if (init_rootdomain(rd) != 0) {
5461		kfree(rd);
5462		return NULL;
5463	}
5464
5465	return rd;
5466}
5467
5468static void free_sched_groups(struct sched_group *sg, int free_sgc)
5469{
5470	struct sched_group *tmp, *first;
5471
5472	if (!sg)
5473		return;
5474
5475	first = sg;
5476	do {
5477		tmp = sg->next;
5478
5479		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5480			kfree(sg->sgc);
5481
5482		kfree(sg);
5483		sg = tmp;
5484	} while (sg != first);
5485}
5486
5487static void free_sched_domain(struct rcu_head *rcu)
5488{
5489	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5490
5491	/*
5492	 * If its an overlapping domain it has private groups, iterate and
5493	 * nuke them all.
5494	 */
5495	if (sd->flags & SD_OVERLAP) {
5496		free_sched_groups(sd->groups, 1);
5497	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5498		kfree(sd->groups->sgc);
5499		kfree(sd->groups);
5500	}
5501	kfree(sd);
5502}
5503
5504static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5505{
5506	call_rcu(&sd->rcu, free_sched_domain);
5507}
5508
5509static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5510{
5511	for (; sd; sd = sd->parent)
5512		destroy_sched_domain(sd, cpu);
5513}
5514
5515/*
5516 * Keep a special pointer to the highest sched_domain that has
5517 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5518 * allows us to avoid some pointer chasing select_idle_sibling().
5519 *
5520 * Also keep a unique ID per domain (we use the first cpu number in
5521 * the cpumask of the domain), this allows us to quickly tell if
5522 * two cpus are in the same cache domain, see cpus_share_cache().
5523 */
5524DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5525DEFINE_PER_CPU(int, sd_llc_size);
5526DEFINE_PER_CPU(int, sd_llc_id);
5527DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5528DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5529DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5530
5531static void update_top_cache_domain(int cpu)
5532{
5533	struct sched_domain *sd;
5534	struct sched_domain *busy_sd = NULL;
5535	int id = cpu;
5536	int size = 1;
5537
5538	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5539	if (sd) {
5540		id = cpumask_first(sched_domain_span(sd));
5541		size = cpumask_weight(sched_domain_span(sd));
5542		busy_sd = sd->parent; /* sd_busy */
5543	}
5544	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5545
5546	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5547	per_cpu(sd_llc_size, cpu) = size;
5548	per_cpu(sd_llc_id, cpu) = id;
5549
5550	sd = lowest_flag_domain(cpu, SD_NUMA);
5551	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5552
5553	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5554	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5555}
5556
5557/*
5558 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5559 * hold the hotplug lock.
5560 */
5561static void
5562cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5563{
5564	struct rq *rq = cpu_rq(cpu);
5565	struct sched_domain *tmp;
5566
5567	/* Remove the sched domains which do not contribute to scheduling. */
5568	for (tmp = sd; tmp; ) {
5569		struct sched_domain *parent = tmp->parent;
5570		if (!parent)
5571			break;
5572
5573		if (sd_parent_degenerate(tmp, parent)) {
5574			tmp->parent = parent->parent;
5575			if (parent->parent)
5576				parent->parent->child = tmp;
5577			/*
5578			 * Transfer SD_PREFER_SIBLING down in case of a
5579			 * degenerate parent; the spans match for this
5580			 * so the property transfers.
5581			 */
5582			if (parent->flags & SD_PREFER_SIBLING)
5583				tmp->flags |= SD_PREFER_SIBLING;
5584			destroy_sched_domain(parent, cpu);
5585		} else
5586			tmp = tmp->parent;
5587	}
5588
5589	if (sd && sd_degenerate(sd)) {
5590		tmp = sd;
5591		sd = sd->parent;
5592		destroy_sched_domain(tmp, cpu);
5593		if (sd)
5594			sd->child = NULL;
5595	}
5596
5597	sched_domain_debug(sd, cpu);
5598
5599	rq_attach_root(rq, rd);
5600	tmp = rq->sd;
5601	rcu_assign_pointer(rq->sd, sd);
5602	destroy_sched_domains(tmp, cpu);
5603
5604	update_top_cache_domain(cpu);
5605}
5606
5607/* cpus with isolated domains */
5608static cpumask_var_t cpu_isolated_map;
5609
5610/* Setup the mask of cpus configured for isolated domains */
5611static int __init isolated_cpu_setup(char *str)
5612{
5613	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5614	cpulist_parse(str, cpu_isolated_map);
5615	return 1;
5616}
5617
5618__setup("isolcpus=", isolated_cpu_setup);
5619
5620struct s_data {
5621	struct sched_domain ** __percpu sd;
5622	struct root_domain	*rd;
5623};
5624
5625enum s_alloc {
5626	sa_rootdomain,
5627	sa_sd,
5628	sa_sd_storage,
5629	sa_none,
5630};
5631
5632/*
5633 * Build an iteration mask that can exclude certain CPUs from the upwards
5634 * domain traversal.
5635 *
5636 * Asymmetric node setups can result in situations where the domain tree is of
5637 * unequal depth, make sure to skip domains that already cover the entire
5638 * range.
5639 *
5640 * In that case build_sched_domains() will have terminated the iteration early
5641 * and our sibling sd spans will be empty. Domains should always include the
5642 * cpu they're built on, so check that.
5643 *
5644 */
5645static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5646{
5647	const struct cpumask *span = sched_domain_span(sd);
5648	struct sd_data *sdd = sd->private;
5649	struct sched_domain *sibling;
5650	int i;
5651
5652	for_each_cpu(i, span) {
5653		sibling = *per_cpu_ptr(sdd->sd, i);
5654		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5655			continue;
5656
5657		cpumask_set_cpu(i, sched_group_mask(sg));
5658	}
5659}
5660
5661/*
5662 * Return the canonical balance cpu for this group, this is the first cpu
5663 * of this group that's also in the iteration mask.
5664 */
5665int group_balance_cpu(struct sched_group *sg)
5666{
5667	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5668}
5669
5670static int
5671build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5672{
5673	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5674	const struct cpumask *span = sched_domain_span(sd);
5675	struct cpumask *covered = sched_domains_tmpmask;
5676	struct sd_data *sdd = sd->private;
5677	struct sched_domain *child;
5678	int i;
5679
5680	cpumask_clear(covered);
5681
5682	for_each_cpu(i, span) {
5683		struct cpumask *sg_span;
5684
5685		if (cpumask_test_cpu(i, covered))
5686			continue;
5687
5688		child = *per_cpu_ptr(sdd->sd, i);
5689
5690		/* See the comment near build_group_mask(). */
5691		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5692			continue;
5693
5694		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5695				GFP_KERNEL, cpu_to_node(cpu));
5696
5697		if (!sg)
5698			goto fail;
5699
5700		sg_span = sched_group_cpus(sg);
5701		if (child->child) {
5702			child = child->child;
5703			cpumask_copy(sg_span, sched_domain_span(child));
5704		} else
5705			cpumask_set_cpu(i, sg_span);
5706
5707		cpumask_or(covered, covered, sg_span);
5708
5709		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5710		if (atomic_inc_return(&sg->sgc->ref) == 1)
5711			build_group_mask(sd, sg);
5712
5713		/*
5714		 * Initialize sgc->capacity such that even if we mess up the
5715		 * domains and no possible iteration will get us here, we won't
5716		 * die on a /0 trap.
5717		 */
5718		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5719		sg->sgc->capacity_orig = sg->sgc->capacity;
5720
5721		/*
5722		 * Make sure the first group of this domain contains the
5723		 * canonical balance cpu. Otherwise the sched_domain iteration
5724		 * breaks. See update_sg_lb_stats().
5725		 */
5726		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5727		    group_balance_cpu(sg) == cpu)
5728			groups = sg;
5729
5730		if (!first)
5731			first = sg;
5732		if (last)
5733			last->next = sg;
5734		last = sg;
5735		last->next = first;
5736	}
5737	sd->groups = groups;
5738
5739	return 0;
5740
5741fail:
5742	free_sched_groups(first, 0);
5743
5744	return -ENOMEM;
5745}
5746
5747static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5748{
5749	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5750	struct sched_domain *child = sd->child;
5751
5752	if (child)
5753		cpu = cpumask_first(sched_domain_span(child));
5754
5755	if (sg) {
5756		*sg = *per_cpu_ptr(sdd->sg, cpu);
5757		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5758		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5759	}
5760
5761	return cpu;
5762}
5763
5764/*
5765 * build_sched_groups will build a circular linked list of the groups
5766 * covered by the given span, and will set each group's ->cpumask correctly,
5767 * and ->cpu_capacity to 0.
5768 *
5769 * Assumes the sched_domain tree is fully constructed
5770 */
5771static int
5772build_sched_groups(struct sched_domain *sd, int cpu)
5773{
5774	struct sched_group *first = NULL, *last = NULL;
5775	struct sd_data *sdd = sd->private;
5776	const struct cpumask *span = sched_domain_span(sd);
5777	struct cpumask *covered;
5778	int i;
5779
5780	get_group(cpu, sdd, &sd->groups);
5781	atomic_inc(&sd->groups->ref);
5782
5783	if (cpu != cpumask_first(span))
5784		return 0;
5785
5786	lockdep_assert_held(&sched_domains_mutex);
5787	covered = sched_domains_tmpmask;
5788
5789	cpumask_clear(covered);
5790
5791	for_each_cpu(i, span) {
5792		struct sched_group *sg;
5793		int group, j;
5794
5795		if (cpumask_test_cpu(i, covered))
5796			continue;
5797
5798		group = get_group(i, sdd, &sg);
5799		cpumask_setall(sched_group_mask(sg));
5800
5801		for_each_cpu(j, span) {
5802			if (get_group(j, sdd, NULL) != group)
5803				continue;
5804
5805			cpumask_set_cpu(j, covered);
5806			cpumask_set_cpu(j, sched_group_cpus(sg));
5807		}
5808
5809		if (!first)
5810			first = sg;
5811		if (last)
5812			last->next = sg;
5813		last = sg;
5814	}
5815	last->next = first;
5816
5817	return 0;
5818}
5819
5820/*
5821 * Initialize sched groups cpu_capacity.
5822 *
5823 * cpu_capacity indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_capacity for all the groups in a sched domain will be same
5826 * unless there are asymmetries in the topology. If there are asymmetries,
5827 * group having more cpu_capacity will pickup more load compared to the
5828 * group having less cpu_capacity.
5829 */
5830static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5831{
5832	struct sched_group *sg = sd->groups;
5833
5834	WARN_ON(!sg);
5835
5836	do {
5837		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838		sg = sg->next;
5839	} while (sg != sd->groups);
5840
5841	if (cpu != group_balance_cpu(sg))
5842		return;
5843
5844	update_group_capacity(sd, cpu);
5845	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5846}
5847
5848/*
5849 * Initializers for schedule domains
5850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5851 */
5852
5853static int default_relax_domain_level = -1;
5854int sched_domain_level_max;
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
5858	if (kstrtoint(str, 0, &default_relax_domain_level))
5859		pr_warn("Unable to set relax_domain_level\n");
5860
5861	return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866				 struct sched_domain_attr *attr)
5867{
5868	int request;
5869
5870	if (!attr || attr->relax_domain_level < 0) {
5871		if (default_relax_domain_level < 0)
5872			return;
5873		else
5874			request = default_relax_domain_level;
5875	} else
5876		request = attr->relax_domain_level;
5877	if (request < sd->level) {
5878		/* turn off idle balance on this domain */
5879		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880	} else {
5881		/* turn on idle balance on this domain */
5882		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883	}
5884}
5885
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890				 const struct cpumask *cpu_map)
5891{
5892	switch (what) {
5893	case sa_rootdomain:
5894		if (!atomic_read(&d->rd->refcount))
5895			free_rootdomain(&d->rd->rcu); /* fall through */
5896	case sa_sd:
5897		free_percpu(d->sd); /* fall through */
5898	case sa_sd_storage:
5899		__sdt_free(cpu_map); /* fall through */
5900	case sa_none:
5901		break;
5902	}
5903}
5904
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906						   const struct cpumask *cpu_map)
5907{
5908	memset(d, 0, sizeof(*d));
5909
5910	if (__sdt_alloc(cpu_map))
5911		return sa_sd_storage;
5912	d->sd = alloc_percpu(struct sched_domain *);
5913	if (!d->sd)
5914		return sa_sd_storage;
5915	d->rd = alloc_rootdomain();
5916	if (!d->rd)
5917		return sa_sd;
5918	return sa_rootdomain;
5919}
5920
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928	struct sd_data *sdd = sd->private;
5929
5930	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
5933	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935
5936	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5937		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5938}
5939
5940#ifdef CONFIG_NUMA
5941static int sched_domains_numa_levels;
5942static int *sched_domains_numa_distance;
5943static struct cpumask ***sched_domains_numa_masks;
5944static int sched_domains_curr_level;
5945#endif
5946
5947/*
5948 * SD_flags allowed in topology descriptions.
5949 *
5950 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
5951 * SD_SHARE_PKG_RESOURCES - describes shared caches
5952 * SD_NUMA                - describes NUMA topologies
5953 * SD_SHARE_POWERDOMAIN   - describes shared power domain
5954 *
5955 * Odd one out:
5956 * SD_ASYM_PACKING        - describes SMT quirks
5957 */
5958#define TOPOLOGY_SD_FLAGS		\
5959	(SD_SHARE_CPUCAPACITY |		\
5960	 SD_SHARE_PKG_RESOURCES |	\
5961	 SD_NUMA |			\
5962	 SD_ASYM_PACKING |		\
5963	 SD_SHARE_POWERDOMAIN)
5964
5965static struct sched_domain *
5966sd_init(struct sched_domain_topology_level *tl, int cpu)
5967{
5968	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5969	int sd_weight, sd_flags = 0;
5970
5971#ifdef CONFIG_NUMA
5972	/*
5973	 * Ugly hack to pass state to sd_numa_mask()...
5974	 */
5975	sched_domains_curr_level = tl->numa_level;
5976#endif
5977
5978	sd_weight = cpumask_weight(tl->mask(cpu));
5979
5980	if (tl->sd_flags)
5981		sd_flags = (*tl->sd_flags)();
5982	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
5983			"wrong sd_flags in topology description\n"))
5984		sd_flags &= ~TOPOLOGY_SD_FLAGS;
5985
5986	*sd = (struct sched_domain){
5987		.min_interval		= sd_weight,
5988		.max_interval		= 2*sd_weight,
5989		.busy_factor		= 32,
5990		.imbalance_pct		= 125,
5991
5992		.cache_nice_tries	= 0,
5993		.busy_idx		= 0,
5994		.idle_idx		= 0,
5995		.newidle_idx		= 0,
5996		.wake_idx		= 0,
5997		.forkexec_idx		= 0,
5998
5999		.flags			= 1*SD_LOAD_BALANCE
6000					| 1*SD_BALANCE_NEWIDLE
6001					| 1*SD_BALANCE_EXEC
6002					| 1*SD_BALANCE_FORK
6003					| 0*SD_BALANCE_WAKE
6004					| 1*SD_WAKE_AFFINE
6005					| 0*SD_SHARE_CPUCAPACITY
6006					| 0*SD_SHARE_PKG_RESOURCES
6007					| 0*SD_SERIALIZE
6008					| 0*SD_PREFER_SIBLING
6009					| 0*SD_NUMA
6010					| sd_flags
6011					,
6012
6013		.last_balance		= jiffies,
6014		.balance_interval	= sd_weight,
6015		.smt_gain		= 0,
6016		.max_newidle_lb_cost	= 0,
6017		.next_decay_max_lb_cost	= jiffies,
6018#ifdef CONFIG_SCHED_DEBUG
6019		.name			= tl->name,
6020#endif
6021	};
6022
6023	/*
6024	 * Convert topological properties into behaviour.
6025	 */
6026
6027	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6028		sd->imbalance_pct = 110;
6029		sd->smt_gain = 1178; /* ~15% */
6030
6031	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6032		sd->imbalance_pct = 117;
6033		sd->cache_nice_tries = 1;
6034		sd->busy_idx = 2;
6035
6036#ifdef CONFIG_NUMA
6037	} else if (sd->flags & SD_NUMA) {
6038		sd->cache_nice_tries = 2;
6039		sd->busy_idx = 3;
6040		sd->idle_idx = 2;
6041
6042		sd->flags |= SD_SERIALIZE;
6043		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6044			sd->flags &= ~(SD_BALANCE_EXEC |
6045				       SD_BALANCE_FORK |
6046				       SD_WAKE_AFFINE);
6047		}
6048
6049#endif
6050	} else {
6051		sd->flags |= SD_PREFER_SIBLING;
6052		sd->cache_nice_tries = 1;
6053		sd->busy_idx = 2;
6054		sd->idle_idx = 1;
6055	}
6056
6057	sd->private = &tl->data;
6058
6059	return sd;
6060}
6061
6062/*
6063 * Topology list, bottom-up.
6064 */
6065static struct sched_domain_topology_level default_topology[] = {
6066#ifdef CONFIG_SCHED_SMT
6067	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6068#endif
6069#ifdef CONFIG_SCHED_MC
6070	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6071#endif
6072	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6073	{ NULL, },
6074};
6075
6076struct sched_domain_topology_level *sched_domain_topology = default_topology;
6077
6078#define for_each_sd_topology(tl)			\
6079	for (tl = sched_domain_topology; tl->mask; tl++)
6080
6081void set_sched_topology(struct sched_domain_topology_level *tl)
6082{
6083	sched_domain_topology = tl;
6084}
6085
6086#ifdef CONFIG_NUMA
6087
6088static const struct cpumask *sd_numa_mask(int cpu)
6089{
6090	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6091}
6092
6093static void sched_numa_warn(const char *str)
6094{
6095	static int done = false;
6096	int i,j;
6097
6098	if (done)
6099		return;
6100
6101	done = true;
6102
6103	printk(KERN_WARNING "ERROR: %s\n\n", str);
6104
6105	for (i = 0; i < nr_node_ids; i++) {
6106		printk(KERN_WARNING "  ");
6107		for (j = 0; j < nr_node_ids; j++)
6108			printk(KERN_CONT "%02d ", node_distance(i,j));
6109		printk(KERN_CONT "\n");
6110	}
6111	printk(KERN_WARNING "\n");
6112}
6113
6114static bool find_numa_distance(int distance)
6115{
6116	int i;
6117
6118	if (distance == node_distance(0, 0))
6119		return true;
6120
6121	for (i = 0; i < sched_domains_numa_levels; i++) {
6122		if (sched_domains_numa_distance[i] == distance)
6123			return true;
6124	}
6125
6126	return false;
6127}
6128
6129static void sched_init_numa(void)
6130{
6131	int next_distance, curr_distance = node_distance(0, 0);
6132	struct sched_domain_topology_level *tl;
6133	int level = 0;
6134	int i, j, k;
6135
6136	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6137	if (!sched_domains_numa_distance)
6138		return;
6139
6140	/*
6141	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6142	 * unique distances in the node_distance() table.
6143	 *
6144	 * Assumes node_distance(0,j) includes all distances in
6145	 * node_distance(i,j) in order to avoid cubic time.
6146	 */
6147	next_distance = curr_distance;
6148	for (i = 0; i < nr_node_ids; i++) {
6149		for (j = 0; j < nr_node_ids; j++) {
6150			for (k = 0; k < nr_node_ids; k++) {
6151				int distance = node_distance(i, k);
6152
6153				if (distance > curr_distance &&
6154				    (distance < next_distance ||
6155				     next_distance == curr_distance))
6156					next_distance = distance;
6157
6158				/*
6159				 * While not a strong assumption it would be nice to know
6160				 * about cases where if node A is connected to B, B is not
6161				 * equally connected to A.
6162				 */
6163				if (sched_debug() && node_distance(k, i) != distance)
6164					sched_numa_warn("Node-distance not symmetric");
6165
6166				if (sched_debug() && i && !find_numa_distance(distance))
6167					sched_numa_warn("Node-0 not representative");
6168			}
6169			if (next_distance != curr_distance) {
6170				sched_domains_numa_distance[level++] = next_distance;
6171				sched_domains_numa_levels = level;
6172				curr_distance = next_distance;
6173			} else break;
6174		}
6175
6176		/*
6177		 * In case of sched_debug() we verify the above assumption.
6178		 */
6179		if (!sched_debug())
6180			break;
6181	}
6182	/*
6183	 * 'level' contains the number of unique distances, excluding the
6184	 * identity distance node_distance(i,i).
6185	 *
6186	 * The sched_domains_numa_distance[] array includes the actual distance
6187	 * numbers.
6188	 */
6189
6190	/*
6191	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6192	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6193	 * the array will contain less then 'level' members. This could be
6194	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6195	 * in other functions.
6196	 *
6197	 * We reset it to 'level' at the end of this function.
6198	 */
6199	sched_domains_numa_levels = 0;
6200
6201	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6202	if (!sched_domains_numa_masks)
6203		return;
6204
6205	/*
6206	 * Now for each level, construct a mask per node which contains all
6207	 * cpus of nodes that are that many hops away from us.
6208	 */
6209	for (i = 0; i < level; i++) {
6210		sched_domains_numa_masks[i] =
6211			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6212		if (!sched_domains_numa_masks[i])
6213			return;
6214
6215		for (j = 0; j < nr_node_ids; j++) {
6216			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6217			if (!mask)
6218				return;
6219
6220			sched_domains_numa_masks[i][j] = mask;
6221
6222			for (k = 0; k < nr_node_ids; k++) {
6223				if (node_distance(j, k) > sched_domains_numa_distance[i])
6224					continue;
6225
6226				cpumask_or(mask, mask, cpumask_of_node(k));
6227			}
6228		}
6229	}
6230
6231	/* Compute default topology size */
6232	for (i = 0; sched_domain_topology[i].mask; i++);
6233
6234	tl = kzalloc((i + level + 1) *
6235			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6236	if (!tl)
6237		return;
6238
6239	/*
6240	 * Copy the default topology bits..
6241	 */
6242	for (i = 0; sched_domain_topology[i].mask; i++)
6243		tl[i] = sched_domain_topology[i];
6244
6245	/*
6246	 * .. and append 'j' levels of NUMA goodness.
6247	 */
6248	for (j = 0; j < level; i++, j++) {
6249		tl[i] = (struct sched_domain_topology_level){
6250			.mask = sd_numa_mask,
6251			.sd_flags = cpu_numa_flags,
6252			.flags = SDTL_OVERLAP,
6253			.numa_level = j,
6254			SD_INIT_NAME(NUMA)
6255		};
6256	}
6257
6258	sched_domain_topology = tl;
6259
6260	sched_domains_numa_levels = level;
6261}
6262
6263static void sched_domains_numa_masks_set(int cpu)
6264{
6265	int i, j;
6266	int node = cpu_to_node(cpu);
6267
6268	for (i = 0; i < sched_domains_numa_levels; i++) {
6269		for (j = 0; j < nr_node_ids; j++) {
6270			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6271				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6272		}
6273	}
6274}
6275
6276static void sched_domains_numa_masks_clear(int cpu)
6277{
6278	int i, j;
6279	for (i = 0; i < sched_domains_numa_levels; i++) {
6280		for (j = 0; j < nr_node_ids; j++)
6281			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6282	}
6283}
6284
6285/*
6286 * Update sched_domains_numa_masks[level][node] array when new cpus
6287 * are onlined.
6288 */
6289static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290					   unsigned long action,
6291					   void *hcpu)
6292{
6293	int cpu = (long)hcpu;
6294
6295	switch (action & ~CPU_TASKS_FROZEN) {
6296	case CPU_ONLINE:
6297		sched_domains_numa_masks_set(cpu);
6298		break;
6299
6300	case CPU_DEAD:
6301		sched_domains_numa_masks_clear(cpu);
6302		break;
6303
6304	default:
6305		return NOTIFY_DONE;
6306	}
6307
6308	return NOTIFY_OK;
6309}
6310#else
6311static inline void sched_init_numa(void)
6312{
6313}
6314
6315static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6316					   unsigned long action,
6317					   void *hcpu)
6318{
6319	return 0;
6320}
6321#endif /* CONFIG_NUMA */
6322
6323static int __sdt_alloc(const struct cpumask *cpu_map)
6324{
6325	struct sched_domain_topology_level *tl;
6326	int j;
6327
6328	for_each_sd_topology(tl) {
6329		struct sd_data *sdd = &tl->data;
6330
6331		sdd->sd = alloc_percpu(struct sched_domain *);
6332		if (!sdd->sd)
6333			return -ENOMEM;
6334
6335		sdd->sg = alloc_percpu(struct sched_group *);
6336		if (!sdd->sg)
6337			return -ENOMEM;
6338
6339		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6340		if (!sdd->sgc)
6341			return -ENOMEM;
6342
6343		for_each_cpu(j, cpu_map) {
6344			struct sched_domain *sd;
6345			struct sched_group *sg;
6346			struct sched_group_capacity *sgc;
6347
6348		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6349					GFP_KERNEL, cpu_to_node(j));
6350			if (!sd)
6351				return -ENOMEM;
6352
6353			*per_cpu_ptr(sdd->sd, j) = sd;
6354
6355			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6356					GFP_KERNEL, cpu_to_node(j));
6357			if (!sg)
6358				return -ENOMEM;
6359
6360			sg->next = sg;
6361
6362			*per_cpu_ptr(sdd->sg, j) = sg;
6363
6364			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6365					GFP_KERNEL, cpu_to_node(j));
6366			if (!sgc)
6367				return -ENOMEM;
6368
6369			*per_cpu_ptr(sdd->sgc, j) = sgc;
6370		}
6371	}
6372
6373	return 0;
6374}
6375
6376static void __sdt_free(const struct cpumask *cpu_map)
6377{
6378	struct sched_domain_topology_level *tl;
6379	int j;
6380
6381	for_each_sd_topology(tl) {
6382		struct sd_data *sdd = &tl->data;
6383
6384		for_each_cpu(j, cpu_map) {
6385			struct sched_domain *sd;
6386
6387			if (sdd->sd) {
6388				sd = *per_cpu_ptr(sdd->sd, j);
6389				if (sd && (sd->flags & SD_OVERLAP))
6390					free_sched_groups(sd->groups, 0);
6391				kfree(*per_cpu_ptr(sdd->sd, j));
6392			}
6393
6394			if (sdd->sg)
6395				kfree(*per_cpu_ptr(sdd->sg, j));
6396			if (sdd->sgc)
6397				kfree(*per_cpu_ptr(sdd->sgc, j));
6398		}
6399		free_percpu(sdd->sd);
6400		sdd->sd = NULL;
6401		free_percpu(sdd->sg);
6402		sdd->sg = NULL;
6403		free_percpu(sdd->sgc);
6404		sdd->sgc = NULL;
6405	}
6406}
6407
6408struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6409		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6410		struct sched_domain *child, int cpu)
6411{
6412	struct sched_domain *sd = sd_init(tl, cpu);
6413	if (!sd)
6414		return child;
6415
6416	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6417	if (child) {
6418		sd->level = child->level + 1;
6419		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6420		child->parent = sd;
6421		sd->child = child;
6422	}
6423	set_domain_attribute(sd, attr);
6424
6425	return sd;
6426}
6427
6428/*
6429 * Build sched domains for a given set of cpus and attach the sched domains
6430 * to the individual cpus
6431 */
6432static int build_sched_domains(const struct cpumask *cpu_map,
6433			       struct sched_domain_attr *attr)
6434{
6435	enum s_alloc alloc_state;
6436	struct sched_domain *sd;
6437	struct s_data d;
6438	int i, ret = -ENOMEM;
6439
6440	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6441	if (alloc_state != sa_rootdomain)
6442		goto error;
6443
6444	/* Set up domains for cpus specified by the cpu_map. */
6445	for_each_cpu(i, cpu_map) {
6446		struct sched_domain_topology_level *tl;
6447
6448		sd = NULL;
6449		for_each_sd_topology(tl) {
6450			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6451			if (tl == sched_domain_topology)
6452				*per_cpu_ptr(d.sd, i) = sd;
6453			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6454				sd->flags |= SD_OVERLAP;
6455			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6456				break;
6457		}
6458	}
6459
6460	/* Build the groups for the domains */
6461	for_each_cpu(i, cpu_map) {
6462		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6463			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6464			if (sd->flags & SD_OVERLAP) {
6465				if (build_overlap_sched_groups(sd, i))
6466					goto error;
6467			} else {
6468				if (build_sched_groups(sd, i))
6469					goto error;
6470			}
6471		}
6472	}
6473
6474	/* Calculate CPU capacity for physical packages and nodes */
6475	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6476		if (!cpumask_test_cpu(i, cpu_map))
6477			continue;
6478
6479		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6480			claim_allocations(i, sd);
6481			init_sched_groups_capacity(i, sd);
6482		}
6483	}
6484
6485	/* Attach the domains */
6486	rcu_read_lock();
6487	for_each_cpu(i, cpu_map) {
6488		sd = *per_cpu_ptr(d.sd, i);
6489		cpu_attach_domain(sd, d.rd, i);
6490	}
6491	rcu_read_unlock();
6492
6493	ret = 0;
6494error:
6495	__free_domain_allocs(&d, alloc_state, cpu_map);
6496	return ret;
6497}
6498
6499static cpumask_var_t *doms_cur;	/* current sched domains */
6500static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6501static struct sched_domain_attr *dattr_cur;
6502				/* attribues of custom domains in 'doms_cur' */
6503
6504/*
6505 * Special case: If a kmalloc of a doms_cur partition (array of
6506 * cpumask) fails, then fallback to a single sched domain,
6507 * as determined by the single cpumask fallback_doms.
6508 */
6509static cpumask_var_t fallback_doms;
6510
6511/*
6512 * arch_update_cpu_topology lets virtualized architectures update the
6513 * cpu core maps. It is supposed to return 1 if the topology changed
6514 * or 0 if it stayed the same.
6515 */
6516int __weak arch_update_cpu_topology(void)
6517{
6518	return 0;
6519}
6520
6521cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6522{
6523	int i;
6524	cpumask_var_t *doms;
6525
6526	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6527	if (!doms)
6528		return NULL;
6529	for (i = 0; i < ndoms; i++) {
6530		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6531			free_sched_domains(doms, i);
6532			return NULL;
6533		}
6534	}
6535	return doms;
6536}
6537
6538void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6539{
6540	unsigned int i;
6541	for (i = 0; i < ndoms; i++)
6542		free_cpumask_var(doms[i]);
6543	kfree(doms);
6544}
6545
6546/*
6547 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6548 * For now this just excludes isolated cpus, but could be used to
6549 * exclude other special cases in the future.
6550 */
6551static int init_sched_domains(const struct cpumask *cpu_map)
6552{
6553	int err;
6554
6555	arch_update_cpu_topology();
6556	ndoms_cur = 1;
6557	doms_cur = alloc_sched_domains(ndoms_cur);
6558	if (!doms_cur)
6559		doms_cur = &fallback_doms;
6560	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6561	err = build_sched_domains(doms_cur[0], NULL);
6562	register_sched_domain_sysctl();
6563
6564	return err;
6565}
6566
6567/*
6568 * Detach sched domains from a group of cpus specified in cpu_map
6569 * These cpus will now be attached to the NULL domain
6570 */
6571static void detach_destroy_domains(const struct cpumask *cpu_map)
6572{
6573	int i;
6574
6575	rcu_read_lock();
6576	for_each_cpu(i, cpu_map)
6577		cpu_attach_domain(NULL, &def_root_domain, i);
6578	rcu_read_unlock();
6579}
6580
6581/* handle null as "default" */
6582static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6583			struct sched_domain_attr *new, int idx_new)
6584{
6585	struct sched_domain_attr tmp;
6586
6587	/* fast path */
6588	if (!new && !cur)
6589		return 1;
6590
6591	tmp = SD_ATTR_INIT;
6592	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6593			new ? (new + idx_new) : &tmp,
6594			sizeof(struct sched_domain_attr));
6595}
6596
6597/*
6598 * Partition sched domains as specified by the 'ndoms_new'
6599 * cpumasks in the array doms_new[] of cpumasks. This compares
6600 * doms_new[] to the current sched domain partitioning, doms_cur[].
6601 * It destroys each deleted domain and builds each new domain.
6602 *
6603 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6604 * The masks don't intersect (don't overlap.) We should setup one
6605 * sched domain for each mask. CPUs not in any of the cpumasks will
6606 * not be load balanced. If the same cpumask appears both in the
6607 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6608 * it as it is.
6609 *
6610 * The passed in 'doms_new' should be allocated using
6611 * alloc_sched_domains.  This routine takes ownership of it and will
6612 * free_sched_domains it when done with it. If the caller failed the
6613 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6614 * and partition_sched_domains() will fallback to the single partition
6615 * 'fallback_doms', it also forces the domains to be rebuilt.
6616 *
6617 * If doms_new == NULL it will be replaced with cpu_online_mask.
6618 * ndoms_new == 0 is a special case for destroying existing domains,
6619 * and it will not create the default domain.
6620 *
6621 * Call with hotplug lock held
6622 */
6623void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6624			     struct sched_domain_attr *dattr_new)
6625{
6626	int i, j, n;
6627	int new_topology;
6628
6629	mutex_lock(&sched_domains_mutex);
6630
6631	/* always unregister in case we don't destroy any domains */
6632	unregister_sched_domain_sysctl();
6633
6634	/* Let architecture update cpu core mappings. */
6635	new_topology = arch_update_cpu_topology();
6636
6637	n = doms_new ? ndoms_new : 0;
6638
6639	/* Destroy deleted domains */
6640	for (i = 0; i < ndoms_cur; i++) {
6641		for (j = 0; j < n && !new_topology; j++) {
6642			if (cpumask_equal(doms_cur[i], doms_new[j])
6643			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6644				goto match1;
6645		}
6646		/* no match - a current sched domain not in new doms_new[] */
6647		detach_destroy_domains(doms_cur[i]);
6648match1:
6649		;
6650	}
6651
6652	n = ndoms_cur;
6653	if (doms_new == NULL) {
6654		n = 0;
6655		doms_new = &fallback_doms;
6656		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6657		WARN_ON_ONCE(dattr_new);
6658	}
6659
6660	/* Build new domains */
6661	for (i = 0; i < ndoms_new; i++) {
6662		for (j = 0; j < n && !new_topology; j++) {
6663			if (cpumask_equal(doms_new[i], doms_cur[j])
6664			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6665				goto match2;
6666		}
6667		/* no match - add a new doms_new */
6668		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6669match2:
6670		;
6671	}
6672
6673	/* Remember the new sched domains */
6674	if (doms_cur != &fallback_doms)
6675		free_sched_domains(doms_cur, ndoms_cur);
6676	kfree(dattr_cur);	/* kfree(NULL) is safe */
6677	doms_cur = doms_new;
6678	dattr_cur = dattr_new;
6679	ndoms_cur = ndoms_new;
6680
6681	register_sched_domain_sysctl();
6682
6683	mutex_unlock(&sched_domains_mutex);
6684}
6685
6686static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6687
6688/*
6689 * Update cpusets according to cpu_active mask.  If cpusets are
6690 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6691 * around partition_sched_domains().
6692 *
6693 * If we come here as part of a suspend/resume, don't touch cpusets because we
6694 * want to restore it back to its original state upon resume anyway.
6695 */
6696static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6697			     void *hcpu)
6698{
6699	switch (action) {
6700	case CPU_ONLINE_FROZEN:
6701	case CPU_DOWN_FAILED_FROZEN:
6702
6703		/*
6704		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6705		 * resume sequence. As long as this is not the last online
6706		 * operation in the resume sequence, just build a single sched
6707		 * domain, ignoring cpusets.
6708		 */
6709		num_cpus_frozen--;
6710		if (likely(num_cpus_frozen)) {
6711			partition_sched_domains(1, NULL, NULL);
6712			break;
6713		}
6714
6715		/*
6716		 * This is the last CPU online operation. So fall through and
6717		 * restore the original sched domains by considering the
6718		 * cpuset configurations.
6719		 */
6720
6721	case CPU_ONLINE:
6722	case CPU_DOWN_FAILED:
6723		cpuset_update_active_cpus(true);
6724		break;
6725	default:
6726		return NOTIFY_DONE;
6727	}
6728	return NOTIFY_OK;
6729}
6730
6731static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6732			       void *hcpu)
6733{
6734	switch (action) {
6735	case CPU_DOWN_PREPARE:
6736		cpuset_update_active_cpus(false);
6737		break;
6738	case CPU_DOWN_PREPARE_FROZEN:
6739		num_cpus_frozen++;
6740		partition_sched_domains(1, NULL, NULL);
6741		break;
6742	default:
6743		return NOTIFY_DONE;
6744	}
6745	return NOTIFY_OK;
6746}
6747
6748void __init sched_init_smp(void)
6749{
6750	cpumask_var_t non_isolated_cpus;
6751
6752	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6753	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6754
6755	sched_init_numa();
6756
6757	/*
6758	 * There's no userspace yet to cause hotplug operations; hence all the
6759	 * cpu masks are stable and all blatant races in the below code cannot
6760	 * happen.
6761	 */
6762	mutex_lock(&sched_domains_mutex);
6763	init_sched_domains(cpu_active_mask);
6764	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6765	if (cpumask_empty(non_isolated_cpus))
6766		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6767	mutex_unlock(&sched_domains_mutex);
6768
6769	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6770	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6771	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6772
6773	init_hrtick();
6774
6775	/* Move init over to a non-isolated CPU */
6776	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6777		BUG();
6778	sched_init_granularity();
6779	free_cpumask_var(non_isolated_cpus);
6780
6781	init_sched_rt_class();
6782	init_sched_dl_class();
6783}
6784#else
6785void __init sched_init_smp(void)
6786{
6787	sched_init_granularity();
6788}
6789#endif /* CONFIG_SMP */
6790
6791const_debug unsigned int sysctl_timer_migration = 1;
6792
6793int in_sched_functions(unsigned long addr)
6794{
6795	return in_lock_functions(addr) ||
6796		(addr >= (unsigned long)__sched_text_start
6797		&& addr < (unsigned long)__sched_text_end);
6798}
6799
6800#ifdef CONFIG_CGROUP_SCHED
6801/*
6802 * Default task group.
6803 * Every task in system belongs to this group at bootup.
6804 */
6805struct task_group root_task_group;
6806LIST_HEAD(task_groups);
6807#endif
6808
6809DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6810
6811void __init sched_init(void)
6812{
6813	int i, j;
6814	unsigned long alloc_size = 0, ptr;
6815
6816#ifdef CONFIG_FAIR_GROUP_SCHED
6817	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6818#endif
6819#ifdef CONFIG_RT_GROUP_SCHED
6820	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6821#endif
6822#ifdef CONFIG_CPUMASK_OFFSTACK
6823	alloc_size += num_possible_cpus() * cpumask_size();
6824#endif
6825	if (alloc_size) {
6826		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6827
6828#ifdef CONFIG_FAIR_GROUP_SCHED
6829		root_task_group.se = (struct sched_entity **)ptr;
6830		ptr += nr_cpu_ids * sizeof(void **);
6831
6832		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6833		ptr += nr_cpu_ids * sizeof(void **);
6834
6835#endif /* CONFIG_FAIR_GROUP_SCHED */
6836#ifdef CONFIG_RT_GROUP_SCHED
6837		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6838		ptr += nr_cpu_ids * sizeof(void **);
6839
6840		root_task_group.rt_rq = (struct rt_rq **)ptr;
6841		ptr += nr_cpu_ids * sizeof(void **);
6842
6843#endif /* CONFIG_RT_GROUP_SCHED */
6844#ifdef CONFIG_CPUMASK_OFFSTACK
6845		for_each_possible_cpu(i) {
6846			per_cpu(load_balance_mask, i) = (void *)ptr;
6847			ptr += cpumask_size();
6848		}
6849#endif /* CONFIG_CPUMASK_OFFSTACK */
6850	}
6851
6852	init_rt_bandwidth(&def_rt_bandwidth,
6853			global_rt_period(), global_rt_runtime());
6854	init_dl_bandwidth(&def_dl_bandwidth,
6855			global_rt_period(), global_rt_runtime());
6856
6857#ifdef CONFIG_SMP
6858	init_defrootdomain();
6859#endif
6860
6861#ifdef CONFIG_RT_GROUP_SCHED
6862	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6863			global_rt_period(), global_rt_runtime());
6864#endif /* CONFIG_RT_GROUP_SCHED */
6865
6866#ifdef CONFIG_CGROUP_SCHED
6867	list_add(&root_task_group.list, &task_groups);
6868	INIT_LIST_HEAD(&root_task_group.children);
6869	INIT_LIST_HEAD(&root_task_group.siblings);
6870	autogroup_init(&init_task);
6871
6872#endif /* CONFIG_CGROUP_SCHED */
6873
6874	for_each_possible_cpu(i) {
6875		struct rq *rq;
6876
6877		rq = cpu_rq(i);
6878		raw_spin_lock_init(&rq->lock);
6879		rq->nr_running = 0;
6880		rq->calc_load_active = 0;
6881		rq->calc_load_update = jiffies + LOAD_FREQ;
6882		init_cfs_rq(&rq->cfs);
6883		init_rt_rq(&rq->rt, rq);
6884		init_dl_rq(&rq->dl, rq);
6885#ifdef CONFIG_FAIR_GROUP_SCHED
6886		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6887		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6888		/*
6889		 * How much cpu bandwidth does root_task_group get?
6890		 *
6891		 * In case of task-groups formed thr' the cgroup filesystem, it
6892		 * gets 100% of the cpu resources in the system. This overall
6893		 * system cpu resource is divided among the tasks of
6894		 * root_task_group and its child task-groups in a fair manner,
6895		 * based on each entity's (task or task-group's) weight
6896		 * (se->load.weight).
6897		 *
6898		 * In other words, if root_task_group has 10 tasks of weight
6899		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6900		 * then A0's share of the cpu resource is:
6901		 *
6902		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6903		 *
6904		 * We achieve this by letting root_task_group's tasks sit
6905		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6906		 */
6907		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6908		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6909#endif /* CONFIG_FAIR_GROUP_SCHED */
6910
6911		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6912#ifdef CONFIG_RT_GROUP_SCHED
6913		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6914#endif
6915
6916		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6917			rq->cpu_load[j] = 0;
6918
6919		rq->last_load_update_tick = jiffies;
6920
6921#ifdef CONFIG_SMP
6922		rq->sd = NULL;
6923		rq->rd = NULL;
6924		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6925		rq->post_schedule = 0;
6926		rq->active_balance = 0;
6927		rq->next_balance = jiffies;
6928		rq->push_cpu = 0;
6929		rq->cpu = i;
6930		rq->online = 0;
6931		rq->idle_stamp = 0;
6932		rq->avg_idle = 2*sysctl_sched_migration_cost;
6933		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6934
6935		INIT_LIST_HEAD(&rq->cfs_tasks);
6936
6937		rq_attach_root(rq, &def_root_domain);
6938#ifdef CONFIG_NO_HZ_COMMON
6939		rq->nohz_flags = 0;
6940#endif
6941#ifdef CONFIG_NO_HZ_FULL
6942		rq->last_sched_tick = 0;
6943#endif
6944#endif
6945		init_rq_hrtick(rq);
6946		atomic_set(&rq->nr_iowait, 0);
6947	}
6948
6949	set_load_weight(&init_task);
6950
6951#ifdef CONFIG_PREEMPT_NOTIFIERS
6952	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6953#endif
6954
6955	/*
6956	 * The boot idle thread does lazy MMU switching as well:
6957	 */
6958	atomic_inc(&init_mm.mm_count);
6959	enter_lazy_tlb(&init_mm, current);
6960
6961	/*
6962	 * Make us the idle thread. Technically, schedule() should not be
6963	 * called from this thread, however somewhere below it might be,
6964	 * but because we are the idle thread, we just pick up running again
6965	 * when this runqueue becomes "idle".
6966	 */
6967	init_idle(current, smp_processor_id());
6968
6969	calc_load_update = jiffies + LOAD_FREQ;
6970
6971	/*
6972	 * During early bootup we pretend to be a normal task:
6973	 */
6974	current->sched_class = &fair_sched_class;
6975
6976#ifdef CONFIG_SMP
6977	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6978	/* May be allocated at isolcpus cmdline parse time */
6979	if (cpu_isolated_map == NULL)
6980		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6981	idle_thread_set_boot_cpu();
6982	set_cpu_rq_start_time();
6983#endif
6984	init_sched_fair_class();
6985
6986	scheduler_running = 1;
6987}
6988
6989#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6990static inline int preempt_count_equals(int preempt_offset)
6991{
6992	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6993
6994	return (nested == preempt_offset);
6995}
6996
6997void __might_sleep(const char *file, int line, int preempt_offset)
6998{
6999	static unsigned long prev_jiffy;	/* ratelimiting */
7000
7001	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7002	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7003	     !is_idle_task(current)) ||
7004	    system_state != SYSTEM_RUNNING || oops_in_progress)
7005		return;
7006	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7007		return;
7008	prev_jiffy = jiffies;
7009
7010	printk(KERN_ERR
7011		"BUG: sleeping function called from invalid context at %s:%d\n",
7012			file, line);
7013	printk(KERN_ERR
7014		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7015			in_atomic(), irqs_disabled(),
7016			current->pid, current->comm);
7017
7018	debug_show_held_locks(current);
7019	if (irqs_disabled())
7020		print_irqtrace_events(current);
7021#ifdef CONFIG_DEBUG_PREEMPT
7022	if (!preempt_count_equals(preempt_offset)) {
7023		pr_err("Preemption disabled at:");
7024		print_ip_sym(current->preempt_disable_ip);
7025		pr_cont("\n");
7026	}
7027#endif
7028	dump_stack();
7029}
7030EXPORT_SYMBOL(__might_sleep);
7031#endif
7032
7033#ifdef CONFIG_MAGIC_SYSRQ
7034static void normalize_task(struct rq *rq, struct task_struct *p)
7035{
7036	const struct sched_class *prev_class = p->sched_class;
7037	struct sched_attr attr = {
7038		.sched_policy = SCHED_NORMAL,
7039	};
7040	int old_prio = p->prio;
7041	int on_rq;
7042
7043	on_rq = p->on_rq;
7044	if (on_rq)
7045		dequeue_task(rq, p, 0);
7046	__setscheduler(rq, p, &attr);
7047	if (on_rq) {
7048		enqueue_task(rq, p, 0);
7049		resched_task(rq->curr);
7050	}
7051
7052	check_class_changed(rq, p, prev_class, old_prio);
7053}
7054
7055void normalize_rt_tasks(void)
7056{
7057	struct task_struct *g, *p;
7058	unsigned long flags;
7059	struct rq *rq;
7060
7061	read_lock_irqsave(&tasklist_lock, flags);
7062	do_each_thread(g, p) {
7063		/*
7064		 * Only normalize user tasks:
7065		 */
7066		if (!p->mm)
7067			continue;
7068
7069		p->se.exec_start		= 0;
7070#ifdef CONFIG_SCHEDSTATS
7071		p->se.statistics.wait_start	= 0;
7072		p->se.statistics.sleep_start	= 0;
7073		p->se.statistics.block_start	= 0;
7074#endif
7075
7076		if (!dl_task(p) && !rt_task(p)) {
7077			/*
7078			 * Renice negative nice level userspace
7079			 * tasks back to 0:
7080			 */
7081			if (task_nice(p) < 0 && p->mm)
7082				set_user_nice(p, 0);
7083			continue;
7084		}
7085
7086		raw_spin_lock(&p->pi_lock);
7087		rq = __task_rq_lock(p);
7088
7089		normalize_task(rq, p);
7090
7091		__task_rq_unlock(rq);
7092		raw_spin_unlock(&p->pi_lock);
7093	} while_each_thread(g, p);
7094
7095	read_unlock_irqrestore(&tasklist_lock, flags);
7096}
7097
7098#endif /* CONFIG_MAGIC_SYSRQ */
7099
7100#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7101/*
7102 * These functions are only useful for the IA64 MCA handling, or kdb.
7103 *
7104 * They can only be called when the whole system has been
7105 * stopped - every CPU needs to be quiescent, and no scheduling
7106 * activity can take place. Using them for anything else would
7107 * be a serious bug, and as a result, they aren't even visible
7108 * under any other configuration.
7109 */
7110
7111/**
7112 * curr_task - return the current task for a given cpu.
7113 * @cpu: the processor in question.
7114 *
7115 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7116 *
7117 * Return: The current task for @cpu.
7118 */
7119struct task_struct *curr_task(int cpu)
7120{
7121	return cpu_curr(cpu);
7122}
7123
7124#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7125
7126#ifdef CONFIG_IA64
7127/**
7128 * set_curr_task - set the current task for a given cpu.
7129 * @cpu: the processor in question.
7130 * @p: the task pointer to set.
7131 *
7132 * Description: This function must only be used when non-maskable interrupts
7133 * are serviced on a separate stack. It allows the architecture to switch the
7134 * notion of the current task on a cpu in a non-blocking manner. This function
7135 * must be called with all CPU's synchronized, and interrupts disabled, the
7136 * and caller must save the original value of the current task (see
7137 * curr_task() above) and restore that value before reenabling interrupts and
7138 * re-starting the system.
7139 *
7140 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7141 */
7142void set_curr_task(int cpu, struct task_struct *p)
7143{
7144	cpu_curr(cpu) = p;
7145}
7146
7147#endif
7148
7149#ifdef CONFIG_CGROUP_SCHED
7150/* task_group_lock serializes the addition/removal of task groups */
7151static DEFINE_SPINLOCK(task_group_lock);
7152
7153static void free_sched_group(struct task_group *tg)
7154{
7155	free_fair_sched_group(tg);
7156	free_rt_sched_group(tg);
7157	autogroup_free(tg);
7158	kfree(tg);
7159}
7160
7161/* allocate runqueue etc for a new task group */
7162struct task_group *sched_create_group(struct task_group *parent)
7163{
7164	struct task_group *tg;
7165
7166	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7167	if (!tg)
7168		return ERR_PTR(-ENOMEM);
7169
7170	if (!alloc_fair_sched_group(tg, parent))
7171		goto err;
7172
7173	if (!alloc_rt_sched_group(tg, parent))
7174		goto err;
7175
7176	return tg;
7177
7178err:
7179	free_sched_group(tg);
7180	return ERR_PTR(-ENOMEM);
7181}
7182
7183void sched_online_group(struct task_group *tg, struct task_group *parent)
7184{
7185	unsigned long flags;
7186
7187	spin_lock_irqsave(&task_group_lock, flags);
7188	list_add_rcu(&tg->list, &task_groups);
7189
7190	WARN_ON(!parent); /* root should already exist */
7191
7192	tg->parent = parent;
7193	INIT_LIST_HEAD(&tg->children);
7194	list_add_rcu(&tg->siblings, &parent->children);
7195	spin_unlock_irqrestore(&task_group_lock, flags);
7196}
7197
7198/* rcu callback to free various structures associated with a task group */
7199static void free_sched_group_rcu(struct rcu_head *rhp)
7200{
7201	/* now it should be safe to free those cfs_rqs */
7202	free_sched_group(container_of(rhp, struct task_group, rcu));
7203}
7204
7205/* Destroy runqueue etc associated with a task group */
7206void sched_destroy_group(struct task_group *tg)
7207{
7208	/* wait for possible concurrent references to cfs_rqs complete */
7209	call_rcu(&tg->rcu, free_sched_group_rcu);
7210}
7211
7212void sched_offline_group(struct task_group *tg)
7213{
7214	unsigned long flags;
7215	int i;
7216
7217	/* end participation in shares distribution */
7218	for_each_possible_cpu(i)
7219		unregister_fair_sched_group(tg, i);
7220
7221	spin_lock_irqsave(&task_group_lock, flags);
7222	list_del_rcu(&tg->list);
7223	list_del_rcu(&tg->siblings);
7224	spin_unlock_irqrestore(&task_group_lock, flags);
7225}
7226
7227/* change task's runqueue when it moves between groups.
7228 *	The caller of this function should have put the task in its new group
7229 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7230 *	reflect its new group.
7231 */
7232void sched_move_task(struct task_struct *tsk)
7233{
7234	struct task_group *tg;
7235	int on_rq, running;
7236	unsigned long flags;
7237	struct rq *rq;
7238
7239	rq = task_rq_lock(tsk, &flags);
7240
7241	running = task_current(rq, tsk);
7242	on_rq = tsk->on_rq;
7243
7244	if (on_rq)
7245		dequeue_task(rq, tsk, 0);
7246	if (unlikely(running))
7247		tsk->sched_class->put_prev_task(rq, tsk);
7248
7249	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7250				lockdep_is_held(&tsk->sighand->siglock)),
7251			  struct task_group, css);
7252	tg = autogroup_task_group(tsk, tg);
7253	tsk->sched_task_group = tg;
7254
7255#ifdef CONFIG_FAIR_GROUP_SCHED
7256	if (tsk->sched_class->task_move_group)
7257		tsk->sched_class->task_move_group(tsk, on_rq);
7258	else
7259#endif
7260		set_task_rq(tsk, task_cpu(tsk));
7261
7262	if (unlikely(running))
7263		tsk->sched_class->set_curr_task(rq);
7264	if (on_rq)
7265		enqueue_task(rq, tsk, 0);
7266
7267	task_rq_unlock(rq, tsk, &flags);
7268}
7269#endif /* CONFIG_CGROUP_SCHED */
7270
7271#ifdef CONFIG_RT_GROUP_SCHED
7272/*
7273 * Ensure that the real time constraints are schedulable.
7274 */
7275static DEFINE_MUTEX(rt_constraints_mutex);
7276
7277/* Must be called with tasklist_lock held */
7278static inline int tg_has_rt_tasks(struct task_group *tg)
7279{
7280	struct task_struct *g, *p;
7281
7282	do_each_thread(g, p) {
7283		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7284			return 1;
7285	} while_each_thread(g, p);
7286
7287	return 0;
7288}
7289
7290struct rt_schedulable_data {
7291	struct task_group *tg;
7292	u64 rt_period;
7293	u64 rt_runtime;
7294};
7295
7296static int tg_rt_schedulable(struct task_group *tg, void *data)
7297{
7298	struct rt_schedulable_data *d = data;
7299	struct task_group *child;
7300	unsigned long total, sum = 0;
7301	u64 period, runtime;
7302
7303	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7304	runtime = tg->rt_bandwidth.rt_runtime;
7305
7306	if (tg == d->tg) {
7307		period = d->rt_period;
7308		runtime = d->rt_runtime;
7309	}
7310
7311	/*
7312	 * Cannot have more runtime than the period.
7313	 */
7314	if (runtime > period && runtime != RUNTIME_INF)
7315		return -EINVAL;
7316
7317	/*
7318	 * Ensure we don't starve existing RT tasks.
7319	 */
7320	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7321		return -EBUSY;
7322
7323	total = to_ratio(period, runtime);
7324
7325	/*
7326	 * Nobody can have more than the global setting allows.
7327	 */
7328	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7329		return -EINVAL;
7330
7331	/*
7332	 * The sum of our children's runtime should not exceed our own.
7333	 */
7334	list_for_each_entry_rcu(child, &tg->children, siblings) {
7335		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7336		runtime = child->rt_bandwidth.rt_runtime;
7337
7338		if (child == d->tg) {
7339			period = d->rt_period;
7340			runtime = d->rt_runtime;
7341		}
7342
7343		sum += to_ratio(period, runtime);
7344	}
7345
7346	if (sum > total)
7347		return -EINVAL;
7348
7349	return 0;
7350}
7351
7352static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7353{
7354	int ret;
7355
7356	struct rt_schedulable_data data = {
7357		.tg = tg,
7358		.rt_period = period,
7359		.rt_runtime = runtime,
7360	};
7361
7362	rcu_read_lock();
7363	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7364	rcu_read_unlock();
7365
7366	return ret;
7367}
7368
7369static int tg_set_rt_bandwidth(struct task_group *tg,
7370		u64 rt_period, u64 rt_runtime)
7371{
7372	int i, err = 0;
7373
7374	mutex_lock(&rt_constraints_mutex);
7375	read_lock(&tasklist_lock);
7376	err = __rt_schedulable(tg, rt_period, rt_runtime);
7377	if (err)
7378		goto unlock;
7379
7380	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7381	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7382	tg->rt_bandwidth.rt_runtime = rt_runtime;
7383
7384	for_each_possible_cpu(i) {
7385		struct rt_rq *rt_rq = tg->rt_rq[i];
7386
7387		raw_spin_lock(&rt_rq->rt_runtime_lock);
7388		rt_rq->rt_runtime = rt_runtime;
7389		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7390	}
7391	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7392unlock:
7393	read_unlock(&tasklist_lock);
7394	mutex_unlock(&rt_constraints_mutex);
7395
7396	return err;
7397}
7398
7399static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7400{
7401	u64 rt_runtime, rt_period;
7402
7403	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7404	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7405	if (rt_runtime_us < 0)
7406		rt_runtime = RUNTIME_INF;
7407
7408	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7409}
7410
7411static long sched_group_rt_runtime(struct task_group *tg)
7412{
7413	u64 rt_runtime_us;
7414
7415	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7416		return -1;
7417
7418	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7419	do_div(rt_runtime_us, NSEC_PER_USEC);
7420	return rt_runtime_us;
7421}
7422
7423static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7424{
7425	u64 rt_runtime, rt_period;
7426
7427	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7428	rt_runtime = tg->rt_bandwidth.rt_runtime;
7429
7430	if (rt_period == 0)
7431		return -EINVAL;
7432
7433	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7434}
7435
7436static long sched_group_rt_period(struct task_group *tg)
7437{
7438	u64 rt_period_us;
7439
7440	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7441	do_div(rt_period_us, NSEC_PER_USEC);
7442	return rt_period_us;
7443}
7444#endif /* CONFIG_RT_GROUP_SCHED */
7445
7446#ifdef CONFIG_RT_GROUP_SCHED
7447static int sched_rt_global_constraints(void)
7448{
7449	int ret = 0;
7450
7451	mutex_lock(&rt_constraints_mutex);
7452	read_lock(&tasklist_lock);
7453	ret = __rt_schedulable(NULL, 0, 0);
7454	read_unlock(&tasklist_lock);
7455	mutex_unlock(&rt_constraints_mutex);
7456
7457	return ret;
7458}
7459
7460static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7461{
7462	/* Don't accept realtime tasks when there is no way for them to run */
7463	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7464		return 0;
7465
7466	return 1;
7467}
7468
7469#else /* !CONFIG_RT_GROUP_SCHED */
7470static int sched_rt_global_constraints(void)
7471{
7472	unsigned long flags;
7473	int i, ret = 0;
7474
7475	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7476	for_each_possible_cpu(i) {
7477		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7478
7479		raw_spin_lock(&rt_rq->rt_runtime_lock);
7480		rt_rq->rt_runtime = global_rt_runtime();
7481		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7482	}
7483	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7484
7485	return ret;
7486}
7487#endif /* CONFIG_RT_GROUP_SCHED */
7488
7489static int sched_dl_global_constraints(void)
7490{
7491	u64 runtime = global_rt_runtime();
7492	u64 period = global_rt_period();
7493	u64 new_bw = to_ratio(period, runtime);
7494	int cpu, ret = 0;
7495	unsigned long flags;
7496
7497	/*
7498	 * Here we want to check the bandwidth not being set to some
7499	 * value smaller than the currently allocated bandwidth in
7500	 * any of the root_domains.
7501	 *
7502	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7503	 * cycling on root_domains... Discussion on different/better
7504	 * solutions is welcome!
7505	 */
7506	for_each_possible_cpu(cpu) {
7507		struct dl_bw *dl_b = dl_bw_of(cpu);
7508
7509		raw_spin_lock_irqsave(&dl_b->lock, flags);
7510		if (new_bw < dl_b->total_bw)
7511			ret = -EBUSY;
7512		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7513
7514		if (ret)
7515			break;
7516	}
7517
7518	return ret;
7519}
7520
7521static void sched_dl_do_global(void)
7522{
7523	u64 new_bw = -1;
7524	int cpu;
7525	unsigned long flags;
7526
7527	def_dl_bandwidth.dl_period = global_rt_period();
7528	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7529
7530	if (global_rt_runtime() != RUNTIME_INF)
7531		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7532
7533	/*
7534	 * FIXME: As above...
7535	 */
7536	for_each_possible_cpu(cpu) {
7537		struct dl_bw *dl_b = dl_bw_of(cpu);
7538
7539		raw_spin_lock_irqsave(&dl_b->lock, flags);
7540		dl_b->bw = new_bw;
7541		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7542	}
7543}
7544
7545static int sched_rt_global_validate(void)
7546{
7547	if (sysctl_sched_rt_period <= 0)
7548		return -EINVAL;
7549
7550	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7551		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7552		return -EINVAL;
7553
7554	return 0;
7555}
7556
7557static void sched_rt_do_global(void)
7558{
7559	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7560	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7561}
7562
7563int sched_rt_handler(struct ctl_table *table, int write,
7564		void __user *buffer, size_t *lenp,
7565		loff_t *ppos)
7566{
7567	int old_period, old_runtime;
7568	static DEFINE_MUTEX(mutex);
7569	int ret;
7570
7571	mutex_lock(&mutex);
7572	old_period = sysctl_sched_rt_period;
7573	old_runtime = sysctl_sched_rt_runtime;
7574
7575	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7576
7577	if (!ret && write) {
7578		ret = sched_rt_global_validate();
7579		if (ret)
7580			goto undo;
7581
7582		ret = sched_rt_global_constraints();
7583		if (ret)
7584			goto undo;
7585
7586		ret = sched_dl_global_constraints();
7587		if (ret)
7588			goto undo;
7589
7590		sched_rt_do_global();
7591		sched_dl_do_global();
7592	}
7593	if (0) {
7594undo:
7595		sysctl_sched_rt_period = old_period;
7596		sysctl_sched_rt_runtime = old_runtime;
7597	}
7598	mutex_unlock(&mutex);
7599
7600	return ret;
7601}
7602
7603int sched_rr_handler(struct ctl_table *table, int write,
7604		void __user *buffer, size_t *lenp,
7605		loff_t *ppos)
7606{
7607	int ret;
7608	static DEFINE_MUTEX(mutex);
7609
7610	mutex_lock(&mutex);
7611	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7612	/* make sure that internally we keep jiffies */
7613	/* also, writing zero resets timeslice to default */
7614	if (!ret && write) {
7615		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7616			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7617	}
7618	mutex_unlock(&mutex);
7619	return ret;
7620}
7621
7622#ifdef CONFIG_CGROUP_SCHED
7623
7624static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7625{
7626	return css ? container_of(css, struct task_group, css) : NULL;
7627}
7628
7629static struct cgroup_subsys_state *
7630cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7631{
7632	struct task_group *parent = css_tg(parent_css);
7633	struct task_group *tg;
7634
7635	if (!parent) {
7636		/* This is early initialization for the top cgroup */
7637		return &root_task_group.css;
7638	}
7639
7640	tg = sched_create_group(parent);
7641	if (IS_ERR(tg))
7642		return ERR_PTR(-ENOMEM);
7643
7644	return &tg->css;
7645}
7646
7647static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7648{
7649	struct task_group *tg = css_tg(css);
7650	struct task_group *parent = css_tg(css_parent(css));
7651
7652	if (parent)
7653		sched_online_group(tg, parent);
7654	return 0;
7655}
7656
7657static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7658{
7659	struct task_group *tg = css_tg(css);
7660
7661	sched_destroy_group(tg);
7662}
7663
7664static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7665{
7666	struct task_group *tg = css_tg(css);
7667
7668	sched_offline_group(tg);
7669}
7670
7671static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7672				 struct cgroup_taskset *tset)
7673{
7674	struct task_struct *task;
7675
7676	cgroup_taskset_for_each(task, tset) {
7677#ifdef CONFIG_RT_GROUP_SCHED
7678		if (!sched_rt_can_attach(css_tg(css), task))
7679			return -EINVAL;
7680#else
7681		/* We don't support RT-tasks being in separate groups */
7682		if (task->sched_class != &fair_sched_class)
7683			return -EINVAL;
7684#endif
7685	}
7686	return 0;
7687}
7688
7689static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7690			      struct cgroup_taskset *tset)
7691{
7692	struct task_struct *task;
7693
7694	cgroup_taskset_for_each(task, tset)
7695		sched_move_task(task);
7696}
7697
7698static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7699			    struct cgroup_subsys_state *old_css,
7700			    struct task_struct *task)
7701{
7702	/*
7703	 * cgroup_exit() is called in the copy_process() failure path.
7704	 * Ignore this case since the task hasn't ran yet, this avoids
7705	 * trying to poke a half freed task state from generic code.
7706	 */
7707	if (!(task->flags & PF_EXITING))
7708		return;
7709
7710	sched_move_task(task);
7711}
7712
7713#ifdef CONFIG_FAIR_GROUP_SCHED
7714static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7715				struct cftype *cftype, u64 shareval)
7716{
7717	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7718}
7719
7720static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7721			       struct cftype *cft)
7722{
7723	struct task_group *tg = css_tg(css);
7724
7725	return (u64) scale_load_down(tg->shares);
7726}
7727
7728#ifdef CONFIG_CFS_BANDWIDTH
7729static DEFINE_MUTEX(cfs_constraints_mutex);
7730
7731const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7732const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7733
7734static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7735
7736static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7737{
7738	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7739	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740
7741	if (tg == &root_task_group)
7742		return -EINVAL;
7743
7744	/*
7745	 * Ensure we have at some amount of bandwidth every period.  This is
7746	 * to prevent reaching a state of large arrears when throttled via
7747	 * entity_tick() resulting in prolonged exit starvation.
7748	 */
7749	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7750		return -EINVAL;
7751
7752	/*
7753	 * Likewise, bound things on the otherside by preventing insane quota
7754	 * periods.  This also allows us to normalize in computing quota
7755	 * feasibility.
7756	 */
7757	if (period > max_cfs_quota_period)
7758		return -EINVAL;
7759
7760	mutex_lock(&cfs_constraints_mutex);
7761	ret = __cfs_schedulable(tg, period, quota);
7762	if (ret)
7763		goto out_unlock;
7764
7765	runtime_enabled = quota != RUNTIME_INF;
7766	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7767	/*
7768	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7769	 * before making related changes, and on->off must occur afterwards
7770	 */
7771	if (runtime_enabled && !runtime_was_enabled)
7772		cfs_bandwidth_usage_inc();
7773	raw_spin_lock_irq(&cfs_b->lock);
7774	cfs_b->period = ns_to_ktime(period);
7775	cfs_b->quota = quota;
7776
7777	__refill_cfs_bandwidth_runtime(cfs_b);
7778	/* restart the period timer (if active) to handle new period expiry */
7779	if (runtime_enabled && cfs_b->timer_active) {
7780		/* force a reprogram */
7781		cfs_b->timer_active = 0;
7782		__start_cfs_bandwidth(cfs_b);
7783	}
7784	raw_spin_unlock_irq(&cfs_b->lock);
7785
7786	for_each_possible_cpu(i) {
7787		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7788		struct rq *rq = cfs_rq->rq;
7789
7790		raw_spin_lock_irq(&rq->lock);
7791		cfs_rq->runtime_enabled = runtime_enabled;
7792		cfs_rq->runtime_remaining = 0;
7793
7794		if (cfs_rq->throttled)
7795			unthrottle_cfs_rq(cfs_rq);
7796		raw_spin_unlock_irq(&rq->lock);
7797	}
7798	if (runtime_was_enabled && !runtime_enabled)
7799		cfs_bandwidth_usage_dec();
7800out_unlock:
7801	mutex_unlock(&cfs_constraints_mutex);
7802
7803	return ret;
7804}
7805
7806int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7807{
7808	u64 quota, period;
7809
7810	period = ktime_to_ns(tg->cfs_bandwidth.period);
7811	if (cfs_quota_us < 0)
7812		quota = RUNTIME_INF;
7813	else
7814		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7815
7816	return tg_set_cfs_bandwidth(tg, period, quota);
7817}
7818
7819long tg_get_cfs_quota(struct task_group *tg)
7820{
7821	u64 quota_us;
7822
7823	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7824		return -1;
7825
7826	quota_us = tg->cfs_bandwidth.quota;
7827	do_div(quota_us, NSEC_PER_USEC);
7828
7829	return quota_us;
7830}
7831
7832int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7833{
7834	u64 quota, period;
7835
7836	period = (u64)cfs_period_us * NSEC_PER_USEC;
7837	quota = tg->cfs_bandwidth.quota;
7838
7839	return tg_set_cfs_bandwidth(tg, period, quota);
7840}
7841
7842long tg_get_cfs_period(struct task_group *tg)
7843{
7844	u64 cfs_period_us;
7845
7846	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7847	do_div(cfs_period_us, NSEC_PER_USEC);
7848
7849	return cfs_period_us;
7850}
7851
7852static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7853				  struct cftype *cft)
7854{
7855	return tg_get_cfs_quota(css_tg(css));
7856}
7857
7858static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7859				   struct cftype *cftype, s64 cfs_quota_us)
7860{
7861	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7862}
7863
7864static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7865				   struct cftype *cft)
7866{
7867	return tg_get_cfs_period(css_tg(css));
7868}
7869
7870static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7871				    struct cftype *cftype, u64 cfs_period_us)
7872{
7873	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7874}
7875
7876struct cfs_schedulable_data {
7877	struct task_group *tg;
7878	u64 period, quota;
7879};
7880
7881/*
7882 * normalize group quota/period to be quota/max_period
7883 * note: units are usecs
7884 */
7885static u64 normalize_cfs_quota(struct task_group *tg,
7886			       struct cfs_schedulable_data *d)
7887{
7888	u64 quota, period;
7889
7890	if (tg == d->tg) {
7891		period = d->period;
7892		quota = d->quota;
7893	} else {
7894		period = tg_get_cfs_period(tg);
7895		quota = tg_get_cfs_quota(tg);
7896	}
7897
7898	/* note: these should typically be equivalent */
7899	if (quota == RUNTIME_INF || quota == -1)
7900		return RUNTIME_INF;
7901
7902	return to_ratio(period, quota);
7903}
7904
7905static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7906{
7907	struct cfs_schedulable_data *d = data;
7908	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7909	s64 quota = 0, parent_quota = -1;
7910
7911	if (!tg->parent) {
7912		quota = RUNTIME_INF;
7913	} else {
7914		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7915
7916		quota = normalize_cfs_quota(tg, d);
7917		parent_quota = parent_b->hierarchal_quota;
7918
7919		/*
7920		 * ensure max(child_quota) <= parent_quota, inherit when no
7921		 * limit is set
7922		 */
7923		if (quota == RUNTIME_INF)
7924			quota = parent_quota;
7925		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7926			return -EINVAL;
7927	}
7928	cfs_b->hierarchal_quota = quota;
7929
7930	return 0;
7931}
7932
7933static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7934{
7935	int ret;
7936	struct cfs_schedulable_data data = {
7937		.tg = tg,
7938		.period = period,
7939		.quota = quota,
7940	};
7941
7942	if (quota != RUNTIME_INF) {
7943		do_div(data.period, NSEC_PER_USEC);
7944		do_div(data.quota, NSEC_PER_USEC);
7945	}
7946
7947	rcu_read_lock();
7948	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7949	rcu_read_unlock();
7950
7951	return ret;
7952}
7953
7954static int cpu_stats_show(struct seq_file *sf, void *v)
7955{
7956	struct task_group *tg = css_tg(seq_css(sf));
7957	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7958
7959	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7960	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7961	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7962
7963	return 0;
7964}
7965#endif /* CONFIG_CFS_BANDWIDTH */
7966#endif /* CONFIG_FAIR_GROUP_SCHED */
7967
7968#ifdef CONFIG_RT_GROUP_SCHED
7969static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7970				struct cftype *cft, s64 val)
7971{
7972	return sched_group_set_rt_runtime(css_tg(css), val);
7973}
7974
7975static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7976			       struct cftype *cft)
7977{
7978	return sched_group_rt_runtime(css_tg(css));
7979}
7980
7981static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7982				    struct cftype *cftype, u64 rt_period_us)
7983{
7984	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7985}
7986
7987static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7988				   struct cftype *cft)
7989{
7990	return sched_group_rt_period(css_tg(css));
7991}
7992#endif /* CONFIG_RT_GROUP_SCHED */
7993
7994static struct cftype cpu_files[] = {
7995#ifdef CONFIG_FAIR_GROUP_SCHED
7996	{
7997		.name = "shares",
7998		.read_u64 = cpu_shares_read_u64,
7999		.write_u64 = cpu_shares_write_u64,
8000	},
8001#endif
8002#ifdef CONFIG_CFS_BANDWIDTH
8003	{
8004		.name = "cfs_quota_us",
8005		.read_s64 = cpu_cfs_quota_read_s64,
8006		.write_s64 = cpu_cfs_quota_write_s64,
8007	},
8008	{
8009		.name = "cfs_period_us",
8010		.read_u64 = cpu_cfs_period_read_u64,
8011		.write_u64 = cpu_cfs_period_write_u64,
8012	},
8013	{
8014		.name = "stat",
8015		.seq_show = cpu_stats_show,
8016	},
8017#endif
8018#ifdef CONFIG_RT_GROUP_SCHED
8019	{
8020		.name = "rt_runtime_us",
8021		.read_s64 = cpu_rt_runtime_read,
8022		.write_s64 = cpu_rt_runtime_write,
8023	},
8024	{
8025		.name = "rt_period_us",
8026		.read_u64 = cpu_rt_period_read_uint,
8027		.write_u64 = cpu_rt_period_write_uint,
8028	},
8029#endif
8030	{ }	/* terminate */
8031};
8032
8033struct cgroup_subsys cpu_cgrp_subsys = {
8034	.css_alloc	= cpu_cgroup_css_alloc,
8035	.css_free	= cpu_cgroup_css_free,
8036	.css_online	= cpu_cgroup_css_online,
8037	.css_offline	= cpu_cgroup_css_offline,
8038	.can_attach	= cpu_cgroup_can_attach,
8039	.attach		= cpu_cgroup_attach,
8040	.exit		= cpu_cgroup_exit,
8041	.base_cftypes	= cpu_files,
8042	.early_init	= 1,
8043};
8044
8045#endif	/* CONFIG_CGROUP_SCHED */
8046
8047void dump_cpu_task(int cpu)
8048{
8049	pr_info("Task dump for CPU %d:\n", cpu);
8050	sched_show_task(cpu_curr(cpu));
8051}
8052