core.c revision 5e1576ed0e54d419286a8096133029062b6ad456
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_rq_lock(src_rq, dst_rq);
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072
1073	return ret;
1074}
1075
1076/*
1077 * Cross migrate two tasks
1078 */
1079int migrate_swap(struct task_struct *cur, struct task_struct *p)
1080{
1081	struct migration_swap_arg arg;
1082	int ret = -EINVAL;
1083
1084	get_online_cpus();
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1097		goto out;
1098
1099	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1100		goto out;
1101
1102	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1103		goto out;
1104
1105	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1106
1107out:
1108	put_online_cpus();
1109	return ret;
1110}
1111
1112struct migration_arg {
1113	struct task_struct *task;
1114	int dest_cpu;
1115};
1116
1117static int migration_cpu_stop(void *data);
1118
1119/*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
1122 * If @match_state is nonzero, it's the @p->state value just checked and
1123 * not expected to change.  If it changes, i.e. @p might have woken up,
1124 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1125 * we return a positive number (its total switch count).  If a second call
1126 * a short while later returns the same number, the caller can be sure that
1127 * @p has remained unscheduled the whole time.
1128 *
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
1135unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1136{
1137	unsigned long flags;
1138	int running, on_rq;
1139	unsigned long ncsw;
1140	struct rq *rq;
1141
1142	for (;;) {
1143		/*
1144		 * We do the initial early heuristics without holding
1145		 * any task-queue locks at all. We'll only try to get
1146		 * the runqueue lock when things look like they will
1147		 * work out!
1148		 */
1149		rq = task_rq(p);
1150
1151		/*
1152		 * If the task is actively running on another CPU
1153		 * still, just relax and busy-wait without holding
1154		 * any locks.
1155		 *
1156		 * NOTE! Since we don't hold any locks, it's not
1157		 * even sure that "rq" stays as the right runqueue!
1158		 * But we don't care, since "task_running()" will
1159		 * return false if the runqueue has changed and p
1160		 * is actually now running somewhere else!
1161		 */
1162		while (task_running(rq, p)) {
1163			if (match_state && unlikely(p->state != match_state))
1164				return 0;
1165			cpu_relax();
1166		}
1167
1168		/*
1169		 * Ok, time to look more closely! We need the rq
1170		 * lock now, to be *sure*. If we're wrong, we'll
1171		 * just go back and repeat.
1172		 */
1173		rq = task_rq_lock(p, &flags);
1174		trace_sched_wait_task(p);
1175		running = task_running(rq, p);
1176		on_rq = p->on_rq;
1177		ncsw = 0;
1178		if (!match_state || p->state == match_state)
1179			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1180		task_rq_unlock(rq, p, &flags);
1181
1182		/*
1183		 * If it changed from the expected state, bail out now.
1184		 */
1185		if (unlikely(!ncsw))
1186			break;
1187
1188		/*
1189		 * Was it really running after all now that we
1190		 * checked with the proper locks actually held?
1191		 *
1192		 * Oops. Go back and try again..
1193		 */
1194		if (unlikely(running)) {
1195			cpu_relax();
1196			continue;
1197		}
1198
1199		/*
1200		 * It's not enough that it's not actively running,
1201		 * it must be off the runqueue _entirely_, and not
1202		 * preempted!
1203		 *
1204		 * So if it was still runnable (but just not actively
1205		 * running right now), it's preempted, and we should
1206		 * yield - it could be a while.
1207		 */
1208		if (unlikely(on_rq)) {
1209			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1210
1211			set_current_state(TASK_UNINTERRUPTIBLE);
1212			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1213			continue;
1214		}
1215
1216		/*
1217		 * Ahh, all good. It wasn't running, and it wasn't
1218		 * runnable, which means that it will never become
1219		 * running in the future either. We're all done!
1220		 */
1221		break;
1222	}
1223
1224	return ncsw;
1225}
1226
1227/***
1228 * kick_process - kick a running thread to enter/exit the kernel
1229 * @p: the to-be-kicked thread
1230 *
1231 * Cause a process which is running on another CPU to enter
1232 * kernel-mode, without any delay. (to get signals handled.)
1233 *
1234 * NOTE: this function doesn't have to take the runqueue lock,
1235 * because all it wants to ensure is that the remote task enters
1236 * the kernel. If the IPI races and the task has been migrated
1237 * to another CPU then no harm is done and the purpose has been
1238 * achieved as well.
1239 */
1240void kick_process(struct task_struct *p)
1241{
1242	int cpu;
1243
1244	preempt_disable();
1245	cpu = task_cpu(p);
1246	if ((cpu != smp_processor_id()) && task_curr(p))
1247		smp_send_reschedule(cpu);
1248	preempt_enable();
1249}
1250EXPORT_SYMBOL_GPL(kick_process);
1251#endif /* CONFIG_SMP */
1252
1253#ifdef CONFIG_SMP
1254/*
1255 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1256 */
1257static int select_fallback_rq(int cpu, struct task_struct *p)
1258{
1259	int nid = cpu_to_node(cpu);
1260	const struct cpumask *nodemask = NULL;
1261	enum { cpuset, possible, fail } state = cpuset;
1262	int dest_cpu;
1263
1264	/*
1265	 * If the node that the cpu is on has been offlined, cpu_to_node()
1266	 * will return -1. There is no cpu on the node, and we should
1267	 * select the cpu on the other node.
1268	 */
1269	if (nid != -1) {
1270		nodemask = cpumask_of_node(nid);
1271
1272		/* Look for allowed, online CPU in same node. */
1273		for_each_cpu(dest_cpu, nodemask) {
1274			if (!cpu_online(dest_cpu))
1275				continue;
1276			if (!cpu_active(dest_cpu))
1277				continue;
1278			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279				return dest_cpu;
1280		}
1281	}
1282
1283	for (;;) {
1284		/* Any allowed, online CPU? */
1285		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1286			if (!cpu_online(dest_cpu))
1287				continue;
1288			if (!cpu_active(dest_cpu))
1289				continue;
1290			goto out;
1291		}
1292
1293		switch (state) {
1294		case cpuset:
1295			/* No more Mr. Nice Guy. */
1296			cpuset_cpus_allowed_fallback(p);
1297			state = possible;
1298			break;
1299
1300		case possible:
1301			do_set_cpus_allowed(p, cpu_possible_mask);
1302			state = fail;
1303			break;
1304
1305		case fail:
1306			BUG();
1307			break;
1308		}
1309	}
1310
1311out:
1312	if (state != cpuset) {
1313		/*
1314		 * Don't tell them about moving exiting tasks or
1315		 * kernel threads (both mm NULL), since they never
1316		 * leave kernel.
1317		 */
1318		if (p->mm && printk_ratelimit()) {
1319			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1320					task_pid_nr(p), p->comm, cpu);
1321		}
1322	}
1323
1324	return dest_cpu;
1325}
1326
1327/*
1328 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1329 */
1330static inline
1331int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1332{
1333	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1334
1335	/*
1336	 * In order not to call set_task_cpu() on a blocking task we need
1337	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1338	 * cpu.
1339	 *
1340	 * Since this is common to all placement strategies, this lives here.
1341	 *
1342	 * [ this allows ->select_task() to simply return task_cpu(p) and
1343	 *   not worry about this generic constraint ]
1344	 */
1345	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1346		     !cpu_online(cpu)))
1347		cpu = select_fallback_rq(task_cpu(p), p);
1348
1349	return cpu;
1350}
1351
1352static void update_avg(u64 *avg, u64 sample)
1353{
1354	s64 diff = sample - *avg;
1355	*avg += diff >> 3;
1356}
1357#endif
1358
1359static void
1360ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1361{
1362#ifdef CONFIG_SCHEDSTATS
1363	struct rq *rq = this_rq();
1364
1365#ifdef CONFIG_SMP
1366	int this_cpu = smp_processor_id();
1367
1368	if (cpu == this_cpu) {
1369		schedstat_inc(rq, ttwu_local);
1370		schedstat_inc(p, se.statistics.nr_wakeups_local);
1371	} else {
1372		struct sched_domain *sd;
1373
1374		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1375		rcu_read_lock();
1376		for_each_domain(this_cpu, sd) {
1377			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1378				schedstat_inc(sd, ttwu_wake_remote);
1379				break;
1380			}
1381		}
1382		rcu_read_unlock();
1383	}
1384
1385	if (wake_flags & WF_MIGRATED)
1386		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1387
1388#endif /* CONFIG_SMP */
1389
1390	schedstat_inc(rq, ttwu_count);
1391	schedstat_inc(p, se.statistics.nr_wakeups);
1392
1393	if (wake_flags & WF_SYNC)
1394		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1395
1396#endif /* CONFIG_SCHEDSTATS */
1397}
1398
1399static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1400{
1401	activate_task(rq, p, en_flags);
1402	p->on_rq = 1;
1403
1404	/* if a worker is waking up, notify workqueue */
1405	if (p->flags & PF_WQ_WORKER)
1406		wq_worker_waking_up(p, cpu_of(rq));
1407}
1408
1409/*
1410 * Mark the task runnable and perform wakeup-preemption.
1411 */
1412static void
1413ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1414{
1415	check_preempt_curr(rq, p, wake_flags);
1416	trace_sched_wakeup(p, true);
1417
1418	p->state = TASK_RUNNING;
1419#ifdef CONFIG_SMP
1420	if (p->sched_class->task_woken)
1421		p->sched_class->task_woken(rq, p);
1422
1423	if (rq->idle_stamp) {
1424		u64 delta = rq_clock(rq) - rq->idle_stamp;
1425		u64 max = 2*rq->max_idle_balance_cost;
1426
1427		update_avg(&rq->avg_idle, delta);
1428
1429		if (rq->avg_idle > max)
1430			rq->avg_idle = max;
1431
1432		rq->idle_stamp = 0;
1433	}
1434#endif
1435}
1436
1437static void
1438ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1439{
1440#ifdef CONFIG_SMP
1441	if (p->sched_contributes_to_load)
1442		rq->nr_uninterruptible--;
1443#endif
1444
1445	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1446	ttwu_do_wakeup(rq, p, wake_flags);
1447}
1448
1449/*
1450 * Called in case the task @p isn't fully descheduled from its runqueue,
1451 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1452 * since all we need to do is flip p->state to TASK_RUNNING, since
1453 * the task is still ->on_rq.
1454 */
1455static int ttwu_remote(struct task_struct *p, int wake_flags)
1456{
1457	struct rq *rq;
1458	int ret = 0;
1459
1460	rq = __task_rq_lock(p);
1461	if (p->on_rq) {
1462		/* check_preempt_curr() may use rq clock */
1463		update_rq_clock(rq);
1464		ttwu_do_wakeup(rq, p, wake_flags);
1465		ret = 1;
1466	}
1467	__task_rq_unlock(rq);
1468
1469	return ret;
1470}
1471
1472#ifdef CONFIG_SMP
1473static void sched_ttwu_pending(void)
1474{
1475	struct rq *rq = this_rq();
1476	struct llist_node *llist = llist_del_all(&rq->wake_list);
1477	struct task_struct *p;
1478
1479	raw_spin_lock(&rq->lock);
1480
1481	while (llist) {
1482		p = llist_entry(llist, struct task_struct, wake_entry);
1483		llist = llist_next(llist);
1484		ttwu_do_activate(rq, p, 0);
1485	}
1486
1487	raw_spin_unlock(&rq->lock);
1488}
1489
1490void scheduler_ipi(void)
1491{
1492	/*
1493	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1494	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1495	 * this IPI.
1496	 */
1497	if (tif_need_resched())
1498		set_preempt_need_resched();
1499
1500	if (llist_empty(&this_rq()->wake_list)
1501			&& !tick_nohz_full_cpu(smp_processor_id())
1502			&& !got_nohz_idle_kick())
1503		return;
1504
1505	/*
1506	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1507	 * traditionally all their work was done from the interrupt return
1508	 * path. Now that we actually do some work, we need to make sure
1509	 * we do call them.
1510	 *
1511	 * Some archs already do call them, luckily irq_enter/exit nest
1512	 * properly.
1513	 *
1514	 * Arguably we should visit all archs and update all handlers,
1515	 * however a fair share of IPIs are still resched only so this would
1516	 * somewhat pessimize the simple resched case.
1517	 */
1518	irq_enter();
1519	tick_nohz_full_check();
1520	sched_ttwu_pending();
1521
1522	/*
1523	 * Check if someone kicked us for doing the nohz idle load balance.
1524	 */
1525	if (unlikely(got_nohz_idle_kick())) {
1526		this_rq()->idle_balance = 1;
1527		raise_softirq_irqoff(SCHED_SOFTIRQ);
1528	}
1529	irq_exit();
1530}
1531
1532static void ttwu_queue_remote(struct task_struct *p, int cpu)
1533{
1534	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1535		smp_send_reschedule(cpu);
1536}
1537
1538bool cpus_share_cache(int this_cpu, int that_cpu)
1539{
1540	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1541}
1542#endif /* CONFIG_SMP */
1543
1544static void ttwu_queue(struct task_struct *p, int cpu)
1545{
1546	struct rq *rq = cpu_rq(cpu);
1547
1548#if defined(CONFIG_SMP)
1549	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1550		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1551		ttwu_queue_remote(p, cpu);
1552		return;
1553	}
1554#endif
1555
1556	raw_spin_lock(&rq->lock);
1557	ttwu_do_activate(rq, p, 0);
1558	raw_spin_unlock(&rq->lock);
1559}
1560
1561/**
1562 * try_to_wake_up - wake up a thread
1563 * @p: the thread to be awakened
1564 * @state: the mask of task states that can be woken
1565 * @wake_flags: wake modifier flags (WF_*)
1566 *
1567 * Put it on the run-queue if it's not already there. The "current"
1568 * thread is always on the run-queue (except when the actual
1569 * re-schedule is in progress), and as such you're allowed to do
1570 * the simpler "current->state = TASK_RUNNING" to mark yourself
1571 * runnable without the overhead of this.
1572 *
1573 * Return: %true if @p was woken up, %false if it was already running.
1574 * or @state didn't match @p's state.
1575 */
1576static int
1577try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1578{
1579	unsigned long flags;
1580	int cpu, success = 0;
1581
1582	/*
1583	 * If we are going to wake up a thread waiting for CONDITION we
1584	 * need to ensure that CONDITION=1 done by the caller can not be
1585	 * reordered with p->state check below. This pairs with mb() in
1586	 * set_current_state() the waiting thread does.
1587	 */
1588	smp_mb__before_spinlock();
1589	raw_spin_lock_irqsave(&p->pi_lock, flags);
1590	if (!(p->state & state))
1591		goto out;
1592
1593	success = 1; /* we're going to change ->state */
1594	cpu = task_cpu(p);
1595
1596	if (p->on_rq && ttwu_remote(p, wake_flags))
1597		goto stat;
1598
1599#ifdef CONFIG_SMP
1600	/*
1601	 * If the owning (remote) cpu is still in the middle of schedule() with
1602	 * this task as prev, wait until its done referencing the task.
1603	 */
1604	while (p->on_cpu)
1605		cpu_relax();
1606	/*
1607	 * Pairs with the smp_wmb() in finish_lock_switch().
1608	 */
1609	smp_rmb();
1610
1611	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1612	p->state = TASK_WAKING;
1613
1614	if (p->sched_class->task_waking)
1615		p->sched_class->task_waking(p);
1616
1617	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1618	if (task_cpu(p) != cpu) {
1619		wake_flags |= WF_MIGRATED;
1620		set_task_cpu(p, cpu);
1621	}
1622#endif /* CONFIG_SMP */
1623
1624	ttwu_queue(p, cpu);
1625stat:
1626	ttwu_stat(p, cpu, wake_flags);
1627out:
1628	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1629
1630	return success;
1631}
1632
1633/**
1634 * try_to_wake_up_local - try to wake up a local task with rq lock held
1635 * @p: the thread to be awakened
1636 *
1637 * Put @p on the run-queue if it's not already there. The caller must
1638 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1639 * the current task.
1640 */
1641static void try_to_wake_up_local(struct task_struct *p)
1642{
1643	struct rq *rq = task_rq(p);
1644
1645	if (WARN_ON_ONCE(rq != this_rq()) ||
1646	    WARN_ON_ONCE(p == current))
1647		return;
1648
1649	lockdep_assert_held(&rq->lock);
1650
1651	if (!raw_spin_trylock(&p->pi_lock)) {
1652		raw_spin_unlock(&rq->lock);
1653		raw_spin_lock(&p->pi_lock);
1654		raw_spin_lock(&rq->lock);
1655	}
1656
1657	if (!(p->state & TASK_NORMAL))
1658		goto out;
1659
1660	if (!p->on_rq)
1661		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1662
1663	ttwu_do_wakeup(rq, p, 0);
1664	ttwu_stat(p, smp_processor_id(), 0);
1665out:
1666	raw_spin_unlock(&p->pi_lock);
1667}
1668
1669/**
1670 * wake_up_process - Wake up a specific process
1671 * @p: The process to be woken up.
1672 *
1673 * Attempt to wake up the nominated process and move it to the set of runnable
1674 * processes.
1675 *
1676 * Return: 1 if the process was woken up, 0 if it was already running.
1677 *
1678 * It may be assumed that this function implies a write memory barrier before
1679 * changing the task state if and only if any tasks are woken up.
1680 */
1681int wake_up_process(struct task_struct *p)
1682{
1683	WARN_ON(task_is_stopped_or_traced(p));
1684	return try_to_wake_up(p, TASK_NORMAL, 0);
1685}
1686EXPORT_SYMBOL(wake_up_process);
1687
1688int wake_up_state(struct task_struct *p, unsigned int state)
1689{
1690	return try_to_wake_up(p, state, 0);
1691}
1692
1693/*
1694 * Perform scheduler related setup for a newly forked process p.
1695 * p is forked by current.
1696 *
1697 * __sched_fork() is basic setup used by init_idle() too:
1698 */
1699static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1700{
1701	p->on_rq			= 0;
1702
1703	p->se.on_rq			= 0;
1704	p->se.exec_start		= 0;
1705	p->se.sum_exec_runtime		= 0;
1706	p->se.prev_sum_exec_runtime	= 0;
1707	p->se.nr_migrations		= 0;
1708	p->se.vruntime			= 0;
1709	INIT_LIST_HEAD(&p->se.group_node);
1710
1711#ifdef CONFIG_SCHEDSTATS
1712	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1713#endif
1714
1715	INIT_LIST_HEAD(&p->rt.run_list);
1716
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718	INIT_HLIST_HEAD(&p->preempt_notifiers);
1719#endif
1720
1721#ifdef CONFIG_NUMA_BALANCING
1722	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1723		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1724		p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1725		p->mm->numa_scan_seq = 0;
1726	}
1727
1728	if (clone_flags & CLONE_VM)
1729		p->numa_preferred_nid = current->numa_preferred_nid;
1730	else
1731		p->numa_preferred_nid = -1;
1732
1733	p->node_stamp = 0ULL;
1734	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1735	p->numa_migrate_seq = 1;
1736	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1737	p->numa_work.next = &p->numa_work;
1738	p->numa_faults = NULL;
1739	p->numa_faults_buffer = NULL;
1740
1741	INIT_LIST_HEAD(&p->numa_entry);
1742	p->numa_group = NULL;
1743#endif /* CONFIG_NUMA_BALANCING */
1744}
1745
1746#ifdef CONFIG_NUMA_BALANCING
1747#ifdef CONFIG_SCHED_DEBUG
1748void set_numabalancing_state(bool enabled)
1749{
1750	if (enabled)
1751		sched_feat_set("NUMA");
1752	else
1753		sched_feat_set("NO_NUMA");
1754}
1755#else
1756__read_mostly bool numabalancing_enabled;
1757
1758void set_numabalancing_state(bool enabled)
1759{
1760	numabalancing_enabled = enabled;
1761}
1762#endif /* CONFIG_SCHED_DEBUG */
1763#endif /* CONFIG_NUMA_BALANCING */
1764
1765/*
1766 * fork()/clone()-time setup:
1767 */
1768void sched_fork(unsigned long clone_flags, struct task_struct *p)
1769{
1770	unsigned long flags;
1771	int cpu = get_cpu();
1772
1773	__sched_fork(clone_flags, p);
1774	/*
1775	 * We mark the process as running here. This guarantees that
1776	 * nobody will actually run it, and a signal or other external
1777	 * event cannot wake it up and insert it on the runqueue either.
1778	 */
1779	p->state = TASK_RUNNING;
1780
1781	/*
1782	 * Make sure we do not leak PI boosting priority to the child.
1783	 */
1784	p->prio = current->normal_prio;
1785
1786	/*
1787	 * Revert to default priority/policy on fork if requested.
1788	 */
1789	if (unlikely(p->sched_reset_on_fork)) {
1790		if (task_has_rt_policy(p)) {
1791			p->policy = SCHED_NORMAL;
1792			p->static_prio = NICE_TO_PRIO(0);
1793			p->rt_priority = 0;
1794		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1795			p->static_prio = NICE_TO_PRIO(0);
1796
1797		p->prio = p->normal_prio = __normal_prio(p);
1798		set_load_weight(p);
1799
1800		/*
1801		 * We don't need the reset flag anymore after the fork. It has
1802		 * fulfilled its duty:
1803		 */
1804		p->sched_reset_on_fork = 0;
1805	}
1806
1807	if (!rt_prio(p->prio))
1808		p->sched_class = &fair_sched_class;
1809
1810	if (p->sched_class->task_fork)
1811		p->sched_class->task_fork(p);
1812
1813	/*
1814	 * The child is not yet in the pid-hash so no cgroup attach races,
1815	 * and the cgroup is pinned to this child due to cgroup_fork()
1816	 * is ran before sched_fork().
1817	 *
1818	 * Silence PROVE_RCU.
1819	 */
1820	raw_spin_lock_irqsave(&p->pi_lock, flags);
1821	set_task_cpu(p, cpu);
1822	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1823
1824#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1825	if (likely(sched_info_on()))
1826		memset(&p->sched_info, 0, sizeof(p->sched_info));
1827#endif
1828#if defined(CONFIG_SMP)
1829	p->on_cpu = 0;
1830#endif
1831	init_task_preempt_count(p);
1832#ifdef CONFIG_SMP
1833	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1834#endif
1835
1836	put_cpu();
1837}
1838
1839/*
1840 * wake_up_new_task - wake up a newly created task for the first time.
1841 *
1842 * This function will do some initial scheduler statistics housekeeping
1843 * that must be done for every newly created context, then puts the task
1844 * on the runqueue and wakes it.
1845 */
1846void wake_up_new_task(struct task_struct *p)
1847{
1848	unsigned long flags;
1849	struct rq *rq;
1850
1851	raw_spin_lock_irqsave(&p->pi_lock, flags);
1852#ifdef CONFIG_SMP
1853	/*
1854	 * Fork balancing, do it here and not earlier because:
1855	 *  - cpus_allowed can change in the fork path
1856	 *  - any previously selected cpu might disappear through hotplug
1857	 */
1858	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1859#endif
1860
1861	/* Initialize new task's runnable average */
1862	init_task_runnable_average(p);
1863	rq = __task_rq_lock(p);
1864	activate_task(rq, p, 0);
1865	p->on_rq = 1;
1866	trace_sched_wakeup_new(p, true);
1867	check_preempt_curr(rq, p, WF_FORK);
1868#ifdef CONFIG_SMP
1869	if (p->sched_class->task_woken)
1870		p->sched_class->task_woken(rq, p);
1871#endif
1872	task_rq_unlock(rq, p, &flags);
1873}
1874
1875#ifdef CONFIG_PREEMPT_NOTIFIERS
1876
1877/**
1878 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1879 * @notifier: notifier struct to register
1880 */
1881void preempt_notifier_register(struct preempt_notifier *notifier)
1882{
1883	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1884}
1885EXPORT_SYMBOL_GPL(preempt_notifier_register);
1886
1887/**
1888 * preempt_notifier_unregister - no longer interested in preemption notifications
1889 * @notifier: notifier struct to unregister
1890 *
1891 * This is safe to call from within a preemption notifier.
1892 */
1893void preempt_notifier_unregister(struct preempt_notifier *notifier)
1894{
1895	hlist_del(&notifier->link);
1896}
1897EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1898
1899static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1900{
1901	struct preempt_notifier *notifier;
1902
1903	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1904		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1905}
1906
1907static void
1908fire_sched_out_preempt_notifiers(struct task_struct *curr,
1909				 struct task_struct *next)
1910{
1911	struct preempt_notifier *notifier;
1912
1913	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1914		notifier->ops->sched_out(notifier, next);
1915}
1916
1917#else /* !CONFIG_PREEMPT_NOTIFIERS */
1918
1919static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1920{
1921}
1922
1923static void
1924fire_sched_out_preempt_notifiers(struct task_struct *curr,
1925				 struct task_struct *next)
1926{
1927}
1928
1929#endif /* CONFIG_PREEMPT_NOTIFIERS */
1930
1931/**
1932 * prepare_task_switch - prepare to switch tasks
1933 * @rq: the runqueue preparing to switch
1934 * @prev: the current task that is being switched out
1935 * @next: the task we are going to switch to.
1936 *
1937 * This is called with the rq lock held and interrupts off. It must
1938 * be paired with a subsequent finish_task_switch after the context
1939 * switch.
1940 *
1941 * prepare_task_switch sets up locking and calls architecture specific
1942 * hooks.
1943 */
1944static inline void
1945prepare_task_switch(struct rq *rq, struct task_struct *prev,
1946		    struct task_struct *next)
1947{
1948	trace_sched_switch(prev, next);
1949	sched_info_switch(rq, prev, next);
1950	perf_event_task_sched_out(prev, next);
1951	fire_sched_out_preempt_notifiers(prev, next);
1952	prepare_lock_switch(rq, next);
1953	prepare_arch_switch(next);
1954}
1955
1956/**
1957 * finish_task_switch - clean up after a task-switch
1958 * @rq: runqueue associated with task-switch
1959 * @prev: the thread we just switched away from.
1960 *
1961 * finish_task_switch must be called after the context switch, paired
1962 * with a prepare_task_switch call before the context switch.
1963 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1964 * and do any other architecture-specific cleanup actions.
1965 *
1966 * Note that we may have delayed dropping an mm in context_switch(). If
1967 * so, we finish that here outside of the runqueue lock. (Doing it
1968 * with the lock held can cause deadlocks; see schedule() for
1969 * details.)
1970 */
1971static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1972	__releases(rq->lock)
1973{
1974	struct mm_struct *mm = rq->prev_mm;
1975	long prev_state;
1976
1977	rq->prev_mm = NULL;
1978
1979	/*
1980	 * A task struct has one reference for the use as "current".
1981	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1982	 * schedule one last time. The schedule call will never return, and
1983	 * the scheduled task must drop that reference.
1984	 * The test for TASK_DEAD must occur while the runqueue locks are
1985	 * still held, otherwise prev could be scheduled on another cpu, die
1986	 * there before we look at prev->state, and then the reference would
1987	 * be dropped twice.
1988	 *		Manfred Spraul <manfred@colorfullife.com>
1989	 */
1990	prev_state = prev->state;
1991	vtime_task_switch(prev);
1992	finish_arch_switch(prev);
1993	perf_event_task_sched_in(prev, current);
1994	finish_lock_switch(rq, prev);
1995	finish_arch_post_lock_switch();
1996
1997	fire_sched_in_preempt_notifiers(current);
1998	if (mm)
1999		mmdrop(mm);
2000	if (unlikely(prev_state == TASK_DEAD)) {
2001		task_numa_free(prev);
2002
2003		/*
2004		 * Remove function-return probe instances associated with this
2005		 * task and put them back on the free list.
2006		 */
2007		kprobe_flush_task(prev);
2008		put_task_struct(prev);
2009	}
2010
2011	tick_nohz_task_switch(current);
2012}
2013
2014#ifdef CONFIG_SMP
2015
2016/* assumes rq->lock is held */
2017static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2018{
2019	if (prev->sched_class->pre_schedule)
2020		prev->sched_class->pre_schedule(rq, prev);
2021}
2022
2023/* rq->lock is NOT held, but preemption is disabled */
2024static inline void post_schedule(struct rq *rq)
2025{
2026	if (rq->post_schedule) {
2027		unsigned long flags;
2028
2029		raw_spin_lock_irqsave(&rq->lock, flags);
2030		if (rq->curr->sched_class->post_schedule)
2031			rq->curr->sched_class->post_schedule(rq);
2032		raw_spin_unlock_irqrestore(&rq->lock, flags);
2033
2034		rq->post_schedule = 0;
2035	}
2036}
2037
2038#else
2039
2040static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2041{
2042}
2043
2044static inline void post_schedule(struct rq *rq)
2045{
2046}
2047
2048#endif
2049
2050/**
2051 * schedule_tail - first thing a freshly forked thread must call.
2052 * @prev: the thread we just switched away from.
2053 */
2054asmlinkage void schedule_tail(struct task_struct *prev)
2055	__releases(rq->lock)
2056{
2057	struct rq *rq = this_rq();
2058
2059	finish_task_switch(rq, prev);
2060
2061	/*
2062	 * FIXME: do we need to worry about rq being invalidated by the
2063	 * task_switch?
2064	 */
2065	post_schedule(rq);
2066
2067#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2068	/* In this case, finish_task_switch does not reenable preemption */
2069	preempt_enable();
2070#endif
2071	if (current->set_child_tid)
2072		put_user(task_pid_vnr(current), current->set_child_tid);
2073}
2074
2075/*
2076 * context_switch - switch to the new MM and the new
2077 * thread's register state.
2078 */
2079static inline void
2080context_switch(struct rq *rq, struct task_struct *prev,
2081	       struct task_struct *next)
2082{
2083	struct mm_struct *mm, *oldmm;
2084
2085	prepare_task_switch(rq, prev, next);
2086
2087	mm = next->mm;
2088	oldmm = prev->active_mm;
2089	/*
2090	 * For paravirt, this is coupled with an exit in switch_to to
2091	 * combine the page table reload and the switch backend into
2092	 * one hypercall.
2093	 */
2094	arch_start_context_switch(prev);
2095
2096	if (!mm) {
2097		next->active_mm = oldmm;
2098		atomic_inc(&oldmm->mm_count);
2099		enter_lazy_tlb(oldmm, next);
2100	} else
2101		switch_mm(oldmm, mm, next);
2102
2103	if (!prev->mm) {
2104		prev->active_mm = NULL;
2105		rq->prev_mm = oldmm;
2106	}
2107	/*
2108	 * Since the runqueue lock will be released by the next
2109	 * task (which is an invalid locking op but in the case
2110	 * of the scheduler it's an obvious special-case), so we
2111	 * do an early lockdep release here:
2112	 */
2113#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2114	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2115#endif
2116
2117	context_tracking_task_switch(prev, next);
2118	/* Here we just switch the register state and the stack. */
2119	switch_to(prev, next, prev);
2120
2121	barrier();
2122	/*
2123	 * this_rq must be evaluated again because prev may have moved
2124	 * CPUs since it called schedule(), thus the 'rq' on its stack
2125	 * frame will be invalid.
2126	 */
2127	finish_task_switch(this_rq(), prev);
2128}
2129
2130/*
2131 * nr_running and nr_context_switches:
2132 *
2133 * externally visible scheduler statistics: current number of runnable
2134 * threads, total number of context switches performed since bootup.
2135 */
2136unsigned long nr_running(void)
2137{
2138	unsigned long i, sum = 0;
2139
2140	for_each_online_cpu(i)
2141		sum += cpu_rq(i)->nr_running;
2142
2143	return sum;
2144}
2145
2146unsigned long long nr_context_switches(void)
2147{
2148	int i;
2149	unsigned long long sum = 0;
2150
2151	for_each_possible_cpu(i)
2152		sum += cpu_rq(i)->nr_switches;
2153
2154	return sum;
2155}
2156
2157unsigned long nr_iowait(void)
2158{
2159	unsigned long i, sum = 0;
2160
2161	for_each_possible_cpu(i)
2162		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2163
2164	return sum;
2165}
2166
2167unsigned long nr_iowait_cpu(int cpu)
2168{
2169	struct rq *this = cpu_rq(cpu);
2170	return atomic_read(&this->nr_iowait);
2171}
2172
2173#ifdef CONFIG_SMP
2174
2175/*
2176 * sched_exec - execve() is a valuable balancing opportunity, because at
2177 * this point the task has the smallest effective memory and cache footprint.
2178 */
2179void sched_exec(void)
2180{
2181	struct task_struct *p = current;
2182	unsigned long flags;
2183	int dest_cpu;
2184
2185	raw_spin_lock_irqsave(&p->pi_lock, flags);
2186	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2187	if (dest_cpu == smp_processor_id())
2188		goto unlock;
2189
2190	if (likely(cpu_active(dest_cpu))) {
2191		struct migration_arg arg = { p, dest_cpu };
2192
2193		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2194		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2195		return;
2196	}
2197unlock:
2198	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2199}
2200
2201#endif
2202
2203DEFINE_PER_CPU(struct kernel_stat, kstat);
2204DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2205
2206EXPORT_PER_CPU_SYMBOL(kstat);
2207EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2208
2209/*
2210 * Return any ns on the sched_clock that have not yet been accounted in
2211 * @p in case that task is currently running.
2212 *
2213 * Called with task_rq_lock() held on @rq.
2214 */
2215static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2216{
2217	u64 ns = 0;
2218
2219	if (task_current(rq, p)) {
2220		update_rq_clock(rq);
2221		ns = rq_clock_task(rq) - p->se.exec_start;
2222		if ((s64)ns < 0)
2223			ns = 0;
2224	}
2225
2226	return ns;
2227}
2228
2229unsigned long long task_delta_exec(struct task_struct *p)
2230{
2231	unsigned long flags;
2232	struct rq *rq;
2233	u64 ns = 0;
2234
2235	rq = task_rq_lock(p, &flags);
2236	ns = do_task_delta_exec(p, rq);
2237	task_rq_unlock(rq, p, &flags);
2238
2239	return ns;
2240}
2241
2242/*
2243 * Return accounted runtime for the task.
2244 * In case the task is currently running, return the runtime plus current's
2245 * pending runtime that have not been accounted yet.
2246 */
2247unsigned long long task_sched_runtime(struct task_struct *p)
2248{
2249	unsigned long flags;
2250	struct rq *rq;
2251	u64 ns = 0;
2252
2253	rq = task_rq_lock(p, &flags);
2254	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2255	task_rq_unlock(rq, p, &flags);
2256
2257	return ns;
2258}
2259
2260/*
2261 * This function gets called by the timer code, with HZ frequency.
2262 * We call it with interrupts disabled.
2263 */
2264void scheduler_tick(void)
2265{
2266	int cpu = smp_processor_id();
2267	struct rq *rq = cpu_rq(cpu);
2268	struct task_struct *curr = rq->curr;
2269
2270	sched_clock_tick();
2271
2272	raw_spin_lock(&rq->lock);
2273	update_rq_clock(rq);
2274	curr->sched_class->task_tick(rq, curr, 0);
2275	update_cpu_load_active(rq);
2276	raw_spin_unlock(&rq->lock);
2277
2278	perf_event_task_tick();
2279
2280#ifdef CONFIG_SMP
2281	rq->idle_balance = idle_cpu(cpu);
2282	trigger_load_balance(rq, cpu);
2283#endif
2284	rq_last_tick_reset(rq);
2285}
2286
2287#ifdef CONFIG_NO_HZ_FULL
2288/**
2289 * scheduler_tick_max_deferment
2290 *
2291 * Keep at least one tick per second when a single
2292 * active task is running because the scheduler doesn't
2293 * yet completely support full dynticks environment.
2294 *
2295 * This makes sure that uptime, CFS vruntime, load
2296 * balancing, etc... continue to move forward, even
2297 * with a very low granularity.
2298 *
2299 * Return: Maximum deferment in nanoseconds.
2300 */
2301u64 scheduler_tick_max_deferment(void)
2302{
2303	struct rq *rq = this_rq();
2304	unsigned long next, now = ACCESS_ONCE(jiffies);
2305
2306	next = rq->last_sched_tick + HZ;
2307
2308	if (time_before_eq(next, now))
2309		return 0;
2310
2311	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2312}
2313#endif
2314
2315notrace unsigned long get_parent_ip(unsigned long addr)
2316{
2317	if (in_lock_functions(addr)) {
2318		addr = CALLER_ADDR2;
2319		if (in_lock_functions(addr))
2320			addr = CALLER_ADDR3;
2321	}
2322	return addr;
2323}
2324
2325#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2326				defined(CONFIG_PREEMPT_TRACER))
2327
2328void __kprobes preempt_count_add(int val)
2329{
2330#ifdef CONFIG_DEBUG_PREEMPT
2331	/*
2332	 * Underflow?
2333	 */
2334	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2335		return;
2336#endif
2337	__preempt_count_add(val);
2338#ifdef CONFIG_DEBUG_PREEMPT
2339	/*
2340	 * Spinlock count overflowing soon?
2341	 */
2342	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2343				PREEMPT_MASK - 10);
2344#endif
2345	if (preempt_count() == val)
2346		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2347}
2348EXPORT_SYMBOL(preempt_count_add);
2349
2350void __kprobes preempt_count_sub(int val)
2351{
2352#ifdef CONFIG_DEBUG_PREEMPT
2353	/*
2354	 * Underflow?
2355	 */
2356	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2357		return;
2358	/*
2359	 * Is the spinlock portion underflowing?
2360	 */
2361	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2362			!(preempt_count() & PREEMPT_MASK)))
2363		return;
2364#endif
2365
2366	if (preempt_count() == val)
2367		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2368	__preempt_count_sub(val);
2369}
2370EXPORT_SYMBOL(preempt_count_sub);
2371
2372#endif
2373
2374/*
2375 * Print scheduling while atomic bug:
2376 */
2377static noinline void __schedule_bug(struct task_struct *prev)
2378{
2379	if (oops_in_progress)
2380		return;
2381
2382	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2383		prev->comm, prev->pid, preempt_count());
2384
2385	debug_show_held_locks(prev);
2386	print_modules();
2387	if (irqs_disabled())
2388		print_irqtrace_events(prev);
2389	dump_stack();
2390	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2391}
2392
2393/*
2394 * Various schedule()-time debugging checks and statistics:
2395 */
2396static inline void schedule_debug(struct task_struct *prev)
2397{
2398	/*
2399	 * Test if we are atomic. Since do_exit() needs to call into
2400	 * schedule() atomically, we ignore that path for now.
2401	 * Otherwise, whine if we are scheduling when we should not be.
2402	 */
2403	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2404		__schedule_bug(prev);
2405	rcu_sleep_check();
2406
2407	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2408
2409	schedstat_inc(this_rq(), sched_count);
2410}
2411
2412static void put_prev_task(struct rq *rq, struct task_struct *prev)
2413{
2414	if (prev->on_rq || rq->skip_clock_update < 0)
2415		update_rq_clock(rq);
2416	prev->sched_class->put_prev_task(rq, prev);
2417}
2418
2419/*
2420 * Pick up the highest-prio task:
2421 */
2422static inline struct task_struct *
2423pick_next_task(struct rq *rq)
2424{
2425	const struct sched_class *class;
2426	struct task_struct *p;
2427
2428	/*
2429	 * Optimization: we know that if all tasks are in
2430	 * the fair class we can call that function directly:
2431	 */
2432	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2433		p = fair_sched_class.pick_next_task(rq);
2434		if (likely(p))
2435			return p;
2436	}
2437
2438	for_each_class(class) {
2439		p = class->pick_next_task(rq);
2440		if (p)
2441			return p;
2442	}
2443
2444	BUG(); /* the idle class will always have a runnable task */
2445}
2446
2447/*
2448 * __schedule() is the main scheduler function.
2449 *
2450 * The main means of driving the scheduler and thus entering this function are:
2451 *
2452 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2453 *
2454 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2455 *      paths. For example, see arch/x86/entry_64.S.
2456 *
2457 *      To drive preemption between tasks, the scheduler sets the flag in timer
2458 *      interrupt handler scheduler_tick().
2459 *
2460 *   3. Wakeups don't really cause entry into schedule(). They add a
2461 *      task to the run-queue and that's it.
2462 *
2463 *      Now, if the new task added to the run-queue preempts the current
2464 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2465 *      called on the nearest possible occasion:
2466 *
2467 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2468 *
2469 *         - in syscall or exception context, at the next outmost
2470 *           preempt_enable(). (this might be as soon as the wake_up()'s
2471 *           spin_unlock()!)
2472 *
2473 *         - in IRQ context, return from interrupt-handler to
2474 *           preemptible context
2475 *
2476 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2477 *         then at the next:
2478 *
2479 *          - cond_resched() call
2480 *          - explicit schedule() call
2481 *          - return from syscall or exception to user-space
2482 *          - return from interrupt-handler to user-space
2483 */
2484static void __sched __schedule(void)
2485{
2486	struct task_struct *prev, *next;
2487	unsigned long *switch_count;
2488	struct rq *rq;
2489	int cpu;
2490
2491need_resched:
2492	preempt_disable();
2493	cpu = smp_processor_id();
2494	rq = cpu_rq(cpu);
2495	rcu_note_context_switch(cpu);
2496	prev = rq->curr;
2497
2498	schedule_debug(prev);
2499
2500	if (sched_feat(HRTICK))
2501		hrtick_clear(rq);
2502
2503	/*
2504	 * Make sure that signal_pending_state()->signal_pending() below
2505	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2506	 * done by the caller to avoid the race with signal_wake_up().
2507	 */
2508	smp_mb__before_spinlock();
2509	raw_spin_lock_irq(&rq->lock);
2510
2511	switch_count = &prev->nivcsw;
2512	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2513		if (unlikely(signal_pending_state(prev->state, prev))) {
2514			prev->state = TASK_RUNNING;
2515		} else {
2516			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2517			prev->on_rq = 0;
2518
2519			/*
2520			 * If a worker went to sleep, notify and ask workqueue
2521			 * whether it wants to wake up a task to maintain
2522			 * concurrency.
2523			 */
2524			if (prev->flags & PF_WQ_WORKER) {
2525				struct task_struct *to_wakeup;
2526
2527				to_wakeup = wq_worker_sleeping(prev, cpu);
2528				if (to_wakeup)
2529					try_to_wake_up_local(to_wakeup);
2530			}
2531		}
2532		switch_count = &prev->nvcsw;
2533	}
2534
2535	pre_schedule(rq, prev);
2536
2537	if (unlikely(!rq->nr_running))
2538		idle_balance(cpu, rq);
2539
2540	put_prev_task(rq, prev);
2541	next = pick_next_task(rq);
2542	clear_tsk_need_resched(prev);
2543	clear_preempt_need_resched();
2544	rq->skip_clock_update = 0;
2545
2546	if (likely(prev != next)) {
2547		rq->nr_switches++;
2548		rq->curr = next;
2549		++*switch_count;
2550
2551		context_switch(rq, prev, next); /* unlocks the rq */
2552		/*
2553		 * The context switch have flipped the stack from under us
2554		 * and restored the local variables which were saved when
2555		 * this task called schedule() in the past. prev == current
2556		 * is still correct, but it can be moved to another cpu/rq.
2557		 */
2558		cpu = smp_processor_id();
2559		rq = cpu_rq(cpu);
2560	} else
2561		raw_spin_unlock_irq(&rq->lock);
2562
2563	post_schedule(rq);
2564
2565	sched_preempt_enable_no_resched();
2566	if (need_resched())
2567		goto need_resched;
2568}
2569
2570static inline void sched_submit_work(struct task_struct *tsk)
2571{
2572	if (!tsk->state || tsk_is_pi_blocked(tsk))
2573		return;
2574	/*
2575	 * If we are going to sleep and we have plugged IO queued,
2576	 * make sure to submit it to avoid deadlocks.
2577	 */
2578	if (blk_needs_flush_plug(tsk))
2579		blk_schedule_flush_plug(tsk);
2580}
2581
2582asmlinkage void __sched schedule(void)
2583{
2584	struct task_struct *tsk = current;
2585
2586	sched_submit_work(tsk);
2587	__schedule();
2588}
2589EXPORT_SYMBOL(schedule);
2590
2591#ifdef CONFIG_CONTEXT_TRACKING
2592asmlinkage void __sched schedule_user(void)
2593{
2594	/*
2595	 * If we come here after a random call to set_need_resched(),
2596	 * or we have been woken up remotely but the IPI has not yet arrived,
2597	 * we haven't yet exited the RCU idle mode. Do it here manually until
2598	 * we find a better solution.
2599	 */
2600	user_exit();
2601	schedule();
2602	user_enter();
2603}
2604#endif
2605
2606/**
2607 * schedule_preempt_disabled - called with preemption disabled
2608 *
2609 * Returns with preemption disabled. Note: preempt_count must be 1
2610 */
2611void __sched schedule_preempt_disabled(void)
2612{
2613	sched_preempt_enable_no_resched();
2614	schedule();
2615	preempt_disable();
2616}
2617
2618#ifdef CONFIG_PREEMPT
2619/*
2620 * this is the entry point to schedule() from in-kernel preemption
2621 * off of preempt_enable. Kernel preemptions off return from interrupt
2622 * occur there and call schedule directly.
2623 */
2624asmlinkage void __sched notrace preempt_schedule(void)
2625{
2626	/*
2627	 * If there is a non-zero preempt_count or interrupts are disabled,
2628	 * we do not want to preempt the current task. Just return..
2629	 */
2630	if (likely(!preemptible()))
2631		return;
2632
2633	do {
2634		__preempt_count_add(PREEMPT_ACTIVE);
2635		__schedule();
2636		__preempt_count_sub(PREEMPT_ACTIVE);
2637
2638		/*
2639		 * Check again in case we missed a preemption opportunity
2640		 * between schedule and now.
2641		 */
2642		barrier();
2643	} while (need_resched());
2644}
2645EXPORT_SYMBOL(preempt_schedule);
2646
2647/*
2648 * this is the entry point to schedule() from kernel preemption
2649 * off of irq context.
2650 * Note, that this is called and return with irqs disabled. This will
2651 * protect us against recursive calling from irq.
2652 */
2653asmlinkage void __sched preempt_schedule_irq(void)
2654{
2655	enum ctx_state prev_state;
2656
2657	/* Catch callers which need to be fixed */
2658	BUG_ON(preempt_count() || !irqs_disabled());
2659
2660	prev_state = exception_enter();
2661
2662	do {
2663		__preempt_count_add(PREEMPT_ACTIVE);
2664		local_irq_enable();
2665		__schedule();
2666		local_irq_disable();
2667		__preempt_count_sub(PREEMPT_ACTIVE);
2668
2669		/*
2670		 * Check again in case we missed a preemption opportunity
2671		 * between schedule and now.
2672		 */
2673		barrier();
2674	} while (need_resched());
2675
2676	exception_exit(prev_state);
2677}
2678
2679#endif /* CONFIG_PREEMPT */
2680
2681int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2682			  void *key)
2683{
2684	return try_to_wake_up(curr->private, mode, wake_flags);
2685}
2686EXPORT_SYMBOL(default_wake_function);
2687
2688/*
2689 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2690 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2691 * number) then we wake all the non-exclusive tasks and one exclusive task.
2692 *
2693 * There are circumstances in which we can try to wake a task which has already
2694 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2695 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2696 */
2697static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2698			int nr_exclusive, int wake_flags, void *key)
2699{
2700	wait_queue_t *curr, *next;
2701
2702	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2703		unsigned flags = curr->flags;
2704
2705		if (curr->func(curr, mode, wake_flags, key) &&
2706				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2707			break;
2708	}
2709}
2710
2711/**
2712 * __wake_up - wake up threads blocked on a waitqueue.
2713 * @q: the waitqueue
2714 * @mode: which threads
2715 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2716 * @key: is directly passed to the wakeup function
2717 *
2718 * It may be assumed that this function implies a write memory barrier before
2719 * changing the task state if and only if any tasks are woken up.
2720 */
2721void __wake_up(wait_queue_head_t *q, unsigned int mode,
2722			int nr_exclusive, void *key)
2723{
2724	unsigned long flags;
2725
2726	spin_lock_irqsave(&q->lock, flags);
2727	__wake_up_common(q, mode, nr_exclusive, 0, key);
2728	spin_unlock_irqrestore(&q->lock, flags);
2729}
2730EXPORT_SYMBOL(__wake_up);
2731
2732/*
2733 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2734 */
2735void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2736{
2737	__wake_up_common(q, mode, nr, 0, NULL);
2738}
2739EXPORT_SYMBOL_GPL(__wake_up_locked);
2740
2741void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2742{
2743	__wake_up_common(q, mode, 1, 0, key);
2744}
2745EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2746
2747/**
2748 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2749 * @q: the waitqueue
2750 * @mode: which threads
2751 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2752 * @key: opaque value to be passed to wakeup targets
2753 *
2754 * The sync wakeup differs that the waker knows that it will schedule
2755 * away soon, so while the target thread will be woken up, it will not
2756 * be migrated to another CPU - ie. the two threads are 'synchronized'
2757 * with each other. This can prevent needless bouncing between CPUs.
2758 *
2759 * On UP it can prevent extra preemption.
2760 *
2761 * It may be assumed that this function implies a write memory barrier before
2762 * changing the task state if and only if any tasks are woken up.
2763 */
2764void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2765			int nr_exclusive, void *key)
2766{
2767	unsigned long flags;
2768	int wake_flags = WF_SYNC;
2769
2770	if (unlikely(!q))
2771		return;
2772
2773	if (unlikely(nr_exclusive != 1))
2774		wake_flags = 0;
2775
2776	spin_lock_irqsave(&q->lock, flags);
2777	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2778	spin_unlock_irqrestore(&q->lock, flags);
2779}
2780EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2781
2782/*
2783 * __wake_up_sync - see __wake_up_sync_key()
2784 */
2785void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2786{
2787	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2788}
2789EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2790
2791/**
2792 * complete: - signals a single thread waiting on this completion
2793 * @x:  holds the state of this particular completion
2794 *
2795 * This will wake up a single thread waiting on this completion. Threads will be
2796 * awakened in the same order in which they were queued.
2797 *
2798 * See also complete_all(), wait_for_completion() and related routines.
2799 *
2800 * It may be assumed that this function implies a write memory barrier before
2801 * changing the task state if and only if any tasks are woken up.
2802 */
2803void complete(struct completion *x)
2804{
2805	unsigned long flags;
2806
2807	spin_lock_irqsave(&x->wait.lock, flags);
2808	x->done++;
2809	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2810	spin_unlock_irqrestore(&x->wait.lock, flags);
2811}
2812EXPORT_SYMBOL(complete);
2813
2814/**
2815 * complete_all: - signals all threads waiting on this completion
2816 * @x:  holds the state of this particular completion
2817 *
2818 * This will wake up all threads waiting on this particular completion event.
2819 *
2820 * It may be assumed that this function implies a write memory barrier before
2821 * changing the task state if and only if any tasks are woken up.
2822 */
2823void complete_all(struct completion *x)
2824{
2825	unsigned long flags;
2826
2827	spin_lock_irqsave(&x->wait.lock, flags);
2828	x->done += UINT_MAX/2;
2829	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2830	spin_unlock_irqrestore(&x->wait.lock, flags);
2831}
2832EXPORT_SYMBOL(complete_all);
2833
2834static inline long __sched
2835do_wait_for_common(struct completion *x,
2836		   long (*action)(long), long timeout, int state)
2837{
2838	if (!x->done) {
2839		DECLARE_WAITQUEUE(wait, current);
2840
2841		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2842		do {
2843			if (signal_pending_state(state, current)) {
2844				timeout = -ERESTARTSYS;
2845				break;
2846			}
2847			__set_current_state(state);
2848			spin_unlock_irq(&x->wait.lock);
2849			timeout = action(timeout);
2850			spin_lock_irq(&x->wait.lock);
2851		} while (!x->done && timeout);
2852		__remove_wait_queue(&x->wait, &wait);
2853		if (!x->done)
2854			return timeout;
2855	}
2856	x->done--;
2857	return timeout ?: 1;
2858}
2859
2860static inline long __sched
2861__wait_for_common(struct completion *x,
2862		  long (*action)(long), long timeout, int state)
2863{
2864	might_sleep();
2865
2866	spin_lock_irq(&x->wait.lock);
2867	timeout = do_wait_for_common(x, action, timeout, state);
2868	spin_unlock_irq(&x->wait.lock);
2869	return timeout;
2870}
2871
2872static long __sched
2873wait_for_common(struct completion *x, long timeout, int state)
2874{
2875	return __wait_for_common(x, schedule_timeout, timeout, state);
2876}
2877
2878static long __sched
2879wait_for_common_io(struct completion *x, long timeout, int state)
2880{
2881	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2882}
2883
2884/**
2885 * wait_for_completion: - waits for completion of a task
2886 * @x:  holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It is NOT
2889 * interruptible and there is no timeout.
2890 *
2891 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2892 * and interrupt capability. Also see complete().
2893 */
2894void __sched wait_for_completion(struct completion *x)
2895{
2896	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2897}
2898EXPORT_SYMBOL(wait_for_completion);
2899
2900/**
2901 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2902 * @x:  holds the state of this particular completion
2903 * @timeout:  timeout value in jiffies
2904 *
2905 * This waits for either a completion of a specific task to be signaled or for a
2906 * specified timeout to expire. The timeout is in jiffies. It is not
2907 * interruptible.
2908 *
2909 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2910 * till timeout) if completed.
2911 */
2912unsigned long __sched
2913wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2914{
2915	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2916}
2917EXPORT_SYMBOL(wait_for_completion_timeout);
2918
2919/**
2920 * wait_for_completion_io: - waits for completion of a task
2921 * @x:  holds the state of this particular completion
2922 *
2923 * This waits to be signaled for completion of a specific task. It is NOT
2924 * interruptible and there is no timeout. The caller is accounted as waiting
2925 * for IO.
2926 */
2927void __sched wait_for_completion_io(struct completion *x)
2928{
2929	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2930}
2931EXPORT_SYMBOL(wait_for_completion_io);
2932
2933/**
2934 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2935 * @x:  holds the state of this particular completion
2936 * @timeout:  timeout value in jiffies
2937 *
2938 * This waits for either a completion of a specific task to be signaled or for a
2939 * specified timeout to expire. The timeout is in jiffies. It is not
2940 * interruptible. The caller is accounted as waiting for IO.
2941 *
2942 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2943 * till timeout) if completed.
2944 */
2945unsigned long __sched
2946wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2947{
2948	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2949}
2950EXPORT_SYMBOL(wait_for_completion_io_timeout);
2951
2952/**
2953 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2954 * @x:  holds the state of this particular completion
2955 *
2956 * This waits for completion of a specific task to be signaled. It is
2957 * interruptible.
2958 *
2959 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2960 */
2961int __sched wait_for_completion_interruptible(struct completion *x)
2962{
2963	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2964	if (t == -ERESTARTSYS)
2965		return t;
2966	return 0;
2967}
2968EXPORT_SYMBOL(wait_for_completion_interruptible);
2969
2970/**
2971 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2972 * @x:  holds the state of this particular completion
2973 * @timeout:  timeout value in jiffies
2974 *
2975 * This waits for either a completion of a specific task to be signaled or for a
2976 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2977 *
2978 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2979 * or number of jiffies left till timeout) if completed.
2980 */
2981long __sched
2982wait_for_completion_interruptible_timeout(struct completion *x,
2983					  unsigned long timeout)
2984{
2985	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2986}
2987EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2988
2989/**
2990 * wait_for_completion_killable: - waits for completion of a task (killable)
2991 * @x:  holds the state of this particular completion
2992 *
2993 * This waits to be signaled for completion of a specific task. It can be
2994 * interrupted by a kill signal.
2995 *
2996 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2997 */
2998int __sched wait_for_completion_killable(struct completion *x)
2999{
3000	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3001	if (t == -ERESTARTSYS)
3002		return t;
3003	return 0;
3004}
3005EXPORT_SYMBOL(wait_for_completion_killable);
3006
3007/**
3008 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3009 * @x:  holds the state of this particular completion
3010 * @timeout:  timeout value in jiffies
3011 *
3012 * This waits for either a completion of a specific task to be
3013 * signaled or for a specified timeout to expire. It can be
3014 * interrupted by a kill signal. The timeout is in jiffies.
3015 *
3016 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3017 * or number of jiffies left till timeout) if completed.
3018 */
3019long __sched
3020wait_for_completion_killable_timeout(struct completion *x,
3021				     unsigned long timeout)
3022{
3023	return wait_for_common(x, timeout, TASK_KILLABLE);
3024}
3025EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3026
3027/**
3028 *	try_wait_for_completion - try to decrement a completion without blocking
3029 *	@x:	completion structure
3030 *
3031 *	Return: 0 if a decrement cannot be done without blocking
3032 *		 1 if a decrement succeeded.
3033 *
3034 *	If a completion is being used as a counting completion,
3035 *	attempt to decrement the counter without blocking. This
3036 *	enables us to avoid waiting if the resource the completion
3037 *	is protecting is not available.
3038 */
3039bool try_wait_for_completion(struct completion *x)
3040{
3041	unsigned long flags;
3042	int ret = 1;
3043
3044	spin_lock_irqsave(&x->wait.lock, flags);
3045	if (!x->done)
3046		ret = 0;
3047	else
3048		x->done--;
3049	spin_unlock_irqrestore(&x->wait.lock, flags);
3050	return ret;
3051}
3052EXPORT_SYMBOL(try_wait_for_completion);
3053
3054/**
3055 *	completion_done - Test to see if a completion has any waiters
3056 *	@x:	completion structure
3057 *
3058 *	Return: 0 if there are waiters (wait_for_completion() in progress)
3059 *		 1 if there are no waiters.
3060 *
3061 */
3062bool completion_done(struct completion *x)
3063{
3064	unsigned long flags;
3065	int ret = 1;
3066
3067	spin_lock_irqsave(&x->wait.lock, flags);
3068	if (!x->done)
3069		ret = 0;
3070	spin_unlock_irqrestore(&x->wait.lock, flags);
3071	return ret;
3072}
3073EXPORT_SYMBOL(completion_done);
3074
3075static long __sched
3076sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3077{
3078	unsigned long flags;
3079	wait_queue_t wait;
3080
3081	init_waitqueue_entry(&wait, current);
3082
3083	__set_current_state(state);
3084
3085	spin_lock_irqsave(&q->lock, flags);
3086	__add_wait_queue(q, &wait);
3087	spin_unlock(&q->lock);
3088	timeout = schedule_timeout(timeout);
3089	spin_lock_irq(&q->lock);
3090	__remove_wait_queue(q, &wait);
3091	spin_unlock_irqrestore(&q->lock, flags);
3092
3093	return timeout;
3094}
3095
3096void __sched interruptible_sleep_on(wait_queue_head_t *q)
3097{
3098	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3099}
3100EXPORT_SYMBOL(interruptible_sleep_on);
3101
3102long __sched
3103interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3104{
3105	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3106}
3107EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3108
3109void __sched sleep_on(wait_queue_head_t *q)
3110{
3111	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3112}
3113EXPORT_SYMBOL(sleep_on);
3114
3115long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3116{
3117	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3118}
3119EXPORT_SYMBOL(sleep_on_timeout);
3120
3121#ifdef CONFIG_RT_MUTEXES
3122
3123/*
3124 * rt_mutex_setprio - set the current priority of a task
3125 * @p: task
3126 * @prio: prio value (kernel-internal form)
3127 *
3128 * This function changes the 'effective' priority of a task. It does
3129 * not touch ->normal_prio like __setscheduler().
3130 *
3131 * Used by the rt_mutex code to implement priority inheritance logic.
3132 */
3133void rt_mutex_setprio(struct task_struct *p, int prio)
3134{
3135	int oldprio, on_rq, running;
3136	struct rq *rq;
3137	const struct sched_class *prev_class;
3138
3139	BUG_ON(prio < 0 || prio > MAX_PRIO);
3140
3141	rq = __task_rq_lock(p);
3142
3143	/*
3144	 * Idle task boosting is a nono in general. There is one
3145	 * exception, when PREEMPT_RT and NOHZ is active:
3146	 *
3147	 * The idle task calls get_next_timer_interrupt() and holds
3148	 * the timer wheel base->lock on the CPU and another CPU wants
3149	 * to access the timer (probably to cancel it). We can safely
3150	 * ignore the boosting request, as the idle CPU runs this code
3151	 * with interrupts disabled and will complete the lock
3152	 * protected section without being interrupted. So there is no
3153	 * real need to boost.
3154	 */
3155	if (unlikely(p == rq->idle)) {
3156		WARN_ON(p != rq->curr);
3157		WARN_ON(p->pi_blocked_on);
3158		goto out_unlock;
3159	}
3160
3161	trace_sched_pi_setprio(p, prio);
3162	oldprio = p->prio;
3163	prev_class = p->sched_class;
3164	on_rq = p->on_rq;
3165	running = task_current(rq, p);
3166	if (on_rq)
3167		dequeue_task(rq, p, 0);
3168	if (running)
3169		p->sched_class->put_prev_task(rq, p);
3170
3171	if (rt_prio(prio))
3172		p->sched_class = &rt_sched_class;
3173	else
3174		p->sched_class = &fair_sched_class;
3175
3176	p->prio = prio;
3177
3178	if (running)
3179		p->sched_class->set_curr_task(rq);
3180	if (on_rq)
3181		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3182
3183	check_class_changed(rq, p, prev_class, oldprio);
3184out_unlock:
3185	__task_rq_unlock(rq);
3186}
3187#endif
3188void set_user_nice(struct task_struct *p, long nice)
3189{
3190	int old_prio, delta, on_rq;
3191	unsigned long flags;
3192	struct rq *rq;
3193
3194	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3195		return;
3196	/*
3197	 * We have to be careful, if called from sys_setpriority(),
3198	 * the task might be in the middle of scheduling on another CPU.
3199	 */
3200	rq = task_rq_lock(p, &flags);
3201	/*
3202	 * The RT priorities are set via sched_setscheduler(), but we still
3203	 * allow the 'normal' nice value to be set - but as expected
3204	 * it wont have any effect on scheduling until the task is
3205	 * SCHED_FIFO/SCHED_RR:
3206	 */
3207	if (task_has_rt_policy(p)) {
3208		p->static_prio = NICE_TO_PRIO(nice);
3209		goto out_unlock;
3210	}
3211	on_rq = p->on_rq;
3212	if (on_rq)
3213		dequeue_task(rq, p, 0);
3214
3215	p->static_prio = NICE_TO_PRIO(nice);
3216	set_load_weight(p);
3217	old_prio = p->prio;
3218	p->prio = effective_prio(p);
3219	delta = p->prio - old_prio;
3220
3221	if (on_rq) {
3222		enqueue_task(rq, p, 0);
3223		/*
3224		 * If the task increased its priority or is running and
3225		 * lowered its priority, then reschedule its CPU:
3226		 */
3227		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3228			resched_task(rq->curr);
3229	}
3230out_unlock:
3231	task_rq_unlock(rq, p, &flags);
3232}
3233EXPORT_SYMBOL(set_user_nice);
3234
3235/*
3236 * can_nice - check if a task can reduce its nice value
3237 * @p: task
3238 * @nice: nice value
3239 */
3240int can_nice(const struct task_struct *p, const int nice)
3241{
3242	/* convert nice value [19,-20] to rlimit style value [1,40] */
3243	int nice_rlim = 20 - nice;
3244
3245	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3246		capable(CAP_SYS_NICE));
3247}
3248
3249#ifdef __ARCH_WANT_SYS_NICE
3250
3251/*
3252 * sys_nice - change the priority of the current process.
3253 * @increment: priority increment
3254 *
3255 * sys_setpriority is a more generic, but much slower function that
3256 * does similar things.
3257 */
3258SYSCALL_DEFINE1(nice, int, increment)
3259{
3260	long nice, retval;
3261
3262	/*
3263	 * Setpriority might change our priority at the same moment.
3264	 * We don't have to worry. Conceptually one call occurs first
3265	 * and we have a single winner.
3266	 */
3267	if (increment < -40)
3268		increment = -40;
3269	if (increment > 40)
3270		increment = 40;
3271
3272	nice = TASK_NICE(current) + increment;
3273	if (nice < -20)
3274		nice = -20;
3275	if (nice > 19)
3276		nice = 19;
3277
3278	if (increment < 0 && !can_nice(current, nice))
3279		return -EPERM;
3280
3281	retval = security_task_setnice(current, nice);
3282	if (retval)
3283		return retval;
3284
3285	set_user_nice(current, nice);
3286	return 0;
3287}
3288
3289#endif
3290
3291/**
3292 * task_prio - return the priority value of a given task.
3293 * @p: the task in question.
3294 *
3295 * Return: The priority value as seen by users in /proc.
3296 * RT tasks are offset by -200. Normal tasks are centered
3297 * around 0, value goes from -16 to +15.
3298 */
3299int task_prio(const struct task_struct *p)
3300{
3301	return p->prio - MAX_RT_PRIO;
3302}
3303
3304/**
3305 * task_nice - return the nice value of a given task.
3306 * @p: the task in question.
3307 *
3308 * Return: The nice value [ -20 ... 0 ... 19 ].
3309 */
3310int task_nice(const struct task_struct *p)
3311{
3312	return TASK_NICE(p);
3313}
3314EXPORT_SYMBOL(task_nice);
3315
3316/**
3317 * idle_cpu - is a given cpu idle currently?
3318 * @cpu: the processor in question.
3319 *
3320 * Return: 1 if the CPU is currently idle. 0 otherwise.
3321 */
3322int idle_cpu(int cpu)
3323{
3324	struct rq *rq = cpu_rq(cpu);
3325
3326	if (rq->curr != rq->idle)
3327		return 0;
3328
3329	if (rq->nr_running)
3330		return 0;
3331
3332#ifdef CONFIG_SMP
3333	if (!llist_empty(&rq->wake_list))
3334		return 0;
3335#endif
3336
3337	return 1;
3338}
3339
3340/**
3341 * idle_task - return the idle task for a given cpu.
3342 * @cpu: the processor in question.
3343 *
3344 * Return: The idle task for the cpu @cpu.
3345 */
3346struct task_struct *idle_task(int cpu)
3347{
3348	return cpu_rq(cpu)->idle;
3349}
3350
3351/**
3352 * find_process_by_pid - find a process with a matching PID value.
3353 * @pid: the pid in question.
3354 *
3355 * The task of @pid, if found. %NULL otherwise.
3356 */
3357static struct task_struct *find_process_by_pid(pid_t pid)
3358{
3359	return pid ? find_task_by_vpid(pid) : current;
3360}
3361
3362/* Actually do priority change: must hold rq lock. */
3363static void
3364__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3365{
3366	p->policy = policy;
3367	p->rt_priority = prio;
3368	p->normal_prio = normal_prio(p);
3369	/* we are holding p->pi_lock already */
3370	p->prio = rt_mutex_getprio(p);
3371	if (rt_prio(p->prio))
3372		p->sched_class = &rt_sched_class;
3373	else
3374		p->sched_class = &fair_sched_class;
3375	set_load_weight(p);
3376}
3377
3378/*
3379 * check the target process has a UID that matches the current process's
3380 */
3381static bool check_same_owner(struct task_struct *p)
3382{
3383	const struct cred *cred = current_cred(), *pcred;
3384	bool match;
3385
3386	rcu_read_lock();
3387	pcred = __task_cred(p);
3388	match = (uid_eq(cred->euid, pcred->euid) ||
3389		 uid_eq(cred->euid, pcred->uid));
3390	rcu_read_unlock();
3391	return match;
3392}
3393
3394static int __sched_setscheduler(struct task_struct *p, int policy,
3395				const struct sched_param *param, bool user)
3396{
3397	int retval, oldprio, oldpolicy = -1, on_rq, running;
3398	unsigned long flags;
3399	const struct sched_class *prev_class;
3400	struct rq *rq;
3401	int reset_on_fork;
3402
3403	/* may grab non-irq protected spin_locks */
3404	BUG_ON(in_interrupt());
3405recheck:
3406	/* double check policy once rq lock held */
3407	if (policy < 0) {
3408		reset_on_fork = p->sched_reset_on_fork;
3409		policy = oldpolicy = p->policy;
3410	} else {
3411		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3412		policy &= ~SCHED_RESET_ON_FORK;
3413
3414		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3415				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3416				policy != SCHED_IDLE)
3417			return -EINVAL;
3418	}
3419
3420	/*
3421	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3422	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3423	 * SCHED_BATCH and SCHED_IDLE is 0.
3424	 */
3425	if (param->sched_priority < 0 ||
3426	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3427	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3428		return -EINVAL;
3429	if (rt_policy(policy) != (param->sched_priority != 0))
3430		return -EINVAL;
3431
3432	/*
3433	 * Allow unprivileged RT tasks to decrease priority:
3434	 */
3435	if (user && !capable(CAP_SYS_NICE)) {
3436		if (rt_policy(policy)) {
3437			unsigned long rlim_rtprio =
3438					task_rlimit(p, RLIMIT_RTPRIO);
3439
3440			/* can't set/change the rt policy */
3441			if (policy != p->policy && !rlim_rtprio)
3442				return -EPERM;
3443
3444			/* can't increase priority */
3445			if (param->sched_priority > p->rt_priority &&
3446			    param->sched_priority > rlim_rtprio)
3447				return -EPERM;
3448		}
3449
3450		/*
3451		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3452		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3453		 */
3454		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3455			if (!can_nice(p, TASK_NICE(p)))
3456				return -EPERM;
3457		}
3458
3459		/* can't change other user's priorities */
3460		if (!check_same_owner(p))
3461			return -EPERM;
3462
3463		/* Normal users shall not reset the sched_reset_on_fork flag */
3464		if (p->sched_reset_on_fork && !reset_on_fork)
3465			return -EPERM;
3466	}
3467
3468	if (user) {
3469		retval = security_task_setscheduler(p);
3470		if (retval)
3471			return retval;
3472	}
3473
3474	/*
3475	 * make sure no PI-waiters arrive (or leave) while we are
3476	 * changing the priority of the task:
3477	 *
3478	 * To be able to change p->policy safely, the appropriate
3479	 * runqueue lock must be held.
3480	 */
3481	rq = task_rq_lock(p, &flags);
3482
3483	/*
3484	 * Changing the policy of the stop threads its a very bad idea
3485	 */
3486	if (p == rq->stop) {
3487		task_rq_unlock(rq, p, &flags);
3488		return -EINVAL;
3489	}
3490
3491	/*
3492	 * If not changing anything there's no need to proceed further:
3493	 */
3494	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3495			param->sched_priority == p->rt_priority))) {
3496		task_rq_unlock(rq, p, &flags);
3497		return 0;
3498	}
3499
3500#ifdef CONFIG_RT_GROUP_SCHED
3501	if (user) {
3502		/*
3503		 * Do not allow realtime tasks into groups that have no runtime
3504		 * assigned.
3505		 */
3506		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3507				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3508				!task_group_is_autogroup(task_group(p))) {
3509			task_rq_unlock(rq, p, &flags);
3510			return -EPERM;
3511		}
3512	}
3513#endif
3514
3515	/* recheck policy now with rq lock held */
3516	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3517		policy = oldpolicy = -1;
3518		task_rq_unlock(rq, p, &flags);
3519		goto recheck;
3520	}
3521	on_rq = p->on_rq;
3522	running = task_current(rq, p);
3523	if (on_rq)
3524		dequeue_task(rq, p, 0);
3525	if (running)
3526		p->sched_class->put_prev_task(rq, p);
3527
3528	p->sched_reset_on_fork = reset_on_fork;
3529
3530	oldprio = p->prio;
3531	prev_class = p->sched_class;
3532	__setscheduler(rq, p, policy, param->sched_priority);
3533
3534	if (running)
3535		p->sched_class->set_curr_task(rq);
3536	if (on_rq)
3537		enqueue_task(rq, p, 0);
3538
3539	check_class_changed(rq, p, prev_class, oldprio);
3540	task_rq_unlock(rq, p, &flags);
3541
3542	rt_mutex_adjust_pi(p);
3543
3544	return 0;
3545}
3546
3547/**
3548 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3549 * @p: the task in question.
3550 * @policy: new policy.
3551 * @param: structure containing the new RT priority.
3552 *
3553 * Return: 0 on success. An error code otherwise.
3554 *
3555 * NOTE that the task may be already dead.
3556 */
3557int sched_setscheduler(struct task_struct *p, int policy,
3558		       const struct sched_param *param)
3559{
3560	return __sched_setscheduler(p, policy, param, true);
3561}
3562EXPORT_SYMBOL_GPL(sched_setscheduler);
3563
3564/**
3565 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3566 * @p: the task in question.
3567 * @policy: new policy.
3568 * @param: structure containing the new RT priority.
3569 *
3570 * Just like sched_setscheduler, only don't bother checking if the
3571 * current context has permission.  For example, this is needed in
3572 * stop_machine(): we create temporary high priority worker threads,
3573 * but our caller might not have that capability.
3574 *
3575 * Return: 0 on success. An error code otherwise.
3576 */
3577int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3578			       const struct sched_param *param)
3579{
3580	return __sched_setscheduler(p, policy, param, false);
3581}
3582
3583static int
3584do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3585{
3586	struct sched_param lparam;
3587	struct task_struct *p;
3588	int retval;
3589
3590	if (!param || pid < 0)
3591		return -EINVAL;
3592	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3593		return -EFAULT;
3594
3595	rcu_read_lock();
3596	retval = -ESRCH;
3597	p = find_process_by_pid(pid);
3598	if (p != NULL)
3599		retval = sched_setscheduler(p, policy, &lparam);
3600	rcu_read_unlock();
3601
3602	return retval;
3603}
3604
3605/**
3606 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3607 * @pid: the pid in question.
3608 * @policy: new policy.
3609 * @param: structure containing the new RT priority.
3610 *
3611 * Return: 0 on success. An error code otherwise.
3612 */
3613SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3614		struct sched_param __user *, param)
3615{
3616	/* negative values for policy are not valid */
3617	if (policy < 0)
3618		return -EINVAL;
3619
3620	return do_sched_setscheduler(pid, policy, param);
3621}
3622
3623/**
3624 * sys_sched_setparam - set/change the RT priority of a thread
3625 * @pid: the pid in question.
3626 * @param: structure containing the new RT priority.
3627 *
3628 * Return: 0 on success. An error code otherwise.
3629 */
3630SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3631{
3632	return do_sched_setscheduler(pid, -1, param);
3633}
3634
3635/**
3636 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3637 * @pid: the pid in question.
3638 *
3639 * Return: On success, the policy of the thread. Otherwise, a negative error
3640 * code.
3641 */
3642SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3643{
3644	struct task_struct *p;
3645	int retval;
3646
3647	if (pid < 0)
3648		return -EINVAL;
3649
3650	retval = -ESRCH;
3651	rcu_read_lock();
3652	p = find_process_by_pid(pid);
3653	if (p) {
3654		retval = security_task_getscheduler(p);
3655		if (!retval)
3656			retval = p->policy
3657				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3658	}
3659	rcu_read_unlock();
3660	return retval;
3661}
3662
3663/**
3664 * sys_sched_getparam - get the RT priority of a thread
3665 * @pid: the pid in question.
3666 * @param: structure containing the RT priority.
3667 *
3668 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3669 * code.
3670 */
3671SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3672{
3673	struct sched_param lp;
3674	struct task_struct *p;
3675	int retval;
3676
3677	if (!param || pid < 0)
3678		return -EINVAL;
3679
3680	rcu_read_lock();
3681	p = find_process_by_pid(pid);
3682	retval = -ESRCH;
3683	if (!p)
3684		goto out_unlock;
3685
3686	retval = security_task_getscheduler(p);
3687	if (retval)
3688		goto out_unlock;
3689
3690	lp.sched_priority = p->rt_priority;
3691	rcu_read_unlock();
3692
3693	/*
3694	 * This one might sleep, we cannot do it with a spinlock held ...
3695	 */
3696	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3697
3698	return retval;
3699
3700out_unlock:
3701	rcu_read_unlock();
3702	return retval;
3703}
3704
3705long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3706{
3707	cpumask_var_t cpus_allowed, new_mask;
3708	struct task_struct *p;
3709	int retval;
3710
3711	get_online_cpus();
3712	rcu_read_lock();
3713
3714	p = find_process_by_pid(pid);
3715	if (!p) {
3716		rcu_read_unlock();
3717		put_online_cpus();
3718		return -ESRCH;
3719	}
3720
3721	/* Prevent p going away */
3722	get_task_struct(p);
3723	rcu_read_unlock();
3724
3725	if (p->flags & PF_NO_SETAFFINITY) {
3726		retval = -EINVAL;
3727		goto out_put_task;
3728	}
3729	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3730		retval = -ENOMEM;
3731		goto out_put_task;
3732	}
3733	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3734		retval = -ENOMEM;
3735		goto out_free_cpus_allowed;
3736	}
3737	retval = -EPERM;
3738	if (!check_same_owner(p)) {
3739		rcu_read_lock();
3740		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3741			rcu_read_unlock();
3742			goto out_unlock;
3743		}
3744		rcu_read_unlock();
3745	}
3746
3747	retval = security_task_setscheduler(p);
3748	if (retval)
3749		goto out_unlock;
3750
3751	cpuset_cpus_allowed(p, cpus_allowed);
3752	cpumask_and(new_mask, in_mask, cpus_allowed);
3753again:
3754	retval = set_cpus_allowed_ptr(p, new_mask);
3755
3756	if (!retval) {
3757		cpuset_cpus_allowed(p, cpus_allowed);
3758		if (!cpumask_subset(new_mask, cpus_allowed)) {
3759			/*
3760			 * We must have raced with a concurrent cpuset
3761			 * update. Just reset the cpus_allowed to the
3762			 * cpuset's cpus_allowed
3763			 */
3764			cpumask_copy(new_mask, cpus_allowed);
3765			goto again;
3766		}
3767	}
3768out_unlock:
3769	free_cpumask_var(new_mask);
3770out_free_cpus_allowed:
3771	free_cpumask_var(cpus_allowed);
3772out_put_task:
3773	put_task_struct(p);
3774	put_online_cpus();
3775	return retval;
3776}
3777
3778static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3779			     struct cpumask *new_mask)
3780{
3781	if (len < cpumask_size())
3782		cpumask_clear(new_mask);
3783	else if (len > cpumask_size())
3784		len = cpumask_size();
3785
3786	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3787}
3788
3789/**
3790 * sys_sched_setaffinity - set the cpu affinity of a process
3791 * @pid: pid of the process
3792 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3793 * @user_mask_ptr: user-space pointer to the new cpu mask
3794 *
3795 * Return: 0 on success. An error code otherwise.
3796 */
3797SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3798		unsigned long __user *, user_mask_ptr)
3799{
3800	cpumask_var_t new_mask;
3801	int retval;
3802
3803	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3804		return -ENOMEM;
3805
3806	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3807	if (retval == 0)
3808		retval = sched_setaffinity(pid, new_mask);
3809	free_cpumask_var(new_mask);
3810	return retval;
3811}
3812
3813long sched_getaffinity(pid_t pid, struct cpumask *mask)
3814{
3815	struct task_struct *p;
3816	unsigned long flags;
3817	int retval;
3818
3819	get_online_cpus();
3820	rcu_read_lock();
3821
3822	retval = -ESRCH;
3823	p = find_process_by_pid(pid);
3824	if (!p)
3825		goto out_unlock;
3826
3827	retval = security_task_getscheduler(p);
3828	if (retval)
3829		goto out_unlock;
3830
3831	raw_spin_lock_irqsave(&p->pi_lock, flags);
3832	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3833	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3834
3835out_unlock:
3836	rcu_read_unlock();
3837	put_online_cpus();
3838
3839	return retval;
3840}
3841
3842/**
3843 * sys_sched_getaffinity - get the cpu affinity of a process
3844 * @pid: pid of the process
3845 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3846 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3847 *
3848 * Return: 0 on success. An error code otherwise.
3849 */
3850SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3851		unsigned long __user *, user_mask_ptr)
3852{
3853	int ret;
3854	cpumask_var_t mask;
3855
3856	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3857		return -EINVAL;
3858	if (len & (sizeof(unsigned long)-1))
3859		return -EINVAL;
3860
3861	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3862		return -ENOMEM;
3863
3864	ret = sched_getaffinity(pid, mask);
3865	if (ret == 0) {
3866		size_t retlen = min_t(size_t, len, cpumask_size());
3867
3868		if (copy_to_user(user_mask_ptr, mask, retlen))
3869			ret = -EFAULT;
3870		else
3871			ret = retlen;
3872	}
3873	free_cpumask_var(mask);
3874
3875	return ret;
3876}
3877
3878/**
3879 * sys_sched_yield - yield the current processor to other threads.
3880 *
3881 * This function yields the current CPU to other tasks. If there are no
3882 * other threads running on this CPU then this function will return.
3883 *
3884 * Return: 0.
3885 */
3886SYSCALL_DEFINE0(sched_yield)
3887{
3888	struct rq *rq = this_rq_lock();
3889
3890	schedstat_inc(rq, yld_count);
3891	current->sched_class->yield_task(rq);
3892
3893	/*
3894	 * Since we are going to call schedule() anyway, there's
3895	 * no need to preempt or enable interrupts:
3896	 */
3897	__release(rq->lock);
3898	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3899	do_raw_spin_unlock(&rq->lock);
3900	sched_preempt_enable_no_resched();
3901
3902	schedule();
3903
3904	return 0;
3905}
3906
3907static void __cond_resched(void)
3908{
3909	__preempt_count_add(PREEMPT_ACTIVE);
3910	__schedule();
3911	__preempt_count_sub(PREEMPT_ACTIVE);
3912}
3913
3914int __sched _cond_resched(void)
3915{
3916	if (should_resched()) {
3917		__cond_resched();
3918		return 1;
3919	}
3920	return 0;
3921}
3922EXPORT_SYMBOL(_cond_resched);
3923
3924/*
3925 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3926 * call schedule, and on return reacquire the lock.
3927 *
3928 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3929 * operations here to prevent schedule() from being called twice (once via
3930 * spin_unlock(), once by hand).
3931 */
3932int __cond_resched_lock(spinlock_t *lock)
3933{
3934	int resched = should_resched();
3935	int ret = 0;
3936
3937	lockdep_assert_held(lock);
3938
3939	if (spin_needbreak(lock) || resched) {
3940		spin_unlock(lock);
3941		if (resched)
3942			__cond_resched();
3943		else
3944			cpu_relax();
3945		ret = 1;
3946		spin_lock(lock);
3947	}
3948	return ret;
3949}
3950EXPORT_SYMBOL(__cond_resched_lock);
3951
3952int __sched __cond_resched_softirq(void)
3953{
3954	BUG_ON(!in_softirq());
3955
3956	if (should_resched()) {
3957		local_bh_enable();
3958		__cond_resched();
3959		local_bh_disable();
3960		return 1;
3961	}
3962	return 0;
3963}
3964EXPORT_SYMBOL(__cond_resched_softirq);
3965
3966/**
3967 * yield - yield the current processor to other threads.
3968 *
3969 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3970 *
3971 * The scheduler is at all times free to pick the calling task as the most
3972 * eligible task to run, if removing the yield() call from your code breaks
3973 * it, its already broken.
3974 *
3975 * Typical broken usage is:
3976 *
3977 * while (!event)
3978 * 	yield();
3979 *
3980 * where one assumes that yield() will let 'the other' process run that will
3981 * make event true. If the current task is a SCHED_FIFO task that will never
3982 * happen. Never use yield() as a progress guarantee!!
3983 *
3984 * If you want to use yield() to wait for something, use wait_event().
3985 * If you want to use yield() to be 'nice' for others, use cond_resched().
3986 * If you still want to use yield(), do not!
3987 */
3988void __sched yield(void)
3989{
3990	set_current_state(TASK_RUNNING);
3991	sys_sched_yield();
3992}
3993EXPORT_SYMBOL(yield);
3994
3995/**
3996 * yield_to - yield the current processor to another thread in
3997 * your thread group, or accelerate that thread toward the
3998 * processor it's on.
3999 * @p: target task
4000 * @preempt: whether task preemption is allowed or not
4001 *
4002 * It's the caller's job to ensure that the target task struct
4003 * can't go away on us before we can do any checks.
4004 *
4005 * Return:
4006 *	true (>0) if we indeed boosted the target task.
4007 *	false (0) if we failed to boost the target.
4008 *	-ESRCH if there's no task to yield to.
4009 */
4010bool __sched yield_to(struct task_struct *p, bool preempt)
4011{
4012	struct task_struct *curr = current;
4013	struct rq *rq, *p_rq;
4014	unsigned long flags;
4015	int yielded = 0;
4016
4017	local_irq_save(flags);
4018	rq = this_rq();
4019
4020again:
4021	p_rq = task_rq(p);
4022	/*
4023	 * If we're the only runnable task on the rq and target rq also
4024	 * has only one task, there's absolutely no point in yielding.
4025	 */
4026	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4027		yielded = -ESRCH;
4028		goto out_irq;
4029	}
4030
4031	double_rq_lock(rq, p_rq);
4032	while (task_rq(p) != p_rq) {
4033		double_rq_unlock(rq, p_rq);
4034		goto again;
4035	}
4036
4037	if (!curr->sched_class->yield_to_task)
4038		goto out_unlock;
4039
4040	if (curr->sched_class != p->sched_class)
4041		goto out_unlock;
4042
4043	if (task_running(p_rq, p) || p->state)
4044		goto out_unlock;
4045
4046	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4047	if (yielded) {
4048		schedstat_inc(rq, yld_count);
4049		/*
4050		 * Make p's CPU reschedule; pick_next_entity takes care of
4051		 * fairness.
4052		 */
4053		if (preempt && rq != p_rq)
4054			resched_task(p_rq->curr);
4055	}
4056
4057out_unlock:
4058	double_rq_unlock(rq, p_rq);
4059out_irq:
4060	local_irq_restore(flags);
4061
4062	if (yielded > 0)
4063		schedule();
4064
4065	return yielded;
4066}
4067EXPORT_SYMBOL_GPL(yield_to);
4068
4069/*
4070 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4071 * that process accounting knows that this is a task in IO wait state.
4072 */
4073void __sched io_schedule(void)
4074{
4075	struct rq *rq = raw_rq();
4076
4077	delayacct_blkio_start();
4078	atomic_inc(&rq->nr_iowait);
4079	blk_flush_plug(current);
4080	current->in_iowait = 1;
4081	schedule();
4082	current->in_iowait = 0;
4083	atomic_dec(&rq->nr_iowait);
4084	delayacct_blkio_end();
4085}
4086EXPORT_SYMBOL(io_schedule);
4087
4088long __sched io_schedule_timeout(long timeout)
4089{
4090	struct rq *rq = raw_rq();
4091	long ret;
4092
4093	delayacct_blkio_start();
4094	atomic_inc(&rq->nr_iowait);
4095	blk_flush_plug(current);
4096	current->in_iowait = 1;
4097	ret = schedule_timeout(timeout);
4098	current->in_iowait = 0;
4099	atomic_dec(&rq->nr_iowait);
4100	delayacct_blkio_end();
4101	return ret;
4102}
4103
4104/**
4105 * sys_sched_get_priority_max - return maximum RT priority.
4106 * @policy: scheduling class.
4107 *
4108 * Return: On success, this syscall returns the maximum
4109 * rt_priority that can be used by a given scheduling class.
4110 * On failure, a negative error code is returned.
4111 */
4112SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4113{
4114	int ret = -EINVAL;
4115
4116	switch (policy) {
4117	case SCHED_FIFO:
4118	case SCHED_RR:
4119		ret = MAX_USER_RT_PRIO-1;
4120		break;
4121	case SCHED_NORMAL:
4122	case SCHED_BATCH:
4123	case SCHED_IDLE:
4124		ret = 0;
4125		break;
4126	}
4127	return ret;
4128}
4129
4130/**
4131 * sys_sched_get_priority_min - return minimum RT priority.
4132 * @policy: scheduling class.
4133 *
4134 * Return: On success, this syscall returns the minimum
4135 * rt_priority that can be used by a given scheduling class.
4136 * On failure, a negative error code is returned.
4137 */
4138SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4139{
4140	int ret = -EINVAL;
4141
4142	switch (policy) {
4143	case SCHED_FIFO:
4144	case SCHED_RR:
4145		ret = 1;
4146		break;
4147	case SCHED_NORMAL:
4148	case SCHED_BATCH:
4149	case SCHED_IDLE:
4150		ret = 0;
4151	}
4152	return ret;
4153}
4154
4155/**
4156 * sys_sched_rr_get_interval - return the default timeslice of a process.
4157 * @pid: pid of the process.
4158 * @interval: userspace pointer to the timeslice value.
4159 *
4160 * this syscall writes the default timeslice value of a given process
4161 * into the user-space timespec buffer. A value of '0' means infinity.
4162 *
4163 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4164 * an error code.
4165 */
4166SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4167		struct timespec __user *, interval)
4168{
4169	struct task_struct *p;
4170	unsigned int time_slice;
4171	unsigned long flags;
4172	struct rq *rq;
4173	int retval;
4174	struct timespec t;
4175
4176	if (pid < 0)
4177		return -EINVAL;
4178
4179	retval = -ESRCH;
4180	rcu_read_lock();
4181	p = find_process_by_pid(pid);
4182	if (!p)
4183		goto out_unlock;
4184
4185	retval = security_task_getscheduler(p);
4186	if (retval)
4187		goto out_unlock;
4188
4189	rq = task_rq_lock(p, &flags);
4190	time_slice = p->sched_class->get_rr_interval(rq, p);
4191	task_rq_unlock(rq, p, &flags);
4192
4193	rcu_read_unlock();
4194	jiffies_to_timespec(time_slice, &t);
4195	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4196	return retval;
4197
4198out_unlock:
4199	rcu_read_unlock();
4200	return retval;
4201}
4202
4203static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4204
4205void sched_show_task(struct task_struct *p)
4206{
4207	unsigned long free = 0;
4208	int ppid;
4209	unsigned state;
4210
4211	state = p->state ? __ffs(p->state) + 1 : 0;
4212	printk(KERN_INFO "%-15.15s %c", p->comm,
4213		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4214#if BITS_PER_LONG == 32
4215	if (state == TASK_RUNNING)
4216		printk(KERN_CONT " running  ");
4217	else
4218		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4219#else
4220	if (state == TASK_RUNNING)
4221		printk(KERN_CONT "  running task    ");
4222	else
4223		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4224#endif
4225#ifdef CONFIG_DEBUG_STACK_USAGE
4226	free = stack_not_used(p);
4227#endif
4228	rcu_read_lock();
4229	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4230	rcu_read_unlock();
4231	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4232		task_pid_nr(p), ppid,
4233		(unsigned long)task_thread_info(p)->flags);
4234
4235	print_worker_info(KERN_INFO, p);
4236	show_stack(p, NULL);
4237}
4238
4239void show_state_filter(unsigned long state_filter)
4240{
4241	struct task_struct *g, *p;
4242
4243#if BITS_PER_LONG == 32
4244	printk(KERN_INFO
4245		"  task                PC stack   pid father\n");
4246#else
4247	printk(KERN_INFO
4248		"  task                        PC stack   pid father\n");
4249#endif
4250	rcu_read_lock();
4251	do_each_thread(g, p) {
4252		/*
4253		 * reset the NMI-timeout, listing all files on a slow
4254		 * console might take a lot of time:
4255		 */
4256		touch_nmi_watchdog();
4257		if (!state_filter || (p->state & state_filter))
4258			sched_show_task(p);
4259	} while_each_thread(g, p);
4260
4261	touch_all_softlockup_watchdogs();
4262
4263#ifdef CONFIG_SCHED_DEBUG
4264	sysrq_sched_debug_show();
4265#endif
4266	rcu_read_unlock();
4267	/*
4268	 * Only show locks if all tasks are dumped:
4269	 */
4270	if (!state_filter)
4271		debug_show_all_locks();
4272}
4273
4274void init_idle_bootup_task(struct task_struct *idle)
4275{
4276	idle->sched_class = &idle_sched_class;
4277}
4278
4279/**
4280 * init_idle - set up an idle thread for a given CPU
4281 * @idle: task in question
4282 * @cpu: cpu the idle task belongs to
4283 *
4284 * NOTE: this function does not set the idle thread's NEED_RESCHED
4285 * flag, to make booting more robust.
4286 */
4287void init_idle(struct task_struct *idle, int cpu)
4288{
4289	struct rq *rq = cpu_rq(cpu);
4290	unsigned long flags;
4291
4292	raw_spin_lock_irqsave(&rq->lock, flags);
4293
4294	__sched_fork(0, idle);
4295	idle->state = TASK_RUNNING;
4296	idle->se.exec_start = sched_clock();
4297
4298	do_set_cpus_allowed(idle, cpumask_of(cpu));
4299	/*
4300	 * We're having a chicken and egg problem, even though we are
4301	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4302	 * lockdep check in task_group() will fail.
4303	 *
4304	 * Similar case to sched_fork(). / Alternatively we could
4305	 * use task_rq_lock() here and obtain the other rq->lock.
4306	 *
4307	 * Silence PROVE_RCU
4308	 */
4309	rcu_read_lock();
4310	__set_task_cpu(idle, cpu);
4311	rcu_read_unlock();
4312
4313	rq->curr = rq->idle = idle;
4314#if defined(CONFIG_SMP)
4315	idle->on_cpu = 1;
4316#endif
4317	raw_spin_unlock_irqrestore(&rq->lock, flags);
4318
4319	/* Set the preempt count _outside_ the spinlocks! */
4320	init_idle_preempt_count(idle, cpu);
4321
4322	/*
4323	 * The idle tasks have their own, simple scheduling class:
4324	 */
4325	idle->sched_class = &idle_sched_class;
4326	ftrace_graph_init_idle_task(idle, cpu);
4327	vtime_init_idle(idle, cpu);
4328#if defined(CONFIG_SMP)
4329	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4330#endif
4331}
4332
4333#ifdef CONFIG_SMP
4334void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4335{
4336	if (p->sched_class && p->sched_class->set_cpus_allowed)
4337		p->sched_class->set_cpus_allowed(p, new_mask);
4338
4339	cpumask_copy(&p->cpus_allowed, new_mask);
4340	p->nr_cpus_allowed = cpumask_weight(new_mask);
4341}
4342
4343/*
4344 * This is how migration works:
4345 *
4346 * 1) we invoke migration_cpu_stop() on the target CPU using
4347 *    stop_one_cpu().
4348 * 2) stopper starts to run (implicitly forcing the migrated thread
4349 *    off the CPU)
4350 * 3) it checks whether the migrated task is still in the wrong runqueue.
4351 * 4) if it's in the wrong runqueue then the migration thread removes
4352 *    it and puts it into the right queue.
4353 * 5) stopper completes and stop_one_cpu() returns and the migration
4354 *    is done.
4355 */
4356
4357/*
4358 * Change a given task's CPU affinity. Migrate the thread to a
4359 * proper CPU and schedule it away if the CPU it's executing on
4360 * is removed from the allowed bitmask.
4361 *
4362 * NOTE: the caller must have a valid reference to the task, the
4363 * task must not exit() & deallocate itself prematurely. The
4364 * call is not atomic; no spinlocks may be held.
4365 */
4366int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4367{
4368	unsigned long flags;
4369	struct rq *rq;
4370	unsigned int dest_cpu;
4371	int ret = 0;
4372
4373	rq = task_rq_lock(p, &flags);
4374
4375	if (cpumask_equal(&p->cpus_allowed, new_mask))
4376		goto out;
4377
4378	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4379		ret = -EINVAL;
4380		goto out;
4381	}
4382
4383	do_set_cpus_allowed(p, new_mask);
4384
4385	/* Can the task run on the task's current CPU? If so, we're done */
4386	if (cpumask_test_cpu(task_cpu(p), new_mask))
4387		goto out;
4388
4389	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4390	if (p->on_rq) {
4391		struct migration_arg arg = { p, dest_cpu };
4392		/* Need help from migration thread: drop lock and wait. */
4393		task_rq_unlock(rq, p, &flags);
4394		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4395		tlb_migrate_finish(p->mm);
4396		return 0;
4397	}
4398out:
4399	task_rq_unlock(rq, p, &flags);
4400
4401	return ret;
4402}
4403EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4404
4405/*
4406 * Move (not current) task off this cpu, onto dest cpu. We're doing
4407 * this because either it can't run here any more (set_cpus_allowed()
4408 * away from this CPU, or CPU going down), or because we're
4409 * attempting to rebalance this task on exec (sched_exec).
4410 *
4411 * So we race with normal scheduler movements, but that's OK, as long
4412 * as the task is no longer on this CPU.
4413 *
4414 * Returns non-zero if task was successfully migrated.
4415 */
4416static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4417{
4418	struct rq *rq_dest, *rq_src;
4419	int ret = 0;
4420
4421	if (unlikely(!cpu_active(dest_cpu)))
4422		return ret;
4423
4424	rq_src = cpu_rq(src_cpu);
4425	rq_dest = cpu_rq(dest_cpu);
4426
4427	raw_spin_lock(&p->pi_lock);
4428	double_rq_lock(rq_src, rq_dest);
4429	/* Already moved. */
4430	if (task_cpu(p) != src_cpu)
4431		goto done;
4432	/* Affinity changed (again). */
4433	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4434		goto fail;
4435
4436	/*
4437	 * If we're not on a rq, the next wake-up will ensure we're
4438	 * placed properly.
4439	 */
4440	if (p->on_rq) {
4441		dequeue_task(rq_src, p, 0);
4442		set_task_cpu(p, dest_cpu);
4443		enqueue_task(rq_dest, p, 0);
4444		check_preempt_curr(rq_dest, p, 0);
4445	}
4446done:
4447	ret = 1;
4448fail:
4449	double_rq_unlock(rq_src, rq_dest);
4450	raw_spin_unlock(&p->pi_lock);
4451	return ret;
4452}
4453
4454#ifdef CONFIG_NUMA_BALANCING
4455/* Migrate current task p to target_cpu */
4456int migrate_task_to(struct task_struct *p, int target_cpu)
4457{
4458	struct migration_arg arg = { p, target_cpu };
4459	int curr_cpu = task_cpu(p);
4460
4461	if (curr_cpu == target_cpu)
4462		return 0;
4463
4464	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4465		return -EINVAL;
4466
4467	/* TODO: This is not properly updating schedstats */
4468
4469	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4470}
4471#endif
4472
4473/*
4474 * migration_cpu_stop - this will be executed by a highprio stopper thread
4475 * and performs thread migration by bumping thread off CPU then
4476 * 'pushing' onto another runqueue.
4477 */
4478static int migration_cpu_stop(void *data)
4479{
4480	struct migration_arg *arg = data;
4481
4482	/*
4483	 * The original target cpu might have gone down and we might
4484	 * be on another cpu but it doesn't matter.
4485	 */
4486	local_irq_disable();
4487	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4488	local_irq_enable();
4489	return 0;
4490}
4491
4492#ifdef CONFIG_HOTPLUG_CPU
4493
4494/*
4495 * Ensures that the idle task is using init_mm right before its cpu goes
4496 * offline.
4497 */
4498void idle_task_exit(void)
4499{
4500	struct mm_struct *mm = current->active_mm;
4501
4502	BUG_ON(cpu_online(smp_processor_id()));
4503
4504	if (mm != &init_mm)
4505		switch_mm(mm, &init_mm, current);
4506	mmdrop(mm);
4507}
4508
4509/*
4510 * Since this CPU is going 'away' for a while, fold any nr_active delta
4511 * we might have. Assumes we're called after migrate_tasks() so that the
4512 * nr_active count is stable.
4513 *
4514 * Also see the comment "Global load-average calculations".
4515 */
4516static void calc_load_migrate(struct rq *rq)
4517{
4518	long delta = calc_load_fold_active(rq);
4519	if (delta)
4520		atomic_long_add(delta, &calc_load_tasks);
4521}
4522
4523/*
4524 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4525 * try_to_wake_up()->select_task_rq().
4526 *
4527 * Called with rq->lock held even though we'er in stop_machine() and
4528 * there's no concurrency possible, we hold the required locks anyway
4529 * because of lock validation efforts.
4530 */
4531static void migrate_tasks(unsigned int dead_cpu)
4532{
4533	struct rq *rq = cpu_rq(dead_cpu);
4534	struct task_struct *next, *stop = rq->stop;
4535	int dest_cpu;
4536
4537	/*
4538	 * Fudge the rq selection such that the below task selection loop
4539	 * doesn't get stuck on the currently eligible stop task.
4540	 *
4541	 * We're currently inside stop_machine() and the rq is either stuck
4542	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4543	 * either way we should never end up calling schedule() until we're
4544	 * done here.
4545	 */
4546	rq->stop = NULL;
4547
4548	/*
4549	 * put_prev_task() and pick_next_task() sched
4550	 * class method both need to have an up-to-date
4551	 * value of rq->clock[_task]
4552	 */
4553	update_rq_clock(rq);
4554
4555	for ( ; ; ) {
4556		/*
4557		 * There's this thread running, bail when that's the only
4558		 * remaining thread.
4559		 */
4560		if (rq->nr_running == 1)
4561			break;
4562
4563		next = pick_next_task(rq);
4564		BUG_ON(!next);
4565		next->sched_class->put_prev_task(rq, next);
4566
4567		/* Find suitable destination for @next, with force if needed. */
4568		dest_cpu = select_fallback_rq(dead_cpu, next);
4569		raw_spin_unlock(&rq->lock);
4570
4571		__migrate_task(next, dead_cpu, dest_cpu);
4572
4573		raw_spin_lock(&rq->lock);
4574	}
4575
4576	rq->stop = stop;
4577}
4578
4579#endif /* CONFIG_HOTPLUG_CPU */
4580
4581#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4582
4583static struct ctl_table sd_ctl_dir[] = {
4584	{
4585		.procname	= "sched_domain",
4586		.mode		= 0555,
4587	},
4588	{}
4589};
4590
4591static struct ctl_table sd_ctl_root[] = {
4592	{
4593		.procname	= "kernel",
4594		.mode		= 0555,
4595		.child		= sd_ctl_dir,
4596	},
4597	{}
4598};
4599
4600static struct ctl_table *sd_alloc_ctl_entry(int n)
4601{
4602	struct ctl_table *entry =
4603		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4604
4605	return entry;
4606}
4607
4608static void sd_free_ctl_entry(struct ctl_table **tablep)
4609{
4610	struct ctl_table *entry;
4611
4612	/*
4613	 * In the intermediate directories, both the child directory and
4614	 * procname are dynamically allocated and could fail but the mode
4615	 * will always be set. In the lowest directory the names are
4616	 * static strings and all have proc handlers.
4617	 */
4618	for (entry = *tablep; entry->mode; entry++) {
4619		if (entry->child)
4620			sd_free_ctl_entry(&entry->child);
4621		if (entry->proc_handler == NULL)
4622			kfree(entry->procname);
4623	}
4624
4625	kfree(*tablep);
4626	*tablep = NULL;
4627}
4628
4629static int min_load_idx = 0;
4630static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4631
4632static void
4633set_table_entry(struct ctl_table *entry,
4634		const char *procname, void *data, int maxlen,
4635		umode_t mode, proc_handler *proc_handler,
4636		bool load_idx)
4637{
4638	entry->procname = procname;
4639	entry->data = data;
4640	entry->maxlen = maxlen;
4641	entry->mode = mode;
4642	entry->proc_handler = proc_handler;
4643
4644	if (load_idx) {
4645		entry->extra1 = &min_load_idx;
4646		entry->extra2 = &max_load_idx;
4647	}
4648}
4649
4650static struct ctl_table *
4651sd_alloc_ctl_domain_table(struct sched_domain *sd)
4652{
4653	struct ctl_table *table = sd_alloc_ctl_entry(13);
4654
4655	if (table == NULL)
4656		return NULL;
4657
4658	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4659		sizeof(long), 0644, proc_doulongvec_minmax, false);
4660	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4661		sizeof(long), 0644, proc_doulongvec_minmax, false);
4662	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4663		sizeof(int), 0644, proc_dointvec_minmax, true);
4664	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4665		sizeof(int), 0644, proc_dointvec_minmax, true);
4666	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4667		sizeof(int), 0644, proc_dointvec_minmax, true);
4668	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4669		sizeof(int), 0644, proc_dointvec_minmax, true);
4670	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4671		sizeof(int), 0644, proc_dointvec_minmax, true);
4672	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4673		sizeof(int), 0644, proc_dointvec_minmax, false);
4674	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4675		sizeof(int), 0644, proc_dointvec_minmax, false);
4676	set_table_entry(&table[9], "cache_nice_tries",
4677		&sd->cache_nice_tries,
4678		sizeof(int), 0644, proc_dointvec_minmax, false);
4679	set_table_entry(&table[10], "flags", &sd->flags,
4680		sizeof(int), 0644, proc_dointvec_minmax, false);
4681	set_table_entry(&table[11], "name", sd->name,
4682		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4683	/* &table[12] is terminator */
4684
4685	return table;
4686}
4687
4688static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4689{
4690	struct ctl_table *entry, *table;
4691	struct sched_domain *sd;
4692	int domain_num = 0, i;
4693	char buf[32];
4694
4695	for_each_domain(cpu, sd)
4696		domain_num++;
4697	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4698	if (table == NULL)
4699		return NULL;
4700
4701	i = 0;
4702	for_each_domain(cpu, sd) {
4703		snprintf(buf, 32, "domain%d", i);
4704		entry->procname = kstrdup(buf, GFP_KERNEL);
4705		entry->mode = 0555;
4706		entry->child = sd_alloc_ctl_domain_table(sd);
4707		entry++;
4708		i++;
4709	}
4710	return table;
4711}
4712
4713static struct ctl_table_header *sd_sysctl_header;
4714static void register_sched_domain_sysctl(void)
4715{
4716	int i, cpu_num = num_possible_cpus();
4717	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4718	char buf[32];
4719
4720	WARN_ON(sd_ctl_dir[0].child);
4721	sd_ctl_dir[0].child = entry;
4722
4723	if (entry == NULL)
4724		return;
4725
4726	for_each_possible_cpu(i) {
4727		snprintf(buf, 32, "cpu%d", i);
4728		entry->procname = kstrdup(buf, GFP_KERNEL);
4729		entry->mode = 0555;
4730		entry->child = sd_alloc_ctl_cpu_table(i);
4731		entry++;
4732	}
4733
4734	WARN_ON(sd_sysctl_header);
4735	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4736}
4737
4738/* may be called multiple times per register */
4739static void unregister_sched_domain_sysctl(void)
4740{
4741	if (sd_sysctl_header)
4742		unregister_sysctl_table(sd_sysctl_header);
4743	sd_sysctl_header = NULL;
4744	if (sd_ctl_dir[0].child)
4745		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4746}
4747#else
4748static void register_sched_domain_sysctl(void)
4749{
4750}
4751static void unregister_sched_domain_sysctl(void)
4752{
4753}
4754#endif
4755
4756static void set_rq_online(struct rq *rq)
4757{
4758	if (!rq->online) {
4759		const struct sched_class *class;
4760
4761		cpumask_set_cpu(rq->cpu, rq->rd->online);
4762		rq->online = 1;
4763
4764		for_each_class(class) {
4765			if (class->rq_online)
4766				class->rq_online(rq);
4767		}
4768	}
4769}
4770
4771static void set_rq_offline(struct rq *rq)
4772{
4773	if (rq->online) {
4774		const struct sched_class *class;
4775
4776		for_each_class(class) {
4777			if (class->rq_offline)
4778				class->rq_offline(rq);
4779		}
4780
4781		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4782		rq->online = 0;
4783	}
4784}
4785
4786/*
4787 * migration_call - callback that gets triggered when a CPU is added.
4788 * Here we can start up the necessary migration thread for the new CPU.
4789 */
4790static int
4791migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4792{
4793	int cpu = (long)hcpu;
4794	unsigned long flags;
4795	struct rq *rq = cpu_rq(cpu);
4796
4797	switch (action & ~CPU_TASKS_FROZEN) {
4798
4799	case CPU_UP_PREPARE:
4800		rq->calc_load_update = calc_load_update;
4801		break;
4802
4803	case CPU_ONLINE:
4804		/* Update our root-domain */
4805		raw_spin_lock_irqsave(&rq->lock, flags);
4806		if (rq->rd) {
4807			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4808
4809			set_rq_online(rq);
4810		}
4811		raw_spin_unlock_irqrestore(&rq->lock, flags);
4812		break;
4813
4814#ifdef CONFIG_HOTPLUG_CPU
4815	case CPU_DYING:
4816		sched_ttwu_pending();
4817		/* Update our root-domain */
4818		raw_spin_lock_irqsave(&rq->lock, flags);
4819		if (rq->rd) {
4820			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4821			set_rq_offline(rq);
4822		}
4823		migrate_tasks(cpu);
4824		BUG_ON(rq->nr_running != 1); /* the migration thread */
4825		raw_spin_unlock_irqrestore(&rq->lock, flags);
4826		break;
4827
4828	case CPU_DEAD:
4829		calc_load_migrate(rq);
4830		break;
4831#endif
4832	}
4833
4834	update_max_interval();
4835
4836	return NOTIFY_OK;
4837}
4838
4839/*
4840 * Register at high priority so that task migration (migrate_all_tasks)
4841 * happens before everything else.  This has to be lower priority than
4842 * the notifier in the perf_event subsystem, though.
4843 */
4844static struct notifier_block migration_notifier = {
4845	.notifier_call = migration_call,
4846	.priority = CPU_PRI_MIGRATION,
4847};
4848
4849static int sched_cpu_active(struct notifier_block *nfb,
4850				      unsigned long action, void *hcpu)
4851{
4852	switch (action & ~CPU_TASKS_FROZEN) {
4853	case CPU_STARTING:
4854	case CPU_DOWN_FAILED:
4855		set_cpu_active((long)hcpu, true);
4856		return NOTIFY_OK;
4857	default:
4858		return NOTIFY_DONE;
4859	}
4860}
4861
4862static int sched_cpu_inactive(struct notifier_block *nfb,
4863					unsigned long action, void *hcpu)
4864{
4865	switch (action & ~CPU_TASKS_FROZEN) {
4866	case CPU_DOWN_PREPARE:
4867		set_cpu_active((long)hcpu, false);
4868		return NOTIFY_OK;
4869	default:
4870		return NOTIFY_DONE;
4871	}
4872}
4873
4874static int __init migration_init(void)
4875{
4876	void *cpu = (void *)(long)smp_processor_id();
4877	int err;
4878
4879	/* Initialize migration for the boot CPU */
4880	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4881	BUG_ON(err == NOTIFY_BAD);
4882	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4883	register_cpu_notifier(&migration_notifier);
4884
4885	/* Register cpu active notifiers */
4886	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4887	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4888
4889	return 0;
4890}
4891early_initcall(migration_init);
4892#endif
4893
4894#ifdef CONFIG_SMP
4895
4896static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4897
4898#ifdef CONFIG_SCHED_DEBUG
4899
4900static __read_mostly int sched_debug_enabled;
4901
4902static int __init sched_debug_setup(char *str)
4903{
4904	sched_debug_enabled = 1;
4905
4906	return 0;
4907}
4908early_param("sched_debug", sched_debug_setup);
4909
4910static inline bool sched_debug(void)
4911{
4912	return sched_debug_enabled;
4913}
4914
4915static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4916				  struct cpumask *groupmask)
4917{
4918	struct sched_group *group = sd->groups;
4919	char str[256];
4920
4921	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4922	cpumask_clear(groupmask);
4923
4924	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4925
4926	if (!(sd->flags & SD_LOAD_BALANCE)) {
4927		printk("does not load-balance\n");
4928		if (sd->parent)
4929			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4930					" has parent");
4931		return -1;
4932	}
4933
4934	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4935
4936	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4937		printk(KERN_ERR "ERROR: domain->span does not contain "
4938				"CPU%d\n", cpu);
4939	}
4940	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4941		printk(KERN_ERR "ERROR: domain->groups does not contain"
4942				" CPU%d\n", cpu);
4943	}
4944
4945	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4946	do {
4947		if (!group) {
4948			printk("\n");
4949			printk(KERN_ERR "ERROR: group is NULL\n");
4950			break;
4951		}
4952
4953		/*
4954		 * Even though we initialize ->power to something semi-sane,
4955		 * we leave power_orig unset. This allows us to detect if
4956		 * domain iteration is still funny without causing /0 traps.
4957		 */
4958		if (!group->sgp->power_orig) {
4959			printk(KERN_CONT "\n");
4960			printk(KERN_ERR "ERROR: domain->cpu_power not "
4961					"set\n");
4962			break;
4963		}
4964
4965		if (!cpumask_weight(sched_group_cpus(group))) {
4966			printk(KERN_CONT "\n");
4967			printk(KERN_ERR "ERROR: empty group\n");
4968			break;
4969		}
4970
4971		if (!(sd->flags & SD_OVERLAP) &&
4972		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4973			printk(KERN_CONT "\n");
4974			printk(KERN_ERR "ERROR: repeated CPUs\n");
4975			break;
4976		}
4977
4978		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4979
4980		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4981
4982		printk(KERN_CONT " %s", str);
4983		if (group->sgp->power != SCHED_POWER_SCALE) {
4984			printk(KERN_CONT " (cpu_power = %d)",
4985				group->sgp->power);
4986		}
4987
4988		group = group->next;
4989	} while (group != sd->groups);
4990	printk(KERN_CONT "\n");
4991
4992	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4993		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4994
4995	if (sd->parent &&
4996	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4997		printk(KERN_ERR "ERROR: parent span is not a superset "
4998			"of domain->span\n");
4999	return 0;
5000}
5001
5002static void sched_domain_debug(struct sched_domain *sd, int cpu)
5003{
5004	int level = 0;
5005
5006	if (!sched_debug_enabled)
5007		return;
5008
5009	if (!sd) {
5010		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5011		return;
5012	}
5013
5014	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5015
5016	for (;;) {
5017		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5018			break;
5019		level++;
5020		sd = sd->parent;
5021		if (!sd)
5022			break;
5023	}
5024}
5025#else /* !CONFIG_SCHED_DEBUG */
5026# define sched_domain_debug(sd, cpu) do { } while (0)
5027static inline bool sched_debug(void)
5028{
5029	return false;
5030}
5031#endif /* CONFIG_SCHED_DEBUG */
5032
5033static int sd_degenerate(struct sched_domain *sd)
5034{
5035	if (cpumask_weight(sched_domain_span(sd)) == 1)
5036		return 1;
5037
5038	/* Following flags need at least 2 groups */
5039	if (sd->flags & (SD_LOAD_BALANCE |
5040			 SD_BALANCE_NEWIDLE |
5041			 SD_BALANCE_FORK |
5042			 SD_BALANCE_EXEC |
5043			 SD_SHARE_CPUPOWER |
5044			 SD_SHARE_PKG_RESOURCES)) {
5045		if (sd->groups != sd->groups->next)
5046			return 0;
5047	}
5048
5049	/* Following flags don't use groups */
5050	if (sd->flags & (SD_WAKE_AFFINE))
5051		return 0;
5052
5053	return 1;
5054}
5055
5056static int
5057sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5058{
5059	unsigned long cflags = sd->flags, pflags = parent->flags;
5060
5061	if (sd_degenerate(parent))
5062		return 1;
5063
5064	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5065		return 0;
5066
5067	/* Flags needing groups don't count if only 1 group in parent */
5068	if (parent->groups == parent->groups->next) {
5069		pflags &= ~(SD_LOAD_BALANCE |
5070				SD_BALANCE_NEWIDLE |
5071				SD_BALANCE_FORK |
5072				SD_BALANCE_EXEC |
5073				SD_SHARE_CPUPOWER |
5074				SD_SHARE_PKG_RESOURCES |
5075				SD_PREFER_SIBLING);
5076		if (nr_node_ids == 1)
5077			pflags &= ~SD_SERIALIZE;
5078	}
5079	if (~cflags & pflags)
5080		return 0;
5081
5082	return 1;
5083}
5084
5085static void free_rootdomain(struct rcu_head *rcu)
5086{
5087	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5088
5089	cpupri_cleanup(&rd->cpupri);
5090	free_cpumask_var(rd->rto_mask);
5091	free_cpumask_var(rd->online);
5092	free_cpumask_var(rd->span);
5093	kfree(rd);
5094}
5095
5096static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5097{
5098	struct root_domain *old_rd = NULL;
5099	unsigned long flags;
5100
5101	raw_spin_lock_irqsave(&rq->lock, flags);
5102
5103	if (rq->rd) {
5104		old_rd = rq->rd;
5105
5106		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5107			set_rq_offline(rq);
5108
5109		cpumask_clear_cpu(rq->cpu, old_rd->span);
5110
5111		/*
5112		 * If we dont want to free the old_rt yet then
5113		 * set old_rd to NULL to skip the freeing later
5114		 * in this function:
5115		 */
5116		if (!atomic_dec_and_test(&old_rd->refcount))
5117			old_rd = NULL;
5118	}
5119
5120	atomic_inc(&rd->refcount);
5121	rq->rd = rd;
5122
5123	cpumask_set_cpu(rq->cpu, rd->span);
5124	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5125		set_rq_online(rq);
5126
5127	raw_spin_unlock_irqrestore(&rq->lock, flags);
5128
5129	if (old_rd)
5130		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5131}
5132
5133static int init_rootdomain(struct root_domain *rd)
5134{
5135	memset(rd, 0, sizeof(*rd));
5136
5137	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5138		goto out;
5139	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5140		goto free_span;
5141	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5142		goto free_online;
5143
5144	if (cpupri_init(&rd->cpupri) != 0)
5145		goto free_rto_mask;
5146	return 0;
5147
5148free_rto_mask:
5149	free_cpumask_var(rd->rto_mask);
5150free_online:
5151	free_cpumask_var(rd->online);
5152free_span:
5153	free_cpumask_var(rd->span);
5154out:
5155	return -ENOMEM;
5156}
5157
5158/*
5159 * By default the system creates a single root-domain with all cpus as
5160 * members (mimicking the global state we have today).
5161 */
5162struct root_domain def_root_domain;
5163
5164static void init_defrootdomain(void)
5165{
5166	init_rootdomain(&def_root_domain);
5167
5168	atomic_set(&def_root_domain.refcount, 1);
5169}
5170
5171static struct root_domain *alloc_rootdomain(void)
5172{
5173	struct root_domain *rd;
5174
5175	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5176	if (!rd)
5177		return NULL;
5178
5179	if (init_rootdomain(rd) != 0) {
5180		kfree(rd);
5181		return NULL;
5182	}
5183
5184	return rd;
5185}
5186
5187static void free_sched_groups(struct sched_group *sg, int free_sgp)
5188{
5189	struct sched_group *tmp, *first;
5190
5191	if (!sg)
5192		return;
5193
5194	first = sg;
5195	do {
5196		tmp = sg->next;
5197
5198		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5199			kfree(sg->sgp);
5200
5201		kfree(sg);
5202		sg = tmp;
5203	} while (sg != first);
5204}
5205
5206static void free_sched_domain(struct rcu_head *rcu)
5207{
5208	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5209
5210	/*
5211	 * If its an overlapping domain it has private groups, iterate and
5212	 * nuke them all.
5213	 */
5214	if (sd->flags & SD_OVERLAP) {
5215		free_sched_groups(sd->groups, 1);
5216	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5217		kfree(sd->groups->sgp);
5218		kfree(sd->groups);
5219	}
5220	kfree(sd);
5221}
5222
5223static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5224{
5225	call_rcu(&sd->rcu, free_sched_domain);
5226}
5227
5228static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5229{
5230	for (; sd; sd = sd->parent)
5231		destroy_sched_domain(sd, cpu);
5232}
5233
5234/*
5235 * Keep a special pointer to the highest sched_domain that has
5236 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5237 * allows us to avoid some pointer chasing select_idle_sibling().
5238 *
5239 * Also keep a unique ID per domain (we use the first cpu number in
5240 * the cpumask of the domain), this allows us to quickly tell if
5241 * two cpus are in the same cache domain, see cpus_share_cache().
5242 */
5243DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5244DEFINE_PER_CPU(int, sd_llc_size);
5245DEFINE_PER_CPU(int, sd_llc_id);
5246DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5247
5248static void update_top_cache_domain(int cpu)
5249{
5250	struct sched_domain *sd;
5251	int id = cpu;
5252	int size = 1;
5253
5254	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5255	if (sd) {
5256		id = cpumask_first(sched_domain_span(sd));
5257		size = cpumask_weight(sched_domain_span(sd));
5258	}
5259
5260	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5261	per_cpu(sd_llc_size, cpu) = size;
5262	per_cpu(sd_llc_id, cpu) = id;
5263
5264	sd = lowest_flag_domain(cpu, SD_NUMA);
5265	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5266}
5267
5268/*
5269 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5270 * hold the hotplug lock.
5271 */
5272static void
5273cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5274{
5275	struct rq *rq = cpu_rq(cpu);
5276	struct sched_domain *tmp;
5277
5278	/* Remove the sched domains which do not contribute to scheduling. */
5279	for (tmp = sd; tmp; ) {
5280		struct sched_domain *parent = tmp->parent;
5281		if (!parent)
5282			break;
5283
5284		if (sd_parent_degenerate(tmp, parent)) {
5285			tmp->parent = parent->parent;
5286			if (parent->parent)
5287				parent->parent->child = tmp;
5288			/*
5289			 * Transfer SD_PREFER_SIBLING down in case of a
5290			 * degenerate parent; the spans match for this
5291			 * so the property transfers.
5292			 */
5293			if (parent->flags & SD_PREFER_SIBLING)
5294				tmp->flags |= SD_PREFER_SIBLING;
5295			destroy_sched_domain(parent, cpu);
5296		} else
5297			tmp = tmp->parent;
5298	}
5299
5300	if (sd && sd_degenerate(sd)) {
5301		tmp = sd;
5302		sd = sd->parent;
5303		destroy_sched_domain(tmp, cpu);
5304		if (sd)
5305			sd->child = NULL;
5306	}
5307
5308	sched_domain_debug(sd, cpu);
5309
5310	rq_attach_root(rq, rd);
5311	tmp = rq->sd;
5312	rcu_assign_pointer(rq->sd, sd);
5313	destroy_sched_domains(tmp, cpu);
5314
5315	update_top_cache_domain(cpu);
5316}
5317
5318/* cpus with isolated domains */
5319static cpumask_var_t cpu_isolated_map;
5320
5321/* Setup the mask of cpus configured for isolated domains */
5322static int __init isolated_cpu_setup(char *str)
5323{
5324	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5325	cpulist_parse(str, cpu_isolated_map);
5326	return 1;
5327}
5328
5329__setup("isolcpus=", isolated_cpu_setup);
5330
5331static const struct cpumask *cpu_cpu_mask(int cpu)
5332{
5333	return cpumask_of_node(cpu_to_node(cpu));
5334}
5335
5336struct sd_data {
5337	struct sched_domain **__percpu sd;
5338	struct sched_group **__percpu sg;
5339	struct sched_group_power **__percpu sgp;
5340};
5341
5342struct s_data {
5343	struct sched_domain ** __percpu sd;
5344	struct root_domain	*rd;
5345};
5346
5347enum s_alloc {
5348	sa_rootdomain,
5349	sa_sd,
5350	sa_sd_storage,
5351	sa_none,
5352};
5353
5354struct sched_domain_topology_level;
5355
5356typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5357typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5358
5359#define SDTL_OVERLAP	0x01
5360
5361struct sched_domain_topology_level {
5362	sched_domain_init_f init;
5363	sched_domain_mask_f mask;
5364	int		    flags;
5365	int		    numa_level;
5366	struct sd_data      data;
5367};
5368
5369/*
5370 * Build an iteration mask that can exclude certain CPUs from the upwards
5371 * domain traversal.
5372 *
5373 * Asymmetric node setups can result in situations where the domain tree is of
5374 * unequal depth, make sure to skip domains that already cover the entire
5375 * range.
5376 *
5377 * In that case build_sched_domains() will have terminated the iteration early
5378 * and our sibling sd spans will be empty. Domains should always include the
5379 * cpu they're built on, so check that.
5380 *
5381 */
5382static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5383{
5384	const struct cpumask *span = sched_domain_span(sd);
5385	struct sd_data *sdd = sd->private;
5386	struct sched_domain *sibling;
5387	int i;
5388
5389	for_each_cpu(i, span) {
5390		sibling = *per_cpu_ptr(sdd->sd, i);
5391		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5392			continue;
5393
5394		cpumask_set_cpu(i, sched_group_mask(sg));
5395	}
5396}
5397
5398/*
5399 * Return the canonical balance cpu for this group, this is the first cpu
5400 * of this group that's also in the iteration mask.
5401 */
5402int group_balance_cpu(struct sched_group *sg)
5403{
5404	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5405}
5406
5407static int
5408build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5409{
5410	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5411	const struct cpumask *span = sched_domain_span(sd);
5412	struct cpumask *covered = sched_domains_tmpmask;
5413	struct sd_data *sdd = sd->private;
5414	struct sched_domain *child;
5415	int i;
5416
5417	cpumask_clear(covered);
5418
5419	for_each_cpu(i, span) {
5420		struct cpumask *sg_span;
5421
5422		if (cpumask_test_cpu(i, covered))
5423			continue;
5424
5425		child = *per_cpu_ptr(sdd->sd, i);
5426
5427		/* See the comment near build_group_mask(). */
5428		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5429			continue;
5430
5431		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5432				GFP_KERNEL, cpu_to_node(cpu));
5433
5434		if (!sg)
5435			goto fail;
5436
5437		sg_span = sched_group_cpus(sg);
5438		if (child->child) {
5439			child = child->child;
5440			cpumask_copy(sg_span, sched_domain_span(child));
5441		} else
5442			cpumask_set_cpu(i, sg_span);
5443
5444		cpumask_or(covered, covered, sg_span);
5445
5446		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5447		if (atomic_inc_return(&sg->sgp->ref) == 1)
5448			build_group_mask(sd, sg);
5449
5450		/*
5451		 * Initialize sgp->power such that even if we mess up the
5452		 * domains and no possible iteration will get us here, we won't
5453		 * die on a /0 trap.
5454		 */
5455		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5456
5457		/*
5458		 * Make sure the first group of this domain contains the
5459		 * canonical balance cpu. Otherwise the sched_domain iteration
5460		 * breaks. See update_sg_lb_stats().
5461		 */
5462		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5463		    group_balance_cpu(sg) == cpu)
5464			groups = sg;
5465
5466		if (!first)
5467			first = sg;
5468		if (last)
5469			last->next = sg;
5470		last = sg;
5471		last->next = first;
5472	}
5473	sd->groups = groups;
5474
5475	return 0;
5476
5477fail:
5478	free_sched_groups(first, 0);
5479
5480	return -ENOMEM;
5481}
5482
5483static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5484{
5485	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5486	struct sched_domain *child = sd->child;
5487
5488	if (child)
5489		cpu = cpumask_first(sched_domain_span(child));
5490
5491	if (sg) {
5492		*sg = *per_cpu_ptr(sdd->sg, cpu);
5493		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5494		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5495	}
5496
5497	return cpu;
5498}
5499
5500/*
5501 * build_sched_groups will build a circular linked list of the groups
5502 * covered by the given span, and will set each group's ->cpumask correctly,
5503 * and ->cpu_power to 0.
5504 *
5505 * Assumes the sched_domain tree is fully constructed
5506 */
5507static int
5508build_sched_groups(struct sched_domain *sd, int cpu)
5509{
5510	struct sched_group *first = NULL, *last = NULL;
5511	struct sd_data *sdd = sd->private;
5512	const struct cpumask *span = sched_domain_span(sd);
5513	struct cpumask *covered;
5514	int i;
5515
5516	get_group(cpu, sdd, &sd->groups);
5517	atomic_inc(&sd->groups->ref);
5518
5519	if (cpu != cpumask_first(span))
5520		return 0;
5521
5522	lockdep_assert_held(&sched_domains_mutex);
5523	covered = sched_domains_tmpmask;
5524
5525	cpumask_clear(covered);
5526
5527	for_each_cpu(i, span) {
5528		struct sched_group *sg;
5529		int group, j;
5530
5531		if (cpumask_test_cpu(i, covered))
5532			continue;
5533
5534		group = get_group(i, sdd, &sg);
5535		cpumask_clear(sched_group_cpus(sg));
5536		sg->sgp->power = 0;
5537		cpumask_setall(sched_group_mask(sg));
5538
5539		for_each_cpu(j, span) {
5540			if (get_group(j, sdd, NULL) != group)
5541				continue;
5542
5543			cpumask_set_cpu(j, covered);
5544			cpumask_set_cpu(j, sched_group_cpus(sg));
5545		}
5546
5547		if (!first)
5548			first = sg;
5549		if (last)
5550			last->next = sg;
5551		last = sg;
5552	}
5553	last->next = first;
5554
5555	return 0;
5556}
5557
5558/*
5559 * Initialize sched groups cpu_power.
5560 *
5561 * cpu_power indicates the capacity of sched group, which is used while
5562 * distributing the load between different sched groups in a sched domain.
5563 * Typically cpu_power for all the groups in a sched domain will be same unless
5564 * there are asymmetries in the topology. If there are asymmetries, group
5565 * having more cpu_power will pickup more load compared to the group having
5566 * less cpu_power.
5567 */
5568static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5569{
5570	struct sched_group *sg = sd->groups;
5571
5572	WARN_ON(!sg);
5573
5574	do {
5575		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5576		sg = sg->next;
5577	} while (sg != sd->groups);
5578
5579	if (cpu != group_balance_cpu(sg))
5580		return;
5581
5582	update_group_power(sd, cpu);
5583	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5584}
5585
5586int __weak arch_sd_sibling_asym_packing(void)
5587{
5588       return 0*SD_ASYM_PACKING;
5589}
5590
5591/*
5592 * Initializers for schedule domains
5593 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5594 */
5595
5596#ifdef CONFIG_SCHED_DEBUG
5597# define SD_INIT_NAME(sd, type)		sd->name = #type
5598#else
5599# define SD_INIT_NAME(sd, type)		do { } while (0)
5600#endif
5601
5602#define SD_INIT_FUNC(type)						\
5603static noinline struct sched_domain *					\
5604sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5605{									\
5606	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5607	*sd = SD_##type##_INIT;						\
5608	SD_INIT_NAME(sd, type);						\
5609	sd->private = &tl->data;					\
5610	return sd;							\
5611}
5612
5613SD_INIT_FUNC(CPU)
5614#ifdef CONFIG_SCHED_SMT
5615 SD_INIT_FUNC(SIBLING)
5616#endif
5617#ifdef CONFIG_SCHED_MC
5618 SD_INIT_FUNC(MC)
5619#endif
5620#ifdef CONFIG_SCHED_BOOK
5621 SD_INIT_FUNC(BOOK)
5622#endif
5623
5624static int default_relax_domain_level = -1;
5625int sched_domain_level_max;
5626
5627static int __init setup_relax_domain_level(char *str)
5628{
5629	if (kstrtoint(str, 0, &default_relax_domain_level))
5630		pr_warn("Unable to set relax_domain_level\n");
5631
5632	return 1;
5633}
5634__setup("relax_domain_level=", setup_relax_domain_level);
5635
5636static void set_domain_attribute(struct sched_domain *sd,
5637				 struct sched_domain_attr *attr)
5638{
5639	int request;
5640
5641	if (!attr || attr->relax_domain_level < 0) {
5642		if (default_relax_domain_level < 0)
5643			return;
5644		else
5645			request = default_relax_domain_level;
5646	} else
5647		request = attr->relax_domain_level;
5648	if (request < sd->level) {
5649		/* turn off idle balance on this domain */
5650		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5651	} else {
5652		/* turn on idle balance on this domain */
5653		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5654	}
5655}
5656
5657static void __sdt_free(const struct cpumask *cpu_map);
5658static int __sdt_alloc(const struct cpumask *cpu_map);
5659
5660static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5661				 const struct cpumask *cpu_map)
5662{
5663	switch (what) {
5664	case sa_rootdomain:
5665		if (!atomic_read(&d->rd->refcount))
5666			free_rootdomain(&d->rd->rcu); /* fall through */
5667	case sa_sd:
5668		free_percpu(d->sd); /* fall through */
5669	case sa_sd_storage:
5670		__sdt_free(cpu_map); /* fall through */
5671	case sa_none:
5672		break;
5673	}
5674}
5675
5676static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5677						   const struct cpumask *cpu_map)
5678{
5679	memset(d, 0, sizeof(*d));
5680
5681	if (__sdt_alloc(cpu_map))
5682		return sa_sd_storage;
5683	d->sd = alloc_percpu(struct sched_domain *);
5684	if (!d->sd)
5685		return sa_sd_storage;
5686	d->rd = alloc_rootdomain();
5687	if (!d->rd)
5688		return sa_sd;
5689	return sa_rootdomain;
5690}
5691
5692/*
5693 * NULL the sd_data elements we've used to build the sched_domain and
5694 * sched_group structure so that the subsequent __free_domain_allocs()
5695 * will not free the data we're using.
5696 */
5697static void claim_allocations(int cpu, struct sched_domain *sd)
5698{
5699	struct sd_data *sdd = sd->private;
5700
5701	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5702	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5703
5704	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5705		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5706
5707	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5708		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5709}
5710
5711#ifdef CONFIG_SCHED_SMT
5712static const struct cpumask *cpu_smt_mask(int cpu)
5713{
5714	return topology_thread_cpumask(cpu);
5715}
5716#endif
5717
5718/*
5719 * Topology list, bottom-up.
5720 */
5721static struct sched_domain_topology_level default_topology[] = {
5722#ifdef CONFIG_SCHED_SMT
5723	{ sd_init_SIBLING, cpu_smt_mask, },
5724#endif
5725#ifdef CONFIG_SCHED_MC
5726	{ sd_init_MC, cpu_coregroup_mask, },
5727#endif
5728#ifdef CONFIG_SCHED_BOOK
5729	{ sd_init_BOOK, cpu_book_mask, },
5730#endif
5731	{ sd_init_CPU, cpu_cpu_mask, },
5732	{ NULL, },
5733};
5734
5735static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5736
5737#define for_each_sd_topology(tl)			\
5738	for (tl = sched_domain_topology; tl->init; tl++)
5739
5740#ifdef CONFIG_NUMA
5741
5742static int sched_domains_numa_levels;
5743static int *sched_domains_numa_distance;
5744static struct cpumask ***sched_domains_numa_masks;
5745static int sched_domains_curr_level;
5746
5747static inline int sd_local_flags(int level)
5748{
5749	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5750		return 0;
5751
5752	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5753}
5754
5755static struct sched_domain *
5756sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5757{
5758	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5759	int level = tl->numa_level;
5760	int sd_weight = cpumask_weight(
5761			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5762
5763	*sd = (struct sched_domain){
5764		.min_interval		= sd_weight,
5765		.max_interval		= 2*sd_weight,
5766		.busy_factor		= 32,
5767		.imbalance_pct		= 125,
5768		.cache_nice_tries	= 2,
5769		.busy_idx		= 3,
5770		.idle_idx		= 2,
5771		.newidle_idx		= 0,
5772		.wake_idx		= 0,
5773		.forkexec_idx		= 0,
5774
5775		.flags			= 1*SD_LOAD_BALANCE
5776					| 1*SD_BALANCE_NEWIDLE
5777					| 0*SD_BALANCE_EXEC
5778					| 0*SD_BALANCE_FORK
5779					| 0*SD_BALANCE_WAKE
5780					| 0*SD_WAKE_AFFINE
5781					| 0*SD_SHARE_CPUPOWER
5782					| 0*SD_SHARE_PKG_RESOURCES
5783					| 1*SD_SERIALIZE
5784					| 0*SD_PREFER_SIBLING
5785					| 1*SD_NUMA
5786					| sd_local_flags(level)
5787					,
5788		.last_balance		= jiffies,
5789		.balance_interval	= sd_weight,
5790	};
5791	SD_INIT_NAME(sd, NUMA);
5792	sd->private = &tl->data;
5793
5794	/*
5795	 * Ugly hack to pass state to sd_numa_mask()...
5796	 */
5797	sched_domains_curr_level = tl->numa_level;
5798
5799	return sd;
5800}
5801
5802static const struct cpumask *sd_numa_mask(int cpu)
5803{
5804	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5805}
5806
5807static void sched_numa_warn(const char *str)
5808{
5809	static int done = false;
5810	int i,j;
5811
5812	if (done)
5813		return;
5814
5815	done = true;
5816
5817	printk(KERN_WARNING "ERROR: %s\n\n", str);
5818
5819	for (i = 0; i < nr_node_ids; i++) {
5820		printk(KERN_WARNING "  ");
5821		for (j = 0; j < nr_node_ids; j++)
5822			printk(KERN_CONT "%02d ", node_distance(i,j));
5823		printk(KERN_CONT "\n");
5824	}
5825	printk(KERN_WARNING "\n");
5826}
5827
5828static bool find_numa_distance(int distance)
5829{
5830	int i;
5831
5832	if (distance == node_distance(0, 0))
5833		return true;
5834
5835	for (i = 0; i < sched_domains_numa_levels; i++) {
5836		if (sched_domains_numa_distance[i] == distance)
5837			return true;
5838	}
5839
5840	return false;
5841}
5842
5843static void sched_init_numa(void)
5844{
5845	int next_distance, curr_distance = node_distance(0, 0);
5846	struct sched_domain_topology_level *tl;
5847	int level = 0;
5848	int i, j, k;
5849
5850	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5851	if (!sched_domains_numa_distance)
5852		return;
5853
5854	/*
5855	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5856	 * unique distances in the node_distance() table.
5857	 *
5858	 * Assumes node_distance(0,j) includes all distances in
5859	 * node_distance(i,j) in order to avoid cubic time.
5860	 */
5861	next_distance = curr_distance;
5862	for (i = 0; i < nr_node_ids; i++) {
5863		for (j = 0; j < nr_node_ids; j++) {
5864			for (k = 0; k < nr_node_ids; k++) {
5865				int distance = node_distance(i, k);
5866
5867				if (distance > curr_distance &&
5868				    (distance < next_distance ||
5869				     next_distance == curr_distance))
5870					next_distance = distance;
5871
5872				/*
5873				 * While not a strong assumption it would be nice to know
5874				 * about cases where if node A is connected to B, B is not
5875				 * equally connected to A.
5876				 */
5877				if (sched_debug() && node_distance(k, i) != distance)
5878					sched_numa_warn("Node-distance not symmetric");
5879
5880				if (sched_debug() && i && !find_numa_distance(distance))
5881					sched_numa_warn("Node-0 not representative");
5882			}
5883			if (next_distance != curr_distance) {
5884				sched_domains_numa_distance[level++] = next_distance;
5885				sched_domains_numa_levels = level;
5886				curr_distance = next_distance;
5887			} else break;
5888		}
5889
5890		/*
5891		 * In case of sched_debug() we verify the above assumption.
5892		 */
5893		if (!sched_debug())
5894			break;
5895	}
5896	/*
5897	 * 'level' contains the number of unique distances, excluding the
5898	 * identity distance node_distance(i,i).
5899	 *
5900	 * The sched_domains_numa_distance[] array includes the actual distance
5901	 * numbers.
5902	 */
5903
5904	/*
5905	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5906	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5907	 * the array will contain less then 'level' members. This could be
5908	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5909	 * in other functions.
5910	 *
5911	 * We reset it to 'level' at the end of this function.
5912	 */
5913	sched_domains_numa_levels = 0;
5914
5915	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5916	if (!sched_domains_numa_masks)
5917		return;
5918
5919	/*
5920	 * Now for each level, construct a mask per node which contains all
5921	 * cpus of nodes that are that many hops away from us.
5922	 */
5923	for (i = 0; i < level; i++) {
5924		sched_domains_numa_masks[i] =
5925			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5926		if (!sched_domains_numa_masks[i])
5927			return;
5928
5929		for (j = 0; j < nr_node_ids; j++) {
5930			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5931			if (!mask)
5932				return;
5933
5934			sched_domains_numa_masks[i][j] = mask;
5935
5936			for (k = 0; k < nr_node_ids; k++) {
5937				if (node_distance(j, k) > sched_domains_numa_distance[i])
5938					continue;
5939
5940				cpumask_or(mask, mask, cpumask_of_node(k));
5941			}
5942		}
5943	}
5944
5945	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5946			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5947	if (!tl)
5948		return;
5949
5950	/*
5951	 * Copy the default topology bits..
5952	 */
5953	for (i = 0; default_topology[i].init; i++)
5954		tl[i] = default_topology[i];
5955
5956	/*
5957	 * .. and append 'j' levels of NUMA goodness.
5958	 */
5959	for (j = 0; j < level; i++, j++) {
5960		tl[i] = (struct sched_domain_topology_level){
5961			.init = sd_numa_init,
5962			.mask = sd_numa_mask,
5963			.flags = SDTL_OVERLAP,
5964			.numa_level = j,
5965		};
5966	}
5967
5968	sched_domain_topology = tl;
5969
5970	sched_domains_numa_levels = level;
5971}
5972
5973static void sched_domains_numa_masks_set(int cpu)
5974{
5975	int i, j;
5976	int node = cpu_to_node(cpu);
5977
5978	for (i = 0; i < sched_domains_numa_levels; i++) {
5979		for (j = 0; j < nr_node_ids; j++) {
5980			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5981				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5982		}
5983	}
5984}
5985
5986static void sched_domains_numa_masks_clear(int cpu)
5987{
5988	int i, j;
5989	for (i = 0; i < sched_domains_numa_levels; i++) {
5990		for (j = 0; j < nr_node_ids; j++)
5991			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5992	}
5993}
5994
5995/*
5996 * Update sched_domains_numa_masks[level][node] array when new cpus
5997 * are onlined.
5998 */
5999static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6000					   unsigned long action,
6001					   void *hcpu)
6002{
6003	int cpu = (long)hcpu;
6004
6005	switch (action & ~CPU_TASKS_FROZEN) {
6006	case CPU_ONLINE:
6007		sched_domains_numa_masks_set(cpu);
6008		break;
6009
6010	case CPU_DEAD:
6011		sched_domains_numa_masks_clear(cpu);
6012		break;
6013
6014	default:
6015		return NOTIFY_DONE;
6016	}
6017
6018	return NOTIFY_OK;
6019}
6020#else
6021static inline void sched_init_numa(void)
6022{
6023}
6024
6025static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6026					   unsigned long action,
6027					   void *hcpu)
6028{
6029	return 0;
6030}
6031#endif /* CONFIG_NUMA */
6032
6033static int __sdt_alloc(const struct cpumask *cpu_map)
6034{
6035	struct sched_domain_topology_level *tl;
6036	int j;
6037
6038	for_each_sd_topology(tl) {
6039		struct sd_data *sdd = &tl->data;
6040
6041		sdd->sd = alloc_percpu(struct sched_domain *);
6042		if (!sdd->sd)
6043			return -ENOMEM;
6044
6045		sdd->sg = alloc_percpu(struct sched_group *);
6046		if (!sdd->sg)
6047			return -ENOMEM;
6048
6049		sdd->sgp = alloc_percpu(struct sched_group_power *);
6050		if (!sdd->sgp)
6051			return -ENOMEM;
6052
6053		for_each_cpu(j, cpu_map) {
6054			struct sched_domain *sd;
6055			struct sched_group *sg;
6056			struct sched_group_power *sgp;
6057
6058		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6059					GFP_KERNEL, cpu_to_node(j));
6060			if (!sd)
6061				return -ENOMEM;
6062
6063			*per_cpu_ptr(sdd->sd, j) = sd;
6064
6065			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6066					GFP_KERNEL, cpu_to_node(j));
6067			if (!sg)
6068				return -ENOMEM;
6069
6070			sg->next = sg;
6071
6072			*per_cpu_ptr(sdd->sg, j) = sg;
6073
6074			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6075					GFP_KERNEL, cpu_to_node(j));
6076			if (!sgp)
6077				return -ENOMEM;
6078
6079			*per_cpu_ptr(sdd->sgp, j) = sgp;
6080		}
6081	}
6082
6083	return 0;
6084}
6085
6086static void __sdt_free(const struct cpumask *cpu_map)
6087{
6088	struct sched_domain_topology_level *tl;
6089	int j;
6090
6091	for_each_sd_topology(tl) {
6092		struct sd_data *sdd = &tl->data;
6093
6094		for_each_cpu(j, cpu_map) {
6095			struct sched_domain *sd;
6096
6097			if (sdd->sd) {
6098				sd = *per_cpu_ptr(sdd->sd, j);
6099				if (sd && (sd->flags & SD_OVERLAP))
6100					free_sched_groups(sd->groups, 0);
6101				kfree(*per_cpu_ptr(sdd->sd, j));
6102			}
6103
6104			if (sdd->sg)
6105				kfree(*per_cpu_ptr(sdd->sg, j));
6106			if (sdd->sgp)
6107				kfree(*per_cpu_ptr(sdd->sgp, j));
6108		}
6109		free_percpu(sdd->sd);
6110		sdd->sd = NULL;
6111		free_percpu(sdd->sg);
6112		sdd->sg = NULL;
6113		free_percpu(sdd->sgp);
6114		sdd->sgp = NULL;
6115	}
6116}
6117
6118struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6119		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6120		struct sched_domain *child, int cpu)
6121{
6122	struct sched_domain *sd = tl->init(tl, cpu);
6123	if (!sd)
6124		return child;
6125
6126	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6127	if (child) {
6128		sd->level = child->level + 1;
6129		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6130		child->parent = sd;
6131		sd->child = child;
6132	}
6133	set_domain_attribute(sd, attr);
6134
6135	return sd;
6136}
6137
6138/*
6139 * Build sched domains for a given set of cpus and attach the sched domains
6140 * to the individual cpus
6141 */
6142static int build_sched_domains(const struct cpumask *cpu_map,
6143			       struct sched_domain_attr *attr)
6144{
6145	enum s_alloc alloc_state;
6146	struct sched_domain *sd;
6147	struct s_data d;
6148	int i, ret = -ENOMEM;
6149
6150	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6151	if (alloc_state != sa_rootdomain)
6152		goto error;
6153
6154	/* Set up domains for cpus specified by the cpu_map. */
6155	for_each_cpu(i, cpu_map) {
6156		struct sched_domain_topology_level *tl;
6157
6158		sd = NULL;
6159		for_each_sd_topology(tl) {
6160			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6161			if (tl == sched_domain_topology)
6162				*per_cpu_ptr(d.sd, i) = sd;
6163			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6164				sd->flags |= SD_OVERLAP;
6165			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6166				break;
6167		}
6168	}
6169
6170	/* Build the groups for the domains */
6171	for_each_cpu(i, cpu_map) {
6172		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6173			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6174			if (sd->flags & SD_OVERLAP) {
6175				if (build_overlap_sched_groups(sd, i))
6176					goto error;
6177			} else {
6178				if (build_sched_groups(sd, i))
6179					goto error;
6180			}
6181		}
6182	}
6183
6184	/* Calculate CPU power for physical packages and nodes */
6185	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6186		if (!cpumask_test_cpu(i, cpu_map))
6187			continue;
6188
6189		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6190			claim_allocations(i, sd);
6191			init_sched_groups_power(i, sd);
6192		}
6193	}
6194
6195	/* Attach the domains */
6196	rcu_read_lock();
6197	for_each_cpu(i, cpu_map) {
6198		sd = *per_cpu_ptr(d.sd, i);
6199		cpu_attach_domain(sd, d.rd, i);
6200	}
6201	rcu_read_unlock();
6202
6203	ret = 0;
6204error:
6205	__free_domain_allocs(&d, alloc_state, cpu_map);
6206	return ret;
6207}
6208
6209static cpumask_var_t *doms_cur;	/* current sched domains */
6210static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6211static struct sched_domain_attr *dattr_cur;
6212				/* attribues of custom domains in 'doms_cur' */
6213
6214/*
6215 * Special case: If a kmalloc of a doms_cur partition (array of
6216 * cpumask) fails, then fallback to a single sched domain,
6217 * as determined by the single cpumask fallback_doms.
6218 */
6219static cpumask_var_t fallback_doms;
6220
6221/*
6222 * arch_update_cpu_topology lets virtualized architectures update the
6223 * cpu core maps. It is supposed to return 1 if the topology changed
6224 * or 0 if it stayed the same.
6225 */
6226int __attribute__((weak)) arch_update_cpu_topology(void)
6227{
6228	return 0;
6229}
6230
6231cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6232{
6233	int i;
6234	cpumask_var_t *doms;
6235
6236	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6237	if (!doms)
6238		return NULL;
6239	for (i = 0; i < ndoms; i++) {
6240		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6241			free_sched_domains(doms, i);
6242			return NULL;
6243		}
6244	}
6245	return doms;
6246}
6247
6248void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6249{
6250	unsigned int i;
6251	for (i = 0; i < ndoms; i++)
6252		free_cpumask_var(doms[i]);
6253	kfree(doms);
6254}
6255
6256/*
6257 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6258 * For now this just excludes isolated cpus, but could be used to
6259 * exclude other special cases in the future.
6260 */
6261static int init_sched_domains(const struct cpumask *cpu_map)
6262{
6263	int err;
6264
6265	arch_update_cpu_topology();
6266	ndoms_cur = 1;
6267	doms_cur = alloc_sched_domains(ndoms_cur);
6268	if (!doms_cur)
6269		doms_cur = &fallback_doms;
6270	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6271	err = build_sched_domains(doms_cur[0], NULL);
6272	register_sched_domain_sysctl();
6273
6274	return err;
6275}
6276
6277/*
6278 * Detach sched domains from a group of cpus specified in cpu_map
6279 * These cpus will now be attached to the NULL domain
6280 */
6281static void detach_destroy_domains(const struct cpumask *cpu_map)
6282{
6283	int i;
6284
6285	rcu_read_lock();
6286	for_each_cpu(i, cpu_map)
6287		cpu_attach_domain(NULL, &def_root_domain, i);
6288	rcu_read_unlock();
6289}
6290
6291/* handle null as "default" */
6292static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6293			struct sched_domain_attr *new, int idx_new)
6294{
6295	struct sched_domain_attr tmp;
6296
6297	/* fast path */
6298	if (!new && !cur)
6299		return 1;
6300
6301	tmp = SD_ATTR_INIT;
6302	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6303			new ? (new + idx_new) : &tmp,
6304			sizeof(struct sched_domain_attr));
6305}
6306
6307/*
6308 * Partition sched domains as specified by the 'ndoms_new'
6309 * cpumasks in the array doms_new[] of cpumasks. This compares
6310 * doms_new[] to the current sched domain partitioning, doms_cur[].
6311 * It destroys each deleted domain and builds each new domain.
6312 *
6313 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6314 * The masks don't intersect (don't overlap.) We should setup one
6315 * sched domain for each mask. CPUs not in any of the cpumasks will
6316 * not be load balanced. If the same cpumask appears both in the
6317 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6318 * it as it is.
6319 *
6320 * The passed in 'doms_new' should be allocated using
6321 * alloc_sched_domains.  This routine takes ownership of it and will
6322 * free_sched_domains it when done with it. If the caller failed the
6323 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6324 * and partition_sched_domains() will fallback to the single partition
6325 * 'fallback_doms', it also forces the domains to be rebuilt.
6326 *
6327 * If doms_new == NULL it will be replaced with cpu_online_mask.
6328 * ndoms_new == 0 is a special case for destroying existing domains,
6329 * and it will not create the default domain.
6330 *
6331 * Call with hotplug lock held
6332 */
6333void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6334			     struct sched_domain_attr *dattr_new)
6335{
6336	int i, j, n;
6337	int new_topology;
6338
6339	mutex_lock(&sched_domains_mutex);
6340
6341	/* always unregister in case we don't destroy any domains */
6342	unregister_sched_domain_sysctl();
6343
6344	/* Let architecture update cpu core mappings. */
6345	new_topology = arch_update_cpu_topology();
6346
6347	n = doms_new ? ndoms_new : 0;
6348
6349	/* Destroy deleted domains */
6350	for (i = 0; i < ndoms_cur; i++) {
6351		for (j = 0; j < n && !new_topology; j++) {
6352			if (cpumask_equal(doms_cur[i], doms_new[j])
6353			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6354				goto match1;
6355		}
6356		/* no match - a current sched domain not in new doms_new[] */
6357		detach_destroy_domains(doms_cur[i]);
6358match1:
6359		;
6360	}
6361
6362	n = ndoms_cur;
6363	if (doms_new == NULL) {
6364		n = 0;
6365		doms_new = &fallback_doms;
6366		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6367		WARN_ON_ONCE(dattr_new);
6368	}
6369
6370	/* Build new domains */
6371	for (i = 0; i < ndoms_new; i++) {
6372		for (j = 0; j < n && !new_topology; j++) {
6373			if (cpumask_equal(doms_new[i], doms_cur[j])
6374			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6375				goto match2;
6376		}
6377		/* no match - add a new doms_new */
6378		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6379match2:
6380		;
6381	}
6382
6383	/* Remember the new sched domains */
6384	if (doms_cur != &fallback_doms)
6385		free_sched_domains(doms_cur, ndoms_cur);
6386	kfree(dattr_cur);	/* kfree(NULL) is safe */
6387	doms_cur = doms_new;
6388	dattr_cur = dattr_new;
6389	ndoms_cur = ndoms_new;
6390
6391	register_sched_domain_sysctl();
6392
6393	mutex_unlock(&sched_domains_mutex);
6394}
6395
6396static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6397
6398/*
6399 * Update cpusets according to cpu_active mask.  If cpusets are
6400 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6401 * around partition_sched_domains().
6402 *
6403 * If we come here as part of a suspend/resume, don't touch cpusets because we
6404 * want to restore it back to its original state upon resume anyway.
6405 */
6406static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6407			     void *hcpu)
6408{
6409	switch (action) {
6410	case CPU_ONLINE_FROZEN:
6411	case CPU_DOWN_FAILED_FROZEN:
6412
6413		/*
6414		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6415		 * resume sequence. As long as this is not the last online
6416		 * operation in the resume sequence, just build a single sched
6417		 * domain, ignoring cpusets.
6418		 */
6419		num_cpus_frozen--;
6420		if (likely(num_cpus_frozen)) {
6421			partition_sched_domains(1, NULL, NULL);
6422			break;
6423		}
6424
6425		/*
6426		 * This is the last CPU online operation. So fall through and
6427		 * restore the original sched domains by considering the
6428		 * cpuset configurations.
6429		 */
6430
6431	case CPU_ONLINE:
6432	case CPU_DOWN_FAILED:
6433		cpuset_update_active_cpus(true);
6434		break;
6435	default:
6436		return NOTIFY_DONE;
6437	}
6438	return NOTIFY_OK;
6439}
6440
6441static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6442			       void *hcpu)
6443{
6444	switch (action) {
6445	case CPU_DOWN_PREPARE:
6446		cpuset_update_active_cpus(false);
6447		break;
6448	case CPU_DOWN_PREPARE_FROZEN:
6449		num_cpus_frozen++;
6450		partition_sched_domains(1, NULL, NULL);
6451		break;
6452	default:
6453		return NOTIFY_DONE;
6454	}
6455	return NOTIFY_OK;
6456}
6457
6458void __init sched_init_smp(void)
6459{
6460	cpumask_var_t non_isolated_cpus;
6461
6462	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6463	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6464
6465	sched_init_numa();
6466
6467	get_online_cpus();
6468	mutex_lock(&sched_domains_mutex);
6469	init_sched_domains(cpu_active_mask);
6470	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6471	if (cpumask_empty(non_isolated_cpus))
6472		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6473	mutex_unlock(&sched_domains_mutex);
6474	put_online_cpus();
6475
6476	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6477	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6478	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6479
6480	init_hrtick();
6481
6482	/* Move init over to a non-isolated CPU */
6483	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6484		BUG();
6485	sched_init_granularity();
6486	free_cpumask_var(non_isolated_cpus);
6487
6488	init_sched_rt_class();
6489}
6490#else
6491void __init sched_init_smp(void)
6492{
6493	sched_init_granularity();
6494}
6495#endif /* CONFIG_SMP */
6496
6497const_debug unsigned int sysctl_timer_migration = 1;
6498
6499int in_sched_functions(unsigned long addr)
6500{
6501	return in_lock_functions(addr) ||
6502		(addr >= (unsigned long)__sched_text_start
6503		&& addr < (unsigned long)__sched_text_end);
6504}
6505
6506#ifdef CONFIG_CGROUP_SCHED
6507/*
6508 * Default task group.
6509 * Every task in system belongs to this group at bootup.
6510 */
6511struct task_group root_task_group;
6512LIST_HEAD(task_groups);
6513#endif
6514
6515DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6516
6517void __init sched_init(void)
6518{
6519	int i, j;
6520	unsigned long alloc_size = 0, ptr;
6521
6522#ifdef CONFIG_FAIR_GROUP_SCHED
6523	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6524#endif
6525#ifdef CONFIG_RT_GROUP_SCHED
6526	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6527#endif
6528#ifdef CONFIG_CPUMASK_OFFSTACK
6529	alloc_size += num_possible_cpus() * cpumask_size();
6530#endif
6531	if (alloc_size) {
6532		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6533
6534#ifdef CONFIG_FAIR_GROUP_SCHED
6535		root_task_group.se = (struct sched_entity **)ptr;
6536		ptr += nr_cpu_ids * sizeof(void **);
6537
6538		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6539		ptr += nr_cpu_ids * sizeof(void **);
6540
6541#endif /* CONFIG_FAIR_GROUP_SCHED */
6542#ifdef CONFIG_RT_GROUP_SCHED
6543		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6544		ptr += nr_cpu_ids * sizeof(void **);
6545
6546		root_task_group.rt_rq = (struct rt_rq **)ptr;
6547		ptr += nr_cpu_ids * sizeof(void **);
6548
6549#endif /* CONFIG_RT_GROUP_SCHED */
6550#ifdef CONFIG_CPUMASK_OFFSTACK
6551		for_each_possible_cpu(i) {
6552			per_cpu(load_balance_mask, i) = (void *)ptr;
6553			ptr += cpumask_size();
6554		}
6555#endif /* CONFIG_CPUMASK_OFFSTACK */
6556	}
6557
6558#ifdef CONFIG_SMP
6559	init_defrootdomain();
6560#endif
6561
6562	init_rt_bandwidth(&def_rt_bandwidth,
6563			global_rt_period(), global_rt_runtime());
6564
6565#ifdef CONFIG_RT_GROUP_SCHED
6566	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6567			global_rt_period(), global_rt_runtime());
6568#endif /* CONFIG_RT_GROUP_SCHED */
6569
6570#ifdef CONFIG_CGROUP_SCHED
6571	list_add(&root_task_group.list, &task_groups);
6572	INIT_LIST_HEAD(&root_task_group.children);
6573	INIT_LIST_HEAD(&root_task_group.siblings);
6574	autogroup_init(&init_task);
6575
6576#endif /* CONFIG_CGROUP_SCHED */
6577
6578	for_each_possible_cpu(i) {
6579		struct rq *rq;
6580
6581		rq = cpu_rq(i);
6582		raw_spin_lock_init(&rq->lock);
6583		rq->nr_running = 0;
6584		rq->calc_load_active = 0;
6585		rq->calc_load_update = jiffies + LOAD_FREQ;
6586		init_cfs_rq(&rq->cfs);
6587		init_rt_rq(&rq->rt, rq);
6588#ifdef CONFIG_FAIR_GROUP_SCHED
6589		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6590		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6591		/*
6592		 * How much cpu bandwidth does root_task_group get?
6593		 *
6594		 * In case of task-groups formed thr' the cgroup filesystem, it
6595		 * gets 100% of the cpu resources in the system. This overall
6596		 * system cpu resource is divided among the tasks of
6597		 * root_task_group and its child task-groups in a fair manner,
6598		 * based on each entity's (task or task-group's) weight
6599		 * (se->load.weight).
6600		 *
6601		 * In other words, if root_task_group has 10 tasks of weight
6602		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6603		 * then A0's share of the cpu resource is:
6604		 *
6605		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6606		 *
6607		 * We achieve this by letting root_task_group's tasks sit
6608		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6609		 */
6610		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6611		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6612#endif /* CONFIG_FAIR_GROUP_SCHED */
6613
6614		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6615#ifdef CONFIG_RT_GROUP_SCHED
6616		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6617		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6618#endif
6619
6620		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6621			rq->cpu_load[j] = 0;
6622
6623		rq->last_load_update_tick = jiffies;
6624
6625#ifdef CONFIG_SMP
6626		rq->sd = NULL;
6627		rq->rd = NULL;
6628		rq->cpu_power = SCHED_POWER_SCALE;
6629		rq->post_schedule = 0;
6630		rq->active_balance = 0;
6631		rq->next_balance = jiffies;
6632		rq->push_cpu = 0;
6633		rq->cpu = i;
6634		rq->online = 0;
6635		rq->idle_stamp = 0;
6636		rq->avg_idle = 2*sysctl_sched_migration_cost;
6637		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6638
6639		INIT_LIST_HEAD(&rq->cfs_tasks);
6640
6641		rq_attach_root(rq, &def_root_domain);
6642#ifdef CONFIG_NO_HZ_COMMON
6643		rq->nohz_flags = 0;
6644#endif
6645#ifdef CONFIG_NO_HZ_FULL
6646		rq->last_sched_tick = 0;
6647#endif
6648#endif
6649		init_rq_hrtick(rq);
6650		atomic_set(&rq->nr_iowait, 0);
6651	}
6652
6653	set_load_weight(&init_task);
6654
6655#ifdef CONFIG_PREEMPT_NOTIFIERS
6656	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6657#endif
6658
6659#ifdef CONFIG_RT_MUTEXES
6660	plist_head_init(&init_task.pi_waiters);
6661#endif
6662
6663	/*
6664	 * The boot idle thread does lazy MMU switching as well:
6665	 */
6666	atomic_inc(&init_mm.mm_count);
6667	enter_lazy_tlb(&init_mm, current);
6668
6669	/*
6670	 * Make us the idle thread. Technically, schedule() should not be
6671	 * called from this thread, however somewhere below it might be,
6672	 * but because we are the idle thread, we just pick up running again
6673	 * when this runqueue becomes "idle".
6674	 */
6675	init_idle(current, smp_processor_id());
6676
6677	calc_load_update = jiffies + LOAD_FREQ;
6678
6679	/*
6680	 * During early bootup we pretend to be a normal task:
6681	 */
6682	current->sched_class = &fair_sched_class;
6683
6684#ifdef CONFIG_SMP
6685	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6686	/* May be allocated at isolcpus cmdline parse time */
6687	if (cpu_isolated_map == NULL)
6688		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6689	idle_thread_set_boot_cpu();
6690#endif
6691	init_sched_fair_class();
6692
6693	scheduler_running = 1;
6694}
6695
6696#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6697static inline int preempt_count_equals(int preempt_offset)
6698{
6699	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6700
6701	return (nested == preempt_offset);
6702}
6703
6704void __might_sleep(const char *file, int line, int preempt_offset)
6705{
6706	static unsigned long prev_jiffy;	/* ratelimiting */
6707
6708	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6709	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6710	    system_state != SYSTEM_RUNNING || oops_in_progress)
6711		return;
6712	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6713		return;
6714	prev_jiffy = jiffies;
6715
6716	printk(KERN_ERR
6717		"BUG: sleeping function called from invalid context at %s:%d\n",
6718			file, line);
6719	printk(KERN_ERR
6720		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6721			in_atomic(), irqs_disabled(),
6722			current->pid, current->comm);
6723
6724	debug_show_held_locks(current);
6725	if (irqs_disabled())
6726		print_irqtrace_events(current);
6727	dump_stack();
6728}
6729EXPORT_SYMBOL(__might_sleep);
6730#endif
6731
6732#ifdef CONFIG_MAGIC_SYSRQ
6733static void normalize_task(struct rq *rq, struct task_struct *p)
6734{
6735	const struct sched_class *prev_class = p->sched_class;
6736	int old_prio = p->prio;
6737	int on_rq;
6738
6739	on_rq = p->on_rq;
6740	if (on_rq)
6741		dequeue_task(rq, p, 0);
6742	__setscheduler(rq, p, SCHED_NORMAL, 0);
6743	if (on_rq) {
6744		enqueue_task(rq, p, 0);
6745		resched_task(rq->curr);
6746	}
6747
6748	check_class_changed(rq, p, prev_class, old_prio);
6749}
6750
6751void normalize_rt_tasks(void)
6752{
6753	struct task_struct *g, *p;
6754	unsigned long flags;
6755	struct rq *rq;
6756
6757	read_lock_irqsave(&tasklist_lock, flags);
6758	do_each_thread(g, p) {
6759		/*
6760		 * Only normalize user tasks:
6761		 */
6762		if (!p->mm)
6763			continue;
6764
6765		p->se.exec_start		= 0;
6766#ifdef CONFIG_SCHEDSTATS
6767		p->se.statistics.wait_start	= 0;
6768		p->se.statistics.sleep_start	= 0;
6769		p->se.statistics.block_start	= 0;
6770#endif
6771
6772		if (!rt_task(p)) {
6773			/*
6774			 * Renice negative nice level userspace
6775			 * tasks back to 0:
6776			 */
6777			if (TASK_NICE(p) < 0 && p->mm)
6778				set_user_nice(p, 0);
6779			continue;
6780		}
6781
6782		raw_spin_lock(&p->pi_lock);
6783		rq = __task_rq_lock(p);
6784
6785		normalize_task(rq, p);
6786
6787		__task_rq_unlock(rq);
6788		raw_spin_unlock(&p->pi_lock);
6789	} while_each_thread(g, p);
6790
6791	read_unlock_irqrestore(&tasklist_lock, flags);
6792}
6793
6794#endif /* CONFIG_MAGIC_SYSRQ */
6795
6796#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6797/*
6798 * These functions are only useful for the IA64 MCA handling, or kdb.
6799 *
6800 * They can only be called when the whole system has been
6801 * stopped - every CPU needs to be quiescent, and no scheduling
6802 * activity can take place. Using them for anything else would
6803 * be a serious bug, and as a result, they aren't even visible
6804 * under any other configuration.
6805 */
6806
6807/**
6808 * curr_task - return the current task for a given cpu.
6809 * @cpu: the processor in question.
6810 *
6811 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6812 *
6813 * Return: The current task for @cpu.
6814 */
6815struct task_struct *curr_task(int cpu)
6816{
6817	return cpu_curr(cpu);
6818}
6819
6820#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6821
6822#ifdef CONFIG_IA64
6823/**
6824 * set_curr_task - set the current task for a given cpu.
6825 * @cpu: the processor in question.
6826 * @p: the task pointer to set.
6827 *
6828 * Description: This function must only be used when non-maskable interrupts
6829 * are serviced on a separate stack. It allows the architecture to switch the
6830 * notion of the current task on a cpu in a non-blocking manner. This function
6831 * must be called with all CPU's synchronized, and interrupts disabled, the
6832 * and caller must save the original value of the current task (see
6833 * curr_task() above) and restore that value before reenabling interrupts and
6834 * re-starting the system.
6835 *
6836 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6837 */
6838void set_curr_task(int cpu, struct task_struct *p)
6839{
6840	cpu_curr(cpu) = p;
6841}
6842
6843#endif
6844
6845#ifdef CONFIG_CGROUP_SCHED
6846/* task_group_lock serializes the addition/removal of task groups */
6847static DEFINE_SPINLOCK(task_group_lock);
6848
6849static void free_sched_group(struct task_group *tg)
6850{
6851	free_fair_sched_group(tg);
6852	free_rt_sched_group(tg);
6853	autogroup_free(tg);
6854	kfree(tg);
6855}
6856
6857/* allocate runqueue etc for a new task group */
6858struct task_group *sched_create_group(struct task_group *parent)
6859{
6860	struct task_group *tg;
6861
6862	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6863	if (!tg)
6864		return ERR_PTR(-ENOMEM);
6865
6866	if (!alloc_fair_sched_group(tg, parent))
6867		goto err;
6868
6869	if (!alloc_rt_sched_group(tg, parent))
6870		goto err;
6871
6872	return tg;
6873
6874err:
6875	free_sched_group(tg);
6876	return ERR_PTR(-ENOMEM);
6877}
6878
6879void sched_online_group(struct task_group *tg, struct task_group *parent)
6880{
6881	unsigned long flags;
6882
6883	spin_lock_irqsave(&task_group_lock, flags);
6884	list_add_rcu(&tg->list, &task_groups);
6885
6886	WARN_ON(!parent); /* root should already exist */
6887
6888	tg->parent = parent;
6889	INIT_LIST_HEAD(&tg->children);
6890	list_add_rcu(&tg->siblings, &parent->children);
6891	spin_unlock_irqrestore(&task_group_lock, flags);
6892}
6893
6894/* rcu callback to free various structures associated with a task group */
6895static void free_sched_group_rcu(struct rcu_head *rhp)
6896{
6897	/* now it should be safe to free those cfs_rqs */
6898	free_sched_group(container_of(rhp, struct task_group, rcu));
6899}
6900
6901/* Destroy runqueue etc associated with a task group */
6902void sched_destroy_group(struct task_group *tg)
6903{
6904	/* wait for possible concurrent references to cfs_rqs complete */
6905	call_rcu(&tg->rcu, free_sched_group_rcu);
6906}
6907
6908void sched_offline_group(struct task_group *tg)
6909{
6910	unsigned long flags;
6911	int i;
6912
6913	/* end participation in shares distribution */
6914	for_each_possible_cpu(i)
6915		unregister_fair_sched_group(tg, i);
6916
6917	spin_lock_irqsave(&task_group_lock, flags);
6918	list_del_rcu(&tg->list);
6919	list_del_rcu(&tg->siblings);
6920	spin_unlock_irqrestore(&task_group_lock, flags);
6921}
6922
6923/* change task's runqueue when it moves between groups.
6924 *	The caller of this function should have put the task in its new group
6925 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6926 *	reflect its new group.
6927 */
6928void sched_move_task(struct task_struct *tsk)
6929{
6930	struct task_group *tg;
6931	int on_rq, running;
6932	unsigned long flags;
6933	struct rq *rq;
6934
6935	rq = task_rq_lock(tsk, &flags);
6936
6937	running = task_current(rq, tsk);
6938	on_rq = tsk->on_rq;
6939
6940	if (on_rq)
6941		dequeue_task(rq, tsk, 0);
6942	if (unlikely(running))
6943		tsk->sched_class->put_prev_task(rq, tsk);
6944
6945	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6946				lockdep_is_held(&tsk->sighand->siglock)),
6947			  struct task_group, css);
6948	tg = autogroup_task_group(tsk, tg);
6949	tsk->sched_task_group = tg;
6950
6951#ifdef CONFIG_FAIR_GROUP_SCHED
6952	if (tsk->sched_class->task_move_group)
6953		tsk->sched_class->task_move_group(tsk, on_rq);
6954	else
6955#endif
6956		set_task_rq(tsk, task_cpu(tsk));
6957
6958	if (unlikely(running))
6959		tsk->sched_class->set_curr_task(rq);
6960	if (on_rq)
6961		enqueue_task(rq, tsk, 0);
6962
6963	task_rq_unlock(rq, tsk, &flags);
6964}
6965#endif /* CONFIG_CGROUP_SCHED */
6966
6967#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6968static unsigned long to_ratio(u64 period, u64 runtime)
6969{
6970	if (runtime == RUNTIME_INF)
6971		return 1ULL << 20;
6972
6973	return div64_u64(runtime << 20, period);
6974}
6975#endif
6976
6977#ifdef CONFIG_RT_GROUP_SCHED
6978/*
6979 * Ensure that the real time constraints are schedulable.
6980 */
6981static DEFINE_MUTEX(rt_constraints_mutex);
6982
6983/* Must be called with tasklist_lock held */
6984static inline int tg_has_rt_tasks(struct task_group *tg)
6985{
6986	struct task_struct *g, *p;
6987
6988	do_each_thread(g, p) {
6989		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6990			return 1;
6991	} while_each_thread(g, p);
6992
6993	return 0;
6994}
6995
6996struct rt_schedulable_data {
6997	struct task_group *tg;
6998	u64 rt_period;
6999	u64 rt_runtime;
7000};
7001
7002static int tg_rt_schedulable(struct task_group *tg, void *data)
7003{
7004	struct rt_schedulable_data *d = data;
7005	struct task_group *child;
7006	unsigned long total, sum = 0;
7007	u64 period, runtime;
7008
7009	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7010	runtime = tg->rt_bandwidth.rt_runtime;
7011
7012	if (tg == d->tg) {
7013		period = d->rt_period;
7014		runtime = d->rt_runtime;
7015	}
7016
7017	/*
7018	 * Cannot have more runtime than the period.
7019	 */
7020	if (runtime > period && runtime != RUNTIME_INF)
7021		return -EINVAL;
7022
7023	/*
7024	 * Ensure we don't starve existing RT tasks.
7025	 */
7026	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7027		return -EBUSY;
7028
7029	total = to_ratio(period, runtime);
7030
7031	/*
7032	 * Nobody can have more than the global setting allows.
7033	 */
7034	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7035		return -EINVAL;
7036
7037	/*
7038	 * The sum of our children's runtime should not exceed our own.
7039	 */
7040	list_for_each_entry_rcu(child, &tg->children, siblings) {
7041		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7042		runtime = child->rt_bandwidth.rt_runtime;
7043
7044		if (child == d->tg) {
7045			period = d->rt_period;
7046			runtime = d->rt_runtime;
7047		}
7048
7049		sum += to_ratio(period, runtime);
7050	}
7051
7052	if (sum > total)
7053		return -EINVAL;
7054
7055	return 0;
7056}
7057
7058static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7059{
7060	int ret;
7061
7062	struct rt_schedulable_data data = {
7063		.tg = tg,
7064		.rt_period = period,
7065		.rt_runtime = runtime,
7066	};
7067
7068	rcu_read_lock();
7069	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7070	rcu_read_unlock();
7071
7072	return ret;
7073}
7074
7075static int tg_set_rt_bandwidth(struct task_group *tg,
7076		u64 rt_period, u64 rt_runtime)
7077{
7078	int i, err = 0;
7079
7080	mutex_lock(&rt_constraints_mutex);
7081	read_lock(&tasklist_lock);
7082	err = __rt_schedulable(tg, rt_period, rt_runtime);
7083	if (err)
7084		goto unlock;
7085
7086	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7087	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7088	tg->rt_bandwidth.rt_runtime = rt_runtime;
7089
7090	for_each_possible_cpu(i) {
7091		struct rt_rq *rt_rq = tg->rt_rq[i];
7092
7093		raw_spin_lock(&rt_rq->rt_runtime_lock);
7094		rt_rq->rt_runtime = rt_runtime;
7095		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7096	}
7097	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7098unlock:
7099	read_unlock(&tasklist_lock);
7100	mutex_unlock(&rt_constraints_mutex);
7101
7102	return err;
7103}
7104
7105static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7106{
7107	u64 rt_runtime, rt_period;
7108
7109	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7110	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7111	if (rt_runtime_us < 0)
7112		rt_runtime = RUNTIME_INF;
7113
7114	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7115}
7116
7117static long sched_group_rt_runtime(struct task_group *tg)
7118{
7119	u64 rt_runtime_us;
7120
7121	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7122		return -1;
7123
7124	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7125	do_div(rt_runtime_us, NSEC_PER_USEC);
7126	return rt_runtime_us;
7127}
7128
7129static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7130{
7131	u64 rt_runtime, rt_period;
7132
7133	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7134	rt_runtime = tg->rt_bandwidth.rt_runtime;
7135
7136	if (rt_period == 0)
7137		return -EINVAL;
7138
7139	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7140}
7141
7142static long sched_group_rt_period(struct task_group *tg)
7143{
7144	u64 rt_period_us;
7145
7146	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7147	do_div(rt_period_us, NSEC_PER_USEC);
7148	return rt_period_us;
7149}
7150
7151static int sched_rt_global_constraints(void)
7152{
7153	u64 runtime, period;
7154	int ret = 0;
7155
7156	if (sysctl_sched_rt_period <= 0)
7157		return -EINVAL;
7158
7159	runtime = global_rt_runtime();
7160	period = global_rt_period();
7161
7162	/*
7163	 * Sanity check on the sysctl variables.
7164	 */
7165	if (runtime > period && runtime != RUNTIME_INF)
7166		return -EINVAL;
7167
7168	mutex_lock(&rt_constraints_mutex);
7169	read_lock(&tasklist_lock);
7170	ret = __rt_schedulable(NULL, 0, 0);
7171	read_unlock(&tasklist_lock);
7172	mutex_unlock(&rt_constraints_mutex);
7173
7174	return ret;
7175}
7176
7177static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7178{
7179	/* Don't accept realtime tasks when there is no way for them to run */
7180	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7181		return 0;
7182
7183	return 1;
7184}
7185
7186#else /* !CONFIG_RT_GROUP_SCHED */
7187static int sched_rt_global_constraints(void)
7188{
7189	unsigned long flags;
7190	int i;
7191
7192	if (sysctl_sched_rt_period <= 0)
7193		return -EINVAL;
7194
7195	/*
7196	 * There's always some RT tasks in the root group
7197	 * -- migration, kstopmachine etc..
7198	 */
7199	if (sysctl_sched_rt_runtime == 0)
7200		return -EBUSY;
7201
7202	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7203	for_each_possible_cpu(i) {
7204		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7205
7206		raw_spin_lock(&rt_rq->rt_runtime_lock);
7207		rt_rq->rt_runtime = global_rt_runtime();
7208		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7209	}
7210	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7211
7212	return 0;
7213}
7214#endif /* CONFIG_RT_GROUP_SCHED */
7215
7216int sched_rr_handler(struct ctl_table *table, int write,
7217		void __user *buffer, size_t *lenp,
7218		loff_t *ppos)
7219{
7220	int ret;
7221	static DEFINE_MUTEX(mutex);
7222
7223	mutex_lock(&mutex);
7224	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7225	/* make sure that internally we keep jiffies */
7226	/* also, writing zero resets timeslice to default */
7227	if (!ret && write) {
7228		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7229			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7230	}
7231	mutex_unlock(&mutex);
7232	return ret;
7233}
7234
7235int sched_rt_handler(struct ctl_table *table, int write,
7236		void __user *buffer, size_t *lenp,
7237		loff_t *ppos)
7238{
7239	int ret;
7240	int old_period, old_runtime;
7241	static DEFINE_MUTEX(mutex);
7242
7243	mutex_lock(&mutex);
7244	old_period = sysctl_sched_rt_period;
7245	old_runtime = sysctl_sched_rt_runtime;
7246
7247	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7248
7249	if (!ret && write) {
7250		ret = sched_rt_global_constraints();
7251		if (ret) {
7252			sysctl_sched_rt_period = old_period;
7253			sysctl_sched_rt_runtime = old_runtime;
7254		} else {
7255			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7256			def_rt_bandwidth.rt_period =
7257				ns_to_ktime(global_rt_period());
7258		}
7259	}
7260	mutex_unlock(&mutex);
7261
7262	return ret;
7263}
7264
7265#ifdef CONFIG_CGROUP_SCHED
7266
7267static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7268{
7269	return css ? container_of(css, struct task_group, css) : NULL;
7270}
7271
7272static struct cgroup_subsys_state *
7273cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7274{
7275	struct task_group *parent = css_tg(parent_css);
7276	struct task_group *tg;
7277
7278	if (!parent) {
7279		/* This is early initialization for the top cgroup */
7280		return &root_task_group.css;
7281	}
7282
7283	tg = sched_create_group(parent);
7284	if (IS_ERR(tg))
7285		return ERR_PTR(-ENOMEM);
7286
7287	return &tg->css;
7288}
7289
7290static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7291{
7292	struct task_group *tg = css_tg(css);
7293	struct task_group *parent = css_tg(css_parent(css));
7294
7295	if (parent)
7296		sched_online_group(tg, parent);
7297	return 0;
7298}
7299
7300static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7301{
7302	struct task_group *tg = css_tg(css);
7303
7304	sched_destroy_group(tg);
7305}
7306
7307static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7308{
7309	struct task_group *tg = css_tg(css);
7310
7311	sched_offline_group(tg);
7312}
7313
7314static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7315				 struct cgroup_taskset *tset)
7316{
7317	struct task_struct *task;
7318
7319	cgroup_taskset_for_each(task, css, tset) {
7320#ifdef CONFIG_RT_GROUP_SCHED
7321		if (!sched_rt_can_attach(css_tg(css), task))
7322			return -EINVAL;
7323#else
7324		/* We don't support RT-tasks being in separate groups */
7325		if (task->sched_class != &fair_sched_class)
7326			return -EINVAL;
7327#endif
7328	}
7329	return 0;
7330}
7331
7332static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7333			      struct cgroup_taskset *tset)
7334{
7335	struct task_struct *task;
7336
7337	cgroup_taskset_for_each(task, css, tset)
7338		sched_move_task(task);
7339}
7340
7341static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7342			    struct cgroup_subsys_state *old_css,
7343			    struct task_struct *task)
7344{
7345	/*
7346	 * cgroup_exit() is called in the copy_process() failure path.
7347	 * Ignore this case since the task hasn't ran yet, this avoids
7348	 * trying to poke a half freed task state from generic code.
7349	 */
7350	if (!(task->flags & PF_EXITING))
7351		return;
7352
7353	sched_move_task(task);
7354}
7355
7356#ifdef CONFIG_FAIR_GROUP_SCHED
7357static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7358				struct cftype *cftype, u64 shareval)
7359{
7360	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7361}
7362
7363static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7364			       struct cftype *cft)
7365{
7366	struct task_group *tg = css_tg(css);
7367
7368	return (u64) scale_load_down(tg->shares);
7369}
7370
7371#ifdef CONFIG_CFS_BANDWIDTH
7372static DEFINE_MUTEX(cfs_constraints_mutex);
7373
7374const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7375const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7376
7377static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7378
7379static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7380{
7381	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7382	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7383
7384	if (tg == &root_task_group)
7385		return -EINVAL;
7386
7387	/*
7388	 * Ensure we have at some amount of bandwidth every period.  This is
7389	 * to prevent reaching a state of large arrears when throttled via
7390	 * entity_tick() resulting in prolonged exit starvation.
7391	 */
7392	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7393		return -EINVAL;
7394
7395	/*
7396	 * Likewise, bound things on the otherside by preventing insane quota
7397	 * periods.  This also allows us to normalize in computing quota
7398	 * feasibility.
7399	 */
7400	if (period > max_cfs_quota_period)
7401		return -EINVAL;
7402
7403	mutex_lock(&cfs_constraints_mutex);
7404	ret = __cfs_schedulable(tg, period, quota);
7405	if (ret)
7406		goto out_unlock;
7407
7408	runtime_enabled = quota != RUNTIME_INF;
7409	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7410	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7411	raw_spin_lock_irq(&cfs_b->lock);
7412	cfs_b->period = ns_to_ktime(period);
7413	cfs_b->quota = quota;
7414
7415	__refill_cfs_bandwidth_runtime(cfs_b);
7416	/* restart the period timer (if active) to handle new period expiry */
7417	if (runtime_enabled && cfs_b->timer_active) {
7418		/* force a reprogram */
7419		cfs_b->timer_active = 0;
7420		__start_cfs_bandwidth(cfs_b);
7421	}
7422	raw_spin_unlock_irq(&cfs_b->lock);
7423
7424	for_each_possible_cpu(i) {
7425		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7426		struct rq *rq = cfs_rq->rq;
7427
7428		raw_spin_lock_irq(&rq->lock);
7429		cfs_rq->runtime_enabled = runtime_enabled;
7430		cfs_rq->runtime_remaining = 0;
7431
7432		if (cfs_rq->throttled)
7433			unthrottle_cfs_rq(cfs_rq);
7434		raw_spin_unlock_irq(&rq->lock);
7435	}
7436out_unlock:
7437	mutex_unlock(&cfs_constraints_mutex);
7438
7439	return ret;
7440}
7441
7442int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7443{
7444	u64 quota, period;
7445
7446	period = ktime_to_ns(tg->cfs_bandwidth.period);
7447	if (cfs_quota_us < 0)
7448		quota = RUNTIME_INF;
7449	else
7450		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7451
7452	return tg_set_cfs_bandwidth(tg, period, quota);
7453}
7454
7455long tg_get_cfs_quota(struct task_group *tg)
7456{
7457	u64 quota_us;
7458
7459	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7460		return -1;
7461
7462	quota_us = tg->cfs_bandwidth.quota;
7463	do_div(quota_us, NSEC_PER_USEC);
7464
7465	return quota_us;
7466}
7467
7468int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7469{
7470	u64 quota, period;
7471
7472	period = (u64)cfs_period_us * NSEC_PER_USEC;
7473	quota = tg->cfs_bandwidth.quota;
7474
7475	return tg_set_cfs_bandwidth(tg, period, quota);
7476}
7477
7478long tg_get_cfs_period(struct task_group *tg)
7479{
7480	u64 cfs_period_us;
7481
7482	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7483	do_div(cfs_period_us, NSEC_PER_USEC);
7484
7485	return cfs_period_us;
7486}
7487
7488static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7489				  struct cftype *cft)
7490{
7491	return tg_get_cfs_quota(css_tg(css));
7492}
7493
7494static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7495				   struct cftype *cftype, s64 cfs_quota_us)
7496{
7497	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7498}
7499
7500static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7501				   struct cftype *cft)
7502{
7503	return tg_get_cfs_period(css_tg(css));
7504}
7505
7506static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7507				    struct cftype *cftype, u64 cfs_period_us)
7508{
7509	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7510}
7511
7512struct cfs_schedulable_data {
7513	struct task_group *tg;
7514	u64 period, quota;
7515};
7516
7517/*
7518 * normalize group quota/period to be quota/max_period
7519 * note: units are usecs
7520 */
7521static u64 normalize_cfs_quota(struct task_group *tg,
7522			       struct cfs_schedulable_data *d)
7523{
7524	u64 quota, period;
7525
7526	if (tg == d->tg) {
7527		period = d->period;
7528		quota = d->quota;
7529	} else {
7530		period = tg_get_cfs_period(tg);
7531		quota = tg_get_cfs_quota(tg);
7532	}
7533
7534	/* note: these should typically be equivalent */
7535	if (quota == RUNTIME_INF || quota == -1)
7536		return RUNTIME_INF;
7537
7538	return to_ratio(period, quota);
7539}
7540
7541static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7542{
7543	struct cfs_schedulable_data *d = data;
7544	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7545	s64 quota = 0, parent_quota = -1;
7546
7547	if (!tg->parent) {
7548		quota = RUNTIME_INF;
7549	} else {
7550		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7551
7552		quota = normalize_cfs_quota(tg, d);
7553		parent_quota = parent_b->hierarchal_quota;
7554
7555		/*
7556		 * ensure max(child_quota) <= parent_quota, inherit when no
7557		 * limit is set
7558		 */
7559		if (quota == RUNTIME_INF)
7560			quota = parent_quota;
7561		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7562			return -EINVAL;
7563	}
7564	cfs_b->hierarchal_quota = quota;
7565
7566	return 0;
7567}
7568
7569static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7570{
7571	int ret;
7572	struct cfs_schedulable_data data = {
7573		.tg = tg,
7574		.period = period,
7575		.quota = quota,
7576	};
7577
7578	if (quota != RUNTIME_INF) {
7579		do_div(data.period, NSEC_PER_USEC);
7580		do_div(data.quota, NSEC_PER_USEC);
7581	}
7582
7583	rcu_read_lock();
7584	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7585	rcu_read_unlock();
7586
7587	return ret;
7588}
7589
7590static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7591		struct cgroup_map_cb *cb)
7592{
7593	struct task_group *tg = css_tg(css);
7594	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7595
7596	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7597	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7598	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7599
7600	return 0;
7601}
7602#endif /* CONFIG_CFS_BANDWIDTH */
7603#endif /* CONFIG_FAIR_GROUP_SCHED */
7604
7605#ifdef CONFIG_RT_GROUP_SCHED
7606static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7607				struct cftype *cft, s64 val)
7608{
7609	return sched_group_set_rt_runtime(css_tg(css), val);
7610}
7611
7612static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7613			       struct cftype *cft)
7614{
7615	return sched_group_rt_runtime(css_tg(css));
7616}
7617
7618static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7619				    struct cftype *cftype, u64 rt_period_us)
7620{
7621	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7622}
7623
7624static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7625				   struct cftype *cft)
7626{
7627	return sched_group_rt_period(css_tg(css));
7628}
7629#endif /* CONFIG_RT_GROUP_SCHED */
7630
7631static struct cftype cpu_files[] = {
7632#ifdef CONFIG_FAIR_GROUP_SCHED
7633	{
7634		.name = "shares",
7635		.read_u64 = cpu_shares_read_u64,
7636		.write_u64 = cpu_shares_write_u64,
7637	},
7638#endif
7639#ifdef CONFIG_CFS_BANDWIDTH
7640	{
7641		.name = "cfs_quota_us",
7642		.read_s64 = cpu_cfs_quota_read_s64,
7643		.write_s64 = cpu_cfs_quota_write_s64,
7644	},
7645	{
7646		.name = "cfs_period_us",
7647		.read_u64 = cpu_cfs_period_read_u64,
7648		.write_u64 = cpu_cfs_period_write_u64,
7649	},
7650	{
7651		.name = "stat",
7652		.read_map = cpu_stats_show,
7653	},
7654#endif
7655#ifdef CONFIG_RT_GROUP_SCHED
7656	{
7657		.name = "rt_runtime_us",
7658		.read_s64 = cpu_rt_runtime_read,
7659		.write_s64 = cpu_rt_runtime_write,
7660	},
7661	{
7662		.name = "rt_period_us",
7663		.read_u64 = cpu_rt_period_read_uint,
7664		.write_u64 = cpu_rt_period_write_uint,
7665	},
7666#endif
7667	{ }	/* terminate */
7668};
7669
7670struct cgroup_subsys cpu_cgroup_subsys = {
7671	.name		= "cpu",
7672	.css_alloc	= cpu_cgroup_css_alloc,
7673	.css_free	= cpu_cgroup_css_free,
7674	.css_online	= cpu_cgroup_css_online,
7675	.css_offline	= cpu_cgroup_css_offline,
7676	.can_attach	= cpu_cgroup_can_attach,
7677	.attach		= cpu_cgroup_attach,
7678	.exit		= cpu_cgroup_exit,
7679	.subsys_id	= cpu_cgroup_subsys_id,
7680	.base_cftypes	= cpu_files,
7681	.early_init	= 1,
7682};
7683
7684#endif	/* CONFIG_CGROUP_SCHED */
7685
7686void dump_cpu_task(int cpu)
7687{
7688	pr_info("Task dump for CPU %d:\n", cpu);
7689	sched_show_task(cpu_curr(cpu));
7690}
7691