core.c revision 5f7865f3e44db4c73fdc454fb2af40806212a7ca
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695static void set_load_weight(struct task_struct *p)
696{
697	int prio = p->static_prio - MAX_RT_PRIO;
698	struct load_weight *load = &p->se.load;
699
700	/*
701	 * SCHED_IDLE tasks get minimal weight:
702	 */
703	if (p->policy == SCHED_IDLE) {
704		load->weight = scale_load(WEIGHT_IDLEPRIO);
705		load->inv_weight = WMULT_IDLEPRIO;
706		return;
707	}
708
709	load->weight = scale_load(prio_to_weight[prio]);
710	load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715	update_rq_clock(rq);
716	sched_info_queued(p);
717	p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722	update_rq_clock(rq);
723	sched_info_dequeued(p);
724	p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729	if (task_contributes_to_load(p))
730		rq->nr_uninterruptible--;
731
732	enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible++;
739
740	dequeue_task(rq, p, flags);
741}
742
743static void update_rq_clock_task(struct rq *rq, s64 delta)
744{
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750	s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754
755	/*
756	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757	 * this case when a previous update_rq_clock() happened inside a
758	 * {soft,}irq region.
759	 *
760	 * When this happens, we stop ->clock_task and only update the
761	 * prev_irq_time stamp to account for the part that fit, so that a next
762	 * update will consume the rest. This ensures ->clock_task is
763	 * monotonic.
764	 *
765	 * It does however cause some slight miss-attribution of {soft,}irq
766	 * time, a more accurate solution would be to update the irq_time using
767	 * the current rq->clock timestamp, except that would require using
768	 * atomic ops.
769	 */
770	if (irq_delta > delta)
771		irq_delta = delta;
772
773	rq->prev_irq_time += irq_delta;
774	delta -= irq_delta;
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777	if (static_key_false((&paravirt_steal_rq_enabled))) {
778		u64 st;
779
780		steal = paravirt_steal_clock(cpu_of(rq));
781		steal -= rq->prev_steal_time_rq;
782
783		if (unlikely(steal > delta))
784			steal = delta;
785
786		st = steal_ticks(steal);
787		steal = st * TICK_NSEC;
788
789		rq->prev_steal_time_rq += steal;
790
791		delta -= steal;
792	}
793#endif
794
795	rq->clock_task += delta;
796
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799		sched_rt_avg_update(rq, irq_delta + steal);
800#endif
801}
802
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806	struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808	if (stop) {
809		/*
810		 * Make it appear like a SCHED_FIFO task, its something
811		 * userspace knows about and won't get confused about.
812		 *
813		 * Also, it will make PI more or less work without too
814		 * much confusion -- but then, stop work should not
815		 * rely on PI working anyway.
816		 */
817		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819		stop->sched_class = &stop_sched_class;
820	}
821
822	cpu_rq(cpu)->stop = stop;
823
824	if (old_stop) {
825		/*
826		 * Reset it back to a normal scheduling class so that
827		 * it can die in pieces.
828		 */
829		old_stop->sched_class = &rt_sched_class;
830	}
831}
832
833/*
834 * __normal_prio - return the priority that is based on the static prio
835 */
836static inline int __normal_prio(struct task_struct *p)
837{
838	return p->static_prio;
839}
840
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
848static inline int normal_prio(struct task_struct *p)
849{
850	int prio;
851
852	if (task_has_rt_policy(p))
853		prio = MAX_RT_PRIO-1 - p->rt_priority;
854	else
855		prio = __normal_prio(p);
856	return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
866static int effective_prio(struct task_struct *p)
867{
868	p->normal_prio = normal_prio(p);
869	/*
870	 * If we are RT tasks or we were boosted to RT priority,
871	 * keep the priority unchanged. Otherwise, update priority
872	 * to the normal priority:
873	 */
874	if (!rt_prio(p->prio))
875		return p->normal_prio;
876	return p->prio;
877}
878
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
883inline int task_curr(const struct task_struct *p)
884{
885	return cpu_curr(task_cpu(p)) == p;
886}
887
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889				       const struct sched_class *prev_class,
890				       int oldprio)
891{
892	if (prev_class != p->sched_class) {
893		if (prev_class->switched_from)
894			prev_class->switched_from(rq, p);
895		p->sched_class->switched_to(rq, p);
896	} else if (oldprio != p->prio)
897		p->sched_class->prio_changed(rq, p, oldprio);
898}
899
900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901{
902	const struct sched_class *class;
903
904	if (p->sched_class == rq->curr->sched_class) {
905		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906	} else {
907		for_each_class(class) {
908			if (class == rq->curr->sched_class)
909				break;
910			if (class == p->sched_class) {
911				resched_task(rq->curr);
912				break;
913			}
914		}
915	}
916
917	/*
918	 * A queue event has occurred, and we're going to schedule.  In
919	 * this case, we can save a useless back to back clock update.
920	 */
921	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922		rq->skip_clock_update = 1;
923}
924
925#ifdef CONFIG_SMP
926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927{
928#ifdef CONFIG_SCHED_DEBUG
929	/*
930	 * We should never call set_task_cpu() on a blocked task,
931	 * ttwu() will sort out the placement.
932	 */
933	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935
936#ifdef CONFIG_LOCKDEP
937	/*
938	 * The caller should hold either p->pi_lock or rq->lock, when changing
939	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940	 *
941	 * sched_move_task() holds both and thus holding either pins the cgroup,
942	 * see task_group().
943	 *
944	 * Furthermore, all task_rq users should acquire both locks, see
945	 * task_rq_lock().
946	 */
947	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948				      lockdep_is_held(&task_rq(p)->lock)));
949#endif
950#endif
951
952	trace_sched_migrate_task(p, new_cpu);
953
954	if (task_cpu(p) != new_cpu) {
955		p->se.nr_migrations++;
956		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957	}
958
959	__set_task_cpu(p, new_cpu);
960}
961
962struct migration_arg {
963	struct task_struct *task;
964	int dest_cpu;
965};
966
967static int migration_cpu_stop(void *data);
968
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change.  If it changes, i.e. @p might have woken up,
974 * then return zero.  When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count).  If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986{
987	unsigned long flags;
988	int running, on_rq;
989	unsigned long ncsw;
990	struct rq *rq;
991
992	for (;;) {
993		/*
994		 * We do the initial early heuristics without holding
995		 * any task-queue locks at all. We'll only try to get
996		 * the runqueue lock when things look like they will
997		 * work out!
998		 */
999		rq = task_rq(p);
1000
1001		/*
1002		 * If the task is actively running on another CPU
1003		 * still, just relax and busy-wait without holding
1004		 * any locks.
1005		 *
1006		 * NOTE! Since we don't hold any locks, it's not
1007		 * even sure that "rq" stays as the right runqueue!
1008		 * But we don't care, since "task_running()" will
1009		 * return false if the runqueue has changed and p
1010		 * is actually now running somewhere else!
1011		 */
1012		while (task_running(rq, p)) {
1013			if (match_state && unlikely(p->state != match_state))
1014				return 0;
1015			cpu_relax();
1016		}
1017
1018		/*
1019		 * Ok, time to look more closely! We need the rq
1020		 * lock now, to be *sure*. If we're wrong, we'll
1021		 * just go back and repeat.
1022		 */
1023		rq = task_rq_lock(p, &flags);
1024		trace_sched_wait_task(p);
1025		running = task_running(rq, p);
1026		on_rq = p->on_rq;
1027		ncsw = 0;
1028		if (!match_state || p->state == match_state)
1029			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030		task_rq_unlock(rq, p, &flags);
1031
1032		/*
1033		 * If it changed from the expected state, bail out now.
1034		 */
1035		if (unlikely(!ncsw))
1036			break;
1037
1038		/*
1039		 * Was it really running after all now that we
1040		 * checked with the proper locks actually held?
1041		 *
1042		 * Oops. Go back and try again..
1043		 */
1044		if (unlikely(running)) {
1045			cpu_relax();
1046			continue;
1047		}
1048
1049		/*
1050		 * It's not enough that it's not actively running,
1051		 * it must be off the runqueue _entirely_, and not
1052		 * preempted!
1053		 *
1054		 * So if it was still runnable (but just not actively
1055		 * running right now), it's preempted, and we should
1056		 * yield - it could be a while.
1057		 */
1058		if (unlikely(on_rq)) {
1059			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061			set_current_state(TASK_UNINTERRUPTIBLE);
1062			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063			continue;
1064		}
1065
1066		/*
1067		 * Ahh, all good. It wasn't running, and it wasn't
1068		 * runnable, which means that it will never become
1069		 * running in the future either. We're all done!
1070		 */
1071		break;
1072	}
1073
1074	return ncsw;
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesn't have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
1090void kick_process(struct task_struct *p)
1091{
1092	int cpu;
1093
1094	preempt_disable();
1095	cpu = task_cpu(p);
1096	if ((cpu != smp_processor_id()) && task_curr(p))
1097		smp_send_reschedule(cpu);
1098	preempt_enable();
1099}
1100EXPORT_SYMBOL_GPL(kick_process);
1101#endif /* CONFIG_SMP */
1102
1103#ifdef CONFIG_SMP
1104/*
1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106 */
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
1109	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110	enum { cpuset, possible, fail } state = cpuset;
1111	int dest_cpu;
1112
1113	/* Look for allowed, online CPU in same node. */
1114	for_each_cpu(dest_cpu, nodemask) {
1115		if (!cpu_online(dest_cpu))
1116			continue;
1117		if (!cpu_active(dest_cpu))
1118			continue;
1119		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120			return dest_cpu;
1121	}
1122
1123	for (;;) {
1124		/* Any allowed, online CPU? */
1125		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126			if (!cpu_online(dest_cpu))
1127				continue;
1128			if (!cpu_active(dest_cpu))
1129				continue;
1130			goto out;
1131		}
1132
1133		switch (state) {
1134		case cpuset:
1135			/* No more Mr. Nice Guy. */
1136			cpuset_cpus_allowed_fallback(p);
1137			state = possible;
1138			break;
1139
1140		case possible:
1141			do_set_cpus_allowed(p, cpu_possible_mask);
1142			state = fail;
1143			break;
1144
1145		case fail:
1146			BUG();
1147			break;
1148		}
1149	}
1150
1151out:
1152	if (state != cpuset) {
1153		/*
1154		 * Don't tell them about moving exiting tasks or
1155		 * kernel threads (both mm NULL), since they never
1156		 * leave kernel.
1157		 */
1158		if (p->mm && printk_ratelimit()) {
1159			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160					task_pid_nr(p), p->comm, cpu);
1161		}
1162	}
1163
1164	return dest_cpu;
1165}
1166
1167/*
1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169 */
1170static inline
1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172{
1173	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174
1175	/*
1176	 * In order not to call set_task_cpu() on a blocking task we need
1177	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178	 * cpu.
1179	 *
1180	 * Since this is common to all placement strategies, this lives here.
1181	 *
1182	 * [ this allows ->select_task() to simply return task_cpu(p) and
1183	 *   not worry about this generic constraint ]
1184	 */
1185	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186		     !cpu_online(cpu)))
1187		cpu = select_fallback_rq(task_cpu(p), p);
1188
1189	return cpu;
1190}
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194	s64 diff = sample - *avg;
1195	*avg += diff >> 3;
1196}
1197#endif
1198
1199static void
1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201{
1202#ifdef CONFIG_SCHEDSTATS
1203	struct rq *rq = this_rq();
1204
1205#ifdef CONFIG_SMP
1206	int this_cpu = smp_processor_id();
1207
1208	if (cpu == this_cpu) {
1209		schedstat_inc(rq, ttwu_local);
1210		schedstat_inc(p, se.statistics.nr_wakeups_local);
1211	} else {
1212		struct sched_domain *sd;
1213
1214		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215		rcu_read_lock();
1216		for_each_domain(this_cpu, sd) {
1217			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218				schedstat_inc(sd, ttwu_wake_remote);
1219				break;
1220			}
1221		}
1222		rcu_read_unlock();
1223	}
1224
1225	if (wake_flags & WF_MIGRATED)
1226		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
1228#endif /* CONFIG_SMP */
1229
1230	schedstat_inc(rq, ttwu_count);
1231	schedstat_inc(p, se.statistics.nr_wakeups);
1232
1233	if (wake_flags & WF_SYNC)
1234		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
1241	activate_task(rq, p, en_flags);
1242	p->on_rq = 1;
1243
1244	/* if a worker is waking up, notify workqueue */
1245	if (p->flags & PF_WQ_WORKER)
1246		wq_worker_waking_up(p, cpu_of(rq));
1247}
1248
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
1252static void
1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254{
1255	trace_sched_wakeup(p, true);
1256	check_preempt_curr(rq, p, wake_flags);
1257
1258	p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260	if (p->sched_class->task_woken)
1261		p->sched_class->task_woken(rq, p);
1262
1263	if (rq->idle_stamp) {
1264		u64 delta = rq->clock - rq->idle_stamp;
1265		u64 max = 2*sysctl_sched_migration_cost;
1266
1267		if (delta > max)
1268			rq->avg_idle = max;
1269		else
1270			update_avg(&rq->avg_idle, delta);
1271		rq->idle_stamp = 0;
1272	}
1273#endif
1274}
1275
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280	if (p->sched_contributes_to_load)
1281		rq->nr_uninterruptible--;
1282#endif
1283
1284	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285	ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296	struct rq *rq;
1297	int ret = 0;
1298
1299	rq = __task_rq_lock(p);
1300	if (p->on_rq) {
1301		ttwu_do_wakeup(rq, p, wake_flags);
1302		ret = 1;
1303	}
1304	__task_rq_unlock(rq);
1305
1306	return ret;
1307}
1308
1309#ifdef CONFIG_SMP
1310static void sched_ttwu_pending(void)
1311{
1312	struct rq *rq = this_rq();
1313	struct llist_node *llist = llist_del_all(&rq->wake_list);
1314	struct task_struct *p;
1315
1316	raw_spin_lock(&rq->lock);
1317
1318	while (llist) {
1319		p = llist_entry(llist, struct task_struct, wake_entry);
1320		llist = llist_next(llist);
1321		ttwu_do_activate(rq, p, 0);
1322	}
1323
1324	raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
1329	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330		return;
1331
1332	/*
1333	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334	 * traditionally all their work was done from the interrupt return
1335	 * path. Now that we actually do some work, we need to make sure
1336	 * we do call them.
1337	 *
1338	 * Some archs already do call them, luckily irq_enter/exit nest
1339	 * properly.
1340	 *
1341	 * Arguably we should visit all archs and update all handlers,
1342	 * however a fair share of IPIs are still resched only so this would
1343	 * somewhat pessimize the simple resched case.
1344	 */
1345	irq_enter();
1346	sched_ttwu_pending();
1347
1348	/*
1349	 * Check if someone kicked us for doing the nohz idle load balance.
1350	 */
1351	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352		this_rq()->idle_balance = 1;
1353		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354	}
1355	irq_exit();
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
1360	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361		smp_send_reschedule(cpu);
1362}
1363
1364bool cpus_share_cache(int this_cpu, int that_cpu)
1365{
1366	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367}
1368#endif /* CONFIG_SMP */
1369
1370static void ttwu_queue(struct task_struct *p, int cpu)
1371{
1372	struct rq *rq = cpu_rq(cpu);
1373
1374#if defined(CONFIG_SMP)
1375	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377		ttwu_queue_remote(p, cpu);
1378		return;
1379	}
1380#endif
1381
1382	raw_spin_lock(&rq->lock);
1383	ttwu_do_activate(rq, p, 0);
1384	raw_spin_unlock(&rq->lock);
1385}
1386
1387/**
1388 * try_to_wake_up - wake up a thread
1389 * @p: the thread to be awakened
1390 * @state: the mask of task states that can be woken
1391 * @wake_flags: wake modifier flags (WF_*)
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1401 */
1402static int
1403try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1404{
1405	unsigned long flags;
1406	int cpu, success = 0;
1407
1408	smp_wmb();
1409	raw_spin_lock_irqsave(&p->pi_lock, flags);
1410	if (!(p->state & state))
1411		goto out;
1412
1413	success = 1; /* we're going to change ->state */
1414	cpu = task_cpu(p);
1415
1416	if (p->on_rq && ttwu_remote(p, wake_flags))
1417		goto stat;
1418
1419#ifdef CONFIG_SMP
1420	/*
1421	 * If the owning (remote) cpu is still in the middle of schedule() with
1422	 * this task as prev, wait until its done referencing the task.
1423	 */
1424	while (p->on_cpu)
1425		cpu_relax();
1426	/*
1427	 * Pairs with the smp_wmb() in finish_lock_switch().
1428	 */
1429	smp_rmb();
1430
1431	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1432	p->state = TASK_WAKING;
1433
1434	if (p->sched_class->task_waking)
1435		p->sched_class->task_waking(p);
1436
1437	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438	if (task_cpu(p) != cpu) {
1439		wake_flags |= WF_MIGRATED;
1440		set_task_cpu(p, cpu);
1441	}
1442#endif /* CONFIG_SMP */
1443
1444	ttwu_queue(p, cpu);
1445stat:
1446	ttwu_stat(p, cpu, wake_flags);
1447out:
1448	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1449
1450	return success;
1451}
1452
1453/**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
1457 * Put @p on the run-queue if it's not already there. The caller must
1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459 * the current task.
1460 */
1461static void try_to_wake_up_local(struct task_struct *p)
1462{
1463	struct rq *rq = task_rq(p);
1464
1465	BUG_ON(rq != this_rq());
1466	BUG_ON(p == current);
1467	lockdep_assert_held(&rq->lock);
1468
1469	if (!raw_spin_trylock(&p->pi_lock)) {
1470		raw_spin_unlock(&rq->lock);
1471		raw_spin_lock(&p->pi_lock);
1472		raw_spin_lock(&rq->lock);
1473	}
1474
1475	if (!(p->state & TASK_NORMAL))
1476		goto out;
1477
1478	if (!p->on_rq)
1479		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
1481	ttwu_do_wakeup(rq, p, 0);
1482	ttwu_stat(p, smp_processor_id(), 0);
1483out:
1484	raw_spin_unlock(&p->pi_lock);
1485}
1486
1487/**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes.  Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
1498int wake_up_process(struct task_struct *p)
1499{
1500	return try_to_wake_up(p, TASK_ALL, 0);
1501}
1502EXPORT_SYMBOL(wake_up_process);
1503
1504int wake_up_state(struct task_struct *p, unsigned int state)
1505{
1506	return try_to_wake_up(p, state, 0);
1507}
1508
1509/*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515static void __sched_fork(struct task_struct *p)
1516{
1517	p->on_rq			= 0;
1518
1519	p->se.on_rq			= 0;
1520	p->se.exec_start		= 0;
1521	p->se.sum_exec_runtime		= 0;
1522	p->se.prev_sum_exec_runtime	= 0;
1523	p->se.nr_migrations		= 0;
1524	p->se.vruntime			= 0;
1525	INIT_LIST_HEAD(&p->se.group_node);
1526
1527#ifdef CONFIG_SCHEDSTATS
1528	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1529#endif
1530
1531	INIT_LIST_HEAD(&p->rt.run_list);
1532
1533#ifdef CONFIG_PREEMPT_NOTIFIERS
1534	INIT_HLIST_HEAD(&p->preempt_notifiers);
1535#endif
1536}
1537
1538/*
1539 * fork()/clone()-time setup:
1540 */
1541void sched_fork(struct task_struct *p)
1542{
1543	unsigned long flags;
1544	int cpu = get_cpu();
1545
1546	__sched_fork(p);
1547	/*
1548	 * We mark the process as running here. This guarantees that
1549	 * nobody will actually run it, and a signal or other external
1550	 * event cannot wake it up and insert it on the runqueue either.
1551	 */
1552	p->state = TASK_RUNNING;
1553
1554	/*
1555	 * Make sure we do not leak PI boosting priority to the child.
1556	 */
1557	p->prio = current->normal_prio;
1558
1559	/*
1560	 * Revert to default priority/policy on fork if requested.
1561	 */
1562	if (unlikely(p->sched_reset_on_fork)) {
1563		if (task_has_rt_policy(p)) {
1564			p->policy = SCHED_NORMAL;
1565			p->static_prio = NICE_TO_PRIO(0);
1566			p->rt_priority = 0;
1567		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1568			p->static_prio = NICE_TO_PRIO(0);
1569
1570		p->prio = p->normal_prio = __normal_prio(p);
1571		set_load_weight(p);
1572
1573		/*
1574		 * We don't need the reset flag anymore after the fork. It has
1575		 * fulfilled its duty:
1576		 */
1577		p->sched_reset_on_fork = 0;
1578	}
1579
1580	if (!rt_prio(p->prio))
1581		p->sched_class = &fair_sched_class;
1582
1583	if (p->sched_class->task_fork)
1584		p->sched_class->task_fork(p);
1585
1586	/*
1587	 * The child is not yet in the pid-hash so no cgroup attach races,
1588	 * and the cgroup is pinned to this child due to cgroup_fork()
1589	 * is ran before sched_fork().
1590	 *
1591	 * Silence PROVE_RCU.
1592	 */
1593	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594	set_task_cpu(p, cpu);
1595	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1596
1597#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1598	if (likely(sched_info_on()))
1599		memset(&p->sched_info, 0, sizeof(p->sched_info));
1600#endif
1601#if defined(CONFIG_SMP)
1602	p->on_cpu = 0;
1603#endif
1604#ifdef CONFIG_PREEMPT_COUNT
1605	/* Want to start with kernel preemption disabled. */
1606	task_thread_info(p)->preempt_count = 1;
1607#endif
1608#ifdef CONFIG_SMP
1609	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1610#endif
1611
1612	put_cpu();
1613}
1614
1615/*
1616 * wake_up_new_task - wake up a newly created task for the first time.
1617 *
1618 * This function will do some initial scheduler statistics housekeeping
1619 * that must be done for every newly created context, then puts the task
1620 * on the runqueue and wakes it.
1621 */
1622void wake_up_new_task(struct task_struct *p)
1623{
1624	unsigned long flags;
1625	struct rq *rq;
1626
1627	raw_spin_lock_irqsave(&p->pi_lock, flags);
1628#ifdef CONFIG_SMP
1629	/*
1630	 * Fork balancing, do it here and not earlier because:
1631	 *  - cpus_allowed can change in the fork path
1632	 *  - any previously selected cpu might disappear through hotplug
1633	 */
1634	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1635#endif
1636
1637	rq = __task_rq_lock(p);
1638	activate_task(rq, p, 0);
1639	p->on_rq = 1;
1640	trace_sched_wakeup_new(p, true);
1641	check_preempt_curr(rq, p, WF_FORK);
1642#ifdef CONFIG_SMP
1643	if (p->sched_class->task_woken)
1644		p->sched_class->task_woken(rq, p);
1645#endif
1646	task_rq_unlock(rq, p, &flags);
1647}
1648
1649#ifdef CONFIG_PREEMPT_NOTIFIERS
1650
1651/**
1652 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1653 * @notifier: notifier struct to register
1654 */
1655void preempt_notifier_register(struct preempt_notifier *notifier)
1656{
1657	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1658}
1659EXPORT_SYMBOL_GPL(preempt_notifier_register);
1660
1661/**
1662 * preempt_notifier_unregister - no longer interested in preemption notifications
1663 * @notifier: notifier struct to unregister
1664 *
1665 * This is safe to call from within a preemption notifier.
1666 */
1667void preempt_notifier_unregister(struct preempt_notifier *notifier)
1668{
1669	hlist_del(&notifier->link);
1670}
1671EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1672
1673static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1674{
1675	struct preempt_notifier *notifier;
1676	struct hlist_node *node;
1677
1678	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1679		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1680}
1681
1682static void
1683fire_sched_out_preempt_notifiers(struct task_struct *curr,
1684				 struct task_struct *next)
1685{
1686	struct preempt_notifier *notifier;
1687	struct hlist_node *node;
1688
1689	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1690		notifier->ops->sched_out(notifier, next);
1691}
1692
1693#else /* !CONFIG_PREEMPT_NOTIFIERS */
1694
1695static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1696{
1697}
1698
1699static void
1700fire_sched_out_preempt_notifiers(struct task_struct *curr,
1701				 struct task_struct *next)
1702{
1703}
1704
1705#endif /* CONFIG_PREEMPT_NOTIFIERS */
1706
1707/**
1708 * prepare_task_switch - prepare to switch tasks
1709 * @rq: the runqueue preparing to switch
1710 * @prev: the current task that is being switched out
1711 * @next: the task we are going to switch to.
1712 *
1713 * This is called with the rq lock held and interrupts off. It must
1714 * be paired with a subsequent finish_task_switch after the context
1715 * switch.
1716 *
1717 * prepare_task_switch sets up locking and calls architecture specific
1718 * hooks.
1719 */
1720static inline void
1721prepare_task_switch(struct rq *rq, struct task_struct *prev,
1722		    struct task_struct *next)
1723{
1724	trace_sched_switch(prev, next);
1725	sched_info_switch(prev, next);
1726	perf_event_task_sched_out(prev, next);
1727	fire_sched_out_preempt_notifiers(prev, next);
1728	prepare_lock_switch(rq, next);
1729	prepare_arch_switch(next);
1730}
1731
1732/**
1733 * finish_task_switch - clean up after a task-switch
1734 * @rq: runqueue associated with task-switch
1735 * @prev: the thread we just switched away from.
1736 *
1737 * finish_task_switch must be called after the context switch, paired
1738 * with a prepare_task_switch call before the context switch.
1739 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1740 * and do any other architecture-specific cleanup actions.
1741 *
1742 * Note that we may have delayed dropping an mm in context_switch(). If
1743 * so, we finish that here outside of the runqueue lock. (Doing it
1744 * with the lock held can cause deadlocks; see schedule() for
1745 * details.)
1746 */
1747static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1748	__releases(rq->lock)
1749{
1750	struct mm_struct *mm = rq->prev_mm;
1751	long prev_state;
1752
1753	rq->prev_mm = NULL;
1754
1755	/*
1756	 * A task struct has one reference for the use as "current".
1757	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1758	 * schedule one last time. The schedule call will never return, and
1759	 * the scheduled task must drop that reference.
1760	 * The test for TASK_DEAD must occur while the runqueue locks are
1761	 * still held, otherwise prev could be scheduled on another cpu, die
1762	 * there before we look at prev->state, and then the reference would
1763	 * be dropped twice.
1764	 *		Manfred Spraul <manfred@colorfullife.com>
1765	 */
1766	prev_state = prev->state;
1767	vtime_task_switch(prev);
1768	finish_arch_switch(prev);
1769	perf_event_task_sched_in(prev, current);
1770	finish_lock_switch(rq, prev);
1771	finish_arch_post_lock_switch();
1772
1773	fire_sched_in_preempt_notifiers(current);
1774	if (mm)
1775		mmdrop(mm);
1776	if (unlikely(prev_state == TASK_DEAD)) {
1777		/*
1778		 * Remove function-return probe instances associated with this
1779		 * task and put them back on the free list.
1780		 */
1781		kprobe_flush_task(prev);
1782		put_task_struct(prev);
1783	}
1784}
1785
1786#ifdef CONFIG_SMP
1787
1788/* assumes rq->lock is held */
1789static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1790{
1791	if (prev->sched_class->pre_schedule)
1792		prev->sched_class->pre_schedule(rq, prev);
1793}
1794
1795/* rq->lock is NOT held, but preemption is disabled */
1796static inline void post_schedule(struct rq *rq)
1797{
1798	if (rq->post_schedule) {
1799		unsigned long flags;
1800
1801		raw_spin_lock_irqsave(&rq->lock, flags);
1802		if (rq->curr->sched_class->post_schedule)
1803			rq->curr->sched_class->post_schedule(rq);
1804		raw_spin_unlock_irqrestore(&rq->lock, flags);
1805
1806		rq->post_schedule = 0;
1807	}
1808}
1809
1810#else
1811
1812static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1813{
1814}
1815
1816static inline void post_schedule(struct rq *rq)
1817{
1818}
1819
1820#endif
1821
1822/**
1823 * schedule_tail - first thing a freshly forked thread must call.
1824 * @prev: the thread we just switched away from.
1825 */
1826asmlinkage void schedule_tail(struct task_struct *prev)
1827	__releases(rq->lock)
1828{
1829	struct rq *rq = this_rq();
1830
1831	finish_task_switch(rq, prev);
1832
1833	/*
1834	 * FIXME: do we need to worry about rq being invalidated by the
1835	 * task_switch?
1836	 */
1837	post_schedule(rq);
1838
1839#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1840	/* In this case, finish_task_switch does not reenable preemption */
1841	preempt_enable();
1842#endif
1843	if (current->set_child_tid)
1844		put_user(task_pid_vnr(current), current->set_child_tid);
1845}
1846
1847/*
1848 * context_switch - switch to the new MM and the new
1849 * thread's register state.
1850 */
1851static inline void
1852context_switch(struct rq *rq, struct task_struct *prev,
1853	       struct task_struct *next)
1854{
1855	struct mm_struct *mm, *oldmm;
1856
1857	prepare_task_switch(rq, prev, next);
1858
1859	mm = next->mm;
1860	oldmm = prev->active_mm;
1861	/*
1862	 * For paravirt, this is coupled with an exit in switch_to to
1863	 * combine the page table reload and the switch backend into
1864	 * one hypercall.
1865	 */
1866	arch_start_context_switch(prev);
1867
1868	if (!mm) {
1869		next->active_mm = oldmm;
1870		atomic_inc(&oldmm->mm_count);
1871		enter_lazy_tlb(oldmm, next);
1872	} else
1873		switch_mm(oldmm, mm, next);
1874
1875	if (!prev->mm) {
1876		prev->active_mm = NULL;
1877		rq->prev_mm = oldmm;
1878	}
1879	/*
1880	 * Since the runqueue lock will be released by the next
1881	 * task (which is an invalid locking op but in the case
1882	 * of the scheduler it's an obvious special-case), so we
1883	 * do an early lockdep release here:
1884	 */
1885#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1886	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1887#endif
1888
1889	/* Here we just switch the register state and the stack. */
1890	rcu_switch(prev, next);
1891	switch_to(prev, next, prev);
1892
1893	barrier();
1894	/*
1895	 * this_rq must be evaluated again because prev may have moved
1896	 * CPUs since it called schedule(), thus the 'rq' on its stack
1897	 * frame will be invalid.
1898	 */
1899	finish_task_switch(this_rq(), prev);
1900}
1901
1902/*
1903 * nr_running, nr_uninterruptible and nr_context_switches:
1904 *
1905 * externally visible scheduler statistics: current number of runnable
1906 * threads, current number of uninterruptible-sleeping threads, total
1907 * number of context switches performed since bootup.
1908 */
1909unsigned long nr_running(void)
1910{
1911	unsigned long i, sum = 0;
1912
1913	for_each_online_cpu(i)
1914		sum += cpu_rq(i)->nr_running;
1915
1916	return sum;
1917}
1918
1919unsigned long nr_uninterruptible(void)
1920{
1921	unsigned long i, sum = 0;
1922
1923	for_each_possible_cpu(i)
1924		sum += cpu_rq(i)->nr_uninterruptible;
1925
1926	/*
1927	 * Since we read the counters lockless, it might be slightly
1928	 * inaccurate. Do not allow it to go below zero though:
1929	 */
1930	if (unlikely((long)sum < 0))
1931		sum = 0;
1932
1933	return sum;
1934}
1935
1936unsigned long long nr_context_switches(void)
1937{
1938	int i;
1939	unsigned long long sum = 0;
1940
1941	for_each_possible_cpu(i)
1942		sum += cpu_rq(i)->nr_switches;
1943
1944	return sum;
1945}
1946
1947unsigned long nr_iowait(void)
1948{
1949	unsigned long i, sum = 0;
1950
1951	for_each_possible_cpu(i)
1952		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1953
1954	return sum;
1955}
1956
1957unsigned long nr_iowait_cpu(int cpu)
1958{
1959	struct rq *this = cpu_rq(cpu);
1960	return atomic_read(&this->nr_iowait);
1961}
1962
1963unsigned long this_cpu_load(void)
1964{
1965	struct rq *this = this_rq();
1966	return this->cpu_load[0];
1967}
1968
1969
1970/*
1971 * Global load-average calculations
1972 *
1973 * We take a distributed and async approach to calculating the global load-avg
1974 * in order to minimize overhead.
1975 *
1976 * The global load average is an exponentially decaying average of nr_running +
1977 * nr_uninterruptible.
1978 *
1979 * Once every LOAD_FREQ:
1980 *
1981 *   nr_active = 0;
1982 *   for_each_possible_cpu(cpu)
1983 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1984 *
1985 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1986 *
1987 * Due to a number of reasons the above turns in the mess below:
1988 *
1989 *  - for_each_possible_cpu() is prohibitively expensive on machines with
1990 *    serious number of cpus, therefore we need to take a distributed approach
1991 *    to calculating nr_active.
1992 *
1993 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1994 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1995 *
1996 *    So assuming nr_active := 0 when we start out -- true per definition, we
1997 *    can simply take per-cpu deltas and fold those into a global accumulate
1998 *    to obtain the same result. See calc_load_fold_active().
1999 *
2000 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2001 *    across the machine, we assume 10 ticks is sufficient time for every
2002 *    cpu to have completed this task.
2003 *
2004 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2005 *    again, being late doesn't loose the delta, just wrecks the sample.
2006 *
2007 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2008 *    this would add another cross-cpu cacheline miss and atomic operation
2009 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2010 *    when it went into uninterruptible state and decrement on whatever cpu
2011 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2012 *    all cpus yields the correct result.
2013 *
2014 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2015 */
2016
2017/* Variables and functions for calc_load */
2018static atomic_long_t calc_load_tasks;
2019static unsigned long calc_load_update;
2020unsigned long avenrun[3];
2021EXPORT_SYMBOL(avenrun); /* should be removed */
2022
2023/**
2024 * get_avenrun - get the load average array
2025 * @loads:	pointer to dest load array
2026 * @offset:	offset to add
2027 * @shift:	shift count to shift the result left
2028 *
2029 * These values are estimates at best, so no need for locking.
2030 */
2031void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2032{
2033	loads[0] = (avenrun[0] + offset) << shift;
2034	loads[1] = (avenrun[1] + offset) << shift;
2035	loads[2] = (avenrun[2] + offset) << shift;
2036}
2037
2038static long calc_load_fold_active(struct rq *this_rq)
2039{
2040	long nr_active, delta = 0;
2041
2042	nr_active = this_rq->nr_running;
2043	nr_active += (long) this_rq->nr_uninterruptible;
2044
2045	if (nr_active != this_rq->calc_load_active) {
2046		delta = nr_active - this_rq->calc_load_active;
2047		this_rq->calc_load_active = nr_active;
2048	}
2049
2050	return delta;
2051}
2052
2053/*
2054 * a1 = a0 * e + a * (1 - e)
2055 */
2056static unsigned long
2057calc_load(unsigned long load, unsigned long exp, unsigned long active)
2058{
2059	load *= exp;
2060	load += active * (FIXED_1 - exp);
2061	load += 1UL << (FSHIFT - 1);
2062	return load >> FSHIFT;
2063}
2064
2065#ifdef CONFIG_NO_HZ
2066/*
2067 * Handle NO_HZ for the global load-average.
2068 *
2069 * Since the above described distributed algorithm to compute the global
2070 * load-average relies on per-cpu sampling from the tick, it is affected by
2071 * NO_HZ.
2072 *
2073 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2074 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2075 * when we read the global state.
2076 *
2077 * Obviously reality has to ruin such a delightfully simple scheme:
2078 *
2079 *  - When we go NO_HZ idle during the window, we can negate our sample
2080 *    contribution, causing under-accounting.
2081 *
2082 *    We avoid this by keeping two idle-delta counters and flipping them
2083 *    when the window starts, thus separating old and new NO_HZ load.
2084 *
2085 *    The only trick is the slight shift in index flip for read vs write.
2086 *
2087 *        0s            5s            10s           15s
2088 *          +10           +10           +10           +10
2089 *        |-|-----------|-|-----------|-|-----------|-|
2090 *    r:0 0 1           1 0           0 1           1 0
2091 *    w:0 1 1           0 0           1 1           0 0
2092 *
2093 *    This ensures we'll fold the old idle contribution in this window while
2094 *    accumlating the new one.
2095 *
2096 *  - When we wake up from NO_HZ idle during the window, we push up our
2097 *    contribution, since we effectively move our sample point to a known
2098 *    busy state.
2099 *
2100 *    This is solved by pushing the window forward, and thus skipping the
2101 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2102 *    was in effect at the time the window opened). This also solves the issue
2103 *    of having to deal with a cpu having been in NOHZ idle for multiple
2104 *    LOAD_FREQ intervals.
2105 *
2106 * When making the ILB scale, we should try to pull this in as well.
2107 */
2108static atomic_long_t calc_load_idle[2];
2109static int calc_load_idx;
2110
2111static inline int calc_load_write_idx(void)
2112{
2113	int idx = calc_load_idx;
2114
2115	/*
2116	 * See calc_global_nohz(), if we observe the new index, we also
2117	 * need to observe the new update time.
2118	 */
2119	smp_rmb();
2120
2121	/*
2122	 * If the folding window started, make sure we start writing in the
2123	 * next idle-delta.
2124	 */
2125	if (!time_before(jiffies, calc_load_update))
2126		idx++;
2127
2128	return idx & 1;
2129}
2130
2131static inline int calc_load_read_idx(void)
2132{
2133	return calc_load_idx & 1;
2134}
2135
2136void calc_load_enter_idle(void)
2137{
2138	struct rq *this_rq = this_rq();
2139	long delta;
2140
2141	/*
2142	 * We're going into NOHZ mode, if there's any pending delta, fold it
2143	 * into the pending idle delta.
2144	 */
2145	delta = calc_load_fold_active(this_rq);
2146	if (delta) {
2147		int idx = calc_load_write_idx();
2148		atomic_long_add(delta, &calc_load_idle[idx]);
2149	}
2150}
2151
2152void calc_load_exit_idle(void)
2153{
2154	struct rq *this_rq = this_rq();
2155
2156	/*
2157	 * If we're still before the sample window, we're done.
2158	 */
2159	if (time_before(jiffies, this_rq->calc_load_update))
2160		return;
2161
2162	/*
2163	 * We woke inside or after the sample window, this means we're already
2164	 * accounted through the nohz accounting, so skip the entire deal and
2165	 * sync up for the next window.
2166	 */
2167	this_rq->calc_load_update = calc_load_update;
2168	if (time_before(jiffies, this_rq->calc_load_update + 10))
2169		this_rq->calc_load_update += LOAD_FREQ;
2170}
2171
2172static long calc_load_fold_idle(void)
2173{
2174	int idx = calc_load_read_idx();
2175	long delta = 0;
2176
2177	if (atomic_long_read(&calc_load_idle[idx]))
2178		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2179
2180	return delta;
2181}
2182
2183/**
2184 * fixed_power_int - compute: x^n, in O(log n) time
2185 *
2186 * @x:         base of the power
2187 * @frac_bits: fractional bits of @x
2188 * @n:         power to raise @x to.
2189 *
2190 * By exploiting the relation between the definition of the natural power
2191 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2192 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2193 * (where: n_i \elem {0, 1}, the binary vector representing n),
2194 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2195 * of course trivially computable in O(log_2 n), the length of our binary
2196 * vector.
2197 */
2198static unsigned long
2199fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2200{
2201	unsigned long result = 1UL << frac_bits;
2202
2203	if (n) for (;;) {
2204		if (n & 1) {
2205			result *= x;
2206			result += 1UL << (frac_bits - 1);
2207			result >>= frac_bits;
2208		}
2209		n >>= 1;
2210		if (!n)
2211			break;
2212		x *= x;
2213		x += 1UL << (frac_bits - 1);
2214		x >>= frac_bits;
2215	}
2216
2217	return result;
2218}
2219
2220/*
2221 * a1 = a0 * e + a * (1 - e)
2222 *
2223 * a2 = a1 * e + a * (1 - e)
2224 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2225 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2226 *
2227 * a3 = a2 * e + a * (1 - e)
2228 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2229 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2230 *
2231 *  ...
2232 *
2233 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2234 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2235 *    = a0 * e^n + a * (1 - e^n)
2236 *
2237 * [1] application of the geometric series:
2238 *
2239 *              n         1 - x^(n+1)
2240 *     S_n := \Sum x^i = -------------
2241 *             i=0          1 - x
2242 */
2243static unsigned long
2244calc_load_n(unsigned long load, unsigned long exp,
2245	    unsigned long active, unsigned int n)
2246{
2247
2248	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2249}
2250
2251/*
2252 * NO_HZ can leave us missing all per-cpu ticks calling
2253 * calc_load_account_active(), but since an idle CPU folds its delta into
2254 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2255 * in the pending idle delta if our idle period crossed a load cycle boundary.
2256 *
2257 * Once we've updated the global active value, we need to apply the exponential
2258 * weights adjusted to the number of cycles missed.
2259 */
2260static void calc_global_nohz(void)
2261{
2262	long delta, active, n;
2263
2264	if (!time_before(jiffies, calc_load_update + 10)) {
2265		/*
2266		 * Catch-up, fold however many we are behind still
2267		 */
2268		delta = jiffies - calc_load_update - 10;
2269		n = 1 + (delta / LOAD_FREQ);
2270
2271		active = atomic_long_read(&calc_load_tasks);
2272		active = active > 0 ? active * FIXED_1 : 0;
2273
2274		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2275		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2276		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2277
2278		calc_load_update += n * LOAD_FREQ;
2279	}
2280
2281	/*
2282	 * Flip the idle index...
2283	 *
2284	 * Make sure we first write the new time then flip the index, so that
2285	 * calc_load_write_idx() will see the new time when it reads the new
2286	 * index, this avoids a double flip messing things up.
2287	 */
2288	smp_wmb();
2289	calc_load_idx++;
2290}
2291#else /* !CONFIG_NO_HZ */
2292
2293static inline long calc_load_fold_idle(void) { return 0; }
2294static inline void calc_global_nohz(void) { }
2295
2296#endif /* CONFIG_NO_HZ */
2297
2298/*
2299 * calc_load - update the avenrun load estimates 10 ticks after the
2300 * CPUs have updated calc_load_tasks.
2301 */
2302void calc_global_load(unsigned long ticks)
2303{
2304	long active, delta;
2305
2306	if (time_before(jiffies, calc_load_update + 10))
2307		return;
2308
2309	/*
2310	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2311	 */
2312	delta = calc_load_fold_idle();
2313	if (delta)
2314		atomic_long_add(delta, &calc_load_tasks);
2315
2316	active = atomic_long_read(&calc_load_tasks);
2317	active = active > 0 ? active * FIXED_1 : 0;
2318
2319	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2320	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2321	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2322
2323	calc_load_update += LOAD_FREQ;
2324
2325	/*
2326	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2327	 */
2328	calc_global_nohz();
2329}
2330
2331/*
2332 * Called from update_cpu_load() to periodically update this CPU's
2333 * active count.
2334 */
2335static void calc_load_account_active(struct rq *this_rq)
2336{
2337	long delta;
2338
2339	if (time_before(jiffies, this_rq->calc_load_update))
2340		return;
2341
2342	delta  = calc_load_fold_active(this_rq);
2343	if (delta)
2344		atomic_long_add(delta, &calc_load_tasks);
2345
2346	this_rq->calc_load_update += LOAD_FREQ;
2347}
2348
2349/*
2350 * End of global load-average stuff
2351 */
2352
2353/*
2354 * The exact cpuload at various idx values, calculated at every tick would be
2355 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2356 *
2357 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2358 * on nth tick when cpu may be busy, then we have:
2359 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2360 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2361 *
2362 * decay_load_missed() below does efficient calculation of
2363 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2364 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2365 *
2366 * The calculation is approximated on a 128 point scale.
2367 * degrade_zero_ticks is the number of ticks after which load at any
2368 * particular idx is approximated to be zero.
2369 * degrade_factor is a precomputed table, a row for each load idx.
2370 * Each column corresponds to degradation factor for a power of two ticks,
2371 * based on 128 point scale.
2372 * Example:
2373 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2374 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2375 *
2376 * With this power of 2 load factors, we can degrade the load n times
2377 * by looking at 1 bits in n and doing as many mult/shift instead of
2378 * n mult/shifts needed by the exact degradation.
2379 */
2380#define DEGRADE_SHIFT		7
2381static const unsigned char
2382		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2383static const unsigned char
2384		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2385					{0, 0, 0, 0, 0, 0, 0, 0},
2386					{64, 32, 8, 0, 0, 0, 0, 0},
2387					{96, 72, 40, 12, 1, 0, 0},
2388					{112, 98, 75, 43, 15, 1, 0},
2389					{120, 112, 98, 76, 45, 16, 2} };
2390
2391/*
2392 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2393 * would be when CPU is idle and so we just decay the old load without
2394 * adding any new load.
2395 */
2396static unsigned long
2397decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2398{
2399	int j = 0;
2400
2401	if (!missed_updates)
2402		return load;
2403
2404	if (missed_updates >= degrade_zero_ticks[idx])
2405		return 0;
2406
2407	if (idx == 1)
2408		return load >> missed_updates;
2409
2410	while (missed_updates) {
2411		if (missed_updates % 2)
2412			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2413
2414		missed_updates >>= 1;
2415		j++;
2416	}
2417	return load;
2418}
2419
2420/*
2421 * Update rq->cpu_load[] statistics. This function is usually called every
2422 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2423 * every tick. We fix it up based on jiffies.
2424 */
2425static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2426			      unsigned long pending_updates)
2427{
2428	int i, scale;
2429
2430	this_rq->nr_load_updates++;
2431
2432	/* Update our load: */
2433	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2434	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2435		unsigned long old_load, new_load;
2436
2437		/* scale is effectively 1 << i now, and >> i divides by scale */
2438
2439		old_load = this_rq->cpu_load[i];
2440		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2441		new_load = this_load;
2442		/*
2443		 * Round up the averaging division if load is increasing. This
2444		 * prevents us from getting stuck on 9 if the load is 10, for
2445		 * example.
2446		 */
2447		if (new_load > old_load)
2448			new_load += scale - 1;
2449
2450		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2451	}
2452
2453	sched_avg_update(this_rq);
2454}
2455
2456#ifdef CONFIG_NO_HZ
2457/*
2458 * There is no sane way to deal with nohz on smp when using jiffies because the
2459 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2460 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2461 *
2462 * Therefore we cannot use the delta approach from the regular tick since that
2463 * would seriously skew the load calculation. However we'll make do for those
2464 * updates happening while idle (nohz_idle_balance) or coming out of idle
2465 * (tick_nohz_idle_exit).
2466 *
2467 * This means we might still be one tick off for nohz periods.
2468 */
2469
2470/*
2471 * Called from nohz_idle_balance() to update the load ratings before doing the
2472 * idle balance.
2473 */
2474void update_idle_cpu_load(struct rq *this_rq)
2475{
2476	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2477	unsigned long load = this_rq->load.weight;
2478	unsigned long pending_updates;
2479
2480	/*
2481	 * bail if there's load or we're actually up-to-date.
2482	 */
2483	if (load || curr_jiffies == this_rq->last_load_update_tick)
2484		return;
2485
2486	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2487	this_rq->last_load_update_tick = curr_jiffies;
2488
2489	__update_cpu_load(this_rq, load, pending_updates);
2490}
2491
2492/*
2493 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2494 */
2495void update_cpu_load_nohz(void)
2496{
2497	struct rq *this_rq = this_rq();
2498	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2499	unsigned long pending_updates;
2500
2501	if (curr_jiffies == this_rq->last_load_update_tick)
2502		return;
2503
2504	raw_spin_lock(&this_rq->lock);
2505	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2506	if (pending_updates) {
2507		this_rq->last_load_update_tick = curr_jiffies;
2508		/*
2509		 * We were idle, this means load 0, the current load might be
2510		 * !0 due to remote wakeups and the sort.
2511		 */
2512		__update_cpu_load(this_rq, 0, pending_updates);
2513	}
2514	raw_spin_unlock(&this_rq->lock);
2515}
2516#endif /* CONFIG_NO_HZ */
2517
2518/*
2519 * Called from scheduler_tick()
2520 */
2521static void update_cpu_load_active(struct rq *this_rq)
2522{
2523	/*
2524	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2525	 */
2526	this_rq->last_load_update_tick = jiffies;
2527	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2528
2529	calc_load_account_active(this_rq);
2530}
2531
2532#ifdef CONFIG_SMP
2533
2534/*
2535 * sched_exec - execve() is a valuable balancing opportunity, because at
2536 * this point the task has the smallest effective memory and cache footprint.
2537 */
2538void sched_exec(void)
2539{
2540	struct task_struct *p = current;
2541	unsigned long flags;
2542	int dest_cpu;
2543
2544	raw_spin_lock_irqsave(&p->pi_lock, flags);
2545	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2546	if (dest_cpu == smp_processor_id())
2547		goto unlock;
2548
2549	if (likely(cpu_active(dest_cpu))) {
2550		struct migration_arg arg = { p, dest_cpu };
2551
2552		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2553		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2554		return;
2555	}
2556unlock:
2557	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2558}
2559
2560#endif
2561
2562DEFINE_PER_CPU(struct kernel_stat, kstat);
2563DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2564
2565EXPORT_PER_CPU_SYMBOL(kstat);
2566EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2567
2568/*
2569 * Return any ns on the sched_clock that have not yet been accounted in
2570 * @p in case that task is currently running.
2571 *
2572 * Called with task_rq_lock() held on @rq.
2573 */
2574static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2575{
2576	u64 ns = 0;
2577
2578	if (task_current(rq, p)) {
2579		update_rq_clock(rq);
2580		ns = rq->clock_task - p->se.exec_start;
2581		if ((s64)ns < 0)
2582			ns = 0;
2583	}
2584
2585	return ns;
2586}
2587
2588unsigned long long task_delta_exec(struct task_struct *p)
2589{
2590	unsigned long flags;
2591	struct rq *rq;
2592	u64 ns = 0;
2593
2594	rq = task_rq_lock(p, &flags);
2595	ns = do_task_delta_exec(p, rq);
2596	task_rq_unlock(rq, p, &flags);
2597
2598	return ns;
2599}
2600
2601/*
2602 * Return accounted runtime for the task.
2603 * In case the task is currently running, return the runtime plus current's
2604 * pending runtime that have not been accounted yet.
2605 */
2606unsigned long long task_sched_runtime(struct task_struct *p)
2607{
2608	unsigned long flags;
2609	struct rq *rq;
2610	u64 ns = 0;
2611
2612	rq = task_rq_lock(p, &flags);
2613	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2614	task_rq_unlock(rq, p, &flags);
2615
2616	return ns;
2617}
2618
2619/*
2620 * This function gets called by the timer code, with HZ frequency.
2621 * We call it with interrupts disabled.
2622 */
2623void scheduler_tick(void)
2624{
2625	int cpu = smp_processor_id();
2626	struct rq *rq = cpu_rq(cpu);
2627	struct task_struct *curr = rq->curr;
2628
2629	sched_clock_tick();
2630
2631	raw_spin_lock(&rq->lock);
2632	update_rq_clock(rq);
2633	update_cpu_load_active(rq);
2634	curr->sched_class->task_tick(rq, curr, 0);
2635	raw_spin_unlock(&rq->lock);
2636
2637	perf_event_task_tick();
2638
2639#ifdef CONFIG_SMP
2640	rq->idle_balance = idle_cpu(cpu);
2641	trigger_load_balance(rq, cpu);
2642#endif
2643}
2644
2645notrace unsigned long get_parent_ip(unsigned long addr)
2646{
2647	if (in_lock_functions(addr)) {
2648		addr = CALLER_ADDR2;
2649		if (in_lock_functions(addr))
2650			addr = CALLER_ADDR3;
2651	}
2652	return addr;
2653}
2654
2655#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2656				defined(CONFIG_PREEMPT_TRACER))
2657
2658void __kprobes add_preempt_count(int val)
2659{
2660#ifdef CONFIG_DEBUG_PREEMPT
2661	/*
2662	 * Underflow?
2663	 */
2664	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2665		return;
2666#endif
2667	preempt_count() += val;
2668#ifdef CONFIG_DEBUG_PREEMPT
2669	/*
2670	 * Spinlock count overflowing soon?
2671	 */
2672	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2673				PREEMPT_MASK - 10);
2674#endif
2675	if (preempt_count() == val)
2676		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2677}
2678EXPORT_SYMBOL(add_preempt_count);
2679
2680void __kprobes sub_preempt_count(int val)
2681{
2682#ifdef CONFIG_DEBUG_PREEMPT
2683	/*
2684	 * Underflow?
2685	 */
2686	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2687		return;
2688	/*
2689	 * Is the spinlock portion underflowing?
2690	 */
2691	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2692			!(preempt_count() & PREEMPT_MASK)))
2693		return;
2694#endif
2695
2696	if (preempt_count() == val)
2697		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2698	preempt_count() -= val;
2699}
2700EXPORT_SYMBOL(sub_preempt_count);
2701
2702#endif
2703
2704/*
2705 * Print scheduling while atomic bug:
2706 */
2707static noinline void __schedule_bug(struct task_struct *prev)
2708{
2709	if (oops_in_progress)
2710		return;
2711
2712	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2713		prev->comm, prev->pid, preempt_count());
2714
2715	debug_show_held_locks(prev);
2716	print_modules();
2717	if (irqs_disabled())
2718		print_irqtrace_events(prev);
2719	dump_stack();
2720	add_taint(TAINT_WARN);
2721}
2722
2723/*
2724 * Various schedule()-time debugging checks and statistics:
2725 */
2726static inline void schedule_debug(struct task_struct *prev)
2727{
2728	/*
2729	 * Test if we are atomic. Since do_exit() needs to call into
2730	 * schedule() atomically, we ignore that path for now.
2731	 * Otherwise, whine if we are scheduling when we should not be.
2732	 */
2733	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2734		__schedule_bug(prev);
2735	rcu_sleep_check();
2736
2737	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2738
2739	schedstat_inc(this_rq(), sched_count);
2740}
2741
2742static void put_prev_task(struct rq *rq, struct task_struct *prev)
2743{
2744	if (prev->on_rq || rq->skip_clock_update < 0)
2745		update_rq_clock(rq);
2746	prev->sched_class->put_prev_task(rq, prev);
2747}
2748
2749/*
2750 * Pick up the highest-prio task:
2751 */
2752static inline struct task_struct *
2753pick_next_task(struct rq *rq)
2754{
2755	const struct sched_class *class;
2756	struct task_struct *p;
2757
2758	/*
2759	 * Optimization: we know that if all tasks are in
2760	 * the fair class we can call that function directly:
2761	 */
2762	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2763		p = fair_sched_class.pick_next_task(rq);
2764		if (likely(p))
2765			return p;
2766	}
2767
2768	for_each_class(class) {
2769		p = class->pick_next_task(rq);
2770		if (p)
2771			return p;
2772	}
2773
2774	BUG(); /* the idle class will always have a runnable task */
2775}
2776
2777/*
2778 * __schedule() is the main scheduler function.
2779 *
2780 * The main means of driving the scheduler and thus entering this function are:
2781 *
2782 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2783 *
2784 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2785 *      paths. For example, see arch/x86/entry_64.S.
2786 *
2787 *      To drive preemption between tasks, the scheduler sets the flag in timer
2788 *      interrupt handler scheduler_tick().
2789 *
2790 *   3. Wakeups don't really cause entry into schedule(). They add a
2791 *      task to the run-queue and that's it.
2792 *
2793 *      Now, if the new task added to the run-queue preempts the current
2794 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2795 *      called on the nearest possible occasion:
2796 *
2797 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2798 *
2799 *         - in syscall or exception context, at the next outmost
2800 *           preempt_enable(). (this might be as soon as the wake_up()'s
2801 *           spin_unlock()!)
2802 *
2803 *         - in IRQ context, return from interrupt-handler to
2804 *           preemptible context
2805 *
2806 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2807 *         then at the next:
2808 *
2809 *          - cond_resched() call
2810 *          - explicit schedule() call
2811 *          - return from syscall or exception to user-space
2812 *          - return from interrupt-handler to user-space
2813 */
2814static void __sched __schedule(void)
2815{
2816	struct task_struct *prev, *next;
2817	unsigned long *switch_count;
2818	struct rq *rq;
2819	int cpu;
2820
2821need_resched:
2822	preempt_disable();
2823	cpu = smp_processor_id();
2824	rq = cpu_rq(cpu);
2825	rcu_note_context_switch(cpu);
2826	prev = rq->curr;
2827
2828	schedule_debug(prev);
2829
2830	if (sched_feat(HRTICK))
2831		hrtick_clear(rq);
2832
2833	raw_spin_lock_irq(&rq->lock);
2834
2835	switch_count = &prev->nivcsw;
2836	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2837		if (unlikely(signal_pending_state(prev->state, prev))) {
2838			prev->state = TASK_RUNNING;
2839		} else {
2840			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2841			prev->on_rq = 0;
2842
2843			/*
2844			 * If a worker went to sleep, notify and ask workqueue
2845			 * whether it wants to wake up a task to maintain
2846			 * concurrency.
2847			 */
2848			if (prev->flags & PF_WQ_WORKER) {
2849				struct task_struct *to_wakeup;
2850
2851				to_wakeup = wq_worker_sleeping(prev, cpu);
2852				if (to_wakeup)
2853					try_to_wake_up_local(to_wakeup);
2854			}
2855		}
2856		switch_count = &prev->nvcsw;
2857	}
2858
2859	pre_schedule(rq, prev);
2860
2861	if (unlikely(!rq->nr_running))
2862		idle_balance(cpu, rq);
2863
2864	put_prev_task(rq, prev);
2865	next = pick_next_task(rq);
2866	clear_tsk_need_resched(prev);
2867	rq->skip_clock_update = 0;
2868
2869	if (likely(prev != next)) {
2870		rq->nr_switches++;
2871		rq->curr = next;
2872		++*switch_count;
2873
2874		context_switch(rq, prev, next); /* unlocks the rq */
2875		/*
2876		 * The context switch have flipped the stack from under us
2877		 * and restored the local variables which were saved when
2878		 * this task called schedule() in the past. prev == current
2879		 * is still correct, but it can be moved to another cpu/rq.
2880		 */
2881		cpu = smp_processor_id();
2882		rq = cpu_rq(cpu);
2883	} else
2884		raw_spin_unlock_irq(&rq->lock);
2885
2886	post_schedule(rq);
2887
2888	sched_preempt_enable_no_resched();
2889	if (need_resched())
2890		goto need_resched;
2891}
2892
2893static inline void sched_submit_work(struct task_struct *tsk)
2894{
2895	if (!tsk->state || tsk_is_pi_blocked(tsk))
2896		return;
2897	/*
2898	 * If we are going to sleep and we have plugged IO queued,
2899	 * make sure to submit it to avoid deadlocks.
2900	 */
2901	if (blk_needs_flush_plug(tsk))
2902		blk_schedule_flush_plug(tsk);
2903}
2904
2905asmlinkage void __sched schedule(void)
2906{
2907	struct task_struct *tsk = current;
2908
2909	sched_submit_work(tsk);
2910	__schedule();
2911}
2912EXPORT_SYMBOL(schedule);
2913
2914#ifdef CONFIG_RCU_USER_QS
2915asmlinkage void __sched schedule_user(void)
2916{
2917	/*
2918	 * If we come here after a random call to set_need_resched(),
2919	 * or we have been woken up remotely but the IPI has not yet arrived,
2920	 * we haven't yet exited the RCU idle mode. Do it here manually until
2921	 * we find a better solution.
2922	 */
2923	rcu_user_exit();
2924	schedule();
2925	rcu_user_enter();
2926}
2927#endif
2928
2929/**
2930 * schedule_preempt_disabled - called with preemption disabled
2931 *
2932 * Returns with preemption disabled. Note: preempt_count must be 1
2933 */
2934void __sched schedule_preempt_disabled(void)
2935{
2936	sched_preempt_enable_no_resched();
2937	schedule();
2938	preempt_disable();
2939}
2940
2941#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2942
2943static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2944{
2945	if (lock->owner != owner)
2946		return false;
2947
2948	/*
2949	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2950	 * lock->owner still matches owner, if that fails, owner might
2951	 * point to free()d memory, if it still matches, the rcu_read_lock()
2952	 * ensures the memory stays valid.
2953	 */
2954	barrier();
2955
2956	return owner->on_cpu;
2957}
2958
2959/*
2960 * Look out! "owner" is an entirely speculative pointer
2961 * access and not reliable.
2962 */
2963int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2964{
2965	if (!sched_feat(OWNER_SPIN))
2966		return 0;
2967
2968	rcu_read_lock();
2969	while (owner_running(lock, owner)) {
2970		if (need_resched())
2971			break;
2972
2973		arch_mutex_cpu_relax();
2974	}
2975	rcu_read_unlock();
2976
2977	/*
2978	 * We break out the loop above on need_resched() and when the
2979	 * owner changed, which is a sign for heavy contention. Return
2980	 * success only when lock->owner is NULL.
2981	 */
2982	return lock->owner == NULL;
2983}
2984#endif
2985
2986#ifdef CONFIG_PREEMPT
2987/*
2988 * this is the entry point to schedule() from in-kernel preemption
2989 * off of preempt_enable. Kernel preemptions off return from interrupt
2990 * occur there and call schedule directly.
2991 */
2992asmlinkage void __sched notrace preempt_schedule(void)
2993{
2994	struct thread_info *ti = current_thread_info();
2995
2996	/*
2997	 * If there is a non-zero preempt_count or interrupts are disabled,
2998	 * we do not want to preempt the current task. Just return..
2999	 */
3000	if (likely(ti->preempt_count || irqs_disabled()))
3001		return;
3002
3003	do {
3004		add_preempt_count_notrace(PREEMPT_ACTIVE);
3005		__schedule();
3006		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3007
3008		/*
3009		 * Check again in case we missed a preemption opportunity
3010		 * between schedule and now.
3011		 */
3012		barrier();
3013	} while (need_resched());
3014}
3015EXPORT_SYMBOL(preempt_schedule);
3016
3017/*
3018 * this is the entry point to schedule() from kernel preemption
3019 * off of irq context.
3020 * Note, that this is called and return with irqs disabled. This will
3021 * protect us against recursive calling from irq.
3022 */
3023asmlinkage void __sched preempt_schedule_irq(void)
3024{
3025	struct thread_info *ti = current_thread_info();
3026
3027	/* Catch callers which need to be fixed */
3028	BUG_ON(ti->preempt_count || !irqs_disabled());
3029
3030	rcu_user_exit();
3031	do {
3032		add_preempt_count(PREEMPT_ACTIVE);
3033		local_irq_enable();
3034		__schedule();
3035		local_irq_disable();
3036		sub_preempt_count(PREEMPT_ACTIVE);
3037
3038		/*
3039		 * Check again in case we missed a preemption opportunity
3040		 * between schedule and now.
3041		 */
3042		barrier();
3043	} while (need_resched());
3044}
3045
3046#endif /* CONFIG_PREEMPT */
3047
3048int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3049			  void *key)
3050{
3051	return try_to_wake_up(curr->private, mode, wake_flags);
3052}
3053EXPORT_SYMBOL(default_wake_function);
3054
3055/*
3056 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3057 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3058 * number) then we wake all the non-exclusive tasks and one exclusive task.
3059 *
3060 * There are circumstances in which we can try to wake a task which has already
3061 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3062 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3063 */
3064static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3065			int nr_exclusive, int wake_flags, void *key)
3066{
3067	wait_queue_t *curr, *next;
3068
3069	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3070		unsigned flags = curr->flags;
3071
3072		if (curr->func(curr, mode, wake_flags, key) &&
3073				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3074			break;
3075	}
3076}
3077
3078/**
3079 * __wake_up - wake up threads blocked on a waitqueue.
3080 * @q: the waitqueue
3081 * @mode: which threads
3082 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3083 * @key: is directly passed to the wakeup function
3084 *
3085 * It may be assumed that this function implies a write memory barrier before
3086 * changing the task state if and only if any tasks are woken up.
3087 */
3088void __wake_up(wait_queue_head_t *q, unsigned int mode,
3089			int nr_exclusive, void *key)
3090{
3091	unsigned long flags;
3092
3093	spin_lock_irqsave(&q->lock, flags);
3094	__wake_up_common(q, mode, nr_exclusive, 0, key);
3095	spin_unlock_irqrestore(&q->lock, flags);
3096}
3097EXPORT_SYMBOL(__wake_up);
3098
3099/*
3100 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3101 */
3102void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3103{
3104	__wake_up_common(q, mode, nr, 0, NULL);
3105}
3106EXPORT_SYMBOL_GPL(__wake_up_locked);
3107
3108void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3109{
3110	__wake_up_common(q, mode, 1, 0, key);
3111}
3112EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3113
3114/**
3115 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3116 * @q: the waitqueue
3117 * @mode: which threads
3118 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3119 * @key: opaque value to be passed to wakeup targets
3120 *
3121 * The sync wakeup differs that the waker knows that it will schedule
3122 * away soon, so while the target thread will be woken up, it will not
3123 * be migrated to another CPU - ie. the two threads are 'synchronized'
3124 * with each other. This can prevent needless bouncing between CPUs.
3125 *
3126 * On UP it can prevent extra preemption.
3127 *
3128 * It may be assumed that this function implies a write memory barrier before
3129 * changing the task state if and only if any tasks are woken up.
3130 */
3131void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3132			int nr_exclusive, void *key)
3133{
3134	unsigned long flags;
3135	int wake_flags = WF_SYNC;
3136
3137	if (unlikely(!q))
3138		return;
3139
3140	if (unlikely(!nr_exclusive))
3141		wake_flags = 0;
3142
3143	spin_lock_irqsave(&q->lock, flags);
3144	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3145	spin_unlock_irqrestore(&q->lock, flags);
3146}
3147EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3148
3149/*
3150 * __wake_up_sync - see __wake_up_sync_key()
3151 */
3152void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3153{
3154	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3155}
3156EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3157
3158/**
3159 * complete: - signals a single thread waiting on this completion
3160 * @x:  holds the state of this particular completion
3161 *
3162 * This will wake up a single thread waiting on this completion. Threads will be
3163 * awakened in the same order in which they were queued.
3164 *
3165 * See also complete_all(), wait_for_completion() and related routines.
3166 *
3167 * It may be assumed that this function implies a write memory barrier before
3168 * changing the task state if and only if any tasks are woken up.
3169 */
3170void complete(struct completion *x)
3171{
3172	unsigned long flags;
3173
3174	spin_lock_irqsave(&x->wait.lock, flags);
3175	x->done++;
3176	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3177	spin_unlock_irqrestore(&x->wait.lock, flags);
3178}
3179EXPORT_SYMBOL(complete);
3180
3181/**
3182 * complete_all: - signals all threads waiting on this completion
3183 * @x:  holds the state of this particular completion
3184 *
3185 * This will wake up all threads waiting on this particular completion event.
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
3189 */
3190void complete_all(struct completion *x)
3191{
3192	unsigned long flags;
3193
3194	spin_lock_irqsave(&x->wait.lock, flags);
3195	x->done += UINT_MAX/2;
3196	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3197	spin_unlock_irqrestore(&x->wait.lock, flags);
3198}
3199EXPORT_SYMBOL(complete_all);
3200
3201static inline long __sched
3202do_wait_for_common(struct completion *x, long timeout, int state)
3203{
3204	if (!x->done) {
3205		DECLARE_WAITQUEUE(wait, current);
3206
3207		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3208		do {
3209			if (signal_pending_state(state, current)) {
3210				timeout = -ERESTARTSYS;
3211				break;
3212			}
3213			__set_current_state(state);
3214			spin_unlock_irq(&x->wait.lock);
3215			timeout = schedule_timeout(timeout);
3216			spin_lock_irq(&x->wait.lock);
3217		} while (!x->done && timeout);
3218		__remove_wait_queue(&x->wait, &wait);
3219		if (!x->done)
3220			return timeout;
3221	}
3222	x->done--;
3223	return timeout ?: 1;
3224}
3225
3226static long __sched
3227wait_for_common(struct completion *x, long timeout, int state)
3228{
3229	might_sleep();
3230
3231	spin_lock_irq(&x->wait.lock);
3232	timeout = do_wait_for_common(x, timeout, state);
3233	spin_unlock_irq(&x->wait.lock);
3234	return timeout;
3235}
3236
3237/**
3238 * wait_for_completion: - waits for completion of a task
3239 * @x:  holds the state of this particular completion
3240 *
3241 * This waits to be signaled for completion of a specific task. It is NOT
3242 * interruptible and there is no timeout.
3243 *
3244 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3245 * and interrupt capability. Also see complete().
3246 */
3247void __sched wait_for_completion(struct completion *x)
3248{
3249	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3250}
3251EXPORT_SYMBOL(wait_for_completion);
3252
3253/**
3254 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3255 * @x:  holds the state of this particular completion
3256 * @timeout:  timeout value in jiffies
3257 *
3258 * This waits for either a completion of a specific task to be signaled or for a
3259 * specified timeout to expire. The timeout is in jiffies. It is not
3260 * interruptible.
3261 *
3262 * The return value is 0 if timed out, and positive (at least 1, or number of
3263 * jiffies left till timeout) if completed.
3264 */
3265unsigned long __sched
3266wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3267{
3268	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3269}
3270EXPORT_SYMBOL(wait_for_completion_timeout);
3271
3272/**
3273 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3274 * @x:  holds the state of this particular completion
3275 *
3276 * This waits for completion of a specific task to be signaled. It is
3277 * interruptible.
3278 *
3279 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3280 */
3281int __sched wait_for_completion_interruptible(struct completion *x)
3282{
3283	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3284	if (t == -ERESTARTSYS)
3285		return t;
3286	return 0;
3287}
3288EXPORT_SYMBOL(wait_for_completion_interruptible);
3289
3290/**
3291 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3292 * @x:  holds the state of this particular completion
3293 * @timeout:  timeout value in jiffies
3294 *
3295 * This waits for either a completion of a specific task to be signaled or for a
3296 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3297 *
3298 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3299 * positive (at least 1, or number of jiffies left till timeout) if completed.
3300 */
3301long __sched
3302wait_for_completion_interruptible_timeout(struct completion *x,
3303					  unsigned long timeout)
3304{
3305	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3306}
3307EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3308
3309/**
3310 * wait_for_completion_killable: - waits for completion of a task (killable)
3311 * @x:  holds the state of this particular completion
3312 *
3313 * This waits to be signaled for completion of a specific task. It can be
3314 * interrupted by a kill signal.
3315 *
3316 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3317 */
3318int __sched wait_for_completion_killable(struct completion *x)
3319{
3320	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3321	if (t == -ERESTARTSYS)
3322		return t;
3323	return 0;
3324}
3325EXPORT_SYMBOL(wait_for_completion_killable);
3326
3327/**
3328 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3329 * @x:  holds the state of this particular completion
3330 * @timeout:  timeout value in jiffies
3331 *
3332 * This waits for either a completion of a specific task to be
3333 * signaled or for a specified timeout to expire. It can be
3334 * interrupted by a kill signal. The timeout is in jiffies.
3335 *
3336 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3337 * positive (at least 1, or number of jiffies left till timeout) if completed.
3338 */
3339long __sched
3340wait_for_completion_killable_timeout(struct completion *x,
3341				     unsigned long timeout)
3342{
3343	return wait_for_common(x, timeout, TASK_KILLABLE);
3344}
3345EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3346
3347/**
3348 *	try_wait_for_completion - try to decrement a completion without blocking
3349 *	@x:	completion structure
3350 *
3351 *	Returns: 0 if a decrement cannot be done without blocking
3352 *		 1 if a decrement succeeded.
3353 *
3354 *	If a completion is being used as a counting completion,
3355 *	attempt to decrement the counter without blocking. This
3356 *	enables us to avoid waiting if the resource the completion
3357 *	is protecting is not available.
3358 */
3359bool try_wait_for_completion(struct completion *x)
3360{
3361	unsigned long flags;
3362	int ret = 1;
3363
3364	spin_lock_irqsave(&x->wait.lock, flags);
3365	if (!x->done)
3366		ret = 0;
3367	else
3368		x->done--;
3369	spin_unlock_irqrestore(&x->wait.lock, flags);
3370	return ret;
3371}
3372EXPORT_SYMBOL(try_wait_for_completion);
3373
3374/**
3375 *	completion_done - Test to see if a completion has any waiters
3376 *	@x:	completion structure
3377 *
3378 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3379 *		 1 if there are no waiters.
3380 *
3381 */
3382bool completion_done(struct completion *x)
3383{
3384	unsigned long flags;
3385	int ret = 1;
3386
3387	spin_lock_irqsave(&x->wait.lock, flags);
3388	if (!x->done)
3389		ret = 0;
3390	spin_unlock_irqrestore(&x->wait.lock, flags);
3391	return ret;
3392}
3393EXPORT_SYMBOL(completion_done);
3394
3395static long __sched
3396sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3397{
3398	unsigned long flags;
3399	wait_queue_t wait;
3400
3401	init_waitqueue_entry(&wait, current);
3402
3403	__set_current_state(state);
3404
3405	spin_lock_irqsave(&q->lock, flags);
3406	__add_wait_queue(q, &wait);
3407	spin_unlock(&q->lock);
3408	timeout = schedule_timeout(timeout);
3409	spin_lock_irq(&q->lock);
3410	__remove_wait_queue(q, &wait);
3411	spin_unlock_irqrestore(&q->lock, flags);
3412
3413	return timeout;
3414}
3415
3416void __sched interruptible_sleep_on(wait_queue_head_t *q)
3417{
3418	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3419}
3420EXPORT_SYMBOL(interruptible_sleep_on);
3421
3422long __sched
3423interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3424{
3425	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3426}
3427EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3428
3429void __sched sleep_on(wait_queue_head_t *q)
3430{
3431	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3432}
3433EXPORT_SYMBOL(sleep_on);
3434
3435long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3436{
3437	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3438}
3439EXPORT_SYMBOL(sleep_on_timeout);
3440
3441#ifdef CONFIG_RT_MUTEXES
3442
3443/*
3444 * rt_mutex_setprio - set the current priority of a task
3445 * @p: task
3446 * @prio: prio value (kernel-internal form)
3447 *
3448 * This function changes the 'effective' priority of a task. It does
3449 * not touch ->normal_prio like __setscheduler().
3450 *
3451 * Used by the rt_mutex code to implement priority inheritance logic.
3452 */
3453void rt_mutex_setprio(struct task_struct *p, int prio)
3454{
3455	int oldprio, on_rq, running;
3456	struct rq *rq;
3457	const struct sched_class *prev_class;
3458
3459	BUG_ON(prio < 0 || prio > MAX_PRIO);
3460
3461	rq = __task_rq_lock(p);
3462
3463	/*
3464	 * Idle task boosting is a nono in general. There is one
3465	 * exception, when PREEMPT_RT and NOHZ is active:
3466	 *
3467	 * The idle task calls get_next_timer_interrupt() and holds
3468	 * the timer wheel base->lock on the CPU and another CPU wants
3469	 * to access the timer (probably to cancel it). We can safely
3470	 * ignore the boosting request, as the idle CPU runs this code
3471	 * with interrupts disabled and will complete the lock
3472	 * protected section without being interrupted. So there is no
3473	 * real need to boost.
3474	 */
3475	if (unlikely(p == rq->idle)) {
3476		WARN_ON(p != rq->curr);
3477		WARN_ON(p->pi_blocked_on);
3478		goto out_unlock;
3479	}
3480
3481	trace_sched_pi_setprio(p, prio);
3482	oldprio = p->prio;
3483	prev_class = p->sched_class;
3484	on_rq = p->on_rq;
3485	running = task_current(rq, p);
3486	if (on_rq)
3487		dequeue_task(rq, p, 0);
3488	if (running)
3489		p->sched_class->put_prev_task(rq, p);
3490
3491	if (rt_prio(prio))
3492		p->sched_class = &rt_sched_class;
3493	else
3494		p->sched_class = &fair_sched_class;
3495
3496	p->prio = prio;
3497
3498	if (running)
3499		p->sched_class->set_curr_task(rq);
3500	if (on_rq)
3501		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3502
3503	check_class_changed(rq, p, prev_class, oldprio);
3504out_unlock:
3505	__task_rq_unlock(rq);
3506}
3507#endif
3508void set_user_nice(struct task_struct *p, long nice)
3509{
3510	int old_prio, delta, on_rq;
3511	unsigned long flags;
3512	struct rq *rq;
3513
3514	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3515		return;
3516	/*
3517	 * We have to be careful, if called from sys_setpriority(),
3518	 * the task might be in the middle of scheduling on another CPU.
3519	 */
3520	rq = task_rq_lock(p, &flags);
3521	/*
3522	 * The RT priorities are set via sched_setscheduler(), but we still
3523	 * allow the 'normal' nice value to be set - but as expected
3524	 * it wont have any effect on scheduling until the task is
3525	 * SCHED_FIFO/SCHED_RR:
3526	 */
3527	if (task_has_rt_policy(p)) {
3528		p->static_prio = NICE_TO_PRIO(nice);
3529		goto out_unlock;
3530	}
3531	on_rq = p->on_rq;
3532	if (on_rq)
3533		dequeue_task(rq, p, 0);
3534
3535	p->static_prio = NICE_TO_PRIO(nice);
3536	set_load_weight(p);
3537	old_prio = p->prio;
3538	p->prio = effective_prio(p);
3539	delta = p->prio - old_prio;
3540
3541	if (on_rq) {
3542		enqueue_task(rq, p, 0);
3543		/*
3544		 * If the task increased its priority or is running and
3545		 * lowered its priority, then reschedule its CPU:
3546		 */
3547		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3548			resched_task(rq->curr);
3549	}
3550out_unlock:
3551	task_rq_unlock(rq, p, &flags);
3552}
3553EXPORT_SYMBOL(set_user_nice);
3554
3555/*
3556 * can_nice - check if a task can reduce its nice value
3557 * @p: task
3558 * @nice: nice value
3559 */
3560int can_nice(const struct task_struct *p, const int nice)
3561{
3562	/* convert nice value [19,-20] to rlimit style value [1,40] */
3563	int nice_rlim = 20 - nice;
3564
3565	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3566		capable(CAP_SYS_NICE));
3567}
3568
3569#ifdef __ARCH_WANT_SYS_NICE
3570
3571/*
3572 * sys_nice - change the priority of the current process.
3573 * @increment: priority increment
3574 *
3575 * sys_setpriority is a more generic, but much slower function that
3576 * does similar things.
3577 */
3578SYSCALL_DEFINE1(nice, int, increment)
3579{
3580	long nice, retval;
3581
3582	/*
3583	 * Setpriority might change our priority at the same moment.
3584	 * We don't have to worry. Conceptually one call occurs first
3585	 * and we have a single winner.
3586	 */
3587	if (increment < -40)
3588		increment = -40;
3589	if (increment > 40)
3590		increment = 40;
3591
3592	nice = TASK_NICE(current) + increment;
3593	if (nice < -20)
3594		nice = -20;
3595	if (nice > 19)
3596		nice = 19;
3597
3598	if (increment < 0 && !can_nice(current, nice))
3599		return -EPERM;
3600
3601	retval = security_task_setnice(current, nice);
3602	if (retval)
3603		return retval;
3604
3605	set_user_nice(current, nice);
3606	return 0;
3607}
3608
3609#endif
3610
3611/**
3612 * task_prio - return the priority value of a given task.
3613 * @p: the task in question.
3614 *
3615 * This is the priority value as seen by users in /proc.
3616 * RT tasks are offset by -200. Normal tasks are centered
3617 * around 0, value goes from -16 to +15.
3618 */
3619int task_prio(const struct task_struct *p)
3620{
3621	return p->prio - MAX_RT_PRIO;
3622}
3623
3624/**
3625 * task_nice - return the nice value of a given task.
3626 * @p: the task in question.
3627 */
3628int task_nice(const struct task_struct *p)
3629{
3630	return TASK_NICE(p);
3631}
3632EXPORT_SYMBOL(task_nice);
3633
3634/**
3635 * idle_cpu - is a given cpu idle currently?
3636 * @cpu: the processor in question.
3637 */
3638int idle_cpu(int cpu)
3639{
3640	struct rq *rq = cpu_rq(cpu);
3641
3642	if (rq->curr != rq->idle)
3643		return 0;
3644
3645	if (rq->nr_running)
3646		return 0;
3647
3648#ifdef CONFIG_SMP
3649	if (!llist_empty(&rq->wake_list))
3650		return 0;
3651#endif
3652
3653	return 1;
3654}
3655
3656/**
3657 * idle_task - return the idle task for a given cpu.
3658 * @cpu: the processor in question.
3659 */
3660struct task_struct *idle_task(int cpu)
3661{
3662	return cpu_rq(cpu)->idle;
3663}
3664
3665/**
3666 * find_process_by_pid - find a process with a matching PID value.
3667 * @pid: the pid in question.
3668 */
3669static struct task_struct *find_process_by_pid(pid_t pid)
3670{
3671	return pid ? find_task_by_vpid(pid) : current;
3672}
3673
3674/* Actually do priority change: must hold rq lock. */
3675static void
3676__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3677{
3678	p->policy = policy;
3679	p->rt_priority = prio;
3680	p->normal_prio = normal_prio(p);
3681	/* we are holding p->pi_lock already */
3682	p->prio = rt_mutex_getprio(p);
3683	if (rt_prio(p->prio))
3684		p->sched_class = &rt_sched_class;
3685	else
3686		p->sched_class = &fair_sched_class;
3687	set_load_weight(p);
3688}
3689
3690/*
3691 * check the target process has a UID that matches the current process's
3692 */
3693static bool check_same_owner(struct task_struct *p)
3694{
3695	const struct cred *cred = current_cred(), *pcred;
3696	bool match;
3697
3698	rcu_read_lock();
3699	pcred = __task_cred(p);
3700	match = (uid_eq(cred->euid, pcred->euid) ||
3701		 uid_eq(cred->euid, pcred->uid));
3702	rcu_read_unlock();
3703	return match;
3704}
3705
3706static int __sched_setscheduler(struct task_struct *p, int policy,
3707				const struct sched_param *param, bool user)
3708{
3709	int retval, oldprio, oldpolicy = -1, on_rq, running;
3710	unsigned long flags;
3711	const struct sched_class *prev_class;
3712	struct rq *rq;
3713	int reset_on_fork;
3714
3715	/* may grab non-irq protected spin_locks */
3716	BUG_ON(in_interrupt());
3717recheck:
3718	/* double check policy once rq lock held */
3719	if (policy < 0) {
3720		reset_on_fork = p->sched_reset_on_fork;
3721		policy = oldpolicy = p->policy;
3722	} else {
3723		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3724		policy &= ~SCHED_RESET_ON_FORK;
3725
3726		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3727				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3728				policy != SCHED_IDLE)
3729			return -EINVAL;
3730	}
3731
3732	/*
3733	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3734	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3735	 * SCHED_BATCH and SCHED_IDLE is 0.
3736	 */
3737	if (param->sched_priority < 0 ||
3738	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3739	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3740		return -EINVAL;
3741	if (rt_policy(policy) != (param->sched_priority != 0))
3742		return -EINVAL;
3743
3744	/*
3745	 * Allow unprivileged RT tasks to decrease priority:
3746	 */
3747	if (user && !capable(CAP_SYS_NICE)) {
3748		if (rt_policy(policy)) {
3749			unsigned long rlim_rtprio =
3750					task_rlimit(p, RLIMIT_RTPRIO);
3751
3752			/* can't set/change the rt policy */
3753			if (policy != p->policy && !rlim_rtprio)
3754				return -EPERM;
3755
3756			/* can't increase priority */
3757			if (param->sched_priority > p->rt_priority &&
3758			    param->sched_priority > rlim_rtprio)
3759				return -EPERM;
3760		}
3761
3762		/*
3763		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3764		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3765		 */
3766		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3767			if (!can_nice(p, TASK_NICE(p)))
3768				return -EPERM;
3769		}
3770
3771		/* can't change other user's priorities */
3772		if (!check_same_owner(p))
3773			return -EPERM;
3774
3775		/* Normal users shall not reset the sched_reset_on_fork flag */
3776		if (p->sched_reset_on_fork && !reset_on_fork)
3777			return -EPERM;
3778	}
3779
3780	if (user) {
3781		retval = security_task_setscheduler(p);
3782		if (retval)
3783			return retval;
3784	}
3785
3786	/*
3787	 * make sure no PI-waiters arrive (or leave) while we are
3788	 * changing the priority of the task:
3789	 *
3790	 * To be able to change p->policy safely, the appropriate
3791	 * runqueue lock must be held.
3792	 */
3793	rq = task_rq_lock(p, &flags);
3794
3795	/*
3796	 * Changing the policy of the stop threads its a very bad idea
3797	 */
3798	if (p == rq->stop) {
3799		task_rq_unlock(rq, p, &flags);
3800		return -EINVAL;
3801	}
3802
3803	/*
3804	 * If not changing anything there's no need to proceed further:
3805	 */
3806	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3807			param->sched_priority == p->rt_priority))) {
3808		task_rq_unlock(rq, p, &flags);
3809		return 0;
3810	}
3811
3812#ifdef CONFIG_RT_GROUP_SCHED
3813	if (user) {
3814		/*
3815		 * Do not allow realtime tasks into groups that have no runtime
3816		 * assigned.
3817		 */
3818		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3819				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3820				!task_group_is_autogroup(task_group(p))) {
3821			task_rq_unlock(rq, p, &flags);
3822			return -EPERM;
3823		}
3824	}
3825#endif
3826
3827	/* recheck policy now with rq lock held */
3828	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3829		policy = oldpolicy = -1;
3830		task_rq_unlock(rq, p, &flags);
3831		goto recheck;
3832	}
3833	on_rq = p->on_rq;
3834	running = task_current(rq, p);
3835	if (on_rq)
3836		dequeue_task(rq, p, 0);
3837	if (running)
3838		p->sched_class->put_prev_task(rq, p);
3839
3840	p->sched_reset_on_fork = reset_on_fork;
3841
3842	oldprio = p->prio;
3843	prev_class = p->sched_class;
3844	__setscheduler(rq, p, policy, param->sched_priority);
3845
3846	if (running)
3847		p->sched_class->set_curr_task(rq);
3848	if (on_rq)
3849		enqueue_task(rq, p, 0);
3850
3851	check_class_changed(rq, p, prev_class, oldprio);
3852	task_rq_unlock(rq, p, &flags);
3853
3854	rt_mutex_adjust_pi(p);
3855
3856	return 0;
3857}
3858
3859/**
3860 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3861 * @p: the task in question.
3862 * @policy: new policy.
3863 * @param: structure containing the new RT priority.
3864 *
3865 * NOTE that the task may be already dead.
3866 */
3867int sched_setscheduler(struct task_struct *p, int policy,
3868		       const struct sched_param *param)
3869{
3870	return __sched_setscheduler(p, policy, param, true);
3871}
3872EXPORT_SYMBOL_GPL(sched_setscheduler);
3873
3874/**
3875 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3876 * @p: the task in question.
3877 * @policy: new policy.
3878 * @param: structure containing the new RT priority.
3879 *
3880 * Just like sched_setscheduler, only don't bother checking if the
3881 * current context has permission.  For example, this is needed in
3882 * stop_machine(): we create temporary high priority worker threads,
3883 * but our caller might not have that capability.
3884 */
3885int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3886			       const struct sched_param *param)
3887{
3888	return __sched_setscheduler(p, policy, param, false);
3889}
3890
3891static int
3892do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3893{
3894	struct sched_param lparam;
3895	struct task_struct *p;
3896	int retval;
3897
3898	if (!param || pid < 0)
3899		return -EINVAL;
3900	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3901		return -EFAULT;
3902
3903	rcu_read_lock();
3904	retval = -ESRCH;
3905	p = find_process_by_pid(pid);
3906	if (p != NULL)
3907		retval = sched_setscheduler(p, policy, &lparam);
3908	rcu_read_unlock();
3909
3910	return retval;
3911}
3912
3913/**
3914 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3915 * @pid: the pid in question.
3916 * @policy: new policy.
3917 * @param: structure containing the new RT priority.
3918 */
3919SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3920		struct sched_param __user *, param)
3921{
3922	/* negative values for policy are not valid */
3923	if (policy < 0)
3924		return -EINVAL;
3925
3926	return do_sched_setscheduler(pid, policy, param);
3927}
3928
3929/**
3930 * sys_sched_setparam - set/change the RT priority of a thread
3931 * @pid: the pid in question.
3932 * @param: structure containing the new RT priority.
3933 */
3934SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3935{
3936	return do_sched_setscheduler(pid, -1, param);
3937}
3938
3939/**
3940 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3941 * @pid: the pid in question.
3942 */
3943SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3944{
3945	struct task_struct *p;
3946	int retval;
3947
3948	if (pid < 0)
3949		return -EINVAL;
3950
3951	retval = -ESRCH;
3952	rcu_read_lock();
3953	p = find_process_by_pid(pid);
3954	if (p) {
3955		retval = security_task_getscheduler(p);
3956		if (!retval)
3957			retval = p->policy
3958				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3959	}
3960	rcu_read_unlock();
3961	return retval;
3962}
3963
3964/**
3965 * sys_sched_getparam - get the RT priority of a thread
3966 * @pid: the pid in question.
3967 * @param: structure containing the RT priority.
3968 */
3969SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3970{
3971	struct sched_param lp;
3972	struct task_struct *p;
3973	int retval;
3974
3975	if (!param || pid < 0)
3976		return -EINVAL;
3977
3978	rcu_read_lock();
3979	p = find_process_by_pid(pid);
3980	retval = -ESRCH;
3981	if (!p)
3982		goto out_unlock;
3983
3984	retval = security_task_getscheduler(p);
3985	if (retval)
3986		goto out_unlock;
3987
3988	lp.sched_priority = p->rt_priority;
3989	rcu_read_unlock();
3990
3991	/*
3992	 * This one might sleep, we cannot do it with a spinlock held ...
3993	 */
3994	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3995
3996	return retval;
3997
3998out_unlock:
3999	rcu_read_unlock();
4000	return retval;
4001}
4002
4003long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4004{
4005	cpumask_var_t cpus_allowed, new_mask;
4006	struct task_struct *p;
4007	int retval;
4008
4009	get_online_cpus();
4010	rcu_read_lock();
4011
4012	p = find_process_by_pid(pid);
4013	if (!p) {
4014		rcu_read_unlock();
4015		put_online_cpus();
4016		return -ESRCH;
4017	}
4018
4019	/* Prevent p going away */
4020	get_task_struct(p);
4021	rcu_read_unlock();
4022
4023	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4024		retval = -ENOMEM;
4025		goto out_put_task;
4026	}
4027	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4028		retval = -ENOMEM;
4029		goto out_free_cpus_allowed;
4030	}
4031	retval = -EPERM;
4032	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4033		goto out_unlock;
4034
4035	retval = security_task_setscheduler(p);
4036	if (retval)
4037		goto out_unlock;
4038
4039	cpuset_cpus_allowed(p, cpus_allowed);
4040	cpumask_and(new_mask, in_mask, cpus_allowed);
4041again:
4042	retval = set_cpus_allowed_ptr(p, new_mask);
4043
4044	if (!retval) {
4045		cpuset_cpus_allowed(p, cpus_allowed);
4046		if (!cpumask_subset(new_mask, cpus_allowed)) {
4047			/*
4048			 * We must have raced with a concurrent cpuset
4049			 * update. Just reset the cpus_allowed to the
4050			 * cpuset's cpus_allowed
4051			 */
4052			cpumask_copy(new_mask, cpus_allowed);
4053			goto again;
4054		}
4055	}
4056out_unlock:
4057	free_cpumask_var(new_mask);
4058out_free_cpus_allowed:
4059	free_cpumask_var(cpus_allowed);
4060out_put_task:
4061	put_task_struct(p);
4062	put_online_cpus();
4063	return retval;
4064}
4065
4066static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4067			     struct cpumask *new_mask)
4068{
4069	if (len < cpumask_size())
4070		cpumask_clear(new_mask);
4071	else if (len > cpumask_size())
4072		len = cpumask_size();
4073
4074	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4075}
4076
4077/**
4078 * sys_sched_setaffinity - set the cpu affinity of a process
4079 * @pid: pid of the process
4080 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4081 * @user_mask_ptr: user-space pointer to the new cpu mask
4082 */
4083SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4084		unsigned long __user *, user_mask_ptr)
4085{
4086	cpumask_var_t new_mask;
4087	int retval;
4088
4089	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4090		return -ENOMEM;
4091
4092	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4093	if (retval == 0)
4094		retval = sched_setaffinity(pid, new_mask);
4095	free_cpumask_var(new_mask);
4096	return retval;
4097}
4098
4099long sched_getaffinity(pid_t pid, struct cpumask *mask)
4100{
4101	struct task_struct *p;
4102	unsigned long flags;
4103	int retval;
4104
4105	get_online_cpus();
4106	rcu_read_lock();
4107
4108	retval = -ESRCH;
4109	p = find_process_by_pid(pid);
4110	if (!p)
4111		goto out_unlock;
4112
4113	retval = security_task_getscheduler(p);
4114	if (retval)
4115		goto out_unlock;
4116
4117	raw_spin_lock_irqsave(&p->pi_lock, flags);
4118	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4119	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4120
4121out_unlock:
4122	rcu_read_unlock();
4123	put_online_cpus();
4124
4125	return retval;
4126}
4127
4128/**
4129 * sys_sched_getaffinity - get the cpu affinity of a process
4130 * @pid: pid of the process
4131 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4132 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4133 */
4134SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4135		unsigned long __user *, user_mask_ptr)
4136{
4137	int ret;
4138	cpumask_var_t mask;
4139
4140	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4141		return -EINVAL;
4142	if (len & (sizeof(unsigned long)-1))
4143		return -EINVAL;
4144
4145	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4146		return -ENOMEM;
4147
4148	ret = sched_getaffinity(pid, mask);
4149	if (ret == 0) {
4150		size_t retlen = min_t(size_t, len, cpumask_size());
4151
4152		if (copy_to_user(user_mask_ptr, mask, retlen))
4153			ret = -EFAULT;
4154		else
4155			ret = retlen;
4156	}
4157	free_cpumask_var(mask);
4158
4159	return ret;
4160}
4161
4162/**
4163 * sys_sched_yield - yield the current processor to other threads.
4164 *
4165 * This function yields the current CPU to other tasks. If there are no
4166 * other threads running on this CPU then this function will return.
4167 */
4168SYSCALL_DEFINE0(sched_yield)
4169{
4170	struct rq *rq = this_rq_lock();
4171
4172	schedstat_inc(rq, yld_count);
4173	current->sched_class->yield_task(rq);
4174
4175	/*
4176	 * Since we are going to call schedule() anyway, there's
4177	 * no need to preempt or enable interrupts:
4178	 */
4179	__release(rq->lock);
4180	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4181	do_raw_spin_unlock(&rq->lock);
4182	sched_preempt_enable_no_resched();
4183
4184	schedule();
4185
4186	return 0;
4187}
4188
4189static inline int should_resched(void)
4190{
4191	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4192}
4193
4194static void __cond_resched(void)
4195{
4196	add_preempt_count(PREEMPT_ACTIVE);
4197	__schedule();
4198	sub_preempt_count(PREEMPT_ACTIVE);
4199}
4200
4201int __sched _cond_resched(void)
4202{
4203	if (should_resched()) {
4204		__cond_resched();
4205		return 1;
4206	}
4207	return 0;
4208}
4209EXPORT_SYMBOL(_cond_resched);
4210
4211/*
4212 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4213 * call schedule, and on return reacquire the lock.
4214 *
4215 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4216 * operations here to prevent schedule() from being called twice (once via
4217 * spin_unlock(), once by hand).
4218 */
4219int __cond_resched_lock(spinlock_t *lock)
4220{
4221	int resched = should_resched();
4222	int ret = 0;
4223
4224	lockdep_assert_held(lock);
4225
4226	if (spin_needbreak(lock) || resched) {
4227		spin_unlock(lock);
4228		if (resched)
4229			__cond_resched();
4230		else
4231			cpu_relax();
4232		ret = 1;
4233		spin_lock(lock);
4234	}
4235	return ret;
4236}
4237EXPORT_SYMBOL(__cond_resched_lock);
4238
4239int __sched __cond_resched_softirq(void)
4240{
4241	BUG_ON(!in_softirq());
4242
4243	if (should_resched()) {
4244		local_bh_enable();
4245		__cond_resched();
4246		local_bh_disable();
4247		return 1;
4248	}
4249	return 0;
4250}
4251EXPORT_SYMBOL(__cond_resched_softirq);
4252
4253/**
4254 * yield - yield the current processor to other threads.
4255 *
4256 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4257 *
4258 * The scheduler is at all times free to pick the calling task as the most
4259 * eligible task to run, if removing the yield() call from your code breaks
4260 * it, its already broken.
4261 *
4262 * Typical broken usage is:
4263 *
4264 * while (!event)
4265 * 	yield();
4266 *
4267 * where one assumes that yield() will let 'the other' process run that will
4268 * make event true. If the current task is a SCHED_FIFO task that will never
4269 * happen. Never use yield() as a progress guarantee!!
4270 *
4271 * If you want to use yield() to wait for something, use wait_event().
4272 * If you want to use yield() to be 'nice' for others, use cond_resched().
4273 * If you still want to use yield(), do not!
4274 */
4275void __sched yield(void)
4276{
4277	set_current_state(TASK_RUNNING);
4278	sys_sched_yield();
4279}
4280EXPORT_SYMBOL(yield);
4281
4282/**
4283 * yield_to - yield the current processor to another thread in
4284 * your thread group, or accelerate that thread toward the
4285 * processor it's on.
4286 * @p: target task
4287 * @preempt: whether task preemption is allowed or not
4288 *
4289 * It's the caller's job to ensure that the target task struct
4290 * can't go away on us before we can do any checks.
4291 *
4292 * Returns true if we indeed boosted the target task.
4293 */
4294bool __sched yield_to(struct task_struct *p, bool preempt)
4295{
4296	struct task_struct *curr = current;
4297	struct rq *rq, *p_rq;
4298	unsigned long flags;
4299	bool yielded = 0;
4300
4301	local_irq_save(flags);
4302	rq = this_rq();
4303
4304again:
4305	p_rq = task_rq(p);
4306	double_rq_lock(rq, p_rq);
4307	while (task_rq(p) != p_rq) {
4308		double_rq_unlock(rq, p_rq);
4309		goto again;
4310	}
4311
4312	if (!curr->sched_class->yield_to_task)
4313		goto out;
4314
4315	if (curr->sched_class != p->sched_class)
4316		goto out;
4317
4318	if (task_running(p_rq, p) || p->state)
4319		goto out;
4320
4321	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4322	if (yielded) {
4323		schedstat_inc(rq, yld_count);
4324		/*
4325		 * Make p's CPU reschedule; pick_next_entity takes care of
4326		 * fairness.
4327		 */
4328		if (preempt && rq != p_rq)
4329			resched_task(p_rq->curr);
4330	}
4331
4332out:
4333	double_rq_unlock(rq, p_rq);
4334	local_irq_restore(flags);
4335
4336	if (yielded)
4337		schedule();
4338
4339	return yielded;
4340}
4341EXPORT_SYMBOL_GPL(yield_to);
4342
4343/*
4344 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4345 * that process accounting knows that this is a task in IO wait state.
4346 */
4347void __sched io_schedule(void)
4348{
4349	struct rq *rq = raw_rq();
4350
4351	delayacct_blkio_start();
4352	atomic_inc(&rq->nr_iowait);
4353	blk_flush_plug(current);
4354	current->in_iowait = 1;
4355	schedule();
4356	current->in_iowait = 0;
4357	atomic_dec(&rq->nr_iowait);
4358	delayacct_blkio_end();
4359}
4360EXPORT_SYMBOL(io_schedule);
4361
4362long __sched io_schedule_timeout(long timeout)
4363{
4364	struct rq *rq = raw_rq();
4365	long ret;
4366
4367	delayacct_blkio_start();
4368	atomic_inc(&rq->nr_iowait);
4369	blk_flush_plug(current);
4370	current->in_iowait = 1;
4371	ret = schedule_timeout(timeout);
4372	current->in_iowait = 0;
4373	atomic_dec(&rq->nr_iowait);
4374	delayacct_blkio_end();
4375	return ret;
4376}
4377
4378/**
4379 * sys_sched_get_priority_max - return maximum RT priority.
4380 * @policy: scheduling class.
4381 *
4382 * this syscall returns the maximum rt_priority that can be used
4383 * by a given scheduling class.
4384 */
4385SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4386{
4387	int ret = -EINVAL;
4388
4389	switch (policy) {
4390	case SCHED_FIFO:
4391	case SCHED_RR:
4392		ret = MAX_USER_RT_PRIO-1;
4393		break;
4394	case SCHED_NORMAL:
4395	case SCHED_BATCH:
4396	case SCHED_IDLE:
4397		ret = 0;
4398		break;
4399	}
4400	return ret;
4401}
4402
4403/**
4404 * sys_sched_get_priority_min - return minimum RT priority.
4405 * @policy: scheduling class.
4406 *
4407 * this syscall returns the minimum rt_priority that can be used
4408 * by a given scheduling class.
4409 */
4410SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4411{
4412	int ret = -EINVAL;
4413
4414	switch (policy) {
4415	case SCHED_FIFO:
4416	case SCHED_RR:
4417		ret = 1;
4418		break;
4419	case SCHED_NORMAL:
4420	case SCHED_BATCH:
4421	case SCHED_IDLE:
4422		ret = 0;
4423	}
4424	return ret;
4425}
4426
4427/**
4428 * sys_sched_rr_get_interval - return the default timeslice of a process.
4429 * @pid: pid of the process.
4430 * @interval: userspace pointer to the timeslice value.
4431 *
4432 * this syscall writes the default timeslice value of a given process
4433 * into the user-space timespec buffer. A value of '0' means infinity.
4434 */
4435SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4436		struct timespec __user *, interval)
4437{
4438	struct task_struct *p;
4439	unsigned int time_slice;
4440	unsigned long flags;
4441	struct rq *rq;
4442	int retval;
4443	struct timespec t;
4444
4445	if (pid < 0)
4446		return -EINVAL;
4447
4448	retval = -ESRCH;
4449	rcu_read_lock();
4450	p = find_process_by_pid(pid);
4451	if (!p)
4452		goto out_unlock;
4453
4454	retval = security_task_getscheduler(p);
4455	if (retval)
4456		goto out_unlock;
4457
4458	rq = task_rq_lock(p, &flags);
4459	time_slice = p->sched_class->get_rr_interval(rq, p);
4460	task_rq_unlock(rq, p, &flags);
4461
4462	rcu_read_unlock();
4463	jiffies_to_timespec(time_slice, &t);
4464	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4465	return retval;
4466
4467out_unlock:
4468	rcu_read_unlock();
4469	return retval;
4470}
4471
4472static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4473
4474void sched_show_task(struct task_struct *p)
4475{
4476	unsigned long free = 0;
4477	unsigned state;
4478
4479	state = p->state ? __ffs(p->state) + 1 : 0;
4480	printk(KERN_INFO "%-15.15s %c", p->comm,
4481		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4482#if BITS_PER_LONG == 32
4483	if (state == TASK_RUNNING)
4484		printk(KERN_CONT " running  ");
4485	else
4486		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4487#else
4488	if (state == TASK_RUNNING)
4489		printk(KERN_CONT "  running task    ");
4490	else
4491		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4492#endif
4493#ifdef CONFIG_DEBUG_STACK_USAGE
4494	free = stack_not_used(p);
4495#endif
4496	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4497		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4498		(unsigned long)task_thread_info(p)->flags);
4499
4500	show_stack(p, NULL);
4501}
4502
4503void show_state_filter(unsigned long state_filter)
4504{
4505	struct task_struct *g, *p;
4506
4507#if BITS_PER_LONG == 32
4508	printk(KERN_INFO
4509		"  task                PC stack   pid father\n");
4510#else
4511	printk(KERN_INFO
4512		"  task                        PC stack   pid father\n");
4513#endif
4514	rcu_read_lock();
4515	do_each_thread(g, p) {
4516		/*
4517		 * reset the NMI-timeout, listing all files on a slow
4518		 * console might take a lot of time:
4519		 */
4520		touch_nmi_watchdog();
4521		if (!state_filter || (p->state & state_filter))
4522			sched_show_task(p);
4523	} while_each_thread(g, p);
4524
4525	touch_all_softlockup_watchdogs();
4526
4527#ifdef CONFIG_SCHED_DEBUG
4528	sysrq_sched_debug_show();
4529#endif
4530	rcu_read_unlock();
4531	/*
4532	 * Only show locks if all tasks are dumped:
4533	 */
4534	if (!state_filter)
4535		debug_show_all_locks();
4536}
4537
4538void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4539{
4540	idle->sched_class = &idle_sched_class;
4541}
4542
4543/**
4544 * init_idle - set up an idle thread for a given CPU
4545 * @idle: task in question
4546 * @cpu: cpu the idle task belongs to
4547 *
4548 * NOTE: this function does not set the idle thread's NEED_RESCHED
4549 * flag, to make booting more robust.
4550 */
4551void __cpuinit init_idle(struct task_struct *idle, int cpu)
4552{
4553	struct rq *rq = cpu_rq(cpu);
4554	unsigned long flags;
4555
4556	raw_spin_lock_irqsave(&rq->lock, flags);
4557
4558	__sched_fork(idle);
4559	idle->state = TASK_RUNNING;
4560	idle->se.exec_start = sched_clock();
4561
4562	do_set_cpus_allowed(idle, cpumask_of(cpu));
4563	/*
4564	 * We're having a chicken and egg problem, even though we are
4565	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4566	 * lockdep check in task_group() will fail.
4567	 *
4568	 * Similar case to sched_fork(). / Alternatively we could
4569	 * use task_rq_lock() here and obtain the other rq->lock.
4570	 *
4571	 * Silence PROVE_RCU
4572	 */
4573	rcu_read_lock();
4574	__set_task_cpu(idle, cpu);
4575	rcu_read_unlock();
4576
4577	rq->curr = rq->idle = idle;
4578#if defined(CONFIG_SMP)
4579	idle->on_cpu = 1;
4580#endif
4581	raw_spin_unlock_irqrestore(&rq->lock, flags);
4582
4583	/* Set the preempt count _outside_ the spinlocks! */
4584	task_thread_info(idle)->preempt_count = 0;
4585
4586	/*
4587	 * The idle tasks have their own, simple scheduling class:
4588	 */
4589	idle->sched_class = &idle_sched_class;
4590	ftrace_graph_init_idle_task(idle, cpu);
4591#if defined(CONFIG_SMP)
4592	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4593#endif
4594}
4595
4596#ifdef CONFIG_SMP
4597void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4598{
4599	if (p->sched_class && p->sched_class->set_cpus_allowed)
4600		p->sched_class->set_cpus_allowed(p, new_mask);
4601
4602	cpumask_copy(&p->cpus_allowed, new_mask);
4603	p->nr_cpus_allowed = cpumask_weight(new_mask);
4604}
4605
4606/*
4607 * This is how migration works:
4608 *
4609 * 1) we invoke migration_cpu_stop() on the target CPU using
4610 *    stop_one_cpu().
4611 * 2) stopper starts to run (implicitly forcing the migrated thread
4612 *    off the CPU)
4613 * 3) it checks whether the migrated task is still in the wrong runqueue.
4614 * 4) if it's in the wrong runqueue then the migration thread removes
4615 *    it and puts it into the right queue.
4616 * 5) stopper completes and stop_one_cpu() returns and the migration
4617 *    is done.
4618 */
4619
4620/*
4621 * Change a given task's CPU affinity. Migrate the thread to a
4622 * proper CPU and schedule it away if the CPU it's executing on
4623 * is removed from the allowed bitmask.
4624 *
4625 * NOTE: the caller must have a valid reference to the task, the
4626 * task must not exit() & deallocate itself prematurely. The
4627 * call is not atomic; no spinlocks may be held.
4628 */
4629int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4630{
4631	unsigned long flags;
4632	struct rq *rq;
4633	unsigned int dest_cpu;
4634	int ret = 0;
4635
4636	rq = task_rq_lock(p, &flags);
4637
4638	if (cpumask_equal(&p->cpus_allowed, new_mask))
4639		goto out;
4640
4641	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4642		ret = -EINVAL;
4643		goto out;
4644	}
4645
4646	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4647		ret = -EINVAL;
4648		goto out;
4649	}
4650
4651	do_set_cpus_allowed(p, new_mask);
4652
4653	/* Can the task run on the task's current CPU? If so, we're done */
4654	if (cpumask_test_cpu(task_cpu(p), new_mask))
4655		goto out;
4656
4657	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4658	if (p->on_rq) {
4659		struct migration_arg arg = { p, dest_cpu };
4660		/* Need help from migration thread: drop lock and wait. */
4661		task_rq_unlock(rq, p, &flags);
4662		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4663		tlb_migrate_finish(p->mm);
4664		return 0;
4665	}
4666out:
4667	task_rq_unlock(rq, p, &flags);
4668
4669	return ret;
4670}
4671EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4672
4673/*
4674 * Move (not current) task off this cpu, onto dest cpu. We're doing
4675 * this because either it can't run here any more (set_cpus_allowed()
4676 * away from this CPU, or CPU going down), or because we're
4677 * attempting to rebalance this task on exec (sched_exec).
4678 *
4679 * So we race with normal scheduler movements, but that's OK, as long
4680 * as the task is no longer on this CPU.
4681 *
4682 * Returns non-zero if task was successfully migrated.
4683 */
4684static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4685{
4686	struct rq *rq_dest, *rq_src;
4687	int ret = 0;
4688
4689	if (unlikely(!cpu_active(dest_cpu)))
4690		return ret;
4691
4692	rq_src = cpu_rq(src_cpu);
4693	rq_dest = cpu_rq(dest_cpu);
4694
4695	raw_spin_lock(&p->pi_lock);
4696	double_rq_lock(rq_src, rq_dest);
4697	/* Already moved. */
4698	if (task_cpu(p) != src_cpu)
4699		goto done;
4700	/* Affinity changed (again). */
4701	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4702		goto fail;
4703
4704	/*
4705	 * If we're not on a rq, the next wake-up will ensure we're
4706	 * placed properly.
4707	 */
4708	if (p->on_rq) {
4709		dequeue_task(rq_src, p, 0);
4710		set_task_cpu(p, dest_cpu);
4711		enqueue_task(rq_dest, p, 0);
4712		check_preempt_curr(rq_dest, p, 0);
4713	}
4714done:
4715	ret = 1;
4716fail:
4717	double_rq_unlock(rq_src, rq_dest);
4718	raw_spin_unlock(&p->pi_lock);
4719	return ret;
4720}
4721
4722/*
4723 * migration_cpu_stop - this will be executed by a highprio stopper thread
4724 * and performs thread migration by bumping thread off CPU then
4725 * 'pushing' onto another runqueue.
4726 */
4727static int migration_cpu_stop(void *data)
4728{
4729	struct migration_arg *arg = data;
4730
4731	/*
4732	 * The original target cpu might have gone down and we might
4733	 * be on another cpu but it doesn't matter.
4734	 */
4735	local_irq_disable();
4736	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4737	local_irq_enable();
4738	return 0;
4739}
4740
4741#ifdef CONFIG_HOTPLUG_CPU
4742
4743/*
4744 * Ensures that the idle task is using init_mm right before its cpu goes
4745 * offline.
4746 */
4747void idle_task_exit(void)
4748{
4749	struct mm_struct *mm = current->active_mm;
4750
4751	BUG_ON(cpu_online(smp_processor_id()));
4752
4753	if (mm != &init_mm)
4754		switch_mm(mm, &init_mm, current);
4755	mmdrop(mm);
4756}
4757
4758/*
4759 * Since this CPU is going 'away' for a while, fold any nr_active delta
4760 * we might have. Assumes we're called after migrate_tasks() so that the
4761 * nr_active count is stable.
4762 *
4763 * Also see the comment "Global load-average calculations".
4764 */
4765static void calc_load_migrate(struct rq *rq)
4766{
4767	long delta = calc_load_fold_active(rq);
4768	if (delta)
4769		atomic_long_add(delta, &calc_load_tasks);
4770}
4771
4772/*
4773 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4774 * try_to_wake_up()->select_task_rq().
4775 *
4776 * Called with rq->lock held even though we'er in stop_machine() and
4777 * there's no concurrency possible, we hold the required locks anyway
4778 * because of lock validation efforts.
4779 */
4780static void migrate_tasks(unsigned int dead_cpu)
4781{
4782	struct rq *rq = cpu_rq(dead_cpu);
4783	struct task_struct *next, *stop = rq->stop;
4784	int dest_cpu;
4785
4786	/*
4787	 * Fudge the rq selection such that the below task selection loop
4788	 * doesn't get stuck on the currently eligible stop task.
4789	 *
4790	 * We're currently inside stop_machine() and the rq is either stuck
4791	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4792	 * either way we should never end up calling schedule() until we're
4793	 * done here.
4794	 */
4795	rq->stop = NULL;
4796
4797	for ( ; ; ) {
4798		/*
4799		 * There's this thread running, bail when that's the only
4800		 * remaining thread.
4801		 */
4802		if (rq->nr_running == 1)
4803			break;
4804
4805		next = pick_next_task(rq);
4806		BUG_ON(!next);
4807		next->sched_class->put_prev_task(rq, next);
4808
4809		/* Find suitable destination for @next, with force if needed. */
4810		dest_cpu = select_fallback_rq(dead_cpu, next);
4811		raw_spin_unlock(&rq->lock);
4812
4813		__migrate_task(next, dead_cpu, dest_cpu);
4814
4815		raw_spin_lock(&rq->lock);
4816	}
4817
4818	rq->stop = stop;
4819}
4820
4821#endif /* CONFIG_HOTPLUG_CPU */
4822
4823#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4824
4825static struct ctl_table sd_ctl_dir[] = {
4826	{
4827		.procname	= "sched_domain",
4828		.mode		= 0555,
4829	},
4830	{}
4831};
4832
4833static struct ctl_table sd_ctl_root[] = {
4834	{
4835		.procname	= "kernel",
4836		.mode		= 0555,
4837		.child		= sd_ctl_dir,
4838	},
4839	{}
4840};
4841
4842static struct ctl_table *sd_alloc_ctl_entry(int n)
4843{
4844	struct ctl_table *entry =
4845		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4846
4847	return entry;
4848}
4849
4850static void sd_free_ctl_entry(struct ctl_table **tablep)
4851{
4852	struct ctl_table *entry;
4853
4854	/*
4855	 * In the intermediate directories, both the child directory and
4856	 * procname are dynamically allocated and could fail but the mode
4857	 * will always be set. In the lowest directory the names are
4858	 * static strings and all have proc handlers.
4859	 */
4860	for (entry = *tablep; entry->mode; entry++) {
4861		if (entry->child)
4862			sd_free_ctl_entry(&entry->child);
4863		if (entry->proc_handler == NULL)
4864			kfree(entry->procname);
4865	}
4866
4867	kfree(*tablep);
4868	*tablep = NULL;
4869}
4870
4871static int min_load_idx = 0;
4872static int max_load_idx = CPU_LOAD_IDX_MAX;
4873
4874static void
4875set_table_entry(struct ctl_table *entry,
4876		const char *procname, void *data, int maxlen,
4877		umode_t mode, proc_handler *proc_handler,
4878		bool load_idx)
4879{
4880	entry->procname = procname;
4881	entry->data = data;
4882	entry->maxlen = maxlen;
4883	entry->mode = mode;
4884	entry->proc_handler = proc_handler;
4885
4886	if (load_idx) {
4887		entry->extra1 = &min_load_idx;
4888		entry->extra2 = &max_load_idx;
4889	}
4890}
4891
4892static struct ctl_table *
4893sd_alloc_ctl_domain_table(struct sched_domain *sd)
4894{
4895	struct ctl_table *table = sd_alloc_ctl_entry(13);
4896
4897	if (table == NULL)
4898		return NULL;
4899
4900	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4901		sizeof(long), 0644, proc_doulongvec_minmax, false);
4902	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4903		sizeof(long), 0644, proc_doulongvec_minmax, false);
4904	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4905		sizeof(int), 0644, proc_dointvec_minmax, true);
4906	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4907		sizeof(int), 0644, proc_dointvec_minmax, true);
4908	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4909		sizeof(int), 0644, proc_dointvec_minmax, true);
4910	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4911		sizeof(int), 0644, proc_dointvec_minmax, true);
4912	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4913		sizeof(int), 0644, proc_dointvec_minmax, true);
4914	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4915		sizeof(int), 0644, proc_dointvec_minmax, false);
4916	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4917		sizeof(int), 0644, proc_dointvec_minmax, false);
4918	set_table_entry(&table[9], "cache_nice_tries",
4919		&sd->cache_nice_tries,
4920		sizeof(int), 0644, proc_dointvec_minmax, false);
4921	set_table_entry(&table[10], "flags", &sd->flags,
4922		sizeof(int), 0644, proc_dointvec_minmax, false);
4923	set_table_entry(&table[11], "name", sd->name,
4924		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4925	/* &table[12] is terminator */
4926
4927	return table;
4928}
4929
4930static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4931{
4932	struct ctl_table *entry, *table;
4933	struct sched_domain *sd;
4934	int domain_num = 0, i;
4935	char buf[32];
4936
4937	for_each_domain(cpu, sd)
4938		domain_num++;
4939	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4940	if (table == NULL)
4941		return NULL;
4942
4943	i = 0;
4944	for_each_domain(cpu, sd) {
4945		snprintf(buf, 32, "domain%d", i);
4946		entry->procname = kstrdup(buf, GFP_KERNEL);
4947		entry->mode = 0555;
4948		entry->child = sd_alloc_ctl_domain_table(sd);
4949		entry++;
4950		i++;
4951	}
4952	return table;
4953}
4954
4955static struct ctl_table_header *sd_sysctl_header;
4956static void register_sched_domain_sysctl(void)
4957{
4958	int i, cpu_num = num_possible_cpus();
4959	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4960	char buf[32];
4961
4962	WARN_ON(sd_ctl_dir[0].child);
4963	sd_ctl_dir[0].child = entry;
4964
4965	if (entry == NULL)
4966		return;
4967
4968	for_each_possible_cpu(i) {
4969		snprintf(buf, 32, "cpu%d", i);
4970		entry->procname = kstrdup(buf, GFP_KERNEL);
4971		entry->mode = 0555;
4972		entry->child = sd_alloc_ctl_cpu_table(i);
4973		entry++;
4974	}
4975
4976	WARN_ON(sd_sysctl_header);
4977	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4978}
4979
4980/* may be called multiple times per register */
4981static void unregister_sched_domain_sysctl(void)
4982{
4983	if (sd_sysctl_header)
4984		unregister_sysctl_table(sd_sysctl_header);
4985	sd_sysctl_header = NULL;
4986	if (sd_ctl_dir[0].child)
4987		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4988}
4989#else
4990static void register_sched_domain_sysctl(void)
4991{
4992}
4993static void unregister_sched_domain_sysctl(void)
4994{
4995}
4996#endif
4997
4998static void set_rq_online(struct rq *rq)
4999{
5000	if (!rq->online) {
5001		const struct sched_class *class;
5002
5003		cpumask_set_cpu(rq->cpu, rq->rd->online);
5004		rq->online = 1;
5005
5006		for_each_class(class) {
5007			if (class->rq_online)
5008				class->rq_online(rq);
5009		}
5010	}
5011}
5012
5013static void set_rq_offline(struct rq *rq)
5014{
5015	if (rq->online) {
5016		const struct sched_class *class;
5017
5018		for_each_class(class) {
5019			if (class->rq_offline)
5020				class->rq_offline(rq);
5021		}
5022
5023		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5024		rq->online = 0;
5025	}
5026}
5027
5028/*
5029 * migration_call - callback that gets triggered when a CPU is added.
5030 * Here we can start up the necessary migration thread for the new CPU.
5031 */
5032static int __cpuinit
5033migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5034{
5035	int cpu = (long)hcpu;
5036	unsigned long flags;
5037	struct rq *rq = cpu_rq(cpu);
5038
5039	switch (action & ~CPU_TASKS_FROZEN) {
5040
5041	case CPU_UP_PREPARE:
5042		rq->calc_load_update = calc_load_update;
5043		break;
5044
5045	case CPU_ONLINE:
5046		/* Update our root-domain */
5047		raw_spin_lock_irqsave(&rq->lock, flags);
5048		if (rq->rd) {
5049			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5050
5051			set_rq_online(rq);
5052		}
5053		raw_spin_unlock_irqrestore(&rq->lock, flags);
5054		break;
5055
5056#ifdef CONFIG_HOTPLUG_CPU
5057	case CPU_DYING:
5058		sched_ttwu_pending();
5059		/* Update our root-domain */
5060		raw_spin_lock_irqsave(&rq->lock, flags);
5061		if (rq->rd) {
5062			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5063			set_rq_offline(rq);
5064		}
5065		migrate_tasks(cpu);
5066		BUG_ON(rq->nr_running != 1); /* the migration thread */
5067		raw_spin_unlock_irqrestore(&rq->lock, flags);
5068		break;
5069
5070	case CPU_DEAD:
5071		calc_load_migrate(rq);
5072		break;
5073#endif
5074	}
5075
5076	update_max_interval();
5077
5078	return NOTIFY_OK;
5079}
5080
5081/*
5082 * Register at high priority so that task migration (migrate_all_tasks)
5083 * happens before everything else.  This has to be lower priority than
5084 * the notifier in the perf_event subsystem, though.
5085 */
5086static struct notifier_block __cpuinitdata migration_notifier = {
5087	.notifier_call = migration_call,
5088	.priority = CPU_PRI_MIGRATION,
5089};
5090
5091static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5092				      unsigned long action, void *hcpu)
5093{
5094	switch (action & ~CPU_TASKS_FROZEN) {
5095	case CPU_STARTING:
5096	case CPU_DOWN_FAILED:
5097		set_cpu_active((long)hcpu, true);
5098		return NOTIFY_OK;
5099	default:
5100		return NOTIFY_DONE;
5101	}
5102}
5103
5104static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5105					unsigned long action, void *hcpu)
5106{
5107	switch (action & ~CPU_TASKS_FROZEN) {
5108	case CPU_DOWN_PREPARE:
5109		set_cpu_active((long)hcpu, false);
5110		return NOTIFY_OK;
5111	default:
5112		return NOTIFY_DONE;
5113	}
5114}
5115
5116static int __init migration_init(void)
5117{
5118	void *cpu = (void *)(long)smp_processor_id();
5119	int err;
5120
5121	/* Initialize migration for the boot CPU */
5122	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5123	BUG_ON(err == NOTIFY_BAD);
5124	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5125	register_cpu_notifier(&migration_notifier);
5126
5127	/* Register cpu active notifiers */
5128	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5129	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5130
5131	return 0;
5132}
5133early_initcall(migration_init);
5134#endif
5135
5136#ifdef CONFIG_SMP
5137
5138static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5139
5140#ifdef CONFIG_SCHED_DEBUG
5141
5142static __read_mostly int sched_debug_enabled;
5143
5144static int __init sched_debug_setup(char *str)
5145{
5146	sched_debug_enabled = 1;
5147
5148	return 0;
5149}
5150early_param("sched_debug", sched_debug_setup);
5151
5152static inline bool sched_debug(void)
5153{
5154	return sched_debug_enabled;
5155}
5156
5157static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5158				  struct cpumask *groupmask)
5159{
5160	struct sched_group *group = sd->groups;
5161	char str[256];
5162
5163	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5164	cpumask_clear(groupmask);
5165
5166	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5167
5168	if (!(sd->flags & SD_LOAD_BALANCE)) {
5169		printk("does not load-balance\n");
5170		if (sd->parent)
5171			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5172					" has parent");
5173		return -1;
5174	}
5175
5176	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5177
5178	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5179		printk(KERN_ERR "ERROR: domain->span does not contain "
5180				"CPU%d\n", cpu);
5181	}
5182	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5183		printk(KERN_ERR "ERROR: domain->groups does not contain"
5184				" CPU%d\n", cpu);
5185	}
5186
5187	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5188	do {
5189		if (!group) {
5190			printk("\n");
5191			printk(KERN_ERR "ERROR: group is NULL\n");
5192			break;
5193		}
5194
5195		/*
5196		 * Even though we initialize ->power to something semi-sane,
5197		 * we leave power_orig unset. This allows us to detect if
5198		 * domain iteration is still funny without causing /0 traps.
5199		 */
5200		if (!group->sgp->power_orig) {
5201			printk(KERN_CONT "\n");
5202			printk(KERN_ERR "ERROR: domain->cpu_power not "
5203					"set\n");
5204			break;
5205		}
5206
5207		if (!cpumask_weight(sched_group_cpus(group))) {
5208			printk(KERN_CONT "\n");
5209			printk(KERN_ERR "ERROR: empty group\n");
5210			break;
5211		}
5212
5213		if (!(sd->flags & SD_OVERLAP) &&
5214		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5215			printk(KERN_CONT "\n");
5216			printk(KERN_ERR "ERROR: repeated CPUs\n");
5217			break;
5218		}
5219
5220		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5221
5222		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5223
5224		printk(KERN_CONT " %s", str);
5225		if (group->sgp->power != SCHED_POWER_SCALE) {
5226			printk(KERN_CONT " (cpu_power = %d)",
5227				group->sgp->power);
5228		}
5229
5230		group = group->next;
5231	} while (group != sd->groups);
5232	printk(KERN_CONT "\n");
5233
5234	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5235		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5236
5237	if (sd->parent &&
5238	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5239		printk(KERN_ERR "ERROR: parent span is not a superset "
5240			"of domain->span\n");
5241	return 0;
5242}
5243
5244static void sched_domain_debug(struct sched_domain *sd, int cpu)
5245{
5246	int level = 0;
5247
5248	if (!sched_debug_enabled)
5249		return;
5250
5251	if (!sd) {
5252		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5253		return;
5254	}
5255
5256	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5257
5258	for (;;) {
5259		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5260			break;
5261		level++;
5262		sd = sd->parent;
5263		if (!sd)
5264			break;
5265	}
5266}
5267#else /* !CONFIG_SCHED_DEBUG */
5268# define sched_domain_debug(sd, cpu) do { } while (0)
5269static inline bool sched_debug(void)
5270{
5271	return false;
5272}
5273#endif /* CONFIG_SCHED_DEBUG */
5274
5275static int sd_degenerate(struct sched_domain *sd)
5276{
5277	if (cpumask_weight(sched_domain_span(sd)) == 1)
5278		return 1;
5279
5280	/* Following flags need at least 2 groups */
5281	if (sd->flags & (SD_LOAD_BALANCE |
5282			 SD_BALANCE_NEWIDLE |
5283			 SD_BALANCE_FORK |
5284			 SD_BALANCE_EXEC |
5285			 SD_SHARE_CPUPOWER |
5286			 SD_SHARE_PKG_RESOURCES)) {
5287		if (sd->groups != sd->groups->next)
5288			return 0;
5289	}
5290
5291	/* Following flags don't use groups */
5292	if (sd->flags & (SD_WAKE_AFFINE))
5293		return 0;
5294
5295	return 1;
5296}
5297
5298static int
5299sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5300{
5301	unsigned long cflags = sd->flags, pflags = parent->flags;
5302
5303	if (sd_degenerate(parent))
5304		return 1;
5305
5306	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5307		return 0;
5308
5309	/* Flags needing groups don't count if only 1 group in parent */
5310	if (parent->groups == parent->groups->next) {
5311		pflags &= ~(SD_LOAD_BALANCE |
5312				SD_BALANCE_NEWIDLE |
5313				SD_BALANCE_FORK |
5314				SD_BALANCE_EXEC |
5315				SD_SHARE_CPUPOWER |
5316				SD_SHARE_PKG_RESOURCES);
5317		if (nr_node_ids == 1)
5318			pflags &= ~SD_SERIALIZE;
5319	}
5320	if (~cflags & pflags)
5321		return 0;
5322
5323	return 1;
5324}
5325
5326static void free_rootdomain(struct rcu_head *rcu)
5327{
5328	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5329
5330	cpupri_cleanup(&rd->cpupri);
5331	free_cpumask_var(rd->rto_mask);
5332	free_cpumask_var(rd->online);
5333	free_cpumask_var(rd->span);
5334	kfree(rd);
5335}
5336
5337static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5338{
5339	struct root_domain *old_rd = NULL;
5340	unsigned long flags;
5341
5342	raw_spin_lock_irqsave(&rq->lock, flags);
5343
5344	if (rq->rd) {
5345		old_rd = rq->rd;
5346
5347		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5348			set_rq_offline(rq);
5349
5350		cpumask_clear_cpu(rq->cpu, old_rd->span);
5351
5352		/*
5353		 * If we dont want to free the old_rt yet then
5354		 * set old_rd to NULL to skip the freeing later
5355		 * in this function:
5356		 */
5357		if (!atomic_dec_and_test(&old_rd->refcount))
5358			old_rd = NULL;
5359	}
5360
5361	atomic_inc(&rd->refcount);
5362	rq->rd = rd;
5363
5364	cpumask_set_cpu(rq->cpu, rd->span);
5365	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5366		set_rq_online(rq);
5367
5368	raw_spin_unlock_irqrestore(&rq->lock, flags);
5369
5370	if (old_rd)
5371		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5372}
5373
5374static int init_rootdomain(struct root_domain *rd)
5375{
5376	memset(rd, 0, sizeof(*rd));
5377
5378	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5379		goto out;
5380	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5381		goto free_span;
5382	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5383		goto free_online;
5384
5385	if (cpupri_init(&rd->cpupri) != 0)
5386		goto free_rto_mask;
5387	return 0;
5388
5389free_rto_mask:
5390	free_cpumask_var(rd->rto_mask);
5391free_online:
5392	free_cpumask_var(rd->online);
5393free_span:
5394	free_cpumask_var(rd->span);
5395out:
5396	return -ENOMEM;
5397}
5398
5399/*
5400 * By default the system creates a single root-domain with all cpus as
5401 * members (mimicking the global state we have today).
5402 */
5403struct root_domain def_root_domain;
5404
5405static void init_defrootdomain(void)
5406{
5407	init_rootdomain(&def_root_domain);
5408
5409	atomic_set(&def_root_domain.refcount, 1);
5410}
5411
5412static struct root_domain *alloc_rootdomain(void)
5413{
5414	struct root_domain *rd;
5415
5416	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5417	if (!rd)
5418		return NULL;
5419
5420	if (init_rootdomain(rd) != 0) {
5421		kfree(rd);
5422		return NULL;
5423	}
5424
5425	return rd;
5426}
5427
5428static void free_sched_groups(struct sched_group *sg, int free_sgp)
5429{
5430	struct sched_group *tmp, *first;
5431
5432	if (!sg)
5433		return;
5434
5435	first = sg;
5436	do {
5437		tmp = sg->next;
5438
5439		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5440			kfree(sg->sgp);
5441
5442		kfree(sg);
5443		sg = tmp;
5444	} while (sg != first);
5445}
5446
5447static void free_sched_domain(struct rcu_head *rcu)
5448{
5449	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5450
5451	/*
5452	 * If its an overlapping domain it has private groups, iterate and
5453	 * nuke them all.
5454	 */
5455	if (sd->flags & SD_OVERLAP) {
5456		free_sched_groups(sd->groups, 1);
5457	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5458		kfree(sd->groups->sgp);
5459		kfree(sd->groups);
5460	}
5461	kfree(sd);
5462}
5463
5464static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5465{
5466	call_rcu(&sd->rcu, free_sched_domain);
5467}
5468
5469static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5470{
5471	for (; sd; sd = sd->parent)
5472		destroy_sched_domain(sd, cpu);
5473}
5474
5475/*
5476 * Keep a special pointer to the highest sched_domain that has
5477 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5478 * allows us to avoid some pointer chasing select_idle_sibling().
5479 *
5480 * Also keep a unique ID per domain (we use the first cpu number in
5481 * the cpumask of the domain), this allows us to quickly tell if
5482 * two cpus are in the same cache domain, see cpus_share_cache().
5483 */
5484DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5485DEFINE_PER_CPU(int, sd_llc_id);
5486
5487static void update_top_cache_domain(int cpu)
5488{
5489	struct sched_domain *sd;
5490	int id = cpu;
5491
5492	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5493	if (sd)
5494		id = cpumask_first(sched_domain_span(sd));
5495
5496	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5497	per_cpu(sd_llc_id, cpu) = id;
5498}
5499
5500/*
5501 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5502 * hold the hotplug lock.
5503 */
5504static void
5505cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5506{
5507	struct rq *rq = cpu_rq(cpu);
5508	struct sched_domain *tmp;
5509
5510	/* Remove the sched domains which do not contribute to scheduling. */
5511	for (tmp = sd; tmp; ) {
5512		struct sched_domain *parent = tmp->parent;
5513		if (!parent)
5514			break;
5515
5516		if (sd_parent_degenerate(tmp, parent)) {
5517			tmp->parent = parent->parent;
5518			if (parent->parent)
5519				parent->parent->child = tmp;
5520			destroy_sched_domain(parent, cpu);
5521		} else
5522			tmp = tmp->parent;
5523	}
5524
5525	if (sd && sd_degenerate(sd)) {
5526		tmp = sd;
5527		sd = sd->parent;
5528		destroy_sched_domain(tmp, cpu);
5529		if (sd)
5530			sd->child = NULL;
5531	}
5532
5533	sched_domain_debug(sd, cpu);
5534
5535	rq_attach_root(rq, rd);
5536	tmp = rq->sd;
5537	rcu_assign_pointer(rq->sd, sd);
5538	destroy_sched_domains(tmp, cpu);
5539
5540	update_top_cache_domain(cpu);
5541}
5542
5543/* cpus with isolated domains */
5544static cpumask_var_t cpu_isolated_map;
5545
5546/* Setup the mask of cpus configured for isolated domains */
5547static int __init isolated_cpu_setup(char *str)
5548{
5549	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5550	cpulist_parse(str, cpu_isolated_map);
5551	return 1;
5552}
5553
5554__setup("isolcpus=", isolated_cpu_setup);
5555
5556static const struct cpumask *cpu_cpu_mask(int cpu)
5557{
5558	return cpumask_of_node(cpu_to_node(cpu));
5559}
5560
5561struct sd_data {
5562	struct sched_domain **__percpu sd;
5563	struct sched_group **__percpu sg;
5564	struct sched_group_power **__percpu sgp;
5565};
5566
5567struct s_data {
5568	struct sched_domain ** __percpu sd;
5569	struct root_domain	*rd;
5570};
5571
5572enum s_alloc {
5573	sa_rootdomain,
5574	sa_sd,
5575	sa_sd_storage,
5576	sa_none,
5577};
5578
5579struct sched_domain_topology_level;
5580
5581typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5582typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5583
5584#define SDTL_OVERLAP	0x01
5585
5586struct sched_domain_topology_level {
5587	sched_domain_init_f init;
5588	sched_domain_mask_f mask;
5589	int		    flags;
5590	int		    numa_level;
5591	struct sd_data      data;
5592};
5593
5594/*
5595 * Build an iteration mask that can exclude certain CPUs from the upwards
5596 * domain traversal.
5597 *
5598 * Asymmetric node setups can result in situations where the domain tree is of
5599 * unequal depth, make sure to skip domains that already cover the entire
5600 * range.
5601 *
5602 * In that case build_sched_domains() will have terminated the iteration early
5603 * and our sibling sd spans will be empty. Domains should always include the
5604 * cpu they're built on, so check that.
5605 *
5606 */
5607static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5608{
5609	const struct cpumask *span = sched_domain_span(sd);
5610	struct sd_data *sdd = sd->private;
5611	struct sched_domain *sibling;
5612	int i;
5613
5614	for_each_cpu(i, span) {
5615		sibling = *per_cpu_ptr(sdd->sd, i);
5616		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5617			continue;
5618
5619		cpumask_set_cpu(i, sched_group_mask(sg));
5620	}
5621}
5622
5623/*
5624 * Return the canonical balance cpu for this group, this is the first cpu
5625 * of this group that's also in the iteration mask.
5626 */
5627int group_balance_cpu(struct sched_group *sg)
5628{
5629	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5630}
5631
5632static int
5633build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5634{
5635	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5636	const struct cpumask *span = sched_domain_span(sd);
5637	struct cpumask *covered = sched_domains_tmpmask;
5638	struct sd_data *sdd = sd->private;
5639	struct sched_domain *child;
5640	int i;
5641
5642	cpumask_clear(covered);
5643
5644	for_each_cpu(i, span) {
5645		struct cpumask *sg_span;
5646
5647		if (cpumask_test_cpu(i, covered))
5648			continue;
5649
5650		child = *per_cpu_ptr(sdd->sd, i);
5651
5652		/* See the comment near build_group_mask(). */
5653		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5654			continue;
5655
5656		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5657				GFP_KERNEL, cpu_to_node(cpu));
5658
5659		if (!sg)
5660			goto fail;
5661
5662		sg_span = sched_group_cpus(sg);
5663		if (child->child) {
5664			child = child->child;
5665			cpumask_copy(sg_span, sched_domain_span(child));
5666		} else
5667			cpumask_set_cpu(i, sg_span);
5668
5669		cpumask_or(covered, covered, sg_span);
5670
5671		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5672		if (atomic_inc_return(&sg->sgp->ref) == 1)
5673			build_group_mask(sd, sg);
5674
5675		/*
5676		 * Initialize sgp->power such that even if we mess up the
5677		 * domains and no possible iteration will get us here, we won't
5678		 * die on a /0 trap.
5679		 */
5680		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5681
5682		/*
5683		 * Make sure the first group of this domain contains the
5684		 * canonical balance cpu. Otherwise the sched_domain iteration
5685		 * breaks. See update_sg_lb_stats().
5686		 */
5687		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5688		    group_balance_cpu(sg) == cpu)
5689			groups = sg;
5690
5691		if (!first)
5692			first = sg;
5693		if (last)
5694			last->next = sg;
5695		last = sg;
5696		last->next = first;
5697	}
5698	sd->groups = groups;
5699
5700	return 0;
5701
5702fail:
5703	free_sched_groups(first, 0);
5704
5705	return -ENOMEM;
5706}
5707
5708static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5709{
5710	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5711	struct sched_domain *child = sd->child;
5712
5713	if (child)
5714		cpu = cpumask_first(sched_domain_span(child));
5715
5716	if (sg) {
5717		*sg = *per_cpu_ptr(sdd->sg, cpu);
5718		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5719		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5720	}
5721
5722	return cpu;
5723}
5724
5725/*
5726 * build_sched_groups will build a circular linked list of the groups
5727 * covered by the given span, and will set each group's ->cpumask correctly,
5728 * and ->cpu_power to 0.
5729 *
5730 * Assumes the sched_domain tree is fully constructed
5731 */
5732static int
5733build_sched_groups(struct sched_domain *sd, int cpu)
5734{
5735	struct sched_group *first = NULL, *last = NULL;
5736	struct sd_data *sdd = sd->private;
5737	const struct cpumask *span = sched_domain_span(sd);
5738	struct cpumask *covered;
5739	int i;
5740
5741	get_group(cpu, sdd, &sd->groups);
5742	atomic_inc(&sd->groups->ref);
5743
5744	if (cpu != cpumask_first(sched_domain_span(sd)))
5745		return 0;
5746
5747	lockdep_assert_held(&sched_domains_mutex);
5748	covered = sched_domains_tmpmask;
5749
5750	cpumask_clear(covered);
5751
5752	for_each_cpu(i, span) {
5753		struct sched_group *sg;
5754		int group = get_group(i, sdd, &sg);
5755		int j;
5756
5757		if (cpumask_test_cpu(i, covered))
5758			continue;
5759
5760		cpumask_clear(sched_group_cpus(sg));
5761		sg->sgp->power = 0;
5762		cpumask_setall(sched_group_mask(sg));
5763
5764		for_each_cpu(j, span) {
5765			if (get_group(j, sdd, NULL) != group)
5766				continue;
5767
5768			cpumask_set_cpu(j, covered);
5769			cpumask_set_cpu(j, sched_group_cpus(sg));
5770		}
5771
5772		if (!first)
5773			first = sg;
5774		if (last)
5775			last->next = sg;
5776		last = sg;
5777	}
5778	last->next = first;
5779
5780	return 0;
5781}
5782
5783/*
5784 * Initialize sched groups cpu_power.
5785 *
5786 * cpu_power indicates the capacity of sched group, which is used while
5787 * distributing the load between different sched groups in a sched domain.
5788 * Typically cpu_power for all the groups in a sched domain will be same unless
5789 * there are asymmetries in the topology. If there are asymmetries, group
5790 * having more cpu_power will pickup more load compared to the group having
5791 * less cpu_power.
5792 */
5793static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5794{
5795	struct sched_group *sg = sd->groups;
5796
5797	WARN_ON(!sd || !sg);
5798
5799	do {
5800		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5801		sg = sg->next;
5802	} while (sg != sd->groups);
5803
5804	if (cpu != group_balance_cpu(sg))
5805		return;
5806
5807	update_group_power(sd, cpu);
5808	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5809}
5810
5811int __weak arch_sd_sibling_asym_packing(void)
5812{
5813       return 0*SD_ASYM_PACKING;
5814}
5815
5816/*
5817 * Initializers for schedule domains
5818 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5819 */
5820
5821#ifdef CONFIG_SCHED_DEBUG
5822# define SD_INIT_NAME(sd, type)		sd->name = #type
5823#else
5824# define SD_INIT_NAME(sd, type)		do { } while (0)
5825#endif
5826
5827#define SD_INIT_FUNC(type)						\
5828static noinline struct sched_domain *					\
5829sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5830{									\
5831	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5832	*sd = SD_##type##_INIT;						\
5833	SD_INIT_NAME(sd, type);						\
5834	sd->private = &tl->data;					\
5835	return sd;							\
5836}
5837
5838SD_INIT_FUNC(CPU)
5839#ifdef CONFIG_SCHED_SMT
5840 SD_INIT_FUNC(SIBLING)
5841#endif
5842#ifdef CONFIG_SCHED_MC
5843 SD_INIT_FUNC(MC)
5844#endif
5845#ifdef CONFIG_SCHED_BOOK
5846 SD_INIT_FUNC(BOOK)
5847#endif
5848
5849static int default_relax_domain_level = -1;
5850int sched_domain_level_max;
5851
5852static int __init setup_relax_domain_level(char *str)
5853{
5854	if (kstrtoint(str, 0, &default_relax_domain_level))
5855		pr_warn("Unable to set relax_domain_level\n");
5856
5857	return 1;
5858}
5859__setup("relax_domain_level=", setup_relax_domain_level);
5860
5861static void set_domain_attribute(struct sched_domain *sd,
5862				 struct sched_domain_attr *attr)
5863{
5864	int request;
5865
5866	if (!attr || attr->relax_domain_level < 0) {
5867		if (default_relax_domain_level < 0)
5868			return;
5869		else
5870			request = default_relax_domain_level;
5871	} else
5872		request = attr->relax_domain_level;
5873	if (request < sd->level) {
5874		/* turn off idle balance on this domain */
5875		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5876	} else {
5877		/* turn on idle balance on this domain */
5878		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5879	}
5880}
5881
5882static void __sdt_free(const struct cpumask *cpu_map);
5883static int __sdt_alloc(const struct cpumask *cpu_map);
5884
5885static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5886				 const struct cpumask *cpu_map)
5887{
5888	switch (what) {
5889	case sa_rootdomain:
5890		if (!atomic_read(&d->rd->refcount))
5891			free_rootdomain(&d->rd->rcu); /* fall through */
5892	case sa_sd:
5893		free_percpu(d->sd); /* fall through */
5894	case sa_sd_storage:
5895		__sdt_free(cpu_map); /* fall through */
5896	case sa_none:
5897		break;
5898	}
5899}
5900
5901static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5902						   const struct cpumask *cpu_map)
5903{
5904	memset(d, 0, sizeof(*d));
5905
5906	if (__sdt_alloc(cpu_map))
5907		return sa_sd_storage;
5908	d->sd = alloc_percpu(struct sched_domain *);
5909	if (!d->sd)
5910		return sa_sd_storage;
5911	d->rd = alloc_rootdomain();
5912	if (!d->rd)
5913		return sa_sd;
5914	return sa_rootdomain;
5915}
5916
5917/*
5918 * NULL the sd_data elements we've used to build the sched_domain and
5919 * sched_group structure so that the subsequent __free_domain_allocs()
5920 * will not free the data we're using.
5921 */
5922static void claim_allocations(int cpu, struct sched_domain *sd)
5923{
5924	struct sd_data *sdd = sd->private;
5925
5926	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5927	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5928
5929	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5930		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5931
5932	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5933		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5934}
5935
5936#ifdef CONFIG_SCHED_SMT
5937static const struct cpumask *cpu_smt_mask(int cpu)
5938{
5939	return topology_thread_cpumask(cpu);
5940}
5941#endif
5942
5943/*
5944 * Topology list, bottom-up.
5945 */
5946static struct sched_domain_topology_level default_topology[] = {
5947#ifdef CONFIG_SCHED_SMT
5948	{ sd_init_SIBLING, cpu_smt_mask, },
5949#endif
5950#ifdef CONFIG_SCHED_MC
5951	{ sd_init_MC, cpu_coregroup_mask, },
5952#endif
5953#ifdef CONFIG_SCHED_BOOK
5954	{ sd_init_BOOK, cpu_book_mask, },
5955#endif
5956	{ sd_init_CPU, cpu_cpu_mask, },
5957	{ NULL, },
5958};
5959
5960static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5961
5962#ifdef CONFIG_NUMA
5963
5964static int sched_domains_numa_levels;
5965static int *sched_domains_numa_distance;
5966static struct cpumask ***sched_domains_numa_masks;
5967static int sched_domains_curr_level;
5968
5969static inline int sd_local_flags(int level)
5970{
5971	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5972		return 0;
5973
5974	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5975}
5976
5977static struct sched_domain *
5978sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5979{
5980	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5981	int level = tl->numa_level;
5982	int sd_weight = cpumask_weight(
5983			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5984
5985	*sd = (struct sched_domain){
5986		.min_interval		= sd_weight,
5987		.max_interval		= 2*sd_weight,
5988		.busy_factor		= 32,
5989		.imbalance_pct		= 125,
5990		.cache_nice_tries	= 2,
5991		.busy_idx		= 3,
5992		.idle_idx		= 2,
5993		.newidle_idx		= 0,
5994		.wake_idx		= 0,
5995		.forkexec_idx		= 0,
5996
5997		.flags			= 1*SD_LOAD_BALANCE
5998					| 1*SD_BALANCE_NEWIDLE
5999					| 0*SD_BALANCE_EXEC
6000					| 0*SD_BALANCE_FORK
6001					| 0*SD_BALANCE_WAKE
6002					| 0*SD_WAKE_AFFINE
6003					| 0*SD_SHARE_CPUPOWER
6004					| 0*SD_SHARE_PKG_RESOURCES
6005					| 1*SD_SERIALIZE
6006					| 0*SD_PREFER_SIBLING
6007					| sd_local_flags(level)
6008					,
6009		.last_balance		= jiffies,
6010		.balance_interval	= sd_weight,
6011	};
6012	SD_INIT_NAME(sd, NUMA);
6013	sd->private = &tl->data;
6014
6015	/*
6016	 * Ugly hack to pass state to sd_numa_mask()...
6017	 */
6018	sched_domains_curr_level = tl->numa_level;
6019
6020	return sd;
6021}
6022
6023static const struct cpumask *sd_numa_mask(int cpu)
6024{
6025	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6026}
6027
6028static void sched_numa_warn(const char *str)
6029{
6030	static int done = false;
6031	int i,j;
6032
6033	if (done)
6034		return;
6035
6036	done = true;
6037
6038	printk(KERN_WARNING "ERROR: %s\n\n", str);
6039
6040	for (i = 0; i < nr_node_ids; i++) {
6041		printk(KERN_WARNING "  ");
6042		for (j = 0; j < nr_node_ids; j++)
6043			printk(KERN_CONT "%02d ", node_distance(i,j));
6044		printk(KERN_CONT "\n");
6045	}
6046	printk(KERN_WARNING "\n");
6047}
6048
6049static bool find_numa_distance(int distance)
6050{
6051	int i;
6052
6053	if (distance == node_distance(0, 0))
6054		return true;
6055
6056	for (i = 0; i < sched_domains_numa_levels; i++) {
6057		if (sched_domains_numa_distance[i] == distance)
6058			return true;
6059	}
6060
6061	return false;
6062}
6063
6064static void sched_init_numa(void)
6065{
6066	int next_distance, curr_distance = node_distance(0, 0);
6067	struct sched_domain_topology_level *tl;
6068	int level = 0;
6069	int i, j, k;
6070
6071	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6072	if (!sched_domains_numa_distance)
6073		return;
6074
6075	/*
6076	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6077	 * unique distances in the node_distance() table.
6078	 *
6079	 * Assumes node_distance(0,j) includes all distances in
6080	 * node_distance(i,j) in order to avoid cubic time.
6081	 */
6082	next_distance = curr_distance;
6083	for (i = 0; i < nr_node_ids; i++) {
6084		for (j = 0; j < nr_node_ids; j++) {
6085			for (k = 0; k < nr_node_ids; k++) {
6086				int distance = node_distance(i, k);
6087
6088				if (distance > curr_distance &&
6089				    (distance < next_distance ||
6090				     next_distance == curr_distance))
6091					next_distance = distance;
6092
6093				/*
6094				 * While not a strong assumption it would be nice to know
6095				 * about cases where if node A is connected to B, B is not
6096				 * equally connected to A.
6097				 */
6098				if (sched_debug() && node_distance(k, i) != distance)
6099					sched_numa_warn("Node-distance not symmetric");
6100
6101				if (sched_debug() && i && !find_numa_distance(distance))
6102					sched_numa_warn("Node-0 not representative");
6103			}
6104			if (next_distance != curr_distance) {
6105				sched_domains_numa_distance[level++] = next_distance;
6106				sched_domains_numa_levels = level;
6107				curr_distance = next_distance;
6108			} else break;
6109		}
6110
6111		/*
6112		 * In case of sched_debug() we verify the above assumption.
6113		 */
6114		if (!sched_debug())
6115			break;
6116	}
6117	/*
6118	 * 'level' contains the number of unique distances, excluding the
6119	 * identity distance node_distance(i,i).
6120	 *
6121	 * The sched_domains_nume_distance[] array includes the actual distance
6122	 * numbers.
6123	 */
6124
6125	/*
6126	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6127	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6128	 * the array will contain less then 'level' members. This could be
6129	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6130	 * in other functions.
6131	 *
6132	 * We reset it to 'level' at the end of this function.
6133	 */
6134	sched_domains_numa_levels = 0;
6135
6136	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6137	if (!sched_domains_numa_masks)
6138		return;
6139
6140	/*
6141	 * Now for each level, construct a mask per node which contains all
6142	 * cpus of nodes that are that many hops away from us.
6143	 */
6144	for (i = 0; i < level; i++) {
6145		sched_domains_numa_masks[i] =
6146			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6147		if (!sched_domains_numa_masks[i])
6148			return;
6149
6150		for (j = 0; j < nr_node_ids; j++) {
6151			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6152			if (!mask)
6153				return;
6154
6155			sched_domains_numa_masks[i][j] = mask;
6156
6157			for (k = 0; k < nr_node_ids; k++) {
6158				if (node_distance(j, k) > sched_domains_numa_distance[i])
6159					continue;
6160
6161				cpumask_or(mask, mask, cpumask_of_node(k));
6162			}
6163		}
6164	}
6165
6166	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6167			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6168	if (!tl)
6169		return;
6170
6171	/*
6172	 * Copy the default topology bits..
6173	 */
6174	for (i = 0; default_topology[i].init; i++)
6175		tl[i] = default_topology[i];
6176
6177	/*
6178	 * .. and append 'j' levels of NUMA goodness.
6179	 */
6180	for (j = 0; j < level; i++, j++) {
6181		tl[i] = (struct sched_domain_topology_level){
6182			.init = sd_numa_init,
6183			.mask = sd_numa_mask,
6184			.flags = SDTL_OVERLAP,
6185			.numa_level = j,
6186		};
6187	}
6188
6189	sched_domain_topology = tl;
6190
6191	sched_domains_numa_levels = level;
6192}
6193#else
6194static inline void sched_init_numa(void)
6195{
6196}
6197#endif /* CONFIG_NUMA */
6198
6199static int __sdt_alloc(const struct cpumask *cpu_map)
6200{
6201	struct sched_domain_topology_level *tl;
6202	int j;
6203
6204	for (tl = sched_domain_topology; tl->init; tl++) {
6205		struct sd_data *sdd = &tl->data;
6206
6207		sdd->sd = alloc_percpu(struct sched_domain *);
6208		if (!sdd->sd)
6209			return -ENOMEM;
6210
6211		sdd->sg = alloc_percpu(struct sched_group *);
6212		if (!sdd->sg)
6213			return -ENOMEM;
6214
6215		sdd->sgp = alloc_percpu(struct sched_group_power *);
6216		if (!sdd->sgp)
6217			return -ENOMEM;
6218
6219		for_each_cpu(j, cpu_map) {
6220			struct sched_domain *sd;
6221			struct sched_group *sg;
6222			struct sched_group_power *sgp;
6223
6224		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6225					GFP_KERNEL, cpu_to_node(j));
6226			if (!sd)
6227				return -ENOMEM;
6228
6229			*per_cpu_ptr(sdd->sd, j) = sd;
6230
6231			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6232					GFP_KERNEL, cpu_to_node(j));
6233			if (!sg)
6234				return -ENOMEM;
6235
6236			sg->next = sg;
6237
6238			*per_cpu_ptr(sdd->sg, j) = sg;
6239
6240			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6241					GFP_KERNEL, cpu_to_node(j));
6242			if (!sgp)
6243				return -ENOMEM;
6244
6245			*per_cpu_ptr(sdd->sgp, j) = sgp;
6246		}
6247	}
6248
6249	return 0;
6250}
6251
6252static void __sdt_free(const struct cpumask *cpu_map)
6253{
6254	struct sched_domain_topology_level *tl;
6255	int j;
6256
6257	for (tl = sched_domain_topology; tl->init; tl++) {
6258		struct sd_data *sdd = &tl->data;
6259
6260		for_each_cpu(j, cpu_map) {
6261			struct sched_domain *sd;
6262
6263			if (sdd->sd) {
6264				sd = *per_cpu_ptr(sdd->sd, j);
6265				if (sd && (sd->flags & SD_OVERLAP))
6266					free_sched_groups(sd->groups, 0);
6267				kfree(*per_cpu_ptr(sdd->sd, j));
6268			}
6269
6270			if (sdd->sg)
6271				kfree(*per_cpu_ptr(sdd->sg, j));
6272			if (sdd->sgp)
6273				kfree(*per_cpu_ptr(sdd->sgp, j));
6274		}
6275		free_percpu(sdd->sd);
6276		sdd->sd = NULL;
6277		free_percpu(sdd->sg);
6278		sdd->sg = NULL;
6279		free_percpu(sdd->sgp);
6280		sdd->sgp = NULL;
6281	}
6282}
6283
6284struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6285		struct s_data *d, const struct cpumask *cpu_map,
6286		struct sched_domain_attr *attr, struct sched_domain *child,
6287		int cpu)
6288{
6289	struct sched_domain *sd = tl->init(tl, cpu);
6290	if (!sd)
6291		return child;
6292
6293	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6294	if (child) {
6295		sd->level = child->level + 1;
6296		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6297		child->parent = sd;
6298	}
6299	sd->child = child;
6300	set_domain_attribute(sd, attr);
6301
6302	return sd;
6303}
6304
6305/*
6306 * Build sched domains for a given set of cpus and attach the sched domains
6307 * to the individual cpus
6308 */
6309static int build_sched_domains(const struct cpumask *cpu_map,
6310			       struct sched_domain_attr *attr)
6311{
6312	enum s_alloc alloc_state = sa_none;
6313	struct sched_domain *sd;
6314	struct s_data d;
6315	int i, ret = -ENOMEM;
6316
6317	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6318	if (alloc_state != sa_rootdomain)
6319		goto error;
6320
6321	/* Set up domains for cpus specified by the cpu_map. */
6322	for_each_cpu(i, cpu_map) {
6323		struct sched_domain_topology_level *tl;
6324
6325		sd = NULL;
6326		for (tl = sched_domain_topology; tl->init; tl++) {
6327			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6328			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6329				sd->flags |= SD_OVERLAP;
6330			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6331				break;
6332		}
6333
6334		while (sd->child)
6335			sd = sd->child;
6336
6337		*per_cpu_ptr(d.sd, i) = sd;
6338	}
6339
6340	/* Build the groups for the domains */
6341	for_each_cpu(i, cpu_map) {
6342		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6343			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6344			if (sd->flags & SD_OVERLAP) {
6345				if (build_overlap_sched_groups(sd, i))
6346					goto error;
6347			} else {
6348				if (build_sched_groups(sd, i))
6349					goto error;
6350			}
6351		}
6352	}
6353
6354	/* Calculate CPU power for physical packages and nodes */
6355	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6356		if (!cpumask_test_cpu(i, cpu_map))
6357			continue;
6358
6359		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6360			claim_allocations(i, sd);
6361			init_sched_groups_power(i, sd);
6362		}
6363	}
6364
6365	/* Attach the domains */
6366	rcu_read_lock();
6367	for_each_cpu(i, cpu_map) {
6368		sd = *per_cpu_ptr(d.sd, i);
6369		cpu_attach_domain(sd, d.rd, i);
6370	}
6371	rcu_read_unlock();
6372
6373	ret = 0;
6374error:
6375	__free_domain_allocs(&d, alloc_state, cpu_map);
6376	return ret;
6377}
6378
6379static cpumask_var_t *doms_cur;	/* current sched domains */
6380static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6381static struct sched_domain_attr *dattr_cur;
6382				/* attribues of custom domains in 'doms_cur' */
6383
6384/*
6385 * Special case: If a kmalloc of a doms_cur partition (array of
6386 * cpumask) fails, then fallback to a single sched domain,
6387 * as determined by the single cpumask fallback_doms.
6388 */
6389static cpumask_var_t fallback_doms;
6390
6391/*
6392 * arch_update_cpu_topology lets virtualized architectures update the
6393 * cpu core maps. It is supposed to return 1 if the topology changed
6394 * or 0 if it stayed the same.
6395 */
6396int __attribute__((weak)) arch_update_cpu_topology(void)
6397{
6398	return 0;
6399}
6400
6401cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6402{
6403	int i;
6404	cpumask_var_t *doms;
6405
6406	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6407	if (!doms)
6408		return NULL;
6409	for (i = 0; i < ndoms; i++) {
6410		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6411			free_sched_domains(doms, i);
6412			return NULL;
6413		}
6414	}
6415	return doms;
6416}
6417
6418void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6419{
6420	unsigned int i;
6421	for (i = 0; i < ndoms; i++)
6422		free_cpumask_var(doms[i]);
6423	kfree(doms);
6424}
6425
6426/*
6427 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6428 * For now this just excludes isolated cpus, but could be used to
6429 * exclude other special cases in the future.
6430 */
6431static int init_sched_domains(const struct cpumask *cpu_map)
6432{
6433	int err;
6434
6435	arch_update_cpu_topology();
6436	ndoms_cur = 1;
6437	doms_cur = alloc_sched_domains(ndoms_cur);
6438	if (!doms_cur)
6439		doms_cur = &fallback_doms;
6440	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6441	err = build_sched_domains(doms_cur[0], NULL);
6442	register_sched_domain_sysctl();
6443
6444	return err;
6445}
6446
6447/*
6448 * Detach sched domains from a group of cpus specified in cpu_map
6449 * These cpus will now be attached to the NULL domain
6450 */
6451static void detach_destroy_domains(const struct cpumask *cpu_map)
6452{
6453	int i;
6454
6455	rcu_read_lock();
6456	for_each_cpu(i, cpu_map)
6457		cpu_attach_domain(NULL, &def_root_domain, i);
6458	rcu_read_unlock();
6459}
6460
6461/* handle null as "default" */
6462static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6463			struct sched_domain_attr *new, int idx_new)
6464{
6465	struct sched_domain_attr tmp;
6466
6467	/* fast path */
6468	if (!new && !cur)
6469		return 1;
6470
6471	tmp = SD_ATTR_INIT;
6472	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6473			new ? (new + idx_new) : &tmp,
6474			sizeof(struct sched_domain_attr));
6475}
6476
6477/*
6478 * Partition sched domains as specified by the 'ndoms_new'
6479 * cpumasks in the array doms_new[] of cpumasks. This compares
6480 * doms_new[] to the current sched domain partitioning, doms_cur[].
6481 * It destroys each deleted domain and builds each new domain.
6482 *
6483 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6484 * The masks don't intersect (don't overlap.) We should setup one
6485 * sched domain for each mask. CPUs not in any of the cpumasks will
6486 * not be load balanced. If the same cpumask appears both in the
6487 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6488 * it as it is.
6489 *
6490 * The passed in 'doms_new' should be allocated using
6491 * alloc_sched_domains.  This routine takes ownership of it and will
6492 * free_sched_domains it when done with it. If the caller failed the
6493 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6494 * and partition_sched_domains() will fallback to the single partition
6495 * 'fallback_doms', it also forces the domains to be rebuilt.
6496 *
6497 * If doms_new == NULL it will be replaced with cpu_online_mask.
6498 * ndoms_new == 0 is a special case for destroying existing domains,
6499 * and it will not create the default domain.
6500 *
6501 * Call with hotplug lock held
6502 */
6503void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6504			     struct sched_domain_attr *dattr_new)
6505{
6506	int i, j, n;
6507	int new_topology;
6508
6509	mutex_lock(&sched_domains_mutex);
6510
6511	/* always unregister in case we don't destroy any domains */
6512	unregister_sched_domain_sysctl();
6513
6514	/* Let architecture update cpu core mappings. */
6515	new_topology = arch_update_cpu_topology();
6516
6517	n = doms_new ? ndoms_new : 0;
6518
6519	/* Destroy deleted domains */
6520	for (i = 0; i < ndoms_cur; i++) {
6521		for (j = 0; j < n && !new_topology; j++) {
6522			if (cpumask_equal(doms_cur[i], doms_new[j])
6523			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6524				goto match1;
6525		}
6526		/* no match - a current sched domain not in new doms_new[] */
6527		detach_destroy_domains(doms_cur[i]);
6528match1:
6529		;
6530	}
6531
6532	if (doms_new == NULL) {
6533		ndoms_cur = 0;
6534		doms_new = &fallback_doms;
6535		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6536		WARN_ON_ONCE(dattr_new);
6537	}
6538
6539	/* Build new domains */
6540	for (i = 0; i < ndoms_new; i++) {
6541		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6542			if (cpumask_equal(doms_new[i], doms_cur[j])
6543			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6544				goto match2;
6545		}
6546		/* no match - add a new doms_new */
6547		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6548match2:
6549		;
6550	}
6551
6552	/* Remember the new sched domains */
6553	if (doms_cur != &fallback_doms)
6554		free_sched_domains(doms_cur, ndoms_cur);
6555	kfree(dattr_cur);	/* kfree(NULL) is safe */
6556	doms_cur = doms_new;
6557	dattr_cur = dattr_new;
6558	ndoms_cur = ndoms_new;
6559
6560	register_sched_domain_sysctl();
6561
6562	mutex_unlock(&sched_domains_mutex);
6563}
6564
6565static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6566
6567/*
6568 * Update cpusets according to cpu_active mask.  If cpusets are
6569 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6570 * around partition_sched_domains().
6571 *
6572 * If we come here as part of a suspend/resume, don't touch cpusets because we
6573 * want to restore it back to its original state upon resume anyway.
6574 */
6575static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6576			     void *hcpu)
6577{
6578	switch (action) {
6579	case CPU_ONLINE_FROZEN:
6580	case CPU_DOWN_FAILED_FROZEN:
6581
6582		/*
6583		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6584		 * resume sequence. As long as this is not the last online
6585		 * operation in the resume sequence, just build a single sched
6586		 * domain, ignoring cpusets.
6587		 */
6588		num_cpus_frozen--;
6589		if (likely(num_cpus_frozen)) {
6590			partition_sched_domains(1, NULL, NULL);
6591			break;
6592		}
6593
6594		/*
6595		 * This is the last CPU online operation. So fall through and
6596		 * restore the original sched domains by considering the
6597		 * cpuset configurations.
6598		 */
6599
6600	case CPU_ONLINE:
6601	case CPU_DOWN_FAILED:
6602		cpuset_update_active_cpus(true);
6603		break;
6604	default:
6605		return NOTIFY_DONE;
6606	}
6607	return NOTIFY_OK;
6608}
6609
6610static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6611			       void *hcpu)
6612{
6613	switch (action) {
6614	case CPU_DOWN_PREPARE:
6615		cpuset_update_active_cpus(false);
6616		break;
6617	case CPU_DOWN_PREPARE_FROZEN:
6618		num_cpus_frozen++;
6619		partition_sched_domains(1, NULL, NULL);
6620		break;
6621	default:
6622		return NOTIFY_DONE;
6623	}
6624	return NOTIFY_OK;
6625}
6626
6627void __init sched_init_smp(void)
6628{
6629	cpumask_var_t non_isolated_cpus;
6630
6631	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6632	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6633
6634	sched_init_numa();
6635
6636	get_online_cpus();
6637	mutex_lock(&sched_domains_mutex);
6638	init_sched_domains(cpu_active_mask);
6639	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6640	if (cpumask_empty(non_isolated_cpus))
6641		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6642	mutex_unlock(&sched_domains_mutex);
6643	put_online_cpus();
6644
6645	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6646	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6647
6648	/* RT runtime code needs to handle some hotplug events */
6649	hotcpu_notifier(update_runtime, 0);
6650
6651	init_hrtick();
6652
6653	/* Move init over to a non-isolated CPU */
6654	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6655		BUG();
6656	sched_init_granularity();
6657	free_cpumask_var(non_isolated_cpus);
6658
6659	init_sched_rt_class();
6660}
6661#else
6662void __init sched_init_smp(void)
6663{
6664	sched_init_granularity();
6665}
6666#endif /* CONFIG_SMP */
6667
6668const_debug unsigned int sysctl_timer_migration = 1;
6669
6670int in_sched_functions(unsigned long addr)
6671{
6672	return in_lock_functions(addr) ||
6673		(addr >= (unsigned long)__sched_text_start
6674		&& addr < (unsigned long)__sched_text_end);
6675}
6676
6677#ifdef CONFIG_CGROUP_SCHED
6678struct task_group root_task_group;
6679LIST_HEAD(task_groups);
6680#endif
6681
6682DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6683
6684void __init sched_init(void)
6685{
6686	int i, j;
6687	unsigned long alloc_size = 0, ptr;
6688
6689#ifdef CONFIG_FAIR_GROUP_SCHED
6690	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6691#endif
6692#ifdef CONFIG_RT_GROUP_SCHED
6693	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6694#endif
6695#ifdef CONFIG_CPUMASK_OFFSTACK
6696	alloc_size += num_possible_cpus() * cpumask_size();
6697#endif
6698	if (alloc_size) {
6699		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6700
6701#ifdef CONFIG_FAIR_GROUP_SCHED
6702		root_task_group.se = (struct sched_entity **)ptr;
6703		ptr += nr_cpu_ids * sizeof(void **);
6704
6705		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6706		ptr += nr_cpu_ids * sizeof(void **);
6707
6708#endif /* CONFIG_FAIR_GROUP_SCHED */
6709#ifdef CONFIG_RT_GROUP_SCHED
6710		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6711		ptr += nr_cpu_ids * sizeof(void **);
6712
6713		root_task_group.rt_rq = (struct rt_rq **)ptr;
6714		ptr += nr_cpu_ids * sizeof(void **);
6715
6716#endif /* CONFIG_RT_GROUP_SCHED */
6717#ifdef CONFIG_CPUMASK_OFFSTACK
6718		for_each_possible_cpu(i) {
6719			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6720			ptr += cpumask_size();
6721		}
6722#endif /* CONFIG_CPUMASK_OFFSTACK */
6723	}
6724
6725#ifdef CONFIG_SMP
6726	init_defrootdomain();
6727#endif
6728
6729	init_rt_bandwidth(&def_rt_bandwidth,
6730			global_rt_period(), global_rt_runtime());
6731
6732#ifdef CONFIG_RT_GROUP_SCHED
6733	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6734			global_rt_period(), global_rt_runtime());
6735#endif /* CONFIG_RT_GROUP_SCHED */
6736
6737#ifdef CONFIG_CGROUP_SCHED
6738	list_add(&root_task_group.list, &task_groups);
6739	INIT_LIST_HEAD(&root_task_group.children);
6740	INIT_LIST_HEAD(&root_task_group.siblings);
6741	autogroup_init(&init_task);
6742
6743#endif /* CONFIG_CGROUP_SCHED */
6744
6745#ifdef CONFIG_CGROUP_CPUACCT
6746	root_cpuacct.cpustat = &kernel_cpustat;
6747	root_cpuacct.cpuusage = alloc_percpu(u64);
6748	/* Too early, not expected to fail */
6749	BUG_ON(!root_cpuacct.cpuusage);
6750#endif
6751	for_each_possible_cpu(i) {
6752		struct rq *rq;
6753
6754		rq = cpu_rq(i);
6755		raw_spin_lock_init(&rq->lock);
6756		rq->nr_running = 0;
6757		rq->calc_load_active = 0;
6758		rq->calc_load_update = jiffies + LOAD_FREQ;
6759		init_cfs_rq(&rq->cfs);
6760		init_rt_rq(&rq->rt, rq);
6761#ifdef CONFIG_FAIR_GROUP_SCHED
6762		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6763		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6764		/*
6765		 * How much cpu bandwidth does root_task_group get?
6766		 *
6767		 * In case of task-groups formed thr' the cgroup filesystem, it
6768		 * gets 100% of the cpu resources in the system. This overall
6769		 * system cpu resource is divided among the tasks of
6770		 * root_task_group and its child task-groups in a fair manner,
6771		 * based on each entity's (task or task-group's) weight
6772		 * (se->load.weight).
6773		 *
6774		 * In other words, if root_task_group has 10 tasks of weight
6775		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6776		 * then A0's share of the cpu resource is:
6777		 *
6778		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6779		 *
6780		 * We achieve this by letting root_task_group's tasks sit
6781		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6782		 */
6783		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6784		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6785#endif /* CONFIG_FAIR_GROUP_SCHED */
6786
6787		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6788#ifdef CONFIG_RT_GROUP_SCHED
6789		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6790		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6791#endif
6792
6793		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6794			rq->cpu_load[j] = 0;
6795
6796		rq->last_load_update_tick = jiffies;
6797
6798#ifdef CONFIG_SMP
6799		rq->sd = NULL;
6800		rq->rd = NULL;
6801		rq->cpu_power = SCHED_POWER_SCALE;
6802		rq->post_schedule = 0;
6803		rq->active_balance = 0;
6804		rq->next_balance = jiffies;
6805		rq->push_cpu = 0;
6806		rq->cpu = i;
6807		rq->online = 0;
6808		rq->idle_stamp = 0;
6809		rq->avg_idle = 2*sysctl_sched_migration_cost;
6810
6811		INIT_LIST_HEAD(&rq->cfs_tasks);
6812
6813		rq_attach_root(rq, &def_root_domain);
6814#ifdef CONFIG_NO_HZ
6815		rq->nohz_flags = 0;
6816#endif
6817#endif
6818		init_rq_hrtick(rq);
6819		atomic_set(&rq->nr_iowait, 0);
6820	}
6821
6822	set_load_weight(&init_task);
6823
6824#ifdef CONFIG_PREEMPT_NOTIFIERS
6825	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6826#endif
6827
6828#ifdef CONFIG_RT_MUTEXES
6829	plist_head_init(&init_task.pi_waiters);
6830#endif
6831
6832	/*
6833	 * The boot idle thread does lazy MMU switching as well:
6834	 */
6835	atomic_inc(&init_mm.mm_count);
6836	enter_lazy_tlb(&init_mm, current);
6837
6838	/*
6839	 * Make us the idle thread. Technically, schedule() should not be
6840	 * called from this thread, however somewhere below it might be,
6841	 * but because we are the idle thread, we just pick up running again
6842	 * when this runqueue becomes "idle".
6843	 */
6844	init_idle(current, smp_processor_id());
6845
6846	calc_load_update = jiffies + LOAD_FREQ;
6847
6848	/*
6849	 * During early bootup we pretend to be a normal task:
6850	 */
6851	current->sched_class = &fair_sched_class;
6852
6853#ifdef CONFIG_SMP
6854	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6855	/* May be allocated at isolcpus cmdline parse time */
6856	if (cpu_isolated_map == NULL)
6857		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6858	idle_thread_set_boot_cpu();
6859#endif
6860	init_sched_fair_class();
6861
6862	scheduler_running = 1;
6863}
6864
6865#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6866static inline int preempt_count_equals(int preempt_offset)
6867{
6868	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6869
6870	return (nested == preempt_offset);
6871}
6872
6873void __might_sleep(const char *file, int line, int preempt_offset)
6874{
6875	static unsigned long prev_jiffy;	/* ratelimiting */
6876
6877	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6878	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6879	    system_state != SYSTEM_RUNNING || oops_in_progress)
6880		return;
6881	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6882		return;
6883	prev_jiffy = jiffies;
6884
6885	printk(KERN_ERR
6886		"BUG: sleeping function called from invalid context at %s:%d\n",
6887			file, line);
6888	printk(KERN_ERR
6889		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6890			in_atomic(), irqs_disabled(),
6891			current->pid, current->comm);
6892
6893	debug_show_held_locks(current);
6894	if (irqs_disabled())
6895		print_irqtrace_events(current);
6896	dump_stack();
6897}
6898EXPORT_SYMBOL(__might_sleep);
6899#endif
6900
6901#ifdef CONFIG_MAGIC_SYSRQ
6902static void normalize_task(struct rq *rq, struct task_struct *p)
6903{
6904	const struct sched_class *prev_class = p->sched_class;
6905	int old_prio = p->prio;
6906	int on_rq;
6907
6908	on_rq = p->on_rq;
6909	if (on_rq)
6910		dequeue_task(rq, p, 0);
6911	__setscheduler(rq, p, SCHED_NORMAL, 0);
6912	if (on_rq) {
6913		enqueue_task(rq, p, 0);
6914		resched_task(rq->curr);
6915	}
6916
6917	check_class_changed(rq, p, prev_class, old_prio);
6918}
6919
6920void normalize_rt_tasks(void)
6921{
6922	struct task_struct *g, *p;
6923	unsigned long flags;
6924	struct rq *rq;
6925
6926	read_lock_irqsave(&tasklist_lock, flags);
6927	do_each_thread(g, p) {
6928		/*
6929		 * Only normalize user tasks:
6930		 */
6931		if (!p->mm)
6932			continue;
6933
6934		p->se.exec_start		= 0;
6935#ifdef CONFIG_SCHEDSTATS
6936		p->se.statistics.wait_start	= 0;
6937		p->se.statistics.sleep_start	= 0;
6938		p->se.statistics.block_start	= 0;
6939#endif
6940
6941		if (!rt_task(p)) {
6942			/*
6943			 * Renice negative nice level userspace
6944			 * tasks back to 0:
6945			 */
6946			if (TASK_NICE(p) < 0 && p->mm)
6947				set_user_nice(p, 0);
6948			continue;
6949		}
6950
6951		raw_spin_lock(&p->pi_lock);
6952		rq = __task_rq_lock(p);
6953
6954		normalize_task(rq, p);
6955
6956		__task_rq_unlock(rq);
6957		raw_spin_unlock(&p->pi_lock);
6958	} while_each_thread(g, p);
6959
6960	read_unlock_irqrestore(&tasklist_lock, flags);
6961}
6962
6963#endif /* CONFIG_MAGIC_SYSRQ */
6964
6965#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6966/*
6967 * These functions are only useful for the IA64 MCA handling, or kdb.
6968 *
6969 * They can only be called when the whole system has been
6970 * stopped - every CPU needs to be quiescent, and no scheduling
6971 * activity can take place. Using them for anything else would
6972 * be a serious bug, and as a result, they aren't even visible
6973 * under any other configuration.
6974 */
6975
6976/**
6977 * curr_task - return the current task for a given cpu.
6978 * @cpu: the processor in question.
6979 *
6980 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6981 */
6982struct task_struct *curr_task(int cpu)
6983{
6984	return cpu_curr(cpu);
6985}
6986
6987#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6988
6989#ifdef CONFIG_IA64
6990/**
6991 * set_curr_task - set the current task for a given cpu.
6992 * @cpu: the processor in question.
6993 * @p: the task pointer to set.
6994 *
6995 * Description: This function must only be used when non-maskable interrupts
6996 * are serviced on a separate stack. It allows the architecture to switch the
6997 * notion of the current task on a cpu in a non-blocking manner. This function
6998 * must be called with all CPU's synchronized, and interrupts disabled, the
6999 * and caller must save the original value of the current task (see
7000 * curr_task() above) and restore that value before reenabling interrupts and
7001 * re-starting the system.
7002 *
7003 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7004 */
7005void set_curr_task(int cpu, struct task_struct *p)
7006{
7007	cpu_curr(cpu) = p;
7008}
7009
7010#endif
7011
7012#ifdef CONFIG_CGROUP_SCHED
7013/* task_group_lock serializes the addition/removal of task groups */
7014static DEFINE_SPINLOCK(task_group_lock);
7015
7016static void free_sched_group(struct task_group *tg)
7017{
7018	free_fair_sched_group(tg);
7019	free_rt_sched_group(tg);
7020	autogroup_free(tg);
7021	kfree(tg);
7022}
7023
7024/* allocate runqueue etc for a new task group */
7025struct task_group *sched_create_group(struct task_group *parent)
7026{
7027	struct task_group *tg;
7028	unsigned long flags;
7029
7030	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7031	if (!tg)
7032		return ERR_PTR(-ENOMEM);
7033
7034	if (!alloc_fair_sched_group(tg, parent))
7035		goto err;
7036
7037	if (!alloc_rt_sched_group(tg, parent))
7038		goto err;
7039
7040	spin_lock_irqsave(&task_group_lock, flags);
7041	list_add_rcu(&tg->list, &task_groups);
7042
7043	WARN_ON(!parent); /* root should already exist */
7044
7045	tg->parent = parent;
7046	INIT_LIST_HEAD(&tg->children);
7047	list_add_rcu(&tg->siblings, &parent->children);
7048	spin_unlock_irqrestore(&task_group_lock, flags);
7049
7050	return tg;
7051
7052err:
7053	free_sched_group(tg);
7054	return ERR_PTR(-ENOMEM);
7055}
7056
7057/* rcu callback to free various structures associated with a task group */
7058static void free_sched_group_rcu(struct rcu_head *rhp)
7059{
7060	/* now it should be safe to free those cfs_rqs */
7061	free_sched_group(container_of(rhp, struct task_group, rcu));
7062}
7063
7064/* Destroy runqueue etc associated with a task group */
7065void sched_destroy_group(struct task_group *tg)
7066{
7067	unsigned long flags;
7068	int i;
7069
7070	/* end participation in shares distribution */
7071	for_each_possible_cpu(i)
7072		unregister_fair_sched_group(tg, i);
7073
7074	spin_lock_irqsave(&task_group_lock, flags);
7075	list_del_rcu(&tg->list);
7076	list_del_rcu(&tg->siblings);
7077	spin_unlock_irqrestore(&task_group_lock, flags);
7078
7079	/* wait for possible concurrent references to cfs_rqs complete */
7080	call_rcu(&tg->rcu, free_sched_group_rcu);
7081}
7082
7083/* change task's runqueue when it moves between groups.
7084 *	The caller of this function should have put the task in its new group
7085 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7086 *	reflect its new group.
7087 */
7088void sched_move_task(struct task_struct *tsk)
7089{
7090	struct task_group *tg;
7091	int on_rq, running;
7092	unsigned long flags;
7093	struct rq *rq;
7094
7095	rq = task_rq_lock(tsk, &flags);
7096
7097	running = task_current(rq, tsk);
7098	on_rq = tsk->on_rq;
7099
7100	if (on_rq)
7101		dequeue_task(rq, tsk, 0);
7102	if (unlikely(running))
7103		tsk->sched_class->put_prev_task(rq, tsk);
7104
7105	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7106				lockdep_is_held(&tsk->sighand->siglock)),
7107			  struct task_group, css);
7108	tg = autogroup_task_group(tsk, tg);
7109	tsk->sched_task_group = tg;
7110
7111#ifdef CONFIG_FAIR_GROUP_SCHED
7112	if (tsk->sched_class->task_move_group)
7113		tsk->sched_class->task_move_group(tsk, on_rq);
7114	else
7115#endif
7116		set_task_rq(tsk, task_cpu(tsk));
7117
7118	if (unlikely(running))
7119		tsk->sched_class->set_curr_task(rq);
7120	if (on_rq)
7121		enqueue_task(rq, tsk, 0);
7122
7123	task_rq_unlock(rq, tsk, &flags);
7124}
7125#endif /* CONFIG_CGROUP_SCHED */
7126
7127#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7128static unsigned long to_ratio(u64 period, u64 runtime)
7129{
7130	if (runtime == RUNTIME_INF)
7131		return 1ULL << 20;
7132
7133	return div64_u64(runtime << 20, period);
7134}
7135#endif
7136
7137#ifdef CONFIG_RT_GROUP_SCHED
7138/*
7139 * Ensure that the real time constraints are schedulable.
7140 */
7141static DEFINE_MUTEX(rt_constraints_mutex);
7142
7143/* Must be called with tasklist_lock held */
7144static inline int tg_has_rt_tasks(struct task_group *tg)
7145{
7146	struct task_struct *g, *p;
7147
7148	do_each_thread(g, p) {
7149		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7150			return 1;
7151	} while_each_thread(g, p);
7152
7153	return 0;
7154}
7155
7156struct rt_schedulable_data {
7157	struct task_group *tg;
7158	u64 rt_period;
7159	u64 rt_runtime;
7160};
7161
7162static int tg_rt_schedulable(struct task_group *tg, void *data)
7163{
7164	struct rt_schedulable_data *d = data;
7165	struct task_group *child;
7166	unsigned long total, sum = 0;
7167	u64 period, runtime;
7168
7169	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7170	runtime = tg->rt_bandwidth.rt_runtime;
7171
7172	if (tg == d->tg) {
7173		period = d->rt_period;
7174		runtime = d->rt_runtime;
7175	}
7176
7177	/*
7178	 * Cannot have more runtime than the period.
7179	 */
7180	if (runtime > period && runtime != RUNTIME_INF)
7181		return -EINVAL;
7182
7183	/*
7184	 * Ensure we don't starve existing RT tasks.
7185	 */
7186	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7187		return -EBUSY;
7188
7189	total = to_ratio(period, runtime);
7190
7191	/*
7192	 * Nobody can have more than the global setting allows.
7193	 */
7194	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7195		return -EINVAL;
7196
7197	/*
7198	 * The sum of our children's runtime should not exceed our own.
7199	 */
7200	list_for_each_entry_rcu(child, &tg->children, siblings) {
7201		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7202		runtime = child->rt_bandwidth.rt_runtime;
7203
7204		if (child == d->tg) {
7205			period = d->rt_period;
7206			runtime = d->rt_runtime;
7207		}
7208
7209		sum += to_ratio(period, runtime);
7210	}
7211
7212	if (sum > total)
7213		return -EINVAL;
7214
7215	return 0;
7216}
7217
7218static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7219{
7220	int ret;
7221
7222	struct rt_schedulable_data data = {
7223		.tg = tg,
7224		.rt_period = period,
7225		.rt_runtime = runtime,
7226	};
7227
7228	rcu_read_lock();
7229	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7230	rcu_read_unlock();
7231
7232	return ret;
7233}
7234
7235static int tg_set_rt_bandwidth(struct task_group *tg,
7236		u64 rt_period, u64 rt_runtime)
7237{
7238	int i, err = 0;
7239
7240	mutex_lock(&rt_constraints_mutex);
7241	read_lock(&tasklist_lock);
7242	err = __rt_schedulable(tg, rt_period, rt_runtime);
7243	if (err)
7244		goto unlock;
7245
7246	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7247	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7248	tg->rt_bandwidth.rt_runtime = rt_runtime;
7249
7250	for_each_possible_cpu(i) {
7251		struct rt_rq *rt_rq = tg->rt_rq[i];
7252
7253		raw_spin_lock(&rt_rq->rt_runtime_lock);
7254		rt_rq->rt_runtime = rt_runtime;
7255		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7256	}
7257	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7258unlock:
7259	read_unlock(&tasklist_lock);
7260	mutex_unlock(&rt_constraints_mutex);
7261
7262	return err;
7263}
7264
7265int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7266{
7267	u64 rt_runtime, rt_period;
7268
7269	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7270	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7271	if (rt_runtime_us < 0)
7272		rt_runtime = RUNTIME_INF;
7273
7274	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7275}
7276
7277long sched_group_rt_runtime(struct task_group *tg)
7278{
7279	u64 rt_runtime_us;
7280
7281	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7282		return -1;
7283
7284	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7285	do_div(rt_runtime_us, NSEC_PER_USEC);
7286	return rt_runtime_us;
7287}
7288
7289int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7290{
7291	u64 rt_runtime, rt_period;
7292
7293	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7294	rt_runtime = tg->rt_bandwidth.rt_runtime;
7295
7296	if (rt_period == 0)
7297		return -EINVAL;
7298
7299	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7300}
7301
7302long sched_group_rt_period(struct task_group *tg)
7303{
7304	u64 rt_period_us;
7305
7306	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7307	do_div(rt_period_us, NSEC_PER_USEC);
7308	return rt_period_us;
7309}
7310
7311static int sched_rt_global_constraints(void)
7312{
7313	u64 runtime, period;
7314	int ret = 0;
7315
7316	if (sysctl_sched_rt_period <= 0)
7317		return -EINVAL;
7318
7319	runtime = global_rt_runtime();
7320	period = global_rt_period();
7321
7322	/*
7323	 * Sanity check on the sysctl variables.
7324	 */
7325	if (runtime > period && runtime != RUNTIME_INF)
7326		return -EINVAL;
7327
7328	mutex_lock(&rt_constraints_mutex);
7329	read_lock(&tasklist_lock);
7330	ret = __rt_schedulable(NULL, 0, 0);
7331	read_unlock(&tasklist_lock);
7332	mutex_unlock(&rt_constraints_mutex);
7333
7334	return ret;
7335}
7336
7337int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7338{
7339	/* Don't accept realtime tasks when there is no way for them to run */
7340	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7341		return 0;
7342
7343	return 1;
7344}
7345
7346#else /* !CONFIG_RT_GROUP_SCHED */
7347static int sched_rt_global_constraints(void)
7348{
7349	unsigned long flags;
7350	int i;
7351
7352	if (sysctl_sched_rt_period <= 0)
7353		return -EINVAL;
7354
7355	/*
7356	 * There's always some RT tasks in the root group
7357	 * -- migration, kstopmachine etc..
7358	 */
7359	if (sysctl_sched_rt_runtime == 0)
7360		return -EBUSY;
7361
7362	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7363	for_each_possible_cpu(i) {
7364		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7365
7366		raw_spin_lock(&rt_rq->rt_runtime_lock);
7367		rt_rq->rt_runtime = global_rt_runtime();
7368		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7369	}
7370	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7371
7372	return 0;
7373}
7374#endif /* CONFIG_RT_GROUP_SCHED */
7375
7376int sched_rt_handler(struct ctl_table *table, int write,
7377		void __user *buffer, size_t *lenp,
7378		loff_t *ppos)
7379{
7380	int ret;
7381	int old_period, old_runtime;
7382	static DEFINE_MUTEX(mutex);
7383
7384	mutex_lock(&mutex);
7385	old_period = sysctl_sched_rt_period;
7386	old_runtime = sysctl_sched_rt_runtime;
7387
7388	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7389
7390	if (!ret && write) {
7391		ret = sched_rt_global_constraints();
7392		if (ret) {
7393			sysctl_sched_rt_period = old_period;
7394			sysctl_sched_rt_runtime = old_runtime;
7395		} else {
7396			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7397			def_rt_bandwidth.rt_period =
7398				ns_to_ktime(global_rt_period());
7399		}
7400	}
7401	mutex_unlock(&mutex);
7402
7403	return ret;
7404}
7405
7406#ifdef CONFIG_CGROUP_SCHED
7407
7408/* return corresponding task_group object of a cgroup */
7409static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7410{
7411	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7412			    struct task_group, css);
7413}
7414
7415static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7416{
7417	struct task_group *tg, *parent;
7418
7419	if (!cgrp->parent) {
7420		/* This is early initialization for the top cgroup */
7421		return &root_task_group.css;
7422	}
7423
7424	parent = cgroup_tg(cgrp->parent);
7425	tg = sched_create_group(parent);
7426	if (IS_ERR(tg))
7427		return ERR_PTR(-ENOMEM);
7428
7429	return &tg->css;
7430}
7431
7432static void cpu_cgroup_destroy(struct cgroup *cgrp)
7433{
7434	struct task_group *tg = cgroup_tg(cgrp);
7435
7436	sched_destroy_group(tg);
7437}
7438
7439static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7440				 struct cgroup_taskset *tset)
7441{
7442	struct task_struct *task;
7443
7444	cgroup_taskset_for_each(task, cgrp, tset) {
7445#ifdef CONFIG_RT_GROUP_SCHED
7446		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7447			return -EINVAL;
7448#else
7449		/* We don't support RT-tasks being in separate groups */
7450		if (task->sched_class != &fair_sched_class)
7451			return -EINVAL;
7452#endif
7453	}
7454	return 0;
7455}
7456
7457static void cpu_cgroup_attach(struct cgroup *cgrp,
7458			      struct cgroup_taskset *tset)
7459{
7460	struct task_struct *task;
7461
7462	cgroup_taskset_for_each(task, cgrp, tset)
7463		sched_move_task(task);
7464}
7465
7466static void
7467cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7468		struct task_struct *task)
7469{
7470	/*
7471	 * cgroup_exit() is called in the copy_process() failure path.
7472	 * Ignore this case since the task hasn't ran yet, this avoids
7473	 * trying to poke a half freed task state from generic code.
7474	 */
7475	if (!(task->flags & PF_EXITING))
7476		return;
7477
7478	sched_move_task(task);
7479}
7480
7481#ifdef CONFIG_FAIR_GROUP_SCHED
7482static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7483				u64 shareval)
7484{
7485	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7486}
7487
7488static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7489{
7490	struct task_group *tg = cgroup_tg(cgrp);
7491
7492	return (u64) scale_load_down(tg->shares);
7493}
7494
7495#ifdef CONFIG_CFS_BANDWIDTH
7496static DEFINE_MUTEX(cfs_constraints_mutex);
7497
7498const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7499const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7500
7501static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7502
7503static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7504{
7505	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7506	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7507
7508	if (tg == &root_task_group)
7509		return -EINVAL;
7510
7511	/*
7512	 * Ensure we have at some amount of bandwidth every period.  This is
7513	 * to prevent reaching a state of large arrears when throttled via
7514	 * entity_tick() resulting in prolonged exit starvation.
7515	 */
7516	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7517		return -EINVAL;
7518
7519	/*
7520	 * Likewise, bound things on the otherside by preventing insane quota
7521	 * periods.  This also allows us to normalize in computing quota
7522	 * feasibility.
7523	 */
7524	if (period > max_cfs_quota_period)
7525		return -EINVAL;
7526
7527	mutex_lock(&cfs_constraints_mutex);
7528	ret = __cfs_schedulable(tg, period, quota);
7529	if (ret)
7530		goto out_unlock;
7531
7532	runtime_enabled = quota != RUNTIME_INF;
7533	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7534	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7535	raw_spin_lock_irq(&cfs_b->lock);
7536	cfs_b->period = ns_to_ktime(period);
7537	cfs_b->quota = quota;
7538
7539	__refill_cfs_bandwidth_runtime(cfs_b);
7540	/* restart the period timer (if active) to handle new period expiry */
7541	if (runtime_enabled && cfs_b->timer_active) {
7542		/* force a reprogram */
7543		cfs_b->timer_active = 0;
7544		__start_cfs_bandwidth(cfs_b);
7545	}
7546	raw_spin_unlock_irq(&cfs_b->lock);
7547
7548	for_each_possible_cpu(i) {
7549		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7550		struct rq *rq = cfs_rq->rq;
7551
7552		raw_spin_lock_irq(&rq->lock);
7553		cfs_rq->runtime_enabled = runtime_enabled;
7554		cfs_rq->runtime_remaining = 0;
7555
7556		if (cfs_rq->throttled)
7557			unthrottle_cfs_rq(cfs_rq);
7558		raw_spin_unlock_irq(&rq->lock);
7559	}
7560out_unlock:
7561	mutex_unlock(&cfs_constraints_mutex);
7562
7563	return ret;
7564}
7565
7566int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7567{
7568	u64 quota, period;
7569
7570	period = ktime_to_ns(tg->cfs_bandwidth.period);
7571	if (cfs_quota_us < 0)
7572		quota = RUNTIME_INF;
7573	else
7574		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7575
7576	return tg_set_cfs_bandwidth(tg, period, quota);
7577}
7578
7579long tg_get_cfs_quota(struct task_group *tg)
7580{
7581	u64 quota_us;
7582
7583	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7584		return -1;
7585
7586	quota_us = tg->cfs_bandwidth.quota;
7587	do_div(quota_us, NSEC_PER_USEC);
7588
7589	return quota_us;
7590}
7591
7592int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7593{
7594	u64 quota, period;
7595
7596	period = (u64)cfs_period_us * NSEC_PER_USEC;
7597	quota = tg->cfs_bandwidth.quota;
7598
7599	return tg_set_cfs_bandwidth(tg, period, quota);
7600}
7601
7602long tg_get_cfs_period(struct task_group *tg)
7603{
7604	u64 cfs_period_us;
7605
7606	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7607	do_div(cfs_period_us, NSEC_PER_USEC);
7608
7609	return cfs_period_us;
7610}
7611
7612static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7613{
7614	return tg_get_cfs_quota(cgroup_tg(cgrp));
7615}
7616
7617static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7618				s64 cfs_quota_us)
7619{
7620	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7621}
7622
7623static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7624{
7625	return tg_get_cfs_period(cgroup_tg(cgrp));
7626}
7627
7628static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7629				u64 cfs_period_us)
7630{
7631	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7632}
7633
7634struct cfs_schedulable_data {
7635	struct task_group *tg;
7636	u64 period, quota;
7637};
7638
7639/*
7640 * normalize group quota/period to be quota/max_period
7641 * note: units are usecs
7642 */
7643static u64 normalize_cfs_quota(struct task_group *tg,
7644			       struct cfs_schedulable_data *d)
7645{
7646	u64 quota, period;
7647
7648	if (tg == d->tg) {
7649		period = d->period;
7650		quota = d->quota;
7651	} else {
7652		period = tg_get_cfs_period(tg);
7653		quota = tg_get_cfs_quota(tg);
7654	}
7655
7656	/* note: these should typically be equivalent */
7657	if (quota == RUNTIME_INF || quota == -1)
7658		return RUNTIME_INF;
7659
7660	return to_ratio(period, quota);
7661}
7662
7663static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7664{
7665	struct cfs_schedulable_data *d = data;
7666	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7667	s64 quota = 0, parent_quota = -1;
7668
7669	if (!tg->parent) {
7670		quota = RUNTIME_INF;
7671	} else {
7672		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7673
7674		quota = normalize_cfs_quota(tg, d);
7675		parent_quota = parent_b->hierarchal_quota;
7676
7677		/*
7678		 * ensure max(child_quota) <= parent_quota, inherit when no
7679		 * limit is set
7680		 */
7681		if (quota == RUNTIME_INF)
7682			quota = parent_quota;
7683		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7684			return -EINVAL;
7685	}
7686	cfs_b->hierarchal_quota = quota;
7687
7688	return 0;
7689}
7690
7691static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7692{
7693	int ret;
7694	struct cfs_schedulable_data data = {
7695		.tg = tg,
7696		.period = period,
7697		.quota = quota,
7698	};
7699
7700	if (quota != RUNTIME_INF) {
7701		do_div(data.period, NSEC_PER_USEC);
7702		do_div(data.quota, NSEC_PER_USEC);
7703	}
7704
7705	rcu_read_lock();
7706	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7707	rcu_read_unlock();
7708
7709	return ret;
7710}
7711
7712static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7713		struct cgroup_map_cb *cb)
7714{
7715	struct task_group *tg = cgroup_tg(cgrp);
7716	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7717
7718	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7719	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7720	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7721
7722	return 0;
7723}
7724#endif /* CONFIG_CFS_BANDWIDTH */
7725#endif /* CONFIG_FAIR_GROUP_SCHED */
7726
7727#ifdef CONFIG_RT_GROUP_SCHED
7728static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7729				s64 val)
7730{
7731	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7732}
7733
7734static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7735{
7736	return sched_group_rt_runtime(cgroup_tg(cgrp));
7737}
7738
7739static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7740		u64 rt_period_us)
7741{
7742	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7743}
7744
7745static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7746{
7747	return sched_group_rt_period(cgroup_tg(cgrp));
7748}
7749#endif /* CONFIG_RT_GROUP_SCHED */
7750
7751static struct cftype cpu_files[] = {
7752#ifdef CONFIG_FAIR_GROUP_SCHED
7753	{
7754		.name = "shares",
7755		.read_u64 = cpu_shares_read_u64,
7756		.write_u64 = cpu_shares_write_u64,
7757	},
7758#endif
7759#ifdef CONFIG_CFS_BANDWIDTH
7760	{
7761		.name = "cfs_quota_us",
7762		.read_s64 = cpu_cfs_quota_read_s64,
7763		.write_s64 = cpu_cfs_quota_write_s64,
7764	},
7765	{
7766		.name = "cfs_period_us",
7767		.read_u64 = cpu_cfs_period_read_u64,
7768		.write_u64 = cpu_cfs_period_write_u64,
7769	},
7770	{
7771		.name = "stat",
7772		.read_map = cpu_stats_show,
7773	},
7774#endif
7775#ifdef CONFIG_RT_GROUP_SCHED
7776	{
7777		.name = "rt_runtime_us",
7778		.read_s64 = cpu_rt_runtime_read,
7779		.write_s64 = cpu_rt_runtime_write,
7780	},
7781	{
7782		.name = "rt_period_us",
7783		.read_u64 = cpu_rt_period_read_uint,
7784		.write_u64 = cpu_rt_period_write_uint,
7785	},
7786#endif
7787	{ }	/* terminate */
7788};
7789
7790struct cgroup_subsys cpu_cgroup_subsys = {
7791	.name		= "cpu",
7792	.create		= cpu_cgroup_create,
7793	.destroy	= cpu_cgroup_destroy,
7794	.can_attach	= cpu_cgroup_can_attach,
7795	.attach		= cpu_cgroup_attach,
7796	.exit		= cpu_cgroup_exit,
7797	.subsys_id	= cpu_cgroup_subsys_id,
7798	.base_cftypes	= cpu_files,
7799	.early_init	= 1,
7800};
7801
7802#endif	/* CONFIG_CGROUP_SCHED */
7803
7804#ifdef CONFIG_CGROUP_CPUACCT
7805
7806/*
7807 * CPU accounting code for task groups.
7808 *
7809 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7810 * (balbir@in.ibm.com).
7811 */
7812
7813struct cpuacct root_cpuacct;
7814
7815/* create a new cpu accounting group */
7816static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7817{
7818	struct cpuacct *ca;
7819
7820	if (!cgrp->parent)
7821		return &root_cpuacct.css;
7822
7823	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7824	if (!ca)
7825		goto out;
7826
7827	ca->cpuusage = alloc_percpu(u64);
7828	if (!ca->cpuusage)
7829		goto out_free_ca;
7830
7831	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7832	if (!ca->cpustat)
7833		goto out_free_cpuusage;
7834
7835	return &ca->css;
7836
7837out_free_cpuusage:
7838	free_percpu(ca->cpuusage);
7839out_free_ca:
7840	kfree(ca);
7841out:
7842	return ERR_PTR(-ENOMEM);
7843}
7844
7845/* destroy an existing cpu accounting group */
7846static void cpuacct_destroy(struct cgroup *cgrp)
7847{
7848	struct cpuacct *ca = cgroup_ca(cgrp);
7849
7850	free_percpu(ca->cpustat);
7851	free_percpu(ca->cpuusage);
7852	kfree(ca);
7853}
7854
7855static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7856{
7857	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7858	u64 data;
7859
7860#ifndef CONFIG_64BIT
7861	/*
7862	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7863	 */
7864	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7865	data = *cpuusage;
7866	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7867#else
7868	data = *cpuusage;
7869#endif
7870
7871	return data;
7872}
7873
7874static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7875{
7876	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7877
7878#ifndef CONFIG_64BIT
7879	/*
7880	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7881	 */
7882	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7883	*cpuusage = val;
7884	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7885#else
7886	*cpuusage = val;
7887#endif
7888}
7889
7890/* return total cpu usage (in nanoseconds) of a group */
7891static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7892{
7893	struct cpuacct *ca = cgroup_ca(cgrp);
7894	u64 totalcpuusage = 0;
7895	int i;
7896
7897	for_each_present_cpu(i)
7898		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7899
7900	return totalcpuusage;
7901}
7902
7903static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7904								u64 reset)
7905{
7906	struct cpuacct *ca = cgroup_ca(cgrp);
7907	int err = 0;
7908	int i;
7909
7910	if (reset) {
7911		err = -EINVAL;
7912		goto out;
7913	}
7914
7915	for_each_present_cpu(i)
7916		cpuacct_cpuusage_write(ca, i, 0);
7917
7918out:
7919	return err;
7920}
7921
7922static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7923				   struct seq_file *m)
7924{
7925	struct cpuacct *ca = cgroup_ca(cgroup);
7926	u64 percpu;
7927	int i;
7928
7929	for_each_present_cpu(i) {
7930		percpu = cpuacct_cpuusage_read(ca, i);
7931		seq_printf(m, "%llu ", (unsigned long long) percpu);
7932	}
7933	seq_printf(m, "\n");
7934	return 0;
7935}
7936
7937static const char *cpuacct_stat_desc[] = {
7938	[CPUACCT_STAT_USER] = "user",
7939	[CPUACCT_STAT_SYSTEM] = "system",
7940};
7941
7942static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
7943			      struct cgroup_map_cb *cb)
7944{
7945	struct cpuacct *ca = cgroup_ca(cgrp);
7946	int cpu;
7947	s64 val = 0;
7948
7949	for_each_online_cpu(cpu) {
7950		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7951		val += kcpustat->cpustat[CPUTIME_USER];
7952		val += kcpustat->cpustat[CPUTIME_NICE];
7953	}
7954	val = cputime64_to_clock_t(val);
7955	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
7956
7957	val = 0;
7958	for_each_online_cpu(cpu) {
7959		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
7960		val += kcpustat->cpustat[CPUTIME_SYSTEM];
7961		val += kcpustat->cpustat[CPUTIME_IRQ];
7962		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
7963	}
7964
7965	val = cputime64_to_clock_t(val);
7966	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
7967
7968	return 0;
7969}
7970
7971static struct cftype files[] = {
7972	{
7973		.name = "usage",
7974		.read_u64 = cpuusage_read,
7975		.write_u64 = cpuusage_write,
7976	},
7977	{
7978		.name = "usage_percpu",
7979		.read_seq_string = cpuacct_percpu_seq_read,
7980	},
7981	{
7982		.name = "stat",
7983		.read_map = cpuacct_stats_show,
7984	},
7985	{ }	/* terminate */
7986};
7987
7988/*
7989 * charge this task's execution time to its accounting group.
7990 *
7991 * called with rq->lock held.
7992 */
7993void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7994{
7995	struct cpuacct *ca;
7996	int cpu;
7997
7998	if (unlikely(!cpuacct_subsys.active))
7999		return;
8000
8001	cpu = task_cpu(tsk);
8002
8003	rcu_read_lock();
8004
8005	ca = task_ca(tsk);
8006
8007	for (; ca; ca = parent_ca(ca)) {
8008		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8009		*cpuusage += cputime;
8010	}
8011
8012	rcu_read_unlock();
8013}
8014
8015struct cgroup_subsys cpuacct_subsys = {
8016	.name = "cpuacct",
8017	.create = cpuacct_create,
8018	.destroy = cpuacct_destroy,
8019	.subsys_id = cpuacct_subsys_id,
8020	.base_cftypes = files,
8021};
8022#endif	/* CONFIG_CGROUP_CPUACCT */
8023