core.c revision 686855f5d833178e518d79e7912cdb3268a9fa69
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_sched.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
517#define tsk_is_polling(t) 0
518#endif
519
520void resched_task(struct task_struct *p)
521{
522	int cpu;
523
524	assert_raw_spin_locked(&task_rq(p)->lock);
525
526	if (test_tsk_need_resched(p))
527		return;
528
529	set_tsk_need_resched(p);
530
531	cpu = task_cpu(p);
532	if (cpu == smp_processor_id())
533		return;
534
535	/* NEED_RESCHED must be visible before we test polling */
536	smp_mb();
537	if (!tsk_is_polling(p))
538		smp_send_reschedule(cpu);
539}
540
541void resched_cpu(int cpu)
542{
543	struct rq *rq = cpu_rq(cpu);
544	unsigned long flags;
545
546	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547		return;
548	resched_task(cpu_curr(cpu));
549	raw_spin_unlock_irqrestore(&rq->lock, flags);
550}
551
552#ifdef CONFIG_NO_HZ
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu.  This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563	int cpu = smp_processor_id();
564	int i;
565	struct sched_domain *sd;
566
567	rcu_read_lock();
568	for_each_domain(cpu, sd) {
569		for_each_cpu(i, sched_domain_span(sd)) {
570			if (!idle_cpu(i)) {
571				cpu = i;
572				goto unlock;
573			}
574		}
575	}
576unlock:
577	rcu_read_unlock();
578	return cpu;
579}
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592	struct rq *rq = cpu_rq(cpu);
593
594	if (cpu == smp_processor_id())
595		return;
596
597	/*
598	 * This is safe, as this function is called with the timer
599	 * wheel base lock of (cpu) held. When the CPU is on the way
600	 * to idle and has not yet set rq->curr to idle then it will
601	 * be serialized on the timer wheel base lock and take the new
602	 * timer into account automatically.
603	 */
604	if (rq->curr != rq->idle)
605		return;
606
607	/*
608	 * We can set TIF_RESCHED on the idle task of the other CPU
609	 * lockless. The worst case is that the other CPU runs the
610	 * idle task through an additional NOOP schedule()
611	 */
612	set_tsk_need_resched(rq->idle);
613
614	/* NEED_RESCHED must be visible before we test polling */
615	smp_mb();
616	if (!tsk_is_polling(rq->idle))
617		smp_send_reschedule(cpu);
618}
619
620static inline bool got_nohz_idle_kick(void)
621{
622	int cpu = smp_processor_id();
623	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624}
625
626#else /* CONFIG_NO_HZ */
627
628static inline bool got_nohz_idle_kick(void)
629{
630	return false;
631}
632
633#endif /* CONFIG_NO_HZ */
634
635void sched_avg_update(struct rq *rq)
636{
637	s64 period = sched_avg_period();
638
639	while ((s64)(rq->clock - rq->age_stamp) > period) {
640		/*
641		 * Inline assembly required to prevent the compiler
642		 * optimising this loop into a divmod call.
643		 * See __iter_div_u64_rem() for another example of this.
644		 */
645		asm("" : "+rm" (rq->age_stamp));
646		rq->age_stamp += period;
647		rq->rt_avg /= 2;
648	}
649}
650
651#else /* !CONFIG_SMP */
652void resched_task(struct task_struct *p)
653{
654	assert_raw_spin_locked(&task_rq(p)->lock);
655	set_tsk_need_resched(p);
656}
657#endif /* CONFIG_SMP */
658
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661/*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667int walk_tg_tree_from(struct task_group *from,
668			     tg_visitor down, tg_visitor up, void *data)
669{
670	struct task_group *parent, *child;
671	int ret;
672
673	parent = from;
674
675down:
676	ret = (*down)(parent, data);
677	if (ret)
678		goto out;
679	list_for_each_entry_rcu(child, &parent->children, siblings) {
680		parent = child;
681		goto down;
682
683up:
684		continue;
685	}
686	ret = (*up)(parent, data);
687	if (ret || parent == from)
688		goto out;
689
690	child = parent;
691	parent = parent->parent;
692	if (parent)
693		goto up;
694out:
695	return ret;
696}
697
698int tg_nop(struct task_group *tg, void *data)
699{
700	return 0;
701}
702#endif
703
704static void set_load_weight(struct task_struct *p)
705{
706	int prio = p->static_prio - MAX_RT_PRIO;
707	struct load_weight *load = &p->se.load;
708
709	/*
710	 * SCHED_IDLE tasks get minimal weight:
711	 */
712	if (p->policy == SCHED_IDLE) {
713		load->weight = scale_load(WEIGHT_IDLEPRIO);
714		load->inv_weight = WMULT_IDLEPRIO;
715		return;
716	}
717
718	load->weight = scale_load(prio_to_weight[prio]);
719	load->inv_weight = prio_to_wmult[prio];
720}
721
722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_queued(p);
726	p->sched_class->enqueue_task(rq, p, flags);
727}
728
729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	update_rq_clock(rq);
732	sched_info_dequeued(p);
733	p->sched_class->dequeue_task(rq, p, flags);
734}
735
736void activate_task(struct rq *rq, struct task_struct *p, int flags)
737{
738	if (task_contributes_to_load(p))
739		rq->nr_uninterruptible--;
740
741	enqueue_task(rq, p, flags);
742}
743
744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745{
746	if (task_contributes_to_load(p))
747		rq->nr_uninterruptible++;
748
749	dequeue_task(rq, p, flags);
750}
751
752static void update_rq_clock_task(struct rq *rq, s64 delta)
753{
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759	s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
762	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764	/*
765	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766	 * this case when a previous update_rq_clock() happened inside a
767	 * {soft,}irq region.
768	 *
769	 * When this happens, we stop ->clock_task and only update the
770	 * prev_irq_time stamp to account for the part that fit, so that a next
771	 * update will consume the rest. This ensures ->clock_task is
772	 * monotonic.
773	 *
774	 * It does however cause some slight miss-attribution of {soft,}irq
775	 * time, a more accurate solution would be to update the irq_time using
776	 * the current rq->clock timestamp, except that would require using
777	 * atomic ops.
778	 */
779	if (irq_delta > delta)
780		irq_delta = delta;
781
782	rq->prev_irq_time += irq_delta;
783	delta -= irq_delta;
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786	if (static_key_false((&paravirt_steal_rq_enabled))) {
787		u64 st;
788
789		steal = paravirt_steal_clock(cpu_of(rq));
790		steal -= rq->prev_steal_time_rq;
791
792		if (unlikely(steal > delta))
793			steal = delta;
794
795		st = steal_ticks(steal);
796		steal = st * TICK_NSEC;
797
798		rq->prev_steal_time_rq += steal;
799
800		delta -= steal;
801	}
802#endif
803
804	rq->clock_task += delta;
805
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808		sched_rt_avg_update(rq, irq_delta + steal);
809#endif
810}
811
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815	struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817	if (stop) {
818		/*
819		 * Make it appear like a SCHED_FIFO task, its something
820		 * userspace knows about and won't get confused about.
821		 *
822		 * Also, it will make PI more or less work without too
823		 * much confusion -- but then, stop work should not
824		 * rely on PI working anyway.
825		 */
826		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828		stop->sched_class = &stop_sched_class;
829	}
830
831	cpu_rq(cpu)->stop = stop;
832
833	if (old_stop) {
834		/*
835		 * Reset it back to a normal scheduling class so that
836		 * it can die in pieces.
837		 */
838		old_stop->sched_class = &rt_sched_class;
839	}
840}
841
842/*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845static inline int __normal_prio(struct task_struct *p)
846{
847	return p->static_prio;
848}
849
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857static inline int normal_prio(struct task_struct *p)
858{
859	int prio;
860
861	if (task_has_rt_policy(p))
862		prio = MAX_RT_PRIO-1 - p->rt_priority;
863	else
864		prio = __normal_prio(p);
865	return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875static int effective_prio(struct task_struct *p)
876{
877	p->normal_prio = normal_prio(p);
878	/*
879	 * If we are RT tasks or we were boosted to RT priority,
880	 * keep the priority unchanged. Otherwise, update priority
881	 * to the normal priority:
882	 */
883	if (!rt_prio(p->prio))
884		return p->normal_prio;
885	return p->prio;
886}
887
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892inline int task_curr(const struct task_struct *p)
893{
894	return cpu_curr(task_cpu(p)) == p;
895}
896
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898				       const struct sched_class *prev_class,
899				       int oldprio)
900{
901	if (prev_class != p->sched_class) {
902		if (prev_class->switched_from)
903			prev_class->switched_from(rq, p);
904		p->sched_class->switched_to(rq, p);
905	} else if (oldprio != p->prio)
906		p->sched_class->prio_changed(rq, p, oldprio);
907}
908
909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910{
911	const struct sched_class *class;
912
913	if (p->sched_class == rq->curr->sched_class) {
914		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915	} else {
916		for_each_class(class) {
917			if (class == rq->curr->sched_class)
918				break;
919			if (class == p->sched_class) {
920				resched_task(rq->curr);
921				break;
922			}
923		}
924	}
925
926	/*
927	 * A queue event has occurred, and we're going to schedule.  In
928	 * this case, we can save a useless back to back clock update.
929	 */
930	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931		rq->skip_clock_update = 1;
932}
933
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938	atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
941#ifdef CONFIG_SMP
942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943{
944#ifdef CONFIG_SCHED_DEBUG
945	/*
946	 * We should never call set_task_cpu() on a blocked task,
947	 * ttwu() will sort out the placement.
948	 */
949	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952#ifdef CONFIG_LOCKDEP
953	/*
954	 * The caller should hold either p->pi_lock or rq->lock, when changing
955	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956	 *
957	 * sched_move_task() holds both and thus holding either pins the cgroup,
958	 * see task_group().
959	 *
960	 * Furthermore, all task_rq users should acquire both locks, see
961	 * task_rq_lock().
962	 */
963	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964				      lockdep_is_held(&task_rq(p)->lock)));
965#endif
966#endif
967
968	trace_sched_migrate_task(p, new_cpu);
969
970	if (task_cpu(p) != new_cpu) {
971		struct task_migration_notifier tmn;
972
973		if (p->sched_class->migrate_task_rq)
974			p->sched_class->migrate_task_rq(p, new_cpu);
975		p->se.nr_migrations++;
976		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978		tmn.task = p;
979		tmn.from_cpu = task_cpu(p);
980		tmn.to_cpu = new_cpu;
981
982		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983	}
984
985	__set_task_cpu(p, new_cpu);
986}
987
988struct migration_arg {
989	struct task_struct *task;
990	int dest_cpu;
991};
992
993static int migration_cpu_stop(void *data);
994
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change.  If it changes, i.e. @p might have woken up,
1000 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count).  If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012{
1013	unsigned long flags;
1014	int running, on_rq;
1015	unsigned long ncsw;
1016	struct rq *rq;
1017
1018	for (;;) {
1019		/*
1020		 * We do the initial early heuristics without holding
1021		 * any task-queue locks at all. We'll only try to get
1022		 * the runqueue lock when things look like they will
1023		 * work out!
1024		 */
1025		rq = task_rq(p);
1026
1027		/*
1028		 * If the task is actively running on another CPU
1029		 * still, just relax and busy-wait without holding
1030		 * any locks.
1031		 *
1032		 * NOTE! Since we don't hold any locks, it's not
1033		 * even sure that "rq" stays as the right runqueue!
1034		 * But we don't care, since "task_running()" will
1035		 * return false if the runqueue has changed and p
1036		 * is actually now running somewhere else!
1037		 */
1038		while (task_running(rq, p)) {
1039			if (match_state && unlikely(p->state != match_state))
1040				return 0;
1041			cpu_relax();
1042		}
1043
1044		/*
1045		 * Ok, time to look more closely! We need the rq
1046		 * lock now, to be *sure*. If we're wrong, we'll
1047		 * just go back and repeat.
1048		 */
1049		rq = task_rq_lock(p, &flags);
1050		trace_sched_wait_task(p);
1051		running = task_running(rq, p);
1052		on_rq = p->on_rq;
1053		ncsw = 0;
1054		if (!match_state || p->state == match_state)
1055			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056		task_rq_unlock(rq, p, &flags);
1057
1058		/*
1059		 * If it changed from the expected state, bail out now.
1060		 */
1061		if (unlikely(!ncsw))
1062			break;
1063
1064		/*
1065		 * Was it really running after all now that we
1066		 * checked with the proper locks actually held?
1067		 *
1068		 * Oops. Go back and try again..
1069		 */
1070		if (unlikely(running)) {
1071			cpu_relax();
1072			continue;
1073		}
1074
1075		/*
1076		 * It's not enough that it's not actively running,
1077		 * it must be off the runqueue _entirely_, and not
1078		 * preempted!
1079		 *
1080		 * So if it was still runnable (but just not actively
1081		 * running right now), it's preempted, and we should
1082		 * yield - it could be a while.
1083		 */
1084		if (unlikely(on_rq)) {
1085			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087			set_current_state(TASK_UNINTERRUPTIBLE);
1088			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089			continue;
1090		}
1091
1092		/*
1093		 * Ahh, all good. It wasn't running, and it wasn't
1094		 * runnable, which means that it will never become
1095		 * running in the future either. We're all done!
1096		 */
1097		break;
1098	}
1099
1100	return ncsw;
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116void kick_process(struct task_struct *p)
1117{
1118	int cpu;
1119
1120	preempt_disable();
1121	cpu = task_cpu(p);
1122	if ((cpu != smp_processor_id()) && task_curr(p))
1123		smp_send_reschedule(cpu);
1124	preempt_enable();
1125}
1126EXPORT_SYMBOL_GPL(kick_process);
1127#endif /* CONFIG_SMP */
1128
1129#ifdef CONFIG_SMP
1130/*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
1135	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1136	enum { cpuset, possible, fail } state = cpuset;
1137	int dest_cpu;
1138
1139	/* Look for allowed, online CPU in same node. */
1140	for_each_cpu(dest_cpu, nodemask) {
1141		if (!cpu_online(dest_cpu))
1142			continue;
1143		if (!cpu_active(dest_cpu))
1144			continue;
1145		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1146			return dest_cpu;
1147	}
1148
1149	for (;;) {
1150		/* Any allowed, online CPU? */
1151		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1152			if (!cpu_online(dest_cpu))
1153				continue;
1154			if (!cpu_active(dest_cpu))
1155				continue;
1156			goto out;
1157		}
1158
1159		switch (state) {
1160		case cpuset:
1161			/* No more Mr. Nice Guy. */
1162			cpuset_cpus_allowed_fallback(p);
1163			state = possible;
1164			break;
1165
1166		case possible:
1167			do_set_cpus_allowed(p, cpu_possible_mask);
1168			state = fail;
1169			break;
1170
1171		case fail:
1172			BUG();
1173			break;
1174		}
1175	}
1176
1177out:
1178	if (state != cpuset) {
1179		/*
1180		 * Don't tell them about moving exiting tasks or
1181		 * kernel threads (both mm NULL), since they never
1182		 * leave kernel.
1183		 */
1184		if (p->mm && printk_ratelimit()) {
1185			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186					task_pid_nr(p), p->comm, cpu);
1187		}
1188	}
1189
1190	return dest_cpu;
1191}
1192
1193/*
1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1195 */
1196static inline
1197int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1198{
1199	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1200
1201	/*
1202	 * In order not to call set_task_cpu() on a blocking task we need
1203	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204	 * cpu.
1205	 *
1206	 * Since this is common to all placement strategies, this lives here.
1207	 *
1208	 * [ this allows ->select_task() to simply return task_cpu(p) and
1209	 *   not worry about this generic constraint ]
1210	 */
1211	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1212		     !cpu_online(cpu)))
1213		cpu = select_fallback_rq(task_cpu(p), p);
1214
1215	return cpu;
1216}
1217
1218static void update_avg(u64 *avg, u64 sample)
1219{
1220	s64 diff = sample - *avg;
1221	*avg += diff >> 3;
1222}
1223#endif
1224
1225static void
1226ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1227{
1228#ifdef CONFIG_SCHEDSTATS
1229	struct rq *rq = this_rq();
1230
1231#ifdef CONFIG_SMP
1232	int this_cpu = smp_processor_id();
1233
1234	if (cpu == this_cpu) {
1235		schedstat_inc(rq, ttwu_local);
1236		schedstat_inc(p, se.statistics.nr_wakeups_local);
1237	} else {
1238		struct sched_domain *sd;
1239
1240		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1241		rcu_read_lock();
1242		for_each_domain(this_cpu, sd) {
1243			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244				schedstat_inc(sd, ttwu_wake_remote);
1245				break;
1246			}
1247		}
1248		rcu_read_unlock();
1249	}
1250
1251	if (wake_flags & WF_MIGRATED)
1252		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
1254#endif /* CONFIG_SMP */
1255
1256	schedstat_inc(rq, ttwu_count);
1257	schedstat_inc(p, se.statistics.nr_wakeups);
1258
1259	if (wake_flags & WF_SYNC)
1260		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1261
1262#endif /* CONFIG_SCHEDSTATS */
1263}
1264
1265static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266{
1267	activate_task(rq, p, en_flags);
1268	p->on_rq = 1;
1269
1270	/* if a worker is waking up, notify workqueue */
1271	if (p->flags & PF_WQ_WORKER)
1272		wq_worker_waking_up(p, cpu_of(rq));
1273}
1274
1275/*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
1278static void
1279ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1280{
1281	trace_sched_wakeup(p, true);
1282	check_preempt_curr(rq, p, wake_flags);
1283
1284	p->state = TASK_RUNNING;
1285#ifdef CONFIG_SMP
1286	if (p->sched_class->task_woken)
1287		p->sched_class->task_woken(rq, p);
1288
1289	if (rq->idle_stamp) {
1290		u64 delta = rq->clock - rq->idle_stamp;
1291		u64 max = 2*sysctl_sched_migration_cost;
1292
1293		if (delta > max)
1294			rq->avg_idle = max;
1295		else
1296			update_avg(&rq->avg_idle, delta);
1297		rq->idle_stamp = 0;
1298	}
1299#endif
1300}
1301
1302static void
1303ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304{
1305#ifdef CONFIG_SMP
1306	if (p->sched_contributes_to_load)
1307		rq->nr_uninterruptible--;
1308#endif
1309
1310	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311	ttwu_do_wakeup(rq, p, wake_flags);
1312}
1313
1314/*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320static int ttwu_remote(struct task_struct *p, int wake_flags)
1321{
1322	struct rq *rq;
1323	int ret = 0;
1324
1325	rq = __task_rq_lock(p);
1326	if (p->on_rq) {
1327		ttwu_do_wakeup(rq, p, wake_flags);
1328		ret = 1;
1329	}
1330	__task_rq_unlock(rq);
1331
1332	return ret;
1333}
1334
1335#ifdef CONFIG_SMP
1336static void sched_ttwu_pending(void)
1337{
1338	struct rq *rq = this_rq();
1339	struct llist_node *llist = llist_del_all(&rq->wake_list);
1340	struct task_struct *p;
1341
1342	raw_spin_lock(&rq->lock);
1343
1344	while (llist) {
1345		p = llist_entry(llist, struct task_struct, wake_entry);
1346		llist = llist_next(llist);
1347		ttwu_do_activate(rq, p, 0);
1348	}
1349
1350	raw_spin_unlock(&rq->lock);
1351}
1352
1353void scheduler_ipi(void)
1354{
1355	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1356		return;
1357
1358	/*
1359	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360	 * traditionally all their work was done from the interrupt return
1361	 * path. Now that we actually do some work, we need to make sure
1362	 * we do call them.
1363	 *
1364	 * Some archs already do call them, luckily irq_enter/exit nest
1365	 * properly.
1366	 *
1367	 * Arguably we should visit all archs and update all handlers,
1368	 * however a fair share of IPIs are still resched only so this would
1369	 * somewhat pessimize the simple resched case.
1370	 */
1371	irq_enter();
1372	sched_ttwu_pending();
1373
1374	/*
1375	 * Check if someone kicked us for doing the nohz idle load balance.
1376	 */
1377	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378		this_rq()->idle_balance = 1;
1379		raise_softirq_irqoff(SCHED_SOFTIRQ);
1380	}
1381	irq_exit();
1382}
1383
1384static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385{
1386	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1387		smp_send_reschedule(cpu);
1388}
1389
1390bool cpus_share_cache(int this_cpu, int that_cpu)
1391{
1392	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393}
1394#endif /* CONFIG_SMP */
1395
1396static void ttwu_queue(struct task_struct *p, int cpu)
1397{
1398	struct rq *rq = cpu_rq(cpu);
1399
1400#if defined(CONFIG_SMP)
1401	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1402		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1403		ttwu_queue_remote(p, cpu);
1404		return;
1405	}
1406#endif
1407
1408	raw_spin_lock(&rq->lock);
1409	ttwu_do_activate(rq, p, 0);
1410	raw_spin_unlock(&rq->lock);
1411}
1412
1413/**
1414 * try_to_wake_up - wake up a thread
1415 * @p: the thread to be awakened
1416 * @state: the mask of task states that can be woken
1417 * @wake_flags: wake modifier flags (WF_*)
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1427 */
1428static int
1429try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1430{
1431	unsigned long flags;
1432	int cpu, success = 0;
1433
1434	smp_wmb();
1435	raw_spin_lock_irqsave(&p->pi_lock, flags);
1436	if (!(p->state & state))
1437		goto out;
1438
1439	success = 1; /* we're going to change ->state */
1440	cpu = task_cpu(p);
1441
1442	if (p->on_rq && ttwu_remote(p, wake_flags))
1443		goto stat;
1444
1445#ifdef CONFIG_SMP
1446	/*
1447	 * If the owning (remote) cpu is still in the middle of schedule() with
1448	 * this task as prev, wait until its done referencing the task.
1449	 */
1450	while (p->on_cpu)
1451		cpu_relax();
1452	/*
1453	 * Pairs with the smp_wmb() in finish_lock_switch().
1454	 */
1455	smp_rmb();
1456
1457	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1458	p->state = TASK_WAKING;
1459
1460	if (p->sched_class->task_waking)
1461		p->sched_class->task_waking(p);
1462
1463	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1464	if (task_cpu(p) != cpu) {
1465		wake_flags |= WF_MIGRATED;
1466		set_task_cpu(p, cpu);
1467	}
1468#endif /* CONFIG_SMP */
1469
1470	ttwu_queue(p, cpu);
1471stat:
1472	ttwu_stat(p, cpu, wake_flags);
1473out:
1474	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1475
1476	return success;
1477}
1478
1479/**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
1483 * Put @p on the run-queue if it's not already there. The caller must
1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1485 * the current task.
1486 */
1487static void try_to_wake_up_local(struct task_struct *p)
1488{
1489	struct rq *rq = task_rq(p);
1490
1491	BUG_ON(rq != this_rq());
1492	BUG_ON(p == current);
1493	lockdep_assert_held(&rq->lock);
1494
1495	if (!raw_spin_trylock(&p->pi_lock)) {
1496		raw_spin_unlock(&rq->lock);
1497		raw_spin_lock(&p->pi_lock);
1498		raw_spin_lock(&rq->lock);
1499	}
1500
1501	if (!(p->state & TASK_NORMAL))
1502		goto out;
1503
1504	if (!p->on_rq)
1505		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506
1507	ttwu_do_wakeup(rq, p, 0);
1508	ttwu_stat(p, smp_processor_id(), 0);
1509out:
1510	raw_spin_unlock(&p->pi_lock);
1511}
1512
1513/**
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1516 *
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes.  Returns 1 if the process was woken up, 0 if it was already
1519 * running.
1520 *
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1523 */
1524int wake_up_process(struct task_struct *p)
1525{
1526	return try_to_wake_up(p, TASK_ALL, 0);
1527}
1528EXPORT_SYMBOL(wake_up_process);
1529
1530int wake_up_state(struct task_struct *p, unsigned int state)
1531{
1532	return try_to_wake_up(p, state, 0);
1533}
1534
1535/*
1536 * Perform scheduler related setup for a newly forked process p.
1537 * p is forked by current.
1538 *
1539 * __sched_fork() is basic setup used by init_idle() too:
1540 */
1541static void __sched_fork(struct task_struct *p)
1542{
1543	p->on_rq			= 0;
1544
1545	p->se.on_rq			= 0;
1546	p->se.exec_start		= 0;
1547	p->se.sum_exec_runtime		= 0;
1548	p->se.prev_sum_exec_runtime	= 0;
1549	p->se.nr_migrations		= 0;
1550	p->se.vruntime			= 0;
1551	INIT_LIST_HEAD(&p->se.group_node);
1552
1553/*
1554 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1555 * removed when useful for applications beyond shares distribution (e.g.
1556 * load-balance).
1557 */
1558#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1559	p->se.avg.runnable_avg_period = 0;
1560	p->se.avg.runnable_avg_sum = 0;
1561#endif
1562#ifdef CONFIG_SCHEDSTATS
1563	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1564#endif
1565
1566	INIT_LIST_HEAD(&p->rt.run_list);
1567
1568#ifdef CONFIG_PREEMPT_NOTIFIERS
1569	INIT_HLIST_HEAD(&p->preempt_notifiers);
1570#endif
1571
1572#ifdef CONFIG_NUMA_BALANCING
1573	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1574		p->mm->numa_next_scan = jiffies;
1575		p->mm->numa_next_reset = jiffies;
1576		p->mm->numa_scan_seq = 0;
1577	}
1578
1579	p->node_stamp = 0ULL;
1580	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1581	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1582	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1583	p->numa_work.next = &p->numa_work;
1584#endif /* CONFIG_NUMA_BALANCING */
1585}
1586
1587#ifdef CONFIG_NUMA_BALANCING
1588#ifdef CONFIG_SCHED_DEBUG
1589void set_numabalancing_state(bool enabled)
1590{
1591	if (enabled)
1592		sched_feat_set("NUMA");
1593	else
1594		sched_feat_set("NO_NUMA");
1595}
1596#else
1597__read_mostly bool numabalancing_enabled;
1598
1599void set_numabalancing_state(bool enabled)
1600{
1601	numabalancing_enabled = enabled;
1602}
1603#endif /* CONFIG_SCHED_DEBUG */
1604#endif /* CONFIG_NUMA_BALANCING */
1605
1606/*
1607 * fork()/clone()-time setup:
1608 */
1609void sched_fork(struct task_struct *p)
1610{
1611	unsigned long flags;
1612	int cpu = get_cpu();
1613
1614	__sched_fork(p);
1615	/*
1616	 * We mark the process as running here. This guarantees that
1617	 * nobody will actually run it, and a signal or other external
1618	 * event cannot wake it up and insert it on the runqueue either.
1619	 */
1620	p->state = TASK_RUNNING;
1621
1622	/*
1623	 * Make sure we do not leak PI boosting priority to the child.
1624	 */
1625	p->prio = current->normal_prio;
1626
1627	/*
1628	 * Revert to default priority/policy on fork if requested.
1629	 */
1630	if (unlikely(p->sched_reset_on_fork)) {
1631		if (task_has_rt_policy(p)) {
1632			p->policy = SCHED_NORMAL;
1633			p->static_prio = NICE_TO_PRIO(0);
1634			p->rt_priority = 0;
1635		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1636			p->static_prio = NICE_TO_PRIO(0);
1637
1638		p->prio = p->normal_prio = __normal_prio(p);
1639		set_load_weight(p);
1640
1641		/*
1642		 * We don't need the reset flag anymore after the fork. It has
1643		 * fulfilled its duty:
1644		 */
1645		p->sched_reset_on_fork = 0;
1646	}
1647
1648	if (!rt_prio(p->prio))
1649		p->sched_class = &fair_sched_class;
1650
1651	if (p->sched_class->task_fork)
1652		p->sched_class->task_fork(p);
1653
1654	/*
1655	 * The child is not yet in the pid-hash so no cgroup attach races,
1656	 * and the cgroup is pinned to this child due to cgroup_fork()
1657	 * is ran before sched_fork().
1658	 *
1659	 * Silence PROVE_RCU.
1660	 */
1661	raw_spin_lock_irqsave(&p->pi_lock, flags);
1662	set_task_cpu(p, cpu);
1663	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1664
1665#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1666	if (likely(sched_info_on()))
1667		memset(&p->sched_info, 0, sizeof(p->sched_info));
1668#endif
1669#if defined(CONFIG_SMP)
1670	p->on_cpu = 0;
1671#endif
1672#ifdef CONFIG_PREEMPT_COUNT
1673	/* Want to start with kernel preemption disabled. */
1674	task_thread_info(p)->preempt_count = 1;
1675#endif
1676#ifdef CONFIG_SMP
1677	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1678#endif
1679
1680	put_cpu();
1681}
1682
1683/*
1684 * wake_up_new_task - wake up a newly created task for the first time.
1685 *
1686 * This function will do some initial scheduler statistics housekeeping
1687 * that must be done for every newly created context, then puts the task
1688 * on the runqueue and wakes it.
1689 */
1690void wake_up_new_task(struct task_struct *p)
1691{
1692	unsigned long flags;
1693	struct rq *rq;
1694
1695	raw_spin_lock_irqsave(&p->pi_lock, flags);
1696#ifdef CONFIG_SMP
1697	/*
1698	 * Fork balancing, do it here and not earlier because:
1699	 *  - cpus_allowed can change in the fork path
1700	 *  - any previously selected cpu might disappear through hotplug
1701	 */
1702	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1703#endif
1704
1705	rq = __task_rq_lock(p);
1706	activate_task(rq, p, 0);
1707	p->on_rq = 1;
1708	trace_sched_wakeup_new(p, true);
1709	check_preempt_curr(rq, p, WF_FORK);
1710#ifdef CONFIG_SMP
1711	if (p->sched_class->task_woken)
1712		p->sched_class->task_woken(rq, p);
1713#endif
1714	task_rq_unlock(rq, p, &flags);
1715}
1716
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718
1719/**
1720 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1721 * @notifier: notifier struct to register
1722 */
1723void preempt_notifier_register(struct preempt_notifier *notifier)
1724{
1725	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1726}
1727EXPORT_SYMBOL_GPL(preempt_notifier_register);
1728
1729/**
1730 * preempt_notifier_unregister - no longer interested in preemption notifications
1731 * @notifier: notifier struct to unregister
1732 *
1733 * This is safe to call from within a preemption notifier.
1734 */
1735void preempt_notifier_unregister(struct preempt_notifier *notifier)
1736{
1737	hlist_del(&notifier->link);
1738}
1739EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1740
1741static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1742{
1743	struct preempt_notifier *notifier;
1744	struct hlist_node *node;
1745
1746	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1747		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1748}
1749
1750static void
1751fire_sched_out_preempt_notifiers(struct task_struct *curr,
1752				 struct task_struct *next)
1753{
1754	struct preempt_notifier *notifier;
1755	struct hlist_node *node;
1756
1757	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758		notifier->ops->sched_out(notifier, next);
1759}
1760
1761#else /* !CONFIG_PREEMPT_NOTIFIERS */
1762
1763static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1764{
1765}
1766
1767static void
1768fire_sched_out_preempt_notifiers(struct task_struct *curr,
1769				 struct task_struct *next)
1770{
1771}
1772
1773#endif /* CONFIG_PREEMPT_NOTIFIERS */
1774
1775/**
1776 * prepare_task_switch - prepare to switch tasks
1777 * @rq: the runqueue preparing to switch
1778 * @prev: the current task that is being switched out
1779 * @next: the task we are going to switch to.
1780 *
1781 * This is called with the rq lock held and interrupts off. It must
1782 * be paired with a subsequent finish_task_switch after the context
1783 * switch.
1784 *
1785 * prepare_task_switch sets up locking and calls architecture specific
1786 * hooks.
1787 */
1788static inline void
1789prepare_task_switch(struct rq *rq, struct task_struct *prev,
1790		    struct task_struct *next)
1791{
1792	trace_sched_switch(prev, next);
1793	sched_info_switch(prev, next);
1794	perf_event_task_sched_out(prev, next);
1795	fire_sched_out_preempt_notifiers(prev, next);
1796	prepare_lock_switch(rq, next);
1797	prepare_arch_switch(next);
1798}
1799
1800/**
1801 * finish_task_switch - clean up after a task-switch
1802 * @rq: runqueue associated with task-switch
1803 * @prev: the thread we just switched away from.
1804 *
1805 * finish_task_switch must be called after the context switch, paired
1806 * with a prepare_task_switch call before the context switch.
1807 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1808 * and do any other architecture-specific cleanup actions.
1809 *
1810 * Note that we may have delayed dropping an mm in context_switch(). If
1811 * so, we finish that here outside of the runqueue lock. (Doing it
1812 * with the lock held can cause deadlocks; see schedule() for
1813 * details.)
1814 */
1815static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1816	__releases(rq->lock)
1817{
1818	struct mm_struct *mm = rq->prev_mm;
1819	long prev_state;
1820
1821	rq->prev_mm = NULL;
1822
1823	/*
1824	 * A task struct has one reference for the use as "current".
1825	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1826	 * schedule one last time. The schedule call will never return, and
1827	 * the scheduled task must drop that reference.
1828	 * The test for TASK_DEAD must occur while the runqueue locks are
1829	 * still held, otherwise prev could be scheduled on another cpu, die
1830	 * there before we look at prev->state, and then the reference would
1831	 * be dropped twice.
1832	 *		Manfred Spraul <manfred@colorfullife.com>
1833	 */
1834	prev_state = prev->state;
1835	vtime_task_switch(prev);
1836	finish_arch_switch(prev);
1837	perf_event_task_sched_in(prev, current);
1838	finish_lock_switch(rq, prev);
1839	finish_arch_post_lock_switch();
1840
1841	fire_sched_in_preempt_notifiers(current);
1842	if (mm)
1843		mmdrop(mm);
1844	if (unlikely(prev_state == TASK_DEAD)) {
1845		/*
1846		 * Remove function-return probe instances associated with this
1847		 * task and put them back on the free list.
1848		 */
1849		kprobe_flush_task(prev);
1850		put_task_struct(prev);
1851	}
1852}
1853
1854#ifdef CONFIG_SMP
1855
1856/* assumes rq->lock is held */
1857static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1858{
1859	if (prev->sched_class->pre_schedule)
1860		prev->sched_class->pre_schedule(rq, prev);
1861}
1862
1863/* rq->lock is NOT held, but preemption is disabled */
1864static inline void post_schedule(struct rq *rq)
1865{
1866	if (rq->post_schedule) {
1867		unsigned long flags;
1868
1869		raw_spin_lock_irqsave(&rq->lock, flags);
1870		if (rq->curr->sched_class->post_schedule)
1871			rq->curr->sched_class->post_schedule(rq);
1872		raw_spin_unlock_irqrestore(&rq->lock, flags);
1873
1874		rq->post_schedule = 0;
1875	}
1876}
1877
1878#else
1879
1880static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1881{
1882}
1883
1884static inline void post_schedule(struct rq *rq)
1885{
1886}
1887
1888#endif
1889
1890/**
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1893 */
1894asmlinkage void schedule_tail(struct task_struct *prev)
1895	__releases(rq->lock)
1896{
1897	struct rq *rq = this_rq();
1898
1899	finish_task_switch(rq, prev);
1900
1901	/*
1902	 * FIXME: do we need to worry about rq being invalidated by the
1903	 * task_switch?
1904	 */
1905	post_schedule(rq);
1906
1907#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1908	/* In this case, finish_task_switch does not reenable preemption */
1909	preempt_enable();
1910#endif
1911	if (current->set_child_tid)
1912		put_user(task_pid_vnr(current), current->set_child_tid);
1913}
1914
1915/*
1916 * context_switch - switch to the new MM and the new
1917 * thread's register state.
1918 */
1919static inline void
1920context_switch(struct rq *rq, struct task_struct *prev,
1921	       struct task_struct *next)
1922{
1923	struct mm_struct *mm, *oldmm;
1924
1925	prepare_task_switch(rq, prev, next);
1926
1927	mm = next->mm;
1928	oldmm = prev->active_mm;
1929	/*
1930	 * For paravirt, this is coupled with an exit in switch_to to
1931	 * combine the page table reload and the switch backend into
1932	 * one hypercall.
1933	 */
1934	arch_start_context_switch(prev);
1935
1936	if (!mm) {
1937		next->active_mm = oldmm;
1938		atomic_inc(&oldmm->mm_count);
1939		enter_lazy_tlb(oldmm, next);
1940	} else
1941		switch_mm(oldmm, mm, next);
1942
1943	if (!prev->mm) {
1944		prev->active_mm = NULL;
1945		rq->prev_mm = oldmm;
1946	}
1947	/*
1948	 * Since the runqueue lock will be released by the next
1949	 * task (which is an invalid locking op but in the case
1950	 * of the scheduler it's an obvious special-case), so we
1951	 * do an early lockdep release here:
1952	 */
1953#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1954	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1955#endif
1956
1957	context_tracking_task_switch(prev, next);
1958	/* Here we just switch the register state and the stack. */
1959	switch_to(prev, next, prev);
1960
1961	barrier();
1962	/*
1963	 * this_rq must be evaluated again because prev may have moved
1964	 * CPUs since it called schedule(), thus the 'rq' on its stack
1965	 * frame will be invalid.
1966	 */
1967	finish_task_switch(this_rq(), prev);
1968}
1969
1970/*
1971 * nr_running, nr_uninterruptible and nr_context_switches:
1972 *
1973 * externally visible scheduler statistics: current number of runnable
1974 * threads, current number of uninterruptible-sleeping threads, total
1975 * number of context switches performed since bootup.
1976 */
1977unsigned long nr_running(void)
1978{
1979	unsigned long i, sum = 0;
1980
1981	for_each_online_cpu(i)
1982		sum += cpu_rq(i)->nr_running;
1983
1984	return sum;
1985}
1986
1987unsigned long nr_uninterruptible(void)
1988{
1989	unsigned long i, sum = 0;
1990
1991	for_each_possible_cpu(i)
1992		sum += cpu_rq(i)->nr_uninterruptible;
1993
1994	/*
1995	 * Since we read the counters lockless, it might be slightly
1996	 * inaccurate. Do not allow it to go below zero though:
1997	 */
1998	if (unlikely((long)sum < 0))
1999		sum = 0;
2000
2001	return sum;
2002}
2003
2004unsigned long long nr_context_switches(void)
2005{
2006	int i;
2007	unsigned long long sum = 0;
2008
2009	for_each_possible_cpu(i)
2010		sum += cpu_rq(i)->nr_switches;
2011
2012	return sum;
2013}
2014
2015unsigned long nr_iowait(void)
2016{
2017	unsigned long i, sum = 0;
2018
2019	for_each_possible_cpu(i)
2020		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2021
2022	return sum;
2023}
2024
2025unsigned long nr_iowait_cpu(int cpu)
2026{
2027	struct rq *this = cpu_rq(cpu);
2028	return atomic_read(&this->nr_iowait);
2029}
2030
2031unsigned long this_cpu_load(void)
2032{
2033	struct rq *this = this_rq();
2034	return this->cpu_load[0];
2035}
2036
2037
2038/*
2039 * Global load-average calculations
2040 *
2041 * We take a distributed and async approach to calculating the global load-avg
2042 * in order to minimize overhead.
2043 *
2044 * The global load average is an exponentially decaying average of nr_running +
2045 * nr_uninterruptible.
2046 *
2047 * Once every LOAD_FREQ:
2048 *
2049 *   nr_active = 0;
2050 *   for_each_possible_cpu(cpu)
2051 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2052 *
2053 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2054 *
2055 * Due to a number of reasons the above turns in the mess below:
2056 *
2057 *  - for_each_possible_cpu() is prohibitively expensive on machines with
2058 *    serious number of cpus, therefore we need to take a distributed approach
2059 *    to calculating nr_active.
2060 *
2061 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2062 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2063 *
2064 *    So assuming nr_active := 0 when we start out -- true per definition, we
2065 *    can simply take per-cpu deltas and fold those into a global accumulate
2066 *    to obtain the same result. See calc_load_fold_active().
2067 *
2068 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2069 *    across the machine, we assume 10 ticks is sufficient time for every
2070 *    cpu to have completed this task.
2071 *
2072 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2073 *    again, being late doesn't loose the delta, just wrecks the sample.
2074 *
2075 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2076 *    this would add another cross-cpu cacheline miss and atomic operation
2077 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2078 *    when it went into uninterruptible state and decrement on whatever cpu
2079 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2080 *    all cpus yields the correct result.
2081 *
2082 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2083 */
2084
2085/* Variables and functions for calc_load */
2086static atomic_long_t calc_load_tasks;
2087static unsigned long calc_load_update;
2088unsigned long avenrun[3];
2089EXPORT_SYMBOL(avenrun); /* should be removed */
2090
2091/**
2092 * get_avenrun - get the load average array
2093 * @loads:	pointer to dest load array
2094 * @offset:	offset to add
2095 * @shift:	shift count to shift the result left
2096 *
2097 * These values are estimates at best, so no need for locking.
2098 */
2099void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2100{
2101	loads[0] = (avenrun[0] + offset) << shift;
2102	loads[1] = (avenrun[1] + offset) << shift;
2103	loads[2] = (avenrun[2] + offset) << shift;
2104}
2105
2106static long calc_load_fold_active(struct rq *this_rq)
2107{
2108	long nr_active, delta = 0;
2109
2110	nr_active = this_rq->nr_running;
2111	nr_active += (long) this_rq->nr_uninterruptible;
2112
2113	if (nr_active != this_rq->calc_load_active) {
2114		delta = nr_active - this_rq->calc_load_active;
2115		this_rq->calc_load_active = nr_active;
2116	}
2117
2118	return delta;
2119}
2120
2121/*
2122 * a1 = a0 * e + a * (1 - e)
2123 */
2124static unsigned long
2125calc_load(unsigned long load, unsigned long exp, unsigned long active)
2126{
2127	load *= exp;
2128	load += active * (FIXED_1 - exp);
2129	load += 1UL << (FSHIFT - 1);
2130	return load >> FSHIFT;
2131}
2132
2133#ifdef CONFIG_NO_HZ
2134/*
2135 * Handle NO_HZ for the global load-average.
2136 *
2137 * Since the above described distributed algorithm to compute the global
2138 * load-average relies on per-cpu sampling from the tick, it is affected by
2139 * NO_HZ.
2140 *
2141 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2142 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2143 * when we read the global state.
2144 *
2145 * Obviously reality has to ruin such a delightfully simple scheme:
2146 *
2147 *  - When we go NO_HZ idle during the window, we can negate our sample
2148 *    contribution, causing under-accounting.
2149 *
2150 *    We avoid this by keeping two idle-delta counters and flipping them
2151 *    when the window starts, thus separating old and new NO_HZ load.
2152 *
2153 *    The only trick is the slight shift in index flip for read vs write.
2154 *
2155 *        0s            5s            10s           15s
2156 *          +10           +10           +10           +10
2157 *        |-|-----------|-|-----------|-|-----------|-|
2158 *    r:0 0 1           1 0           0 1           1 0
2159 *    w:0 1 1           0 0           1 1           0 0
2160 *
2161 *    This ensures we'll fold the old idle contribution in this window while
2162 *    accumlating the new one.
2163 *
2164 *  - When we wake up from NO_HZ idle during the window, we push up our
2165 *    contribution, since we effectively move our sample point to a known
2166 *    busy state.
2167 *
2168 *    This is solved by pushing the window forward, and thus skipping the
2169 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2170 *    was in effect at the time the window opened). This also solves the issue
2171 *    of having to deal with a cpu having been in NOHZ idle for multiple
2172 *    LOAD_FREQ intervals.
2173 *
2174 * When making the ILB scale, we should try to pull this in as well.
2175 */
2176static atomic_long_t calc_load_idle[2];
2177static int calc_load_idx;
2178
2179static inline int calc_load_write_idx(void)
2180{
2181	int idx = calc_load_idx;
2182
2183	/*
2184	 * See calc_global_nohz(), if we observe the new index, we also
2185	 * need to observe the new update time.
2186	 */
2187	smp_rmb();
2188
2189	/*
2190	 * If the folding window started, make sure we start writing in the
2191	 * next idle-delta.
2192	 */
2193	if (!time_before(jiffies, calc_load_update))
2194		idx++;
2195
2196	return idx & 1;
2197}
2198
2199static inline int calc_load_read_idx(void)
2200{
2201	return calc_load_idx & 1;
2202}
2203
2204void calc_load_enter_idle(void)
2205{
2206	struct rq *this_rq = this_rq();
2207	long delta;
2208
2209	/*
2210	 * We're going into NOHZ mode, if there's any pending delta, fold it
2211	 * into the pending idle delta.
2212	 */
2213	delta = calc_load_fold_active(this_rq);
2214	if (delta) {
2215		int idx = calc_load_write_idx();
2216		atomic_long_add(delta, &calc_load_idle[idx]);
2217	}
2218}
2219
2220void calc_load_exit_idle(void)
2221{
2222	struct rq *this_rq = this_rq();
2223
2224	/*
2225	 * If we're still before the sample window, we're done.
2226	 */
2227	if (time_before(jiffies, this_rq->calc_load_update))
2228		return;
2229
2230	/*
2231	 * We woke inside or after the sample window, this means we're already
2232	 * accounted through the nohz accounting, so skip the entire deal and
2233	 * sync up for the next window.
2234	 */
2235	this_rq->calc_load_update = calc_load_update;
2236	if (time_before(jiffies, this_rq->calc_load_update + 10))
2237		this_rq->calc_load_update += LOAD_FREQ;
2238}
2239
2240static long calc_load_fold_idle(void)
2241{
2242	int idx = calc_load_read_idx();
2243	long delta = 0;
2244
2245	if (atomic_long_read(&calc_load_idle[idx]))
2246		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2247
2248	return delta;
2249}
2250
2251/**
2252 * fixed_power_int - compute: x^n, in O(log n) time
2253 *
2254 * @x:         base of the power
2255 * @frac_bits: fractional bits of @x
2256 * @n:         power to raise @x to.
2257 *
2258 * By exploiting the relation between the definition of the natural power
2259 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2260 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2261 * (where: n_i \elem {0, 1}, the binary vector representing n),
2262 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2263 * of course trivially computable in O(log_2 n), the length of our binary
2264 * vector.
2265 */
2266static unsigned long
2267fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2268{
2269	unsigned long result = 1UL << frac_bits;
2270
2271	if (n) for (;;) {
2272		if (n & 1) {
2273			result *= x;
2274			result += 1UL << (frac_bits - 1);
2275			result >>= frac_bits;
2276		}
2277		n >>= 1;
2278		if (!n)
2279			break;
2280		x *= x;
2281		x += 1UL << (frac_bits - 1);
2282		x >>= frac_bits;
2283	}
2284
2285	return result;
2286}
2287
2288/*
2289 * a1 = a0 * e + a * (1 - e)
2290 *
2291 * a2 = a1 * e + a * (1 - e)
2292 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2293 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2294 *
2295 * a3 = a2 * e + a * (1 - e)
2296 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2297 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2298 *
2299 *  ...
2300 *
2301 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2302 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2303 *    = a0 * e^n + a * (1 - e^n)
2304 *
2305 * [1] application of the geometric series:
2306 *
2307 *              n         1 - x^(n+1)
2308 *     S_n := \Sum x^i = -------------
2309 *             i=0          1 - x
2310 */
2311static unsigned long
2312calc_load_n(unsigned long load, unsigned long exp,
2313	    unsigned long active, unsigned int n)
2314{
2315
2316	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2317}
2318
2319/*
2320 * NO_HZ can leave us missing all per-cpu ticks calling
2321 * calc_load_account_active(), but since an idle CPU folds its delta into
2322 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2323 * in the pending idle delta if our idle period crossed a load cycle boundary.
2324 *
2325 * Once we've updated the global active value, we need to apply the exponential
2326 * weights adjusted to the number of cycles missed.
2327 */
2328static void calc_global_nohz(void)
2329{
2330	long delta, active, n;
2331
2332	if (!time_before(jiffies, calc_load_update + 10)) {
2333		/*
2334		 * Catch-up, fold however many we are behind still
2335		 */
2336		delta = jiffies - calc_load_update - 10;
2337		n = 1 + (delta / LOAD_FREQ);
2338
2339		active = atomic_long_read(&calc_load_tasks);
2340		active = active > 0 ? active * FIXED_1 : 0;
2341
2342		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2343		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2344		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2345
2346		calc_load_update += n * LOAD_FREQ;
2347	}
2348
2349	/*
2350	 * Flip the idle index...
2351	 *
2352	 * Make sure we first write the new time then flip the index, so that
2353	 * calc_load_write_idx() will see the new time when it reads the new
2354	 * index, this avoids a double flip messing things up.
2355	 */
2356	smp_wmb();
2357	calc_load_idx++;
2358}
2359#else /* !CONFIG_NO_HZ */
2360
2361static inline long calc_load_fold_idle(void) { return 0; }
2362static inline void calc_global_nohz(void) { }
2363
2364#endif /* CONFIG_NO_HZ */
2365
2366/*
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
2369 */
2370void calc_global_load(unsigned long ticks)
2371{
2372	long active, delta;
2373
2374	if (time_before(jiffies, calc_load_update + 10))
2375		return;
2376
2377	/*
2378	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2379	 */
2380	delta = calc_load_fold_idle();
2381	if (delta)
2382		atomic_long_add(delta, &calc_load_tasks);
2383
2384	active = atomic_long_read(&calc_load_tasks);
2385	active = active > 0 ? active * FIXED_1 : 0;
2386
2387	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2388	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2389	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2390
2391	calc_load_update += LOAD_FREQ;
2392
2393	/*
2394	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2395	 */
2396	calc_global_nohz();
2397}
2398
2399/*
2400 * Called from update_cpu_load() to periodically update this CPU's
2401 * active count.
2402 */
2403static void calc_load_account_active(struct rq *this_rq)
2404{
2405	long delta;
2406
2407	if (time_before(jiffies, this_rq->calc_load_update))
2408		return;
2409
2410	delta  = calc_load_fold_active(this_rq);
2411	if (delta)
2412		atomic_long_add(delta, &calc_load_tasks);
2413
2414	this_rq->calc_load_update += LOAD_FREQ;
2415}
2416
2417/*
2418 * End of global load-average stuff
2419 */
2420
2421/*
2422 * The exact cpuload at various idx values, calculated at every tick would be
2423 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2424 *
2425 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2426 * on nth tick when cpu may be busy, then we have:
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2429 *
2430 * decay_load_missed() below does efficient calculation of
2431 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2432 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2433 *
2434 * The calculation is approximated on a 128 point scale.
2435 * degrade_zero_ticks is the number of ticks after which load at any
2436 * particular idx is approximated to be zero.
2437 * degrade_factor is a precomputed table, a row for each load idx.
2438 * Each column corresponds to degradation factor for a power of two ticks,
2439 * based on 128 point scale.
2440 * Example:
2441 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2442 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2443 *
2444 * With this power of 2 load factors, we can degrade the load n times
2445 * by looking at 1 bits in n and doing as many mult/shift instead of
2446 * n mult/shifts needed by the exact degradation.
2447 */
2448#define DEGRADE_SHIFT		7
2449static const unsigned char
2450		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2451static const unsigned char
2452		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2453					{0, 0, 0, 0, 0, 0, 0, 0},
2454					{64, 32, 8, 0, 0, 0, 0, 0},
2455					{96, 72, 40, 12, 1, 0, 0},
2456					{112, 98, 75, 43, 15, 1, 0},
2457					{120, 112, 98, 76, 45, 16, 2} };
2458
2459/*
2460 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2461 * would be when CPU is idle and so we just decay the old load without
2462 * adding any new load.
2463 */
2464static unsigned long
2465decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2466{
2467	int j = 0;
2468
2469	if (!missed_updates)
2470		return load;
2471
2472	if (missed_updates >= degrade_zero_ticks[idx])
2473		return 0;
2474
2475	if (idx == 1)
2476		return load >> missed_updates;
2477
2478	while (missed_updates) {
2479		if (missed_updates % 2)
2480			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2481
2482		missed_updates >>= 1;
2483		j++;
2484	}
2485	return load;
2486}
2487
2488/*
2489 * Update rq->cpu_load[] statistics. This function is usually called every
2490 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2491 * every tick. We fix it up based on jiffies.
2492 */
2493static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2494			      unsigned long pending_updates)
2495{
2496	int i, scale;
2497
2498	this_rq->nr_load_updates++;
2499
2500	/* Update our load: */
2501	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2502	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2503		unsigned long old_load, new_load;
2504
2505		/* scale is effectively 1 << i now, and >> i divides by scale */
2506
2507		old_load = this_rq->cpu_load[i];
2508		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2509		new_load = this_load;
2510		/*
2511		 * Round up the averaging division if load is increasing. This
2512		 * prevents us from getting stuck on 9 if the load is 10, for
2513		 * example.
2514		 */
2515		if (new_load > old_load)
2516			new_load += scale - 1;
2517
2518		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2519	}
2520
2521	sched_avg_update(this_rq);
2522}
2523
2524#ifdef CONFIG_NO_HZ
2525/*
2526 * There is no sane way to deal with nohz on smp when using jiffies because the
2527 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2528 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2529 *
2530 * Therefore we cannot use the delta approach from the regular tick since that
2531 * would seriously skew the load calculation. However we'll make do for those
2532 * updates happening while idle (nohz_idle_balance) or coming out of idle
2533 * (tick_nohz_idle_exit).
2534 *
2535 * This means we might still be one tick off for nohz periods.
2536 */
2537
2538/*
2539 * Called from nohz_idle_balance() to update the load ratings before doing the
2540 * idle balance.
2541 */
2542void update_idle_cpu_load(struct rq *this_rq)
2543{
2544	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2545	unsigned long load = this_rq->load.weight;
2546	unsigned long pending_updates;
2547
2548	/*
2549	 * bail if there's load or we're actually up-to-date.
2550	 */
2551	if (load || curr_jiffies == this_rq->last_load_update_tick)
2552		return;
2553
2554	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2555	this_rq->last_load_update_tick = curr_jiffies;
2556
2557	__update_cpu_load(this_rq, load, pending_updates);
2558}
2559
2560/*
2561 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2562 */
2563void update_cpu_load_nohz(void)
2564{
2565	struct rq *this_rq = this_rq();
2566	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2567	unsigned long pending_updates;
2568
2569	if (curr_jiffies == this_rq->last_load_update_tick)
2570		return;
2571
2572	raw_spin_lock(&this_rq->lock);
2573	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2574	if (pending_updates) {
2575		this_rq->last_load_update_tick = curr_jiffies;
2576		/*
2577		 * We were idle, this means load 0, the current load might be
2578		 * !0 due to remote wakeups and the sort.
2579		 */
2580		__update_cpu_load(this_rq, 0, pending_updates);
2581	}
2582	raw_spin_unlock(&this_rq->lock);
2583}
2584#endif /* CONFIG_NO_HZ */
2585
2586/*
2587 * Called from scheduler_tick()
2588 */
2589static void update_cpu_load_active(struct rq *this_rq)
2590{
2591	/*
2592	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2593	 */
2594	this_rq->last_load_update_tick = jiffies;
2595	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2596
2597	calc_load_account_active(this_rq);
2598}
2599
2600#ifdef CONFIG_SMP
2601
2602/*
2603 * sched_exec - execve() is a valuable balancing opportunity, because at
2604 * this point the task has the smallest effective memory and cache footprint.
2605 */
2606void sched_exec(void)
2607{
2608	struct task_struct *p = current;
2609	unsigned long flags;
2610	int dest_cpu;
2611
2612	raw_spin_lock_irqsave(&p->pi_lock, flags);
2613	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2614	if (dest_cpu == smp_processor_id())
2615		goto unlock;
2616
2617	if (likely(cpu_active(dest_cpu))) {
2618		struct migration_arg arg = { p, dest_cpu };
2619
2620		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2622		return;
2623	}
2624unlock:
2625	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2626}
2627
2628#endif
2629
2630DEFINE_PER_CPU(struct kernel_stat, kstat);
2631DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2632
2633EXPORT_PER_CPU_SYMBOL(kstat);
2634EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2635
2636/*
2637 * Return any ns on the sched_clock that have not yet been accounted in
2638 * @p in case that task is currently running.
2639 *
2640 * Called with task_rq_lock() held on @rq.
2641 */
2642static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2643{
2644	u64 ns = 0;
2645
2646	if (task_current(rq, p)) {
2647		update_rq_clock(rq);
2648		ns = rq->clock_task - p->se.exec_start;
2649		if ((s64)ns < 0)
2650			ns = 0;
2651	}
2652
2653	return ns;
2654}
2655
2656unsigned long long task_delta_exec(struct task_struct *p)
2657{
2658	unsigned long flags;
2659	struct rq *rq;
2660	u64 ns = 0;
2661
2662	rq = task_rq_lock(p, &flags);
2663	ns = do_task_delta_exec(p, rq);
2664	task_rq_unlock(rq, p, &flags);
2665
2666	return ns;
2667}
2668
2669/*
2670 * Return accounted runtime for the task.
2671 * In case the task is currently running, return the runtime plus current's
2672 * pending runtime that have not been accounted yet.
2673 */
2674unsigned long long task_sched_runtime(struct task_struct *p)
2675{
2676	unsigned long flags;
2677	struct rq *rq;
2678	u64 ns = 0;
2679
2680	rq = task_rq_lock(p, &flags);
2681	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2682	task_rq_unlock(rq, p, &flags);
2683
2684	return ns;
2685}
2686
2687/*
2688 * This function gets called by the timer code, with HZ frequency.
2689 * We call it with interrupts disabled.
2690 */
2691void scheduler_tick(void)
2692{
2693	int cpu = smp_processor_id();
2694	struct rq *rq = cpu_rq(cpu);
2695	struct task_struct *curr = rq->curr;
2696
2697	sched_clock_tick();
2698
2699	raw_spin_lock(&rq->lock);
2700	update_rq_clock(rq);
2701	update_cpu_load_active(rq);
2702	curr->sched_class->task_tick(rq, curr, 0);
2703	raw_spin_unlock(&rq->lock);
2704
2705	perf_event_task_tick();
2706
2707#ifdef CONFIG_SMP
2708	rq->idle_balance = idle_cpu(cpu);
2709	trigger_load_balance(rq, cpu);
2710#endif
2711}
2712
2713notrace unsigned long get_parent_ip(unsigned long addr)
2714{
2715	if (in_lock_functions(addr)) {
2716		addr = CALLER_ADDR2;
2717		if (in_lock_functions(addr))
2718			addr = CALLER_ADDR3;
2719	}
2720	return addr;
2721}
2722
2723#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2724				defined(CONFIG_PREEMPT_TRACER))
2725
2726void __kprobes add_preempt_count(int val)
2727{
2728#ifdef CONFIG_DEBUG_PREEMPT
2729	/*
2730	 * Underflow?
2731	 */
2732	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2733		return;
2734#endif
2735	preempt_count() += val;
2736#ifdef CONFIG_DEBUG_PREEMPT
2737	/*
2738	 * Spinlock count overflowing soon?
2739	 */
2740	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2741				PREEMPT_MASK - 10);
2742#endif
2743	if (preempt_count() == val)
2744		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2745}
2746EXPORT_SYMBOL(add_preempt_count);
2747
2748void __kprobes sub_preempt_count(int val)
2749{
2750#ifdef CONFIG_DEBUG_PREEMPT
2751	/*
2752	 * Underflow?
2753	 */
2754	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2755		return;
2756	/*
2757	 * Is the spinlock portion underflowing?
2758	 */
2759	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2760			!(preempt_count() & PREEMPT_MASK)))
2761		return;
2762#endif
2763
2764	if (preempt_count() == val)
2765		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2766	preempt_count() -= val;
2767}
2768EXPORT_SYMBOL(sub_preempt_count);
2769
2770#endif
2771
2772/*
2773 * Print scheduling while atomic bug:
2774 */
2775static noinline void __schedule_bug(struct task_struct *prev)
2776{
2777	if (oops_in_progress)
2778		return;
2779
2780	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2781		prev->comm, prev->pid, preempt_count());
2782
2783	debug_show_held_locks(prev);
2784	print_modules();
2785	if (irqs_disabled())
2786		print_irqtrace_events(prev);
2787	dump_stack();
2788	add_taint(TAINT_WARN);
2789}
2790
2791/*
2792 * Various schedule()-time debugging checks and statistics:
2793 */
2794static inline void schedule_debug(struct task_struct *prev)
2795{
2796	/*
2797	 * Test if we are atomic. Since do_exit() needs to call into
2798	 * schedule() atomically, we ignore that path for now.
2799	 * Otherwise, whine if we are scheduling when we should not be.
2800	 */
2801	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2802		__schedule_bug(prev);
2803	rcu_sleep_check();
2804
2805	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2806
2807	schedstat_inc(this_rq(), sched_count);
2808}
2809
2810static void put_prev_task(struct rq *rq, struct task_struct *prev)
2811{
2812	if (prev->on_rq || rq->skip_clock_update < 0)
2813		update_rq_clock(rq);
2814	prev->sched_class->put_prev_task(rq, prev);
2815}
2816
2817/*
2818 * Pick up the highest-prio task:
2819 */
2820static inline struct task_struct *
2821pick_next_task(struct rq *rq)
2822{
2823	const struct sched_class *class;
2824	struct task_struct *p;
2825
2826	/*
2827	 * Optimization: we know that if all tasks are in
2828	 * the fair class we can call that function directly:
2829	 */
2830	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2831		p = fair_sched_class.pick_next_task(rq);
2832		if (likely(p))
2833			return p;
2834	}
2835
2836	for_each_class(class) {
2837		p = class->pick_next_task(rq);
2838		if (p)
2839			return p;
2840	}
2841
2842	BUG(); /* the idle class will always have a runnable task */
2843}
2844
2845/*
2846 * __schedule() is the main scheduler function.
2847 *
2848 * The main means of driving the scheduler and thus entering this function are:
2849 *
2850 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2851 *
2852 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2853 *      paths. For example, see arch/x86/entry_64.S.
2854 *
2855 *      To drive preemption between tasks, the scheduler sets the flag in timer
2856 *      interrupt handler scheduler_tick().
2857 *
2858 *   3. Wakeups don't really cause entry into schedule(). They add a
2859 *      task to the run-queue and that's it.
2860 *
2861 *      Now, if the new task added to the run-queue preempts the current
2862 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2863 *      called on the nearest possible occasion:
2864 *
2865 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2866 *
2867 *         - in syscall or exception context, at the next outmost
2868 *           preempt_enable(). (this might be as soon as the wake_up()'s
2869 *           spin_unlock()!)
2870 *
2871 *         - in IRQ context, return from interrupt-handler to
2872 *           preemptible context
2873 *
2874 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2875 *         then at the next:
2876 *
2877 *          - cond_resched() call
2878 *          - explicit schedule() call
2879 *          - return from syscall or exception to user-space
2880 *          - return from interrupt-handler to user-space
2881 */
2882static void __sched __schedule(void)
2883{
2884	struct task_struct *prev, *next;
2885	unsigned long *switch_count;
2886	struct rq *rq;
2887	int cpu;
2888
2889need_resched:
2890	preempt_disable();
2891	cpu = smp_processor_id();
2892	rq = cpu_rq(cpu);
2893	rcu_note_context_switch(cpu);
2894	prev = rq->curr;
2895
2896	schedule_debug(prev);
2897
2898	if (sched_feat(HRTICK))
2899		hrtick_clear(rq);
2900
2901	raw_spin_lock_irq(&rq->lock);
2902
2903	switch_count = &prev->nivcsw;
2904	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2905		if (unlikely(signal_pending_state(prev->state, prev))) {
2906			prev->state = TASK_RUNNING;
2907		} else {
2908			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2909			prev->on_rq = 0;
2910
2911			/*
2912			 * If a worker went to sleep, notify and ask workqueue
2913			 * whether it wants to wake up a task to maintain
2914			 * concurrency.
2915			 */
2916			if (prev->flags & PF_WQ_WORKER) {
2917				struct task_struct *to_wakeup;
2918
2919				to_wakeup = wq_worker_sleeping(prev, cpu);
2920				if (to_wakeup)
2921					try_to_wake_up_local(to_wakeup);
2922			}
2923		}
2924		switch_count = &prev->nvcsw;
2925	}
2926
2927	pre_schedule(rq, prev);
2928
2929	if (unlikely(!rq->nr_running))
2930		idle_balance(cpu, rq);
2931
2932	put_prev_task(rq, prev);
2933	next = pick_next_task(rq);
2934	clear_tsk_need_resched(prev);
2935	rq->skip_clock_update = 0;
2936
2937	if (likely(prev != next)) {
2938		rq->nr_switches++;
2939		rq->curr = next;
2940		++*switch_count;
2941
2942		context_switch(rq, prev, next); /* unlocks the rq */
2943		/*
2944		 * The context switch have flipped the stack from under us
2945		 * and restored the local variables which were saved when
2946		 * this task called schedule() in the past. prev == current
2947		 * is still correct, but it can be moved to another cpu/rq.
2948		 */
2949		cpu = smp_processor_id();
2950		rq = cpu_rq(cpu);
2951	} else
2952		raw_spin_unlock_irq(&rq->lock);
2953
2954	post_schedule(rq);
2955
2956	sched_preempt_enable_no_resched();
2957	if (need_resched())
2958		goto need_resched;
2959}
2960
2961static inline void sched_submit_work(struct task_struct *tsk)
2962{
2963	if (!tsk->state || tsk_is_pi_blocked(tsk))
2964		return;
2965	/*
2966	 * If we are going to sleep and we have plugged IO queued,
2967	 * make sure to submit it to avoid deadlocks.
2968	 */
2969	if (blk_needs_flush_plug(tsk))
2970		blk_schedule_flush_plug(tsk);
2971}
2972
2973asmlinkage void __sched schedule(void)
2974{
2975	struct task_struct *tsk = current;
2976
2977	sched_submit_work(tsk);
2978	__schedule();
2979}
2980EXPORT_SYMBOL(schedule);
2981
2982#ifdef CONFIG_CONTEXT_TRACKING
2983asmlinkage void __sched schedule_user(void)
2984{
2985	/*
2986	 * If we come here after a random call to set_need_resched(),
2987	 * or we have been woken up remotely but the IPI has not yet arrived,
2988	 * we haven't yet exited the RCU idle mode. Do it here manually until
2989	 * we find a better solution.
2990	 */
2991	user_exit();
2992	schedule();
2993	user_enter();
2994}
2995#endif
2996
2997/**
2998 * schedule_preempt_disabled - called with preemption disabled
2999 *
3000 * Returns with preemption disabled. Note: preempt_count must be 1
3001 */
3002void __sched schedule_preempt_disabled(void)
3003{
3004	sched_preempt_enable_no_resched();
3005	schedule();
3006	preempt_disable();
3007}
3008
3009#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3010
3011static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3012{
3013	if (lock->owner != owner)
3014		return false;
3015
3016	/*
3017	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3018	 * lock->owner still matches owner, if that fails, owner might
3019	 * point to free()d memory, if it still matches, the rcu_read_lock()
3020	 * ensures the memory stays valid.
3021	 */
3022	barrier();
3023
3024	return owner->on_cpu;
3025}
3026
3027/*
3028 * Look out! "owner" is an entirely speculative pointer
3029 * access and not reliable.
3030 */
3031int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3032{
3033	if (!sched_feat(OWNER_SPIN))
3034		return 0;
3035
3036	rcu_read_lock();
3037	while (owner_running(lock, owner)) {
3038		if (need_resched())
3039			break;
3040
3041		arch_mutex_cpu_relax();
3042	}
3043	rcu_read_unlock();
3044
3045	/*
3046	 * We break out the loop above on need_resched() and when the
3047	 * owner changed, which is a sign for heavy contention. Return
3048	 * success only when lock->owner is NULL.
3049	 */
3050	return lock->owner == NULL;
3051}
3052#endif
3053
3054#ifdef CONFIG_PREEMPT
3055/*
3056 * this is the entry point to schedule() from in-kernel preemption
3057 * off of preempt_enable. Kernel preemptions off return from interrupt
3058 * occur there and call schedule directly.
3059 */
3060asmlinkage void __sched notrace preempt_schedule(void)
3061{
3062	struct thread_info *ti = current_thread_info();
3063
3064	/*
3065	 * If there is a non-zero preempt_count or interrupts are disabled,
3066	 * we do not want to preempt the current task. Just return..
3067	 */
3068	if (likely(ti->preempt_count || irqs_disabled()))
3069		return;
3070
3071	do {
3072		add_preempt_count_notrace(PREEMPT_ACTIVE);
3073		__schedule();
3074		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3075
3076		/*
3077		 * Check again in case we missed a preemption opportunity
3078		 * between schedule and now.
3079		 */
3080		barrier();
3081	} while (need_resched());
3082}
3083EXPORT_SYMBOL(preempt_schedule);
3084
3085/*
3086 * this is the entry point to schedule() from kernel preemption
3087 * off of irq context.
3088 * Note, that this is called and return with irqs disabled. This will
3089 * protect us against recursive calling from irq.
3090 */
3091asmlinkage void __sched preempt_schedule_irq(void)
3092{
3093	struct thread_info *ti = current_thread_info();
3094
3095	/* Catch callers which need to be fixed */
3096	BUG_ON(ti->preempt_count || !irqs_disabled());
3097
3098	user_exit();
3099	do {
3100		add_preempt_count(PREEMPT_ACTIVE);
3101		local_irq_enable();
3102		__schedule();
3103		local_irq_disable();
3104		sub_preempt_count(PREEMPT_ACTIVE);
3105
3106		/*
3107		 * Check again in case we missed a preemption opportunity
3108		 * between schedule and now.
3109		 */
3110		barrier();
3111	} while (need_resched());
3112}
3113
3114#endif /* CONFIG_PREEMPT */
3115
3116int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3117			  void *key)
3118{
3119	return try_to_wake_up(curr->private, mode, wake_flags);
3120}
3121EXPORT_SYMBOL(default_wake_function);
3122
3123/*
3124 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3125 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3126 * number) then we wake all the non-exclusive tasks and one exclusive task.
3127 *
3128 * There are circumstances in which we can try to wake a task which has already
3129 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3130 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3131 */
3132static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3133			int nr_exclusive, int wake_flags, void *key)
3134{
3135	wait_queue_t *curr, *next;
3136
3137	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3138		unsigned flags = curr->flags;
3139
3140		if (curr->func(curr, mode, wake_flags, key) &&
3141				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3142			break;
3143	}
3144}
3145
3146/**
3147 * __wake_up - wake up threads blocked on a waitqueue.
3148 * @q: the waitqueue
3149 * @mode: which threads
3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151 * @key: is directly passed to the wakeup function
3152 *
3153 * It may be assumed that this function implies a write memory barrier before
3154 * changing the task state if and only if any tasks are woken up.
3155 */
3156void __wake_up(wait_queue_head_t *q, unsigned int mode,
3157			int nr_exclusive, void *key)
3158{
3159	unsigned long flags;
3160
3161	spin_lock_irqsave(&q->lock, flags);
3162	__wake_up_common(q, mode, nr_exclusive, 0, key);
3163	spin_unlock_irqrestore(&q->lock, flags);
3164}
3165EXPORT_SYMBOL(__wake_up);
3166
3167/*
3168 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3169 */
3170void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3171{
3172	__wake_up_common(q, mode, nr, 0, NULL);
3173}
3174EXPORT_SYMBOL_GPL(__wake_up_locked);
3175
3176void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3177{
3178	__wake_up_common(q, mode, 1, 0, key);
3179}
3180EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3181
3182/**
3183 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3184 * @q: the waitqueue
3185 * @mode: which threads
3186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3187 * @key: opaque value to be passed to wakeup targets
3188 *
3189 * The sync wakeup differs that the waker knows that it will schedule
3190 * away soon, so while the target thread will be woken up, it will not
3191 * be migrated to another CPU - ie. the two threads are 'synchronized'
3192 * with each other. This can prevent needless bouncing between CPUs.
3193 *
3194 * On UP it can prevent extra preemption.
3195 *
3196 * It may be assumed that this function implies a write memory barrier before
3197 * changing the task state if and only if any tasks are woken up.
3198 */
3199void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3200			int nr_exclusive, void *key)
3201{
3202	unsigned long flags;
3203	int wake_flags = WF_SYNC;
3204
3205	if (unlikely(!q))
3206		return;
3207
3208	if (unlikely(!nr_exclusive))
3209		wake_flags = 0;
3210
3211	spin_lock_irqsave(&q->lock, flags);
3212	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3213	spin_unlock_irqrestore(&q->lock, flags);
3214}
3215EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3216
3217/*
3218 * __wake_up_sync - see __wake_up_sync_key()
3219 */
3220void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3221{
3222	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3223}
3224EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3225
3226/**
3227 * complete: - signals a single thread waiting on this completion
3228 * @x:  holds the state of this particular completion
3229 *
3230 * This will wake up a single thread waiting on this completion. Threads will be
3231 * awakened in the same order in which they were queued.
3232 *
3233 * See also complete_all(), wait_for_completion() and related routines.
3234 *
3235 * It may be assumed that this function implies a write memory barrier before
3236 * changing the task state if and only if any tasks are woken up.
3237 */
3238void complete(struct completion *x)
3239{
3240	unsigned long flags;
3241
3242	spin_lock_irqsave(&x->wait.lock, flags);
3243	x->done++;
3244	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3245	spin_unlock_irqrestore(&x->wait.lock, flags);
3246}
3247EXPORT_SYMBOL(complete);
3248
3249/**
3250 * complete_all: - signals all threads waiting on this completion
3251 * @x:  holds the state of this particular completion
3252 *
3253 * This will wake up all threads waiting on this particular completion event.
3254 *
3255 * It may be assumed that this function implies a write memory barrier before
3256 * changing the task state if and only if any tasks are woken up.
3257 */
3258void complete_all(struct completion *x)
3259{
3260	unsigned long flags;
3261
3262	spin_lock_irqsave(&x->wait.lock, flags);
3263	x->done += UINT_MAX/2;
3264	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3265	spin_unlock_irqrestore(&x->wait.lock, flags);
3266}
3267EXPORT_SYMBOL(complete_all);
3268
3269static inline long __sched
3270do_wait_for_common(struct completion *x,
3271		   long (*action)(long), long timeout, int state)
3272{
3273	if (!x->done) {
3274		DECLARE_WAITQUEUE(wait, current);
3275
3276		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3277		do {
3278			if (signal_pending_state(state, current)) {
3279				timeout = -ERESTARTSYS;
3280				break;
3281			}
3282			__set_current_state(state);
3283			spin_unlock_irq(&x->wait.lock);
3284			timeout = action(timeout);
3285			spin_lock_irq(&x->wait.lock);
3286		} while (!x->done && timeout);
3287		__remove_wait_queue(&x->wait, &wait);
3288		if (!x->done)
3289			return timeout;
3290	}
3291	x->done--;
3292	return timeout ?: 1;
3293}
3294
3295static inline long __sched
3296__wait_for_common(struct completion *x,
3297		  long (*action)(long), long timeout, int state)
3298{
3299	might_sleep();
3300
3301	spin_lock_irq(&x->wait.lock);
3302	timeout = do_wait_for_common(x, action, timeout, state);
3303	spin_unlock_irq(&x->wait.lock);
3304	return timeout;
3305}
3306
3307static long __sched
3308wait_for_common(struct completion *x, long timeout, int state)
3309{
3310	return __wait_for_common(x, schedule_timeout, timeout, state);
3311}
3312
3313static long __sched
3314wait_for_common_io(struct completion *x, long timeout, int state)
3315{
3316	return __wait_for_common(x, io_schedule_timeout, timeout, state);
3317}
3318
3319/**
3320 * wait_for_completion: - waits for completion of a task
3321 * @x:  holds the state of this particular completion
3322 *
3323 * This waits to be signaled for completion of a specific task. It is NOT
3324 * interruptible and there is no timeout.
3325 *
3326 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3327 * and interrupt capability. Also see complete().
3328 */
3329void __sched wait_for_completion(struct completion *x)
3330{
3331	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3332}
3333EXPORT_SYMBOL(wait_for_completion);
3334
3335/**
3336 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3337 * @x:  holds the state of this particular completion
3338 * @timeout:  timeout value in jiffies
3339 *
3340 * This waits for either a completion of a specific task to be signaled or for a
3341 * specified timeout to expire. The timeout is in jiffies. It is not
3342 * interruptible.
3343 *
3344 * The return value is 0 if timed out, and positive (at least 1, or number of
3345 * jiffies left till timeout) if completed.
3346 */
3347unsigned long __sched
3348wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3349{
3350	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3351}
3352EXPORT_SYMBOL(wait_for_completion_timeout);
3353
3354/**
3355 * wait_for_completion_io: - waits for completion of a task
3356 * @x:  holds the state of this particular completion
3357 *
3358 * This waits to be signaled for completion of a specific task. It is NOT
3359 * interruptible and there is no timeout. The caller is accounted as waiting
3360 * for IO.
3361 */
3362void __sched wait_for_completion_io(struct completion *x)
3363{
3364	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3365}
3366EXPORT_SYMBOL(wait_for_completion_io);
3367
3368/**
3369 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3370 * @x:  holds the state of this particular completion
3371 * @timeout:  timeout value in jiffies
3372 *
3373 * This waits for either a completion of a specific task to be signaled or for a
3374 * specified timeout to expire. The timeout is in jiffies. It is not
3375 * interruptible. The caller is accounted as waiting for IO.
3376 *
3377 * The return value is 0 if timed out, and positive (at least 1, or number of
3378 * jiffies left till timeout) if completed.
3379 */
3380unsigned long __sched
3381wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3382{
3383	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3384}
3385EXPORT_SYMBOL(wait_for_completion_io_timeout);
3386
3387/**
3388 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3389 * @x:  holds the state of this particular completion
3390 *
3391 * This waits for completion of a specific task to be signaled. It is
3392 * interruptible.
3393 *
3394 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3395 */
3396int __sched wait_for_completion_interruptible(struct completion *x)
3397{
3398	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3399	if (t == -ERESTARTSYS)
3400		return t;
3401	return 0;
3402}
3403EXPORT_SYMBOL(wait_for_completion_interruptible);
3404
3405/**
3406 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3407 * @x:  holds the state of this particular completion
3408 * @timeout:  timeout value in jiffies
3409 *
3410 * This waits for either a completion of a specific task to be signaled or for a
3411 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3412 *
3413 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3414 * positive (at least 1, or number of jiffies left till timeout) if completed.
3415 */
3416long __sched
3417wait_for_completion_interruptible_timeout(struct completion *x,
3418					  unsigned long timeout)
3419{
3420	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3421}
3422EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3423
3424/**
3425 * wait_for_completion_killable: - waits for completion of a task (killable)
3426 * @x:  holds the state of this particular completion
3427 *
3428 * This waits to be signaled for completion of a specific task. It can be
3429 * interrupted by a kill signal.
3430 *
3431 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3432 */
3433int __sched wait_for_completion_killable(struct completion *x)
3434{
3435	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3436	if (t == -ERESTARTSYS)
3437		return t;
3438	return 0;
3439}
3440EXPORT_SYMBOL(wait_for_completion_killable);
3441
3442/**
3443 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3444 * @x:  holds the state of this particular completion
3445 * @timeout:  timeout value in jiffies
3446 *
3447 * This waits for either a completion of a specific task to be
3448 * signaled or for a specified timeout to expire. It can be
3449 * interrupted by a kill signal. The timeout is in jiffies.
3450 *
3451 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3452 * positive (at least 1, or number of jiffies left till timeout) if completed.
3453 */
3454long __sched
3455wait_for_completion_killable_timeout(struct completion *x,
3456				     unsigned long timeout)
3457{
3458	return wait_for_common(x, timeout, TASK_KILLABLE);
3459}
3460EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3461
3462/**
3463 *	try_wait_for_completion - try to decrement a completion without blocking
3464 *	@x:	completion structure
3465 *
3466 *	Returns: 0 if a decrement cannot be done without blocking
3467 *		 1 if a decrement succeeded.
3468 *
3469 *	If a completion is being used as a counting completion,
3470 *	attempt to decrement the counter without blocking. This
3471 *	enables us to avoid waiting if the resource the completion
3472 *	is protecting is not available.
3473 */
3474bool try_wait_for_completion(struct completion *x)
3475{
3476	unsigned long flags;
3477	int ret = 1;
3478
3479	spin_lock_irqsave(&x->wait.lock, flags);
3480	if (!x->done)
3481		ret = 0;
3482	else
3483		x->done--;
3484	spin_unlock_irqrestore(&x->wait.lock, flags);
3485	return ret;
3486}
3487EXPORT_SYMBOL(try_wait_for_completion);
3488
3489/**
3490 *	completion_done - Test to see if a completion has any waiters
3491 *	@x:	completion structure
3492 *
3493 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3494 *		 1 if there are no waiters.
3495 *
3496 */
3497bool completion_done(struct completion *x)
3498{
3499	unsigned long flags;
3500	int ret = 1;
3501
3502	spin_lock_irqsave(&x->wait.lock, flags);
3503	if (!x->done)
3504		ret = 0;
3505	spin_unlock_irqrestore(&x->wait.lock, flags);
3506	return ret;
3507}
3508EXPORT_SYMBOL(completion_done);
3509
3510static long __sched
3511sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3512{
3513	unsigned long flags;
3514	wait_queue_t wait;
3515
3516	init_waitqueue_entry(&wait, current);
3517
3518	__set_current_state(state);
3519
3520	spin_lock_irqsave(&q->lock, flags);
3521	__add_wait_queue(q, &wait);
3522	spin_unlock(&q->lock);
3523	timeout = schedule_timeout(timeout);
3524	spin_lock_irq(&q->lock);
3525	__remove_wait_queue(q, &wait);
3526	spin_unlock_irqrestore(&q->lock, flags);
3527
3528	return timeout;
3529}
3530
3531void __sched interruptible_sleep_on(wait_queue_head_t *q)
3532{
3533	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3534}
3535EXPORT_SYMBOL(interruptible_sleep_on);
3536
3537long __sched
3538interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3539{
3540	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3541}
3542EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3543
3544void __sched sleep_on(wait_queue_head_t *q)
3545{
3546	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3547}
3548EXPORT_SYMBOL(sleep_on);
3549
3550long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3551{
3552	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3553}
3554EXPORT_SYMBOL(sleep_on_timeout);
3555
3556#ifdef CONFIG_RT_MUTEXES
3557
3558/*
3559 * rt_mutex_setprio - set the current priority of a task
3560 * @p: task
3561 * @prio: prio value (kernel-internal form)
3562 *
3563 * This function changes the 'effective' priority of a task. It does
3564 * not touch ->normal_prio like __setscheduler().
3565 *
3566 * Used by the rt_mutex code to implement priority inheritance logic.
3567 */
3568void rt_mutex_setprio(struct task_struct *p, int prio)
3569{
3570	int oldprio, on_rq, running;
3571	struct rq *rq;
3572	const struct sched_class *prev_class;
3573
3574	BUG_ON(prio < 0 || prio > MAX_PRIO);
3575
3576	rq = __task_rq_lock(p);
3577
3578	/*
3579	 * Idle task boosting is a nono in general. There is one
3580	 * exception, when PREEMPT_RT and NOHZ is active:
3581	 *
3582	 * The idle task calls get_next_timer_interrupt() and holds
3583	 * the timer wheel base->lock on the CPU and another CPU wants
3584	 * to access the timer (probably to cancel it). We can safely
3585	 * ignore the boosting request, as the idle CPU runs this code
3586	 * with interrupts disabled and will complete the lock
3587	 * protected section without being interrupted. So there is no
3588	 * real need to boost.
3589	 */
3590	if (unlikely(p == rq->idle)) {
3591		WARN_ON(p != rq->curr);
3592		WARN_ON(p->pi_blocked_on);
3593		goto out_unlock;
3594	}
3595
3596	trace_sched_pi_setprio(p, prio);
3597	oldprio = p->prio;
3598	prev_class = p->sched_class;
3599	on_rq = p->on_rq;
3600	running = task_current(rq, p);
3601	if (on_rq)
3602		dequeue_task(rq, p, 0);
3603	if (running)
3604		p->sched_class->put_prev_task(rq, p);
3605
3606	if (rt_prio(prio))
3607		p->sched_class = &rt_sched_class;
3608	else
3609		p->sched_class = &fair_sched_class;
3610
3611	p->prio = prio;
3612
3613	if (running)
3614		p->sched_class->set_curr_task(rq);
3615	if (on_rq)
3616		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3617
3618	check_class_changed(rq, p, prev_class, oldprio);
3619out_unlock:
3620	__task_rq_unlock(rq);
3621}
3622#endif
3623void set_user_nice(struct task_struct *p, long nice)
3624{
3625	int old_prio, delta, on_rq;
3626	unsigned long flags;
3627	struct rq *rq;
3628
3629	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3630		return;
3631	/*
3632	 * We have to be careful, if called from sys_setpriority(),
3633	 * the task might be in the middle of scheduling on another CPU.
3634	 */
3635	rq = task_rq_lock(p, &flags);
3636	/*
3637	 * The RT priorities are set via sched_setscheduler(), but we still
3638	 * allow the 'normal' nice value to be set - but as expected
3639	 * it wont have any effect on scheduling until the task is
3640	 * SCHED_FIFO/SCHED_RR:
3641	 */
3642	if (task_has_rt_policy(p)) {
3643		p->static_prio = NICE_TO_PRIO(nice);
3644		goto out_unlock;
3645	}
3646	on_rq = p->on_rq;
3647	if (on_rq)
3648		dequeue_task(rq, p, 0);
3649
3650	p->static_prio = NICE_TO_PRIO(nice);
3651	set_load_weight(p);
3652	old_prio = p->prio;
3653	p->prio = effective_prio(p);
3654	delta = p->prio - old_prio;
3655
3656	if (on_rq) {
3657		enqueue_task(rq, p, 0);
3658		/*
3659		 * If the task increased its priority or is running and
3660		 * lowered its priority, then reschedule its CPU:
3661		 */
3662		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3663			resched_task(rq->curr);
3664	}
3665out_unlock:
3666	task_rq_unlock(rq, p, &flags);
3667}
3668EXPORT_SYMBOL(set_user_nice);
3669
3670/*
3671 * can_nice - check if a task can reduce its nice value
3672 * @p: task
3673 * @nice: nice value
3674 */
3675int can_nice(const struct task_struct *p, const int nice)
3676{
3677	/* convert nice value [19,-20] to rlimit style value [1,40] */
3678	int nice_rlim = 20 - nice;
3679
3680	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3681		capable(CAP_SYS_NICE));
3682}
3683
3684#ifdef __ARCH_WANT_SYS_NICE
3685
3686/*
3687 * sys_nice - change the priority of the current process.
3688 * @increment: priority increment
3689 *
3690 * sys_setpriority is a more generic, but much slower function that
3691 * does similar things.
3692 */
3693SYSCALL_DEFINE1(nice, int, increment)
3694{
3695	long nice, retval;
3696
3697	/*
3698	 * Setpriority might change our priority at the same moment.
3699	 * We don't have to worry. Conceptually one call occurs first
3700	 * and we have a single winner.
3701	 */
3702	if (increment < -40)
3703		increment = -40;
3704	if (increment > 40)
3705		increment = 40;
3706
3707	nice = TASK_NICE(current) + increment;
3708	if (nice < -20)
3709		nice = -20;
3710	if (nice > 19)
3711		nice = 19;
3712
3713	if (increment < 0 && !can_nice(current, nice))
3714		return -EPERM;
3715
3716	retval = security_task_setnice(current, nice);
3717	if (retval)
3718		return retval;
3719
3720	set_user_nice(current, nice);
3721	return 0;
3722}
3723
3724#endif
3725
3726/**
3727 * task_prio - return the priority value of a given task.
3728 * @p: the task in question.
3729 *
3730 * This is the priority value as seen by users in /proc.
3731 * RT tasks are offset by -200. Normal tasks are centered
3732 * around 0, value goes from -16 to +15.
3733 */
3734int task_prio(const struct task_struct *p)
3735{
3736	return p->prio - MAX_RT_PRIO;
3737}
3738
3739/**
3740 * task_nice - return the nice value of a given task.
3741 * @p: the task in question.
3742 */
3743int task_nice(const struct task_struct *p)
3744{
3745	return TASK_NICE(p);
3746}
3747EXPORT_SYMBOL(task_nice);
3748
3749/**
3750 * idle_cpu - is a given cpu idle currently?
3751 * @cpu: the processor in question.
3752 */
3753int idle_cpu(int cpu)
3754{
3755	struct rq *rq = cpu_rq(cpu);
3756
3757	if (rq->curr != rq->idle)
3758		return 0;
3759
3760	if (rq->nr_running)
3761		return 0;
3762
3763#ifdef CONFIG_SMP
3764	if (!llist_empty(&rq->wake_list))
3765		return 0;
3766#endif
3767
3768	return 1;
3769}
3770
3771/**
3772 * idle_task - return the idle task for a given cpu.
3773 * @cpu: the processor in question.
3774 */
3775struct task_struct *idle_task(int cpu)
3776{
3777	return cpu_rq(cpu)->idle;
3778}
3779
3780/**
3781 * find_process_by_pid - find a process with a matching PID value.
3782 * @pid: the pid in question.
3783 */
3784static struct task_struct *find_process_by_pid(pid_t pid)
3785{
3786	return pid ? find_task_by_vpid(pid) : current;
3787}
3788
3789/* Actually do priority change: must hold rq lock. */
3790static void
3791__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3792{
3793	p->policy = policy;
3794	p->rt_priority = prio;
3795	p->normal_prio = normal_prio(p);
3796	/* we are holding p->pi_lock already */
3797	p->prio = rt_mutex_getprio(p);
3798	if (rt_prio(p->prio))
3799		p->sched_class = &rt_sched_class;
3800	else
3801		p->sched_class = &fair_sched_class;
3802	set_load_weight(p);
3803}
3804
3805/*
3806 * check the target process has a UID that matches the current process's
3807 */
3808static bool check_same_owner(struct task_struct *p)
3809{
3810	const struct cred *cred = current_cred(), *pcred;
3811	bool match;
3812
3813	rcu_read_lock();
3814	pcred = __task_cred(p);
3815	match = (uid_eq(cred->euid, pcred->euid) ||
3816		 uid_eq(cred->euid, pcred->uid));
3817	rcu_read_unlock();
3818	return match;
3819}
3820
3821static int __sched_setscheduler(struct task_struct *p, int policy,
3822				const struct sched_param *param, bool user)
3823{
3824	int retval, oldprio, oldpolicy = -1, on_rq, running;
3825	unsigned long flags;
3826	const struct sched_class *prev_class;
3827	struct rq *rq;
3828	int reset_on_fork;
3829
3830	/* may grab non-irq protected spin_locks */
3831	BUG_ON(in_interrupt());
3832recheck:
3833	/* double check policy once rq lock held */
3834	if (policy < 0) {
3835		reset_on_fork = p->sched_reset_on_fork;
3836		policy = oldpolicy = p->policy;
3837	} else {
3838		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3839		policy &= ~SCHED_RESET_ON_FORK;
3840
3841		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3842				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3843				policy != SCHED_IDLE)
3844			return -EINVAL;
3845	}
3846
3847	/*
3848	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3849	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3850	 * SCHED_BATCH and SCHED_IDLE is 0.
3851	 */
3852	if (param->sched_priority < 0 ||
3853	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3854	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3855		return -EINVAL;
3856	if (rt_policy(policy) != (param->sched_priority != 0))
3857		return -EINVAL;
3858
3859	/*
3860	 * Allow unprivileged RT tasks to decrease priority:
3861	 */
3862	if (user && !capable(CAP_SYS_NICE)) {
3863		if (rt_policy(policy)) {
3864			unsigned long rlim_rtprio =
3865					task_rlimit(p, RLIMIT_RTPRIO);
3866
3867			/* can't set/change the rt policy */
3868			if (policy != p->policy && !rlim_rtprio)
3869				return -EPERM;
3870
3871			/* can't increase priority */
3872			if (param->sched_priority > p->rt_priority &&
3873			    param->sched_priority > rlim_rtprio)
3874				return -EPERM;
3875		}
3876
3877		/*
3878		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3879		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3880		 */
3881		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3882			if (!can_nice(p, TASK_NICE(p)))
3883				return -EPERM;
3884		}
3885
3886		/* can't change other user's priorities */
3887		if (!check_same_owner(p))
3888			return -EPERM;
3889
3890		/* Normal users shall not reset the sched_reset_on_fork flag */
3891		if (p->sched_reset_on_fork && !reset_on_fork)
3892			return -EPERM;
3893	}
3894
3895	if (user) {
3896		retval = security_task_setscheduler(p);
3897		if (retval)
3898			return retval;
3899	}
3900
3901	/*
3902	 * make sure no PI-waiters arrive (or leave) while we are
3903	 * changing the priority of the task:
3904	 *
3905	 * To be able to change p->policy safely, the appropriate
3906	 * runqueue lock must be held.
3907	 */
3908	rq = task_rq_lock(p, &flags);
3909
3910	/*
3911	 * Changing the policy of the stop threads its a very bad idea
3912	 */
3913	if (p == rq->stop) {
3914		task_rq_unlock(rq, p, &flags);
3915		return -EINVAL;
3916	}
3917
3918	/*
3919	 * If not changing anything there's no need to proceed further:
3920	 */
3921	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3922			param->sched_priority == p->rt_priority))) {
3923		task_rq_unlock(rq, p, &flags);
3924		return 0;
3925	}
3926
3927#ifdef CONFIG_RT_GROUP_SCHED
3928	if (user) {
3929		/*
3930		 * Do not allow realtime tasks into groups that have no runtime
3931		 * assigned.
3932		 */
3933		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3934				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3935				!task_group_is_autogroup(task_group(p))) {
3936			task_rq_unlock(rq, p, &flags);
3937			return -EPERM;
3938		}
3939	}
3940#endif
3941
3942	/* recheck policy now with rq lock held */
3943	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3944		policy = oldpolicy = -1;
3945		task_rq_unlock(rq, p, &flags);
3946		goto recheck;
3947	}
3948	on_rq = p->on_rq;
3949	running = task_current(rq, p);
3950	if (on_rq)
3951		dequeue_task(rq, p, 0);
3952	if (running)
3953		p->sched_class->put_prev_task(rq, p);
3954
3955	p->sched_reset_on_fork = reset_on_fork;
3956
3957	oldprio = p->prio;
3958	prev_class = p->sched_class;
3959	__setscheduler(rq, p, policy, param->sched_priority);
3960
3961	if (running)
3962		p->sched_class->set_curr_task(rq);
3963	if (on_rq)
3964		enqueue_task(rq, p, 0);
3965
3966	check_class_changed(rq, p, prev_class, oldprio);
3967	task_rq_unlock(rq, p, &flags);
3968
3969	rt_mutex_adjust_pi(p);
3970
3971	return 0;
3972}
3973
3974/**
3975 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3976 * @p: the task in question.
3977 * @policy: new policy.
3978 * @param: structure containing the new RT priority.
3979 *
3980 * NOTE that the task may be already dead.
3981 */
3982int sched_setscheduler(struct task_struct *p, int policy,
3983		       const struct sched_param *param)
3984{
3985	return __sched_setscheduler(p, policy, param, true);
3986}
3987EXPORT_SYMBOL_GPL(sched_setscheduler);
3988
3989/**
3990 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3991 * @p: the task in question.
3992 * @policy: new policy.
3993 * @param: structure containing the new RT priority.
3994 *
3995 * Just like sched_setscheduler, only don't bother checking if the
3996 * current context has permission.  For example, this is needed in
3997 * stop_machine(): we create temporary high priority worker threads,
3998 * but our caller might not have that capability.
3999 */
4000int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4001			       const struct sched_param *param)
4002{
4003	return __sched_setscheduler(p, policy, param, false);
4004}
4005
4006static int
4007do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4008{
4009	struct sched_param lparam;
4010	struct task_struct *p;
4011	int retval;
4012
4013	if (!param || pid < 0)
4014		return -EINVAL;
4015	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4016		return -EFAULT;
4017
4018	rcu_read_lock();
4019	retval = -ESRCH;
4020	p = find_process_by_pid(pid);
4021	if (p != NULL)
4022		retval = sched_setscheduler(p, policy, &lparam);
4023	rcu_read_unlock();
4024
4025	return retval;
4026}
4027
4028/**
4029 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4030 * @pid: the pid in question.
4031 * @policy: new policy.
4032 * @param: structure containing the new RT priority.
4033 */
4034SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4035		struct sched_param __user *, param)
4036{
4037	/* negative values for policy are not valid */
4038	if (policy < 0)
4039		return -EINVAL;
4040
4041	return do_sched_setscheduler(pid, policy, param);
4042}
4043
4044/**
4045 * sys_sched_setparam - set/change the RT priority of a thread
4046 * @pid: the pid in question.
4047 * @param: structure containing the new RT priority.
4048 */
4049SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4050{
4051	return do_sched_setscheduler(pid, -1, param);
4052}
4053
4054/**
4055 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4056 * @pid: the pid in question.
4057 */
4058SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4059{
4060	struct task_struct *p;
4061	int retval;
4062
4063	if (pid < 0)
4064		return -EINVAL;
4065
4066	retval = -ESRCH;
4067	rcu_read_lock();
4068	p = find_process_by_pid(pid);
4069	if (p) {
4070		retval = security_task_getscheduler(p);
4071		if (!retval)
4072			retval = p->policy
4073				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4074	}
4075	rcu_read_unlock();
4076	return retval;
4077}
4078
4079/**
4080 * sys_sched_getparam - get the RT priority of a thread
4081 * @pid: the pid in question.
4082 * @param: structure containing the RT priority.
4083 */
4084SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4085{
4086	struct sched_param lp;
4087	struct task_struct *p;
4088	int retval;
4089
4090	if (!param || pid < 0)
4091		return -EINVAL;
4092
4093	rcu_read_lock();
4094	p = find_process_by_pid(pid);
4095	retval = -ESRCH;
4096	if (!p)
4097		goto out_unlock;
4098
4099	retval = security_task_getscheduler(p);
4100	if (retval)
4101		goto out_unlock;
4102
4103	lp.sched_priority = p->rt_priority;
4104	rcu_read_unlock();
4105
4106	/*
4107	 * This one might sleep, we cannot do it with a spinlock held ...
4108	 */
4109	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4110
4111	return retval;
4112
4113out_unlock:
4114	rcu_read_unlock();
4115	return retval;
4116}
4117
4118long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4119{
4120	cpumask_var_t cpus_allowed, new_mask;
4121	struct task_struct *p;
4122	int retval;
4123
4124	get_online_cpus();
4125	rcu_read_lock();
4126
4127	p = find_process_by_pid(pid);
4128	if (!p) {
4129		rcu_read_unlock();
4130		put_online_cpus();
4131		return -ESRCH;
4132	}
4133
4134	/* Prevent p going away */
4135	get_task_struct(p);
4136	rcu_read_unlock();
4137
4138	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4139		retval = -ENOMEM;
4140		goto out_put_task;
4141	}
4142	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4143		retval = -ENOMEM;
4144		goto out_free_cpus_allowed;
4145	}
4146	retval = -EPERM;
4147	if (!check_same_owner(p)) {
4148		rcu_read_lock();
4149		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4150			rcu_read_unlock();
4151			goto out_unlock;
4152		}
4153		rcu_read_unlock();
4154	}
4155
4156	retval = security_task_setscheduler(p);
4157	if (retval)
4158		goto out_unlock;
4159
4160	cpuset_cpus_allowed(p, cpus_allowed);
4161	cpumask_and(new_mask, in_mask, cpus_allowed);
4162again:
4163	retval = set_cpus_allowed_ptr(p, new_mask);
4164
4165	if (!retval) {
4166		cpuset_cpus_allowed(p, cpus_allowed);
4167		if (!cpumask_subset(new_mask, cpus_allowed)) {
4168			/*
4169			 * We must have raced with a concurrent cpuset
4170			 * update. Just reset the cpus_allowed to the
4171			 * cpuset's cpus_allowed
4172			 */
4173			cpumask_copy(new_mask, cpus_allowed);
4174			goto again;
4175		}
4176	}
4177out_unlock:
4178	free_cpumask_var(new_mask);
4179out_free_cpus_allowed:
4180	free_cpumask_var(cpus_allowed);
4181out_put_task:
4182	put_task_struct(p);
4183	put_online_cpus();
4184	return retval;
4185}
4186
4187static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4188			     struct cpumask *new_mask)
4189{
4190	if (len < cpumask_size())
4191		cpumask_clear(new_mask);
4192	else if (len > cpumask_size())
4193		len = cpumask_size();
4194
4195	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4196}
4197
4198/**
4199 * sys_sched_setaffinity - set the cpu affinity of a process
4200 * @pid: pid of the process
4201 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4202 * @user_mask_ptr: user-space pointer to the new cpu mask
4203 */
4204SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4205		unsigned long __user *, user_mask_ptr)
4206{
4207	cpumask_var_t new_mask;
4208	int retval;
4209
4210	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4211		return -ENOMEM;
4212
4213	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4214	if (retval == 0)
4215		retval = sched_setaffinity(pid, new_mask);
4216	free_cpumask_var(new_mask);
4217	return retval;
4218}
4219
4220long sched_getaffinity(pid_t pid, struct cpumask *mask)
4221{
4222	struct task_struct *p;
4223	unsigned long flags;
4224	int retval;
4225
4226	get_online_cpus();
4227	rcu_read_lock();
4228
4229	retval = -ESRCH;
4230	p = find_process_by_pid(pid);
4231	if (!p)
4232		goto out_unlock;
4233
4234	retval = security_task_getscheduler(p);
4235	if (retval)
4236		goto out_unlock;
4237
4238	raw_spin_lock_irqsave(&p->pi_lock, flags);
4239	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4240	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4241
4242out_unlock:
4243	rcu_read_unlock();
4244	put_online_cpus();
4245
4246	return retval;
4247}
4248
4249/**
4250 * sys_sched_getaffinity - get the cpu affinity of a process
4251 * @pid: pid of the process
4252 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4253 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4254 */
4255SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4256		unsigned long __user *, user_mask_ptr)
4257{
4258	int ret;
4259	cpumask_var_t mask;
4260
4261	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4262		return -EINVAL;
4263	if (len & (sizeof(unsigned long)-1))
4264		return -EINVAL;
4265
4266	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4267		return -ENOMEM;
4268
4269	ret = sched_getaffinity(pid, mask);
4270	if (ret == 0) {
4271		size_t retlen = min_t(size_t, len, cpumask_size());
4272
4273		if (copy_to_user(user_mask_ptr, mask, retlen))
4274			ret = -EFAULT;
4275		else
4276			ret = retlen;
4277	}
4278	free_cpumask_var(mask);
4279
4280	return ret;
4281}
4282
4283/**
4284 * sys_sched_yield - yield the current processor to other threads.
4285 *
4286 * This function yields the current CPU to other tasks. If there are no
4287 * other threads running on this CPU then this function will return.
4288 */
4289SYSCALL_DEFINE0(sched_yield)
4290{
4291	struct rq *rq = this_rq_lock();
4292
4293	schedstat_inc(rq, yld_count);
4294	current->sched_class->yield_task(rq);
4295
4296	/*
4297	 * Since we are going to call schedule() anyway, there's
4298	 * no need to preempt or enable interrupts:
4299	 */
4300	__release(rq->lock);
4301	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4302	do_raw_spin_unlock(&rq->lock);
4303	sched_preempt_enable_no_resched();
4304
4305	schedule();
4306
4307	return 0;
4308}
4309
4310static inline int should_resched(void)
4311{
4312	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4313}
4314
4315static void __cond_resched(void)
4316{
4317	add_preempt_count(PREEMPT_ACTIVE);
4318	__schedule();
4319	sub_preempt_count(PREEMPT_ACTIVE);
4320}
4321
4322int __sched _cond_resched(void)
4323{
4324	if (should_resched()) {
4325		__cond_resched();
4326		return 1;
4327	}
4328	return 0;
4329}
4330EXPORT_SYMBOL(_cond_resched);
4331
4332/*
4333 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4334 * call schedule, and on return reacquire the lock.
4335 *
4336 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4337 * operations here to prevent schedule() from being called twice (once via
4338 * spin_unlock(), once by hand).
4339 */
4340int __cond_resched_lock(spinlock_t *lock)
4341{
4342	int resched = should_resched();
4343	int ret = 0;
4344
4345	lockdep_assert_held(lock);
4346
4347	if (spin_needbreak(lock) || resched) {
4348		spin_unlock(lock);
4349		if (resched)
4350			__cond_resched();
4351		else
4352			cpu_relax();
4353		ret = 1;
4354		spin_lock(lock);
4355	}
4356	return ret;
4357}
4358EXPORT_SYMBOL(__cond_resched_lock);
4359
4360int __sched __cond_resched_softirq(void)
4361{
4362	BUG_ON(!in_softirq());
4363
4364	if (should_resched()) {
4365		local_bh_enable();
4366		__cond_resched();
4367		local_bh_disable();
4368		return 1;
4369	}
4370	return 0;
4371}
4372EXPORT_SYMBOL(__cond_resched_softirq);
4373
4374/**
4375 * yield - yield the current processor to other threads.
4376 *
4377 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4378 *
4379 * The scheduler is at all times free to pick the calling task as the most
4380 * eligible task to run, if removing the yield() call from your code breaks
4381 * it, its already broken.
4382 *
4383 * Typical broken usage is:
4384 *
4385 * while (!event)
4386 * 	yield();
4387 *
4388 * where one assumes that yield() will let 'the other' process run that will
4389 * make event true. If the current task is a SCHED_FIFO task that will never
4390 * happen. Never use yield() as a progress guarantee!!
4391 *
4392 * If you want to use yield() to wait for something, use wait_event().
4393 * If you want to use yield() to be 'nice' for others, use cond_resched().
4394 * If you still want to use yield(), do not!
4395 */
4396void __sched yield(void)
4397{
4398	set_current_state(TASK_RUNNING);
4399	sys_sched_yield();
4400}
4401EXPORT_SYMBOL(yield);
4402
4403/**
4404 * yield_to - yield the current processor to another thread in
4405 * your thread group, or accelerate that thread toward the
4406 * processor it's on.
4407 * @p: target task
4408 * @preempt: whether task preemption is allowed or not
4409 *
4410 * It's the caller's job to ensure that the target task struct
4411 * can't go away on us before we can do any checks.
4412 *
4413 * Returns true if we indeed boosted the target task.
4414 */
4415bool __sched yield_to(struct task_struct *p, bool preempt)
4416{
4417	struct task_struct *curr = current;
4418	struct rq *rq, *p_rq;
4419	unsigned long flags;
4420	bool yielded = 0;
4421
4422	local_irq_save(flags);
4423	rq = this_rq();
4424
4425again:
4426	p_rq = task_rq(p);
4427	double_rq_lock(rq, p_rq);
4428	while (task_rq(p) != p_rq) {
4429		double_rq_unlock(rq, p_rq);
4430		goto again;
4431	}
4432
4433	if (!curr->sched_class->yield_to_task)
4434		goto out;
4435
4436	if (curr->sched_class != p->sched_class)
4437		goto out;
4438
4439	if (task_running(p_rq, p) || p->state)
4440		goto out;
4441
4442	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4443	if (yielded) {
4444		schedstat_inc(rq, yld_count);
4445		/*
4446		 * Make p's CPU reschedule; pick_next_entity takes care of
4447		 * fairness.
4448		 */
4449		if (preempt && rq != p_rq)
4450			resched_task(p_rq->curr);
4451	}
4452
4453out:
4454	double_rq_unlock(rq, p_rq);
4455	local_irq_restore(flags);
4456
4457	if (yielded)
4458		schedule();
4459
4460	return yielded;
4461}
4462EXPORT_SYMBOL_GPL(yield_to);
4463
4464/*
4465 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4466 * that process accounting knows that this is a task in IO wait state.
4467 */
4468void __sched io_schedule(void)
4469{
4470	struct rq *rq = raw_rq();
4471
4472	delayacct_blkio_start();
4473	atomic_inc(&rq->nr_iowait);
4474	blk_flush_plug(current);
4475	current->in_iowait = 1;
4476	schedule();
4477	current->in_iowait = 0;
4478	atomic_dec(&rq->nr_iowait);
4479	delayacct_blkio_end();
4480}
4481EXPORT_SYMBOL(io_schedule);
4482
4483long __sched io_schedule_timeout(long timeout)
4484{
4485	struct rq *rq = raw_rq();
4486	long ret;
4487
4488	delayacct_blkio_start();
4489	atomic_inc(&rq->nr_iowait);
4490	blk_flush_plug(current);
4491	current->in_iowait = 1;
4492	ret = schedule_timeout(timeout);
4493	current->in_iowait = 0;
4494	atomic_dec(&rq->nr_iowait);
4495	delayacct_blkio_end();
4496	return ret;
4497}
4498
4499/**
4500 * sys_sched_get_priority_max - return maximum RT priority.
4501 * @policy: scheduling class.
4502 *
4503 * this syscall returns the maximum rt_priority that can be used
4504 * by a given scheduling class.
4505 */
4506SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4507{
4508	int ret = -EINVAL;
4509
4510	switch (policy) {
4511	case SCHED_FIFO:
4512	case SCHED_RR:
4513		ret = MAX_USER_RT_PRIO-1;
4514		break;
4515	case SCHED_NORMAL:
4516	case SCHED_BATCH:
4517	case SCHED_IDLE:
4518		ret = 0;
4519		break;
4520	}
4521	return ret;
4522}
4523
4524/**
4525 * sys_sched_get_priority_min - return minimum RT priority.
4526 * @policy: scheduling class.
4527 *
4528 * this syscall returns the minimum rt_priority that can be used
4529 * by a given scheduling class.
4530 */
4531SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4532{
4533	int ret = -EINVAL;
4534
4535	switch (policy) {
4536	case SCHED_FIFO:
4537	case SCHED_RR:
4538		ret = 1;
4539		break;
4540	case SCHED_NORMAL:
4541	case SCHED_BATCH:
4542	case SCHED_IDLE:
4543		ret = 0;
4544	}
4545	return ret;
4546}
4547
4548/**
4549 * sys_sched_rr_get_interval - return the default timeslice of a process.
4550 * @pid: pid of the process.
4551 * @interval: userspace pointer to the timeslice value.
4552 *
4553 * this syscall writes the default timeslice value of a given process
4554 * into the user-space timespec buffer. A value of '0' means infinity.
4555 */
4556SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4557		struct timespec __user *, interval)
4558{
4559	struct task_struct *p;
4560	unsigned int time_slice;
4561	unsigned long flags;
4562	struct rq *rq;
4563	int retval;
4564	struct timespec t;
4565
4566	if (pid < 0)
4567		return -EINVAL;
4568
4569	retval = -ESRCH;
4570	rcu_read_lock();
4571	p = find_process_by_pid(pid);
4572	if (!p)
4573		goto out_unlock;
4574
4575	retval = security_task_getscheduler(p);
4576	if (retval)
4577		goto out_unlock;
4578
4579	rq = task_rq_lock(p, &flags);
4580	time_slice = p->sched_class->get_rr_interval(rq, p);
4581	task_rq_unlock(rq, p, &flags);
4582
4583	rcu_read_unlock();
4584	jiffies_to_timespec(time_slice, &t);
4585	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4586	return retval;
4587
4588out_unlock:
4589	rcu_read_unlock();
4590	return retval;
4591}
4592
4593static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4594
4595void sched_show_task(struct task_struct *p)
4596{
4597	unsigned long free = 0;
4598	int ppid;
4599	unsigned state;
4600
4601	state = p->state ? __ffs(p->state) + 1 : 0;
4602	printk(KERN_INFO "%-15.15s %c", p->comm,
4603		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4604#if BITS_PER_LONG == 32
4605	if (state == TASK_RUNNING)
4606		printk(KERN_CONT " running  ");
4607	else
4608		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4609#else
4610	if (state == TASK_RUNNING)
4611		printk(KERN_CONT "  running task    ");
4612	else
4613		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4614#endif
4615#ifdef CONFIG_DEBUG_STACK_USAGE
4616	free = stack_not_used(p);
4617#endif
4618	rcu_read_lock();
4619	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4620	rcu_read_unlock();
4621	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4622		task_pid_nr(p), ppid,
4623		(unsigned long)task_thread_info(p)->flags);
4624
4625	show_stack(p, NULL);
4626}
4627
4628void show_state_filter(unsigned long state_filter)
4629{
4630	struct task_struct *g, *p;
4631
4632#if BITS_PER_LONG == 32
4633	printk(KERN_INFO
4634		"  task                PC stack   pid father\n");
4635#else
4636	printk(KERN_INFO
4637		"  task                        PC stack   pid father\n");
4638#endif
4639	rcu_read_lock();
4640	do_each_thread(g, p) {
4641		/*
4642		 * reset the NMI-timeout, listing all files on a slow
4643		 * console might take a lot of time:
4644		 */
4645		touch_nmi_watchdog();
4646		if (!state_filter || (p->state & state_filter))
4647			sched_show_task(p);
4648	} while_each_thread(g, p);
4649
4650	touch_all_softlockup_watchdogs();
4651
4652#ifdef CONFIG_SCHED_DEBUG
4653	sysrq_sched_debug_show();
4654#endif
4655	rcu_read_unlock();
4656	/*
4657	 * Only show locks if all tasks are dumped:
4658	 */
4659	if (!state_filter)
4660		debug_show_all_locks();
4661}
4662
4663void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4664{
4665	idle->sched_class = &idle_sched_class;
4666}
4667
4668/**
4669 * init_idle - set up an idle thread for a given CPU
4670 * @idle: task in question
4671 * @cpu: cpu the idle task belongs to
4672 *
4673 * NOTE: this function does not set the idle thread's NEED_RESCHED
4674 * flag, to make booting more robust.
4675 */
4676void __cpuinit init_idle(struct task_struct *idle, int cpu)
4677{
4678	struct rq *rq = cpu_rq(cpu);
4679	unsigned long flags;
4680
4681	raw_spin_lock_irqsave(&rq->lock, flags);
4682
4683	__sched_fork(idle);
4684	idle->state = TASK_RUNNING;
4685	idle->se.exec_start = sched_clock();
4686
4687	do_set_cpus_allowed(idle, cpumask_of(cpu));
4688	/*
4689	 * We're having a chicken and egg problem, even though we are
4690	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4691	 * lockdep check in task_group() will fail.
4692	 *
4693	 * Similar case to sched_fork(). / Alternatively we could
4694	 * use task_rq_lock() here and obtain the other rq->lock.
4695	 *
4696	 * Silence PROVE_RCU
4697	 */
4698	rcu_read_lock();
4699	__set_task_cpu(idle, cpu);
4700	rcu_read_unlock();
4701
4702	rq->curr = rq->idle = idle;
4703#if defined(CONFIG_SMP)
4704	idle->on_cpu = 1;
4705#endif
4706	raw_spin_unlock_irqrestore(&rq->lock, flags);
4707
4708	/* Set the preempt count _outside_ the spinlocks! */
4709	task_thread_info(idle)->preempt_count = 0;
4710
4711	/*
4712	 * The idle tasks have their own, simple scheduling class:
4713	 */
4714	idle->sched_class = &idle_sched_class;
4715	ftrace_graph_init_idle_task(idle, cpu);
4716#if defined(CONFIG_SMP)
4717	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4718#endif
4719}
4720
4721#ifdef CONFIG_SMP
4722void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4723{
4724	if (p->sched_class && p->sched_class->set_cpus_allowed)
4725		p->sched_class->set_cpus_allowed(p, new_mask);
4726
4727	cpumask_copy(&p->cpus_allowed, new_mask);
4728	p->nr_cpus_allowed = cpumask_weight(new_mask);
4729}
4730
4731/*
4732 * This is how migration works:
4733 *
4734 * 1) we invoke migration_cpu_stop() on the target CPU using
4735 *    stop_one_cpu().
4736 * 2) stopper starts to run (implicitly forcing the migrated thread
4737 *    off the CPU)
4738 * 3) it checks whether the migrated task is still in the wrong runqueue.
4739 * 4) if it's in the wrong runqueue then the migration thread removes
4740 *    it and puts it into the right queue.
4741 * 5) stopper completes and stop_one_cpu() returns and the migration
4742 *    is done.
4743 */
4744
4745/*
4746 * Change a given task's CPU affinity. Migrate the thread to a
4747 * proper CPU and schedule it away if the CPU it's executing on
4748 * is removed from the allowed bitmask.
4749 *
4750 * NOTE: the caller must have a valid reference to the task, the
4751 * task must not exit() & deallocate itself prematurely. The
4752 * call is not atomic; no spinlocks may be held.
4753 */
4754int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4755{
4756	unsigned long flags;
4757	struct rq *rq;
4758	unsigned int dest_cpu;
4759	int ret = 0;
4760
4761	rq = task_rq_lock(p, &flags);
4762
4763	if (cpumask_equal(&p->cpus_allowed, new_mask))
4764		goto out;
4765
4766	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4767		ret = -EINVAL;
4768		goto out;
4769	}
4770
4771	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4772		ret = -EINVAL;
4773		goto out;
4774	}
4775
4776	do_set_cpus_allowed(p, new_mask);
4777
4778	/* Can the task run on the task's current CPU? If so, we're done */
4779	if (cpumask_test_cpu(task_cpu(p), new_mask))
4780		goto out;
4781
4782	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4783	if (p->on_rq) {
4784		struct migration_arg arg = { p, dest_cpu };
4785		/* Need help from migration thread: drop lock and wait. */
4786		task_rq_unlock(rq, p, &flags);
4787		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4788		tlb_migrate_finish(p->mm);
4789		return 0;
4790	}
4791out:
4792	task_rq_unlock(rq, p, &flags);
4793
4794	return ret;
4795}
4796EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4797
4798/*
4799 * Move (not current) task off this cpu, onto dest cpu. We're doing
4800 * this because either it can't run here any more (set_cpus_allowed()
4801 * away from this CPU, or CPU going down), or because we're
4802 * attempting to rebalance this task on exec (sched_exec).
4803 *
4804 * So we race with normal scheduler movements, but that's OK, as long
4805 * as the task is no longer on this CPU.
4806 *
4807 * Returns non-zero if task was successfully migrated.
4808 */
4809static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4810{
4811	struct rq *rq_dest, *rq_src;
4812	int ret = 0;
4813
4814	if (unlikely(!cpu_active(dest_cpu)))
4815		return ret;
4816
4817	rq_src = cpu_rq(src_cpu);
4818	rq_dest = cpu_rq(dest_cpu);
4819
4820	raw_spin_lock(&p->pi_lock);
4821	double_rq_lock(rq_src, rq_dest);
4822	/* Already moved. */
4823	if (task_cpu(p) != src_cpu)
4824		goto done;
4825	/* Affinity changed (again). */
4826	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4827		goto fail;
4828
4829	/*
4830	 * If we're not on a rq, the next wake-up will ensure we're
4831	 * placed properly.
4832	 */
4833	if (p->on_rq) {
4834		dequeue_task(rq_src, p, 0);
4835		set_task_cpu(p, dest_cpu);
4836		enqueue_task(rq_dest, p, 0);
4837		check_preempt_curr(rq_dest, p, 0);
4838	}
4839done:
4840	ret = 1;
4841fail:
4842	double_rq_unlock(rq_src, rq_dest);
4843	raw_spin_unlock(&p->pi_lock);
4844	return ret;
4845}
4846
4847/*
4848 * migration_cpu_stop - this will be executed by a highprio stopper thread
4849 * and performs thread migration by bumping thread off CPU then
4850 * 'pushing' onto another runqueue.
4851 */
4852static int migration_cpu_stop(void *data)
4853{
4854	struct migration_arg *arg = data;
4855
4856	/*
4857	 * The original target cpu might have gone down and we might
4858	 * be on another cpu but it doesn't matter.
4859	 */
4860	local_irq_disable();
4861	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4862	local_irq_enable();
4863	return 0;
4864}
4865
4866#ifdef CONFIG_HOTPLUG_CPU
4867
4868/*
4869 * Ensures that the idle task is using init_mm right before its cpu goes
4870 * offline.
4871 */
4872void idle_task_exit(void)
4873{
4874	struct mm_struct *mm = current->active_mm;
4875
4876	BUG_ON(cpu_online(smp_processor_id()));
4877
4878	if (mm != &init_mm)
4879		switch_mm(mm, &init_mm, current);
4880	mmdrop(mm);
4881}
4882
4883/*
4884 * Since this CPU is going 'away' for a while, fold any nr_active delta
4885 * we might have. Assumes we're called after migrate_tasks() so that the
4886 * nr_active count is stable.
4887 *
4888 * Also see the comment "Global load-average calculations".
4889 */
4890static void calc_load_migrate(struct rq *rq)
4891{
4892	long delta = calc_load_fold_active(rq);
4893	if (delta)
4894		atomic_long_add(delta, &calc_load_tasks);
4895}
4896
4897/*
4898 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4899 * try_to_wake_up()->select_task_rq().
4900 *
4901 * Called with rq->lock held even though we'er in stop_machine() and
4902 * there's no concurrency possible, we hold the required locks anyway
4903 * because of lock validation efforts.
4904 */
4905static void migrate_tasks(unsigned int dead_cpu)
4906{
4907	struct rq *rq = cpu_rq(dead_cpu);
4908	struct task_struct *next, *stop = rq->stop;
4909	int dest_cpu;
4910
4911	/*
4912	 * Fudge the rq selection such that the below task selection loop
4913	 * doesn't get stuck on the currently eligible stop task.
4914	 *
4915	 * We're currently inside stop_machine() and the rq is either stuck
4916	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4917	 * either way we should never end up calling schedule() until we're
4918	 * done here.
4919	 */
4920	rq->stop = NULL;
4921
4922	for ( ; ; ) {
4923		/*
4924		 * There's this thread running, bail when that's the only
4925		 * remaining thread.
4926		 */
4927		if (rq->nr_running == 1)
4928			break;
4929
4930		next = pick_next_task(rq);
4931		BUG_ON(!next);
4932		next->sched_class->put_prev_task(rq, next);
4933
4934		/* Find suitable destination for @next, with force if needed. */
4935		dest_cpu = select_fallback_rq(dead_cpu, next);
4936		raw_spin_unlock(&rq->lock);
4937
4938		__migrate_task(next, dead_cpu, dest_cpu);
4939
4940		raw_spin_lock(&rq->lock);
4941	}
4942
4943	rq->stop = stop;
4944}
4945
4946#endif /* CONFIG_HOTPLUG_CPU */
4947
4948#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4949
4950static struct ctl_table sd_ctl_dir[] = {
4951	{
4952		.procname	= "sched_domain",
4953		.mode		= 0555,
4954	},
4955	{}
4956};
4957
4958static struct ctl_table sd_ctl_root[] = {
4959	{
4960		.procname	= "kernel",
4961		.mode		= 0555,
4962		.child		= sd_ctl_dir,
4963	},
4964	{}
4965};
4966
4967static struct ctl_table *sd_alloc_ctl_entry(int n)
4968{
4969	struct ctl_table *entry =
4970		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4971
4972	return entry;
4973}
4974
4975static void sd_free_ctl_entry(struct ctl_table **tablep)
4976{
4977	struct ctl_table *entry;
4978
4979	/*
4980	 * In the intermediate directories, both the child directory and
4981	 * procname are dynamically allocated and could fail but the mode
4982	 * will always be set. In the lowest directory the names are
4983	 * static strings and all have proc handlers.
4984	 */
4985	for (entry = *tablep; entry->mode; entry++) {
4986		if (entry->child)
4987			sd_free_ctl_entry(&entry->child);
4988		if (entry->proc_handler == NULL)
4989			kfree(entry->procname);
4990	}
4991
4992	kfree(*tablep);
4993	*tablep = NULL;
4994}
4995
4996static int min_load_idx = 0;
4997static int max_load_idx = CPU_LOAD_IDX_MAX;
4998
4999static void
5000set_table_entry(struct ctl_table *entry,
5001		const char *procname, void *data, int maxlen,
5002		umode_t mode, proc_handler *proc_handler,
5003		bool load_idx)
5004{
5005	entry->procname = procname;
5006	entry->data = data;
5007	entry->maxlen = maxlen;
5008	entry->mode = mode;
5009	entry->proc_handler = proc_handler;
5010
5011	if (load_idx) {
5012		entry->extra1 = &min_load_idx;
5013		entry->extra2 = &max_load_idx;
5014	}
5015}
5016
5017static struct ctl_table *
5018sd_alloc_ctl_domain_table(struct sched_domain *sd)
5019{
5020	struct ctl_table *table = sd_alloc_ctl_entry(13);
5021
5022	if (table == NULL)
5023		return NULL;
5024
5025	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5026		sizeof(long), 0644, proc_doulongvec_minmax, false);
5027	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5028		sizeof(long), 0644, proc_doulongvec_minmax, false);
5029	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5030		sizeof(int), 0644, proc_dointvec_minmax, true);
5031	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5032		sizeof(int), 0644, proc_dointvec_minmax, true);
5033	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5034		sizeof(int), 0644, proc_dointvec_minmax, true);
5035	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5036		sizeof(int), 0644, proc_dointvec_minmax, true);
5037	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5038		sizeof(int), 0644, proc_dointvec_minmax, true);
5039	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5040		sizeof(int), 0644, proc_dointvec_minmax, false);
5041	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5042		sizeof(int), 0644, proc_dointvec_minmax, false);
5043	set_table_entry(&table[9], "cache_nice_tries",
5044		&sd->cache_nice_tries,
5045		sizeof(int), 0644, proc_dointvec_minmax, false);
5046	set_table_entry(&table[10], "flags", &sd->flags,
5047		sizeof(int), 0644, proc_dointvec_minmax, false);
5048	set_table_entry(&table[11], "name", sd->name,
5049		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5050	/* &table[12] is terminator */
5051
5052	return table;
5053}
5054
5055static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5056{
5057	struct ctl_table *entry, *table;
5058	struct sched_domain *sd;
5059	int domain_num = 0, i;
5060	char buf[32];
5061
5062	for_each_domain(cpu, sd)
5063		domain_num++;
5064	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5065	if (table == NULL)
5066		return NULL;
5067
5068	i = 0;
5069	for_each_domain(cpu, sd) {
5070		snprintf(buf, 32, "domain%d", i);
5071		entry->procname = kstrdup(buf, GFP_KERNEL);
5072		entry->mode = 0555;
5073		entry->child = sd_alloc_ctl_domain_table(sd);
5074		entry++;
5075		i++;
5076	}
5077	return table;
5078}
5079
5080static struct ctl_table_header *sd_sysctl_header;
5081static void register_sched_domain_sysctl(void)
5082{
5083	int i, cpu_num = num_possible_cpus();
5084	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5085	char buf[32];
5086
5087	WARN_ON(sd_ctl_dir[0].child);
5088	sd_ctl_dir[0].child = entry;
5089
5090	if (entry == NULL)
5091		return;
5092
5093	for_each_possible_cpu(i) {
5094		snprintf(buf, 32, "cpu%d", i);
5095		entry->procname = kstrdup(buf, GFP_KERNEL);
5096		entry->mode = 0555;
5097		entry->child = sd_alloc_ctl_cpu_table(i);
5098		entry++;
5099	}
5100
5101	WARN_ON(sd_sysctl_header);
5102	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5103}
5104
5105/* may be called multiple times per register */
5106static void unregister_sched_domain_sysctl(void)
5107{
5108	if (sd_sysctl_header)
5109		unregister_sysctl_table(sd_sysctl_header);
5110	sd_sysctl_header = NULL;
5111	if (sd_ctl_dir[0].child)
5112		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5113}
5114#else
5115static void register_sched_domain_sysctl(void)
5116{
5117}
5118static void unregister_sched_domain_sysctl(void)
5119{
5120}
5121#endif
5122
5123static void set_rq_online(struct rq *rq)
5124{
5125	if (!rq->online) {
5126		const struct sched_class *class;
5127
5128		cpumask_set_cpu(rq->cpu, rq->rd->online);
5129		rq->online = 1;
5130
5131		for_each_class(class) {
5132			if (class->rq_online)
5133				class->rq_online(rq);
5134		}
5135	}
5136}
5137
5138static void set_rq_offline(struct rq *rq)
5139{
5140	if (rq->online) {
5141		const struct sched_class *class;
5142
5143		for_each_class(class) {
5144			if (class->rq_offline)
5145				class->rq_offline(rq);
5146		}
5147
5148		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5149		rq->online = 0;
5150	}
5151}
5152
5153/*
5154 * migration_call - callback that gets triggered when a CPU is added.
5155 * Here we can start up the necessary migration thread for the new CPU.
5156 */
5157static int __cpuinit
5158migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5159{
5160	int cpu = (long)hcpu;
5161	unsigned long flags;
5162	struct rq *rq = cpu_rq(cpu);
5163
5164	switch (action & ~CPU_TASKS_FROZEN) {
5165
5166	case CPU_UP_PREPARE:
5167		rq->calc_load_update = calc_load_update;
5168		break;
5169
5170	case CPU_ONLINE:
5171		/* Update our root-domain */
5172		raw_spin_lock_irqsave(&rq->lock, flags);
5173		if (rq->rd) {
5174			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5175
5176			set_rq_online(rq);
5177		}
5178		raw_spin_unlock_irqrestore(&rq->lock, flags);
5179		break;
5180
5181#ifdef CONFIG_HOTPLUG_CPU
5182	case CPU_DYING:
5183		sched_ttwu_pending();
5184		/* Update our root-domain */
5185		raw_spin_lock_irqsave(&rq->lock, flags);
5186		if (rq->rd) {
5187			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5188			set_rq_offline(rq);
5189		}
5190		migrate_tasks(cpu);
5191		BUG_ON(rq->nr_running != 1); /* the migration thread */
5192		raw_spin_unlock_irqrestore(&rq->lock, flags);
5193		break;
5194
5195	case CPU_DEAD:
5196		calc_load_migrate(rq);
5197		break;
5198#endif
5199	}
5200
5201	update_max_interval();
5202
5203	return NOTIFY_OK;
5204}
5205
5206/*
5207 * Register at high priority so that task migration (migrate_all_tasks)
5208 * happens before everything else.  This has to be lower priority than
5209 * the notifier in the perf_event subsystem, though.
5210 */
5211static struct notifier_block __cpuinitdata migration_notifier = {
5212	.notifier_call = migration_call,
5213	.priority = CPU_PRI_MIGRATION,
5214};
5215
5216static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5217				      unsigned long action, void *hcpu)
5218{
5219	switch (action & ~CPU_TASKS_FROZEN) {
5220	case CPU_STARTING:
5221	case CPU_DOWN_FAILED:
5222		set_cpu_active((long)hcpu, true);
5223		return NOTIFY_OK;
5224	default:
5225		return NOTIFY_DONE;
5226	}
5227}
5228
5229static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5230					unsigned long action, void *hcpu)
5231{
5232	switch (action & ~CPU_TASKS_FROZEN) {
5233	case CPU_DOWN_PREPARE:
5234		set_cpu_active((long)hcpu, false);
5235		return NOTIFY_OK;
5236	default:
5237		return NOTIFY_DONE;
5238	}
5239}
5240
5241static int __init migration_init(void)
5242{
5243	void *cpu = (void *)(long)smp_processor_id();
5244	int err;
5245
5246	/* Initialize migration for the boot CPU */
5247	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5248	BUG_ON(err == NOTIFY_BAD);
5249	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5250	register_cpu_notifier(&migration_notifier);
5251
5252	/* Register cpu active notifiers */
5253	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5254	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5255
5256	return 0;
5257}
5258early_initcall(migration_init);
5259#endif
5260
5261#ifdef CONFIG_SMP
5262
5263static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5264
5265#ifdef CONFIG_SCHED_DEBUG
5266
5267static __read_mostly int sched_debug_enabled;
5268
5269static int __init sched_debug_setup(char *str)
5270{
5271	sched_debug_enabled = 1;
5272
5273	return 0;
5274}
5275early_param("sched_debug", sched_debug_setup);
5276
5277static inline bool sched_debug(void)
5278{
5279	return sched_debug_enabled;
5280}
5281
5282static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5283				  struct cpumask *groupmask)
5284{
5285	struct sched_group *group = sd->groups;
5286	char str[256];
5287
5288	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5289	cpumask_clear(groupmask);
5290
5291	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5292
5293	if (!(sd->flags & SD_LOAD_BALANCE)) {
5294		printk("does not load-balance\n");
5295		if (sd->parent)
5296			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5297					" has parent");
5298		return -1;
5299	}
5300
5301	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5302
5303	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5304		printk(KERN_ERR "ERROR: domain->span does not contain "
5305				"CPU%d\n", cpu);
5306	}
5307	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5308		printk(KERN_ERR "ERROR: domain->groups does not contain"
5309				" CPU%d\n", cpu);
5310	}
5311
5312	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5313	do {
5314		if (!group) {
5315			printk("\n");
5316			printk(KERN_ERR "ERROR: group is NULL\n");
5317			break;
5318		}
5319
5320		/*
5321		 * Even though we initialize ->power to something semi-sane,
5322		 * we leave power_orig unset. This allows us to detect if
5323		 * domain iteration is still funny without causing /0 traps.
5324		 */
5325		if (!group->sgp->power_orig) {
5326			printk(KERN_CONT "\n");
5327			printk(KERN_ERR "ERROR: domain->cpu_power not "
5328					"set\n");
5329			break;
5330		}
5331
5332		if (!cpumask_weight(sched_group_cpus(group))) {
5333			printk(KERN_CONT "\n");
5334			printk(KERN_ERR "ERROR: empty group\n");
5335			break;
5336		}
5337
5338		if (!(sd->flags & SD_OVERLAP) &&
5339		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5340			printk(KERN_CONT "\n");
5341			printk(KERN_ERR "ERROR: repeated CPUs\n");
5342			break;
5343		}
5344
5345		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5346
5347		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5348
5349		printk(KERN_CONT " %s", str);
5350		if (group->sgp->power != SCHED_POWER_SCALE) {
5351			printk(KERN_CONT " (cpu_power = %d)",
5352				group->sgp->power);
5353		}
5354
5355		group = group->next;
5356	} while (group != sd->groups);
5357	printk(KERN_CONT "\n");
5358
5359	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5360		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5361
5362	if (sd->parent &&
5363	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5364		printk(KERN_ERR "ERROR: parent span is not a superset "
5365			"of domain->span\n");
5366	return 0;
5367}
5368
5369static void sched_domain_debug(struct sched_domain *sd, int cpu)
5370{
5371	int level = 0;
5372
5373	if (!sched_debug_enabled)
5374		return;
5375
5376	if (!sd) {
5377		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5378		return;
5379	}
5380
5381	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5382
5383	for (;;) {
5384		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5385			break;
5386		level++;
5387		sd = sd->parent;
5388		if (!sd)
5389			break;
5390	}
5391}
5392#else /* !CONFIG_SCHED_DEBUG */
5393# define sched_domain_debug(sd, cpu) do { } while (0)
5394static inline bool sched_debug(void)
5395{
5396	return false;
5397}
5398#endif /* CONFIG_SCHED_DEBUG */
5399
5400static int sd_degenerate(struct sched_domain *sd)
5401{
5402	if (cpumask_weight(sched_domain_span(sd)) == 1)
5403		return 1;
5404
5405	/* Following flags need at least 2 groups */
5406	if (sd->flags & (SD_LOAD_BALANCE |
5407			 SD_BALANCE_NEWIDLE |
5408			 SD_BALANCE_FORK |
5409			 SD_BALANCE_EXEC |
5410			 SD_SHARE_CPUPOWER |
5411			 SD_SHARE_PKG_RESOURCES)) {
5412		if (sd->groups != sd->groups->next)
5413			return 0;
5414	}
5415
5416	/* Following flags don't use groups */
5417	if (sd->flags & (SD_WAKE_AFFINE))
5418		return 0;
5419
5420	return 1;
5421}
5422
5423static int
5424sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5425{
5426	unsigned long cflags = sd->flags, pflags = parent->flags;
5427
5428	if (sd_degenerate(parent))
5429		return 1;
5430
5431	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5432		return 0;
5433
5434	/* Flags needing groups don't count if only 1 group in parent */
5435	if (parent->groups == parent->groups->next) {
5436		pflags &= ~(SD_LOAD_BALANCE |
5437				SD_BALANCE_NEWIDLE |
5438				SD_BALANCE_FORK |
5439				SD_BALANCE_EXEC |
5440				SD_SHARE_CPUPOWER |
5441				SD_SHARE_PKG_RESOURCES);
5442		if (nr_node_ids == 1)
5443			pflags &= ~SD_SERIALIZE;
5444	}
5445	if (~cflags & pflags)
5446		return 0;
5447
5448	return 1;
5449}
5450
5451static void free_rootdomain(struct rcu_head *rcu)
5452{
5453	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5454
5455	cpupri_cleanup(&rd->cpupri);
5456	free_cpumask_var(rd->rto_mask);
5457	free_cpumask_var(rd->online);
5458	free_cpumask_var(rd->span);
5459	kfree(rd);
5460}
5461
5462static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5463{
5464	struct root_domain *old_rd = NULL;
5465	unsigned long flags;
5466
5467	raw_spin_lock_irqsave(&rq->lock, flags);
5468
5469	if (rq->rd) {
5470		old_rd = rq->rd;
5471
5472		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5473			set_rq_offline(rq);
5474
5475		cpumask_clear_cpu(rq->cpu, old_rd->span);
5476
5477		/*
5478		 * If we dont want to free the old_rt yet then
5479		 * set old_rd to NULL to skip the freeing later
5480		 * in this function:
5481		 */
5482		if (!atomic_dec_and_test(&old_rd->refcount))
5483			old_rd = NULL;
5484	}
5485
5486	atomic_inc(&rd->refcount);
5487	rq->rd = rd;
5488
5489	cpumask_set_cpu(rq->cpu, rd->span);
5490	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5491		set_rq_online(rq);
5492
5493	raw_spin_unlock_irqrestore(&rq->lock, flags);
5494
5495	if (old_rd)
5496		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5497}
5498
5499static int init_rootdomain(struct root_domain *rd)
5500{
5501	memset(rd, 0, sizeof(*rd));
5502
5503	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5504		goto out;
5505	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5506		goto free_span;
5507	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5508		goto free_online;
5509
5510	if (cpupri_init(&rd->cpupri) != 0)
5511		goto free_rto_mask;
5512	return 0;
5513
5514free_rto_mask:
5515	free_cpumask_var(rd->rto_mask);
5516free_online:
5517	free_cpumask_var(rd->online);
5518free_span:
5519	free_cpumask_var(rd->span);
5520out:
5521	return -ENOMEM;
5522}
5523
5524/*
5525 * By default the system creates a single root-domain with all cpus as
5526 * members (mimicking the global state we have today).
5527 */
5528struct root_domain def_root_domain;
5529
5530static void init_defrootdomain(void)
5531{
5532	init_rootdomain(&def_root_domain);
5533
5534	atomic_set(&def_root_domain.refcount, 1);
5535}
5536
5537static struct root_domain *alloc_rootdomain(void)
5538{
5539	struct root_domain *rd;
5540
5541	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5542	if (!rd)
5543		return NULL;
5544
5545	if (init_rootdomain(rd) != 0) {
5546		kfree(rd);
5547		return NULL;
5548	}
5549
5550	return rd;
5551}
5552
5553static void free_sched_groups(struct sched_group *sg, int free_sgp)
5554{
5555	struct sched_group *tmp, *first;
5556
5557	if (!sg)
5558		return;
5559
5560	first = sg;
5561	do {
5562		tmp = sg->next;
5563
5564		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5565			kfree(sg->sgp);
5566
5567		kfree(sg);
5568		sg = tmp;
5569	} while (sg != first);
5570}
5571
5572static void free_sched_domain(struct rcu_head *rcu)
5573{
5574	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5575
5576	/*
5577	 * If its an overlapping domain it has private groups, iterate and
5578	 * nuke them all.
5579	 */
5580	if (sd->flags & SD_OVERLAP) {
5581		free_sched_groups(sd->groups, 1);
5582	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5583		kfree(sd->groups->sgp);
5584		kfree(sd->groups);
5585	}
5586	kfree(sd);
5587}
5588
5589static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5590{
5591	call_rcu(&sd->rcu, free_sched_domain);
5592}
5593
5594static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5595{
5596	for (; sd; sd = sd->parent)
5597		destroy_sched_domain(sd, cpu);
5598}
5599
5600/*
5601 * Keep a special pointer to the highest sched_domain that has
5602 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5603 * allows us to avoid some pointer chasing select_idle_sibling().
5604 *
5605 * Also keep a unique ID per domain (we use the first cpu number in
5606 * the cpumask of the domain), this allows us to quickly tell if
5607 * two cpus are in the same cache domain, see cpus_share_cache().
5608 */
5609DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5610DEFINE_PER_CPU(int, sd_llc_id);
5611
5612static void update_top_cache_domain(int cpu)
5613{
5614	struct sched_domain *sd;
5615	int id = cpu;
5616
5617	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5618	if (sd)
5619		id = cpumask_first(sched_domain_span(sd));
5620
5621	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5622	per_cpu(sd_llc_id, cpu) = id;
5623}
5624
5625/*
5626 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5627 * hold the hotplug lock.
5628 */
5629static void
5630cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5631{
5632	struct rq *rq = cpu_rq(cpu);
5633	struct sched_domain *tmp;
5634
5635	/* Remove the sched domains which do not contribute to scheduling. */
5636	for (tmp = sd; tmp; ) {
5637		struct sched_domain *parent = tmp->parent;
5638		if (!parent)
5639			break;
5640
5641		if (sd_parent_degenerate(tmp, parent)) {
5642			tmp->parent = parent->parent;
5643			if (parent->parent)
5644				parent->parent->child = tmp;
5645			destroy_sched_domain(parent, cpu);
5646		} else
5647			tmp = tmp->parent;
5648	}
5649
5650	if (sd && sd_degenerate(sd)) {
5651		tmp = sd;
5652		sd = sd->parent;
5653		destroy_sched_domain(tmp, cpu);
5654		if (sd)
5655			sd->child = NULL;
5656	}
5657
5658	sched_domain_debug(sd, cpu);
5659
5660	rq_attach_root(rq, rd);
5661	tmp = rq->sd;
5662	rcu_assign_pointer(rq->sd, sd);
5663	destroy_sched_domains(tmp, cpu);
5664
5665	update_top_cache_domain(cpu);
5666}
5667
5668/* cpus with isolated domains */
5669static cpumask_var_t cpu_isolated_map;
5670
5671/* Setup the mask of cpus configured for isolated domains */
5672static int __init isolated_cpu_setup(char *str)
5673{
5674	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5675	cpulist_parse(str, cpu_isolated_map);
5676	return 1;
5677}
5678
5679__setup("isolcpus=", isolated_cpu_setup);
5680
5681static const struct cpumask *cpu_cpu_mask(int cpu)
5682{
5683	return cpumask_of_node(cpu_to_node(cpu));
5684}
5685
5686struct sd_data {
5687	struct sched_domain **__percpu sd;
5688	struct sched_group **__percpu sg;
5689	struct sched_group_power **__percpu sgp;
5690};
5691
5692struct s_data {
5693	struct sched_domain ** __percpu sd;
5694	struct root_domain	*rd;
5695};
5696
5697enum s_alloc {
5698	sa_rootdomain,
5699	sa_sd,
5700	sa_sd_storage,
5701	sa_none,
5702};
5703
5704struct sched_domain_topology_level;
5705
5706typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5707typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5708
5709#define SDTL_OVERLAP	0x01
5710
5711struct sched_domain_topology_level {
5712	sched_domain_init_f init;
5713	sched_domain_mask_f mask;
5714	int		    flags;
5715	int		    numa_level;
5716	struct sd_data      data;
5717};
5718
5719/*
5720 * Build an iteration mask that can exclude certain CPUs from the upwards
5721 * domain traversal.
5722 *
5723 * Asymmetric node setups can result in situations where the domain tree is of
5724 * unequal depth, make sure to skip domains that already cover the entire
5725 * range.
5726 *
5727 * In that case build_sched_domains() will have terminated the iteration early
5728 * and our sibling sd spans will be empty. Domains should always include the
5729 * cpu they're built on, so check that.
5730 *
5731 */
5732static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5733{
5734	const struct cpumask *span = sched_domain_span(sd);
5735	struct sd_data *sdd = sd->private;
5736	struct sched_domain *sibling;
5737	int i;
5738
5739	for_each_cpu(i, span) {
5740		sibling = *per_cpu_ptr(sdd->sd, i);
5741		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5742			continue;
5743
5744		cpumask_set_cpu(i, sched_group_mask(sg));
5745	}
5746}
5747
5748/*
5749 * Return the canonical balance cpu for this group, this is the first cpu
5750 * of this group that's also in the iteration mask.
5751 */
5752int group_balance_cpu(struct sched_group *sg)
5753{
5754	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5755}
5756
5757static int
5758build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5759{
5760	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5761	const struct cpumask *span = sched_domain_span(sd);
5762	struct cpumask *covered = sched_domains_tmpmask;
5763	struct sd_data *sdd = sd->private;
5764	struct sched_domain *child;
5765	int i;
5766
5767	cpumask_clear(covered);
5768
5769	for_each_cpu(i, span) {
5770		struct cpumask *sg_span;
5771
5772		if (cpumask_test_cpu(i, covered))
5773			continue;
5774
5775		child = *per_cpu_ptr(sdd->sd, i);
5776
5777		/* See the comment near build_group_mask(). */
5778		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5779			continue;
5780
5781		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5782				GFP_KERNEL, cpu_to_node(cpu));
5783
5784		if (!sg)
5785			goto fail;
5786
5787		sg_span = sched_group_cpus(sg);
5788		if (child->child) {
5789			child = child->child;
5790			cpumask_copy(sg_span, sched_domain_span(child));
5791		} else
5792			cpumask_set_cpu(i, sg_span);
5793
5794		cpumask_or(covered, covered, sg_span);
5795
5796		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5797		if (atomic_inc_return(&sg->sgp->ref) == 1)
5798			build_group_mask(sd, sg);
5799
5800		/*
5801		 * Initialize sgp->power such that even if we mess up the
5802		 * domains and no possible iteration will get us here, we won't
5803		 * die on a /0 trap.
5804		 */
5805		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5806
5807		/*
5808		 * Make sure the first group of this domain contains the
5809		 * canonical balance cpu. Otherwise the sched_domain iteration
5810		 * breaks. See update_sg_lb_stats().
5811		 */
5812		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5813		    group_balance_cpu(sg) == cpu)
5814			groups = sg;
5815
5816		if (!first)
5817			first = sg;
5818		if (last)
5819			last->next = sg;
5820		last = sg;
5821		last->next = first;
5822	}
5823	sd->groups = groups;
5824
5825	return 0;
5826
5827fail:
5828	free_sched_groups(first, 0);
5829
5830	return -ENOMEM;
5831}
5832
5833static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5834{
5835	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5836	struct sched_domain *child = sd->child;
5837
5838	if (child)
5839		cpu = cpumask_first(sched_domain_span(child));
5840
5841	if (sg) {
5842		*sg = *per_cpu_ptr(sdd->sg, cpu);
5843		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5844		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5845	}
5846
5847	return cpu;
5848}
5849
5850/*
5851 * build_sched_groups will build a circular linked list of the groups
5852 * covered by the given span, and will set each group's ->cpumask correctly,
5853 * and ->cpu_power to 0.
5854 *
5855 * Assumes the sched_domain tree is fully constructed
5856 */
5857static int
5858build_sched_groups(struct sched_domain *sd, int cpu)
5859{
5860	struct sched_group *first = NULL, *last = NULL;
5861	struct sd_data *sdd = sd->private;
5862	const struct cpumask *span = sched_domain_span(sd);
5863	struct cpumask *covered;
5864	int i;
5865
5866	get_group(cpu, sdd, &sd->groups);
5867	atomic_inc(&sd->groups->ref);
5868
5869	if (cpu != cpumask_first(sched_domain_span(sd)))
5870		return 0;
5871
5872	lockdep_assert_held(&sched_domains_mutex);
5873	covered = sched_domains_tmpmask;
5874
5875	cpumask_clear(covered);
5876
5877	for_each_cpu(i, span) {
5878		struct sched_group *sg;
5879		int group = get_group(i, sdd, &sg);
5880		int j;
5881
5882		if (cpumask_test_cpu(i, covered))
5883			continue;
5884
5885		cpumask_clear(sched_group_cpus(sg));
5886		sg->sgp->power = 0;
5887		cpumask_setall(sched_group_mask(sg));
5888
5889		for_each_cpu(j, span) {
5890			if (get_group(j, sdd, NULL) != group)
5891				continue;
5892
5893			cpumask_set_cpu(j, covered);
5894			cpumask_set_cpu(j, sched_group_cpus(sg));
5895		}
5896
5897		if (!first)
5898			first = sg;
5899		if (last)
5900			last->next = sg;
5901		last = sg;
5902	}
5903	last->next = first;
5904
5905	return 0;
5906}
5907
5908/*
5909 * Initialize sched groups cpu_power.
5910 *
5911 * cpu_power indicates the capacity of sched group, which is used while
5912 * distributing the load between different sched groups in a sched domain.
5913 * Typically cpu_power for all the groups in a sched domain will be same unless
5914 * there are asymmetries in the topology. If there are asymmetries, group
5915 * having more cpu_power will pickup more load compared to the group having
5916 * less cpu_power.
5917 */
5918static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5919{
5920	struct sched_group *sg = sd->groups;
5921
5922	WARN_ON(!sd || !sg);
5923
5924	do {
5925		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5926		sg = sg->next;
5927	} while (sg != sd->groups);
5928
5929	if (cpu != group_balance_cpu(sg))
5930		return;
5931
5932	update_group_power(sd, cpu);
5933	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5934}
5935
5936int __weak arch_sd_sibling_asym_packing(void)
5937{
5938       return 0*SD_ASYM_PACKING;
5939}
5940
5941/*
5942 * Initializers for schedule domains
5943 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5944 */
5945
5946#ifdef CONFIG_SCHED_DEBUG
5947# define SD_INIT_NAME(sd, type)		sd->name = #type
5948#else
5949# define SD_INIT_NAME(sd, type)		do { } while (0)
5950#endif
5951
5952#define SD_INIT_FUNC(type)						\
5953static noinline struct sched_domain *					\
5954sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5955{									\
5956	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5957	*sd = SD_##type##_INIT;						\
5958	SD_INIT_NAME(sd, type);						\
5959	sd->private = &tl->data;					\
5960	return sd;							\
5961}
5962
5963SD_INIT_FUNC(CPU)
5964#ifdef CONFIG_SCHED_SMT
5965 SD_INIT_FUNC(SIBLING)
5966#endif
5967#ifdef CONFIG_SCHED_MC
5968 SD_INIT_FUNC(MC)
5969#endif
5970#ifdef CONFIG_SCHED_BOOK
5971 SD_INIT_FUNC(BOOK)
5972#endif
5973
5974static int default_relax_domain_level = -1;
5975int sched_domain_level_max;
5976
5977static int __init setup_relax_domain_level(char *str)
5978{
5979	if (kstrtoint(str, 0, &default_relax_domain_level))
5980		pr_warn("Unable to set relax_domain_level\n");
5981
5982	return 1;
5983}
5984__setup("relax_domain_level=", setup_relax_domain_level);
5985
5986static void set_domain_attribute(struct sched_domain *sd,
5987				 struct sched_domain_attr *attr)
5988{
5989	int request;
5990
5991	if (!attr || attr->relax_domain_level < 0) {
5992		if (default_relax_domain_level < 0)
5993			return;
5994		else
5995			request = default_relax_domain_level;
5996	} else
5997		request = attr->relax_domain_level;
5998	if (request < sd->level) {
5999		/* turn off idle balance on this domain */
6000		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6001	} else {
6002		/* turn on idle balance on this domain */
6003		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6004	}
6005}
6006
6007static void __sdt_free(const struct cpumask *cpu_map);
6008static int __sdt_alloc(const struct cpumask *cpu_map);
6009
6010static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6011				 const struct cpumask *cpu_map)
6012{
6013	switch (what) {
6014	case sa_rootdomain:
6015		if (!atomic_read(&d->rd->refcount))
6016			free_rootdomain(&d->rd->rcu); /* fall through */
6017	case sa_sd:
6018		free_percpu(d->sd); /* fall through */
6019	case sa_sd_storage:
6020		__sdt_free(cpu_map); /* fall through */
6021	case sa_none:
6022		break;
6023	}
6024}
6025
6026static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6027						   const struct cpumask *cpu_map)
6028{
6029	memset(d, 0, sizeof(*d));
6030
6031	if (__sdt_alloc(cpu_map))
6032		return sa_sd_storage;
6033	d->sd = alloc_percpu(struct sched_domain *);
6034	if (!d->sd)
6035		return sa_sd_storage;
6036	d->rd = alloc_rootdomain();
6037	if (!d->rd)
6038		return sa_sd;
6039	return sa_rootdomain;
6040}
6041
6042/*
6043 * NULL the sd_data elements we've used to build the sched_domain and
6044 * sched_group structure so that the subsequent __free_domain_allocs()
6045 * will not free the data we're using.
6046 */
6047static void claim_allocations(int cpu, struct sched_domain *sd)
6048{
6049	struct sd_data *sdd = sd->private;
6050
6051	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6052	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6053
6054	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6055		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6056
6057	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6058		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6059}
6060
6061#ifdef CONFIG_SCHED_SMT
6062static const struct cpumask *cpu_smt_mask(int cpu)
6063{
6064	return topology_thread_cpumask(cpu);
6065}
6066#endif
6067
6068/*
6069 * Topology list, bottom-up.
6070 */
6071static struct sched_domain_topology_level default_topology[] = {
6072#ifdef CONFIG_SCHED_SMT
6073	{ sd_init_SIBLING, cpu_smt_mask, },
6074#endif
6075#ifdef CONFIG_SCHED_MC
6076	{ sd_init_MC, cpu_coregroup_mask, },
6077#endif
6078#ifdef CONFIG_SCHED_BOOK
6079	{ sd_init_BOOK, cpu_book_mask, },
6080#endif
6081	{ sd_init_CPU, cpu_cpu_mask, },
6082	{ NULL, },
6083};
6084
6085static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6086
6087#ifdef CONFIG_NUMA
6088
6089static int sched_domains_numa_levels;
6090static int *sched_domains_numa_distance;
6091static struct cpumask ***sched_domains_numa_masks;
6092static int sched_domains_curr_level;
6093
6094static inline int sd_local_flags(int level)
6095{
6096	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6097		return 0;
6098
6099	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6100}
6101
6102static struct sched_domain *
6103sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6104{
6105	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6106	int level = tl->numa_level;
6107	int sd_weight = cpumask_weight(
6108			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6109
6110	*sd = (struct sched_domain){
6111		.min_interval		= sd_weight,
6112		.max_interval		= 2*sd_weight,
6113		.busy_factor		= 32,
6114		.imbalance_pct		= 125,
6115		.cache_nice_tries	= 2,
6116		.busy_idx		= 3,
6117		.idle_idx		= 2,
6118		.newidle_idx		= 0,
6119		.wake_idx		= 0,
6120		.forkexec_idx		= 0,
6121
6122		.flags			= 1*SD_LOAD_BALANCE
6123					| 1*SD_BALANCE_NEWIDLE
6124					| 0*SD_BALANCE_EXEC
6125					| 0*SD_BALANCE_FORK
6126					| 0*SD_BALANCE_WAKE
6127					| 0*SD_WAKE_AFFINE
6128					| 0*SD_SHARE_CPUPOWER
6129					| 0*SD_SHARE_PKG_RESOURCES
6130					| 1*SD_SERIALIZE
6131					| 0*SD_PREFER_SIBLING
6132					| sd_local_flags(level)
6133					,
6134		.last_balance		= jiffies,
6135		.balance_interval	= sd_weight,
6136	};
6137	SD_INIT_NAME(sd, NUMA);
6138	sd->private = &tl->data;
6139
6140	/*
6141	 * Ugly hack to pass state to sd_numa_mask()...
6142	 */
6143	sched_domains_curr_level = tl->numa_level;
6144
6145	return sd;
6146}
6147
6148static const struct cpumask *sd_numa_mask(int cpu)
6149{
6150	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6151}
6152
6153static void sched_numa_warn(const char *str)
6154{
6155	static int done = false;
6156	int i,j;
6157
6158	if (done)
6159		return;
6160
6161	done = true;
6162
6163	printk(KERN_WARNING "ERROR: %s\n\n", str);
6164
6165	for (i = 0; i < nr_node_ids; i++) {
6166		printk(KERN_WARNING "  ");
6167		for (j = 0; j < nr_node_ids; j++)
6168			printk(KERN_CONT "%02d ", node_distance(i,j));
6169		printk(KERN_CONT "\n");
6170	}
6171	printk(KERN_WARNING "\n");
6172}
6173
6174static bool find_numa_distance(int distance)
6175{
6176	int i;
6177
6178	if (distance == node_distance(0, 0))
6179		return true;
6180
6181	for (i = 0; i < sched_domains_numa_levels; i++) {
6182		if (sched_domains_numa_distance[i] == distance)
6183			return true;
6184	}
6185
6186	return false;
6187}
6188
6189static void sched_init_numa(void)
6190{
6191	int next_distance, curr_distance = node_distance(0, 0);
6192	struct sched_domain_topology_level *tl;
6193	int level = 0;
6194	int i, j, k;
6195
6196	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6197	if (!sched_domains_numa_distance)
6198		return;
6199
6200	/*
6201	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6202	 * unique distances in the node_distance() table.
6203	 *
6204	 * Assumes node_distance(0,j) includes all distances in
6205	 * node_distance(i,j) in order to avoid cubic time.
6206	 */
6207	next_distance = curr_distance;
6208	for (i = 0; i < nr_node_ids; i++) {
6209		for (j = 0; j < nr_node_ids; j++) {
6210			for (k = 0; k < nr_node_ids; k++) {
6211				int distance = node_distance(i, k);
6212
6213				if (distance > curr_distance &&
6214				    (distance < next_distance ||
6215				     next_distance == curr_distance))
6216					next_distance = distance;
6217
6218				/*
6219				 * While not a strong assumption it would be nice to know
6220				 * about cases where if node A is connected to B, B is not
6221				 * equally connected to A.
6222				 */
6223				if (sched_debug() && node_distance(k, i) != distance)
6224					sched_numa_warn("Node-distance not symmetric");
6225
6226				if (sched_debug() && i && !find_numa_distance(distance))
6227					sched_numa_warn("Node-0 not representative");
6228			}
6229			if (next_distance != curr_distance) {
6230				sched_domains_numa_distance[level++] = next_distance;
6231				sched_domains_numa_levels = level;
6232				curr_distance = next_distance;
6233			} else break;
6234		}
6235
6236		/*
6237		 * In case of sched_debug() we verify the above assumption.
6238		 */
6239		if (!sched_debug())
6240			break;
6241	}
6242	/*
6243	 * 'level' contains the number of unique distances, excluding the
6244	 * identity distance node_distance(i,i).
6245	 *
6246	 * The sched_domains_nume_distance[] array includes the actual distance
6247	 * numbers.
6248	 */
6249
6250	/*
6251	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6252	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6253	 * the array will contain less then 'level' members. This could be
6254	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6255	 * in other functions.
6256	 *
6257	 * We reset it to 'level' at the end of this function.
6258	 */
6259	sched_domains_numa_levels = 0;
6260
6261	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6262	if (!sched_domains_numa_masks)
6263		return;
6264
6265	/*
6266	 * Now for each level, construct a mask per node which contains all
6267	 * cpus of nodes that are that many hops away from us.
6268	 */
6269	for (i = 0; i < level; i++) {
6270		sched_domains_numa_masks[i] =
6271			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6272		if (!sched_domains_numa_masks[i])
6273			return;
6274
6275		for (j = 0; j < nr_node_ids; j++) {
6276			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6277			if (!mask)
6278				return;
6279
6280			sched_domains_numa_masks[i][j] = mask;
6281
6282			for (k = 0; k < nr_node_ids; k++) {
6283				if (node_distance(j, k) > sched_domains_numa_distance[i])
6284					continue;
6285
6286				cpumask_or(mask, mask, cpumask_of_node(k));
6287			}
6288		}
6289	}
6290
6291	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6292			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6293	if (!tl)
6294		return;
6295
6296	/*
6297	 * Copy the default topology bits..
6298	 */
6299	for (i = 0; default_topology[i].init; i++)
6300		tl[i] = default_topology[i];
6301
6302	/*
6303	 * .. and append 'j' levels of NUMA goodness.
6304	 */
6305	for (j = 0; j < level; i++, j++) {
6306		tl[i] = (struct sched_domain_topology_level){
6307			.init = sd_numa_init,
6308			.mask = sd_numa_mask,
6309			.flags = SDTL_OVERLAP,
6310			.numa_level = j,
6311		};
6312	}
6313
6314	sched_domain_topology = tl;
6315
6316	sched_domains_numa_levels = level;
6317}
6318
6319static void sched_domains_numa_masks_set(int cpu)
6320{
6321	int i, j;
6322	int node = cpu_to_node(cpu);
6323
6324	for (i = 0; i < sched_domains_numa_levels; i++) {
6325		for (j = 0; j < nr_node_ids; j++) {
6326			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6327				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6328		}
6329	}
6330}
6331
6332static void sched_domains_numa_masks_clear(int cpu)
6333{
6334	int i, j;
6335	for (i = 0; i < sched_domains_numa_levels; i++) {
6336		for (j = 0; j < nr_node_ids; j++)
6337			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6338	}
6339}
6340
6341/*
6342 * Update sched_domains_numa_masks[level][node] array when new cpus
6343 * are onlined.
6344 */
6345static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6346					   unsigned long action,
6347					   void *hcpu)
6348{
6349	int cpu = (long)hcpu;
6350
6351	switch (action & ~CPU_TASKS_FROZEN) {
6352	case CPU_ONLINE:
6353		sched_domains_numa_masks_set(cpu);
6354		break;
6355
6356	case CPU_DEAD:
6357		sched_domains_numa_masks_clear(cpu);
6358		break;
6359
6360	default:
6361		return NOTIFY_DONE;
6362	}
6363
6364	return NOTIFY_OK;
6365}
6366#else
6367static inline void sched_init_numa(void)
6368{
6369}
6370
6371static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6372					   unsigned long action,
6373					   void *hcpu)
6374{
6375	return 0;
6376}
6377#endif /* CONFIG_NUMA */
6378
6379static int __sdt_alloc(const struct cpumask *cpu_map)
6380{
6381	struct sched_domain_topology_level *tl;
6382	int j;
6383
6384	for (tl = sched_domain_topology; tl->init; tl++) {
6385		struct sd_data *sdd = &tl->data;
6386
6387		sdd->sd = alloc_percpu(struct sched_domain *);
6388		if (!sdd->sd)
6389			return -ENOMEM;
6390
6391		sdd->sg = alloc_percpu(struct sched_group *);
6392		if (!sdd->sg)
6393			return -ENOMEM;
6394
6395		sdd->sgp = alloc_percpu(struct sched_group_power *);
6396		if (!sdd->sgp)
6397			return -ENOMEM;
6398
6399		for_each_cpu(j, cpu_map) {
6400			struct sched_domain *sd;
6401			struct sched_group *sg;
6402			struct sched_group_power *sgp;
6403
6404		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6405					GFP_KERNEL, cpu_to_node(j));
6406			if (!sd)
6407				return -ENOMEM;
6408
6409			*per_cpu_ptr(sdd->sd, j) = sd;
6410
6411			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6412					GFP_KERNEL, cpu_to_node(j));
6413			if (!sg)
6414				return -ENOMEM;
6415
6416			sg->next = sg;
6417
6418			*per_cpu_ptr(sdd->sg, j) = sg;
6419
6420			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6421					GFP_KERNEL, cpu_to_node(j));
6422			if (!sgp)
6423				return -ENOMEM;
6424
6425			*per_cpu_ptr(sdd->sgp, j) = sgp;
6426		}
6427	}
6428
6429	return 0;
6430}
6431
6432static void __sdt_free(const struct cpumask *cpu_map)
6433{
6434	struct sched_domain_topology_level *tl;
6435	int j;
6436
6437	for (tl = sched_domain_topology; tl->init; tl++) {
6438		struct sd_data *sdd = &tl->data;
6439
6440		for_each_cpu(j, cpu_map) {
6441			struct sched_domain *sd;
6442
6443			if (sdd->sd) {
6444				sd = *per_cpu_ptr(sdd->sd, j);
6445				if (sd && (sd->flags & SD_OVERLAP))
6446					free_sched_groups(sd->groups, 0);
6447				kfree(*per_cpu_ptr(sdd->sd, j));
6448			}
6449
6450			if (sdd->sg)
6451				kfree(*per_cpu_ptr(sdd->sg, j));
6452			if (sdd->sgp)
6453				kfree(*per_cpu_ptr(sdd->sgp, j));
6454		}
6455		free_percpu(sdd->sd);
6456		sdd->sd = NULL;
6457		free_percpu(sdd->sg);
6458		sdd->sg = NULL;
6459		free_percpu(sdd->sgp);
6460		sdd->sgp = NULL;
6461	}
6462}
6463
6464struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6465		struct s_data *d, const struct cpumask *cpu_map,
6466		struct sched_domain_attr *attr, struct sched_domain *child,
6467		int cpu)
6468{
6469	struct sched_domain *sd = tl->init(tl, cpu);
6470	if (!sd)
6471		return child;
6472
6473	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6474	if (child) {
6475		sd->level = child->level + 1;
6476		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6477		child->parent = sd;
6478	}
6479	sd->child = child;
6480	set_domain_attribute(sd, attr);
6481
6482	return sd;
6483}
6484
6485/*
6486 * Build sched domains for a given set of cpus and attach the sched domains
6487 * to the individual cpus
6488 */
6489static int build_sched_domains(const struct cpumask *cpu_map,
6490			       struct sched_domain_attr *attr)
6491{
6492	enum s_alloc alloc_state = sa_none;
6493	struct sched_domain *sd;
6494	struct s_data d;
6495	int i, ret = -ENOMEM;
6496
6497	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6498	if (alloc_state != sa_rootdomain)
6499		goto error;
6500
6501	/* Set up domains for cpus specified by the cpu_map. */
6502	for_each_cpu(i, cpu_map) {
6503		struct sched_domain_topology_level *tl;
6504
6505		sd = NULL;
6506		for (tl = sched_domain_topology; tl->init; tl++) {
6507			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6508			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6509				sd->flags |= SD_OVERLAP;
6510			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6511				break;
6512		}
6513
6514		while (sd->child)
6515			sd = sd->child;
6516
6517		*per_cpu_ptr(d.sd, i) = sd;
6518	}
6519
6520	/* Build the groups for the domains */
6521	for_each_cpu(i, cpu_map) {
6522		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6523			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6524			if (sd->flags & SD_OVERLAP) {
6525				if (build_overlap_sched_groups(sd, i))
6526					goto error;
6527			} else {
6528				if (build_sched_groups(sd, i))
6529					goto error;
6530			}
6531		}
6532	}
6533
6534	/* Calculate CPU power for physical packages and nodes */
6535	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6536		if (!cpumask_test_cpu(i, cpu_map))
6537			continue;
6538
6539		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6540			claim_allocations(i, sd);
6541			init_sched_groups_power(i, sd);
6542		}
6543	}
6544
6545	/* Attach the domains */
6546	rcu_read_lock();
6547	for_each_cpu(i, cpu_map) {
6548		sd = *per_cpu_ptr(d.sd, i);
6549		cpu_attach_domain(sd, d.rd, i);
6550	}
6551	rcu_read_unlock();
6552
6553	ret = 0;
6554error:
6555	__free_domain_allocs(&d, alloc_state, cpu_map);
6556	return ret;
6557}
6558
6559static cpumask_var_t *doms_cur;	/* current sched domains */
6560static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6561static struct sched_domain_attr *dattr_cur;
6562				/* attribues of custom domains in 'doms_cur' */
6563
6564/*
6565 * Special case: If a kmalloc of a doms_cur partition (array of
6566 * cpumask) fails, then fallback to a single sched domain,
6567 * as determined by the single cpumask fallback_doms.
6568 */
6569static cpumask_var_t fallback_doms;
6570
6571/*
6572 * arch_update_cpu_topology lets virtualized architectures update the
6573 * cpu core maps. It is supposed to return 1 if the topology changed
6574 * or 0 if it stayed the same.
6575 */
6576int __attribute__((weak)) arch_update_cpu_topology(void)
6577{
6578	return 0;
6579}
6580
6581cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6582{
6583	int i;
6584	cpumask_var_t *doms;
6585
6586	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6587	if (!doms)
6588		return NULL;
6589	for (i = 0; i < ndoms; i++) {
6590		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6591			free_sched_domains(doms, i);
6592			return NULL;
6593		}
6594	}
6595	return doms;
6596}
6597
6598void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6599{
6600	unsigned int i;
6601	for (i = 0; i < ndoms; i++)
6602		free_cpumask_var(doms[i]);
6603	kfree(doms);
6604}
6605
6606/*
6607 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6608 * For now this just excludes isolated cpus, but could be used to
6609 * exclude other special cases in the future.
6610 */
6611static int init_sched_domains(const struct cpumask *cpu_map)
6612{
6613	int err;
6614
6615	arch_update_cpu_topology();
6616	ndoms_cur = 1;
6617	doms_cur = alloc_sched_domains(ndoms_cur);
6618	if (!doms_cur)
6619		doms_cur = &fallback_doms;
6620	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6621	err = build_sched_domains(doms_cur[0], NULL);
6622	register_sched_domain_sysctl();
6623
6624	return err;
6625}
6626
6627/*
6628 * Detach sched domains from a group of cpus specified in cpu_map
6629 * These cpus will now be attached to the NULL domain
6630 */
6631static void detach_destroy_domains(const struct cpumask *cpu_map)
6632{
6633	int i;
6634
6635	rcu_read_lock();
6636	for_each_cpu(i, cpu_map)
6637		cpu_attach_domain(NULL, &def_root_domain, i);
6638	rcu_read_unlock();
6639}
6640
6641/* handle null as "default" */
6642static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6643			struct sched_domain_attr *new, int idx_new)
6644{
6645	struct sched_domain_attr tmp;
6646
6647	/* fast path */
6648	if (!new && !cur)
6649		return 1;
6650
6651	tmp = SD_ATTR_INIT;
6652	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6653			new ? (new + idx_new) : &tmp,
6654			sizeof(struct sched_domain_attr));
6655}
6656
6657/*
6658 * Partition sched domains as specified by the 'ndoms_new'
6659 * cpumasks in the array doms_new[] of cpumasks. This compares
6660 * doms_new[] to the current sched domain partitioning, doms_cur[].
6661 * It destroys each deleted domain and builds each new domain.
6662 *
6663 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6664 * The masks don't intersect (don't overlap.) We should setup one
6665 * sched domain for each mask. CPUs not in any of the cpumasks will
6666 * not be load balanced. If the same cpumask appears both in the
6667 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6668 * it as it is.
6669 *
6670 * The passed in 'doms_new' should be allocated using
6671 * alloc_sched_domains.  This routine takes ownership of it and will
6672 * free_sched_domains it when done with it. If the caller failed the
6673 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6674 * and partition_sched_domains() will fallback to the single partition
6675 * 'fallback_doms', it also forces the domains to be rebuilt.
6676 *
6677 * If doms_new == NULL it will be replaced with cpu_online_mask.
6678 * ndoms_new == 0 is a special case for destroying existing domains,
6679 * and it will not create the default domain.
6680 *
6681 * Call with hotplug lock held
6682 */
6683void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6684			     struct sched_domain_attr *dattr_new)
6685{
6686	int i, j, n;
6687	int new_topology;
6688
6689	mutex_lock(&sched_domains_mutex);
6690
6691	/* always unregister in case we don't destroy any domains */
6692	unregister_sched_domain_sysctl();
6693
6694	/* Let architecture update cpu core mappings. */
6695	new_topology = arch_update_cpu_topology();
6696
6697	n = doms_new ? ndoms_new : 0;
6698
6699	/* Destroy deleted domains */
6700	for (i = 0; i < ndoms_cur; i++) {
6701		for (j = 0; j < n && !new_topology; j++) {
6702			if (cpumask_equal(doms_cur[i], doms_new[j])
6703			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6704				goto match1;
6705		}
6706		/* no match - a current sched domain not in new doms_new[] */
6707		detach_destroy_domains(doms_cur[i]);
6708match1:
6709		;
6710	}
6711
6712	if (doms_new == NULL) {
6713		ndoms_cur = 0;
6714		doms_new = &fallback_doms;
6715		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6716		WARN_ON_ONCE(dattr_new);
6717	}
6718
6719	/* Build new domains */
6720	for (i = 0; i < ndoms_new; i++) {
6721		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6722			if (cpumask_equal(doms_new[i], doms_cur[j])
6723			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6724				goto match2;
6725		}
6726		/* no match - add a new doms_new */
6727		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6728match2:
6729		;
6730	}
6731
6732	/* Remember the new sched domains */
6733	if (doms_cur != &fallback_doms)
6734		free_sched_domains(doms_cur, ndoms_cur);
6735	kfree(dattr_cur);	/* kfree(NULL) is safe */
6736	doms_cur = doms_new;
6737	dattr_cur = dattr_new;
6738	ndoms_cur = ndoms_new;
6739
6740	register_sched_domain_sysctl();
6741
6742	mutex_unlock(&sched_domains_mutex);
6743}
6744
6745static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6746
6747/*
6748 * Update cpusets according to cpu_active mask.  If cpusets are
6749 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6750 * around partition_sched_domains().
6751 *
6752 * If we come here as part of a suspend/resume, don't touch cpusets because we
6753 * want to restore it back to its original state upon resume anyway.
6754 */
6755static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6756			     void *hcpu)
6757{
6758	switch (action) {
6759	case CPU_ONLINE_FROZEN:
6760	case CPU_DOWN_FAILED_FROZEN:
6761
6762		/*
6763		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6764		 * resume sequence. As long as this is not the last online
6765		 * operation in the resume sequence, just build a single sched
6766		 * domain, ignoring cpusets.
6767		 */
6768		num_cpus_frozen--;
6769		if (likely(num_cpus_frozen)) {
6770			partition_sched_domains(1, NULL, NULL);
6771			break;
6772		}
6773
6774		/*
6775		 * This is the last CPU online operation. So fall through and
6776		 * restore the original sched domains by considering the
6777		 * cpuset configurations.
6778		 */
6779
6780	case CPU_ONLINE:
6781	case CPU_DOWN_FAILED:
6782		cpuset_update_active_cpus(true);
6783		break;
6784	default:
6785		return NOTIFY_DONE;
6786	}
6787	return NOTIFY_OK;
6788}
6789
6790static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6791			       void *hcpu)
6792{
6793	switch (action) {
6794	case CPU_DOWN_PREPARE:
6795		cpuset_update_active_cpus(false);
6796		break;
6797	case CPU_DOWN_PREPARE_FROZEN:
6798		num_cpus_frozen++;
6799		partition_sched_domains(1, NULL, NULL);
6800		break;
6801	default:
6802		return NOTIFY_DONE;
6803	}
6804	return NOTIFY_OK;
6805}
6806
6807void __init sched_init_smp(void)
6808{
6809	cpumask_var_t non_isolated_cpus;
6810
6811	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6812	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6813
6814	sched_init_numa();
6815
6816	get_online_cpus();
6817	mutex_lock(&sched_domains_mutex);
6818	init_sched_domains(cpu_active_mask);
6819	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6820	if (cpumask_empty(non_isolated_cpus))
6821		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6822	mutex_unlock(&sched_domains_mutex);
6823	put_online_cpus();
6824
6825	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6826	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6827	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6828
6829	/* RT runtime code needs to handle some hotplug events */
6830	hotcpu_notifier(update_runtime, 0);
6831
6832	init_hrtick();
6833
6834	/* Move init over to a non-isolated CPU */
6835	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6836		BUG();
6837	sched_init_granularity();
6838	free_cpumask_var(non_isolated_cpus);
6839
6840	init_sched_rt_class();
6841}
6842#else
6843void __init sched_init_smp(void)
6844{
6845	sched_init_granularity();
6846}
6847#endif /* CONFIG_SMP */
6848
6849const_debug unsigned int sysctl_timer_migration = 1;
6850
6851int in_sched_functions(unsigned long addr)
6852{
6853	return in_lock_functions(addr) ||
6854		(addr >= (unsigned long)__sched_text_start
6855		&& addr < (unsigned long)__sched_text_end);
6856}
6857
6858#ifdef CONFIG_CGROUP_SCHED
6859struct task_group root_task_group;
6860LIST_HEAD(task_groups);
6861#endif
6862
6863DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6864
6865void __init sched_init(void)
6866{
6867	int i, j;
6868	unsigned long alloc_size = 0, ptr;
6869
6870#ifdef CONFIG_FAIR_GROUP_SCHED
6871	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6872#endif
6873#ifdef CONFIG_RT_GROUP_SCHED
6874	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6875#endif
6876#ifdef CONFIG_CPUMASK_OFFSTACK
6877	alloc_size += num_possible_cpus() * cpumask_size();
6878#endif
6879	if (alloc_size) {
6880		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6881
6882#ifdef CONFIG_FAIR_GROUP_SCHED
6883		root_task_group.se = (struct sched_entity **)ptr;
6884		ptr += nr_cpu_ids * sizeof(void **);
6885
6886		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6887		ptr += nr_cpu_ids * sizeof(void **);
6888
6889#endif /* CONFIG_FAIR_GROUP_SCHED */
6890#ifdef CONFIG_RT_GROUP_SCHED
6891		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6892		ptr += nr_cpu_ids * sizeof(void **);
6893
6894		root_task_group.rt_rq = (struct rt_rq **)ptr;
6895		ptr += nr_cpu_ids * sizeof(void **);
6896
6897#endif /* CONFIG_RT_GROUP_SCHED */
6898#ifdef CONFIG_CPUMASK_OFFSTACK
6899		for_each_possible_cpu(i) {
6900			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6901			ptr += cpumask_size();
6902		}
6903#endif /* CONFIG_CPUMASK_OFFSTACK */
6904	}
6905
6906#ifdef CONFIG_SMP
6907	init_defrootdomain();
6908#endif
6909
6910	init_rt_bandwidth(&def_rt_bandwidth,
6911			global_rt_period(), global_rt_runtime());
6912
6913#ifdef CONFIG_RT_GROUP_SCHED
6914	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6915			global_rt_period(), global_rt_runtime());
6916#endif /* CONFIG_RT_GROUP_SCHED */
6917
6918#ifdef CONFIG_CGROUP_SCHED
6919	list_add(&root_task_group.list, &task_groups);
6920	INIT_LIST_HEAD(&root_task_group.children);
6921	INIT_LIST_HEAD(&root_task_group.siblings);
6922	autogroup_init(&init_task);
6923
6924#endif /* CONFIG_CGROUP_SCHED */
6925
6926#ifdef CONFIG_CGROUP_CPUACCT
6927	root_cpuacct.cpustat = &kernel_cpustat;
6928	root_cpuacct.cpuusage = alloc_percpu(u64);
6929	/* Too early, not expected to fail */
6930	BUG_ON(!root_cpuacct.cpuusage);
6931#endif
6932	for_each_possible_cpu(i) {
6933		struct rq *rq;
6934
6935		rq = cpu_rq(i);
6936		raw_spin_lock_init(&rq->lock);
6937		rq->nr_running = 0;
6938		rq->calc_load_active = 0;
6939		rq->calc_load_update = jiffies + LOAD_FREQ;
6940		init_cfs_rq(&rq->cfs);
6941		init_rt_rq(&rq->rt, rq);
6942#ifdef CONFIG_FAIR_GROUP_SCHED
6943		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6944		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6945		/*
6946		 * How much cpu bandwidth does root_task_group get?
6947		 *
6948		 * In case of task-groups formed thr' the cgroup filesystem, it
6949		 * gets 100% of the cpu resources in the system. This overall
6950		 * system cpu resource is divided among the tasks of
6951		 * root_task_group and its child task-groups in a fair manner,
6952		 * based on each entity's (task or task-group's) weight
6953		 * (se->load.weight).
6954		 *
6955		 * In other words, if root_task_group has 10 tasks of weight
6956		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6957		 * then A0's share of the cpu resource is:
6958		 *
6959		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6960		 *
6961		 * We achieve this by letting root_task_group's tasks sit
6962		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6963		 */
6964		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6965		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6966#endif /* CONFIG_FAIR_GROUP_SCHED */
6967
6968		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6969#ifdef CONFIG_RT_GROUP_SCHED
6970		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6971		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6972#endif
6973
6974		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6975			rq->cpu_load[j] = 0;
6976
6977		rq->last_load_update_tick = jiffies;
6978
6979#ifdef CONFIG_SMP
6980		rq->sd = NULL;
6981		rq->rd = NULL;
6982		rq->cpu_power = SCHED_POWER_SCALE;
6983		rq->post_schedule = 0;
6984		rq->active_balance = 0;
6985		rq->next_balance = jiffies;
6986		rq->push_cpu = 0;
6987		rq->cpu = i;
6988		rq->online = 0;
6989		rq->idle_stamp = 0;
6990		rq->avg_idle = 2*sysctl_sched_migration_cost;
6991
6992		INIT_LIST_HEAD(&rq->cfs_tasks);
6993
6994		rq_attach_root(rq, &def_root_domain);
6995#ifdef CONFIG_NO_HZ
6996		rq->nohz_flags = 0;
6997#endif
6998#endif
6999		init_rq_hrtick(rq);
7000		atomic_set(&rq->nr_iowait, 0);
7001	}
7002
7003	set_load_weight(&init_task);
7004
7005#ifdef CONFIG_PREEMPT_NOTIFIERS
7006	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7007#endif
7008
7009#ifdef CONFIG_RT_MUTEXES
7010	plist_head_init(&init_task.pi_waiters);
7011#endif
7012
7013	/*
7014	 * The boot idle thread does lazy MMU switching as well:
7015	 */
7016	atomic_inc(&init_mm.mm_count);
7017	enter_lazy_tlb(&init_mm, current);
7018
7019	/*
7020	 * Make us the idle thread. Technically, schedule() should not be
7021	 * called from this thread, however somewhere below it might be,
7022	 * but because we are the idle thread, we just pick up running again
7023	 * when this runqueue becomes "idle".
7024	 */
7025	init_idle(current, smp_processor_id());
7026
7027	calc_load_update = jiffies + LOAD_FREQ;
7028
7029	/*
7030	 * During early bootup we pretend to be a normal task:
7031	 */
7032	current->sched_class = &fair_sched_class;
7033
7034#ifdef CONFIG_SMP
7035	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7036	/* May be allocated at isolcpus cmdline parse time */
7037	if (cpu_isolated_map == NULL)
7038		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7039	idle_thread_set_boot_cpu();
7040#endif
7041	init_sched_fair_class();
7042
7043	scheduler_running = 1;
7044}
7045
7046#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7047static inline int preempt_count_equals(int preempt_offset)
7048{
7049	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7050
7051	return (nested == preempt_offset);
7052}
7053
7054void __might_sleep(const char *file, int line, int preempt_offset)
7055{
7056	static unsigned long prev_jiffy;	/* ratelimiting */
7057
7058	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7059	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7060	    system_state != SYSTEM_RUNNING || oops_in_progress)
7061		return;
7062	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7063		return;
7064	prev_jiffy = jiffies;
7065
7066	printk(KERN_ERR
7067		"BUG: sleeping function called from invalid context at %s:%d\n",
7068			file, line);
7069	printk(KERN_ERR
7070		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7071			in_atomic(), irqs_disabled(),
7072			current->pid, current->comm);
7073
7074	debug_show_held_locks(current);
7075	if (irqs_disabled())
7076		print_irqtrace_events(current);
7077	dump_stack();
7078}
7079EXPORT_SYMBOL(__might_sleep);
7080#endif
7081
7082#ifdef CONFIG_MAGIC_SYSRQ
7083static void normalize_task(struct rq *rq, struct task_struct *p)
7084{
7085	const struct sched_class *prev_class = p->sched_class;
7086	int old_prio = p->prio;
7087	int on_rq;
7088
7089	on_rq = p->on_rq;
7090	if (on_rq)
7091		dequeue_task(rq, p, 0);
7092	__setscheduler(rq, p, SCHED_NORMAL, 0);
7093	if (on_rq) {
7094		enqueue_task(rq, p, 0);
7095		resched_task(rq->curr);
7096	}
7097
7098	check_class_changed(rq, p, prev_class, old_prio);
7099}
7100
7101void normalize_rt_tasks(void)
7102{
7103	struct task_struct *g, *p;
7104	unsigned long flags;
7105	struct rq *rq;
7106
7107	read_lock_irqsave(&tasklist_lock, flags);
7108	do_each_thread(g, p) {
7109		/*
7110		 * Only normalize user tasks:
7111		 */
7112		if (!p->mm)
7113			continue;
7114
7115		p->se.exec_start		= 0;
7116#ifdef CONFIG_SCHEDSTATS
7117		p->se.statistics.wait_start	= 0;
7118		p->se.statistics.sleep_start	= 0;
7119		p->se.statistics.block_start	= 0;
7120#endif
7121
7122		if (!rt_task(p)) {
7123			/*
7124			 * Renice negative nice level userspace
7125			 * tasks back to 0:
7126			 */
7127			if (TASK_NICE(p) < 0 && p->mm)
7128				set_user_nice(p, 0);
7129			continue;
7130		}
7131
7132		raw_spin_lock(&p->pi_lock);
7133		rq = __task_rq_lock(p);
7134
7135		normalize_task(rq, p);
7136
7137		__task_rq_unlock(rq);
7138		raw_spin_unlock(&p->pi_lock);
7139	} while_each_thread(g, p);
7140
7141	read_unlock_irqrestore(&tasklist_lock, flags);
7142}
7143
7144#endif /* CONFIG_MAGIC_SYSRQ */
7145
7146#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7147/*
7148 * These functions are only useful for the IA64 MCA handling, or kdb.
7149 *
7150 * They can only be called when the whole system has been
7151 * stopped - every CPU needs to be quiescent, and no scheduling
7152 * activity can take place. Using them for anything else would
7153 * be a serious bug, and as a result, they aren't even visible
7154 * under any other configuration.
7155 */
7156
7157/**
7158 * curr_task - return the current task for a given cpu.
7159 * @cpu: the processor in question.
7160 *
7161 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7162 */
7163struct task_struct *curr_task(int cpu)
7164{
7165	return cpu_curr(cpu);
7166}
7167
7168#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7169
7170#ifdef CONFIG_IA64
7171/**
7172 * set_curr_task - set the current task for a given cpu.
7173 * @cpu: the processor in question.
7174 * @p: the task pointer to set.
7175 *
7176 * Description: This function must only be used when non-maskable interrupts
7177 * are serviced on a separate stack. It allows the architecture to switch the
7178 * notion of the current task on a cpu in a non-blocking manner. This function
7179 * must be called with all CPU's synchronized, and interrupts disabled, the
7180 * and caller must save the original value of the current task (see
7181 * curr_task() above) and restore that value before reenabling interrupts and
7182 * re-starting the system.
7183 *
7184 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7185 */
7186void set_curr_task(int cpu, struct task_struct *p)
7187{
7188	cpu_curr(cpu) = p;
7189}
7190
7191#endif
7192
7193#ifdef CONFIG_CGROUP_SCHED
7194/* task_group_lock serializes the addition/removal of task groups */
7195static DEFINE_SPINLOCK(task_group_lock);
7196
7197static void free_sched_group(struct task_group *tg)
7198{
7199	free_fair_sched_group(tg);
7200	free_rt_sched_group(tg);
7201	autogroup_free(tg);
7202	kfree(tg);
7203}
7204
7205/* allocate runqueue etc for a new task group */
7206struct task_group *sched_create_group(struct task_group *parent)
7207{
7208	struct task_group *tg;
7209	unsigned long flags;
7210
7211	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7212	if (!tg)
7213		return ERR_PTR(-ENOMEM);
7214
7215	if (!alloc_fair_sched_group(tg, parent))
7216		goto err;
7217
7218	if (!alloc_rt_sched_group(tg, parent))
7219		goto err;
7220
7221	spin_lock_irqsave(&task_group_lock, flags);
7222	list_add_rcu(&tg->list, &task_groups);
7223
7224	WARN_ON(!parent); /* root should already exist */
7225
7226	tg->parent = parent;
7227	INIT_LIST_HEAD(&tg->children);
7228	list_add_rcu(&tg->siblings, &parent->children);
7229	spin_unlock_irqrestore(&task_group_lock, flags);
7230
7231	return tg;
7232
7233err:
7234	free_sched_group(tg);
7235	return ERR_PTR(-ENOMEM);
7236}
7237
7238/* rcu callback to free various structures associated with a task group */
7239static void free_sched_group_rcu(struct rcu_head *rhp)
7240{
7241	/* now it should be safe to free those cfs_rqs */
7242	free_sched_group(container_of(rhp, struct task_group, rcu));
7243}
7244
7245/* Destroy runqueue etc associated with a task group */
7246void sched_destroy_group(struct task_group *tg)
7247{
7248	unsigned long flags;
7249	int i;
7250
7251	/* end participation in shares distribution */
7252	for_each_possible_cpu(i)
7253		unregister_fair_sched_group(tg, i);
7254
7255	spin_lock_irqsave(&task_group_lock, flags);
7256	list_del_rcu(&tg->list);
7257	list_del_rcu(&tg->siblings);
7258	spin_unlock_irqrestore(&task_group_lock, flags);
7259
7260	/* wait for possible concurrent references to cfs_rqs complete */
7261	call_rcu(&tg->rcu, free_sched_group_rcu);
7262}
7263
7264/* change task's runqueue when it moves between groups.
7265 *	The caller of this function should have put the task in its new group
7266 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7267 *	reflect its new group.
7268 */
7269void sched_move_task(struct task_struct *tsk)
7270{
7271	struct task_group *tg;
7272	int on_rq, running;
7273	unsigned long flags;
7274	struct rq *rq;
7275
7276	rq = task_rq_lock(tsk, &flags);
7277
7278	running = task_current(rq, tsk);
7279	on_rq = tsk->on_rq;
7280
7281	if (on_rq)
7282		dequeue_task(rq, tsk, 0);
7283	if (unlikely(running))
7284		tsk->sched_class->put_prev_task(rq, tsk);
7285
7286	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7287				lockdep_is_held(&tsk->sighand->siglock)),
7288			  struct task_group, css);
7289	tg = autogroup_task_group(tsk, tg);
7290	tsk->sched_task_group = tg;
7291
7292#ifdef CONFIG_FAIR_GROUP_SCHED
7293	if (tsk->sched_class->task_move_group)
7294		tsk->sched_class->task_move_group(tsk, on_rq);
7295	else
7296#endif
7297		set_task_rq(tsk, task_cpu(tsk));
7298
7299	if (unlikely(running))
7300		tsk->sched_class->set_curr_task(rq);
7301	if (on_rq)
7302		enqueue_task(rq, tsk, 0);
7303
7304	task_rq_unlock(rq, tsk, &flags);
7305}
7306#endif /* CONFIG_CGROUP_SCHED */
7307
7308#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7309static unsigned long to_ratio(u64 period, u64 runtime)
7310{
7311	if (runtime == RUNTIME_INF)
7312		return 1ULL << 20;
7313
7314	return div64_u64(runtime << 20, period);
7315}
7316#endif
7317
7318#ifdef CONFIG_RT_GROUP_SCHED
7319/*
7320 * Ensure that the real time constraints are schedulable.
7321 */
7322static DEFINE_MUTEX(rt_constraints_mutex);
7323
7324/* Must be called with tasklist_lock held */
7325static inline int tg_has_rt_tasks(struct task_group *tg)
7326{
7327	struct task_struct *g, *p;
7328
7329	do_each_thread(g, p) {
7330		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7331			return 1;
7332	} while_each_thread(g, p);
7333
7334	return 0;
7335}
7336
7337struct rt_schedulable_data {
7338	struct task_group *tg;
7339	u64 rt_period;
7340	u64 rt_runtime;
7341};
7342
7343static int tg_rt_schedulable(struct task_group *tg, void *data)
7344{
7345	struct rt_schedulable_data *d = data;
7346	struct task_group *child;
7347	unsigned long total, sum = 0;
7348	u64 period, runtime;
7349
7350	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7351	runtime = tg->rt_bandwidth.rt_runtime;
7352
7353	if (tg == d->tg) {
7354		period = d->rt_period;
7355		runtime = d->rt_runtime;
7356	}
7357
7358	/*
7359	 * Cannot have more runtime than the period.
7360	 */
7361	if (runtime > period && runtime != RUNTIME_INF)
7362		return -EINVAL;
7363
7364	/*
7365	 * Ensure we don't starve existing RT tasks.
7366	 */
7367	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7368		return -EBUSY;
7369
7370	total = to_ratio(period, runtime);
7371
7372	/*
7373	 * Nobody can have more than the global setting allows.
7374	 */
7375	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7376		return -EINVAL;
7377
7378	/*
7379	 * The sum of our children's runtime should not exceed our own.
7380	 */
7381	list_for_each_entry_rcu(child, &tg->children, siblings) {
7382		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7383		runtime = child->rt_bandwidth.rt_runtime;
7384
7385		if (child == d->tg) {
7386			period = d->rt_period;
7387			runtime = d->rt_runtime;
7388		}
7389
7390		sum += to_ratio(period, runtime);
7391	}
7392
7393	if (sum > total)
7394		return -EINVAL;
7395
7396	return 0;
7397}
7398
7399static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7400{
7401	int ret;
7402
7403	struct rt_schedulable_data data = {
7404		.tg = tg,
7405		.rt_period = period,
7406		.rt_runtime = runtime,
7407	};
7408
7409	rcu_read_lock();
7410	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7411	rcu_read_unlock();
7412
7413	return ret;
7414}
7415
7416static int tg_set_rt_bandwidth(struct task_group *tg,
7417		u64 rt_period, u64 rt_runtime)
7418{
7419	int i, err = 0;
7420
7421	mutex_lock(&rt_constraints_mutex);
7422	read_lock(&tasklist_lock);
7423	err = __rt_schedulable(tg, rt_period, rt_runtime);
7424	if (err)
7425		goto unlock;
7426
7427	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7428	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7429	tg->rt_bandwidth.rt_runtime = rt_runtime;
7430
7431	for_each_possible_cpu(i) {
7432		struct rt_rq *rt_rq = tg->rt_rq[i];
7433
7434		raw_spin_lock(&rt_rq->rt_runtime_lock);
7435		rt_rq->rt_runtime = rt_runtime;
7436		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7437	}
7438	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7439unlock:
7440	read_unlock(&tasklist_lock);
7441	mutex_unlock(&rt_constraints_mutex);
7442
7443	return err;
7444}
7445
7446int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7447{
7448	u64 rt_runtime, rt_period;
7449
7450	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7451	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7452	if (rt_runtime_us < 0)
7453		rt_runtime = RUNTIME_INF;
7454
7455	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7456}
7457
7458long sched_group_rt_runtime(struct task_group *tg)
7459{
7460	u64 rt_runtime_us;
7461
7462	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7463		return -1;
7464
7465	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7466	do_div(rt_runtime_us, NSEC_PER_USEC);
7467	return rt_runtime_us;
7468}
7469
7470int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7471{
7472	u64 rt_runtime, rt_period;
7473
7474	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7475	rt_runtime = tg->rt_bandwidth.rt_runtime;
7476
7477	if (rt_period == 0)
7478		return -EINVAL;
7479
7480	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7481}
7482
7483long sched_group_rt_period(struct task_group *tg)
7484{
7485	u64 rt_period_us;
7486
7487	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7488	do_div(rt_period_us, NSEC_PER_USEC);
7489	return rt_period_us;
7490}
7491
7492static int sched_rt_global_constraints(void)
7493{
7494	u64 runtime, period;
7495	int ret = 0;
7496
7497	if (sysctl_sched_rt_period <= 0)
7498		return -EINVAL;
7499
7500	runtime = global_rt_runtime();
7501	period = global_rt_period();
7502
7503	/*
7504	 * Sanity check on the sysctl variables.
7505	 */
7506	if (runtime > period && runtime != RUNTIME_INF)
7507		return -EINVAL;
7508
7509	mutex_lock(&rt_constraints_mutex);
7510	read_lock(&tasklist_lock);
7511	ret = __rt_schedulable(NULL, 0, 0);
7512	read_unlock(&tasklist_lock);
7513	mutex_unlock(&rt_constraints_mutex);
7514
7515	return ret;
7516}
7517
7518int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7519{
7520	/* Don't accept realtime tasks when there is no way for them to run */
7521	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7522		return 0;
7523
7524	return 1;
7525}
7526
7527#else /* !CONFIG_RT_GROUP_SCHED */
7528static int sched_rt_global_constraints(void)
7529{
7530	unsigned long flags;
7531	int i;
7532
7533	if (sysctl_sched_rt_period <= 0)
7534		return -EINVAL;
7535
7536	/*
7537	 * There's always some RT tasks in the root group
7538	 * -- migration, kstopmachine etc..
7539	 */
7540	if (sysctl_sched_rt_runtime == 0)
7541		return -EBUSY;
7542
7543	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7544	for_each_possible_cpu(i) {
7545		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7546
7547		raw_spin_lock(&rt_rq->rt_runtime_lock);
7548		rt_rq->rt_runtime = global_rt_runtime();
7549		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7550	}
7551	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7552
7553	return 0;
7554}
7555#endif /* CONFIG_RT_GROUP_SCHED */
7556
7557int sched_rt_handler(struct ctl_table *table, int write,
7558		void __user *buffer, size_t *lenp,
7559		loff_t *ppos)
7560{
7561	int ret;
7562	int old_period, old_runtime;
7563	static DEFINE_MUTEX(mutex);
7564
7565	mutex_lock(&mutex);
7566	old_period = sysctl_sched_rt_period;
7567	old_runtime = sysctl_sched_rt_runtime;
7568
7569	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7570
7571	if (!ret && write) {
7572		ret = sched_rt_global_constraints();
7573		if (ret) {
7574			sysctl_sched_rt_period = old_period;
7575			sysctl_sched_rt_runtime = old_runtime;
7576		} else {
7577			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7578			def_rt_bandwidth.rt_period =
7579				ns_to_ktime(global_rt_period());
7580		}
7581	}
7582	mutex_unlock(&mutex);
7583
7584	return ret;
7585}
7586
7587#ifdef CONFIG_CGROUP_SCHED
7588
7589/* return corresponding task_group object of a cgroup */
7590static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7591{
7592	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7593			    struct task_group, css);
7594}
7595
7596static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7597{
7598	struct task_group *tg, *parent;
7599
7600	if (!cgrp->parent) {
7601		/* This is early initialization for the top cgroup */
7602		return &root_task_group.css;
7603	}
7604
7605	parent = cgroup_tg(cgrp->parent);
7606	tg = sched_create_group(parent);
7607	if (IS_ERR(tg))
7608		return ERR_PTR(-ENOMEM);
7609
7610	return &tg->css;
7611}
7612
7613static void cpu_cgroup_css_free(struct cgroup *cgrp)
7614{
7615	struct task_group *tg = cgroup_tg(cgrp);
7616
7617	sched_destroy_group(tg);
7618}
7619
7620static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7621				 struct cgroup_taskset *tset)
7622{
7623	struct task_struct *task;
7624
7625	cgroup_taskset_for_each(task, cgrp, tset) {
7626#ifdef CONFIG_RT_GROUP_SCHED
7627		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7628			return -EINVAL;
7629#else
7630		/* We don't support RT-tasks being in separate groups */
7631		if (task->sched_class != &fair_sched_class)
7632			return -EINVAL;
7633#endif
7634	}
7635	return 0;
7636}
7637
7638static void cpu_cgroup_attach(struct cgroup *cgrp,
7639			      struct cgroup_taskset *tset)
7640{
7641	struct task_struct *task;
7642
7643	cgroup_taskset_for_each(task, cgrp, tset)
7644		sched_move_task(task);
7645}
7646
7647static void
7648cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7649		struct task_struct *task)
7650{
7651	/*
7652	 * cgroup_exit() is called in the copy_process() failure path.
7653	 * Ignore this case since the task hasn't ran yet, this avoids
7654	 * trying to poke a half freed task state from generic code.
7655	 */
7656	if (!(task->flags & PF_EXITING))
7657		return;
7658
7659	sched_move_task(task);
7660}
7661
7662#ifdef CONFIG_FAIR_GROUP_SCHED
7663static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7664				u64 shareval)
7665{
7666	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7667}
7668
7669static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7670{
7671	struct task_group *tg = cgroup_tg(cgrp);
7672
7673	return (u64) scale_load_down(tg->shares);
7674}
7675
7676#ifdef CONFIG_CFS_BANDWIDTH
7677static DEFINE_MUTEX(cfs_constraints_mutex);
7678
7679const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7680const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7681
7682static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7683
7684static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7685{
7686	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7687	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7688
7689	if (tg == &root_task_group)
7690		return -EINVAL;
7691
7692	/*
7693	 * Ensure we have at some amount of bandwidth every period.  This is
7694	 * to prevent reaching a state of large arrears when throttled via
7695	 * entity_tick() resulting in prolonged exit starvation.
7696	 */
7697	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7698		return -EINVAL;
7699
7700	/*
7701	 * Likewise, bound things on the otherside by preventing insane quota
7702	 * periods.  This also allows us to normalize in computing quota
7703	 * feasibility.
7704	 */
7705	if (period > max_cfs_quota_period)
7706		return -EINVAL;
7707
7708	mutex_lock(&cfs_constraints_mutex);
7709	ret = __cfs_schedulable(tg, period, quota);
7710	if (ret)
7711		goto out_unlock;
7712
7713	runtime_enabled = quota != RUNTIME_INF;
7714	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7715	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7716	raw_spin_lock_irq(&cfs_b->lock);
7717	cfs_b->period = ns_to_ktime(period);
7718	cfs_b->quota = quota;
7719
7720	__refill_cfs_bandwidth_runtime(cfs_b);
7721	/* restart the period timer (if active) to handle new period expiry */
7722	if (runtime_enabled && cfs_b->timer_active) {
7723		/* force a reprogram */
7724		cfs_b->timer_active = 0;
7725		__start_cfs_bandwidth(cfs_b);
7726	}
7727	raw_spin_unlock_irq(&cfs_b->lock);
7728
7729	for_each_possible_cpu(i) {
7730		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7731		struct rq *rq = cfs_rq->rq;
7732
7733		raw_spin_lock_irq(&rq->lock);
7734		cfs_rq->runtime_enabled = runtime_enabled;
7735		cfs_rq->runtime_remaining = 0;
7736
7737		if (cfs_rq->throttled)
7738			unthrottle_cfs_rq(cfs_rq);
7739		raw_spin_unlock_irq(&rq->lock);
7740	}
7741out_unlock:
7742	mutex_unlock(&cfs_constraints_mutex);
7743
7744	return ret;
7745}
7746
7747int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7748{
7749	u64 quota, period;
7750
7751	period = ktime_to_ns(tg->cfs_bandwidth.period);
7752	if (cfs_quota_us < 0)
7753		quota = RUNTIME_INF;
7754	else
7755		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7756
7757	return tg_set_cfs_bandwidth(tg, period, quota);
7758}
7759
7760long tg_get_cfs_quota(struct task_group *tg)
7761{
7762	u64 quota_us;
7763
7764	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7765		return -1;
7766
7767	quota_us = tg->cfs_bandwidth.quota;
7768	do_div(quota_us, NSEC_PER_USEC);
7769
7770	return quota_us;
7771}
7772
7773int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7774{
7775	u64 quota, period;
7776
7777	period = (u64)cfs_period_us * NSEC_PER_USEC;
7778	quota = tg->cfs_bandwidth.quota;
7779
7780	return tg_set_cfs_bandwidth(tg, period, quota);
7781}
7782
7783long tg_get_cfs_period(struct task_group *tg)
7784{
7785	u64 cfs_period_us;
7786
7787	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7788	do_div(cfs_period_us, NSEC_PER_USEC);
7789
7790	return cfs_period_us;
7791}
7792
7793static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7794{
7795	return tg_get_cfs_quota(cgroup_tg(cgrp));
7796}
7797
7798static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7799				s64 cfs_quota_us)
7800{
7801	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7802}
7803
7804static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7805{
7806	return tg_get_cfs_period(cgroup_tg(cgrp));
7807}
7808
7809static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7810				u64 cfs_period_us)
7811{
7812	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7813}
7814
7815struct cfs_schedulable_data {
7816	struct task_group *tg;
7817	u64 period, quota;
7818};
7819
7820/*
7821 * normalize group quota/period to be quota/max_period
7822 * note: units are usecs
7823 */
7824static u64 normalize_cfs_quota(struct task_group *tg,
7825			       struct cfs_schedulable_data *d)
7826{
7827	u64 quota, period;
7828
7829	if (tg == d->tg) {
7830		period = d->period;
7831		quota = d->quota;
7832	} else {
7833		period = tg_get_cfs_period(tg);
7834		quota = tg_get_cfs_quota(tg);
7835	}
7836
7837	/* note: these should typically be equivalent */
7838	if (quota == RUNTIME_INF || quota == -1)
7839		return RUNTIME_INF;
7840
7841	return to_ratio(period, quota);
7842}
7843
7844static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7845{
7846	struct cfs_schedulable_data *d = data;
7847	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7848	s64 quota = 0, parent_quota = -1;
7849
7850	if (!tg->parent) {
7851		quota = RUNTIME_INF;
7852	} else {
7853		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7854
7855		quota = normalize_cfs_quota(tg, d);
7856		parent_quota = parent_b->hierarchal_quota;
7857
7858		/*
7859		 * ensure max(child_quota) <= parent_quota, inherit when no
7860		 * limit is set
7861		 */
7862		if (quota == RUNTIME_INF)
7863			quota = parent_quota;
7864		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7865			return -EINVAL;
7866	}
7867	cfs_b->hierarchal_quota = quota;
7868
7869	return 0;
7870}
7871
7872static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7873{
7874	int ret;
7875	struct cfs_schedulable_data data = {
7876		.tg = tg,
7877		.period = period,
7878		.quota = quota,
7879	};
7880
7881	if (quota != RUNTIME_INF) {
7882		do_div(data.period, NSEC_PER_USEC);
7883		do_div(data.quota, NSEC_PER_USEC);
7884	}
7885
7886	rcu_read_lock();
7887	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7888	rcu_read_unlock();
7889
7890	return ret;
7891}
7892
7893static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7894		struct cgroup_map_cb *cb)
7895{
7896	struct task_group *tg = cgroup_tg(cgrp);
7897	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7898
7899	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7900	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7901	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7902
7903	return 0;
7904}
7905#endif /* CONFIG_CFS_BANDWIDTH */
7906#endif /* CONFIG_FAIR_GROUP_SCHED */
7907
7908#ifdef CONFIG_RT_GROUP_SCHED
7909static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7910				s64 val)
7911{
7912	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7913}
7914
7915static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7916{
7917	return sched_group_rt_runtime(cgroup_tg(cgrp));
7918}
7919
7920static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7921		u64 rt_period_us)
7922{
7923	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7924}
7925
7926static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7927{
7928	return sched_group_rt_period(cgroup_tg(cgrp));
7929}
7930#endif /* CONFIG_RT_GROUP_SCHED */
7931
7932static struct cftype cpu_files[] = {
7933#ifdef CONFIG_FAIR_GROUP_SCHED
7934	{
7935		.name = "shares",
7936		.read_u64 = cpu_shares_read_u64,
7937		.write_u64 = cpu_shares_write_u64,
7938	},
7939#endif
7940#ifdef CONFIG_CFS_BANDWIDTH
7941	{
7942		.name = "cfs_quota_us",
7943		.read_s64 = cpu_cfs_quota_read_s64,
7944		.write_s64 = cpu_cfs_quota_write_s64,
7945	},
7946	{
7947		.name = "cfs_period_us",
7948		.read_u64 = cpu_cfs_period_read_u64,
7949		.write_u64 = cpu_cfs_period_write_u64,
7950	},
7951	{
7952		.name = "stat",
7953		.read_map = cpu_stats_show,
7954	},
7955#endif
7956#ifdef CONFIG_RT_GROUP_SCHED
7957	{
7958		.name = "rt_runtime_us",
7959		.read_s64 = cpu_rt_runtime_read,
7960		.write_s64 = cpu_rt_runtime_write,
7961	},
7962	{
7963		.name = "rt_period_us",
7964		.read_u64 = cpu_rt_period_read_uint,
7965		.write_u64 = cpu_rt_period_write_uint,
7966	},
7967#endif
7968	{ }	/* terminate */
7969};
7970
7971struct cgroup_subsys cpu_cgroup_subsys = {
7972	.name		= "cpu",
7973	.css_alloc	= cpu_cgroup_css_alloc,
7974	.css_free	= cpu_cgroup_css_free,
7975	.can_attach	= cpu_cgroup_can_attach,
7976	.attach		= cpu_cgroup_attach,
7977	.exit		= cpu_cgroup_exit,
7978	.subsys_id	= cpu_cgroup_subsys_id,
7979	.base_cftypes	= cpu_files,
7980	.early_init	= 1,
7981};
7982
7983#endif	/* CONFIG_CGROUP_SCHED */
7984
7985#ifdef CONFIG_CGROUP_CPUACCT
7986
7987/*
7988 * CPU accounting code for task groups.
7989 *
7990 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7991 * (balbir@in.ibm.com).
7992 */
7993
7994struct cpuacct root_cpuacct;
7995
7996/* create a new cpu accounting group */
7997static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
7998{
7999	struct cpuacct *ca;
8000
8001	if (!cgrp->parent)
8002		return &root_cpuacct.css;
8003
8004	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8005	if (!ca)
8006		goto out;
8007
8008	ca->cpuusage = alloc_percpu(u64);
8009	if (!ca->cpuusage)
8010		goto out_free_ca;
8011
8012	ca->cpustat = alloc_percpu(struct kernel_cpustat);
8013	if (!ca->cpustat)
8014		goto out_free_cpuusage;
8015
8016	return &ca->css;
8017
8018out_free_cpuusage:
8019	free_percpu(ca->cpuusage);
8020out_free_ca:
8021	kfree(ca);
8022out:
8023	return ERR_PTR(-ENOMEM);
8024}
8025
8026/* destroy an existing cpu accounting group */
8027static void cpuacct_css_free(struct cgroup *cgrp)
8028{
8029	struct cpuacct *ca = cgroup_ca(cgrp);
8030
8031	free_percpu(ca->cpustat);
8032	free_percpu(ca->cpuusage);
8033	kfree(ca);
8034}
8035
8036static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8037{
8038	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8039	u64 data;
8040
8041#ifndef CONFIG_64BIT
8042	/*
8043	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8044	 */
8045	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8046	data = *cpuusage;
8047	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8048#else
8049	data = *cpuusage;
8050#endif
8051
8052	return data;
8053}
8054
8055static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8056{
8057	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8058
8059#ifndef CONFIG_64BIT
8060	/*
8061	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8062	 */
8063	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8064	*cpuusage = val;
8065	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8066#else
8067	*cpuusage = val;
8068#endif
8069}
8070
8071/* return total cpu usage (in nanoseconds) of a group */
8072static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8073{
8074	struct cpuacct *ca = cgroup_ca(cgrp);
8075	u64 totalcpuusage = 0;
8076	int i;
8077
8078	for_each_present_cpu(i)
8079		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8080
8081	return totalcpuusage;
8082}
8083
8084static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8085								u64 reset)
8086{
8087	struct cpuacct *ca = cgroup_ca(cgrp);
8088	int err = 0;
8089	int i;
8090
8091	if (reset) {
8092		err = -EINVAL;
8093		goto out;
8094	}
8095
8096	for_each_present_cpu(i)
8097		cpuacct_cpuusage_write(ca, i, 0);
8098
8099out:
8100	return err;
8101}
8102
8103static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8104				   struct seq_file *m)
8105{
8106	struct cpuacct *ca = cgroup_ca(cgroup);
8107	u64 percpu;
8108	int i;
8109
8110	for_each_present_cpu(i) {
8111		percpu = cpuacct_cpuusage_read(ca, i);
8112		seq_printf(m, "%llu ", (unsigned long long) percpu);
8113	}
8114	seq_printf(m, "\n");
8115	return 0;
8116}
8117
8118static const char *cpuacct_stat_desc[] = {
8119	[CPUACCT_STAT_USER] = "user",
8120	[CPUACCT_STAT_SYSTEM] = "system",
8121};
8122
8123static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8124			      struct cgroup_map_cb *cb)
8125{
8126	struct cpuacct *ca = cgroup_ca(cgrp);
8127	int cpu;
8128	s64 val = 0;
8129
8130	for_each_online_cpu(cpu) {
8131		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8132		val += kcpustat->cpustat[CPUTIME_USER];
8133		val += kcpustat->cpustat[CPUTIME_NICE];
8134	}
8135	val = cputime64_to_clock_t(val);
8136	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8137
8138	val = 0;
8139	for_each_online_cpu(cpu) {
8140		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8141		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8142		val += kcpustat->cpustat[CPUTIME_IRQ];
8143		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8144	}
8145
8146	val = cputime64_to_clock_t(val);
8147	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8148
8149	return 0;
8150}
8151
8152static struct cftype files[] = {
8153	{
8154		.name = "usage",
8155		.read_u64 = cpuusage_read,
8156		.write_u64 = cpuusage_write,
8157	},
8158	{
8159		.name = "usage_percpu",
8160		.read_seq_string = cpuacct_percpu_seq_read,
8161	},
8162	{
8163		.name = "stat",
8164		.read_map = cpuacct_stats_show,
8165	},
8166	{ }	/* terminate */
8167};
8168
8169/*
8170 * charge this task's execution time to its accounting group.
8171 *
8172 * called with rq->lock held.
8173 */
8174void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8175{
8176	struct cpuacct *ca;
8177	int cpu;
8178
8179	if (unlikely(!cpuacct_subsys.active))
8180		return;
8181
8182	cpu = task_cpu(tsk);
8183
8184	rcu_read_lock();
8185
8186	ca = task_ca(tsk);
8187
8188	for (; ca; ca = parent_ca(ca)) {
8189		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8190		*cpuusage += cputime;
8191	}
8192
8193	rcu_read_unlock();
8194}
8195
8196struct cgroup_subsys cpuacct_subsys = {
8197	.name = "cpuacct",
8198	.css_alloc = cpuacct_css_alloc,
8199	.css_free = cpuacct_css_free,
8200	.subsys_id = cpuacct_subsys_id,
8201	.base_cftypes = files,
8202};
8203#endif	/* CONFIG_CGROUP_CPUACCT */
8204
8205void dump_cpu_task(int cpu)
8206{
8207	pr_info("Task dump for CPU %d:\n", cpu);
8208	sched_show_task(cpu_curr(cpu));
8209}
8210