core.c revision 6d35ab48090b10c5ea5604ed5d6e91f302dc6060
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115	return ret;
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int nid = cpu_to_node(cpu);
1266	const struct cpumask *nodemask = NULL;
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/*
1271	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272	 * will return -1. There is no cpu on the node, and we should
1273	 * select the cpu on the other node.
1274	 */
1275	if (nid != -1) {
1276		nodemask = cpumask_of_node(nid);
1277
1278		/* Look for allowed, online CPU in same node. */
1279		for_each_cpu(dest_cpu, nodemask) {
1280			if (!cpu_online(dest_cpu))
1281				continue;
1282			if (!cpu_active(dest_cpu))
1283				continue;
1284			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285				return dest_cpu;
1286		}
1287	}
1288
1289	for (;;) {
1290		/* Any allowed, online CPU? */
1291		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292			if (!cpu_online(dest_cpu))
1293				continue;
1294			if (!cpu_active(dest_cpu))
1295				continue;
1296			goto out;
1297		}
1298
1299		switch (state) {
1300		case cpuset:
1301			/* No more Mr. Nice Guy. */
1302			cpuset_cpus_allowed_fallback(p);
1303			state = possible;
1304			break;
1305
1306		case possible:
1307			do_set_cpus_allowed(p, cpu_possible_mask);
1308			state = fail;
1309			break;
1310
1311		case fail:
1312			BUG();
1313			break;
1314		}
1315	}
1316
1317out:
1318	if (state != cpuset) {
1319		/*
1320		 * Don't tell them about moving exiting tasks or
1321		 * kernel threads (both mm NULL), since they never
1322		 * leave kernel.
1323		 */
1324		if (p->mm && printk_ratelimit()) {
1325			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326					task_pid_nr(p), p->comm, cpu);
1327		}
1328	}
1329
1330	return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341	/*
1342	 * In order not to call set_task_cpu() on a blocking task we need
1343	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344	 * cpu.
1345	 *
1346	 * Since this is common to all placement strategies, this lives here.
1347	 *
1348	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349	 *   not worry about this generic constraint ]
1350	 */
1351	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352		     !cpu_online(cpu)))
1353		cpu = select_fallback_rq(task_cpu(p), p);
1354
1355	return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360	s64 diff = sample - *avg;
1361	*avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369	struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372	int this_cpu = smp_processor_id();
1373
1374	if (cpu == this_cpu) {
1375		schedstat_inc(rq, ttwu_local);
1376		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377	} else {
1378		struct sched_domain *sd;
1379
1380		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381		rcu_read_lock();
1382		for_each_domain(this_cpu, sd) {
1383			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384				schedstat_inc(sd, ttwu_wake_remote);
1385				break;
1386			}
1387		}
1388		rcu_read_unlock();
1389	}
1390
1391	if (wake_flags & WF_MIGRATED)
1392		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396	schedstat_inc(rq, ttwu_count);
1397	schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399	if (wake_flags & WF_SYNC)
1400		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407	activate_task(rq, p, en_flags);
1408	p->on_rq = 1;
1409
1410	/* if a worker is waking up, notify workqueue */
1411	if (p->flags & PF_WQ_WORKER)
1412		wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421	check_preempt_curr(rq, p, wake_flags);
1422	trace_sched_wakeup(p, true);
1423
1424	p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426	if (p->sched_class->task_woken)
1427		p->sched_class->task_woken(rq, p);
1428
1429	if (rq->idle_stamp) {
1430		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431		u64 max = 2*rq->max_idle_balance_cost;
1432
1433		update_avg(&rq->avg_idle, delta);
1434
1435		if (rq->avg_idle > max)
1436			rq->avg_idle = max;
1437
1438		rq->idle_stamp = 0;
1439	}
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447	if (p->sched_contributes_to_load)
1448		rq->nr_uninterruptible--;
1449#endif
1450
1451	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452	ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463	struct rq *rq;
1464	int ret = 0;
1465
1466	rq = __task_rq_lock(p);
1467	if (p->on_rq) {
1468		/* check_preempt_curr() may use rq clock */
1469		update_rq_clock(rq);
1470		ttwu_do_wakeup(rq, p, wake_flags);
1471		ret = 1;
1472	}
1473	__task_rq_unlock(rq);
1474
1475	return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481	struct rq *rq = this_rq();
1482	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483	struct task_struct *p;
1484
1485	raw_spin_lock(&rq->lock);
1486
1487	while (llist) {
1488		p = llist_entry(llist, struct task_struct, wake_entry);
1489		llist = llist_next(llist);
1490		ttwu_do_activate(rq, p, 0);
1491	}
1492
1493	raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498	/*
1499	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501	 * this IPI.
1502	 */
1503	preempt_fold_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	RB_CLEAR_NODE(&p->dl.rb_node);
1721	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722	p->dl.dl_runtime = p->dl.runtime = 0;
1723	p->dl.dl_deadline = p->dl.deadline = 0;
1724	p->dl.dl_period = 0;
1725	p->dl.flags = 0;
1726
1727	INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736		p->mm->numa_scan_seq = 0;
1737	}
1738
1739	if (clone_flags & CLONE_VM)
1740		p->numa_preferred_nid = current->numa_preferred_nid;
1741	else
1742		p->numa_preferred_nid = -1;
1743
1744	p->node_stamp = 0ULL;
1745	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747	p->numa_work.next = &p->numa_work;
1748	p->numa_faults = NULL;
1749	p->numa_faults_buffer = NULL;
1750
1751	INIT_LIST_HEAD(&p->numa_entry);
1752	p->numa_group = NULL;
1753#endif /* CONFIG_NUMA_BALANCING */
1754}
1755
1756#ifdef CONFIG_NUMA_BALANCING
1757#ifdef CONFIG_SCHED_DEBUG
1758void set_numabalancing_state(bool enabled)
1759{
1760	if (enabled)
1761		sched_feat_set("NUMA");
1762	else
1763		sched_feat_set("NO_NUMA");
1764}
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770	numabalancing_enabled = enabled;
1771}
1772#endif /* CONFIG_SCHED_DEBUG */
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776			 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778	struct ctl_table t;
1779	int err;
1780	int state = numabalancing_enabled;
1781
1782	if (write && !capable(CAP_SYS_ADMIN))
1783		return -EPERM;
1784
1785	t = *table;
1786	t.data = &state;
1787	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788	if (err < 0)
1789		return err;
1790	if (write)
1791		set_numabalancing_state(state);
1792	return err;
1793}
1794#endif
1795#endif
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801{
1802	unsigned long flags;
1803	int cpu = get_cpu();
1804
1805	__sched_fork(clone_flags, p);
1806	/*
1807	 * We mark the process as running here. This guarantees that
1808	 * nobody will actually run it, and a signal or other external
1809	 * event cannot wake it up and insert it on the runqueue either.
1810	 */
1811	p->state = TASK_RUNNING;
1812
1813	/*
1814	 * Make sure we do not leak PI boosting priority to the child.
1815	 */
1816	p->prio = current->normal_prio;
1817
1818	/*
1819	 * Revert to default priority/policy on fork if requested.
1820	 */
1821	if (unlikely(p->sched_reset_on_fork)) {
1822		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823			p->policy = SCHED_NORMAL;
1824			p->static_prio = NICE_TO_PRIO(0);
1825			p->rt_priority = 0;
1826		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1827			p->static_prio = NICE_TO_PRIO(0);
1828
1829		p->prio = p->normal_prio = __normal_prio(p);
1830		set_load_weight(p);
1831
1832		/*
1833		 * We don't need the reset flag anymore after the fork. It has
1834		 * fulfilled its duty:
1835		 */
1836		p->sched_reset_on_fork = 0;
1837	}
1838
1839	if (dl_prio(p->prio)) {
1840		put_cpu();
1841		return -EAGAIN;
1842	} else if (rt_prio(p->prio)) {
1843		p->sched_class = &rt_sched_class;
1844	} else {
1845		p->sched_class = &fair_sched_class;
1846	}
1847
1848	if (p->sched_class->task_fork)
1849		p->sched_class->task_fork(p);
1850
1851	/*
1852	 * The child is not yet in the pid-hash so no cgroup attach races,
1853	 * and the cgroup is pinned to this child due to cgroup_fork()
1854	 * is ran before sched_fork().
1855	 *
1856	 * Silence PROVE_RCU.
1857	 */
1858	raw_spin_lock_irqsave(&p->pi_lock, flags);
1859	set_task_cpu(p, cpu);
1860	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863	if (likely(sched_info_on()))
1864		memset(&p->sched_info, 0, sizeof(p->sched_info));
1865#endif
1866#if defined(CONFIG_SMP)
1867	p->on_cpu = 0;
1868#endif
1869	init_task_preempt_count(p);
1870#ifdef CONFIG_SMP
1871	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873#endif
1874
1875	put_cpu();
1876	return 0;
1877}
1878
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881	if (runtime == RUNTIME_INF)
1882		return 1ULL << 20;
1883
1884	/*
1885	 * Doing this here saves a lot of checks in all
1886	 * the calling paths, and returning zero seems
1887	 * safe for them anyway.
1888	 */
1889	if (period == 0)
1890		return 0;
1891
1892	return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898	return &cpu_rq(i)->rd->dl_bw;
1899}
1900
1901static inline int dl_bw_cpus(int i)
1902{
1903	struct root_domain *rd = cpu_rq(i)->rd;
1904	int cpus = 0;
1905
1906	for_each_cpu_and(i, rd->span, cpu_active_mask)
1907		cpus++;
1908
1909	return cpus;
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914	return &cpu_rq(i)->dl.dl_bw;
1915}
1916
1917static inline int dl_bw_cpus(int i)
1918{
1919	return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926	dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932	dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938	return dl_b->bw != -1 &&
1939	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951		       const struct sched_attr *attr)
1952{
1953
1954	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955	u64 period = attr->sched_period ?: attr->sched_deadline;
1956	u64 runtime = attr->sched_runtime;
1957	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958	int cpus, err = -1;
1959
1960	if (new_bw == p->dl.dl_bw)
1961		return 0;
1962
1963	/*
1964	 * Either if a task, enters, leave, or stays -deadline but changes
1965	 * its parameters, we may need to update accordingly the total
1966	 * allocated bandwidth of the container.
1967	 */
1968	raw_spin_lock(&dl_b->lock);
1969	cpus = dl_bw_cpus(task_cpu(p));
1970	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972		__dl_add(dl_b, new_bw);
1973		err = 0;
1974	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976		__dl_clear(dl_b, p->dl.dl_bw);
1977		__dl_add(dl_b, new_bw);
1978		err = 0;
1979	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980		__dl_clear(dl_b, p->dl.dl_bw);
1981		err = 0;
1982	}
1983	raw_spin_unlock(&dl_b->lock);
1984
1985	return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997void wake_up_new_task(struct task_struct *p)
1998{
1999	unsigned long flags;
2000	struct rq *rq;
2001
2002	raw_spin_lock_irqsave(&p->pi_lock, flags);
2003#ifdef CONFIG_SMP
2004	/*
2005	 * Fork balancing, do it here and not earlier because:
2006	 *  - cpus_allowed can change in the fork path
2007	 *  - any previously selected cpu might disappear through hotplug
2008	 */
2009	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010#endif
2011
2012	/* Initialize new task's runnable average */
2013	init_task_runnable_average(p);
2014	rq = __task_rq_lock(p);
2015	activate_task(rq, p, 0);
2016	p->on_rq = 1;
2017	trace_sched_wakeup_new(p, true);
2018	check_preempt_curr(rq, p, WF_FORK);
2019#ifdef CONFIG_SMP
2020	if (p->sched_class->task_woken)
2021		p->sched_class->task_woken(rq, p);
2022#endif
2023	task_rq_unlock(rq, p, &flags);
2024}
2025
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046	hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052	struct preempt_notifier *notifier;
2053
2054	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060				 struct task_struct *next)
2061{
2062	struct preempt_notifier *notifier;
2063
2064	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065		notifier->ops->sched_out(notifier, next);
2066}
2067
2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076				 struct task_struct *next)
2077{
2078}
2079
2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097		    struct task_struct *next)
2098{
2099	trace_sched_switch(prev, next);
2100	sched_info_switch(rq, prev, next);
2101	perf_event_task_sched_out(prev, next);
2102	fire_sched_out_preempt_notifiers(prev, next);
2103	prepare_lock_switch(rq, next);
2104	prepare_arch_switch(next);
2105}
2106
2107/**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123	__releases(rq->lock)
2124{
2125	struct mm_struct *mm = rq->prev_mm;
2126	long prev_state;
2127
2128	rq->prev_mm = NULL;
2129
2130	/*
2131	 * A task struct has one reference for the use as "current".
2132	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133	 * schedule one last time. The schedule call will never return, and
2134	 * the scheduled task must drop that reference.
2135	 * The test for TASK_DEAD must occur while the runqueue locks are
2136	 * still held, otherwise prev could be scheduled on another cpu, die
2137	 * there before we look at prev->state, and then the reference would
2138	 * be dropped twice.
2139	 *		Manfred Spraul <manfred@colorfullife.com>
2140	 */
2141	prev_state = prev->state;
2142	vtime_task_switch(prev);
2143	finish_arch_switch(prev);
2144	perf_event_task_sched_in(prev, current);
2145	finish_lock_switch(rq, prev);
2146	finish_arch_post_lock_switch();
2147
2148	fire_sched_in_preempt_notifiers(current);
2149	if (mm)
2150		mmdrop(mm);
2151	if (unlikely(prev_state == TASK_DEAD)) {
2152		task_numa_free(prev);
2153
2154		if (prev->sched_class->task_dead)
2155			prev->sched_class->task_dead(prev);
2156
2157		/*
2158		 * Remove function-return probe instances associated with this
2159		 * task and put them back on the free list.
2160		 */
2161		kprobe_flush_task(prev);
2162		put_task_struct(prev);
2163	}
2164
2165	tick_nohz_task_switch(current);
2166}
2167
2168#ifdef CONFIG_SMP
2169
2170/* assumes rq->lock is held */
2171static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2172{
2173	if (prev->sched_class->pre_schedule)
2174		prev->sched_class->pre_schedule(rq, prev);
2175}
2176
2177/* rq->lock is NOT held, but preemption is disabled */
2178static inline void post_schedule(struct rq *rq)
2179{
2180	if (rq->post_schedule) {
2181		unsigned long flags;
2182
2183		raw_spin_lock_irqsave(&rq->lock, flags);
2184		if (rq->curr->sched_class->post_schedule)
2185			rq->curr->sched_class->post_schedule(rq);
2186		raw_spin_unlock_irqrestore(&rq->lock, flags);
2187
2188		rq->post_schedule = 0;
2189	}
2190}
2191
2192#else
2193
2194static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2195{
2196}
2197
2198static inline void post_schedule(struct rq *rq)
2199{
2200}
2201
2202#endif
2203
2204/**
2205 * schedule_tail - first thing a freshly forked thread must call.
2206 * @prev: the thread we just switched away from.
2207 */
2208asmlinkage void schedule_tail(struct task_struct *prev)
2209	__releases(rq->lock)
2210{
2211	struct rq *rq = this_rq();
2212
2213	finish_task_switch(rq, prev);
2214
2215	/*
2216	 * FIXME: do we need to worry about rq being invalidated by the
2217	 * task_switch?
2218	 */
2219	post_schedule(rq);
2220
2221#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2222	/* In this case, finish_task_switch does not reenable preemption */
2223	preempt_enable();
2224#endif
2225	if (current->set_child_tid)
2226		put_user(task_pid_vnr(current), current->set_child_tid);
2227}
2228
2229/*
2230 * context_switch - switch to the new MM and the new
2231 * thread's register state.
2232 */
2233static inline void
2234context_switch(struct rq *rq, struct task_struct *prev,
2235	       struct task_struct *next)
2236{
2237	struct mm_struct *mm, *oldmm;
2238
2239	prepare_task_switch(rq, prev, next);
2240
2241	mm = next->mm;
2242	oldmm = prev->active_mm;
2243	/*
2244	 * For paravirt, this is coupled with an exit in switch_to to
2245	 * combine the page table reload and the switch backend into
2246	 * one hypercall.
2247	 */
2248	arch_start_context_switch(prev);
2249
2250	if (!mm) {
2251		next->active_mm = oldmm;
2252		atomic_inc(&oldmm->mm_count);
2253		enter_lazy_tlb(oldmm, next);
2254	} else
2255		switch_mm(oldmm, mm, next);
2256
2257	if (!prev->mm) {
2258		prev->active_mm = NULL;
2259		rq->prev_mm = oldmm;
2260	}
2261	/*
2262	 * Since the runqueue lock will be released by the next
2263	 * task (which is an invalid locking op but in the case
2264	 * of the scheduler it's an obvious special-case), so we
2265	 * do an early lockdep release here:
2266	 */
2267#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2268	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2269#endif
2270
2271	context_tracking_task_switch(prev, next);
2272	/* Here we just switch the register state and the stack. */
2273	switch_to(prev, next, prev);
2274
2275	barrier();
2276	/*
2277	 * this_rq must be evaluated again because prev may have moved
2278	 * CPUs since it called schedule(), thus the 'rq' on its stack
2279	 * frame will be invalid.
2280	 */
2281	finish_task_switch(this_rq(), prev);
2282}
2283
2284/*
2285 * nr_running and nr_context_switches:
2286 *
2287 * externally visible scheduler statistics: current number of runnable
2288 * threads, total number of context switches performed since bootup.
2289 */
2290unsigned long nr_running(void)
2291{
2292	unsigned long i, sum = 0;
2293
2294	for_each_online_cpu(i)
2295		sum += cpu_rq(i)->nr_running;
2296
2297	return sum;
2298}
2299
2300unsigned long long nr_context_switches(void)
2301{
2302	int i;
2303	unsigned long long sum = 0;
2304
2305	for_each_possible_cpu(i)
2306		sum += cpu_rq(i)->nr_switches;
2307
2308	return sum;
2309}
2310
2311unsigned long nr_iowait(void)
2312{
2313	unsigned long i, sum = 0;
2314
2315	for_each_possible_cpu(i)
2316		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2317
2318	return sum;
2319}
2320
2321unsigned long nr_iowait_cpu(int cpu)
2322{
2323	struct rq *this = cpu_rq(cpu);
2324	return atomic_read(&this->nr_iowait);
2325}
2326
2327#ifdef CONFIG_SMP
2328
2329/*
2330 * sched_exec - execve() is a valuable balancing opportunity, because at
2331 * this point the task has the smallest effective memory and cache footprint.
2332 */
2333void sched_exec(void)
2334{
2335	struct task_struct *p = current;
2336	unsigned long flags;
2337	int dest_cpu;
2338
2339	raw_spin_lock_irqsave(&p->pi_lock, flags);
2340	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2341	if (dest_cpu == smp_processor_id())
2342		goto unlock;
2343
2344	if (likely(cpu_active(dest_cpu))) {
2345		struct migration_arg arg = { p, dest_cpu };
2346
2347		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2348		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2349		return;
2350	}
2351unlock:
2352	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2353}
2354
2355#endif
2356
2357DEFINE_PER_CPU(struct kernel_stat, kstat);
2358DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2359
2360EXPORT_PER_CPU_SYMBOL(kstat);
2361EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2362
2363/*
2364 * Return any ns on the sched_clock that have not yet been accounted in
2365 * @p in case that task is currently running.
2366 *
2367 * Called with task_rq_lock() held on @rq.
2368 */
2369static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2370{
2371	u64 ns = 0;
2372
2373	if (task_current(rq, p)) {
2374		update_rq_clock(rq);
2375		ns = rq_clock_task(rq) - p->se.exec_start;
2376		if ((s64)ns < 0)
2377			ns = 0;
2378	}
2379
2380	return ns;
2381}
2382
2383unsigned long long task_delta_exec(struct task_struct *p)
2384{
2385	unsigned long flags;
2386	struct rq *rq;
2387	u64 ns = 0;
2388
2389	rq = task_rq_lock(p, &flags);
2390	ns = do_task_delta_exec(p, rq);
2391	task_rq_unlock(rq, p, &flags);
2392
2393	return ns;
2394}
2395
2396/*
2397 * Return accounted runtime for the task.
2398 * In case the task is currently running, return the runtime plus current's
2399 * pending runtime that have not been accounted yet.
2400 */
2401unsigned long long task_sched_runtime(struct task_struct *p)
2402{
2403	unsigned long flags;
2404	struct rq *rq;
2405	u64 ns = 0;
2406
2407#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2408	/*
2409	 * 64-bit doesn't need locks to atomically read a 64bit value.
2410	 * So we have a optimization chance when the task's delta_exec is 0.
2411	 * Reading ->on_cpu is racy, but this is ok.
2412	 *
2413	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2414	 * If we race with it entering cpu, unaccounted time is 0. This is
2415	 * indistinguishable from the read occurring a few cycles earlier.
2416	 */
2417	if (!p->on_cpu)
2418		return p->se.sum_exec_runtime;
2419#endif
2420
2421	rq = task_rq_lock(p, &flags);
2422	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2423	task_rq_unlock(rq, p, &flags);
2424
2425	return ns;
2426}
2427
2428/*
2429 * This function gets called by the timer code, with HZ frequency.
2430 * We call it with interrupts disabled.
2431 */
2432void scheduler_tick(void)
2433{
2434	int cpu = smp_processor_id();
2435	struct rq *rq = cpu_rq(cpu);
2436	struct task_struct *curr = rq->curr;
2437
2438	sched_clock_tick();
2439
2440	raw_spin_lock(&rq->lock);
2441	update_rq_clock(rq);
2442	curr->sched_class->task_tick(rq, curr, 0);
2443	update_cpu_load_active(rq);
2444	raw_spin_unlock(&rq->lock);
2445
2446	perf_event_task_tick();
2447
2448#ifdef CONFIG_SMP
2449	rq->idle_balance = idle_cpu(cpu);
2450	trigger_load_balance(rq);
2451#endif
2452	rq_last_tick_reset(rq);
2453}
2454
2455#ifdef CONFIG_NO_HZ_FULL
2456/**
2457 * scheduler_tick_max_deferment
2458 *
2459 * Keep at least one tick per second when a single
2460 * active task is running because the scheduler doesn't
2461 * yet completely support full dynticks environment.
2462 *
2463 * This makes sure that uptime, CFS vruntime, load
2464 * balancing, etc... continue to move forward, even
2465 * with a very low granularity.
2466 *
2467 * Return: Maximum deferment in nanoseconds.
2468 */
2469u64 scheduler_tick_max_deferment(void)
2470{
2471	struct rq *rq = this_rq();
2472	unsigned long next, now = ACCESS_ONCE(jiffies);
2473
2474	next = rq->last_sched_tick + HZ;
2475
2476	if (time_before_eq(next, now))
2477		return 0;
2478
2479	return jiffies_to_nsecs(next - now);
2480}
2481#endif
2482
2483notrace unsigned long get_parent_ip(unsigned long addr)
2484{
2485	if (in_lock_functions(addr)) {
2486		addr = CALLER_ADDR2;
2487		if (in_lock_functions(addr))
2488			addr = CALLER_ADDR3;
2489	}
2490	return addr;
2491}
2492
2493#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2494				defined(CONFIG_PREEMPT_TRACER))
2495
2496void __kprobes preempt_count_add(int val)
2497{
2498#ifdef CONFIG_DEBUG_PREEMPT
2499	/*
2500	 * Underflow?
2501	 */
2502	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2503		return;
2504#endif
2505	__preempt_count_add(val);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507	/*
2508	 * Spinlock count overflowing soon?
2509	 */
2510	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2511				PREEMPT_MASK - 10);
2512#endif
2513	if (preempt_count() == val)
2514		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2515}
2516EXPORT_SYMBOL(preempt_count_add);
2517
2518void __kprobes preempt_count_sub(int val)
2519{
2520#ifdef CONFIG_DEBUG_PREEMPT
2521	/*
2522	 * Underflow?
2523	 */
2524	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2525		return;
2526	/*
2527	 * Is the spinlock portion underflowing?
2528	 */
2529	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2530			!(preempt_count() & PREEMPT_MASK)))
2531		return;
2532#endif
2533
2534	if (preempt_count() == val)
2535		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2536	__preempt_count_sub(val);
2537}
2538EXPORT_SYMBOL(preempt_count_sub);
2539
2540#endif
2541
2542/*
2543 * Print scheduling while atomic bug:
2544 */
2545static noinline void __schedule_bug(struct task_struct *prev)
2546{
2547	if (oops_in_progress)
2548		return;
2549
2550	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2551		prev->comm, prev->pid, preempt_count());
2552
2553	debug_show_held_locks(prev);
2554	print_modules();
2555	if (irqs_disabled())
2556		print_irqtrace_events(prev);
2557	dump_stack();
2558	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2559}
2560
2561/*
2562 * Various schedule()-time debugging checks and statistics:
2563 */
2564static inline void schedule_debug(struct task_struct *prev)
2565{
2566	/*
2567	 * Test if we are atomic. Since do_exit() needs to call into
2568	 * schedule() atomically, we ignore that path. Otherwise whine
2569	 * if we are scheduling when we should not.
2570	 */
2571	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2572		__schedule_bug(prev);
2573	rcu_sleep_check();
2574
2575	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2576
2577	schedstat_inc(this_rq(), sched_count);
2578}
2579
2580static void put_prev_task(struct rq *rq, struct task_struct *prev)
2581{
2582	if (prev->on_rq || rq->skip_clock_update < 0)
2583		update_rq_clock(rq);
2584	prev->sched_class->put_prev_task(rq, prev);
2585}
2586
2587/*
2588 * Pick up the highest-prio task:
2589 */
2590static inline struct task_struct *
2591pick_next_task(struct rq *rq)
2592{
2593	const struct sched_class *class;
2594	struct task_struct *p;
2595
2596	/*
2597	 * Optimization: we know that if all tasks are in
2598	 * the fair class we can call that function directly:
2599	 */
2600	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2601		p = fair_sched_class.pick_next_task(rq);
2602		if (likely(p))
2603			return p;
2604	}
2605
2606	for_each_class(class) {
2607		p = class->pick_next_task(rq);
2608		if (p)
2609			return p;
2610	}
2611
2612	BUG(); /* the idle class will always have a runnable task */
2613}
2614
2615/*
2616 * __schedule() is the main scheduler function.
2617 *
2618 * The main means of driving the scheduler and thus entering this function are:
2619 *
2620 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2621 *
2622 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2623 *      paths. For example, see arch/x86/entry_64.S.
2624 *
2625 *      To drive preemption between tasks, the scheduler sets the flag in timer
2626 *      interrupt handler scheduler_tick().
2627 *
2628 *   3. Wakeups don't really cause entry into schedule(). They add a
2629 *      task to the run-queue and that's it.
2630 *
2631 *      Now, if the new task added to the run-queue preempts the current
2632 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2633 *      called on the nearest possible occasion:
2634 *
2635 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2636 *
2637 *         - in syscall or exception context, at the next outmost
2638 *           preempt_enable(). (this might be as soon as the wake_up()'s
2639 *           spin_unlock()!)
2640 *
2641 *         - in IRQ context, return from interrupt-handler to
2642 *           preemptible context
2643 *
2644 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2645 *         then at the next:
2646 *
2647 *          - cond_resched() call
2648 *          - explicit schedule() call
2649 *          - return from syscall or exception to user-space
2650 *          - return from interrupt-handler to user-space
2651 */
2652static void __sched __schedule(void)
2653{
2654	struct task_struct *prev, *next;
2655	unsigned long *switch_count;
2656	struct rq *rq;
2657	int cpu;
2658
2659need_resched:
2660	preempt_disable();
2661	cpu = smp_processor_id();
2662	rq = cpu_rq(cpu);
2663	rcu_note_context_switch(cpu);
2664	prev = rq->curr;
2665
2666	schedule_debug(prev);
2667
2668	if (sched_feat(HRTICK))
2669		hrtick_clear(rq);
2670
2671	/*
2672	 * Make sure that signal_pending_state()->signal_pending() below
2673	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2674	 * done by the caller to avoid the race with signal_wake_up().
2675	 */
2676	smp_mb__before_spinlock();
2677	raw_spin_lock_irq(&rq->lock);
2678
2679	switch_count = &prev->nivcsw;
2680	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2681		if (unlikely(signal_pending_state(prev->state, prev))) {
2682			prev->state = TASK_RUNNING;
2683		} else {
2684			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2685			prev->on_rq = 0;
2686
2687			/*
2688			 * If a worker went to sleep, notify and ask workqueue
2689			 * whether it wants to wake up a task to maintain
2690			 * concurrency.
2691			 */
2692			if (prev->flags & PF_WQ_WORKER) {
2693				struct task_struct *to_wakeup;
2694
2695				to_wakeup = wq_worker_sleeping(prev, cpu);
2696				if (to_wakeup)
2697					try_to_wake_up_local(to_wakeup);
2698			}
2699		}
2700		switch_count = &prev->nvcsw;
2701	}
2702
2703	pre_schedule(rq, prev);
2704
2705	if (unlikely(!rq->nr_running))
2706		idle_balance(cpu, rq);
2707
2708	put_prev_task(rq, prev);
2709	next = pick_next_task(rq);
2710	clear_tsk_need_resched(prev);
2711	clear_preempt_need_resched();
2712	rq->skip_clock_update = 0;
2713
2714	if (likely(prev != next)) {
2715		rq->nr_switches++;
2716		rq->curr = next;
2717		++*switch_count;
2718
2719		context_switch(rq, prev, next); /* unlocks the rq */
2720		/*
2721		 * The context switch have flipped the stack from under us
2722		 * and restored the local variables which were saved when
2723		 * this task called schedule() in the past. prev == current
2724		 * is still correct, but it can be moved to another cpu/rq.
2725		 */
2726		cpu = smp_processor_id();
2727		rq = cpu_rq(cpu);
2728	} else
2729		raw_spin_unlock_irq(&rq->lock);
2730
2731	post_schedule(rq);
2732
2733	sched_preempt_enable_no_resched();
2734	if (need_resched())
2735		goto need_resched;
2736}
2737
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
2740	if (!tsk->state || tsk_is_pi_blocked(tsk))
2741		return;
2742	/*
2743	 * If we are going to sleep and we have plugged IO queued,
2744	 * make sure to submit it to avoid deadlocks.
2745	 */
2746	if (blk_needs_flush_plug(tsk))
2747		blk_schedule_flush_plug(tsk);
2748}
2749
2750asmlinkage void __sched schedule(void)
2751{
2752	struct task_struct *tsk = current;
2753
2754	sched_submit_work(tsk);
2755	__schedule();
2756}
2757EXPORT_SYMBOL(schedule);
2758
2759#ifdef CONFIG_CONTEXT_TRACKING
2760asmlinkage void __sched schedule_user(void)
2761{
2762	/*
2763	 * If we come here after a random call to set_need_resched(),
2764	 * or we have been woken up remotely but the IPI has not yet arrived,
2765	 * we haven't yet exited the RCU idle mode. Do it here manually until
2766	 * we find a better solution.
2767	 */
2768	user_exit();
2769	schedule();
2770	user_enter();
2771}
2772#endif
2773
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
2781	sched_preempt_enable_no_resched();
2782	schedule();
2783	preempt_disable();
2784}
2785
2786#ifdef CONFIG_PREEMPT
2787/*
2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly.
2791 */
2792asmlinkage void __sched notrace preempt_schedule(void)
2793{
2794	/*
2795	 * If there is a non-zero preempt_count or interrupts are disabled,
2796	 * we do not want to preempt the current task. Just return..
2797	 */
2798	if (likely(!preemptible()))
2799		return;
2800
2801	do {
2802		__preempt_count_add(PREEMPT_ACTIVE);
2803		__schedule();
2804		__preempt_count_sub(PREEMPT_ACTIVE);
2805
2806		/*
2807		 * Check again in case we missed a preemption opportunity
2808		 * between schedule and now.
2809		 */
2810		barrier();
2811	} while (need_resched());
2812}
2813EXPORT_SYMBOL(preempt_schedule);
2814#endif /* CONFIG_PREEMPT */
2815
2816/*
2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
2824	enum ctx_state prev_state;
2825
2826	/* Catch callers which need to be fixed */
2827	BUG_ON(preempt_count() || !irqs_disabled());
2828
2829	prev_state = exception_enter();
2830
2831	do {
2832		__preempt_count_add(PREEMPT_ACTIVE);
2833		local_irq_enable();
2834		__schedule();
2835		local_irq_disable();
2836		__preempt_count_sub(PREEMPT_ACTIVE);
2837
2838		/*
2839		 * Check again in case we missed a preemption opportunity
2840		 * between schedule and now.
2841		 */
2842		barrier();
2843	} while (need_resched());
2844
2845	exception_exit(prev_state);
2846}
2847
2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849			  void *key)
2850{
2851	return try_to_wake_up(curr->private, mode, wake_flags);
2852}
2853EXPORT_SYMBOL(default_wake_function);
2854
2855static long __sched
2856sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2857{
2858	unsigned long flags;
2859	wait_queue_t wait;
2860
2861	init_waitqueue_entry(&wait, current);
2862
2863	__set_current_state(state);
2864
2865	spin_lock_irqsave(&q->lock, flags);
2866	__add_wait_queue(q, &wait);
2867	spin_unlock(&q->lock);
2868	timeout = schedule_timeout(timeout);
2869	spin_lock_irq(&q->lock);
2870	__remove_wait_queue(q, &wait);
2871	spin_unlock_irqrestore(&q->lock, flags);
2872
2873	return timeout;
2874}
2875
2876void __sched interruptible_sleep_on(wait_queue_head_t *q)
2877{
2878	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2879}
2880EXPORT_SYMBOL(interruptible_sleep_on);
2881
2882long __sched
2883interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2884{
2885	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2886}
2887EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2888
2889void __sched sleep_on(wait_queue_head_t *q)
2890{
2891	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2892}
2893EXPORT_SYMBOL(sleep_on);
2894
2895long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2896{
2897	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2898}
2899EXPORT_SYMBOL(sleep_on_timeout);
2900
2901#ifdef CONFIG_RT_MUTEXES
2902
2903/*
2904 * rt_mutex_setprio - set the current priority of a task
2905 * @p: task
2906 * @prio: prio value (kernel-internal form)
2907 *
2908 * This function changes the 'effective' priority of a task. It does
2909 * not touch ->normal_prio like __setscheduler().
2910 *
2911 * Used by the rt_mutex code to implement priority inheritance logic.
2912 */
2913void rt_mutex_setprio(struct task_struct *p, int prio)
2914{
2915	int oldprio, on_rq, running, enqueue_flag = 0;
2916	struct rq *rq;
2917	const struct sched_class *prev_class;
2918
2919	BUG_ON(prio > MAX_PRIO);
2920
2921	rq = __task_rq_lock(p);
2922
2923	/*
2924	 * Idle task boosting is a nono in general. There is one
2925	 * exception, when PREEMPT_RT and NOHZ is active:
2926	 *
2927	 * The idle task calls get_next_timer_interrupt() and holds
2928	 * the timer wheel base->lock on the CPU and another CPU wants
2929	 * to access the timer (probably to cancel it). We can safely
2930	 * ignore the boosting request, as the idle CPU runs this code
2931	 * with interrupts disabled and will complete the lock
2932	 * protected section without being interrupted. So there is no
2933	 * real need to boost.
2934	 */
2935	if (unlikely(p == rq->idle)) {
2936		WARN_ON(p != rq->curr);
2937		WARN_ON(p->pi_blocked_on);
2938		goto out_unlock;
2939	}
2940
2941	trace_sched_pi_setprio(p, prio);
2942	p->pi_top_task = rt_mutex_get_top_task(p);
2943	oldprio = p->prio;
2944	prev_class = p->sched_class;
2945	on_rq = p->on_rq;
2946	running = task_current(rq, p);
2947	if (on_rq)
2948		dequeue_task(rq, p, 0);
2949	if (running)
2950		p->sched_class->put_prev_task(rq, p);
2951
2952	/*
2953	 * Boosting condition are:
2954	 * 1. -rt task is running and holds mutex A
2955	 *      --> -dl task blocks on mutex A
2956	 *
2957	 * 2. -dl task is running and holds mutex A
2958	 *      --> -dl task blocks on mutex A and could preempt the
2959	 *          running task
2960	 */
2961	if (dl_prio(prio)) {
2962		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2963			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2964			p->dl.dl_boosted = 1;
2965			p->dl.dl_throttled = 0;
2966			enqueue_flag = ENQUEUE_REPLENISH;
2967		} else
2968			p->dl.dl_boosted = 0;
2969		p->sched_class = &dl_sched_class;
2970	} else if (rt_prio(prio)) {
2971		if (dl_prio(oldprio))
2972			p->dl.dl_boosted = 0;
2973		if (oldprio < prio)
2974			enqueue_flag = ENQUEUE_HEAD;
2975		p->sched_class = &rt_sched_class;
2976	} else {
2977		if (dl_prio(oldprio))
2978			p->dl.dl_boosted = 0;
2979		p->sched_class = &fair_sched_class;
2980	}
2981
2982	p->prio = prio;
2983
2984	if (running)
2985		p->sched_class->set_curr_task(rq);
2986	if (on_rq)
2987		enqueue_task(rq, p, enqueue_flag);
2988
2989	check_class_changed(rq, p, prev_class, oldprio);
2990out_unlock:
2991	__task_rq_unlock(rq);
2992}
2993#endif
2994
2995void set_user_nice(struct task_struct *p, long nice)
2996{
2997	int old_prio, delta, on_rq;
2998	unsigned long flags;
2999	struct rq *rq;
3000
3001	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3002		return;
3003	/*
3004	 * We have to be careful, if called from sys_setpriority(),
3005	 * the task might be in the middle of scheduling on another CPU.
3006	 */
3007	rq = task_rq_lock(p, &flags);
3008	/*
3009	 * The RT priorities are set via sched_setscheduler(), but we still
3010	 * allow the 'normal' nice value to be set - but as expected
3011	 * it wont have any effect on scheduling until the task is
3012	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3013	 */
3014	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3015		p->static_prio = NICE_TO_PRIO(nice);
3016		goto out_unlock;
3017	}
3018	on_rq = p->on_rq;
3019	if (on_rq)
3020		dequeue_task(rq, p, 0);
3021
3022	p->static_prio = NICE_TO_PRIO(nice);
3023	set_load_weight(p);
3024	old_prio = p->prio;
3025	p->prio = effective_prio(p);
3026	delta = p->prio - old_prio;
3027
3028	if (on_rq) {
3029		enqueue_task(rq, p, 0);
3030		/*
3031		 * If the task increased its priority or is running and
3032		 * lowered its priority, then reschedule its CPU:
3033		 */
3034		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3035			resched_task(rq->curr);
3036	}
3037out_unlock:
3038	task_rq_unlock(rq, p, &flags);
3039}
3040EXPORT_SYMBOL(set_user_nice);
3041
3042/*
3043 * can_nice - check if a task can reduce its nice value
3044 * @p: task
3045 * @nice: nice value
3046 */
3047int can_nice(const struct task_struct *p, const int nice)
3048{
3049	/* convert nice value [19,-20] to rlimit style value [1,40] */
3050	int nice_rlim = 20 - nice;
3051
3052	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3053		capable(CAP_SYS_NICE));
3054}
3055
3056#ifdef __ARCH_WANT_SYS_NICE
3057
3058/*
3059 * sys_nice - change the priority of the current process.
3060 * @increment: priority increment
3061 *
3062 * sys_setpriority is a more generic, but much slower function that
3063 * does similar things.
3064 */
3065SYSCALL_DEFINE1(nice, int, increment)
3066{
3067	long nice, retval;
3068
3069	/*
3070	 * Setpriority might change our priority at the same moment.
3071	 * We don't have to worry. Conceptually one call occurs first
3072	 * and we have a single winner.
3073	 */
3074	if (increment < -40)
3075		increment = -40;
3076	if (increment > 40)
3077		increment = 40;
3078
3079	nice = TASK_NICE(current) + increment;
3080	if (nice < -20)
3081		nice = -20;
3082	if (nice > 19)
3083		nice = 19;
3084
3085	if (increment < 0 && !can_nice(current, nice))
3086		return -EPERM;
3087
3088	retval = security_task_setnice(current, nice);
3089	if (retval)
3090		return retval;
3091
3092	set_user_nice(current, nice);
3093	return 0;
3094}
3095
3096#endif
3097
3098/**
3099 * task_prio - return the priority value of a given task.
3100 * @p: the task in question.
3101 *
3102 * Return: The priority value as seen by users in /proc.
3103 * RT tasks are offset by -200. Normal tasks are centered
3104 * around 0, value goes from -16 to +15.
3105 */
3106int task_prio(const struct task_struct *p)
3107{
3108	return p->prio - MAX_RT_PRIO;
3109}
3110
3111/**
3112 * task_nice - return the nice value of a given task.
3113 * @p: the task in question.
3114 *
3115 * Return: The nice value [ -20 ... 0 ... 19 ].
3116 */
3117int task_nice(const struct task_struct *p)
3118{
3119	return TASK_NICE(p);
3120}
3121EXPORT_SYMBOL(task_nice);
3122
3123/**
3124 * idle_cpu - is a given cpu idle currently?
3125 * @cpu: the processor in question.
3126 *
3127 * Return: 1 if the CPU is currently idle. 0 otherwise.
3128 */
3129int idle_cpu(int cpu)
3130{
3131	struct rq *rq = cpu_rq(cpu);
3132
3133	if (rq->curr != rq->idle)
3134		return 0;
3135
3136	if (rq->nr_running)
3137		return 0;
3138
3139#ifdef CONFIG_SMP
3140	if (!llist_empty(&rq->wake_list))
3141		return 0;
3142#endif
3143
3144	return 1;
3145}
3146
3147/**
3148 * idle_task - return the idle task for a given cpu.
3149 * @cpu: the processor in question.
3150 *
3151 * Return: The idle task for the cpu @cpu.
3152 */
3153struct task_struct *idle_task(int cpu)
3154{
3155	return cpu_rq(cpu)->idle;
3156}
3157
3158/**
3159 * find_process_by_pid - find a process with a matching PID value.
3160 * @pid: the pid in question.
3161 *
3162 * The task of @pid, if found. %NULL otherwise.
3163 */
3164static struct task_struct *find_process_by_pid(pid_t pid)
3165{
3166	return pid ? find_task_by_vpid(pid) : current;
3167}
3168
3169/*
3170 * This function initializes the sched_dl_entity of a newly becoming
3171 * SCHED_DEADLINE task.
3172 *
3173 * Only the static values are considered here, the actual runtime and the
3174 * absolute deadline will be properly calculated when the task is enqueued
3175 * for the first time with its new policy.
3176 */
3177static void
3178__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3179{
3180	struct sched_dl_entity *dl_se = &p->dl;
3181
3182	init_dl_task_timer(dl_se);
3183	dl_se->dl_runtime = attr->sched_runtime;
3184	dl_se->dl_deadline = attr->sched_deadline;
3185	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3186	dl_se->flags = attr->sched_flags;
3187	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3188	dl_se->dl_throttled = 0;
3189	dl_se->dl_new = 1;
3190}
3191
3192/* Actually do priority change: must hold pi & rq lock. */
3193static void __setscheduler(struct rq *rq, struct task_struct *p,
3194			   const struct sched_attr *attr)
3195{
3196	int policy = attr->sched_policy;
3197
3198	if (policy == -1) /* setparam */
3199		policy = p->policy;
3200
3201	p->policy = policy;
3202
3203	if (dl_policy(policy))
3204		__setparam_dl(p, attr);
3205	else if (fair_policy(policy))
3206		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3207
3208	/*
3209	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3210	 * !rt_policy. Always setting this ensures that things like
3211	 * getparam()/getattr() don't report silly values for !rt tasks.
3212	 */
3213	p->rt_priority = attr->sched_priority;
3214
3215	p->normal_prio = normal_prio(p);
3216	p->prio = rt_mutex_getprio(p);
3217
3218	if (dl_prio(p->prio))
3219		p->sched_class = &dl_sched_class;
3220	else if (rt_prio(p->prio))
3221		p->sched_class = &rt_sched_class;
3222	else
3223		p->sched_class = &fair_sched_class;
3224
3225	set_load_weight(p);
3226}
3227
3228static void
3229__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3230{
3231	struct sched_dl_entity *dl_se = &p->dl;
3232
3233	attr->sched_priority = p->rt_priority;
3234	attr->sched_runtime = dl_se->dl_runtime;
3235	attr->sched_deadline = dl_se->dl_deadline;
3236	attr->sched_period = dl_se->dl_period;
3237	attr->sched_flags = dl_se->flags;
3238}
3239
3240/*
3241 * This function validates the new parameters of a -deadline task.
3242 * We ask for the deadline not being zero, and greater or equal
3243 * than the runtime, as well as the period of being zero or
3244 * greater than deadline. Furthermore, we have to be sure that
3245 * user parameters are above the internal resolution (1us); we
3246 * check sched_runtime only since it is always the smaller one.
3247 */
3248static bool
3249__checkparam_dl(const struct sched_attr *attr)
3250{
3251	return attr && attr->sched_deadline != 0 &&
3252		(attr->sched_period == 0 ||
3253		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3254		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3255		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3256}
3257
3258/*
3259 * check the target process has a UID that matches the current process's
3260 */
3261static bool check_same_owner(struct task_struct *p)
3262{
3263	const struct cred *cred = current_cred(), *pcred;
3264	bool match;
3265
3266	rcu_read_lock();
3267	pcred = __task_cred(p);
3268	match = (uid_eq(cred->euid, pcred->euid) ||
3269		 uid_eq(cred->euid, pcred->uid));
3270	rcu_read_unlock();
3271	return match;
3272}
3273
3274static int __sched_setscheduler(struct task_struct *p,
3275				const struct sched_attr *attr,
3276				bool user)
3277{
3278	int retval, oldprio, oldpolicy = -1, on_rq, running;
3279	int policy = attr->sched_policy;
3280	unsigned long flags;
3281	const struct sched_class *prev_class;
3282	struct rq *rq;
3283	int reset_on_fork;
3284
3285	/* may grab non-irq protected spin_locks */
3286	BUG_ON(in_interrupt());
3287recheck:
3288	/* double check policy once rq lock held */
3289	if (policy < 0) {
3290		reset_on_fork = p->sched_reset_on_fork;
3291		policy = oldpolicy = p->policy;
3292	} else {
3293		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3294
3295		if (policy != SCHED_DEADLINE &&
3296				policy != SCHED_FIFO && policy != SCHED_RR &&
3297				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3298				policy != SCHED_IDLE)
3299			return -EINVAL;
3300	}
3301
3302	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3303		return -EINVAL;
3304
3305	/*
3306	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3307	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3308	 * SCHED_BATCH and SCHED_IDLE is 0.
3309	 */
3310	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3311	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3312		return -EINVAL;
3313	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3314	    (rt_policy(policy) != (attr->sched_priority != 0)))
3315		return -EINVAL;
3316
3317	/*
3318	 * Allow unprivileged RT tasks to decrease priority:
3319	 */
3320	if (user && !capable(CAP_SYS_NICE)) {
3321		if (fair_policy(policy)) {
3322			if (attr->sched_nice < TASK_NICE(p) &&
3323			    !can_nice(p, attr->sched_nice))
3324				return -EPERM;
3325		}
3326
3327		if (rt_policy(policy)) {
3328			unsigned long rlim_rtprio =
3329					task_rlimit(p, RLIMIT_RTPRIO);
3330
3331			/* can't set/change the rt policy */
3332			if (policy != p->policy && !rlim_rtprio)
3333				return -EPERM;
3334
3335			/* can't increase priority */
3336			if (attr->sched_priority > p->rt_priority &&
3337			    attr->sched_priority > rlim_rtprio)
3338				return -EPERM;
3339		}
3340
3341		/*
3342		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3343		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3344		 */
3345		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3346			if (!can_nice(p, TASK_NICE(p)))
3347				return -EPERM;
3348		}
3349
3350		/* can't change other user's priorities */
3351		if (!check_same_owner(p))
3352			return -EPERM;
3353
3354		/* Normal users shall not reset the sched_reset_on_fork flag */
3355		if (p->sched_reset_on_fork && !reset_on_fork)
3356			return -EPERM;
3357	}
3358
3359	if (user) {
3360		retval = security_task_setscheduler(p);
3361		if (retval)
3362			return retval;
3363	}
3364
3365	/*
3366	 * make sure no PI-waiters arrive (or leave) while we are
3367	 * changing the priority of the task:
3368	 *
3369	 * To be able to change p->policy safely, the appropriate
3370	 * runqueue lock must be held.
3371	 */
3372	rq = task_rq_lock(p, &flags);
3373
3374	/*
3375	 * Changing the policy of the stop threads its a very bad idea
3376	 */
3377	if (p == rq->stop) {
3378		task_rq_unlock(rq, p, &flags);
3379		return -EINVAL;
3380	}
3381
3382	/*
3383	 * If not changing anything there's no need to proceed further:
3384	 */
3385	if (unlikely(policy == p->policy)) {
3386		if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3387			goto change;
3388		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3389			goto change;
3390		if (dl_policy(policy))
3391			goto change;
3392
3393		task_rq_unlock(rq, p, &flags);
3394		return 0;
3395	}
3396change:
3397
3398	if (user) {
3399#ifdef CONFIG_RT_GROUP_SCHED
3400		/*
3401		 * Do not allow realtime tasks into groups that have no runtime
3402		 * assigned.
3403		 */
3404		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3405				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3406				!task_group_is_autogroup(task_group(p))) {
3407			task_rq_unlock(rq, p, &flags);
3408			return -EPERM;
3409		}
3410#endif
3411#ifdef CONFIG_SMP
3412		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3413			cpumask_t *span = rq->rd->span;
3414
3415			/*
3416			 * Don't allow tasks with an affinity mask smaller than
3417			 * the entire root_domain to become SCHED_DEADLINE. We
3418			 * will also fail if there's no bandwidth available.
3419			 */
3420			if (!cpumask_subset(span, &p->cpus_allowed) ||
3421			    rq->rd->dl_bw.bw == 0) {
3422				task_rq_unlock(rq, p, &flags);
3423				return -EPERM;
3424			}
3425		}
3426#endif
3427	}
3428
3429	/* recheck policy now with rq lock held */
3430	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3431		policy = oldpolicy = -1;
3432		task_rq_unlock(rq, p, &flags);
3433		goto recheck;
3434	}
3435
3436	/*
3437	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3438	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3439	 * is available.
3440	 */
3441	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3442		task_rq_unlock(rq, p, &flags);
3443		return -EBUSY;
3444	}
3445
3446	on_rq = p->on_rq;
3447	running = task_current(rq, p);
3448	if (on_rq)
3449		dequeue_task(rq, p, 0);
3450	if (running)
3451		p->sched_class->put_prev_task(rq, p);
3452
3453	p->sched_reset_on_fork = reset_on_fork;
3454
3455	oldprio = p->prio;
3456	prev_class = p->sched_class;
3457	__setscheduler(rq, p, attr);
3458
3459	if (running)
3460		p->sched_class->set_curr_task(rq);
3461	if (on_rq)
3462		enqueue_task(rq, p, 0);
3463
3464	check_class_changed(rq, p, prev_class, oldprio);
3465	task_rq_unlock(rq, p, &flags);
3466
3467	rt_mutex_adjust_pi(p);
3468
3469	return 0;
3470}
3471
3472static int _sched_setscheduler(struct task_struct *p, int policy,
3473			       const struct sched_param *param, bool check)
3474{
3475	struct sched_attr attr = {
3476		.sched_policy   = policy,
3477		.sched_priority = param->sched_priority,
3478		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3479	};
3480
3481	/*
3482	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3483	 */
3484	if (policy & SCHED_RESET_ON_FORK) {
3485		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3486		policy &= ~SCHED_RESET_ON_FORK;
3487		attr.sched_policy = policy;
3488	}
3489
3490	return __sched_setscheduler(p, &attr, check);
3491}
3492/**
3493 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3494 * @p: the task in question.
3495 * @policy: new policy.
3496 * @param: structure containing the new RT priority.
3497 *
3498 * Return: 0 on success. An error code otherwise.
3499 *
3500 * NOTE that the task may be already dead.
3501 */
3502int sched_setscheduler(struct task_struct *p, int policy,
3503		       const struct sched_param *param)
3504{
3505	return _sched_setscheduler(p, policy, param, true);
3506}
3507EXPORT_SYMBOL_GPL(sched_setscheduler);
3508
3509int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3510{
3511	return __sched_setscheduler(p, attr, true);
3512}
3513EXPORT_SYMBOL_GPL(sched_setattr);
3514
3515/**
3516 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3517 * @p: the task in question.
3518 * @policy: new policy.
3519 * @param: structure containing the new RT priority.
3520 *
3521 * Just like sched_setscheduler, only don't bother checking if the
3522 * current context has permission.  For example, this is needed in
3523 * stop_machine(): we create temporary high priority worker threads,
3524 * but our caller might not have that capability.
3525 *
3526 * Return: 0 on success. An error code otherwise.
3527 */
3528int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3529			       const struct sched_param *param)
3530{
3531	return _sched_setscheduler(p, policy, param, false);
3532}
3533
3534static int
3535do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3536{
3537	struct sched_param lparam;
3538	struct task_struct *p;
3539	int retval;
3540
3541	if (!param || pid < 0)
3542		return -EINVAL;
3543	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3544		return -EFAULT;
3545
3546	rcu_read_lock();
3547	retval = -ESRCH;
3548	p = find_process_by_pid(pid);
3549	if (p != NULL)
3550		retval = sched_setscheduler(p, policy, &lparam);
3551	rcu_read_unlock();
3552
3553	return retval;
3554}
3555
3556/*
3557 * Mimics kernel/events/core.c perf_copy_attr().
3558 */
3559static int sched_copy_attr(struct sched_attr __user *uattr,
3560			   struct sched_attr *attr)
3561{
3562	u32 size;
3563	int ret;
3564
3565	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3566		return -EFAULT;
3567
3568	/*
3569	 * zero the full structure, so that a short copy will be nice.
3570	 */
3571	memset(attr, 0, sizeof(*attr));
3572
3573	ret = get_user(size, &uattr->size);
3574	if (ret)
3575		return ret;
3576
3577	if (size > PAGE_SIZE)	/* silly large */
3578		goto err_size;
3579
3580	if (!size)		/* abi compat */
3581		size = SCHED_ATTR_SIZE_VER0;
3582
3583	if (size < SCHED_ATTR_SIZE_VER0)
3584		goto err_size;
3585
3586	/*
3587	 * If we're handed a bigger struct than we know of,
3588	 * ensure all the unknown bits are 0 - i.e. new
3589	 * user-space does not rely on any kernel feature
3590	 * extensions we dont know about yet.
3591	 */
3592	if (size > sizeof(*attr)) {
3593		unsigned char __user *addr;
3594		unsigned char __user *end;
3595		unsigned char val;
3596
3597		addr = (void __user *)uattr + sizeof(*attr);
3598		end  = (void __user *)uattr + size;
3599
3600		for (; addr < end; addr++) {
3601			ret = get_user(val, addr);
3602			if (ret)
3603				return ret;
3604			if (val)
3605				goto err_size;
3606		}
3607		size = sizeof(*attr);
3608	}
3609
3610	ret = copy_from_user(attr, uattr, size);
3611	if (ret)
3612		return -EFAULT;
3613
3614	/*
3615	 * XXX: do we want to be lenient like existing syscalls; or do we want
3616	 * to be strict and return an error on out-of-bounds values?
3617	 */
3618	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3619
3620out:
3621	return ret;
3622
3623err_size:
3624	put_user(sizeof(*attr), &uattr->size);
3625	ret = -E2BIG;
3626	goto out;
3627}
3628
3629/**
3630 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3631 * @pid: the pid in question.
3632 * @policy: new policy.
3633 * @param: structure containing the new RT priority.
3634 *
3635 * Return: 0 on success. An error code otherwise.
3636 */
3637SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3638		struct sched_param __user *, param)
3639{
3640	/* negative values for policy are not valid */
3641	if (policy < 0)
3642		return -EINVAL;
3643
3644	return do_sched_setscheduler(pid, policy, param);
3645}
3646
3647/**
3648 * sys_sched_setparam - set/change the RT priority of a thread
3649 * @pid: the pid in question.
3650 * @param: structure containing the new RT priority.
3651 *
3652 * Return: 0 on success. An error code otherwise.
3653 */
3654SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3655{
3656	return do_sched_setscheduler(pid, -1, param);
3657}
3658
3659/**
3660 * sys_sched_setattr - same as above, but with extended sched_attr
3661 * @pid: the pid in question.
3662 * @uattr: structure containing the extended parameters.
3663 */
3664SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3665			       unsigned int, flags)
3666{
3667	struct sched_attr attr;
3668	struct task_struct *p;
3669	int retval;
3670
3671	if (!uattr || pid < 0 || flags)
3672		return -EINVAL;
3673
3674	if (sched_copy_attr(uattr, &attr))
3675		return -EFAULT;
3676
3677	rcu_read_lock();
3678	retval = -ESRCH;
3679	p = find_process_by_pid(pid);
3680	if (p != NULL)
3681		retval = sched_setattr(p, &attr);
3682	rcu_read_unlock();
3683
3684	return retval;
3685}
3686
3687/**
3688 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3689 * @pid: the pid in question.
3690 *
3691 * Return: On success, the policy of the thread. Otherwise, a negative error
3692 * code.
3693 */
3694SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3695{
3696	struct task_struct *p;
3697	int retval;
3698
3699	if (pid < 0)
3700		return -EINVAL;
3701
3702	retval = -ESRCH;
3703	rcu_read_lock();
3704	p = find_process_by_pid(pid);
3705	if (p) {
3706		retval = security_task_getscheduler(p);
3707		if (!retval)
3708			retval = p->policy
3709				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3710	}
3711	rcu_read_unlock();
3712	return retval;
3713}
3714
3715/**
3716 * sys_sched_getparam - get the RT priority of a thread
3717 * @pid: the pid in question.
3718 * @param: structure containing the RT priority.
3719 *
3720 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3721 * code.
3722 */
3723SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3724{
3725	struct sched_param lp;
3726	struct task_struct *p;
3727	int retval;
3728
3729	if (!param || pid < 0)
3730		return -EINVAL;
3731
3732	rcu_read_lock();
3733	p = find_process_by_pid(pid);
3734	retval = -ESRCH;
3735	if (!p)
3736		goto out_unlock;
3737
3738	retval = security_task_getscheduler(p);
3739	if (retval)
3740		goto out_unlock;
3741
3742	if (task_has_dl_policy(p)) {
3743		retval = -EINVAL;
3744		goto out_unlock;
3745	}
3746	lp.sched_priority = p->rt_priority;
3747	rcu_read_unlock();
3748
3749	/*
3750	 * This one might sleep, we cannot do it with a spinlock held ...
3751	 */
3752	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3753
3754	return retval;
3755
3756out_unlock:
3757	rcu_read_unlock();
3758	return retval;
3759}
3760
3761static int sched_read_attr(struct sched_attr __user *uattr,
3762			   struct sched_attr *attr,
3763			   unsigned int usize)
3764{
3765	int ret;
3766
3767	if (!access_ok(VERIFY_WRITE, uattr, usize))
3768		return -EFAULT;
3769
3770	/*
3771	 * If we're handed a smaller struct than we know of,
3772	 * ensure all the unknown bits are 0 - i.e. old
3773	 * user-space does not get uncomplete information.
3774	 */
3775	if (usize < sizeof(*attr)) {
3776		unsigned char *addr;
3777		unsigned char *end;
3778
3779		addr = (void *)attr + usize;
3780		end  = (void *)attr + sizeof(*attr);
3781
3782		for (; addr < end; addr++) {
3783			if (*addr)
3784				goto err_size;
3785		}
3786
3787		attr->size = usize;
3788	}
3789
3790	ret = copy_to_user(uattr, attr, attr->size);
3791	if (ret)
3792		return -EFAULT;
3793
3794out:
3795	return ret;
3796
3797err_size:
3798	ret = -E2BIG;
3799	goto out;
3800}
3801
3802/**
3803 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3804 * @pid: the pid in question.
3805 * @uattr: structure containing the extended parameters.
3806 * @size: sizeof(attr) for fwd/bwd comp.
3807 */
3808SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3809		unsigned int, size, unsigned int, flags)
3810{
3811	struct sched_attr attr = {
3812		.size = sizeof(struct sched_attr),
3813	};
3814	struct task_struct *p;
3815	int retval;
3816
3817	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3818	    size < SCHED_ATTR_SIZE_VER0 || flags)
3819		return -EINVAL;
3820
3821	rcu_read_lock();
3822	p = find_process_by_pid(pid);
3823	retval = -ESRCH;
3824	if (!p)
3825		goto out_unlock;
3826
3827	retval = security_task_getscheduler(p);
3828	if (retval)
3829		goto out_unlock;
3830
3831	attr.sched_policy = p->policy;
3832	if (p->sched_reset_on_fork)
3833		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3834	if (task_has_dl_policy(p))
3835		__getparam_dl(p, &attr);
3836	else if (task_has_rt_policy(p))
3837		attr.sched_priority = p->rt_priority;
3838	else
3839		attr.sched_nice = TASK_NICE(p);
3840
3841	rcu_read_unlock();
3842
3843	retval = sched_read_attr(uattr, &attr, size);
3844	return retval;
3845
3846out_unlock:
3847	rcu_read_unlock();
3848	return retval;
3849}
3850
3851long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3852{
3853	cpumask_var_t cpus_allowed, new_mask;
3854	struct task_struct *p;
3855	int retval;
3856
3857	rcu_read_lock();
3858
3859	p = find_process_by_pid(pid);
3860	if (!p) {
3861		rcu_read_unlock();
3862		return -ESRCH;
3863	}
3864
3865	/* Prevent p going away */
3866	get_task_struct(p);
3867	rcu_read_unlock();
3868
3869	if (p->flags & PF_NO_SETAFFINITY) {
3870		retval = -EINVAL;
3871		goto out_put_task;
3872	}
3873	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3874		retval = -ENOMEM;
3875		goto out_put_task;
3876	}
3877	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3878		retval = -ENOMEM;
3879		goto out_free_cpus_allowed;
3880	}
3881	retval = -EPERM;
3882	if (!check_same_owner(p)) {
3883		rcu_read_lock();
3884		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3885			rcu_read_unlock();
3886			goto out_unlock;
3887		}
3888		rcu_read_unlock();
3889	}
3890
3891	retval = security_task_setscheduler(p);
3892	if (retval)
3893		goto out_unlock;
3894
3895
3896	cpuset_cpus_allowed(p, cpus_allowed);
3897	cpumask_and(new_mask, in_mask, cpus_allowed);
3898
3899	/*
3900	 * Since bandwidth control happens on root_domain basis,
3901	 * if admission test is enabled, we only admit -deadline
3902	 * tasks allowed to run on all the CPUs in the task's
3903	 * root_domain.
3904	 */
3905#ifdef CONFIG_SMP
3906	if (task_has_dl_policy(p)) {
3907		const struct cpumask *span = task_rq(p)->rd->span;
3908
3909		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3910			retval = -EBUSY;
3911			goto out_unlock;
3912		}
3913	}
3914#endif
3915again:
3916	retval = set_cpus_allowed_ptr(p, new_mask);
3917
3918	if (!retval) {
3919		cpuset_cpus_allowed(p, cpus_allowed);
3920		if (!cpumask_subset(new_mask, cpus_allowed)) {
3921			/*
3922			 * We must have raced with a concurrent cpuset
3923			 * update. Just reset the cpus_allowed to the
3924			 * cpuset's cpus_allowed
3925			 */
3926			cpumask_copy(new_mask, cpus_allowed);
3927			goto again;
3928		}
3929	}
3930out_unlock:
3931	free_cpumask_var(new_mask);
3932out_free_cpus_allowed:
3933	free_cpumask_var(cpus_allowed);
3934out_put_task:
3935	put_task_struct(p);
3936	return retval;
3937}
3938
3939static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3940			     struct cpumask *new_mask)
3941{
3942	if (len < cpumask_size())
3943		cpumask_clear(new_mask);
3944	else if (len > cpumask_size())
3945		len = cpumask_size();
3946
3947	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3948}
3949
3950/**
3951 * sys_sched_setaffinity - set the cpu affinity of a process
3952 * @pid: pid of the process
3953 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3954 * @user_mask_ptr: user-space pointer to the new cpu mask
3955 *
3956 * Return: 0 on success. An error code otherwise.
3957 */
3958SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3959		unsigned long __user *, user_mask_ptr)
3960{
3961	cpumask_var_t new_mask;
3962	int retval;
3963
3964	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3965		return -ENOMEM;
3966
3967	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3968	if (retval == 0)
3969		retval = sched_setaffinity(pid, new_mask);
3970	free_cpumask_var(new_mask);
3971	return retval;
3972}
3973
3974long sched_getaffinity(pid_t pid, struct cpumask *mask)
3975{
3976	struct task_struct *p;
3977	unsigned long flags;
3978	int retval;
3979
3980	rcu_read_lock();
3981
3982	retval = -ESRCH;
3983	p = find_process_by_pid(pid);
3984	if (!p)
3985		goto out_unlock;
3986
3987	retval = security_task_getscheduler(p);
3988	if (retval)
3989		goto out_unlock;
3990
3991	raw_spin_lock_irqsave(&p->pi_lock, flags);
3992	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3993	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3994
3995out_unlock:
3996	rcu_read_unlock();
3997
3998	return retval;
3999}
4000
4001/**
4002 * sys_sched_getaffinity - get the cpu affinity of a process
4003 * @pid: pid of the process
4004 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4005 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4006 *
4007 * Return: 0 on success. An error code otherwise.
4008 */
4009SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4010		unsigned long __user *, user_mask_ptr)
4011{
4012	int ret;
4013	cpumask_var_t mask;
4014
4015	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4016		return -EINVAL;
4017	if (len & (sizeof(unsigned long)-1))
4018		return -EINVAL;
4019
4020	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4021		return -ENOMEM;
4022
4023	ret = sched_getaffinity(pid, mask);
4024	if (ret == 0) {
4025		size_t retlen = min_t(size_t, len, cpumask_size());
4026
4027		if (copy_to_user(user_mask_ptr, mask, retlen))
4028			ret = -EFAULT;
4029		else
4030			ret = retlen;
4031	}
4032	free_cpumask_var(mask);
4033
4034	return ret;
4035}
4036
4037/**
4038 * sys_sched_yield - yield the current processor to other threads.
4039 *
4040 * This function yields the current CPU to other tasks. If there are no
4041 * other threads running on this CPU then this function will return.
4042 *
4043 * Return: 0.
4044 */
4045SYSCALL_DEFINE0(sched_yield)
4046{
4047	struct rq *rq = this_rq_lock();
4048
4049	schedstat_inc(rq, yld_count);
4050	current->sched_class->yield_task(rq);
4051
4052	/*
4053	 * Since we are going to call schedule() anyway, there's
4054	 * no need to preempt or enable interrupts:
4055	 */
4056	__release(rq->lock);
4057	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4058	do_raw_spin_unlock(&rq->lock);
4059	sched_preempt_enable_no_resched();
4060
4061	schedule();
4062
4063	return 0;
4064}
4065
4066static void __cond_resched(void)
4067{
4068	__preempt_count_add(PREEMPT_ACTIVE);
4069	__schedule();
4070	__preempt_count_sub(PREEMPT_ACTIVE);
4071}
4072
4073int __sched _cond_resched(void)
4074{
4075	if (should_resched()) {
4076		__cond_resched();
4077		return 1;
4078	}
4079	return 0;
4080}
4081EXPORT_SYMBOL(_cond_resched);
4082
4083/*
4084 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4085 * call schedule, and on return reacquire the lock.
4086 *
4087 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4088 * operations here to prevent schedule() from being called twice (once via
4089 * spin_unlock(), once by hand).
4090 */
4091int __cond_resched_lock(spinlock_t *lock)
4092{
4093	int resched = should_resched();
4094	int ret = 0;
4095
4096	lockdep_assert_held(lock);
4097
4098	if (spin_needbreak(lock) || resched) {
4099		spin_unlock(lock);
4100		if (resched)
4101			__cond_resched();
4102		else
4103			cpu_relax();
4104		ret = 1;
4105		spin_lock(lock);
4106	}
4107	return ret;
4108}
4109EXPORT_SYMBOL(__cond_resched_lock);
4110
4111int __sched __cond_resched_softirq(void)
4112{
4113	BUG_ON(!in_softirq());
4114
4115	if (should_resched()) {
4116		local_bh_enable();
4117		__cond_resched();
4118		local_bh_disable();
4119		return 1;
4120	}
4121	return 0;
4122}
4123EXPORT_SYMBOL(__cond_resched_softirq);
4124
4125/**
4126 * yield - yield the current processor to other threads.
4127 *
4128 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4129 *
4130 * The scheduler is at all times free to pick the calling task as the most
4131 * eligible task to run, if removing the yield() call from your code breaks
4132 * it, its already broken.
4133 *
4134 * Typical broken usage is:
4135 *
4136 * while (!event)
4137 * 	yield();
4138 *
4139 * where one assumes that yield() will let 'the other' process run that will
4140 * make event true. If the current task is a SCHED_FIFO task that will never
4141 * happen. Never use yield() as a progress guarantee!!
4142 *
4143 * If you want to use yield() to wait for something, use wait_event().
4144 * If you want to use yield() to be 'nice' for others, use cond_resched().
4145 * If you still want to use yield(), do not!
4146 */
4147void __sched yield(void)
4148{
4149	set_current_state(TASK_RUNNING);
4150	sys_sched_yield();
4151}
4152EXPORT_SYMBOL(yield);
4153
4154/**
4155 * yield_to - yield the current processor to another thread in
4156 * your thread group, or accelerate that thread toward the
4157 * processor it's on.
4158 * @p: target task
4159 * @preempt: whether task preemption is allowed or not
4160 *
4161 * It's the caller's job to ensure that the target task struct
4162 * can't go away on us before we can do any checks.
4163 *
4164 * Return:
4165 *	true (>0) if we indeed boosted the target task.
4166 *	false (0) if we failed to boost the target.
4167 *	-ESRCH if there's no task to yield to.
4168 */
4169bool __sched yield_to(struct task_struct *p, bool preempt)
4170{
4171	struct task_struct *curr = current;
4172	struct rq *rq, *p_rq;
4173	unsigned long flags;
4174	int yielded = 0;
4175
4176	local_irq_save(flags);
4177	rq = this_rq();
4178
4179again:
4180	p_rq = task_rq(p);
4181	/*
4182	 * If we're the only runnable task on the rq and target rq also
4183	 * has only one task, there's absolutely no point in yielding.
4184	 */
4185	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4186		yielded = -ESRCH;
4187		goto out_irq;
4188	}
4189
4190	double_rq_lock(rq, p_rq);
4191	if (task_rq(p) != p_rq) {
4192		double_rq_unlock(rq, p_rq);
4193		goto again;
4194	}
4195
4196	if (!curr->sched_class->yield_to_task)
4197		goto out_unlock;
4198
4199	if (curr->sched_class != p->sched_class)
4200		goto out_unlock;
4201
4202	if (task_running(p_rq, p) || p->state)
4203		goto out_unlock;
4204
4205	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4206	if (yielded) {
4207		schedstat_inc(rq, yld_count);
4208		/*
4209		 * Make p's CPU reschedule; pick_next_entity takes care of
4210		 * fairness.
4211		 */
4212		if (preempt && rq != p_rq)
4213			resched_task(p_rq->curr);
4214	}
4215
4216out_unlock:
4217	double_rq_unlock(rq, p_rq);
4218out_irq:
4219	local_irq_restore(flags);
4220
4221	if (yielded > 0)
4222		schedule();
4223
4224	return yielded;
4225}
4226EXPORT_SYMBOL_GPL(yield_to);
4227
4228/*
4229 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4230 * that process accounting knows that this is a task in IO wait state.
4231 */
4232void __sched io_schedule(void)
4233{
4234	struct rq *rq = raw_rq();
4235
4236	delayacct_blkio_start();
4237	atomic_inc(&rq->nr_iowait);
4238	blk_flush_plug(current);
4239	current->in_iowait = 1;
4240	schedule();
4241	current->in_iowait = 0;
4242	atomic_dec(&rq->nr_iowait);
4243	delayacct_blkio_end();
4244}
4245EXPORT_SYMBOL(io_schedule);
4246
4247long __sched io_schedule_timeout(long timeout)
4248{
4249	struct rq *rq = raw_rq();
4250	long ret;
4251
4252	delayacct_blkio_start();
4253	atomic_inc(&rq->nr_iowait);
4254	blk_flush_plug(current);
4255	current->in_iowait = 1;
4256	ret = schedule_timeout(timeout);
4257	current->in_iowait = 0;
4258	atomic_dec(&rq->nr_iowait);
4259	delayacct_blkio_end();
4260	return ret;
4261}
4262
4263/**
4264 * sys_sched_get_priority_max - return maximum RT priority.
4265 * @policy: scheduling class.
4266 *
4267 * Return: On success, this syscall returns the maximum
4268 * rt_priority that can be used by a given scheduling class.
4269 * On failure, a negative error code is returned.
4270 */
4271SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4272{
4273	int ret = -EINVAL;
4274
4275	switch (policy) {
4276	case SCHED_FIFO:
4277	case SCHED_RR:
4278		ret = MAX_USER_RT_PRIO-1;
4279		break;
4280	case SCHED_DEADLINE:
4281	case SCHED_NORMAL:
4282	case SCHED_BATCH:
4283	case SCHED_IDLE:
4284		ret = 0;
4285		break;
4286	}
4287	return ret;
4288}
4289
4290/**
4291 * sys_sched_get_priority_min - return minimum RT priority.
4292 * @policy: scheduling class.
4293 *
4294 * Return: On success, this syscall returns the minimum
4295 * rt_priority that can be used by a given scheduling class.
4296 * On failure, a negative error code is returned.
4297 */
4298SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4299{
4300	int ret = -EINVAL;
4301
4302	switch (policy) {
4303	case SCHED_FIFO:
4304	case SCHED_RR:
4305		ret = 1;
4306		break;
4307	case SCHED_DEADLINE:
4308	case SCHED_NORMAL:
4309	case SCHED_BATCH:
4310	case SCHED_IDLE:
4311		ret = 0;
4312	}
4313	return ret;
4314}
4315
4316/**
4317 * sys_sched_rr_get_interval - return the default timeslice of a process.
4318 * @pid: pid of the process.
4319 * @interval: userspace pointer to the timeslice value.
4320 *
4321 * this syscall writes the default timeslice value of a given process
4322 * into the user-space timespec buffer. A value of '0' means infinity.
4323 *
4324 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4325 * an error code.
4326 */
4327SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4328		struct timespec __user *, interval)
4329{
4330	struct task_struct *p;
4331	unsigned int time_slice;
4332	unsigned long flags;
4333	struct rq *rq;
4334	int retval;
4335	struct timespec t;
4336
4337	if (pid < 0)
4338		return -EINVAL;
4339
4340	retval = -ESRCH;
4341	rcu_read_lock();
4342	p = find_process_by_pid(pid);
4343	if (!p)
4344		goto out_unlock;
4345
4346	retval = security_task_getscheduler(p);
4347	if (retval)
4348		goto out_unlock;
4349
4350	rq = task_rq_lock(p, &flags);
4351	time_slice = 0;
4352	if (p->sched_class->get_rr_interval)
4353		time_slice = p->sched_class->get_rr_interval(rq, p);
4354	task_rq_unlock(rq, p, &flags);
4355
4356	rcu_read_unlock();
4357	jiffies_to_timespec(time_slice, &t);
4358	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4359	return retval;
4360
4361out_unlock:
4362	rcu_read_unlock();
4363	return retval;
4364}
4365
4366static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4367
4368void sched_show_task(struct task_struct *p)
4369{
4370	unsigned long free = 0;
4371	int ppid;
4372	unsigned state;
4373
4374	state = p->state ? __ffs(p->state) + 1 : 0;
4375	printk(KERN_INFO "%-15.15s %c", p->comm,
4376		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4377#if BITS_PER_LONG == 32
4378	if (state == TASK_RUNNING)
4379		printk(KERN_CONT " running  ");
4380	else
4381		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4382#else
4383	if (state == TASK_RUNNING)
4384		printk(KERN_CONT "  running task    ");
4385	else
4386		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4387#endif
4388#ifdef CONFIG_DEBUG_STACK_USAGE
4389	free = stack_not_used(p);
4390#endif
4391	rcu_read_lock();
4392	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4393	rcu_read_unlock();
4394	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4395		task_pid_nr(p), ppid,
4396		(unsigned long)task_thread_info(p)->flags);
4397
4398	print_worker_info(KERN_INFO, p);
4399	show_stack(p, NULL);
4400}
4401
4402void show_state_filter(unsigned long state_filter)
4403{
4404	struct task_struct *g, *p;
4405
4406#if BITS_PER_LONG == 32
4407	printk(KERN_INFO
4408		"  task                PC stack   pid father\n");
4409#else
4410	printk(KERN_INFO
4411		"  task                        PC stack   pid father\n");
4412#endif
4413	rcu_read_lock();
4414	do_each_thread(g, p) {
4415		/*
4416		 * reset the NMI-timeout, listing all files on a slow
4417		 * console might take a lot of time:
4418		 */
4419		touch_nmi_watchdog();
4420		if (!state_filter || (p->state & state_filter))
4421			sched_show_task(p);
4422	} while_each_thread(g, p);
4423
4424	touch_all_softlockup_watchdogs();
4425
4426#ifdef CONFIG_SCHED_DEBUG
4427	sysrq_sched_debug_show();
4428#endif
4429	rcu_read_unlock();
4430	/*
4431	 * Only show locks if all tasks are dumped:
4432	 */
4433	if (!state_filter)
4434		debug_show_all_locks();
4435}
4436
4437void init_idle_bootup_task(struct task_struct *idle)
4438{
4439	idle->sched_class = &idle_sched_class;
4440}
4441
4442/**
4443 * init_idle - set up an idle thread for a given CPU
4444 * @idle: task in question
4445 * @cpu: cpu the idle task belongs to
4446 *
4447 * NOTE: this function does not set the idle thread's NEED_RESCHED
4448 * flag, to make booting more robust.
4449 */
4450void init_idle(struct task_struct *idle, int cpu)
4451{
4452	struct rq *rq = cpu_rq(cpu);
4453	unsigned long flags;
4454
4455	raw_spin_lock_irqsave(&rq->lock, flags);
4456
4457	__sched_fork(0, idle);
4458	idle->state = TASK_RUNNING;
4459	idle->se.exec_start = sched_clock();
4460
4461	do_set_cpus_allowed(idle, cpumask_of(cpu));
4462	/*
4463	 * We're having a chicken and egg problem, even though we are
4464	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4465	 * lockdep check in task_group() will fail.
4466	 *
4467	 * Similar case to sched_fork(). / Alternatively we could
4468	 * use task_rq_lock() here and obtain the other rq->lock.
4469	 *
4470	 * Silence PROVE_RCU
4471	 */
4472	rcu_read_lock();
4473	__set_task_cpu(idle, cpu);
4474	rcu_read_unlock();
4475
4476	rq->curr = rq->idle = idle;
4477#if defined(CONFIG_SMP)
4478	idle->on_cpu = 1;
4479#endif
4480	raw_spin_unlock_irqrestore(&rq->lock, flags);
4481
4482	/* Set the preempt count _outside_ the spinlocks! */
4483	init_idle_preempt_count(idle, cpu);
4484
4485	/*
4486	 * The idle tasks have their own, simple scheduling class:
4487	 */
4488	idle->sched_class = &idle_sched_class;
4489	ftrace_graph_init_idle_task(idle, cpu);
4490	vtime_init_idle(idle, cpu);
4491#if defined(CONFIG_SMP)
4492	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4493#endif
4494}
4495
4496#ifdef CONFIG_SMP
4497void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4498{
4499	if (p->sched_class && p->sched_class->set_cpus_allowed)
4500		p->sched_class->set_cpus_allowed(p, new_mask);
4501
4502	cpumask_copy(&p->cpus_allowed, new_mask);
4503	p->nr_cpus_allowed = cpumask_weight(new_mask);
4504}
4505
4506/*
4507 * This is how migration works:
4508 *
4509 * 1) we invoke migration_cpu_stop() on the target CPU using
4510 *    stop_one_cpu().
4511 * 2) stopper starts to run (implicitly forcing the migrated thread
4512 *    off the CPU)
4513 * 3) it checks whether the migrated task is still in the wrong runqueue.
4514 * 4) if it's in the wrong runqueue then the migration thread removes
4515 *    it and puts it into the right queue.
4516 * 5) stopper completes and stop_one_cpu() returns and the migration
4517 *    is done.
4518 */
4519
4520/*
4521 * Change a given task's CPU affinity. Migrate the thread to a
4522 * proper CPU and schedule it away if the CPU it's executing on
4523 * is removed from the allowed bitmask.
4524 *
4525 * NOTE: the caller must have a valid reference to the task, the
4526 * task must not exit() & deallocate itself prematurely. The
4527 * call is not atomic; no spinlocks may be held.
4528 */
4529int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4530{
4531	unsigned long flags;
4532	struct rq *rq;
4533	unsigned int dest_cpu;
4534	int ret = 0;
4535
4536	rq = task_rq_lock(p, &flags);
4537
4538	if (cpumask_equal(&p->cpus_allowed, new_mask))
4539		goto out;
4540
4541	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4542		ret = -EINVAL;
4543		goto out;
4544	}
4545
4546	do_set_cpus_allowed(p, new_mask);
4547
4548	/* Can the task run on the task's current CPU? If so, we're done */
4549	if (cpumask_test_cpu(task_cpu(p), new_mask))
4550		goto out;
4551
4552	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4553	if (p->on_rq) {
4554		struct migration_arg arg = { p, dest_cpu };
4555		/* Need help from migration thread: drop lock and wait. */
4556		task_rq_unlock(rq, p, &flags);
4557		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4558		tlb_migrate_finish(p->mm);
4559		return 0;
4560	}
4561out:
4562	task_rq_unlock(rq, p, &flags);
4563
4564	return ret;
4565}
4566EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4567
4568/*
4569 * Move (not current) task off this cpu, onto dest cpu. We're doing
4570 * this because either it can't run here any more (set_cpus_allowed()
4571 * away from this CPU, or CPU going down), or because we're
4572 * attempting to rebalance this task on exec (sched_exec).
4573 *
4574 * So we race with normal scheduler movements, but that's OK, as long
4575 * as the task is no longer on this CPU.
4576 *
4577 * Returns non-zero if task was successfully migrated.
4578 */
4579static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4580{
4581	struct rq *rq_dest, *rq_src;
4582	int ret = 0;
4583
4584	if (unlikely(!cpu_active(dest_cpu)))
4585		return ret;
4586
4587	rq_src = cpu_rq(src_cpu);
4588	rq_dest = cpu_rq(dest_cpu);
4589
4590	raw_spin_lock(&p->pi_lock);
4591	double_rq_lock(rq_src, rq_dest);
4592	/* Already moved. */
4593	if (task_cpu(p) != src_cpu)
4594		goto done;
4595	/* Affinity changed (again). */
4596	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4597		goto fail;
4598
4599	/*
4600	 * If we're not on a rq, the next wake-up will ensure we're
4601	 * placed properly.
4602	 */
4603	if (p->on_rq) {
4604		dequeue_task(rq_src, p, 0);
4605		set_task_cpu(p, dest_cpu);
4606		enqueue_task(rq_dest, p, 0);
4607		check_preempt_curr(rq_dest, p, 0);
4608	}
4609done:
4610	ret = 1;
4611fail:
4612	double_rq_unlock(rq_src, rq_dest);
4613	raw_spin_unlock(&p->pi_lock);
4614	return ret;
4615}
4616
4617#ifdef CONFIG_NUMA_BALANCING
4618/* Migrate current task p to target_cpu */
4619int migrate_task_to(struct task_struct *p, int target_cpu)
4620{
4621	struct migration_arg arg = { p, target_cpu };
4622	int curr_cpu = task_cpu(p);
4623
4624	if (curr_cpu == target_cpu)
4625		return 0;
4626
4627	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4628		return -EINVAL;
4629
4630	/* TODO: This is not properly updating schedstats */
4631
4632	trace_sched_move_numa(p, curr_cpu, target_cpu);
4633	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4634}
4635
4636/*
4637 * Requeue a task on a given node and accurately track the number of NUMA
4638 * tasks on the runqueues
4639 */
4640void sched_setnuma(struct task_struct *p, int nid)
4641{
4642	struct rq *rq;
4643	unsigned long flags;
4644	bool on_rq, running;
4645
4646	rq = task_rq_lock(p, &flags);
4647	on_rq = p->on_rq;
4648	running = task_current(rq, p);
4649
4650	if (on_rq)
4651		dequeue_task(rq, p, 0);
4652	if (running)
4653		p->sched_class->put_prev_task(rq, p);
4654
4655	p->numa_preferred_nid = nid;
4656
4657	if (running)
4658		p->sched_class->set_curr_task(rq);
4659	if (on_rq)
4660		enqueue_task(rq, p, 0);
4661	task_rq_unlock(rq, p, &flags);
4662}
4663#endif
4664
4665/*
4666 * migration_cpu_stop - this will be executed by a highprio stopper thread
4667 * and performs thread migration by bumping thread off CPU then
4668 * 'pushing' onto another runqueue.
4669 */
4670static int migration_cpu_stop(void *data)
4671{
4672	struct migration_arg *arg = data;
4673
4674	/*
4675	 * The original target cpu might have gone down and we might
4676	 * be on another cpu but it doesn't matter.
4677	 */
4678	local_irq_disable();
4679	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4680	local_irq_enable();
4681	return 0;
4682}
4683
4684#ifdef CONFIG_HOTPLUG_CPU
4685
4686/*
4687 * Ensures that the idle task is using init_mm right before its cpu goes
4688 * offline.
4689 */
4690void idle_task_exit(void)
4691{
4692	struct mm_struct *mm = current->active_mm;
4693
4694	BUG_ON(cpu_online(smp_processor_id()));
4695
4696	if (mm != &init_mm)
4697		switch_mm(mm, &init_mm, current);
4698	mmdrop(mm);
4699}
4700
4701/*
4702 * Since this CPU is going 'away' for a while, fold any nr_active delta
4703 * we might have. Assumes we're called after migrate_tasks() so that the
4704 * nr_active count is stable.
4705 *
4706 * Also see the comment "Global load-average calculations".
4707 */
4708static void calc_load_migrate(struct rq *rq)
4709{
4710	long delta = calc_load_fold_active(rq);
4711	if (delta)
4712		atomic_long_add(delta, &calc_load_tasks);
4713}
4714
4715/*
4716 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4717 * try_to_wake_up()->select_task_rq().
4718 *
4719 * Called with rq->lock held even though we'er in stop_machine() and
4720 * there's no concurrency possible, we hold the required locks anyway
4721 * because of lock validation efforts.
4722 */
4723static void migrate_tasks(unsigned int dead_cpu)
4724{
4725	struct rq *rq = cpu_rq(dead_cpu);
4726	struct task_struct *next, *stop = rq->stop;
4727	int dest_cpu;
4728
4729	/*
4730	 * Fudge the rq selection such that the below task selection loop
4731	 * doesn't get stuck on the currently eligible stop task.
4732	 *
4733	 * We're currently inside stop_machine() and the rq is either stuck
4734	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4735	 * either way we should never end up calling schedule() until we're
4736	 * done here.
4737	 */
4738	rq->stop = NULL;
4739
4740	/*
4741	 * put_prev_task() and pick_next_task() sched
4742	 * class method both need to have an up-to-date
4743	 * value of rq->clock[_task]
4744	 */
4745	update_rq_clock(rq);
4746
4747	for ( ; ; ) {
4748		/*
4749		 * There's this thread running, bail when that's the only
4750		 * remaining thread.
4751		 */
4752		if (rq->nr_running == 1)
4753			break;
4754
4755		next = pick_next_task(rq);
4756		BUG_ON(!next);
4757		next->sched_class->put_prev_task(rq, next);
4758
4759		/* Find suitable destination for @next, with force if needed. */
4760		dest_cpu = select_fallback_rq(dead_cpu, next);
4761		raw_spin_unlock(&rq->lock);
4762
4763		__migrate_task(next, dead_cpu, dest_cpu);
4764
4765		raw_spin_lock(&rq->lock);
4766	}
4767
4768	rq->stop = stop;
4769}
4770
4771#endif /* CONFIG_HOTPLUG_CPU */
4772
4773#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4774
4775static struct ctl_table sd_ctl_dir[] = {
4776	{
4777		.procname	= "sched_domain",
4778		.mode		= 0555,
4779	},
4780	{}
4781};
4782
4783static struct ctl_table sd_ctl_root[] = {
4784	{
4785		.procname	= "kernel",
4786		.mode		= 0555,
4787		.child		= sd_ctl_dir,
4788	},
4789	{}
4790};
4791
4792static struct ctl_table *sd_alloc_ctl_entry(int n)
4793{
4794	struct ctl_table *entry =
4795		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4796
4797	return entry;
4798}
4799
4800static void sd_free_ctl_entry(struct ctl_table **tablep)
4801{
4802	struct ctl_table *entry;
4803
4804	/*
4805	 * In the intermediate directories, both the child directory and
4806	 * procname are dynamically allocated and could fail but the mode
4807	 * will always be set. In the lowest directory the names are
4808	 * static strings and all have proc handlers.
4809	 */
4810	for (entry = *tablep; entry->mode; entry++) {
4811		if (entry->child)
4812			sd_free_ctl_entry(&entry->child);
4813		if (entry->proc_handler == NULL)
4814			kfree(entry->procname);
4815	}
4816
4817	kfree(*tablep);
4818	*tablep = NULL;
4819}
4820
4821static int min_load_idx = 0;
4822static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4823
4824static void
4825set_table_entry(struct ctl_table *entry,
4826		const char *procname, void *data, int maxlen,
4827		umode_t mode, proc_handler *proc_handler,
4828		bool load_idx)
4829{
4830	entry->procname = procname;
4831	entry->data = data;
4832	entry->maxlen = maxlen;
4833	entry->mode = mode;
4834	entry->proc_handler = proc_handler;
4835
4836	if (load_idx) {
4837		entry->extra1 = &min_load_idx;
4838		entry->extra2 = &max_load_idx;
4839	}
4840}
4841
4842static struct ctl_table *
4843sd_alloc_ctl_domain_table(struct sched_domain *sd)
4844{
4845	struct ctl_table *table = sd_alloc_ctl_entry(13);
4846
4847	if (table == NULL)
4848		return NULL;
4849
4850	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4851		sizeof(long), 0644, proc_doulongvec_minmax, false);
4852	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4853		sizeof(long), 0644, proc_doulongvec_minmax, false);
4854	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4855		sizeof(int), 0644, proc_dointvec_minmax, true);
4856	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4857		sizeof(int), 0644, proc_dointvec_minmax, true);
4858	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4859		sizeof(int), 0644, proc_dointvec_minmax, true);
4860	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4861		sizeof(int), 0644, proc_dointvec_minmax, true);
4862	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4863		sizeof(int), 0644, proc_dointvec_minmax, true);
4864	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4865		sizeof(int), 0644, proc_dointvec_minmax, false);
4866	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4867		sizeof(int), 0644, proc_dointvec_minmax, false);
4868	set_table_entry(&table[9], "cache_nice_tries",
4869		&sd->cache_nice_tries,
4870		sizeof(int), 0644, proc_dointvec_minmax, false);
4871	set_table_entry(&table[10], "flags", &sd->flags,
4872		sizeof(int), 0644, proc_dointvec_minmax, false);
4873	set_table_entry(&table[11], "name", sd->name,
4874		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4875	/* &table[12] is terminator */
4876
4877	return table;
4878}
4879
4880static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4881{
4882	struct ctl_table *entry, *table;
4883	struct sched_domain *sd;
4884	int domain_num = 0, i;
4885	char buf[32];
4886
4887	for_each_domain(cpu, sd)
4888		domain_num++;
4889	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4890	if (table == NULL)
4891		return NULL;
4892
4893	i = 0;
4894	for_each_domain(cpu, sd) {
4895		snprintf(buf, 32, "domain%d", i);
4896		entry->procname = kstrdup(buf, GFP_KERNEL);
4897		entry->mode = 0555;
4898		entry->child = sd_alloc_ctl_domain_table(sd);
4899		entry++;
4900		i++;
4901	}
4902	return table;
4903}
4904
4905static struct ctl_table_header *sd_sysctl_header;
4906static void register_sched_domain_sysctl(void)
4907{
4908	int i, cpu_num = num_possible_cpus();
4909	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4910	char buf[32];
4911
4912	WARN_ON(sd_ctl_dir[0].child);
4913	sd_ctl_dir[0].child = entry;
4914
4915	if (entry == NULL)
4916		return;
4917
4918	for_each_possible_cpu(i) {
4919		snprintf(buf, 32, "cpu%d", i);
4920		entry->procname = kstrdup(buf, GFP_KERNEL);
4921		entry->mode = 0555;
4922		entry->child = sd_alloc_ctl_cpu_table(i);
4923		entry++;
4924	}
4925
4926	WARN_ON(sd_sysctl_header);
4927	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4928}
4929
4930/* may be called multiple times per register */
4931static void unregister_sched_domain_sysctl(void)
4932{
4933	if (sd_sysctl_header)
4934		unregister_sysctl_table(sd_sysctl_header);
4935	sd_sysctl_header = NULL;
4936	if (sd_ctl_dir[0].child)
4937		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4938}
4939#else
4940static void register_sched_domain_sysctl(void)
4941{
4942}
4943static void unregister_sched_domain_sysctl(void)
4944{
4945}
4946#endif
4947
4948static void set_rq_online(struct rq *rq)
4949{
4950	if (!rq->online) {
4951		const struct sched_class *class;
4952
4953		cpumask_set_cpu(rq->cpu, rq->rd->online);
4954		rq->online = 1;
4955
4956		for_each_class(class) {
4957			if (class->rq_online)
4958				class->rq_online(rq);
4959		}
4960	}
4961}
4962
4963static void set_rq_offline(struct rq *rq)
4964{
4965	if (rq->online) {
4966		const struct sched_class *class;
4967
4968		for_each_class(class) {
4969			if (class->rq_offline)
4970				class->rq_offline(rq);
4971		}
4972
4973		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4974		rq->online = 0;
4975	}
4976}
4977
4978/*
4979 * migration_call - callback that gets triggered when a CPU is added.
4980 * Here we can start up the necessary migration thread for the new CPU.
4981 */
4982static int
4983migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4984{
4985	int cpu = (long)hcpu;
4986	unsigned long flags;
4987	struct rq *rq = cpu_rq(cpu);
4988
4989	switch (action & ~CPU_TASKS_FROZEN) {
4990
4991	case CPU_UP_PREPARE:
4992		rq->calc_load_update = calc_load_update;
4993		break;
4994
4995	case CPU_ONLINE:
4996		/* Update our root-domain */
4997		raw_spin_lock_irqsave(&rq->lock, flags);
4998		if (rq->rd) {
4999			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5000
5001			set_rq_online(rq);
5002		}
5003		raw_spin_unlock_irqrestore(&rq->lock, flags);
5004		break;
5005
5006#ifdef CONFIG_HOTPLUG_CPU
5007	case CPU_DYING:
5008		sched_ttwu_pending();
5009		/* Update our root-domain */
5010		raw_spin_lock_irqsave(&rq->lock, flags);
5011		if (rq->rd) {
5012			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5013			set_rq_offline(rq);
5014		}
5015		migrate_tasks(cpu);
5016		BUG_ON(rq->nr_running != 1); /* the migration thread */
5017		raw_spin_unlock_irqrestore(&rq->lock, flags);
5018		break;
5019
5020	case CPU_DEAD:
5021		calc_load_migrate(rq);
5022		break;
5023#endif
5024	}
5025
5026	update_max_interval();
5027
5028	return NOTIFY_OK;
5029}
5030
5031/*
5032 * Register at high priority so that task migration (migrate_all_tasks)
5033 * happens before everything else.  This has to be lower priority than
5034 * the notifier in the perf_event subsystem, though.
5035 */
5036static struct notifier_block migration_notifier = {
5037	.notifier_call = migration_call,
5038	.priority = CPU_PRI_MIGRATION,
5039};
5040
5041static int sched_cpu_active(struct notifier_block *nfb,
5042				      unsigned long action, void *hcpu)
5043{
5044	switch (action & ~CPU_TASKS_FROZEN) {
5045	case CPU_STARTING:
5046	case CPU_DOWN_FAILED:
5047		set_cpu_active((long)hcpu, true);
5048		return NOTIFY_OK;
5049	default:
5050		return NOTIFY_DONE;
5051	}
5052}
5053
5054static int sched_cpu_inactive(struct notifier_block *nfb,
5055					unsigned long action, void *hcpu)
5056{
5057	unsigned long flags;
5058	long cpu = (long)hcpu;
5059
5060	switch (action & ~CPU_TASKS_FROZEN) {
5061	case CPU_DOWN_PREPARE:
5062		set_cpu_active(cpu, false);
5063
5064		/* explicitly allow suspend */
5065		if (!(action & CPU_TASKS_FROZEN)) {
5066			struct dl_bw *dl_b = dl_bw_of(cpu);
5067			bool overflow;
5068			int cpus;
5069
5070			raw_spin_lock_irqsave(&dl_b->lock, flags);
5071			cpus = dl_bw_cpus(cpu);
5072			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5073			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5074
5075			if (overflow)
5076				return notifier_from_errno(-EBUSY);
5077		}
5078		return NOTIFY_OK;
5079	}
5080
5081	return NOTIFY_DONE;
5082}
5083
5084static int __init migration_init(void)
5085{
5086	void *cpu = (void *)(long)smp_processor_id();
5087	int err;
5088
5089	/* Initialize migration for the boot CPU */
5090	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5091	BUG_ON(err == NOTIFY_BAD);
5092	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5093	register_cpu_notifier(&migration_notifier);
5094
5095	/* Register cpu active notifiers */
5096	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5097	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5098
5099	return 0;
5100}
5101early_initcall(migration_init);
5102#endif
5103
5104#ifdef CONFIG_SMP
5105
5106static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5107
5108#ifdef CONFIG_SCHED_DEBUG
5109
5110static __read_mostly int sched_debug_enabled;
5111
5112static int __init sched_debug_setup(char *str)
5113{
5114	sched_debug_enabled = 1;
5115
5116	return 0;
5117}
5118early_param("sched_debug", sched_debug_setup);
5119
5120static inline bool sched_debug(void)
5121{
5122	return sched_debug_enabled;
5123}
5124
5125static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5126				  struct cpumask *groupmask)
5127{
5128	struct sched_group *group = sd->groups;
5129	char str[256];
5130
5131	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5132	cpumask_clear(groupmask);
5133
5134	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5135
5136	if (!(sd->flags & SD_LOAD_BALANCE)) {
5137		printk("does not load-balance\n");
5138		if (sd->parent)
5139			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5140					" has parent");
5141		return -1;
5142	}
5143
5144	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5145
5146	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5147		printk(KERN_ERR "ERROR: domain->span does not contain "
5148				"CPU%d\n", cpu);
5149	}
5150	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5151		printk(KERN_ERR "ERROR: domain->groups does not contain"
5152				" CPU%d\n", cpu);
5153	}
5154
5155	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5156	do {
5157		if (!group) {
5158			printk("\n");
5159			printk(KERN_ERR "ERROR: group is NULL\n");
5160			break;
5161		}
5162
5163		/*
5164		 * Even though we initialize ->power to something semi-sane,
5165		 * we leave power_orig unset. This allows us to detect if
5166		 * domain iteration is still funny without causing /0 traps.
5167		 */
5168		if (!group->sgp->power_orig) {
5169			printk(KERN_CONT "\n");
5170			printk(KERN_ERR "ERROR: domain->cpu_power not "
5171					"set\n");
5172			break;
5173		}
5174
5175		if (!cpumask_weight(sched_group_cpus(group))) {
5176			printk(KERN_CONT "\n");
5177			printk(KERN_ERR "ERROR: empty group\n");
5178			break;
5179		}
5180
5181		if (!(sd->flags & SD_OVERLAP) &&
5182		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5183			printk(KERN_CONT "\n");
5184			printk(KERN_ERR "ERROR: repeated CPUs\n");
5185			break;
5186		}
5187
5188		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5189
5190		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5191
5192		printk(KERN_CONT " %s", str);
5193		if (group->sgp->power != SCHED_POWER_SCALE) {
5194			printk(KERN_CONT " (cpu_power = %d)",
5195				group->sgp->power);
5196		}
5197
5198		group = group->next;
5199	} while (group != sd->groups);
5200	printk(KERN_CONT "\n");
5201
5202	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5203		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5204
5205	if (sd->parent &&
5206	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5207		printk(KERN_ERR "ERROR: parent span is not a superset "
5208			"of domain->span\n");
5209	return 0;
5210}
5211
5212static void sched_domain_debug(struct sched_domain *sd, int cpu)
5213{
5214	int level = 0;
5215
5216	if (!sched_debug_enabled)
5217		return;
5218
5219	if (!sd) {
5220		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5221		return;
5222	}
5223
5224	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5225
5226	for (;;) {
5227		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5228			break;
5229		level++;
5230		sd = sd->parent;
5231		if (!sd)
5232			break;
5233	}
5234}
5235#else /* !CONFIG_SCHED_DEBUG */
5236# define sched_domain_debug(sd, cpu) do { } while (0)
5237static inline bool sched_debug(void)
5238{
5239	return false;
5240}
5241#endif /* CONFIG_SCHED_DEBUG */
5242
5243static int sd_degenerate(struct sched_domain *sd)
5244{
5245	if (cpumask_weight(sched_domain_span(sd)) == 1)
5246		return 1;
5247
5248	/* Following flags need at least 2 groups */
5249	if (sd->flags & (SD_LOAD_BALANCE |
5250			 SD_BALANCE_NEWIDLE |
5251			 SD_BALANCE_FORK |
5252			 SD_BALANCE_EXEC |
5253			 SD_SHARE_CPUPOWER |
5254			 SD_SHARE_PKG_RESOURCES)) {
5255		if (sd->groups != sd->groups->next)
5256			return 0;
5257	}
5258
5259	/* Following flags don't use groups */
5260	if (sd->flags & (SD_WAKE_AFFINE))
5261		return 0;
5262
5263	return 1;
5264}
5265
5266static int
5267sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5268{
5269	unsigned long cflags = sd->flags, pflags = parent->flags;
5270
5271	if (sd_degenerate(parent))
5272		return 1;
5273
5274	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5275		return 0;
5276
5277	/* Flags needing groups don't count if only 1 group in parent */
5278	if (parent->groups == parent->groups->next) {
5279		pflags &= ~(SD_LOAD_BALANCE |
5280				SD_BALANCE_NEWIDLE |
5281				SD_BALANCE_FORK |
5282				SD_BALANCE_EXEC |
5283				SD_SHARE_CPUPOWER |
5284				SD_SHARE_PKG_RESOURCES |
5285				SD_PREFER_SIBLING);
5286		if (nr_node_ids == 1)
5287			pflags &= ~SD_SERIALIZE;
5288	}
5289	if (~cflags & pflags)
5290		return 0;
5291
5292	return 1;
5293}
5294
5295static void free_rootdomain(struct rcu_head *rcu)
5296{
5297	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5298
5299	cpupri_cleanup(&rd->cpupri);
5300	cpudl_cleanup(&rd->cpudl);
5301	free_cpumask_var(rd->dlo_mask);
5302	free_cpumask_var(rd->rto_mask);
5303	free_cpumask_var(rd->online);
5304	free_cpumask_var(rd->span);
5305	kfree(rd);
5306}
5307
5308static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5309{
5310	struct root_domain *old_rd = NULL;
5311	unsigned long flags;
5312
5313	raw_spin_lock_irqsave(&rq->lock, flags);
5314
5315	if (rq->rd) {
5316		old_rd = rq->rd;
5317
5318		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5319			set_rq_offline(rq);
5320
5321		cpumask_clear_cpu(rq->cpu, old_rd->span);
5322
5323		/*
5324		 * If we dont want to free the old_rd yet then
5325		 * set old_rd to NULL to skip the freeing later
5326		 * in this function:
5327		 */
5328		if (!atomic_dec_and_test(&old_rd->refcount))
5329			old_rd = NULL;
5330	}
5331
5332	atomic_inc(&rd->refcount);
5333	rq->rd = rd;
5334
5335	cpumask_set_cpu(rq->cpu, rd->span);
5336	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5337		set_rq_online(rq);
5338
5339	raw_spin_unlock_irqrestore(&rq->lock, flags);
5340
5341	if (old_rd)
5342		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5343}
5344
5345static int init_rootdomain(struct root_domain *rd)
5346{
5347	memset(rd, 0, sizeof(*rd));
5348
5349	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5350		goto out;
5351	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5352		goto free_span;
5353	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5354		goto free_online;
5355	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5356		goto free_dlo_mask;
5357
5358	init_dl_bw(&rd->dl_bw);
5359	if (cpudl_init(&rd->cpudl) != 0)
5360		goto free_dlo_mask;
5361
5362	if (cpupri_init(&rd->cpupri) != 0)
5363		goto free_rto_mask;
5364	return 0;
5365
5366free_rto_mask:
5367	free_cpumask_var(rd->rto_mask);
5368free_dlo_mask:
5369	free_cpumask_var(rd->dlo_mask);
5370free_online:
5371	free_cpumask_var(rd->online);
5372free_span:
5373	free_cpumask_var(rd->span);
5374out:
5375	return -ENOMEM;
5376}
5377
5378/*
5379 * By default the system creates a single root-domain with all cpus as
5380 * members (mimicking the global state we have today).
5381 */
5382struct root_domain def_root_domain;
5383
5384static void init_defrootdomain(void)
5385{
5386	init_rootdomain(&def_root_domain);
5387
5388	atomic_set(&def_root_domain.refcount, 1);
5389}
5390
5391static struct root_domain *alloc_rootdomain(void)
5392{
5393	struct root_domain *rd;
5394
5395	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5396	if (!rd)
5397		return NULL;
5398
5399	if (init_rootdomain(rd) != 0) {
5400		kfree(rd);
5401		return NULL;
5402	}
5403
5404	return rd;
5405}
5406
5407static void free_sched_groups(struct sched_group *sg, int free_sgp)
5408{
5409	struct sched_group *tmp, *first;
5410
5411	if (!sg)
5412		return;
5413
5414	first = sg;
5415	do {
5416		tmp = sg->next;
5417
5418		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5419			kfree(sg->sgp);
5420
5421		kfree(sg);
5422		sg = tmp;
5423	} while (sg != first);
5424}
5425
5426static void free_sched_domain(struct rcu_head *rcu)
5427{
5428	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5429
5430	/*
5431	 * If its an overlapping domain it has private groups, iterate and
5432	 * nuke them all.
5433	 */
5434	if (sd->flags & SD_OVERLAP) {
5435		free_sched_groups(sd->groups, 1);
5436	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5437		kfree(sd->groups->sgp);
5438		kfree(sd->groups);
5439	}
5440	kfree(sd);
5441}
5442
5443static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5444{
5445	call_rcu(&sd->rcu, free_sched_domain);
5446}
5447
5448static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5449{
5450	for (; sd; sd = sd->parent)
5451		destroy_sched_domain(sd, cpu);
5452}
5453
5454/*
5455 * Keep a special pointer to the highest sched_domain that has
5456 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5457 * allows us to avoid some pointer chasing select_idle_sibling().
5458 *
5459 * Also keep a unique ID per domain (we use the first cpu number in
5460 * the cpumask of the domain), this allows us to quickly tell if
5461 * two cpus are in the same cache domain, see cpus_share_cache().
5462 */
5463DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5464DEFINE_PER_CPU(int, sd_llc_size);
5465DEFINE_PER_CPU(int, sd_llc_id);
5466DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5467DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5468DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5469
5470static void update_top_cache_domain(int cpu)
5471{
5472	struct sched_domain *sd;
5473	struct sched_domain *busy_sd = NULL;
5474	int id = cpu;
5475	int size = 1;
5476
5477	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5478	if (sd) {
5479		id = cpumask_first(sched_domain_span(sd));
5480		size = cpumask_weight(sched_domain_span(sd));
5481		busy_sd = sd->parent; /* sd_busy */
5482	}
5483	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5484
5485	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5486	per_cpu(sd_llc_size, cpu) = size;
5487	per_cpu(sd_llc_id, cpu) = id;
5488
5489	sd = lowest_flag_domain(cpu, SD_NUMA);
5490	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5491
5492	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5493	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5494}
5495
5496/*
5497 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5498 * hold the hotplug lock.
5499 */
5500static void
5501cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5502{
5503	struct rq *rq = cpu_rq(cpu);
5504	struct sched_domain *tmp;
5505
5506	/* Remove the sched domains which do not contribute to scheduling. */
5507	for (tmp = sd; tmp; ) {
5508		struct sched_domain *parent = tmp->parent;
5509		if (!parent)
5510			break;
5511
5512		if (sd_parent_degenerate(tmp, parent)) {
5513			tmp->parent = parent->parent;
5514			if (parent->parent)
5515				parent->parent->child = tmp;
5516			/*
5517			 * Transfer SD_PREFER_SIBLING down in case of a
5518			 * degenerate parent; the spans match for this
5519			 * so the property transfers.
5520			 */
5521			if (parent->flags & SD_PREFER_SIBLING)
5522				tmp->flags |= SD_PREFER_SIBLING;
5523			destroy_sched_domain(parent, cpu);
5524		} else
5525			tmp = tmp->parent;
5526	}
5527
5528	if (sd && sd_degenerate(sd)) {
5529		tmp = sd;
5530		sd = sd->parent;
5531		destroy_sched_domain(tmp, cpu);
5532		if (sd)
5533			sd->child = NULL;
5534	}
5535
5536	sched_domain_debug(sd, cpu);
5537
5538	rq_attach_root(rq, rd);
5539	tmp = rq->sd;
5540	rcu_assign_pointer(rq->sd, sd);
5541	destroy_sched_domains(tmp, cpu);
5542
5543	update_top_cache_domain(cpu);
5544}
5545
5546/* cpus with isolated domains */
5547static cpumask_var_t cpu_isolated_map;
5548
5549/* Setup the mask of cpus configured for isolated domains */
5550static int __init isolated_cpu_setup(char *str)
5551{
5552	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5553	cpulist_parse(str, cpu_isolated_map);
5554	return 1;
5555}
5556
5557__setup("isolcpus=", isolated_cpu_setup);
5558
5559static const struct cpumask *cpu_cpu_mask(int cpu)
5560{
5561	return cpumask_of_node(cpu_to_node(cpu));
5562}
5563
5564struct sd_data {
5565	struct sched_domain **__percpu sd;
5566	struct sched_group **__percpu sg;
5567	struct sched_group_power **__percpu sgp;
5568};
5569
5570struct s_data {
5571	struct sched_domain ** __percpu sd;
5572	struct root_domain	*rd;
5573};
5574
5575enum s_alloc {
5576	sa_rootdomain,
5577	sa_sd,
5578	sa_sd_storage,
5579	sa_none,
5580};
5581
5582struct sched_domain_topology_level;
5583
5584typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5585typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5586
5587#define SDTL_OVERLAP	0x01
5588
5589struct sched_domain_topology_level {
5590	sched_domain_init_f init;
5591	sched_domain_mask_f mask;
5592	int		    flags;
5593	int		    numa_level;
5594	struct sd_data      data;
5595};
5596
5597/*
5598 * Build an iteration mask that can exclude certain CPUs from the upwards
5599 * domain traversal.
5600 *
5601 * Asymmetric node setups can result in situations where the domain tree is of
5602 * unequal depth, make sure to skip domains that already cover the entire
5603 * range.
5604 *
5605 * In that case build_sched_domains() will have terminated the iteration early
5606 * and our sibling sd spans will be empty. Domains should always include the
5607 * cpu they're built on, so check that.
5608 *
5609 */
5610static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5611{
5612	const struct cpumask *span = sched_domain_span(sd);
5613	struct sd_data *sdd = sd->private;
5614	struct sched_domain *sibling;
5615	int i;
5616
5617	for_each_cpu(i, span) {
5618		sibling = *per_cpu_ptr(sdd->sd, i);
5619		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5620			continue;
5621
5622		cpumask_set_cpu(i, sched_group_mask(sg));
5623	}
5624}
5625
5626/*
5627 * Return the canonical balance cpu for this group, this is the first cpu
5628 * of this group that's also in the iteration mask.
5629 */
5630int group_balance_cpu(struct sched_group *sg)
5631{
5632	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5633}
5634
5635static int
5636build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5637{
5638	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5639	const struct cpumask *span = sched_domain_span(sd);
5640	struct cpumask *covered = sched_domains_tmpmask;
5641	struct sd_data *sdd = sd->private;
5642	struct sched_domain *child;
5643	int i;
5644
5645	cpumask_clear(covered);
5646
5647	for_each_cpu(i, span) {
5648		struct cpumask *sg_span;
5649
5650		if (cpumask_test_cpu(i, covered))
5651			continue;
5652
5653		child = *per_cpu_ptr(sdd->sd, i);
5654
5655		/* See the comment near build_group_mask(). */
5656		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5657			continue;
5658
5659		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5660				GFP_KERNEL, cpu_to_node(cpu));
5661
5662		if (!sg)
5663			goto fail;
5664
5665		sg_span = sched_group_cpus(sg);
5666		if (child->child) {
5667			child = child->child;
5668			cpumask_copy(sg_span, sched_domain_span(child));
5669		} else
5670			cpumask_set_cpu(i, sg_span);
5671
5672		cpumask_or(covered, covered, sg_span);
5673
5674		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5675		if (atomic_inc_return(&sg->sgp->ref) == 1)
5676			build_group_mask(sd, sg);
5677
5678		/*
5679		 * Initialize sgp->power such that even if we mess up the
5680		 * domains and no possible iteration will get us here, we won't
5681		 * die on a /0 trap.
5682		 */
5683		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5684		sg->sgp->power_orig = sg->sgp->power;
5685
5686		/*
5687		 * Make sure the first group of this domain contains the
5688		 * canonical balance cpu. Otherwise the sched_domain iteration
5689		 * breaks. See update_sg_lb_stats().
5690		 */
5691		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5692		    group_balance_cpu(sg) == cpu)
5693			groups = sg;
5694
5695		if (!first)
5696			first = sg;
5697		if (last)
5698			last->next = sg;
5699		last = sg;
5700		last->next = first;
5701	}
5702	sd->groups = groups;
5703
5704	return 0;
5705
5706fail:
5707	free_sched_groups(first, 0);
5708
5709	return -ENOMEM;
5710}
5711
5712static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5713{
5714	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5715	struct sched_domain *child = sd->child;
5716
5717	if (child)
5718		cpu = cpumask_first(sched_domain_span(child));
5719
5720	if (sg) {
5721		*sg = *per_cpu_ptr(sdd->sg, cpu);
5722		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5723		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5724	}
5725
5726	return cpu;
5727}
5728
5729/*
5730 * build_sched_groups will build a circular linked list of the groups
5731 * covered by the given span, and will set each group's ->cpumask correctly,
5732 * and ->cpu_power to 0.
5733 *
5734 * Assumes the sched_domain tree is fully constructed
5735 */
5736static int
5737build_sched_groups(struct sched_domain *sd, int cpu)
5738{
5739	struct sched_group *first = NULL, *last = NULL;
5740	struct sd_data *sdd = sd->private;
5741	const struct cpumask *span = sched_domain_span(sd);
5742	struct cpumask *covered;
5743	int i;
5744
5745	get_group(cpu, sdd, &sd->groups);
5746	atomic_inc(&sd->groups->ref);
5747
5748	if (cpu != cpumask_first(span))
5749		return 0;
5750
5751	lockdep_assert_held(&sched_domains_mutex);
5752	covered = sched_domains_tmpmask;
5753
5754	cpumask_clear(covered);
5755
5756	for_each_cpu(i, span) {
5757		struct sched_group *sg;
5758		int group, j;
5759
5760		if (cpumask_test_cpu(i, covered))
5761			continue;
5762
5763		group = get_group(i, sdd, &sg);
5764		cpumask_clear(sched_group_cpus(sg));
5765		sg->sgp->power = 0;
5766		cpumask_setall(sched_group_mask(sg));
5767
5768		for_each_cpu(j, span) {
5769			if (get_group(j, sdd, NULL) != group)
5770				continue;
5771
5772			cpumask_set_cpu(j, covered);
5773			cpumask_set_cpu(j, sched_group_cpus(sg));
5774		}
5775
5776		if (!first)
5777			first = sg;
5778		if (last)
5779			last->next = sg;
5780		last = sg;
5781	}
5782	last->next = first;
5783
5784	return 0;
5785}
5786
5787/*
5788 * Initialize sched groups cpu_power.
5789 *
5790 * cpu_power indicates the capacity of sched group, which is used while
5791 * distributing the load between different sched groups in a sched domain.
5792 * Typically cpu_power for all the groups in a sched domain will be same unless
5793 * there are asymmetries in the topology. If there are asymmetries, group
5794 * having more cpu_power will pickup more load compared to the group having
5795 * less cpu_power.
5796 */
5797static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5798{
5799	struct sched_group *sg = sd->groups;
5800
5801	WARN_ON(!sg);
5802
5803	do {
5804		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5805		sg = sg->next;
5806	} while (sg != sd->groups);
5807
5808	if (cpu != group_balance_cpu(sg))
5809		return;
5810
5811	update_group_power(sd, cpu);
5812	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5813}
5814
5815int __weak arch_sd_sibling_asym_packing(void)
5816{
5817       return 0*SD_ASYM_PACKING;
5818}
5819
5820/*
5821 * Initializers for schedule domains
5822 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5823 */
5824
5825#ifdef CONFIG_SCHED_DEBUG
5826# define SD_INIT_NAME(sd, type)		sd->name = #type
5827#else
5828# define SD_INIT_NAME(sd, type)		do { } while (0)
5829#endif
5830
5831#define SD_INIT_FUNC(type)						\
5832static noinline struct sched_domain *					\
5833sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5834{									\
5835	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5836	*sd = SD_##type##_INIT;						\
5837	SD_INIT_NAME(sd, type);						\
5838	sd->private = &tl->data;					\
5839	return sd;							\
5840}
5841
5842SD_INIT_FUNC(CPU)
5843#ifdef CONFIG_SCHED_SMT
5844 SD_INIT_FUNC(SIBLING)
5845#endif
5846#ifdef CONFIG_SCHED_MC
5847 SD_INIT_FUNC(MC)
5848#endif
5849#ifdef CONFIG_SCHED_BOOK
5850 SD_INIT_FUNC(BOOK)
5851#endif
5852
5853static int default_relax_domain_level = -1;
5854int sched_domain_level_max;
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
5858	if (kstrtoint(str, 0, &default_relax_domain_level))
5859		pr_warn("Unable to set relax_domain_level\n");
5860
5861	return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866				 struct sched_domain_attr *attr)
5867{
5868	int request;
5869
5870	if (!attr || attr->relax_domain_level < 0) {
5871		if (default_relax_domain_level < 0)
5872			return;
5873		else
5874			request = default_relax_domain_level;
5875	} else
5876		request = attr->relax_domain_level;
5877	if (request < sd->level) {
5878		/* turn off idle balance on this domain */
5879		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880	} else {
5881		/* turn on idle balance on this domain */
5882		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883	}
5884}
5885
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890				 const struct cpumask *cpu_map)
5891{
5892	switch (what) {
5893	case sa_rootdomain:
5894		if (!atomic_read(&d->rd->refcount))
5895			free_rootdomain(&d->rd->rcu); /* fall through */
5896	case sa_sd:
5897		free_percpu(d->sd); /* fall through */
5898	case sa_sd_storage:
5899		__sdt_free(cpu_map); /* fall through */
5900	case sa_none:
5901		break;
5902	}
5903}
5904
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906						   const struct cpumask *cpu_map)
5907{
5908	memset(d, 0, sizeof(*d));
5909
5910	if (__sdt_alloc(cpu_map))
5911		return sa_sd_storage;
5912	d->sd = alloc_percpu(struct sched_domain *);
5913	if (!d->sd)
5914		return sa_sd_storage;
5915	d->rd = alloc_rootdomain();
5916	if (!d->rd)
5917		return sa_sd;
5918	return sa_rootdomain;
5919}
5920
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928	struct sd_data *sdd = sd->private;
5929
5930	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
5933	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935
5936	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5937		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5938}
5939
5940#ifdef CONFIG_SCHED_SMT
5941static const struct cpumask *cpu_smt_mask(int cpu)
5942{
5943	return topology_thread_cpumask(cpu);
5944}
5945#endif
5946
5947/*
5948 * Topology list, bottom-up.
5949 */
5950static struct sched_domain_topology_level default_topology[] = {
5951#ifdef CONFIG_SCHED_SMT
5952	{ sd_init_SIBLING, cpu_smt_mask, },
5953#endif
5954#ifdef CONFIG_SCHED_MC
5955	{ sd_init_MC, cpu_coregroup_mask, },
5956#endif
5957#ifdef CONFIG_SCHED_BOOK
5958	{ sd_init_BOOK, cpu_book_mask, },
5959#endif
5960	{ sd_init_CPU, cpu_cpu_mask, },
5961	{ NULL, },
5962};
5963
5964static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5965
5966#define for_each_sd_topology(tl)			\
5967	for (tl = sched_domain_topology; tl->init; tl++)
5968
5969#ifdef CONFIG_NUMA
5970
5971static int sched_domains_numa_levels;
5972static int *sched_domains_numa_distance;
5973static struct cpumask ***sched_domains_numa_masks;
5974static int sched_domains_curr_level;
5975
5976static inline int sd_local_flags(int level)
5977{
5978	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5979		return 0;
5980
5981	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5982}
5983
5984static struct sched_domain *
5985sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5986{
5987	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5988	int level = tl->numa_level;
5989	int sd_weight = cpumask_weight(
5990			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5991
5992	*sd = (struct sched_domain){
5993		.min_interval		= sd_weight,
5994		.max_interval		= 2*sd_weight,
5995		.busy_factor		= 32,
5996		.imbalance_pct		= 125,
5997		.cache_nice_tries	= 2,
5998		.busy_idx		= 3,
5999		.idle_idx		= 2,
6000		.newidle_idx		= 0,
6001		.wake_idx		= 0,
6002		.forkexec_idx		= 0,
6003
6004		.flags			= 1*SD_LOAD_BALANCE
6005					| 1*SD_BALANCE_NEWIDLE
6006					| 0*SD_BALANCE_EXEC
6007					| 0*SD_BALANCE_FORK
6008					| 0*SD_BALANCE_WAKE
6009					| 0*SD_WAKE_AFFINE
6010					| 0*SD_SHARE_CPUPOWER
6011					| 0*SD_SHARE_PKG_RESOURCES
6012					| 1*SD_SERIALIZE
6013					| 0*SD_PREFER_SIBLING
6014					| 1*SD_NUMA
6015					| sd_local_flags(level)
6016					,
6017		.last_balance		= jiffies,
6018		.balance_interval	= sd_weight,
6019	};
6020	SD_INIT_NAME(sd, NUMA);
6021	sd->private = &tl->data;
6022
6023	/*
6024	 * Ugly hack to pass state to sd_numa_mask()...
6025	 */
6026	sched_domains_curr_level = tl->numa_level;
6027
6028	return sd;
6029}
6030
6031static const struct cpumask *sd_numa_mask(int cpu)
6032{
6033	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6034}
6035
6036static void sched_numa_warn(const char *str)
6037{
6038	static int done = false;
6039	int i,j;
6040
6041	if (done)
6042		return;
6043
6044	done = true;
6045
6046	printk(KERN_WARNING "ERROR: %s\n\n", str);
6047
6048	for (i = 0; i < nr_node_ids; i++) {
6049		printk(KERN_WARNING "  ");
6050		for (j = 0; j < nr_node_ids; j++)
6051			printk(KERN_CONT "%02d ", node_distance(i,j));
6052		printk(KERN_CONT "\n");
6053	}
6054	printk(KERN_WARNING "\n");
6055}
6056
6057static bool find_numa_distance(int distance)
6058{
6059	int i;
6060
6061	if (distance == node_distance(0, 0))
6062		return true;
6063
6064	for (i = 0; i < sched_domains_numa_levels; i++) {
6065		if (sched_domains_numa_distance[i] == distance)
6066			return true;
6067	}
6068
6069	return false;
6070}
6071
6072static void sched_init_numa(void)
6073{
6074	int next_distance, curr_distance = node_distance(0, 0);
6075	struct sched_domain_topology_level *tl;
6076	int level = 0;
6077	int i, j, k;
6078
6079	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6080	if (!sched_domains_numa_distance)
6081		return;
6082
6083	/*
6084	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6085	 * unique distances in the node_distance() table.
6086	 *
6087	 * Assumes node_distance(0,j) includes all distances in
6088	 * node_distance(i,j) in order to avoid cubic time.
6089	 */
6090	next_distance = curr_distance;
6091	for (i = 0; i < nr_node_ids; i++) {
6092		for (j = 0; j < nr_node_ids; j++) {
6093			for (k = 0; k < nr_node_ids; k++) {
6094				int distance = node_distance(i, k);
6095
6096				if (distance > curr_distance &&
6097				    (distance < next_distance ||
6098				     next_distance == curr_distance))
6099					next_distance = distance;
6100
6101				/*
6102				 * While not a strong assumption it would be nice to know
6103				 * about cases where if node A is connected to B, B is not
6104				 * equally connected to A.
6105				 */
6106				if (sched_debug() && node_distance(k, i) != distance)
6107					sched_numa_warn("Node-distance not symmetric");
6108
6109				if (sched_debug() && i && !find_numa_distance(distance))
6110					sched_numa_warn("Node-0 not representative");
6111			}
6112			if (next_distance != curr_distance) {
6113				sched_domains_numa_distance[level++] = next_distance;
6114				sched_domains_numa_levels = level;
6115				curr_distance = next_distance;
6116			} else break;
6117		}
6118
6119		/*
6120		 * In case of sched_debug() we verify the above assumption.
6121		 */
6122		if (!sched_debug())
6123			break;
6124	}
6125	/*
6126	 * 'level' contains the number of unique distances, excluding the
6127	 * identity distance node_distance(i,i).
6128	 *
6129	 * The sched_domains_numa_distance[] array includes the actual distance
6130	 * numbers.
6131	 */
6132
6133	/*
6134	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6135	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6136	 * the array will contain less then 'level' members. This could be
6137	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6138	 * in other functions.
6139	 *
6140	 * We reset it to 'level' at the end of this function.
6141	 */
6142	sched_domains_numa_levels = 0;
6143
6144	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6145	if (!sched_domains_numa_masks)
6146		return;
6147
6148	/*
6149	 * Now for each level, construct a mask per node which contains all
6150	 * cpus of nodes that are that many hops away from us.
6151	 */
6152	for (i = 0; i < level; i++) {
6153		sched_domains_numa_masks[i] =
6154			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6155		if (!sched_domains_numa_masks[i])
6156			return;
6157
6158		for (j = 0; j < nr_node_ids; j++) {
6159			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6160			if (!mask)
6161				return;
6162
6163			sched_domains_numa_masks[i][j] = mask;
6164
6165			for (k = 0; k < nr_node_ids; k++) {
6166				if (node_distance(j, k) > sched_domains_numa_distance[i])
6167					continue;
6168
6169				cpumask_or(mask, mask, cpumask_of_node(k));
6170			}
6171		}
6172	}
6173
6174	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6175			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6176	if (!tl)
6177		return;
6178
6179	/*
6180	 * Copy the default topology bits..
6181	 */
6182	for (i = 0; default_topology[i].init; i++)
6183		tl[i] = default_topology[i];
6184
6185	/*
6186	 * .. and append 'j' levels of NUMA goodness.
6187	 */
6188	for (j = 0; j < level; i++, j++) {
6189		tl[i] = (struct sched_domain_topology_level){
6190			.init = sd_numa_init,
6191			.mask = sd_numa_mask,
6192			.flags = SDTL_OVERLAP,
6193			.numa_level = j,
6194		};
6195	}
6196
6197	sched_domain_topology = tl;
6198
6199	sched_domains_numa_levels = level;
6200}
6201
6202static void sched_domains_numa_masks_set(int cpu)
6203{
6204	int i, j;
6205	int node = cpu_to_node(cpu);
6206
6207	for (i = 0; i < sched_domains_numa_levels; i++) {
6208		for (j = 0; j < nr_node_ids; j++) {
6209			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6210				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6211		}
6212	}
6213}
6214
6215static void sched_domains_numa_masks_clear(int cpu)
6216{
6217	int i, j;
6218	for (i = 0; i < sched_domains_numa_levels; i++) {
6219		for (j = 0; j < nr_node_ids; j++)
6220			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6221	}
6222}
6223
6224/*
6225 * Update sched_domains_numa_masks[level][node] array when new cpus
6226 * are onlined.
6227 */
6228static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6229					   unsigned long action,
6230					   void *hcpu)
6231{
6232	int cpu = (long)hcpu;
6233
6234	switch (action & ~CPU_TASKS_FROZEN) {
6235	case CPU_ONLINE:
6236		sched_domains_numa_masks_set(cpu);
6237		break;
6238
6239	case CPU_DEAD:
6240		sched_domains_numa_masks_clear(cpu);
6241		break;
6242
6243	default:
6244		return NOTIFY_DONE;
6245	}
6246
6247	return NOTIFY_OK;
6248}
6249#else
6250static inline void sched_init_numa(void)
6251{
6252}
6253
6254static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6255					   unsigned long action,
6256					   void *hcpu)
6257{
6258	return 0;
6259}
6260#endif /* CONFIG_NUMA */
6261
6262static int __sdt_alloc(const struct cpumask *cpu_map)
6263{
6264	struct sched_domain_topology_level *tl;
6265	int j;
6266
6267	for_each_sd_topology(tl) {
6268		struct sd_data *sdd = &tl->data;
6269
6270		sdd->sd = alloc_percpu(struct sched_domain *);
6271		if (!sdd->sd)
6272			return -ENOMEM;
6273
6274		sdd->sg = alloc_percpu(struct sched_group *);
6275		if (!sdd->sg)
6276			return -ENOMEM;
6277
6278		sdd->sgp = alloc_percpu(struct sched_group_power *);
6279		if (!sdd->sgp)
6280			return -ENOMEM;
6281
6282		for_each_cpu(j, cpu_map) {
6283			struct sched_domain *sd;
6284			struct sched_group *sg;
6285			struct sched_group_power *sgp;
6286
6287		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6288					GFP_KERNEL, cpu_to_node(j));
6289			if (!sd)
6290				return -ENOMEM;
6291
6292			*per_cpu_ptr(sdd->sd, j) = sd;
6293
6294			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6295					GFP_KERNEL, cpu_to_node(j));
6296			if (!sg)
6297				return -ENOMEM;
6298
6299			sg->next = sg;
6300
6301			*per_cpu_ptr(sdd->sg, j) = sg;
6302
6303			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6304					GFP_KERNEL, cpu_to_node(j));
6305			if (!sgp)
6306				return -ENOMEM;
6307
6308			*per_cpu_ptr(sdd->sgp, j) = sgp;
6309		}
6310	}
6311
6312	return 0;
6313}
6314
6315static void __sdt_free(const struct cpumask *cpu_map)
6316{
6317	struct sched_domain_topology_level *tl;
6318	int j;
6319
6320	for_each_sd_topology(tl) {
6321		struct sd_data *sdd = &tl->data;
6322
6323		for_each_cpu(j, cpu_map) {
6324			struct sched_domain *sd;
6325
6326			if (sdd->sd) {
6327				sd = *per_cpu_ptr(sdd->sd, j);
6328				if (sd && (sd->flags & SD_OVERLAP))
6329					free_sched_groups(sd->groups, 0);
6330				kfree(*per_cpu_ptr(sdd->sd, j));
6331			}
6332
6333			if (sdd->sg)
6334				kfree(*per_cpu_ptr(sdd->sg, j));
6335			if (sdd->sgp)
6336				kfree(*per_cpu_ptr(sdd->sgp, j));
6337		}
6338		free_percpu(sdd->sd);
6339		sdd->sd = NULL;
6340		free_percpu(sdd->sg);
6341		sdd->sg = NULL;
6342		free_percpu(sdd->sgp);
6343		sdd->sgp = NULL;
6344	}
6345}
6346
6347struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6348		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6349		struct sched_domain *child, int cpu)
6350{
6351	struct sched_domain *sd = tl->init(tl, cpu);
6352	if (!sd)
6353		return child;
6354
6355	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6356	if (child) {
6357		sd->level = child->level + 1;
6358		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6359		child->parent = sd;
6360		sd->child = child;
6361	}
6362	set_domain_attribute(sd, attr);
6363
6364	return sd;
6365}
6366
6367/*
6368 * Build sched domains for a given set of cpus and attach the sched domains
6369 * to the individual cpus
6370 */
6371static int build_sched_domains(const struct cpumask *cpu_map,
6372			       struct sched_domain_attr *attr)
6373{
6374	enum s_alloc alloc_state;
6375	struct sched_domain *sd;
6376	struct s_data d;
6377	int i, ret = -ENOMEM;
6378
6379	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6380	if (alloc_state != sa_rootdomain)
6381		goto error;
6382
6383	/* Set up domains for cpus specified by the cpu_map. */
6384	for_each_cpu(i, cpu_map) {
6385		struct sched_domain_topology_level *tl;
6386
6387		sd = NULL;
6388		for_each_sd_topology(tl) {
6389			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6390			if (tl == sched_domain_topology)
6391				*per_cpu_ptr(d.sd, i) = sd;
6392			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6393				sd->flags |= SD_OVERLAP;
6394			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6395				break;
6396		}
6397	}
6398
6399	/* Build the groups for the domains */
6400	for_each_cpu(i, cpu_map) {
6401		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6402			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6403			if (sd->flags & SD_OVERLAP) {
6404				if (build_overlap_sched_groups(sd, i))
6405					goto error;
6406			} else {
6407				if (build_sched_groups(sd, i))
6408					goto error;
6409			}
6410		}
6411	}
6412
6413	/* Calculate CPU power for physical packages and nodes */
6414	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6415		if (!cpumask_test_cpu(i, cpu_map))
6416			continue;
6417
6418		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419			claim_allocations(i, sd);
6420			init_sched_groups_power(i, sd);
6421		}
6422	}
6423
6424	/* Attach the domains */
6425	rcu_read_lock();
6426	for_each_cpu(i, cpu_map) {
6427		sd = *per_cpu_ptr(d.sd, i);
6428		cpu_attach_domain(sd, d.rd, i);
6429	}
6430	rcu_read_unlock();
6431
6432	ret = 0;
6433error:
6434	__free_domain_allocs(&d, alloc_state, cpu_map);
6435	return ret;
6436}
6437
6438static cpumask_var_t *doms_cur;	/* current sched domains */
6439static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6440static struct sched_domain_attr *dattr_cur;
6441				/* attribues of custom domains in 'doms_cur' */
6442
6443/*
6444 * Special case: If a kmalloc of a doms_cur partition (array of
6445 * cpumask) fails, then fallback to a single sched domain,
6446 * as determined by the single cpumask fallback_doms.
6447 */
6448static cpumask_var_t fallback_doms;
6449
6450/*
6451 * arch_update_cpu_topology lets virtualized architectures update the
6452 * cpu core maps. It is supposed to return 1 if the topology changed
6453 * or 0 if it stayed the same.
6454 */
6455int __attribute__((weak)) arch_update_cpu_topology(void)
6456{
6457	return 0;
6458}
6459
6460cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6461{
6462	int i;
6463	cpumask_var_t *doms;
6464
6465	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6466	if (!doms)
6467		return NULL;
6468	for (i = 0; i < ndoms; i++) {
6469		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6470			free_sched_domains(doms, i);
6471			return NULL;
6472		}
6473	}
6474	return doms;
6475}
6476
6477void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6478{
6479	unsigned int i;
6480	for (i = 0; i < ndoms; i++)
6481		free_cpumask_var(doms[i]);
6482	kfree(doms);
6483}
6484
6485/*
6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
6489 */
6490static int init_sched_domains(const struct cpumask *cpu_map)
6491{
6492	int err;
6493
6494	arch_update_cpu_topology();
6495	ndoms_cur = 1;
6496	doms_cur = alloc_sched_domains(ndoms_cur);
6497	if (!doms_cur)
6498		doms_cur = &fallback_doms;
6499	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6500	err = build_sched_domains(doms_cur[0], NULL);
6501	register_sched_domain_sysctl();
6502
6503	return err;
6504}
6505
6506/*
6507 * Detach sched domains from a group of cpus specified in cpu_map
6508 * These cpus will now be attached to the NULL domain
6509 */
6510static void detach_destroy_domains(const struct cpumask *cpu_map)
6511{
6512	int i;
6513
6514	rcu_read_lock();
6515	for_each_cpu(i, cpu_map)
6516		cpu_attach_domain(NULL, &def_root_domain, i);
6517	rcu_read_unlock();
6518}
6519
6520/* handle null as "default" */
6521static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6522			struct sched_domain_attr *new, int idx_new)
6523{
6524	struct sched_domain_attr tmp;
6525
6526	/* fast path */
6527	if (!new && !cur)
6528		return 1;
6529
6530	tmp = SD_ATTR_INIT;
6531	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6532			new ? (new + idx_new) : &tmp,
6533			sizeof(struct sched_domain_attr));
6534}
6535
6536/*
6537 * Partition sched domains as specified by the 'ndoms_new'
6538 * cpumasks in the array doms_new[] of cpumasks. This compares
6539 * doms_new[] to the current sched domain partitioning, doms_cur[].
6540 * It destroys each deleted domain and builds each new domain.
6541 *
6542 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6543 * The masks don't intersect (don't overlap.) We should setup one
6544 * sched domain for each mask. CPUs not in any of the cpumasks will
6545 * not be load balanced. If the same cpumask appears both in the
6546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547 * it as it is.
6548 *
6549 * The passed in 'doms_new' should be allocated using
6550 * alloc_sched_domains.  This routine takes ownership of it and will
6551 * free_sched_domains it when done with it. If the caller failed the
6552 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6553 * and partition_sched_domains() will fallback to the single partition
6554 * 'fallback_doms', it also forces the domains to be rebuilt.
6555 *
6556 * If doms_new == NULL it will be replaced with cpu_online_mask.
6557 * ndoms_new == 0 is a special case for destroying existing domains,
6558 * and it will not create the default domain.
6559 *
6560 * Call with hotplug lock held
6561 */
6562void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6563			     struct sched_domain_attr *dattr_new)
6564{
6565	int i, j, n;
6566	int new_topology;
6567
6568	mutex_lock(&sched_domains_mutex);
6569
6570	/* always unregister in case we don't destroy any domains */
6571	unregister_sched_domain_sysctl();
6572
6573	/* Let architecture update cpu core mappings. */
6574	new_topology = arch_update_cpu_topology();
6575
6576	n = doms_new ? ndoms_new : 0;
6577
6578	/* Destroy deleted domains */
6579	for (i = 0; i < ndoms_cur; i++) {
6580		for (j = 0; j < n && !new_topology; j++) {
6581			if (cpumask_equal(doms_cur[i], doms_new[j])
6582			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6583				goto match1;
6584		}
6585		/* no match - a current sched domain not in new doms_new[] */
6586		detach_destroy_domains(doms_cur[i]);
6587match1:
6588		;
6589	}
6590
6591	n = ndoms_cur;
6592	if (doms_new == NULL) {
6593		n = 0;
6594		doms_new = &fallback_doms;
6595		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6596		WARN_ON_ONCE(dattr_new);
6597	}
6598
6599	/* Build new domains */
6600	for (i = 0; i < ndoms_new; i++) {
6601		for (j = 0; j < n && !new_topology; j++) {
6602			if (cpumask_equal(doms_new[i], doms_cur[j])
6603			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6604				goto match2;
6605		}
6606		/* no match - add a new doms_new */
6607		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6608match2:
6609		;
6610	}
6611
6612	/* Remember the new sched domains */
6613	if (doms_cur != &fallback_doms)
6614		free_sched_domains(doms_cur, ndoms_cur);
6615	kfree(dattr_cur);	/* kfree(NULL) is safe */
6616	doms_cur = doms_new;
6617	dattr_cur = dattr_new;
6618	ndoms_cur = ndoms_new;
6619
6620	register_sched_domain_sysctl();
6621
6622	mutex_unlock(&sched_domains_mutex);
6623}
6624
6625static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6626
6627/*
6628 * Update cpusets according to cpu_active mask.  If cpusets are
6629 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6630 * around partition_sched_domains().
6631 *
6632 * If we come here as part of a suspend/resume, don't touch cpusets because we
6633 * want to restore it back to its original state upon resume anyway.
6634 */
6635static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6636			     void *hcpu)
6637{
6638	switch (action) {
6639	case CPU_ONLINE_FROZEN:
6640	case CPU_DOWN_FAILED_FROZEN:
6641
6642		/*
6643		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6644		 * resume sequence. As long as this is not the last online
6645		 * operation in the resume sequence, just build a single sched
6646		 * domain, ignoring cpusets.
6647		 */
6648		num_cpus_frozen--;
6649		if (likely(num_cpus_frozen)) {
6650			partition_sched_domains(1, NULL, NULL);
6651			break;
6652		}
6653
6654		/*
6655		 * This is the last CPU online operation. So fall through and
6656		 * restore the original sched domains by considering the
6657		 * cpuset configurations.
6658		 */
6659
6660	case CPU_ONLINE:
6661	case CPU_DOWN_FAILED:
6662		cpuset_update_active_cpus(true);
6663		break;
6664	default:
6665		return NOTIFY_DONE;
6666	}
6667	return NOTIFY_OK;
6668}
6669
6670static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6671			       void *hcpu)
6672{
6673	switch (action) {
6674	case CPU_DOWN_PREPARE:
6675		cpuset_update_active_cpus(false);
6676		break;
6677	case CPU_DOWN_PREPARE_FROZEN:
6678		num_cpus_frozen++;
6679		partition_sched_domains(1, NULL, NULL);
6680		break;
6681	default:
6682		return NOTIFY_DONE;
6683	}
6684	return NOTIFY_OK;
6685}
6686
6687void __init sched_init_smp(void)
6688{
6689	cpumask_var_t non_isolated_cpus;
6690
6691	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6692	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6693
6694	sched_init_numa();
6695
6696	/*
6697	 * There's no userspace yet to cause hotplug operations; hence all the
6698	 * cpu masks are stable and all blatant races in the below code cannot
6699	 * happen.
6700	 */
6701	mutex_lock(&sched_domains_mutex);
6702	init_sched_domains(cpu_active_mask);
6703	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6704	if (cpumask_empty(non_isolated_cpus))
6705		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6706	mutex_unlock(&sched_domains_mutex);
6707
6708	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6709	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6710	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6711
6712	init_hrtick();
6713
6714	/* Move init over to a non-isolated CPU */
6715	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6716		BUG();
6717	sched_init_granularity();
6718	free_cpumask_var(non_isolated_cpus);
6719
6720	init_sched_rt_class();
6721	init_sched_dl_class();
6722}
6723#else
6724void __init sched_init_smp(void)
6725{
6726	sched_init_granularity();
6727}
6728#endif /* CONFIG_SMP */
6729
6730const_debug unsigned int sysctl_timer_migration = 1;
6731
6732int in_sched_functions(unsigned long addr)
6733{
6734	return in_lock_functions(addr) ||
6735		(addr >= (unsigned long)__sched_text_start
6736		&& addr < (unsigned long)__sched_text_end);
6737}
6738
6739#ifdef CONFIG_CGROUP_SCHED
6740/*
6741 * Default task group.
6742 * Every task in system belongs to this group at bootup.
6743 */
6744struct task_group root_task_group;
6745LIST_HEAD(task_groups);
6746#endif
6747
6748DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6749
6750void __init sched_init(void)
6751{
6752	int i, j;
6753	unsigned long alloc_size = 0, ptr;
6754
6755#ifdef CONFIG_FAIR_GROUP_SCHED
6756	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6757#endif
6758#ifdef CONFIG_RT_GROUP_SCHED
6759	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6760#endif
6761#ifdef CONFIG_CPUMASK_OFFSTACK
6762	alloc_size += num_possible_cpus() * cpumask_size();
6763#endif
6764	if (alloc_size) {
6765		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6766
6767#ifdef CONFIG_FAIR_GROUP_SCHED
6768		root_task_group.se = (struct sched_entity **)ptr;
6769		ptr += nr_cpu_ids * sizeof(void **);
6770
6771		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6772		ptr += nr_cpu_ids * sizeof(void **);
6773
6774#endif /* CONFIG_FAIR_GROUP_SCHED */
6775#ifdef CONFIG_RT_GROUP_SCHED
6776		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6777		ptr += nr_cpu_ids * sizeof(void **);
6778
6779		root_task_group.rt_rq = (struct rt_rq **)ptr;
6780		ptr += nr_cpu_ids * sizeof(void **);
6781
6782#endif /* CONFIG_RT_GROUP_SCHED */
6783#ifdef CONFIG_CPUMASK_OFFSTACK
6784		for_each_possible_cpu(i) {
6785			per_cpu(load_balance_mask, i) = (void *)ptr;
6786			ptr += cpumask_size();
6787		}
6788#endif /* CONFIG_CPUMASK_OFFSTACK */
6789	}
6790
6791	init_rt_bandwidth(&def_rt_bandwidth,
6792			global_rt_period(), global_rt_runtime());
6793	init_dl_bandwidth(&def_dl_bandwidth,
6794			global_rt_period(), global_rt_runtime());
6795
6796#ifdef CONFIG_SMP
6797	init_defrootdomain();
6798#endif
6799
6800#ifdef CONFIG_RT_GROUP_SCHED
6801	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6802			global_rt_period(), global_rt_runtime());
6803#endif /* CONFIG_RT_GROUP_SCHED */
6804
6805#ifdef CONFIG_CGROUP_SCHED
6806	list_add(&root_task_group.list, &task_groups);
6807	INIT_LIST_HEAD(&root_task_group.children);
6808	INIT_LIST_HEAD(&root_task_group.siblings);
6809	autogroup_init(&init_task);
6810
6811#endif /* CONFIG_CGROUP_SCHED */
6812
6813	for_each_possible_cpu(i) {
6814		struct rq *rq;
6815
6816		rq = cpu_rq(i);
6817		raw_spin_lock_init(&rq->lock);
6818		rq->nr_running = 0;
6819		rq->calc_load_active = 0;
6820		rq->calc_load_update = jiffies + LOAD_FREQ;
6821		init_cfs_rq(&rq->cfs);
6822		init_rt_rq(&rq->rt, rq);
6823		init_dl_rq(&rq->dl, rq);
6824#ifdef CONFIG_FAIR_GROUP_SCHED
6825		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6826		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6827		/*
6828		 * How much cpu bandwidth does root_task_group get?
6829		 *
6830		 * In case of task-groups formed thr' the cgroup filesystem, it
6831		 * gets 100% of the cpu resources in the system. This overall
6832		 * system cpu resource is divided among the tasks of
6833		 * root_task_group and its child task-groups in a fair manner,
6834		 * based on each entity's (task or task-group's) weight
6835		 * (se->load.weight).
6836		 *
6837		 * In other words, if root_task_group has 10 tasks of weight
6838		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6839		 * then A0's share of the cpu resource is:
6840		 *
6841		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6842		 *
6843		 * We achieve this by letting root_task_group's tasks sit
6844		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6845		 */
6846		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6847		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6848#endif /* CONFIG_FAIR_GROUP_SCHED */
6849
6850		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6851#ifdef CONFIG_RT_GROUP_SCHED
6852		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6853		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6854#endif
6855
6856		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857			rq->cpu_load[j] = 0;
6858
6859		rq->last_load_update_tick = jiffies;
6860
6861#ifdef CONFIG_SMP
6862		rq->sd = NULL;
6863		rq->rd = NULL;
6864		rq->cpu_power = SCHED_POWER_SCALE;
6865		rq->post_schedule = 0;
6866		rq->active_balance = 0;
6867		rq->next_balance = jiffies;
6868		rq->push_cpu = 0;
6869		rq->cpu = i;
6870		rq->online = 0;
6871		rq->idle_stamp = 0;
6872		rq->avg_idle = 2*sysctl_sched_migration_cost;
6873		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6874
6875		INIT_LIST_HEAD(&rq->cfs_tasks);
6876
6877		rq_attach_root(rq, &def_root_domain);
6878#ifdef CONFIG_NO_HZ_COMMON
6879		rq->nohz_flags = 0;
6880#endif
6881#ifdef CONFIG_NO_HZ_FULL
6882		rq->last_sched_tick = 0;
6883#endif
6884#endif
6885		init_rq_hrtick(rq);
6886		atomic_set(&rq->nr_iowait, 0);
6887	}
6888
6889	set_load_weight(&init_task);
6890
6891#ifdef CONFIG_PREEMPT_NOTIFIERS
6892	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6893#endif
6894
6895	/*
6896	 * The boot idle thread does lazy MMU switching as well:
6897	 */
6898	atomic_inc(&init_mm.mm_count);
6899	enter_lazy_tlb(&init_mm, current);
6900
6901	/*
6902	 * Make us the idle thread. Technically, schedule() should not be
6903	 * called from this thread, however somewhere below it might be,
6904	 * but because we are the idle thread, we just pick up running again
6905	 * when this runqueue becomes "idle".
6906	 */
6907	init_idle(current, smp_processor_id());
6908
6909	calc_load_update = jiffies + LOAD_FREQ;
6910
6911	/*
6912	 * During early bootup we pretend to be a normal task:
6913	 */
6914	current->sched_class = &fair_sched_class;
6915
6916#ifdef CONFIG_SMP
6917	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6918	/* May be allocated at isolcpus cmdline parse time */
6919	if (cpu_isolated_map == NULL)
6920		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6921	idle_thread_set_boot_cpu();
6922#endif
6923	init_sched_fair_class();
6924
6925	scheduler_running = 1;
6926}
6927
6928#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6929static inline int preempt_count_equals(int preempt_offset)
6930{
6931	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6932
6933	return (nested == preempt_offset);
6934}
6935
6936void __might_sleep(const char *file, int line, int preempt_offset)
6937{
6938	static unsigned long prev_jiffy;	/* ratelimiting */
6939
6940	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6941	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6942	    system_state != SYSTEM_RUNNING || oops_in_progress)
6943		return;
6944	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6945		return;
6946	prev_jiffy = jiffies;
6947
6948	printk(KERN_ERR
6949		"BUG: sleeping function called from invalid context at %s:%d\n",
6950			file, line);
6951	printk(KERN_ERR
6952		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6953			in_atomic(), irqs_disabled(),
6954			current->pid, current->comm);
6955
6956	debug_show_held_locks(current);
6957	if (irqs_disabled())
6958		print_irqtrace_events(current);
6959	dump_stack();
6960}
6961EXPORT_SYMBOL(__might_sleep);
6962#endif
6963
6964#ifdef CONFIG_MAGIC_SYSRQ
6965static void normalize_task(struct rq *rq, struct task_struct *p)
6966{
6967	const struct sched_class *prev_class = p->sched_class;
6968	struct sched_attr attr = {
6969		.sched_policy = SCHED_NORMAL,
6970	};
6971	int old_prio = p->prio;
6972	int on_rq;
6973
6974	on_rq = p->on_rq;
6975	if (on_rq)
6976		dequeue_task(rq, p, 0);
6977	__setscheduler(rq, p, &attr);
6978	if (on_rq) {
6979		enqueue_task(rq, p, 0);
6980		resched_task(rq->curr);
6981	}
6982
6983	check_class_changed(rq, p, prev_class, old_prio);
6984}
6985
6986void normalize_rt_tasks(void)
6987{
6988	struct task_struct *g, *p;
6989	unsigned long flags;
6990	struct rq *rq;
6991
6992	read_lock_irqsave(&tasklist_lock, flags);
6993	do_each_thread(g, p) {
6994		/*
6995		 * Only normalize user tasks:
6996		 */
6997		if (!p->mm)
6998			continue;
6999
7000		p->se.exec_start		= 0;
7001#ifdef CONFIG_SCHEDSTATS
7002		p->se.statistics.wait_start	= 0;
7003		p->se.statistics.sleep_start	= 0;
7004		p->se.statistics.block_start	= 0;
7005#endif
7006
7007		if (!dl_task(p) && !rt_task(p)) {
7008			/*
7009			 * Renice negative nice level userspace
7010			 * tasks back to 0:
7011			 */
7012			if (TASK_NICE(p) < 0 && p->mm)
7013				set_user_nice(p, 0);
7014			continue;
7015		}
7016
7017		raw_spin_lock(&p->pi_lock);
7018		rq = __task_rq_lock(p);
7019
7020		normalize_task(rq, p);
7021
7022		__task_rq_unlock(rq);
7023		raw_spin_unlock(&p->pi_lock);
7024	} while_each_thread(g, p);
7025
7026	read_unlock_irqrestore(&tasklist_lock, flags);
7027}
7028
7029#endif /* CONFIG_MAGIC_SYSRQ */
7030
7031#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7032/*
7033 * These functions are only useful for the IA64 MCA handling, or kdb.
7034 *
7035 * They can only be called when the whole system has been
7036 * stopped - every CPU needs to be quiescent, and no scheduling
7037 * activity can take place. Using them for anything else would
7038 * be a serious bug, and as a result, they aren't even visible
7039 * under any other configuration.
7040 */
7041
7042/**
7043 * curr_task - return the current task for a given cpu.
7044 * @cpu: the processor in question.
7045 *
7046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7047 *
7048 * Return: The current task for @cpu.
7049 */
7050struct task_struct *curr_task(int cpu)
7051{
7052	return cpu_curr(cpu);
7053}
7054
7055#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7056
7057#ifdef CONFIG_IA64
7058/**
7059 * set_curr_task - set the current task for a given cpu.
7060 * @cpu: the processor in question.
7061 * @p: the task pointer to set.
7062 *
7063 * Description: This function must only be used when non-maskable interrupts
7064 * are serviced on a separate stack. It allows the architecture to switch the
7065 * notion of the current task on a cpu in a non-blocking manner. This function
7066 * must be called with all CPU's synchronized, and interrupts disabled, the
7067 * and caller must save the original value of the current task (see
7068 * curr_task() above) and restore that value before reenabling interrupts and
7069 * re-starting the system.
7070 *
7071 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7072 */
7073void set_curr_task(int cpu, struct task_struct *p)
7074{
7075	cpu_curr(cpu) = p;
7076}
7077
7078#endif
7079
7080#ifdef CONFIG_CGROUP_SCHED
7081/* task_group_lock serializes the addition/removal of task groups */
7082static DEFINE_SPINLOCK(task_group_lock);
7083
7084static void free_sched_group(struct task_group *tg)
7085{
7086	free_fair_sched_group(tg);
7087	free_rt_sched_group(tg);
7088	autogroup_free(tg);
7089	kfree(tg);
7090}
7091
7092/* allocate runqueue etc for a new task group */
7093struct task_group *sched_create_group(struct task_group *parent)
7094{
7095	struct task_group *tg;
7096
7097	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7098	if (!tg)
7099		return ERR_PTR(-ENOMEM);
7100
7101	if (!alloc_fair_sched_group(tg, parent))
7102		goto err;
7103
7104	if (!alloc_rt_sched_group(tg, parent))
7105		goto err;
7106
7107	return tg;
7108
7109err:
7110	free_sched_group(tg);
7111	return ERR_PTR(-ENOMEM);
7112}
7113
7114void sched_online_group(struct task_group *tg, struct task_group *parent)
7115{
7116	unsigned long flags;
7117
7118	spin_lock_irqsave(&task_group_lock, flags);
7119	list_add_rcu(&tg->list, &task_groups);
7120
7121	WARN_ON(!parent); /* root should already exist */
7122
7123	tg->parent = parent;
7124	INIT_LIST_HEAD(&tg->children);
7125	list_add_rcu(&tg->siblings, &parent->children);
7126	spin_unlock_irqrestore(&task_group_lock, flags);
7127}
7128
7129/* rcu callback to free various structures associated with a task group */
7130static void free_sched_group_rcu(struct rcu_head *rhp)
7131{
7132	/* now it should be safe to free those cfs_rqs */
7133	free_sched_group(container_of(rhp, struct task_group, rcu));
7134}
7135
7136/* Destroy runqueue etc associated with a task group */
7137void sched_destroy_group(struct task_group *tg)
7138{
7139	/* wait for possible concurrent references to cfs_rqs complete */
7140	call_rcu(&tg->rcu, free_sched_group_rcu);
7141}
7142
7143void sched_offline_group(struct task_group *tg)
7144{
7145	unsigned long flags;
7146	int i;
7147
7148	/* end participation in shares distribution */
7149	for_each_possible_cpu(i)
7150		unregister_fair_sched_group(tg, i);
7151
7152	spin_lock_irqsave(&task_group_lock, flags);
7153	list_del_rcu(&tg->list);
7154	list_del_rcu(&tg->siblings);
7155	spin_unlock_irqrestore(&task_group_lock, flags);
7156}
7157
7158/* change task's runqueue when it moves between groups.
7159 *	The caller of this function should have put the task in its new group
7160 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7161 *	reflect its new group.
7162 */
7163void sched_move_task(struct task_struct *tsk)
7164{
7165	struct task_group *tg;
7166	int on_rq, running;
7167	unsigned long flags;
7168	struct rq *rq;
7169
7170	rq = task_rq_lock(tsk, &flags);
7171
7172	running = task_current(rq, tsk);
7173	on_rq = tsk->on_rq;
7174
7175	if (on_rq)
7176		dequeue_task(rq, tsk, 0);
7177	if (unlikely(running))
7178		tsk->sched_class->put_prev_task(rq, tsk);
7179
7180	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7181				lockdep_is_held(&tsk->sighand->siglock)),
7182			  struct task_group, css);
7183	tg = autogroup_task_group(tsk, tg);
7184	tsk->sched_task_group = tg;
7185
7186#ifdef CONFIG_FAIR_GROUP_SCHED
7187	if (tsk->sched_class->task_move_group)
7188		tsk->sched_class->task_move_group(tsk, on_rq);
7189	else
7190#endif
7191		set_task_rq(tsk, task_cpu(tsk));
7192
7193	if (unlikely(running))
7194		tsk->sched_class->set_curr_task(rq);
7195	if (on_rq)
7196		enqueue_task(rq, tsk, 0);
7197
7198	task_rq_unlock(rq, tsk, &flags);
7199}
7200#endif /* CONFIG_CGROUP_SCHED */
7201
7202#ifdef CONFIG_RT_GROUP_SCHED
7203/*
7204 * Ensure that the real time constraints are schedulable.
7205 */
7206static DEFINE_MUTEX(rt_constraints_mutex);
7207
7208/* Must be called with tasklist_lock held */
7209static inline int tg_has_rt_tasks(struct task_group *tg)
7210{
7211	struct task_struct *g, *p;
7212
7213	do_each_thread(g, p) {
7214		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7215			return 1;
7216	} while_each_thread(g, p);
7217
7218	return 0;
7219}
7220
7221struct rt_schedulable_data {
7222	struct task_group *tg;
7223	u64 rt_period;
7224	u64 rt_runtime;
7225};
7226
7227static int tg_rt_schedulable(struct task_group *tg, void *data)
7228{
7229	struct rt_schedulable_data *d = data;
7230	struct task_group *child;
7231	unsigned long total, sum = 0;
7232	u64 period, runtime;
7233
7234	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7235	runtime = tg->rt_bandwidth.rt_runtime;
7236
7237	if (tg == d->tg) {
7238		period = d->rt_period;
7239		runtime = d->rt_runtime;
7240	}
7241
7242	/*
7243	 * Cannot have more runtime than the period.
7244	 */
7245	if (runtime > period && runtime != RUNTIME_INF)
7246		return -EINVAL;
7247
7248	/*
7249	 * Ensure we don't starve existing RT tasks.
7250	 */
7251	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7252		return -EBUSY;
7253
7254	total = to_ratio(period, runtime);
7255
7256	/*
7257	 * Nobody can have more than the global setting allows.
7258	 */
7259	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7260		return -EINVAL;
7261
7262	/*
7263	 * The sum of our children's runtime should not exceed our own.
7264	 */
7265	list_for_each_entry_rcu(child, &tg->children, siblings) {
7266		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7267		runtime = child->rt_bandwidth.rt_runtime;
7268
7269		if (child == d->tg) {
7270			period = d->rt_period;
7271			runtime = d->rt_runtime;
7272		}
7273
7274		sum += to_ratio(period, runtime);
7275	}
7276
7277	if (sum > total)
7278		return -EINVAL;
7279
7280	return 0;
7281}
7282
7283static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7284{
7285	int ret;
7286
7287	struct rt_schedulable_data data = {
7288		.tg = tg,
7289		.rt_period = period,
7290		.rt_runtime = runtime,
7291	};
7292
7293	rcu_read_lock();
7294	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7295	rcu_read_unlock();
7296
7297	return ret;
7298}
7299
7300static int tg_set_rt_bandwidth(struct task_group *tg,
7301		u64 rt_period, u64 rt_runtime)
7302{
7303	int i, err = 0;
7304
7305	mutex_lock(&rt_constraints_mutex);
7306	read_lock(&tasklist_lock);
7307	err = __rt_schedulable(tg, rt_period, rt_runtime);
7308	if (err)
7309		goto unlock;
7310
7311	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7312	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7313	tg->rt_bandwidth.rt_runtime = rt_runtime;
7314
7315	for_each_possible_cpu(i) {
7316		struct rt_rq *rt_rq = tg->rt_rq[i];
7317
7318		raw_spin_lock(&rt_rq->rt_runtime_lock);
7319		rt_rq->rt_runtime = rt_runtime;
7320		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7321	}
7322	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7323unlock:
7324	read_unlock(&tasklist_lock);
7325	mutex_unlock(&rt_constraints_mutex);
7326
7327	return err;
7328}
7329
7330static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7331{
7332	u64 rt_runtime, rt_period;
7333
7334	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7335	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7336	if (rt_runtime_us < 0)
7337		rt_runtime = RUNTIME_INF;
7338
7339	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7340}
7341
7342static long sched_group_rt_runtime(struct task_group *tg)
7343{
7344	u64 rt_runtime_us;
7345
7346	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7347		return -1;
7348
7349	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7350	do_div(rt_runtime_us, NSEC_PER_USEC);
7351	return rt_runtime_us;
7352}
7353
7354static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7355{
7356	u64 rt_runtime, rt_period;
7357
7358	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7359	rt_runtime = tg->rt_bandwidth.rt_runtime;
7360
7361	if (rt_period == 0)
7362		return -EINVAL;
7363
7364	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7365}
7366
7367static long sched_group_rt_period(struct task_group *tg)
7368{
7369	u64 rt_period_us;
7370
7371	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7372	do_div(rt_period_us, NSEC_PER_USEC);
7373	return rt_period_us;
7374}
7375#endif /* CONFIG_RT_GROUP_SCHED */
7376
7377#ifdef CONFIG_RT_GROUP_SCHED
7378static int sched_rt_global_constraints(void)
7379{
7380	int ret = 0;
7381
7382	mutex_lock(&rt_constraints_mutex);
7383	read_lock(&tasklist_lock);
7384	ret = __rt_schedulable(NULL, 0, 0);
7385	read_unlock(&tasklist_lock);
7386	mutex_unlock(&rt_constraints_mutex);
7387
7388	return ret;
7389}
7390
7391static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7392{
7393	/* Don't accept realtime tasks when there is no way for them to run */
7394	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7395		return 0;
7396
7397	return 1;
7398}
7399
7400#else /* !CONFIG_RT_GROUP_SCHED */
7401static int sched_rt_global_constraints(void)
7402{
7403	unsigned long flags;
7404	int i, ret = 0;
7405
7406	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7407	for_each_possible_cpu(i) {
7408		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7409
7410		raw_spin_lock(&rt_rq->rt_runtime_lock);
7411		rt_rq->rt_runtime = global_rt_runtime();
7412		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7413	}
7414	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7415
7416	return ret;
7417}
7418#endif /* CONFIG_RT_GROUP_SCHED */
7419
7420static int sched_dl_global_constraints(void)
7421{
7422	u64 runtime = global_rt_runtime();
7423	u64 period = global_rt_period();
7424	u64 new_bw = to_ratio(period, runtime);
7425	int cpu, ret = 0;
7426	unsigned long flags;
7427
7428	/*
7429	 * Here we want to check the bandwidth not being set to some
7430	 * value smaller than the currently allocated bandwidth in
7431	 * any of the root_domains.
7432	 *
7433	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7434	 * cycling on root_domains... Discussion on different/better
7435	 * solutions is welcome!
7436	 */
7437	for_each_possible_cpu(cpu) {
7438		struct dl_bw *dl_b = dl_bw_of(cpu);
7439
7440		raw_spin_lock_irqsave(&dl_b->lock, flags);
7441		if (new_bw < dl_b->total_bw)
7442			ret = -EBUSY;
7443		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7444
7445		if (ret)
7446			break;
7447	}
7448
7449	return ret;
7450}
7451
7452static void sched_dl_do_global(void)
7453{
7454	u64 new_bw = -1;
7455	int cpu;
7456	unsigned long flags;
7457
7458	def_dl_bandwidth.dl_period = global_rt_period();
7459	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7460
7461	if (global_rt_runtime() != RUNTIME_INF)
7462		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7463
7464	/*
7465	 * FIXME: As above...
7466	 */
7467	for_each_possible_cpu(cpu) {
7468		struct dl_bw *dl_b = dl_bw_of(cpu);
7469
7470		raw_spin_lock_irqsave(&dl_b->lock, flags);
7471		dl_b->bw = new_bw;
7472		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7473	}
7474}
7475
7476static int sched_rt_global_validate(void)
7477{
7478	if (sysctl_sched_rt_period <= 0)
7479		return -EINVAL;
7480
7481	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7482		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7483		return -EINVAL;
7484
7485	return 0;
7486}
7487
7488static void sched_rt_do_global(void)
7489{
7490	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7491	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7492}
7493
7494int sched_rt_handler(struct ctl_table *table, int write,
7495		void __user *buffer, size_t *lenp,
7496		loff_t *ppos)
7497{
7498	int old_period, old_runtime;
7499	static DEFINE_MUTEX(mutex);
7500	int ret;
7501
7502	mutex_lock(&mutex);
7503	old_period = sysctl_sched_rt_period;
7504	old_runtime = sysctl_sched_rt_runtime;
7505
7506	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7507
7508	if (!ret && write) {
7509		ret = sched_rt_global_validate();
7510		if (ret)
7511			goto undo;
7512
7513		ret = sched_rt_global_constraints();
7514		if (ret)
7515			goto undo;
7516
7517		ret = sched_dl_global_constraints();
7518		if (ret)
7519			goto undo;
7520
7521		sched_rt_do_global();
7522		sched_dl_do_global();
7523	}
7524	if (0) {
7525undo:
7526		sysctl_sched_rt_period = old_period;
7527		sysctl_sched_rt_runtime = old_runtime;
7528	}
7529	mutex_unlock(&mutex);
7530
7531	return ret;
7532}
7533
7534int sched_rr_handler(struct ctl_table *table, int write,
7535		void __user *buffer, size_t *lenp,
7536		loff_t *ppos)
7537{
7538	int ret;
7539	static DEFINE_MUTEX(mutex);
7540
7541	mutex_lock(&mutex);
7542	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7543	/* make sure that internally we keep jiffies */
7544	/* also, writing zero resets timeslice to default */
7545	if (!ret && write) {
7546		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7547			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7548	}
7549	mutex_unlock(&mutex);
7550	return ret;
7551}
7552
7553#ifdef CONFIG_CGROUP_SCHED
7554
7555static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7556{
7557	return css ? container_of(css, struct task_group, css) : NULL;
7558}
7559
7560static struct cgroup_subsys_state *
7561cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7562{
7563	struct task_group *parent = css_tg(parent_css);
7564	struct task_group *tg;
7565
7566	if (!parent) {
7567		/* This is early initialization for the top cgroup */
7568		return &root_task_group.css;
7569	}
7570
7571	tg = sched_create_group(parent);
7572	if (IS_ERR(tg))
7573		return ERR_PTR(-ENOMEM);
7574
7575	return &tg->css;
7576}
7577
7578static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7579{
7580	struct task_group *tg = css_tg(css);
7581	struct task_group *parent = css_tg(css_parent(css));
7582
7583	if (parent)
7584		sched_online_group(tg, parent);
7585	return 0;
7586}
7587
7588static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7589{
7590	struct task_group *tg = css_tg(css);
7591
7592	sched_destroy_group(tg);
7593}
7594
7595static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7596{
7597	struct task_group *tg = css_tg(css);
7598
7599	sched_offline_group(tg);
7600}
7601
7602static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7603				 struct cgroup_taskset *tset)
7604{
7605	struct task_struct *task;
7606
7607	cgroup_taskset_for_each(task, css, tset) {
7608#ifdef CONFIG_RT_GROUP_SCHED
7609		if (!sched_rt_can_attach(css_tg(css), task))
7610			return -EINVAL;
7611#else
7612		/* We don't support RT-tasks being in separate groups */
7613		if (task->sched_class != &fair_sched_class)
7614			return -EINVAL;
7615#endif
7616	}
7617	return 0;
7618}
7619
7620static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7621			      struct cgroup_taskset *tset)
7622{
7623	struct task_struct *task;
7624
7625	cgroup_taskset_for_each(task, css, tset)
7626		sched_move_task(task);
7627}
7628
7629static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7630			    struct cgroup_subsys_state *old_css,
7631			    struct task_struct *task)
7632{
7633	/*
7634	 * cgroup_exit() is called in the copy_process() failure path.
7635	 * Ignore this case since the task hasn't ran yet, this avoids
7636	 * trying to poke a half freed task state from generic code.
7637	 */
7638	if (!(task->flags & PF_EXITING))
7639		return;
7640
7641	sched_move_task(task);
7642}
7643
7644#ifdef CONFIG_FAIR_GROUP_SCHED
7645static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7646				struct cftype *cftype, u64 shareval)
7647{
7648	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7649}
7650
7651static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7652			       struct cftype *cft)
7653{
7654	struct task_group *tg = css_tg(css);
7655
7656	return (u64) scale_load_down(tg->shares);
7657}
7658
7659#ifdef CONFIG_CFS_BANDWIDTH
7660static DEFINE_MUTEX(cfs_constraints_mutex);
7661
7662const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7663const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7664
7665static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7666
7667static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7668{
7669	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7670	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7671
7672	if (tg == &root_task_group)
7673		return -EINVAL;
7674
7675	/*
7676	 * Ensure we have at some amount of bandwidth every period.  This is
7677	 * to prevent reaching a state of large arrears when throttled via
7678	 * entity_tick() resulting in prolonged exit starvation.
7679	 */
7680	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7681		return -EINVAL;
7682
7683	/*
7684	 * Likewise, bound things on the otherside by preventing insane quota
7685	 * periods.  This also allows us to normalize in computing quota
7686	 * feasibility.
7687	 */
7688	if (period > max_cfs_quota_period)
7689		return -EINVAL;
7690
7691	mutex_lock(&cfs_constraints_mutex);
7692	ret = __cfs_schedulable(tg, period, quota);
7693	if (ret)
7694		goto out_unlock;
7695
7696	runtime_enabled = quota != RUNTIME_INF;
7697	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7698	/*
7699	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7700	 * before making related changes, and on->off must occur afterwards
7701	 */
7702	if (runtime_enabled && !runtime_was_enabled)
7703		cfs_bandwidth_usage_inc();
7704	raw_spin_lock_irq(&cfs_b->lock);
7705	cfs_b->period = ns_to_ktime(period);
7706	cfs_b->quota = quota;
7707
7708	__refill_cfs_bandwidth_runtime(cfs_b);
7709	/* restart the period timer (if active) to handle new period expiry */
7710	if (runtime_enabled && cfs_b->timer_active) {
7711		/* force a reprogram */
7712		cfs_b->timer_active = 0;
7713		__start_cfs_bandwidth(cfs_b);
7714	}
7715	raw_spin_unlock_irq(&cfs_b->lock);
7716
7717	for_each_possible_cpu(i) {
7718		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7719		struct rq *rq = cfs_rq->rq;
7720
7721		raw_spin_lock_irq(&rq->lock);
7722		cfs_rq->runtime_enabled = runtime_enabled;
7723		cfs_rq->runtime_remaining = 0;
7724
7725		if (cfs_rq->throttled)
7726			unthrottle_cfs_rq(cfs_rq);
7727		raw_spin_unlock_irq(&rq->lock);
7728	}
7729	if (runtime_was_enabled && !runtime_enabled)
7730		cfs_bandwidth_usage_dec();
7731out_unlock:
7732	mutex_unlock(&cfs_constraints_mutex);
7733
7734	return ret;
7735}
7736
7737int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7738{
7739	u64 quota, period;
7740
7741	period = ktime_to_ns(tg->cfs_bandwidth.period);
7742	if (cfs_quota_us < 0)
7743		quota = RUNTIME_INF;
7744	else
7745		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7746
7747	return tg_set_cfs_bandwidth(tg, period, quota);
7748}
7749
7750long tg_get_cfs_quota(struct task_group *tg)
7751{
7752	u64 quota_us;
7753
7754	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7755		return -1;
7756
7757	quota_us = tg->cfs_bandwidth.quota;
7758	do_div(quota_us, NSEC_PER_USEC);
7759
7760	return quota_us;
7761}
7762
7763int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7764{
7765	u64 quota, period;
7766
7767	period = (u64)cfs_period_us * NSEC_PER_USEC;
7768	quota = tg->cfs_bandwidth.quota;
7769
7770	return tg_set_cfs_bandwidth(tg, period, quota);
7771}
7772
7773long tg_get_cfs_period(struct task_group *tg)
7774{
7775	u64 cfs_period_us;
7776
7777	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7778	do_div(cfs_period_us, NSEC_PER_USEC);
7779
7780	return cfs_period_us;
7781}
7782
7783static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7784				  struct cftype *cft)
7785{
7786	return tg_get_cfs_quota(css_tg(css));
7787}
7788
7789static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7790				   struct cftype *cftype, s64 cfs_quota_us)
7791{
7792	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7793}
7794
7795static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7796				   struct cftype *cft)
7797{
7798	return tg_get_cfs_period(css_tg(css));
7799}
7800
7801static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7802				    struct cftype *cftype, u64 cfs_period_us)
7803{
7804	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7805}
7806
7807struct cfs_schedulable_data {
7808	struct task_group *tg;
7809	u64 period, quota;
7810};
7811
7812/*
7813 * normalize group quota/period to be quota/max_period
7814 * note: units are usecs
7815 */
7816static u64 normalize_cfs_quota(struct task_group *tg,
7817			       struct cfs_schedulable_data *d)
7818{
7819	u64 quota, period;
7820
7821	if (tg == d->tg) {
7822		period = d->period;
7823		quota = d->quota;
7824	} else {
7825		period = tg_get_cfs_period(tg);
7826		quota = tg_get_cfs_quota(tg);
7827	}
7828
7829	/* note: these should typically be equivalent */
7830	if (quota == RUNTIME_INF || quota == -1)
7831		return RUNTIME_INF;
7832
7833	return to_ratio(period, quota);
7834}
7835
7836static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7837{
7838	struct cfs_schedulable_data *d = data;
7839	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7840	s64 quota = 0, parent_quota = -1;
7841
7842	if (!tg->parent) {
7843		quota = RUNTIME_INF;
7844	} else {
7845		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7846
7847		quota = normalize_cfs_quota(tg, d);
7848		parent_quota = parent_b->hierarchal_quota;
7849
7850		/*
7851		 * ensure max(child_quota) <= parent_quota, inherit when no
7852		 * limit is set
7853		 */
7854		if (quota == RUNTIME_INF)
7855			quota = parent_quota;
7856		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7857			return -EINVAL;
7858	}
7859	cfs_b->hierarchal_quota = quota;
7860
7861	return 0;
7862}
7863
7864static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7865{
7866	int ret;
7867	struct cfs_schedulable_data data = {
7868		.tg = tg,
7869		.period = period,
7870		.quota = quota,
7871	};
7872
7873	if (quota != RUNTIME_INF) {
7874		do_div(data.period, NSEC_PER_USEC);
7875		do_div(data.quota, NSEC_PER_USEC);
7876	}
7877
7878	rcu_read_lock();
7879	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7880	rcu_read_unlock();
7881
7882	return ret;
7883}
7884
7885static int cpu_stats_show(struct seq_file *sf, void *v)
7886{
7887	struct task_group *tg = css_tg(seq_css(sf));
7888	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7889
7890	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7891	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7892	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7893
7894	return 0;
7895}
7896#endif /* CONFIG_CFS_BANDWIDTH */
7897#endif /* CONFIG_FAIR_GROUP_SCHED */
7898
7899#ifdef CONFIG_RT_GROUP_SCHED
7900static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7901				struct cftype *cft, s64 val)
7902{
7903	return sched_group_set_rt_runtime(css_tg(css), val);
7904}
7905
7906static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7907			       struct cftype *cft)
7908{
7909	return sched_group_rt_runtime(css_tg(css));
7910}
7911
7912static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7913				    struct cftype *cftype, u64 rt_period_us)
7914{
7915	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7916}
7917
7918static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7919				   struct cftype *cft)
7920{
7921	return sched_group_rt_period(css_tg(css));
7922}
7923#endif /* CONFIG_RT_GROUP_SCHED */
7924
7925static struct cftype cpu_files[] = {
7926#ifdef CONFIG_FAIR_GROUP_SCHED
7927	{
7928		.name = "shares",
7929		.read_u64 = cpu_shares_read_u64,
7930		.write_u64 = cpu_shares_write_u64,
7931	},
7932#endif
7933#ifdef CONFIG_CFS_BANDWIDTH
7934	{
7935		.name = "cfs_quota_us",
7936		.read_s64 = cpu_cfs_quota_read_s64,
7937		.write_s64 = cpu_cfs_quota_write_s64,
7938	},
7939	{
7940		.name = "cfs_period_us",
7941		.read_u64 = cpu_cfs_period_read_u64,
7942		.write_u64 = cpu_cfs_period_write_u64,
7943	},
7944	{
7945		.name = "stat",
7946		.seq_show = cpu_stats_show,
7947	},
7948#endif
7949#ifdef CONFIG_RT_GROUP_SCHED
7950	{
7951		.name = "rt_runtime_us",
7952		.read_s64 = cpu_rt_runtime_read,
7953		.write_s64 = cpu_rt_runtime_write,
7954	},
7955	{
7956		.name = "rt_period_us",
7957		.read_u64 = cpu_rt_period_read_uint,
7958		.write_u64 = cpu_rt_period_write_uint,
7959	},
7960#endif
7961	{ }	/* terminate */
7962};
7963
7964struct cgroup_subsys cpu_cgroup_subsys = {
7965	.name		= "cpu",
7966	.css_alloc	= cpu_cgroup_css_alloc,
7967	.css_free	= cpu_cgroup_css_free,
7968	.css_online	= cpu_cgroup_css_online,
7969	.css_offline	= cpu_cgroup_css_offline,
7970	.can_attach	= cpu_cgroup_can_attach,
7971	.attach		= cpu_cgroup_attach,
7972	.exit		= cpu_cgroup_exit,
7973	.subsys_id	= cpu_cgroup_subsys_id,
7974	.base_cftypes	= cpu_files,
7975	.early_init	= 1,
7976};
7977
7978#endif	/* CONFIG_CGROUP_SCHED */
7979
7980void dump_cpu_task(int cpu)
7981{
7982	pr_info("Task dump for CPU %d:\n", cpu);
7983	sched_show_task(cpu_curr(cpu));
7984}
7985