core.c revision 746023159c40c523b08a3bc3d213dac212385895
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	get_online_cpus();
1089
1090	arg = (struct migration_swap_arg){
1091		.src_task = cur,
1092		.src_cpu = task_cpu(cur),
1093		.dst_task = p,
1094		.dst_cpu = task_cpu(p),
1095	};
1096
1097	if (arg.src_cpu == arg.dst_cpu)
1098		goto out;
1099
1100	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101		goto out;
1102
1103	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104		goto out;
1105
1106	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107		goto out;
1108
1109	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1110
1111out:
1112	put_online_cpus();
1113	return ret;
1114}
1115
1116struct migration_arg {
1117	struct task_struct *task;
1118	int dest_cpu;
1119};
1120
1121static int migration_cpu_stop(void *data);
1122
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change.  If it changes, i.e. @p might have woken up,
1128 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count).  If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140{
1141	unsigned long flags;
1142	int running, on_rq;
1143	unsigned long ncsw;
1144	struct rq *rq;
1145
1146	for (;;) {
1147		/*
1148		 * We do the initial early heuristics without holding
1149		 * any task-queue locks at all. We'll only try to get
1150		 * the runqueue lock when things look like they will
1151		 * work out!
1152		 */
1153		rq = task_rq(p);
1154
1155		/*
1156		 * If the task is actively running on another CPU
1157		 * still, just relax and busy-wait without holding
1158		 * any locks.
1159		 *
1160		 * NOTE! Since we don't hold any locks, it's not
1161		 * even sure that "rq" stays as the right runqueue!
1162		 * But we don't care, since "task_running()" will
1163		 * return false if the runqueue has changed and p
1164		 * is actually now running somewhere else!
1165		 */
1166		while (task_running(rq, p)) {
1167			if (match_state && unlikely(p->state != match_state))
1168				return 0;
1169			cpu_relax();
1170		}
1171
1172		/*
1173		 * Ok, time to look more closely! We need the rq
1174		 * lock now, to be *sure*. If we're wrong, we'll
1175		 * just go back and repeat.
1176		 */
1177		rq = task_rq_lock(p, &flags);
1178		trace_sched_wait_task(p);
1179		running = task_running(rq, p);
1180		on_rq = p->on_rq;
1181		ncsw = 0;
1182		if (!match_state || p->state == match_state)
1183			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184		task_rq_unlock(rq, p, &flags);
1185
1186		/*
1187		 * If it changed from the expected state, bail out now.
1188		 */
1189		if (unlikely(!ncsw))
1190			break;
1191
1192		/*
1193		 * Was it really running after all now that we
1194		 * checked with the proper locks actually held?
1195		 *
1196		 * Oops. Go back and try again..
1197		 */
1198		if (unlikely(running)) {
1199			cpu_relax();
1200			continue;
1201		}
1202
1203		/*
1204		 * It's not enough that it's not actively running,
1205		 * it must be off the runqueue _entirely_, and not
1206		 * preempted!
1207		 *
1208		 * So if it was still runnable (but just not actively
1209		 * running right now), it's preempted, and we should
1210		 * yield - it could be a while.
1211		 */
1212		if (unlikely(on_rq)) {
1213			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215			set_current_state(TASK_UNINTERRUPTIBLE);
1216			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217			continue;
1218		}
1219
1220		/*
1221		 * Ahh, all good. It wasn't running, and it wasn't
1222		 * runnable, which means that it will never become
1223		 * running in the future either. We're all done!
1224		 */
1225		break;
1226	}
1227
1228	return ncsw;
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244void kick_process(struct task_struct *p)
1245{
1246	int cpu;
1247
1248	preempt_disable();
1249	cpu = task_cpu(p);
1250	if ((cpu != smp_processor_id()) && task_curr(p))
1251		smp_send_reschedule(cpu);
1252	preempt_enable();
1253}
1254EXPORT_SYMBOL_GPL(kick_process);
1255#endif /* CONFIG_SMP */
1256
1257#ifdef CONFIG_SMP
1258/*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
1263	int nid = cpu_to_node(cpu);
1264	const struct cpumask *nodemask = NULL;
1265	enum { cpuset, possible, fail } state = cpuset;
1266	int dest_cpu;
1267
1268	/*
1269	 * If the node that the cpu is on has been offlined, cpu_to_node()
1270	 * will return -1. There is no cpu on the node, and we should
1271	 * select the cpu on the other node.
1272	 */
1273	if (nid != -1) {
1274		nodemask = cpumask_of_node(nid);
1275
1276		/* Look for allowed, online CPU in same node. */
1277		for_each_cpu(dest_cpu, nodemask) {
1278			if (!cpu_online(dest_cpu))
1279				continue;
1280			if (!cpu_active(dest_cpu))
1281				continue;
1282			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283				return dest_cpu;
1284		}
1285	}
1286
1287	for (;;) {
1288		/* Any allowed, online CPU? */
1289		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290			if (!cpu_online(dest_cpu))
1291				continue;
1292			if (!cpu_active(dest_cpu))
1293				continue;
1294			goto out;
1295		}
1296
1297		switch (state) {
1298		case cpuset:
1299			/* No more Mr. Nice Guy. */
1300			cpuset_cpus_allowed_fallback(p);
1301			state = possible;
1302			break;
1303
1304		case possible:
1305			do_set_cpus_allowed(p, cpu_possible_mask);
1306			state = fail;
1307			break;
1308
1309		case fail:
1310			BUG();
1311			break;
1312		}
1313	}
1314
1315out:
1316	if (state != cpuset) {
1317		/*
1318		 * Don't tell them about moving exiting tasks or
1319		 * kernel threads (both mm NULL), since they never
1320		 * leave kernel.
1321		 */
1322		if (p->mm && printk_ratelimit()) {
1323			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324					task_pid_nr(p), p->comm, cpu);
1325		}
1326	}
1327
1328	return dest_cpu;
1329}
1330
1331/*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334static inline
1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336{
1337	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339	/*
1340	 * In order not to call set_task_cpu() on a blocking task we need
1341	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342	 * cpu.
1343	 *
1344	 * Since this is common to all placement strategies, this lives here.
1345	 *
1346	 * [ this allows ->select_task() to simply return task_cpu(p) and
1347	 *   not worry about this generic constraint ]
1348	 */
1349	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350		     !cpu_online(cpu)))
1351		cpu = select_fallback_rq(task_cpu(p), p);
1352
1353	return cpu;
1354}
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358	s64 diff = sample - *avg;
1359	*avg += diff >> 3;
1360}
1361#endif
1362
1363static void
1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365{
1366#ifdef CONFIG_SCHEDSTATS
1367	struct rq *rq = this_rq();
1368
1369#ifdef CONFIG_SMP
1370	int this_cpu = smp_processor_id();
1371
1372	if (cpu == this_cpu) {
1373		schedstat_inc(rq, ttwu_local);
1374		schedstat_inc(p, se.statistics.nr_wakeups_local);
1375	} else {
1376		struct sched_domain *sd;
1377
1378		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379		rcu_read_lock();
1380		for_each_domain(this_cpu, sd) {
1381			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382				schedstat_inc(sd, ttwu_wake_remote);
1383				break;
1384			}
1385		}
1386		rcu_read_unlock();
1387	}
1388
1389	if (wake_flags & WF_MIGRATED)
1390		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392#endif /* CONFIG_SMP */
1393
1394	schedstat_inc(rq, ttwu_count);
1395	schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397	if (wake_flags & WF_SYNC)
1398		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
1405	activate_task(rq, p, en_flags);
1406	p->on_rq = 1;
1407
1408	/* if a worker is waking up, notify workqueue */
1409	if (p->flags & PF_WQ_WORKER)
1410		wq_worker_waking_up(p, cpu_of(rq));
1411}
1412
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416static void
1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418{
1419	check_preempt_curr(rq, p, wake_flags);
1420	trace_sched_wakeup(p, true);
1421
1422	p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424	if (p->sched_class->task_woken)
1425		p->sched_class->task_woken(rq, p);
1426
1427	if (rq->idle_stamp) {
1428		u64 delta = rq_clock(rq) - rq->idle_stamp;
1429		u64 max = 2*rq->max_idle_balance_cost;
1430
1431		update_avg(&rq->avg_idle, delta);
1432
1433		if (rq->avg_idle > max)
1434			rq->avg_idle = max;
1435
1436		rq->idle_stamp = 0;
1437	}
1438#endif
1439}
1440
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445	if (p->sched_contributes_to_load)
1446		rq->nr_uninterruptible--;
1447#endif
1448
1449	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450	ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461	struct rq *rq;
1462	int ret = 0;
1463
1464	rq = __task_rq_lock(p);
1465	if (p->on_rq) {
1466		/* check_preempt_curr() may use rq clock */
1467		update_rq_clock(rq);
1468		ttwu_do_wakeup(rq, p, wake_flags);
1469		ret = 1;
1470	}
1471	__task_rq_unlock(rq);
1472
1473	return ret;
1474}
1475
1476#ifdef CONFIG_SMP
1477static void sched_ttwu_pending(void)
1478{
1479	struct rq *rq = this_rq();
1480	struct llist_node *llist = llist_del_all(&rq->wake_list);
1481	struct task_struct *p;
1482
1483	raw_spin_lock(&rq->lock);
1484
1485	while (llist) {
1486		p = llist_entry(llist, struct task_struct, wake_entry);
1487		llist = llist_next(llist);
1488		ttwu_do_activate(rq, p, 0);
1489	}
1490
1491	raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
1496	/*
1497	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499	 * this IPI.
1500	 */
1501	if (tif_need_resched())
1502		set_preempt_need_resched();
1503
1504	if (llist_empty(&this_rq()->wake_list)
1505			&& !tick_nohz_full_cpu(smp_processor_id())
1506			&& !got_nohz_idle_kick())
1507		return;
1508
1509	/*
1510	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1511	 * traditionally all their work was done from the interrupt return
1512	 * path. Now that we actually do some work, we need to make sure
1513	 * we do call them.
1514	 *
1515	 * Some archs already do call them, luckily irq_enter/exit nest
1516	 * properly.
1517	 *
1518	 * Arguably we should visit all archs and update all handlers,
1519	 * however a fair share of IPIs are still resched only so this would
1520	 * somewhat pessimize the simple resched case.
1521	 */
1522	irq_enter();
1523	tick_nohz_full_check();
1524	sched_ttwu_pending();
1525
1526	/*
1527	 * Check if someone kicked us for doing the nohz idle load balance.
1528	 */
1529	if (unlikely(got_nohz_idle_kick())) {
1530		this_rq()->idle_balance = 1;
1531		raise_softirq_irqoff(SCHED_SOFTIRQ);
1532	}
1533	irq_exit();
1534}
1535
1536static void ttwu_queue_remote(struct task_struct *p, int cpu)
1537{
1538	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1539		smp_send_reschedule(cpu);
1540}
1541
1542bool cpus_share_cache(int this_cpu, int that_cpu)
1543{
1544	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545}
1546#endif /* CONFIG_SMP */
1547
1548static void ttwu_queue(struct task_struct *p, int cpu)
1549{
1550	struct rq *rq = cpu_rq(cpu);
1551
1552#if defined(CONFIG_SMP)
1553	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555		ttwu_queue_remote(p, cpu);
1556		return;
1557	}
1558#endif
1559
1560	raw_spin_lock(&rq->lock);
1561	ttwu_do_activate(rq, p, 0);
1562	raw_spin_unlock(&rq->lock);
1563}
1564
1565/**
1566 * try_to_wake_up - wake up a thread
1567 * @p: the thread to be awakened
1568 * @state: the mask of task states that can be woken
1569 * @wake_flags: wake modifier flags (WF_*)
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
1577 * Return: %true if @p was woken up, %false if it was already running.
1578 * or @state didn't match @p's state.
1579 */
1580static int
1581try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582{
1583	unsigned long flags;
1584	int cpu, success = 0;
1585
1586	/*
1587	 * If we are going to wake up a thread waiting for CONDITION we
1588	 * need to ensure that CONDITION=1 done by the caller can not be
1589	 * reordered with p->state check below. This pairs with mb() in
1590	 * set_current_state() the waiting thread does.
1591	 */
1592	smp_mb__before_spinlock();
1593	raw_spin_lock_irqsave(&p->pi_lock, flags);
1594	if (!(p->state & state))
1595		goto out;
1596
1597	success = 1; /* we're going to change ->state */
1598	cpu = task_cpu(p);
1599
1600	if (p->on_rq && ttwu_remote(p, wake_flags))
1601		goto stat;
1602
1603#ifdef CONFIG_SMP
1604	/*
1605	 * If the owning (remote) cpu is still in the middle of schedule() with
1606	 * this task as prev, wait until its done referencing the task.
1607	 */
1608	while (p->on_cpu)
1609		cpu_relax();
1610	/*
1611	 * Pairs with the smp_wmb() in finish_lock_switch().
1612	 */
1613	smp_rmb();
1614
1615	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1616	p->state = TASK_WAKING;
1617
1618	if (p->sched_class->task_waking)
1619		p->sched_class->task_waking(p);
1620
1621	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1622	if (task_cpu(p) != cpu) {
1623		wake_flags |= WF_MIGRATED;
1624		set_task_cpu(p, cpu);
1625	}
1626#endif /* CONFIG_SMP */
1627
1628	ttwu_queue(p, cpu);
1629stat:
1630	ttwu_stat(p, cpu, wake_flags);
1631out:
1632	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1633
1634	return success;
1635}
1636
1637/**
1638 * try_to_wake_up_local - try to wake up a local task with rq lock held
1639 * @p: the thread to be awakened
1640 *
1641 * Put @p on the run-queue if it's not already there. The caller must
1642 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1643 * the current task.
1644 */
1645static void try_to_wake_up_local(struct task_struct *p)
1646{
1647	struct rq *rq = task_rq(p);
1648
1649	if (WARN_ON_ONCE(rq != this_rq()) ||
1650	    WARN_ON_ONCE(p == current))
1651		return;
1652
1653	lockdep_assert_held(&rq->lock);
1654
1655	if (!raw_spin_trylock(&p->pi_lock)) {
1656		raw_spin_unlock(&rq->lock);
1657		raw_spin_lock(&p->pi_lock);
1658		raw_spin_lock(&rq->lock);
1659	}
1660
1661	if (!(p->state & TASK_NORMAL))
1662		goto out;
1663
1664	if (!p->on_rq)
1665		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1666
1667	ttwu_do_wakeup(rq, p, 0);
1668	ttwu_stat(p, smp_processor_id(), 0);
1669out:
1670	raw_spin_unlock(&p->pi_lock);
1671}
1672
1673/**
1674 * wake_up_process - Wake up a specific process
1675 * @p: The process to be woken up.
1676 *
1677 * Attempt to wake up the nominated process and move it to the set of runnable
1678 * processes.
1679 *
1680 * Return: 1 if the process was woken up, 0 if it was already running.
1681 *
1682 * It may be assumed that this function implies a write memory barrier before
1683 * changing the task state if and only if any tasks are woken up.
1684 */
1685int wake_up_process(struct task_struct *p)
1686{
1687	WARN_ON(task_is_stopped_or_traced(p));
1688	return try_to_wake_up(p, TASK_NORMAL, 0);
1689}
1690EXPORT_SYMBOL(wake_up_process);
1691
1692int wake_up_state(struct task_struct *p, unsigned int state)
1693{
1694	return try_to_wake_up(p, state, 0);
1695}
1696
1697/*
1698 * Perform scheduler related setup for a newly forked process p.
1699 * p is forked by current.
1700 *
1701 * __sched_fork() is basic setup used by init_idle() too:
1702 */
1703static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1704{
1705	p->on_rq			= 0;
1706
1707	p->se.on_rq			= 0;
1708	p->se.exec_start		= 0;
1709	p->se.sum_exec_runtime		= 0;
1710	p->se.prev_sum_exec_runtime	= 0;
1711	p->se.nr_migrations		= 0;
1712	p->se.vruntime			= 0;
1713	INIT_LIST_HEAD(&p->se.group_node);
1714
1715#ifdef CONFIG_SCHEDSTATS
1716	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1717#endif
1718
1719	INIT_LIST_HEAD(&p->rt.run_list);
1720
1721#ifdef CONFIG_PREEMPT_NOTIFIERS
1722	INIT_HLIST_HEAD(&p->preempt_notifiers);
1723#endif
1724
1725#ifdef CONFIG_NUMA_BALANCING
1726	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1727		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1728		p->mm->numa_scan_seq = 0;
1729	}
1730
1731	if (clone_flags & CLONE_VM)
1732		p->numa_preferred_nid = current->numa_preferred_nid;
1733	else
1734		p->numa_preferred_nid = -1;
1735
1736	p->node_stamp = 0ULL;
1737	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1738	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1739	p->numa_work.next = &p->numa_work;
1740	p->numa_faults = NULL;
1741	p->numa_faults_buffer = NULL;
1742
1743	INIT_LIST_HEAD(&p->numa_entry);
1744	p->numa_group = NULL;
1745#endif /* CONFIG_NUMA_BALANCING */
1746}
1747
1748#ifdef CONFIG_NUMA_BALANCING
1749#ifdef CONFIG_SCHED_DEBUG
1750void set_numabalancing_state(bool enabled)
1751{
1752	if (enabled)
1753		sched_feat_set("NUMA");
1754	else
1755		sched_feat_set("NO_NUMA");
1756}
1757#else
1758__read_mostly bool numabalancing_enabled;
1759
1760void set_numabalancing_state(bool enabled)
1761{
1762	numabalancing_enabled = enabled;
1763}
1764#endif /* CONFIG_SCHED_DEBUG */
1765#endif /* CONFIG_NUMA_BALANCING */
1766
1767/*
1768 * fork()/clone()-time setup:
1769 */
1770void sched_fork(unsigned long clone_flags, struct task_struct *p)
1771{
1772	unsigned long flags;
1773	int cpu = get_cpu();
1774
1775	__sched_fork(clone_flags, p);
1776	/*
1777	 * We mark the process as running here. This guarantees that
1778	 * nobody will actually run it, and a signal or other external
1779	 * event cannot wake it up and insert it on the runqueue either.
1780	 */
1781	p->state = TASK_RUNNING;
1782
1783	/*
1784	 * Make sure we do not leak PI boosting priority to the child.
1785	 */
1786	p->prio = current->normal_prio;
1787
1788	/*
1789	 * Revert to default priority/policy on fork if requested.
1790	 */
1791	if (unlikely(p->sched_reset_on_fork)) {
1792		if (task_has_rt_policy(p)) {
1793			p->policy = SCHED_NORMAL;
1794			p->static_prio = NICE_TO_PRIO(0);
1795			p->rt_priority = 0;
1796		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1797			p->static_prio = NICE_TO_PRIO(0);
1798
1799		p->prio = p->normal_prio = __normal_prio(p);
1800		set_load_weight(p);
1801
1802		/*
1803		 * We don't need the reset flag anymore after the fork. It has
1804		 * fulfilled its duty:
1805		 */
1806		p->sched_reset_on_fork = 0;
1807	}
1808
1809	if (!rt_prio(p->prio))
1810		p->sched_class = &fair_sched_class;
1811
1812	if (p->sched_class->task_fork)
1813		p->sched_class->task_fork(p);
1814
1815	/*
1816	 * The child is not yet in the pid-hash so no cgroup attach races,
1817	 * and the cgroup is pinned to this child due to cgroup_fork()
1818	 * is ran before sched_fork().
1819	 *
1820	 * Silence PROVE_RCU.
1821	 */
1822	raw_spin_lock_irqsave(&p->pi_lock, flags);
1823	set_task_cpu(p, cpu);
1824	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1825
1826#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1827	if (likely(sched_info_on()))
1828		memset(&p->sched_info, 0, sizeof(p->sched_info));
1829#endif
1830#if defined(CONFIG_SMP)
1831	p->on_cpu = 0;
1832#endif
1833	init_task_preempt_count(p);
1834#ifdef CONFIG_SMP
1835	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1836#endif
1837
1838	put_cpu();
1839}
1840
1841/*
1842 * wake_up_new_task - wake up a newly created task for the first time.
1843 *
1844 * This function will do some initial scheduler statistics housekeeping
1845 * that must be done for every newly created context, then puts the task
1846 * on the runqueue and wakes it.
1847 */
1848void wake_up_new_task(struct task_struct *p)
1849{
1850	unsigned long flags;
1851	struct rq *rq;
1852
1853	raw_spin_lock_irqsave(&p->pi_lock, flags);
1854#ifdef CONFIG_SMP
1855	/*
1856	 * Fork balancing, do it here and not earlier because:
1857	 *  - cpus_allowed can change in the fork path
1858	 *  - any previously selected cpu might disappear through hotplug
1859	 */
1860	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1861#endif
1862
1863	/* Initialize new task's runnable average */
1864	init_task_runnable_average(p);
1865	rq = __task_rq_lock(p);
1866	activate_task(rq, p, 0);
1867	p->on_rq = 1;
1868	trace_sched_wakeup_new(p, true);
1869	check_preempt_curr(rq, p, WF_FORK);
1870#ifdef CONFIG_SMP
1871	if (p->sched_class->task_woken)
1872		p->sched_class->task_woken(rq, p);
1873#endif
1874	task_rq_unlock(rq, p, &flags);
1875}
1876
1877#ifdef CONFIG_PREEMPT_NOTIFIERS
1878
1879/**
1880 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1881 * @notifier: notifier struct to register
1882 */
1883void preempt_notifier_register(struct preempt_notifier *notifier)
1884{
1885	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1886}
1887EXPORT_SYMBOL_GPL(preempt_notifier_register);
1888
1889/**
1890 * preempt_notifier_unregister - no longer interested in preemption notifications
1891 * @notifier: notifier struct to unregister
1892 *
1893 * This is safe to call from within a preemption notifier.
1894 */
1895void preempt_notifier_unregister(struct preempt_notifier *notifier)
1896{
1897	hlist_del(&notifier->link);
1898}
1899EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1900
1901static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1902{
1903	struct preempt_notifier *notifier;
1904
1905	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1906		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1907}
1908
1909static void
1910fire_sched_out_preempt_notifiers(struct task_struct *curr,
1911				 struct task_struct *next)
1912{
1913	struct preempt_notifier *notifier;
1914
1915	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1916		notifier->ops->sched_out(notifier, next);
1917}
1918
1919#else /* !CONFIG_PREEMPT_NOTIFIERS */
1920
1921static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1922{
1923}
1924
1925static void
1926fire_sched_out_preempt_notifiers(struct task_struct *curr,
1927				 struct task_struct *next)
1928{
1929}
1930
1931#endif /* CONFIG_PREEMPT_NOTIFIERS */
1932
1933/**
1934 * prepare_task_switch - prepare to switch tasks
1935 * @rq: the runqueue preparing to switch
1936 * @prev: the current task that is being switched out
1937 * @next: the task we are going to switch to.
1938 *
1939 * This is called with the rq lock held and interrupts off. It must
1940 * be paired with a subsequent finish_task_switch after the context
1941 * switch.
1942 *
1943 * prepare_task_switch sets up locking and calls architecture specific
1944 * hooks.
1945 */
1946static inline void
1947prepare_task_switch(struct rq *rq, struct task_struct *prev,
1948		    struct task_struct *next)
1949{
1950	trace_sched_switch(prev, next);
1951	sched_info_switch(rq, prev, next);
1952	perf_event_task_sched_out(prev, next);
1953	fire_sched_out_preempt_notifiers(prev, next);
1954	prepare_lock_switch(rq, next);
1955	prepare_arch_switch(next);
1956}
1957
1958/**
1959 * finish_task_switch - clean up after a task-switch
1960 * @rq: runqueue associated with task-switch
1961 * @prev: the thread we just switched away from.
1962 *
1963 * finish_task_switch must be called after the context switch, paired
1964 * with a prepare_task_switch call before the context switch.
1965 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1966 * and do any other architecture-specific cleanup actions.
1967 *
1968 * Note that we may have delayed dropping an mm in context_switch(). If
1969 * so, we finish that here outside of the runqueue lock. (Doing it
1970 * with the lock held can cause deadlocks; see schedule() for
1971 * details.)
1972 */
1973static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1974	__releases(rq->lock)
1975{
1976	struct mm_struct *mm = rq->prev_mm;
1977	long prev_state;
1978
1979	rq->prev_mm = NULL;
1980
1981	/*
1982	 * A task struct has one reference for the use as "current".
1983	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1984	 * schedule one last time. The schedule call will never return, and
1985	 * the scheduled task must drop that reference.
1986	 * The test for TASK_DEAD must occur while the runqueue locks are
1987	 * still held, otherwise prev could be scheduled on another cpu, die
1988	 * there before we look at prev->state, and then the reference would
1989	 * be dropped twice.
1990	 *		Manfred Spraul <manfred@colorfullife.com>
1991	 */
1992	prev_state = prev->state;
1993	vtime_task_switch(prev);
1994	finish_arch_switch(prev);
1995	perf_event_task_sched_in(prev, current);
1996	finish_lock_switch(rq, prev);
1997	finish_arch_post_lock_switch();
1998
1999	fire_sched_in_preempt_notifiers(current);
2000	if (mm)
2001		mmdrop(mm);
2002	if (unlikely(prev_state == TASK_DEAD)) {
2003		task_numa_free(prev);
2004
2005		/*
2006		 * Remove function-return probe instances associated with this
2007		 * task and put them back on the free list.
2008		 */
2009		kprobe_flush_task(prev);
2010		put_task_struct(prev);
2011	}
2012
2013	tick_nohz_task_switch(current);
2014}
2015
2016#ifdef CONFIG_SMP
2017
2018/* assumes rq->lock is held */
2019static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2020{
2021	if (prev->sched_class->pre_schedule)
2022		prev->sched_class->pre_schedule(rq, prev);
2023}
2024
2025/* rq->lock is NOT held, but preemption is disabled */
2026static inline void post_schedule(struct rq *rq)
2027{
2028	if (rq->post_schedule) {
2029		unsigned long flags;
2030
2031		raw_spin_lock_irqsave(&rq->lock, flags);
2032		if (rq->curr->sched_class->post_schedule)
2033			rq->curr->sched_class->post_schedule(rq);
2034		raw_spin_unlock_irqrestore(&rq->lock, flags);
2035
2036		rq->post_schedule = 0;
2037	}
2038}
2039
2040#else
2041
2042static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2043{
2044}
2045
2046static inline void post_schedule(struct rq *rq)
2047{
2048}
2049
2050#endif
2051
2052/**
2053 * schedule_tail - first thing a freshly forked thread must call.
2054 * @prev: the thread we just switched away from.
2055 */
2056asmlinkage void schedule_tail(struct task_struct *prev)
2057	__releases(rq->lock)
2058{
2059	struct rq *rq = this_rq();
2060
2061	finish_task_switch(rq, prev);
2062
2063	/*
2064	 * FIXME: do we need to worry about rq being invalidated by the
2065	 * task_switch?
2066	 */
2067	post_schedule(rq);
2068
2069#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2070	/* In this case, finish_task_switch does not reenable preemption */
2071	preempt_enable();
2072#endif
2073	if (current->set_child_tid)
2074		put_user(task_pid_vnr(current), current->set_child_tid);
2075}
2076
2077/*
2078 * context_switch - switch to the new MM and the new
2079 * thread's register state.
2080 */
2081static inline void
2082context_switch(struct rq *rq, struct task_struct *prev,
2083	       struct task_struct *next)
2084{
2085	struct mm_struct *mm, *oldmm;
2086
2087	prepare_task_switch(rq, prev, next);
2088
2089	mm = next->mm;
2090	oldmm = prev->active_mm;
2091	/*
2092	 * For paravirt, this is coupled with an exit in switch_to to
2093	 * combine the page table reload and the switch backend into
2094	 * one hypercall.
2095	 */
2096	arch_start_context_switch(prev);
2097
2098	if (!mm) {
2099		next->active_mm = oldmm;
2100		atomic_inc(&oldmm->mm_count);
2101		enter_lazy_tlb(oldmm, next);
2102	} else
2103		switch_mm(oldmm, mm, next);
2104
2105	if (!prev->mm) {
2106		prev->active_mm = NULL;
2107		rq->prev_mm = oldmm;
2108	}
2109	/*
2110	 * Since the runqueue lock will be released by the next
2111	 * task (which is an invalid locking op but in the case
2112	 * of the scheduler it's an obvious special-case), so we
2113	 * do an early lockdep release here:
2114	 */
2115#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2116	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2117#endif
2118
2119	context_tracking_task_switch(prev, next);
2120	/* Here we just switch the register state and the stack. */
2121	switch_to(prev, next, prev);
2122
2123	barrier();
2124	/*
2125	 * this_rq must be evaluated again because prev may have moved
2126	 * CPUs since it called schedule(), thus the 'rq' on its stack
2127	 * frame will be invalid.
2128	 */
2129	finish_task_switch(this_rq(), prev);
2130}
2131
2132/*
2133 * nr_running and nr_context_switches:
2134 *
2135 * externally visible scheduler statistics: current number of runnable
2136 * threads, total number of context switches performed since bootup.
2137 */
2138unsigned long nr_running(void)
2139{
2140	unsigned long i, sum = 0;
2141
2142	for_each_online_cpu(i)
2143		sum += cpu_rq(i)->nr_running;
2144
2145	return sum;
2146}
2147
2148unsigned long long nr_context_switches(void)
2149{
2150	int i;
2151	unsigned long long sum = 0;
2152
2153	for_each_possible_cpu(i)
2154		sum += cpu_rq(i)->nr_switches;
2155
2156	return sum;
2157}
2158
2159unsigned long nr_iowait(void)
2160{
2161	unsigned long i, sum = 0;
2162
2163	for_each_possible_cpu(i)
2164		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2165
2166	return sum;
2167}
2168
2169unsigned long nr_iowait_cpu(int cpu)
2170{
2171	struct rq *this = cpu_rq(cpu);
2172	return atomic_read(&this->nr_iowait);
2173}
2174
2175#ifdef CONFIG_SMP
2176
2177/*
2178 * sched_exec - execve() is a valuable balancing opportunity, because at
2179 * this point the task has the smallest effective memory and cache footprint.
2180 */
2181void sched_exec(void)
2182{
2183	struct task_struct *p = current;
2184	unsigned long flags;
2185	int dest_cpu;
2186
2187	raw_spin_lock_irqsave(&p->pi_lock, flags);
2188	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2189	if (dest_cpu == smp_processor_id())
2190		goto unlock;
2191
2192	if (likely(cpu_active(dest_cpu))) {
2193		struct migration_arg arg = { p, dest_cpu };
2194
2195		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2196		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2197		return;
2198	}
2199unlock:
2200	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2201}
2202
2203#endif
2204
2205DEFINE_PER_CPU(struct kernel_stat, kstat);
2206DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2207
2208EXPORT_PER_CPU_SYMBOL(kstat);
2209EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2210
2211/*
2212 * Return any ns on the sched_clock that have not yet been accounted in
2213 * @p in case that task is currently running.
2214 *
2215 * Called with task_rq_lock() held on @rq.
2216 */
2217static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2218{
2219	u64 ns = 0;
2220
2221	if (task_current(rq, p)) {
2222		update_rq_clock(rq);
2223		ns = rq_clock_task(rq) - p->se.exec_start;
2224		if ((s64)ns < 0)
2225			ns = 0;
2226	}
2227
2228	return ns;
2229}
2230
2231unsigned long long task_delta_exec(struct task_struct *p)
2232{
2233	unsigned long flags;
2234	struct rq *rq;
2235	u64 ns = 0;
2236
2237	rq = task_rq_lock(p, &flags);
2238	ns = do_task_delta_exec(p, rq);
2239	task_rq_unlock(rq, p, &flags);
2240
2241	return ns;
2242}
2243
2244/*
2245 * Return accounted runtime for the task.
2246 * In case the task is currently running, return the runtime plus current's
2247 * pending runtime that have not been accounted yet.
2248 */
2249unsigned long long task_sched_runtime(struct task_struct *p)
2250{
2251	unsigned long flags;
2252	struct rq *rq;
2253	u64 ns = 0;
2254
2255	rq = task_rq_lock(p, &flags);
2256	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2257	task_rq_unlock(rq, p, &flags);
2258
2259	return ns;
2260}
2261
2262/*
2263 * This function gets called by the timer code, with HZ frequency.
2264 * We call it with interrupts disabled.
2265 */
2266void scheduler_tick(void)
2267{
2268	int cpu = smp_processor_id();
2269	struct rq *rq = cpu_rq(cpu);
2270	struct task_struct *curr = rq->curr;
2271
2272	sched_clock_tick();
2273
2274	raw_spin_lock(&rq->lock);
2275	update_rq_clock(rq);
2276	curr->sched_class->task_tick(rq, curr, 0);
2277	update_cpu_load_active(rq);
2278	raw_spin_unlock(&rq->lock);
2279
2280	perf_event_task_tick();
2281
2282#ifdef CONFIG_SMP
2283	rq->idle_balance = idle_cpu(cpu);
2284	trigger_load_balance(rq, cpu);
2285#endif
2286	rq_last_tick_reset(rq);
2287}
2288
2289#ifdef CONFIG_NO_HZ_FULL
2290/**
2291 * scheduler_tick_max_deferment
2292 *
2293 * Keep at least one tick per second when a single
2294 * active task is running because the scheduler doesn't
2295 * yet completely support full dynticks environment.
2296 *
2297 * This makes sure that uptime, CFS vruntime, load
2298 * balancing, etc... continue to move forward, even
2299 * with a very low granularity.
2300 *
2301 * Return: Maximum deferment in nanoseconds.
2302 */
2303u64 scheduler_tick_max_deferment(void)
2304{
2305	struct rq *rq = this_rq();
2306	unsigned long next, now = ACCESS_ONCE(jiffies);
2307
2308	next = rq->last_sched_tick + HZ;
2309
2310	if (time_before_eq(next, now))
2311		return 0;
2312
2313	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2314}
2315#endif
2316
2317notrace unsigned long get_parent_ip(unsigned long addr)
2318{
2319	if (in_lock_functions(addr)) {
2320		addr = CALLER_ADDR2;
2321		if (in_lock_functions(addr))
2322			addr = CALLER_ADDR3;
2323	}
2324	return addr;
2325}
2326
2327#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2328				defined(CONFIG_PREEMPT_TRACER))
2329
2330void __kprobes preempt_count_add(int val)
2331{
2332#ifdef CONFIG_DEBUG_PREEMPT
2333	/*
2334	 * Underflow?
2335	 */
2336	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2337		return;
2338#endif
2339	__preempt_count_add(val);
2340#ifdef CONFIG_DEBUG_PREEMPT
2341	/*
2342	 * Spinlock count overflowing soon?
2343	 */
2344	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2345				PREEMPT_MASK - 10);
2346#endif
2347	if (preempt_count() == val)
2348		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2349}
2350EXPORT_SYMBOL(preempt_count_add);
2351
2352void __kprobes preempt_count_sub(int val)
2353{
2354#ifdef CONFIG_DEBUG_PREEMPT
2355	/*
2356	 * Underflow?
2357	 */
2358	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2359		return;
2360	/*
2361	 * Is the spinlock portion underflowing?
2362	 */
2363	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2364			!(preempt_count() & PREEMPT_MASK)))
2365		return;
2366#endif
2367
2368	if (preempt_count() == val)
2369		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2370	__preempt_count_sub(val);
2371}
2372EXPORT_SYMBOL(preempt_count_sub);
2373
2374#endif
2375
2376/*
2377 * Print scheduling while atomic bug:
2378 */
2379static noinline void __schedule_bug(struct task_struct *prev)
2380{
2381	if (oops_in_progress)
2382		return;
2383
2384	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2385		prev->comm, prev->pid, preempt_count());
2386
2387	debug_show_held_locks(prev);
2388	print_modules();
2389	if (irqs_disabled())
2390		print_irqtrace_events(prev);
2391	dump_stack();
2392	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2393}
2394
2395/*
2396 * Various schedule()-time debugging checks and statistics:
2397 */
2398static inline void schedule_debug(struct task_struct *prev)
2399{
2400	/*
2401	 * Test if we are atomic. Since do_exit() needs to call into
2402	 * schedule() atomically, we ignore that path for now.
2403	 * Otherwise, whine if we are scheduling when we should not be.
2404	 */
2405	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2406		__schedule_bug(prev);
2407	rcu_sleep_check();
2408
2409	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2410
2411	schedstat_inc(this_rq(), sched_count);
2412}
2413
2414static void put_prev_task(struct rq *rq, struct task_struct *prev)
2415{
2416	if (prev->on_rq || rq->skip_clock_update < 0)
2417		update_rq_clock(rq);
2418	prev->sched_class->put_prev_task(rq, prev);
2419}
2420
2421/*
2422 * Pick up the highest-prio task:
2423 */
2424static inline struct task_struct *
2425pick_next_task(struct rq *rq)
2426{
2427	const struct sched_class *class;
2428	struct task_struct *p;
2429
2430	/*
2431	 * Optimization: we know that if all tasks are in
2432	 * the fair class we can call that function directly:
2433	 */
2434	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2435		p = fair_sched_class.pick_next_task(rq);
2436		if (likely(p))
2437			return p;
2438	}
2439
2440	for_each_class(class) {
2441		p = class->pick_next_task(rq);
2442		if (p)
2443			return p;
2444	}
2445
2446	BUG(); /* the idle class will always have a runnable task */
2447}
2448
2449/*
2450 * __schedule() is the main scheduler function.
2451 *
2452 * The main means of driving the scheduler and thus entering this function are:
2453 *
2454 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2455 *
2456 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2457 *      paths. For example, see arch/x86/entry_64.S.
2458 *
2459 *      To drive preemption between tasks, the scheduler sets the flag in timer
2460 *      interrupt handler scheduler_tick().
2461 *
2462 *   3. Wakeups don't really cause entry into schedule(). They add a
2463 *      task to the run-queue and that's it.
2464 *
2465 *      Now, if the new task added to the run-queue preempts the current
2466 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2467 *      called on the nearest possible occasion:
2468 *
2469 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2470 *
2471 *         - in syscall or exception context, at the next outmost
2472 *           preempt_enable(). (this might be as soon as the wake_up()'s
2473 *           spin_unlock()!)
2474 *
2475 *         - in IRQ context, return from interrupt-handler to
2476 *           preemptible context
2477 *
2478 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2479 *         then at the next:
2480 *
2481 *          - cond_resched() call
2482 *          - explicit schedule() call
2483 *          - return from syscall or exception to user-space
2484 *          - return from interrupt-handler to user-space
2485 */
2486static void __sched __schedule(void)
2487{
2488	struct task_struct *prev, *next;
2489	unsigned long *switch_count;
2490	struct rq *rq;
2491	int cpu;
2492
2493need_resched:
2494	preempt_disable();
2495	cpu = smp_processor_id();
2496	rq = cpu_rq(cpu);
2497	rcu_note_context_switch(cpu);
2498	prev = rq->curr;
2499
2500	schedule_debug(prev);
2501
2502	if (sched_feat(HRTICK))
2503		hrtick_clear(rq);
2504
2505	/*
2506	 * Make sure that signal_pending_state()->signal_pending() below
2507	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2508	 * done by the caller to avoid the race with signal_wake_up().
2509	 */
2510	smp_mb__before_spinlock();
2511	raw_spin_lock_irq(&rq->lock);
2512
2513	switch_count = &prev->nivcsw;
2514	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2515		if (unlikely(signal_pending_state(prev->state, prev))) {
2516			prev->state = TASK_RUNNING;
2517		} else {
2518			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2519			prev->on_rq = 0;
2520
2521			/*
2522			 * If a worker went to sleep, notify and ask workqueue
2523			 * whether it wants to wake up a task to maintain
2524			 * concurrency.
2525			 */
2526			if (prev->flags & PF_WQ_WORKER) {
2527				struct task_struct *to_wakeup;
2528
2529				to_wakeup = wq_worker_sleeping(prev, cpu);
2530				if (to_wakeup)
2531					try_to_wake_up_local(to_wakeup);
2532			}
2533		}
2534		switch_count = &prev->nvcsw;
2535	}
2536
2537	pre_schedule(rq, prev);
2538
2539	if (unlikely(!rq->nr_running))
2540		idle_balance(cpu, rq);
2541
2542	put_prev_task(rq, prev);
2543	next = pick_next_task(rq);
2544	clear_tsk_need_resched(prev);
2545	clear_preempt_need_resched();
2546	rq->skip_clock_update = 0;
2547
2548	if (likely(prev != next)) {
2549		rq->nr_switches++;
2550		rq->curr = next;
2551		++*switch_count;
2552
2553		context_switch(rq, prev, next); /* unlocks the rq */
2554		/*
2555		 * The context switch have flipped the stack from under us
2556		 * and restored the local variables which were saved when
2557		 * this task called schedule() in the past. prev == current
2558		 * is still correct, but it can be moved to another cpu/rq.
2559		 */
2560		cpu = smp_processor_id();
2561		rq = cpu_rq(cpu);
2562	} else
2563		raw_spin_unlock_irq(&rq->lock);
2564
2565	post_schedule(rq);
2566
2567	sched_preempt_enable_no_resched();
2568	if (need_resched())
2569		goto need_resched;
2570}
2571
2572static inline void sched_submit_work(struct task_struct *tsk)
2573{
2574	if (!tsk->state || tsk_is_pi_blocked(tsk))
2575		return;
2576	/*
2577	 * If we are going to sleep and we have plugged IO queued,
2578	 * make sure to submit it to avoid deadlocks.
2579	 */
2580	if (blk_needs_flush_plug(tsk))
2581		blk_schedule_flush_plug(tsk);
2582}
2583
2584asmlinkage void __sched schedule(void)
2585{
2586	struct task_struct *tsk = current;
2587
2588	sched_submit_work(tsk);
2589	__schedule();
2590}
2591EXPORT_SYMBOL(schedule);
2592
2593#ifdef CONFIG_CONTEXT_TRACKING
2594asmlinkage void __sched schedule_user(void)
2595{
2596	/*
2597	 * If we come here after a random call to set_need_resched(),
2598	 * or we have been woken up remotely but the IPI has not yet arrived,
2599	 * we haven't yet exited the RCU idle mode. Do it here manually until
2600	 * we find a better solution.
2601	 */
2602	user_exit();
2603	schedule();
2604	user_enter();
2605}
2606#endif
2607
2608/**
2609 * schedule_preempt_disabled - called with preemption disabled
2610 *
2611 * Returns with preemption disabled. Note: preempt_count must be 1
2612 */
2613void __sched schedule_preempt_disabled(void)
2614{
2615	sched_preempt_enable_no_resched();
2616	schedule();
2617	preempt_disable();
2618}
2619
2620#ifdef CONFIG_PREEMPT
2621/*
2622 * this is the entry point to schedule() from in-kernel preemption
2623 * off of preempt_enable. Kernel preemptions off return from interrupt
2624 * occur there and call schedule directly.
2625 */
2626asmlinkage void __sched notrace preempt_schedule(void)
2627{
2628	/*
2629	 * If there is a non-zero preempt_count or interrupts are disabled,
2630	 * we do not want to preempt the current task. Just return..
2631	 */
2632	if (likely(!preemptible()))
2633		return;
2634
2635	do {
2636		__preempt_count_add(PREEMPT_ACTIVE);
2637		__schedule();
2638		__preempt_count_sub(PREEMPT_ACTIVE);
2639
2640		/*
2641		 * Check again in case we missed a preemption opportunity
2642		 * between schedule and now.
2643		 */
2644		barrier();
2645	} while (need_resched());
2646}
2647EXPORT_SYMBOL(preempt_schedule);
2648
2649/*
2650 * this is the entry point to schedule() from kernel preemption
2651 * off of irq context.
2652 * Note, that this is called and return with irqs disabled. This will
2653 * protect us against recursive calling from irq.
2654 */
2655asmlinkage void __sched preempt_schedule_irq(void)
2656{
2657	enum ctx_state prev_state;
2658
2659	/* Catch callers which need to be fixed */
2660	BUG_ON(preempt_count() || !irqs_disabled());
2661
2662	prev_state = exception_enter();
2663
2664	do {
2665		__preempt_count_add(PREEMPT_ACTIVE);
2666		local_irq_enable();
2667		__schedule();
2668		local_irq_disable();
2669		__preempt_count_sub(PREEMPT_ACTIVE);
2670
2671		/*
2672		 * Check again in case we missed a preemption opportunity
2673		 * between schedule and now.
2674		 */
2675		barrier();
2676	} while (need_resched());
2677
2678	exception_exit(prev_state);
2679}
2680
2681#endif /* CONFIG_PREEMPT */
2682
2683int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2684			  void *key)
2685{
2686	return try_to_wake_up(curr->private, mode, wake_flags);
2687}
2688EXPORT_SYMBOL(default_wake_function);
2689
2690/*
2691 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2692 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2693 * number) then we wake all the non-exclusive tasks and one exclusive task.
2694 *
2695 * There are circumstances in which we can try to wake a task which has already
2696 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2697 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2698 */
2699static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2700			int nr_exclusive, int wake_flags, void *key)
2701{
2702	wait_queue_t *curr, *next;
2703
2704	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2705		unsigned flags = curr->flags;
2706
2707		if (curr->func(curr, mode, wake_flags, key) &&
2708				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2709			break;
2710	}
2711}
2712
2713/**
2714 * __wake_up - wake up threads blocked on a waitqueue.
2715 * @q: the waitqueue
2716 * @mode: which threads
2717 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2718 * @key: is directly passed to the wakeup function
2719 *
2720 * It may be assumed that this function implies a write memory barrier before
2721 * changing the task state if and only if any tasks are woken up.
2722 */
2723void __wake_up(wait_queue_head_t *q, unsigned int mode,
2724			int nr_exclusive, void *key)
2725{
2726	unsigned long flags;
2727
2728	spin_lock_irqsave(&q->lock, flags);
2729	__wake_up_common(q, mode, nr_exclusive, 0, key);
2730	spin_unlock_irqrestore(&q->lock, flags);
2731}
2732EXPORT_SYMBOL(__wake_up);
2733
2734/*
2735 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2736 */
2737void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2738{
2739	__wake_up_common(q, mode, nr, 0, NULL);
2740}
2741EXPORT_SYMBOL_GPL(__wake_up_locked);
2742
2743void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2744{
2745	__wake_up_common(q, mode, 1, 0, key);
2746}
2747EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2748
2749/**
2750 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2751 * @q: the waitqueue
2752 * @mode: which threads
2753 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2754 * @key: opaque value to be passed to wakeup targets
2755 *
2756 * The sync wakeup differs that the waker knows that it will schedule
2757 * away soon, so while the target thread will be woken up, it will not
2758 * be migrated to another CPU - ie. the two threads are 'synchronized'
2759 * with each other. This can prevent needless bouncing between CPUs.
2760 *
2761 * On UP it can prevent extra preemption.
2762 *
2763 * It may be assumed that this function implies a write memory barrier before
2764 * changing the task state if and only if any tasks are woken up.
2765 */
2766void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2767			int nr_exclusive, void *key)
2768{
2769	unsigned long flags;
2770	int wake_flags = WF_SYNC;
2771
2772	if (unlikely(!q))
2773		return;
2774
2775	if (unlikely(nr_exclusive != 1))
2776		wake_flags = 0;
2777
2778	spin_lock_irqsave(&q->lock, flags);
2779	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2780	spin_unlock_irqrestore(&q->lock, flags);
2781}
2782EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2783
2784/*
2785 * __wake_up_sync - see __wake_up_sync_key()
2786 */
2787void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2788{
2789	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2790}
2791EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2792
2793/**
2794 * complete: - signals a single thread waiting on this completion
2795 * @x:  holds the state of this particular completion
2796 *
2797 * This will wake up a single thread waiting on this completion. Threads will be
2798 * awakened in the same order in which they were queued.
2799 *
2800 * See also complete_all(), wait_for_completion() and related routines.
2801 *
2802 * It may be assumed that this function implies a write memory barrier before
2803 * changing the task state if and only if any tasks are woken up.
2804 */
2805void complete(struct completion *x)
2806{
2807	unsigned long flags;
2808
2809	spin_lock_irqsave(&x->wait.lock, flags);
2810	x->done++;
2811	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2812	spin_unlock_irqrestore(&x->wait.lock, flags);
2813}
2814EXPORT_SYMBOL(complete);
2815
2816/**
2817 * complete_all: - signals all threads waiting on this completion
2818 * @x:  holds the state of this particular completion
2819 *
2820 * This will wake up all threads waiting on this particular completion event.
2821 *
2822 * It may be assumed that this function implies a write memory barrier before
2823 * changing the task state if and only if any tasks are woken up.
2824 */
2825void complete_all(struct completion *x)
2826{
2827	unsigned long flags;
2828
2829	spin_lock_irqsave(&x->wait.lock, flags);
2830	x->done += UINT_MAX/2;
2831	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2832	spin_unlock_irqrestore(&x->wait.lock, flags);
2833}
2834EXPORT_SYMBOL(complete_all);
2835
2836static inline long __sched
2837do_wait_for_common(struct completion *x,
2838		   long (*action)(long), long timeout, int state)
2839{
2840	if (!x->done) {
2841		DECLARE_WAITQUEUE(wait, current);
2842
2843		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2844		do {
2845			if (signal_pending_state(state, current)) {
2846				timeout = -ERESTARTSYS;
2847				break;
2848			}
2849			__set_current_state(state);
2850			spin_unlock_irq(&x->wait.lock);
2851			timeout = action(timeout);
2852			spin_lock_irq(&x->wait.lock);
2853		} while (!x->done && timeout);
2854		__remove_wait_queue(&x->wait, &wait);
2855		if (!x->done)
2856			return timeout;
2857	}
2858	x->done--;
2859	return timeout ?: 1;
2860}
2861
2862static inline long __sched
2863__wait_for_common(struct completion *x,
2864		  long (*action)(long), long timeout, int state)
2865{
2866	might_sleep();
2867
2868	spin_lock_irq(&x->wait.lock);
2869	timeout = do_wait_for_common(x, action, timeout, state);
2870	spin_unlock_irq(&x->wait.lock);
2871	return timeout;
2872}
2873
2874static long __sched
2875wait_for_common(struct completion *x, long timeout, int state)
2876{
2877	return __wait_for_common(x, schedule_timeout, timeout, state);
2878}
2879
2880static long __sched
2881wait_for_common_io(struct completion *x, long timeout, int state)
2882{
2883	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2884}
2885
2886/**
2887 * wait_for_completion: - waits for completion of a task
2888 * @x:  holds the state of this particular completion
2889 *
2890 * This waits to be signaled for completion of a specific task. It is NOT
2891 * interruptible and there is no timeout.
2892 *
2893 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2894 * and interrupt capability. Also see complete().
2895 */
2896void __sched wait_for_completion(struct completion *x)
2897{
2898	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2899}
2900EXPORT_SYMBOL(wait_for_completion);
2901
2902/**
2903 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2904 * @x:  holds the state of this particular completion
2905 * @timeout:  timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be signaled or for a
2908 * specified timeout to expire. The timeout is in jiffies. It is not
2909 * interruptible.
2910 *
2911 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2912 * till timeout) if completed.
2913 */
2914unsigned long __sched
2915wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2916{
2917	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2918}
2919EXPORT_SYMBOL(wait_for_completion_timeout);
2920
2921/**
2922 * wait_for_completion_io: - waits for completion of a task
2923 * @x:  holds the state of this particular completion
2924 *
2925 * This waits to be signaled for completion of a specific task. It is NOT
2926 * interruptible and there is no timeout. The caller is accounted as waiting
2927 * for IO.
2928 */
2929void __sched wait_for_completion_io(struct completion *x)
2930{
2931	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2932}
2933EXPORT_SYMBOL(wait_for_completion_io);
2934
2935/**
2936 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2937 * @x:  holds the state of this particular completion
2938 * @timeout:  timeout value in jiffies
2939 *
2940 * This waits for either a completion of a specific task to be signaled or for a
2941 * specified timeout to expire. The timeout is in jiffies. It is not
2942 * interruptible. The caller is accounted as waiting for IO.
2943 *
2944 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2945 * till timeout) if completed.
2946 */
2947unsigned long __sched
2948wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2949{
2950	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2951}
2952EXPORT_SYMBOL(wait_for_completion_io_timeout);
2953
2954/**
2955 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2956 * @x:  holds the state of this particular completion
2957 *
2958 * This waits for completion of a specific task to be signaled. It is
2959 * interruptible.
2960 *
2961 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2962 */
2963int __sched wait_for_completion_interruptible(struct completion *x)
2964{
2965	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2966	if (t == -ERESTARTSYS)
2967		return t;
2968	return 0;
2969}
2970EXPORT_SYMBOL(wait_for_completion_interruptible);
2971
2972/**
2973 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2974 * @x:  holds the state of this particular completion
2975 * @timeout:  timeout value in jiffies
2976 *
2977 * This waits for either a completion of a specific task to be signaled or for a
2978 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2979 *
2980 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2981 * or number of jiffies left till timeout) if completed.
2982 */
2983long __sched
2984wait_for_completion_interruptible_timeout(struct completion *x,
2985					  unsigned long timeout)
2986{
2987	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2988}
2989EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2990
2991/**
2992 * wait_for_completion_killable: - waits for completion of a task (killable)
2993 * @x:  holds the state of this particular completion
2994 *
2995 * This waits to be signaled for completion of a specific task. It can be
2996 * interrupted by a kill signal.
2997 *
2998 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2999 */
3000int __sched wait_for_completion_killable(struct completion *x)
3001{
3002	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3003	if (t == -ERESTARTSYS)
3004		return t;
3005	return 0;
3006}
3007EXPORT_SYMBOL(wait_for_completion_killable);
3008
3009/**
3010 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3011 * @x:  holds the state of this particular completion
3012 * @timeout:  timeout value in jiffies
3013 *
3014 * This waits for either a completion of a specific task to be
3015 * signaled or for a specified timeout to expire. It can be
3016 * interrupted by a kill signal. The timeout is in jiffies.
3017 *
3018 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3019 * or number of jiffies left till timeout) if completed.
3020 */
3021long __sched
3022wait_for_completion_killable_timeout(struct completion *x,
3023				     unsigned long timeout)
3024{
3025	return wait_for_common(x, timeout, TASK_KILLABLE);
3026}
3027EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3028
3029/**
3030 *	try_wait_for_completion - try to decrement a completion without blocking
3031 *	@x:	completion structure
3032 *
3033 *	Return: 0 if a decrement cannot be done without blocking
3034 *		 1 if a decrement succeeded.
3035 *
3036 *	If a completion is being used as a counting completion,
3037 *	attempt to decrement the counter without blocking. This
3038 *	enables us to avoid waiting if the resource the completion
3039 *	is protecting is not available.
3040 */
3041bool try_wait_for_completion(struct completion *x)
3042{
3043	unsigned long flags;
3044	int ret = 1;
3045
3046	spin_lock_irqsave(&x->wait.lock, flags);
3047	if (!x->done)
3048		ret = 0;
3049	else
3050		x->done--;
3051	spin_unlock_irqrestore(&x->wait.lock, flags);
3052	return ret;
3053}
3054EXPORT_SYMBOL(try_wait_for_completion);
3055
3056/**
3057 *	completion_done - Test to see if a completion has any waiters
3058 *	@x:	completion structure
3059 *
3060 *	Return: 0 if there are waiters (wait_for_completion() in progress)
3061 *		 1 if there are no waiters.
3062 *
3063 */
3064bool completion_done(struct completion *x)
3065{
3066	unsigned long flags;
3067	int ret = 1;
3068
3069	spin_lock_irqsave(&x->wait.lock, flags);
3070	if (!x->done)
3071		ret = 0;
3072	spin_unlock_irqrestore(&x->wait.lock, flags);
3073	return ret;
3074}
3075EXPORT_SYMBOL(completion_done);
3076
3077static long __sched
3078sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3079{
3080	unsigned long flags;
3081	wait_queue_t wait;
3082
3083	init_waitqueue_entry(&wait, current);
3084
3085	__set_current_state(state);
3086
3087	spin_lock_irqsave(&q->lock, flags);
3088	__add_wait_queue(q, &wait);
3089	spin_unlock(&q->lock);
3090	timeout = schedule_timeout(timeout);
3091	spin_lock_irq(&q->lock);
3092	__remove_wait_queue(q, &wait);
3093	spin_unlock_irqrestore(&q->lock, flags);
3094
3095	return timeout;
3096}
3097
3098void __sched interruptible_sleep_on(wait_queue_head_t *q)
3099{
3100	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3101}
3102EXPORT_SYMBOL(interruptible_sleep_on);
3103
3104long __sched
3105interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3106{
3107	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3108}
3109EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3110
3111void __sched sleep_on(wait_queue_head_t *q)
3112{
3113	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3114}
3115EXPORT_SYMBOL(sleep_on);
3116
3117long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3118{
3119	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3120}
3121EXPORT_SYMBOL(sleep_on_timeout);
3122
3123#ifdef CONFIG_RT_MUTEXES
3124
3125/*
3126 * rt_mutex_setprio - set the current priority of a task
3127 * @p: task
3128 * @prio: prio value (kernel-internal form)
3129 *
3130 * This function changes the 'effective' priority of a task. It does
3131 * not touch ->normal_prio like __setscheduler().
3132 *
3133 * Used by the rt_mutex code to implement priority inheritance logic.
3134 */
3135void rt_mutex_setprio(struct task_struct *p, int prio)
3136{
3137	int oldprio, on_rq, running;
3138	struct rq *rq;
3139	const struct sched_class *prev_class;
3140
3141	BUG_ON(prio < 0 || prio > MAX_PRIO);
3142
3143	rq = __task_rq_lock(p);
3144
3145	/*
3146	 * Idle task boosting is a nono in general. There is one
3147	 * exception, when PREEMPT_RT and NOHZ is active:
3148	 *
3149	 * The idle task calls get_next_timer_interrupt() and holds
3150	 * the timer wheel base->lock on the CPU and another CPU wants
3151	 * to access the timer (probably to cancel it). We can safely
3152	 * ignore the boosting request, as the idle CPU runs this code
3153	 * with interrupts disabled and will complete the lock
3154	 * protected section without being interrupted. So there is no
3155	 * real need to boost.
3156	 */
3157	if (unlikely(p == rq->idle)) {
3158		WARN_ON(p != rq->curr);
3159		WARN_ON(p->pi_blocked_on);
3160		goto out_unlock;
3161	}
3162
3163	trace_sched_pi_setprio(p, prio);
3164	oldprio = p->prio;
3165	prev_class = p->sched_class;
3166	on_rq = p->on_rq;
3167	running = task_current(rq, p);
3168	if (on_rq)
3169		dequeue_task(rq, p, 0);
3170	if (running)
3171		p->sched_class->put_prev_task(rq, p);
3172
3173	if (rt_prio(prio))
3174		p->sched_class = &rt_sched_class;
3175	else
3176		p->sched_class = &fair_sched_class;
3177
3178	p->prio = prio;
3179
3180	if (running)
3181		p->sched_class->set_curr_task(rq);
3182	if (on_rq)
3183		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3184
3185	check_class_changed(rq, p, prev_class, oldprio);
3186out_unlock:
3187	__task_rq_unlock(rq);
3188}
3189#endif
3190void set_user_nice(struct task_struct *p, long nice)
3191{
3192	int old_prio, delta, on_rq;
3193	unsigned long flags;
3194	struct rq *rq;
3195
3196	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3197		return;
3198	/*
3199	 * We have to be careful, if called from sys_setpriority(),
3200	 * the task might be in the middle of scheduling on another CPU.
3201	 */
3202	rq = task_rq_lock(p, &flags);
3203	/*
3204	 * The RT priorities are set via sched_setscheduler(), but we still
3205	 * allow the 'normal' nice value to be set - but as expected
3206	 * it wont have any effect on scheduling until the task is
3207	 * SCHED_FIFO/SCHED_RR:
3208	 */
3209	if (task_has_rt_policy(p)) {
3210		p->static_prio = NICE_TO_PRIO(nice);
3211		goto out_unlock;
3212	}
3213	on_rq = p->on_rq;
3214	if (on_rq)
3215		dequeue_task(rq, p, 0);
3216
3217	p->static_prio = NICE_TO_PRIO(nice);
3218	set_load_weight(p);
3219	old_prio = p->prio;
3220	p->prio = effective_prio(p);
3221	delta = p->prio - old_prio;
3222
3223	if (on_rq) {
3224		enqueue_task(rq, p, 0);
3225		/*
3226		 * If the task increased its priority or is running and
3227		 * lowered its priority, then reschedule its CPU:
3228		 */
3229		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3230			resched_task(rq->curr);
3231	}
3232out_unlock:
3233	task_rq_unlock(rq, p, &flags);
3234}
3235EXPORT_SYMBOL(set_user_nice);
3236
3237/*
3238 * can_nice - check if a task can reduce its nice value
3239 * @p: task
3240 * @nice: nice value
3241 */
3242int can_nice(const struct task_struct *p, const int nice)
3243{
3244	/* convert nice value [19,-20] to rlimit style value [1,40] */
3245	int nice_rlim = 20 - nice;
3246
3247	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3248		capable(CAP_SYS_NICE));
3249}
3250
3251#ifdef __ARCH_WANT_SYS_NICE
3252
3253/*
3254 * sys_nice - change the priority of the current process.
3255 * @increment: priority increment
3256 *
3257 * sys_setpriority is a more generic, but much slower function that
3258 * does similar things.
3259 */
3260SYSCALL_DEFINE1(nice, int, increment)
3261{
3262	long nice, retval;
3263
3264	/*
3265	 * Setpriority might change our priority at the same moment.
3266	 * We don't have to worry. Conceptually one call occurs first
3267	 * and we have a single winner.
3268	 */
3269	if (increment < -40)
3270		increment = -40;
3271	if (increment > 40)
3272		increment = 40;
3273
3274	nice = TASK_NICE(current) + increment;
3275	if (nice < -20)
3276		nice = -20;
3277	if (nice > 19)
3278		nice = 19;
3279
3280	if (increment < 0 && !can_nice(current, nice))
3281		return -EPERM;
3282
3283	retval = security_task_setnice(current, nice);
3284	if (retval)
3285		return retval;
3286
3287	set_user_nice(current, nice);
3288	return 0;
3289}
3290
3291#endif
3292
3293/**
3294 * task_prio - return the priority value of a given task.
3295 * @p: the task in question.
3296 *
3297 * Return: The priority value as seen by users in /proc.
3298 * RT tasks are offset by -200. Normal tasks are centered
3299 * around 0, value goes from -16 to +15.
3300 */
3301int task_prio(const struct task_struct *p)
3302{
3303	return p->prio - MAX_RT_PRIO;
3304}
3305
3306/**
3307 * task_nice - return the nice value of a given task.
3308 * @p: the task in question.
3309 *
3310 * Return: The nice value [ -20 ... 0 ... 19 ].
3311 */
3312int task_nice(const struct task_struct *p)
3313{
3314	return TASK_NICE(p);
3315}
3316EXPORT_SYMBOL(task_nice);
3317
3318/**
3319 * idle_cpu - is a given cpu idle currently?
3320 * @cpu: the processor in question.
3321 *
3322 * Return: 1 if the CPU is currently idle. 0 otherwise.
3323 */
3324int idle_cpu(int cpu)
3325{
3326	struct rq *rq = cpu_rq(cpu);
3327
3328	if (rq->curr != rq->idle)
3329		return 0;
3330
3331	if (rq->nr_running)
3332		return 0;
3333
3334#ifdef CONFIG_SMP
3335	if (!llist_empty(&rq->wake_list))
3336		return 0;
3337#endif
3338
3339	return 1;
3340}
3341
3342/**
3343 * idle_task - return the idle task for a given cpu.
3344 * @cpu: the processor in question.
3345 *
3346 * Return: The idle task for the cpu @cpu.
3347 */
3348struct task_struct *idle_task(int cpu)
3349{
3350	return cpu_rq(cpu)->idle;
3351}
3352
3353/**
3354 * find_process_by_pid - find a process with a matching PID value.
3355 * @pid: the pid in question.
3356 *
3357 * The task of @pid, if found. %NULL otherwise.
3358 */
3359static struct task_struct *find_process_by_pid(pid_t pid)
3360{
3361	return pid ? find_task_by_vpid(pid) : current;
3362}
3363
3364/* Actually do priority change: must hold rq lock. */
3365static void
3366__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3367{
3368	p->policy = policy;
3369	p->rt_priority = prio;
3370	p->normal_prio = normal_prio(p);
3371	/* we are holding p->pi_lock already */
3372	p->prio = rt_mutex_getprio(p);
3373	if (rt_prio(p->prio))
3374		p->sched_class = &rt_sched_class;
3375	else
3376		p->sched_class = &fair_sched_class;
3377	set_load_weight(p);
3378}
3379
3380/*
3381 * check the target process has a UID that matches the current process's
3382 */
3383static bool check_same_owner(struct task_struct *p)
3384{
3385	const struct cred *cred = current_cred(), *pcred;
3386	bool match;
3387
3388	rcu_read_lock();
3389	pcred = __task_cred(p);
3390	match = (uid_eq(cred->euid, pcred->euid) ||
3391		 uid_eq(cred->euid, pcred->uid));
3392	rcu_read_unlock();
3393	return match;
3394}
3395
3396static int __sched_setscheduler(struct task_struct *p, int policy,
3397				const struct sched_param *param, bool user)
3398{
3399	int retval, oldprio, oldpolicy = -1, on_rq, running;
3400	unsigned long flags;
3401	const struct sched_class *prev_class;
3402	struct rq *rq;
3403	int reset_on_fork;
3404
3405	/* may grab non-irq protected spin_locks */
3406	BUG_ON(in_interrupt());
3407recheck:
3408	/* double check policy once rq lock held */
3409	if (policy < 0) {
3410		reset_on_fork = p->sched_reset_on_fork;
3411		policy = oldpolicy = p->policy;
3412	} else {
3413		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3414		policy &= ~SCHED_RESET_ON_FORK;
3415
3416		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3417				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3418				policy != SCHED_IDLE)
3419			return -EINVAL;
3420	}
3421
3422	/*
3423	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3424	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3425	 * SCHED_BATCH and SCHED_IDLE is 0.
3426	 */
3427	if (param->sched_priority < 0 ||
3428	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3429	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3430		return -EINVAL;
3431	if (rt_policy(policy) != (param->sched_priority != 0))
3432		return -EINVAL;
3433
3434	/*
3435	 * Allow unprivileged RT tasks to decrease priority:
3436	 */
3437	if (user && !capable(CAP_SYS_NICE)) {
3438		if (rt_policy(policy)) {
3439			unsigned long rlim_rtprio =
3440					task_rlimit(p, RLIMIT_RTPRIO);
3441
3442			/* can't set/change the rt policy */
3443			if (policy != p->policy && !rlim_rtprio)
3444				return -EPERM;
3445
3446			/* can't increase priority */
3447			if (param->sched_priority > p->rt_priority &&
3448			    param->sched_priority > rlim_rtprio)
3449				return -EPERM;
3450		}
3451
3452		/*
3453		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3454		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3455		 */
3456		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3457			if (!can_nice(p, TASK_NICE(p)))
3458				return -EPERM;
3459		}
3460
3461		/* can't change other user's priorities */
3462		if (!check_same_owner(p))
3463			return -EPERM;
3464
3465		/* Normal users shall not reset the sched_reset_on_fork flag */
3466		if (p->sched_reset_on_fork && !reset_on_fork)
3467			return -EPERM;
3468	}
3469
3470	if (user) {
3471		retval = security_task_setscheduler(p);
3472		if (retval)
3473			return retval;
3474	}
3475
3476	/*
3477	 * make sure no PI-waiters arrive (or leave) while we are
3478	 * changing the priority of the task:
3479	 *
3480	 * To be able to change p->policy safely, the appropriate
3481	 * runqueue lock must be held.
3482	 */
3483	rq = task_rq_lock(p, &flags);
3484
3485	/*
3486	 * Changing the policy of the stop threads its a very bad idea
3487	 */
3488	if (p == rq->stop) {
3489		task_rq_unlock(rq, p, &flags);
3490		return -EINVAL;
3491	}
3492
3493	/*
3494	 * If not changing anything there's no need to proceed further:
3495	 */
3496	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3497			param->sched_priority == p->rt_priority))) {
3498		task_rq_unlock(rq, p, &flags);
3499		return 0;
3500	}
3501
3502#ifdef CONFIG_RT_GROUP_SCHED
3503	if (user) {
3504		/*
3505		 * Do not allow realtime tasks into groups that have no runtime
3506		 * assigned.
3507		 */
3508		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3509				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3510				!task_group_is_autogroup(task_group(p))) {
3511			task_rq_unlock(rq, p, &flags);
3512			return -EPERM;
3513		}
3514	}
3515#endif
3516
3517	/* recheck policy now with rq lock held */
3518	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3519		policy = oldpolicy = -1;
3520		task_rq_unlock(rq, p, &flags);
3521		goto recheck;
3522	}
3523	on_rq = p->on_rq;
3524	running = task_current(rq, p);
3525	if (on_rq)
3526		dequeue_task(rq, p, 0);
3527	if (running)
3528		p->sched_class->put_prev_task(rq, p);
3529
3530	p->sched_reset_on_fork = reset_on_fork;
3531
3532	oldprio = p->prio;
3533	prev_class = p->sched_class;
3534	__setscheduler(rq, p, policy, param->sched_priority);
3535
3536	if (running)
3537		p->sched_class->set_curr_task(rq);
3538	if (on_rq)
3539		enqueue_task(rq, p, 0);
3540
3541	check_class_changed(rq, p, prev_class, oldprio);
3542	task_rq_unlock(rq, p, &flags);
3543
3544	rt_mutex_adjust_pi(p);
3545
3546	return 0;
3547}
3548
3549/**
3550 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3551 * @p: the task in question.
3552 * @policy: new policy.
3553 * @param: structure containing the new RT priority.
3554 *
3555 * Return: 0 on success. An error code otherwise.
3556 *
3557 * NOTE that the task may be already dead.
3558 */
3559int sched_setscheduler(struct task_struct *p, int policy,
3560		       const struct sched_param *param)
3561{
3562	return __sched_setscheduler(p, policy, param, true);
3563}
3564EXPORT_SYMBOL_GPL(sched_setscheduler);
3565
3566/**
3567 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3568 * @p: the task in question.
3569 * @policy: new policy.
3570 * @param: structure containing the new RT priority.
3571 *
3572 * Just like sched_setscheduler, only don't bother checking if the
3573 * current context has permission.  For example, this is needed in
3574 * stop_machine(): we create temporary high priority worker threads,
3575 * but our caller might not have that capability.
3576 *
3577 * Return: 0 on success. An error code otherwise.
3578 */
3579int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3580			       const struct sched_param *param)
3581{
3582	return __sched_setscheduler(p, policy, param, false);
3583}
3584
3585static int
3586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3587{
3588	struct sched_param lparam;
3589	struct task_struct *p;
3590	int retval;
3591
3592	if (!param || pid < 0)
3593		return -EINVAL;
3594	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3595		return -EFAULT;
3596
3597	rcu_read_lock();
3598	retval = -ESRCH;
3599	p = find_process_by_pid(pid);
3600	if (p != NULL)
3601		retval = sched_setscheduler(p, policy, &lparam);
3602	rcu_read_unlock();
3603
3604	return retval;
3605}
3606
3607/**
3608 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3609 * @pid: the pid in question.
3610 * @policy: new policy.
3611 * @param: structure containing the new RT priority.
3612 *
3613 * Return: 0 on success. An error code otherwise.
3614 */
3615SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3616		struct sched_param __user *, param)
3617{
3618	/* negative values for policy are not valid */
3619	if (policy < 0)
3620		return -EINVAL;
3621
3622	return do_sched_setscheduler(pid, policy, param);
3623}
3624
3625/**
3626 * sys_sched_setparam - set/change the RT priority of a thread
3627 * @pid: the pid in question.
3628 * @param: structure containing the new RT priority.
3629 *
3630 * Return: 0 on success. An error code otherwise.
3631 */
3632SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3633{
3634	return do_sched_setscheduler(pid, -1, param);
3635}
3636
3637/**
3638 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3639 * @pid: the pid in question.
3640 *
3641 * Return: On success, the policy of the thread. Otherwise, a negative error
3642 * code.
3643 */
3644SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3645{
3646	struct task_struct *p;
3647	int retval;
3648
3649	if (pid < 0)
3650		return -EINVAL;
3651
3652	retval = -ESRCH;
3653	rcu_read_lock();
3654	p = find_process_by_pid(pid);
3655	if (p) {
3656		retval = security_task_getscheduler(p);
3657		if (!retval)
3658			retval = p->policy
3659				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3660	}
3661	rcu_read_unlock();
3662	return retval;
3663}
3664
3665/**
3666 * sys_sched_getparam - get the RT priority of a thread
3667 * @pid: the pid in question.
3668 * @param: structure containing the RT priority.
3669 *
3670 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3671 * code.
3672 */
3673SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3674{
3675	struct sched_param lp;
3676	struct task_struct *p;
3677	int retval;
3678
3679	if (!param || pid < 0)
3680		return -EINVAL;
3681
3682	rcu_read_lock();
3683	p = find_process_by_pid(pid);
3684	retval = -ESRCH;
3685	if (!p)
3686		goto out_unlock;
3687
3688	retval = security_task_getscheduler(p);
3689	if (retval)
3690		goto out_unlock;
3691
3692	lp.sched_priority = p->rt_priority;
3693	rcu_read_unlock();
3694
3695	/*
3696	 * This one might sleep, we cannot do it with a spinlock held ...
3697	 */
3698	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3699
3700	return retval;
3701
3702out_unlock:
3703	rcu_read_unlock();
3704	return retval;
3705}
3706
3707long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3708{
3709	cpumask_var_t cpus_allowed, new_mask;
3710	struct task_struct *p;
3711	int retval;
3712
3713	get_online_cpus();
3714	rcu_read_lock();
3715
3716	p = find_process_by_pid(pid);
3717	if (!p) {
3718		rcu_read_unlock();
3719		put_online_cpus();
3720		return -ESRCH;
3721	}
3722
3723	/* Prevent p going away */
3724	get_task_struct(p);
3725	rcu_read_unlock();
3726
3727	if (p->flags & PF_NO_SETAFFINITY) {
3728		retval = -EINVAL;
3729		goto out_put_task;
3730	}
3731	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3732		retval = -ENOMEM;
3733		goto out_put_task;
3734	}
3735	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3736		retval = -ENOMEM;
3737		goto out_free_cpus_allowed;
3738	}
3739	retval = -EPERM;
3740	if (!check_same_owner(p)) {
3741		rcu_read_lock();
3742		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3743			rcu_read_unlock();
3744			goto out_unlock;
3745		}
3746		rcu_read_unlock();
3747	}
3748
3749	retval = security_task_setscheduler(p);
3750	if (retval)
3751		goto out_unlock;
3752
3753	cpuset_cpus_allowed(p, cpus_allowed);
3754	cpumask_and(new_mask, in_mask, cpus_allowed);
3755again:
3756	retval = set_cpus_allowed_ptr(p, new_mask);
3757
3758	if (!retval) {
3759		cpuset_cpus_allowed(p, cpus_allowed);
3760		if (!cpumask_subset(new_mask, cpus_allowed)) {
3761			/*
3762			 * We must have raced with a concurrent cpuset
3763			 * update. Just reset the cpus_allowed to the
3764			 * cpuset's cpus_allowed
3765			 */
3766			cpumask_copy(new_mask, cpus_allowed);
3767			goto again;
3768		}
3769	}
3770out_unlock:
3771	free_cpumask_var(new_mask);
3772out_free_cpus_allowed:
3773	free_cpumask_var(cpus_allowed);
3774out_put_task:
3775	put_task_struct(p);
3776	put_online_cpus();
3777	return retval;
3778}
3779
3780static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3781			     struct cpumask *new_mask)
3782{
3783	if (len < cpumask_size())
3784		cpumask_clear(new_mask);
3785	else if (len > cpumask_size())
3786		len = cpumask_size();
3787
3788	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3789}
3790
3791/**
3792 * sys_sched_setaffinity - set the cpu affinity of a process
3793 * @pid: pid of the process
3794 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3795 * @user_mask_ptr: user-space pointer to the new cpu mask
3796 *
3797 * Return: 0 on success. An error code otherwise.
3798 */
3799SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3800		unsigned long __user *, user_mask_ptr)
3801{
3802	cpumask_var_t new_mask;
3803	int retval;
3804
3805	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3806		return -ENOMEM;
3807
3808	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3809	if (retval == 0)
3810		retval = sched_setaffinity(pid, new_mask);
3811	free_cpumask_var(new_mask);
3812	return retval;
3813}
3814
3815long sched_getaffinity(pid_t pid, struct cpumask *mask)
3816{
3817	struct task_struct *p;
3818	unsigned long flags;
3819	int retval;
3820
3821	get_online_cpus();
3822	rcu_read_lock();
3823
3824	retval = -ESRCH;
3825	p = find_process_by_pid(pid);
3826	if (!p)
3827		goto out_unlock;
3828
3829	retval = security_task_getscheduler(p);
3830	if (retval)
3831		goto out_unlock;
3832
3833	raw_spin_lock_irqsave(&p->pi_lock, flags);
3834	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3835	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3836
3837out_unlock:
3838	rcu_read_unlock();
3839	put_online_cpus();
3840
3841	return retval;
3842}
3843
3844/**
3845 * sys_sched_getaffinity - get the cpu affinity of a process
3846 * @pid: pid of the process
3847 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3848 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3849 *
3850 * Return: 0 on success. An error code otherwise.
3851 */
3852SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3853		unsigned long __user *, user_mask_ptr)
3854{
3855	int ret;
3856	cpumask_var_t mask;
3857
3858	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3859		return -EINVAL;
3860	if (len & (sizeof(unsigned long)-1))
3861		return -EINVAL;
3862
3863	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3864		return -ENOMEM;
3865
3866	ret = sched_getaffinity(pid, mask);
3867	if (ret == 0) {
3868		size_t retlen = min_t(size_t, len, cpumask_size());
3869
3870		if (copy_to_user(user_mask_ptr, mask, retlen))
3871			ret = -EFAULT;
3872		else
3873			ret = retlen;
3874	}
3875	free_cpumask_var(mask);
3876
3877	return ret;
3878}
3879
3880/**
3881 * sys_sched_yield - yield the current processor to other threads.
3882 *
3883 * This function yields the current CPU to other tasks. If there are no
3884 * other threads running on this CPU then this function will return.
3885 *
3886 * Return: 0.
3887 */
3888SYSCALL_DEFINE0(sched_yield)
3889{
3890	struct rq *rq = this_rq_lock();
3891
3892	schedstat_inc(rq, yld_count);
3893	current->sched_class->yield_task(rq);
3894
3895	/*
3896	 * Since we are going to call schedule() anyway, there's
3897	 * no need to preempt or enable interrupts:
3898	 */
3899	__release(rq->lock);
3900	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3901	do_raw_spin_unlock(&rq->lock);
3902	sched_preempt_enable_no_resched();
3903
3904	schedule();
3905
3906	return 0;
3907}
3908
3909static void __cond_resched(void)
3910{
3911	__preempt_count_add(PREEMPT_ACTIVE);
3912	__schedule();
3913	__preempt_count_sub(PREEMPT_ACTIVE);
3914}
3915
3916int __sched _cond_resched(void)
3917{
3918	if (should_resched()) {
3919		__cond_resched();
3920		return 1;
3921	}
3922	return 0;
3923}
3924EXPORT_SYMBOL(_cond_resched);
3925
3926/*
3927 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3928 * call schedule, and on return reacquire the lock.
3929 *
3930 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3931 * operations here to prevent schedule() from being called twice (once via
3932 * spin_unlock(), once by hand).
3933 */
3934int __cond_resched_lock(spinlock_t *lock)
3935{
3936	int resched = should_resched();
3937	int ret = 0;
3938
3939	lockdep_assert_held(lock);
3940
3941	if (spin_needbreak(lock) || resched) {
3942		spin_unlock(lock);
3943		if (resched)
3944			__cond_resched();
3945		else
3946			cpu_relax();
3947		ret = 1;
3948		spin_lock(lock);
3949	}
3950	return ret;
3951}
3952EXPORT_SYMBOL(__cond_resched_lock);
3953
3954int __sched __cond_resched_softirq(void)
3955{
3956	BUG_ON(!in_softirq());
3957
3958	if (should_resched()) {
3959		local_bh_enable();
3960		__cond_resched();
3961		local_bh_disable();
3962		return 1;
3963	}
3964	return 0;
3965}
3966EXPORT_SYMBOL(__cond_resched_softirq);
3967
3968/**
3969 * yield - yield the current processor to other threads.
3970 *
3971 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3972 *
3973 * The scheduler is at all times free to pick the calling task as the most
3974 * eligible task to run, if removing the yield() call from your code breaks
3975 * it, its already broken.
3976 *
3977 * Typical broken usage is:
3978 *
3979 * while (!event)
3980 * 	yield();
3981 *
3982 * where one assumes that yield() will let 'the other' process run that will
3983 * make event true. If the current task is a SCHED_FIFO task that will never
3984 * happen. Never use yield() as a progress guarantee!!
3985 *
3986 * If you want to use yield() to wait for something, use wait_event().
3987 * If you want to use yield() to be 'nice' for others, use cond_resched().
3988 * If you still want to use yield(), do not!
3989 */
3990void __sched yield(void)
3991{
3992	set_current_state(TASK_RUNNING);
3993	sys_sched_yield();
3994}
3995EXPORT_SYMBOL(yield);
3996
3997/**
3998 * yield_to - yield the current processor to another thread in
3999 * your thread group, or accelerate that thread toward the
4000 * processor it's on.
4001 * @p: target task
4002 * @preempt: whether task preemption is allowed or not
4003 *
4004 * It's the caller's job to ensure that the target task struct
4005 * can't go away on us before we can do any checks.
4006 *
4007 * Return:
4008 *	true (>0) if we indeed boosted the target task.
4009 *	false (0) if we failed to boost the target.
4010 *	-ESRCH if there's no task to yield to.
4011 */
4012bool __sched yield_to(struct task_struct *p, bool preempt)
4013{
4014	struct task_struct *curr = current;
4015	struct rq *rq, *p_rq;
4016	unsigned long flags;
4017	int yielded = 0;
4018
4019	local_irq_save(flags);
4020	rq = this_rq();
4021
4022again:
4023	p_rq = task_rq(p);
4024	/*
4025	 * If we're the only runnable task on the rq and target rq also
4026	 * has only one task, there's absolutely no point in yielding.
4027	 */
4028	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4029		yielded = -ESRCH;
4030		goto out_irq;
4031	}
4032
4033	double_rq_lock(rq, p_rq);
4034	while (task_rq(p) != p_rq) {
4035		double_rq_unlock(rq, p_rq);
4036		goto again;
4037	}
4038
4039	if (!curr->sched_class->yield_to_task)
4040		goto out_unlock;
4041
4042	if (curr->sched_class != p->sched_class)
4043		goto out_unlock;
4044
4045	if (task_running(p_rq, p) || p->state)
4046		goto out_unlock;
4047
4048	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4049	if (yielded) {
4050		schedstat_inc(rq, yld_count);
4051		/*
4052		 * Make p's CPU reschedule; pick_next_entity takes care of
4053		 * fairness.
4054		 */
4055		if (preempt && rq != p_rq)
4056			resched_task(p_rq->curr);
4057	}
4058
4059out_unlock:
4060	double_rq_unlock(rq, p_rq);
4061out_irq:
4062	local_irq_restore(flags);
4063
4064	if (yielded > 0)
4065		schedule();
4066
4067	return yielded;
4068}
4069EXPORT_SYMBOL_GPL(yield_to);
4070
4071/*
4072 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4073 * that process accounting knows that this is a task in IO wait state.
4074 */
4075void __sched io_schedule(void)
4076{
4077	struct rq *rq = raw_rq();
4078
4079	delayacct_blkio_start();
4080	atomic_inc(&rq->nr_iowait);
4081	blk_flush_plug(current);
4082	current->in_iowait = 1;
4083	schedule();
4084	current->in_iowait = 0;
4085	atomic_dec(&rq->nr_iowait);
4086	delayacct_blkio_end();
4087}
4088EXPORT_SYMBOL(io_schedule);
4089
4090long __sched io_schedule_timeout(long timeout)
4091{
4092	struct rq *rq = raw_rq();
4093	long ret;
4094
4095	delayacct_blkio_start();
4096	atomic_inc(&rq->nr_iowait);
4097	blk_flush_plug(current);
4098	current->in_iowait = 1;
4099	ret = schedule_timeout(timeout);
4100	current->in_iowait = 0;
4101	atomic_dec(&rq->nr_iowait);
4102	delayacct_blkio_end();
4103	return ret;
4104}
4105
4106/**
4107 * sys_sched_get_priority_max - return maximum RT priority.
4108 * @policy: scheduling class.
4109 *
4110 * Return: On success, this syscall returns the maximum
4111 * rt_priority that can be used by a given scheduling class.
4112 * On failure, a negative error code is returned.
4113 */
4114SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4115{
4116	int ret = -EINVAL;
4117
4118	switch (policy) {
4119	case SCHED_FIFO:
4120	case SCHED_RR:
4121		ret = MAX_USER_RT_PRIO-1;
4122		break;
4123	case SCHED_NORMAL:
4124	case SCHED_BATCH:
4125	case SCHED_IDLE:
4126		ret = 0;
4127		break;
4128	}
4129	return ret;
4130}
4131
4132/**
4133 * sys_sched_get_priority_min - return minimum RT priority.
4134 * @policy: scheduling class.
4135 *
4136 * Return: On success, this syscall returns the minimum
4137 * rt_priority that can be used by a given scheduling class.
4138 * On failure, a negative error code is returned.
4139 */
4140SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4141{
4142	int ret = -EINVAL;
4143
4144	switch (policy) {
4145	case SCHED_FIFO:
4146	case SCHED_RR:
4147		ret = 1;
4148		break;
4149	case SCHED_NORMAL:
4150	case SCHED_BATCH:
4151	case SCHED_IDLE:
4152		ret = 0;
4153	}
4154	return ret;
4155}
4156
4157/**
4158 * sys_sched_rr_get_interval - return the default timeslice of a process.
4159 * @pid: pid of the process.
4160 * @interval: userspace pointer to the timeslice value.
4161 *
4162 * this syscall writes the default timeslice value of a given process
4163 * into the user-space timespec buffer. A value of '0' means infinity.
4164 *
4165 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4166 * an error code.
4167 */
4168SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4169		struct timespec __user *, interval)
4170{
4171	struct task_struct *p;
4172	unsigned int time_slice;
4173	unsigned long flags;
4174	struct rq *rq;
4175	int retval;
4176	struct timespec t;
4177
4178	if (pid < 0)
4179		return -EINVAL;
4180
4181	retval = -ESRCH;
4182	rcu_read_lock();
4183	p = find_process_by_pid(pid);
4184	if (!p)
4185		goto out_unlock;
4186
4187	retval = security_task_getscheduler(p);
4188	if (retval)
4189		goto out_unlock;
4190
4191	rq = task_rq_lock(p, &flags);
4192	time_slice = p->sched_class->get_rr_interval(rq, p);
4193	task_rq_unlock(rq, p, &flags);
4194
4195	rcu_read_unlock();
4196	jiffies_to_timespec(time_slice, &t);
4197	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4198	return retval;
4199
4200out_unlock:
4201	rcu_read_unlock();
4202	return retval;
4203}
4204
4205static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4206
4207void sched_show_task(struct task_struct *p)
4208{
4209	unsigned long free = 0;
4210	int ppid;
4211	unsigned state;
4212
4213	state = p->state ? __ffs(p->state) + 1 : 0;
4214	printk(KERN_INFO "%-15.15s %c", p->comm,
4215		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4216#if BITS_PER_LONG == 32
4217	if (state == TASK_RUNNING)
4218		printk(KERN_CONT " running  ");
4219	else
4220		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4221#else
4222	if (state == TASK_RUNNING)
4223		printk(KERN_CONT "  running task    ");
4224	else
4225		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4226#endif
4227#ifdef CONFIG_DEBUG_STACK_USAGE
4228	free = stack_not_used(p);
4229#endif
4230	rcu_read_lock();
4231	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4232	rcu_read_unlock();
4233	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4234		task_pid_nr(p), ppid,
4235		(unsigned long)task_thread_info(p)->flags);
4236
4237	print_worker_info(KERN_INFO, p);
4238	show_stack(p, NULL);
4239}
4240
4241void show_state_filter(unsigned long state_filter)
4242{
4243	struct task_struct *g, *p;
4244
4245#if BITS_PER_LONG == 32
4246	printk(KERN_INFO
4247		"  task                PC stack   pid father\n");
4248#else
4249	printk(KERN_INFO
4250		"  task                        PC stack   pid father\n");
4251#endif
4252	rcu_read_lock();
4253	do_each_thread(g, p) {
4254		/*
4255		 * reset the NMI-timeout, listing all files on a slow
4256		 * console might take a lot of time:
4257		 */
4258		touch_nmi_watchdog();
4259		if (!state_filter || (p->state & state_filter))
4260			sched_show_task(p);
4261	} while_each_thread(g, p);
4262
4263	touch_all_softlockup_watchdogs();
4264
4265#ifdef CONFIG_SCHED_DEBUG
4266	sysrq_sched_debug_show();
4267#endif
4268	rcu_read_unlock();
4269	/*
4270	 * Only show locks if all tasks are dumped:
4271	 */
4272	if (!state_filter)
4273		debug_show_all_locks();
4274}
4275
4276void init_idle_bootup_task(struct task_struct *idle)
4277{
4278	idle->sched_class = &idle_sched_class;
4279}
4280
4281/**
4282 * init_idle - set up an idle thread for a given CPU
4283 * @idle: task in question
4284 * @cpu: cpu the idle task belongs to
4285 *
4286 * NOTE: this function does not set the idle thread's NEED_RESCHED
4287 * flag, to make booting more robust.
4288 */
4289void init_idle(struct task_struct *idle, int cpu)
4290{
4291	struct rq *rq = cpu_rq(cpu);
4292	unsigned long flags;
4293
4294	raw_spin_lock_irqsave(&rq->lock, flags);
4295
4296	__sched_fork(0, idle);
4297	idle->state = TASK_RUNNING;
4298	idle->se.exec_start = sched_clock();
4299
4300	do_set_cpus_allowed(idle, cpumask_of(cpu));
4301	/*
4302	 * We're having a chicken and egg problem, even though we are
4303	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4304	 * lockdep check in task_group() will fail.
4305	 *
4306	 * Similar case to sched_fork(). / Alternatively we could
4307	 * use task_rq_lock() here and obtain the other rq->lock.
4308	 *
4309	 * Silence PROVE_RCU
4310	 */
4311	rcu_read_lock();
4312	__set_task_cpu(idle, cpu);
4313	rcu_read_unlock();
4314
4315	rq->curr = rq->idle = idle;
4316#if defined(CONFIG_SMP)
4317	idle->on_cpu = 1;
4318#endif
4319	raw_spin_unlock_irqrestore(&rq->lock, flags);
4320
4321	/* Set the preempt count _outside_ the spinlocks! */
4322	init_idle_preempt_count(idle, cpu);
4323
4324	/*
4325	 * The idle tasks have their own, simple scheduling class:
4326	 */
4327	idle->sched_class = &idle_sched_class;
4328	ftrace_graph_init_idle_task(idle, cpu);
4329	vtime_init_idle(idle, cpu);
4330#if defined(CONFIG_SMP)
4331	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4332#endif
4333}
4334
4335#ifdef CONFIG_SMP
4336void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4337{
4338	if (p->sched_class && p->sched_class->set_cpus_allowed)
4339		p->sched_class->set_cpus_allowed(p, new_mask);
4340
4341	cpumask_copy(&p->cpus_allowed, new_mask);
4342	p->nr_cpus_allowed = cpumask_weight(new_mask);
4343}
4344
4345/*
4346 * This is how migration works:
4347 *
4348 * 1) we invoke migration_cpu_stop() on the target CPU using
4349 *    stop_one_cpu().
4350 * 2) stopper starts to run (implicitly forcing the migrated thread
4351 *    off the CPU)
4352 * 3) it checks whether the migrated task is still in the wrong runqueue.
4353 * 4) if it's in the wrong runqueue then the migration thread removes
4354 *    it and puts it into the right queue.
4355 * 5) stopper completes and stop_one_cpu() returns and the migration
4356 *    is done.
4357 */
4358
4359/*
4360 * Change a given task's CPU affinity. Migrate the thread to a
4361 * proper CPU and schedule it away if the CPU it's executing on
4362 * is removed from the allowed bitmask.
4363 *
4364 * NOTE: the caller must have a valid reference to the task, the
4365 * task must not exit() & deallocate itself prematurely. The
4366 * call is not atomic; no spinlocks may be held.
4367 */
4368int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4369{
4370	unsigned long flags;
4371	struct rq *rq;
4372	unsigned int dest_cpu;
4373	int ret = 0;
4374
4375	rq = task_rq_lock(p, &flags);
4376
4377	if (cpumask_equal(&p->cpus_allowed, new_mask))
4378		goto out;
4379
4380	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4381		ret = -EINVAL;
4382		goto out;
4383	}
4384
4385	do_set_cpus_allowed(p, new_mask);
4386
4387	/* Can the task run on the task's current CPU? If so, we're done */
4388	if (cpumask_test_cpu(task_cpu(p), new_mask))
4389		goto out;
4390
4391	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4392	if (p->on_rq) {
4393		struct migration_arg arg = { p, dest_cpu };
4394		/* Need help from migration thread: drop lock and wait. */
4395		task_rq_unlock(rq, p, &flags);
4396		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4397		tlb_migrate_finish(p->mm);
4398		return 0;
4399	}
4400out:
4401	task_rq_unlock(rq, p, &flags);
4402
4403	return ret;
4404}
4405EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4406
4407/*
4408 * Move (not current) task off this cpu, onto dest cpu. We're doing
4409 * this because either it can't run here any more (set_cpus_allowed()
4410 * away from this CPU, or CPU going down), or because we're
4411 * attempting to rebalance this task on exec (sched_exec).
4412 *
4413 * So we race with normal scheduler movements, but that's OK, as long
4414 * as the task is no longer on this CPU.
4415 *
4416 * Returns non-zero if task was successfully migrated.
4417 */
4418static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4419{
4420	struct rq *rq_dest, *rq_src;
4421	int ret = 0;
4422
4423	if (unlikely(!cpu_active(dest_cpu)))
4424		return ret;
4425
4426	rq_src = cpu_rq(src_cpu);
4427	rq_dest = cpu_rq(dest_cpu);
4428
4429	raw_spin_lock(&p->pi_lock);
4430	double_rq_lock(rq_src, rq_dest);
4431	/* Already moved. */
4432	if (task_cpu(p) != src_cpu)
4433		goto done;
4434	/* Affinity changed (again). */
4435	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4436		goto fail;
4437
4438	/*
4439	 * If we're not on a rq, the next wake-up will ensure we're
4440	 * placed properly.
4441	 */
4442	if (p->on_rq) {
4443		dequeue_task(rq_src, p, 0);
4444		set_task_cpu(p, dest_cpu);
4445		enqueue_task(rq_dest, p, 0);
4446		check_preempt_curr(rq_dest, p, 0);
4447	}
4448done:
4449	ret = 1;
4450fail:
4451	double_rq_unlock(rq_src, rq_dest);
4452	raw_spin_unlock(&p->pi_lock);
4453	return ret;
4454}
4455
4456#ifdef CONFIG_NUMA_BALANCING
4457/* Migrate current task p to target_cpu */
4458int migrate_task_to(struct task_struct *p, int target_cpu)
4459{
4460	struct migration_arg arg = { p, target_cpu };
4461	int curr_cpu = task_cpu(p);
4462
4463	if (curr_cpu == target_cpu)
4464		return 0;
4465
4466	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4467		return -EINVAL;
4468
4469	/* TODO: This is not properly updating schedstats */
4470
4471	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4472}
4473
4474/*
4475 * Requeue a task on a given node and accurately track the number of NUMA
4476 * tasks on the runqueues
4477 */
4478void sched_setnuma(struct task_struct *p, int nid)
4479{
4480	struct rq *rq;
4481	unsigned long flags;
4482	bool on_rq, running;
4483
4484	rq = task_rq_lock(p, &flags);
4485	on_rq = p->on_rq;
4486	running = task_current(rq, p);
4487
4488	if (on_rq)
4489		dequeue_task(rq, p, 0);
4490	if (running)
4491		p->sched_class->put_prev_task(rq, p);
4492
4493	p->numa_preferred_nid = nid;
4494
4495	if (running)
4496		p->sched_class->set_curr_task(rq);
4497	if (on_rq)
4498		enqueue_task(rq, p, 0);
4499	task_rq_unlock(rq, p, &flags);
4500}
4501#endif
4502
4503/*
4504 * migration_cpu_stop - this will be executed by a highprio stopper thread
4505 * and performs thread migration by bumping thread off CPU then
4506 * 'pushing' onto another runqueue.
4507 */
4508static int migration_cpu_stop(void *data)
4509{
4510	struct migration_arg *arg = data;
4511
4512	/*
4513	 * The original target cpu might have gone down and we might
4514	 * be on another cpu but it doesn't matter.
4515	 */
4516	local_irq_disable();
4517	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4518	local_irq_enable();
4519	return 0;
4520}
4521
4522#ifdef CONFIG_HOTPLUG_CPU
4523
4524/*
4525 * Ensures that the idle task is using init_mm right before its cpu goes
4526 * offline.
4527 */
4528void idle_task_exit(void)
4529{
4530	struct mm_struct *mm = current->active_mm;
4531
4532	BUG_ON(cpu_online(smp_processor_id()));
4533
4534	if (mm != &init_mm)
4535		switch_mm(mm, &init_mm, current);
4536	mmdrop(mm);
4537}
4538
4539/*
4540 * Since this CPU is going 'away' for a while, fold any nr_active delta
4541 * we might have. Assumes we're called after migrate_tasks() so that the
4542 * nr_active count is stable.
4543 *
4544 * Also see the comment "Global load-average calculations".
4545 */
4546static void calc_load_migrate(struct rq *rq)
4547{
4548	long delta = calc_load_fold_active(rq);
4549	if (delta)
4550		atomic_long_add(delta, &calc_load_tasks);
4551}
4552
4553/*
4554 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4555 * try_to_wake_up()->select_task_rq().
4556 *
4557 * Called with rq->lock held even though we'er in stop_machine() and
4558 * there's no concurrency possible, we hold the required locks anyway
4559 * because of lock validation efforts.
4560 */
4561static void migrate_tasks(unsigned int dead_cpu)
4562{
4563	struct rq *rq = cpu_rq(dead_cpu);
4564	struct task_struct *next, *stop = rq->stop;
4565	int dest_cpu;
4566
4567	/*
4568	 * Fudge the rq selection such that the below task selection loop
4569	 * doesn't get stuck on the currently eligible stop task.
4570	 *
4571	 * We're currently inside stop_machine() and the rq is either stuck
4572	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4573	 * either way we should never end up calling schedule() until we're
4574	 * done here.
4575	 */
4576	rq->stop = NULL;
4577
4578	/*
4579	 * put_prev_task() and pick_next_task() sched
4580	 * class method both need to have an up-to-date
4581	 * value of rq->clock[_task]
4582	 */
4583	update_rq_clock(rq);
4584
4585	for ( ; ; ) {
4586		/*
4587		 * There's this thread running, bail when that's the only
4588		 * remaining thread.
4589		 */
4590		if (rq->nr_running == 1)
4591			break;
4592
4593		next = pick_next_task(rq);
4594		BUG_ON(!next);
4595		next->sched_class->put_prev_task(rq, next);
4596
4597		/* Find suitable destination for @next, with force if needed. */
4598		dest_cpu = select_fallback_rq(dead_cpu, next);
4599		raw_spin_unlock(&rq->lock);
4600
4601		__migrate_task(next, dead_cpu, dest_cpu);
4602
4603		raw_spin_lock(&rq->lock);
4604	}
4605
4606	rq->stop = stop;
4607}
4608
4609#endif /* CONFIG_HOTPLUG_CPU */
4610
4611#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4612
4613static struct ctl_table sd_ctl_dir[] = {
4614	{
4615		.procname	= "sched_domain",
4616		.mode		= 0555,
4617	},
4618	{}
4619};
4620
4621static struct ctl_table sd_ctl_root[] = {
4622	{
4623		.procname	= "kernel",
4624		.mode		= 0555,
4625		.child		= sd_ctl_dir,
4626	},
4627	{}
4628};
4629
4630static struct ctl_table *sd_alloc_ctl_entry(int n)
4631{
4632	struct ctl_table *entry =
4633		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4634
4635	return entry;
4636}
4637
4638static void sd_free_ctl_entry(struct ctl_table **tablep)
4639{
4640	struct ctl_table *entry;
4641
4642	/*
4643	 * In the intermediate directories, both the child directory and
4644	 * procname are dynamically allocated and could fail but the mode
4645	 * will always be set. In the lowest directory the names are
4646	 * static strings and all have proc handlers.
4647	 */
4648	for (entry = *tablep; entry->mode; entry++) {
4649		if (entry->child)
4650			sd_free_ctl_entry(&entry->child);
4651		if (entry->proc_handler == NULL)
4652			kfree(entry->procname);
4653	}
4654
4655	kfree(*tablep);
4656	*tablep = NULL;
4657}
4658
4659static int min_load_idx = 0;
4660static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4661
4662static void
4663set_table_entry(struct ctl_table *entry,
4664		const char *procname, void *data, int maxlen,
4665		umode_t mode, proc_handler *proc_handler,
4666		bool load_idx)
4667{
4668	entry->procname = procname;
4669	entry->data = data;
4670	entry->maxlen = maxlen;
4671	entry->mode = mode;
4672	entry->proc_handler = proc_handler;
4673
4674	if (load_idx) {
4675		entry->extra1 = &min_load_idx;
4676		entry->extra2 = &max_load_idx;
4677	}
4678}
4679
4680static struct ctl_table *
4681sd_alloc_ctl_domain_table(struct sched_domain *sd)
4682{
4683	struct ctl_table *table = sd_alloc_ctl_entry(13);
4684
4685	if (table == NULL)
4686		return NULL;
4687
4688	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4689		sizeof(long), 0644, proc_doulongvec_minmax, false);
4690	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4691		sizeof(long), 0644, proc_doulongvec_minmax, false);
4692	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4693		sizeof(int), 0644, proc_dointvec_minmax, true);
4694	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4695		sizeof(int), 0644, proc_dointvec_minmax, true);
4696	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4697		sizeof(int), 0644, proc_dointvec_minmax, true);
4698	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4699		sizeof(int), 0644, proc_dointvec_minmax, true);
4700	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4701		sizeof(int), 0644, proc_dointvec_minmax, true);
4702	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4703		sizeof(int), 0644, proc_dointvec_minmax, false);
4704	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4705		sizeof(int), 0644, proc_dointvec_minmax, false);
4706	set_table_entry(&table[9], "cache_nice_tries",
4707		&sd->cache_nice_tries,
4708		sizeof(int), 0644, proc_dointvec_minmax, false);
4709	set_table_entry(&table[10], "flags", &sd->flags,
4710		sizeof(int), 0644, proc_dointvec_minmax, false);
4711	set_table_entry(&table[11], "name", sd->name,
4712		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4713	/* &table[12] is terminator */
4714
4715	return table;
4716}
4717
4718static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4719{
4720	struct ctl_table *entry, *table;
4721	struct sched_domain *sd;
4722	int domain_num = 0, i;
4723	char buf[32];
4724
4725	for_each_domain(cpu, sd)
4726		domain_num++;
4727	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4728	if (table == NULL)
4729		return NULL;
4730
4731	i = 0;
4732	for_each_domain(cpu, sd) {
4733		snprintf(buf, 32, "domain%d", i);
4734		entry->procname = kstrdup(buf, GFP_KERNEL);
4735		entry->mode = 0555;
4736		entry->child = sd_alloc_ctl_domain_table(sd);
4737		entry++;
4738		i++;
4739	}
4740	return table;
4741}
4742
4743static struct ctl_table_header *sd_sysctl_header;
4744static void register_sched_domain_sysctl(void)
4745{
4746	int i, cpu_num = num_possible_cpus();
4747	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4748	char buf[32];
4749
4750	WARN_ON(sd_ctl_dir[0].child);
4751	sd_ctl_dir[0].child = entry;
4752
4753	if (entry == NULL)
4754		return;
4755
4756	for_each_possible_cpu(i) {
4757		snprintf(buf, 32, "cpu%d", i);
4758		entry->procname = kstrdup(buf, GFP_KERNEL);
4759		entry->mode = 0555;
4760		entry->child = sd_alloc_ctl_cpu_table(i);
4761		entry++;
4762	}
4763
4764	WARN_ON(sd_sysctl_header);
4765	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4766}
4767
4768/* may be called multiple times per register */
4769static void unregister_sched_domain_sysctl(void)
4770{
4771	if (sd_sysctl_header)
4772		unregister_sysctl_table(sd_sysctl_header);
4773	sd_sysctl_header = NULL;
4774	if (sd_ctl_dir[0].child)
4775		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4776}
4777#else
4778static void register_sched_domain_sysctl(void)
4779{
4780}
4781static void unregister_sched_domain_sysctl(void)
4782{
4783}
4784#endif
4785
4786static void set_rq_online(struct rq *rq)
4787{
4788	if (!rq->online) {
4789		const struct sched_class *class;
4790
4791		cpumask_set_cpu(rq->cpu, rq->rd->online);
4792		rq->online = 1;
4793
4794		for_each_class(class) {
4795			if (class->rq_online)
4796				class->rq_online(rq);
4797		}
4798	}
4799}
4800
4801static void set_rq_offline(struct rq *rq)
4802{
4803	if (rq->online) {
4804		const struct sched_class *class;
4805
4806		for_each_class(class) {
4807			if (class->rq_offline)
4808				class->rq_offline(rq);
4809		}
4810
4811		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4812		rq->online = 0;
4813	}
4814}
4815
4816/*
4817 * migration_call - callback that gets triggered when a CPU is added.
4818 * Here we can start up the necessary migration thread for the new CPU.
4819 */
4820static int
4821migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4822{
4823	int cpu = (long)hcpu;
4824	unsigned long flags;
4825	struct rq *rq = cpu_rq(cpu);
4826
4827	switch (action & ~CPU_TASKS_FROZEN) {
4828
4829	case CPU_UP_PREPARE:
4830		rq->calc_load_update = calc_load_update;
4831		break;
4832
4833	case CPU_ONLINE:
4834		/* Update our root-domain */
4835		raw_spin_lock_irqsave(&rq->lock, flags);
4836		if (rq->rd) {
4837			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4838
4839			set_rq_online(rq);
4840		}
4841		raw_spin_unlock_irqrestore(&rq->lock, flags);
4842		break;
4843
4844#ifdef CONFIG_HOTPLUG_CPU
4845	case CPU_DYING:
4846		sched_ttwu_pending();
4847		/* Update our root-domain */
4848		raw_spin_lock_irqsave(&rq->lock, flags);
4849		if (rq->rd) {
4850			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4851			set_rq_offline(rq);
4852		}
4853		migrate_tasks(cpu);
4854		BUG_ON(rq->nr_running != 1); /* the migration thread */
4855		raw_spin_unlock_irqrestore(&rq->lock, flags);
4856		break;
4857
4858	case CPU_DEAD:
4859		calc_load_migrate(rq);
4860		break;
4861#endif
4862	}
4863
4864	update_max_interval();
4865
4866	return NOTIFY_OK;
4867}
4868
4869/*
4870 * Register at high priority so that task migration (migrate_all_tasks)
4871 * happens before everything else.  This has to be lower priority than
4872 * the notifier in the perf_event subsystem, though.
4873 */
4874static struct notifier_block migration_notifier = {
4875	.notifier_call = migration_call,
4876	.priority = CPU_PRI_MIGRATION,
4877};
4878
4879static int sched_cpu_active(struct notifier_block *nfb,
4880				      unsigned long action, void *hcpu)
4881{
4882	switch (action & ~CPU_TASKS_FROZEN) {
4883	case CPU_STARTING:
4884	case CPU_DOWN_FAILED:
4885		set_cpu_active((long)hcpu, true);
4886		return NOTIFY_OK;
4887	default:
4888		return NOTIFY_DONE;
4889	}
4890}
4891
4892static int sched_cpu_inactive(struct notifier_block *nfb,
4893					unsigned long action, void *hcpu)
4894{
4895	switch (action & ~CPU_TASKS_FROZEN) {
4896	case CPU_DOWN_PREPARE:
4897		set_cpu_active((long)hcpu, false);
4898		return NOTIFY_OK;
4899	default:
4900		return NOTIFY_DONE;
4901	}
4902}
4903
4904static int __init migration_init(void)
4905{
4906	void *cpu = (void *)(long)smp_processor_id();
4907	int err;
4908
4909	/* Initialize migration for the boot CPU */
4910	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4911	BUG_ON(err == NOTIFY_BAD);
4912	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4913	register_cpu_notifier(&migration_notifier);
4914
4915	/* Register cpu active notifiers */
4916	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4917	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4918
4919	return 0;
4920}
4921early_initcall(migration_init);
4922#endif
4923
4924#ifdef CONFIG_SMP
4925
4926static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4927
4928#ifdef CONFIG_SCHED_DEBUG
4929
4930static __read_mostly int sched_debug_enabled;
4931
4932static int __init sched_debug_setup(char *str)
4933{
4934	sched_debug_enabled = 1;
4935
4936	return 0;
4937}
4938early_param("sched_debug", sched_debug_setup);
4939
4940static inline bool sched_debug(void)
4941{
4942	return sched_debug_enabled;
4943}
4944
4945static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4946				  struct cpumask *groupmask)
4947{
4948	struct sched_group *group = sd->groups;
4949	char str[256];
4950
4951	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4952	cpumask_clear(groupmask);
4953
4954	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4955
4956	if (!(sd->flags & SD_LOAD_BALANCE)) {
4957		printk("does not load-balance\n");
4958		if (sd->parent)
4959			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4960					" has parent");
4961		return -1;
4962	}
4963
4964	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4965
4966	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4967		printk(KERN_ERR "ERROR: domain->span does not contain "
4968				"CPU%d\n", cpu);
4969	}
4970	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4971		printk(KERN_ERR "ERROR: domain->groups does not contain"
4972				" CPU%d\n", cpu);
4973	}
4974
4975	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4976	do {
4977		if (!group) {
4978			printk("\n");
4979			printk(KERN_ERR "ERROR: group is NULL\n");
4980			break;
4981		}
4982
4983		/*
4984		 * Even though we initialize ->power to something semi-sane,
4985		 * we leave power_orig unset. This allows us to detect if
4986		 * domain iteration is still funny without causing /0 traps.
4987		 */
4988		if (!group->sgp->power_orig) {
4989			printk(KERN_CONT "\n");
4990			printk(KERN_ERR "ERROR: domain->cpu_power not "
4991					"set\n");
4992			break;
4993		}
4994
4995		if (!cpumask_weight(sched_group_cpus(group))) {
4996			printk(KERN_CONT "\n");
4997			printk(KERN_ERR "ERROR: empty group\n");
4998			break;
4999		}
5000
5001		if (!(sd->flags & SD_OVERLAP) &&
5002		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5003			printk(KERN_CONT "\n");
5004			printk(KERN_ERR "ERROR: repeated CPUs\n");
5005			break;
5006		}
5007
5008		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5009
5010		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5011
5012		printk(KERN_CONT " %s", str);
5013		if (group->sgp->power != SCHED_POWER_SCALE) {
5014			printk(KERN_CONT " (cpu_power = %d)",
5015				group->sgp->power);
5016		}
5017
5018		group = group->next;
5019	} while (group != sd->groups);
5020	printk(KERN_CONT "\n");
5021
5022	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5023		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5024
5025	if (sd->parent &&
5026	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5027		printk(KERN_ERR "ERROR: parent span is not a superset "
5028			"of domain->span\n");
5029	return 0;
5030}
5031
5032static void sched_domain_debug(struct sched_domain *sd, int cpu)
5033{
5034	int level = 0;
5035
5036	if (!sched_debug_enabled)
5037		return;
5038
5039	if (!sd) {
5040		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5041		return;
5042	}
5043
5044	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5045
5046	for (;;) {
5047		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5048			break;
5049		level++;
5050		sd = sd->parent;
5051		if (!sd)
5052			break;
5053	}
5054}
5055#else /* !CONFIG_SCHED_DEBUG */
5056# define sched_domain_debug(sd, cpu) do { } while (0)
5057static inline bool sched_debug(void)
5058{
5059	return false;
5060}
5061#endif /* CONFIG_SCHED_DEBUG */
5062
5063static int sd_degenerate(struct sched_domain *sd)
5064{
5065	if (cpumask_weight(sched_domain_span(sd)) == 1)
5066		return 1;
5067
5068	/* Following flags need at least 2 groups */
5069	if (sd->flags & (SD_LOAD_BALANCE |
5070			 SD_BALANCE_NEWIDLE |
5071			 SD_BALANCE_FORK |
5072			 SD_BALANCE_EXEC |
5073			 SD_SHARE_CPUPOWER |
5074			 SD_SHARE_PKG_RESOURCES)) {
5075		if (sd->groups != sd->groups->next)
5076			return 0;
5077	}
5078
5079	/* Following flags don't use groups */
5080	if (sd->flags & (SD_WAKE_AFFINE))
5081		return 0;
5082
5083	return 1;
5084}
5085
5086static int
5087sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5088{
5089	unsigned long cflags = sd->flags, pflags = parent->flags;
5090
5091	if (sd_degenerate(parent))
5092		return 1;
5093
5094	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5095		return 0;
5096
5097	/* Flags needing groups don't count if only 1 group in parent */
5098	if (parent->groups == parent->groups->next) {
5099		pflags &= ~(SD_LOAD_BALANCE |
5100				SD_BALANCE_NEWIDLE |
5101				SD_BALANCE_FORK |
5102				SD_BALANCE_EXEC |
5103				SD_SHARE_CPUPOWER |
5104				SD_SHARE_PKG_RESOURCES |
5105				SD_PREFER_SIBLING);
5106		if (nr_node_ids == 1)
5107			pflags &= ~SD_SERIALIZE;
5108	}
5109	if (~cflags & pflags)
5110		return 0;
5111
5112	return 1;
5113}
5114
5115static void free_rootdomain(struct rcu_head *rcu)
5116{
5117	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5118
5119	cpupri_cleanup(&rd->cpupri);
5120	free_cpumask_var(rd->rto_mask);
5121	free_cpumask_var(rd->online);
5122	free_cpumask_var(rd->span);
5123	kfree(rd);
5124}
5125
5126static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5127{
5128	struct root_domain *old_rd = NULL;
5129	unsigned long flags;
5130
5131	raw_spin_lock_irqsave(&rq->lock, flags);
5132
5133	if (rq->rd) {
5134		old_rd = rq->rd;
5135
5136		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5137			set_rq_offline(rq);
5138
5139		cpumask_clear_cpu(rq->cpu, old_rd->span);
5140
5141		/*
5142		 * If we dont want to free the old_rt yet then
5143		 * set old_rd to NULL to skip the freeing later
5144		 * in this function:
5145		 */
5146		if (!atomic_dec_and_test(&old_rd->refcount))
5147			old_rd = NULL;
5148	}
5149
5150	atomic_inc(&rd->refcount);
5151	rq->rd = rd;
5152
5153	cpumask_set_cpu(rq->cpu, rd->span);
5154	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5155		set_rq_online(rq);
5156
5157	raw_spin_unlock_irqrestore(&rq->lock, flags);
5158
5159	if (old_rd)
5160		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5161}
5162
5163static int init_rootdomain(struct root_domain *rd)
5164{
5165	memset(rd, 0, sizeof(*rd));
5166
5167	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5168		goto out;
5169	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5170		goto free_span;
5171	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5172		goto free_online;
5173
5174	if (cpupri_init(&rd->cpupri) != 0)
5175		goto free_rto_mask;
5176	return 0;
5177
5178free_rto_mask:
5179	free_cpumask_var(rd->rto_mask);
5180free_online:
5181	free_cpumask_var(rd->online);
5182free_span:
5183	free_cpumask_var(rd->span);
5184out:
5185	return -ENOMEM;
5186}
5187
5188/*
5189 * By default the system creates a single root-domain with all cpus as
5190 * members (mimicking the global state we have today).
5191 */
5192struct root_domain def_root_domain;
5193
5194static void init_defrootdomain(void)
5195{
5196	init_rootdomain(&def_root_domain);
5197
5198	atomic_set(&def_root_domain.refcount, 1);
5199}
5200
5201static struct root_domain *alloc_rootdomain(void)
5202{
5203	struct root_domain *rd;
5204
5205	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5206	if (!rd)
5207		return NULL;
5208
5209	if (init_rootdomain(rd) != 0) {
5210		kfree(rd);
5211		return NULL;
5212	}
5213
5214	return rd;
5215}
5216
5217static void free_sched_groups(struct sched_group *sg, int free_sgp)
5218{
5219	struct sched_group *tmp, *first;
5220
5221	if (!sg)
5222		return;
5223
5224	first = sg;
5225	do {
5226		tmp = sg->next;
5227
5228		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5229			kfree(sg->sgp);
5230
5231		kfree(sg);
5232		sg = tmp;
5233	} while (sg != first);
5234}
5235
5236static void free_sched_domain(struct rcu_head *rcu)
5237{
5238	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5239
5240	/*
5241	 * If its an overlapping domain it has private groups, iterate and
5242	 * nuke them all.
5243	 */
5244	if (sd->flags & SD_OVERLAP) {
5245		free_sched_groups(sd->groups, 1);
5246	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5247		kfree(sd->groups->sgp);
5248		kfree(sd->groups);
5249	}
5250	kfree(sd);
5251}
5252
5253static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5254{
5255	call_rcu(&sd->rcu, free_sched_domain);
5256}
5257
5258static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5259{
5260	for (; sd; sd = sd->parent)
5261		destroy_sched_domain(sd, cpu);
5262}
5263
5264/*
5265 * Keep a special pointer to the highest sched_domain that has
5266 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5267 * allows us to avoid some pointer chasing select_idle_sibling().
5268 *
5269 * Also keep a unique ID per domain (we use the first cpu number in
5270 * the cpumask of the domain), this allows us to quickly tell if
5271 * two cpus are in the same cache domain, see cpus_share_cache().
5272 */
5273DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5274DEFINE_PER_CPU(int, sd_llc_size);
5275DEFINE_PER_CPU(int, sd_llc_id);
5276DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5277
5278static void update_top_cache_domain(int cpu)
5279{
5280	struct sched_domain *sd;
5281	int id = cpu;
5282	int size = 1;
5283
5284	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5285	if (sd) {
5286		id = cpumask_first(sched_domain_span(sd));
5287		size = cpumask_weight(sched_domain_span(sd));
5288	}
5289
5290	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5291	per_cpu(sd_llc_size, cpu) = size;
5292	per_cpu(sd_llc_id, cpu) = id;
5293
5294	sd = lowest_flag_domain(cpu, SD_NUMA);
5295	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5296}
5297
5298/*
5299 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5300 * hold the hotplug lock.
5301 */
5302static void
5303cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5304{
5305	struct rq *rq = cpu_rq(cpu);
5306	struct sched_domain *tmp;
5307
5308	/* Remove the sched domains which do not contribute to scheduling. */
5309	for (tmp = sd; tmp; ) {
5310		struct sched_domain *parent = tmp->parent;
5311		if (!parent)
5312			break;
5313
5314		if (sd_parent_degenerate(tmp, parent)) {
5315			tmp->parent = parent->parent;
5316			if (parent->parent)
5317				parent->parent->child = tmp;
5318			/*
5319			 * Transfer SD_PREFER_SIBLING down in case of a
5320			 * degenerate parent; the spans match for this
5321			 * so the property transfers.
5322			 */
5323			if (parent->flags & SD_PREFER_SIBLING)
5324				tmp->flags |= SD_PREFER_SIBLING;
5325			destroy_sched_domain(parent, cpu);
5326		} else
5327			tmp = tmp->parent;
5328	}
5329
5330	if (sd && sd_degenerate(sd)) {
5331		tmp = sd;
5332		sd = sd->parent;
5333		destroy_sched_domain(tmp, cpu);
5334		if (sd)
5335			sd->child = NULL;
5336	}
5337
5338	sched_domain_debug(sd, cpu);
5339
5340	rq_attach_root(rq, rd);
5341	tmp = rq->sd;
5342	rcu_assign_pointer(rq->sd, sd);
5343	destroy_sched_domains(tmp, cpu);
5344
5345	update_top_cache_domain(cpu);
5346}
5347
5348/* cpus with isolated domains */
5349static cpumask_var_t cpu_isolated_map;
5350
5351/* Setup the mask of cpus configured for isolated domains */
5352static int __init isolated_cpu_setup(char *str)
5353{
5354	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5355	cpulist_parse(str, cpu_isolated_map);
5356	return 1;
5357}
5358
5359__setup("isolcpus=", isolated_cpu_setup);
5360
5361static const struct cpumask *cpu_cpu_mask(int cpu)
5362{
5363	return cpumask_of_node(cpu_to_node(cpu));
5364}
5365
5366struct sd_data {
5367	struct sched_domain **__percpu sd;
5368	struct sched_group **__percpu sg;
5369	struct sched_group_power **__percpu sgp;
5370};
5371
5372struct s_data {
5373	struct sched_domain ** __percpu sd;
5374	struct root_domain	*rd;
5375};
5376
5377enum s_alloc {
5378	sa_rootdomain,
5379	sa_sd,
5380	sa_sd_storage,
5381	sa_none,
5382};
5383
5384struct sched_domain_topology_level;
5385
5386typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5387typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5388
5389#define SDTL_OVERLAP	0x01
5390
5391struct sched_domain_topology_level {
5392	sched_domain_init_f init;
5393	sched_domain_mask_f mask;
5394	int		    flags;
5395	int		    numa_level;
5396	struct sd_data      data;
5397};
5398
5399/*
5400 * Build an iteration mask that can exclude certain CPUs from the upwards
5401 * domain traversal.
5402 *
5403 * Asymmetric node setups can result in situations where the domain tree is of
5404 * unequal depth, make sure to skip domains that already cover the entire
5405 * range.
5406 *
5407 * In that case build_sched_domains() will have terminated the iteration early
5408 * and our sibling sd spans will be empty. Domains should always include the
5409 * cpu they're built on, so check that.
5410 *
5411 */
5412static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5413{
5414	const struct cpumask *span = sched_domain_span(sd);
5415	struct sd_data *sdd = sd->private;
5416	struct sched_domain *sibling;
5417	int i;
5418
5419	for_each_cpu(i, span) {
5420		sibling = *per_cpu_ptr(sdd->sd, i);
5421		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5422			continue;
5423
5424		cpumask_set_cpu(i, sched_group_mask(sg));
5425	}
5426}
5427
5428/*
5429 * Return the canonical balance cpu for this group, this is the first cpu
5430 * of this group that's also in the iteration mask.
5431 */
5432int group_balance_cpu(struct sched_group *sg)
5433{
5434	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5435}
5436
5437static int
5438build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5439{
5440	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5441	const struct cpumask *span = sched_domain_span(sd);
5442	struct cpumask *covered = sched_domains_tmpmask;
5443	struct sd_data *sdd = sd->private;
5444	struct sched_domain *child;
5445	int i;
5446
5447	cpumask_clear(covered);
5448
5449	for_each_cpu(i, span) {
5450		struct cpumask *sg_span;
5451
5452		if (cpumask_test_cpu(i, covered))
5453			continue;
5454
5455		child = *per_cpu_ptr(sdd->sd, i);
5456
5457		/* See the comment near build_group_mask(). */
5458		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5459			continue;
5460
5461		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5462				GFP_KERNEL, cpu_to_node(cpu));
5463
5464		if (!sg)
5465			goto fail;
5466
5467		sg_span = sched_group_cpus(sg);
5468		if (child->child) {
5469			child = child->child;
5470			cpumask_copy(sg_span, sched_domain_span(child));
5471		} else
5472			cpumask_set_cpu(i, sg_span);
5473
5474		cpumask_or(covered, covered, sg_span);
5475
5476		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5477		if (atomic_inc_return(&sg->sgp->ref) == 1)
5478			build_group_mask(sd, sg);
5479
5480		/*
5481		 * Initialize sgp->power such that even if we mess up the
5482		 * domains and no possible iteration will get us here, we won't
5483		 * die on a /0 trap.
5484		 */
5485		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5486
5487		/*
5488		 * Make sure the first group of this domain contains the
5489		 * canonical balance cpu. Otherwise the sched_domain iteration
5490		 * breaks. See update_sg_lb_stats().
5491		 */
5492		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5493		    group_balance_cpu(sg) == cpu)
5494			groups = sg;
5495
5496		if (!first)
5497			first = sg;
5498		if (last)
5499			last->next = sg;
5500		last = sg;
5501		last->next = first;
5502	}
5503	sd->groups = groups;
5504
5505	return 0;
5506
5507fail:
5508	free_sched_groups(first, 0);
5509
5510	return -ENOMEM;
5511}
5512
5513static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5514{
5515	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5516	struct sched_domain *child = sd->child;
5517
5518	if (child)
5519		cpu = cpumask_first(sched_domain_span(child));
5520
5521	if (sg) {
5522		*sg = *per_cpu_ptr(sdd->sg, cpu);
5523		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5524		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5525	}
5526
5527	return cpu;
5528}
5529
5530/*
5531 * build_sched_groups will build a circular linked list of the groups
5532 * covered by the given span, and will set each group's ->cpumask correctly,
5533 * and ->cpu_power to 0.
5534 *
5535 * Assumes the sched_domain tree is fully constructed
5536 */
5537static int
5538build_sched_groups(struct sched_domain *sd, int cpu)
5539{
5540	struct sched_group *first = NULL, *last = NULL;
5541	struct sd_data *sdd = sd->private;
5542	const struct cpumask *span = sched_domain_span(sd);
5543	struct cpumask *covered;
5544	int i;
5545
5546	get_group(cpu, sdd, &sd->groups);
5547	atomic_inc(&sd->groups->ref);
5548
5549	if (cpu != cpumask_first(span))
5550		return 0;
5551
5552	lockdep_assert_held(&sched_domains_mutex);
5553	covered = sched_domains_tmpmask;
5554
5555	cpumask_clear(covered);
5556
5557	for_each_cpu(i, span) {
5558		struct sched_group *sg;
5559		int group, j;
5560
5561		if (cpumask_test_cpu(i, covered))
5562			continue;
5563
5564		group = get_group(i, sdd, &sg);
5565		cpumask_clear(sched_group_cpus(sg));
5566		sg->sgp->power = 0;
5567		cpumask_setall(sched_group_mask(sg));
5568
5569		for_each_cpu(j, span) {
5570			if (get_group(j, sdd, NULL) != group)
5571				continue;
5572
5573			cpumask_set_cpu(j, covered);
5574			cpumask_set_cpu(j, sched_group_cpus(sg));
5575		}
5576
5577		if (!first)
5578			first = sg;
5579		if (last)
5580			last->next = sg;
5581		last = sg;
5582	}
5583	last->next = first;
5584
5585	return 0;
5586}
5587
5588/*
5589 * Initialize sched groups cpu_power.
5590 *
5591 * cpu_power indicates the capacity of sched group, which is used while
5592 * distributing the load between different sched groups in a sched domain.
5593 * Typically cpu_power for all the groups in a sched domain will be same unless
5594 * there are asymmetries in the topology. If there are asymmetries, group
5595 * having more cpu_power will pickup more load compared to the group having
5596 * less cpu_power.
5597 */
5598static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5599{
5600	struct sched_group *sg = sd->groups;
5601
5602	WARN_ON(!sg);
5603
5604	do {
5605		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5606		sg = sg->next;
5607	} while (sg != sd->groups);
5608
5609	if (cpu != group_balance_cpu(sg))
5610		return;
5611
5612	update_group_power(sd, cpu);
5613	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5614}
5615
5616int __weak arch_sd_sibling_asym_packing(void)
5617{
5618       return 0*SD_ASYM_PACKING;
5619}
5620
5621/*
5622 * Initializers for schedule domains
5623 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5624 */
5625
5626#ifdef CONFIG_SCHED_DEBUG
5627# define SD_INIT_NAME(sd, type)		sd->name = #type
5628#else
5629# define SD_INIT_NAME(sd, type)		do { } while (0)
5630#endif
5631
5632#define SD_INIT_FUNC(type)						\
5633static noinline struct sched_domain *					\
5634sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5635{									\
5636	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5637	*sd = SD_##type##_INIT;						\
5638	SD_INIT_NAME(sd, type);						\
5639	sd->private = &tl->data;					\
5640	return sd;							\
5641}
5642
5643SD_INIT_FUNC(CPU)
5644#ifdef CONFIG_SCHED_SMT
5645 SD_INIT_FUNC(SIBLING)
5646#endif
5647#ifdef CONFIG_SCHED_MC
5648 SD_INIT_FUNC(MC)
5649#endif
5650#ifdef CONFIG_SCHED_BOOK
5651 SD_INIT_FUNC(BOOK)
5652#endif
5653
5654static int default_relax_domain_level = -1;
5655int sched_domain_level_max;
5656
5657static int __init setup_relax_domain_level(char *str)
5658{
5659	if (kstrtoint(str, 0, &default_relax_domain_level))
5660		pr_warn("Unable to set relax_domain_level\n");
5661
5662	return 1;
5663}
5664__setup("relax_domain_level=", setup_relax_domain_level);
5665
5666static void set_domain_attribute(struct sched_domain *sd,
5667				 struct sched_domain_attr *attr)
5668{
5669	int request;
5670
5671	if (!attr || attr->relax_domain_level < 0) {
5672		if (default_relax_domain_level < 0)
5673			return;
5674		else
5675			request = default_relax_domain_level;
5676	} else
5677		request = attr->relax_domain_level;
5678	if (request < sd->level) {
5679		/* turn off idle balance on this domain */
5680		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5681	} else {
5682		/* turn on idle balance on this domain */
5683		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5684	}
5685}
5686
5687static void __sdt_free(const struct cpumask *cpu_map);
5688static int __sdt_alloc(const struct cpumask *cpu_map);
5689
5690static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5691				 const struct cpumask *cpu_map)
5692{
5693	switch (what) {
5694	case sa_rootdomain:
5695		if (!atomic_read(&d->rd->refcount))
5696			free_rootdomain(&d->rd->rcu); /* fall through */
5697	case sa_sd:
5698		free_percpu(d->sd); /* fall through */
5699	case sa_sd_storage:
5700		__sdt_free(cpu_map); /* fall through */
5701	case sa_none:
5702		break;
5703	}
5704}
5705
5706static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5707						   const struct cpumask *cpu_map)
5708{
5709	memset(d, 0, sizeof(*d));
5710
5711	if (__sdt_alloc(cpu_map))
5712		return sa_sd_storage;
5713	d->sd = alloc_percpu(struct sched_domain *);
5714	if (!d->sd)
5715		return sa_sd_storage;
5716	d->rd = alloc_rootdomain();
5717	if (!d->rd)
5718		return sa_sd;
5719	return sa_rootdomain;
5720}
5721
5722/*
5723 * NULL the sd_data elements we've used to build the sched_domain and
5724 * sched_group structure so that the subsequent __free_domain_allocs()
5725 * will not free the data we're using.
5726 */
5727static void claim_allocations(int cpu, struct sched_domain *sd)
5728{
5729	struct sd_data *sdd = sd->private;
5730
5731	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5732	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5733
5734	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5735		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5736
5737	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5738		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5739}
5740
5741#ifdef CONFIG_SCHED_SMT
5742static const struct cpumask *cpu_smt_mask(int cpu)
5743{
5744	return topology_thread_cpumask(cpu);
5745}
5746#endif
5747
5748/*
5749 * Topology list, bottom-up.
5750 */
5751static struct sched_domain_topology_level default_topology[] = {
5752#ifdef CONFIG_SCHED_SMT
5753	{ sd_init_SIBLING, cpu_smt_mask, },
5754#endif
5755#ifdef CONFIG_SCHED_MC
5756	{ sd_init_MC, cpu_coregroup_mask, },
5757#endif
5758#ifdef CONFIG_SCHED_BOOK
5759	{ sd_init_BOOK, cpu_book_mask, },
5760#endif
5761	{ sd_init_CPU, cpu_cpu_mask, },
5762	{ NULL, },
5763};
5764
5765static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5766
5767#define for_each_sd_topology(tl)			\
5768	for (tl = sched_domain_topology; tl->init; tl++)
5769
5770#ifdef CONFIG_NUMA
5771
5772static int sched_domains_numa_levels;
5773static int *sched_domains_numa_distance;
5774static struct cpumask ***sched_domains_numa_masks;
5775static int sched_domains_curr_level;
5776
5777static inline int sd_local_flags(int level)
5778{
5779	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5780		return 0;
5781
5782	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5783}
5784
5785static struct sched_domain *
5786sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5787{
5788	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5789	int level = tl->numa_level;
5790	int sd_weight = cpumask_weight(
5791			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5792
5793	*sd = (struct sched_domain){
5794		.min_interval		= sd_weight,
5795		.max_interval		= 2*sd_weight,
5796		.busy_factor		= 32,
5797		.imbalance_pct		= 125,
5798		.cache_nice_tries	= 2,
5799		.busy_idx		= 3,
5800		.idle_idx		= 2,
5801		.newidle_idx		= 0,
5802		.wake_idx		= 0,
5803		.forkexec_idx		= 0,
5804
5805		.flags			= 1*SD_LOAD_BALANCE
5806					| 1*SD_BALANCE_NEWIDLE
5807					| 0*SD_BALANCE_EXEC
5808					| 0*SD_BALANCE_FORK
5809					| 0*SD_BALANCE_WAKE
5810					| 0*SD_WAKE_AFFINE
5811					| 0*SD_SHARE_CPUPOWER
5812					| 0*SD_SHARE_PKG_RESOURCES
5813					| 1*SD_SERIALIZE
5814					| 0*SD_PREFER_SIBLING
5815					| 1*SD_NUMA
5816					| sd_local_flags(level)
5817					,
5818		.last_balance		= jiffies,
5819		.balance_interval	= sd_weight,
5820	};
5821	SD_INIT_NAME(sd, NUMA);
5822	sd->private = &tl->data;
5823
5824	/*
5825	 * Ugly hack to pass state to sd_numa_mask()...
5826	 */
5827	sched_domains_curr_level = tl->numa_level;
5828
5829	return sd;
5830}
5831
5832static const struct cpumask *sd_numa_mask(int cpu)
5833{
5834	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5835}
5836
5837static void sched_numa_warn(const char *str)
5838{
5839	static int done = false;
5840	int i,j;
5841
5842	if (done)
5843		return;
5844
5845	done = true;
5846
5847	printk(KERN_WARNING "ERROR: %s\n\n", str);
5848
5849	for (i = 0; i < nr_node_ids; i++) {
5850		printk(KERN_WARNING "  ");
5851		for (j = 0; j < nr_node_ids; j++)
5852			printk(KERN_CONT "%02d ", node_distance(i,j));
5853		printk(KERN_CONT "\n");
5854	}
5855	printk(KERN_WARNING "\n");
5856}
5857
5858static bool find_numa_distance(int distance)
5859{
5860	int i;
5861
5862	if (distance == node_distance(0, 0))
5863		return true;
5864
5865	for (i = 0; i < sched_domains_numa_levels; i++) {
5866		if (sched_domains_numa_distance[i] == distance)
5867			return true;
5868	}
5869
5870	return false;
5871}
5872
5873static void sched_init_numa(void)
5874{
5875	int next_distance, curr_distance = node_distance(0, 0);
5876	struct sched_domain_topology_level *tl;
5877	int level = 0;
5878	int i, j, k;
5879
5880	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5881	if (!sched_domains_numa_distance)
5882		return;
5883
5884	/*
5885	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5886	 * unique distances in the node_distance() table.
5887	 *
5888	 * Assumes node_distance(0,j) includes all distances in
5889	 * node_distance(i,j) in order to avoid cubic time.
5890	 */
5891	next_distance = curr_distance;
5892	for (i = 0; i < nr_node_ids; i++) {
5893		for (j = 0; j < nr_node_ids; j++) {
5894			for (k = 0; k < nr_node_ids; k++) {
5895				int distance = node_distance(i, k);
5896
5897				if (distance > curr_distance &&
5898				    (distance < next_distance ||
5899				     next_distance == curr_distance))
5900					next_distance = distance;
5901
5902				/*
5903				 * While not a strong assumption it would be nice to know
5904				 * about cases where if node A is connected to B, B is not
5905				 * equally connected to A.
5906				 */
5907				if (sched_debug() && node_distance(k, i) != distance)
5908					sched_numa_warn("Node-distance not symmetric");
5909
5910				if (sched_debug() && i && !find_numa_distance(distance))
5911					sched_numa_warn("Node-0 not representative");
5912			}
5913			if (next_distance != curr_distance) {
5914				sched_domains_numa_distance[level++] = next_distance;
5915				sched_domains_numa_levels = level;
5916				curr_distance = next_distance;
5917			} else break;
5918		}
5919
5920		/*
5921		 * In case of sched_debug() we verify the above assumption.
5922		 */
5923		if (!sched_debug())
5924			break;
5925	}
5926	/*
5927	 * 'level' contains the number of unique distances, excluding the
5928	 * identity distance node_distance(i,i).
5929	 *
5930	 * The sched_domains_numa_distance[] array includes the actual distance
5931	 * numbers.
5932	 */
5933
5934	/*
5935	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5936	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5937	 * the array will contain less then 'level' members. This could be
5938	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5939	 * in other functions.
5940	 *
5941	 * We reset it to 'level' at the end of this function.
5942	 */
5943	sched_domains_numa_levels = 0;
5944
5945	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5946	if (!sched_domains_numa_masks)
5947		return;
5948
5949	/*
5950	 * Now for each level, construct a mask per node which contains all
5951	 * cpus of nodes that are that many hops away from us.
5952	 */
5953	for (i = 0; i < level; i++) {
5954		sched_domains_numa_masks[i] =
5955			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5956		if (!sched_domains_numa_masks[i])
5957			return;
5958
5959		for (j = 0; j < nr_node_ids; j++) {
5960			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5961			if (!mask)
5962				return;
5963
5964			sched_domains_numa_masks[i][j] = mask;
5965
5966			for (k = 0; k < nr_node_ids; k++) {
5967				if (node_distance(j, k) > sched_domains_numa_distance[i])
5968					continue;
5969
5970				cpumask_or(mask, mask, cpumask_of_node(k));
5971			}
5972		}
5973	}
5974
5975	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5976			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5977	if (!tl)
5978		return;
5979
5980	/*
5981	 * Copy the default topology bits..
5982	 */
5983	for (i = 0; default_topology[i].init; i++)
5984		tl[i] = default_topology[i];
5985
5986	/*
5987	 * .. and append 'j' levels of NUMA goodness.
5988	 */
5989	for (j = 0; j < level; i++, j++) {
5990		tl[i] = (struct sched_domain_topology_level){
5991			.init = sd_numa_init,
5992			.mask = sd_numa_mask,
5993			.flags = SDTL_OVERLAP,
5994			.numa_level = j,
5995		};
5996	}
5997
5998	sched_domain_topology = tl;
5999
6000	sched_domains_numa_levels = level;
6001}
6002
6003static void sched_domains_numa_masks_set(int cpu)
6004{
6005	int i, j;
6006	int node = cpu_to_node(cpu);
6007
6008	for (i = 0; i < sched_domains_numa_levels; i++) {
6009		for (j = 0; j < nr_node_ids; j++) {
6010			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6011				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6012		}
6013	}
6014}
6015
6016static void sched_domains_numa_masks_clear(int cpu)
6017{
6018	int i, j;
6019	for (i = 0; i < sched_domains_numa_levels; i++) {
6020		for (j = 0; j < nr_node_ids; j++)
6021			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6022	}
6023}
6024
6025/*
6026 * Update sched_domains_numa_masks[level][node] array when new cpus
6027 * are onlined.
6028 */
6029static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6030					   unsigned long action,
6031					   void *hcpu)
6032{
6033	int cpu = (long)hcpu;
6034
6035	switch (action & ~CPU_TASKS_FROZEN) {
6036	case CPU_ONLINE:
6037		sched_domains_numa_masks_set(cpu);
6038		break;
6039
6040	case CPU_DEAD:
6041		sched_domains_numa_masks_clear(cpu);
6042		break;
6043
6044	default:
6045		return NOTIFY_DONE;
6046	}
6047
6048	return NOTIFY_OK;
6049}
6050#else
6051static inline void sched_init_numa(void)
6052{
6053}
6054
6055static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6056					   unsigned long action,
6057					   void *hcpu)
6058{
6059	return 0;
6060}
6061#endif /* CONFIG_NUMA */
6062
6063static int __sdt_alloc(const struct cpumask *cpu_map)
6064{
6065	struct sched_domain_topology_level *tl;
6066	int j;
6067
6068	for_each_sd_topology(tl) {
6069		struct sd_data *sdd = &tl->data;
6070
6071		sdd->sd = alloc_percpu(struct sched_domain *);
6072		if (!sdd->sd)
6073			return -ENOMEM;
6074
6075		sdd->sg = alloc_percpu(struct sched_group *);
6076		if (!sdd->sg)
6077			return -ENOMEM;
6078
6079		sdd->sgp = alloc_percpu(struct sched_group_power *);
6080		if (!sdd->sgp)
6081			return -ENOMEM;
6082
6083		for_each_cpu(j, cpu_map) {
6084			struct sched_domain *sd;
6085			struct sched_group *sg;
6086			struct sched_group_power *sgp;
6087
6088		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6089					GFP_KERNEL, cpu_to_node(j));
6090			if (!sd)
6091				return -ENOMEM;
6092
6093			*per_cpu_ptr(sdd->sd, j) = sd;
6094
6095			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6096					GFP_KERNEL, cpu_to_node(j));
6097			if (!sg)
6098				return -ENOMEM;
6099
6100			sg->next = sg;
6101
6102			*per_cpu_ptr(sdd->sg, j) = sg;
6103
6104			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6105					GFP_KERNEL, cpu_to_node(j));
6106			if (!sgp)
6107				return -ENOMEM;
6108
6109			*per_cpu_ptr(sdd->sgp, j) = sgp;
6110		}
6111	}
6112
6113	return 0;
6114}
6115
6116static void __sdt_free(const struct cpumask *cpu_map)
6117{
6118	struct sched_domain_topology_level *tl;
6119	int j;
6120
6121	for_each_sd_topology(tl) {
6122		struct sd_data *sdd = &tl->data;
6123
6124		for_each_cpu(j, cpu_map) {
6125			struct sched_domain *sd;
6126
6127			if (sdd->sd) {
6128				sd = *per_cpu_ptr(sdd->sd, j);
6129				if (sd && (sd->flags & SD_OVERLAP))
6130					free_sched_groups(sd->groups, 0);
6131				kfree(*per_cpu_ptr(sdd->sd, j));
6132			}
6133
6134			if (sdd->sg)
6135				kfree(*per_cpu_ptr(sdd->sg, j));
6136			if (sdd->sgp)
6137				kfree(*per_cpu_ptr(sdd->sgp, j));
6138		}
6139		free_percpu(sdd->sd);
6140		sdd->sd = NULL;
6141		free_percpu(sdd->sg);
6142		sdd->sg = NULL;
6143		free_percpu(sdd->sgp);
6144		sdd->sgp = NULL;
6145	}
6146}
6147
6148struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6149		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6150		struct sched_domain *child, int cpu)
6151{
6152	struct sched_domain *sd = tl->init(tl, cpu);
6153	if (!sd)
6154		return child;
6155
6156	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6157	if (child) {
6158		sd->level = child->level + 1;
6159		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6160		child->parent = sd;
6161		sd->child = child;
6162	}
6163	set_domain_attribute(sd, attr);
6164
6165	return sd;
6166}
6167
6168/*
6169 * Build sched domains for a given set of cpus and attach the sched domains
6170 * to the individual cpus
6171 */
6172static int build_sched_domains(const struct cpumask *cpu_map,
6173			       struct sched_domain_attr *attr)
6174{
6175	enum s_alloc alloc_state;
6176	struct sched_domain *sd;
6177	struct s_data d;
6178	int i, ret = -ENOMEM;
6179
6180	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6181	if (alloc_state != sa_rootdomain)
6182		goto error;
6183
6184	/* Set up domains for cpus specified by the cpu_map. */
6185	for_each_cpu(i, cpu_map) {
6186		struct sched_domain_topology_level *tl;
6187
6188		sd = NULL;
6189		for_each_sd_topology(tl) {
6190			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6191			if (tl == sched_domain_topology)
6192				*per_cpu_ptr(d.sd, i) = sd;
6193			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6194				sd->flags |= SD_OVERLAP;
6195			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6196				break;
6197		}
6198	}
6199
6200	/* Build the groups for the domains */
6201	for_each_cpu(i, cpu_map) {
6202		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6203			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6204			if (sd->flags & SD_OVERLAP) {
6205				if (build_overlap_sched_groups(sd, i))
6206					goto error;
6207			} else {
6208				if (build_sched_groups(sd, i))
6209					goto error;
6210			}
6211		}
6212	}
6213
6214	/* Calculate CPU power for physical packages and nodes */
6215	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6216		if (!cpumask_test_cpu(i, cpu_map))
6217			continue;
6218
6219		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6220			claim_allocations(i, sd);
6221			init_sched_groups_power(i, sd);
6222		}
6223	}
6224
6225	/* Attach the domains */
6226	rcu_read_lock();
6227	for_each_cpu(i, cpu_map) {
6228		sd = *per_cpu_ptr(d.sd, i);
6229		cpu_attach_domain(sd, d.rd, i);
6230	}
6231	rcu_read_unlock();
6232
6233	ret = 0;
6234error:
6235	__free_domain_allocs(&d, alloc_state, cpu_map);
6236	return ret;
6237}
6238
6239static cpumask_var_t *doms_cur;	/* current sched domains */
6240static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6241static struct sched_domain_attr *dattr_cur;
6242				/* attribues of custom domains in 'doms_cur' */
6243
6244/*
6245 * Special case: If a kmalloc of a doms_cur partition (array of
6246 * cpumask) fails, then fallback to a single sched domain,
6247 * as determined by the single cpumask fallback_doms.
6248 */
6249static cpumask_var_t fallback_doms;
6250
6251/*
6252 * arch_update_cpu_topology lets virtualized architectures update the
6253 * cpu core maps. It is supposed to return 1 if the topology changed
6254 * or 0 if it stayed the same.
6255 */
6256int __attribute__((weak)) arch_update_cpu_topology(void)
6257{
6258	return 0;
6259}
6260
6261cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6262{
6263	int i;
6264	cpumask_var_t *doms;
6265
6266	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6267	if (!doms)
6268		return NULL;
6269	for (i = 0; i < ndoms; i++) {
6270		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6271			free_sched_domains(doms, i);
6272			return NULL;
6273		}
6274	}
6275	return doms;
6276}
6277
6278void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6279{
6280	unsigned int i;
6281	for (i = 0; i < ndoms; i++)
6282		free_cpumask_var(doms[i]);
6283	kfree(doms);
6284}
6285
6286/*
6287 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6288 * For now this just excludes isolated cpus, but could be used to
6289 * exclude other special cases in the future.
6290 */
6291static int init_sched_domains(const struct cpumask *cpu_map)
6292{
6293	int err;
6294
6295	arch_update_cpu_topology();
6296	ndoms_cur = 1;
6297	doms_cur = alloc_sched_domains(ndoms_cur);
6298	if (!doms_cur)
6299		doms_cur = &fallback_doms;
6300	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6301	err = build_sched_domains(doms_cur[0], NULL);
6302	register_sched_domain_sysctl();
6303
6304	return err;
6305}
6306
6307/*
6308 * Detach sched domains from a group of cpus specified in cpu_map
6309 * These cpus will now be attached to the NULL domain
6310 */
6311static void detach_destroy_domains(const struct cpumask *cpu_map)
6312{
6313	int i;
6314
6315	rcu_read_lock();
6316	for_each_cpu(i, cpu_map)
6317		cpu_attach_domain(NULL, &def_root_domain, i);
6318	rcu_read_unlock();
6319}
6320
6321/* handle null as "default" */
6322static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6323			struct sched_domain_attr *new, int idx_new)
6324{
6325	struct sched_domain_attr tmp;
6326
6327	/* fast path */
6328	if (!new && !cur)
6329		return 1;
6330
6331	tmp = SD_ATTR_INIT;
6332	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6333			new ? (new + idx_new) : &tmp,
6334			sizeof(struct sched_domain_attr));
6335}
6336
6337/*
6338 * Partition sched domains as specified by the 'ndoms_new'
6339 * cpumasks in the array doms_new[] of cpumasks. This compares
6340 * doms_new[] to the current sched domain partitioning, doms_cur[].
6341 * It destroys each deleted domain and builds each new domain.
6342 *
6343 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6344 * The masks don't intersect (don't overlap.) We should setup one
6345 * sched domain for each mask. CPUs not in any of the cpumasks will
6346 * not be load balanced. If the same cpumask appears both in the
6347 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6348 * it as it is.
6349 *
6350 * The passed in 'doms_new' should be allocated using
6351 * alloc_sched_domains.  This routine takes ownership of it and will
6352 * free_sched_domains it when done with it. If the caller failed the
6353 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6354 * and partition_sched_domains() will fallback to the single partition
6355 * 'fallback_doms', it also forces the domains to be rebuilt.
6356 *
6357 * If doms_new == NULL it will be replaced with cpu_online_mask.
6358 * ndoms_new == 0 is a special case for destroying existing domains,
6359 * and it will not create the default domain.
6360 *
6361 * Call with hotplug lock held
6362 */
6363void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6364			     struct sched_domain_attr *dattr_new)
6365{
6366	int i, j, n;
6367	int new_topology;
6368
6369	mutex_lock(&sched_domains_mutex);
6370
6371	/* always unregister in case we don't destroy any domains */
6372	unregister_sched_domain_sysctl();
6373
6374	/* Let architecture update cpu core mappings. */
6375	new_topology = arch_update_cpu_topology();
6376
6377	n = doms_new ? ndoms_new : 0;
6378
6379	/* Destroy deleted domains */
6380	for (i = 0; i < ndoms_cur; i++) {
6381		for (j = 0; j < n && !new_topology; j++) {
6382			if (cpumask_equal(doms_cur[i], doms_new[j])
6383			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6384				goto match1;
6385		}
6386		/* no match - a current sched domain not in new doms_new[] */
6387		detach_destroy_domains(doms_cur[i]);
6388match1:
6389		;
6390	}
6391
6392	n = ndoms_cur;
6393	if (doms_new == NULL) {
6394		n = 0;
6395		doms_new = &fallback_doms;
6396		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6397		WARN_ON_ONCE(dattr_new);
6398	}
6399
6400	/* Build new domains */
6401	for (i = 0; i < ndoms_new; i++) {
6402		for (j = 0; j < n && !new_topology; j++) {
6403			if (cpumask_equal(doms_new[i], doms_cur[j])
6404			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6405				goto match2;
6406		}
6407		/* no match - add a new doms_new */
6408		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6409match2:
6410		;
6411	}
6412
6413	/* Remember the new sched domains */
6414	if (doms_cur != &fallback_doms)
6415		free_sched_domains(doms_cur, ndoms_cur);
6416	kfree(dattr_cur);	/* kfree(NULL) is safe */
6417	doms_cur = doms_new;
6418	dattr_cur = dattr_new;
6419	ndoms_cur = ndoms_new;
6420
6421	register_sched_domain_sysctl();
6422
6423	mutex_unlock(&sched_domains_mutex);
6424}
6425
6426static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6427
6428/*
6429 * Update cpusets according to cpu_active mask.  If cpusets are
6430 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6431 * around partition_sched_domains().
6432 *
6433 * If we come here as part of a suspend/resume, don't touch cpusets because we
6434 * want to restore it back to its original state upon resume anyway.
6435 */
6436static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6437			     void *hcpu)
6438{
6439	switch (action) {
6440	case CPU_ONLINE_FROZEN:
6441	case CPU_DOWN_FAILED_FROZEN:
6442
6443		/*
6444		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6445		 * resume sequence. As long as this is not the last online
6446		 * operation in the resume sequence, just build a single sched
6447		 * domain, ignoring cpusets.
6448		 */
6449		num_cpus_frozen--;
6450		if (likely(num_cpus_frozen)) {
6451			partition_sched_domains(1, NULL, NULL);
6452			break;
6453		}
6454
6455		/*
6456		 * This is the last CPU online operation. So fall through and
6457		 * restore the original sched domains by considering the
6458		 * cpuset configurations.
6459		 */
6460
6461	case CPU_ONLINE:
6462	case CPU_DOWN_FAILED:
6463		cpuset_update_active_cpus(true);
6464		break;
6465	default:
6466		return NOTIFY_DONE;
6467	}
6468	return NOTIFY_OK;
6469}
6470
6471static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6472			       void *hcpu)
6473{
6474	switch (action) {
6475	case CPU_DOWN_PREPARE:
6476		cpuset_update_active_cpus(false);
6477		break;
6478	case CPU_DOWN_PREPARE_FROZEN:
6479		num_cpus_frozen++;
6480		partition_sched_domains(1, NULL, NULL);
6481		break;
6482	default:
6483		return NOTIFY_DONE;
6484	}
6485	return NOTIFY_OK;
6486}
6487
6488void __init sched_init_smp(void)
6489{
6490	cpumask_var_t non_isolated_cpus;
6491
6492	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6493	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6494
6495	sched_init_numa();
6496
6497	get_online_cpus();
6498	mutex_lock(&sched_domains_mutex);
6499	init_sched_domains(cpu_active_mask);
6500	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6501	if (cpumask_empty(non_isolated_cpus))
6502		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6503	mutex_unlock(&sched_domains_mutex);
6504	put_online_cpus();
6505
6506	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6507	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6508	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6509
6510	init_hrtick();
6511
6512	/* Move init over to a non-isolated CPU */
6513	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6514		BUG();
6515	sched_init_granularity();
6516	free_cpumask_var(non_isolated_cpus);
6517
6518	init_sched_rt_class();
6519}
6520#else
6521void __init sched_init_smp(void)
6522{
6523	sched_init_granularity();
6524}
6525#endif /* CONFIG_SMP */
6526
6527const_debug unsigned int sysctl_timer_migration = 1;
6528
6529int in_sched_functions(unsigned long addr)
6530{
6531	return in_lock_functions(addr) ||
6532		(addr >= (unsigned long)__sched_text_start
6533		&& addr < (unsigned long)__sched_text_end);
6534}
6535
6536#ifdef CONFIG_CGROUP_SCHED
6537/*
6538 * Default task group.
6539 * Every task in system belongs to this group at bootup.
6540 */
6541struct task_group root_task_group;
6542LIST_HEAD(task_groups);
6543#endif
6544
6545DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6546
6547void __init sched_init(void)
6548{
6549	int i, j;
6550	unsigned long alloc_size = 0, ptr;
6551
6552#ifdef CONFIG_FAIR_GROUP_SCHED
6553	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6554#endif
6555#ifdef CONFIG_RT_GROUP_SCHED
6556	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6557#endif
6558#ifdef CONFIG_CPUMASK_OFFSTACK
6559	alloc_size += num_possible_cpus() * cpumask_size();
6560#endif
6561	if (alloc_size) {
6562		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6563
6564#ifdef CONFIG_FAIR_GROUP_SCHED
6565		root_task_group.se = (struct sched_entity **)ptr;
6566		ptr += nr_cpu_ids * sizeof(void **);
6567
6568		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6569		ptr += nr_cpu_ids * sizeof(void **);
6570
6571#endif /* CONFIG_FAIR_GROUP_SCHED */
6572#ifdef CONFIG_RT_GROUP_SCHED
6573		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6574		ptr += nr_cpu_ids * sizeof(void **);
6575
6576		root_task_group.rt_rq = (struct rt_rq **)ptr;
6577		ptr += nr_cpu_ids * sizeof(void **);
6578
6579#endif /* CONFIG_RT_GROUP_SCHED */
6580#ifdef CONFIG_CPUMASK_OFFSTACK
6581		for_each_possible_cpu(i) {
6582			per_cpu(load_balance_mask, i) = (void *)ptr;
6583			ptr += cpumask_size();
6584		}
6585#endif /* CONFIG_CPUMASK_OFFSTACK */
6586	}
6587
6588#ifdef CONFIG_SMP
6589	init_defrootdomain();
6590#endif
6591
6592	init_rt_bandwidth(&def_rt_bandwidth,
6593			global_rt_period(), global_rt_runtime());
6594
6595#ifdef CONFIG_RT_GROUP_SCHED
6596	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6597			global_rt_period(), global_rt_runtime());
6598#endif /* CONFIG_RT_GROUP_SCHED */
6599
6600#ifdef CONFIG_CGROUP_SCHED
6601	list_add(&root_task_group.list, &task_groups);
6602	INIT_LIST_HEAD(&root_task_group.children);
6603	INIT_LIST_HEAD(&root_task_group.siblings);
6604	autogroup_init(&init_task);
6605
6606#endif /* CONFIG_CGROUP_SCHED */
6607
6608	for_each_possible_cpu(i) {
6609		struct rq *rq;
6610
6611		rq = cpu_rq(i);
6612		raw_spin_lock_init(&rq->lock);
6613		rq->nr_running = 0;
6614		rq->calc_load_active = 0;
6615		rq->calc_load_update = jiffies + LOAD_FREQ;
6616		init_cfs_rq(&rq->cfs);
6617		init_rt_rq(&rq->rt, rq);
6618#ifdef CONFIG_FAIR_GROUP_SCHED
6619		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6620		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6621		/*
6622		 * How much cpu bandwidth does root_task_group get?
6623		 *
6624		 * In case of task-groups formed thr' the cgroup filesystem, it
6625		 * gets 100% of the cpu resources in the system. This overall
6626		 * system cpu resource is divided among the tasks of
6627		 * root_task_group and its child task-groups in a fair manner,
6628		 * based on each entity's (task or task-group's) weight
6629		 * (se->load.weight).
6630		 *
6631		 * In other words, if root_task_group has 10 tasks of weight
6632		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6633		 * then A0's share of the cpu resource is:
6634		 *
6635		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6636		 *
6637		 * We achieve this by letting root_task_group's tasks sit
6638		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6639		 */
6640		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6641		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6642#endif /* CONFIG_FAIR_GROUP_SCHED */
6643
6644		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6645#ifdef CONFIG_RT_GROUP_SCHED
6646		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6647		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6648#endif
6649
6650		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6651			rq->cpu_load[j] = 0;
6652
6653		rq->last_load_update_tick = jiffies;
6654
6655#ifdef CONFIG_SMP
6656		rq->sd = NULL;
6657		rq->rd = NULL;
6658		rq->cpu_power = SCHED_POWER_SCALE;
6659		rq->post_schedule = 0;
6660		rq->active_balance = 0;
6661		rq->next_balance = jiffies;
6662		rq->push_cpu = 0;
6663		rq->cpu = i;
6664		rq->online = 0;
6665		rq->idle_stamp = 0;
6666		rq->avg_idle = 2*sysctl_sched_migration_cost;
6667		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6668
6669		INIT_LIST_HEAD(&rq->cfs_tasks);
6670
6671		rq_attach_root(rq, &def_root_domain);
6672#ifdef CONFIG_NO_HZ_COMMON
6673		rq->nohz_flags = 0;
6674#endif
6675#ifdef CONFIG_NO_HZ_FULL
6676		rq->last_sched_tick = 0;
6677#endif
6678#endif
6679		init_rq_hrtick(rq);
6680		atomic_set(&rq->nr_iowait, 0);
6681	}
6682
6683	set_load_weight(&init_task);
6684
6685#ifdef CONFIG_PREEMPT_NOTIFIERS
6686	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6687#endif
6688
6689#ifdef CONFIG_RT_MUTEXES
6690	plist_head_init(&init_task.pi_waiters);
6691#endif
6692
6693	/*
6694	 * The boot idle thread does lazy MMU switching as well:
6695	 */
6696	atomic_inc(&init_mm.mm_count);
6697	enter_lazy_tlb(&init_mm, current);
6698
6699	/*
6700	 * Make us the idle thread. Technically, schedule() should not be
6701	 * called from this thread, however somewhere below it might be,
6702	 * but because we are the idle thread, we just pick up running again
6703	 * when this runqueue becomes "idle".
6704	 */
6705	init_idle(current, smp_processor_id());
6706
6707	calc_load_update = jiffies + LOAD_FREQ;
6708
6709	/*
6710	 * During early bootup we pretend to be a normal task:
6711	 */
6712	current->sched_class = &fair_sched_class;
6713
6714#ifdef CONFIG_SMP
6715	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6716	/* May be allocated at isolcpus cmdline parse time */
6717	if (cpu_isolated_map == NULL)
6718		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6719	idle_thread_set_boot_cpu();
6720#endif
6721	init_sched_fair_class();
6722
6723	scheduler_running = 1;
6724}
6725
6726#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6727static inline int preempt_count_equals(int preempt_offset)
6728{
6729	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6730
6731	return (nested == preempt_offset);
6732}
6733
6734void __might_sleep(const char *file, int line, int preempt_offset)
6735{
6736	static unsigned long prev_jiffy;	/* ratelimiting */
6737
6738	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6739	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6740	    system_state != SYSTEM_RUNNING || oops_in_progress)
6741		return;
6742	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6743		return;
6744	prev_jiffy = jiffies;
6745
6746	printk(KERN_ERR
6747		"BUG: sleeping function called from invalid context at %s:%d\n",
6748			file, line);
6749	printk(KERN_ERR
6750		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6751			in_atomic(), irqs_disabled(),
6752			current->pid, current->comm);
6753
6754	debug_show_held_locks(current);
6755	if (irqs_disabled())
6756		print_irqtrace_events(current);
6757	dump_stack();
6758}
6759EXPORT_SYMBOL(__might_sleep);
6760#endif
6761
6762#ifdef CONFIG_MAGIC_SYSRQ
6763static void normalize_task(struct rq *rq, struct task_struct *p)
6764{
6765	const struct sched_class *prev_class = p->sched_class;
6766	int old_prio = p->prio;
6767	int on_rq;
6768
6769	on_rq = p->on_rq;
6770	if (on_rq)
6771		dequeue_task(rq, p, 0);
6772	__setscheduler(rq, p, SCHED_NORMAL, 0);
6773	if (on_rq) {
6774		enqueue_task(rq, p, 0);
6775		resched_task(rq->curr);
6776	}
6777
6778	check_class_changed(rq, p, prev_class, old_prio);
6779}
6780
6781void normalize_rt_tasks(void)
6782{
6783	struct task_struct *g, *p;
6784	unsigned long flags;
6785	struct rq *rq;
6786
6787	read_lock_irqsave(&tasklist_lock, flags);
6788	do_each_thread(g, p) {
6789		/*
6790		 * Only normalize user tasks:
6791		 */
6792		if (!p->mm)
6793			continue;
6794
6795		p->se.exec_start		= 0;
6796#ifdef CONFIG_SCHEDSTATS
6797		p->se.statistics.wait_start	= 0;
6798		p->se.statistics.sleep_start	= 0;
6799		p->se.statistics.block_start	= 0;
6800#endif
6801
6802		if (!rt_task(p)) {
6803			/*
6804			 * Renice negative nice level userspace
6805			 * tasks back to 0:
6806			 */
6807			if (TASK_NICE(p) < 0 && p->mm)
6808				set_user_nice(p, 0);
6809			continue;
6810		}
6811
6812		raw_spin_lock(&p->pi_lock);
6813		rq = __task_rq_lock(p);
6814
6815		normalize_task(rq, p);
6816
6817		__task_rq_unlock(rq);
6818		raw_spin_unlock(&p->pi_lock);
6819	} while_each_thread(g, p);
6820
6821	read_unlock_irqrestore(&tasklist_lock, flags);
6822}
6823
6824#endif /* CONFIG_MAGIC_SYSRQ */
6825
6826#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6827/*
6828 * These functions are only useful for the IA64 MCA handling, or kdb.
6829 *
6830 * They can only be called when the whole system has been
6831 * stopped - every CPU needs to be quiescent, and no scheduling
6832 * activity can take place. Using them for anything else would
6833 * be a serious bug, and as a result, they aren't even visible
6834 * under any other configuration.
6835 */
6836
6837/**
6838 * curr_task - return the current task for a given cpu.
6839 * @cpu: the processor in question.
6840 *
6841 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6842 *
6843 * Return: The current task for @cpu.
6844 */
6845struct task_struct *curr_task(int cpu)
6846{
6847	return cpu_curr(cpu);
6848}
6849
6850#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6851
6852#ifdef CONFIG_IA64
6853/**
6854 * set_curr_task - set the current task for a given cpu.
6855 * @cpu: the processor in question.
6856 * @p: the task pointer to set.
6857 *
6858 * Description: This function must only be used when non-maskable interrupts
6859 * are serviced on a separate stack. It allows the architecture to switch the
6860 * notion of the current task on a cpu in a non-blocking manner. This function
6861 * must be called with all CPU's synchronized, and interrupts disabled, the
6862 * and caller must save the original value of the current task (see
6863 * curr_task() above) and restore that value before reenabling interrupts and
6864 * re-starting the system.
6865 *
6866 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6867 */
6868void set_curr_task(int cpu, struct task_struct *p)
6869{
6870	cpu_curr(cpu) = p;
6871}
6872
6873#endif
6874
6875#ifdef CONFIG_CGROUP_SCHED
6876/* task_group_lock serializes the addition/removal of task groups */
6877static DEFINE_SPINLOCK(task_group_lock);
6878
6879static void free_sched_group(struct task_group *tg)
6880{
6881	free_fair_sched_group(tg);
6882	free_rt_sched_group(tg);
6883	autogroup_free(tg);
6884	kfree(tg);
6885}
6886
6887/* allocate runqueue etc for a new task group */
6888struct task_group *sched_create_group(struct task_group *parent)
6889{
6890	struct task_group *tg;
6891
6892	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6893	if (!tg)
6894		return ERR_PTR(-ENOMEM);
6895
6896	if (!alloc_fair_sched_group(tg, parent))
6897		goto err;
6898
6899	if (!alloc_rt_sched_group(tg, parent))
6900		goto err;
6901
6902	return tg;
6903
6904err:
6905	free_sched_group(tg);
6906	return ERR_PTR(-ENOMEM);
6907}
6908
6909void sched_online_group(struct task_group *tg, struct task_group *parent)
6910{
6911	unsigned long flags;
6912
6913	spin_lock_irqsave(&task_group_lock, flags);
6914	list_add_rcu(&tg->list, &task_groups);
6915
6916	WARN_ON(!parent); /* root should already exist */
6917
6918	tg->parent = parent;
6919	INIT_LIST_HEAD(&tg->children);
6920	list_add_rcu(&tg->siblings, &parent->children);
6921	spin_unlock_irqrestore(&task_group_lock, flags);
6922}
6923
6924/* rcu callback to free various structures associated with a task group */
6925static void free_sched_group_rcu(struct rcu_head *rhp)
6926{
6927	/* now it should be safe to free those cfs_rqs */
6928	free_sched_group(container_of(rhp, struct task_group, rcu));
6929}
6930
6931/* Destroy runqueue etc associated with a task group */
6932void sched_destroy_group(struct task_group *tg)
6933{
6934	/* wait for possible concurrent references to cfs_rqs complete */
6935	call_rcu(&tg->rcu, free_sched_group_rcu);
6936}
6937
6938void sched_offline_group(struct task_group *tg)
6939{
6940	unsigned long flags;
6941	int i;
6942
6943	/* end participation in shares distribution */
6944	for_each_possible_cpu(i)
6945		unregister_fair_sched_group(tg, i);
6946
6947	spin_lock_irqsave(&task_group_lock, flags);
6948	list_del_rcu(&tg->list);
6949	list_del_rcu(&tg->siblings);
6950	spin_unlock_irqrestore(&task_group_lock, flags);
6951}
6952
6953/* change task's runqueue when it moves between groups.
6954 *	The caller of this function should have put the task in its new group
6955 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6956 *	reflect its new group.
6957 */
6958void sched_move_task(struct task_struct *tsk)
6959{
6960	struct task_group *tg;
6961	int on_rq, running;
6962	unsigned long flags;
6963	struct rq *rq;
6964
6965	rq = task_rq_lock(tsk, &flags);
6966
6967	running = task_current(rq, tsk);
6968	on_rq = tsk->on_rq;
6969
6970	if (on_rq)
6971		dequeue_task(rq, tsk, 0);
6972	if (unlikely(running))
6973		tsk->sched_class->put_prev_task(rq, tsk);
6974
6975	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6976				lockdep_is_held(&tsk->sighand->siglock)),
6977			  struct task_group, css);
6978	tg = autogroup_task_group(tsk, tg);
6979	tsk->sched_task_group = tg;
6980
6981#ifdef CONFIG_FAIR_GROUP_SCHED
6982	if (tsk->sched_class->task_move_group)
6983		tsk->sched_class->task_move_group(tsk, on_rq);
6984	else
6985#endif
6986		set_task_rq(tsk, task_cpu(tsk));
6987
6988	if (unlikely(running))
6989		tsk->sched_class->set_curr_task(rq);
6990	if (on_rq)
6991		enqueue_task(rq, tsk, 0);
6992
6993	task_rq_unlock(rq, tsk, &flags);
6994}
6995#endif /* CONFIG_CGROUP_SCHED */
6996
6997#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6998static unsigned long to_ratio(u64 period, u64 runtime)
6999{
7000	if (runtime == RUNTIME_INF)
7001		return 1ULL << 20;
7002
7003	return div64_u64(runtime << 20, period);
7004}
7005#endif
7006
7007#ifdef CONFIG_RT_GROUP_SCHED
7008/*
7009 * Ensure that the real time constraints are schedulable.
7010 */
7011static DEFINE_MUTEX(rt_constraints_mutex);
7012
7013/* Must be called with tasklist_lock held */
7014static inline int tg_has_rt_tasks(struct task_group *tg)
7015{
7016	struct task_struct *g, *p;
7017
7018	do_each_thread(g, p) {
7019		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7020			return 1;
7021	} while_each_thread(g, p);
7022
7023	return 0;
7024}
7025
7026struct rt_schedulable_data {
7027	struct task_group *tg;
7028	u64 rt_period;
7029	u64 rt_runtime;
7030};
7031
7032static int tg_rt_schedulable(struct task_group *tg, void *data)
7033{
7034	struct rt_schedulable_data *d = data;
7035	struct task_group *child;
7036	unsigned long total, sum = 0;
7037	u64 period, runtime;
7038
7039	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7040	runtime = tg->rt_bandwidth.rt_runtime;
7041
7042	if (tg == d->tg) {
7043		period = d->rt_period;
7044		runtime = d->rt_runtime;
7045	}
7046
7047	/*
7048	 * Cannot have more runtime than the period.
7049	 */
7050	if (runtime > period && runtime != RUNTIME_INF)
7051		return -EINVAL;
7052
7053	/*
7054	 * Ensure we don't starve existing RT tasks.
7055	 */
7056	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7057		return -EBUSY;
7058
7059	total = to_ratio(period, runtime);
7060
7061	/*
7062	 * Nobody can have more than the global setting allows.
7063	 */
7064	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7065		return -EINVAL;
7066
7067	/*
7068	 * The sum of our children's runtime should not exceed our own.
7069	 */
7070	list_for_each_entry_rcu(child, &tg->children, siblings) {
7071		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7072		runtime = child->rt_bandwidth.rt_runtime;
7073
7074		if (child == d->tg) {
7075			period = d->rt_period;
7076			runtime = d->rt_runtime;
7077		}
7078
7079		sum += to_ratio(period, runtime);
7080	}
7081
7082	if (sum > total)
7083		return -EINVAL;
7084
7085	return 0;
7086}
7087
7088static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7089{
7090	int ret;
7091
7092	struct rt_schedulable_data data = {
7093		.tg = tg,
7094		.rt_period = period,
7095		.rt_runtime = runtime,
7096	};
7097
7098	rcu_read_lock();
7099	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7100	rcu_read_unlock();
7101
7102	return ret;
7103}
7104
7105static int tg_set_rt_bandwidth(struct task_group *tg,
7106		u64 rt_period, u64 rt_runtime)
7107{
7108	int i, err = 0;
7109
7110	mutex_lock(&rt_constraints_mutex);
7111	read_lock(&tasklist_lock);
7112	err = __rt_schedulable(tg, rt_period, rt_runtime);
7113	if (err)
7114		goto unlock;
7115
7116	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7117	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7118	tg->rt_bandwidth.rt_runtime = rt_runtime;
7119
7120	for_each_possible_cpu(i) {
7121		struct rt_rq *rt_rq = tg->rt_rq[i];
7122
7123		raw_spin_lock(&rt_rq->rt_runtime_lock);
7124		rt_rq->rt_runtime = rt_runtime;
7125		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7126	}
7127	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7128unlock:
7129	read_unlock(&tasklist_lock);
7130	mutex_unlock(&rt_constraints_mutex);
7131
7132	return err;
7133}
7134
7135static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7136{
7137	u64 rt_runtime, rt_period;
7138
7139	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7140	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7141	if (rt_runtime_us < 0)
7142		rt_runtime = RUNTIME_INF;
7143
7144	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7145}
7146
7147static long sched_group_rt_runtime(struct task_group *tg)
7148{
7149	u64 rt_runtime_us;
7150
7151	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7152		return -1;
7153
7154	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7155	do_div(rt_runtime_us, NSEC_PER_USEC);
7156	return rt_runtime_us;
7157}
7158
7159static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7160{
7161	u64 rt_runtime, rt_period;
7162
7163	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7164	rt_runtime = tg->rt_bandwidth.rt_runtime;
7165
7166	if (rt_period == 0)
7167		return -EINVAL;
7168
7169	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7170}
7171
7172static long sched_group_rt_period(struct task_group *tg)
7173{
7174	u64 rt_period_us;
7175
7176	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7177	do_div(rt_period_us, NSEC_PER_USEC);
7178	return rt_period_us;
7179}
7180
7181static int sched_rt_global_constraints(void)
7182{
7183	u64 runtime, period;
7184	int ret = 0;
7185
7186	if (sysctl_sched_rt_period <= 0)
7187		return -EINVAL;
7188
7189	runtime = global_rt_runtime();
7190	period = global_rt_period();
7191
7192	/*
7193	 * Sanity check on the sysctl variables.
7194	 */
7195	if (runtime > period && runtime != RUNTIME_INF)
7196		return -EINVAL;
7197
7198	mutex_lock(&rt_constraints_mutex);
7199	read_lock(&tasklist_lock);
7200	ret = __rt_schedulable(NULL, 0, 0);
7201	read_unlock(&tasklist_lock);
7202	mutex_unlock(&rt_constraints_mutex);
7203
7204	return ret;
7205}
7206
7207static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7208{
7209	/* Don't accept realtime tasks when there is no way for them to run */
7210	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7211		return 0;
7212
7213	return 1;
7214}
7215
7216#else /* !CONFIG_RT_GROUP_SCHED */
7217static int sched_rt_global_constraints(void)
7218{
7219	unsigned long flags;
7220	int i;
7221
7222	if (sysctl_sched_rt_period <= 0)
7223		return -EINVAL;
7224
7225	/*
7226	 * There's always some RT tasks in the root group
7227	 * -- migration, kstopmachine etc..
7228	 */
7229	if (sysctl_sched_rt_runtime == 0)
7230		return -EBUSY;
7231
7232	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7233	for_each_possible_cpu(i) {
7234		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7235
7236		raw_spin_lock(&rt_rq->rt_runtime_lock);
7237		rt_rq->rt_runtime = global_rt_runtime();
7238		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7239	}
7240	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7241
7242	return 0;
7243}
7244#endif /* CONFIG_RT_GROUP_SCHED */
7245
7246int sched_rr_handler(struct ctl_table *table, int write,
7247		void __user *buffer, size_t *lenp,
7248		loff_t *ppos)
7249{
7250	int ret;
7251	static DEFINE_MUTEX(mutex);
7252
7253	mutex_lock(&mutex);
7254	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7255	/* make sure that internally we keep jiffies */
7256	/* also, writing zero resets timeslice to default */
7257	if (!ret && write) {
7258		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7259			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7260	}
7261	mutex_unlock(&mutex);
7262	return ret;
7263}
7264
7265int sched_rt_handler(struct ctl_table *table, int write,
7266		void __user *buffer, size_t *lenp,
7267		loff_t *ppos)
7268{
7269	int ret;
7270	int old_period, old_runtime;
7271	static DEFINE_MUTEX(mutex);
7272
7273	mutex_lock(&mutex);
7274	old_period = sysctl_sched_rt_period;
7275	old_runtime = sysctl_sched_rt_runtime;
7276
7277	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7278
7279	if (!ret && write) {
7280		ret = sched_rt_global_constraints();
7281		if (ret) {
7282			sysctl_sched_rt_period = old_period;
7283			sysctl_sched_rt_runtime = old_runtime;
7284		} else {
7285			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7286			def_rt_bandwidth.rt_period =
7287				ns_to_ktime(global_rt_period());
7288		}
7289	}
7290	mutex_unlock(&mutex);
7291
7292	return ret;
7293}
7294
7295#ifdef CONFIG_CGROUP_SCHED
7296
7297static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7298{
7299	return css ? container_of(css, struct task_group, css) : NULL;
7300}
7301
7302static struct cgroup_subsys_state *
7303cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7304{
7305	struct task_group *parent = css_tg(parent_css);
7306	struct task_group *tg;
7307
7308	if (!parent) {
7309		/* This is early initialization for the top cgroup */
7310		return &root_task_group.css;
7311	}
7312
7313	tg = sched_create_group(parent);
7314	if (IS_ERR(tg))
7315		return ERR_PTR(-ENOMEM);
7316
7317	return &tg->css;
7318}
7319
7320static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7321{
7322	struct task_group *tg = css_tg(css);
7323	struct task_group *parent = css_tg(css_parent(css));
7324
7325	if (parent)
7326		sched_online_group(tg, parent);
7327	return 0;
7328}
7329
7330static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7331{
7332	struct task_group *tg = css_tg(css);
7333
7334	sched_destroy_group(tg);
7335}
7336
7337static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7338{
7339	struct task_group *tg = css_tg(css);
7340
7341	sched_offline_group(tg);
7342}
7343
7344static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7345				 struct cgroup_taskset *tset)
7346{
7347	struct task_struct *task;
7348
7349	cgroup_taskset_for_each(task, css, tset) {
7350#ifdef CONFIG_RT_GROUP_SCHED
7351		if (!sched_rt_can_attach(css_tg(css), task))
7352			return -EINVAL;
7353#else
7354		/* We don't support RT-tasks being in separate groups */
7355		if (task->sched_class != &fair_sched_class)
7356			return -EINVAL;
7357#endif
7358	}
7359	return 0;
7360}
7361
7362static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7363			      struct cgroup_taskset *tset)
7364{
7365	struct task_struct *task;
7366
7367	cgroup_taskset_for_each(task, css, tset)
7368		sched_move_task(task);
7369}
7370
7371static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7372			    struct cgroup_subsys_state *old_css,
7373			    struct task_struct *task)
7374{
7375	/*
7376	 * cgroup_exit() is called in the copy_process() failure path.
7377	 * Ignore this case since the task hasn't ran yet, this avoids
7378	 * trying to poke a half freed task state from generic code.
7379	 */
7380	if (!(task->flags & PF_EXITING))
7381		return;
7382
7383	sched_move_task(task);
7384}
7385
7386#ifdef CONFIG_FAIR_GROUP_SCHED
7387static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7388				struct cftype *cftype, u64 shareval)
7389{
7390	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7391}
7392
7393static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7394			       struct cftype *cft)
7395{
7396	struct task_group *tg = css_tg(css);
7397
7398	return (u64) scale_load_down(tg->shares);
7399}
7400
7401#ifdef CONFIG_CFS_BANDWIDTH
7402static DEFINE_MUTEX(cfs_constraints_mutex);
7403
7404const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7405const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7406
7407static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7408
7409static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7410{
7411	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7412	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7413
7414	if (tg == &root_task_group)
7415		return -EINVAL;
7416
7417	/*
7418	 * Ensure we have at some amount of bandwidth every period.  This is
7419	 * to prevent reaching a state of large arrears when throttled via
7420	 * entity_tick() resulting in prolonged exit starvation.
7421	 */
7422	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7423		return -EINVAL;
7424
7425	/*
7426	 * Likewise, bound things on the otherside by preventing insane quota
7427	 * periods.  This also allows us to normalize in computing quota
7428	 * feasibility.
7429	 */
7430	if (period > max_cfs_quota_period)
7431		return -EINVAL;
7432
7433	mutex_lock(&cfs_constraints_mutex);
7434	ret = __cfs_schedulable(tg, period, quota);
7435	if (ret)
7436		goto out_unlock;
7437
7438	runtime_enabled = quota != RUNTIME_INF;
7439	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7440	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7441	raw_spin_lock_irq(&cfs_b->lock);
7442	cfs_b->period = ns_to_ktime(period);
7443	cfs_b->quota = quota;
7444
7445	__refill_cfs_bandwidth_runtime(cfs_b);
7446	/* restart the period timer (if active) to handle new period expiry */
7447	if (runtime_enabled && cfs_b->timer_active) {
7448		/* force a reprogram */
7449		cfs_b->timer_active = 0;
7450		__start_cfs_bandwidth(cfs_b);
7451	}
7452	raw_spin_unlock_irq(&cfs_b->lock);
7453
7454	for_each_possible_cpu(i) {
7455		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7456		struct rq *rq = cfs_rq->rq;
7457
7458		raw_spin_lock_irq(&rq->lock);
7459		cfs_rq->runtime_enabled = runtime_enabled;
7460		cfs_rq->runtime_remaining = 0;
7461
7462		if (cfs_rq->throttled)
7463			unthrottle_cfs_rq(cfs_rq);
7464		raw_spin_unlock_irq(&rq->lock);
7465	}
7466out_unlock:
7467	mutex_unlock(&cfs_constraints_mutex);
7468
7469	return ret;
7470}
7471
7472int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7473{
7474	u64 quota, period;
7475
7476	period = ktime_to_ns(tg->cfs_bandwidth.period);
7477	if (cfs_quota_us < 0)
7478		quota = RUNTIME_INF;
7479	else
7480		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7481
7482	return tg_set_cfs_bandwidth(tg, period, quota);
7483}
7484
7485long tg_get_cfs_quota(struct task_group *tg)
7486{
7487	u64 quota_us;
7488
7489	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7490		return -1;
7491
7492	quota_us = tg->cfs_bandwidth.quota;
7493	do_div(quota_us, NSEC_PER_USEC);
7494
7495	return quota_us;
7496}
7497
7498int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7499{
7500	u64 quota, period;
7501
7502	period = (u64)cfs_period_us * NSEC_PER_USEC;
7503	quota = tg->cfs_bandwidth.quota;
7504
7505	return tg_set_cfs_bandwidth(tg, period, quota);
7506}
7507
7508long tg_get_cfs_period(struct task_group *tg)
7509{
7510	u64 cfs_period_us;
7511
7512	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7513	do_div(cfs_period_us, NSEC_PER_USEC);
7514
7515	return cfs_period_us;
7516}
7517
7518static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7519				  struct cftype *cft)
7520{
7521	return tg_get_cfs_quota(css_tg(css));
7522}
7523
7524static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7525				   struct cftype *cftype, s64 cfs_quota_us)
7526{
7527	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7528}
7529
7530static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7531				   struct cftype *cft)
7532{
7533	return tg_get_cfs_period(css_tg(css));
7534}
7535
7536static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7537				    struct cftype *cftype, u64 cfs_period_us)
7538{
7539	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7540}
7541
7542struct cfs_schedulable_data {
7543	struct task_group *tg;
7544	u64 period, quota;
7545};
7546
7547/*
7548 * normalize group quota/period to be quota/max_period
7549 * note: units are usecs
7550 */
7551static u64 normalize_cfs_quota(struct task_group *tg,
7552			       struct cfs_schedulable_data *d)
7553{
7554	u64 quota, period;
7555
7556	if (tg == d->tg) {
7557		period = d->period;
7558		quota = d->quota;
7559	} else {
7560		period = tg_get_cfs_period(tg);
7561		quota = tg_get_cfs_quota(tg);
7562	}
7563
7564	/* note: these should typically be equivalent */
7565	if (quota == RUNTIME_INF || quota == -1)
7566		return RUNTIME_INF;
7567
7568	return to_ratio(period, quota);
7569}
7570
7571static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7572{
7573	struct cfs_schedulable_data *d = data;
7574	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7575	s64 quota = 0, parent_quota = -1;
7576
7577	if (!tg->parent) {
7578		quota = RUNTIME_INF;
7579	} else {
7580		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7581
7582		quota = normalize_cfs_quota(tg, d);
7583		parent_quota = parent_b->hierarchal_quota;
7584
7585		/*
7586		 * ensure max(child_quota) <= parent_quota, inherit when no
7587		 * limit is set
7588		 */
7589		if (quota == RUNTIME_INF)
7590			quota = parent_quota;
7591		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7592			return -EINVAL;
7593	}
7594	cfs_b->hierarchal_quota = quota;
7595
7596	return 0;
7597}
7598
7599static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7600{
7601	int ret;
7602	struct cfs_schedulable_data data = {
7603		.tg = tg,
7604		.period = period,
7605		.quota = quota,
7606	};
7607
7608	if (quota != RUNTIME_INF) {
7609		do_div(data.period, NSEC_PER_USEC);
7610		do_div(data.quota, NSEC_PER_USEC);
7611	}
7612
7613	rcu_read_lock();
7614	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7615	rcu_read_unlock();
7616
7617	return ret;
7618}
7619
7620static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7621		struct cgroup_map_cb *cb)
7622{
7623	struct task_group *tg = css_tg(css);
7624	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7625
7626	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7627	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7628	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7629
7630	return 0;
7631}
7632#endif /* CONFIG_CFS_BANDWIDTH */
7633#endif /* CONFIG_FAIR_GROUP_SCHED */
7634
7635#ifdef CONFIG_RT_GROUP_SCHED
7636static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7637				struct cftype *cft, s64 val)
7638{
7639	return sched_group_set_rt_runtime(css_tg(css), val);
7640}
7641
7642static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7643			       struct cftype *cft)
7644{
7645	return sched_group_rt_runtime(css_tg(css));
7646}
7647
7648static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7649				    struct cftype *cftype, u64 rt_period_us)
7650{
7651	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7652}
7653
7654static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7655				   struct cftype *cft)
7656{
7657	return sched_group_rt_period(css_tg(css));
7658}
7659#endif /* CONFIG_RT_GROUP_SCHED */
7660
7661static struct cftype cpu_files[] = {
7662#ifdef CONFIG_FAIR_GROUP_SCHED
7663	{
7664		.name = "shares",
7665		.read_u64 = cpu_shares_read_u64,
7666		.write_u64 = cpu_shares_write_u64,
7667	},
7668#endif
7669#ifdef CONFIG_CFS_BANDWIDTH
7670	{
7671		.name = "cfs_quota_us",
7672		.read_s64 = cpu_cfs_quota_read_s64,
7673		.write_s64 = cpu_cfs_quota_write_s64,
7674	},
7675	{
7676		.name = "cfs_period_us",
7677		.read_u64 = cpu_cfs_period_read_u64,
7678		.write_u64 = cpu_cfs_period_write_u64,
7679	},
7680	{
7681		.name = "stat",
7682		.read_map = cpu_stats_show,
7683	},
7684#endif
7685#ifdef CONFIG_RT_GROUP_SCHED
7686	{
7687		.name = "rt_runtime_us",
7688		.read_s64 = cpu_rt_runtime_read,
7689		.write_s64 = cpu_rt_runtime_write,
7690	},
7691	{
7692		.name = "rt_period_us",
7693		.read_u64 = cpu_rt_period_read_uint,
7694		.write_u64 = cpu_rt_period_write_uint,
7695	},
7696#endif
7697	{ }	/* terminate */
7698};
7699
7700struct cgroup_subsys cpu_cgroup_subsys = {
7701	.name		= "cpu",
7702	.css_alloc	= cpu_cgroup_css_alloc,
7703	.css_free	= cpu_cgroup_css_free,
7704	.css_online	= cpu_cgroup_css_online,
7705	.css_offline	= cpu_cgroup_css_offline,
7706	.can_attach	= cpu_cgroup_can_attach,
7707	.attach		= cpu_cgroup_attach,
7708	.exit		= cpu_cgroup_exit,
7709	.subsys_id	= cpu_cgroup_subsys_id,
7710	.base_cftypes	= cpu_files,
7711	.early_init	= 1,
7712};
7713
7714#endif	/* CONFIG_CGROUP_SCHED */
7715
7716void dump_cpu_task(int cpu)
7717{
7718	pr_info("Task dump for CPU %d:\n", cpu);
7719	sched_show_task(cpu_curr(cpu));
7720}
7721