core.c revision 78becc27097585c6aec7043834cadde950ae79f2
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382static void hrtick_clear(struct rq *rq)
383{
384	if (hrtimer_active(&rq->hrtick_timer))
385		hrtimer_cancel(&rq->hrtick_timer);
386}
387
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398	raw_spin_lock(&rq->lock);
399	update_rq_clock(rq);
400	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401	raw_spin_unlock(&rq->lock);
402
403	return HRTIMER_NORESTART;
404}
405
406#ifdef CONFIG_SMP
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	hrtimer_restart(&rq->hrtick_timer);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		hrtimer_restart(timer);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515void resched_task(struct task_struct *p)
516{
517	int cpu;
518
519	assert_raw_spin_locked(&task_rq(p)->lock);
520
521	if (test_tsk_need_resched(p))
522		return;
523
524	set_tsk_need_resched(p);
525
526	cpu = task_cpu(p);
527	if (cpu == smp_processor_id())
528		return;
529
530	/* NEED_RESCHED must be visible before we test polling */
531	smp_mb();
532	if (!tsk_is_polling(p))
533		smp_send_reschedule(cpu);
534}
535
536void resched_cpu(int cpu)
537{
538	struct rq *rq = cpu_rq(cpu);
539	unsigned long flags;
540
541	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
542		return;
543	resched_task(cpu_curr(cpu));
544	raw_spin_unlock_irqrestore(&rq->lock, flags);
545}
546
547#ifdef CONFIG_NO_HZ_COMMON
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu.  This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558	int cpu = smp_processor_id();
559	int i;
560	struct sched_domain *sd;
561
562	rcu_read_lock();
563	for_each_domain(cpu, sd) {
564		for_each_cpu(i, sched_domain_span(sd)) {
565			if (!idle_cpu(i)) {
566				cpu = i;
567				goto unlock;
568			}
569		}
570	}
571unlock:
572	rcu_read_unlock();
573	return cpu;
574}
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
585static void wake_up_idle_cpu(int cpu)
586{
587	struct rq *rq = cpu_rq(cpu);
588
589	if (cpu == smp_processor_id())
590		return;
591
592	/*
593	 * This is safe, as this function is called with the timer
594	 * wheel base lock of (cpu) held. When the CPU is on the way
595	 * to idle and has not yet set rq->curr to idle then it will
596	 * be serialized on the timer wheel base lock and take the new
597	 * timer into account automatically.
598	 */
599	if (rq->curr != rq->idle)
600		return;
601
602	/*
603	 * We can set TIF_RESCHED on the idle task of the other CPU
604	 * lockless. The worst case is that the other CPU runs the
605	 * idle task through an additional NOOP schedule()
606	 */
607	set_tsk_need_resched(rq->idle);
608
609	/* NEED_RESCHED must be visible before we test polling */
610	smp_mb();
611	if (!tsk_is_polling(rq->idle))
612		smp_send_reschedule(cpu);
613}
614
615static bool wake_up_full_nohz_cpu(int cpu)
616{
617	if (tick_nohz_full_cpu(cpu)) {
618		if (cpu != smp_processor_id() ||
619		    tick_nohz_tick_stopped())
620			smp_send_reschedule(cpu);
621		return true;
622	}
623
624	return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
629	if (!wake_up_full_nohz_cpu(cpu))
630		wake_up_idle_cpu(cpu);
631}
632
633static inline bool got_nohz_idle_kick(void)
634{
635	int cpu = smp_processor_id();
636	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
637}
638
639#else /* CONFIG_NO_HZ_COMMON */
640
641static inline bool got_nohz_idle_kick(void)
642{
643	return false;
644}
645
646#endif /* CONFIG_NO_HZ_COMMON */
647
648#ifdef CONFIG_NO_HZ_FULL
649bool sched_can_stop_tick(void)
650{
651       struct rq *rq;
652
653       rq = this_rq();
654
655       /* Make sure rq->nr_running update is visible after the IPI */
656       smp_rmb();
657
658       /* More than one running task need preemption */
659       if (rq->nr_running > 1)
660               return false;
661
662       return true;
663}
664#endif /* CONFIG_NO_HZ_FULL */
665
666void sched_avg_update(struct rq *rq)
667{
668	s64 period = sched_avg_period();
669
670	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
671		/*
672		 * Inline assembly required to prevent the compiler
673		 * optimising this loop into a divmod call.
674		 * See __iter_div_u64_rem() for another example of this.
675		 */
676		asm("" : "+rm" (rq->age_stamp));
677		rq->age_stamp += period;
678		rq->rt_avg /= 2;
679	}
680}
681
682#else /* !CONFIG_SMP */
683void resched_task(struct task_struct *p)
684{
685	assert_raw_spin_locked(&task_rq(p)->lock);
686	set_tsk_need_resched(p);
687}
688#endif /* CONFIG_SMP */
689
690#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692/*
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
695 *
696 * Caller must hold rcu_lock or sufficient equivalent.
697 */
698int walk_tg_tree_from(struct task_group *from,
699			     tg_visitor down, tg_visitor up, void *data)
700{
701	struct task_group *parent, *child;
702	int ret;
703
704	parent = from;
705
706down:
707	ret = (*down)(parent, data);
708	if (ret)
709		goto out;
710	list_for_each_entry_rcu(child, &parent->children, siblings) {
711		parent = child;
712		goto down;
713
714up:
715		continue;
716	}
717	ret = (*up)(parent, data);
718	if (ret || parent == from)
719		goto out;
720
721	child = parent;
722	parent = parent->parent;
723	if (parent)
724		goto up;
725out:
726	return ret;
727}
728
729int tg_nop(struct task_group *tg, void *data)
730{
731	return 0;
732}
733#endif
734
735static void set_load_weight(struct task_struct *p)
736{
737	int prio = p->static_prio - MAX_RT_PRIO;
738	struct load_weight *load = &p->se.load;
739
740	/*
741	 * SCHED_IDLE tasks get minimal weight:
742	 */
743	if (p->policy == SCHED_IDLE) {
744		load->weight = scale_load(WEIGHT_IDLEPRIO);
745		load->inv_weight = WMULT_IDLEPRIO;
746		return;
747	}
748
749	load->weight = scale_load(prio_to_weight[prio]);
750	load->inv_weight = prio_to_wmult[prio];
751}
752
753static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754{
755	update_rq_clock(rq);
756	sched_info_queued(p);
757	p->sched_class->enqueue_task(rq, p, flags);
758}
759
760static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
761{
762	update_rq_clock(rq);
763	sched_info_dequeued(p);
764	p->sched_class->dequeue_task(rq, p, flags);
765}
766
767void activate_task(struct rq *rq, struct task_struct *p, int flags)
768{
769	if (task_contributes_to_load(p))
770		rq->nr_uninterruptible--;
771
772	enqueue_task(rq, p, flags);
773}
774
775void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible++;
779
780	dequeue_task(rq, p, flags);
781}
782
783static void update_rq_clock_task(struct rq *rq, s64 delta)
784{
785/*
786 * In theory, the compile should just see 0 here, and optimize out the call
787 * to sched_rt_avg_update. But I don't trust it...
788 */
789#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
790	s64 steal = 0, irq_delta = 0;
791#endif
792#ifdef CONFIG_IRQ_TIME_ACCOUNTING
793	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794
795	/*
796	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
797	 * this case when a previous update_rq_clock() happened inside a
798	 * {soft,}irq region.
799	 *
800	 * When this happens, we stop ->clock_task and only update the
801	 * prev_irq_time stamp to account for the part that fit, so that a next
802	 * update will consume the rest. This ensures ->clock_task is
803	 * monotonic.
804	 *
805	 * It does however cause some slight miss-attribution of {soft,}irq
806	 * time, a more accurate solution would be to update the irq_time using
807	 * the current rq->clock timestamp, except that would require using
808	 * atomic ops.
809	 */
810	if (irq_delta > delta)
811		irq_delta = delta;
812
813	rq->prev_irq_time += irq_delta;
814	delta -= irq_delta;
815#endif
816#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
817	if (static_key_false((&paravirt_steal_rq_enabled))) {
818		u64 st;
819
820		steal = paravirt_steal_clock(cpu_of(rq));
821		steal -= rq->prev_steal_time_rq;
822
823		if (unlikely(steal > delta))
824			steal = delta;
825
826		st = steal_ticks(steal);
827		steal = st * TICK_NSEC;
828
829		rq->prev_steal_time_rq += steal;
830
831		delta -= steal;
832	}
833#endif
834
835	rq->clock_task += delta;
836
837#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
838	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
839		sched_rt_avg_update(rq, irq_delta + steal);
840#endif
841}
842
843void sched_set_stop_task(int cpu, struct task_struct *stop)
844{
845	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
846	struct task_struct *old_stop = cpu_rq(cpu)->stop;
847
848	if (stop) {
849		/*
850		 * Make it appear like a SCHED_FIFO task, its something
851		 * userspace knows about and won't get confused about.
852		 *
853		 * Also, it will make PI more or less work without too
854		 * much confusion -- but then, stop work should not
855		 * rely on PI working anyway.
856		 */
857		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
858
859		stop->sched_class = &stop_sched_class;
860	}
861
862	cpu_rq(cpu)->stop = stop;
863
864	if (old_stop) {
865		/*
866		 * Reset it back to a normal scheduling class so that
867		 * it can die in pieces.
868		 */
869		old_stop->sched_class = &rt_sched_class;
870	}
871}
872
873/*
874 * __normal_prio - return the priority that is based on the static prio
875 */
876static inline int __normal_prio(struct task_struct *p)
877{
878	return p->static_prio;
879}
880
881/*
882 * Calculate the expected normal priority: i.e. priority
883 * without taking RT-inheritance into account. Might be
884 * boosted by interactivity modifiers. Changes upon fork,
885 * setprio syscalls, and whenever the interactivity
886 * estimator recalculates.
887 */
888static inline int normal_prio(struct task_struct *p)
889{
890	int prio;
891
892	if (task_has_rt_policy(p))
893		prio = MAX_RT_PRIO-1 - p->rt_priority;
894	else
895		prio = __normal_prio(p);
896	return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906static int effective_prio(struct task_struct *p)
907{
908	p->normal_prio = normal_prio(p);
909	/*
910	 * If we are RT tasks or we were boosted to RT priority,
911	 * keep the priority unchanged. Otherwise, update priority
912	 * to the normal priority:
913	 */
914	if (!rt_prio(p->prio))
915		return p->normal_prio;
916	return p->prio;
917}
918
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 */
923inline int task_curr(const struct task_struct *p)
924{
925	return cpu_curr(task_cpu(p)) == p;
926}
927
928static inline void check_class_changed(struct rq *rq, struct task_struct *p,
929				       const struct sched_class *prev_class,
930				       int oldprio)
931{
932	if (prev_class != p->sched_class) {
933		if (prev_class->switched_from)
934			prev_class->switched_from(rq, p);
935		p->sched_class->switched_to(rq, p);
936	} else if (oldprio != p->prio)
937		p->sched_class->prio_changed(rq, p, oldprio);
938}
939
940void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
941{
942	const struct sched_class *class;
943
944	if (p->sched_class == rq->curr->sched_class) {
945		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
946	} else {
947		for_each_class(class) {
948			if (class == rq->curr->sched_class)
949				break;
950			if (class == p->sched_class) {
951				resched_task(rq->curr);
952				break;
953			}
954		}
955	}
956
957	/*
958	 * A queue event has occurred, and we're going to schedule.  In
959	 * this case, we can save a useless back to back clock update.
960	 */
961	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
962		rq->skip_clock_update = 1;
963}
964
965static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
966
967void register_task_migration_notifier(struct notifier_block *n)
968{
969	atomic_notifier_chain_register(&task_migration_notifier, n);
970}
971
972#ifdef CONFIG_SMP
973void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
974{
975#ifdef CONFIG_SCHED_DEBUG
976	/*
977	 * We should never call set_task_cpu() on a blocked task,
978	 * ttwu() will sort out the placement.
979	 */
980	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
981			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
982
983#ifdef CONFIG_LOCKDEP
984	/*
985	 * The caller should hold either p->pi_lock or rq->lock, when changing
986	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
987	 *
988	 * sched_move_task() holds both and thus holding either pins the cgroup,
989	 * see task_group().
990	 *
991	 * Furthermore, all task_rq users should acquire both locks, see
992	 * task_rq_lock().
993	 */
994	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
995				      lockdep_is_held(&task_rq(p)->lock)));
996#endif
997#endif
998
999	trace_sched_migrate_task(p, new_cpu);
1000
1001	if (task_cpu(p) != new_cpu) {
1002		struct task_migration_notifier tmn;
1003
1004		if (p->sched_class->migrate_task_rq)
1005			p->sched_class->migrate_task_rq(p, new_cpu);
1006		p->se.nr_migrations++;
1007		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008
1009		tmn.task = p;
1010		tmn.from_cpu = task_cpu(p);
1011		tmn.to_cpu = new_cpu;
1012
1013		atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
1014	}
1015
1016	__set_task_cpu(p, new_cpu);
1017}
1018
1019struct migration_arg {
1020	struct task_struct *task;
1021	int dest_cpu;
1022};
1023
1024static int migration_cpu_stop(void *data);
1025
1026/*
1027 * wait_task_inactive - wait for a thread to unschedule.
1028 *
1029 * If @match_state is nonzero, it's the @p->state value just checked and
1030 * not expected to change.  If it changes, i.e. @p might have woken up,
1031 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1032 * we return a positive number (its total switch count).  If a second call
1033 * a short while later returns the same number, the caller can be sure that
1034 * @p has remained unscheduled the whole time.
1035 *
1036 * The caller must ensure that the task *will* unschedule sometime soon,
1037 * else this function might spin for a *long* time. This function can't
1038 * be called with interrupts off, or it may introduce deadlock with
1039 * smp_call_function() if an IPI is sent by the same process we are
1040 * waiting to become inactive.
1041 */
1042unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1043{
1044	unsigned long flags;
1045	int running, on_rq;
1046	unsigned long ncsw;
1047	struct rq *rq;
1048
1049	for (;;) {
1050		/*
1051		 * We do the initial early heuristics without holding
1052		 * any task-queue locks at all. We'll only try to get
1053		 * the runqueue lock when things look like they will
1054		 * work out!
1055		 */
1056		rq = task_rq(p);
1057
1058		/*
1059		 * If the task is actively running on another CPU
1060		 * still, just relax and busy-wait without holding
1061		 * any locks.
1062		 *
1063		 * NOTE! Since we don't hold any locks, it's not
1064		 * even sure that "rq" stays as the right runqueue!
1065		 * But we don't care, since "task_running()" will
1066		 * return false if the runqueue has changed and p
1067		 * is actually now running somewhere else!
1068		 */
1069		while (task_running(rq, p)) {
1070			if (match_state && unlikely(p->state != match_state))
1071				return 0;
1072			cpu_relax();
1073		}
1074
1075		/*
1076		 * Ok, time to look more closely! We need the rq
1077		 * lock now, to be *sure*. If we're wrong, we'll
1078		 * just go back and repeat.
1079		 */
1080		rq = task_rq_lock(p, &flags);
1081		trace_sched_wait_task(p);
1082		running = task_running(rq, p);
1083		on_rq = p->on_rq;
1084		ncsw = 0;
1085		if (!match_state || p->state == match_state)
1086			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1087		task_rq_unlock(rq, p, &flags);
1088
1089		/*
1090		 * If it changed from the expected state, bail out now.
1091		 */
1092		if (unlikely(!ncsw))
1093			break;
1094
1095		/*
1096		 * Was it really running after all now that we
1097		 * checked with the proper locks actually held?
1098		 *
1099		 * Oops. Go back and try again..
1100		 */
1101		if (unlikely(running)) {
1102			cpu_relax();
1103			continue;
1104		}
1105
1106		/*
1107		 * It's not enough that it's not actively running,
1108		 * it must be off the runqueue _entirely_, and not
1109		 * preempted!
1110		 *
1111		 * So if it was still runnable (but just not actively
1112		 * running right now), it's preempted, and we should
1113		 * yield - it could be a while.
1114		 */
1115		if (unlikely(on_rq)) {
1116			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1117
1118			set_current_state(TASK_UNINTERRUPTIBLE);
1119			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1120			continue;
1121		}
1122
1123		/*
1124		 * Ahh, all good. It wasn't running, and it wasn't
1125		 * runnable, which means that it will never become
1126		 * running in the future either. We're all done!
1127		 */
1128		break;
1129	}
1130
1131	return ncsw;
1132}
1133
1134/***
1135 * kick_process - kick a running thread to enter/exit the kernel
1136 * @p: the to-be-kicked thread
1137 *
1138 * Cause a process which is running on another CPU to enter
1139 * kernel-mode, without any delay. (to get signals handled.)
1140 *
1141 * NOTE: this function doesn't have to take the runqueue lock,
1142 * because all it wants to ensure is that the remote task enters
1143 * the kernel. If the IPI races and the task has been migrated
1144 * to another CPU then no harm is done and the purpose has been
1145 * achieved as well.
1146 */
1147void kick_process(struct task_struct *p)
1148{
1149	int cpu;
1150
1151	preempt_disable();
1152	cpu = task_cpu(p);
1153	if ((cpu != smp_processor_id()) && task_curr(p))
1154		smp_send_reschedule(cpu);
1155	preempt_enable();
1156}
1157EXPORT_SYMBOL_GPL(kick_process);
1158#endif /* CONFIG_SMP */
1159
1160#ifdef CONFIG_SMP
1161/*
1162 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1163 */
1164static int select_fallback_rq(int cpu, struct task_struct *p)
1165{
1166	int nid = cpu_to_node(cpu);
1167	const struct cpumask *nodemask = NULL;
1168	enum { cpuset, possible, fail } state = cpuset;
1169	int dest_cpu;
1170
1171	/*
1172	 * If the node that the cpu is on has been offlined, cpu_to_node()
1173	 * will return -1. There is no cpu on the node, and we should
1174	 * select the cpu on the other node.
1175	 */
1176	if (nid != -1) {
1177		nodemask = cpumask_of_node(nid);
1178
1179		/* Look for allowed, online CPU in same node. */
1180		for_each_cpu(dest_cpu, nodemask) {
1181			if (!cpu_online(dest_cpu))
1182				continue;
1183			if (!cpu_active(dest_cpu))
1184				continue;
1185			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1186				return dest_cpu;
1187		}
1188	}
1189
1190	for (;;) {
1191		/* Any allowed, online CPU? */
1192		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1193			if (!cpu_online(dest_cpu))
1194				continue;
1195			if (!cpu_active(dest_cpu))
1196				continue;
1197			goto out;
1198		}
1199
1200		switch (state) {
1201		case cpuset:
1202			/* No more Mr. Nice Guy. */
1203			cpuset_cpus_allowed_fallback(p);
1204			state = possible;
1205			break;
1206
1207		case possible:
1208			do_set_cpus_allowed(p, cpu_possible_mask);
1209			state = fail;
1210			break;
1211
1212		case fail:
1213			BUG();
1214			break;
1215		}
1216	}
1217
1218out:
1219	if (state != cpuset) {
1220		/*
1221		 * Don't tell them about moving exiting tasks or
1222		 * kernel threads (both mm NULL), since they never
1223		 * leave kernel.
1224		 */
1225		if (p->mm && printk_ratelimit()) {
1226			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1227					task_pid_nr(p), p->comm, cpu);
1228		}
1229	}
1230
1231	return dest_cpu;
1232}
1233
1234/*
1235 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1236 */
1237static inline
1238int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1239{
1240	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1241
1242	/*
1243	 * In order not to call set_task_cpu() on a blocking task we need
1244	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1245	 * cpu.
1246	 *
1247	 * Since this is common to all placement strategies, this lives here.
1248	 *
1249	 * [ this allows ->select_task() to simply return task_cpu(p) and
1250	 *   not worry about this generic constraint ]
1251	 */
1252	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1253		     !cpu_online(cpu)))
1254		cpu = select_fallback_rq(task_cpu(p), p);
1255
1256	return cpu;
1257}
1258
1259static void update_avg(u64 *avg, u64 sample)
1260{
1261	s64 diff = sample - *avg;
1262	*avg += diff >> 3;
1263}
1264#endif
1265
1266static void
1267ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1268{
1269#ifdef CONFIG_SCHEDSTATS
1270	struct rq *rq = this_rq();
1271
1272#ifdef CONFIG_SMP
1273	int this_cpu = smp_processor_id();
1274
1275	if (cpu == this_cpu) {
1276		schedstat_inc(rq, ttwu_local);
1277		schedstat_inc(p, se.statistics.nr_wakeups_local);
1278	} else {
1279		struct sched_domain *sd;
1280
1281		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1282		rcu_read_lock();
1283		for_each_domain(this_cpu, sd) {
1284			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1285				schedstat_inc(sd, ttwu_wake_remote);
1286				break;
1287			}
1288		}
1289		rcu_read_unlock();
1290	}
1291
1292	if (wake_flags & WF_MIGRATED)
1293		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1294
1295#endif /* CONFIG_SMP */
1296
1297	schedstat_inc(rq, ttwu_count);
1298	schedstat_inc(p, se.statistics.nr_wakeups);
1299
1300	if (wake_flags & WF_SYNC)
1301		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1302
1303#endif /* CONFIG_SCHEDSTATS */
1304}
1305
1306static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1307{
1308	activate_task(rq, p, en_flags);
1309	p->on_rq = 1;
1310
1311	/* if a worker is waking up, notify workqueue */
1312	if (p->flags & PF_WQ_WORKER)
1313		wq_worker_waking_up(p, cpu_of(rq));
1314}
1315
1316/*
1317 * Mark the task runnable and perform wakeup-preemption.
1318 */
1319static void
1320ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1321{
1322	check_preempt_curr(rq, p, wake_flags);
1323	trace_sched_wakeup(p, true);
1324
1325	p->state = TASK_RUNNING;
1326#ifdef CONFIG_SMP
1327	if (p->sched_class->task_woken)
1328		p->sched_class->task_woken(rq, p);
1329
1330	if (rq->idle_stamp) {
1331		u64 delta = rq_clock(rq) - rq->idle_stamp;
1332		u64 max = 2*sysctl_sched_migration_cost;
1333
1334		if (delta > max)
1335			rq->avg_idle = max;
1336		else
1337			update_avg(&rq->avg_idle, delta);
1338		rq->idle_stamp = 0;
1339	}
1340#endif
1341}
1342
1343static void
1344ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1345{
1346#ifdef CONFIG_SMP
1347	if (p->sched_contributes_to_load)
1348		rq->nr_uninterruptible--;
1349#endif
1350
1351	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1352	ttwu_do_wakeup(rq, p, wake_flags);
1353}
1354
1355/*
1356 * Called in case the task @p isn't fully descheduled from its runqueue,
1357 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1358 * since all we need to do is flip p->state to TASK_RUNNING, since
1359 * the task is still ->on_rq.
1360 */
1361static int ttwu_remote(struct task_struct *p, int wake_flags)
1362{
1363	struct rq *rq;
1364	int ret = 0;
1365
1366	rq = __task_rq_lock(p);
1367	if (p->on_rq) {
1368		/* check_preempt_curr() may use rq clock */
1369		update_rq_clock(rq);
1370		ttwu_do_wakeup(rq, p, wake_flags);
1371		ret = 1;
1372	}
1373	__task_rq_unlock(rq);
1374
1375	return ret;
1376}
1377
1378#ifdef CONFIG_SMP
1379static void sched_ttwu_pending(void)
1380{
1381	struct rq *rq = this_rq();
1382	struct llist_node *llist = llist_del_all(&rq->wake_list);
1383	struct task_struct *p;
1384
1385	raw_spin_lock(&rq->lock);
1386
1387	while (llist) {
1388		p = llist_entry(llist, struct task_struct, wake_entry);
1389		llist = llist_next(llist);
1390		ttwu_do_activate(rq, p, 0);
1391	}
1392
1393	raw_spin_unlock(&rq->lock);
1394}
1395
1396void scheduler_ipi(void)
1397{
1398	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick()
1399	    && !tick_nohz_full_cpu(smp_processor_id()))
1400		return;
1401
1402	/*
1403	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1404	 * traditionally all their work was done from the interrupt return
1405	 * path. Now that we actually do some work, we need to make sure
1406	 * we do call them.
1407	 *
1408	 * Some archs already do call them, luckily irq_enter/exit nest
1409	 * properly.
1410	 *
1411	 * Arguably we should visit all archs and update all handlers,
1412	 * however a fair share of IPIs are still resched only so this would
1413	 * somewhat pessimize the simple resched case.
1414	 */
1415	irq_enter();
1416	tick_nohz_full_check();
1417	sched_ttwu_pending();
1418
1419	/*
1420	 * Check if someone kicked us for doing the nohz idle load balance.
1421	 */
1422	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1423		this_rq()->idle_balance = 1;
1424		raise_softirq_irqoff(SCHED_SOFTIRQ);
1425	}
1426	irq_exit();
1427}
1428
1429static void ttwu_queue_remote(struct task_struct *p, int cpu)
1430{
1431	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1432		smp_send_reschedule(cpu);
1433}
1434
1435bool cpus_share_cache(int this_cpu, int that_cpu)
1436{
1437	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1438}
1439#endif /* CONFIG_SMP */
1440
1441static void ttwu_queue(struct task_struct *p, int cpu)
1442{
1443	struct rq *rq = cpu_rq(cpu);
1444
1445#if defined(CONFIG_SMP)
1446	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1447		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1448		ttwu_queue_remote(p, cpu);
1449		return;
1450	}
1451#endif
1452
1453	raw_spin_lock(&rq->lock);
1454	ttwu_do_activate(rq, p, 0);
1455	raw_spin_unlock(&rq->lock);
1456}
1457
1458/**
1459 * try_to_wake_up - wake up a thread
1460 * @p: the thread to be awakened
1461 * @state: the mask of task states that can be woken
1462 * @wake_flags: wake modifier flags (WF_*)
1463 *
1464 * Put it on the run-queue if it's not already there. The "current"
1465 * thread is always on the run-queue (except when the actual
1466 * re-schedule is in progress), and as such you're allowed to do
1467 * the simpler "current->state = TASK_RUNNING" to mark yourself
1468 * runnable without the overhead of this.
1469 *
1470 * Returns %true if @p was woken up, %false if it was already running
1471 * or @state didn't match @p's state.
1472 */
1473static int
1474try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1475{
1476	unsigned long flags;
1477	int cpu, success = 0;
1478
1479	smp_wmb();
1480	raw_spin_lock_irqsave(&p->pi_lock, flags);
1481	if (!(p->state & state))
1482		goto out;
1483
1484	success = 1; /* we're going to change ->state */
1485	cpu = task_cpu(p);
1486
1487	if (p->on_rq && ttwu_remote(p, wake_flags))
1488		goto stat;
1489
1490#ifdef CONFIG_SMP
1491	/*
1492	 * If the owning (remote) cpu is still in the middle of schedule() with
1493	 * this task as prev, wait until its done referencing the task.
1494	 */
1495	while (p->on_cpu)
1496		cpu_relax();
1497	/*
1498	 * Pairs with the smp_wmb() in finish_lock_switch().
1499	 */
1500	smp_rmb();
1501
1502	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1503	p->state = TASK_WAKING;
1504
1505	if (p->sched_class->task_waking)
1506		p->sched_class->task_waking(p);
1507
1508	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1509	if (task_cpu(p) != cpu) {
1510		wake_flags |= WF_MIGRATED;
1511		set_task_cpu(p, cpu);
1512	}
1513#endif /* CONFIG_SMP */
1514
1515	ttwu_queue(p, cpu);
1516stat:
1517	ttwu_stat(p, cpu, wake_flags);
1518out:
1519	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1520
1521	return success;
1522}
1523
1524/**
1525 * try_to_wake_up_local - try to wake up a local task with rq lock held
1526 * @p: the thread to be awakened
1527 *
1528 * Put @p on the run-queue if it's not already there. The caller must
1529 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1530 * the current task.
1531 */
1532static void try_to_wake_up_local(struct task_struct *p)
1533{
1534	struct rq *rq = task_rq(p);
1535
1536	if (WARN_ON_ONCE(rq != this_rq()) ||
1537	    WARN_ON_ONCE(p == current))
1538		return;
1539
1540	lockdep_assert_held(&rq->lock);
1541
1542	if (!raw_spin_trylock(&p->pi_lock)) {
1543		raw_spin_unlock(&rq->lock);
1544		raw_spin_lock(&p->pi_lock);
1545		raw_spin_lock(&rq->lock);
1546	}
1547
1548	if (!(p->state & TASK_NORMAL))
1549		goto out;
1550
1551	if (!p->on_rq)
1552		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1553
1554	ttwu_do_wakeup(rq, p, 0);
1555	ttwu_stat(p, smp_processor_id(), 0);
1556out:
1557	raw_spin_unlock(&p->pi_lock);
1558}
1559
1560/**
1561 * wake_up_process - Wake up a specific process
1562 * @p: The process to be woken up.
1563 *
1564 * Attempt to wake up the nominated process and move it to the set of runnable
1565 * processes.  Returns 1 if the process was woken up, 0 if it was already
1566 * running.
1567 *
1568 * It may be assumed that this function implies a write memory barrier before
1569 * changing the task state if and only if any tasks are woken up.
1570 */
1571int wake_up_process(struct task_struct *p)
1572{
1573	WARN_ON(task_is_stopped_or_traced(p));
1574	return try_to_wake_up(p, TASK_NORMAL, 0);
1575}
1576EXPORT_SYMBOL(wake_up_process);
1577
1578int wake_up_state(struct task_struct *p, unsigned int state)
1579{
1580	return try_to_wake_up(p, state, 0);
1581}
1582
1583/*
1584 * Perform scheduler related setup for a newly forked process p.
1585 * p is forked by current.
1586 *
1587 * __sched_fork() is basic setup used by init_idle() too:
1588 */
1589static void __sched_fork(struct task_struct *p)
1590{
1591	p->on_rq			= 0;
1592
1593	p->se.on_rq			= 0;
1594	p->se.exec_start		= 0;
1595	p->se.sum_exec_runtime		= 0;
1596	p->se.prev_sum_exec_runtime	= 0;
1597	p->se.nr_migrations		= 0;
1598	p->se.vruntime			= 0;
1599	INIT_LIST_HEAD(&p->se.group_node);
1600
1601/*
1602 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1603 * removed when useful for applications beyond shares distribution (e.g.
1604 * load-balance).
1605 */
1606#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1607	p->se.avg.runnable_avg_period = 0;
1608	p->se.avg.runnable_avg_sum = 0;
1609#endif
1610#ifdef CONFIG_SCHEDSTATS
1611	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1612#endif
1613
1614	INIT_LIST_HEAD(&p->rt.run_list);
1615
1616#ifdef CONFIG_PREEMPT_NOTIFIERS
1617	INIT_HLIST_HEAD(&p->preempt_notifiers);
1618#endif
1619
1620#ifdef CONFIG_NUMA_BALANCING
1621	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1622		p->mm->numa_next_scan = jiffies;
1623		p->mm->numa_next_reset = jiffies;
1624		p->mm->numa_scan_seq = 0;
1625	}
1626
1627	p->node_stamp = 0ULL;
1628	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1629	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1630	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1631	p->numa_work.next = &p->numa_work;
1632#endif /* CONFIG_NUMA_BALANCING */
1633}
1634
1635#ifdef CONFIG_NUMA_BALANCING
1636#ifdef CONFIG_SCHED_DEBUG
1637void set_numabalancing_state(bool enabled)
1638{
1639	if (enabled)
1640		sched_feat_set("NUMA");
1641	else
1642		sched_feat_set("NO_NUMA");
1643}
1644#else
1645__read_mostly bool numabalancing_enabled;
1646
1647void set_numabalancing_state(bool enabled)
1648{
1649	numabalancing_enabled = enabled;
1650}
1651#endif /* CONFIG_SCHED_DEBUG */
1652#endif /* CONFIG_NUMA_BALANCING */
1653
1654/*
1655 * fork()/clone()-time setup:
1656 */
1657void sched_fork(struct task_struct *p)
1658{
1659	unsigned long flags;
1660	int cpu = get_cpu();
1661
1662	__sched_fork(p);
1663	/*
1664	 * We mark the process as running here. This guarantees that
1665	 * nobody will actually run it, and a signal or other external
1666	 * event cannot wake it up and insert it on the runqueue either.
1667	 */
1668	p->state = TASK_RUNNING;
1669
1670	/*
1671	 * Make sure we do not leak PI boosting priority to the child.
1672	 */
1673	p->prio = current->normal_prio;
1674
1675	/*
1676	 * Revert to default priority/policy on fork if requested.
1677	 */
1678	if (unlikely(p->sched_reset_on_fork)) {
1679		if (task_has_rt_policy(p)) {
1680			p->policy = SCHED_NORMAL;
1681			p->static_prio = NICE_TO_PRIO(0);
1682			p->rt_priority = 0;
1683		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1684			p->static_prio = NICE_TO_PRIO(0);
1685
1686		p->prio = p->normal_prio = __normal_prio(p);
1687		set_load_weight(p);
1688
1689		/*
1690		 * We don't need the reset flag anymore after the fork. It has
1691		 * fulfilled its duty:
1692		 */
1693		p->sched_reset_on_fork = 0;
1694	}
1695
1696	if (!rt_prio(p->prio))
1697		p->sched_class = &fair_sched_class;
1698
1699	if (p->sched_class->task_fork)
1700		p->sched_class->task_fork(p);
1701
1702	/*
1703	 * The child is not yet in the pid-hash so no cgroup attach races,
1704	 * and the cgroup is pinned to this child due to cgroup_fork()
1705	 * is ran before sched_fork().
1706	 *
1707	 * Silence PROVE_RCU.
1708	 */
1709	raw_spin_lock_irqsave(&p->pi_lock, flags);
1710	set_task_cpu(p, cpu);
1711	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1712
1713#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1714	if (likely(sched_info_on()))
1715		memset(&p->sched_info, 0, sizeof(p->sched_info));
1716#endif
1717#if defined(CONFIG_SMP)
1718	p->on_cpu = 0;
1719#endif
1720#ifdef CONFIG_PREEMPT_COUNT
1721	/* Want to start with kernel preemption disabled. */
1722	task_thread_info(p)->preempt_count = 1;
1723#endif
1724#ifdef CONFIG_SMP
1725	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1726#endif
1727
1728	put_cpu();
1729}
1730
1731/*
1732 * wake_up_new_task - wake up a newly created task for the first time.
1733 *
1734 * This function will do some initial scheduler statistics housekeeping
1735 * that must be done for every newly created context, then puts the task
1736 * on the runqueue and wakes it.
1737 */
1738void wake_up_new_task(struct task_struct *p)
1739{
1740	unsigned long flags;
1741	struct rq *rq;
1742
1743	raw_spin_lock_irqsave(&p->pi_lock, flags);
1744#ifdef CONFIG_SMP
1745	/*
1746	 * Fork balancing, do it here and not earlier because:
1747	 *  - cpus_allowed can change in the fork path
1748	 *  - any previously selected cpu might disappear through hotplug
1749	 */
1750	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1751#endif
1752
1753	rq = __task_rq_lock(p);
1754	activate_task(rq, p, 0);
1755	p->on_rq = 1;
1756	trace_sched_wakeup_new(p, true);
1757	check_preempt_curr(rq, p, WF_FORK);
1758#ifdef CONFIG_SMP
1759	if (p->sched_class->task_woken)
1760		p->sched_class->task_woken(rq, p);
1761#endif
1762	task_rq_unlock(rq, p, &flags);
1763}
1764
1765#ifdef CONFIG_PREEMPT_NOTIFIERS
1766
1767/**
1768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1769 * @notifier: notifier struct to register
1770 */
1771void preempt_notifier_register(struct preempt_notifier *notifier)
1772{
1773	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1774}
1775EXPORT_SYMBOL_GPL(preempt_notifier_register);
1776
1777/**
1778 * preempt_notifier_unregister - no longer interested in preemption notifications
1779 * @notifier: notifier struct to unregister
1780 *
1781 * This is safe to call from within a preemption notifier.
1782 */
1783void preempt_notifier_unregister(struct preempt_notifier *notifier)
1784{
1785	hlist_del(&notifier->link);
1786}
1787EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1788
1789static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1790{
1791	struct preempt_notifier *notifier;
1792
1793	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1794		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1795}
1796
1797static void
1798fire_sched_out_preempt_notifiers(struct task_struct *curr,
1799				 struct task_struct *next)
1800{
1801	struct preempt_notifier *notifier;
1802
1803	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1804		notifier->ops->sched_out(notifier, next);
1805}
1806
1807#else /* !CONFIG_PREEMPT_NOTIFIERS */
1808
1809static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1810{
1811}
1812
1813static void
1814fire_sched_out_preempt_notifiers(struct task_struct *curr,
1815				 struct task_struct *next)
1816{
1817}
1818
1819#endif /* CONFIG_PREEMPT_NOTIFIERS */
1820
1821/**
1822 * prepare_task_switch - prepare to switch tasks
1823 * @rq: the runqueue preparing to switch
1824 * @prev: the current task that is being switched out
1825 * @next: the task we are going to switch to.
1826 *
1827 * This is called with the rq lock held and interrupts off. It must
1828 * be paired with a subsequent finish_task_switch after the context
1829 * switch.
1830 *
1831 * prepare_task_switch sets up locking and calls architecture specific
1832 * hooks.
1833 */
1834static inline void
1835prepare_task_switch(struct rq *rq, struct task_struct *prev,
1836		    struct task_struct *next)
1837{
1838	trace_sched_switch(prev, next);
1839	sched_info_switch(prev, next);
1840	perf_event_task_sched_out(prev, next);
1841	fire_sched_out_preempt_notifiers(prev, next);
1842	prepare_lock_switch(rq, next);
1843	prepare_arch_switch(next);
1844}
1845
1846/**
1847 * finish_task_switch - clean up after a task-switch
1848 * @rq: runqueue associated with task-switch
1849 * @prev: the thread we just switched away from.
1850 *
1851 * finish_task_switch must be called after the context switch, paired
1852 * with a prepare_task_switch call before the context switch.
1853 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1854 * and do any other architecture-specific cleanup actions.
1855 *
1856 * Note that we may have delayed dropping an mm in context_switch(). If
1857 * so, we finish that here outside of the runqueue lock. (Doing it
1858 * with the lock held can cause deadlocks; see schedule() for
1859 * details.)
1860 */
1861static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1862	__releases(rq->lock)
1863{
1864	struct mm_struct *mm = rq->prev_mm;
1865	long prev_state;
1866
1867	rq->prev_mm = NULL;
1868
1869	/*
1870	 * A task struct has one reference for the use as "current".
1871	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1872	 * schedule one last time. The schedule call will never return, and
1873	 * the scheduled task must drop that reference.
1874	 * The test for TASK_DEAD must occur while the runqueue locks are
1875	 * still held, otherwise prev could be scheduled on another cpu, die
1876	 * there before we look at prev->state, and then the reference would
1877	 * be dropped twice.
1878	 *		Manfred Spraul <manfred@colorfullife.com>
1879	 */
1880	prev_state = prev->state;
1881	vtime_task_switch(prev);
1882	finish_arch_switch(prev);
1883	perf_event_task_sched_in(prev, current);
1884	finish_lock_switch(rq, prev);
1885	finish_arch_post_lock_switch();
1886
1887	fire_sched_in_preempt_notifiers(current);
1888	if (mm)
1889		mmdrop(mm);
1890	if (unlikely(prev_state == TASK_DEAD)) {
1891		/*
1892		 * Remove function-return probe instances associated with this
1893		 * task and put them back on the free list.
1894		 */
1895		kprobe_flush_task(prev);
1896		put_task_struct(prev);
1897	}
1898
1899	tick_nohz_task_switch(current);
1900}
1901
1902#ifdef CONFIG_SMP
1903
1904/* assumes rq->lock is held */
1905static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1906{
1907	if (prev->sched_class->pre_schedule)
1908		prev->sched_class->pre_schedule(rq, prev);
1909}
1910
1911/* rq->lock is NOT held, but preemption is disabled */
1912static inline void post_schedule(struct rq *rq)
1913{
1914	if (rq->post_schedule) {
1915		unsigned long flags;
1916
1917		raw_spin_lock_irqsave(&rq->lock, flags);
1918		if (rq->curr->sched_class->post_schedule)
1919			rq->curr->sched_class->post_schedule(rq);
1920		raw_spin_unlock_irqrestore(&rq->lock, flags);
1921
1922		rq->post_schedule = 0;
1923	}
1924}
1925
1926#else
1927
1928static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1929{
1930}
1931
1932static inline void post_schedule(struct rq *rq)
1933{
1934}
1935
1936#endif
1937
1938/**
1939 * schedule_tail - first thing a freshly forked thread must call.
1940 * @prev: the thread we just switched away from.
1941 */
1942asmlinkage void schedule_tail(struct task_struct *prev)
1943	__releases(rq->lock)
1944{
1945	struct rq *rq = this_rq();
1946
1947	finish_task_switch(rq, prev);
1948
1949	/*
1950	 * FIXME: do we need to worry about rq being invalidated by the
1951	 * task_switch?
1952	 */
1953	post_schedule(rq);
1954
1955#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1956	/* In this case, finish_task_switch does not reenable preemption */
1957	preempt_enable();
1958#endif
1959	if (current->set_child_tid)
1960		put_user(task_pid_vnr(current), current->set_child_tid);
1961}
1962
1963/*
1964 * context_switch - switch to the new MM and the new
1965 * thread's register state.
1966 */
1967static inline void
1968context_switch(struct rq *rq, struct task_struct *prev,
1969	       struct task_struct *next)
1970{
1971	struct mm_struct *mm, *oldmm;
1972
1973	prepare_task_switch(rq, prev, next);
1974
1975	mm = next->mm;
1976	oldmm = prev->active_mm;
1977	/*
1978	 * For paravirt, this is coupled with an exit in switch_to to
1979	 * combine the page table reload and the switch backend into
1980	 * one hypercall.
1981	 */
1982	arch_start_context_switch(prev);
1983
1984	if (!mm) {
1985		next->active_mm = oldmm;
1986		atomic_inc(&oldmm->mm_count);
1987		enter_lazy_tlb(oldmm, next);
1988	} else
1989		switch_mm(oldmm, mm, next);
1990
1991	if (!prev->mm) {
1992		prev->active_mm = NULL;
1993		rq->prev_mm = oldmm;
1994	}
1995	/*
1996	 * Since the runqueue lock will be released by the next
1997	 * task (which is an invalid locking op but in the case
1998	 * of the scheduler it's an obvious special-case), so we
1999	 * do an early lockdep release here:
2000	 */
2001#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2002	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2003#endif
2004
2005	context_tracking_task_switch(prev, next);
2006	/* Here we just switch the register state and the stack. */
2007	switch_to(prev, next, prev);
2008
2009	barrier();
2010	/*
2011	 * this_rq must be evaluated again because prev may have moved
2012	 * CPUs since it called schedule(), thus the 'rq' on its stack
2013	 * frame will be invalid.
2014	 */
2015	finish_task_switch(this_rq(), prev);
2016}
2017
2018/*
2019 * nr_running and nr_context_switches:
2020 *
2021 * externally visible scheduler statistics: current number of runnable
2022 * threads, total number of context switches performed since bootup.
2023 */
2024unsigned long nr_running(void)
2025{
2026	unsigned long i, sum = 0;
2027
2028	for_each_online_cpu(i)
2029		sum += cpu_rq(i)->nr_running;
2030
2031	return sum;
2032}
2033
2034unsigned long long nr_context_switches(void)
2035{
2036	int i;
2037	unsigned long long sum = 0;
2038
2039	for_each_possible_cpu(i)
2040		sum += cpu_rq(i)->nr_switches;
2041
2042	return sum;
2043}
2044
2045unsigned long nr_iowait(void)
2046{
2047	unsigned long i, sum = 0;
2048
2049	for_each_possible_cpu(i)
2050		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2051
2052	return sum;
2053}
2054
2055unsigned long nr_iowait_cpu(int cpu)
2056{
2057	struct rq *this = cpu_rq(cpu);
2058	return atomic_read(&this->nr_iowait);
2059}
2060
2061#ifdef CONFIG_SMP
2062
2063/*
2064 * sched_exec - execve() is a valuable balancing opportunity, because at
2065 * this point the task has the smallest effective memory and cache footprint.
2066 */
2067void sched_exec(void)
2068{
2069	struct task_struct *p = current;
2070	unsigned long flags;
2071	int dest_cpu;
2072
2073	raw_spin_lock_irqsave(&p->pi_lock, flags);
2074	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2075	if (dest_cpu == smp_processor_id())
2076		goto unlock;
2077
2078	if (likely(cpu_active(dest_cpu))) {
2079		struct migration_arg arg = { p, dest_cpu };
2080
2081		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2082		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2083		return;
2084	}
2085unlock:
2086	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2087}
2088
2089#endif
2090
2091DEFINE_PER_CPU(struct kernel_stat, kstat);
2092DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2093
2094EXPORT_PER_CPU_SYMBOL(kstat);
2095EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2096
2097/*
2098 * Return any ns on the sched_clock that have not yet been accounted in
2099 * @p in case that task is currently running.
2100 *
2101 * Called with task_rq_lock() held on @rq.
2102 */
2103static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2104{
2105	u64 ns = 0;
2106
2107	if (task_current(rq, p)) {
2108		update_rq_clock(rq);
2109		ns = rq_clock_task(rq) - p->se.exec_start;
2110		if ((s64)ns < 0)
2111			ns = 0;
2112	}
2113
2114	return ns;
2115}
2116
2117unsigned long long task_delta_exec(struct task_struct *p)
2118{
2119	unsigned long flags;
2120	struct rq *rq;
2121	u64 ns = 0;
2122
2123	rq = task_rq_lock(p, &flags);
2124	ns = do_task_delta_exec(p, rq);
2125	task_rq_unlock(rq, p, &flags);
2126
2127	return ns;
2128}
2129
2130/*
2131 * Return accounted runtime for the task.
2132 * In case the task is currently running, return the runtime plus current's
2133 * pending runtime that have not been accounted yet.
2134 */
2135unsigned long long task_sched_runtime(struct task_struct *p)
2136{
2137	unsigned long flags;
2138	struct rq *rq;
2139	u64 ns = 0;
2140
2141	rq = task_rq_lock(p, &flags);
2142	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2143	task_rq_unlock(rq, p, &flags);
2144
2145	return ns;
2146}
2147
2148/*
2149 * This function gets called by the timer code, with HZ frequency.
2150 * We call it with interrupts disabled.
2151 */
2152void scheduler_tick(void)
2153{
2154	int cpu = smp_processor_id();
2155	struct rq *rq = cpu_rq(cpu);
2156	struct task_struct *curr = rq->curr;
2157
2158	sched_clock_tick();
2159
2160	raw_spin_lock(&rq->lock);
2161	update_rq_clock(rq);
2162	update_cpu_load_active(rq);
2163	curr->sched_class->task_tick(rq, curr, 0);
2164	raw_spin_unlock(&rq->lock);
2165
2166	perf_event_task_tick();
2167
2168#ifdef CONFIG_SMP
2169	rq->idle_balance = idle_cpu(cpu);
2170	trigger_load_balance(rq, cpu);
2171#endif
2172	rq_last_tick_reset(rq);
2173}
2174
2175#ifdef CONFIG_NO_HZ_FULL
2176/**
2177 * scheduler_tick_max_deferment
2178 *
2179 * Keep at least one tick per second when a single
2180 * active task is running because the scheduler doesn't
2181 * yet completely support full dynticks environment.
2182 *
2183 * This makes sure that uptime, CFS vruntime, load
2184 * balancing, etc... continue to move forward, even
2185 * with a very low granularity.
2186 */
2187u64 scheduler_tick_max_deferment(void)
2188{
2189	struct rq *rq = this_rq();
2190	unsigned long next, now = ACCESS_ONCE(jiffies);
2191
2192	next = rq->last_sched_tick + HZ;
2193
2194	if (time_before_eq(next, now))
2195		return 0;
2196
2197	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2198}
2199#endif
2200
2201notrace unsigned long get_parent_ip(unsigned long addr)
2202{
2203	if (in_lock_functions(addr)) {
2204		addr = CALLER_ADDR2;
2205		if (in_lock_functions(addr))
2206			addr = CALLER_ADDR3;
2207	}
2208	return addr;
2209}
2210
2211#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2212				defined(CONFIG_PREEMPT_TRACER))
2213
2214void __kprobes add_preempt_count(int val)
2215{
2216#ifdef CONFIG_DEBUG_PREEMPT
2217	/*
2218	 * Underflow?
2219	 */
2220	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2221		return;
2222#endif
2223	preempt_count() += val;
2224#ifdef CONFIG_DEBUG_PREEMPT
2225	/*
2226	 * Spinlock count overflowing soon?
2227	 */
2228	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2229				PREEMPT_MASK - 10);
2230#endif
2231	if (preempt_count() == val)
2232		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2233}
2234EXPORT_SYMBOL(add_preempt_count);
2235
2236void __kprobes sub_preempt_count(int val)
2237{
2238#ifdef CONFIG_DEBUG_PREEMPT
2239	/*
2240	 * Underflow?
2241	 */
2242	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2243		return;
2244	/*
2245	 * Is the spinlock portion underflowing?
2246	 */
2247	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2248			!(preempt_count() & PREEMPT_MASK)))
2249		return;
2250#endif
2251
2252	if (preempt_count() == val)
2253		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2254	preempt_count() -= val;
2255}
2256EXPORT_SYMBOL(sub_preempt_count);
2257
2258#endif
2259
2260/*
2261 * Print scheduling while atomic bug:
2262 */
2263static noinline void __schedule_bug(struct task_struct *prev)
2264{
2265	if (oops_in_progress)
2266		return;
2267
2268	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2269		prev->comm, prev->pid, preempt_count());
2270
2271	debug_show_held_locks(prev);
2272	print_modules();
2273	if (irqs_disabled())
2274		print_irqtrace_events(prev);
2275	dump_stack();
2276	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2277}
2278
2279/*
2280 * Various schedule()-time debugging checks and statistics:
2281 */
2282static inline void schedule_debug(struct task_struct *prev)
2283{
2284	/*
2285	 * Test if we are atomic. Since do_exit() needs to call into
2286	 * schedule() atomically, we ignore that path for now.
2287	 * Otherwise, whine if we are scheduling when we should not be.
2288	 */
2289	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2290		__schedule_bug(prev);
2291	rcu_sleep_check();
2292
2293	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2294
2295	schedstat_inc(this_rq(), sched_count);
2296}
2297
2298static void put_prev_task(struct rq *rq, struct task_struct *prev)
2299{
2300	if (prev->on_rq || rq->skip_clock_update < 0)
2301		update_rq_clock(rq);
2302	prev->sched_class->put_prev_task(rq, prev);
2303}
2304
2305/*
2306 * Pick up the highest-prio task:
2307 */
2308static inline struct task_struct *
2309pick_next_task(struct rq *rq)
2310{
2311	const struct sched_class *class;
2312	struct task_struct *p;
2313
2314	/*
2315	 * Optimization: we know that if all tasks are in
2316	 * the fair class we can call that function directly:
2317	 */
2318	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2319		p = fair_sched_class.pick_next_task(rq);
2320		if (likely(p))
2321			return p;
2322	}
2323
2324	for_each_class(class) {
2325		p = class->pick_next_task(rq);
2326		if (p)
2327			return p;
2328	}
2329
2330	BUG(); /* the idle class will always have a runnable task */
2331}
2332
2333/*
2334 * __schedule() is the main scheduler function.
2335 *
2336 * The main means of driving the scheduler and thus entering this function are:
2337 *
2338 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2339 *
2340 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2341 *      paths. For example, see arch/x86/entry_64.S.
2342 *
2343 *      To drive preemption between tasks, the scheduler sets the flag in timer
2344 *      interrupt handler scheduler_tick().
2345 *
2346 *   3. Wakeups don't really cause entry into schedule(). They add a
2347 *      task to the run-queue and that's it.
2348 *
2349 *      Now, if the new task added to the run-queue preempts the current
2350 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2351 *      called on the nearest possible occasion:
2352 *
2353 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2354 *
2355 *         - in syscall or exception context, at the next outmost
2356 *           preempt_enable(). (this might be as soon as the wake_up()'s
2357 *           spin_unlock()!)
2358 *
2359 *         - in IRQ context, return from interrupt-handler to
2360 *           preemptible context
2361 *
2362 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2363 *         then at the next:
2364 *
2365 *          - cond_resched() call
2366 *          - explicit schedule() call
2367 *          - return from syscall or exception to user-space
2368 *          - return from interrupt-handler to user-space
2369 */
2370static void __sched __schedule(void)
2371{
2372	struct task_struct *prev, *next;
2373	unsigned long *switch_count;
2374	struct rq *rq;
2375	int cpu;
2376
2377need_resched:
2378	preempt_disable();
2379	cpu = smp_processor_id();
2380	rq = cpu_rq(cpu);
2381	rcu_note_context_switch(cpu);
2382	prev = rq->curr;
2383
2384	schedule_debug(prev);
2385
2386	if (sched_feat(HRTICK))
2387		hrtick_clear(rq);
2388
2389	raw_spin_lock_irq(&rq->lock);
2390
2391	switch_count = &prev->nivcsw;
2392	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2393		if (unlikely(signal_pending_state(prev->state, prev))) {
2394			prev->state = TASK_RUNNING;
2395		} else {
2396			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2397			prev->on_rq = 0;
2398
2399			/*
2400			 * If a worker went to sleep, notify and ask workqueue
2401			 * whether it wants to wake up a task to maintain
2402			 * concurrency.
2403			 */
2404			if (prev->flags & PF_WQ_WORKER) {
2405				struct task_struct *to_wakeup;
2406
2407				to_wakeup = wq_worker_sleeping(prev, cpu);
2408				if (to_wakeup)
2409					try_to_wake_up_local(to_wakeup);
2410			}
2411		}
2412		switch_count = &prev->nvcsw;
2413	}
2414
2415	pre_schedule(rq, prev);
2416
2417	if (unlikely(!rq->nr_running))
2418		idle_balance(cpu, rq);
2419
2420	put_prev_task(rq, prev);
2421	next = pick_next_task(rq);
2422	clear_tsk_need_resched(prev);
2423	rq->skip_clock_update = 0;
2424
2425	if (likely(prev != next)) {
2426		rq->nr_switches++;
2427		rq->curr = next;
2428		++*switch_count;
2429
2430		context_switch(rq, prev, next); /* unlocks the rq */
2431		/*
2432		 * The context switch have flipped the stack from under us
2433		 * and restored the local variables which were saved when
2434		 * this task called schedule() in the past. prev == current
2435		 * is still correct, but it can be moved to another cpu/rq.
2436		 */
2437		cpu = smp_processor_id();
2438		rq = cpu_rq(cpu);
2439	} else
2440		raw_spin_unlock_irq(&rq->lock);
2441
2442	post_schedule(rq);
2443
2444	sched_preempt_enable_no_resched();
2445	if (need_resched())
2446		goto need_resched;
2447}
2448
2449static inline void sched_submit_work(struct task_struct *tsk)
2450{
2451	if (!tsk->state || tsk_is_pi_blocked(tsk))
2452		return;
2453	/*
2454	 * If we are going to sleep and we have plugged IO queued,
2455	 * make sure to submit it to avoid deadlocks.
2456	 */
2457	if (blk_needs_flush_plug(tsk))
2458		blk_schedule_flush_plug(tsk);
2459}
2460
2461asmlinkage void __sched schedule(void)
2462{
2463	struct task_struct *tsk = current;
2464
2465	sched_submit_work(tsk);
2466	__schedule();
2467}
2468EXPORT_SYMBOL(schedule);
2469
2470#ifdef CONFIG_CONTEXT_TRACKING
2471asmlinkage void __sched schedule_user(void)
2472{
2473	/*
2474	 * If we come here after a random call to set_need_resched(),
2475	 * or we have been woken up remotely but the IPI has not yet arrived,
2476	 * we haven't yet exited the RCU idle mode. Do it here manually until
2477	 * we find a better solution.
2478	 */
2479	user_exit();
2480	schedule();
2481	user_enter();
2482}
2483#endif
2484
2485/**
2486 * schedule_preempt_disabled - called with preemption disabled
2487 *
2488 * Returns with preemption disabled. Note: preempt_count must be 1
2489 */
2490void __sched schedule_preempt_disabled(void)
2491{
2492	sched_preempt_enable_no_resched();
2493	schedule();
2494	preempt_disable();
2495}
2496
2497#ifdef CONFIG_PREEMPT
2498/*
2499 * this is the entry point to schedule() from in-kernel preemption
2500 * off of preempt_enable. Kernel preemptions off return from interrupt
2501 * occur there and call schedule directly.
2502 */
2503asmlinkage void __sched notrace preempt_schedule(void)
2504{
2505	struct thread_info *ti = current_thread_info();
2506
2507	/*
2508	 * If there is a non-zero preempt_count or interrupts are disabled,
2509	 * we do not want to preempt the current task. Just return..
2510	 */
2511	if (likely(ti->preempt_count || irqs_disabled()))
2512		return;
2513
2514	do {
2515		add_preempt_count_notrace(PREEMPT_ACTIVE);
2516		__schedule();
2517		sub_preempt_count_notrace(PREEMPT_ACTIVE);
2518
2519		/*
2520		 * Check again in case we missed a preemption opportunity
2521		 * between schedule and now.
2522		 */
2523		barrier();
2524	} while (need_resched());
2525}
2526EXPORT_SYMBOL(preempt_schedule);
2527
2528/*
2529 * this is the entry point to schedule() from kernel preemption
2530 * off of irq context.
2531 * Note, that this is called and return with irqs disabled. This will
2532 * protect us against recursive calling from irq.
2533 */
2534asmlinkage void __sched preempt_schedule_irq(void)
2535{
2536	struct thread_info *ti = current_thread_info();
2537	enum ctx_state prev_state;
2538
2539	/* Catch callers which need to be fixed */
2540	BUG_ON(ti->preempt_count || !irqs_disabled());
2541
2542	prev_state = exception_enter();
2543
2544	do {
2545		add_preempt_count(PREEMPT_ACTIVE);
2546		local_irq_enable();
2547		__schedule();
2548		local_irq_disable();
2549		sub_preempt_count(PREEMPT_ACTIVE);
2550
2551		/*
2552		 * Check again in case we missed a preemption opportunity
2553		 * between schedule and now.
2554		 */
2555		barrier();
2556	} while (need_resched());
2557
2558	exception_exit(prev_state);
2559}
2560
2561#endif /* CONFIG_PREEMPT */
2562
2563int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2564			  void *key)
2565{
2566	return try_to_wake_up(curr->private, mode, wake_flags);
2567}
2568EXPORT_SYMBOL(default_wake_function);
2569
2570/*
2571 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2572 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2573 * number) then we wake all the non-exclusive tasks and one exclusive task.
2574 *
2575 * There are circumstances in which we can try to wake a task which has already
2576 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2577 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2578 */
2579static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2580			int nr_exclusive, int wake_flags, void *key)
2581{
2582	wait_queue_t *curr, *next;
2583
2584	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2585		unsigned flags = curr->flags;
2586
2587		if (curr->func(curr, mode, wake_flags, key) &&
2588				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2589			break;
2590	}
2591}
2592
2593/**
2594 * __wake_up - wake up threads blocked on a waitqueue.
2595 * @q: the waitqueue
2596 * @mode: which threads
2597 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2598 * @key: is directly passed to the wakeup function
2599 *
2600 * It may be assumed that this function implies a write memory barrier before
2601 * changing the task state if and only if any tasks are woken up.
2602 */
2603void __wake_up(wait_queue_head_t *q, unsigned int mode,
2604			int nr_exclusive, void *key)
2605{
2606	unsigned long flags;
2607
2608	spin_lock_irqsave(&q->lock, flags);
2609	__wake_up_common(q, mode, nr_exclusive, 0, key);
2610	spin_unlock_irqrestore(&q->lock, flags);
2611}
2612EXPORT_SYMBOL(__wake_up);
2613
2614/*
2615 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2616 */
2617void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2618{
2619	__wake_up_common(q, mode, nr, 0, NULL);
2620}
2621EXPORT_SYMBOL_GPL(__wake_up_locked);
2622
2623void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2624{
2625	__wake_up_common(q, mode, 1, 0, key);
2626}
2627EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2628
2629/**
2630 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2631 * @q: the waitqueue
2632 * @mode: which threads
2633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2634 * @key: opaque value to be passed to wakeup targets
2635 *
2636 * The sync wakeup differs that the waker knows that it will schedule
2637 * away soon, so while the target thread will be woken up, it will not
2638 * be migrated to another CPU - ie. the two threads are 'synchronized'
2639 * with each other. This can prevent needless bouncing between CPUs.
2640 *
2641 * On UP it can prevent extra preemption.
2642 *
2643 * It may be assumed that this function implies a write memory barrier before
2644 * changing the task state if and only if any tasks are woken up.
2645 */
2646void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2647			int nr_exclusive, void *key)
2648{
2649	unsigned long flags;
2650	int wake_flags = WF_SYNC;
2651
2652	if (unlikely(!q))
2653		return;
2654
2655	if (unlikely(!nr_exclusive))
2656		wake_flags = 0;
2657
2658	spin_lock_irqsave(&q->lock, flags);
2659	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2660	spin_unlock_irqrestore(&q->lock, flags);
2661}
2662EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2663
2664/*
2665 * __wake_up_sync - see __wake_up_sync_key()
2666 */
2667void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2668{
2669	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2670}
2671EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2672
2673/**
2674 * complete: - signals a single thread waiting on this completion
2675 * @x:  holds the state of this particular completion
2676 *
2677 * This will wake up a single thread waiting on this completion. Threads will be
2678 * awakened in the same order in which they were queued.
2679 *
2680 * See also complete_all(), wait_for_completion() and related routines.
2681 *
2682 * It may be assumed that this function implies a write memory barrier before
2683 * changing the task state if and only if any tasks are woken up.
2684 */
2685void complete(struct completion *x)
2686{
2687	unsigned long flags;
2688
2689	spin_lock_irqsave(&x->wait.lock, flags);
2690	x->done++;
2691	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2692	spin_unlock_irqrestore(&x->wait.lock, flags);
2693}
2694EXPORT_SYMBOL(complete);
2695
2696/**
2697 * complete_all: - signals all threads waiting on this completion
2698 * @x:  holds the state of this particular completion
2699 *
2700 * This will wake up all threads waiting on this particular completion event.
2701 *
2702 * It may be assumed that this function implies a write memory barrier before
2703 * changing the task state if and only if any tasks are woken up.
2704 */
2705void complete_all(struct completion *x)
2706{
2707	unsigned long flags;
2708
2709	spin_lock_irqsave(&x->wait.lock, flags);
2710	x->done += UINT_MAX/2;
2711	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2712	spin_unlock_irqrestore(&x->wait.lock, flags);
2713}
2714EXPORT_SYMBOL(complete_all);
2715
2716static inline long __sched
2717do_wait_for_common(struct completion *x,
2718		   long (*action)(long), long timeout, int state)
2719{
2720	if (!x->done) {
2721		DECLARE_WAITQUEUE(wait, current);
2722
2723		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2724		do {
2725			if (signal_pending_state(state, current)) {
2726				timeout = -ERESTARTSYS;
2727				break;
2728			}
2729			__set_current_state(state);
2730			spin_unlock_irq(&x->wait.lock);
2731			timeout = action(timeout);
2732			spin_lock_irq(&x->wait.lock);
2733		} while (!x->done && timeout);
2734		__remove_wait_queue(&x->wait, &wait);
2735		if (!x->done)
2736			return timeout;
2737	}
2738	x->done--;
2739	return timeout ?: 1;
2740}
2741
2742static inline long __sched
2743__wait_for_common(struct completion *x,
2744		  long (*action)(long), long timeout, int state)
2745{
2746	might_sleep();
2747
2748	spin_lock_irq(&x->wait.lock);
2749	timeout = do_wait_for_common(x, action, timeout, state);
2750	spin_unlock_irq(&x->wait.lock);
2751	return timeout;
2752}
2753
2754static long __sched
2755wait_for_common(struct completion *x, long timeout, int state)
2756{
2757	return __wait_for_common(x, schedule_timeout, timeout, state);
2758}
2759
2760static long __sched
2761wait_for_common_io(struct completion *x, long timeout, int state)
2762{
2763	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2764}
2765
2766/**
2767 * wait_for_completion: - waits for completion of a task
2768 * @x:  holds the state of this particular completion
2769 *
2770 * This waits to be signaled for completion of a specific task. It is NOT
2771 * interruptible and there is no timeout.
2772 *
2773 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2774 * and interrupt capability. Also see complete().
2775 */
2776void __sched wait_for_completion(struct completion *x)
2777{
2778	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2779}
2780EXPORT_SYMBOL(wait_for_completion);
2781
2782/**
2783 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2784 * @x:  holds the state of this particular completion
2785 * @timeout:  timeout value in jiffies
2786 *
2787 * This waits for either a completion of a specific task to be signaled or for a
2788 * specified timeout to expire. The timeout is in jiffies. It is not
2789 * interruptible.
2790 *
2791 * The return value is 0 if timed out, and positive (at least 1, or number of
2792 * jiffies left till timeout) if completed.
2793 */
2794unsigned long __sched
2795wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2796{
2797	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2798}
2799EXPORT_SYMBOL(wait_for_completion_timeout);
2800
2801/**
2802 * wait_for_completion_io: - waits for completion of a task
2803 * @x:  holds the state of this particular completion
2804 *
2805 * This waits to be signaled for completion of a specific task. It is NOT
2806 * interruptible and there is no timeout. The caller is accounted as waiting
2807 * for IO.
2808 */
2809void __sched wait_for_completion_io(struct completion *x)
2810{
2811	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2812}
2813EXPORT_SYMBOL(wait_for_completion_io);
2814
2815/**
2816 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2817 * @x:  holds the state of this particular completion
2818 * @timeout:  timeout value in jiffies
2819 *
2820 * This waits for either a completion of a specific task to be signaled or for a
2821 * specified timeout to expire. The timeout is in jiffies. It is not
2822 * interruptible. The caller is accounted as waiting for IO.
2823 *
2824 * The return value is 0 if timed out, and positive (at least 1, or number of
2825 * jiffies left till timeout) if completed.
2826 */
2827unsigned long __sched
2828wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2829{
2830	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2831}
2832EXPORT_SYMBOL(wait_for_completion_io_timeout);
2833
2834/**
2835 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2836 * @x:  holds the state of this particular completion
2837 *
2838 * This waits for completion of a specific task to be signaled. It is
2839 * interruptible.
2840 *
2841 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2842 */
2843int __sched wait_for_completion_interruptible(struct completion *x)
2844{
2845	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2846	if (t == -ERESTARTSYS)
2847		return t;
2848	return 0;
2849}
2850EXPORT_SYMBOL(wait_for_completion_interruptible);
2851
2852/**
2853 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2854 * @x:  holds the state of this particular completion
2855 * @timeout:  timeout value in jiffies
2856 *
2857 * This waits for either a completion of a specific task to be signaled or for a
2858 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2859 *
2860 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2861 * positive (at least 1, or number of jiffies left till timeout) if completed.
2862 */
2863long __sched
2864wait_for_completion_interruptible_timeout(struct completion *x,
2865					  unsigned long timeout)
2866{
2867	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2868}
2869EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2870
2871/**
2872 * wait_for_completion_killable: - waits for completion of a task (killable)
2873 * @x:  holds the state of this particular completion
2874 *
2875 * This waits to be signaled for completion of a specific task. It can be
2876 * interrupted by a kill signal.
2877 *
2878 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
2879 */
2880int __sched wait_for_completion_killable(struct completion *x)
2881{
2882	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2883	if (t == -ERESTARTSYS)
2884		return t;
2885	return 0;
2886}
2887EXPORT_SYMBOL(wait_for_completion_killable);
2888
2889/**
2890 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2891 * @x:  holds the state of this particular completion
2892 * @timeout:  timeout value in jiffies
2893 *
2894 * This waits for either a completion of a specific task to be
2895 * signaled or for a specified timeout to expire. It can be
2896 * interrupted by a kill signal. The timeout is in jiffies.
2897 *
2898 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2899 * positive (at least 1, or number of jiffies left till timeout) if completed.
2900 */
2901long __sched
2902wait_for_completion_killable_timeout(struct completion *x,
2903				     unsigned long timeout)
2904{
2905	return wait_for_common(x, timeout, TASK_KILLABLE);
2906}
2907EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2908
2909/**
2910 *	try_wait_for_completion - try to decrement a completion without blocking
2911 *	@x:	completion structure
2912 *
2913 *	Returns: 0 if a decrement cannot be done without blocking
2914 *		 1 if a decrement succeeded.
2915 *
2916 *	If a completion is being used as a counting completion,
2917 *	attempt to decrement the counter without blocking. This
2918 *	enables us to avoid waiting if the resource the completion
2919 *	is protecting is not available.
2920 */
2921bool try_wait_for_completion(struct completion *x)
2922{
2923	unsigned long flags;
2924	int ret = 1;
2925
2926	spin_lock_irqsave(&x->wait.lock, flags);
2927	if (!x->done)
2928		ret = 0;
2929	else
2930		x->done--;
2931	spin_unlock_irqrestore(&x->wait.lock, flags);
2932	return ret;
2933}
2934EXPORT_SYMBOL(try_wait_for_completion);
2935
2936/**
2937 *	completion_done - Test to see if a completion has any waiters
2938 *	@x:	completion structure
2939 *
2940 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
2941 *		 1 if there are no waiters.
2942 *
2943 */
2944bool completion_done(struct completion *x)
2945{
2946	unsigned long flags;
2947	int ret = 1;
2948
2949	spin_lock_irqsave(&x->wait.lock, flags);
2950	if (!x->done)
2951		ret = 0;
2952	spin_unlock_irqrestore(&x->wait.lock, flags);
2953	return ret;
2954}
2955EXPORT_SYMBOL(completion_done);
2956
2957static long __sched
2958sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2959{
2960	unsigned long flags;
2961	wait_queue_t wait;
2962
2963	init_waitqueue_entry(&wait, current);
2964
2965	__set_current_state(state);
2966
2967	spin_lock_irqsave(&q->lock, flags);
2968	__add_wait_queue(q, &wait);
2969	spin_unlock(&q->lock);
2970	timeout = schedule_timeout(timeout);
2971	spin_lock_irq(&q->lock);
2972	__remove_wait_queue(q, &wait);
2973	spin_unlock_irqrestore(&q->lock, flags);
2974
2975	return timeout;
2976}
2977
2978void __sched interruptible_sleep_on(wait_queue_head_t *q)
2979{
2980	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2981}
2982EXPORT_SYMBOL(interruptible_sleep_on);
2983
2984long __sched
2985interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2986{
2987	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2988}
2989EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2990
2991void __sched sleep_on(wait_queue_head_t *q)
2992{
2993	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2994}
2995EXPORT_SYMBOL(sleep_on);
2996
2997long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2998{
2999	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3000}
3001EXPORT_SYMBOL(sleep_on_timeout);
3002
3003#ifdef CONFIG_RT_MUTEXES
3004
3005/*
3006 * rt_mutex_setprio - set the current priority of a task
3007 * @p: task
3008 * @prio: prio value (kernel-internal form)
3009 *
3010 * This function changes the 'effective' priority of a task. It does
3011 * not touch ->normal_prio like __setscheduler().
3012 *
3013 * Used by the rt_mutex code to implement priority inheritance logic.
3014 */
3015void rt_mutex_setprio(struct task_struct *p, int prio)
3016{
3017	int oldprio, on_rq, running;
3018	struct rq *rq;
3019	const struct sched_class *prev_class;
3020
3021	BUG_ON(prio < 0 || prio > MAX_PRIO);
3022
3023	rq = __task_rq_lock(p);
3024
3025	/*
3026	 * Idle task boosting is a nono in general. There is one
3027	 * exception, when PREEMPT_RT and NOHZ is active:
3028	 *
3029	 * The idle task calls get_next_timer_interrupt() and holds
3030	 * the timer wheel base->lock on the CPU and another CPU wants
3031	 * to access the timer (probably to cancel it). We can safely
3032	 * ignore the boosting request, as the idle CPU runs this code
3033	 * with interrupts disabled and will complete the lock
3034	 * protected section without being interrupted. So there is no
3035	 * real need to boost.
3036	 */
3037	if (unlikely(p == rq->idle)) {
3038		WARN_ON(p != rq->curr);
3039		WARN_ON(p->pi_blocked_on);
3040		goto out_unlock;
3041	}
3042
3043	trace_sched_pi_setprio(p, prio);
3044	oldprio = p->prio;
3045	prev_class = p->sched_class;
3046	on_rq = p->on_rq;
3047	running = task_current(rq, p);
3048	if (on_rq)
3049		dequeue_task(rq, p, 0);
3050	if (running)
3051		p->sched_class->put_prev_task(rq, p);
3052
3053	if (rt_prio(prio))
3054		p->sched_class = &rt_sched_class;
3055	else
3056		p->sched_class = &fair_sched_class;
3057
3058	p->prio = prio;
3059
3060	if (running)
3061		p->sched_class->set_curr_task(rq);
3062	if (on_rq)
3063		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3064
3065	check_class_changed(rq, p, prev_class, oldprio);
3066out_unlock:
3067	__task_rq_unlock(rq);
3068}
3069#endif
3070void set_user_nice(struct task_struct *p, long nice)
3071{
3072	int old_prio, delta, on_rq;
3073	unsigned long flags;
3074	struct rq *rq;
3075
3076	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3077		return;
3078	/*
3079	 * We have to be careful, if called from sys_setpriority(),
3080	 * the task might be in the middle of scheduling on another CPU.
3081	 */
3082	rq = task_rq_lock(p, &flags);
3083	/*
3084	 * The RT priorities are set via sched_setscheduler(), but we still
3085	 * allow the 'normal' nice value to be set - but as expected
3086	 * it wont have any effect on scheduling until the task is
3087	 * SCHED_FIFO/SCHED_RR:
3088	 */
3089	if (task_has_rt_policy(p)) {
3090		p->static_prio = NICE_TO_PRIO(nice);
3091		goto out_unlock;
3092	}
3093	on_rq = p->on_rq;
3094	if (on_rq)
3095		dequeue_task(rq, p, 0);
3096
3097	p->static_prio = NICE_TO_PRIO(nice);
3098	set_load_weight(p);
3099	old_prio = p->prio;
3100	p->prio = effective_prio(p);
3101	delta = p->prio - old_prio;
3102
3103	if (on_rq) {
3104		enqueue_task(rq, p, 0);
3105		/*
3106		 * If the task increased its priority or is running and
3107		 * lowered its priority, then reschedule its CPU:
3108		 */
3109		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3110			resched_task(rq->curr);
3111	}
3112out_unlock:
3113	task_rq_unlock(rq, p, &flags);
3114}
3115EXPORT_SYMBOL(set_user_nice);
3116
3117/*
3118 * can_nice - check if a task can reduce its nice value
3119 * @p: task
3120 * @nice: nice value
3121 */
3122int can_nice(const struct task_struct *p, const int nice)
3123{
3124	/* convert nice value [19,-20] to rlimit style value [1,40] */
3125	int nice_rlim = 20 - nice;
3126
3127	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3128		capable(CAP_SYS_NICE));
3129}
3130
3131#ifdef __ARCH_WANT_SYS_NICE
3132
3133/*
3134 * sys_nice - change the priority of the current process.
3135 * @increment: priority increment
3136 *
3137 * sys_setpriority is a more generic, but much slower function that
3138 * does similar things.
3139 */
3140SYSCALL_DEFINE1(nice, int, increment)
3141{
3142	long nice, retval;
3143
3144	/*
3145	 * Setpriority might change our priority at the same moment.
3146	 * We don't have to worry. Conceptually one call occurs first
3147	 * and we have a single winner.
3148	 */
3149	if (increment < -40)
3150		increment = -40;
3151	if (increment > 40)
3152		increment = 40;
3153
3154	nice = TASK_NICE(current) + increment;
3155	if (nice < -20)
3156		nice = -20;
3157	if (nice > 19)
3158		nice = 19;
3159
3160	if (increment < 0 && !can_nice(current, nice))
3161		return -EPERM;
3162
3163	retval = security_task_setnice(current, nice);
3164	if (retval)
3165		return retval;
3166
3167	set_user_nice(current, nice);
3168	return 0;
3169}
3170
3171#endif
3172
3173/**
3174 * task_prio - return the priority value of a given task.
3175 * @p: the task in question.
3176 *
3177 * This is the priority value as seen by users in /proc.
3178 * RT tasks are offset by -200. Normal tasks are centered
3179 * around 0, value goes from -16 to +15.
3180 */
3181int task_prio(const struct task_struct *p)
3182{
3183	return p->prio - MAX_RT_PRIO;
3184}
3185
3186/**
3187 * task_nice - return the nice value of a given task.
3188 * @p: the task in question.
3189 */
3190int task_nice(const struct task_struct *p)
3191{
3192	return TASK_NICE(p);
3193}
3194EXPORT_SYMBOL(task_nice);
3195
3196/**
3197 * idle_cpu - is a given cpu idle currently?
3198 * @cpu: the processor in question.
3199 */
3200int idle_cpu(int cpu)
3201{
3202	struct rq *rq = cpu_rq(cpu);
3203
3204	if (rq->curr != rq->idle)
3205		return 0;
3206
3207	if (rq->nr_running)
3208		return 0;
3209
3210#ifdef CONFIG_SMP
3211	if (!llist_empty(&rq->wake_list))
3212		return 0;
3213#endif
3214
3215	return 1;
3216}
3217
3218/**
3219 * idle_task - return the idle task for a given cpu.
3220 * @cpu: the processor in question.
3221 */
3222struct task_struct *idle_task(int cpu)
3223{
3224	return cpu_rq(cpu)->idle;
3225}
3226
3227/**
3228 * find_process_by_pid - find a process with a matching PID value.
3229 * @pid: the pid in question.
3230 */
3231static struct task_struct *find_process_by_pid(pid_t pid)
3232{
3233	return pid ? find_task_by_vpid(pid) : current;
3234}
3235
3236/* Actually do priority change: must hold rq lock. */
3237static void
3238__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3239{
3240	p->policy = policy;
3241	p->rt_priority = prio;
3242	p->normal_prio = normal_prio(p);
3243	/* we are holding p->pi_lock already */
3244	p->prio = rt_mutex_getprio(p);
3245	if (rt_prio(p->prio))
3246		p->sched_class = &rt_sched_class;
3247	else
3248		p->sched_class = &fair_sched_class;
3249	set_load_weight(p);
3250}
3251
3252/*
3253 * check the target process has a UID that matches the current process's
3254 */
3255static bool check_same_owner(struct task_struct *p)
3256{
3257	const struct cred *cred = current_cred(), *pcred;
3258	bool match;
3259
3260	rcu_read_lock();
3261	pcred = __task_cred(p);
3262	match = (uid_eq(cred->euid, pcred->euid) ||
3263		 uid_eq(cred->euid, pcred->uid));
3264	rcu_read_unlock();
3265	return match;
3266}
3267
3268static int __sched_setscheduler(struct task_struct *p, int policy,
3269				const struct sched_param *param, bool user)
3270{
3271	int retval, oldprio, oldpolicy = -1, on_rq, running;
3272	unsigned long flags;
3273	const struct sched_class *prev_class;
3274	struct rq *rq;
3275	int reset_on_fork;
3276
3277	/* may grab non-irq protected spin_locks */
3278	BUG_ON(in_interrupt());
3279recheck:
3280	/* double check policy once rq lock held */
3281	if (policy < 0) {
3282		reset_on_fork = p->sched_reset_on_fork;
3283		policy = oldpolicy = p->policy;
3284	} else {
3285		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3286		policy &= ~SCHED_RESET_ON_FORK;
3287
3288		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3289				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3290				policy != SCHED_IDLE)
3291			return -EINVAL;
3292	}
3293
3294	/*
3295	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3296	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3297	 * SCHED_BATCH and SCHED_IDLE is 0.
3298	 */
3299	if (param->sched_priority < 0 ||
3300	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3301	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3302		return -EINVAL;
3303	if (rt_policy(policy) != (param->sched_priority != 0))
3304		return -EINVAL;
3305
3306	/*
3307	 * Allow unprivileged RT tasks to decrease priority:
3308	 */
3309	if (user && !capable(CAP_SYS_NICE)) {
3310		if (rt_policy(policy)) {
3311			unsigned long rlim_rtprio =
3312					task_rlimit(p, RLIMIT_RTPRIO);
3313
3314			/* can't set/change the rt policy */
3315			if (policy != p->policy && !rlim_rtprio)
3316				return -EPERM;
3317
3318			/* can't increase priority */
3319			if (param->sched_priority > p->rt_priority &&
3320			    param->sched_priority > rlim_rtprio)
3321				return -EPERM;
3322		}
3323
3324		/*
3325		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3326		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3327		 */
3328		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3329			if (!can_nice(p, TASK_NICE(p)))
3330				return -EPERM;
3331		}
3332
3333		/* can't change other user's priorities */
3334		if (!check_same_owner(p))
3335			return -EPERM;
3336
3337		/* Normal users shall not reset the sched_reset_on_fork flag */
3338		if (p->sched_reset_on_fork && !reset_on_fork)
3339			return -EPERM;
3340	}
3341
3342	if (user) {
3343		retval = security_task_setscheduler(p);
3344		if (retval)
3345			return retval;
3346	}
3347
3348	/*
3349	 * make sure no PI-waiters arrive (or leave) while we are
3350	 * changing the priority of the task:
3351	 *
3352	 * To be able to change p->policy safely, the appropriate
3353	 * runqueue lock must be held.
3354	 */
3355	rq = task_rq_lock(p, &flags);
3356
3357	/*
3358	 * Changing the policy of the stop threads its a very bad idea
3359	 */
3360	if (p == rq->stop) {
3361		task_rq_unlock(rq, p, &flags);
3362		return -EINVAL;
3363	}
3364
3365	/*
3366	 * If not changing anything there's no need to proceed further:
3367	 */
3368	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3369			param->sched_priority == p->rt_priority))) {
3370		task_rq_unlock(rq, p, &flags);
3371		return 0;
3372	}
3373
3374#ifdef CONFIG_RT_GROUP_SCHED
3375	if (user) {
3376		/*
3377		 * Do not allow realtime tasks into groups that have no runtime
3378		 * assigned.
3379		 */
3380		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3381				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3382				!task_group_is_autogroup(task_group(p))) {
3383			task_rq_unlock(rq, p, &flags);
3384			return -EPERM;
3385		}
3386	}
3387#endif
3388
3389	/* recheck policy now with rq lock held */
3390	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3391		policy = oldpolicy = -1;
3392		task_rq_unlock(rq, p, &flags);
3393		goto recheck;
3394	}
3395	on_rq = p->on_rq;
3396	running = task_current(rq, p);
3397	if (on_rq)
3398		dequeue_task(rq, p, 0);
3399	if (running)
3400		p->sched_class->put_prev_task(rq, p);
3401
3402	p->sched_reset_on_fork = reset_on_fork;
3403
3404	oldprio = p->prio;
3405	prev_class = p->sched_class;
3406	__setscheduler(rq, p, policy, param->sched_priority);
3407
3408	if (running)
3409		p->sched_class->set_curr_task(rq);
3410	if (on_rq)
3411		enqueue_task(rq, p, 0);
3412
3413	check_class_changed(rq, p, prev_class, oldprio);
3414	task_rq_unlock(rq, p, &flags);
3415
3416	rt_mutex_adjust_pi(p);
3417
3418	return 0;
3419}
3420
3421/**
3422 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3423 * @p: the task in question.
3424 * @policy: new policy.
3425 * @param: structure containing the new RT priority.
3426 *
3427 * NOTE that the task may be already dead.
3428 */
3429int sched_setscheduler(struct task_struct *p, int policy,
3430		       const struct sched_param *param)
3431{
3432	return __sched_setscheduler(p, policy, param, true);
3433}
3434EXPORT_SYMBOL_GPL(sched_setscheduler);
3435
3436/**
3437 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3438 * @p: the task in question.
3439 * @policy: new policy.
3440 * @param: structure containing the new RT priority.
3441 *
3442 * Just like sched_setscheduler, only don't bother checking if the
3443 * current context has permission.  For example, this is needed in
3444 * stop_machine(): we create temporary high priority worker threads,
3445 * but our caller might not have that capability.
3446 */
3447int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3448			       const struct sched_param *param)
3449{
3450	return __sched_setscheduler(p, policy, param, false);
3451}
3452
3453static int
3454do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3455{
3456	struct sched_param lparam;
3457	struct task_struct *p;
3458	int retval;
3459
3460	if (!param || pid < 0)
3461		return -EINVAL;
3462	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3463		return -EFAULT;
3464
3465	rcu_read_lock();
3466	retval = -ESRCH;
3467	p = find_process_by_pid(pid);
3468	if (p != NULL)
3469		retval = sched_setscheduler(p, policy, &lparam);
3470	rcu_read_unlock();
3471
3472	return retval;
3473}
3474
3475/**
3476 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3477 * @pid: the pid in question.
3478 * @policy: new policy.
3479 * @param: structure containing the new RT priority.
3480 */
3481SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3482		struct sched_param __user *, param)
3483{
3484	/* negative values for policy are not valid */
3485	if (policy < 0)
3486		return -EINVAL;
3487
3488	return do_sched_setscheduler(pid, policy, param);
3489}
3490
3491/**
3492 * sys_sched_setparam - set/change the RT priority of a thread
3493 * @pid: the pid in question.
3494 * @param: structure containing the new RT priority.
3495 */
3496SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3497{
3498	return do_sched_setscheduler(pid, -1, param);
3499}
3500
3501/**
3502 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3503 * @pid: the pid in question.
3504 */
3505SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3506{
3507	struct task_struct *p;
3508	int retval;
3509
3510	if (pid < 0)
3511		return -EINVAL;
3512
3513	retval = -ESRCH;
3514	rcu_read_lock();
3515	p = find_process_by_pid(pid);
3516	if (p) {
3517		retval = security_task_getscheduler(p);
3518		if (!retval)
3519			retval = p->policy
3520				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3521	}
3522	rcu_read_unlock();
3523	return retval;
3524}
3525
3526/**
3527 * sys_sched_getparam - get the RT priority of a thread
3528 * @pid: the pid in question.
3529 * @param: structure containing the RT priority.
3530 */
3531SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3532{
3533	struct sched_param lp;
3534	struct task_struct *p;
3535	int retval;
3536
3537	if (!param || pid < 0)
3538		return -EINVAL;
3539
3540	rcu_read_lock();
3541	p = find_process_by_pid(pid);
3542	retval = -ESRCH;
3543	if (!p)
3544		goto out_unlock;
3545
3546	retval = security_task_getscheduler(p);
3547	if (retval)
3548		goto out_unlock;
3549
3550	lp.sched_priority = p->rt_priority;
3551	rcu_read_unlock();
3552
3553	/*
3554	 * This one might sleep, we cannot do it with a spinlock held ...
3555	 */
3556	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3557
3558	return retval;
3559
3560out_unlock:
3561	rcu_read_unlock();
3562	return retval;
3563}
3564
3565long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3566{
3567	cpumask_var_t cpus_allowed, new_mask;
3568	struct task_struct *p;
3569	int retval;
3570
3571	get_online_cpus();
3572	rcu_read_lock();
3573
3574	p = find_process_by_pid(pid);
3575	if (!p) {
3576		rcu_read_unlock();
3577		put_online_cpus();
3578		return -ESRCH;
3579	}
3580
3581	/* Prevent p going away */
3582	get_task_struct(p);
3583	rcu_read_unlock();
3584
3585	if (p->flags & PF_NO_SETAFFINITY) {
3586		retval = -EINVAL;
3587		goto out_put_task;
3588	}
3589	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3590		retval = -ENOMEM;
3591		goto out_put_task;
3592	}
3593	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3594		retval = -ENOMEM;
3595		goto out_free_cpus_allowed;
3596	}
3597	retval = -EPERM;
3598	if (!check_same_owner(p)) {
3599		rcu_read_lock();
3600		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3601			rcu_read_unlock();
3602			goto out_unlock;
3603		}
3604		rcu_read_unlock();
3605	}
3606
3607	retval = security_task_setscheduler(p);
3608	if (retval)
3609		goto out_unlock;
3610
3611	cpuset_cpus_allowed(p, cpus_allowed);
3612	cpumask_and(new_mask, in_mask, cpus_allowed);
3613again:
3614	retval = set_cpus_allowed_ptr(p, new_mask);
3615
3616	if (!retval) {
3617		cpuset_cpus_allowed(p, cpus_allowed);
3618		if (!cpumask_subset(new_mask, cpus_allowed)) {
3619			/*
3620			 * We must have raced with a concurrent cpuset
3621			 * update. Just reset the cpus_allowed to the
3622			 * cpuset's cpus_allowed
3623			 */
3624			cpumask_copy(new_mask, cpus_allowed);
3625			goto again;
3626		}
3627	}
3628out_unlock:
3629	free_cpumask_var(new_mask);
3630out_free_cpus_allowed:
3631	free_cpumask_var(cpus_allowed);
3632out_put_task:
3633	put_task_struct(p);
3634	put_online_cpus();
3635	return retval;
3636}
3637
3638static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3639			     struct cpumask *new_mask)
3640{
3641	if (len < cpumask_size())
3642		cpumask_clear(new_mask);
3643	else if (len > cpumask_size())
3644		len = cpumask_size();
3645
3646	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3647}
3648
3649/**
3650 * sys_sched_setaffinity - set the cpu affinity of a process
3651 * @pid: pid of the process
3652 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3653 * @user_mask_ptr: user-space pointer to the new cpu mask
3654 */
3655SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3656		unsigned long __user *, user_mask_ptr)
3657{
3658	cpumask_var_t new_mask;
3659	int retval;
3660
3661	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3662		return -ENOMEM;
3663
3664	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3665	if (retval == 0)
3666		retval = sched_setaffinity(pid, new_mask);
3667	free_cpumask_var(new_mask);
3668	return retval;
3669}
3670
3671long sched_getaffinity(pid_t pid, struct cpumask *mask)
3672{
3673	struct task_struct *p;
3674	unsigned long flags;
3675	int retval;
3676
3677	get_online_cpus();
3678	rcu_read_lock();
3679
3680	retval = -ESRCH;
3681	p = find_process_by_pid(pid);
3682	if (!p)
3683		goto out_unlock;
3684
3685	retval = security_task_getscheduler(p);
3686	if (retval)
3687		goto out_unlock;
3688
3689	raw_spin_lock_irqsave(&p->pi_lock, flags);
3690	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3691	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3692
3693out_unlock:
3694	rcu_read_unlock();
3695	put_online_cpus();
3696
3697	return retval;
3698}
3699
3700/**
3701 * sys_sched_getaffinity - get the cpu affinity of a process
3702 * @pid: pid of the process
3703 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3704 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3705 */
3706SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3707		unsigned long __user *, user_mask_ptr)
3708{
3709	int ret;
3710	cpumask_var_t mask;
3711
3712	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3713		return -EINVAL;
3714	if (len & (sizeof(unsigned long)-1))
3715		return -EINVAL;
3716
3717	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3718		return -ENOMEM;
3719
3720	ret = sched_getaffinity(pid, mask);
3721	if (ret == 0) {
3722		size_t retlen = min_t(size_t, len, cpumask_size());
3723
3724		if (copy_to_user(user_mask_ptr, mask, retlen))
3725			ret = -EFAULT;
3726		else
3727			ret = retlen;
3728	}
3729	free_cpumask_var(mask);
3730
3731	return ret;
3732}
3733
3734/**
3735 * sys_sched_yield - yield the current processor to other threads.
3736 *
3737 * This function yields the current CPU to other tasks. If there are no
3738 * other threads running on this CPU then this function will return.
3739 */
3740SYSCALL_DEFINE0(sched_yield)
3741{
3742	struct rq *rq = this_rq_lock();
3743
3744	schedstat_inc(rq, yld_count);
3745	current->sched_class->yield_task(rq);
3746
3747	/*
3748	 * Since we are going to call schedule() anyway, there's
3749	 * no need to preempt or enable interrupts:
3750	 */
3751	__release(rq->lock);
3752	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3753	do_raw_spin_unlock(&rq->lock);
3754	sched_preempt_enable_no_resched();
3755
3756	schedule();
3757
3758	return 0;
3759}
3760
3761static inline int should_resched(void)
3762{
3763	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3764}
3765
3766static void __cond_resched(void)
3767{
3768	add_preempt_count(PREEMPT_ACTIVE);
3769	__schedule();
3770	sub_preempt_count(PREEMPT_ACTIVE);
3771}
3772
3773int __sched _cond_resched(void)
3774{
3775	if (should_resched()) {
3776		__cond_resched();
3777		return 1;
3778	}
3779	return 0;
3780}
3781EXPORT_SYMBOL(_cond_resched);
3782
3783/*
3784 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3785 * call schedule, and on return reacquire the lock.
3786 *
3787 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3788 * operations here to prevent schedule() from being called twice (once via
3789 * spin_unlock(), once by hand).
3790 */
3791int __cond_resched_lock(spinlock_t *lock)
3792{
3793	int resched = should_resched();
3794	int ret = 0;
3795
3796	lockdep_assert_held(lock);
3797
3798	if (spin_needbreak(lock) || resched) {
3799		spin_unlock(lock);
3800		if (resched)
3801			__cond_resched();
3802		else
3803			cpu_relax();
3804		ret = 1;
3805		spin_lock(lock);
3806	}
3807	return ret;
3808}
3809EXPORT_SYMBOL(__cond_resched_lock);
3810
3811int __sched __cond_resched_softirq(void)
3812{
3813	BUG_ON(!in_softirq());
3814
3815	if (should_resched()) {
3816		local_bh_enable();
3817		__cond_resched();
3818		local_bh_disable();
3819		return 1;
3820	}
3821	return 0;
3822}
3823EXPORT_SYMBOL(__cond_resched_softirq);
3824
3825/**
3826 * yield - yield the current processor to other threads.
3827 *
3828 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3829 *
3830 * The scheduler is at all times free to pick the calling task as the most
3831 * eligible task to run, if removing the yield() call from your code breaks
3832 * it, its already broken.
3833 *
3834 * Typical broken usage is:
3835 *
3836 * while (!event)
3837 * 	yield();
3838 *
3839 * where one assumes that yield() will let 'the other' process run that will
3840 * make event true. If the current task is a SCHED_FIFO task that will never
3841 * happen. Never use yield() as a progress guarantee!!
3842 *
3843 * If you want to use yield() to wait for something, use wait_event().
3844 * If you want to use yield() to be 'nice' for others, use cond_resched().
3845 * If you still want to use yield(), do not!
3846 */
3847void __sched yield(void)
3848{
3849	set_current_state(TASK_RUNNING);
3850	sys_sched_yield();
3851}
3852EXPORT_SYMBOL(yield);
3853
3854/**
3855 * yield_to - yield the current processor to another thread in
3856 * your thread group, or accelerate that thread toward the
3857 * processor it's on.
3858 * @p: target task
3859 * @preempt: whether task preemption is allowed or not
3860 *
3861 * It's the caller's job to ensure that the target task struct
3862 * can't go away on us before we can do any checks.
3863 *
3864 * Returns:
3865 *	true (>0) if we indeed boosted the target task.
3866 *	false (0) if we failed to boost the target.
3867 *	-ESRCH if there's no task to yield to.
3868 */
3869bool __sched yield_to(struct task_struct *p, bool preempt)
3870{
3871	struct task_struct *curr = current;
3872	struct rq *rq, *p_rq;
3873	unsigned long flags;
3874	int yielded = 0;
3875
3876	local_irq_save(flags);
3877	rq = this_rq();
3878
3879again:
3880	p_rq = task_rq(p);
3881	/*
3882	 * If we're the only runnable task on the rq and target rq also
3883	 * has only one task, there's absolutely no point in yielding.
3884	 */
3885	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3886		yielded = -ESRCH;
3887		goto out_irq;
3888	}
3889
3890	double_rq_lock(rq, p_rq);
3891	while (task_rq(p) != p_rq) {
3892		double_rq_unlock(rq, p_rq);
3893		goto again;
3894	}
3895
3896	if (!curr->sched_class->yield_to_task)
3897		goto out_unlock;
3898
3899	if (curr->sched_class != p->sched_class)
3900		goto out_unlock;
3901
3902	if (task_running(p_rq, p) || p->state)
3903		goto out_unlock;
3904
3905	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3906	if (yielded) {
3907		schedstat_inc(rq, yld_count);
3908		/*
3909		 * Make p's CPU reschedule; pick_next_entity takes care of
3910		 * fairness.
3911		 */
3912		if (preempt && rq != p_rq)
3913			resched_task(p_rq->curr);
3914	}
3915
3916out_unlock:
3917	double_rq_unlock(rq, p_rq);
3918out_irq:
3919	local_irq_restore(flags);
3920
3921	if (yielded > 0)
3922		schedule();
3923
3924	return yielded;
3925}
3926EXPORT_SYMBOL_GPL(yield_to);
3927
3928/*
3929 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3930 * that process accounting knows that this is a task in IO wait state.
3931 */
3932void __sched io_schedule(void)
3933{
3934	struct rq *rq = raw_rq();
3935
3936	delayacct_blkio_start();
3937	atomic_inc(&rq->nr_iowait);
3938	blk_flush_plug(current);
3939	current->in_iowait = 1;
3940	schedule();
3941	current->in_iowait = 0;
3942	atomic_dec(&rq->nr_iowait);
3943	delayacct_blkio_end();
3944}
3945EXPORT_SYMBOL(io_schedule);
3946
3947long __sched io_schedule_timeout(long timeout)
3948{
3949	struct rq *rq = raw_rq();
3950	long ret;
3951
3952	delayacct_blkio_start();
3953	atomic_inc(&rq->nr_iowait);
3954	blk_flush_plug(current);
3955	current->in_iowait = 1;
3956	ret = schedule_timeout(timeout);
3957	current->in_iowait = 0;
3958	atomic_dec(&rq->nr_iowait);
3959	delayacct_blkio_end();
3960	return ret;
3961}
3962
3963/**
3964 * sys_sched_get_priority_max - return maximum RT priority.
3965 * @policy: scheduling class.
3966 *
3967 * this syscall returns the maximum rt_priority that can be used
3968 * by a given scheduling class.
3969 */
3970SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3971{
3972	int ret = -EINVAL;
3973
3974	switch (policy) {
3975	case SCHED_FIFO:
3976	case SCHED_RR:
3977		ret = MAX_USER_RT_PRIO-1;
3978		break;
3979	case SCHED_NORMAL:
3980	case SCHED_BATCH:
3981	case SCHED_IDLE:
3982		ret = 0;
3983		break;
3984	}
3985	return ret;
3986}
3987
3988/**
3989 * sys_sched_get_priority_min - return minimum RT priority.
3990 * @policy: scheduling class.
3991 *
3992 * this syscall returns the minimum rt_priority that can be used
3993 * by a given scheduling class.
3994 */
3995SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
3996{
3997	int ret = -EINVAL;
3998
3999	switch (policy) {
4000	case SCHED_FIFO:
4001	case SCHED_RR:
4002		ret = 1;
4003		break;
4004	case SCHED_NORMAL:
4005	case SCHED_BATCH:
4006	case SCHED_IDLE:
4007		ret = 0;
4008	}
4009	return ret;
4010}
4011
4012/**
4013 * sys_sched_rr_get_interval - return the default timeslice of a process.
4014 * @pid: pid of the process.
4015 * @interval: userspace pointer to the timeslice value.
4016 *
4017 * this syscall writes the default timeslice value of a given process
4018 * into the user-space timespec buffer. A value of '0' means infinity.
4019 */
4020SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4021		struct timespec __user *, interval)
4022{
4023	struct task_struct *p;
4024	unsigned int time_slice;
4025	unsigned long flags;
4026	struct rq *rq;
4027	int retval;
4028	struct timespec t;
4029
4030	if (pid < 0)
4031		return -EINVAL;
4032
4033	retval = -ESRCH;
4034	rcu_read_lock();
4035	p = find_process_by_pid(pid);
4036	if (!p)
4037		goto out_unlock;
4038
4039	retval = security_task_getscheduler(p);
4040	if (retval)
4041		goto out_unlock;
4042
4043	rq = task_rq_lock(p, &flags);
4044	time_slice = p->sched_class->get_rr_interval(rq, p);
4045	task_rq_unlock(rq, p, &flags);
4046
4047	rcu_read_unlock();
4048	jiffies_to_timespec(time_slice, &t);
4049	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4050	return retval;
4051
4052out_unlock:
4053	rcu_read_unlock();
4054	return retval;
4055}
4056
4057static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4058
4059void sched_show_task(struct task_struct *p)
4060{
4061	unsigned long free = 0;
4062	int ppid;
4063	unsigned state;
4064
4065	state = p->state ? __ffs(p->state) + 1 : 0;
4066	printk(KERN_INFO "%-15.15s %c", p->comm,
4067		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4068#if BITS_PER_LONG == 32
4069	if (state == TASK_RUNNING)
4070		printk(KERN_CONT " running  ");
4071	else
4072		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4073#else
4074	if (state == TASK_RUNNING)
4075		printk(KERN_CONT "  running task    ");
4076	else
4077		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4078#endif
4079#ifdef CONFIG_DEBUG_STACK_USAGE
4080	free = stack_not_used(p);
4081#endif
4082	rcu_read_lock();
4083	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4084	rcu_read_unlock();
4085	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4086		task_pid_nr(p), ppid,
4087		(unsigned long)task_thread_info(p)->flags);
4088
4089	print_worker_info(KERN_INFO, p);
4090	show_stack(p, NULL);
4091}
4092
4093void show_state_filter(unsigned long state_filter)
4094{
4095	struct task_struct *g, *p;
4096
4097#if BITS_PER_LONG == 32
4098	printk(KERN_INFO
4099		"  task                PC stack   pid father\n");
4100#else
4101	printk(KERN_INFO
4102		"  task                        PC stack   pid father\n");
4103#endif
4104	rcu_read_lock();
4105	do_each_thread(g, p) {
4106		/*
4107		 * reset the NMI-timeout, listing all files on a slow
4108		 * console might take a lot of time:
4109		 */
4110		touch_nmi_watchdog();
4111		if (!state_filter || (p->state & state_filter))
4112			sched_show_task(p);
4113	} while_each_thread(g, p);
4114
4115	touch_all_softlockup_watchdogs();
4116
4117#ifdef CONFIG_SCHED_DEBUG
4118	sysrq_sched_debug_show();
4119#endif
4120	rcu_read_unlock();
4121	/*
4122	 * Only show locks if all tasks are dumped:
4123	 */
4124	if (!state_filter)
4125		debug_show_all_locks();
4126}
4127
4128void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4129{
4130	idle->sched_class = &idle_sched_class;
4131}
4132
4133/**
4134 * init_idle - set up an idle thread for a given CPU
4135 * @idle: task in question
4136 * @cpu: cpu the idle task belongs to
4137 *
4138 * NOTE: this function does not set the idle thread's NEED_RESCHED
4139 * flag, to make booting more robust.
4140 */
4141void __cpuinit init_idle(struct task_struct *idle, int cpu)
4142{
4143	struct rq *rq = cpu_rq(cpu);
4144	unsigned long flags;
4145
4146	raw_spin_lock_irqsave(&rq->lock, flags);
4147
4148	__sched_fork(idle);
4149	idle->state = TASK_RUNNING;
4150	idle->se.exec_start = sched_clock();
4151
4152	do_set_cpus_allowed(idle, cpumask_of(cpu));
4153	/*
4154	 * We're having a chicken and egg problem, even though we are
4155	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4156	 * lockdep check in task_group() will fail.
4157	 *
4158	 * Similar case to sched_fork(). / Alternatively we could
4159	 * use task_rq_lock() here and obtain the other rq->lock.
4160	 *
4161	 * Silence PROVE_RCU
4162	 */
4163	rcu_read_lock();
4164	__set_task_cpu(idle, cpu);
4165	rcu_read_unlock();
4166
4167	rq->curr = rq->idle = idle;
4168#if defined(CONFIG_SMP)
4169	idle->on_cpu = 1;
4170#endif
4171	raw_spin_unlock_irqrestore(&rq->lock, flags);
4172
4173	/* Set the preempt count _outside_ the spinlocks! */
4174	task_thread_info(idle)->preempt_count = 0;
4175
4176	/*
4177	 * The idle tasks have their own, simple scheduling class:
4178	 */
4179	idle->sched_class = &idle_sched_class;
4180	ftrace_graph_init_idle_task(idle, cpu);
4181	vtime_init_idle(idle);
4182#if defined(CONFIG_SMP)
4183	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4184#endif
4185}
4186
4187#ifdef CONFIG_SMP
4188void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4189{
4190	if (p->sched_class && p->sched_class->set_cpus_allowed)
4191		p->sched_class->set_cpus_allowed(p, new_mask);
4192
4193	cpumask_copy(&p->cpus_allowed, new_mask);
4194	p->nr_cpus_allowed = cpumask_weight(new_mask);
4195}
4196
4197/*
4198 * This is how migration works:
4199 *
4200 * 1) we invoke migration_cpu_stop() on the target CPU using
4201 *    stop_one_cpu().
4202 * 2) stopper starts to run (implicitly forcing the migrated thread
4203 *    off the CPU)
4204 * 3) it checks whether the migrated task is still in the wrong runqueue.
4205 * 4) if it's in the wrong runqueue then the migration thread removes
4206 *    it and puts it into the right queue.
4207 * 5) stopper completes and stop_one_cpu() returns and the migration
4208 *    is done.
4209 */
4210
4211/*
4212 * Change a given task's CPU affinity. Migrate the thread to a
4213 * proper CPU and schedule it away if the CPU it's executing on
4214 * is removed from the allowed bitmask.
4215 *
4216 * NOTE: the caller must have a valid reference to the task, the
4217 * task must not exit() & deallocate itself prematurely. The
4218 * call is not atomic; no spinlocks may be held.
4219 */
4220int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4221{
4222	unsigned long flags;
4223	struct rq *rq;
4224	unsigned int dest_cpu;
4225	int ret = 0;
4226
4227	rq = task_rq_lock(p, &flags);
4228
4229	if (cpumask_equal(&p->cpus_allowed, new_mask))
4230		goto out;
4231
4232	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4233		ret = -EINVAL;
4234		goto out;
4235	}
4236
4237	do_set_cpus_allowed(p, new_mask);
4238
4239	/* Can the task run on the task's current CPU? If so, we're done */
4240	if (cpumask_test_cpu(task_cpu(p), new_mask))
4241		goto out;
4242
4243	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4244	if (p->on_rq) {
4245		struct migration_arg arg = { p, dest_cpu };
4246		/* Need help from migration thread: drop lock and wait. */
4247		task_rq_unlock(rq, p, &flags);
4248		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4249		tlb_migrate_finish(p->mm);
4250		return 0;
4251	}
4252out:
4253	task_rq_unlock(rq, p, &flags);
4254
4255	return ret;
4256}
4257EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4258
4259/*
4260 * Move (not current) task off this cpu, onto dest cpu. We're doing
4261 * this because either it can't run here any more (set_cpus_allowed()
4262 * away from this CPU, or CPU going down), or because we're
4263 * attempting to rebalance this task on exec (sched_exec).
4264 *
4265 * So we race with normal scheduler movements, but that's OK, as long
4266 * as the task is no longer on this CPU.
4267 *
4268 * Returns non-zero if task was successfully migrated.
4269 */
4270static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4271{
4272	struct rq *rq_dest, *rq_src;
4273	int ret = 0;
4274
4275	if (unlikely(!cpu_active(dest_cpu)))
4276		return ret;
4277
4278	rq_src = cpu_rq(src_cpu);
4279	rq_dest = cpu_rq(dest_cpu);
4280
4281	raw_spin_lock(&p->pi_lock);
4282	double_rq_lock(rq_src, rq_dest);
4283	/* Already moved. */
4284	if (task_cpu(p) != src_cpu)
4285		goto done;
4286	/* Affinity changed (again). */
4287	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4288		goto fail;
4289
4290	/*
4291	 * If we're not on a rq, the next wake-up will ensure we're
4292	 * placed properly.
4293	 */
4294	if (p->on_rq) {
4295		dequeue_task(rq_src, p, 0);
4296		set_task_cpu(p, dest_cpu);
4297		enqueue_task(rq_dest, p, 0);
4298		check_preempt_curr(rq_dest, p, 0);
4299	}
4300done:
4301	ret = 1;
4302fail:
4303	double_rq_unlock(rq_src, rq_dest);
4304	raw_spin_unlock(&p->pi_lock);
4305	return ret;
4306}
4307
4308/*
4309 * migration_cpu_stop - this will be executed by a highprio stopper thread
4310 * and performs thread migration by bumping thread off CPU then
4311 * 'pushing' onto another runqueue.
4312 */
4313static int migration_cpu_stop(void *data)
4314{
4315	struct migration_arg *arg = data;
4316
4317	/*
4318	 * The original target cpu might have gone down and we might
4319	 * be on another cpu but it doesn't matter.
4320	 */
4321	local_irq_disable();
4322	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4323	local_irq_enable();
4324	return 0;
4325}
4326
4327#ifdef CONFIG_HOTPLUG_CPU
4328
4329/*
4330 * Ensures that the idle task is using init_mm right before its cpu goes
4331 * offline.
4332 */
4333void idle_task_exit(void)
4334{
4335	struct mm_struct *mm = current->active_mm;
4336
4337	BUG_ON(cpu_online(smp_processor_id()));
4338
4339	if (mm != &init_mm)
4340		switch_mm(mm, &init_mm, current);
4341	mmdrop(mm);
4342}
4343
4344/*
4345 * Since this CPU is going 'away' for a while, fold any nr_active delta
4346 * we might have. Assumes we're called after migrate_tasks() so that the
4347 * nr_active count is stable.
4348 *
4349 * Also see the comment "Global load-average calculations".
4350 */
4351static void calc_load_migrate(struct rq *rq)
4352{
4353	long delta = calc_load_fold_active(rq);
4354	if (delta)
4355		atomic_long_add(delta, &calc_load_tasks);
4356}
4357
4358/*
4359 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4360 * try_to_wake_up()->select_task_rq().
4361 *
4362 * Called with rq->lock held even though we'er in stop_machine() and
4363 * there's no concurrency possible, we hold the required locks anyway
4364 * because of lock validation efforts.
4365 */
4366static void migrate_tasks(unsigned int dead_cpu)
4367{
4368	struct rq *rq = cpu_rq(dead_cpu);
4369	struct task_struct *next, *stop = rq->stop;
4370	int dest_cpu;
4371
4372	/*
4373	 * Fudge the rq selection such that the below task selection loop
4374	 * doesn't get stuck on the currently eligible stop task.
4375	 *
4376	 * We're currently inside stop_machine() and the rq is either stuck
4377	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4378	 * either way we should never end up calling schedule() until we're
4379	 * done here.
4380	 */
4381	rq->stop = NULL;
4382
4383	/*
4384	 * put_prev_task() and pick_next_task() sched
4385	 * class method both need to have an up-to-date
4386	 * value of rq->clock[_task]
4387	 */
4388	update_rq_clock(rq);
4389
4390	for ( ; ; ) {
4391		/*
4392		 * There's this thread running, bail when that's the only
4393		 * remaining thread.
4394		 */
4395		if (rq->nr_running == 1)
4396			break;
4397
4398		next = pick_next_task(rq);
4399		BUG_ON(!next);
4400		next->sched_class->put_prev_task(rq, next);
4401
4402		/* Find suitable destination for @next, with force if needed. */
4403		dest_cpu = select_fallback_rq(dead_cpu, next);
4404		raw_spin_unlock(&rq->lock);
4405
4406		__migrate_task(next, dead_cpu, dest_cpu);
4407
4408		raw_spin_lock(&rq->lock);
4409	}
4410
4411	rq->stop = stop;
4412}
4413
4414#endif /* CONFIG_HOTPLUG_CPU */
4415
4416#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4417
4418static struct ctl_table sd_ctl_dir[] = {
4419	{
4420		.procname	= "sched_domain",
4421		.mode		= 0555,
4422	},
4423	{}
4424};
4425
4426static struct ctl_table sd_ctl_root[] = {
4427	{
4428		.procname	= "kernel",
4429		.mode		= 0555,
4430		.child		= sd_ctl_dir,
4431	},
4432	{}
4433};
4434
4435static struct ctl_table *sd_alloc_ctl_entry(int n)
4436{
4437	struct ctl_table *entry =
4438		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4439
4440	return entry;
4441}
4442
4443static void sd_free_ctl_entry(struct ctl_table **tablep)
4444{
4445	struct ctl_table *entry;
4446
4447	/*
4448	 * In the intermediate directories, both the child directory and
4449	 * procname are dynamically allocated and could fail but the mode
4450	 * will always be set. In the lowest directory the names are
4451	 * static strings and all have proc handlers.
4452	 */
4453	for (entry = *tablep; entry->mode; entry++) {
4454		if (entry->child)
4455			sd_free_ctl_entry(&entry->child);
4456		if (entry->proc_handler == NULL)
4457			kfree(entry->procname);
4458	}
4459
4460	kfree(*tablep);
4461	*tablep = NULL;
4462}
4463
4464static int min_load_idx = 0;
4465static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4466
4467static void
4468set_table_entry(struct ctl_table *entry,
4469		const char *procname, void *data, int maxlen,
4470		umode_t mode, proc_handler *proc_handler,
4471		bool load_idx)
4472{
4473	entry->procname = procname;
4474	entry->data = data;
4475	entry->maxlen = maxlen;
4476	entry->mode = mode;
4477	entry->proc_handler = proc_handler;
4478
4479	if (load_idx) {
4480		entry->extra1 = &min_load_idx;
4481		entry->extra2 = &max_load_idx;
4482	}
4483}
4484
4485static struct ctl_table *
4486sd_alloc_ctl_domain_table(struct sched_domain *sd)
4487{
4488	struct ctl_table *table = sd_alloc_ctl_entry(13);
4489
4490	if (table == NULL)
4491		return NULL;
4492
4493	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4494		sizeof(long), 0644, proc_doulongvec_minmax, false);
4495	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4496		sizeof(long), 0644, proc_doulongvec_minmax, false);
4497	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4498		sizeof(int), 0644, proc_dointvec_minmax, true);
4499	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4500		sizeof(int), 0644, proc_dointvec_minmax, true);
4501	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4502		sizeof(int), 0644, proc_dointvec_minmax, true);
4503	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4504		sizeof(int), 0644, proc_dointvec_minmax, true);
4505	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4506		sizeof(int), 0644, proc_dointvec_minmax, true);
4507	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4508		sizeof(int), 0644, proc_dointvec_minmax, false);
4509	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4510		sizeof(int), 0644, proc_dointvec_minmax, false);
4511	set_table_entry(&table[9], "cache_nice_tries",
4512		&sd->cache_nice_tries,
4513		sizeof(int), 0644, proc_dointvec_minmax, false);
4514	set_table_entry(&table[10], "flags", &sd->flags,
4515		sizeof(int), 0644, proc_dointvec_minmax, false);
4516	set_table_entry(&table[11], "name", sd->name,
4517		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4518	/* &table[12] is terminator */
4519
4520	return table;
4521}
4522
4523static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4524{
4525	struct ctl_table *entry, *table;
4526	struct sched_domain *sd;
4527	int domain_num = 0, i;
4528	char buf[32];
4529
4530	for_each_domain(cpu, sd)
4531		domain_num++;
4532	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4533	if (table == NULL)
4534		return NULL;
4535
4536	i = 0;
4537	for_each_domain(cpu, sd) {
4538		snprintf(buf, 32, "domain%d", i);
4539		entry->procname = kstrdup(buf, GFP_KERNEL);
4540		entry->mode = 0555;
4541		entry->child = sd_alloc_ctl_domain_table(sd);
4542		entry++;
4543		i++;
4544	}
4545	return table;
4546}
4547
4548static struct ctl_table_header *sd_sysctl_header;
4549static void register_sched_domain_sysctl(void)
4550{
4551	int i, cpu_num = num_possible_cpus();
4552	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4553	char buf[32];
4554
4555	WARN_ON(sd_ctl_dir[0].child);
4556	sd_ctl_dir[0].child = entry;
4557
4558	if (entry == NULL)
4559		return;
4560
4561	for_each_possible_cpu(i) {
4562		snprintf(buf, 32, "cpu%d", i);
4563		entry->procname = kstrdup(buf, GFP_KERNEL);
4564		entry->mode = 0555;
4565		entry->child = sd_alloc_ctl_cpu_table(i);
4566		entry++;
4567	}
4568
4569	WARN_ON(sd_sysctl_header);
4570	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4571}
4572
4573/* may be called multiple times per register */
4574static void unregister_sched_domain_sysctl(void)
4575{
4576	if (sd_sysctl_header)
4577		unregister_sysctl_table(sd_sysctl_header);
4578	sd_sysctl_header = NULL;
4579	if (sd_ctl_dir[0].child)
4580		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4581}
4582#else
4583static void register_sched_domain_sysctl(void)
4584{
4585}
4586static void unregister_sched_domain_sysctl(void)
4587{
4588}
4589#endif
4590
4591static void set_rq_online(struct rq *rq)
4592{
4593	if (!rq->online) {
4594		const struct sched_class *class;
4595
4596		cpumask_set_cpu(rq->cpu, rq->rd->online);
4597		rq->online = 1;
4598
4599		for_each_class(class) {
4600			if (class->rq_online)
4601				class->rq_online(rq);
4602		}
4603	}
4604}
4605
4606static void set_rq_offline(struct rq *rq)
4607{
4608	if (rq->online) {
4609		const struct sched_class *class;
4610
4611		for_each_class(class) {
4612			if (class->rq_offline)
4613				class->rq_offline(rq);
4614		}
4615
4616		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4617		rq->online = 0;
4618	}
4619}
4620
4621/*
4622 * migration_call - callback that gets triggered when a CPU is added.
4623 * Here we can start up the necessary migration thread for the new CPU.
4624 */
4625static int __cpuinit
4626migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4627{
4628	int cpu = (long)hcpu;
4629	unsigned long flags;
4630	struct rq *rq = cpu_rq(cpu);
4631
4632	switch (action & ~CPU_TASKS_FROZEN) {
4633
4634	case CPU_UP_PREPARE:
4635		rq->calc_load_update = calc_load_update;
4636		break;
4637
4638	case CPU_ONLINE:
4639		/* Update our root-domain */
4640		raw_spin_lock_irqsave(&rq->lock, flags);
4641		if (rq->rd) {
4642			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4643
4644			set_rq_online(rq);
4645		}
4646		raw_spin_unlock_irqrestore(&rq->lock, flags);
4647		break;
4648
4649#ifdef CONFIG_HOTPLUG_CPU
4650	case CPU_DYING:
4651		sched_ttwu_pending();
4652		/* Update our root-domain */
4653		raw_spin_lock_irqsave(&rq->lock, flags);
4654		if (rq->rd) {
4655			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4656			set_rq_offline(rq);
4657		}
4658		migrate_tasks(cpu);
4659		BUG_ON(rq->nr_running != 1); /* the migration thread */
4660		raw_spin_unlock_irqrestore(&rq->lock, flags);
4661		break;
4662
4663	case CPU_DEAD:
4664		calc_load_migrate(rq);
4665		break;
4666#endif
4667	}
4668
4669	update_max_interval();
4670
4671	return NOTIFY_OK;
4672}
4673
4674/*
4675 * Register at high priority so that task migration (migrate_all_tasks)
4676 * happens before everything else.  This has to be lower priority than
4677 * the notifier in the perf_event subsystem, though.
4678 */
4679static struct notifier_block __cpuinitdata migration_notifier = {
4680	.notifier_call = migration_call,
4681	.priority = CPU_PRI_MIGRATION,
4682};
4683
4684static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4685				      unsigned long action, void *hcpu)
4686{
4687	switch (action & ~CPU_TASKS_FROZEN) {
4688	case CPU_STARTING:
4689	case CPU_DOWN_FAILED:
4690		set_cpu_active((long)hcpu, true);
4691		return NOTIFY_OK;
4692	default:
4693		return NOTIFY_DONE;
4694	}
4695}
4696
4697static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4698					unsigned long action, void *hcpu)
4699{
4700	switch (action & ~CPU_TASKS_FROZEN) {
4701	case CPU_DOWN_PREPARE:
4702		set_cpu_active((long)hcpu, false);
4703		return NOTIFY_OK;
4704	default:
4705		return NOTIFY_DONE;
4706	}
4707}
4708
4709static int __init migration_init(void)
4710{
4711	void *cpu = (void *)(long)smp_processor_id();
4712	int err;
4713
4714	/* Initialize migration for the boot CPU */
4715	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4716	BUG_ON(err == NOTIFY_BAD);
4717	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4718	register_cpu_notifier(&migration_notifier);
4719
4720	/* Register cpu active notifiers */
4721	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4722	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4723
4724	return 0;
4725}
4726early_initcall(migration_init);
4727#endif
4728
4729#ifdef CONFIG_SMP
4730
4731static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4732
4733#ifdef CONFIG_SCHED_DEBUG
4734
4735static __read_mostly int sched_debug_enabled;
4736
4737static int __init sched_debug_setup(char *str)
4738{
4739	sched_debug_enabled = 1;
4740
4741	return 0;
4742}
4743early_param("sched_debug", sched_debug_setup);
4744
4745static inline bool sched_debug(void)
4746{
4747	return sched_debug_enabled;
4748}
4749
4750static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4751				  struct cpumask *groupmask)
4752{
4753	struct sched_group *group = sd->groups;
4754	char str[256];
4755
4756	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4757	cpumask_clear(groupmask);
4758
4759	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4760
4761	if (!(sd->flags & SD_LOAD_BALANCE)) {
4762		printk("does not load-balance\n");
4763		if (sd->parent)
4764			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4765					" has parent");
4766		return -1;
4767	}
4768
4769	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4770
4771	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4772		printk(KERN_ERR "ERROR: domain->span does not contain "
4773				"CPU%d\n", cpu);
4774	}
4775	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4776		printk(KERN_ERR "ERROR: domain->groups does not contain"
4777				" CPU%d\n", cpu);
4778	}
4779
4780	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4781	do {
4782		if (!group) {
4783			printk("\n");
4784			printk(KERN_ERR "ERROR: group is NULL\n");
4785			break;
4786		}
4787
4788		/*
4789		 * Even though we initialize ->power to something semi-sane,
4790		 * we leave power_orig unset. This allows us to detect if
4791		 * domain iteration is still funny without causing /0 traps.
4792		 */
4793		if (!group->sgp->power_orig) {
4794			printk(KERN_CONT "\n");
4795			printk(KERN_ERR "ERROR: domain->cpu_power not "
4796					"set\n");
4797			break;
4798		}
4799
4800		if (!cpumask_weight(sched_group_cpus(group))) {
4801			printk(KERN_CONT "\n");
4802			printk(KERN_ERR "ERROR: empty group\n");
4803			break;
4804		}
4805
4806		if (!(sd->flags & SD_OVERLAP) &&
4807		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4808			printk(KERN_CONT "\n");
4809			printk(KERN_ERR "ERROR: repeated CPUs\n");
4810			break;
4811		}
4812
4813		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4814
4815		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4816
4817		printk(KERN_CONT " %s", str);
4818		if (group->sgp->power != SCHED_POWER_SCALE) {
4819			printk(KERN_CONT " (cpu_power = %d)",
4820				group->sgp->power);
4821		}
4822
4823		group = group->next;
4824	} while (group != sd->groups);
4825	printk(KERN_CONT "\n");
4826
4827	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4828		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4829
4830	if (sd->parent &&
4831	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4832		printk(KERN_ERR "ERROR: parent span is not a superset "
4833			"of domain->span\n");
4834	return 0;
4835}
4836
4837static void sched_domain_debug(struct sched_domain *sd, int cpu)
4838{
4839	int level = 0;
4840
4841	if (!sched_debug_enabled)
4842		return;
4843
4844	if (!sd) {
4845		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4846		return;
4847	}
4848
4849	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4850
4851	for (;;) {
4852		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4853			break;
4854		level++;
4855		sd = sd->parent;
4856		if (!sd)
4857			break;
4858	}
4859}
4860#else /* !CONFIG_SCHED_DEBUG */
4861# define sched_domain_debug(sd, cpu) do { } while (0)
4862static inline bool sched_debug(void)
4863{
4864	return false;
4865}
4866#endif /* CONFIG_SCHED_DEBUG */
4867
4868static int sd_degenerate(struct sched_domain *sd)
4869{
4870	if (cpumask_weight(sched_domain_span(sd)) == 1)
4871		return 1;
4872
4873	/* Following flags need at least 2 groups */
4874	if (sd->flags & (SD_LOAD_BALANCE |
4875			 SD_BALANCE_NEWIDLE |
4876			 SD_BALANCE_FORK |
4877			 SD_BALANCE_EXEC |
4878			 SD_SHARE_CPUPOWER |
4879			 SD_SHARE_PKG_RESOURCES)) {
4880		if (sd->groups != sd->groups->next)
4881			return 0;
4882	}
4883
4884	/* Following flags don't use groups */
4885	if (sd->flags & (SD_WAKE_AFFINE))
4886		return 0;
4887
4888	return 1;
4889}
4890
4891static int
4892sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4893{
4894	unsigned long cflags = sd->flags, pflags = parent->flags;
4895
4896	if (sd_degenerate(parent))
4897		return 1;
4898
4899	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4900		return 0;
4901
4902	/* Flags needing groups don't count if only 1 group in parent */
4903	if (parent->groups == parent->groups->next) {
4904		pflags &= ~(SD_LOAD_BALANCE |
4905				SD_BALANCE_NEWIDLE |
4906				SD_BALANCE_FORK |
4907				SD_BALANCE_EXEC |
4908				SD_SHARE_CPUPOWER |
4909				SD_SHARE_PKG_RESOURCES);
4910		if (nr_node_ids == 1)
4911			pflags &= ~SD_SERIALIZE;
4912	}
4913	if (~cflags & pflags)
4914		return 0;
4915
4916	return 1;
4917}
4918
4919static void free_rootdomain(struct rcu_head *rcu)
4920{
4921	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4922
4923	cpupri_cleanup(&rd->cpupri);
4924	free_cpumask_var(rd->rto_mask);
4925	free_cpumask_var(rd->online);
4926	free_cpumask_var(rd->span);
4927	kfree(rd);
4928}
4929
4930static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4931{
4932	struct root_domain *old_rd = NULL;
4933	unsigned long flags;
4934
4935	raw_spin_lock_irqsave(&rq->lock, flags);
4936
4937	if (rq->rd) {
4938		old_rd = rq->rd;
4939
4940		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4941			set_rq_offline(rq);
4942
4943		cpumask_clear_cpu(rq->cpu, old_rd->span);
4944
4945		/*
4946		 * If we dont want to free the old_rt yet then
4947		 * set old_rd to NULL to skip the freeing later
4948		 * in this function:
4949		 */
4950		if (!atomic_dec_and_test(&old_rd->refcount))
4951			old_rd = NULL;
4952	}
4953
4954	atomic_inc(&rd->refcount);
4955	rq->rd = rd;
4956
4957	cpumask_set_cpu(rq->cpu, rd->span);
4958	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4959		set_rq_online(rq);
4960
4961	raw_spin_unlock_irqrestore(&rq->lock, flags);
4962
4963	if (old_rd)
4964		call_rcu_sched(&old_rd->rcu, free_rootdomain);
4965}
4966
4967static int init_rootdomain(struct root_domain *rd)
4968{
4969	memset(rd, 0, sizeof(*rd));
4970
4971	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4972		goto out;
4973	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4974		goto free_span;
4975	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4976		goto free_online;
4977
4978	if (cpupri_init(&rd->cpupri) != 0)
4979		goto free_rto_mask;
4980	return 0;
4981
4982free_rto_mask:
4983	free_cpumask_var(rd->rto_mask);
4984free_online:
4985	free_cpumask_var(rd->online);
4986free_span:
4987	free_cpumask_var(rd->span);
4988out:
4989	return -ENOMEM;
4990}
4991
4992/*
4993 * By default the system creates a single root-domain with all cpus as
4994 * members (mimicking the global state we have today).
4995 */
4996struct root_domain def_root_domain;
4997
4998static void init_defrootdomain(void)
4999{
5000	init_rootdomain(&def_root_domain);
5001
5002	atomic_set(&def_root_domain.refcount, 1);
5003}
5004
5005static struct root_domain *alloc_rootdomain(void)
5006{
5007	struct root_domain *rd;
5008
5009	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5010	if (!rd)
5011		return NULL;
5012
5013	if (init_rootdomain(rd) != 0) {
5014		kfree(rd);
5015		return NULL;
5016	}
5017
5018	return rd;
5019}
5020
5021static void free_sched_groups(struct sched_group *sg, int free_sgp)
5022{
5023	struct sched_group *tmp, *first;
5024
5025	if (!sg)
5026		return;
5027
5028	first = sg;
5029	do {
5030		tmp = sg->next;
5031
5032		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5033			kfree(sg->sgp);
5034
5035		kfree(sg);
5036		sg = tmp;
5037	} while (sg != first);
5038}
5039
5040static void free_sched_domain(struct rcu_head *rcu)
5041{
5042	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5043
5044	/*
5045	 * If its an overlapping domain it has private groups, iterate and
5046	 * nuke them all.
5047	 */
5048	if (sd->flags & SD_OVERLAP) {
5049		free_sched_groups(sd->groups, 1);
5050	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5051		kfree(sd->groups->sgp);
5052		kfree(sd->groups);
5053	}
5054	kfree(sd);
5055}
5056
5057static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5058{
5059	call_rcu(&sd->rcu, free_sched_domain);
5060}
5061
5062static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5063{
5064	for (; sd; sd = sd->parent)
5065		destroy_sched_domain(sd, cpu);
5066}
5067
5068/*
5069 * Keep a special pointer to the highest sched_domain that has
5070 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5071 * allows us to avoid some pointer chasing select_idle_sibling().
5072 *
5073 * Also keep a unique ID per domain (we use the first cpu number in
5074 * the cpumask of the domain), this allows us to quickly tell if
5075 * two cpus are in the same cache domain, see cpus_share_cache().
5076 */
5077DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5078DEFINE_PER_CPU(int, sd_llc_id);
5079
5080static void update_top_cache_domain(int cpu)
5081{
5082	struct sched_domain *sd;
5083	int id = cpu;
5084
5085	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5086	if (sd)
5087		id = cpumask_first(sched_domain_span(sd));
5088
5089	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5090	per_cpu(sd_llc_id, cpu) = id;
5091}
5092
5093/*
5094 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5095 * hold the hotplug lock.
5096 */
5097static void
5098cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5099{
5100	struct rq *rq = cpu_rq(cpu);
5101	struct sched_domain *tmp;
5102
5103	/* Remove the sched domains which do not contribute to scheduling. */
5104	for (tmp = sd; tmp; ) {
5105		struct sched_domain *parent = tmp->parent;
5106		if (!parent)
5107			break;
5108
5109		if (sd_parent_degenerate(tmp, parent)) {
5110			tmp->parent = parent->parent;
5111			if (parent->parent)
5112				parent->parent->child = tmp;
5113			destroy_sched_domain(parent, cpu);
5114		} else
5115			tmp = tmp->parent;
5116	}
5117
5118	if (sd && sd_degenerate(sd)) {
5119		tmp = sd;
5120		sd = sd->parent;
5121		destroy_sched_domain(tmp, cpu);
5122		if (sd)
5123			sd->child = NULL;
5124	}
5125
5126	sched_domain_debug(sd, cpu);
5127
5128	rq_attach_root(rq, rd);
5129	tmp = rq->sd;
5130	rcu_assign_pointer(rq->sd, sd);
5131	destroy_sched_domains(tmp, cpu);
5132
5133	update_top_cache_domain(cpu);
5134}
5135
5136/* cpus with isolated domains */
5137static cpumask_var_t cpu_isolated_map;
5138
5139/* Setup the mask of cpus configured for isolated domains */
5140static int __init isolated_cpu_setup(char *str)
5141{
5142	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5143	cpulist_parse(str, cpu_isolated_map);
5144	return 1;
5145}
5146
5147__setup("isolcpus=", isolated_cpu_setup);
5148
5149static const struct cpumask *cpu_cpu_mask(int cpu)
5150{
5151	return cpumask_of_node(cpu_to_node(cpu));
5152}
5153
5154struct sd_data {
5155	struct sched_domain **__percpu sd;
5156	struct sched_group **__percpu sg;
5157	struct sched_group_power **__percpu sgp;
5158};
5159
5160struct s_data {
5161	struct sched_domain ** __percpu sd;
5162	struct root_domain	*rd;
5163};
5164
5165enum s_alloc {
5166	sa_rootdomain,
5167	sa_sd,
5168	sa_sd_storage,
5169	sa_none,
5170};
5171
5172struct sched_domain_topology_level;
5173
5174typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5175typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5176
5177#define SDTL_OVERLAP	0x01
5178
5179struct sched_domain_topology_level {
5180	sched_domain_init_f init;
5181	sched_domain_mask_f mask;
5182	int		    flags;
5183	int		    numa_level;
5184	struct sd_data      data;
5185};
5186
5187/*
5188 * Build an iteration mask that can exclude certain CPUs from the upwards
5189 * domain traversal.
5190 *
5191 * Asymmetric node setups can result in situations where the domain tree is of
5192 * unequal depth, make sure to skip domains that already cover the entire
5193 * range.
5194 *
5195 * In that case build_sched_domains() will have terminated the iteration early
5196 * and our sibling sd spans will be empty. Domains should always include the
5197 * cpu they're built on, so check that.
5198 *
5199 */
5200static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5201{
5202	const struct cpumask *span = sched_domain_span(sd);
5203	struct sd_data *sdd = sd->private;
5204	struct sched_domain *sibling;
5205	int i;
5206
5207	for_each_cpu(i, span) {
5208		sibling = *per_cpu_ptr(sdd->sd, i);
5209		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5210			continue;
5211
5212		cpumask_set_cpu(i, sched_group_mask(sg));
5213	}
5214}
5215
5216/*
5217 * Return the canonical balance cpu for this group, this is the first cpu
5218 * of this group that's also in the iteration mask.
5219 */
5220int group_balance_cpu(struct sched_group *sg)
5221{
5222	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5223}
5224
5225static int
5226build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5227{
5228	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5229	const struct cpumask *span = sched_domain_span(sd);
5230	struct cpumask *covered = sched_domains_tmpmask;
5231	struct sd_data *sdd = sd->private;
5232	struct sched_domain *child;
5233	int i;
5234
5235	cpumask_clear(covered);
5236
5237	for_each_cpu(i, span) {
5238		struct cpumask *sg_span;
5239
5240		if (cpumask_test_cpu(i, covered))
5241			continue;
5242
5243		child = *per_cpu_ptr(sdd->sd, i);
5244
5245		/* See the comment near build_group_mask(). */
5246		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5247			continue;
5248
5249		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5250				GFP_KERNEL, cpu_to_node(cpu));
5251
5252		if (!sg)
5253			goto fail;
5254
5255		sg_span = sched_group_cpus(sg);
5256		if (child->child) {
5257			child = child->child;
5258			cpumask_copy(sg_span, sched_domain_span(child));
5259		} else
5260			cpumask_set_cpu(i, sg_span);
5261
5262		cpumask_or(covered, covered, sg_span);
5263
5264		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5265		if (atomic_inc_return(&sg->sgp->ref) == 1)
5266			build_group_mask(sd, sg);
5267
5268		/*
5269		 * Initialize sgp->power such that even if we mess up the
5270		 * domains and no possible iteration will get us here, we won't
5271		 * die on a /0 trap.
5272		 */
5273		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5274
5275		/*
5276		 * Make sure the first group of this domain contains the
5277		 * canonical balance cpu. Otherwise the sched_domain iteration
5278		 * breaks. See update_sg_lb_stats().
5279		 */
5280		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5281		    group_balance_cpu(sg) == cpu)
5282			groups = sg;
5283
5284		if (!first)
5285			first = sg;
5286		if (last)
5287			last->next = sg;
5288		last = sg;
5289		last->next = first;
5290	}
5291	sd->groups = groups;
5292
5293	return 0;
5294
5295fail:
5296	free_sched_groups(first, 0);
5297
5298	return -ENOMEM;
5299}
5300
5301static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5302{
5303	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5304	struct sched_domain *child = sd->child;
5305
5306	if (child)
5307		cpu = cpumask_first(sched_domain_span(child));
5308
5309	if (sg) {
5310		*sg = *per_cpu_ptr(sdd->sg, cpu);
5311		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5312		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5313	}
5314
5315	return cpu;
5316}
5317
5318/*
5319 * build_sched_groups will build a circular linked list of the groups
5320 * covered by the given span, and will set each group's ->cpumask correctly,
5321 * and ->cpu_power to 0.
5322 *
5323 * Assumes the sched_domain tree is fully constructed
5324 */
5325static int
5326build_sched_groups(struct sched_domain *sd, int cpu)
5327{
5328	struct sched_group *first = NULL, *last = NULL;
5329	struct sd_data *sdd = sd->private;
5330	const struct cpumask *span = sched_domain_span(sd);
5331	struct cpumask *covered;
5332	int i;
5333
5334	get_group(cpu, sdd, &sd->groups);
5335	atomic_inc(&sd->groups->ref);
5336
5337	if (cpu != cpumask_first(sched_domain_span(sd)))
5338		return 0;
5339
5340	lockdep_assert_held(&sched_domains_mutex);
5341	covered = sched_domains_tmpmask;
5342
5343	cpumask_clear(covered);
5344
5345	for_each_cpu(i, span) {
5346		struct sched_group *sg;
5347		int group = get_group(i, sdd, &sg);
5348		int j;
5349
5350		if (cpumask_test_cpu(i, covered))
5351			continue;
5352
5353		cpumask_clear(sched_group_cpus(sg));
5354		sg->sgp->power = 0;
5355		cpumask_setall(sched_group_mask(sg));
5356
5357		for_each_cpu(j, span) {
5358			if (get_group(j, sdd, NULL) != group)
5359				continue;
5360
5361			cpumask_set_cpu(j, covered);
5362			cpumask_set_cpu(j, sched_group_cpus(sg));
5363		}
5364
5365		if (!first)
5366			first = sg;
5367		if (last)
5368			last->next = sg;
5369		last = sg;
5370	}
5371	last->next = first;
5372
5373	return 0;
5374}
5375
5376/*
5377 * Initialize sched groups cpu_power.
5378 *
5379 * cpu_power indicates the capacity of sched group, which is used while
5380 * distributing the load between different sched groups in a sched domain.
5381 * Typically cpu_power for all the groups in a sched domain will be same unless
5382 * there are asymmetries in the topology. If there are asymmetries, group
5383 * having more cpu_power will pickup more load compared to the group having
5384 * less cpu_power.
5385 */
5386static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5387{
5388	struct sched_group *sg = sd->groups;
5389
5390	WARN_ON(!sd || !sg);
5391
5392	do {
5393		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5394		sg = sg->next;
5395	} while (sg != sd->groups);
5396
5397	if (cpu != group_balance_cpu(sg))
5398		return;
5399
5400	update_group_power(sd, cpu);
5401	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5402}
5403
5404int __weak arch_sd_sibling_asym_packing(void)
5405{
5406       return 0*SD_ASYM_PACKING;
5407}
5408
5409/*
5410 * Initializers for schedule domains
5411 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5412 */
5413
5414#ifdef CONFIG_SCHED_DEBUG
5415# define SD_INIT_NAME(sd, type)		sd->name = #type
5416#else
5417# define SD_INIT_NAME(sd, type)		do { } while (0)
5418#endif
5419
5420#define SD_INIT_FUNC(type)						\
5421static noinline struct sched_domain *					\
5422sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5423{									\
5424	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5425	*sd = SD_##type##_INIT;						\
5426	SD_INIT_NAME(sd, type);						\
5427	sd->private = &tl->data;					\
5428	return sd;							\
5429}
5430
5431SD_INIT_FUNC(CPU)
5432#ifdef CONFIG_SCHED_SMT
5433 SD_INIT_FUNC(SIBLING)
5434#endif
5435#ifdef CONFIG_SCHED_MC
5436 SD_INIT_FUNC(MC)
5437#endif
5438#ifdef CONFIG_SCHED_BOOK
5439 SD_INIT_FUNC(BOOK)
5440#endif
5441
5442static int default_relax_domain_level = -1;
5443int sched_domain_level_max;
5444
5445static int __init setup_relax_domain_level(char *str)
5446{
5447	if (kstrtoint(str, 0, &default_relax_domain_level))
5448		pr_warn("Unable to set relax_domain_level\n");
5449
5450	return 1;
5451}
5452__setup("relax_domain_level=", setup_relax_domain_level);
5453
5454static void set_domain_attribute(struct sched_domain *sd,
5455				 struct sched_domain_attr *attr)
5456{
5457	int request;
5458
5459	if (!attr || attr->relax_domain_level < 0) {
5460		if (default_relax_domain_level < 0)
5461			return;
5462		else
5463			request = default_relax_domain_level;
5464	} else
5465		request = attr->relax_domain_level;
5466	if (request < sd->level) {
5467		/* turn off idle balance on this domain */
5468		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5469	} else {
5470		/* turn on idle balance on this domain */
5471		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5472	}
5473}
5474
5475static void __sdt_free(const struct cpumask *cpu_map);
5476static int __sdt_alloc(const struct cpumask *cpu_map);
5477
5478static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5479				 const struct cpumask *cpu_map)
5480{
5481	switch (what) {
5482	case sa_rootdomain:
5483		if (!atomic_read(&d->rd->refcount))
5484			free_rootdomain(&d->rd->rcu); /* fall through */
5485	case sa_sd:
5486		free_percpu(d->sd); /* fall through */
5487	case sa_sd_storage:
5488		__sdt_free(cpu_map); /* fall through */
5489	case sa_none:
5490		break;
5491	}
5492}
5493
5494static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5495						   const struct cpumask *cpu_map)
5496{
5497	memset(d, 0, sizeof(*d));
5498
5499	if (__sdt_alloc(cpu_map))
5500		return sa_sd_storage;
5501	d->sd = alloc_percpu(struct sched_domain *);
5502	if (!d->sd)
5503		return sa_sd_storage;
5504	d->rd = alloc_rootdomain();
5505	if (!d->rd)
5506		return sa_sd;
5507	return sa_rootdomain;
5508}
5509
5510/*
5511 * NULL the sd_data elements we've used to build the sched_domain and
5512 * sched_group structure so that the subsequent __free_domain_allocs()
5513 * will not free the data we're using.
5514 */
5515static void claim_allocations(int cpu, struct sched_domain *sd)
5516{
5517	struct sd_data *sdd = sd->private;
5518
5519	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5520	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5521
5522	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5523		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5524
5525	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5526		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5527}
5528
5529#ifdef CONFIG_SCHED_SMT
5530static const struct cpumask *cpu_smt_mask(int cpu)
5531{
5532	return topology_thread_cpumask(cpu);
5533}
5534#endif
5535
5536/*
5537 * Topology list, bottom-up.
5538 */
5539static struct sched_domain_topology_level default_topology[] = {
5540#ifdef CONFIG_SCHED_SMT
5541	{ sd_init_SIBLING, cpu_smt_mask, },
5542#endif
5543#ifdef CONFIG_SCHED_MC
5544	{ sd_init_MC, cpu_coregroup_mask, },
5545#endif
5546#ifdef CONFIG_SCHED_BOOK
5547	{ sd_init_BOOK, cpu_book_mask, },
5548#endif
5549	{ sd_init_CPU, cpu_cpu_mask, },
5550	{ NULL, },
5551};
5552
5553static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5554
5555#ifdef CONFIG_NUMA
5556
5557static int sched_domains_numa_levels;
5558static int *sched_domains_numa_distance;
5559static struct cpumask ***sched_domains_numa_masks;
5560static int sched_domains_curr_level;
5561
5562static inline int sd_local_flags(int level)
5563{
5564	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5565		return 0;
5566
5567	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5568}
5569
5570static struct sched_domain *
5571sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5572{
5573	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5574	int level = tl->numa_level;
5575	int sd_weight = cpumask_weight(
5576			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5577
5578	*sd = (struct sched_domain){
5579		.min_interval		= sd_weight,
5580		.max_interval		= 2*sd_weight,
5581		.busy_factor		= 32,
5582		.imbalance_pct		= 125,
5583		.cache_nice_tries	= 2,
5584		.busy_idx		= 3,
5585		.idle_idx		= 2,
5586		.newidle_idx		= 0,
5587		.wake_idx		= 0,
5588		.forkexec_idx		= 0,
5589
5590		.flags			= 1*SD_LOAD_BALANCE
5591					| 1*SD_BALANCE_NEWIDLE
5592					| 0*SD_BALANCE_EXEC
5593					| 0*SD_BALANCE_FORK
5594					| 0*SD_BALANCE_WAKE
5595					| 0*SD_WAKE_AFFINE
5596					| 0*SD_SHARE_CPUPOWER
5597					| 0*SD_SHARE_PKG_RESOURCES
5598					| 1*SD_SERIALIZE
5599					| 0*SD_PREFER_SIBLING
5600					| sd_local_flags(level)
5601					,
5602		.last_balance		= jiffies,
5603		.balance_interval	= sd_weight,
5604	};
5605	SD_INIT_NAME(sd, NUMA);
5606	sd->private = &tl->data;
5607
5608	/*
5609	 * Ugly hack to pass state to sd_numa_mask()...
5610	 */
5611	sched_domains_curr_level = tl->numa_level;
5612
5613	return sd;
5614}
5615
5616static const struct cpumask *sd_numa_mask(int cpu)
5617{
5618	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5619}
5620
5621static void sched_numa_warn(const char *str)
5622{
5623	static int done = false;
5624	int i,j;
5625
5626	if (done)
5627		return;
5628
5629	done = true;
5630
5631	printk(KERN_WARNING "ERROR: %s\n\n", str);
5632
5633	for (i = 0; i < nr_node_ids; i++) {
5634		printk(KERN_WARNING "  ");
5635		for (j = 0; j < nr_node_ids; j++)
5636			printk(KERN_CONT "%02d ", node_distance(i,j));
5637		printk(KERN_CONT "\n");
5638	}
5639	printk(KERN_WARNING "\n");
5640}
5641
5642static bool find_numa_distance(int distance)
5643{
5644	int i;
5645
5646	if (distance == node_distance(0, 0))
5647		return true;
5648
5649	for (i = 0; i < sched_domains_numa_levels; i++) {
5650		if (sched_domains_numa_distance[i] == distance)
5651			return true;
5652	}
5653
5654	return false;
5655}
5656
5657static void sched_init_numa(void)
5658{
5659	int next_distance, curr_distance = node_distance(0, 0);
5660	struct sched_domain_topology_level *tl;
5661	int level = 0;
5662	int i, j, k;
5663
5664	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5665	if (!sched_domains_numa_distance)
5666		return;
5667
5668	/*
5669	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5670	 * unique distances in the node_distance() table.
5671	 *
5672	 * Assumes node_distance(0,j) includes all distances in
5673	 * node_distance(i,j) in order to avoid cubic time.
5674	 */
5675	next_distance = curr_distance;
5676	for (i = 0; i < nr_node_ids; i++) {
5677		for (j = 0; j < nr_node_ids; j++) {
5678			for (k = 0; k < nr_node_ids; k++) {
5679				int distance = node_distance(i, k);
5680
5681				if (distance > curr_distance &&
5682				    (distance < next_distance ||
5683				     next_distance == curr_distance))
5684					next_distance = distance;
5685
5686				/*
5687				 * While not a strong assumption it would be nice to know
5688				 * about cases where if node A is connected to B, B is not
5689				 * equally connected to A.
5690				 */
5691				if (sched_debug() && node_distance(k, i) != distance)
5692					sched_numa_warn("Node-distance not symmetric");
5693
5694				if (sched_debug() && i && !find_numa_distance(distance))
5695					sched_numa_warn("Node-0 not representative");
5696			}
5697			if (next_distance != curr_distance) {
5698				sched_domains_numa_distance[level++] = next_distance;
5699				sched_domains_numa_levels = level;
5700				curr_distance = next_distance;
5701			} else break;
5702		}
5703
5704		/*
5705		 * In case of sched_debug() we verify the above assumption.
5706		 */
5707		if (!sched_debug())
5708			break;
5709	}
5710	/*
5711	 * 'level' contains the number of unique distances, excluding the
5712	 * identity distance node_distance(i,i).
5713	 *
5714	 * The sched_domains_numa_distance[] array includes the actual distance
5715	 * numbers.
5716	 */
5717
5718	/*
5719	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5720	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5721	 * the array will contain less then 'level' members. This could be
5722	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5723	 * in other functions.
5724	 *
5725	 * We reset it to 'level' at the end of this function.
5726	 */
5727	sched_domains_numa_levels = 0;
5728
5729	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5730	if (!sched_domains_numa_masks)
5731		return;
5732
5733	/*
5734	 * Now for each level, construct a mask per node which contains all
5735	 * cpus of nodes that are that many hops away from us.
5736	 */
5737	for (i = 0; i < level; i++) {
5738		sched_domains_numa_masks[i] =
5739			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5740		if (!sched_domains_numa_masks[i])
5741			return;
5742
5743		for (j = 0; j < nr_node_ids; j++) {
5744			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5745			if (!mask)
5746				return;
5747
5748			sched_domains_numa_masks[i][j] = mask;
5749
5750			for (k = 0; k < nr_node_ids; k++) {
5751				if (node_distance(j, k) > sched_domains_numa_distance[i])
5752					continue;
5753
5754				cpumask_or(mask, mask, cpumask_of_node(k));
5755			}
5756		}
5757	}
5758
5759	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5760			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5761	if (!tl)
5762		return;
5763
5764	/*
5765	 * Copy the default topology bits..
5766	 */
5767	for (i = 0; default_topology[i].init; i++)
5768		tl[i] = default_topology[i];
5769
5770	/*
5771	 * .. and append 'j' levels of NUMA goodness.
5772	 */
5773	for (j = 0; j < level; i++, j++) {
5774		tl[i] = (struct sched_domain_topology_level){
5775			.init = sd_numa_init,
5776			.mask = sd_numa_mask,
5777			.flags = SDTL_OVERLAP,
5778			.numa_level = j,
5779		};
5780	}
5781
5782	sched_domain_topology = tl;
5783
5784	sched_domains_numa_levels = level;
5785}
5786
5787static void sched_domains_numa_masks_set(int cpu)
5788{
5789	int i, j;
5790	int node = cpu_to_node(cpu);
5791
5792	for (i = 0; i < sched_domains_numa_levels; i++) {
5793		for (j = 0; j < nr_node_ids; j++) {
5794			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5795				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5796		}
5797	}
5798}
5799
5800static void sched_domains_numa_masks_clear(int cpu)
5801{
5802	int i, j;
5803	for (i = 0; i < sched_domains_numa_levels; i++) {
5804		for (j = 0; j < nr_node_ids; j++)
5805			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5806	}
5807}
5808
5809/*
5810 * Update sched_domains_numa_masks[level][node] array when new cpus
5811 * are onlined.
5812 */
5813static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5814					   unsigned long action,
5815					   void *hcpu)
5816{
5817	int cpu = (long)hcpu;
5818
5819	switch (action & ~CPU_TASKS_FROZEN) {
5820	case CPU_ONLINE:
5821		sched_domains_numa_masks_set(cpu);
5822		break;
5823
5824	case CPU_DEAD:
5825		sched_domains_numa_masks_clear(cpu);
5826		break;
5827
5828	default:
5829		return NOTIFY_DONE;
5830	}
5831
5832	return NOTIFY_OK;
5833}
5834#else
5835static inline void sched_init_numa(void)
5836{
5837}
5838
5839static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5840					   unsigned long action,
5841					   void *hcpu)
5842{
5843	return 0;
5844}
5845#endif /* CONFIG_NUMA */
5846
5847static int __sdt_alloc(const struct cpumask *cpu_map)
5848{
5849	struct sched_domain_topology_level *tl;
5850	int j;
5851
5852	for (tl = sched_domain_topology; tl->init; tl++) {
5853		struct sd_data *sdd = &tl->data;
5854
5855		sdd->sd = alloc_percpu(struct sched_domain *);
5856		if (!sdd->sd)
5857			return -ENOMEM;
5858
5859		sdd->sg = alloc_percpu(struct sched_group *);
5860		if (!sdd->sg)
5861			return -ENOMEM;
5862
5863		sdd->sgp = alloc_percpu(struct sched_group_power *);
5864		if (!sdd->sgp)
5865			return -ENOMEM;
5866
5867		for_each_cpu(j, cpu_map) {
5868			struct sched_domain *sd;
5869			struct sched_group *sg;
5870			struct sched_group_power *sgp;
5871
5872		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5873					GFP_KERNEL, cpu_to_node(j));
5874			if (!sd)
5875				return -ENOMEM;
5876
5877			*per_cpu_ptr(sdd->sd, j) = sd;
5878
5879			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5880					GFP_KERNEL, cpu_to_node(j));
5881			if (!sg)
5882				return -ENOMEM;
5883
5884			sg->next = sg;
5885
5886			*per_cpu_ptr(sdd->sg, j) = sg;
5887
5888			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5889					GFP_KERNEL, cpu_to_node(j));
5890			if (!sgp)
5891				return -ENOMEM;
5892
5893			*per_cpu_ptr(sdd->sgp, j) = sgp;
5894		}
5895	}
5896
5897	return 0;
5898}
5899
5900static void __sdt_free(const struct cpumask *cpu_map)
5901{
5902	struct sched_domain_topology_level *tl;
5903	int j;
5904
5905	for (tl = sched_domain_topology; tl->init; tl++) {
5906		struct sd_data *sdd = &tl->data;
5907
5908		for_each_cpu(j, cpu_map) {
5909			struct sched_domain *sd;
5910
5911			if (sdd->sd) {
5912				sd = *per_cpu_ptr(sdd->sd, j);
5913				if (sd && (sd->flags & SD_OVERLAP))
5914					free_sched_groups(sd->groups, 0);
5915				kfree(*per_cpu_ptr(sdd->sd, j));
5916			}
5917
5918			if (sdd->sg)
5919				kfree(*per_cpu_ptr(sdd->sg, j));
5920			if (sdd->sgp)
5921				kfree(*per_cpu_ptr(sdd->sgp, j));
5922		}
5923		free_percpu(sdd->sd);
5924		sdd->sd = NULL;
5925		free_percpu(sdd->sg);
5926		sdd->sg = NULL;
5927		free_percpu(sdd->sgp);
5928		sdd->sgp = NULL;
5929	}
5930}
5931
5932struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5933		struct s_data *d, const struct cpumask *cpu_map,
5934		struct sched_domain_attr *attr, struct sched_domain *child,
5935		int cpu)
5936{
5937	struct sched_domain *sd = tl->init(tl, cpu);
5938	if (!sd)
5939		return child;
5940
5941	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5942	if (child) {
5943		sd->level = child->level + 1;
5944		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5945		child->parent = sd;
5946	}
5947	sd->child = child;
5948	set_domain_attribute(sd, attr);
5949
5950	return sd;
5951}
5952
5953/*
5954 * Build sched domains for a given set of cpus and attach the sched domains
5955 * to the individual cpus
5956 */
5957static int build_sched_domains(const struct cpumask *cpu_map,
5958			       struct sched_domain_attr *attr)
5959{
5960	enum s_alloc alloc_state = sa_none;
5961	struct sched_domain *sd;
5962	struct s_data d;
5963	int i, ret = -ENOMEM;
5964
5965	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5966	if (alloc_state != sa_rootdomain)
5967		goto error;
5968
5969	/* Set up domains for cpus specified by the cpu_map. */
5970	for_each_cpu(i, cpu_map) {
5971		struct sched_domain_topology_level *tl;
5972
5973		sd = NULL;
5974		for (tl = sched_domain_topology; tl->init; tl++) {
5975			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
5976			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5977				sd->flags |= SD_OVERLAP;
5978			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5979				break;
5980		}
5981
5982		while (sd->child)
5983			sd = sd->child;
5984
5985		*per_cpu_ptr(d.sd, i) = sd;
5986	}
5987
5988	/* Build the groups for the domains */
5989	for_each_cpu(i, cpu_map) {
5990		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5991			sd->span_weight = cpumask_weight(sched_domain_span(sd));
5992			if (sd->flags & SD_OVERLAP) {
5993				if (build_overlap_sched_groups(sd, i))
5994					goto error;
5995			} else {
5996				if (build_sched_groups(sd, i))
5997					goto error;
5998			}
5999		}
6000	}
6001
6002	/* Calculate CPU power for physical packages and nodes */
6003	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6004		if (!cpumask_test_cpu(i, cpu_map))
6005			continue;
6006
6007		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6008			claim_allocations(i, sd);
6009			init_sched_groups_power(i, sd);
6010		}
6011	}
6012
6013	/* Attach the domains */
6014	rcu_read_lock();
6015	for_each_cpu(i, cpu_map) {
6016		sd = *per_cpu_ptr(d.sd, i);
6017		cpu_attach_domain(sd, d.rd, i);
6018	}
6019	rcu_read_unlock();
6020
6021	ret = 0;
6022error:
6023	__free_domain_allocs(&d, alloc_state, cpu_map);
6024	return ret;
6025}
6026
6027static cpumask_var_t *doms_cur;	/* current sched domains */
6028static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6029static struct sched_domain_attr *dattr_cur;
6030				/* attribues of custom domains in 'doms_cur' */
6031
6032/*
6033 * Special case: If a kmalloc of a doms_cur partition (array of
6034 * cpumask) fails, then fallback to a single sched domain,
6035 * as determined by the single cpumask fallback_doms.
6036 */
6037static cpumask_var_t fallback_doms;
6038
6039/*
6040 * arch_update_cpu_topology lets virtualized architectures update the
6041 * cpu core maps. It is supposed to return 1 if the topology changed
6042 * or 0 if it stayed the same.
6043 */
6044int __attribute__((weak)) arch_update_cpu_topology(void)
6045{
6046	return 0;
6047}
6048
6049cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6050{
6051	int i;
6052	cpumask_var_t *doms;
6053
6054	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6055	if (!doms)
6056		return NULL;
6057	for (i = 0; i < ndoms; i++) {
6058		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6059			free_sched_domains(doms, i);
6060			return NULL;
6061		}
6062	}
6063	return doms;
6064}
6065
6066void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6067{
6068	unsigned int i;
6069	for (i = 0; i < ndoms; i++)
6070		free_cpumask_var(doms[i]);
6071	kfree(doms);
6072}
6073
6074/*
6075 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6076 * For now this just excludes isolated cpus, but could be used to
6077 * exclude other special cases in the future.
6078 */
6079static int init_sched_domains(const struct cpumask *cpu_map)
6080{
6081	int err;
6082
6083	arch_update_cpu_topology();
6084	ndoms_cur = 1;
6085	doms_cur = alloc_sched_domains(ndoms_cur);
6086	if (!doms_cur)
6087		doms_cur = &fallback_doms;
6088	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6089	err = build_sched_domains(doms_cur[0], NULL);
6090	register_sched_domain_sysctl();
6091
6092	return err;
6093}
6094
6095/*
6096 * Detach sched domains from a group of cpus specified in cpu_map
6097 * These cpus will now be attached to the NULL domain
6098 */
6099static void detach_destroy_domains(const struct cpumask *cpu_map)
6100{
6101	int i;
6102
6103	rcu_read_lock();
6104	for_each_cpu(i, cpu_map)
6105		cpu_attach_domain(NULL, &def_root_domain, i);
6106	rcu_read_unlock();
6107}
6108
6109/* handle null as "default" */
6110static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6111			struct sched_domain_attr *new, int idx_new)
6112{
6113	struct sched_domain_attr tmp;
6114
6115	/* fast path */
6116	if (!new && !cur)
6117		return 1;
6118
6119	tmp = SD_ATTR_INIT;
6120	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6121			new ? (new + idx_new) : &tmp,
6122			sizeof(struct sched_domain_attr));
6123}
6124
6125/*
6126 * Partition sched domains as specified by the 'ndoms_new'
6127 * cpumasks in the array doms_new[] of cpumasks. This compares
6128 * doms_new[] to the current sched domain partitioning, doms_cur[].
6129 * It destroys each deleted domain and builds each new domain.
6130 *
6131 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6132 * The masks don't intersect (don't overlap.) We should setup one
6133 * sched domain for each mask. CPUs not in any of the cpumasks will
6134 * not be load balanced. If the same cpumask appears both in the
6135 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6136 * it as it is.
6137 *
6138 * The passed in 'doms_new' should be allocated using
6139 * alloc_sched_domains.  This routine takes ownership of it and will
6140 * free_sched_domains it when done with it. If the caller failed the
6141 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6142 * and partition_sched_domains() will fallback to the single partition
6143 * 'fallback_doms', it also forces the domains to be rebuilt.
6144 *
6145 * If doms_new == NULL it will be replaced with cpu_online_mask.
6146 * ndoms_new == 0 is a special case for destroying existing domains,
6147 * and it will not create the default domain.
6148 *
6149 * Call with hotplug lock held
6150 */
6151void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6152			     struct sched_domain_attr *dattr_new)
6153{
6154	int i, j, n;
6155	int new_topology;
6156
6157	mutex_lock(&sched_domains_mutex);
6158
6159	/* always unregister in case we don't destroy any domains */
6160	unregister_sched_domain_sysctl();
6161
6162	/* Let architecture update cpu core mappings. */
6163	new_topology = arch_update_cpu_topology();
6164
6165	n = doms_new ? ndoms_new : 0;
6166
6167	/* Destroy deleted domains */
6168	for (i = 0; i < ndoms_cur; i++) {
6169		for (j = 0; j < n && !new_topology; j++) {
6170			if (cpumask_equal(doms_cur[i], doms_new[j])
6171			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6172				goto match1;
6173		}
6174		/* no match - a current sched domain not in new doms_new[] */
6175		detach_destroy_domains(doms_cur[i]);
6176match1:
6177		;
6178	}
6179
6180	if (doms_new == NULL) {
6181		ndoms_cur = 0;
6182		doms_new = &fallback_doms;
6183		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6184		WARN_ON_ONCE(dattr_new);
6185	}
6186
6187	/* Build new domains */
6188	for (i = 0; i < ndoms_new; i++) {
6189		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6190			if (cpumask_equal(doms_new[i], doms_cur[j])
6191			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6192				goto match2;
6193		}
6194		/* no match - add a new doms_new */
6195		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6196match2:
6197		;
6198	}
6199
6200	/* Remember the new sched domains */
6201	if (doms_cur != &fallback_doms)
6202		free_sched_domains(doms_cur, ndoms_cur);
6203	kfree(dattr_cur);	/* kfree(NULL) is safe */
6204	doms_cur = doms_new;
6205	dattr_cur = dattr_new;
6206	ndoms_cur = ndoms_new;
6207
6208	register_sched_domain_sysctl();
6209
6210	mutex_unlock(&sched_domains_mutex);
6211}
6212
6213static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6214
6215/*
6216 * Update cpusets according to cpu_active mask.  If cpusets are
6217 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6218 * around partition_sched_domains().
6219 *
6220 * If we come here as part of a suspend/resume, don't touch cpusets because we
6221 * want to restore it back to its original state upon resume anyway.
6222 */
6223static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6224			     void *hcpu)
6225{
6226	switch (action) {
6227	case CPU_ONLINE_FROZEN:
6228	case CPU_DOWN_FAILED_FROZEN:
6229
6230		/*
6231		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6232		 * resume sequence. As long as this is not the last online
6233		 * operation in the resume sequence, just build a single sched
6234		 * domain, ignoring cpusets.
6235		 */
6236		num_cpus_frozen--;
6237		if (likely(num_cpus_frozen)) {
6238			partition_sched_domains(1, NULL, NULL);
6239			break;
6240		}
6241
6242		/*
6243		 * This is the last CPU online operation. So fall through and
6244		 * restore the original sched domains by considering the
6245		 * cpuset configurations.
6246		 */
6247
6248	case CPU_ONLINE:
6249	case CPU_DOWN_FAILED:
6250		cpuset_update_active_cpus(true);
6251		break;
6252	default:
6253		return NOTIFY_DONE;
6254	}
6255	return NOTIFY_OK;
6256}
6257
6258static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6259			       void *hcpu)
6260{
6261	switch (action) {
6262	case CPU_DOWN_PREPARE:
6263		cpuset_update_active_cpus(false);
6264		break;
6265	case CPU_DOWN_PREPARE_FROZEN:
6266		num_cpus_frozen++;
6267		partition_sched_domains(1, NULL, NULL);
6268		break;
6269	default:
6270		return NOTIFY_DONE;
6271	}
6272	return NOTIFY_OK;
6273}
6274
6275void __init sched_init_smp(void)
6276{
6277	cpumask_var_t non_isolated_cpus;
6278
6279	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6280	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6281
6282	sched_init_numa();
6283
6284	get_online_cpus();
6285	mutex_lock(&sched_domains_mutex);
6286	init_sched_domains(cpu_active_mask);
6287	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6288	if (cpumask_empty(non_isolated_cpus))
6289		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6290	mutex_unlock(&sched_domains_mutex);
6291	put_online_cpus();
6292
6293	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6294	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6295	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6296
6297	init_hrtick();
6298
6299	/* Move init over to a non-isolated CPU */
6300	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6301		BUG();
6302	sched_init_granularity();
6303	free_cpumask_var(non_isolated_cpus);
6304
6305	init_sched_rt_class();
6306}
6307#else
6308void __init sched_init_smp(void)
6309{
6310	sched_init_granularity();
6311}
6312#endif /* CONFIG_SMP */
6313
6314const_debug unsigned int sysctl_timer_migration = 1;
6315
6316int in_sched_functions(unsigned long addr)
6317{
6318	return in_lock_functions(addr) ||
6319		(addr >= (unsigned long)__sched_text_start
6320		&& addr < (unsigned long)__sched_text_end);
6321}
6322
6323#ifdef CONFIG_CGROUP_SCHED
6324/*
6325 * Default task group.
6326 * Every task in system belongs to this group at bootup.
6327 */
6328struct task_group root_task_group;
6329LIST_HEAD(task_groups);
6330#endif
6331
6332DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6333
6334void __init sched_init(void)
6335{
6336	int i, j;
6337	unsigned long alloc_size = 0, ptr;
6338
6339#ifdef CONFIG_FAIR_GROUP_SCHED
6340	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6341#endif
6342#ifdef CONFIG_RT_GROUP_SCHED
6343	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6344#endif
6345#ifdef CONFIG_CPUMASK_OFFSTACK
6346	alloc_size += num_possible_cpus() * cpumask_size();
6347#endif
6348	if (alloc_size) {
6349		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6350
6351#ifdef CONFIG_FAIR_GROUP_SCHED
6352		root_task_group.se = (struct sched_entity **)ptr;
6353		ptr += nr_cpu_ids * sizeof(void **);
6354
6355		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6356		ptr += nr_cpu_ids * sizeof(void **);
6357
6358#endif /* CONFIG_FAIR_GROUP_SCHED */
6359#ifdef CONFIG_RT_GROUP_SCHED
6360		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6361		ptr += nr_cpu_ids * sizeof(void **);
6362
6363		root_task_group.rt_rq = (struct rt_rq **)ptr;
6364		ptr += nr_cpu_ids * sizeof(void **);
6365
6366#endif /* CONFIG_RT_GROUP_SCHED */
6367#ifdef CONFIG_CPUMASK_OFFSTACK
6368		for_each_possible_cpu(i) {
6369			per_cpu(load_balance_mask, i) = (void *)ptr;
6370			ptr += cpumask_size();
6371		}
6372#endif /* CONFIG_CPUMASK_OFFSTACK */
6373	}
6374
6375#ifdef CONFIG_SMP
6376	init_defrootdomain();
6377#endif
6378
6379	init_rt_bandwidth(&def_rt_bandwidth,
6380			global_rt_period(), global_rt_runtime());
6381
6382#ifdef CONFIG_RT_GROUP_SCHED
6383	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6384			global_rt_period(), global_rt_runtime());
6385#endif /* CONFIG_RT_GROUP_SCHED */
6386
6387#ifdef CONFIG_CGROUP_SCHED
6388	list_add(&root_task_group.list, &task_groups);
6389	INIT_LIST_HEAD(&root_task_group.children);
6390	INIT_LIST_HEAD(&root_task_group.siblings);
6391	autogroup_init(&init_task);
6392
6393#endif /* CONFIG_CGROUP_SCHED */
6394
6395	for_each_possible_cpu(i) {
6396		struct rq *rq;
6397
6398		rq = cpu_rq(i);
6399		raw_spin_lock_init(&rq->lock);
6400		rq->nr_running = 0;
6401		rq->calc_load_active = 0;
6402		rq->calc_load_update = jiffies + LOAD_FREQ;
6403		init_cfs_rq(&rq->cfs);
6404		init_rt_rq(&rq->rt, rq);
6405#ifdef CONFIG_FAIR_GROUP_SCHED
6406		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6407		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6408		/*
6409		 * How much cpu bandwidth does root_task_group get?
6410		 *
6411		 * In case of task-groups formed thr' the cgroup filesystem, it
6412		 * gets 100% of the cpu resources in the system. This overall
6413		 * system cpu resource is divided among the tasks of
6414		 * root_task_group and its child task-groups in a fair manner,
6415		 * based on each entity's (task or task-group's) weight
6416		 * (se->load.weight).
6417		 *
6418		 * In other words, if root_task_group has 10 tasks of weight
6419		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6420		 * then A0's share of the cpu resource is:
6421		 *
6422		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6423		 *
6424		 * We achieve this by letting root_task_group's tasks sit
6425		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6426		 */
6427		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6428		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6429#endif /* CONFIG_FAIR_GROUP_SCHED */
6430
6431		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6432#ifdef CONFIG_RT_GROUP_SCHED
6433		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6434		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6435#endif
6436
6437		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6438			rq->cpu_load[j] = 0;
6439
6440		rq->last_load_update_tick = jiffies;
6441
6442#ifdef CONFIG_SMP
6443		rq->sd = NULL;
6444		rq->rd = NULL;
6445		rq->cpu_power = SCHED_POWER_SCALE;
6446		rq->post_schedule = 0;
6447		rq->active_balance = 0;
6448		rq->next_balance = jiffies;
6449		rq->push_cpu = 0;
6450		rq->cpu = i;
6451		rq->online = 0;
6452		rq->idle_stamp = 0;
6453		rq->avg_idle = 2*sysctl_sched_migration_cost;
6454
6455		INIT_LIST_HEAD(&rq->cfs_tasks);
6456
6457		rq_attach_root(rq, &def_root_domain);
6458#ifdef CONFIG_NO_HZ_COMMON
6459		rq->nohz_flags = 0;
6460#endif
6461#ifdef CONFIG_NO_HZ_FULL
6462		rq->last_sched_tick = 0;
6463#endif
6464#endif
6465		init_rq_hrtick(rq);
6466		atomic_set(&rq->nr_iowait, 0);
6467	}
6468
6469	set_load_weight(&init_task);
6470
6471#ifdef CONFIG_PREEMPT_NOTIFIERS
6472	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6473#endif
6474
6475#ifdef CONFIG_RT_MUTEXES
6476	plist_head_init(&init_task.pi_waiters);
6477#endif
6478
6479	/*
6480	 * The boot idle thread does lazy MMU switching as well:
6481	 */
6482	atomic_inc(&init_mm.mm_count);
6483	enter_lazy_tlb(&init_mm, current);
6484
6485	/*
6486	 * Make us the idle thread. Technically, schedule() should not be
6487	 * called from this thread, however somewhere below it might be,
6488	 * but because we are the idle thread, we just pick up running again
6489	 * when this runqueue becomes "idle".
6490	 */
6491	init_idle(current, smp_processor_id());
6492
6493	calc_load_update = jiffies + LOAD_FREQ;
6494
6495	/*
6496	 * During early bootup we pretend to be a normal task:
6497	 */
6498	current->sched_class = &fair_sched_class;
6499
6500#ifdef CONFIG_SMP
6501	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6502	/* May be allocated at isolcpus cmdline parse time */
6503	if (cpu_isolated_map == NULL)
6504		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6505	idle_thread_set_boot_cpu();
6506#endif
6507	init_sched_fair_class();
6508
6509	scheduler_running = 1;
6510}
6511
6512#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6513static inline int preempt_count_equals(int preempt_offset)
6514{
6515	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6516
6517	return (nested == preempt_offset);
6518}
6519
6520void __might_sleep(const char *file, int line, int preempt_offset)
6521{
6522	static unsigned long prev_jiffy;	/* ratelimiting */
6523
6524	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6525	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6526	    system_state != SYSTEM_RUNNING || oops_in_progress)
6527		return;
6528	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6529		return;
6530	prev_jiffy = jiffies;
6531
6532	printk(KERN_ERR
6533		"BUG: sleeping function called from invalid context at %s:%d\n",
6534			file, line);
6535	printk(KERN_ERR
6536		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6537			in_atomic(), irqs_disabled(),
6538			current->pid, current->comm);
6539
6540	debug_show_held_locks(current);
6541	if (irqs_disabled())
6542		print_irqtrace_events(current);
6543	dump_stack();
6544}
6545EXPORT_SYMBOL(__might_sleep);
6546#endif
6547
6548#ifdef CONFIG_MAGIC_SYSRQ
6549static void normalize_task(struct rq *rq, struct task_struct *p)
6550{
6551	const struct sched_class *prev_class = p->sched_class;
6552	int old_prio = p->prio;
6553	int on_rq;
6554
6555	on_rq = p->on_rq;
6556	if (on_rq)
6557		dequeue_task(rq, p, 0);
6558	__setscheduler(rq, p, SCHED_NORMAL, 0);
6559	if (on_rq) {
6560		enqueue_task(rq, p, 0);
6561		resched_task(rq->curr);
6562	}
6563
6564	check_class_changed(rq, p, prev_class, old_prio);
6565}
6566
6567void normalize_rt_tasks(void)
6568{
6569	struct task_struct *g, *p;
6570	unsigned long flags;
6571	struct rq *rq;
6572
6573	read_lock_irqsave(&tasklist_lock, flags);
6574	do_each_thread(g, p) {
6575		/*
6576		 * Only normalize user tasks:
6577		 */
6578		if (!p->mm)
6579			continue;
6580
6581		p->se.exec_start		= 0;
6582#ifdef CONFIG_SCHEDSTATS
6583		p->se.statistics.wait_start	= 0;
6584		p->se.statistics.sleep_start	= 0;
6585		p->se.statistics.block_start	= 0;
6586#endif
6587
6588		if (!rt_task(p)) {
6589			/*
6590			 * Renice negative nice level userspace
6591			 * tasks back to 0:
6592			 */
6593			if (TASK_NICE(p) < 0 && p->mm)
6594				set_user_nice(p, 0);
6595			continue;
6596		}
6597
6598		raw_spin_lock(&p->pi_lock);
6599		rq = __task_rq_lock(p);
6600
6601		normalize_task(rq, p);
6602
6603		__task_rq_unlock(rq);
6604		raw_spin_unlock(&p->pi_lock);
6605	} while_each_thread(g, p);
6606
6607	read_unlock_irqrestore(&tasklist_lock, flags);
6608}
6609
6610#endif /* CONFIG_MAGIC_SYSRQ */
6611
6612#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6613/*
6614 * These functions are only useful for the IA64 MCA handling, or kdb.
6615 *
6616 * They can only be called when the whole system has been
6617 * stopped - every CPU needs to be quiescent, and no scheduling
6618 * activity can take place. Using them for anything else would
6619 * be a serious bug, and as a result, they aren't even visible
6620 * under any other configuration.
6621 */
6622
6623/**
6624 * curr_task - return the current task for a given cpu.
6625 * @cpu: the processor in question.
6626 *
6627 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6628 */
6629struct task_struct *curr_task(int cpu)
6630{
6631	return cpu_curr(cpu);
6632}
6633
6634#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6635
6636#ifdef CONFIG_IA64
6637/**
6638 * set_curr_task - set the current task for a given cpu.
6639 * @cpu: the processor in question.
6640 * @p: the task pointer to set.
6641 *
6642 * Description: This function must only be used when non-maskable interrupts
6643 * are serviced on a separate stack. It allows the architecture to switch the
6644 * notion of the current task on a cpu in a non-blocking manner. This function
6645 * must be called with all CPU's synchronized, and interrupts disabled, the
6646 * and caller must save the original value of the current task (see
6647 * curr_task() above) and restore that value before reenabling interrupts and
6648 * re-starting the system.
6649 *
6650 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6651 */
6652void set_curr_task(int cpu, struct task_struct *p)
6653{
6654	cpu_curr(cpu) = p;
6655}
6656
6657#endif
6658
6659#ifdef CONFIG_CGROUP_SCHED
6660/* task_group_lock serializes the addition/removal of task groups */
6661static DEFINE_SPINLOCK(task_group_lock);
6662
6663static void free_sched_group(struct task_group *tg)
6664{
6665	free_fair_sched_group(tg);
6666	free_rt_sched_group(tg);
6667	autogroup_free(tg);
6668	kfree(tg);
6669}
6670
6671/* allocate runqueue etc for a new task group */
6672struct task_group *sched_create_group(struct task_group *parent)
6673{
6674	struct task_group *tg;
6675
6676	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6677	if (!tg)
6678		return ERR_PTR(-ENOMEM);
6679
6680	if (!alloc_fair_sched_group(tg, parent))
6681		goto err;
6682
6683	if (!alloc_rt_sched_group(tg, parent))
6684		goto err;
6685
6686	return tg;
6687
6688err:
6689	free_sched_group(tg);
6690	return ERR_PTR(-ENOMEM);
6691}
6692
6693void sched_online_group(struct task_group *tg, struct task_group *parent)
6694{
6695	unsigned long flags;
6696
6697	spin_lock_irqsave(&task_group_lock, flags);
6698	list_add_rcu(&tg->list, &task_groups);
6699
6700	WARN_ON(!parent); /* root should already exist */
6701
6702	tg->parent = parent;
6703	INIT_LIST_HEAD(&tg->children);
6704	list_add_rcu(&tg->siblings, &parent->children);
6705	spin_unlock_irqrestore(&task_group_lock, flags);
6706}
6707
6708/* rcu callback to free various structures associated with a task group */
6709static void free_sched_group_rcu(struct rcu_head *rhp)
6710{
6711	/* now it should be safe to free those cfs_rqs */
6712	free_sched_group(container_of(rhp, struct task_group, rcu));
6713}
6714
6715/* Destroy runqueue etc associated with a task group */
6716void sched_destroy_group(struct task_group *tg)
6717{
6718	/* wait for possible concurrent references to cfs_rqs complete */
6719	call_rcu(&tg->rcu, free_sched_group_rcu);
6720}
6721
6722void sched_offline_group(struct task_group *tg)
6723{
6724	unsigned long flags;
6725	int i;
6726
6727	/* end participation in shares distribution */
6728	for_each_possible_cpu(i)
6729		unregister_fair_sched_group(tg, i);
6730
6731	spin_lock_irqsave(&task_group_lock, flags);
6732	list_del_rcu(&tg->list);
6733	list_del_rcu(&tg->siblings);
6734	spin_unlock_irqrestore(&task_group_lock, flags);
6735}
6736
6737/* change task's runqueue when it moves between groups.
6738 *	The caller of this function should have put the task in its new group
6739 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6740 *	reflect its new group.
6741 */
6742void sched_move_task(struct task_struct *tsk)
6743{
6744	struct task_group *tg;
6745	int on_rq, running;
6746	unsigned long flags;
6747	struct rq *rq;
6748
6749	rq = task_rq_lock(tsk, &flags);
6750
6751	running = task_current(rq, tsk);
6752	on_rq = tsk->on_rq;
6753
6754	if (on_rq)
6755		dequeue_task(rq, tsk, 0);
6756	if (unlikely(running))
6757		tsk->sched_class->put_prev_task(rq, tsk);
6758
6759	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6760				lockdep_is_held(&tsk->sighand->siglock)),
6761			  struct task_group, css);
6762	tg = autogroup_task_group(tsk, tg);
6763	tsk->sched_task_group = tg;
6764
6765#ifdef CONFIG_FAIR_GROUP_SCHED
6766	if (tsk->sched_class->task_move_group)
6767		tsk->sched_class->task_move_group(tsk, on_rq);
6768	else
6769#endif
6770		set_task_rq(tsk, task_cpu(tsk));
6771
6772	if (unlikely(running))
6773		tsk->sched_class->set_curr_task(rq);
6774	if (on_rq)
6775		enqueue_task(rq, tsk, 0);
6776
6777	task_rq_unlock(rq, tsk, &flags);
6778}
6779#endif /* CONFIG_CGROUP_SCHED */
6780
6781#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6782static unsigned long to_ratio(u64 period, u64 runtime)
6783{
6784	if (runtime == RUNTIME_INF)
6785		return 1ULL << 20;
6786
6787	return div64_u64(runtime << 20, period);
6788}
6789#endif
6790
6791#ifdef CONFIG_RT_GROUP_SCHED
6792/*
6793 * Ensure that the real time constraints are schedulable.
6794 */
6795static DEFINE_MUTEX(rt_constraints_mutex);
6796
6797/* Must be called with tasklist_lock held */
6798static inline int tg_has_rt_tasks(struct task_group *tg)
6799{
6800	struct task_struct *g, *p;
6801
6802	do_each_thread(g, p) {
6803		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6804			return 1;
6805	} while_each_thread(g, p);
6806
6807	return 0;
6808}
6809
6810struct rt_schedulable_data {
6811	struct task_group *tg;
6812	u64 rt_period;
6813	u64 rt_runtime;
6814};
6815
6816static int tg_rt_schedulable(struct task_group *tg, void *data)
6817{
6818	struct rt_schedulable_data *d = data;
6819	struct task_group *child;
6820	unsigned long total, sum = 0;
6821	u64 period, runtime;
6822
6823	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6824	runtime = tg->rt_bandwidth.rt_runtime;
6825
6826	if (tg == d->tg) {
6827		period = d->rt_period;
6828		runtime = d->rt_runtime;
6829	}
6830
6831	/*
6832	 * Cannot have more runtime than the period.
6833	 */
6834	if (runtime > period && runtime != RUNTIME_INF)
6835		return -EINVAL;
6836
6837	/*
6838	 * Ensure we don't starve existing RT tasks.
6839	 */
6840	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6841		return -EBUSY;
6842
6843	total = to_ratio(period, runtime);
6844
6845	/*
6846	 * Nobody can have more than the global setting allows.
6847	 */
6848	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6849		return -EINVAL;
6850
6851	/*
6852	 * The sum of our children's runtime should not exceed our own.
6853	 */
6854	list_for_each_entry_rcu(child, &tg->children, siblings) {
6855		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6856		runtime = child->rt_bandwidth.rt_runtime;
6857
6858		if (child == d->tg) {
6859			period = d->rt_period;
6860			runtime = d->rt_runtime;
6861		}
6862
6863		sum += to_ratio(period, runtime);
6864	}
6865
6866	if (sum > total)
6867		return -EINVAL;
6868
6869	return 0;
6870}
6871
6872static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6873{
6874	int ret;
6875
6876	struct rt_schedulable_data data = {
6877		.tg = tg,
6878		.rt_period = period,
6879		.rt_runtime = runtime,
6880	};
6881
6882	rcu_read_lock();
6883	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6884	rcu_read_unlock();
6885
6886	return ret;
6887}
6888
6889static int tg_set_rt_bandwidth(struct task_group *tg,
6890		u64 rt_period, u64 rt_runtime)
6891{
6892	int i, err = 0;
6893
6894	mutex_lock(&rt_constraints_mutex);
6895	read_lock(&tasklist_lock);
6896	err = __rt_schedulable(tg, rt_period, rt_runtime);
6897	if (err)
6898		goto unlock;
6899
6900	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6901	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6902	tg->rt_bandwidth.rt_runtime = rt_runtime;
6903
6904	for_each_possible_cpu(i) {
6905		struct rt_rq *rt_rq = tg->rt_rq[i];
6906
6907		raw_spin_lock(&rt_rq->rt_runtime_lock);
6908		rt_rq->rt_runtime = rt_runtime;
6909		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6910	}
6911	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6912unlock:
6913	read_unlock(&tasklist_lock);
6914	mutex_unlock(&rt_constraints_mutex);
6915
6916	return err;
6917}
6918
6919static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6920{
6921	u64 rt_runtime, rt_period;
6922
6923	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6924	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6925	if (rt_runtime_us < 0)
6926		rt_runtime = RUNTIME_INF;
6927
6928	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6929}
6930
6931static long sched_group_rt_runtime(struct task_group *tg)
6932{
6933	u64 rt_runtime_us;
6934
6935	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6936		return -1;
6937
6938	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6939	do_div(rt_runtime_us, NSEC_PER_USEC);
6940	return rt_runtime_us;
6941}
6942
6943static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6944{
6945	u64 rt_runtime, rt_period;
6946
6947	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6948	rt_runtime = tg->rt_bandwidth.rt_runtime;
6949
6950	if (rt_period == 0)
6951		return -EINVAL;
6952
6953	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6954}
6955
6956static long sched_group_rt_period(struct task_group *tg)
6957{
6958	u64 rt_period_us;
6959
6960	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6961	do_div(rt_period_us, NSEC_PER_USEC);
6962	return rt_period_us;
6963}
6964
6965static int sched_rt_global_constraints(void)
6966{
6967	u64 runtime, period;
6968	int ret = 0;
6969
6970	if (sysctl_sched_rt_period <= 0)
6971		return -EINVAL;
6972
6973	runtime = global_rt_runtime();
6974	period = global_rt_period();
6975
6976	/*
6977	 * Sanity check on the sysctl variables.
6978	 */
6979	if (runtime > period && runtime != RUNTIME_INF)
6980		return -EINVAL;
6981
6982	mutex_lock(&rt_constraints_mutex);
6983	read_lock(&tasklist_lock);
6984	ret = __rt_schedulable(NULL, 0, 0);
6985	read_unlock(&tasklist_lock);
6986	mutex_unlock(&rt_constraints_mutex);
6987
6988	return ret;
6989}
6990
6991static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6992{
6993	/* Don't accept realtime tasks when there is no way for them to run */
6994	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6995		return 0;
6996
6997	return 1;
6998}
6999
7000#else /* !CONFIG_RT_GROUP_SCHED */
7001static int sched_rt_global_constraints(void)
7002{
7003	unsigned long flags;
7004	int i;
7005
7006	if (sysctl_sched_rt_period <= 0)
7007		return -EINVAL;
7008
7009	/*
7010	 * There's always some RT tasks in the root group
7011	 * -- migration, kstopmachine etc..
7012	 */
7013	if (sysctl_sched_rt_runtime == 0)
7014		return -EBUSY;
7015
7016	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7017	for_each_possible_cpu(i) {
7018		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7019
7020		raw_spin_lock(&rt_rq->rt_runtime_lock);
7021		rt_rq->rt_runtime = global_rt_runtime();
7022		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7023	}
7024	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7025
7026	return 0;
7027}
7028#endif /* CONFIG_RT_GROUP_SCHED */
7029
7030int sched_rr_handler(struct ctl_table *table, int write,
7031		void __user *buffer, size_t *lenp,
7032		loff_t *ppos)
7033{
7034	int ret;
7035	static DEFINE_MUTEX(mutex);
7036
7037	mutex_lock(&mutex);
7038	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7039	/* make sure that internally we keep jiffies */
7040	/* also, writing zero resets timeslice to default */
7041	if (!ret && write) {
7042		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7043			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7044	}
7045	mutex_unlock(&mutex);
7046	return ret;
7047}
7048
7049int sched_rt_handler(struct ctl_table *table, int write,
7050		void __user *buffer, size_t *lenp,
7051		loff_t *ppos)
7052{
7053	int ret;
7054	int old_period, old_runtime;
7055	static DEFINE_MUTEX(mutex);
7056
7057	mutex_lock(&mutex);
7058	old_period = sysctl_sched_rt_period;
7059	old_runtime = sysctl_sched_rt_runtime;
7060
7061	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7062
7063	if (!ret && write) {
7064		ret = sched_rt_global_constraints();
7065		if (ret) {
7066			sysctl_sched_rt_period = old_period;
7067			sysctl_sched_rt_runtime = old_runtime;
7068		} else {
7069			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7070			def_rt_bandwidth.rt_period =
7071				ns_to_ktime(global_rt_period());
7072		}
7073	}
7074	mutex_unlock(&mutex);
7075
7076	return ret;
7077}
7078
7079#ifdef CONFIG_CGROUP_SCHED
7080
7081/* return corresponding task_group object of a cgroup */
7082static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7083{
7084	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7085			    struct task_group, css);
7086}
7087
7088static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7089{
7090	struct task_group *tg, *parent;
7091
7092	if (!cgrp->parent) {
7093		/* This is early initialization for the top cgroup */
7094		return &root_task_group.css;
7095	}
7096
7097	parent = cgroup_tg(cgrp->parent);
7098	tg = sched_create_group(parent);
7099	if (IS_ERR(tg))
7100		return ERR_PTR(-ENOMEM);
7101
7102	return &tg->css;
7103}
7104
7105static int cpu_cgroup_css_online(struct cgroup *cgrp)
7106{
7107	struct task_group *tg = cgroup_tg(cgrp);
7108	struct task_group *parent;
7109
7110	if (!cgrp->parent)
7111		return 0;
7112
7113	parent = cgroup_tg(cgrp->parent);
7114	sched_online_group(tg, parent);
7115	return 0;
7116}
7117
7118static void cpu_cgroup_css_free(struct cgroup *cgrp)
7119{
7120	struct task_group *tg = cgroup_tg(cgrp);
7121
7122	sched_destroy_group(tg);
7123}
7124
7125static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7126{
7127	struct task_group *tg = cgroup_tg(cgrp);
7128
7129	sched_offline_group(tg);
7130}
7131
7132static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7133				 struct cgroup_taskset *tset)
7134{
7135	struct task_struct *task;
7136
7137	cgroup_taskset_for_each(task, cgrp, tset) {
7138#ifdef CONFIG_RT_GROUP_SCHED
7139		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7140			return -EINVAL;
7141#else
7142		/* We don't support RT-tasks being in separate groups */
7143		if (task->sched_class != &fair_sched_class)
7144			return -EINVAL;
7145#endif
7146	}
7147	return 0;
7148}
7149
7150static void cpu_cgroup_attach(struct cgroup *cgrp,
7151			      struct cgroup_taskset *tset)
7152{
7153	struct task_struct *task;
7154
7155	cgroup_taskset_for_each(task, cgrp, tset)
7156		sched_move_task(task);
7157}
7158
7159static void
7160cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7161		struct task_struct *task)
7162{
7163	/*
7164	 * cgroup_exit() is called in the copy_process() failure path.
7165	 * Ignore this case since the task hasn't ran yet, this avoids
7166	 * trying to poke a half freed task state from generic code.
7167	 */
7168	if (!(task->flags & PF_EXITING))
7169		return;
7170
7171	sched_move_task(task);
7172}
7173
7174#ifdef CONFIG_FAIR_GROUP_SCHED
7175static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7176				u64 shareval)
7177{
7178	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7179}
7180
7181static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7182{
7183	struct task_group *tg = cgroup_tg(cgrp);
7184
7185	return (u64) scale_load_down(tg->shares);
7186}
7187
7188#ifdef CONFIG_CFS_BANDWIDTH
7189static DEFINE_MUTEX(cfs_constraints_mutex);
7190
7191const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7192const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7193
7194static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7195
7196static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7197{
7198	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7199	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7200
7201	if (tg == &root_task_group)
7202		return -EINVAL;
7203
7204	/*
7205	 * Ensure we have at some amount of bandwidth every period.  This is
7206	 * to prevent reaching a state of large arrears when throttled via
7207	 * entity_tick() resulting in prolonged exit starvation.
7208	 */
7209	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7210		return -EINVAL;
7211
7212	/*
7213	 * Likewise, bound things on the otherside by preventing insane quota
7214	 * periods.  This also allows us to normalize in computing quota
7215	 * feasibility.
7216	 */
7217	if (period > max_cfs_quota_period)
7218		return -EINVAL;
7219
7220	mutex_lock(&cfs_constraints_mutex);
7221	ret = __cfs_schedulable(tg, period, quota);
7222	if (ret)
7223		goto out_unlock;
7224
7225	runtime_enabled = quota != RUNTIME_INF;
7226	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7227	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7228	raw_spin_lock_irq(&cfs_b->lock);
7229	cfs_b->period = ns_to_ktime(period);
7230	cfs_b->quota = quota;
7231
7232	__refill_cfs_bandwidth_runtime(cfs_b);
7233	/* restart the period timer (if active) to handle new period expiry */
7234	if (runtime_enabled && cfs_b->timer_active) {
7235		/* force a reprogram */
7236		cfs_b->timer_active = 0;
7237		__start_cfs_bandwidth(cfs_b);
7238	}
7239	raw_spin_unlock_irq(&cfs_b->lock);
7240
7241	for_each_possible_cpu(i) {
7242		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7243		struct rq *rq = cfs_rq->rq;
7244
7245		raw_spin_lock_irq(&rq->lock);
7246		cfs_rq->runtime_enabled = runtime_enabled;
7247		cfs_rq->runtime_remaining = 0;
7248
7249		if (cfs_rq->throttled)
7250			unthrottle_cfs_rq(cfs_rq);
7251		raw_spin_unlock_irq(&rq->lock);
7252	}
7253out_unlock:
7254	mutex_unlock(&cfs_constraints_mutex);
7255
7256	return ret;
7257}
7258
7259int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7260{
7261	u64 quota, period;
7262
7263	period = ktime_to_ns(tg->cfs_bandwidth.period);
7264	if (cfs_quota_us < 0)
7265		quota = RUNTIME_INF;
7266	else
7267		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7268
7269	return tg_set_cfs_bandwidth(tg, period, quota);
7270}
7271
7272long tg_get_cfs_quota(struct task_group *tg)
7273{
7274	u64 quota_us;
7275
7276	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7277		return -1;
7278
7279	quota_us = tg->cfs_bandwidth.quota;
7280	do_div(quota_us, NSEC_PER_USEC);
7281
7282	return quota_us;
7283}
7284
7285int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7286{
7287	u64 quota, period;
7288
7289	period = (u64)cfs_period_us * NSEC_PER_USEC;
7290	quota = tg->cfs_bandwidth.quota;
7291
7292	return tg_set_cfs_bandwidth(tg, period, quota);
7293}
7294
7295long tg_get_cfs_period(struct task_group *tg)
7296{
7297	u64 cfs_period_us;
7298
7299	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7300	do_div(cfs_period_us, NSEC_PER_USEC);
7301
7302	return cfs_period_us;
7303}
7304
7305static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7306{
7307	return tg_get_cfs_quota(cgroup_tg(cgrp));
7308}
7309
7310static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7311				s64 cfs_quota_us)
7312{
7313	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7314}
7315
7316static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7317{
7318	return tg_get_cfs_period(cgroup_tg(cgrp));
7319}
7320
7321static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7322				u64 cfs_period_us)
7323{
7324	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7325}
7326
7327struct cfs_schedulable_data {
7328	struct task_group *tg;
7329	u64 period, quota;
7330};
7331
7332/*
7333 * normalize group quota/period to be quota/max_period
7334 * note: units are usecs
7335 */
7336static u64 normalize_cfs_quota(struct task_group *tg,
7337			       struct cfs_schedulable_data *d)
7338{
7339	u64 quota, period;
7340
7341	if (tg == d->tg) {
7342		period = d->period;
7343		quota = d->quota;
7344	} else {
7345		period = tg_get_cfs_period(tg);
7346		quota = tg_get_cfs_quota(tg);
7347	}
7348
7349	/* note: these should typically be equivalent */
7350	if (quota == RUNTIME_INF || quota == -1)
7351		return RUNTIME_INF;
7352
7353	return to_ratio(period, quota);
7354}
7355
7356static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7357{
7358	struct cfs_schedulable_data *d = data;
7359	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7360	s64 quota = 0, parent_quota = -1;
7361
7362	if (!tg->parent) {
7363		quota = RUNTIME_INF;
7364	} else {
7365		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7366
7367		quota = normalize_cfs_quota(tg, d);
7368		parent_quota = parent_b->hierarchal_quota;
7369
7370		/*
7371		 * ensure max(child_quota) <= parent_quota, inherit when no
7372		 * limit is set
7373		 */
7374		if (quota == RUNTIME_INF)
7375			quota = parent_quota;
7376		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7377			return -EINVAL;
7378	}
7379	cfs_b->hierarchal_quota = quota;
7380
7381	return 0;
7382}
7383
7384static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7385{
7386	int ret;
7387	struct cfs_schedulable_data data = {
7388		.tg = tg,
7389		.period = period,
7390		.quota = quota,
7391	};
7392
7393	if (quota != RUNTIME_INF) {
7394		do_div(data.period, NSEC_PER_USEC);
7395		do_div(data.quota, NSEC_PER_USEC);
7396	}
7397
7398	rcu_read_lock();
7399	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7400	rcu_read_unlock();
7401
7402	return ret;
7403}
7404
7405static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7406		struct cgroup_map_cb *cb)
7407{
7408	struct task_group *tg = cgroup_tg(cgrp);
7409	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7410
7411	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7412	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7413	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7414
7415	return 0;
7416}
7417#endif /* CONFIG_CFS_BANDWIDTH */
7418#endif /* CONFIG_FAIR_GROUP_SCHED */
7419
7420#ifdef CONFIG_RT_GROUP_SCHED
7421static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7422				s64 val)
7423{
7424	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7425}
7426
7427static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7428{
7429	return sched_group_rt_runtime(cgroup_tg(cgrp));
7430}
7431
7432static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7433		u64 rt_period_us)
7434{
7435	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7436}
7437
7438static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7439{
7440	return sched_group_rt_period(cgroup_tg(cgrp));
7441}
7442#endif /* CONFIG_RT_GROUP_SCHED */
7443
7444static struct cftype cpu_files[] = {
7445#ifdef CONFIG_FAIR_GROUP_SCHED
7446	{
7447		.name = "shares",
7448		.read_u64 = cpu_shares_read_u64,
7449		.write_u64 = cpu_shares_write_u64,
7450	},
7451#endif
7452#ifdef CONFIG_CFS_BANDWIDTH
7453	{
7454		.name = "cfs_quota_us",
7455		.read_s64 = cpu_cfs_quota_read_s64,
7456		.write_s64 = cpu_cfs_quota_write_s64,
7457	},
7458	{
7459		.name = "cfs_period_us",
7460		.read_u64 = cpu_cfs_period_read_u64,
7461		.write_u64 = cpu_cfs_period_write_u64,
7462	},
7463	{
7464		.name = "stat",
7465		.read_map = cpu_stats_show,
7466	},
7467#endif
7468#ifdef CONFIG_RT_GROUP_SCHED
7469	{
7470		.name = "rt_runtime_us",
7471		.read_s64 = cpu_rt_runtime_read,
7472		.write_s64 = cpu_rt_runtime_write,
7473	},
7474	{
7475		.name = "rt_period_us",
7476		.read_u64 = cpu_rt_period_read_uint,
7477		.write_u64 = cpu_rt_period_write_uint,
7478	},
7479#endif
7480	{ }	/* terminate */
7481};
7482
7483struct cgroup_subsys cpu_cgroup_subsys = {
7484	.name		= "cpu",
7485	.css_alloc	= cpu_cgroup_css_alloc,
7486	.css_free	= cpu_cgroup_css_free,
7487	.css_online	= cpu_cgroup_css_online,
7488	.css_offline	= cpu_cgroup_css_offline,
7489	.can_attach	= cpu_cgroup_can_attach,
7490	.attach		= cpu_cgroup_attach,
7491	.exit		= cpu_cgroup_exit,
7492	.subsys_id	= cpu_cgroup_subsys_id,
7493	.base_cftypes	= cpu_files,
7494	.early_init	= 1,
7495};
7496
7497#endif	/* CONFIG_CGROUP_SCHED */
7498
7499void dump_cpu_task(int cpu)
7500{
7501	pr_info("Task dump for CPU %d:\n", cpu);
7502	sched_show_task(cpu_curr(cpu));
7503}
7504