core.c revision 7e8d16b6cbccb2f5da579f5085479fb82ba851b8
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016struct migration_arg {
1017	struct task_struct *task;
1018	int dest_cpu;
1019};
1020
1021static int migration_cpu_stop(void *data);
1022
1023/*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change.  If it changes, i.e. @p might have woken up,
1028 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count).  If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
1039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1040{
1041	unsigned long flags;
1042	int running, on_rq;
1043	unsigned long ncsw;
1044	struct rq *rq;
1045
1046	for (;;) {
1047		/*
1048		 * We do the initial early heuristics without holding
1049		 * any task-queue locks at all. We'll only try to get
1050		 * the runqueue lock when things look like they will
1051		 * work out!
1052		 */
1053		rq = task_rq(p);
1054
1055		/*
1056		 * If the task is actively running on another CPU
1057		 * still, just relax and busy-wait without holding
1058		 * any locks.
1059		 *
1060		 * NOTE! Since we don't hold any locks, it's not
1061		 * even sure that "rq" stays as the right runqueue!
1062		 * But we don't care, since "task_running()" will
1063		 * return false if the runqueue has changed and p
1064		 * is actually now running somewhere else!
1065		 */
1066		while (task_running(rq, p)) {
1067			if (match_state && unlikely(p->state != match_state))
1068				return 0;
1069			cpu_relax();
1070		}
1071
1072		/*
1073		 * Ok, time to look more closely! We need the rq
1074		 * lock now, to be *sure*. If we're wrong, we'll
1075		 * just go back and repeat.
1076		 */
1077		rq = task_rq_lock(p, &flags);
1078		trace_sched_wait_task(p);
1079		running = task_running(rq, p);
1080		on_rq = p->on_rq;
1081		ncsw = 0;
1082		if (!match_state || p->state == match_state)
1083			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1084		task_rq_unlock(rq, p, &flags);
1085
1086		/*
1087		 * If it changed from the expected state, bail out now.
1088		 */
1089		if (unlikely(!ncsw))
1090			break;
1091
1092		/*
1093		 * Was it really running after all now that we
1094		 * checked with the proper locks actually held?
1095		 *
1096		 * Oops. Go back and try again..
1097		 */
1098		if (unlikely(running)) {
1099			cpu_relax();
1100			continue;
1101		}
1102
1103		/*
1104		 * It's not enough that it's not actively running,
1105		 * it must be off the runqueue _entirely_, and not
1106		 * preempted!
1107		 *
1108		 * So if it was still runnable (but just not actively
1109		 * running right now), it's preempted, and we should
1110		 * yield - it could be a while.
1111		 */
1112		if (unlikely(on_rq)) {
1113			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115			set_current_state(TASK_UNINTERRUPTIBLE);
1116			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1117			continue;
1118		}
1119
1120		/*
1121		 * Ahh, all good. It wasn't running, and it wasn't
1122		 * runnable, which means that it will never become
1123		 * running in the future either. We're all done!
1124		 */
1125		break;
1126	}
1127
1128	return ncsw;
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
1138 * NOTE: this function doesn't have to take the runqueue lock,
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
1144void kick_process(struct task_struct *p)
1145{
1146	int cpu;
1147
1148	preempt_disable();
1149	cpu = task_cpu(p);
1150	if ((cpu != smp_processor_id()) && task_curr(p))
1151		smp_send_reschedule(cpu);
1152	preempt_enable();
1153}
1154EXPORT_SYMBOL_GPL(kick_process);
1155#endif /* CONFIG_SMP */
1156
1157#ifdef CONFIG_SMP
1158/*
1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1160 */
1161static int select_fallback_rq(int cpu, struct task_struct *p)
1162{
1163	int nid = cpu_to_node(cpu);
1164	const struct cpumask *nodemask = NULL;
1165	enum { cpuset, possible, fail } state = cpuset;
1166	int dest_cpu;
1167
1168	/*
1169	 * If the node that the cpu is on has been offlined, cpu_to_node()
1170	 * will return -1. There is no cpu on the node, and we should
1171	 * select the cpu on the other node.
1172	 */
1173	if (nid != -1) {
1174		nodemask = cpumask_of_node(nid);
1175
1176		/* Look for allowed, online CPU in same node. */
1177		for_each_cpu(dest_cpu, nodemask) {
1178			if (!cpu_online(dest_cpu))
1179				continue;
1180			if (!cpu_active(dest_cpu))
1181				continue;
1182			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183				return dest_cpu;
1184		}
1185	}
1186
1187	for (;;) {
1188		/* Any allowed, online CPU? */
1189		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1190			if (!cpu_online(dest_cpu))
1191				continue;
1192			if (!cpu_active(dest_cpu))
1193				continue;
1194			goto out;
1195		}
1196
1197		switch (state) {
1198		case cpuset:
1199			/* No more Mr. Nice Guy. */
1200			cpuset_cpus_allowed_fallback(p);
1201			state = possible;
1202			break;
1203
1204		case possible:
1205			do_set_cpus_allowed(p, cpu_possible_mask);
1206			state = fail;
1207			break;
1208
1209		case fail:
1210			BUG();
1211			break;
1212		}
1213	}
1214
1215out:
1216	if (state != cpuset) {
1217		/*
1218		 * Don't tell them about moving exiting tasks or
1219		 * kernel threads (both mm NULL), since they never
1220		 * leave kernel.
1221		 */
1222		if (p->mm && printk_ratelimit()) {
1223			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224					task_pid_nr(p), p->comm, cpu);
1225		}
1226	}
1227
1228	return dest_cpu;
1229}
1230
1231/*
1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1233 */
1234static inline
1235int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1236{
1237	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1238
1239	/*
1240	 * In order not to call set_task_cpu() on a blocking task we need
1241	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242	 * cpu.
1243	 *
1244	 * Since this is common to all placement strategies, this lives here.
1245	 *
1246	 * [ this allows ->select_task() to simply return task_cpu(p) and
1247	 *   not worry about this generic constraint ]
1248	 */
1249	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1250		     !cpu_online(cpu)))
1251		cpu = select_fallback_rq(task_cpu(p), p);
1252
1253	return cpu;
1254}
1255
1256static void update_avg(u64 *avg, u64 sample)
1257{
1258	s64 diff = sample - *avg;
1259	*avg += diff >> 3;
1260}
1261#endif
1262
1263static void
1264ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1265{
1266#ifdef CONFIG_SCHEDSTATS
1267	struct rq *rq = this_rq();
1268
1269#ifdef CONFIG_SMP
1270	int this_cpu = smp_processor_id();
1271
1272	if (cpu == this_cpu) {
1273		schedstat_inc(rq, ttwu_local);
1274		schedstat_inc(p, se.statistics.nr_wakeups_local);
1275	} else {
1276		struct sched_domain *sd;
1277
1278		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1279		rcu_read_lock();
1280		for_each_domain(this_cpu, sd) {
1281			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282				schedstat_inc(sd, ttwu_wake_remote);
1283				break;
1284			}
1285		}
1286		rcu_read_unlock();
1287	}
1288
1289	if (wake_flags & WF_MIGRATED)
1290		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
1292#endif /* CONFIG_SMP */
1293
1294	schedstat_inc(rq, ttwu_count);
1295	schedstat_inc(p, se.statistics.nr_wakeups);
1296
1297	if (wake_flags & WF_SYNC)
1298		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1299
1300#endif /* CONFIG_SCHEDSTATS */
1301}
1302
1303static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304{
1305	activate_task(rq, p, en_flags);
1306	p->on_rq = 1;
1307
1308	/* if a worker is waking up, notify workqueue */
1309	if (p->flags & PF_WQ_WORKER)
1310		wq_worker_waking_up(p, cpu_of(rq));
1311}
1312
1313/*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
1316static void
1317ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1318{
1319	check_preempt_curr(rq, p, wake_flags);
1320	trace_sched_wakeup(p, true);
1321
1322	p->state = TASK_RUNNING;
1323#ifdef CONFIG_SMP
1324	if (p->sched_class->task_woken)
1325		p->sched_class->task_woken(rq, p);
1326
1327	if (rq->idle_stamp) {
1328		u64 delta = rq_clock(rq) - rq->idle_stamp;
1329		u64 max = 2*rq->max_idle_balance_cost;
1330
1331		update_avg(&rq->avg_idle, delta);
1332
1333		if (rq->avg_idle > max)
1334			rq->avg_idle = max;
1335
1336		rq->idle_stamp = 0;
1337	}
1338#endif
1339}
1340
1341static void
1342ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343{
1344#ifdef CONFIG_SMP
1345	if (p->sched_contributes_to_load)
1346		rq->nr_uninterruptible--;
1347#endif
1348
1349	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350	ttwu_do_wakeup(rq, p, wake_flags);
1351}
1352
1353/*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359static int ttwu_remote(struct task_struct *p, int wake_flags)
1360{
1361	struct rq *rq;
1362	int ret = 0;
1363
1364	rq = __task_rq_lock(p);
1365	if (p->on_rq) {
1366		/* check_preempt_curr() may use rq clock */
1367		update_rq_clock(rq);
1368		ttwu_do_wakeup(rq, p, wake_flags);
1369		ret = 1;
1370	}
1371	__task_rq_unlock(rq);
1372
1373	return ret;
1374}
1375
1376#ifdef CONFIG_SMP
1377static void sched_ttwu_pending(void)
1378{
1379	struct rq *rq = this_rq();
1380	struct llist_node *llist = llist_del_all(&rq->wake_list);
1381	struct task_struct *p;
1382
1383	raw_spin_lock(&rq->lock);
1384
1385	while (llist) {
1386		p = llist_entry(llist, struct task_struct, wake_entry);
1387		llist = llist_next(llist);
1388		ttwu_do_activate(rq, p, 0);
1389	}
1390
1391	raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
1396	/*
1397	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399	 * this IPI.
1400	 */
1401	if (tif_need_resched())
1402		set_preempt_need_resched();
1403
1404	if (llist_empty(&this_rq()->wake_list)
1405			&& !tick_nohz_full_cpu(smp_processor_id())
1406			&& !got_nohz_idle_kick())
1407		return;
1408
1409	/*
1410	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411	 * traditionally all their work was done from the interrupt return
1412	 * path. Now that we actually do some work, we need to make sure
1413	 * we do call them.
1414	 *
1415	 * Some archs already do call them, luckily irq_enter/exit nest
1416	 * properly.
1417	 *
1418	 * Arguably we should visit all archs and update all handlers,
1419	 * however a fair share of IPIs are still resched only so this would
1420	 * somewhat pessimize the simple resched case.
1421	 */
1422	irq_enter();
1423	tick_nohz_full_check();
1424	sched_ttwu_pending();
1425
1426	/*
1427	 * Check if someone kicked us for doing the nohz idle load balance.
1428	 */
1429	if (unlikely(got_nohz_idle_kick())) {
1430		this_rq()->idle_balance = 1;
1431		raise_softirq_irqoff(SCHED_SOFTIRQ);
1432	}
1433	irq_exit();
1434}
1435
1436static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437{
1438	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1439		smp_send_reschedule(cpu);
1440}
1441
1442bool cpus_share_cache(int this_cpu, int that_cpu)
1443{
1444	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445}
1446#endif /* CONFIG_SMP */
1447
1448static void ttwu_queue(struct task_struct *p, int cpu)
1449{
1450	struct rq *rq = cpu_rq(cpu);
1451
1452#if defined(CONFIG_SMP)
1453	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1454		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1455		ttwu_queue_remote(p, cpu);
1456		return;
1457	}
1458#endif
1459
1460	raw_spin_lock(&rq->lock);
1461	ttwu_do_activate(rq, p, 0);
1462	raw_spin_unlock(&rq->lock);
1463}
1464
1465/**
1466 * try_to_wake_up - wake up a thread
1467 * @p: the thread to be awakened
1468 * @state: the mask of task states that can be woken
1469 * @wake_flags: wake modifier flags (WF_*)
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
1477 * Return: %true if @p was woken up, %false if it was already running.
1478 * or @state didn't match @p's state.
1479 */
1480static int
1481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1482{
1483	unsigned long flags;
1484	int cpu, success = 0;
1485
1486	/*
1487	 * If we are going to wake up a thread waiting for CONDITION we
1488	 * need to ensure that CONDITION=1 done by the caller can not be
1489	 * reordered with p->state check below. This pairs with mb() in
1490	 * set_current_state() the waiting thread does.
1491	 */
1492	smp_mb__before_spinlock();
1493	raw_spin_lock_irqsave(&p->pi_lock, flags);
1494	if (!(p->state & state))
1495		goto out;
1496
1497	success = 1; /* we're going to change ->state */
1498	cpu = task_cpu(p);
1499
1500	if (p->on_rq && ttwu_remote(p, wake_flags))
1501		goto stat;
1502
1503#ifdef CONFIG_SMP
1504	/*
1505	 * If the owning (remote) cpu is still in the middle of schedule() with
1506	 * this task as prev, wait until its done referencing the task.
1507	 */
1508	while (p->on_cpu)
1509		cpu_relax();
1510	/*
1511	 * Pairs with the smp_wmb() in finish_lock_switch().
1512	 */
1513	smp_rmb();
1514
1515	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516	p->state = TASK_WAKING;
1517
1518	if (p->sched_class->task_waking)
1519		p->sched_class->task_waking(p);
1520
1521	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522	if (task_cpu(p) != cpu) {
1523		wake_flags |= WF_MIGRATED;
1524		set_task_cpu(p, cpu);
1525	}
1526#endif /* CONFIG_SMP */
1527
1528	ttwu_queue(p, cpu);
1529stat:
1530	ttwu_stat(p, cpu, wake_flags);
1531out:
1532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534	return success;
1535}
1536
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547	struct rq *rq = task_rq(p);
1548
1549	if (WARN_ON_ONCE(rq != this_rq()) ||
1550	    WARN_ON_ONCE(p == current))
1551		return;
1552
1553	lockdep_assert_held(&rq->lock);
1554
1555	if (!raw_spin_trylock(&p->pi_lock)) {
1556		raw_spin_unlock(&rq->lock);
1557		raw_spin_lock(&p->pi_lock);
1558		raw_spin_lock(&rq->lock);
1559	}
1560
1561	if (!(p->state & TASK_NORMAL))
1562		goto out;
1563
1564	if (!p->on_rq)
1565		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567	ttwu_do_wakeup(rq, p, 0);
1568	ttwu_stat(p, smp_processor_id(), 0);
1569out:
1570	raw_spin_unlock(&p->pi_lock);
1571}
1572
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
1585int wake_up_process(struct task_struct *p)
1586{
1587	WARN_ON(task_is_stopped_or_traced(p));
1588	return try_to_wake_up(p, TASK_NORMAL, 0);
1589}
1590EXPORT_SYMBOL(wake_up_process);
1591
1592int wake_up_state(struct task_struct *p, unsigned int state)
1593{
1594	return try_to_wake_up(p, state, 0);
1595}
1596
1597/*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603static void __sched_fork(struct task_struct *p)
1604{
1605	p->on_rq			= 0;
1606
1607	p->se.on_rq			= 0;
1608	p->se.exec_start		= 0;
1609	p->se.sum_exec_runtime		= 0;
1610	p->se.prev_sum_exec_runtime	= 0;
1611	p->se.nr_migrations		= 0;
1612	p->se.vruntime			= 0;
1613	INIT_LIST_HEAD(&p->se.group_node);
1614
1615#ifdef CONFIG_SCHEDSTATS
1616	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1617#endif
1618
1619	INIT_LIST_HEAD(&p->rt.run_list);
1620
1621#ifdef CONFIG_PREEMPT_NOTIFIERS
1622	INIT_HLIST_HEAD(&p->preempt_notifiers);
1623#endif
1624
1625#ifdef CONFIG_NUMA_BALANCING
1626	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1627		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1628		p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1629		p->mm->numa_scan_seq = 0;
1630	}
1631
1632	p->node_stamp = 0ULL;
1633	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1634	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1635	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1636	p->numa_work.next = &p->numa_work;
1637#endif /* CONFIG_NUMA_BALANCING */
1638}
1639
1640#ifdef CONFIG_NUMA_BALANCING
1641#ifdef CONFIG_SCHED_DEBUG
1642void set_numabalancing_state(bool enabled)
1643{
1644	if (enabled)
1645		sched_feat_set("NUMA");
1646	else
1647		sched_feat_set("NO_NUMA");
1648}
1649#else
1650__read_mostly bool numabalancing_enabled;
1651
1652void set_numabalancing_state(bool enabled)
1653{
1654	numabalancing_enabled = enabled;
1655}
1656#endif /* CONFIG_SCHED_DEBUG */
1657#endif /* CONFIG_NUMA_BALANCING */
1658
1659/*
1660 * fork()/clone()-time setup:
1661 */
1662void sched_fork(struct task_struct *p)
1663{
1664	unsigned long flags;
1665	int cpu = get_cpu();
1666
1667	__sched_fork(p);
1668	/*
1669	 * We mark the process as running here. This guarantees that
1670	 * nobody will actually run it, and a signal or other external
1671	 * event cannot wake it up and insert it on the runqueue either.
1672	 */
1673	p->state = TASK_RUNNING;
1674
1675	/*
1676	 * Make sure we do not leak PI boosting priority to the child.
1677	 */
1678	p->prio = current->normal_prio;
1679
1680	/*
1681	 * Revert to default priority/policy on fork if requested.
1682	 */
1683	if (unlikely(p->sched_reset_on_fork)) {
1684		if (task_has_rt_policy(p)) {
1685			p->policy = SCHED_NORMAL;
1686			p->static_prio = NICE_TO_PRIO(0);
1687			p->rt_priority = 0;
1688		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1689			p->static_prio = NICE_TO_PRIO(0);
1690
1691		p->prio = p->normal_prio = __normal_prio(p);
1692		set_load_weight(p);
1693
1694		/*
1695		 * We don't need the reset flag anymore after the fork. It has
1696		 * fulfilled its duty:
1697		 */
1698		p->sched_reset_on_fork = 0;
1699	}
1700
1701	if (!rt_prio(p->prio))
1702		p->sched_class = &fair_sched_class;
1703
1704	if (p->sched_class->task_fork)
1705		p->sched_class->task_fork(p);
1706
1707	/*
1708	 * The child is not yet in the pid-hash so no cgroup attach races,
1709	 * and the cgroup is pinned to this child due to cgroup_fork()
1710	 * is ran before sched_fork().
1711	 *
1712	 * Silence PROVE_RCU.
1713	 */
1714	raw_spin_lock_irqsave(&p->pi_lock, flags);
1715	set_task_cpu(p, cpu);
1716	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1717
1718#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1719	if (likely(sched_info_on()))
1720		memset(&p->sched_info, 0, sizeof(p->sched_info));
1721#endif
1722#if defined(CONFIG_SMP)
1723	p->on_cpu = 0;
1724#endif
1725	init_task_preempt_count(p);
1726#ifdef CONFIG_SMP
1727	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1728#endif
1729
1730	put_cpu();
1731}
1732
1733/*
1734 * wake_up_new_task - wake up a newly created task for the first time.
1735 *
1736 * This function will do some initial scheduler statistics housekeeping
1737 * that must be done for every newly created context, then puts the task
1738 * on the runqueue and wakes it.
1739 */
1740void wake_up_new_task(struct task_struct *p)
1741{
1742	unsigned long flags;
1743	struct rq *rq;
1744
1745	raw_spin_lock_irqsave(&p->pi_lock, flags);
1746#ifdef CONFIG_SMP
1747	/*
1748	 * Fork balancing, do it here and not earlier because:
1749	 *  - cpus_allowed can change in the fork path
1750	 *  - any previously selected cpu might disappear through hotplug
1751	 */
1752	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1753#endif
1754
1755	/* Initialize new task's runnable average */
1756	init_task_runnable_average(p);
1757	rq = __task_rq_lock(p);
1758	activate_task(rq, p, 0);
1759	p->on_rq = 1;
1760	trace_sched_wakeup_new(p, true);
1761	check_preempt_curr(rq, p, WF_FORK);
1762#ifdef CONFIG_SMP
1763	if (p->sched_class->task_woken)
1764		p->sched_class->task_woken(rq, p);
1765#endif
1766	task_rq_unlock(rq, p, &flags);
1767}
1768
1769#ifdef CONFIG_PREEMPT_NOTIFIERS
1770
1771/**
1772 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1773 * @notifier: notifier struct to register
1774 */
1775void preempt_notifier_register(struct preempt_notifier *notifier)
1776{
1777	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1778}
1779EXPORT_SYMBOL_GPL(preempt_notifier_register);
1780
1781/**
1782 * preempt_notifier_unregister - no longer interested in preemption notifications
1783 * @notifier: notifier struct to unregister
1784 *
1785 * This is safe to call from within a preemption notifier.
1786 */
1787void preempt_notifier_unregister(struct preempt_notifier *notifier)
1788{
1789	hlist_del(&notifier->link);
1790}
1791EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1792
1793static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1794{
1795	struct preempt_notifier *notifier;
1796
1797	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1798		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1799}
1800
1801static void
1802fire_sched_out_preempt_notifiers(struct task_struct *curr,
1803				 struct task_struct *next)
1804{
1805	struct preempt_notifier *notifier;
1806
1807	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1808		notifier->ops->sched_out(notifier, next);
1809}
1810
1811#else /* !CONFIG_PREEMPT_NOTIFIERS */
1812
1813static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1814{
1815}
1816
1817static void
1818fire_sched_out_preempt_notifiers(struct task_struct *curr,
1819				 struct task_struct *next)
1820{
1821}
1822
1823#endif /* CONFIG_PREEMPT_NOTIFIERS */
1824
1825/**
1826 * prepare_task_switch - prepare to switch tasks
1827 * @rq: the runqueue preparing to switch
1828 * @prev: the current task that is being switched out
1829 * @next: the task we are going to switch to.
1830 *
1831 * This is called with the rq lock held and interrupts off. It must
1832 * be paired with a subsequent finish_task_switch after the context
1833 * switch.
1834 *
1835 * prepare_task_switch sets up locking and calls architecture specific
1836 * hooks.
1837 */
1838static inline void
1839prepare_task_switch(struct rq *rq, struct task_struct *prev,
1840		    struct task_struct *next)
1841{
1842	trace_sched_switch(prev, next);
1843	sched_info_switch(rq, prev, next);
1844	perf_event_task_sched_out(prev, next);
1845	fire_sched_out_preempt_notifiers(prev, next);
1846	prepare_lock_switch(rq, next);
1847	prepare_arch_switch(next);
1848}
1849
1850/**
1851 * finish_task_switch - clean up after a task-switch
1852 * @rq: runqueue associated with task-switch
1853 * @prev: the thread we just switched away from.
1854 *
1855 * finish_task_switch must be called after the context switch, paired
1856 * with a prepare_task_switch call before the context switch.
1857 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1858 * and do any other architecture-specific cleanup actions.
1859 *
1860 * Note that we may have delayed dropping an mm in context_switch(). If
1861 * so, we finish that here outside of the runqueue lock. (Doing it
1862 * with the lock held can cause deadlocks; see schedule() for
1863 * details.)
1864 */
1865static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1866	__releases(rq->lock)
1867{
1868	struct mm_struct *mm = rq->prev_mm;
1869	long prev_state;
1870
1871	rq->prev_mm = NULL;
1872
1873	/*
1874	 * A task struct has one reference for the use as "current".
1875	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1876	 * schedule one last time. The schedule call will never return, and
1877	 * the scheduled task must drop that reference.
1878	 * The test for TASK_DEAD must occur while the runqueue locks are
1879	 * still held, otherwise prev could be scheduled on another cpu, die
1880	 * there before we look at prev->state, and then the reference would
1881	 * be dropped twice.
1882	 *		Manfred Spraul <manfred@colorfullife.com>
1883	 */
1884	prev_state = prev->state;
1885	vtime_task_switch(prev);
1886	finish_arch_switch(prev);
1887	perf_event_task_sched_in(prev, current);
1888	finish_lock_switch(rq, prev);
1889	finish_arch_post_lock_switch();
1890
1891	fire_sched_in_preempt_notifiers(current);
1892	if (mm)
1893		mmdrop(mm);
1894	if (unlikely(prev_state == TASK_DEAD)) {
1895		/*
1896		 * Remove function-return probe instances associated with this
1897		 * task and put them back on the free list.
1898		 */
1899		kprobe_flush_task(prev);
1900		put_task_struct(prev);
1901	}
1902
1903	tick_nohz_task_switch(current);
1904}
1905
1906#ifdef CONFIG_SMP
1907
1908/* assumes rq->lock is held */
1909static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1910{
1911	if (prev->sched_class->pre_schedule)
1912		prev->sched_class->pre_schedule(rq, prev);
1913}
1914
1915/* rq->lock is NOT held, but preemption is disabled */
1916static inline void post_schedule(struct rq *rq)
1917{
1918	if (rq->post_schedule) {
1919		unsigned long flags;
1920
1921		raw_spin_lock_irqsave(&rq->lock, flags);
1922		if (rq->curr->sched_class->post_schedule)
1923			rq->curr->sched_class->post_schedule(rq);
1924		raw_spin_unlock_irqrestore(&rq->lock, flags);
1925
1926		rq->post_schedule = 0;
1927	}
1928}
1929
1930#else
1931
1932static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1933{
1934}
1935
1936static inline void post_schedule(struct rq *rq)
1937{
1938}
1939
1940#endif
1941
1942/**
1943 * schedule_tail - first thing a freshly forked thread must call.
1944 * @prev: the thread we just switched away from.
1945 */
1946asmlinkage void schedule_tail(struct task_struct *prev)
1947	__releases(rq->lock)
1948{
1949	struct rq *rq = this_rq();
1950
1951	finish_task_switch(rq, prev);
1952
1953	/*
1954	 * FIXME: do we need to worry about rq being invalidated by the
1955	 * task_switch?
1956	 */
1957	post_schedule(rq);
1958
1959#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1960	/* In this case, finish_task_switch does not reenable preemption */
1961	preempt_enable();
1962#endif
1963	if (current->set_child_tid)
1964		put_user(task_pid_vnr(current), current->set_child_tid);
1965}
1966
1967/*
1968 * context_switch - switch to the new MM and the new
1969 * thread's register state.
1970 */
1971static inline void
1972context_switch(struct rq *rq, struct task_struct *prev,
1973	       struct task_struct *next)
1974{
1975	struct mm_struct *mm, *oldmm;
1976
1977	prepare_task_switch(rq, prev, next);
1978
1979	mm = next->mm;
1980	oldmm = prev->active_mm;
1981	/*
1982	 * For paravirt, this is coupled with an exit in switch_to to
1983	 * combine the page table reload and the switch backend into
1984	 * one hypercall.
1985	 */
1986	arch_start_context_switch(prev);
1987
1988	if (!mm) {
1989		next->active_mm = oldmm;
1990		atomic_inc(&oldmm->mm_count);
1991		enter_lazy_tlb(oldmm, next);
1992	} else
1993		switch_mm(oldmm, mm, next);
1994
1995	if (!prev->mm) {
1996		prev->active_mm = NULL;
1997		rq->prev_mm = oldmm;
1998	}
1999	/*
2000	 * Since the runqueue lock will be released by the next
2001	 * task (which is an invalid locking op but in the case
2002	 * of the scheduler it's an obvious special-case), so we
2003	 * do an early lockdep release here:
2004	 */
2005#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2006	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2007#endif
2008
2009	context_tracking_task_switch(prev, next);
2010	/* Here we just switch the register state and the stack. */
2011	switch_to(prev, next, prev);
2012
2013	barrier();
2014	/*
2015	 * this_rq must be evaluated again because prev may have moved
2016	 * CPUs since it called schedule(), thus the 'rq' on its stack
2017	 * frame will be invalid.
2018	 */
2019	finish_task_switch(this_rq(), prev);
2020}
2021
2022/*
2023 * nr_running and nr_context_switches:
2024 *
2025 * externally visible scheduler statistics: current number of runnable
2026 * threads, total number of context switches performed since bootup.
2027 */
2028unsigned long nr_running(void)
2029{
2030	unsigned long i, sum = 0;
2031
2032	for_each_online_cpu(i)
2033		sum += cpu_rq(i)->nr_running;
2034
2035	return sum;
2036}
2037
2038unsigned long long nr_context_switches(void)
2039{
2040	int i;
2041	unsigned long long sum = 0;
2042
2043	for_each_possible_cpu(i)
2044		sum += cpu_rq(i)->nr_switches;
2045
2046	return sum;
2047}
2048
2049unsigned long nr_iowait(void)
2050{
2051	unsigned long i, sum = 0;
2052
2053	for_each_possible_cpu(i)
2054		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2055
2056	return sum;
2057}
2058
2059unsigned long nr_iowait_cpu(int cpu)
2060{
2061	struct rq *this = cpu_rq(cpu);
2062	return atomic_read(&this->nr_iowait);
2063}
2064
2065#ifdef CONFIG_SMP
2066
2067/*
2068 * sched_exec - execve() is a valuable balancing opportunity, because at
2069 * this point the task has the smallest effective memory and cache footprint.
2070 */
2071void sched_exec(void)
2072{
2073	struct task_struct *p = current;
2074	unsigned long flags;
2075	int dest_cpu;
2076
2077	raw_spin_lock_irqsave(&p->pi_lock, flags);
2078	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2079	if (dest_cpu == smp_processor_id())
2080		goto unlock;
2081
2082	if (likely(cpu_active(dest_cpu))) {
2083		struct migration_arg arg = { p, dest_cpu };
2084
2085		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2086		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2087		return;
2088	}
2089unlock:
2090	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2091}
2092
2093#endif
2094
2095DEFINE_PER_CPU(struct kernel_stat, kstat);
2096DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2097
2098EXPORT_PER_CPU_SYMBOL(kstat);
2099EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2100
2101/*
2102 * Return any ns on the sched_clock that have not yet been accounted in
2103 * @p in case that task is currently running.
2104 *
2105 * Called with task_rq_lock() held on @rq.
2106 */
2107static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2108{
2109	u64 ns = 0;
2110
2111	if (task_current(rq, p)) {
2112		update_rq_clock(rq);
2113		ns = rq_clock_task(rq) - p->se.exec_start;
2114		if ((s64)ns < 0)
2115			ns = 0;
2116	}
2117
2118	return ns;
2119}
2120
2121unsigned long long task_delta_exec(struct task_struct *p)
2122{
2123	unsigned long flags;
2124	struct rq *rq;
2125	u64 ns = 0;
2126
2127	rq = task_rq_lock(p, &flags);
2128	ns = do_task_delta_exec(p, rq);
2129	task_rq_unlock(rq, p, &flags);
2130
2131	return ns;
2132}
2133
2134/*
2135 * Return accounted runtime for the task.
2136 * In case the task is currently running, return the runtime plus current's
2137 * pending runtime that have not been accounted yet.
2138 */
2139unsigned long long task_sched_runtime(struct task_struct *p)
2140{
2141	unsigned long flags;
2142	struct rq *rq;
2143	u64 ns = 0;
2144
2145	rq = task_rq_lock(p, &flags);
2146	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2147	task_rq_unlock(rq, p, &flags);
2148
2149	return ns;
2150}
2151
2152/*
2153 * This function gets called by the timer code, with HZ frequency.
2154 * We call it with interrupts disabled.
2155 */
2156void scheduler_tick(void)
2157{
2158	int cpu = smp_processor_id();
2159	struct rq *rq = cpu_rq(cpu);
2160	struct task_struct *curr = rq->curr;
2161
2162	sched_clock_tick();
2163
2164	raw_spin_lock(&rq->lock);
2165	update_rq_clock(rq);
2166	curr->sched_class->task_tick(rq, curr, 0);
2167	update_cpu_load_active(rq);
2168	raw_spin_unlock(&rq->lock);
2169
2170	perf_event_task_tick();
2171
2172#ifdef CONFIG_SMP
2173	rq->idle_balance = idle_cpu(cpu);
2174	trigger_load_balance(rq, cpu);
2175#endif
2176	rq_last_tick_reset(rq);
2177}
2178
2179#ifdef CONFIG_NO_HZ_FULL
2180/**
2181 * scheduler_tick_max_deferment
2182 *
2183 * Keep at least one tick per second when a single
2184 * active task is running because the scheduler doesn't
2185 * yet completely support full dynticks environment.
2186 *
2187 * This makes sure that uptime, CFS vruntime, load
2188 * balancing, etc... continue to move forward, even
2189 * with a very low granularity.
2190 *
2191 * Return: Maximum deferment in nanoseconds.
2192 */
2193u64 scheduler_tick_max_deferment(void)
2194{
2195	struct rq *rq = this_rq();
2196	unsigned long next, now = ACCESS_ONCE(jiffies);
2197
2198	next = rq->last_sched_tick + HZ;
2199
2200	if (time_before_eq(next, now))
2201		return 0;
2202
2203	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2204}
2205#endif
2206
2207notrace unsigned long get_parent_ip(unsigned long addr)
2208{
2209	if (in_lock_functions(addr)) {
2210		addr = CALLER_ADDR2;
2211		if (in_lock_functions(addr))
2212			addr = CALLER_ADDR3;
2213	}
2214	return addr;
2215}
2216
2217#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218				defined(CONFIG_PREEMPT_TRACER))
2219
2220void __kprobes preempt_count_add(int val)
2221{
2222#ifdef CONFIG_DEBUG_PREEMPT
2223	/*
2224	 * Underflow?
2225	 */
2226	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2227		return;
2228#endif
2229	__preempt_count_add(val);
2230#ifdef CONFIG_DEBUG_PREEMPT
2231	/*
2232	 * Spinlock count overflowing soon?
2233	 */
2234	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2235				PREEMPT_MASK - 10);
2236#endif
2237	if (preempt_count() == val)
2238		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2239}
2240EXPORT_SYMBOL(preempt_count_add);
2241
2242void __kprobes preempt_count_sub(int val)
2243{
2244#ifdef CONFIG_DEBUG_PREEMPT
2245	/*
2246	 * Underflow?
2247	 */
2248	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2249		return;
2250	/*
2251	 * Is the spinlock portion underflowing?
2252	 */
2253	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254			!(preempt_count() & PREEMPT_MASK)))
2255		return;
2256#endif
2257
2258	if (preempt_count() == val)
2259		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2260	__preempt_count_sub(val);
2261}
2262EXPORT_SYMBOL(preempt_count_sub);
2263
2264#endif
2265
2266/*
2267 * Print scheduling while atomic bug:
2268 */
2269static noinline void __schedule_bug(struct task_struct *prev)
2270{
2271	if (oops_in_progress)
2272		return;
2273
2274	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275		prev->comm, prev->pid, preempt_count());
2276
2277	debug_show_held_locks(prev);
2278	print_modules();
2279	if (irqs_disabled())
2280		print_irqtrace_events(prev);
2281	dump_stack();
2282	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2283}
2284
2285/*
2286 * Various schedule()-time debugging checks and statistics:
2287 */
2288static inline void schedule_debug(struct task_struct *prev)
2289{
2290	/*
2291	 * Test if we are atomic. Since do_exit() needs to call into
2292	 * schedule() atomically, we ignore that path for now.
2293	 * Otherwise, whine if we are scheduling when we should not be.
2294	 */
2295	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2296		__schedule_bug(prev);
2297	rcu_sleep_check();
2298
2299	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2300
2301	schedstat_inc(this_rq(), sched_count);
2302}
2303
2304static void put_prev_task(struct rq *rq, struct task_struct *prev)
2305{
2306	if (prev->on_rq || rq->skip_clock_update < 0)
2307		update_rq_clock(rq);
2308	prev->sched_class->put_prev_task(rq, prev);
2309}
2310
2311/*
2312 * Pick up the highest-prio task:
2313 */
2314static inline struct task_struct *
2315pick_next_task(struct rq *rq)
2316{
2317	const struct sched_class *class;
2318	struct task_struct *p;
2319
2320	/*
2321	 * Optimization: we know that if all tasks are in
2322	 * the fair class we can call that function directly:
2323	 */
2324	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2325		p = fair_sched_class.pick_next_task(rq);
2326		if (likely(p))
2327			return p;
2328	}
2329
2330	for_each_class(class) {
2331		p = class->pick_next_task(rq);
2332		if (p)
2333			return p;
2334	}
2335
2336	BUG(); /* the idle class will always have a runnable task */
2337}
2338
2339/*
2340 * __schedule() is the main scheduler function.
2341 *
2342 * The main means of driving the scheduler and thus entering this function are:
2343 *
2344 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2345 *
2346 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347 *      paths. For example, see arch/x86/entry_64.S.
2348 *
2349 *      To drive preemption between tasks, the scheduler sets the flag in timer
2350 *      interrupt handler scheduler_tick().
2351 *
2352 *   3. Wakeups don't really cause entry into schedule(). They add a
2353 *      task to the run-queue and that's it.
2354 *
2355 *      Now, if the new task added to the run-queue preempts the current
2356 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357 *      called on the nearest possible occasion:
2358 *
2359 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2360 *
2361 *         - in syscall or exception context, at the next outmost
2362 *           preempt_enable(). (this might be as soon as the wake_up()'s
2363 *           spin_unlock()!)
2364 *
2365 *         - in IRQ context, return from interrupt-handler to
2366 *           preemptible context
2367 *
2368 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2369 *         then at the next:
2370 *
2371 *          - cond_resched() call
2372 *          - explicit schedule() call
2373 *          - return from syscall or exception to user-space
2374 *          - return from interrupt-handler to user-space
2375 */
2376static void __sched __schedule(void)
2377{
2378	struct task_struct *prev, *next;
2379	unsigned long *switch_count;
2380	struct rq *rq;
2381	int cpu;
2382
2383need_resched:
2384	preempt_disable();
2385	cpu = smp_processor_id();
2386	rq = cpu_rq(cpu);
2387	rcu_note_context_switch(cpu);
2388	prev = rq->curr;
2389
2390	schedule_debug(prev);
2391
2392	if (sched_feat(HRTICK))
2393		hrtick_clear(rq);
2394
2395	/*
2396	 * Make sure that signal_pending_state()->signal_pending() below
2397	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2398	 * done by the caller to avoid the race with signal_wake_up().
2399	 */
2400	smp_mb__before_spinlock();
2401	raw_spin_lock_irq(&rq->lock);
2402
2403	switch_count = &prev->nivcsw;
2404	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2405		if (unlikely(signal_pending_state(prev->state, prev))) {
2406			prev->state = TASK_RUNNING;
2407		} else {
2408			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2409			prev->on_rq = 0;
2410
2411			/*
2412			 * If a worker went to sleep, notify and ask workqueue
2413			 * whether it wants to wake up a task to maintain
2414			 * concurrency.
2415			 */
2416			if (prev->flags & PF_WQ_WORKER) {
2417				struct task_struct *to_wakeup;
2418
2419				to_wakeup = wq_worker_sleeping(prev, cpu);
2420				if (to_wakeup)
2421					try_to_wake_up_local(to_wakeup);
2422			}
2423		}
2424		switch_count = &prev->nvcsw;
2425	}
2426
2427	pre_schedule(rq, prev);
2428
2429	if (unlikely(!rq->nr_running))
2430		idle_balance(cpu, rq);
2431
2432	put_prev_task(rq, prev);
2433	next = pick_next_task(rq);
2434	clear_tsk_need_resched(prev);
2435	clear_preempt_need_resched();
2436	rq->skip_clock_update = 0;
2437
2438	if (likely(prev != next)) {
2439		rq->nr_switches++;
2440		rq->curr = next;
2441		++*switch_count;
2442
2443		context_switch(rq, prev, next); /* unlocks the rq */
2444		/*
2445		 * The context switch have flipped the stack from under us
2446		 * and restored the local variables which were saved when
2447		 * this task called schedule() in the past. prev == current
2448		 * is still correct, but it can be moved to another cpu/rq.
2449		 */
2450		cpu = smp_processor_id();
2451		rq = cpu_rq(cpu);
2452	} else
2453		raw_spin_unlock_irq(&rq->lock);
2454
2455	post_schedule(rq);
2456
2457	sched_preempt_enable_no_resched();
2458	if (need_resched())
2459		goto need_resched;
2460}
2461
2462static inline void sched_submit_work(struct task_struct *tsk)
2463{
2464	if (!tsk->state || tsk_is_pi_blocked(tsk))
2465		return;
2466	/*
2467	 * If we are going to sleep and we have plugged IO queued,
2468	 * make sure to submit it to avoid deadlocks.
2469	 */
2470	if (blk_needs_flush_plug(tsk))
2471		blk_schedule_flush_plug(tsk);
2472}
2473
2474asmlinkage void __sched schedule(void)
2475{
2476	struct task_struct *tsk = current;
2477
2478	sched_submit_work(tsk);
2479	__schedule();
2480}
2481EXPORT_SYMBOL(schedule);
2482
2483#ifdef CONFIG_CONTEXT_TRACKING
2484asmlinkage void __sched schedule_user(void)
2485{
2486	/*
2487	 * If we come here after a random call to set_need_resched(),
2488	 * or we have been woken up remotely but the IPI has not yet arrived,
2489	 * we haven't yet exited the RCU idle mode. Do it here manually until
2490	 * we find a better solution.
2491	 */
2492	user_exit();
2493	schedule();
2494	user_enter();
2495}
2496#endif
2497
2498/**
2499 * schedule_preempt_disabled - called with preemption disabled
2500 *
2501 * Returns with preemption disabled. Note: preempt_count must be 1
2502 */
2503void __sched schedule_preempt_disabled(void)
2504{
2505	sched_preempt_enable_no_resched();
2506	schedule();
2507	preempt_disable();
2508}
2509
2510#ifdef CONFIG_PREEMPT
2511/*
2512 * this is the entry point to schedule() from in-kernel preemption
2513 * off of preempt_enable. Kernel preemptions off return from interrupt
2514 * occur there and call schedule directly.
2515 */
2516asmlinkage void __sched notrace preempt_schedule(void)
2517{
2518	/*
2519	 * If there is a non-zero preempt_count or interrupts are disabled,
2520	 * we do not want to preempt the current task. Just return..
2521	 */
2522	if (likely(!preemptible()))
2523		return;
2524
2525	do {
2526		__preempt_count_add(PREEMPT_ACTIVE);
2527		__schedule();
2528		__preempt_count_sub(PREEMPT_ACTIVE);
2529
2530		/*
2531		 * Check again in case we missed a preemption opportunity
2532		 * between schedule and now.
2533		 */
2534		barrier();
2535	} while (need_resched());
2536}
2537EXPORT_SYMBOL(preempt_schedule);
2538
2539/*
2540 * this is the entry point to schedule() from kernel preemption
2541 * off of irq context.
2542 * Note, that this is called and return with irqs disabled. This will
2543 * protect us against recursive calling from irq.
2544 */
2545asmlinkage void __sched preempt_schedule_irq(void)
2546{
2547	enum ctx_state prev_state;
2548
2549	/* Catch callers which need to be fixed */
2550	BUG_ON(preempt_count() || !irqs_disabled());
2551
2552	prev_state = exception_enter();
2553
2554	do {
2555		__preempt_count_add(PREEMPT_ACTIVE);
2556		local_irq_enable();
2557		__schedule();
2558		local_irq_disable();
2559		__preempt_count_sub(PREEMPT_ACTIVE);
2560
2561		/*
2562		 * Check again in case we missed a preemption opportunity
2563		 * between schedule and now.
2564		 */
2565		barrier();
2566	} while (need_resched());
2567
2568	exception_exit(prev_state);
2569}
2570
2571#endif /* CONFIG_PREEMPT */
2572
2573int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2574			  void *key)
2575{
2576	return try_to_wake_up(curr->private, mode, wake_flags);
2577}
2578EXPORT_SYMBOL(default_wake_function);
2579
2580/*
2581 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2582 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2583 * number) then we wake all the non-exclusive tasks and one exclusive task.
2584 *
2585 * There are circumstances in which we can try to wake a task which has already
2586 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2587 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2588 */
2589static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2590			int nr_exclusive, int wake_flags, void *key)
2591{
2592	wait_queue_t *curr, *next;
2593
2594	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2595		unsigned flags = curr->flags;
2596
2597		if (curr->func(curr, mode, wake_flags, key) &&
2598				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2599			break;
2600	}
2601}
2602
2603/**
2604 * __wake_up - wake up threads blocked on a waitqueue.
2605 * @q: the waitqueue
2606 * @mode: which threads
2607 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2608 * @key: is directly passed to the wakeup function
2609 *
2610 * It may be assumed that this function implies a write memory barrier before
2611 * changing the task state if and only if any tasks are woken up.
2612 */
2613void __wake_up(wait_queue_head_t *q, unsigned int mode,
2614			int nr_exclusive, void *key)
2615{
2616	unsigned long flags;
2617
2618	spin_lock_irqsave(&q->lock, flags);
2619	__wake_up_common(q, mode, nr_exclusive, 0, key);
2620	spin_unlock_irqrestore(&q->lock, flags);
2621}
2622EXPORT_SYMBOL(__wake_up);
2623
2624/*
2625 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2626 */
2627void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2628{
2629	__wake_up_common(q, mode, nr, 0, NULL);
2630}
2631EXPORT_SYMBOL_GPL(__wake_up_locked);
2632
2633void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2634{
2635	__wake_up_common(q, mode, 1, 0, key);
2636}
2637EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2638
2639/**
2640 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2641 * @q: the waitqueue
2642 * @mode: which threads
2643 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2644 * @key: opaque value to be passed to wakeup targets
2645 *
2646 * The sync wakeup differs that the waker knows that it will schedule
2647 * away soon, so while the target thread will be woken up, it will not
2648 * be migrated to another CPU - ie. the two threads are 'synchronized'
2649 * with each other. This can prevent needless bouncing between CPUs.
2650 *
2651 * On UP it can prevent extra preemption.
2652 *
2653 * It may be assumed that this function implies a write memory barrier before
2654 * changing the task state if and only if any tasks are woken up.
2655 */
2656void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2657			int nr_exclusive, void *key)
2658{
2659	unsigned long flags;
2660	int wake_flags = WF_SYNC;
2661
2662	if (unlikely(!q))
2663		return;
2664
2665	if (unlikely(nr_exclusive != 1))
2666		wake_flags = 0;
2667
2668	spin_lock_irqsave(&q->lock, flags);
2669	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2670	spin_unlock_irqrestore(&q->lock, flags);
2671}
2672EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2673
2674/*
2675 * __wake_up_sync - see __wake_up_sync_key()
2676 */
2677void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2678{
2679	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2680}
2681EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2682
2683/**
2684 * complete: - signals a single thread waiting on this completion
2685 * @x:  holds the state of this particular completion
2686 *
2687 * This will wake up a single thread waiting on this completion. Threads will be
2688 * awakened in the same order in which they were queued.
2689 *
2690 * See also complete_all(), wait_for_completion() and related routines.
2691 *
2692 * It may be assumed that this function implies a write memory barrier before
2693 * changing the task state if and only if any tasks are woken up.
2694 */
2695void complete(struct completion *x)
2696{
2697	unsigned long flags;
2698
2699	spin_lock_irqsave(&x->wait.lock, flags);
2700	x->done++;
2701	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2702	spin_unlock_irqrestore(&x->wait.lock, flags);
2703}
2704EXPORT_SYMBOL(complete);
2705
2706/**
2707 * complete_all: - signals all threads waiting on this completion
2708 * @x:  holds the state of this particular completion
2709 *
2710 * This will wake up all threads waiting on this particular completion event.
2711 *
2712 * It may be assumed that this function implies a write memory barrier before
2713 * changing the task state if and only if any tasks are woken up.
2714 */
2715void complete_all(struct completion *x)
2716{
2717	unsigned long flags;
2718
2719	spin_lock_irqsave(&x->wait.lock, flags);
2720	x->done += UINT_MAX/2;
2721	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2722	spin_unlock_irqrestore(&x->wait.lock, flags);
2723}
2724EXPORT_SYMBOL(complete_all);
2725
2726static inline long __sched
2727do_wait_for_common(struct completion *x,
2728		   long (*action)(long), long timeout, int state)
2729{
2730	if (!x->done) {
2731		DECLARE_WAITQUEUE(wait, current);
2732
2733		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2734		do {
2735			if (signal_pending_state(state, current)) {
2736				timeout = -ERESTARTSYS;
2737				break;
2738			}
2739			__set_current_state(state);
2740			spin_unlock_irq(&x->wait.lock);
2741			timeout = action(timeout);
2742			spin_lock_irq(&x->wait.lock);
2743		} while (!x->done && timeout);
2744		__remove_wait_queue(&x->wait, &wait);
2745		if (!x->done)
2746			return timeout;
2747	}
2748	x->done--;
2749	return timeout ?: 1;
2750}
2751
2752static inline long __sched
2753__wait_for_common(struct completion *x,
2754		  long (*action)(long), long timeout, int state)
2755{
2756	might_sleep();
2757
2758	spin_lock_irq(&x->wait.lock);
2759	timeout = do_wait_for_common(x, action, timeout, state);
2760	spin_unlock_irq(&x->wait.lock);
2761	return timeout;
2762}
2763
2764static long __sched
2765wait_for_common(struct completion *x, long timeout, int state)
2766{
2767	return __wait_for_common(x, schedule_timeout, timeout, state);
2768}
2769
2770static long __sched
2771wait_for_common_io(struct completion *x, long timeout, int state)
2772{
2773	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2774}
2775
2776/**
2777 * wait_for_completion: - waits for completion of a task
2778 * @x:  holds the state of this particular completion
2779 *
2780 * This waits to be signaled for completion of a specific task. It is NOT
2781 * interruptible and there is no timeout.
2782 *
2783 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2784 * and interrupt capability. Also see complete().
2785 */
2786void __sched wait_for_completion(struct completion *x)
2787{
2788	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2789}
2790EXPORT_SYMBOL(wait_for_completion);
2791
2792/**
2793 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2794 * @x:  holds the state of this particular completion
2795 * @timeout:  timeout value in jiffies
2796 *
2797 * This waits for either a completion of a specific task to be signaled or for a
2798 * specified timeout to expire. The timeout is in jiffies. It is not
2799 * interruptible.
2800 *
2801 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2802 * till timeout) if completed.
2803 */
2804unsigned long __sched
2805wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2806{
2807	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2808}
2809EXPORT_SYMBOL(wait_for_completion_timeout);
2810
2811/**
2812 * wait_for_completion_io: - waits for completion of a task
2813 * @x:  holds the state of this particular completion
2814 *
2815 * This waits to be signaled for completion of a specific task. It is NOT
2816 * interruptible and there is no timeout. The caller is accounted as waiting
2817 * for IO.
2818 */
2819void __sched wait_for_completion_io(struct completion *x)
2820{
2821	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2822}
2823EXPORT_SYMBOL(wait_for_completion_io);
2824
2825/**
2826 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2827 * @x:  holds the state of this particular completion
2828 * @timeout:  timeout value in jiffies
2829 *
2830 * This waits for either a completion of a specific task to be signaled or for a
2831 * specified timeout to expire. The timeout is in jiffies. It is not
2832 * interruptible. The caller is accounted as waiting for IO.
2833 *
2834 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2835 * till timeout) if completed.
2836 */
2837unsigned long __sched
2838wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2839{
2840	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2841}
2842EXPORT_SYMBOL(wait_for_completion_io_timeout);
2843
2844/**
2845 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2846 * @x:  holds the state of this particular completion
2847 *
2848 * This waits for completion of a specific task to be signaled. It is
2849 * interruptible.
2850 *
2851 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2852 */
2853int __sched wait_for_completion_interruptible(struct completion *x)
2854{
2855	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2856	if (t == -ERESTARTSYS)
2857		return t;
2858	return 0;
2859}
2860EXPORT_SYMBOL(wait_for_completion_interruptible);
2861
2862/**
2863 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2864 * @x:  holds the state of this particular completion
2865 * @timeout:  timeout value in jiffies
2866 *
2867 * This waits for either a completion of a specific task to be signaled or for a
2868 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2869 *
2870 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2871 * or number of jiffies left till timeout) if completed.
2872 */
2873long __sched
2874wait_for_completion_interruptible_timeout(struct completion *x,
2875					  unsigned long timeout)
2876{
2877	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2878}
2879EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2880
2881/**
2882 * wait_for_completion_killable: - waits for completion of a task (killable)
2883 * @x:  holds the state of this particular completion
2884 *
2885 * This waits to be signaled for completion of a specific task. It can be
2886 * interrupted by a kill signal.
2887 *
2888 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2889 */
2890int __sched wait_for_completion_killable(struct completion *x)
2891{
2892	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2893	if (t == -ERESTARTSYS)
2894		return t;
2895	return 0;
2896}
2897EXPORT_SYMBOL(wait_for_completion_killable);
2898
2899/**
2900 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2901 * @x:  holds the state of this particular completion
2902 * @timeout:  timeout value in jiffies
2903 *
2904 * This waits for either a completion of a specific task to be
2905 * signaled or for a specified timeout to expire. It can be
2906 * interrupted by a kill signal. The timeout is in jiffies.
2907 *
2908 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2909 * or number of jiffies left till timeout) if completed.
2910 */
2911long __sched
2912wait_for_completion_killable_timeout(struct completion *x,
2913				     unsigned long timeout)
2914{
2915	return wait_for_common(x, timeout, TASK_KILLABLE);
2916}
2917EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2918
2919/**
2920 *	try_wait_for_completion - try to decrement a completion without blocking
2921 *	@x:	completion structure
2922 *
2923 *	Return: 0 if a decrement cannot be done without blocking
2924 *		 1 if a decrement succeeded.
2925 *
2926 *	If a completion is being used as a counting completion,
2927 *	attempt to decrement the counter without blocking. This
2928 *	enables us to avoid waiting if the resource the completion
2929 *	is protecting is not available.
2930 */
2931bool try_wait_for_completion(struct completion *x)
2932{
2933	unsigned long flags;
2934	int ret = 1;
2935
2936	spin_lock_irqsave(&x->wait.lock, flags);
2937	if (!x->done)
2938		ret = 0;
2939	else
2940		x->done--;
2941	spin_unlock_irqrestore(&x->wait.lock, flags);
2942	return ret;
2943}
2944EXPORT_SYMBOL(try_wait_for_completion);
2945
2946/**
2947 *	completion_done - Test to see if a completion has any waiters
2948 *	@x:	completion structure
2949 *
2950 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2951 *		 1 if there are no waiters.
2952 *
2953 */
2954bool completion_done(struct completion *x)
2955{
2956	unsigned long flags;
2957	int ret = 1;
2958
2959	spin_lock_irqsave(&x->wait.lock, flags);
2960	if (!x->done)
2961		ret = 0;
2962	spin_unlock_irqrestore(&x->wait.lock, flags);
2963	return ret;
2964}
2965EXPORT_SYMBOL(completion_done);
2966
2967static long __sched
2968sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2969{
2970	unsigned long flags;
2971	wait_queue_t wait;
2972
2973	init_waitqueue_entry(&wait, current);
2974
2975	__set_current_state(state);
2976
2977	spin_lock_irqsave(&q->lock, flags);
2978	__add_wait_queue(q, &wait);
2979	spin_unlock(&q->lock);
2980	timeout = schedule_timeout(timeout);
2981	spin_lock_irq(&q->lock);
2982	__remove_wait_queue(q, &wait);
2983	spin_unlock_irqrestore(&q->lock, flags);
2984
2985	return timeout;
2986}
2987
2988void __sched interruptible_sleep_on(wait_queue_head_t *q)
2989{
2990	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2991}
2992EXPORT_SYMBOL(interruptible_sleep_on);
2993
2994long __sched
2995interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2996{
2997	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2998}
2999EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3000
3001void __sched sleep_on(wait_queue_head_t *q)
3002{
3003	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3004}
3005EXPORT_SYMBOL(sleep_on);
3006
3007long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3008{
3009	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3010}
3011EXPORT_SYMBOL(sleep_on_timeout);
3012
3013#ifdef CONFIG_RT_MUTEXES
3014
3015/*
3016 * rt_mutex_setprio - set the current priority of a task
3017 * @p: task
3018 * @prio: prio value (kernel-internal form)
3019 *
3020 * This function changes the 'effective' priority of a task. It does
3021 * not touch ->normal_prio like __setscheduler().
3022 *
3023 * Used by the rt_mutex code to implement priority inheritance logic.
3024 */
3025void rt_mutex_setprio(struct task_struct *p, int prio)
3026{
3027	int oldprio, on_rq, running;
3028	struct rq *rq;
3029	const struct sched_class *prev_class;
3030
3031	BUG_ON(prio < 0 || prio > MAX_PRIO);
3032
3033	rq = __task_rq_lock(p);
3034
3035	/*
3036	 * Idle task boosting is a nono in general. There is one
3037	 * exception, when PREEMPT_RT and NOHZ is active:
3038	 *
3039	 * The idle task calls get_next_timer_interrupt() and holds
3040	 * the timer wheel base->lock on the CPU and another CPU wants
3041	 * to access the timer (probably to cancel it). We can safely
3042	 * ignore the boosting request, as the idle CPU runs this code
3043	 * with interrupts disabled and will complete the lock
3044	 * protected section without being interrupted. So there is no
3045	 * real need to boost.
3046	 */
3047	if (unlikely(p == rq->idle)) {
3048		WARN_ON(p != rq->curr);
3049		WARN_ON(p->pi_blocked_on);
3050		goto out_unlock;
3051	}
3052
3053	trace_sched_pi_setprio(p, prio);
3054	oldprio = p->prio;
3055	prev_class = p->sched_class;
3056	on_rq = p->on_rq;
3057	running = task_current(rq, p);
3058	if (on_rq)
3059		dequeue_task(rq, p, 0);
3060	if (running)
3061		p->sched_class->put_prev_task(rq, p);
3062
3063	if (rt_prio(prio))
3064		p->sched_class = &rt_sched_class;
3065	else
3066		p->sched_class = &fair_sched_class;
3067
3068	p->prio = prio;
3069
3070	if (running)
3071		p->sched_class->set_curr_task(rq);
3072	if (on_rq)
3073		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3074
3075	check_class_changed(rq, p, prev_class, oldprio);
3076out_unlock:
3077	__task_rq_unlock(rq);
3078}
3079#endif
3080void set_user_nice(struct task_struct *p, long nice)
3081{
3082	int old_prio, delta, on_rq;
3083	unsigned long flags;
3084	struct rq *rq;
3085
3086	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3087		return;
3088	/*
3089	 * We have to be careful, if called from sys_setpriority(),
3090	 * the task might be in the middle of scheduling on another CPU.
3091	 */
3092	rq = task_rq_lock(p, &flags);
3093	/*
3094	 * The RT priorities are set via sched_setscheduler(), but we still
3095	 * allow the 'normal' nice value to be set - but as expected
3096	 * it wont have any effect on scheduling until the task is
3097	 * SCHED_FIFO/SCHED_RR:
3098	 */
3099	if (task_has_rt_policy(p)) {
3100		p->static_prio = NICE_TO_PRIO(nice);
3101		goto out_unlock;
3102	}
3103	on_rq = p->on_rq;
3104	if (on_rq)
3105		dequeue_task(rq, p, 0);
3106
3107	p->static_prio = NICE_TO_PRIO(nice);
3108	set_load_weight(p);
3109	old_prio = p->prio;
3110	p->prio = effective_prio(p);
3111	delta = p->prio - old_prio;
3112
3113	if (on_rq) {
3114		enqueue_task(rq, p, 0);
3115		/*
3116		 * If the task increased its priority or is running and
3117		 * lowered its priority, then reschedule its CPU:
3118		 */
3119		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3120			resched_task(rq->curr);
3121	}
3122out_unlock:
3123	task_rq_unlock(rq, p, &flags);
3124}
3125EXPORT_SYMBOL(set_user_nice);
3126
3127/*
3128 * can_nice - check if a task can reduce its nice value
3129 * @p: task
3130 * @nice: nice value
3131 */
3132int can_nice(const struct task_struct *p, const int nice)
3133{
3134	/* convert nice value [19,-20] to rlimit style value [1,40] */
3135	int nice_rlim = 20 - nice;
3136
3137	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3138		capable(CAP_SYS_NICE));
3139}
3140
3141#ifdef __ARCH_WANT_SYS_NICE
3142
3143/*
3144 * sys_nice - change the priority of the current process.
3145 * @increment: priority increment
3146 *
3147 * sys_setpriority is a more generic, but much slower function that
3148 * does similar things.
3149 */
3150SYSCALL_DEFINE1(nice, int, increment)
3151{
3152	long nice, retval;
3153
3154	/*
3155	 * Setpriority might change our priority at the same moment.
3156	 * We don't have to worry. Conceptually one call occurs first
3157	 * and we have a single winner.
3158	 */
3159	if (increment < -40)
3160		increment = -40;
3161	if (increment > 40)
3162		increment = 40;
3163
3164	nice = TASK_NICE(current) + increment;
3165	if (nice < -20)
3166		nice = -20;
3167	if (nice > 19)
3168		nice = 19;
3169
3170	if (increment < 0 && !can_nice(current, nice))
3171		return -EPERM;
3172
3173	retval = security_task_setnice(current, nice);
3174	if (retval)
3175		return retval;
3176
3177	set_user_nice(current, nice);
3178	return 0;
3179}
3180
3181#endif
3182
3183/**
3184 * task_prio - return the priority value of a given task.
3185 * @p: the task in question.
3186 *
3187 * Return: The priority value as seen by users in /proc.
3188 * RT tasks are offset by -200. Normal tasks are centered
3189 * around 0, value goes from -16 to +15.
3190 */
3191int task_prio(const struct task_struct *p)
3192{
3193	return p->prio - MAX_RT_PRIO;
3194}
3195
3196/**
3197 * task_nice - return the nice value of a given task.
3198 * @p: the task in question.
3199 *
3200 * Return: The nice value [ -20 ... 0 ... 19 ].
3201 */
3202int task_nice(const struct task_struct *p)
3203{
3204	return TASK_NICE(p);
3205}
3206EXPORT_SYMBOL(task_nice);
3207
3208/**
3209 * idle_cpu - is a given cpu idle currently?
3210 * @cpu: the processor in question.
3211 *
3212 * Return: 1 if the CPU is currently idle. 0 otherwise.
3213 */
3214int idle_cpu(int cpu)
3215{
3216	struct rq *rq = cpu_rq(cpu);
3217
3218	if (rq->curr != rq->idle)
3219		return 0;
3220
3221	if (rq->nr_running)
3222		return 0;
3223
3224#ifdef CONFIG_SMP
3225	if (!llist_empty(&rq->wake_list))
3226		return 0;
3227#endif
3228
3229	return 1;
3230}
3231
3232/**
3233 * idle_task - return the idle task for a given cpu.
3234 * @cpu: the processor in question.
3235 *
3236 * Return: The idle task for the cpu @cpu.
3237 */
3238struct task_struct *idle_task(int cpu)
3239{
3240	return cpu_rq(cpu)->idle;
3241}
3242
3243/**
3244 * find_process_by_pid - find a process with a matching PID value.
3245 * @pid: the pid in question.
3246 *
3247 * The task of @pid, if found. %NULL otherwise.
3248 */
3249static struct task_struct *find_process_by_pid(pid_t pid)
3250{
3251	return pid ? find_task_by_vpid(pid) : current;
3252}
3253
3254/* Actually do priority change: must hold rq lock. */
3255static void
3256__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3257{
3258	p->policy = policy;
3259	p->rt_priority = prio;
3260	p->normal_prio = normal_prio(p);
3261	/* we are holding p->pi_lock already */
3262	p->prio = rt_mutex_getprio(p);
3263	if (rt_prio(p->prio))
3264		p->sched_class = &rt_sched_class;
3265	else
3266		p->sched_class = &fair_sched_class;
3267	set_load_weight(p);
3268}
3269
3270/*
3271 * check the target process has a UID that matches the current process's
3272 */
3273static bool check_same_owner(struct task_struct *p)
3274{
3275	const struct cred *cred = current_cred(), *pcred;
3276	bool match;
3277
3278	rcu_read_lock();
3279	pcred = __task_cred(p);
3280	match = (uid_eq(cred->euid, pcred->euid) ||
3281		 uid_eq(cred->euid, pcred->uid));
3282	rcu_read_unlock();
3283	return match;
3284}
3285
3286static int __sched_setscheduler(struct task_struct *p, int policy,
3287				const struct sched_param *param, bool user)
3288{
3289	int retval, oldprio, oldpolicy = -1, on_rq, running;
3290	unsigned long flags;
3291	const struct sched_class *prev_class;
3292	struct rq *rq;
3293	int reset_on_fork;
3294
3295	/* may grab non-irq protected spin_locks */
3296	BUG_ON(in_interrupt());
3297recheck:
3298	/* double check policy once rq lock held */
3299	if (policy < 0) {
3300		reset_on_fork = p->sched_reset_on_fork;
3301		policy = oldpolicy = p->policy;
3302	} else {
3303		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3304		policy &= ~SCHED_RESET_ON_FORK;
3305
3306		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3307				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3308				policy != SCHED_IDLE)
3309			return -EINVAL;
3310	}
3311
3312	/*
3313	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3314	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3315	 * SCHED_BATCH and SCHED_IDLE is 0.
3316	 */
3317	if (param->sched_priority < 0 ||
3318	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3319	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3320		return -EINVAL;
3321	if (rt_policy(policy) != (param->sched_priority != 0))
3322		return -EINVAL;
3323
3324	/*
3325	 * Allow unprivileged RT tasks to decrease priority:
3326	 */
3327	if (user && !capable(CAP_SYS_NICE)) {
3328		if (rt_policy(policy)) {
3329			unsigned long rlim_rtprio =
3330					task_rlimit(p, RLIMIT_RTPRIO);
3331
3332			/* can't set/change the rt policy */
3333			if (policy != p->policy && !rlim_rtprio)
3334				return -EPERM;
3335
3336			/* can't increase priority */
3337			if (param->sched_priority > p->rt_priority &&
3338			    param->sched_priority > rlim_rtprio)
3339				return -EPERM;
3340		}
3341
3342		/*
3343		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3344		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3345		 */
3346		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3347			if (!can_nice(p, TASK_NICE(p)))
3348				return -EPERM;
3349		}
3350
3351		/* can't change other user's priorities */
3352		if (!check_same_owner(p))
3353			return -EPERM;
3354
3355		/* Normal users shall not reset the sched_reset_on_fork flag */
3356		if (p->sched_reset_on_fork && !reset_on_fork)
3357			return -EPERM;
3358	}
3359
3360	if (user) {
3361		retval = security_task_setscheduler(p);
3362		if (retval)
3363			return retval;
3364	}
3365
3366	/*
3367	 * make sure no PI-waiters arrive (or leave) while we are
3368	 * changing the priority of the task:
3369	 *
3370	 * To be able to change p->policy safely, the appropriate
3371	 * runqueue lock must be held.
3372	 */
3373	rq = task_rq_lock(p, &flags);
3374
3375	/*
3376	 * Changing the policy of the stop threads its a very bad idea
3377	 */
3378	if (p == rq->stop) {
3379		task_rq_unlock(rq, p, &flags);
3380		return -EINVAL;
3381	}
3382
3383	/*
3384	 * If not changing anything there's no need to proceed further:
3385	 */
3386	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3387			param->sched_priority == p->rt_priority))) {
3388		task_rq_unlock(rq, p, &flags);
3389		return 0;
3390	}
3391
3392#ifdef CONFIG_RT_GROUP_SCHED
3393	if (user) {
3394		/*
3395		 * Do not allow realtime tasks into groups that have no runtime
3396		 * assigned.
3397		 */
3398		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3399				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3400				!task_group_is_autogroup(task_group(p))) {
3401			task_rq_unlock(rq, p, &flags);
3402			return -EPERM;
3403		}
3404	}
3405#endif
3406
3407	/* recheck policy now with rq lock held */
3408	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3409		policy = oldpolicy = -1;
3410		task_rq_unlock(rq, p, &flags);
3411		goto recheck;
3412	}
3413	on_rq = p->on_rq;
3414	running = task_current(rq, p);
3415	if (on_rq)
3416		dequeue_task(rq, p, 0);
3417	if (running)
3418		p->sched_class->put_prev_task(rq, p);
3419
3420	p->sched_reset_on_fork = reset_on_fork;
3421
3422	oldprio = p->prio;
3423	prev_class = p->sched_class;
3424	__setscheduler(rq, p, policy, param->sched_priority);
3425
3426	if (running)
3427		p->sched_class->set_curr_task(rq);
3428	if (on_rq)
3429		enqueue_task(rq, p, 0);
3430
3431	check_class_changed(rq, p, prev_class, oldprio);
3432	task_rq_unlock(rq, p, &flags);
3433
3434	rt_mutex_adjust_pi(p);
3435
3436	return 0;
3437}
3438
3439/**
3440 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3441 * @p: the task in question.
3442 * @policy: new policy.
3443 * @param: structure containing the new RT priority.
3444 *
3445 * Return: 0 on success. An error code otherwise.
3446 *
3447 * NOTE that the task may be already dead.
3448 */
3449int sched_setscheduler(struct task_struct *p, int policy,
3450		       const struct sched_param *param)
3451{
3452	return __sched_setscheduler(p, policy, param, true);
3453}
3454EXPORT_SYMBOL_GPL(sched_setscheduler);
3455
3456/**
3457 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3458 * @p: the task in question.
3459 * @policy: new policy.
3460 * @param: structure containing the new RT priority.
3461 *
3462 * Just like sched_setscheduler, only don't bother checking if the
3463 * current context has permission.  For example, this is needed in
3464 * stop_machine(): we create temporary high priority worker threads,
3465 * but our caller might not have that capability.
3466 *
3467 * Return: 0 on success. An error code otherwise.
3468 */
3469int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3470			       const struct sched_param *param)
3471{
3472	return __sched_setscheduler(p, policy, param, false);
3473}
3474
3475static int
3476do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3477{
3478	struct sched_param lparam;
3479	struct task_struct *p;
3480	int retval;
3481
3482	if (!param || pid < 0)
3483		return -EINVAL;
3484	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3485		return -EFAULT;
3486
3487	rcu_read_lock();
3488	retval = -ESRCH;
3489	p = find_process_by_pid(pid);
3490	if (p != NULL)
3491		retval = sched_setscheduler(p, policy, &lparam);
3492	rcu_read_unlock();
3493
3494	return retval;
3495}
3496
3497/**
3498 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3499 * @pid: the pid in question.
3500 * @policy: new policy.
3501 * @param: structure containing the new RT priority.
3502 *
3503 * Return: 0 on success. An error code otherwise.
3504 */
3505SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3506		struct sched_param __user *, param)
3507{
3508	/* negative values for policy are not valid */
3509	if (policy < 0)
3510		return -EINVAL;
3511
3512	return do_sched_setscheduler(pid, policy, param);
3513}
3514
3515/**
3516 * sys_sched_setparam - set/change the RT priority of a thread
3517 * @pid: the pid in question.
3518 * @param: structure containing the new RT priority.
3519 *
3520 * Return: 0 on success. An error code otherwise.
3521 */
3522SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3523{
3524	return do_sched_setscheduler(pid, -1, param);
3525}
3526
3527/**
3528 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3529 * @pid: the pid in question.
3530 *
3531 * Return: On success, the policy of the thread. Otherwise, a negative error
3532 * code.
3533 */
3534SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3535{
3536	struct task_struct *p;
3537	int retval;
3538
3539	if (pid < 0)
3540		return -EINVAL;
3541
3542	retval = -ESRCH;
3543	rcu_read_lock();
3544	p = find_process_by_pid(pid);
3545	if (p) {
3546		retval = security_task_getscheduler(p);
3547		if (!retval)
3548			retval = p->policy
3549				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3550	}
3551	rcu_read_unlock();
3552	return retval;
3553}
3554
3555/**
3556 * sys_sched_getparam - get the RT priority of a thread
3557 * @pid: the pid in question.
3558 * @param: structure containing the RT priority.
3559 *
3560 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3561 * code.
3562 */
3563SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3564{
3565	struct sched_param lp;
3566	struct task_struct *p;
3567	int retval;
3568
3569	if (!param || pid < 0)
3570		return -EINVAL;
3571
3572	rcu_read_lock();
3573	p = find_process_by_pid(pid);
3574	retval = -ESRCH;
3575	if (!p)
3576		goto out_unlock;
3577
3578	retval = security_task_getscheduler(p);
3579	if (retval)
3580		goto out_unlock;
3581
3582	lp.sched_priority = p->rt_priority;
3583	rcu_read_unlock();
3584
3585	/*
3586	 * This one might sleep, we cannot do it with a spinlock held ...
3587	 */
3588	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3589
3590	return retval;
3591
3592out_unlock:
3593	rcu_read_unlock();
3594	return retval;
3595}
3596
3597long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3598{
3599	cpumask_var_t cpus_allowed, new_mask;
3600	struct task_struct *p;
3601	int retval;
3602
3603	get_online_cpus();
3604	rcu_read_lock();
3605
3606	p = find_process_by_pid(pid);
3607	if (!p) {
3608		rcu_read_unlock();
3609		put_online_cpus();
3610		return -ESRCH;
3611	}
3612
3613	/* Prevent p going away */
3614	get_task_struct(p);
3615	rcu_read_unlock();
3616
3617	if (p->flags & PF_NO_SETAFFINITY) {
3618		retval = -EINVAL;
3619		goto out_put_task;
3620	}
3621	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3622		retval = -ENOMEM;
3623		goto out_put_task;
3624	}
3625	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3626		retval = -ENOMEM;
3627		goto out_free_cpus_allowed;
3628	}
3629	retval = -EPERM;
3630	if (!check_same_owner(p)) {
3631		rcu_read_lock();
3632		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3633			rcu_read_unlock();
3634			goto out_unlock;
3635		}
3636		rcu_read_unlock();
3637	}
3638
3639	retval = security_task_setscheduler(p);
3640	if (retval)
3641		goto out_unlock;
3642
3643	cpuset_cpus_allowed(p, cpus_allowed);
3644	cpumask_and(new_mask, in_mask, cpus_allowed);
3645again:
3646	retval = set_cpus_allowed_ptr(p, new_mask);
3647
3648	if (!retval) {
3649		cpuset_cpus_allowed(p, cpus_allowed);
3650		if (!cpumask_subset(new_mask, cpus_allowed)) {
3651			/*
3652			 * We must have raced with a concurrent cpuset
3653			 * update. Just reset the cpus_allowed to the
3654			 * cpuset's cpus_allowed
3655			 */
3656			cpumask_copy(new_mask, cpus_allowed);
3657			goto again;
3658		}
3659	}
3660out_unlock:
3661	free_cpumask_var(new_mask);
3662out_free_cpus_allowed:
3663	free_cpumask_var(cpus_allowed);
3664out_put_task:
3665	put_task_struct(p);
3666	put_online_cpus();
3667	return retval;
3668}
3669
3670static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3671			     struct cpumask *new_mask)
3672{
3673	if (len < cpumask_size())
3674		cpumask_clear(new_mask);
3675	else if (len > cpumask_size())
3676		len = cpumask_size();
3677
3678	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3679}
3680
3681/**
3682 * sys_sched_setaffinity - set the cpu affinity of a process
3683 * @pid: pid of the process
3684 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3685 * @user_mask_ptr: user-space pointer to the new cpu mask
3686 *
3687 * Return: 0 on success. An error code otherwise.
3688 */
3689SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3690		unsigned long __user *, user_mask_ptr)
3691{
3692	cpumask_var_t new_mask;
3693	int retval;
3694
3695	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3696		return -ENOMEM;
3697
3698	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3699	if (retval == 0)
3700		retval = sched_setaffinity(pid, new_mask);
3701	free_cpumask_var(new_mask);
3702	return retval;
3703}
3704
3705long sched_getaffinity(pid_t pid, struct cpumask *mask)
3706{
3707	struct task_struct *p;
3708	unsigned long flags;
3709	int retval;
3710
3711	get_online_cpus();
3712	rcu_read_lock();
3713
3714	retval = -ESRCH;
3715	p = find_process_by_pid(pid);
3716	if (!p)
3717		goto out_unlock;
3718
3719	retval = security_task_getscheduler(p);
3720	if (retval)
3721		goto out_unlock;
3722
3723	raw_spin_lock_irqsave(&p->pi_lock, flags);
3724	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3725	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3726
3727out_unlock:
3728	rcu_read_unlock();
3729	put_online_cpus();
3730
3731	return retval;
3732}
3733
3734/**
3735 * sys_sched_getaffinity - get the cpu affinity of a process
3736 * @pid: pid of the process
3737 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3738 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3739 *
3740 * Return: 0 on success. An error code otherwise.
3741 */
3742SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3743		unsigned long __user *, user_mask_ptr)
3744{
3745	int ret;
3746	cpumask_var_t mask;
3747
3748	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3749		return -EINVAL;
3750	if (len & (sizeof(unsigned long)-1))
3751		return -EINVAL;
3752
3753	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3754		return -ENOMEM;
3755
3756	ret = sched_getaffinity(pid, mask);
3757	if (ret == 0) {
3758		size_t retlen = min_t(size_t, len, cpumask_size());
3759
3760		if (copy_to_user(user_mask_ptr, mask, retlen))
3761			ret = -EFAULT;
3762		else
3763			ret = retlen;
3764	}
3765	free_cpumask_var(mask);
3766
3767	return ret;
3768}
3769
3770/**
3771 * sys_sched_yield - yield the current processor to other threads.
3772 *
3773 * This function yields the current CPU to other tasks. If there are no
3774 * other threads running on this CPU then this function will return.
3775 *
3776 * Return: 0.
3777 */
3778SYSCALL_DEFINE0(sched_yield)
3779{
3780	struct rq *rq = this_rq_lock();
3781
3782	schedstat_inc(rq, yld_count);
3783	current->sched_class->yield_task(rq);
3784
3785	/*
3786	 * Since we are going to call schedule() anyway, there's
3787	 * no need to preempt or enable interrupts:
3788	 */
3789	__release(rq->lock);
3790	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3791	do_raw_spin_unlock(&rq->lock);
3792	sched_preempt_enable_no_resched();
3793
3794	schedule();
3795
3796	return 0;
3797}
3798
3799static void __cond_resched(void)
3800{
3801	__preempt_count_add(PREEMPT_ACTIVE);
3802	__schedule();
3803	__preempt_count_sub(PREEMPT_ACTIVE);
3804}
3805
3806int __sched _cond_resched(void)
3807{
3808	if (should_resched()) {
3809		__cond_resched();
3810		return 1;
3811	}
3812	return 0;
3813}
3814EXPORT_SYMBOL(_cond_resched);
3815
3816/*
3817 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3818 * call schedule, and on return reacquire the lock.
3819 *
3820 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3821 * operations here to prevent schedule() from being called twice (once via
3822 * spin_unlock(), once by hand).
3823 */
3824int __cond_resched_lock(spinlock_t *lock)
3825{
3826	int resched = should_resched();
3827	int ret = 0;
3828
3829	lockdep_assert_held(lock);
3830
3831	if (spin_needbreak(lock) || resched) {
3832		spin_unlock(lock);
3833		if (resched)
3834			__cond_resched();
3835		else
3836			cpu_relax();
3837		ret = 1;
3838		spin_lock(lock);
3839	}
3840	return ret;
3841}
3842EXPORT_SYMBOL(__cond_resched_lock);
3843
3844int __sched __cond_resched_softirq(void)
3845{
3846	BUG_ON(!in_softirq());
3847
3848	if (should_resched()) {
3849		local_bh_enable();
3850		__cond_resched();
3851		local_bh_disable();
3852		return 1;
3853	}
3854	return 0;
3855}
3856EXPORT_SYMBOL(__cond_resched_softirq);
3857
3858/**
3859 * yield - yield the current processor to other threads.
3860 *
3861 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3862 *
3863 * The scheduler is at all times free to pick the calling task as the most
3864 * eligible task to run, if removing the yield() call from your code breaks
3865 * it, its already broken.
3866 *
3867 * Typical broken usage is:
3868 *
3869 * while (!event)
3870 * 	yield();
3871 *
3872 * where one assumes that yield() will let 'the other' process run that will
3873 * make event true. If the current task is a SCHED_FIFO task that will never
3874 * happen. Never use yield() as a progress guarantee!!
3875 *
3876 * If you want to use yield() to wait for something, use wait_event().
3877 * If you want to use yield() to be 'nice' for others, use cond_resched().
3878 * If you still want to use yield(), do not!
3879 */
3880void __sched yield(void)
3881{
3882	set_current_state(TASK_RUNNING);
3883	sys_sched_yield();
3884}
3885EXPORT_SYMBOL(yield);
3886
3887/**
3888 * yield_to - yield the current processor to another thread in
3889 * your thread group, or accelerate that thread toward the
3890 * processor it's on.
3891 * @p: target task
3892 * @preempt: whether task preemption is allowed or not
3893 *
3894 * It's the caller's job to ensure that the target task struct
3895 * can't go away on us before we can do any checks.
3896 *
3897 * Return:
3898 *	true (>0) if we indeed boosted the target task.
3899 *	false (0) if we failed to boost the target.
3900 *	-ESRCH if there's no task to yield to.
3901 */
3902bool __sched yield_to(struct task_struct *p, bool preempt)
3903{
3904	struct task_struct *curr = current;
3905	struct rq *rq, *p_rq;
3906	unsigned long flags;
3907	int yielded = 0;
3908
3909	local_irq_save(flags);
3910	rq = this_rq();
3911
3912again:
3913	p_rq = task_rq(p);
3914	/*
3915	 * If we're the only runnable task on the rq and target rq also
3916	 * has only one task, there's absolutely no point in yielding.
3917	 */
3918	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3919		yielded = -ESRCH;
3920		goto out_irq;
3921	}
3922
3923	double_rq_lock(rq, p_rq);
3924	while (task_rq(p) != p_rq) {
3925		double_rq_unlock(rq, p_rq);
3926		goto again;
3927	}
3928
3929	if (!curr->sched_class->yield_to_task)
3930		goto out_unlock;
3931
3932	if (curr->sched_class != p->sched_class)
3933		goto out_unlock;
3934
3935	if (task_running(p_rq, p) || p->state)
3936		goto out_unlock;
3937
3938	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3939	if (yielded) {
3940		schedstat_inc(rq, yld_count);
3941		/*
3942		 * Make p's CPU reschedule; pick_next_entity takes care of
3943		 * fairness.
3944		 */
3945		if (preempt && rq != p_rq)
3946			resched_task(p_rq->curr);
3947	}
3948
3949out_unlock:
3950	double_rq_unlock(rq, p_rq);
3951out_irq:
3952	local_irq_restore(flags);
3953
3954	if (yielded > 0)
3955		schedule();
3956
3957	return yielded;
3958}
3959EXPORT_SYMBOL_GPL(yield_to);
3960
3961/*
3962 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3963 * that process accounting knows that this is a task in IO wait state.
3964 */
3965void __sched io_schedule(void)
3966{
3967	struct rq *rq = raw_rq();
3968
3969	delayacct_blkio_start();
3970	atomic_inc(&rq->nr_iowait);
3971	blk_flush_plug(current);
3972	current->in_iowait = 1;
3973	schedule();
3974	current->in_iowait = 0;
3975	atomic_dec(&rq->nr_iowait);
3976	delayacct_blkio_end();
3977}
3978EXPORT_SYMBOL(io_schedule);
3979
3980long __sched io_schedule_timeout(long timeout)
3981{
3982	struct rq *rq = raw_rq();
3983	long ret;
3984
3985	delayacct_blkio_start();
3986	atomic_inc(&rq->nr_iowait);
3987	blk_flush_plug(current);
3988	current->in_iowait = 1;
3989	ret = schedule_timeout(timeout);
3990	current->in_iowait = 0;
3991	atomic_dec(&rq->nr_iowait);
3992	delayacct_blkio_end();
3993	return ret;
3994}
3995
3996/**
3997 * sys_sched_get_priority_max - return maximum RT priority.
3998 * @policy: scheduling class.
3999 *
4000 * Return: On success, this syscall returns the maximum
4001 * rt_priority that can be used by a given scheduling class.
4002 * On failure, a negative error code is returned.
4003 */
4004SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4005{
4006	int ret = -EINVAL;
4007
4008	switch (policy) {
4009	case SCHED_FIFO:
4010	case SCHED_RR:
4011		ret = MAX_USER_RT_PRIO-1;
4012		break;
4013	case SCHED_NORMAL:
4014	case SCHED_BATCH:
4015	case SCHED_IDLE:
4016		ret = 0;
4017		break;
4018	}
4019	return ret;
4020}
4021
4022/**
4023 * sys_sched_get_priority_min - return minimum RT priority.
4024 * @policy: scheduling class.
4025 *
4026 * Return: On success, this syscall returns the minimum
4027 * rt_priority that can be used by a given scheduling class.
4028 * On failure, a negative error code is returned.
4029 */
4030SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4031{
4032	int ret = -EINVAL;
4033
4034	switch (policy) {
4035	case SCHED_FIFO:
4036	case SCHED_RR:
4037		ret = 1;
4038		break;
4039	case SCHED_NORMAL:
4040	case SCHED_BATCH:
4041	case SCHED_IDLE:
4042		ret = 0;
4043	}
4044	return ret;
4045}
4046
4047/**
4048 * sys_sched_rr_get_interval - return the default timeslice of a process.
4049 * @pid: pid of the process.
4050 * @interval: userspace pointer to the timeslice value.
4051 *
4052 * this syscall writes the default timeslice value of a given process
4053 * into the user-space timespec buffer. A value of '0' means infinity.
4054 *
4055 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4056 * an error code.
4057 */
4058SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4059		struct timespec __user *, interval)
4060{
4061	struct task_struct *p;
4062	unsigned int time_slice;
4063	unsigned long flags;
4064	struct rq *rq;
4065	int retval;
4066	struct timespec t;
4067
4068	if (pid < 0)
4069		return -EINVAL;
4070
4071	retval = -ESRCH;
4072	rcu_read_lock();
4073	p = find_process_by_pid(pid);
4074	if (!p)
4075		goto out_unlock;
4076
4077	retval = security_task_getscheduler(p);
4078	if (retval)
4079		goto out_unlock;
4080
4081	rq = task_rq_lock(p, &flags);
4082	time_slice = p->sched_class->get_rr_interval(rq, p);
4083	task_rq_unlock(rq, p, &flags);
4084
4085	rcu_read_unlock();
4086	jiffies_to_timespec(time_slice, &t);
4087	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4088	return retval;
4089
4090out_unlock:
4091	rcu_read_unlock();
4092	return retval;
4093}
4094
4095static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4096
4097void sched_show_task(struct task_struct *p)
4098{
4099	unsigned long free = 0;
4100	int ppid;
4101	unsigned state;
4102
4103	state = p->state ? __ffs(p->state) + 1 : 0;
4104	printk(KERN_INFO "%-15.15s %c", p->comm,
4105		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4106#if BITS_PER_LONG == 32
4107	if (state == TASK_RUNNING)
4108		printk(KERN_CONT " running  ");
4109	else
4110		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4111#else
4112	if (state == TASK_RUNNING)
4113		printk(KERN_CONT "  running task    ");
4114	else
4115		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4116#endif
4117#ifdef CONFIG_DEBUG_STACK_USAGE
4118	free = stack_not_used(p);
4119#endif
4120	rcu_read_lock();
4121	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4122	rcu_read_unlock();
4123	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4124		task_pid_nr(p), ppid,
4125		(unsigned long)task_thread_info(p)->flags);
4126
4127	print_worker_info(KERN_INFO, p);
4128	show_stack(p, NULL);
4129}
4130
4131void show_state_filter(unsigned long state_filter)
4132{
4133	struct task_struct *g, *p;
4134
4135#if BITS_PER_LONG == 32
4136	printk(KERN_INFO
4137		"  task                PC stack   pid father\n");
4138#else
4139	printk(KERN_INFO
4140		"  task                        PC stack   pid father\n");
4141#endif
4142	rcu_read_lock();
4143	do_each_thread(g, p) {
4144		/*
4145		 * reset the NMI-timeout, listing all files on a slow
4146		 * console might take a lot of time:
4147		 */
4148		touch_nmi_watchdog();
4149		if (!state_filter || (p->state & state_filter))
4150			sched_show_task(p);
4151	} while_each_thread(g, p);
4152
4153	touch_all_softlockup_watchdogs();
4154
4155#ifdef CONFIG_SCHED_DEBUG
4156	sysrq_sched_debug_show();
4157#endif
4158	rcu_read_unlock();
4159	/*
4160	 * Only show locks if all tasks are dumped:
4161	 */
4162	if (!state_filter)
4163		debug_show_all_locks();
4164}
4165
4166void init_idle_bootup_task(struct task_struct *idle)
4167{
4168	idle->sched_class = &idle_sched_class;
4169}
4170
4171/**
4172 * init_idle - set up an idle thread for a given CPU
4173 * @idle: task in question
4174 * @cpu: cpu the idle task belongs to
4175 *
4176 * NOTE: this function does not set the idle thread's NEED_RESCHED
4177 * flag, to make booting more robust.
4178 */
4179void init_idle(struct task_struct *idle, int cpu)
4180{
4181	struct rq *rq = cpu_rq(cpu);
4182	unsigned long flags;
4183
4184	raw_spin_lock_irqsave(&rq->lock, flags);
4185
4186	__sched_fork(idle);
4187	idle->state = TASK_RUNNING;
4188	idle->se.exec_start = sched_clock();
4189
4190	do_set_cpus_allowed(idle, cpumask_of(cpu));
4191	/*
4192	 * We're having a chicken and egg problem, even though we are
4193	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4194	 * lockdep check in task_group() will fail.
4195	 *
4196	 * Similar case to sched_fork(). / Alternatively we could
4197	 * use task_rq_lock() here and obtain the other rq->lock.
4198	 *
4199	 * Silence PROVE_RCU
4200	 */
4201	rcu_read_lock();
4202	__set_task_cpu(idle, cpu);
4203	rcu_read_unlock();
4204
4205	rq->curr = rq->idle = idle;
4206#if defined(CONFIG_SMP)
4207	idle->on_cpu = 1;
4208#endif
4209	raw_spin_unlock_irqrestore(&rq->lock, flags);
4210
4211	/* Set the preempt count _outside_ the spinlocks! */
4212	init_idle_preempt_count(idle, cpu);
4213
4214	/*
4215	 * The idle tasks have their own, simple scheduling class:
4216	 */
4217	idle->sched_class = &idle_sched_class;
4218	ftrace_graph_init_idle_task(idle, cpu);
4219	vtime_init_idle(idle, cpu);
4220#if defined(CONFIG_SMP)
4221	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4222#endif
4223}
4224
4225#ifdef CONFIG_SMP
4226void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4227{
4228	if (p->sched_class && p->sched_class->set_cpus_allowed)
4229		p->sched_class->set_cpus_allowed(p, new_mask);
4230
4231	cpumask_copy(&p->cpus_allowed, new_mask);
4232	p->nr_cpus_allowed = cpumask_weight(new_mask);
4233}
4234
4235/*
4236 * This is how migration works:
4237 *
4238 * 1) we invoke migration_cpu_stop() on the target CPU using
4239 *    stop_one_cpu().
4240 * 2) stopper starts to run (implicitly forcing the migrated thread
4241 *    off the CPU)
4242 * 3) it checks whether the migrated task is still in the wrong runqueue.
4243 * 4) if it's in the wrong runqueue then the migration thread removes
4244 *    it and puts it into the right queue.
4245 * 5) stopper completes and stop_one_cpu() returns and the migration
4246 *    is done.
4247 */
4248
4249/*
4250 * Change a given task's CPU affinity. Migrate the thread to a
4251 * proper CPU and schedule it away if the CPU it's executing on
4252 * is removed from the allowed bitmask.
4253 *
4254 * NOTE: the caller must have a valid reference to the task, the
4255 * task must not exit() & deallocate itself prematurely. The
4256 * call is not atomic; no spinlocks may be held.
4257 */
4258int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4259{
4260	unsigned long flags;
4261	struct rq *rq;
4262	unsigned int dest_cpu;
4263	int ret = 0;
4264
4265	rq = task_rq_lock(p, &flags);
4266
4267	if (cpumask_equal(&p->cpus_allowed, new_mask))
4268		goto out;
4269
4270	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4271		ret = -EINVAL;
4272		goto out;
4273	}
4274
4275	do_set_cpus_allowed(p, new_mask);
4276
4277	/* Can the task run on the task's current CPU? If so, we're done */
4278	if (cpumask_test_cpu(task_cpu(p), new_mask))
4279		goto out;
4280
4281	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4282	if (p->on_rq) {
4283		struct migration_arg arg = { p, dest_cpu };
4284		/* Need help from migration thread: drop lock and wait. */
4285		task_rq_unlock(rq, p, &flags);
4286		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4287		tlb_migrate_finish(p->mm);
4288		return 0;
4289	}
4290out:
4291	task_rq_unlock(rq, p, &flags);
4292
4293	return ret;
4294}
4295EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4296
4297/*
4298 * Move (not current) task off this cpu, onto dest cpu. We're doing
4299 * this because either it can't run here any more (set_cpus_allowed()
4300 * away from this CPU, or CPU going down), or because we're
4301 * attempting to rebalance this task on exec (sched_exec).
4302 *
4303 * So we race with normal scheduler movements, but that's OK, as long
4304 * as the task is no longer on this CPU.
4305 *
4306 * Returns non-zero if task was successfully migrated.
4307 */
4308static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4309{
4310	struct rq *rq_dest, *rq_src;
4311	int ret = 0;
4312
4313	if (unlikely(!cpu_active(dest_cpu)))
4314		return ret;
4315
4316	rq_src = cpu_rq(src_cpu);
4317	rq_dest = cpu_rq(dest_cpu);
4318
4319	raw_spin_lock(&p->pi_lock);
4320	double_rq_lock(rq_src, rq_dest);
4321	/* Already moved. */
4322	if (task_cpu(p) != src_cpu)
4323		goto done;
4324	/* Affinity changed (again). */
4325	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4326		goto fail;
4327
4328	/*
4329	 * If we're not on a rq, the next wake-up will ensure we're
4330	 * placed properly.
4331	 */
4332	if (p->on_rq) {
4333		dequeue_task(rq_src, p, 0);
4334		set_task_cpu(p, dest_cpu);
4335		enqueue_task(rq_dest, p, 0);
4336		check_preempt_curr(rq_dest, p, 0);
4337	}
4338done:
4339	ret = 1;
4340fail:
4341	double_rq_unlock(rq_src, rq_dest);
4342	raw_spin_unlock(&p->pi_lock);
4343	return ret;
4344}
4345
4346/*
4347 * migration_cpu_stop - this will be executed by a highprio stopper thread
4348 * and performs thread migration by bumping thread off CPU then
4349 * 'pushing' onto another runqueue.
4350 */
4351static int migration_cpu_stop(void *data)
4352{
4353	struct migration_arg *arg = data;
4354
4355	/*
4356	 * The original target cpu might have gone down and we might
4357	 * be on another cpu but it doesn't matter.
4358	 */
4359	local_irq_disable();
4360	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4361	local_irq_enable();
4362	return 0;
4363}
4364
4365#ifdef CONFIG_HOTPLUG_CPU
4366
4367/*
4368 * Ensures that the idle task is using init_mm right before its cpu goes
4369 * offline.
4370 */
4371void idle_task_exit(void)
4372{
4373	struct mm_struct *mm = current->active_mm;
4374
4375	BUG_ON(cpu_online(smp_processor_id()));
4376
4377	if (mm != &init_mm)
4378		switch_mm(mm, &init_mm, current);
4379	mmdrop(mm);
4380}
4381
4382/*
4383 * Since this CPU is going 'away' for a while, fold any nr_active delta
4384 * we might have. Assumes we're called after migrate_tasks() so that the
4385 * nr_active count is stable.
4386 *
4387 * Also see the comment "Global load-average calculations".
4388 */
4389static void calc_load_migrate(struct rq *rq)
4390{
4391	long delta = calc_load_fold_active(rq);
4392	if (delta)
4393		atomic_long_add(delta, &calc_load_tasks);
4394}
4395
4396/*
4397 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4398 * try_to_wake_up()->select_task_rq().
4399 *
4400 * Called with rq->lock held even though we'er in stop_machine() and
4401 * there's no concurrency possible, we hold the required locks anyway
4402 * because of lock validation efforts.
4403 */
4404static void migrate_tasks(unsigned int dead_cpu)
4405{
4406	struct rq *rq = cpu_rq(dead_cpu);
4407	struct task_struct *next, *stop = rq->stop;
4408	int dest_cpu;
4409
4410	/*
4411	 * Fudge the rq selection such that the below task selection loop
4412	 * doesn't get stuck on the currently eligible stop task.
4413	 *
4414	 * We're currently inside stop_machine() and the rq is either stuck
4415	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4416	 * either way we should never end up calling schedule() until we're
4417	 * done here.
4418	 */
4419	rq->stop = NULL;
4420
4421	/*
4422	 * put_prev_task() and pick_next_task() sched
4423	 * class method both need to have an up-to-date
4424	 * value of rq->clock[_task]
4425	 */
4426	update_rq_clock(rq);
4427
4428	for ( ; ; ) {
4429		/*
4430		 * There's this thread running, bail when that's the only
4431		 * remaining thread.
4432		 */
4433		if (rq->nr_running == 1)
4434			break;
4435
4436		next = pick_next_task(rq);
4437		BUG_ON(!next);
4438		next->sched_class->put_prev_task(rq, next);
4439
4440		/* Find suitable destination for @next, with force if needed. */
4441		dest_cpu = select_fallback_rq(dead_cpu, next);
4442		raw_spin_unlock(&rq->lock);
4443
4444		__migrate_task(next, dead_cpu, dest_cpu);
4445
4446		raw_spin_lock(&rq->lock);
4447	}
4448
4449	rq->stop = stop;
4450}
4451
4452#endif /* CONFIG_HOTPLUG_CPU */
4453
4454#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4455
4456static struct ctl_table sd_ctl_dir[] = {
4457	{
4458		.procname	= "sched_domain",
4459		.mode		= 0555,
4460	},
4461	{}
4462};
4463
4464static struct ctl_table sd_ctl_root[] = {
4465	{
4466		.procname	= "kernel",
4467		.mode		= 0555,
4468		.child		= sd_ctl_dir,
4469	},
4470	{}
4471};
4472
4473static struct ctl_table *sd_alloc_ctl_entry(int n)
4474{
4475	struct ctl_table *entry =
4476		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4477
4478	return entry;
4479}
4480
4481static void sd_free_ctl_entry(struct ctl_table **tablep)
4482{
4483	struct ctl_table *entry;
4484
4485	/*
4486	 * In the intermediate directories, both the child directory and
4487	 * procname are dynamically allocated and could fail but the mode
4488	 * will always be set. In the lowest directory the names are
4489	 * static strings and all have proc handlers.
4490	 */
4491	for (entry = *tablep; entry->mode; entry++) {
4492		if (entry->child)
4493			sd_free_ctl_entry(&entry->child);
4494		if (entry->proc_handler == NULL)
4495			kfree(entry->procname);
4496	}
4497
4498	kfree(*tablep);
4499	*tablep = NULL;
4500}
4501
4502static int min_load_idx = 0;
4503static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4504
4505static void
4506set_table_entry(struct ctl_table *entry,
4507		const char *procname, void *data, int maxlen,
4508		umode_t mode, proc_handler *proc_handler,
4509		bool load_idx)
4510{
4511	entry->procname = procname;
4512	entry->data = data;
4513	entry->maxlen = maxlen;
4514	entry->mode = mode;
4515	entry->proc_handler = proc_handler;
4516
4517	if (load_idx) {
4518		entry->extra1 = &min_load_idx;
4519		entry->extra2 = &max_load_idx;
4520	}
4521}
4522
4523static struct ctl_table *
4524sd_alloc_ctl_domain_table(struct sched_domain *sd)
4525{
4526	struct ctl_table *table = sd_alloc_ctl_entry(13);
4527
4528	if (table == NULL)
4529		return NULL;
4530
4531	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4532		sizeof(long), 0644, proc_doulongvec_minmax, false);
4533	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4534		sizeof(long), 0644, proc_doulongvec_minmax, false);
4535	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4536		sizeof(int), 0644, proc_dointvec_minmax, true);
4537	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4538		sizeof(int), 0644, proc_dointvec_minmax, true);
4539	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4540		sizeof(int), 0644, proc_dointvec_minmax, true);
4541	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4542		sizeof(int), 0644, proc_dointvec_minmax, true);
4543	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4544		sizeof(int), 0644, proc_dointvec_minmax, true);
4545	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4546		sizeof(int), 0644, proc_dointvec_minmax, false);
4547	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4548		sizeof(int), 0644, proc_dointvec_minmax, false);
4549	set_table_entry(&table[9], "cache_nice_tries",
4550		&sd->cache_nice_tries,
4551		sizeof(int), 0644, proc_dointvec_minmax, false);
4552	set_table_entry(&table[10], "flags", &sd->flags,
4553		sizeof(int), 0644, proc_dointvec_minmax, false);
4554	set_table_entry(&table[11], "name", sd->name,
4555		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4556	/* &table[12] is terminator */
4557
4558	return table;
4559}
4560
4561static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4562{
4563	struct ctl_table *entry, *table;
4564	struct sched_domain *sd;
4565	int domain_num = 0, i;
4566	char buf[32];
4567
4568	for_each_domain(cpu, sd)
4569		domain_num++;
4570	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4571	if (table == NULL)
4572		return NULL;
4573
4574	i = 0;
4575	for_each_domain(cpu, sd) {
4576		snprintf(buf, 32, "domain%d", i);
4577		entry->procname = kstrdup(buf, GFP_KERNEL);
4578		entry->mode = 0555;
4579		entry->child = sd_alloc_ctl_domain_table(sd);
4580		entry++;
4581		i++;
4582	}
4583	return table;
4584}
4585
4586static struct ctl_table_header *sd_sysctl_header;
4587static void register_sched_domain_sysctl(void)
4588{
4589	int i, cpu_num = num_possible_cpus();
4590	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4591	char buf[32];
4592
4593	WARN_ON(sd_ctl_dir[0].child);
4594	sd_ctl_dir[0].child = entry;
4595
4596	if (entry == NULL)
4597		return;
4598
4599	for_each_possible_cpu(i) {
4600		snprintf(buf, 32, "cpu%d", i);
4601		entry->procname = kstrdup(buf, GFP_KERNEL);
4602		entry->mode = 0555;
4603		entry->child = sd_alloc_ctl_cpu_table(i);
4604		entry++;
4605	}
4606
4607	WARN_ON(sd_sysctl_header);
4608	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4609}
4610
4611/* may be called multiple times per register */
4612static void unregister_sched_domain_sysctl(void)
4613{
4614	if (sd_sysctl_header)
4615		unregister_sysctl_table(sd_sysctl_header);
4616	sd_sysctl_header = NULL;
4617	if (sd_ctl_dir[0].child)
4618		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4619}
4620#else
4621static void register_sched_domain_sysctl(void)
4622{
4623}
4624static void unregister_sched_domain_sysctl(void)
4625{
4626}
4627#endif
4628
4629static void set_rq_online(struct rq *rq)
4630{
4631	if (!rq->online) {
4632		const struct sched_class *class;
4633
4634		cpumask_set_cpu(rq->cpu, rq->rd->online);
4635		rq->online = 1;
4636
4637		for_each_class(class) {
4638			if (class->rq_online)
4639				class->rq_online(rq);
4640		}
4641	}
4642}
4643
4644static void set_rq_offline(struct rq *rq)
4645{
4646	if (rq->online) {
4647		const struct sched_class *class;
4648
4649		for_each_class(class) {
4650			if (class->rq_offline)
4651				class->rq_offline(rq);
4652		}
4653
4654		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4655		rq->online = 0;
4656	}
4657}
4658
4659/*
4660 * migration_call - callback that gets triggered when a CPU is added.
4661 * Here we can start up the necessary migration thread for the new CPU.
4662 */
4663static int
4664migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4665{
4666	int cpu = (long)hcpu;
4667	unsigned long flags;
4668	struct rq *rq = cpu_rq(cpu);
4669
4670	switch (action & ~CPU_TASKS_FROZEN) {
4671
4672	case CPU_UP_PREPARE:
4673		rq->calc_load_update = calc_load_update;
4674		break;
4675
4676	case CPU_ONLINE:
4677		/* Update our root-domain */
4678		raw_spin_lock_irqsave(&rq->lock, flags);
4679		if (rq->rd) {
4680			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4681
4682			set_rq_online(rq);
4683		}
4684		raw_spin_unlock_irqrestore(&rq->lock, flags);
4685		break;
4686
4687#ifdef CONFIG_HOTPLUG_CPU
4688	case CPU_DYING:
4689		sched_ttwu_pending();
4690		/* Update our root-domain */
4691		raw_spin_lock_irqsave(&rq->lock, flags);
4692		if (rq->rd) {
4693			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4694			set_rq_offline(rq);
4695		}
4696		migrate_tasks(cpu);
4697		BUG_ON(rq->nr_running != 1); /* the migration thread */
4698		raw_spin_unlock_irqrestore(&rq->lock, flags);
4699		break;
4700
4701	case CPU_DEAD:
4702		calc_load_migrate(rq);
4703		break;
4704#endif
4705	}
4706
4707	update_max_interval();
4708
4709	return NOTIFY_OK;
4710}
4711
4712/*
4713 * Register at high priority so that task migration (migrate_all_tasks)
4714 * happens before everything else.  This has to be lower priority than
4715 * the notifier in the perf_event subsystem, though.
4716 */
4717static struct notifier_block migration_notifier = {
4718	.notifier_call = migration_call,
4719	.priority = CPU_PRI_MIGRATION,
4720};
4721
4722static int sched_cpu_active(struct notifier_block *nfb,
4723				      unsigned long action, void *hcpu)
4724{
4725	switch (action & ~CPU_TASKS_FROZEN) {
4726	case CPU_STARTING:
4727	case CPU_DOWN_FAILED:
4728		set_cpu_active((long)hcpu, true);
4729		return NOTIFY_OK;
4730	default:
4731		return NOTIFY_DONE;
4732	}
4733}
4734
4735static int sched_cpu_inactive(struct notifier_block *nfb,
4736					unsigned long action, void *hcpu)
4737{
4738	switch (action & ~CPU_TASKS_FROZEN) {
4739	case CPU_DOWN_PREPARE:
4740		set_cpu_active((long)hcpu, false);
4741		return NOTIFY_OK;
4742	default:
4743		return NOTIFY_DONE;
4744	}
4745}
4746
4747static int __init migration_init(void)
4748{
4749	void *cpu = (void *)(long)smp_processor_id();
4750	int err;
4751
4752	/* Initialize migration for the boot CPU */
4753	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4754	BUG_ON(err == NOTIFY_BAD);
4755	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4756	register_cpu_notifier(&migration_notifier);
4757
4758	/* Register cpu active notifiers */
4759	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4760	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4761
4762	return 0;
4763}
4764early_initcall(migration_init);
4765#endif
4766
4767#ifdef CONFIG_SMP
4768
4769static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4770
4771#ifdef CONFIG_SCHED_DEBUG
4772
4773static __read_mostly int sched_debug_enabled;
4774
4775static int __init sched_debug_setup(char *str)
4776{
4777	sched_debug_enabled = 1;
4778
4779	return 0;
4780}
4781early_param("sched_debug", sched_debug_setup);
4782
4783static inline bool sched_debug(void)
4784{
4785	return sched_debug_enabled;
4786}
4787
4788static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4789				  struct cpumask *groupmask)
4790{
4791	struct sched_group *group = sd->groups;
4792	char str[256];
4793
4794	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4795	cpumask_clear(groupmask);
4796
4797	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4798
4799	if (!(sd->flags & SD_LOAD_BALANCE)) {
4800		printk("does not load-balance\n");
4801		if (sd->parent)
4802			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4803					" has parent");
4804		return -1;
4805	}
4806
4807	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4808
4809	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4810		printk(KERN_ERR "ERROR: domain->span does not contain "
4811				"CPU%d\n", cpu);
4812	}
4813	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4814		printk(KERN_ERR "ERROR: domain->groups does not contain"
4815				" CPU%d\n", cpu);
4816	}
4817
4818	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4819	do {
4820		if (!group) {
4821			printk("\n");
4822			printk(KERN_ERR "ERROR: group is NULL\n");
4823			break;
4824		}
4825
4826		/*
4827		 * Even though we initialize ->power to something semi-sane,
4828		 * we leave power_orig unset. This allows us to detect if
4829		 * domain iteration is still funny without causing /0 traps.
4830		 */
4831		if (!group->sgp->power_orig) {
4832			printk(KERN_CONT "\n");
4833			printk(KERN_ERR "ERROR: domain->cpu_power not "
4834					"set\n");
4835			break;
4836		}
4837
4838		if (!cpumask_weight(sched_group_cpus(group))) {
4839			printk(KERN_CONT "\n");
4840			printk(KERN_ERR "ERROR: empty group\n");
4841			break;
4842		}
4843
4844		if (!(sd->flags & SD_OVERLAP) &&
4845		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4846			printk(KERN_CONT "\n");
4847			printk(KERN_ERR "ERROR: repeated CPUs\n");
4848			break;
4849		}
4850
4851		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4852
4853		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4854
4855		printk(KERN_CONT " %s", str);
4856		if (group->sgp->power != SCHED_POWER_SCALE) {
4857			printk(KERN_CONT " (cpu_power = %d)",
4858				group->sgp->power);
4859		}
4860
4861		group = group->next;
4862	} while (group != sd->groups);
4863	printk(KERN_CONT "\n");
4864
4865	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4866		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4867
4868	if (sd->parent &&
4869	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4870		printk(KERN_ERR "ERROR: parent span is not a superset "
4871			"of domain->span\n");
4872	return 0;
4873}
4874
4875static void sched_domain_debug(struct sched_domain *sd, int cpu)
4876{
4877	int level = 0;
4878
4879	if (!sched_debug_enabled)
4880		return;
4881
4882	if (!sd) {
4883		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4884		return;
4885	}
4886
4887	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4888
4889	for (;;) {
4890		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4891			break;
4892		level++;
4893		sd = sd->parent;
4894		if (!sd)
4895			break;
4896	}
4897}
4898#else /* !CONFIG_SCHED_DEBUG */
4899# define sched_domain_debug(sd, cpu) do { } while (0)
4900static inline bool sched_debug(void)
4901{
4902	return false;
4903}
4904#endif /* CONFIG_SCHED_DEBUG */
4905
4906static int sd_degenerate(struct sched_domain *sd)
4907{
4908	if (cpumask_weight(sched_domain_span(sd)) == 1)
4909		return 1;
4910
4911	/* Following flags need at least 2 groups */
4912	if (sd->flags & (SD_LOAD_BALANCE |
4913			 SD_BALANCE_NEWIDLE |
4914			 SD_BALANCE_FORK |
4915			 SD_BALANCE_EXEC |
4916			 SD_SHARE_CPUPOWER |
4917			 SD_SHARE_PKG_RESOURCES)) {
4918		if (sd->groups != sd->groups->next)
4919			return 0;
4920	}
4921
4922	/* Following flags don't use groups */
4923	if (sd->flags & (SD_WAKE_AFFINE))
4924		return 0;
4925
4926	return 1;
4927}
4928
4929static int
4930sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4931{
4932	unsigned long cflags = sd->flags, pflags = parent->flags;
4933
4934	if (sd_degenerate(parent))
4935		return 1;
4936
4937	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4938		return 0;
4939
4940	/* Flags needing groups don't count if only 1 group in parent */
4941	if (parent->groups == parent->groups->next) {
4942		pflags &= ~(SD_LOAD_BALANCE |
4943				SD_BALANCE_NEWIDLE |
4944				SD_BALANCE_FORK |
4945				SD_BALANCE_EXEC |
4946				SD_SHARE_CPUPOWER |
4947				SD_SHARE_PKG_RESOURCES |
4948				SD_PREFER_SIBLING);
4949		if (nr_node_ids == 1)
4950			pflags &= ~SD_SERIALIZE;
4951	}
4952	if (~cflags & pflags)
4953		return 0;
4954
4955	return 1;
4956}
4957
4958static void free_rootdomain(struct rcu_head *rcu)
4959{
4960	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4961
4962	cpupri_cleanup(&rd->cpupri);
4963	free_cpumask_var(rd->rto_mask);
4964	free_cpumask_var(rd->online);
4965	free_cpumask_var(rd->span);
4966	kfree(rd);
4967}
4968
4969static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4970{
4971	struct root_domain *old_rd = NULL;
4972	unsigned long flags;
4973
4974	raw_spin_lock_irqsave(&rq->lock, flags);
4975
4976	if (rq->rd) {
4977		old_rd = rq->rd;
4978
4979		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4980			set_rq_offline(rq);
4981
4982		cpumask_clear_cpu(rq->cpu, old_rd->span);
4983
4984		/*
4985		 * If we dont want to free the old_rt yet then
4986		 * set old_rd to NULL to skip the freeing later
4987		 * in this function:
4988		 */
4989		if (!atomic_dec_and_test(&old_rd->refcount))
4990			old_rd = NULL;
4991	}
4992
4993	atomic_inc(&rd->refcount);
4994	rq->rd = rd;
4995
4996	cpumask_set_cpu(rq->cpu, rd->span);
4997	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4998		set_rq_online(rq);
4999
5000	raw_spin_unlock_irqrestore(&rq->lock, flags);
5001
5002	if (old_rd)
5003		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5004}
5005
5006static int init_rootdomain(struct root_domain *rd)
5007{
5008	memset(rd, 0, sizeof(*rd));
5009
5010	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5011		goto out;
5012	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5013		goto free_span;
5014	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5015		goto free_online;
5016
5017	if (cpupri_init(&rd->cpupri) != 0)
5018		goto free_rto_mask;
5019	return 0;
5020
5021free_rto_mask:
5022	free_cpumask_var(rd->rto_mask);
5023free_online:
5024	free_cpumask_var(rd->online);
5025free_span:
5026	free_cpumask_var(rd->span);
5027out:
5028	return -ENOMEM;
5029}
5030
5031/*
5032 * By default the system creates a single root-domain with all cpus as
5033 * members (mimicking the global state we have today).
5034 */
5035struct root_domain def_root_domain;
5036
5037static void init_defrootdomain(void)
5038{
5039	init_rootdomain(&def_root_domain);
5040
5041	atomic_set(&def_root_domain.refcount, 1);
5042}
5043
5044static struct root_domain *alloc_rootdomain(void)
5045{
5046	struct root_domain *rd;
5047
5048	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5049	if (!rd)
5050		return NULL;
5051
5052	if (init_rootdomain(rd) != 0) {
5053		kfree(rd);
5054		return NULL;
5055	}
5056
5057	return rd;
5058}
5059
5060static void free_sched_groups(struct sched_group *sg, int free_sgp)
5061{
5062	struct sched_group *tmp, *first;
5063
5064	if (!sg)
5065		return;
5066
5067	first = sg;
5068	do {
5069		tmp = sg->next;
5070
5071		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5072			kfree(sg->sgp);
5073
5074		kfree(sg);
5075		sg = tmp;
5076	} while (sg != first);
5077}
5078
5079static void free_sched_domain(struct rcu_head *rcu)
5080{
5081	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5082
5083	/*
5084	 * If its an overlapping domain it has private groups, iterate and
5085	 * nuke them all.
5086	 */
5087	if (sd->flags & SD_OVERLAP) {
5088		free_sched_groups(sd->groups, 1);
5089	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5090		kfree(sd->groups->sgp);
5091		kfree(sd->groups);
5092	}
5093	kfree(sd);
5094}
5095
5096static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5097{
5098	call_rcu(&sd->rcu, free_sched_domain);
5099}
5100
5101static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5102{
5103	for (; sd; sd = sd->parent)
5104		destroy_sched_domain(sd, cpu);
5105}
5106
5107/*
5108 * Keep a special pointer to the highest sched_domain that has
5109 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5110 * allows us to avoid some pointer chasing select_idle_sibling().
5111 *
5112 * Also keep a unique ID per domain (we use the first cpu number in
5113 * the cpumask of the domain), this allows us to quickly tell if
5114 * two cpus are in the same cache domain, see cpus_share_cache().
5115 */
5116DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5117DEFINE_PER_CPU(int, sd_llc_size);
5118DEFINE_PER_CPU(int, sd_llc_id);
5119
5120static void update_top_cache_domain(int cpu)
5121{
5122	struct sched_domain *sd;
5123	int id = cpu;
5124	int size = 1;
5125
5126	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5127	if (sd) {
5128		id = cpumask_first(sched_domain_span(sd));
5129		size = cpumask_weight(sched_domain_span(sd));
5130	}
5131
5132	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5133	per_cpu(sd_llc_size, cpu) = size;
5134	per_cpu(sd_llc_id, cpu) = id;
5135}
5136
5137/*
5138 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5139 * hold the hotplug lock.
5140 */
5141static void
5142cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5143{
5144	struct rq *rq = cpu_rq(cpu);
5145	struct sched_domain *tmp;
5146
5147	/* Remove the sched domains which do not contribute to scheduling. */
5148	for (tmp = sd; tmp; ) {
5149		struct sched_domain *parent = tmp->parent;
5150		if (!parent)
5151			break;
5152
5153		if (sd_parent_degenerate(tmp, parent)) {
5154			tmp->parent = parent->parent;
5155			if (parent->parent)
5156				parent->parent->child = tmp;
5157			/*
5158			 * Transfer SD_PREFER_SIBLING down in case of a
5159			 * degenerate parent; the spans match for this
5160			 * so the property transfers.
5161			 */
5162			if (parent->flags & SD_PREFER_SIBLING)
5163				tmp->flags |= SD_PREFER_SIBLING;
5164			destroy_sched_domain(parent, cpu);
5165		} else
5166			tmp = tmp->parent;
5167	}
5168
5169	if (sd && sd_degenerate(sd)) {
5170		tmp = sd;
5171		sd = sd->parent;
5172		destroy_sched_domain(tmp, cpu);
5173		if (sd)
5174			sd->child = NULL;
5175	}
5176
5177	sched_domain_debug(sd, cpu);
5178
5179	rq_attach_root(rq, rd);
5180	tmp = rq->sd;
5181	rcu_assign_pointer(rq->sd, sd);
5182	destroy_sched_domains(tmp, cpu);
5183
5184	update_top_cache_domain(cpu);
5185}
5186
5187/* cpus with isolated domains */
5188static cpumask_var_t cpu_isolated_map;
5189
5190/* Setup the mask of cpus configured for isolated domains */
5191static int __init isolated_cpu_setup(char *str)
5192{
5193	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5194	cpulist_parse(str, cpu_isolated_map);
5195	return 1;
5196}
5197
5198__setup("isolcpus=", isolated_cpu_setup);
5199
5200static const struct cpumask *cpu_cpu_mask(int cpu)
5201{
5202	return cpumask_of_node(cpu_to_node(cpu));
5203}
5204
5205struct sd_data {
5206	struct sched_domain **__percpu sd;
5207	struct sched_group **__percpu sg;
5208	struct sched_group_power **__percpu sgp;
5209};
5210
5211struct s_data {
5212	struct sched_domain ** __percpu sd;
5213	struct root_domain	*rd;
5214};
5215
5216enum s_alloc {
5217	sa_rootdomain,
5218	sa_sd,
5219	sa_sd_storage,
5220	sa_none,
5221};
5222
5223struct sched_domain_topology_level;
5224
5225typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5226typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5227
5228#define SDTL_OVERLAP	0x01
5229
5230struct sched_domain_topology_level {
5231	sched_domain_init_f init;
5232	sched_domain_mask_f mask;
5233	int		    flags;
5234	int		    numa_level;
5235	struct sd_data      data;
5236};
5237
5238/*
5239 * Build an iteration mask that can exclude certain CPUs from the upwards
5240 * domain traversal.
5241 *
5242 * Asymmetric node setups can result in situations where the domain tree is of
5243 * unequal depth, make sure to skip domains that already cover the entire
5244 * range.
5245 *
5246 * In that case build_sched_domains() will have terminated the iteration early
5247 * and our sibling sd spans will be empty. Domains should always include the
5248 * cpu they're built on, so check that.
5249 *
5250 */
5251static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5252{
5253	const struct cpumask *span = sched_domain_span(sd);
5254	struct sd_data *sdd = sd->private;
5255	struct sched_domain *sibling;
5256	int i;
5257
5258	for_each_cpu(i, span) {
5259		sibling = *per_cpu_ptr(sdd->sd, i);
5260		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5261			continue;
5262
5263		cpumask_set_cpu(i, sched_group_mask(sg));
5264	}
5265}
5266
5267/*
5268 * Return the canonical balance cpu for this group, this is the first cpu
5269 * of this group that's also in the iteration mask.
5270 */
5271int group_balance_cpu(struct sched_group *sg)
5272{
5273	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5274}
5275
5276static int
5277build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5278{
5279	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5280	const struct cpumask *span = sched_domain_span(sd);
5281	struct cpumask *covered = sched_domains_tmpmask;
5282	struct sd_data *sdd = sd->private;
5283	struct sched_domain *child;
5284	int i;
5285
5286	cpumask_clear(covered);
5287
5288	for_each_cpu(i, span) {
5289		struct cpumask *sg_span;
5290
5291		if (cpumask_test_cpu(i, covered))
5292			continue;
5293
5294		child = *per_cpu_ptr(sdd->sd, i);
5295
5296		/* See the comment near build_group_mask(). */
5297		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5298			continue;
5299
5300		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5301				GFP_KERNEL, cpu_to_node(cpu));
5302
5303		if (!sg)
5304			goto fail;
5305
5306		sg_span = sched_group_cpus(sg);
5307		if (child->child) {
5308			child = child->child;
5309			cpumask_copy(sg_span, sched_domain_span(child));
5310		} else
5311			cpumask_set_cpu(i, sg_span);
5312
5313		cpumask_or(covered, covered, sg_span);
5314
5315		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5316		if (atomic_inc_return(&sg->sgp->ref) == 1)
5317			build_group_mask(sd, sg);
5318
5319		/*
5320		 * Initialize sgp->power such that even if we mess up the
5321		 * domains and no possible iteration will get us here, we won't
5322		 * die on a /0 trap.
5323		 */
5324		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5325
5326		/*
5327		 * Make sure the first group of this domain contains the
5328		 * canonical balance cpu. Otherwise the sched_domain iteration
5329		 * breaks. See update_sg_lb_stats().
5330		 */
5331		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5332		    group_balance_cpu(sg) == cpu)
5333			groups = sg;
5334
5335		if (!first)
5336			first = sg;
5337		if (last)
5338			last->next = sg;
5339		last = sg;
5340		last->next = first;
5341	}
5342	sd->groups = groups;
5343
5344	return 0;
5345
5346fail:
5347	free_sched_groups(first, 0);
5348
5349	return -ENOMEM;
5350}
5351
5352static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5353{
5354	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5355	struct sched_domain *child = sd->child;
5356
5357	if (child)
5358		cpu = cpumask_first(sched_domain_span(child));
5359
5360	if (sg) {
5361		*sg = *per_cpu_ptr(sdd->sg, cpu);
5362		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5363		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5364	}
5365
5366	return cpu;
5367}
5368
5369/*
5370 * build_sched_groups will build a circular linked list of the groups
5371 * covered by the given span, and will set each group's ->cpumask correctly,
5372 * and ->cpu_power to 0.
5373 *
5374 * Assumes the sched_domain tree is fully constructed
5375 */
5376static int
5377build_sched_groups(struct sched_domain *sd, int cpu)
5378{
5379	struct sched_group *first = NULL, *last = NULL;
5380	struct sd_data *sdd = sd->private;
5381	const struct cpumask *span = sched_domain_span(sd);
5382	struct cpumask *covered;
5383	int i;
5384
5385	get_group(cpu, sdd, &sd->groups);
5386	atomic_inc(&sd->groups->ref);
5387
5388	if (cpu != cpumask_first(span))
5389		return 0;
5390
5391	lockdep_assert_held(&sched_domains_mutex);
5392	covered = sched_domains_tmpmask;
5393
5394	cpumask_clear(covered);
5395
5396	for_each_cpu(i, span) {
5397		struct sched_group *sg;
5398		int group, j;
5399
5400		if (cpumask_test_cpu(i, covered))
5401			continue;
5402
5403		group = get_group(i, sdd, &sg);
5404		cpumask_clear(sched_group_cpus(sg));
5405		sg->sgp->power = 0;
5406		cpumask_setall(sched_group_mask(sg));
5407
5408		for_each_cpu(j, span) {
5409			if (get_group(j, sdd, NULL) != group)
5410				continue;
5411
5412			cpumask_set_cpu(j, covered);
5413			cpumask_set_cpu(j, sched_group_cpus(sg));
5414		}
5415
5416		if (!first)
5417			first = sg;
5418		if (last)
5419			last->next = sg;
5420		last = sg;
5421	}
5422	last->next = first;
5423
5424	return 0;
5425}
5426
5427/*
5428 * Initialize sched groups cpu_power.
5429 *
5430 * cpu_power indicates the capacity of sched group, which is used while
5431 * distributing the load between different sched groups in a sched domain.
5432 * Typically cpu_power for all the groups in a sched domain will be same unless
5433 * there are asymmetries in the topology. If there are asymmetries, group
5434 * having more cpu_power will pickup more load compared to the group having
5435 * less cpu_power.
5436 */
5437static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5438{
5439	struct sched_group *sg = sd->groups;
5440
5441	WARN_ON(!sg);
5442
5443	do {
5444		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5445		sg = sg->next;
5446	} while (sg != sd->groups);
5447
5448	if (cpu != group_balance_cpu(sg))
5449		return;
5450
5451	update_group_power(sd, cpu);
5452	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5453}
5454
5455int __weak arch_sd_sibling_asym_packing(void)
5456{
5457       return 0*SD_ASYM_PACKING;
5458}
5459
5460/*
5461 * Initializers for schedule domains
5462 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5463 */
5464
5465#ifdef CONFIG_SCHED_DEBUG
5466# define SD_INIT_NAME(sd, type)		sd->name = #type
5467#else
5468# define SD_INIT_NAME(sd, type)		do { } while (0)
5469#endif
5470
5471#define SD_INIT_FUNC(type)						\
5472static noinline struct sched_domain *					\
5473sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5474{									\
5475	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5476	*sd = SD_##type##_INIT;						\
5477	SD_INIT_NAME(sd, type);						\
5478	sd->private = &tl->data;					\
5479	return sd;							\
5480}
5481
5482SD_INIT_FUNC(CPU)
5483#ifdef CONFIG_SCHED_SMT
5484 SD_INIT_FUNC(SIBLING)
5485#endif
5486#ifdef CONFIG_SCHED_MC
5487 SD_INIT_FUNC(MC)
5488#endif
5489#ifdef CONFIG_SCHED_BOOK
5490 SD_INIT_FUNC(BOOK)
5491#endif
5492
5493static int default_relax_domain_level = -1;
5494int sched_domain_level_max;
5495
5496static int __init setup_relax_domain_level(char *str)
5497{
5498	if (kstrtoint(str, 0, &default_relax_domain_level))
5499		pr_warn("Unable to set relax_domain_level\n");
5500
5501	return 1;
5502}
5503__setup("relax_domain_level=", setup_relax_domain_level);
5504
5505static void set_domain_attribute(struct sched_domain *sd,
5506				 struct sched_domain_attr *attr)
5507{
5508	int request;
5509
5510	if (!attr || attr->relax_domain_level < 0) {
5511		if (default_relax_domain_level < 0)
5512			return;
5513		else
5514			request = default_relax_domain_level;
5515	} else
5516		request = attr->relax_domain_level;
5517	if (request < sd->level) {
5518		/* turn off idle balance on this domain */
5519		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5520	} else {
5521		/* turn on idle balance on this domain */
5522		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5523	}
5524}
5525
5526static void __sdt_free(const struct cpumask *cpu_map);
5527static int __sdt_alloc(const struct cpumask *cpu_map);
5528
5529static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5530				 const struct cpumask *cpu_map)
5531{
5532	switch (what) {
5533	case sa_rootdomain:
5534		if (!atomic_read(&d->rd->refcount))
5535			free_rootdomain(&d->rd->rcu); /* fall through */
5536	case sa_sd:
5537		free_percpu(d->sd); /* fall through */
5538	case sa_sd_storage:
5539		__sdt_free(cpu_map); /* fall through */
5540	case sa_none:
5541		break;
5542	}
5543}
5544
5545static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5546						   const struct cpumask *cpu_map)
5547{
5548	memset(d, 0, sizeof(*d));
5549
5550	if (__sdt_alloc(cpu_map))
5551		return sa_sd_storage;
5552	d->sd = alloc_percpu(struct sched_domain *);
5553	if (!d->sd)
5554		return sa_sd_storage;
5555	d->rd = alloc_rootdomain();
5556	if (!d->rd)
5557		return sa_sd;
5558	return sa_rootdomain;
5559}
5560
5561/*
5562 * NULL the sd_data elements we've used to build the sched_domain and
5563 * sched_group structure so that the subsequent __free_domain_allocs()
5564 * will not free the data we're using.
5565 */
5566static void claim_allocations(int cpu, struct sched_domain *sd)
5567{
5568	struct sd_data *sdd = sd->private;
5569
5570	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5571	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5572
5573	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5574		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5575
5576	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5577		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5578}
5579
5580#ifdef CONFIG_SCHED_SMT
5581static const struct cpumask *cpu_smt_mask(int cpu)
5582{
5583	return topology_thread_cpumask(cpu);
5584}
5585#endif
5586
5587/*
5588 * Topology list, bottom-up.
5589 */
5590static struct sched_domain_topology_level default_topology[] = {
5591#ifdef CONFIG_SCHED_SMT
5592	{ sd_init_SIBLING, cpu_smt_mask, },
5593#endif
5594#ifdef CONFIG_SCHED_MC
5595	{ sd_init_MC, cpu_coregroup_mask, },
5596#endif
5597#ifdef CONFIG_SCHED_BOOK
5598	{ sd_init_BOOK, cpu_book_mask, },
5599#endif
5600	{ sd_init_CPU, cpu_cpu_mask, },
5601	{ NULL, },
5602};
5603
5604static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5605
5606#define for_each_sd_topology(tl)			\
5607	for (tl = sched_domain_topology; tl->init; tl++)
5608
5609#ifdef CONFIG_NUMA
5610
5611static int sched_domains_numa_levels;
5612static int *sched_domains_numa_distance;
5613static struct cpumask ***sched_domains_numa_masks;
5614static int sched_domains_curr_level;
5615
5616static inline int sd_local_flags(int level)
5617{
5618	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5619		return 0;
5620
5621	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5622}
5623
5624static struct sched_domain *
5625sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5626{
5627	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5628	int level = tl->numa_level;
5629	int sd_weight = cpumask_weight(
5630			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5631
5632	*sd = (struct sched_domain){
5633		.min_interval		= sd_weight,
5634		.max_interval		= 2*sd_weight,
5635		.busy_factor		= 32,
5636		.imbalance_pct		= 125,
5637		.cache_nice_tries	= 2,
5638		.busy_idx		= 3,
5639		.idle_idx		= 2,
5640		.newidle_idx		= 0,
5641		.wake_idx		= 0,
5642		.forkexec_idx		= 0,
5643
5644		.flags			= 1*SD_LOAD_BALANCE
5645					| 1*SD_BALANCE_NEWIDLE
5646					| 0*SD_BALANCE_EXEC
5647					| 0*SD_BALANCE_FORK
5648					| 0*SD_BALANCE_WAKE
5649					| 0*SD_WAKE_AFFINE
5650					| 0*SD_SHARE_CPUPOWER
5651					| 0*SD_SHARE_PKG_RESOURCES
5652					| 1*SD_SERIALIZE
5653					| 0*SD_PREFER_SIBLING
5654					| sd_local_flags(level)
5655					,
5656		.last_balance		= jiffies,
5657		.balance_interval	= sd_weight,
5658	};
5659	SD_INIT_NAME(sd, NUMA);
5660	sd->private = &tl->data;
5661
5662	/*
5663	 * Ugly hack to pass state to sd_numa_mask()...
5664	 */
5665	sched_domains_curr_level = tl->numa_level;
5666
5667	return sd;
5668}
5669
5670static const struct cpumask *sd_numa_mask(int cpu)
5671{
5672	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5673}
5674
5675static void sched_numa_warn(const char *str)
5676{
5677	static int done = false;
5678	int i,j;
5679
5680	if (done)
5681		return;
5682
5683	done = true;
5684
5685	printk(KERN_WARNING "ERROR: %s\n\n", str);
5686
5687	for (i = 0; i < nr_node_ids; i++) {
5688		printk(KERN_WARNING "  ");
5689		for (j = 0; j < nr_node_ids; j++)
5690			printk(KERN_CONT "%02d ", node_distance(i,j));
5691		printk(KERN_CONT "\n");
5692	}
5693	printk(KERN_WARNING "\n");
5694}
5695
5696static bool find_numa_distance(int distance)
5697{
5698	int i;
5699
5700	if (distance == node_distance(0, 0))
5701		return true;
5702
5703	for (i = 0; i < sched_domains_numa_levels; i++) {
5704		if (sched_domains_numa_distance[i] == distance)
5705			return true;
5706	}
5707
5708	return false;
5709}
5710
5711static void sched_init_numa(void)
5712{
5713	int next_distance, curr_distance = node_distance(0, 0);
5714	struct sched_domain_topology_level *tl;
5715	int level = 0;
5716	int i, j, k;
5717
5718	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5719	if (!sched_domains_numa_distance)
5720		return;
5721
5722	/*
5723	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5724	 * unique distances in the node_distance() table.
5725	 *
5726	 * Assumes node_distance(0,j) includes all distances in
5727	 * node_distance(i,j) in order to avoid cubic time.
5728	 */
5729	next_distance = curr_distance;
5730	for (i = 0; i < nr_node_ids; i++) {
5731		for (j = 0; j < nr_node_ids; j++) {
5732			for (k = 0; k < nr_node_ids; k++) {
5733				int distance = node_distance(i, k);
5734
5735				if (distance > curr_distance &&
5736				    (distance < next_distance ||
5737				     next_distance == curr_distance))
5738					next_distance = distance;
5739
5740				/*
5741				 * While not a strong assumption it would be nice to know
5742				 * about cases where if node A is connected to B, B is not
5743				 * equally connected to A.
5744				 */
5745				if (sched_debug() && node_distance(k, i) != distance)
5746					sched_numa_warn("Node-distance not symmetric");
5747
5748				if (sched_debug() && i && !find_numa_distance(distance))
5749					sched_numa_warn("Node-0 not representative");
5750			}
5751			if (next_distance != curr_distance) {
5752				sched_domains_numa_distance[level++] = next_distance;
5753				sched_domains_numa_levels = level;
5754				curr_distance = next_distance;
5755			} else break;
5756		}
5757
5758		/*
5759		 * In case of sched_debug() we verify the above assumption.
5760		 */
5761		if (!sched_debug())
5762			break;
5763	}
5764	/*
5765	 * 'level' contains the number of unique distances, excluding the
5766	 * identity distance node_distance(i,i).
5767	 *
5768	 * The sched_domains_numa_distance[] array includes the actual distance
5769	 * numbers.
5770	 */
5771
5772	/*
5773	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5774	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5775	 * the array will contain less then 'level' members. This could be
5776	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5777	 * in other functions.
5778	 *
5779	 * We reset it to 'level' at the end of this function.
5780	 */
5781	sched_domains_numa_levels = 0;
5782
5783	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5784	if (!sched_domains_numa_masks)
5785		return;
5786
5787	/*
5788	 * Now for each level, construct a mask per node which contains all
5789	 * cpus of nodes that are that many hops away from us.
5790	 */
5791	for (i = 0; i < level; i++) {
5792		sched_domains_numa_masks[i] =
5793			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5794		if (!sched_domains_numa_masks[i])
5795			return;
5796
5797		for (j = 0; j < nr_node_ids; j++) {
5798			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5799			if (!mask)
5800				return;
5801
5802			sched_domains_numa_masks[i][j] = mask;
5803
5804			for (k = 0; k < nr_node_ids; k++) {
5805				if (node_distance(j, k) > sched_domains_numa_distance[i])
5806					continue;
5807
5808				cpumask_or(mask, mask, cpumask_of_node(k));
5809			}
5810		}
5811	}
5812
5813	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5814			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5815	if (!tl)
5816		return;
5817
5818	/*
5819	 * Copy the default topology bits..
5820	 */
5821	for (i = 0; default_topology[i].init; i++)
5822		tl[i] = default_topology[i];
5823
5824	/*
5825	 * .. and append 'j' levels of NUMA goodness.
5826	 */
5827	for (j = 0; j < level; i++, j++) {
5828		tl[i] = (struct sched_domain_topology_level){
5829			.init = sd_numa_init,
5830			.mask = sd_numa_mask,
5831			.flags = SDTL_OVERLAP,
5832			.numa_level = j,
5833		};
5834	}
5835
5836	sched_domain_topology = tl;
5837
5838	sched_domains_numa_levels = level;
5839}
5840
5841static void sched_domains_numa_masks_set(int cpu)
5842{
5843	int i, j;
5844	int node = cpu_to_node(cpu);
5845
5846	for (i = 0; i < sched_domains_numa_levels; i++) {
5847		for (j = 0; j < nr_node_ids; j++) {
5848			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5849				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5850		}
5851	}
5852}
5853
5854static void sched_domains_numa_masks_clear(int cpu)
5855{
5856	int i, j;
5857	for (i = 0; i < sched_domains_numa_levels; i++) {
5858		for (j = 0; j < nr_node_ids; j++)
5859			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5860	}
5861}
5862
5863/*
5864 * Update sched_domains_numa_masks[level][node] array when new cpus
5865 * are onlined.
5866 */
5867static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5868					   unsigned long action,
5869					   void *hcpu)
5870{
5871	int cpu = (long)hcpu;
5872
5873	switch (action & ~CPU_TASKS_FROZEN) {
5874	case CPU_ONLINE:
5875		sched_domains_numa_masks_set(cpu);
5876		break;
5877
5878	case CPU_DEAD:
5879		sched_domains_numa_masks_clear(cpu);
5880		break;
5881
5882	default:
5883		return NOTIFY_DONE;
5884	}
5885
5886	return NOTIFY_OK;
5887}
5888#else
5889static inline void sched_init_numa(void)
5890{
5891}
5892
5893static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5894					   unsigned long action,
5895					   void *hcpu)
5896{
5897	return 0;
5898}
5899#endif /* CONFIG_NUMA */
5900
5901static int __sdt_alloc(const struct cpumask *cpu_map)
5902{
5903	struct sched_domain_topology_level *tl;
5904	int j;
5905
5906	for_each_sd_topology(tl) {
5907		struct sd_data *sdd = &tl->data;
5908
5909		sdd->sd = alloc_percpu(struct sched_domain *);
5910		if (!sdd->sd)
5911			return -ENOMEM;
5912
5913		sdd->sg = alloc_percpu(struct sched_group *);
5914		if (!sdd->sg)
5915			return -ENOMEM;
5916
5917		sdd->sgp = alloc_percpu(struct sched_group_power *);
5918		if (!sdd->sgp)
5919			return -ENOMEM;
5920
5921		for_each_cpu(j, cpu_map) {
5922			struct sched_domain *sd;
5923			struct sched_group *sg;
5924			struct sched_group_power *sgp;
5925
5926		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5927					GFP_KERNEL, cpu_to_node(j));
5928			if (!sd)
5929				return -ENOMEM;
5930
5931			*per_cpu_ptr(sdd->sd, j) = sd;
5932
5933			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5934					GFP_KERNEL, cpu_to_node(j));
5935			if (!sg)
5936				return -ENOMEM;
5937
5938			sg->next = sg;
5939
5940			*per_cpu_ptr(sdd->sg, j) = sg;
5941
5942			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5943					GFP_KERNEL, cpu_to_node(j));
5944			if (!sgp)
5945				return -ENOMEM;
5946
5947			*per_cpu_ptr(sdd->sgp, j) = sgp;
5948		}
5949	}
5950
5951	return 0;
5952}
5953
5954static void __sdt_free(const struct cpumask *cpu_map)
5955{
5956	struct sched_domain_topology_level *tl;
5957	int j;
5958
5959	for_each_sd_topology(tl) {
5960		struct sd_data *sdd = &tl->data;
5961
5962		for_each_cpu(j, cpu_map) {
5963			struct sched_domain *sd;
5964
5965			if (sdd->sd) {
5966				sd = *per_cpu_ptr(sdd->sd, j);
5967				if (sd && (sd->flags & SD_OVERLAP))
5968					free_sched_groups(sd->groups, 0);
5969				kfree(*per_cpu_ptr(sdd->sd, j));
5970			}
5971
5972			if (sdd->sg)
5973				kfree(*per_cpu_ptr(sdd->sg, j));
5974			if (sdd->sgp)
5975				kfree(*per_cpu_ptr(sdd->sgp, j));
5976		}
5977		free_percpu(sdd->sd);
5978		sdd->sd = NULL;
5979		free_percpu(sdd->sg);
5980		sdd->sg = NULL;
5981		free_percpu(sdd->sgp);
5982		sdd->sgp = NULL;
5983	}
5984}
5985
5986struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5987		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5988		struct sched_domain *child, int cpu)
5989{
5990	struct sched_domain *sd = tl->init(tl, cpu);
5991	if (!sd)
5992		return child;
5993
5994	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5995	if (child) {
5996		sd->level = child->level + 1;
5997		sched_domain_level_max = max(sched_domain_level_max, sd->level);
5998		child->parent = sd;
5999		sd->child = child;
6000	}
6001	set_domain_attribute(sd, attr);
6002
6003	return sd;
6004}
6005
6006/*
6007 * Build sched domains for a given set of cpus and attach the sched domains
6008 * to the individual cpus
6009 */
6010static int build_sched_domains(const struct cpumask *cpu_map,
6011			       struct sched_domain_attr *attr)
6012{
6013	enum s_alloc alloc_state;
6014	struct sched_domain *sd;
6015	struct s_data d;
6016	int i, ret = -ENOMEM;
6017
6018	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6019	if (alloc_state != sa_rootdomain)
6020		goto error;
6021
6022	/* Set up domains for cpus specified by the cpu_map. */
6023	for_each_cpu(i, cpu_map) {
6024		struct sched_domain_topology_level *tl;
6025
6026		sd = NULL;
6027		for_each_sd_topology(tl) {
6028			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6029			if (tl == sched_domain_topology)
6030				*per_cpu_ptr(d.sd, i) = sd;
6031			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6032				sd->flags |= SD_OVERLAP;
6033			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6034				break;
6035		}
6036	}
6037
6038	/* Build the groups for the domains */
6039	for_each_cpu(i, cpu_map) {
6040		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6041			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6042			if (sd->flags & SD_OVERLAP) {
6043				if (build_overlap_sched_groups(sd, i))
6044					goto error;
6045			} else {
6046				if (build_sched_groups(sd, i))
6047					goto error;
6048			}
6049		}
6050	}
6051
6052	/* Calculate CPU power for physical packages and nodes */
6053	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6054		if (!cpumask_test_cpu(i, cpu_map))
6055			continue;
6056
6057		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6058			claim_allocations(i, sd);
6059			init_sched_groups_power(i, sd);
6060		}
6061	}
6062
6063	/* Attach the domains */
6064	rcu_read_lock();
6065	for_each_cpu(i, cpu_map) {
6066		sd = *per_cpu_ptr(d.sd, i);
6067		cpu_attach_domain(sd, d.rd, i);
6068	}
6069	rcu_read_unlock();
6070
6071	ret = 0;
6072error:
6073	__free_domain_allocs(&d, alloc_state, cpu_map);
6074	return ret;
6075}
6076
6077static cpumask_var_t *doms_cur;	/* current sched domains */
6078static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6079static struct sched_domain_attr *dattr_cur;
6080				/* attribues of custom domains in 'doms_cur' */
6081
6082/*
6083 * Special case: If a kmalloc of a doms_cur partition (array of
6084 * cpumask) fails, then fallback to a single sched domain,
6085 * as determined by the single cpumask fallback_doms.
6086 */
6087static cpumask_var_t fallback_doms;
6088
6089/*
6090 * arch_update_cpu_topology lets virtualized architectures update the
6091 * cpu core maps. It is supposed to return 1 if the topology changed
6092 * or 0 if it stayed the same.
6093 */
6094int __attribute__((weak)) arch_update_cpu_topology(void)
6095{
6096	return 0;
6097}
6098
6099cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6100{
6101	int i;
6102	cpumask_var_t *doms;
6103
6104	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6105	if (!doms)
6106		return NULL;
6107	for (i = 0; i < ndoms; i++) {
6108		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6109			free_sched_domains(doms, i);
6110			return NULL;
6111		}
6112	}
6113	return doms;
6114}
6115
6116void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6117{
6118	unsigned int i;
6119	for (i = 0; i < ndoms; i++)
6120		free_cpumask_var(doms[i]);
6121	kfree(doms);
6122}
6123
6124/*
6125 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6126 * For now this just excludes isolated cpus, but could be used to
6127 * exclude other special cases in the future.
6128 */
6129static int init_sched_domains(const struct cpumask *cpu_map)
6130{
6131	int err;
6132
6133	arch_update_cpu_topology();
6134	ndoms_cur = 1;
6135	doms_cur = alloc_sched_domains(ndoms_cur);
6136	if (!doms_cur)
6137		doms_cur = &fallback_doms;
6138	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6139	err = build_sched_domains(doms_cur[0], NULL);
6140	register_sched_domain_sysctl();
6141
6142	return err;
6143}
6144
6145/*
6146 * Detach sched domains from a group of cpus specified in cpu_map
6147 * These cpus will now be attached to the NULL domain
6148 */
6149static void detach_destroy_domains(const struct cpumask *cpu_map)
6150{
6151	int i;
6152
6153	rcu_read_lock();
6154	for_each_cpu(i, cpu_map)
6155		cpu_attach_domain(NULL, &def_root_domain, i);
6156	rcu_read_unlock();
6157}
6158
6159/* handle null as "default" */
6160static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6161			struct sched_domain_attr *new, int idx_new)
6162{
6163	struct sched_domain_attr tmp;
6164
6165	/* fast path */
6166	if (!new && !cur)
6167		return 1;
6168
6169	tmp = SD_ATTR_INIT;
6170	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6171			new ? (new + idx_new) : &tmp,
6172			sizeof(struct sched_domain_attr));
6173}
6174
6175/*
6176 * Partition sched domains as specified by the 'ndoms_new'
6177 * cpumasks in the array doms_new[] of cpumasks. This compares
6178 * doms_new[] to the current sched domain partitioning, doms_cur[].
6179 * It destroys each deleted domain and builds each new domain.
6180 *
6181 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6182 * The masks don't intersect (don't overlap.) We should setup one
6183 * sched domain for each mask. CPUs not in any of the cpumasks will
6184 * not be load balanced. If the same cpumask appears both in the
6185 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6186 * it as it is.
6187 *
6188 * The passed in 'doms_new' should be allocated using
6189 * alloc_sched_domains.  This routine takes ownership of it and will
6190 * free_sched_domains it when done with it. If the caller failed the
6191 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6192 * and partition_sched_domains() will fallback to the single partition
6193 * 'fallback_doms', it also forces the domains to be rebuilt.
6194 *
6195 * If doms_new == NULL it will be replaced with cpu_online_mask.
6196 * ndoms_new == 0 is a special case for destroying existing domains,
6197 * and it will not create the default domain.
6198 *
6199 * Call with hotplug lock held
6200 */
6201void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6202			     struct sched_domain_attr *dattr_new)
6203{
6204	int i, j, n;
6205	int new_topology;
6206
6207	mutex_lock(&sched_domains_mutex);
6208
6209	/* always unregister in case we don't destroy any domains */
6210	unregister_sched_domain_sysctl();
6211
6212	/* Let architecture update cpu core mappings. */
6213	new_topology = arch_update_cpu_topology();
6214
6215	n = doms_new ? ndoms_new : 0;
6216
6217	/* Destroy deleted domains */
6218	for (i = 0; i < ndoms_cur; i++) {
6219		for (j = 0; j < n && !new_topology; j++) {
6220			if (cpumask_equal(doms_cur[i], doms_new[j])
6221			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6222				goto match1;
6223		}
6224		/* no match - a current sched domain not in new doms_new[] */
6225		detach_destroy_domains(doms_cur[i]);
6226match1:
6227		;
6228	}
6229
6230	n = ndoms_cur;
6231	if (doms_new == NULL) {
6232		n = 0;
6233		doms_new = &fallback_doms;
6234		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6235		WARN_ON_ONCE(dattr_new);
6236	}
6237
6238	/* Build new domains */
6239	for (i = 0; i < ndoms_new; i++) {
6240		for (j = 0; j < n && !new_topology; j++) {
6241			if (cpumask_equal(doms_new[i], doms_cur[j])
6242			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6243				goto match2;
6244		}
6245		/* no match - add a new doms_new */
6246		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6247match2:
6248		;
6249	}
6250
6251	/* Remember the new sched domains */
6252	if (doms_cur != &fallback_doms)
6253		free_sched_domains(doms_cur, ndoms_cur);
6254	kfree(dattr_cur);	/* kfree(NULL) is safe */
6255	doms_cur = doms_new;
6256	dattr_cur = dattr_new;
6257	ndoms_cur = ndoms_new;
6258
6259	register_sched_domain_sysctl();
6260
6261	mutex_unlock(&sched_domains_mutex);
6262}
6263
6264static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6265
6266/*
6267 * Update cpusets according to cpu_active mask.  If cpusets are
6268 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6269 * around partition_sched_domains().
6270 *
6271 * If we come here as part of a suspend/resume, don't touch cpusets because we
6272 * want to restore it back to its original state upon resume anyway.
6273 */
6274static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6275			     void *hcpu)
6276{
6277	switch (action) {
6278	case CPU_ONLINE_FROZEN:
6279	case CPU_DOWN_FAILED_FROZEN:
6280
6281		/*
6282		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6283		 * resume sequence. As long as this is not the last online
6284		 * operation in the resume sequence, just build a single sched
6285		 * domain, ignoring cpusets.
6286		 */
6287		num_cpus_frozen--;
6288		if (likely(num_cpus_frozen)) {
6289			partition_sched_domains(1, NULL, NULL);
6290			break;
6291		}
6292
6293		/*
6294		 * This is the last CPU online operation. So fall through and
6295		 * restore the original sched domains by considering the
6296		 * cpuset configurations.
6297		 */
6298
6299	case CPU_ONLINE:
6300	case CPU_DOWN_FAILED:
6301		cpuset_update_active_cpus(true);
6302		break;
6303	default:
6304		return NOTIFY_DONE;
6305	}
6306	return NOTIFY_OK;
6307}
6308
6309static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6310			       void *hcpu)
6311{
6312	switch (action) {
6313	case CPU_DOWN_PREPARE:
6314		cpuset_update_active_cpus(false);
6315		break;
6316	case CPU_DOWN_PREPARE_FROZEN:
6317		num_cpus_frozen++;
6318		partition_sched_domains(1, NULL, NULL);
6319		break;
6320	default:
6321		return NOTIFY_DONE;
6322	}
6323	return NOTIFY_OK;
6324}
6325
6326void __init sched_init_smp(void)
6327{
6328	cpumask_var_t non_isolated_cpus;
6329
6330	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6331	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6332
6333	sched_init_numa();
6334
6335	get_online_cpus();
6336	mutex_lock(&sched_domains_mutex);
6337	init_sched_domains(cpu_active_mask);
6338	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6339	if (cpumask_empty(non_isolated_cpus))
6340		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6341	mutex_unlock(&sched_domains_mutex);
6342	put_online_cpus();
6343
6344	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6345	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6346	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6347
6348	init_hrtick();
6349
6350	/* Move init over to a non-isolated CPU */
6351	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6352		BUG();
6353	sched_init_granularity();
6354	free_cpumask_var(non_isolated_cpus);
6355
6356	init_sched_rt_class();
6357}
6358#else
6359void __init sched_init_smp(void)
6360{
6361	sched_init_granularity();
6362}
6363#endif /* CONFIG_SMP */
6364
6365const_debug unsigned int sysctl_timer_migration = 1;
6366
6367int in_sched_functions(unsigned long addr)
6368{
6369	return in_lock_functions(addr) ||
6370		(addr >= (unsigned long)__sched_text_start
6371		&& addr < (unsigned long)__sched_text_end);
6372}
6373
6374#ifdef CONFIG_CGROUP_SCHED
6375/*
6376 * Default task group.
6377 * Every task in system belongs to this group at bootup.
6378 */
6379struct task_group root_task_group;
6380LIST_HEAD(task_groups);
6381#endif
6382
6383DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6384
6385void __init sched_init(void)
6386{
6387	int i, j;
6388	unsigned long alloc_size = 0, ptr;
6389
6390#ifdef CONFIG_FAIR_GROUP_SCHED
6391	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6392#endif
6393#ifdef CONFIG_RT_GROUP_SCHED
6394	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6395#endif
6396#ifdef CONFIG_CPUMASK_OFFSTACK
6397	alloc_size += num_possible_cpus() * cpumask_size();
6398#endif
6399	if (alloc_size) {
6400		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6401
6402#ifdef CONFIG_FAIR_GROUP_SCHED
6403		root_task_group.se = (struct sched_entity **)ptr;
6404		ptr += nr_cpu_ids * sizeof(void **);
6405
6406		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6407		ptr += nr_cpu_ids * sizeof(void **);
6408
6409#endif /* CONFIG_FAIR_GROUP_SCHED */
6410#ifdef CONFIG_RT_GROUP_SCHED
6411		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6412		ptr += nr_cpu_ids * sizeof(void **);
6413
6414		root_task_group.rt_rq = (struct rt_rq **)ptr;
6415		ptr += nr_cpu_ids * sizeof(void **);
6416
6417#endif /* CONFIG_RT_GROUP_SCHED */
6418#ifdef CONFIG_CPUMASK_OFFSTACK
6419		for_each_possible_cpu(i) {
6420			per_cpu(load_balance_mask, i) = (void *)ptr;
6421			ptr += cpumask_size();
6422		}
6423#endif /* CONFIG_CPUMASK_OFFSTACK */
6424	}
6425
6426#ifdef CONFIG_SMP
6427	init_defrootdomain();
6428#endif
6429
6430	init_rt_bandwidth(&def_rt_bandwidth,
6431			global_rt_period(), global_rt_runtime());
6432
6433#ifdef CONFIG_RT_GROUP_SCHED
6434	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6435			global_rt_period(), global_rt_runtime());
6436#endif /* CONFIG_RT_GROUP_SCHED */
6437
6438#ifdef CONFIG_CGROUP_SCHED
6439	list_add(&root_task_group.list, &task_groups);
6440	INIT_LIST_HEAD(&root_task_group.children);
6441	INIT_LIST_HEAD(&root_task_group.siblings);
6442	autogroup_init(&init_task);
6443
6444#endif /* CONFIG_CGROUP_SCHED */
6445
6446	for_each_possible_cpu(i) {
6447		struct rq *rq;
6448
6449		rq = cpu_rq(i);
6450		raw_spin_lock_init(&rq->lock);
6451		rq->nr_running = 0;
6452		rq->calc_load_active = 0;
6453		rq->calc_load_update = jiffies + LOAD_FREQ;
6454		init_cfs_rq(&rq->cfs);
6455		init_rt_rq(&rq->rt, rq);
6456#ifdef CONFIG_FAIR_GROUP_SCHED
6457		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6458		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6459		/*
6460		 * How much cpu bandwidth does root_task_group get?
6461		 *
6462		 * In case of task-groups formed thr' the cgroup filesystem, it
6463		 * gets 100% of the cpu resources in the system. This overall
6464		 * system cpu resource is divided among the tasks of
6465		 * root_task_group and its child task-groups in a fair manner,
6466		 * based on each entity's (task or task-group's) weight
6467		 * (se->load.weight).
6468		 *
6469		 * In other words, if root_task_group has 10 tasks of weight
6470		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6471		 * then A0's share of the cpu resource is:
6472		 *
6473		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6474		 *
6475		 * We achieve this by letting root_task_group's tasks sit
6476		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6477		 */
6478		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6479		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6480#endif /* CONFIG_FAIR_GROUP_SCHED */
6481
6482		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6483#ifdef CONFIG_RT_GROUP_SCHED
6484		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6485		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6486#endif
6487
6488		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6489			rq->cpu_load[j] = 0;
6490
6491		rq->last_load_update_tick = jiffies;
6492
6493#ifdef CONFIG_SMP
6494		rq->sd = NULL;
6495		rq->rd = NULL;
6496		rq->cpu_power = SCHED_POWER_SCALE;
6497		rq->post_schedule = 0;
6498		rq->active_balance = 0;
6499		rq->next_balance = jiffies;
6500		rq->push_cpu = 0;
6501		rq->cpu = i;
6502		rq->online = 0;
6503		rq->idle_stamp = 0;
6504		rq->avg_idle = 2*sysctl_sched_migration_cost;
6505		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6506
6507		INIT_LIST_HEAD(&rq->cfs_tasks);
6508
6509		rq_attach_root(rq, &def_root_domain);
6510#ifdef CONFIG_NO_HZ_COMMON
6511		rq->nohz_flags = 0;
6512#endif
6513#ifdef CONFIG_NO_HZ_FULL
6514		rq->last_sched_tick = 0;
6515#endif
6516#endif
6517		init_rq_hrtick(rq);
6518		atomic_set(&rq->nr_iowait, 0);
6519	}
6520
6521	set_load_weight(&init_task);
6522
6523#ifdef CONFIG_PREEMPT_NOTIFIERS
6524	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6525#endif
6526
6527#ifdef CONFIG_RT_MUTEXES
6528	plist_head_init(&init_task.pi_waiters);
6529#endif
6530
6531	/*
6532	 * The boot idle thread does lazy MMU switching as well:
6533	 */
6534	atomic_inc(&init_mm.mm_count);
6535	enter_lazy_tlb(&init_mm, current);
6536
6537	/*
6538	 * Make us the idle thread. Technically, schedule() should not be
6539	 * called from this thread, however somewhere below it might be,
6540	 * but because we are the idle thread, we just pick up running again
6541	 * when this runqueue becomes "idle".
6542	 */
6543	init_idle(current, smp_processor_id());
6544
6545	calc_load_update = jiffies + LOAD_FREQ;
6546
6547	/*
6548	 * During early bootup we pretend to be a normal task:
6549	 */
6550	current->sched_class = &fair_sched_class;
6551
6552#ifdef CONFIG_SMP
6553	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6554	/* May be allocated at isolcpus cmdline parse time */
6555	if (cpu_isolated_map == NULL)
6556		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6557	idle_thread_set_boot_cpu();
6558#endif
6559	init_sched_fair_class();
6560
6561	scheduler_running = 1;
6562}
6563
6564#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6565static inline int preempt_count_equals(int preempt_offset)
6566{
6567	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6568
6569	return (nested == preempt_offset);
6570}
6571
6572void __might_sleep(const char *file, int line, int preempt_offset)
6573{
6574	static unsigned long prev_jiffy;	/* ratelimiting */
6575
6576	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6577	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6578	    system_state != SYSTEM_RUNNING || oops_in_progress)
6579		return;
6580	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6581		return;
6582	prev_jiffy = jiffies;
6583
6584	printk(KERN_ERR
6585		"BUG: sleeping function called from invalid context at %s:%d\n",
6586			file, line);
6587	printk(KERN_ERR
6588		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6589			in_atomic(), irqs_disabled(),
6590			current->pid, current->comm);
6591
6592	debug_show_held_locks(current);
6593	if (irqs_disabled())
6594		print_irqtrace_events(current);
6595	dump_stack();
6596}
6597EXPORT_SYMBOL(__might_sleep);
6598#endif
6599
6600#ifdef CONFIG_MAGIC_SYSRQ
6601static void normalize_task(struct rq *rq, struct task_struct *p)
6602{
6603	const struct sched_class *prev_class = p->sched_class;
6604	int old_prio = p->prio;
6605	int on_rq;
6606
6607	on_rq = p->on_rq;
6608	if (on_rq)
6609		dequeue_task(rq, p, 0);
6610	__setscheduler(rq, p, SCHED_NORMAL, 0);
6611	if (on_rq) {
6612		enqueue_task(rq, p, 0);
6613		resched_task(rq->curr);
6614	}
6615
6616	check_class_changed(rq, p, prev_class, old_prio);
6617}
6618
6619void normalize_rt_tasks(void)
6620{
6621	struct task_struct *g, *p;
6622	unsigned long flags;
6623	struct rq *rq;
6624
6625	read_lock_irqsave(&tasklist_lock, flags);
6626	do_each_thread(g, p) {
6627		/*
6628		 * Only normalize user tasks:
6629		 */
6630		if (!p->mm)
6631			continue;
6632
6633		p->se.exec_start		= 0;
6634#ifdef CONFIG_SCHEDSTATS
6635		p->se.statistics.wait_start	= 0;
6636		p->se.statistics.sleep_start	= 0;
6637		p->se.statistics.block_start	= 0;
6638#endif
6639
6640		if (!rt_task(p)) {
6641			/*
6642			 * Renice negative nice level userspace
6643			 * tasks back to 0:
6644			 */
6645			if (TASK_NICE(p) < 0 && p->mm)
6646				set_user_nice(p, 0);
6647			continue;
6648		}
6649
6650		raw_spin_lock(&p->pi_lock);
6651		rq = __task_rq_lock(p);
6652
6653		normalize_task(rq, p);
6654
6655		__task_rq_unlock(rq);
6656		raw_spin_unlock(&p->pi_lock);
6657	} while_each_thread(g, p);
6658
6659	read_unlock_irqrestore(&tasklist_lock, flags);
6660}
6661
6662#endif /* CONFIG_MAGIC_SYSRQ */
6663
6664#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6665/*
6666 * These functions are only useful for the IA64 MCA handling, or kdb.
6667 *
6668 * They can only be called when the whole system has been
6669 * stopped - every CPU needs to be quiescent, and no scheduling
6670 * activity can take place. Using them for anything else would
6671 * be a serious bug, and as a result, they aren't even visible
6672 * under any other configuration.
6673 */
6674
6675/**
6676 * curr_task - return the current task for a given cpu.
6677 * @cpu: the processor in question.
6678 *
6679 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6680 *
6681 * Return: The current task for @cpu.
6682 */
6683struct task_struct *curr_task(int cpu)
6684{
6685	return cpu_curr(cpu);
6686}
6687
6688#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6689
6690#ifdef CONFIG_IA64
6691/**
6692 * set_curr_task - set the current task for a given cpu.
6693 * @cpu: the processor in question.
6694 * @p: the task pointer to set.
6695 *
6696 * Description: This function must only be used when non-maskable interrupts
6697 * are serviced on a separate stack. It allows the architecture to switch the
6698 * notion of the current task on a cpu in a non-blocking manner. This function
6699 * must be called with all CPU's synchronized, and interrupts disabled, the
6700 * and caller must save the original value of the current task (see
6701 * curr_task() above) and restore that value before reenabling interrupts and
6702 * re-starting the system.
6703 *
6704 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6705 */
6706void set_curr_task(int cpu, struct task_struct *p)
6707{
6708	cpu_curr(cpu) = p;
6709}
6710
6711#endif
6712
6713#ifdef CONFIG_CGROUP_SCHED
6714/* task_group_lock serializes the addition/removal of task groups */
6715static DEFINE_SPINLOCK(task_group_lock);
6716
6717static void free_sched_group(struct task_group *tg)
6718{
6719	free_fair_sched_group(tg);
6720	free_rt_sched_group(tg);
6721	autogroup_free(tg);
6722	kfree(tg);
6723}
6724
6725/* allocate runqueue etc for a new task group */
6726struct task_group *sched_create_group(struct task_group *parent)
6727{
6728	struct task_group *tg;
6729
6730	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6731	if (!tg)
6732		return ERR_PTR(-ENOMEM);
6733
6734	if (!alloc_fair_sched_group(tg, parent))
6735		goto err;
6736
6737	if (!alloc_rt_sched_group(tg, parent))
6738		goto err;
6739
6740	return tg;
6741
6742err:
6743	free_sched_group(tg);
6744	return ERR_PTR(-ENOMEM);
6745}
6746
6747void sched_online_group(struct task_group *tg, struct task_group *parent)
6748{
6749	unsigned long flags;
6750
6751	spin_lock_irqsave(&task_group_lock, flags);
6752	list_add_rcu(&tg->list, &task_groups);
6753
6754	WARN_ON(!parent); /* root should already exist */
6755
6756	tg->parent = parent;
6757	INIT_LIST_HEAD(&tg->children);
6758	list_add_rcu(&tg->siblings, &parent->children);
6759	spin_unlock_irqrestore(&task_group_lock, flags);
6760}
6761
6762/* rcu callback to free various structures associated with a task group */
6763static void free_sched_group_rcu(struct rcu_head *rhp)
6764{
6765	/* now it should be safe to free those cfs_rqs */
6766	free_sched_group(container_of(rhp, struct task_group, rcu));
6767}
6768
6769/* Destroy runqueue etc associated with a task group */
6770void sched_destroy_group(struct task_group *tg)
6771{
6772	/* wait for possible concurrent references to cfs_rqs complete */
6773	call_rcu(&tg->rcu, free_sched_group_rcu);
6774}
6775
6776void sched_offline_group(struct task_group *tg)
6777{
6778	unsigned long flags;
6779	int i;
6780
6781	/* end participation in shares distribution */
6782	for_each_possible_cpu(i)
6783		unregister_fair_sched_group(tg, i);
6784
6785	spin_lock_irqsave(&task_group_lock, flags);
6786	list_del_rcu(&tg->list);
6787	list_del_rcu(&tg->siblings);
6788	spin_unlock_irqrestore(&task_group_lock, flags);
6789}
6790
6791/* change task's runqueue when it moves between groups.
6792 *	The caller of this function should have put the task in its new group
6793 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6794 *	reflect its new group.
6795 */
6796void sched_move_task(struct task_struct *tsk)
6797{
6798	struct task_group *tg;
6799	int on_rq, running;
6800	unsigned long flags;
6801	struct rq *rq;
6802
6803	rq = task_rq_lock(tsk, &flags);
6804
6805	running = task_current(rq, tsk);
6806	on_rq = tsk->on_rq;
6807
6808	if (on_rq)
6809		dequeue_task(rq, tsk, 0);
6810	if (unlikely(running))
6811		tsk->sched_class->put_prev_task(rq, tsk);
6812
6813	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6814				lockdep_is_held(&tsk->sighand->siglock)),
6815			  struct task_group, css);
6816	tg = autogroup_task_group(tsk, tg);
6817	tsk->sched_task_group = tg;
6818
6819#ifdef CONFIG_FAIR_GROUP_SCHED
6820	if (tsk->sched_class->task_move_group)
6821		tsk->sched_class->task_move_group(tsk, on_rq);
6822	else
6823#endif
6824		set_task_rq(tsk, task_cpu(tsk));
6825
6826	if (unlikely(running))
6827		tsk->sched_class->set_curr_task(rq);
6828	if (on_rq)
6829		enqueue_task(rq, tsk, 0);
6830
6831	task_rq_unlock(rq, tsk, &flags);
6832}
6833#endif /* CONFIG_CGROUP_SCHED */
6834
6835#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6836static unsigned long to_ratio(u64 period, u64 runtime)
6837{
6838	if (runtime == RUNTIME_INF)
6839		return 1ULL << 20;
6840
6841	return div64_u64(runtime << 20, period);
6842}
6843#endif
6844
6845#ifdef CONFIG_RT_GROUP_SCHED
6846/*
6847 * Ensure that the real time constraints are schedulable.
6848 */
6849static DEFINE_MUTEX(rt_constraints_mutex);
6850
6851/* Must be called with tasklist_lock held */
6852static inline int tg_has_rt_tasks(struct task_group *tg)
6853{
6854	struct task_struct *g, *p;
6855
6856	do_each_thread(g, p) {
6857		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6858			return 1;
6859	} while_each_thread(g, p);
6860
6861	return 0;
6862}
6863
6864struct rt_schedulable_data {
6865	struct task_group *tg;
6866	u64 rt_period;
6867	u64 rt_runtime;
6868};
6869
6870static int tg_rt_schedulable(struct task_group *tg, void *data)
6871{
6872	struct rt_schedulable_data *d = data;
6873	struct task_group *child;
6874	unsigned long total, sum = 0;
6875	u64 period, runtime;
6876
6877	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6878	runtime = tg->rt_bandwidth.rt_runtime;
6879
6880	if (tg == d->tg) {
6881		period = d->rt_period;
6882		runtime = d->rt_runtime;
6883	}
6884
6885	/*
6886	 * Cannot have more runtime than the period.
6887	 */
6888	if (runtime > period && runtime != RUNTIME_INF)
6889		return -EINVAL;
6890
6891	/*
6892	 * Ensure we don't starve existing RT tasks.
6893	 */
6894	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6895		return -EBUSY;
6896
6897	total = to_ratio(period, runtime);
6898
6899	/*
6900	 * Nobody can have more than the global setting allows.
6901	 */
6902	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6903		return -EINVAL;
6904
6905	/*
6906	 * The sum of our children's runtime should not exceed our own.
6907	 */
6908	list_for_each_entry_rcu(child, &tg->children, siblings) {
6909		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6910		runtime = child->rt_bandwidth.rt_runtime;
6911
6912		if (child == d->tg) {
6913			period = d->rt_period;
6914			runtime = d->rt_runtime;
6915		}
6916
6917		sum += to_ratio(period, runtime);
6918	}
6919
6920	if (sum > total)
6921		return -EINVAL;
6922
6923	return 0;
6924}
6925
6926static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6927{
6928	int ret;
6929
6930	struct rt_schedulable_data data = {
6931		.tg = tg,
6932		.rt_period = period,
6933		.rt_runtime = runtime,
6934	};
6935
6936	rcu_read_lock();
6937	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6938	rcu_read_unlock();
6939
6940	return ret;
6941}
6942
6943static int tg_set_rt_bandwidth(struct task_group *tg,
6944		u64 rt_period, u64 rt_runtime)
6945{
6946	int i, err = 0;
6947
6948	mutex_lock(&rt_constraints_mutex);
6949	read_lock(&tasklist_lock);
6950	err = __rt_schedulable(tg, rt_period, rt_runtime);
6951	if (err)
6952		goto unlock;
6953
6954	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6955	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6956	tg->rt_bandwidth.rt_runtime = rt_runtime;
6957
6958	for_each_possible_cpu(i) {
6959		struct rt_rq *rt_rq = tg->rt_rq[i];
6960
6961		raw_spin_lock(&rt_rq->rt_runtime_lock);
6962		rt_rq->rt_runtime = rt_runtime;
6963		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6964	}
6965	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6966unlock:
6967	read_unlock(&tasklist_lock);
6968	mutex_unlock(&rt_constraints_mutex);
6969
6970	return err;
6971}
6972
6973static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6974{
6975	u64 rt_runtime, rt_period;
6976
6977	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6978	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6979	if (rt_runtime_us < 0)
6980		rt_runtime = RUNTIME_INF;
6981
6982	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6983}
6984
6985static long sched_group_rt_runtime(struct task_group *tg)
6986{
6987	u64 rt_runtime_us;
6988
6989	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6990		return -1;
6991
6992	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6993	do_div(rt_runtime_us, NSEC_PER_USEC);
6994	return rt_runtime_us;
6995}
6996
6997static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6998{
6999	u64 rt_runtime, rt_period;
7000
7001	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7002	rt_runtime = tg->rt_bandwidth.rt_runtime;
7003
7004	if (rt_period == 0)
7005		return -EINVAL;
7006
7007	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7008}
7009
7010static long sched_group_rt_period(struct task_group *tg)
7011{
7012	u64 rt_period_us;
7013
7014	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7015	do_div(rt_period_us, NSEC_PER_USEC);
7016	return rt_period_us;
7017}
7018
7019static int sched_rt_global_constraints(void)
7020{
7021	u64 runtime, period;
7022	int ret = 0;
7023
7024	if (sysctl_sched_rt_period <= 0)
7025		return -EINVAL;
7026
7027	runtime = global_rt_runtime();
7028	period = global_rt_period();
7029
7030	/*
7031	 * Sanity check on the sysctl variables.
7032	 */
7033	if (runtime > period && runtime != RUNTIME_INF)
7034		return -EINVAL;
7035
7036	mutex_lock(&rt_constraints_mutex);
7037	read_lock(&tasklist_lock);
7038	ret = __rt_schedulable(NULL, 0, 0);
7039	read_unlock(&tasklist_lock);
7040	mutex_unlock(&rt_constraints_mutex);
7041
7042	return ret;
7043}
7044
7045static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7046{
7047	/* Don't accept realtime tasks when there is no way for them to run */
7048	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7049		return 0;
7050
7051	return 1;
7052}
7053
7054#else /* !CONFIG_RT_GROUP_SCHED */
7055static int sched_rt_global_constraints(void)
7056{
7057	unsigned long flags;
7058	int i;
7059
7060	if (sysctl_sched_rt_period <= 0)
7061		return -EINVAL;
7062
7063	/*
7064	 * There's always some RT tasks in the root group
7065	 * -- migration, kstopmachine etc..
7066	 */
7067	if (sysctl_sched_rt_runtime == 0)
7068		return -EBUSY;
7069
7070	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7071	for_each_possible_cpu(i) {
7072		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7073
7074		raw_spin_lock(&rt_rq->rt_runtime_lock);
7075		rt_rq->rt_runtime = global_rt_runtime();
7076		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7077	}
7078	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7079
7080	return 0;
7081}
7082#endif /* CONFIG_RT_GROUP_SCHED */
7083
7084int sched_rr_handler(struct ctl_table *table, int write,
7085		void __user *buffer, size_t *lenp,
7086		loff_t *ppos)
7087{
7088	int ret;
7089	static DEFINE_MUTEX(mutex);
7090
7091	mutex_lock(&mutex);
7092	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7093	/* make sure that internally we keep jiffies */
7094	/* also, writing zero resets timeslice to default */
7095	if (!ret && write) {
7096		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7097			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7098	}
7099	mutex_unlock(&mutex);
7100	return ret;
7101}
7102
7103int sched_rt_handler(struct ctl_table *table, int write,
7104		void __user *buffer, size_t *lenp,
7105		loff_t *ppos)
7106{
7107	int ret;
7108	int old_period, old_runtime;
7109	static DEFINE_MUTEX(mutex);
7110
7111	mutex_lock(&mutex);
7112	old_period = sysctl_sched_rt_period;
7113	old_runtime = sysctl_sched_rt_runtime;
7114
7115	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7116
7117	if (!ret && write) {
7118		ret = sched_rt_global_constraints();
7119		if (ret) {
7120			sysctl_sched_rt_period = old_period;
7121			sysctl_sched_rt_runtime = old_runtime;
7122		} else {
7123			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7124			def_rt_bandwidth.rt_period =
7125				ns_to_ktime(global_rt_period());
7126		}
7127	}
7128	mutex_unlock(&mutex);
7129
7130	return ret;
7131}
7132
7133#ifdef CONFIG_CGROUP_SCHED
7134
7135static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7136{
7137	return css ? container_of(css, struct task_group, css) : NULL;
7138}
7139
7140static struct cgroup_subsys_state *
7141cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7142{
7143	struct task_group *parent = css_tg(parent_css);
7144	struct task_group *tg;
7145
7146	if (!parent) {
7147		/* This is early initialization for the top cgroup */
7148		return &root_task_group.css;
7149	}
7150
7151	tg = sched_create_group(parent);
7152	if (IS_ERR(tg))
7153		return ERR_PTR(-ENOMEM);
7154
7155	return &tg->css;
7156}
7157
7158static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7159{
7160	struct task_group *tg = css_tg(css);
7161	struct task_group *parent = css_tg(css_parent(css));
7162
7163	if (parent)
7164		sched_online_group(tg, parent);
7165	return 0;
7166}
7167
7168static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7169{
7170	struct task_group *tg = css_tg(css);
7171
7172	sched_destroy_group(tg);
7173}
7174
7175static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7176{
7177	struct task_group *tg = css_tg(css);
7178
7179	sched_offline_group(tg);
7180}
7181
7182static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7183				 struct cgroup_taskset *tset)
7184{
7185	struct task_struct *task;
7186
7187	cgroup_taskset_for_each(task, css, tset) {
7188#ifdef CONFIG_RT_GROUP_SCHED
7189		if (!sched_rt_can_attach(css_tg(css), task))
7190			return -EINVAL;
7191#else
7192		/* We don't support RT-tasks being in separate groups */
7193		if (task->sched_class != &fair_sched_class)
7194			return -EINVAL;
7195#endif
7196	}
7197	return 0;
7198}
7199
7200static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7201			      struct cgroup_taskset *tset)
7202{
7203	struct task_struct *task;
7204
7205	cgroup_taskset_for_each(task, css, tset)
7206		sched_move_task(task);
7207}
7208
7209static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7210			    struct cgroup_subsys_state *old_css,
7211			    struct task_struct *task)
7212{
7213	/*
7214	 * cgroup_exit() is called in the copy_process() failure path.
7215	 * Ignore this case since the task hasn't ran yet, this avoids
7216	 * trying to poke a half freed task state from generic code.
7217	 */
7218	if (!(task->flags & PF_EXITING))
7219		return;
7220
7221	sched_move_task(task);
7222}
7223
7224#ifdef CONFIG_FAIR_GROUP_SCHED
7225static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7226				struct cftype *cftype, u64 shareval)
7227{
7228	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7229}
7230
7231static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7232			       struct cftype *cft)
7233{
7234	struct task_group *tg = css_tg(css);
7235
7236	return (u64) scale_load_down(tg->shares);
7237}
7238
7239#ifdef CONFIG_CFS_BANDWIDTH
7240static DEFINE_MUTEX(cfs_constraints_mutex);
7241
7242const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7243const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7244
7245static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7246
7247static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7248{
7249	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7250	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7251
7252	if (tg == &root_task_group)
7253		return -EINVAL;
7254
7255	/*
7256	 * Ensure we have at some amount of bandwidth every period.  This is
7257	 * to prevent reaching a state of large arrears when throttled via
7258	 * entity_tick() resulting in prolonged exit starvation.
7259	 */
7260	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7261		return -EINVAL;
7262
7263	/*
7264	 * Likewise, bound things on the otherside by preventing insane quota
7265	 * periods.  This also allows us to normalize in computing quota
7266	 * feasibility.
7267	 */
7268	if (period > max_cfs_quota_period)
7269		return -EINVAL;
7270
7271	mutex_lock(&cfs_constraints_mutex);
7272	ret = __cfs_schedulable(tg, period, quota);
7273	if (ret)
7274		goto out_unlock;
7275
7276	runtime_enabled = quota != RUNTIME_INF;
7277	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7278	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7279	raw_spin_lock_irq(&cfs_b->lock);
7280	cfs_b->period = ns_to_ktime(period);
7281	cfs_b->quota = quota;
7282
7283	__refill_cfs_bandwidth_runtime(cfs_b);
7284	/* restart the period timer (if active) to handle new period expiry */
7285	if (runtime_enabled && cfs_b->timer_active) {
7286		/* force a reprogram */
7287		cfs_b->timer_active = 0;
7288		__start_cfs_bandwidth(cfs_b);
7289	}
7290	raw_spin_unlock_irq(&cfs_b->lock);
7291
7292	for_each_possible_cpu(i) {
7293		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7294		struct rq *rq = cfs_rq->rq;
7295
7296		raw_spin_lock_irq(&rq->lock);
7297		cfs_rq->runtime_enabled = runtime_enabled;
7298		cfs_rq->runtime_remaining = 0;
7299
7300		if (cfs_rq->throttled)
7301			unthrottle_cfs_rq(cfs_rq);
7302		raw_spin_unlock_irq(&rq->lock);
7303	}
7304out_unlock:
7305	mutex_unlock(&cfs_constraints_mutex);
7306
7307	return ret;
7308}
7309
7310int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7311{
7312	u64 quota, period;
7313
7314	period = ktime_to_ns(tg->cfs_bandwidth.period);
7315	if (cfs_quota_us < 0)
7316		quota = RUNTIME_INF;
7317	else
7318		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7319
7320	return tg_set_cfs_bandwidth(tg, period, quota);
7321}
7322
7323long tg_get_cfs_quota(struct task_group *tg)
7324{
7325	u64 quota_us;
7326
7327	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7328		return -1;
7329
7330	quota_us = tg->cfs_bandwidth.quota;
7331	do_div(quota_us, NSEC_PER_USEC);
7332
7333	return quota_us;
7334}
7335
7336int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7337{
7338	u64 quota, period;
7339
7340	period = (u64)cfs_period_us * NSEC_PER_USEC;
7341	quota = tg->cfs_bandwidth.quota;
7342
7343	return tg_set_cfs_bandwidth(tg, period, quota);
7344}
7345
7346long tg_get_cfs_period(struct task_group *tg)
7347{
7348	u64 cfs_period_us;
7349
7350	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7351	do_div(cfs_period_us, NSEC_PER_USEC);
7352
7353	return cfs_period_us;
7354}
7355
7356static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7357				  struct cftype *cft)
7358{
7359	return tg_get_cfs_quota(css_tg(css));
7360}
7361
7362static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7363				   struct cftype *cftype, s64 cfs_quota_us)
7364{
7365	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7366}
7367
7368static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7369				   struct cftype *cft)
7370{
7371	return tg_get_cfs_period(css_tg(css));
7372}
7373
7374static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7375				    struct cftype *cftype, u64 cfs_period_us)
7376{
7377	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7378}
7379
7380struct cfs_schedulable_data {
7381	struct task_group *tg;
7382	u64 period, quota;
7383};
7384
7385/*
7386 * normalize group quota/period to be quota/max_period
7387 * note: units are usecs
7388 */
7389static u64 normalize_cfs_quota(struct task_group *tg,
7390			       struct cfs_schedulable_data *d)
7391{
7392	u64 quota, period;
7393
7394	if (tg == d->tg) {
7395		period = d->period;
7396		quota = d->quota;
7397	} else {
7398		period = tg_get_cfs_period(tg);
7399		quota = tg_get_cfs_quota(tg);
7400	}
7401
7402	/* note: these should typically be equivalent */
7403	if (quota == RUNTIME_INF || quota == -1)
7404		return RUNTIME_INF;
7405
7406	return to_ratio(period, quota);
7407}
7408
7409static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7410{
7411	struct cfs_schedulable_data *d = data;
7412	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7413	s64 quota = 0, parent_quota = -1;
7414
7415	if (!tg->parent) {
7416		quota = RUNTIME_INF;
7417	} else {
7418		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7419
7420		quota = normalize_cfs_quota(tg, d);
7421		parent_quota = parent_b->hierarchal_quota;
7422
7423		/*
7424		 * ensure max(child_quota) <= parent_quota, inherit when no
7425		 * limit is set
7426		 */
7427		if (quota == RUNTIME_INF)
7428			quota = parent_quota;
7429		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7430			return -EINVAL;
7431	}
7432	cfs_b->hierarchal_quota = quota;
7433
7434	return 0;
7435}
7436
7437static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7438{
7439	int ret;
7440	struct cfs_schedulable_data data = {
7441		.tg = tg,
7442		.period = period,
7443		.quota = quota,
7444	};
7445
7446	if (quota != RUNTIME_INF) {
7447		do_div(data.period, NSEC_PER_USEC);
7448		do_div(data.quota, NSEC_PER_USEC);
7449	}
7450
7451	rcu_read_lock();
7452	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7453	rcu_read_unlock();
7454
7455	return ret;
7456}
7457
7458static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7459		struct cgroup_map_cb *cb)
7460{
7461	struct task_group *tg = css_tg(css);
7462	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7463
7464	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7465	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7466	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7467
7468	return 0;
7469}
7470#endif /* CONFIG_CFS_BANDWIDTH */
7471#endif /* CONFIG_FAIR_GROUP_SCHED */
7472
7473#ifdef CONFIG_RT_GROUP_SCHED
7474static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7475				struct cftype *cft, s64 val)
7476{
7477	return sched_group_set_rt_runtime(css_tg(css), val);
7478}
7479
7480static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7481			       struct cftype *cft)
7482{
7483	return sched_group_rt_runtime(css_tg(css));
7484}
7485
7486static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7487				    struct cftype *cftype, u64 rt_period_us)
7488{
7489	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7490}
7491
7492static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7493				   struct cftype *cft)
7494{
7495	return sched_group_rt_period(css_tg(css));
7496}
7497#endif /* CONFIG_RT_GROUP_SCHED */
7498
7499static struct cftype cpu_files[] = {
7500#ifdef CONFIG_FAIR_GROUP_SCHED
7501	{
7502		.name = "shares",
7503		.read_u64 = cpu_shares_read_u64,
7504		.write_u64 = cpu_shares_write_u64,
7505	},
7506#endif
7507#ifdef CONFIG_CFS_BANDWIDTH
7508	{
7509		.name = "cfs_quota_us",
7510		.read_s64 = cpu_cfs_quota_read_s64,
7511		.write_s64 = cpu_cfs_quota_write_s64,
7512	},
7513	{
7514		.name = "cfs_period_us",
7515		.read_u64 = cpu_cfs_period_read_u64,
7516		.write_u64 = cpu_cfs_period_write_u64,
7517	},
7518	{
7519		.name = "stat",
7520		.read_map = cpu_stats_show,
7521	},
7522#endif
7523#ifdef CONFIG_RT_GROUP_SCHED
7524	{
7525		.name = "rt_runtime_us",
7526		.read_s64 = cpu_rt_runtime_read,
7527		.write_s64 = cpu_rt_runtime_write,
7528	},
7529	{
7530		.name = "rt_period_us",
7531		.read_u64 = cpu_rt_period_read_uint,
7532		.write_u64 = cpu_rt_period_write_uint,
7533	},
7534#endif
7535	{ }	/* terminate */
7536};
7537
7538struct cgroup_subsys cpu_cgroup_subsys = {
7539	.name		= "cpu",
7540	.css_alloc	= cpu_cgroup_css_alloc,
7541	.css_free	= cpu_cgroup_css_free,
7542	.css_online	= cpu_cgroup_css_online,
7543	.css_offline	= cpu_cgroup_css_offline,
7544	.can_attach	= cpu_cgroup_can_attach,
7545	.attach		= cpu_cgroup_attach,
7546	.exit		= cpu_cgroup_exit,
7547	.subsys_id	= cpu_cgroup_subsys_id,
7548	.base_cftypes	= cpu_files,
7549	.early_init	= 1,
7550};
7551
7552#endif	/* CONFIG_CGROUP_SCHED */
7553
7554void dump_cpu_task(int cpu)
7555{
7556	pr_info("Task dump for CPU %d:\n", cpu);
7557	sched_show_task(cpu_curr(cpu));
7558}
7559