core.c revision 81a44c5441d7f7d2c3dc9105f4d65ad0d5818617
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	rcu_read_lock();
565	for_each_domain(cpu, sd) {
566		for_each_cpu(i, sched_domain_span(sd)) {
567			if (!idle_cpu(i)) {
568				cpu = i;
569				goto unlock;
570			}
571		}
572	}
573unlock:
574	rcu_read_unlock();
575	return cpu;
576}
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587static void wake_up_idle_cpu(int cpu)
588{
589	struct rq *rq = cpu_rq(cpu);
590
591	if (cpu == smp_processor_id())
592		return;
593
594	/*
595	 * This is safe, as this function is called with the timer
596	 * wheel base lock of (cpu) held. When the CPU is on the way
597	 * to idle and has not yet set rq->curr to idle then it will
598	 * be serialized on the timer wheel base lock and take the new
599	 * timer into account automatically.
600	 */
601	if (rq->curr != rq->idle)
602		return;
603
604	/*
605	 * We can set TIF_RESCHED on the idle task of the other CPU
606	 * lockless. The worst case is that the other CPU runs the
607	 * idle task through an additional NOOP schedule()
608	 */
609	set_tsk_need_resched(rq->idle);
610
611	/* NEED_RESCHED must be visible before we test polling */
612	smp_mb();
613	if (!tsk_is_polling(rq->idle))
614		smp_send_reschedule(cpu);
615}
616
617static bool wake_up_full_nohz_cpu(int cpu)
618{
619	if (tick_nohz_full_cpu(cpu)) {
620		if (cpu != smp_processor_id() ||
621		    tick_nohz_tick_stopped())
622			smp_send_reschedule(cpu);
623		return true;
624	}
625
626	return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
631	if (!wake_up_full_nohz_cpu(cpu))
632		wake_up_idle_cpu(cpu);
633}
634
635static inline bool got_nohz_idle_kick(void)
636{
637	int cpu = smp_processor_id();
638
639	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640		return false;
641
642	if (idle_cpu(cpu) && !need_resched())
643		return true;
644
645	/*
646	 * We can't run Idle Load Balance on this CPU for this time so we
647	 * cancel it and clear NOHZ_BALANCE_KICK
648	 */
649	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650	return false;
651}
652
653#else /* CONFIG_NO_HZ_COMMON */
654
655static inline bool got_nohz_idle_kick(void)
656{
657	return false;
658}
659
660#endif /* CONFIG_NO_HZ_COMMON */
661
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665       struct rq *rq;
666
667       rq = this_rq();
668
669       /* Make sure rq->nr_running update is visible after the IPI */
670       smp_rmb();
671
672       /* More than one running task need preemption */
673       if (rq->nr_running > 1)
674               return false;
675
676       return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
679
680void sched_avg_update(struct rq *rq)
681{
682	s64 period = sched_avg_period();
683
684	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685		/*
686		 * Inline assembly required to prevent the compiler
687		 * optimising this loop into a divmod call.
688		 * See __iter_div_u64_rem() for another example of this.
689		 */
690		asm("" : "+rm" (rq->age_stamp));
691		rq->age_stamp += period;
692		rq->rt_avg /= 2;
693	}
694}
695
696#endif /* CONFIG_SMP */
697
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700/*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706int walk_tg_tree_from(struct task_group *from,
707			     tg_visitor down, tg_visitor up, void *data)
708{
709	struct task_group *parent, *child;
710	int ret;
711
712	parent = from;
713
714down:
715	ret = (*down)(parent, data);
716	if (ret)
717		goto out;
718	list_for_each_entry_rcu(child, &parent->children, siblings) {
719		parent = child;
720		goto down;
721
722up:
723		continue;
724	}
725	ret = (*up)(parent, data);
726	if (ret || parent == from)
727		goto out;
728
729	child = parent;
730	parent = parent->parent;
731	if (parent)
732		goto up;
733out:
734	return ret;
735}
736
737int tg_nop(struct task_group *tg, void *data)
738{
739	return 0;
740}
741#endif
742
743static void set_load_weight(struct task_struct *p)
744{
745	int prio = p->static_prio - MAX_RT_PRIO;
746	struct load_weight *load = &p->se.load;
747
748	/*
749	 * SCHED_IDLE tasks get minimal weight:
750	 */
751	if (p->policy == SCHED_IDLE) {
752		load->weight = scale_load(WEIGHT_IDLEPRIO);
753		load->inv_weight = WMULT_IDLEPRIO;
754		return;
755	}
756
757	load->weight = scale_load(prio_to_weight[prio]);
758	load->inv_weight = prio_to_wmult[prio];
759}
760
761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762{
763	update_rq_clock(rq);
764	sched_info_queued(rq, p);
765	p->sched_class->enqueue_task(rq, p, flags);
766}
767
768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769{
770	update_rq_clock(rq);
771	sched_info_dequeued(rq, p);
772	p->sched_class->dequeue_task(rq, p, flags);
773}
774
775void activate_task(struct rq *rq, struct task_struct *p, int flags)
776{
777	if (task_contributes_to_load(p))
778		rq->nr_uninterruptible--;
779
780	enqueue_task(rq, p, flags);
781}
782
783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784{
785	if (task_contributes_to_load(p))
786		rq->nr_uninterruptible++;
787
788	dequeue_task(rq, p, flags);
789}
790
791static void update_rq_clock_task(struct rq *rq, s64 delta)
792{
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
801	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803	/*
804	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805	 * this case when a previous update_rq_clock() happened inside a
806	 * {soft,}irq region.
807	 *
808	 * When this happens, we stop ->clock_task and only update the
809	 * prev_irq_time stamp to account for the part that fit, so that a next
810	 * update will consume the rest. This ensures ->clock_task is
811	 * monotonic.
812	 *
813	 * It does however cause some slight miss-attribution of {soft,}irq
814	 * time, a more accurate solution would be to update the irq_time using
815	 * the current rq->clock timestamp, except that would require using
816	 * atomic ops.
817	 */
818	if (irq_delta > delta)
819		irq_delta = delta;
820
821	rq->prev_irq_time += irq_delta;
822	delta -= irq_delta;
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825	if (static_key_false((&paravirt_steal_rq_enabled))) {
826		u64 st;
827
828		steal = paravirt_steal_clock(cpu_of(rq));
829		steal -= rq->prev_steal_time_rq;
830
831		if (unlikely(steal > delta))
832			steal = delta;
833
834		st = steal_ticks(steal);
835		steal = st * TICK_NSEC;
836
837		rq->prev_steal_time_rq += steal;
838
839		delta -= steal;
840	}
841#endif
842
843	rq->clock_task += delta;
844
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847		sched_rt_avg_update(rq, irq_delta + steal);
848#endif
849}
850
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854	struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856	if (stop) {
857		/*
858		 * Make it appear like a SCHED_FIFO task, its something
859		 * userspace knows about and won't get confused about.
860		 *
861		 * Also, it will make PI more or less work without too
862		 * much confusion -- but then, stop work should not
863		 * rely on PI working anyway.
864		 */
865		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867		stop->sched_class = &stop_sched_class;
868	}
869
870	cpu_rq(cpu)->stop = stop;
871
872	if (old_stop) {
873		/*
874		 * Reset it back to a normal scheduling class so that
875		 * it can die in pieces.
876		 */
877		old_stop->sched_class = &rt_sched_class;
878	}
879}
880
881/*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884static inline int __normal_prio(struct task_struct *p)
885{
886	return p->static_prio;
887}
888
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896static inline int normal_prio(struct task_struct *p)
897{
898	int prio;
899
900	if (task_has_dl_policy(p))
901		prio = MAX_DL_PRIO-1;
902	else if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio || dl_task(p))
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_raw_lock(&arg->src_task->pi_lock,
1053			&arg->dst_task->pi_lock);
1054	double_rq_lock(src_rq, dst_rq);
1055	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056		goto unlock;
1057
1058	if (task_cpu(arg->src_task) != arg->src_cpu)
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062		goto unlock;
1063
1064	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065		goto unlock;
1066
1067	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1068	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070	ret = 0;
1071
1072unlock:
1073	double_rq_unlock(src_rq, dst_rq);
1074	raw_spin_unlock(&arg->dst_task->pi_lock);
1075	raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077	return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085	struct migration_swap_arg arg;
1086	int ret = -EINVAL;
1087
1088	arg = (struct migration_swap_arg){
1089		.src_task = cur,
1090		.src_cpu = task_cpu(cur),
1091		.dst_task = p,
1092		.dst_cpu = task_cpu(p),
1093	};
1094
1095	if (arg.src_cpu == arg.dst_cpu)
1096		goto out;
1097
1098	/*
1099	 * These three tests are all lockless; this is OK since all of them
1100	 * will be re-checked with proper locks held further down the line.
1101	 */
1102	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106		goto out;
1107
1108	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109		goto out;
1110
1111	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
1115	return ret;
1116}
1117
1118struct migration_arg {
1119	struct task_struct *task;
1120	int dest_cpu;
1121};
1122
1123static int migration_cpu_stop(void *data);
1124
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change.  If it changes, i.e. @p might have woken up,
1130 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count).  If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142{
1143	unsigned long flags;
1144	int running, on_rq;
1145	unsigned long ncsw;
1146	struct rq *rq;
1147
1148	for (;;) {
1149		/*
1150		 * We do the initial early heuristics without holding
1151		 * any task-queue locks at all. We'll only try to get
1152		 * the runqueue lock when things look like they will
1153		 * work out!
1154		 */
1155		rq = task_rq(p);
1156
1157		/*
1158		 * If the task is actively running on another CPU
1159		 * still, just relax and busy-wait without holding
1160		 * any locks.
1161		 *
1162		 * NOTE! Since we don't hold any locks, it's not
1163		 * even sure that "rq" stays as the right runqueue!
1164		 * But we don't care, since "task_running()" will
1165		 * return false if the runqueue has changed and p
1166		 * is actually now running somewhere else!
1167		 */
1168		while (task_running(rq, p)) {
1169			if (match_state && unlikely(p->state != match_state))
1170				return 0;
1171			cpu_relax();
1172		}
1173
1174		/*
1175		 * Ok, time to look more closely! We need the rq
1176		 * lock now, to be *sure*. If we're wrong, we'll
1177		 * just go back and repeat.
1178		 */
1179		rq = task_rq_lock(p, &flags);
1180		trace_sched_wait_task(p);
1181		running = task_running(rq, p);
1182		on_rq = p->on_rq;
1183		ncsw = 0;
1184		if (!match_state || p->state == match_state)
1185			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186		task_rq_unlock(rq, p, &flags);
1187
1188		/*
1189		 * If it changed from the expected state, bail out now.
1190		 */
1191		if (unlikely(!ncsw))
1192			break;
1193
1194		/*
1195		 * Was it really running after all now that we
1196		 * checked with the proper locks actually held?
1197		 *
1198		 * Oops. Go back and try again..
1199		 */
1200		if (unlikely(running)) {
1201			cpu_relax();
1202			continue;
1203		}
1204
1205		/*
1206		 * It's not enough that it's not actively running,
1207		 * it must be off the runqueue _entirely_, and not
1208		 * preempted!
1209		 *
1210		 * So if it was still runnable (but just not actively
1211		 * running right now), it's preempted, and we should
1212		 * yield - it could be a while.
1213		 */
1214		if (unlikely(on_rq)) {
1215			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217			set_current_state(TASK_UNINTERRUPTIBLE);
1218			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219			continue;
1220		}
1221
1222		/*
1223		 * Ahh, all good. It wasn't running, and it wasn't
1224		 * runnable, which means that it will never become
1225		 * running in the future either. We're all done!
1226		 */
1227		break;
1228	}
1229
1230	return ncsw;
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246void kick_process(struct task_struct *p)
1247{
1248	int cpu;
1249
1250	preempt_disable();
1251	cpu = task_cpu(p);
1252	if ((cpu != smp_processor_id()) && task_curr(p))
1253		smp_send_reschedule(cpu);
1254	preempt_enable();
1255}
1256EXPORT_SYMBOL_GPL(kick_process);
1257#endif /* CONFIG_SMP */
1258
1259#ifdef CONFIG_SMP
1260/*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
1265	int nid = cpu_to_node(cpu);
1266	const struct cpumask *nodemask = NULL;
1267	enum { cpuset, possible, fail } state = cpuset;
1268	int dest_cpu;
1269
1270	/*
1271	 * If the node that the cpu is on has been offlined, cpu_to_node()
1272	 * will return -1. There is no cpu on the node, and we should
1273	 * select the cpu on the other node.
1274	 */
1275	if (nid != -1) {
1276		nodemask = cpumask_of_node(nid);
1277
1278		/* Look for allowed, online CPU in same node. */
1279		for_each_cpu(dest_cpu, nodemask) {
1280			if (!cpu_online(dest_cpu))
1281				continue;
1282			if (!cpu_active(dest_cpu))
1283				continue;
1284			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285				return dest_cpu;
1286		}
1287	}
1288
1289	for (;;) {
1290		/* Any allowed, online CPU? */
1291		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292			if (!cpu_online(dest_cpu))
1293				continue;
1294			if (!cpu_active(dest_cpu))
1295				continue;
1296			goto out;
1297		}
1298
1299		switch (state) {
1300		case cpuset:
1301			/* No more Mr. Nice Guy. */
1302			cpuset_cpus_allowed_fallback(p);
1303			state = possible;
1304			break;
1305
1306		case possible:
1307			do_set_cpus_allowed(p, cpu_possible_mask);
1308			state = fail;
1309			break;
1310
1311		case fail:
1312			BUG();
1313			break;
1314		}
1315	}
1316
1317out:
1318	if (state != cpuset) {
1319		/*
1320		 * Don't tell them about moving exiting tasks or
1321		 * kernel threads (both mm NULL), since they never
1322		 * leave kernel.
1323		 */
1324		if (p->mm && printk_ratelimit()) {
1325			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326					task_pid_nr(p), p->comm, cpu);
1327		}
1328	}
1329
1330	return dest_cpu;
1331}
1332
1333/*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336static inline
1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338{
1339	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341	/*
1342	 * In order not to call set_task_cpu() on a blocking task we need
1343	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344	 * cpu.
1345	 *
1346	 * Since this is common to all placement strategies, this lives here.
1347	 *
1348	 * [ this allows ->select_task() to simply return task_cpu(p) and
1349	 *   not worry about this generic constraint ]
1350	 */
1351	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352		     !cpu_online(cpu)))
1353		cpu = select_fallback_rq(task_cpu(p), p);
1354
1355	return cpu;
1356}
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360	s64 diff = sample - *avg;
1361	*avg += diff >> 3;
1362}
1363#endif
1364
1365static void
1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367{
1368#ifdef CONFIG_SCHEDSTATS
1369	struct rq *rq = this_rq();
1370
1371#ifdef CONFIG_SMP
1372	int this_cpu = smp_processor_id();
1373
1374	if (cpu == this_cpu) {
1375		schedstat_inc(rq, ttwu_local);
1376		schedstat_inc(p, se.statistics.nr_wakeups_local);
1377	} else {
1378		struct sched_domain *sd;
1379
1380		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381		rcu_read_lock();
1382		for_each_domain(this_cpu, sd) {
1383			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384				schedstat_inc(sd, ttwu_wake_remote);
1385				break;
1386			}
1387		}
1388		rcu_read_unlock();
1389	}
1390
1391	if (wake_flags & WF_MIGRATED)
1392		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394#endif /* CONFIG_SMP */
1395
1396	schedstat_inc(rq, ttwu_count);
1397	schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399	if (wake_flags & WF_SYNC)
1400		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
1407	activate_task(rq, p, en_flags);
1408	p->on_rq = 1;
1409
1410	/* if a worker is waking up, notify workqueue */
1411	if (p->flags & PF_WQ_WORKER)
1412		wq_worker_waking_up(p, cpu_of(rq));
1413}
1414
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418static void
1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420{
1421	check_preempt_curr(rq, p, wake_flags);
1422	trace_sched_wakeup(p, true);
1423
1424	p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426	if (p->sched_class->task_woken)
1427		p->sched_class->task_woken(rq, p);
1428
1429	if (rq->idle_stamp) {
1430		u64 delta = rq_clock(rq) - rq->idle_stamp;
1431		u64 max = 2*rq->max_idle_balance_cost;
1432
1433		update_avg(&rq->avg_idle, delta);
1434
1435		if (rq->avg_idle > max)
1436			rq->avg_idle = max;
1437
1438		rq->idle_stamp = 0;
1439	}
1440#endif
1441}
1442
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447	if (p->sched_contributes_to_load)
1448		rq->nr_uninterruptible--;
1449#endif
1450
1451	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452	ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463	struct rq *rq;
1464	int ret = 0;
1465
1466	rq = __task_rq_lock(p);
1467	if (p->on_rq) {
1468		/* check_preempt_curr() may use rq clock */
1469		update_rq_clock(rq);
1470		ttwu_do_wakeup(rq, p, wake_flags);
1471		ret = 1;
1472	}
1473	__task_rq_unlock(rq);
1474
1475	return ret;
1476}
1477
1478#ifdef CONFIG_SMP
1479static void sched_ttwu_pending(void)
1480{
1481	struct rq *rq = this_rq();
1482	struct llist_node *llist = llist_del_all(&rq->wake_list);
1483	struct task_struct *p;
1484
1485	raw_spin_lock(&rq->lock);
1486
1487	while (llist) {
1488		p = llist_entry(llist, struct task_struct, wake_entry);
1489		llist = llist_next(llist);
1490		ttwu_do_activate(rq, p, 0);
1491	}
1492
1493	raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
1498	/*
1499	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501	 * this IPI.
1502	 */
1503	preempt_fold_need_resched();
1504
1505	if (llist_empty(&this_rq()->wake_list)
1506			&& !tick_nohz_full_cpu(smp_processor_id())
1507			&& !got_nohz_idle_kick())
1508		return;
1509
1510	/*
1511	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512	 * traditionally all their work was done from the interrupt return
1513	 * path. Now that we actually do some work, we need to make sure
1514	 * we do call them.
1515	 *
1516	 * Some archs already do call them, luckily irq_enter/exit nest
1517	 * properly.
1518	 *
1519	 * Arguably we should visit all archs and update all handlers,
1520	 * however a fair share of IPIs are still resched only so this would
1521	 * somewhat pessimize the simple resched case.
1522	 */
1523	irq_enter();
1524	tick_nohz_full_check();
1525	sched_ttwu_pending();
1526
1527	/*
1528	 * Check if someone kicked us for doing the nohz idle load balance.
1529	 */
1530	if (unlikely(got_nohz_idle_kick())) {
1531		this_rq()->idle_balance = 1;
1532		raise_softirq_irqoff(SCHED_SOFTIRQ);
1533	}
1534	irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540		smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551	struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556		ttwu_queue_remote(p, cpu);
1557		return;
1558	}
1559#endif
1560
1561	raw_spin_lock(&rq->lock);
1562	ttwu_do_activate(rq, p, 0);
1563	raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584	unsigned long flags;
1585	int cpu, success = 0;
1586
1587	/*
1588	 * If we are going to wake up a thread waiting for CONDITION we
1589	 * need to ensure that CONDITION=1 done by the caller can not be
1590	 * reordered with p->state check below. This pairs with mb() in
1591	 * set_current_state() the waiting thread does.
1592	 */
1593	smp_mb__before_spinlock();
1594	raw_spin_lock_irqsave(&p->pi_lock, flags);
1595	if (!(p->state & state))
1596		goto out;
1597
1598	success = 1; /* we're going to change ->state */
1599	cpu = task_cpu(p);
1600
1601	if (p->on_rq && ttwu_remote(p, wake_flags))
1602		goto stat;
1603
1604#ifdef CONFIG_SMP
1605	/*
1606	 * If the owning (remote) cpu is still in the middle of schedule() with
1607	 * this task as prev, wait until its done referencing the task.
1608	 */
1609	while (p->on_cpu)
1610		cpu_relax();
1611	/*
1612	 * Pairs with the smp_wmb() in finish_lock_switch().
1613	 */
1614	smp_rmb();
1615
1616	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617	p->state = TASK_WAKING;
1618
1619	if (p->sched_class->task_waking)
1620		p->sched_class->task_waking(p);
1621
1622	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623	if (task_cpu(p) != cpu) {
1624		wake_flags |= WF_MIGRATED;
1625		set_task_cpu(p, cpu);
1626	}
1627#endif /* CONFIG_SMP */
1628
1629	ttwu_queue(p, cpu);
1630stat:
1631	ttwu_stat(p, cpu, wake_flags);
1632out:
1633	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635	return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648	struct rq *rq = task_rq(p);
1649
1650	if (WARN_ON_ONCE(rq != this_rq()) ||
1651	    WARN_ON_ONCE(p == current))
1652		return;
1653
1654	lockdep_assert_held(&rq->lock);
1655
1656	if (!raw_spin_trylock(&p->pi_lock)) {
1657		raw_spin_unlock(&rq->lock);
1658		raw_spin_lock(&p->pi_lock);
1659		raw_spin_lock(&rq->lock);
1660	}
1661
1662	if (!(p->state & TASK_NORMAL))
1663		goto out;
1664
1665	if (!p->on_rq)
1666		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668	ttwu_do_wakeup(rq, p, 0);
1669	ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671	raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688	WARN_ON(task_is_stopped_or_traced(p));
1689	return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695	return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706	p->on_rq			= 0;
1707
1708	p->se.on_rq			= 0;
1709	p->se.exec_start		= 0;
1710	p->se.sum_exec_runtime		= 0;
1711	p->se.prev_sum_exec_runtime	= 0;
1712	p->se.nr_migrations		= 0;
1713	p->se.vruntime			= 0;
1714	INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720	RB_CLEAR_NODE(&p->dl.rb_node);
1721	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722	p->dl.dl_runtime = p->dl.runtime = 0;
1723	p->dl.dl_deadline = p->dl.deadline = 0;
1724	p->dl.dl_period = 0;
1725	p->dl.flags = 0;
1726
1727	INIT_LIST_HEAD(&p->rt.run_list);
1728
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730	INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736		p->mm->numa_scan_seq = 0;
1737	}
1738
1739	if (clone_flags & CLONE_VM)
1740		p->numa_preferred_nid = current->numa_preferred_nid;
1741	else
1742		p->numa_preferred_nid = -1;
1743
1744	p->node_stamp = 0ULL;
1745	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747	p->numa_work.next = &p->numa_work;
1748	p->numa_faults_memory = NULL;
1749	p->numa_faults_buffer_memory = NULL;
1750	p->last_task_numa_placement = 0;
1751	p->last_sum_exec_runtime = 0;
1752
1753	INIT_LIST_HEAD(&p->numa_entry);
1754	p->numa_group = NULL;
1755#endif /* CONFIG_NUMA_BALANCING */
1756}
1757
1758#ifdef CONFIG_NUMA_BALANCING
1759#ifdef CONFIG_SCHED_DEBUG
1760void set_numabalancing_state(bool enabled)
1761{
1762	if (enabled)
1763		sched_feat_set("NUMA");
1764	else
1765		sched_feat_set("NO_NUMA");
1766}
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772	numabalancing_enabled = enabled;
1773}
1774#endif /* CONFIG_SCHED_DEBUG */
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778			 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780	struct ctl_table t;
1781	int err;
1782	int state = numabalancing_enabled;
1783
1784	if (write && !capable(CAP_SYS_ADMIN))
1785		return -EPERM;
1786
1787	t = *table;
1788	t.data = &state;
1789	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790	if (err < 0)
1791		return err;
1792	if (write)
1793		set_numabalancing_state(state);
1794	return err;
1795}
1796#endif
1797#endif
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803{
1804	unsigned long flags;
1805	int cpu = get_cpu();
1806
1807	__sched_fork(clone_flags, p);
1808	/*
1809	 * We mark the process as running here. This guarantees that
1810	 * nobody will actually run it, and a signal or other external
1811	 * event cannot wake it up and insert it on the runqueue either.
1812	 */
1813	p->state = TASK_RUNNING;
1814
1815	/*
1816	 * Make sure we do not leak PI boosting priority to the child.
1817	 */
1818	p->prio = current->normal_prio;
1819
1820	/*
1821	 * Revert to default priority/policy on fork if requested.
1822	 */
1823	if (unlikely(p->sched_reset_on_fork)) {
1824		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825			p->policy = SCHED_NORMAL;
1826			p->static_prio = NICE_TO_PRIO(0);
1827			p->rt_priority = 0;
1828		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1829			p->static_prio = NICE_TO_PRIO(0);
1830
1831		p->prio = p->normal_prio = __normal_prio(p);
1832		set_load_weight(p);
1833
1834		/*
1835		 * We don't need the reset flag anymore after the fork. It has
1836		 * fulfilled its duty:
1837		 */
1838		p->sched_reset_on_fork = 0;
1839	}
1840
1841	if (dl_prio(p->prio)) {
1842		put_cpu();
1843		return -EAGAIN;
1844	} else if (rt_prio(p->prio)) {
1845		p->sched_class = &rt_sched_class;
1846	} else {
1847		p->sched_class = &fair_sched_class;
1848	}
1849
1850	if (p->sched_class->task_fork)
1851		p->sched_class->task_fork(p);
1852
1853	/*
1854	 * The child is not yet in the pid-hash so no cgroup attach races,
1855	 * and the cgroup is pinned to this child due to cgroup_fork()
1856	 * is ran before sched_fork().
1857	 *
1858	 * Silence PROVE_RCU.
1859	 */
1860	raw_spin_lock_irqsave(&p->pi_lock, flags);
1861	set_task_cpu(p, cpu);
1862	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865	if (likely(sched_info_on()))
1866		memset(&p->sched_info, 0, sizeof(p->sched_info));
1867#endif
1868#if defined(CONFIG_SMP)
1869	p->on_cpu = 0;
1870#endif
1871	init_task_preempt_count(p);
1872#ifdef CONFIG_SMP
1873	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875#endif
1876
1877	put_cpu();
1878	return 0;
1879}
1880
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883	if (runtime == RUNTIME_INF)
1884		return 1ULL << 20;
1885
1886	/*
1887	 * Doing this here saves a lot of checks in all
1888	 * the calling paths, and returning zero seems
1889	 * safe for them anyway.
1890	 */
1891	if (period == 0)
1892		return 0;
1893
1894	return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900	return &cpu_rq(i)->rd->dl_bw;
1901}
1902
1903static inline int dl_bw_cpus(int i)
1904{
1905	struct root_domain *rd = cpu_rq(i)->rd;
1906	int cpus = 0;
1907
1908	for_each_cpu_and(i, rd->span, cpu_active_mask)
1909		cpus++;
1910
1911	return cpus;
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916	return &cpu_rq(i)->dl.dl_bw;
1917}
1918
1919static inline int dl_bw_cpus(int i)
1920{
1921	return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928	dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934	dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940	return dl_b->bw != -1 &&
1941	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953		       const struct sched_attr *attr)
1954{
1955
1956	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957	u64 period = attr->sched_period;
1958	u64 runtime = attr->sched_runtime;
1959	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960	int cpus, err = -1;
1961
1962	if (new_bw == p->dl.dl_bw)
1963		return 0;
1964
1965	/*
1966	 * Either if a task, enters, leave, or stays -deadline but changes
1967	 * its parameters, we may need to update accordingly the total
1968	 * allocated bandwidth of the container.
1969	 */
1970	raw_spin_lock(&dl_b->lock);
1971	cpus = dl_bw_cpus(task_cpu(p));
1972	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974		__dl_add(dl_b, new_bw);
1975		err = 0;
1976	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978		__dl_clear(dl_b, p->dl.dl_bw);
1979		__dl_add(dl_b, new_bw);
1980		err = 0;
1981	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982		__dl_clear(dl_b, p->dl.dl_bw);
1983		err = 0;
1984	}
1985	raw_spin_unlock(&dl_b->lock);
1986
1987	return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999void wake_up_new_task(struct task_struct *p)
2000{
2001	unsigned long flags;
2002	struct rq *rq;
2003
2004	raw_spin_lock_irqsave(&p->pi_lock, flags);
2005#ifdef CONFIG_SMP
2006	/*
2007	 * Fork balancing, do it here and not earlier because:
2008	 *  - cpus_allowed can change in the fork path
2009	 *  - any previously selected cpu might disappear through hotplug
2010	 */
2011	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012#endif
2013
2014	/* Initialize new task's runnable average */
2015	init_task_runnable_average(p);
2016	rq = __task_rq_lock(p);
2017	activate_task(rq, p, 0);
2018	p->on_rq = 1;
2019	trace_sched_wakeup_new(p, true);
2020	check_preempt_curr(rq, p, WF_FORK);
2021#ifdef CONFIG_SMP
2022	if (p->sched_class->task_woken)
2023		p->sched_class->task_woken(rq, p);
2024#endif
2025	task_rq_unlock(rq, p, &flags);
2026}
2027
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048	hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054	struct preempt_notifier *notifier;
2055
2056	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062				 struct task_struct *next)
2063{
2064	struct preempt_notifier *notifier;
2065
2066	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067		notifier->ops->sched_out(notifier, next);
2068}
2069
2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078				 struct task_struct *next)
2079{
2080}
2081
2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099		    struct task_struct *next)
2100{
2101	trace_sched_switch(prev, next);
2102	sched_info_switch(rq, prev, next);
2103	perf_event_task_sched_out(prev, next);
2104	fire_sched_out_preempt_notifiers(prev, next);
2105	prepare_lock_switch(rq, next);
2106	prepare_arch_switch(next);
2107}
2108
2109/**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125	__releases(rq->lock)
2126{
2127	struct mm_struct *mm = rq->prev_mm;
2128	long prev_state;
2129
2130	rq->prev_mm = NULL;
2131
2132	/*
2133	 * A task struct has one reference for the use as "current".
2134	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135	 * schedule one last time. The schedule call will never return, and
2136	 * the scheduled task must drop that reference.
2137	 * The test for TASK_DEAD must occur while the runqueue locks are
2138	 * still held, otherwise prev could be scheduled on another cpu, die
2139	 * there before we look at prev->state, and then the reference would
2140	 * be dropped twice.
2141	 *		Manfred Spraul <manfred@colorfullife.com>
2142	 */
2143	prev_state = prev->state;
2144	vtime_task_switch(prev);
2145	finish_arch_switch(prev);
2146	perf_event_task_sched_in(prev, current);
2147	finish_lock_switch(rq, prev);
2148	finish_arch_post_lock_switch();
2149
2150	fire_sched_in_preempt_notifiers(current);
2151	if (mm)
2152		mmdrop(mm);
2153	if (unlikely(prev_state == TASK_DEAD)) {
2154		task_numa_free(prev);
2155
2156		if (prev->sched_class->task_dead)
2157			prev->sched_class->task_dead(prev);
2158
2159		/*
2160		 * Remove function-return probe instances associated with this
2161		 * task and put them back on the free list.
2162		 */
2163		kprobe_flush_task(prev);
2164		put_task_struct(prev);
2165	}
2166
2167	tick_nohz_task_switch(current);
2168}
2169
2170#ifdef CONFIG_SMP
2171
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175	if (rq->post_schedule) {
2176		unsigned long flags;
2177
2178		raw_spin_lock_irqsave(&rq->lock, flags);
2179		if (rq->curr->sched_class->post_schedule)
2180			rq->curr->sched_class->post_schedule(rq);
2181		raw_spin_unlock_irqrestore(&rq->lock, flags);
2182
2183		rq->post_schedule = 0;
2184	}
2185}
2186
2187#else
2188
2189static inline void post_schedule(struct rq *rq)
2190{
2191}
2192
2193#endif
2194
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
2199asmlinkage void schedule_tail(struct task_struct *prev)
2200	__releases(rq->lock)
2201{
2202	struct rq *rq = this_rq();
2203
2204	finish_task_switch(rq, prev);
2205
2206	/*
2207	 * FIXME: do we need to worry about rq being invalidated by the
2208	 * task_switch?
2209	 */
2210	post_schedule(rq);
2211
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213	/* In this case, finish_task_switch does not reenable preemption */
2214	preempt_enable();
2215#endif
2216	if (current->set_child_tid)
2217		put_user(task_pid_vnr(current), current->set_child_tid);
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
2224static inline void
2225context_switch(struct rq *rq, struct task_struct *prev,
2226	       struct task_struct *next)
2227{
2228	struct mm_struct *mm, *oldmm;
2229
2230	prepare_task_switch(rq, prev, next);
2231
2232	mm = next->mm;
2233	oldmm = prev->active_mm;
2234	/*
2235	 * For paravirt, this is coupled with an exit in switch_to to
2236	 * combine the page table reload and the switch backend into
2237	 * one hypercall.
2238	 */
2239	arch_start_context_switch(prev);
2240
2241	if (!mm) {
2242		next->active_mm = oldmm;
2243		atomic_inc(&oldmm->mm_count);
2244		enter_lazy_tlb(oldmm, next);
2245	} else
2246		switch_mm(oldmm, mm, next);
2247
2248	if (!prev->mm) {
2249		prev->active_mm = NULL;
2250		rq->prev_mm = oldmm;
2251	}
2252	/*
2253	 * Since the runqueue lock will be released by the next
2254	 * task (which is an invalid locking op but in the case
2255	 * of the scheduler it's an obvious special-case), so we
2256	 * do an early lockdep release here:
2257	 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2259	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2260#endif
2261
2262	context_tracking_task_switch(prev, next);
2263	/* Here we just switch the register state and the stack. */
2264	switch_to(prev, next, prev);
2265
2266	barrier();
2267	/*
2268	 * this_rq must be evaluated again because prev may have moved
2269	 * CPUs since it called schedule(), thus the 'rq' on its stack
2270	 * frame will be invalid.
2271	 */
2272	finish_task_switch(this_rq(), prev);
2273}
2274
2275/*
2276 * nr_running and nr_context_switches:
2277 *
2278 * externally visible scheduler statistics: current number of runnable
2279 * threads, total number of context switches performed since bootup.
2280 */
2281unsigned long nr_running(void)
2282{
2283	unsigned long i, sum = 0;
2284
2285	for_each_online_cpu(i)
2286		sum += cpu_rq(i)->nr_running;
2287
2288	return sum;
2289}
2290
2291unsigned long long nr_context_switches(void)
2292{
2293	int i;
2294	unsigned long long sum = 0;
2295
2296	for_each_possible_cpu(i)
2297		sum += cpu_rq(i)->nr_switches;
2298
2299	return sum;
2300}
2301
2302unsigned long nr_iowait(void)
2303{
2304	unsigned long i, sum = 0;
2305
2306	for_each_possible_cpu(i)
2307		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2308
2309	return sum;
2310}
2311
2312unsigned long nr_iowait_cpu(int cpu)
2313{
2314	struct rq *this = cpu_rq(cpu);
2315	return atomic_read(&this->nr_iowait);
2316}
2317
2318#ifdef CONFIG_SMP
2319
2320/*
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
2323 */
2324void sched_exec(void)
2325{
2326	struct task_struct *p = current;
2327	unsigned long flags;
2328	int dest_cpu;
2329
2330	raw_spin_lock_irqsave(&p->pi_lock, flags);
2331	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2332	if (dest_cpu == smp_processor_id())
2333		goto unlock;
2334
2335	if (likely(cpu_active(dest_cpu))) {
2336		struct migration_arg arg = { p, dest_cpu };
2337
2338		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2340		return;
2341	}
2342unlock:
2343	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2344}
2345
2346#endif
2347
2348DEFINE_PER_CPU(struct kernel_stat, kstat);
2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2353
2354/*
2355 * Return any ns on the sched_clock that have not yet been accounted in
2356 * @p in case that task is currently running.
2357 *
2358 * Called with task_rq_lock() held on @rq.
2359 */
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362	u64 ns = 0;
2363
2364	if (task_current(rq, p)) {
2365		update_rq_clock(rq);
2366		ns = rq_clock_task(rq) - p->se.exec_start;
2367		if ((s64)ns < 0)
2368			ns = 0;
2369	}
2370
2371	return ns;
2372}
2373
2374unsigned long long task_delta_exec(struct task_struct *p)
2375{
2376	unsigned long flags;
2377	struct rq *rq;
2378	u64 ns = 0;
2379
2380	rq = task_rq_lock(p, &flags);
2381	ns = do_task_delta_exec(p, rq);
2382	task_rq_unlock(rq, p, &flags);
2383
2384	return ns;
2385}
2386
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394	unsigned long flags;
2395	struct rq *rq;
2396	u64 ns = 0;
2397
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399	/*
2400	 * 64-bit doesn't need locks to atomically read a 64bit value.
2401	 * So we have a optimization chance when the task's delta_exec is 0.
2402	 * Reading ->on_cpu is racy, but this is ok.
2403	 *
2404	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405	 * If we race with it entering cpu, unaccounted time is 0. This is
2406	 * indistinguishable from the read occurring a few cycles earlier.
2407	 */
2408	if (!p->on_cpu)
2409		return p->se.sum_exec_runtime;
2410#endif
2411
2412	rq = task_rq_lock(p, &flags);
2413	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2414	task_rq_unlock(rq, p, &flags);
2415
2416	return ns;
2417}
2418
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
2422 */
2423void scheduler_tick(void)
2424{
2425	int cpu = smp_processor_id();
2426	struct rq *rq = cpu_rq(cpu);
2427	struct task_struct *curr = rq->curr;
2428
2429	sched_clock_tick();
2430
2431	raw_spin_lock(&rq->lock);
2432	update_rq_clock(rq);
2433	curr->sched_class->task_tick(rq, curr, 0);
2434	update_cpu_load_active(rq);
2435	raw_spin_unlock(&rq->lock);
2436
2437	perf_event_task_tick();
2438
2439#ifdef CONFIG_SMP
2440	rq->idle_balance = idle_cpu(cpu);
2441	trigger_load_balance(rq);
2442#endif
2443	rq_last_tick_reset(rq);
2444}
2445
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
2457 *
2458 * Return: Maximum deferment in nanoseconds.
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462	struct rq *rq = this_rq();
2463	unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465	next = rq->last_sched_tick + HZ;
2466
2467	if (time_before_eq(next, now))
2468		return 0;
2469
2470	return jiffies_to_nsecs(next - now);
2471}
2472#endif
2473
2474notrace unsigned long get_parent_ip(unsigned long addr)
2475{
2476	if (in_lock_functions(addr)) {
2477		addr = CALLER_ADDR2;
2478		if (in_lock_functions(addr))
2479			addr = CALLER_ADDR3;
2480	}
2481	return addr;
2482}
2483
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485				defined(CONFIG_PREEMPT_TRACER))
2486
2487void __kprobes preempt_count_add(int val)
2488{
2489#ifdef CONFIG_DEBUG_PREEMPT
2490	/*
2491	 * Underflow?
2492	 */
2493	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494		return;
2495#endif
2496	__preempt_count_add(val);
2497#ifdef CONFIG_DEBUG_PREEMPT
2498	/*
2499	 * Spinlock count overflowing soon?
2500	 */
2501	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502				PREEMPT_MASK - 10);
2503#endif
2504	if (preempt_count() == val) {
2505		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507		current->preempt_disable_ip = ip;
2508#endif
2509		trace_preempt_off(CALLER_ADDR0, ip);
2510	}
2511}
2512EXPORT_SYMBOL(preempt_count_add);
2513
2514void __kprobes preempt_count_sub(int val)
2515{
2516#ifdef CONFIG_DEBUG_PREEMPT
2517	/*
2518	 * Underflow?
2519	 */
2520	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2521		return;
2522	/*
2523	 * Is the spinlock portion underflowing?
2524	 */
2525	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2526			!(preempt_count() & PREEMPT_MASK)))
2527		return;
2528#endif
2529
2530	if (preempt_count() == val)
2531		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2532	__preempt_count_sub(val);
2533}
2534EXPORT_SYMBOL(preempt_count_sub);
2535
2536#endif
2537
2538/*
2539 * Print scheduling while atomic bug:
2540 */
2541static noinline void __schedule_bug(struct task_struct *prev)
2542{
2543	if (oops_in_progress)
2544		return;
2545
2546	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2547		prev->comm, prev->pid, preempt_count());
2548
2549	debug_show_held_locks(prev);
2550	print_modules();
2551	if (irqs_disabled())
2552		print_irqtrace_events(prev);
2553#ifdef CONFIG_DEBUG_PREEMPT
2554	if (in_atomic_preempt_off()) {
2555		pr_err("Preemption disabled at:");
2556		print_ip_sym(current->preempt_disable_ip);
2557		pr_cont("\n");
2558	}
2559#endif
2560	dump_stack();
2561	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2562}
2563
2564/*
2565 * Various schedule()-time debugging checks and statistics:
2566 */
2567static inline void schedule_debug(struct task_struct *prev)
2568{
2569	/*
2570	 * Test if we are atomic. Since do_exit() needs to call into
2571	 * schedule() atomically, we ignore that path. Otherwise whine
2572	 * if we are scheduling when we should not.
2573	 */
2574	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2575		__schedule_bug(prev);
2576	rcu_sleep_check();
2577
2578	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2579
2580	schedstat_inc(this_rq(), sched_count);
2581}
2582
2583/*
2584 * Pick up the highest-prio task:
2585 */
2586static inline struct task_struct *
2587pick_next_task(struct rq *rq, struct task_struct *prev)
2588{
2589	const struct sched_class *class;
2590	struct task_struct *p;
2591
2592	/*
2593	 * Optimization: we know that if all tasks are in
2594	 * the fair class we can call that function directly:
2595	 */
2596	if (likely(prev->sched_class == &fair_sched_class &&
2597		   rq->nr_running == rq->cfs.h_nr_running)) {
2598		p = fair_sched_class.pick_next_task(rq, prev);
2599		if (likely(p))
2600			return p;
2601	}
2602
2603	for_each_class(class) {
2604		p = class->pick_next_task(rq, prev);
2605		if (p)
2606			return p;
2607	}
2608
2609	BUG(); /* the idle class will always have a runnable task */
2610}
2611
2612/*
2613 * __schedule() is the main scheduler function.
2614 *
2615 * The main means of driving the scheduler and thus entering this function are:
2616 *
2617 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 *
2619 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620 *      paths. For example, see arch/x86/entry_64.S.
2621 *
2622 *      To drive preemption between tasks, the scheduler sets the flag in timer
2623 *      interrupt handler scheduler_tick().
2624 *
2625 *   3. Wakeups don't really cause entry into schedule(). They add a
2626 *      task to the run-queue and that's it.
2627 *
2628 *      Now, if the new task added to the run-queue preempts the current
2629 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630 *      called on the nearest possible occasion:
2631 *
2632 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 *
2634 *         - in syscall or exception context, at the next outmost
2635 *           preempt_enable(). (this might be as soon as the wake_up()'s
2636 *           spin_unlock()!)
2637 *
2638 *         - in IRQ context, return from interrupt-handler to
2639 *           preemptible context
2640 *
2641 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642 *         then at the next:
2643 *
2644 *          - cond_resched() call
2645 *          - explicit schedule() call
2646 *          - return from syscall or exception to user-space
2647 *          - return from interrupt-handler to user-space
2648 */
2649static void __sched __schedule(void)
2650{
2651	struct task_struct *prev, *next;
2652	unsigned long *switch_count;
2653	struct rq *rq;
2654	int cpu;
2655
2656need_resched:
2657	preempt_disable();
2658	cpu = smp_processor_id();
2659	rq = cpu_rq(cpu);
2660	rcu_note_context_switch(cpu);
2661	prev = rq->curr;
2662
2663	schedule_debug(prev);
2664
2665	if (sched_feat(HRTICK))
2666		hrtick_clear(rq);
2667
2668	/*
2669	 * Make sure that signal_pending_state()->signal_pending() below
2670	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671	 * done by the caller to avoid the race with signal_wake_up().
2672	 */
2673	smp_mb__before_spinlock();
2674	raw_spin_lock_irq(&rq->lock);
2675
2676	switch_count = &prev->nivcsw;
2677	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2678		if (unlikely(signal_pending_state(prev->state, prev))) {
2679			prev->state = TASK_RUNNING;
2680		} else {
2681			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682			prev->on_rq = 0;
2683
2684			/*
2685			 * If a worker went to sleep, notify and ask workqueue
2686			 * whether it wants to wake up a task to maintain
2687			 * concurrency.
2688			 */
2689			if (prev->flags & PF_WQ_WORKER) {
2690				struct task_struct *to_wakeup;
2691
2692				to_wakeup = wq_worker_sleeping(prev, cpu);
2693				if (to_wakeup)
2694					try_to_wake_up_local(to_wakeup);
2695			}
2696		}
2697		switch_count = &prev->nvcsw;
2698	}
2699
2700	if (prev->on_rq || rq->skip_clock_update < 0)
2701		update_rq_clock(rq);
2702
2703	next = pick_next_task(rq, prev);
2704	clear_tsk_need_resched(prev);
2705	clear_preempt_need_resched();
2706	rq->skip_clock_update = 0;
2707
2708	if (likely(prev != next)) {
2709		rq->nr_switches++;
2710		rq->curr = next;
2711		++*switch_count;
2712
2713		context_switch(rq, prev, next); /* unlocks the rq */
2714		/*
2715		 * The context switch have flipped the stack from under us
2716		 * and restored the local variables which were saved when
2717		 * this task called schedule() in the past. prev == current
2718		 * is still correct, but it can be moved to another cpu/rq.
2719		 */
2720		cpu = smp_processor_id();
2721		rq = cpu_rq(cpu);
2722	} else
2723		raw_spin_unlock_irq(&rq->lock);
2724
2725	post_schedule(rq);
2726
2727	sched_preempt_enable_no_resched();
2728	if (need_resched())
2729		goto need_resched;
2730}
2731
2732static inline void sched_submit_work(struct task_struct *tsk)
2733{
2734	if (!tsk->state || tsk_is_pi_blocked(tsk))
2735		return;
2736	/*
2737	 * If we are going to sleep and we have plugged IO queued,
2738	 * make sure to submit it to avoid deadlocks.
2739	 */
2740	if (blk_needs_flush_plug(tsk))
2741		blk_schedule_flush_plug(tsk);
2742}
2743
2744asmlinkage void __sched schedule(void)
2745{
2746	struct task_struct *tsk = current;
2747
2748	sched_submit_work(tsk);
2749	__schedule();
2750}
2751EXPORT_SYMBOL(schedule);
2752
2753#ifdef CONFIG_CONTEXT_TRACKING
2754asmlinkage void __sched schedule_user(void)
2755{
2756	/*
2757	 * If we come here after a random call to set_need_resched(),
2758	 * or we have been woken up remotely but the IPI has not yet arrived,
2759	 * we haven't yet exited the RCU idle mode. Do it here manually until
2760	 * we find a better solution.
2761	 */
2762	user_exit();
2763	schedule();
2764	user_enter();
2765}
2766#endif
2767
2768/**
2769 * schedule_preempt_disabled - called with preemption disabled
2770 *
2771 * Returns with preemption disabled. Note: preempt_count must be 1
2772 */
2773void __sched schedule_preempt_disabled(void)
2774{
2775	sched_preempt_enable_no_resched();
2776	schedule();
2777	preempt_disable();
2778}
2779
2780#ifdef CONFIG_PREEMPT
2781/*
2782 * this is the entry point to schedule() from in-kernel preemption
2783 * off of preempt_enable. Kernel preemptions off return from interrupt
2784 * occur there and call schedule directly.
2785 */
2786asmlinkage void __sched notrace preempt_schedule(void)
2787{
2788	/*
2789	 * If there is a non-zero preempt_count or interrupts are disabled,
2790	 * we do not want to preempt the current task. Just return..
2791	 */
2792	if (likely(!preemptible()))
2793		return;
2794
2795	do {
2796		__preempt_count_add(PREEMPT_ACTIVE);
2797		__schedule();
2798		__preempt_count_sub(PREEMPT_ACTIVE);
2799
2800		/*
2801		 * Check again in case we missed a preemption opportunity
2802		 * between schedule and now.
2803		 */
2804		barrier();
2805	} while (need_resched());
2806}
2807EXPORT_SYMBOL(preempt_schedule);
2808#endif /* CONFIG_PREEMPT */
2809
2810/*
2811 * this is the entry point to schedule() from kernel preemption
2812 * off of irq context.
2813 * Note, that this is called and return with irqs disabled. This will
2814 * protect us against recursive calling from irq.
2815 */
2816asmlinkage void __sched preempt_schedule_irq(void)
2817{
2818	enum ctx_state prev_state;
2819
2820	/* Catch callers which need to be fixed */
2821	BUG_ON(preempt_count() || !irqs_disabled());
2822
2823	prev_state = exception_enter();
2824
2825	do {
2826		__preempt_count_add(PREEMPT_ACTIVE);
2827		local_irq_enable();
2828		__schedule();
2829		local_irq_disable();
2830		__preempt_count_sub(PREEMPT_ACTIVE);
2831
2832		/*
2833		 * Check again in case we missed a preemption opportunity
2834		 * between schedule and now.
2835		 */
2836		barrier();
2837	} while (need_resched());
2838
2839	exception_exit(prev_state);
2840}
2841
2842int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2843			  void *key)
2844{
2845	return try_to_wake_up(curr->private, mode, wake_flags);
2846}
2847EXPORT_SYMBOL(default_wake_function);
2848
2849static long __sched
2850sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2851{
2852	unsigned long flags;
2853	wait_queue_t wait;
2854
2855	init_waitqueue_entry(&wait, current);
2856
2857	__set_current_state(state);
2858
2859	spin_lock_irqsave(&q->lock, flags);
2860	__add_wait_queue(q, &wait);
2861	spin_unlock(&q->lock);
2862	timeout = schedule_timeout(timeout);
2863	spin_lock_irq(&q->lock);
2864	__remove_wait_queue(q, &wait);
2865	spin_unlock_irqrestore(&q->lock, flags);
2866
2867	return timeout;
2868}
2869
2870void __sched interruptible_sleep_on(wait_queue_head_t *q)
2871{
2872	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2873}
2874EXPORT_SYMBOL(interruptible_sleep_on);
2875
2876long __sched
2877interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2878{
2879	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2880}
2881EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2882
2883void __sched sleep_on(wait_queue_head_t *q)
2884{
2885	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2886}
2887EXPORT_SYMBOL(sleep_on);
2888
2889long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2890{
2891	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2892}
2893EXPORT_SYMBOL(sleep_on_timeout);
2894
2895#ifdef CONFIG_RT_MUTEXES
2896
2897/*
2898 * rt_mutex_setprio - set the current priority of a task
2899 * @p: task
2900 * @prio: prio value (kernel-internal form)
2901 *
2902 * This function changes the 'effective' priority of a task. It does
2903 * not touch ->normal_prio like __setscheduler().
2904 *
2905 * Used by the rt_mutex code to implement priority inheritance logic.
2906 */
2907void rt_mutex_setprio(struct task_struct *p, int prio)
2908{
2909	int oldprio, on_rq, running, enqueue_flag = 0;
2910	struct rq *rq;
2911	const struct sched_class *prev_class;
2912
2913	BUG_ON(prio > MAX_PRIO);
2914
2915	rq = __task_rq_lock(p);
2916
2917	/*
2918	 * Idle task boosting is a nono in general. There is one
2919	 * exception, when PREEMPT_RT and NOHZ is active:
2920	 *
2921	 * The idle task calls get_next_timer_interrupt() and holds
2922	 * the timer wheel base->lock on the CPU and another CPU wants
2923	 * to access the timer (probably to cancel it). We can safely
2924	 * ignore the boosting request, as the idle CPU runs this code
2925	 * with interrupts disabled and will complete the lock
2926	 * protected section without being interrupted. So there is no
2927	 * real need to boost.
2928	 */
2929	if (unlikely(p == rq->idle)) {
2930		WARN_ON(p != rq->curr);
2931		WARN_ON(p->pi_blocked_on);
2932		goto out_unlock;
2933	}
2934
2935	trace_sched_pi_setprio(p, prio);
2936	p->pi_top_task = rt_mutex_get_top_task(p);
2937	oldprio = p->prio;
2938	prev_class = p->sched_class;
2939	on_rq = p->on_rq;
2940	running = task_current(rq, p);
2941	if (on_rq)
2942		dequeue_task(rq, p, 0);
2943	if (running)
2944		p->sched_class->put_prev_task(rq, p);
2945
2946	/*
2947	 * Boosting condition are:
2948	 * 1. -rt task is running and holds mutex A
2949	 *      --> -dl task blocks on mutex A
2950	 *
2951	 * 2. -dl task is running and holds mutex A
2952	 *      --> -dl task blocks on mutex A and could preempt the
2953	 *          running task
2954	 */
2955	if (dl_prio(prio)) {
2956		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2957			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2958			p->dl.dl_boosted = 1;
2959			p->dl.dl_throttled = 0;
2960			enqueue_flag = ENQUEUE_REPLENISH;
2961		} else
2962			p->dl.dl_boosted = 0;
2963		p->sched_class = &dl_sched_class;
2964	} else if (rt_prio(prio)) {
2965		if (dl_prio(oldprio))
2966			p->dl.dl_boosted = 0;
2967		if (oldprio < prio)
2968			enqueue_flag = ENQUEUE_HEAD;
2969		p->sched_class = &rt_sched_class;
2970	} else {
2971		if (dl_prio(oldprio))
2972			p->dl.dl_boosted = 0;
2973		p->sched_class = &fair_sched_class;
2974	}
2975
2976	p->prio = prio;
2977
2978	if (running)
2979		p->sched_class->set_curr_task(rq);
2980	if (on_rq)
2981		enqueue_task(rq, p, enqueue_flag);
2982
2983	check_class_changed(rq, p, prev_class, oldprio);
2984out_unlock:
2985	__task_rq_unlock(rq);
2986}
2987#endif
2988
2989void set_user_nice(struct task_struct *p, long nice)
2990{
2991	int old_prio, delta, on_rq;
2992	unsigned long flags;
2993	struct rq *rq;
2994
2995	if (task_nice(p) == nice || nice < -20 || nice > 19)
2996		return;
2997	/*
2998	 * We have to be careful, if called from sys_setpriority(),
2999	 * the task might be in the middle of scheduling on another CPU.
3000	 */
3001	rq = task_rq_lock(p, &flags);
3002	/*
3003	 * The RT priorities are set via sched_setscheduler(), but we still
3004	 * allow the 'normal' nice value to be set - but as expected
3005	 * it wont have any effect on scheduling until the task is
3006	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3007	 */
3008	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3009		p->static_prio = NICE_TO_PRIO(nice);
3010		goto out_unlock;
3011	}
3012	on_rq = p->on_rq;
3013	if (on_rq)
3014		dequeue_task(rq, p, 0);
3015
3016	p->static_prio = NICE_TO_PRIO(nice);
3017	set_load_weight(p);
3018	old_prio = p->prio;
3019	p->prio = effective_prio(p);
3020	delta = p->prio - old_prio;
3021
3022	if (on_rq) {
3023		enqueue_task(rq, p, 0);
3024		/*
3025		 * If the task increased its priority or is running and
3026		 * lowered its priority, then reschedule its CPU:
3027		 */
3028		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3029			resched_task(rq->curr);
3030	}
3031out_unlock:
3032	task_rq_unlock(rq, p, &flags);
3033}
3034EXPORT_SYMBOL(set_user_nice);
3035
3036/*
3037 * can_nice - check if a task can reduce its nice value
3038 * @p: task
3039 * @nice: nice value
3040 */
3041int can_nice(const struct task_struct *p, const int nice)
3042{
3043	/* convert nice value [19,-20] to rlimit style value [1,40] */
3044	int nice_rlim = 20 - nice;
3045
3046	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3047		capable(CAP_SYS_NICE));
3048}
3049
3050#ifdef __ARCH_WANT_SYS_NICE
3051
3052/*
3053 * sys_nice - change the priority of the current process.
3054 * @increment: priority increment
3055 *
3056 * sys_setpriority is a more generic, but much slower function that
3057 * does similar things.
3058 */
3059SYSCALL_DEFINE1(nice, int, increment)
3060{
3061	long nice, retval;
3062
3063	/*
3064	 * Setpriority might change our priority at the same moment.
3065	 * We don't have to worry. Conceptually one call occurs first
3066	 * and we have a single winner.
3067	 */
3068	if (increment < -40)
3069		increment = -40;
3070	if (increment > 40)
3071		increment = 40;
3072
3073	nice = task_nice(current) + increment;
3074	if (nice < -20)
3075		nice = -20;
3076	if (nice > 19)
3077		nice = 19;
3078
3079	if (increment < 0 && !can_nice(current, nice))
3080		return -EPERM;
3081
3082	retval = security_task_setnice(current, nice);
3083	if (retval)
3084		return retval;
3085
3086	set_user_nice(current, nice);
3087	return 0;
3088}
3089
3090#endif
3091
3092/**
3093 * task_prio - return the priority value of a given task.
3094 * @p: the task in question.
3095 *
3096 * Return: The priority value as seen by users in /proc.
3097 * RT tasks are offset by -200. Normal tasks are centered
3098 * around 0, value goes from -16 to +15.
3099 */
3100int task_prio(const struct task_struct *p)
3101{
3102	return p->prio - MAX_RT_PRIO;
3103}
3104
3105/**
3106 * idle_cpu - is a given cpu idle currently?
3107 * @cpu: the processor in question.
3108 *
3109 * Return: 1 if the CPU is currently idle. 0 otherwise.
3110 */
3111int idle_cpu(int cpu)
3112{
3113	struct rq *rq = cpu_rq(cpu);
3114
3115	if (rq->curr != rq->idle)
3116		return 0;
3117
3118	if (rq->nr_running)
3119		return 0;
3120
3121#ifdef CONFIG_SMP
3122	if (!llist_empty(&rq->wake_list))
3123		return 0;
3124#endif
3125
3126	return 1;
3127}
3128
3129/**
3130 * idle_task - return the idle task for a given cpu.
3131 * @cpu: the processor in question.
3132 *
3133 * Return: The idle task for the cpu @cpu.
3134 */
3135struct task_struct *idle_task(int cpu)
3136{
3137	return cpu_rq(cpu)->idle;
3138}
3139
3140/**
3141 * find_process_by_pid - find a process with a matching PID value.
3142 * @pid: the pid in question.
3143 *
3144 * The task of @pid, if found. %NULL otherwise.
3145 */
3146static struct task_struct *find_process_by_pid(pid_t pid)
3147{
3148	return pid ? find_task_by_vpid(pid) : current;
3149}
3150
3151/*
3152 * This function initializes the sched_dl_entity of a newly becoming
3153 * SCHED_DEADLINE task.
3154 *
3155 * Only the static values are considered here, the actual runtime and the
3156 * absolute deadline will be properly calculated when the task is enqueued
3157 * for the first time with its new policy.
3158 */
3159static void
3160__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3161{
3162	struct sched_dl_entity *dl_se = &p->dl;
3163
3164	init_dl_task_timer(dl_se);
3165	dl_se->dl_runtime = attr->sched_runtime;
3166	dl_se->dl_deadline = attr->sched_deadline;
3167	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3168	dl_se->flags = attr->sched_flags;
3169	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3170	dl_se->dl_throttled = 0;
3171	dl_se->dl_new = 1;
3172}
3173
3174/* Actually do priority change: must hold pi & rq lock. */
3175static void __setscheduler(struct rq *rq, struct task_struct *p,
3176			   const struct sched_attr *attr)
3177{
3178	int policy = attr->sched_policy;
3179
3180	if (policy == -1) /* setparam */
3181		policy = p->policy;
3182
3183	p->policy = policy;
3184
3185	if (dl_policy(policy))
3186		__setparam_dl(p, attr);
3187	else if (fair_policy(policy))
3188		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3189
3190	/*
3191	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3192	 * !rt_policy. Always setting this ensures that things like
3193	 * getparam()/getattr() don't report silly values for !rt tasks.
3194	 */
3195	p->rt_priority = attr->sched_priority;
3196
3197	p->normal_prio = normal_prio(p);
3198	p->prio = rt_mutex_getprio(p);
3199
3200	if (dl_prio(p->prio))
3201		p->sched_class = &dl_sched_class;
3202	else if (rt_prio(p->prio))
3203		p->sched_class = &rt_sched_class;
3204	else
3205		p->sched_class = &fair_sched_class;
3206
3207	set_load_weight(p);
3208}
3209
3210static void
3211__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3212{
3213	struct sched_dl_entity *dl_se = &p->dl;
3214
3215	attr->sched_priority = p->rt_priority;
3216	attr->sched_runtime = dl_se->dl_runtime;
3217	attr->sched_deadline = dl_se->dl_deadline;
3218	attr->sched_period = dl_se->dl_period;
3219	attr->sched_flags = dl_se->flags;
3220}
3221
3222/*
3223 * This function validates the new parameters of a -deadline task.
3224 * We ask for the deadline not being zero, and greater or equal
3225 * than the runtime, as well as the period of being zero or
3226 * greater than deadline. Furthermore, we have to be sure that
3227 * user parameters are above the internal resolution (1us); we
3228 * check sched_runtime only since it is always the smaller one.
3229 */
3230static bool
3231__checkparam_dl(const struct sched_attr *attr)
3232{
3233	return attr && attr->sched_deadline != 0 &&
3234		(attr->sched_period == 0 ||
3235		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3236		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3237		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3238}
3239
3240/*
3241 * check the target process has a UID that matches the current process's
3242 */
3243static bool check_same_owner(struct task_struct *p)
3244{
3245	const struct cred *cred = current_cred(), *pcred;
3246	bool match;
3247
3248	rcu_read_lock();
3249	pcred = __task_cred(p);
3250	match = (uid_eq(cred->euid, pcred->euid) ||
3251		 uid_eq(cred->euid, pcred->uid));
3252	rcu_read_unlock();
3253	return match;
3254}
3255
3256static int __sched_setscheduler(struct task_struct *p,
3257				const struct sched_attr *attr,
3258				bool user)
3259{
3260	int retval, oldprio, oldpolicy = -1, on_rq, running;
3261	int policy = attr->sched_policy;
3262	unsigned long flags;
3263	const struct sched_class *prev_class;
3264	struct rq *rq;
3265	int reset_on_fork;
3266
3267	/* may grab non-irq protected spin_locks */
3268	BUG_ON(in_interrupt());
3269recheck:
3270	/* double check policy once rq lock held */
3271	if (policy < 0) {
3272		reset_on_fork = p->sched_reset_on_fork;
3273		policy = oldpolicy = p->policy;
3274	} else {
3275		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3276
3277		if (policy != SCHED_DEADLINE &&
3278				policy != SCHED_FIFO && policy != SCHED_RR &&
3279				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3280				policy != SCHED_IDLE)
3281			return -EINVAL;
3282	}
3283
3284	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3285		return -EINVAL;
3286
3287	/*
3288	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3289	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3290	 * SCHED_BATCH and SCHED_IDLE is 0.
3291	 */
3292	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3293	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3294		return -EINVAL;
3295	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3296	    (rt_policy(policy) != (attr->sched_priority != 0)))
3297		return -EINVAL;
3298
3299	/*
3300	 * Allow unprivileged RT tasks to decrease priority:
3301	 */
3302	if (user && !capable(CAP_SYS_NICE)) {
3303		if (fair_policy(policy)) {
3304			if (attr->sched_nice < task_nice(p) &&
3305			    !can_nice(p, attr->sched_nice))
3306				return -EPERM;
3307		}
3308
3309		if (rt_policy(policy)) {
3310			unsigned long rlim_rtprio =
3311					task_rlimit(p, RLIMIT_RTPRIO);
3312
3313			/* can't set/change the rt policy */
3314			if (policy != p->policy && !rlim_rtprio)
3315				return -EPERM;
3316
3317			/* can't increase priority */
3318			if (attr->sched_priority > p->rt_priority &&
3319			    attr->sched_priority > rlim_rtprio)
3320				return -EPERM;
3321		}
3322
3323		/*
3324		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3325		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3326		 */
3327		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3328			if (!can_nice(p, task_nice(p)))
3329				return -EPERM;
3330		}
3331
3332		/* can't change other user's priorities */
3333		if (!check_same_owner(p))
3334			return -EPERM;
3335
3336		/* Normal users shall not reset the sched_reset_on_fork flag */
3337		if (p->sched_reset_on_fork && !reset_on_fork)
3338			return -EPERM;
3339	}
3340
3341	if (user) {
3342		retval = security_task_setscheduler(p);
3343		if (retval)
3344			return retval;
3345	}
3346
3347	/*
3348	 * make sure no PI-waiters arrive (or leave) while we are
3349	 * changing the priority of the task:
3350	 *
3351	 * To be able to change p->policy safely, the appropriate
3352	 * runqueue lock must be held.
3353	 */
3354	rq = task_rq_lock(p, &flags);
3355
3356	/*
3357	 * Changing the policy of the stop threads its a very bad idea
3358	 */
3359	if (p == rq->stop) {
3360		task_rq_unlock(rq, p, &flags);
3361		return -EINVAL;
3362	}
3363
3364	/*
3365	 * If not changing anything there's no need to proceed further,
3366	 * but store a possible modification of reset_on_fork.
3367	 */
3368	if (unlikely(policy == p->policy)) {
3369		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3370			goto change;
3371		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3372			goto change;
3373		if (dl_policy(policy))
3374			goto change;
3375
3376		p->sched_reset_on_fork = reset_on_fork;
3377		task_rq_unlock(rq, p, &flags);
3378		return 0;
3379	}
3380change:
3381
3382	if (user) {
3383#ifdef CONFIG_RT_GROUP_SCHED
3384		/*
3385		 * Do not allow realtime tasks into groups that have no runtime
3386		 * assigned.
3387		 */
3388		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3389				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3390				!task_group_is_autogroup(task_group(p))) {
3391			task_rq_unlock(rq, p, &flags);
3392			return -EPERM;
3393		}
3394#endif
3395#ifdef CONFIG_SMP
3396		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3397			cpumask_t *span = rq->rd->span;
3398
3399			/*
3400			 * Don't allow tasks with an affinity mask smaller than
3401			 * the entire root_domain to become SCHED_DEADLINE. We
3402			 * will also fail if there's no bandwidth available.
3403			 */
3404			if (!cpumask_subset(span, &p->cpus_allowed) ||
3405			    rq->rd->dl_bw.bw == 0) {
3406				task_rq_unlock(rq, p, &flags);
3407				return -EPERM;
3408			}
3409		}
3410#endif
3411	}
3412
3413	/* recheck policy now with rq lock held */
3414	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3415		policy = oldpolicy = -1;
3416		task_rq_unlock(rq, p, &flags);
3417		goto recheck;
3418	}
3419
3420	/*
3421	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3422	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3423	 * is available.
3424	 */
3425	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3426		task_rq_unlock(rq, p, &flags);
3427		return -EBUSY;
3428	}
3429
3430	on_rq = p->on_rq;
3431	running = task_current(rq, p);
3432	if (on_rq)
3433		dequeue_task(rq, p, 0);
3434	if (running)
3435		p->sched_class->put_prev_task(rq, p);
3436
3437	p->sched_reset_on_fork = reset_on_fork;
3438
3439	oldprio = p->prio;
3440	prev_class = p->sched_class;
3441	__setscheduler(rq, p, attr);
3442
3443	if (running)
3444		p->sched_class->set_curr_task(rq);
3445	if (on_rq) {
3446		/*
3447		 * We enqueue to tail when the priority of a task is
3448		 * increased (user space view).
3449		 */
3450		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3451	}
3452
3453	check_class_changed(rq, p, prev_class, oldprio);
3454	task_rq_unlock(rq, p, &flags);
3455
3456	rt_mutex_adjust_pi(p);
3457
3458	return 0;
3459}
3460
3461static int _sched_setscheduler(struct task_struct *p, int policy,
3462			       const struct sched_param *param, bool check)
3463{
3464	struct sched_attr attr = {
3465		.sched_policy   = policy,
3466		.sched_priority = param->sched_priority,
3467		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3468	};
3469
3470	/*
3471	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3472	 */
3473	if (policy & SCHED_RESET_ON_FORK) {
3474		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3475		policy &= ~SCHED_RESET_ON_FORK;
3476		attr.sched_policy = policy;
3477	}
3478
3479	return __sched_setscheduler(p, &attr, check);
3480}
3481/**
3482 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3483 * @p: the task in question.
3484 * @policy: new policy.
3485 * @param: structure containing the new RT priority.
3486 *
3487 * Return: 0 on success. An error code otherwise.
3488 *
3489 * NOTE that the task may be already dead.
3490 */
3491int sched_setscheduler(struct task_struct *p, int policy,
3492		       const struct sched_param *param)
3493{
3494	return _sched_setscheduler(p, policy, param, true);
3495}
3496EXPORT_SYMBOL_GPL(sched_setscheduler);
3497
3498int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3499{
3500	return __sched_setscheduler(p, attr, true);
3501}
3502EXPORT_SYMBOL_GPL(sched_setattr);
3503
3504/**
3505 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3506 * @p: the task in question.
3507 * @policy: new policy.
3508 * @param: structure containing the new RT priority.
3509 *
3510 * Just like sched_setscheduler, only don't bother checking if the
3511 * current context has permission.  For example, this is needed in
3512 * stop_machine(): we create temporary high priority worker threads,
3513 * but our caller might not have that capability.
3514 *
3515 * Return: 0 on success. An error code otherwise.
3516 */
3517int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3518			       const struct sched_param *param)
3519{
3520	return _sched_setscheduler(p, policy, param, false);
3521}
3522
3523static int
3524do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3525{
3526	struct sched_param lparam;
3527	struct task_struct *p;
3528	int retval;
3529
3530	if (!param || pid < 0)
3531		return -EINVAL;
3532	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3533		return -EFAULT;
3534
3535	rcu_read_lock();
3536	retval = -ESRCH;
3537	p = find_process_by_pid(pid);
3538	if (p != NULL)
3539		retval = sched_setscheduler(p, policy, &lparam);
3540	rcu_read_unlock();
3541
3542	return retval;
3543}
3544
3545/*
3546 * Mimics kernel/events/core.c perf_copy_attr().
3547 */
3548static int sched_copy_attr(struct sched_attr __user *uattr,
3549			   struct sched_attr *attr)
3550{
3551	u32 size;
3552	int ret;
3553
3554	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3555		return -EFAULT;
3556
3557	/*
3558	 * zero the full structure, so that a short copy will be nice.
3559	 */
3560	memset(attr, 0, sizeof(*attr));
3561
3562	ret = get_user(size, &uattr->size);
3563	if (ret)
3564		return ret;
3565
3566	if (size > PAGE_SIZE)	/* silly large */
3567		goto err_size;
3568
3569	if (!size)		/* abi compat */
3570		size = SCHED_ATTR_SIZE_VER0;
3571
3572	if (size < SCHED_ATTR_SIZE_VER0)
3573		goto err_size;
3574
3575	/*
3576	 * If we're handed a bigger struct than we know of,
3577	 * ensure all the unknown bits are 0 - i.e. new
3578	 * user-space does not rely on any kernel feature
3579	 * extensions we dont know about yet.
3580	 */
3581	if (size > sizeof(*attr)) {
3582		unsigned char __user *addr;
3583		unsigned char __user *end;
3584		unsigned char val;
3585
3586		addr = (void __user *)uattr + sizeof(*attr);
3587		end  = (void __user *)uattr + size;
3588
3589		for (; addr < end; addr++) {
3590			ret = get_user(val, addr);
3591			if (ret)
3592				return ret;
3593			if (val)
3594				goto err_size;
3595		}
3596		size = sizeof(*attr);
3597	}
3598
3599	ret = copy_from_user(attr, uattr, size);
3600	if (ret)
3601		return -EFAULT;
3602
3603	/*
3604	 * XXX: do we want to be lenient like existing syscalls; or do we want
3605	 * to be strict and return an error on out-of-bounds values?
3606	 */
3607	attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3608
3609out:
3610	return ret;
3611
3612err_size:
3613	put_user(sizeof(*attr), &uattr->size);
3614	ret = -E2BIG;
3615	goto out;
3616}
3617
3618/**
3619 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3620 * @pid: the pid in question.
3621 * @policy: new policy.
3622 * @param: structure containing the new RT priority.
3623 *
3624 * Return: 0 on success. An error code otherwise.
3625 */
3626SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3627		struct sched_param __user *, param)
3628{
3629	/* negative values for policy are not valid */
3630	if (policy < 0)
3631		return -EINVAL;
3632
3633	return do_sched_setscheduler(pid, policy, param);
3634}
3635
3636/**
3637 * sys_sched_setparam - set/change the RT priority of a thread
3638 * @pid: the pid in question.
3639 * @param: structure containing the new RT priority.
3640 *
3641 * Return: 0 on success. An error code otherwise.
3642 */
3643SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3644{
3645	return do_sched_setscheduler(pid, -1, param);
3646}
3647
3648/**
3649 * sys_sched_setattr - same as above, but with extended sched_attr
3650 * @pid: the pid in question.
3651 * @uattr: structure containing the extended parameters.
3652 */
3653SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3654{
3655	struct sched_attr attr;
3656	struct task_struct *p;
3657	int retval;
3658
3659	if (!uattr || pid < 0)
3660		return -EINVAL;
3661
3662	if (sched_copy_attr(uattr, &attr))
3663		return -EFAULT;
3664
3665	rcu_read_lock();
3666	retval = -ESRCH;
3667	p = find_process_by_pid(pid);
3668	if (p != NULL)
3669		retval = sched_setattr(p, &attr);
3670	rcu_read_unlock();
3671
3672	return retval;
3673}
3674
3675/**
3676 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3677 * @pid: the pid in question.
3678 *
3679 * Return: On success, the policy of the thread. Otherwise, a negative error
3680 * code.
3681 */
3682SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3683{
3684	struct task_struct *p;
3685	int retval;
3686
3687	if (pid < 0)
3688		return -EINVAL;
3689
3690	retval = -ESRCH;
3691	rcu_read_lock();
3692	p = find_process_by_pid(pid);
3693	if (p) {
3694		retval = security_task_getscheduler(p);
3695		if (!retval)
3696			retval = p->policy
3697				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3698	}
3699	rcu_read_unlock();
3700	return retval;
3701}
3702
3703/**
3704 * sys_sched_getparam - get the RT priority of a thread
3705 * @pid: the pid in question.
3706 * @param: structure containing the RT priority.
3707 *
3708 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3709 * code.
3710 */
3711SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3712{
3713	struct sched_param lp;
3714	struct task_struct *p;
3715	int retval;
3716
3717	if (!param || pid < 0)
3718		return -EINVAL;
3719
3720	rcu_read_lock();
3721	p = find_process_by_pid(pid);
3722	retval = -ESRCH;
3723	if (!p)
3724		goto out_unlock;
3725
3726	retval = security_task_getscheduler(p);
3727	if (retval)
3728		goto out_unlock;
3729
3730	if (task_has_dl_policy(p)) {
3731		retval = -EINVAL;
3732		goto out_unlock;
3733	}
3734	lp.sched_priority = p->rt_priority;
3735	rcu_read_unlock();
3736
3737	/*
3738	 * This one might sleep, we cannot do it with a spinlock held ...
3739	 */
3740	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3741
3742	return retval;
3743
3744out_unlock:
3745	rcu_read_unlock();
3746	return retval;
3747}
3748
3749static int sched_read_attr(struct sched_attr __user *uattr,
3750			   struct sched_attr *attr,
3751			   unsigned int usize)
3752{
3753	int ret;
3754
3755	if (!access_ok(VERIFY_WRITE, uattr, usize))
3756		return -EFAULT;
3757
3758	/*
3759	 * If we're handed a smaller struct than we know of,
3760	 * ensure all the unknown bits are 0 - i.e. old
3761	 * user-space does not get uncomplete information.
3762	 */
3763	if (usize < sizeof(*attr)) {
3764		unsigned char *addr;
3765		unsigned char *end;
3766
3767		addr = (void *)attr + usize;
3768		end  = (void *)attr + sizeof(*attr);
3769
3770		for (; addr < end; addr++) {
3771			if (*addr)
3772				goto err_size;
3773		}
3774
3775		attr->size = usize;
3776	}
3777
3778	ret = copy_to_user(uattr, attr, usize);
3779	if (ret)
3780		return -EFAULT;
3781
3782out:
3783	return ret;
3784
3785err_size:
3786	ret = -E2BIG;
3787	goto out;
3788}
3789
3790/**
3791 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3792 * @pid: the pid in question.
3793 * @uattr: structure containing the extended parameters.
3794 * @size: sizeof(attr) for fwd/bwd comp.
3795 */
3796SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3797		unsigned int, size)
3798{
3799	struct sched_attr attr = {
3800		.size = sizeof(struct sched_attr),
3801	};
3802	struct task_struct *p;
3803	int retval;
3804
3805	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3806	    size < SCHED_ATTR_SIZE_VER0)
3807		return -EINVAL;
3808
3809	rcu_read_lock();
3810	p = find_process_by_pid(pid);
3811	retval = -ESRCH;
3812	if (!p)
3813		goto out_unlock;
3814
3815	retval = security_task_getscheduler(p);
3816	if (retval)
3817		goto out_unlock;
3818
3819	attr.sched_policy = p->policy;
3820	if (p->sched_reset_on_fork)
3821		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3822	if (task_has_dl_policy(p))
3823		__getparam_dl(p, &attr);
3824	else if (task_has_rt_policy(p))
3825		attr.sched_priority = p->rt_priority;
3826	else
3827		attr.sched_nice = task_nice(p);
3828
3829	rcu_read_unlock();
3830
3831	retval = sched_read_attr(uattr, &attr, size);
3832	return retval;
3833
3834out_unlock:
3835	rcu_read_unlock();
3836	return retval;
3837}
3838
3839long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3840{
3841	cpumask_var_t cpus_allowed, new_mask;
3842	struct task_struct *p;
3843	int retval;
3844
3845	rcu_read_lock();
3846
3847	p = find_process_by_pid(pid);
3848	if (!p) {
3849		rcu_read_unlock();
3850		return -ESRCH;
3851	}
3852
3853	/* Prevent p going away */
3854	get_task_struct(p);
3855	rcu_read_unlock();
3856
3857	if (p->flags & PF_NO_SETAFFINITY) {
3858		retval = -EINVAL;
3859		goto out_put_task;
3860	}
3861	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3862		retval = -ENOMEM;
3863		goto out_put_task;
3864	}
3865	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3866		retval = -ENOMEM;
3867		goto out_free_cpus_allowed;
3868	}
3869	retval = -EPERM;
3870	if (!check_same_owner(p)) {
3871		rcu_read_lock();
3872		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3873			rcu_read_unlock();
3874			goto out_unlock;
3875		}
3876		rcu_read_unlock();
3877	}
3878
3879	retval = security_task_setscheduler(p);
3880	if (retval)
3881		goto out_unlock;
3882
3883
3884	cpuset_cpus_allowed(p, cpus_allowed);
3885	cpumask_and(new_mask, in_mask, cpus_allowed);
3886
3887	/*
3888	 * Since bandwidth control happens on root_domain basis,
3889	 * if admission test is enabled, we only admit -deadline
3890	 * tasks allowed to run on all the CPUs in the task's
3891	 * root_domain.
3892	 */
3893#ifdef CONFIG_SMP
3894	if (task_has_dl_policy(p)) {
3895		const struct cpumask *span = task_rq(p)->rd->span;
3896
3897		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3898			retval = -EBUSY;
3899			goto out_unlock;
3900		}
3901	}
3902#endif
3903again:
3904	retval = set_cpus_allowed_ptr(p, new_mask);
3905
3906	if (!retval) {
3907		cpuset_cpus_allowed(p, cpus_allowed);
3908		if (!cpumask_subset(new_mask, cpus_allowed)) {
3909			/*
3910			 * We must have raced with a concurrent cpuset
3911			 * update. Just reset the cpus_allowed to the
3912			 * cpuset's cpus_allowed
3913			 */
3914			cpumask_copy(new_mask, cpus_allowed);
3915			goto again;
3916		}
3917	}
3918out_unlock:
3919	free_cpumask_var(new_mask);
3920out_free_cpus_allowed:
3921	free_cpumask_var(cpus_allowed);
3922out_put_task:
3923	put_task_struct(p);
3924	return retval;
3925}
3926
3927static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3928			     struct cpumask *new_mask)
3929{
3930	if (len < cpumask_size())
3931		cpumask_clear(new_mask);
3932	else if (len > cpumask_size())
3933		len = cpumask_size();
3934
3935	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3936}
3937
3938/**
3939 * sys_sched_setaffinity - set the cpu affinity of a process
3940 * @pid: pid of the process
3941 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3942 * @user_mask_ptr: user-space pointer to the new cpu mask
3943 *
3944 * Return: 0 on success. An error code otherwise.
3945 */
3946SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3947		unsigned long __user *, user_mask_ptr)
3948{
3949	cpumask_var_t new_mask;
3950	int retval;
3951
3952	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3953		return -ENOMEM;
3954
3955	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3956	if (retval == 0)
3957		retval = sched_setaffinity(pid, new_mask);
3958	free_cpumask_var(new_mask);
3959	return retval;
3960}
3961
3962long sched_getaffinity(pid_t pid, struct cpumask *mask)
3963{
3964	struct task_struct *p;
3965	unsigned long flags;
3966	int retval;
3967
3968	rcu_read_lock();
3969
3970	retval = -ESRCH;
3971	p = find_process_by_pid(pid);
3972	if (!p)
3973		goto out_unlock;
3974
3975	retval = security_task_getscheduler(p);
3976	if (retval)
3977		goto out_unlock;
3978
3979	raw_spin_lock_irqsave(&p->pi_lock, flags);
3980	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3981	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3982
3983out_unlock:
3984	rcu_read_unlock();
3985
3986	return retval;
3987}
3988
3989/**
3990 * sys_sched_getaffinity - get the cpu affinity of a process
3991 * @pid: pid of the process
3992 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3993 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3994 *
3995 * Return: 0 on success. An error code otherwise.
3996 */
3997SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3998		unsigned long __user *, user_mask_ptr)
3999{
4000	int ret;
4001	cpumask_var_t mask;
4002
4003	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4004		return -EINVAL;
4005	if (len & (sizeof(unsigned long)-1))
4006		return -EINVAL;
4007
4008	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4009		return -ENOMEM;
4010
4011	ret = sched_getaffinity(pid, mask);
4012	if (ret == 0) {
4013		size_t retlen = min_t(size_t, len, cpumask_size());
4014
4015		if (copy_to_user(user_mask_ptr, mask, retlen))
4016			ret = -EFAULT;
4017		else
4018			ret = retlen;
4019	}
4020	free_cpumask_var(mask);
4021
4022	return ret;
4023}
4024
4025/**
4026 * sys_sched_yield - yield the current processor to other threads.
4027 *
4028 * This function yields the current CPU to other tasks. If there are no
4029 * other threads running on this CPU then this function will return.
4030 *
4031 * Return: 0.
4032 */
4033SYSCALL_DEFINE0(sched_yield)
4034{
4035	struct rq *rq = this_rq_lock();
4036
4037	schedstat_inc(rq, yld_count);
4038	current->sched_class->yield_task(rq);
4039
4040	/*
4041	 * Since we are going to call schedule() anyway, there's
4042	 * no need to preempt or enable interrupts:
4043	 */
4044	__release(rq->lock);
4045	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4046	do_raw_spin_unlock(&rq->lock);
4047	sched_preempt_enable_no_resched();
4048
4049	schedule();
4050
4051	return 0;
4052}
4053
4054static void __cond_resched(void)
4055{
4056	__preempt_count_add(PREEMPT_ACTIVE);
4057	__schedule();
4058	__preempt_count_sub(PREEMPT_ACTIVE);
4059}
4060
4061int __sched _cond_resched(void)
4062{
4063	if (should_resched()) {
4064		__cond_resched();
4065		return 1;
4066	}
4067	return 0;
4068}
4069EXPORT_SYMBOL(_cond_resched);
4070
4071/*
4072 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4073 * call schedule, and on return reacquire the lock.
4074 *
4075 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4076 * operations here to prevent schedule() from being called twice (once via
4077 * spin_unlock(), once by hand).
4078 */
4079int __cond_resched_lock(spinlock_t *lock)
4080{
4081	int resched = should_resched();
4082	int ret = 0;
4083
4084	lockdep_assert_held(lock);
4085
4086	if (spin_needbreak(lock) || resched) {
4087		spin_unlock(lock);
4088		if (resched)
4089			__cond_resched();
4090		else
4091			cpu_relax();
4092		ret = 1;
4093		spin_lock(lock);
4094	}
4095	return ret;
4096}
4097EXPORT_SYMBOL(__cond_resched_lock);
4098
4099int __sched __cond_resched_softirq(void)
4100{
4101	BUG_ON(!in_softirq());
4102
4103	if (should_resched()) {
4104		local_bh_enable();
4105		__cond_resched();
4106		local_bh_disable();
4107		return 1;
4108	}
4109	return 0;
4110}
4111EXPORT_SYMBOL(__cond_resched_softirq);
4112
4113/**
4114 * yield - yield the current processor to other threads.
4115 *
4116 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4117 *
4118 * The scheduler is at all times free to pick the calling task as the most
4119 * eligible task to run, if removing the yield() call from your code breaks
4120 * it, its already broken.
4121 *
4122 * Typical broken usage is:
4123 *
4124 * while (!event)
4125 * 	yield();
4126 *
4127 * where one assumes that yield() will let 'the other' process run that will
4128 * make event true. If the current task is a SCHED_FIFO task that will never
4129 * happen. Never use yield() as a progress guarantee!!
4130 *
4131 * If you want to use yield() to wait for something, use wait_event().
4132 * If you want to use yield() to be 'nice' for others, use cond_resched().
4133 * If you still want to use yield(), do not!
4134 */
4135void __sched yield(void)
4136{
4137	set_current_state(TASK_RUNNING);
4138	sys_sched_yield();
4139}
4140EXPORT_SYMBOL(yield);
4141
4142/**
4143 * yield_to - yield the current processor to another thread in
4144 * your thread group, or accelerate that thread toward the
4145 * processor it's on.
4146 * @p: target task
4147 * @preempt: whether task preemption is allowed or not
4148 *
4149 * It's the caller's job to ensure that the target task struct
4150 * can't go away on us before we can do any checks.
4151 *
4152 * Return:
4153 *	true (>0) if we indeed boosted the target task.
4154 *	false (0) if we failed to boost the target.
4155 *	-ESRCH if there's no task to yield to.
4156 */
4157bool __sched yield_to(struct task_struct *p, bool preempt)
4158{
4159	struct task_struct *curr = current;
4160	struct rq *rq, *p_rq;
4161	unsigned long flags;
4162	int yielded = 0;
4163
4164	local_irq_save(flags);
4165	rq = this_rq();
4166
4167again:
4168	p_rq = task_rq(p);
4169	/*
4170	 * If we're the only runnable task on the rq and target rq also
4171	 * has only one task, there's absolutely no point in yielding.
4172	 */
4173	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4174		yielded = -ESRCH;
4175		goto out_irq;
4176	}
4177
4178	double_rq_lock(rq, p_rq);
4179	if (task_rq(p) != p_rq) {
4180		double_rq_unlock(rq, p_rq);
4181		goto again;
4182	}
4183
4184	if (!curr->sched_class->yield_to_task)
4185		goto out_unlock;
4186
4187	if (curr->sched_class != p->sched_class)
4188		goto out_unlock;
4189
4190	if (task_running(p_rq, p) || p->state)
4191		goto out_unlock;
4192
4193	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4194	if (yielded) {
4195		schedstat_inc(rq, yld_count);
4196		/*
4197		 * Make p's CPU reschedule; pick_next_entity takes care of
4198		 * fairness.
4199		 */
4200		if (preempt && rq != p_rq)
4201			resched_task(p_rq->curr);
4202	}
4203
4204out_unlock:
4205	double_rq_unlock(rq, p_rq);
4206out_irq:
4207	local_irq_restore(flags);
4208
4209	if (yielded > 0)
4210		schedule();
4211
4212	return yielded;
4213}
4214EXPORT_SYMBOL_GPL(yield_to);
4215
4216/*
4217 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4218 * that process accounting knows that this is a task in IO wait state.
4219 */
4220void __sched io_schedule(void)
4221{
4222	struct rq *rq = raw_rq();
4223
4224	delayacct_blkio_start();
4225	atomic_inc(&rq->nr_iowait);
4226	blk_flush_plug(current);
4227	current->in_iowait = 1;
4228	schedule();
4229	current->in_iowait = 0;
4230	atomic_dec(&rq->nr_iowait);
4231	delayacct_blkio_end();
4232}
4233EXPORT_SYMBOL(io_schedule);
4234
4235long __sched io_schedule_timeout(long timeout)
4236{
4237	struct rq *rq = raw_rq();
4238	long ret;
4239
4240	delayacct_blkio_start();
4241	atomic_inc(&rq->nr_iowait);
4242	blk_flush_plug(current);
4243	current->in_iowait = 1;
4244	ret = schedule_timeout(timeout);
4245	current->in_iowait = 0;
4246	atomic_dec(&rq->nr_iowait);
4247	delayacct_blkio_end();
4248	return ret;
4249}
4250
4251/**
4252 * sys_sched_get_priority_max - return maximum RT priority.
4253 * @policy: scheduling class.
4254 *
4255 * Return: On success, this syscall returns the maximum
4256 * rt_priority that can be used by a given scheduling class.
4257 * On failure, a negative error code is returned.
4258 */
4259SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4260{
4261	int ret = -EINVAL;
4262
4263	switch (policy) {
4264	case SCHED_FIFO:
4265	case SCHED_RR:
4266		ret = MAX_USER_RT_PRIO-1;
4267		break;
4268	case SCHED_DEADLINE:
4269	case SCHED_NORMAL:
4270	case SCHED_BATCH:
4271	case SCHED_IDLE:
4272		ret = 0;
4273		break;
4274	}
4275	return ret;
4276}
4277
4278/**
4279 * sys_sched_get_priority_min - return minimum RT priority.
4280 * @policy: scheduling class.
4281 *
4282 * Return: On success, this syscall returns the minimum
4283 * rt_priority that can be used by a given scheduling class.
4284 * On failure, a negative error code is returned.
4285 */
4286SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4287{
4288	int ret = -EINVAL;
4289
4290	switch (policy) {
4291	case SCHED_FIFO:
4292	case SCHED_RR:
4293		ret = 1;
4294		break;
4295	case SCHED_DEADLINE:
4296	case SCHED_NORMAL:
4297	case SCHED_BATCH:
4298	case SCHED_IDLE:
4299		ret = 0;
4300	}
4301	return ret;
4302}
4303
4304/**
4305 * sys_sched_rr_get_interval - return the default timeslice of a process.
4306 * @pid: pid of the process.
4307 * @interval: userspace pointer to the timeslice value.
4308 *
4309 * this syscall writes the default timeslice value of a given process
4310 * into the user-space timespec buffer. A value of '0' means infinity.
4311 *
4312 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4313 * an error code.
4314 */
4315SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4316		struct timespec __user *, interval)
4317{
4318	struct task_struct *p;
4319	unsigned int time_slice;
4320	unsigned long flags;
4321	struct rq *rq;
4322	int retval;
4323	struct timespec t;
4324
4325	if (pid < 0)
4326		return -EINVAL;
4327
4328	retval = -ESRCH;
4329	rcu_read_lock();
4330	p = find_process_by_pid(pid);
4331	if (!p)
4332		goto out_unlock;
4333
4334	retval = security_task_getscheduler(p);
4335	if (retval)
4336		goto out_unlock;
4337
4338	rq = task_rq_lock(p, &flags);
4339	time_slice = 0;
4340	if (p->sched_class->get_rr_interval)
4341		time_slice = p->sched_class->get_rr_interval(rq, p);
4342	task_rq_unlock(rq, p, &flags);
4343
4344	rcu_read_unlock();
4345	jiffies_to_timespec(time_slice, &t);
4346	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4347	return retval;
4348
4349out_unlock:
4350	rcu_read_unlock();
4351	return retval;
4352}
4353
4354static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4355
4356void sched_show_task(struct task_struct *p)
4357{
4358	unsigned long free = 0;
4359	int ppid;
4360	unsigned state;
4361
4362	state = p->state ? __ffs(p->state) + 1 : 0;
4363	printk(KERN_INFO "%-15.15s %c", p->comm,
4364		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4365#if BITS_PER_LONG == 32
4366	if (state == TASK_RUNNING)
4367		printk(KERN_CONT " running  ");
4368	else
4369		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4370#else
4371	if (state == TASK_RUNNING)
4372		printk(KERN_CONT "  running task    ");
4373	else
4374		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4375#endif
4376#ifdef CONFIG_DEBUG_STACK_USAGE
4377	free = stack_not_used(p);
4378#endif
4379	rcu_read_lock();
4380	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4381	rcu_read_unlock();
4382	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4383		task_pid_nr(p), ppid,
4384		(unsigned long)task_thread_info(p)->flags);
4385
4386	print_worker_info(KERN_INFO, p);
4387	show_stack(p, NULL);
4388}
4389
4390void show_state_filter(unsigned long state_filter)
4391{
4392	struct task_struct *g, *p;
4393
4394#if BITS_PER_LONG == 32
4395	printk(KERN_INFO
4396		"  task                PC stack   pid father\n");
4397#else
4398	printk(KERN_INFO
4399		"  task                        PC stack   pid father\n");
4400#endif
4401	rcu_read_lock();
4402	do_each_thread(g, p) {
4403		/*
4404		 * reset the NMI-timeout, listing all files on a slow
4405		 * console might take a lot of time:
4406		 */
4407		touch_nmi_watchdog();
4408		if (!state_filter || (p->state & state_filter))
4409			sched_show_task(p);
4410	} while_each_thread(g, p);
4411
4412	touch_all_softlockup_watchdogs();
4413
4414#ifdef CONFIG_SCHED_DEBUG
4415	sysrq_sched_debug_show();
4416#endif
4417	rcu_read_unlock();
4418	/*
4419	 * Only show locks if all tasks are dumped:
4420	 */
4421	if (!state_filter)
4422		debug_show_all_locks();
4423}
4424
4425void init_idle_bootup_task(struct task_struct *idle)
4426{
4427	idle->sched_class = &idle_sched_class;
4428}
4429
4430/**
4431 * init_idle - set up an idle thread for a given CPU
4432 * @idle: task in question
4433 * @cpu: cpu the idle task belongs to
4434 *
4435 * NOTE: this function does not set the idle thread's NEED_RESCHED
4436 * flag, to make booting more robust.
4437 */
4438void init_idle(struct task_struct *idle, int cpu)
4439{
4440	struct rq *rq = cpu_rq(cpu);
4441	unsigned long flags;
4442
4443	raw_spin_lock_irqsave(&rq->lock, flags);
4444
4445	__sched_fork(0, idle);
4446	idle->state = TASK_RUNNING;
4447	idle->se.exec_start = sched_clock();
4448
4449	do_set_cpus_allowed(idle, cpumask_of(cpu));
4450	/*
4451	 * We're having a chicken and egg problem, even though we are
4452	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4453	 * lockdep check in task_group() will fail.
4454	 *
4455	 * Similar case to sched_fork(). / Alternatively we could
4456	 * use task_rq_lock() here and obtain the other rq->lock.
4457	 *
4458	 * Silence PROVE_RCU
4459	 */
4460	rcu_read_lock();
4461	__set_task_cpu(idle, cpu);
4462	rcu_read_unlock();
4463
4464	rq->curr = rq->idle = idle;
4465	idle->on_rq = 1;
4466#if defined(CONFIG_SMP)
4467	idle->on_cpu = 1;
4468#endif
4469	raw_spin_unlock_irqrestore(&rq->lock, flags);
4470
4471	/* Set the preempt count _outside_ the spinlocks! */
4472	init_idle_preempt_count(idle, cpu);
4473
4474	/*
4475	 * The idle tasks have their own, simple scheduling class:
4476	 */
4477	idle->sched_class = &idle_sched_class;
4478	ftrace_graph_init_idle_task(idle, cpu);
4479	vtime_init_idle(idle, cpu);
4480#if defined(CONFIG_SMP)
4481	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4482#endif
4483}
4484
4485#ifdef CONFIG_SMP
4486void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4487{
4488	if (p->sched_class && p->sched_class->set_cpus_allowed)
4489		p->sched_class->set_cpus_allowed(p, new_mask);
4490
4491	cpumask_copy(&p->cpus_allowed, new_mask);
4492	p->nr_cpus_allowed = cpumask_weight(new_mask);
4493}
4494
4495/*
4496 * This is how migration works:
4497 *
4498 * 1) we invoke migration_cpu_stop() on the target CPU using
4499 *    stop_one_cpu().
4500 * 2) stopper starts to run (implicitly forcing the migrated thread
4501 *    off the CPU)
4502 * 3) it checks whether the migrated task is still in the wrong runqueue.
4503 * 4) if it's in the wrong runqueue then the migration thread removes
4504 *    it and puts it into the right queue.
4505 * 5) stopper completes and stop_one_cpu() returns and the migration
4506 *    is done.
4507 */
4508
4509/*
4510 * Change a given task's CPU affinity. Migrate the thread to a
4511 * proper CPU and schedule it away if the CPU it's executing on
4512 * is removed from the allowed bitmask.
4513 *
4514 * NOTE: the caller must have a valid reference to the task, the
4515 * task must not exit() & deallocate itself prematurely. The
4516 * call is not atomic; no spinlocks may be held.
4517 */
4518int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4519{
4520	unsigned long flags;
4521	struct rq *rq;
4522	unsigned int dest_cpu;
4523	int ret = 0;
4524
4525	rq = task_rq_lock(p, &flags);
4526
4527	if (cpumask_equal(&p->cpus_allowed, new_mask))
4528		goto out;
4529
4530	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4531		ret = -EINVAL;
4532		goto out;
4533	}
4534
4535	do_set_cpus_allowed(p, new_mask);
4536
4537	/* Can the task run on the task's current CPU? If so, we're done */
4538	if (cpumask_test_cpu(task_cpu(p), new_mask))
4539		goto out;
4540
4541	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4542	if (p->on_rq) {
4543		struct migration_arg arg = { p, dest_cpu };
4544		/* Need help from migration thread: drop lock and wait. */
4545		task_rq_unlock(rq, p, &flags);
4546		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4547		tlb_migrate_finish(p->mm);
4548		return 0;
4549	}
4550out:
4551	task_rq_unlock(rq, p, &flags);
4552
4553	return ret;
4554}
4555EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4556
4557/*
4558 * Move (not current) task off this cpu, onto dest cpu. We're doing
4559 * this because either it can't run here any more (set_cpus_allowed()
4560 * away from this CPU, or CPU going down), or because we're
4561 * attempting to rebalance this task on exec (sched_exec).
4562 *
4563 * So we race with normal scheduler movements, but that's OK, as long
4564 * as the task is no longer on this CPU.
4565 *
4566 * Returns non-zero if task was successfully migrated.
4567 */
4568static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4569{
4570	struct rq *rq_dest, *rq_src;
4571	int ret = 0;
4572
4573	if (unlikely(!cpu_active(dest_cpu)))
4574		return ret;
4575
4576	rq_src = cpu_rq(src_cpu);
4577	rq_dest = cpu_rq(dest_cpu);
4578
4579	raw_spin_lock(&p->pi_lock);
4580	double_rq_lock(rq_src, rq_dest);
4581	/* Already moved. */
4582	if (task_cpu(p) != src_cpu)
4583		goto done;
4584	/* Affinity changed (again). */
4585	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4586		goto fail;
4587
4588	/*
4589	 * If we're not on a rq, the next wake-up will ensure we're
4590	 * placed properly.
4591	 */
4592	if (p->on_rq) {
4593		dequeue_task(rq_src, p, 0);
4594		set_task_cpu(p, dest_cpu);
4595		enqueue_task(rq_dest, p, 0);
4596		check_preempt_curr(rq_dest, p, 0);
4597	}
4598done:
4599	ret = 1;
4600fail:
4601	double_rq_unlock(rq_src, rq_dest);
4602	raw_spin_unlock(&p->pi_lock);
4603	return ret;
4604}
4605
4606#ifdef CONFIG_NUMA_BALANCING
4607/* Migrate current task p to target_cpu */
4608int migrate_task_to(struct task_struct *p, int target_cpu)
4609{
4610	struct migration_arg arg = { p, target_cpu };
4611	int curr_cpu = task_cpu(p);
4612
4613	if (curr_cpu == target_cpu)
4614		return 0;
4615
4616	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4617		return -EINVAL;
4618
4619	/* TODO: This is not properly updating schedstats */
4620
4621	trace_sched_move_numa(p, curr_cpu, target_cpu);
4622	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4623}
4624
4625/*
4626 * Requeue a task on a given node and accurately track the number of NUMA
4627 * tasks on the runqueues
4628 */
4629void sched_setnuma(struct task_struct *p, int nid)
4630{
4631	struct rq *rq;
4632	unsigned long flags;
4633	bool on_rq, running;
4634
4635	rq = task_rq_lock(p, &flags);
4636	on_rq = p->on_rq;
4637	running = task_current(rq, p);
4638
4639	if (on_rq)
4640		dequeue_task(rq, p, 0);
4641	if (running)
4642		p->sched_class->put_prev_task(rq, p);
4643
4644	p->numa_preferred_nid = nid;
4645
4646	if (running)
4647		p->sched_class->set_curr_task(rq);
4648	if (on_rq)
4649		enqueue_task(rq, p, 0);
4650	task_rq_unlock(rq, p, &flags);
4651}
4652#endif
4653
4654/*
4655 * migration_cpu_stop - this will be executed by a highprio stopper thread
4656 * and performs thread migration by bumping thread off CPU then
4657 * 'pushing' onto another runqueue.
4658 */
4659static int migration_cpu_stop(void *data)
4660{
4661	struct migration_arg *arg = data;
4662
4663	/*
4664	 * The original target cpu might have gone down and we might
4665	 * be on another cpu but it doesn't matter.
4666	 */
4667	local_irq_disable();
4668	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4669	local_irq_enable();
4670	return 0;
4671}
4672
4673#ifdef CONFIG_HOTPLUG_CPU
4674
4675/*
4676 * Ensures that the idle task is using init_mm right before its cpu goes
4677 * offline.
4678 */
4679void idle_task_exit(void)
4680{
4681	struct mm_struct *mm = current->active_mm;
4682
4683	BUG_ON(cpu_online(smp_processor_id()));
4684
4685	if (mm != &init_mm)
4686		switch_mm(mm, &init_mm, current);
4687	mmdrop(mm);
4688}
4689
4690/*
4691 * Since this CPU is going 'away' for a while, fold any nr_active delta
4692 * we might have. Assumes we're called after migrate_tasks() so that the
4693 * nr_active count is stable.
4694 *
4695 * Also see the comment "Global load-average calculations".
4696 */
4697static void calc_load_migrate(struct rq *rq)
4698{
4699	long delta = calc_load_fold_active(rq);
4700	if (delta)
4701		atomic_long_add(delta, &calc_load_tasks);
4702}
4703
4704static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4705{
4706}
4707
4708static const struct sched_class fake_sched_class = {
4709	.put_prev_task = put_prev_task_fake,
4710};
4711
4712static struct task_struct fake_task = {
4713	/*
4714	 * Avoid pull_{rt,dl}_task()
4715	 */
4716	.prio = MAX_PRIO + 1,
4717	.sched_class = &fake_sched_class,
4718};
4719
4720/*
4721 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4722 * try_to_wake_up()->select_task_rq().
4723 *
4724 * Called with rq->lock held even though we'er in stop_machine() and
4725 * there's no concurrency possible, we hold the required locks anyway
4726 * because of lock validation efforts.
4727 */
4728static void migrate_tasks(unsigned int dead_cpu)
4729{
4730	struct rq *rq = cpu_rq(dead_cpu);
4731	struct task_struct *next, *stop = rq->stop;
4732	int dest_cpu;
4733
4734	/*
4735	 * Fudge the rq selection such that the below task selection loop
4736	 * doesn't get stuck on the currently eligible stop task.
4737	 *
4738	 * We're currently inside stop_machine() and the rq is either stuck
4739	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4740	 * either way we should never end up calling schedule() until we're
4741	 * done here.
4742	 */
4743	rq->stop = NULL;
4744
4745	/*
4746	 * put_prev_task() and pick_next_task() sched
4747	 * class method both need to have an up-to-date
4748	 * value of rq->clock[_task]
4749	 */
4750	update_rq_clock(rq);
4751
4752	for ( ; ; ) {
4753		/*
4754		 * There's this thread running, bail when that's the only
4755		 * remaining thread.
4756		 */
4757		if (rq->nr_running == 1)
4758			break;
4759
4760		next = pick_next_task(rq, &fake_task);
4761		BUG_ON(!next);
4762		next->sched_class->put_prev_task(rq, next);
4763
4764		/* Find suitable destination for @next, with force if needed. */
4765		dest_cpu = select_fallback_rq(dead_cpu, next);
4766		raw_spin_unlock(&rq->lock);
4767
4768		__migrate_task(next, dead_cpu, dest_cpu);
4769
4770		raw_spin_lock(&rq->lock);
4771	}
4772
4773	rq->stop = stop;
4774}
4775
4776#endif /* CONFIG_HOTPLUG_CPU */
4777
4778#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4779
4780static struct ctl_table sd_ctl_dir[] = {
4781	{
4782		.procname	= "sched_domain",
4783		.mode		= 0555,
4784	},
4785	{}
4786};
4787
4788static struct ctl_table sd_ctl_root[] = {
4789	{
4790		.procname	= "kernel",
4791		.mode		= 0555,
4792		.child		= sd_ctl_dir,
4793	},
4794	{}
4795};
4796
4797static struct ctl_table *sd_alloc_ctl_entry(int n)
4798{
4799	struct ctl_table *entry =
4800		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4801
4802	return entry;
4803}
4804
4805static void sd_free_ctl_entry(struct ctl_table **tablep)
4806{
4807	struct ctl_table *entry;
4808
4809	/*
4810	 * In the intermediate directories, both the child directory and
4811	 * procname are dynamically allocated and could fail but the mode
4812	 * will always be set. In the lowest directory the names are
4813	 * static strings and all have proc handlers.
4814	 */
4815	for (entry = *tablep; entry->mode; entry++) {
4816		if (entry->child)
4817			sd_free_ctl_entry(&entry->child);
4818		if (entry->proc_handler == NULL)
4819			kfree(entry->procname);
4820	}
4821
4822	kfree(*tablep);
4823	*tablep = NULL;
4824}
4825
4826static int min_load_idx = 0;
4827static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4828
4829static void
4830set_table_entry(struct ctl_table *entry,
4831		const char *procname, void *data, int maxlen,
4832		umode_t mode, proc_handler *proc_handler,
4833		bool load_idx)
4834{
4835	entry->procname = procname;
4836	entry->data = data;
4837	entry->maxlen = maxlen;
4838	entry->mode = mode;
4839	entry->proc_handler = proc_handler;
4840
4841	if (load_idx) {
4842		entry->extra1 = &min_load_idx;
4843		entry->extra2 = &max_load_idx;
4844	}
4845}
4846
4847static struct ctl_table *
4848sd_alloc_ctl_domain_table(struct sched_domain *sd)
4849{
4850	struct ctl_table *table = sd_alloc_ctl_entry(14);
4851
4852	if (table == NULL)
4853		return NULL;
4854
4855	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4856		sizeof(long), 0644, proc_doulongvec_minmax, false);
4857	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4858		sizeof(long), 0644, proc_doulongvec_minmax, false);
4859	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4860		sizeof(int), 0644, proc_dointvec_minmax, true);
4861	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4862		sizeof(int), 0644, proc_dointvec_minmax, true);
4863	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4864		sizeof(int), 0644, proc_dointvec_minmax, true);
4865	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4866		sizeof(int), 0644, proc_dointvec_minmax, true);
4867	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4868		sizeof(int), 0644, proc_dointvec_minmax, true);
4869	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4870		sizeof(int), 0644, proc_dointvec_minmax, false);
4871	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4872		sizeof(int), 0644, proc_dointvec_minmax, false);
4873	set_table_entry(&table[9], "cache_nice_tries",
4874		&sd->cache_nice_tries,
4875		sizeof(int), 0644, proc_dointvec_minmax, false);
4876	set_table_entry(&table[10], "flags", &sd->flags,
4877		sizeof(int), 0644, proc_dointvec_minmax, false);
4878	set_table_entry(&table[11], "max_newidle_lb_cost",
4879		&sd->max_newidle_lb_cost,
4880		sizeof(long), 0644, proc_doulongvec_minmax, false);
4881	set_table_entry(&table[12], "name", sd->name,
4882		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4883	/* &table[13] is terminator */
4884
4885	return table;
4886}
4887
4888static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4889{
4890	struct ctl_table *entry, *table;
4891	struct sched_domain *sd;
4892	int domain_num = 0, i;
4893	char buf[32];
4894
4895	for_each_domain(cpu, sd)
4896		domain_num++;
4897	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4898	if (table == NULL)
4899		return NULL;
4900
4901	i = 0;
4902	for_each_domain(cpu, sd) {
4903		snprintf(buf, 32, "domain%d", i);
4904		entry->procname = kstrdup(buf, GFP_KERNEL);
4905		entry->mode = 0555;
4906		entry->child = sd_alloc_ctl_domain_table(sd);
4907		entry++;
4908		i++;
4909	}
4910	return table;
4911}
4912
4913static struct ctl_table_header *sd_sysctl_header;
4914static void register_sched_domain_sysctl(void)
4915{
4916	int i, cpu_num = num_possible_cpus();
4917	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4918	char buf[32];
4919
4920	WARN_ON(sd_ctl_dir[0].child);
4921	sd_ctl_dir[0].child = entry;
4922
4923	if (entry == NULL)
4924		return;
4925
4926	for_each_possible_cpu(i) {
4927		snprintf(buf, 32, "cpu%d", i);
4928		entry->procname = kstrdup(buf, GFP_KERNEL);
4929		entry->mode = 0555;
4930		entry->child = sd_alloc_ctl_cpu_table(i);
4931		entry++;
4932	}
4933
4934	WARN_ON(sd_sysctl_header);
4935	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4936}
4937
4938/* may be called multiple times per register */
4939static void unregister_sched_domain_sysctl(void)
4940{
4941	if (sd_sysctl_header)
4942		unregister_sysctl_table(sd_sysctl_header);
4943	sd_sysctl_header = NULL;
4944	if (sd_ctl_dir[0].child)
4945		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4946}
4947#else
4948static void register_sched_domain_sysctl(void)
4949{
4950}
4951static void unregister_sched_domain_sysctl(void)
4952{
4953}
4954#endif
4955
4956static void set_rq_online(struct rq *rq)
4957{
4958	if (!rq->online) {
4959		const struct sched_class *class;
4960
4961		cpumask_set_cpu(rq->cpu, rq->rd->online);
4962		rq->online = 1;
4963
4964		for_each_class(class) {
4965			if (class->rq_online)
4966				class->rq_online(rq);
4967		}
4968	}
4969}
4970
4971static void set_rq_offline(struct rq *rq)
4972{
4973	if (rq->online) {
4974		const struct sched_class *class;
4975
4976		for_each_class(class) {
4977			if (class->rq_offline)
4978				class->rq_offline(rq);
4979		}
4980
4981		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4982		rq->online = 0;
4983	}
4984}
4985
4986/*
4987 * migration_call - callback that gets triggered when a CPU is added.
4988 * Here we can start up the necessary migration thread for the new CPU.
4989 */
4990static int
4991migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4992{
4993	int cpu = (long)hcpu;
4994	unsigned long flags;
4995	struct rq *rq = cpu_rq(cpu);
4996
4997	switch (action & ~CPU_TASKS_FROZEN) {
4998
4999	case CPU_UP_PREPARE:
5000		rq->calc_load_update = calc_load_update;
5001		break;
5002
5003	case CPU_ONLINE:
5004		/* Update our root-domain */
5005		raw_spin_lock_irqsave(&rq->lock, flags);
5006		if (rq->rd) {
5007			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5008
5009			set_rq_online(rq);
5010		}
5011		raw_spin_unlock_irqrestore(&rq->lock, flags);
5012		break;
5013
5014#ifdef CONFIG_HOTPLUG_CPU
5015	case CPU_DYING:
5016		sched_ttwu_pending();
5017		/* Update our root-domain */
5018		raw_spin_lock_irqsave(&rq->lock, flags);
5019		if (rq->rd) {
5020			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5021			set_rq_offline(rq);
5022		}
5023		migrate_tasks(cpu);
5024		BUG_ON(rq->nr_running != 1); /* the migration thread */
5025		raw_spin_unlock_irqrestore(&rq->lock, flags);
5026		break;
5027
5028	case CPU_DEAD:
5029		calc_load_migrate(rq);
5030		break;
5031#endif
5032	}
5033
5034	update_max_interval();
5035
5036	return NOTIFY_OK;
5037}
5038
5039/*
5040 * Register at high priority so that task migration (migrate_all_tasks)
5041 * happens before everything else.  This has to be lower priority than
5042 * the notifier in the perf_event subsystem, though.
5043 */
5044static struct notifier_block migration_notifier = {
5045	.notifier_call = migration_call,
5046	.priority = CPU_PRI_MIGRATION,
5047};
5048
5049static int sched_cpu_active(struct notifier_block *nfb,
5050				      unsigned long action, void *hcpu)
5051{
5052	switch (action & ~CPU_TASKS_FROZEN) {
5053	case CPU_STARTING:
5054	case CPU_DOWN_FAILED:
5055		set_cpu_active((long)hcpu, true);
5056		return NOTIFY_OK;
5057	default:
5058		return NOTIFY_DONE;
5059	}
5060}
5061
5062static int sched_cpu_inactive(struct notifier_block *nfb,
5063					unsigned long action, void *hcpu)
5064{
5065	unsigned long flags;
5066	long cpu = (long)hcpu;
5067
5068	switch (action & ~CPU_TASKS_FROZEN) {
5069	case CPU_DOWN_PREPARE:
5070		set_cpu_active(cpu, false);
5071
5072		/* explicitly allow suspend */
5073		if (!(action & CPU_TASKS_FROZEN)) {
5074			struct dl_bw *dl_b = dl_bw_of(cpu);
5075			bool overflow;
5076			int cpus;
5077
5078			raw_spin_lock_irqsave(&dl_b->lock, flags);
5079			cpus = dl_bw_cpus(cpu);
5080			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5081			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5082
5083			if (overflow)
5084				return notifier_from_errno(-EBUSY);
5085		}
5086		return NOTIFY_OK;
5087	}
5088
5089	return NOTIFY_DONE;
5090}
5091
5092static int __init migration_init(void)
5093{
5094	void *cpu = (void *)(long)smp_processor_id();
5095	int err;
5096
5097	/* Initialize migration for the boot CPU */
5098	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5099	BUG_ON(err == NOTIFY_BAD);
5100	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5101	register_cpu_notifier(&migration_notifier);
5102
5103	/* Register cpu active notifiers */
5104	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5105	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5106
5107	return 0;
5108}
5109early_initcall(migration_init);
5110#endif
5111
5112#ifdef CONFIG_SMP
5113
5114static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5115
5116#ifdef CONFIG_SCHED_DEBUG
5117
5118static __read_mostly int sched_debug_enabled;
5119
5120static int __init sched_debug_setup(char *str)
5121{
5122	sched_debug_enabled = 1;
5123
5124	return 0;
5125}
5126early_param("sched_debug", sched_debug_setup);
5127
5128static inline bool sched_debug(void)
5129{
5130	return sched_debug_enabled;
5131}
5132
5133static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5134				  struct cpumask *groupmask)
5135{
5136	struct sched_group *group = sd->groups;
5137	char str[256];
5138
5139	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5140	cpumask_clear(groupmask);
5141
5142	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5143
5144	if (!(sd->flags & SD_LOAD_BALANCE)) {
5145		printk("does not load-balance\n");
5146		if (sd->parent)
5147			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5148					" has parent");
5149		return -1;
5150	}
5151
5152	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5153
5154	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5155		printk(KERN_ERR "ERROR: domain->span does not contain "
5156				"CPU%d\n", cpu);
5157	}
5158	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5159		printk(KERN_ERR "ERROR: domain->groups does not contain"
5160				" CPU%d\n", cpu);
5161	}
5162
5163	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5164	do {
5165		if (!group) {
5166			printk("\n");
5167			printk(KERN_ERR "ERROR: group is NULL\n");
5168			break;
5169		}
5170
5171		/*
5172		 * Even though we initialize ->power to something semi-sane,
5173		 * we leave power_orig unset. This allows us to detect if
5174		 * domain iteration is still funny without causing /0 traps.
5175		 */
5176		if (!group->sgp->power_orig) {
5177			printk(KERN_CONT "\n");
5178			printk(KERN_ERR "ERROR: domain->cpu_power not "
5179					"set\n");
5180			break;
5181		}
5182
5183		if (!cpumask_weight(sched_group_cpus(group))) {
5184			printk(KERN_CONT "\n");
5185			printk(KERN_ERR "ERROR: empty group\n");
5186			break;
5187		}
5188
5189		if (!(sd->flags & SD_OVERLAP) &&
5190		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5191			printk(KERN_CONT "\n");
5192			printk(KERN_ERR "ERROR: repeated CPUs\n");
5193			break;
5194		}
5195
5196		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5197
5198		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5199
5200		printk(KERN_CONT " %s", str);
5201		if (group->sgp->power != SCHED_POWER_SCALE) {
5202			printk(KERN_CONT " (cpu_power = %d)",
5203				group->sgp->power);
5204		}
5205
5206		group = group->next;
5207	} while (group != sd->groups);
5208	printk(KERN_CONT "\n");
5209
5210	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5211		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5212
5213	if (sd->parent &&
5214	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5215		printk(KERN_ERR "ERROR: parent span is not a superset "
5216			"of domain->span\n");
5217	return 0;
5218}
5219
5220static void sched_domain_debug(struct sched_domain *sd, int cpu)
5221{
5222	int level = 0;
5223
5224	if (!sched_debug_enabled)
5225		return;
5226
5227	if (!sd) {
5228		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5229		return;
5230	}
5231
5232	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5233
5234	for (;;) {
5235		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5236			break;
5237		level++;
5238		sd = sd->parent;
5239		if (!sd)
5240			break;
5241	}
5242}
5243#else /* !CONFIG_SCHED_DEBUG */
5244# define sched_domain_debug(sd, cpu) do { } while (0)
5245static inline bool sched_debug(void)
5246{
5247	return false;
5248}
5249#endif /* CONFIG_SCHED_DEBUG */
5250
5251static int sd_degenerate(struct sched_domain *sd)
5252{
5253	if (cpumask_weight(sched_domain_span(sd)) == 1)
5254		return 1;
5255
5256	/* Following flags need at least 2 groups */
5257	if (sd->flags & (SD_LOAD_BALANCE |
5258			 SD_BALANCE_NEWIDLE |
5259			 SD_BALANCE_FORK |
5260			 SD_BALANCE_EXEC |
5261			 SD_SHARE_CPUPOWER |
5262			 SD_SHARE_PKG_RESOURCES)) {
5263		if (sd->groups != sd->groups->next)
5264			return 0;
5265	}
5266
5267	/* Following flags don't use groups */
5268	if (sd->flags & (SD_WAKE_AFFINE))
5269		return 0;
5270
5271	return 1;
5272}
5273
5274static int
5275sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5276{
5277	unsigned long cflags = sd->flags, pflags = parent->flags;
5278
5279	if (sd_degenerate(parent))
5280		return 1;
5281
5282	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5283		return 0;
5284
5285	/* Flags needing groups don't count if only 1 group in parent */
5286	if (parent->groups == parent->groups->next) {
5287		pflags &= ~(SD_LOAD_BALANCE |
5288				SD_BALANCE_NEWIDLE |
5289				SD_BALANCE_FORK |
5290				SD_BALANCE_EXEC |
5291				SD_SHARE_CPUPOWER |
5292				SD_SHARE_PKG_RESOURCES |
5293				SD_PREFER_SIBLING);
5294		if (nr_node_ids == 1)
5295			pflags &= ~SD_SERIALIZE;
5296	}
5297	if (~cflags & pflags)
5298		return 0;
5299
5300	return 1;
5301}
5302
5303static void free_rootdomain(struct rcu_head *rcu)
5304{
5305	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5306
5307	cpupri_cleanup(&rd->cpupri);
5308	cpudl_cleanup(&rd->cpudl);
5309	free_cpumask_var(rd->dlo_mask);
5310	free_cpumask_var(rd->rto_mask);
5311	free_cpumask_var(rd->online);
5312	free_cpumask_var(rd->span);
5313	kfree(rd);
5314}
5315
5316static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5317{
5318	struct root_domain *old_rd = NULL;
5319	unsigned long flags;
5320
5321	raw_spin_lock_irqsave(&rq->lock, flags);
5322
5323	if (rq->rd) {
5324		old_rd = rq->rd;
5325
5326		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5327			set_rq_offline(rq);
5328
5329		cpumask_clear_cpu(rq->cpu, old_rd->span);
5330
5331		/*
5332		 * If we dont want to free the old_rd yet then
5333		 * set old_rd to NULL to skip the freeing later
5334		 * in this function:
5335		 */
5336		if (!atomic_dec_and_test(&old_rd->refcount))
5337			old_rd = NULL;
5338	}
5339
5340	atomic_inc(&rd->refcount);
5341	rq->rd = rd;
5342
5343	cpumask_set_cpu(rq->cpu, rd->span);
5344	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5345		set_rq_online(rq);
5346
5347	raw_spin_unlock_irqrestore(&rq->lock, flags);
5348
5349	if (old_rd)
5350		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5351}
5352
5353static int init_rootdomain(struct root_domain *rd)
5354{
5355	memset(rd, 0, sizeof(*rd));
5356
5357	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5358		goto out;
5359	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5360		goto free_span;
5361	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5362		goto free_online;
5363	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5364		goto free_dlo_mask;
5365
5366	init_dl_bw(&rd->dl_bw);
5367	if (cpudl_init(&rd->cpudl) != 0)
5368		goto free_dlo_mask;
5369
5370	if (cpupri_init(&rd->cpupri) != 0)
5371		goto free_rto_mask;
5372	return 0;
5373
5374free_rto_mask:
5375	free_cpumask_var(rd->rto_mask);
5376free_dlo_mask:
5377	free_cpumask_var(rd->dlo_mask);
5378free_online:
5379	free_cpumask_var(rd->online);
5380free_span:
5381	free_cpumask_var(rd->span);
5382out:
5383	return -ENOMEM;
5384}
5385
5386/*
5387 * By default the system creates a single root-domain with all cpus as
5388 * members (mimicking the global state we have today).
5389 */
5390struct root_domain def_root_domain;
5391
5392static void init_defrootdomain(void)
5393{
5394	init_rootdomain(&def_root_domain);
5395
5396	atomic_set(&def_root_domain.refcount, 1);
5397}
5398
5399static struct root_domain *alloc_rootdomain(void)
5400{
5401	struct root_domain *rd;
5402
5403	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5404	if (!rd)
5405		return NULL;
5406
5407	if (init_rootdomain(rd) != 0) {
5408		kfree(rd);
5409		return NULL;
5410	}
5411
5412	return rd;
5413}
5414
5415static void free_sched_groups(struct sched_group *sg, int free_sgp)
5416{
5417	struct sched_group *tmp, *first;
5418
5419	if (!sg)
5420		return;
5421
5422	first = sg;
5423	do {
5424		tmp = sg->next;
5425
5426		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5427			kfree(sg->sgp);
5428
5429		kfree(sg);
5430		sg = tmp;
5431	} while (sg != first);
5432}
5433
5434static void free_sched_domain(struct rcu_head *rcu)
5435{
5436	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5437
5438	/*
5439	 * If its an overlapping domain it has private groups, iterate and
5440	 * nuke them all.
5441	 */
5442	if (sd->flags & SD_OVERLAP) {
5443		free_sched_groups(sd->groups, 1);
5444	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5445		kfree(sd->groups->sgp);
5446		kfree(sd->groups);
5447	}
5448	kfree(sd);
5449}
5450
5451static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5452{
5453	call_rcu(&sd->rcu, free_sched_domain);
5454}
5455
5456static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5457{
5458	for (; sd; sd = sd->parent)
5459		destroy_sched_domain(sd, cpu);
5460}
5461
5462/*
5463 * Keep a special pointer to the highest sched_domain that has
5464 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5465 * allows us to avoid some pointer chasing select_idle_sibling().
5466 *
5467 * Also keep a unique ID per domain (we use the first cpu number in
5468 * the cpumask of the domain), this allows us to quickly tell if
5469 * two cpus are in the same cache domain, see cpus_share_cache().
5470 */
5471DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5472DEFINE_PER_CPU(int, sd_llc_size);
5473DEFINE_PER_CPU(int, sd_llc_id);
5474DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5475DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5476DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5477
5478static void update_top_cache_domain(int cpu)
5479{
5480	struct sched_domain *sd;
5481	struct sched_domain *busy_sd = NULL;
5482	int id = cpu;
5483	int size = 1;
5484
5485	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5486	if (sd) {
5487		id = cpumask_first(sched_domain_span(sd));
5488		size = cpumask_weight(sched_domain_span(sd));
5489		busy_sd = sd->parent; /* sd_busy */
5490	}
5491	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5492
5493	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5494	per_cpu(sd_llc_size, cpu) = size;
5495	per_cpu(sd_llc_id, cpu) = id;
5496
5497	sd = lowest_flag_domain(cpu, SD_NUMA);
5498	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5499
5500	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5501	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5502}
5503
5504/*
5505 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5506 * hold the hotplug lock.
5507 */
5508static void
5509cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5510{
5511	struct rq *rq = cpu_rq(cpu);
5512	struct sched_domain *tmp;
5513
5514	/* Remove the sched domains which do not contribute to scheduling. */
5515	for (tmp = sd; tmp; ) {
5516		struct sched_domain *parent = tmp->parent;
5517		if (!parent)
5518			break;
5519
5520		if (sd_parent_degenerate(tmp, parent)) {
5521			tmp->parent = parent->parent;
5522			if (parent->parent)
5523				parent->parent->child = tmp;
5524			/*
5525			 * Transfer SD_PREFER_SIBLING down in case of a
5526			 * degenerate parent; the spans match for this
5527			 * so the property transfers.
5528			 */
5529			if (parent->flags & SD_PREFER_SIBLING)
5530				tmp->flags |= SD_PREFER_SIBLING;
5531			destroy_sched_domain(parent, cpu);
5532		} else
5533			tmp = tmp->parent;
5534	}
5535
5536	if (sd && sd_degenerate(sd)) {
5537		tmp = sd;
5538		sd = sd->parent;
5539		destroy_sched_domain(tmp, cpu);
5540		if (sd)
5541			sd->child = NULL;
5542	}
5543
5544	sched_domain_debug(sd, cpu);
5545
5546	rq_attach_root(rq, rd);
5547	tmp = rq->sd;
5548	rcu_assign_pointer(rq->sd, sd);
5549	destroy_sched_domains(tmp, cpu);
5550
5551	update_top_cache_domain(cpu);
5552}
5553
5554/* cpus with isolated domains */
5555static cpumask_var_t cpu_isolated_map;
5556
5557/* Setup the mask of cpus configured for isolated domains */
5558static int __init isolated_cpu_setup(char *str)
5559{
5560	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5561	cpulist_parse(str, cpu_isolated_map);
5562	return 1;
5563}
5564
5565__setup("isolcpus=", isolated_cpu_setup);
5566
5567static const struct cpumask *cpu_cpu_mask(int cpu)
5568{
5569	return cpumask_of_node(cpu_to_node(cpu));
5570}
5571
5572struct sd_data {
5573	struct sched_domain **__percpu sd;
5574	struct sched_group **__percpu sg;
5575	struct sched_group_power **__percpu sgp;
5576};
5577
5578struct s_data {
5579	struct sched_domain ** __percpu sd;
5580	struct root_domain	*rd;
5581};
5582
5583enum s_alloc {
5584	sa_rootdomain,
5585	sa_sd,
5586	sa_sd_storage,
5587	sa_none,
5588};
5589
5590struct sched_domain_topology_level;
5591
5592typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5593typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5594
5595#define SDTL_OVERLAP	0x01
5596
5597struct sched_domain_topology_level {
5598	sched_domain_init_f init;
5599	sched_domain_mask_f mask;
5600	int		    flags;
5601	int		    numa_level;
5602	struct sd_data      data;
5603};
5604
5605/*
5606 * Build an iteration mask that can exclude certain CPUs from the upwards
5607 * domain traversal.
5608 *
5609 * Asymmetric node setups can result in situations where the domain tree is of
5610 * unequal depth, make sure to skip domains that already cover the entire
5611 * range.
5612 *
5613 * In that case build_sched_domains() will have terminated the iteration early
5614 * and our sibling sd spans will be empty. Domains should always include the
5615 * cpu they're built on, so check that.
5616 *
5617 */
5618static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5619{
5620	const struct cpumask *span = sched_domain_span(sd);
5621	struct sd_data *sdd = sd->private;
5622	struct sched_domain *sibling;
5623	int i;
5624
5625	for_each_cpu(i, span) {
5626		sibling = *per_cpu_ptr(sdd->sd, i);
5627		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5628			continue;
5629
5630		cpumask_set_cpu(i, sched_group_mask(sg));
5631	}
5632}
5633
5634/*
5635 * Return the canonical balance cpu for this group, this is the first cpu
5636 * of this group that's also in the iteration mask.
5637 */
5638int group_balance_cpu(struct sched_group *sg)
5639{
5640	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5641}
5642
5643static int
5644build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5645{
5646	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5647	const struct cpumask *span = sched_domain_span(sd);
5648	struct cpumask *covered = sched_domains_tmpmask;
5649	struct sd_data *sdd = sd->private;
5650	struct sched_domain *child;
5651	int i;
5652
5653	cpumask_clear(covered);
5654
5655	for_each_cpu(i, span) {
5656		struct cpumask *sg_span;
5657
5658		if (cpumask_test_cpu(i, covered))
5659			continue;
5660
5661		child = *per_cpu_ptr(sdd->sd, i);
5662
5663		/* See the comment near build_group_mask(). */
5664		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5665			continue;
5666
5667		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5668				GFP_KERNEL, cpu_to_node(cpu));
5669
5670		if (!sg)
5671			goto fail;
5672
5673		sg_span = sched_group_cpus(sg);
5674		if (child->child) {
5675			child = child->child;
5676			cpumask_copy(sg_span, sched_domain_span(child));
5677		} else
5678			cpumask_set_cpu(i, sg_span);
5679
5680		cpumask_or(covered, covered, sg_span);
5681
5682		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5683		if (atomic_inc_return(&sg->sgp->ref) == 1)
5684			build_group_mask(sd, sg);
5685
5686		/*
5687		 * Initialize sgp->power such that even if we mess up the
5688		 * domains and no possible iteration will get us here, we won't
5689		 * die on a /0 trap.
5690		 */
5691		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5692		sg->sgp->power_orig = sg->sgp->power;
5693
5694		/*
5695		 * Make sure the first group of this domain contains the
5696		 * canonical balance cpu. Otherwise the sched_domain iteration
5697		 * breaks. See update_sg_lb_stats().
5698		 */
5699		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5700		    group_balance_cpu(sg) == cpu)
5701			groups = sg;
5702
5703		if (!first)
5704			first = sg;
5705		if (last)
5706			last->next = sg;
5707		last = sg;
5708		last->next = first;
5709	}
5710	sd->groups = groups;
5711
5712	return 0;
5713
5714fail:
5715	free_sched_groups(first, 0);
5716
5717	return -ENOMEM;
5718}
5719
5720static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5721{
5722	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5723	struct sched_domain *child = sd->child;
5724
5725	if (child)
5726		cpu = cpumask_first(sched_domain_span(child));
5727
5728	if (sg) {
5729		*sg = *per_cpu_ptr(sdd->sg, cpu);
5730		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5731		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5732	}
5733
5734	return cpu;
5735}
5736
5737/*
5738 * build_sched_groups will build a circular linked list of the groups
5739 * covered by the given span, and will set each group's ->cpumask correctly,
5740 * and ->cpu_power to 0.
5741 *
5742 * Assumes the sched_domain tree is fully constructed
5743 */
5744static int
5745build_sched_groups(struct sched_domain *sd, int cpu)
5746{
5747	struct sched_group *first = NULL, *last = NULL;
5748	struct sd_data *sdd = sd->private;
5749	const struct cpumask *span = sched_domain_span(sd);
5750	struct cpumask *covered;
5751	int i;
5752
5753	get_group(cpu, sdd, &sd->groups);
5754	atomic_inc(&sd->groups->ref);
5755
5756	if (cpu != cpumask_first(span))
5757		return 0;
5758
5759	lockdep_assert_held(&sched_domains_mutex);
5760	covered = sched_domains_tmpmask;
5761
5762	cpumask_clear(covered);
5763
5764	for_each_cpu(i, span) {
5765		struct sched_group *sg;
5766		int group, j;
5767
5768		if (cpumask_test_cpu(i, covered))
5769			continue;
5770
5771		group = get_group(i, sdd, &sg);
5772		cpumask_clear(sched_group_cpus(sg));
5773		sg->sgp->power = 0;
5774		cpumask_setall(sched_group_mask(sg));
5775
5776		for_each_cpu(j, span) {
5777			if (get_group(j, sdd, NULL) != group)
5778				continue;
5779
5780			cpumask_set_cpu(j, covered);
5781			cpumask_set_cpu(j, sched_group_cpus(sg));
5782		}
5783
5784		if (!first)
5785			first = sg;
5786		if (last)
5787			last->next = sg;
5788		last = sg;
5789	}
5790	last->next = first;
5791
5792	return 0;
5793}
5794
5795/*
5796 * Initialize sched groups cpu_power.
5797 *
5798 * cpu_power indicates the capacity of sched group, which is used while
5799 * distributing the load between different sched groups in a sched domain.
5800 * Typically cpu_power for all the groups in a sched domain will be same unless
5801 * there are asymmetries in the topology. If there are asymmetries, group
5802 * having more cpu_power will pickup more load compared to the group having
5803 * less cpu_power.
5804 */
5805static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5806{
5807	struct sched_group *sg = sd->groups;
5808
5809	WARN_ON(!sg);
5810
5811	do {
5812		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5813		sg = sg->next;
5814	} while (sg != sd->groups);
5815
5816	if (cpu != group_balance_cpu(sg))
5817		return;
5818
5819	update_group_power(sd, cpu);
5820	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5821}
5822
5823int __weak arch_sd_sibling_asym_packing(void)
5824{
5825       return 0*SD_ASYM_PACKING;
5826}
5827
5828/*
5829 * Initializers for schedule domains
5830 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5831 */
5832
5833#ifdef CONFIG_SCHED_DEBUG
5834# define SD_INIT_NAME(sd, type)		sd->name = #type
5835#else
5836# define SD_INIT_NAME(sd, type)		do { } while (0)
5837#endif
5838
5839#define SD_INIT_FUNC(type)						\
5840static noinline struct sched_domain *					\
5841sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5842{									\
5843	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5844	*sd = SD_##type##_INIT;						\
5845	SD_INIT_NAME(sd, type);						\
5846	sd->private = &tl->data;					\
5847	return sd;							\
5848}
5849
5850SD_INIT_FUNC(CPU)
5851#ifdef CONFIG_SCHED_SMT
5852 SD_INIT_FUNC(SIBLING)
5853#endif
5854#ifdef CONFIG_SCHED_MC
5855 SD_INIT_FUNC(MC)
5856#endif
5857#ifdef CONFIG_SCHED_BOOK
5858 SD_INIT_FUNC(BOOK)
5859#endif
5860
5861static int default_relax_domain_level = -1;
5862int sched_domain_level_max;
5863
5864static int __init setup_relax_domain_level(char *str)
5865{
5866	if (kstrtoint(str, 0, &default_relax_domain_level))
5867		pr_warn("Unable to set relax_domain_level\n");
5868
5869	return 1;
5870}
5871__setup("relax_domain_level=", setup_relax_domain_level);
5872
5873static void set_domain_attribute(struct sched_domain *sd,
5874				 struct sched_domain_attr *attr)
5875{
5876	int request;
5877
5878	if (!attr || attr->relax_domain_level < 0) {
5879		if (default_relax_domain_level < 0)
5880			return;
5881		else
5882			request = default_relax_domain_level;
5883	} else
5884		request = attr->relax_domain_level;
5885	if (request < sd->level) {
5886		/* turn off idle balance on this domain */
5887		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5888	} else {
5889		/* turn on idle balance on this domain */
5890		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5891	}
5892}
5893
5894static void __sdt_free(const struct cpumask *cpu_map);
5895static int __sdt_alloc(const struct cpumask *cpu_map);
5896
5897static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5898				 const struct cpumask *cpu_map)
5899{
5900	switch (what) {
5901	case sa_rootdomain:
5902		if (!atomic_read(&d->rd->refcount))
5903			free_rootdomain(&d->rd->rcu); /* fall through */
5904	case sa_sd:
5905		free_percpu(d->sd); /* fall through */
5906	case sa_sd_storage:
5907		__sdt_free(cpu_map); /* fall through */
5908	case sa_none:
5909		break;
5910	}
5911}
5912
5913static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5914						   const struct cpumask *cpu_map)
5915{
5916	memset(d, 0, sizeof(*d));
5917
5918	if (__sdt_alloc(cpu_map))
5919		return sa_sd_storage;
5920	d->sd = alloc_percpu(struct sched_domain *);
5921	if (!d->sd)
5922		return sa_sd_storage;
5923	d->rd = alloc_rootdomain();
5924	if (!d->rd)
5925		return sa_sd;
5926	return sa_rootdomain;
5927}
5928
5929/*
5930 * NULL the sd_data elements we've used to build the sched_domain and
5931 * sched_group structure so that the subsequent __free_domain_allocs()
5932 * will not free the data we're using.
5933 */
5934static void claim_allocations(int cpu, struct sched_domain *sd)
5935{
5936	struct sd_data *sdd = sd->private;
5937
5938	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5939	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5940
5941	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5942		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5943
5944	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5945		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5946}
5947
5948#ifdef CONFIG_SCHED_SMT
5949static const struct cpumask *cpu_smt_mask(int cpu)
5950{
5951	return topology_thread_cpumask(cpu);
5952}
5953#endif
5954
5955/*
5956 * Topology list, bottom-up.
5957 */
5958static struct sched_domain_topology_level default_topology[] = {
5959#ifdef CONFIG_SCHED_SMT
5960	{ sd_init_SIBLING, cpu_smt_mask, },
5961#endif
5962#ifdef CONFIG_SCHED_MC
5963	{ sd_init_MC, cpu_coregroup_mask, },
5964#endif
5965#ifdef CONFIG_SCHED_BOOK
5966	{ sd_init_BOOK, cpu_book_mask, },
5967#endif
5968	{ sd_init_CPU, cpu_cpu_mask, },
5969	{ NULL, },
5970};
5971
5972static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5973
5974#define for_each_sd_topology(tl)			\
5975	for (tl = sched_domain_topology; tl->init; tl++)
5976
5977#ifdef CONFIG_NUMA
5978
5979static int sched_domains_numa_levels;
5980static int *sched_domains_numa_distance;
5981static struct cpumask ***sched_domains_numa_masks;
5982static int sched_domains_curr_level;
5983
5984static inline int sd_local_flags(int level)
5985{
5986	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5987		return 0;
5988
5989	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5990}
5991
5992static struct sched_domain *
5993sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5994{
5995	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5996	int level = tl->numa_level;
5997	int sd_weight = cpumask_weight(
5998			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5999
6000	*sd = (struct sched_domain){
6001		.min_interval		= sd_weight,
6002		.max_interval		= 2*sd_weight,
6003		.busy_factor		= 32,
6004		.imbalance_pct		= 125,
6005		.cache_nice_tries	= 2,
6006		.busy_idx		= 3,
6007		.idle_idx		= 2,
6008		.newidle_idx		= 0,
6009		.wake_idx		= 0,
6010		.forkexec_idx		= 0,
6011
6012		.flags			= 1*SD_LOAD_BALANCE
6013					| 1*SD_BALANCE_NEWIDLE
6014					| 0*SD_BALANCE_EXEC
6015					| 0*SD_BALANCE_FORK
6016					| 0*SD_BALANCE_WAKE
6017					| 0*SD_WAKE_AFFINE
6018					| 0*SD_SHARE_CPUPOWER
6019					| 0*SD_SHARE_PKG_RESOURCES
6020					| 1*SD_SERIALIZE
6021					| 0*SD_PREFER_SIBLING
6022					| 1*SD_NUMA
6023					| sd_local_flags(level)
6024					,
6025		.last_balance		= jiffies,
6026		.balance_interval	= sd_weight,
6027	};
6028	SD_INIT_NAME(sd, NUMA);
6029	sd->private = &tl->data;
6030
6031	/*
6032	 * Ugly hack to pass state to sd_numa_mask()...
6033	 */
6034	sched_domains_curr_level = tl->numa_level;
6035
6036	return sd;
6037}
6038
6039static const struct cpumask *sd_numa_mask(int cpu)
6040{
6041	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6042}
6043
6044static void sched_numa_warn(const char *str)
6045{
6046	static int done = false;
6047	int i,j;
6048
6049	if (done)
6050		return;
6051
6052	done = true;
6053
6054	printk(KERN_WARNING "ERROR: %s\n\n", str);
6055
6056	for (i = 0; i < nr_node_ids; i++) {
6057		printk(KERN_WARNING "  ");
6058		for (j = 0; j < nr_node_ids; j++)
6059			printk(KERN_CONT "%02d ", node_distance(i,j));
6060		printk(KERN_CONT "\n");
6061	}
6062	printk(KERN_WARNING "\n");
6063}
6064
6065static bool find_numa_distance(int distance)
6066{
6067	int i;
6068
6069	if (distance == node_distance(0, 0))
6070		return true;
6071
6072	for (i = 0; i < sched_domains_numa_levels; i++) {
6073		if (sched_domains_numa_distance[i] == distance)
6074			return true;
6075	}
6076
6077	return false;
6078}
6079
6080static void sched_init_numa(void)
6081{
6082	int next_distance, curr_distance = node_distance(0, 0);
6083	struct sched_domain_topology_level *tl;
6084	int level = 0;
6085	int i, j, k;
6086
6087	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6088	if (!sched_domains_numa_distance)
6089		return;
6090
6091	/*
6092	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6093	 * unique distances in the node_distance() table.
6094	 *
6095	 * Assumes node_distance(0,j) includes all distances in
6096	 * node_distance(i,j) in order to avoid cubic time.
6097	 */
6098	next_distance = curr_distance;
6099	for (i = 0; i < nr_node_ids; i++) {
6100		for (j = 0; j < nr_node_ids; j++) {
6101			for (k = 0; k < nr_node_ids; k++) {
6102				int distance = node_distance(i, k);
6103
6104				if (distance > curr_distance &&
6105				    (distance < next_distance ||
6106				     next_distance == curr_distance))
6107					next_distance = distance;
6108
6109				/*
6110				 * While not a strong assumption it would be nice to know
6111				 * about cases where if node A is connected to B, B is not
6112				 * equally connected to A.
6113				 */
6114				if (sched_debug() && node_distance(k, i) != distance)
6115					sched_numa_warn("Node-distance not symmetric");
6116
6117				if (sched_debug() && i && !find_numa_distance(distance))
6118					sched_numa_warn("Node-0 not representative");
6119			}
6120			if (next_distance != curr_distance) {
6121				sched_domains_numa_distance[level++] = next_distance;
6122				sched_domains_numa_levels = level;
6123				curr_distance = next_distance;
6124			} else break;
6125		}
6126
6127		/*
6128		 * In case of sched_debug() we verify the above assumption.
6129		 */
6130		if (!sched_debug())
6131			break;
6132	}
6133	/*
6134	 * 'level' contains the number of unique distances, excluding the
6135	 * identity distance node_distance(i,i).
6136	 *
6137	 * The sched_domains_numa_distance[] array includes the actual distance
6138	 * numbers.
6139	 */
6140
6141	/*
6142	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6143	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6144	 * the array will contain less then 'level' members. This could be
6145	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6146	 * in other functions.
6147	 *
6148	 * We reset it to 'level' at the end of this function.
6149	 */
6150	sched_domains_numa_levels = 0;
6151
6152	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6153	if (!sched_domains_numa_masks)
6154		return;
6155
6156	/*
6157	 * Now for each level, construct a mask per node which contains all
6158	 * cpus of nodes that are that many hops away from us.
6159	 */
6160	for (i = 0; i < level; i++) {
6161		sched_domains_numa_masks[i] =
6162			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6163		if (!sched_domains_numa_masks[i])
6164			return;
6165
6166		for (j = 0; j < nr_node_ids; j++) {
6167			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6168			if (!mask)
6169				return;
6170
6171			sched_domains_numa_masks[i][j] = mask;
6172
6173			for (k = 0; k < nr_node_ids; k++) {
6174				if (node_distance(j, k) > sched_domains_numa_distance[i])
6175					continue;
6176
6177				cpumask_or(mask, mask, cpumask_of_node(k));
6178			}
6179		}
6180	}
6181
6182	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6183			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6184	if (!tl)
6185		return;
6186
6187	/*
6188	 * Copy the default topology bits..
6189	 */
6190	for (i = 0; default_topology[i].init; i++)
6191		tl[i] = default_topology[i];
6192
6193	/*
6194	 * .. and append 'j' levels of NUMA goodness.
6195	 */
6196	for (j = 0; j < level; i++, j++) {
6197		tl[i] = (struct sched_domain_topology_level){
6198			.init = sd_numa_init,
6199			.mask = sd_numa_mask,
6200			.flags = SDTL_OVERLAP,
6201			.numa_level = j,
6202		};
6203	}
6204
6205	sched_domain_topology = tl;
6206
6207	sched_domains_numa_levels = level;
6208}
6209
6210static void sched_domains_numa_masks_set(int cpu)
6211{
6212	int i, j;
6213	int node = cpu_to_node(cpu);
6214
6215	for (i = 0; i < sched_domains_numa_levels; i++) {
6216		for (j = 0; j < nr_node_ids; j++) {
6217			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6218				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6219		}
6220	}
6221}
6222
6223static void sched_domains_numa_masks_clear(int cpu)
6224{
6225	int i, j;
6226	for (i = 0; i < sched_domains_numa_levels; i++) {
6227		for (j = 0; j < nr_node_ids; j++)
6228			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6229	}
6230}
6231
6232/*
6233 * Update sched_domains_numa_masks[level][node] array when new cpus
6234 * are onlined.
6235 */
6236static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6237					   unsigned long action,
6238					   void *hcpu)
6239{
6240	int cpu = (long)hcpu;
6241
6242	switch (action & ~CPU_TASKS_FROZEN) {
6243	case CPU_ONLINE:
6244		sched_domains_numa_masks_set(cpu);
6245		break;
6246
6247	case CPU_DEAD:
6248		sched_domains_numa_masks_clear(cpu);
6249		break;
6250
6251	default:
6252		return NOTIFY_DONE;
6253	}
6254
6255	return NOTIFY_OK;
6256}
6257#else
6258static inline void sched_init_numa(void)
6259{
6260}
6261
6262static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6263					   unsigned long action,
6264					   void *hcpu)
6265{
6266	return 0;
6267}
6268#endif /* CONFIG_NUMA */
6269
6270static int __sdt_alloc(const struct cpumask *cpu_map)
6271{
6272	struct sched_domain_topology_level *tl;
6273	int j;
6274
6275	for_each_sd_topology(tl) {
6276		struct sd_data *sdd = &tl->data;
6277
6278		sdd->sd = alloc_percpu(struct sched_domain *);
6279		if (!sdd->sd)
6280			return -ENOMEM;
6281
6282		sdd->sg = alloc_percpu(struct sched_group *);
6283		if (!sdd->sg)
6284			return -ENOMEM;
6285
6286		sdd->sgp = alloc_percpu(struct sched_group_power *);
6287		if (!sdd->sgp)
6288			return -ENOMEM;
6289
6290		for_each_cpu(j, cpu_map) {
6291			struct sched_domain *sd;
6292			struct sched_group *sg;
6293			struct sched_group_power *sgp;
6294
6295		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6296					GFP_KERNEL, cpu_to_node(j));
6297			if (!sd)
6298				return -ENOMEM;
6299
6300			*per_cpu_ptr(sdd->sd, j) = sd;
6301
6302			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6303					GFP_KERNEL, cpu_to_node(j));
6304			if (!sg)
6305				return -ENOMEM;
6306
6307			sg->next = sg;
6308
6309			*per_cpu_ptr(sdd->sg, j) = sg;
6310
6311			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6312					GFP_KERNEL, cpu_to_node(j));
6313			if (!sgp)
6314				return -ENOMEM;
6315
6316			*per_cpu_ptr(sdd->sgp, j) = sgp;
6317		}
6318	}
6319
6320	return 0;
6321}
6322
6323static void __sdt_free(const struct cpumask *cpu_map)
6324{
6325	struct sched_domain_topology_level *tl;
6326	int j;
6327
6328	for_each_sd_topology(tl) {
6329		struct sd_data *sdd = &tl->data;
6330
6331		for_each_cpu(j, cpu_map) {
6332			struct sched_domain *sd;
6333
6334			if (sdd->sd) {
6335				sd = *per_cpu_ptr(sdd->sd, j);
6336				if (sd && (sd->flags & SD_OVERLAP))
6337					free_sched_groups(sd->groups, 0);
6338				kfree(*per_cpu_ptr(sdd->sd, j));
6339			}
6340
6341			if (sdd->sg)
6342				kfree(*per_cpu_ptr(sdd->sg, j));
6343			if (sdd->sgp)
6344				kfree(*per_cpu_ptr(sdd->sgp, j));
6345		}
6346		free_percpu(sdd->sd);
6347		sdd->sd = NULL;
6348		free_percpu(sdd->sg);
6349		sdd->sg = NULL;
6350		free_percpu(sdd->sgp);
6351		sdd->sgp = NULL;
6352	}
6353}
6354
6355struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6356		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6357		struct sched_domain *child, int cpu)
6358{
6359	struct sched_domain *sd = tl->init(tl, cpu);
6360	if (!sd)
6361		return child;
6362
6363	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6364	if (child) {
6365		sd->level = child->level + 1;
6366		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6367		child->parent = sd;
6368		sd->child = child;
6369	}
6370	set_domain_attribute(sd, attr);
6371
6372	return sd;
6373}
6374
6375/*
6376 * Build sched domains for a given set of cpus and attach the sched domains
6377 * to the individual cpus
6378 */
6379static int build_sched_domains(const struct cpumask *cpu_map,
6380			       struct sched_domain_attr *attr)
6381{
6382	enum s_alloc alloc_state;
6383	struct sched_domain *sd;
6384	struct s_data d;
6385	int i, ret = -ENOMEM;
6386
6387	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6388	if (alloc_state != sa_rootdomain)
6389		goto error;
6390
6391	/* Set up domains for cpus specified by the cpu_map. */
6392	for_each_cpu(i, cpu_map) {
6393		struct sched_domain_topology_level *tl;
6394
6395		sd = NULL;
6396		for_each_sd_topology(tl) {
6397			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6398			if (tl == sched_domain_topology)
6399				*per_cpu_ptr(d.sd, i) = sd;
6400			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6401				sd->flags |= SD_OVERLAP;
6402			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6403				break;
6404		}
6405	}
6406
6407	/* Build the groups for the domains */
6408	for_each_cpu(i, cpu_map) {
6409		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6410			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6411			if (sd->flags & SD_OVERLAP) {
6412				if (build_overlap_sched_groups(sd, i))
6413					goto error;
6414			} else {
6415				if (build_sched_groups(sd, i))
6416					goto error;
6417			}
6418		}
6419	}
6420
6421	/* Calculate CPU power for physical packages and nodes */
6422	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6423		if (!cpumask_test_cpu(i, cpu_map))
6424			continue;
6425
6426		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6427			claim_allocations(i, sd);
6428			init_sched_groups_power(i, sd);
6429		}
6430	}
6431
6432	/* Attach the domains */
6433	rcu_read_lock();
6434	for_each_cpu(i, cpu_map) {
6435		sd = *per_cpu_ptr(d.sd, i);
6436		cpu_attach_domain(sd, d.rd, i);
6437	}
6438	rcu_read_unlock();
6439
6440	ret = 0;
6441error:
6442	__free_domain_allocs(&d, alloc_state, cpu_map);
6443	return ret;
6444}
6445
6446static cpumask_var_t *doms_cur;	/* current sched domains */
6447static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6448static struct sched_domain_attr *dattr_cur;
6449				/* attribues of custom domains in 'doms_cur' */
6450
6451/*
6452 * Special case: If a kmalloc of a doms_cur partition (array of
6453 * cpumask) fails, then fallback to a single sched domain,
6454 * as determined by the single cpumask fallback_doms.
6455 */
6456static cpumask_var_t fallback_doms;
6457
6458/*
6459 * arch_update_cpu_topology lets virtualized architectures update the
6460 * cpu core maps. It is supposed to return 1 if the topology changed
6461 * or 0 if it stayed the same.
6462 */
6463int __attribute__((weak)) arch_update_cpu_topology(void)
6464{
6465	return 0;
6466}
6467
6468cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6469{
6470	int i;
6471	cpumask_var_t *doms;
6472
6473	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6474	if (!doms)
6475		return NULL;
6476	for (i = 0; i < ndoms; i++) {
6477		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6478			free_sched_domains(doms, i);
6479			return NULL;
6480		}
6481	}
6482	return doms;
6483}
6484
6485void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6486{
6487	unsigned int i;
6488	for (i = 0; i < ndoms; i++)
6489		free_cpumask_var(doms[i]);
6490	kfree(doms);
6491}
6492
6493/*
6494 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6495 * For now this just excludes isolated cpus, but could be used to
6496 * exclude other special cases in the future.
6497 */
6498static int init_sched_domains(const struct cpumask *cpu_map)
6499{
6500	int err;
6501
6502	arch_update_cpu_topology();
6503	ndoms_cur = 1;
6504	doms_cur = alloc_sched_domains(ndoms_cur);
6505	if (!doms_cur)
6506		doms_cur = &fallback_doms;
6507	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6508	err = build_sched_domains(doms_cur[0], NULL);
6509	register_sched_domain_sysctl();
6510
6511	return err;
6512}
6513
6514/*
6515 * Detach sched domains from a group of cpus specified in cpu_map
6516 * These cpus will now be attached to the NULL domain
6517 */
6518static void detach_destroy_domains(const struct cpumask *cpu_map)
6519{
6520	int i;
6521
6522	rcu_read_lock();
6523	for_each_cpu(i, cpu_map)
6524		cpu_attach_domain(NULL, &def_root_domain, i);
6525	rcu_read_unlock();
6526}
6527
6528/* handle null as "default" */
6529static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6530			struct sched_domain_attr *new, int idx_new)
6531{
6532	struct sched_domain_attr tmp;
6533
6534	/* fast path */
6535	if (!new && !cur)
6536		return 1;
6537
6538	tmp = SD_ATTR_INIT;
6539	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6540			new ? (new + idx_new) : &tmp,
6541			sizeof(struct sched_domain_attr));
6542}
6543
6544/*
6545 * Partition sched domains as specified by the 'ndoms_new'
6546 * cpumasks in the array doms_new[] of cpumasks. This compares
6547 * doms_new[] to the current sched domain partitioning, doms_cur[].
6548 * It destroys each deleted domain and builds each new domain.
6549 *
6550 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6551 * The masks don't intersect (don't overlap.) We should setup one
6552 * sched domain for each mask. CPUs not in any of the cpumasks will
6553 * not be load balanced. If the same cpumask appears both in the
6554 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6555 * it as it is.
6556 *
6557 * The passed in 'doms_new' should be allocated using
6558 * alloc_sched_domains.  This routine takes ownership of it and will
6559 * free_sched_domains it when done with it. If the caller failed the
6560 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6561 * and partition_sched_domains() will fallback to the single partition
6562 * 'fallback_doms', it also forces the domains to be rebuilt.
6563 *
6564 * If doms_new == NULL it will be replaced with cpu_online_mask.
6565 * ndoms_new == 0 is a special case for destroying existing domains,
6566 * and it will not create the default domain.
6567 *
6568 * Call with hotplug lock held
6569 */
6570void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6571			     struct sched_domain_attr *dattr_new)
6572{
6573	int i, j, n;
6574	int new_topology;
6575
6576	mutex_lock(&sched_domains_mutex);
6577
6578	/* always unregister in case we don't destroy any domains */
6579	unregister_sched_domain_sysctl();
6580
6581	/* Let architecture update cpu core mappings. */
6582	new_topology = arch_update_cpu_topology();
6583
6584	n = doms_new ? ndoms_new : 0;
6585
6586	/* Destroy deleted domains */
6587	for (i = 0; i < ndoms_cur; i++) {
6588		for (j = 0; j < n && !new_topology; j++) {
6589			if (cpumask_equal(doms_cur[i], doms_new[j])
6590			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6591				goto match1;
6592		}
6593		/* no match - a current sched domain not in new doms_new[] */
6594		detach_destroy_domains(doms_cur[i]);
6595match1:
6596		;
6597	}
6598
6599	n = ndoms_cur;
6600	if (doms_new == NULL) {
6601		n = 0;
6602		doms_new = &fallback_doms;
6603		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6604		WARN_ON_ONCE(dattr_new);
6605	}
6606
6607	/* Build new domains */
6608	for (i = 0; i < ndoms_new; i++) {
6609		for (j = 0; j < n && !new_topology; j++) {
6610			if (cpumask_equal(doms_new[i], doms_cur[j])
6611			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6612				goto match2;
6613		}
6614		/* no match - add a new doms_new */
6615		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6616match2:
6617		;
6618	}
6619
6620	/* Remember the new sched domains */
6621	if (doms_cur != &fallback_doms)
6622		free_sched_domains(doms_cur, ndoms_cur);
6623	kfree(dattr_cur);	/* kfree(NULL) is safe */
6624	doms_cur = doms_new;
6625	dattr_cur = dattr_new;
6626	ndoms_cur = ndoms_new;
6627
6628	register_sched_domain_sysctl();
6629
6630	mutex_unlock(&sched_domains_mutex);
6631}
6632
6633static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6634
6635/*
6636 * Update cpusets according to cpu_active mask.  If cpusets are
6637 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6638 * around partition_sched_domains().
6639 *
6640 * If we come here as part of a suspend/resume, don't touch cpusets because we
6641 * want to restore it back to its original state upon resume anyway.
6642 */
6643static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6644			     void *hcpu)
6645{
6646	switch (action) {
6647	case CPU_ONLINE_FROZEN:
6648	case CPU_DOWN_FAILED_FROZEN:
6649
6650		/*
6651		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6652		 * resume sequence. As long as this is not the last online
6653		 * operation in the resume sequence, just build a single sched
6654		 * domain, ignoring cpusets.
6655		 */
6656		num_cpus_frozen--;
6657		if (likely(num_cpus_frozen)) {
6658			partition_sched_domains(1, NULL, NULL);
6659			break;
6660		}
6661
6662		/*
6663		 * This is the last CPU online operation. So fall through and
6664		 * restore the original sched domains by considering the
6665		 * cpuset configurations.
6666		 */
6667
6668	case CPU_ONLINE:
6669	case CPU_DOWN_FAILED:
6670		cpuset_update_active_cpus(true);
6671		break;
6672	default:
6673		return NOTIFY_DONE;
6674	}
6675	return NOTIFY_OK;
6676}
6677
6678static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6679			       void *hcpu)
6680{
6681	switch (action) {
6682	case CPU_DOWN_PREPARE:
6683		cpuset_update_active_cpus(false);
6684		break;
6685	case CPU_DOWN_PREPARE_FROZEN:
6686		num_cpus_frozen++;
6687		partition_sched_domains(1, NULL, NULL);
6688		break;
6689	default:
6690		return NOTIFY_DONE;
6691	}
6692	return NOTIFY_OK;
6693}
6694
6695void __init sched_init_smp(void)
6696{
6697	cpumask_var_t non_isolated_cpus;
6698
6699	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6700	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6701
6702	sched_init_numa();
6703
6704	/*
6705	 * There's no userspace yet to cause hotplug operations; hence all the
6706	 * cpu masks are stable and all blatant races in the below code cannot
6707	 * happen.
6708	 */
6709	mutex_lock(&sched_domains_mutex);
6710	init_sched_domains(cpu_active_mask);
6711	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6712	if (cpumask_empty(non_isolated_cpus))
6713		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6714	mutex_unlock(&sched_domains_mutex);
6715
6716	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6717	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6718	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6719
6720	init_hrtick();
6721
6722	/* Move init over to a non-isolated CPU */
6723	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6724		BUG();
6725	sched_init_granularity();
6726	free_cpumask_var(non_isolated_cpus);
6727
6728	init_sched_rt_class();
6729	init_sched_dl_class();
6730}
6731#else
6732void __init sched_init_smp(void)
6733{
6734	sched_init_granularity();
6735}
6736#endif /* CONFIG_SMP */
6737
6738const_debug unsigned int sysctl_timer_migration = 1;
6739
6740int in_sched_functions(unsigned long addr)
6741{
6742	return in_lock_functions(addr) ||
6743		(addr >= (unsigned long)__sched_text_start
6744		&& addr < (unsigned long)__sched_text_end);
6745}
6746
6747#ifdef CONFIG_CGROUP_SCHED
6748/*
6749 * Default task group.
6750 * Every task in system belongs to this group at bootup.
6751 */
6752struct task_group root_task_group;
6753LIST_HEAD(task_groups);
6754#endif
6755
6756DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6757
6758void __init sched_init(void)
6759{
6760	int i, j;
6761	unsigned long alloc_size = 0, ptr;
6762
6763#ifdef CONFIG_FAIR_GROUP_SCHED
6764	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6765#endif
6766#ifdef CONFIG_RT_GROUP_SCHED
6767	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6768#endif
6769#ifdef CONFIG_CPUMASK_OFFSTACK
6770	alloc_size += num_possible_cpus() * cpumask_size();
6771#endif
6772	if (alloc_size) {
6773		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6774
6775#ifdef CONFIG_FAIR_GROUP_SCHED
6776		root_task_group.se = (struct sched_entity **)ptr;
6777		ptr += nr_cpu_ids * sizeof(void **);
6778
6779		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6780		ptr += nr_cpu_ids * sizeof(void **);
6781
6782#endif /* CONFIG_FAIR_GROUP_SCHED */
6783#ifdef CONFIG_RT_GROUP_SCHED
6784		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6785		ptr += nr_cpu_ids * sizeof(void **);
6786
6787		root_task_group.rt_rq = (struct rt_rq **)ptr;
6788		ptr += nr_cpu_ids * sizeof(void **);
6789
6790#endif /* CONFIG_RT_GROUP_SCHED */
6791#ifdef CONFIG_CPUMASK_OFFSTACK
6792		for_each_possible_cpu(i) {
6793			per_cpu(load_balance_mask, i) = (void *)ptr;
6794			ptr += cpumask_size();
6795		}
6796#endif /* CONFIG_CPUMASK_OFFSTACK */
6797	}
6798
6799	init_rt_bandwidth(&def_rt_bandwidth,
6800			global_rt_period(), global_rt_runtime());
6801	init_dl_bandwidth(&def_dl_bandwidth,
6802			global_rt_period(), global_rt_runtime());
6803
6804#ifdef CONFIG_SMP
6805	init_defrootdomain();
6806#endif
6807
6808#ifdef CONFIG_RT_GROUP_SCHED
6809	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6810			global_rt_period(), global_rt_runtime());
6811#endif /* CONFIG_RT_GROUP_SCHED */
6812
6813#ifdef CONFIG_CGROUP_SCHED
6814	list_add(&root_task_group.list, &task_groups);
6815	INIT_LIST_HEAD(&root_task_group.children);
6816	INIT_LIST_HEAD(&root_task_group.siblings);
6817	autogroup_init(&init_task);
6818
6819#endif /* CONFIG_CGROUP_SCHED */
6820
6821	for_each_possible_cpu(i) {
6822		struct rq *rq;
6823
6824		rq = cpu_rq(i);
6825		raw_spin_lock_init(&rq->lock);
6826		rq->nr_running = 0;
6827		rq->calc_load_active = 0;
6828		rq->calc_load_update = jiffies + LOAD_FREQ;
6829		init_cfs_rq(&rq->cfs);
6830		init_rt_rq(&rq->rt, rq);
6831		init_dl_rq(&rq->dl, rq);
6832#ifdef CONFIG_FAIR_GROUP_SCHED
6833		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6834		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6835		/*
6836		 * How much cpu bandwidth does root_task_group get?
6837		 *
6838		 * In case of task-groups formed thr' the cgroup filesystem, it
6839		 * gets 100% of the cpu resources in the system. This overall
6840		 * system cpu resource is divided among the tasks of
6841		 * root_task_group and its child task-groups in a fair manner,
6842		 * based on each entity's (task or task-group's) weight
6843		 * (se->load.weight).
6844		 *
6845		 * In other words, if root_task_group has 10 tasks of weight
6846		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6847		 * then A0's share of the cpu resource is:
6848		 *
6849		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6850		 *
6851		 * We achieve this by letting root_task_group's tasks sit
6852		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6853		 */
6854		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6855		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6856#endif /* CONFIG_FAIR_GROUP_SCHED */
6857
6858		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6859#ifdef CONFIG_RT_GROUP_SCHED
6860		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6861		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6862#endif
6863
6864		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6865			rq->cpu_load[j] = 0;
6866
6867		rq->last_load_update_tick = jiffies;
6868
6869#ifdef CONFIG_SMP
6870		rq->sd = NULL;
6871		rq->rd = NULL;
6872		rq->cpu_power = SCHED_POWER_SCALE;
6873		rq->post_schedule = 0;
6874		rq->active_balance = 0;
6875		rq->next_balance = jiffies;
6876		rq->push_cpu = 0;
6877		rq->cpu = i;
6878		rq->online = 0;
6879		rq->idle_stamp = 0;
6880		rq->avg_idle = 2*sysctl_sched_migration_cost;
6881		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6882
6883		INIT_LIST_HEAD(&rq->cfs_tasks);
6884
6885		rq_attach_root(rq, &def_root_domain);
6886#ifdef CONFIG_NO_HZ_COMMON
6887		rq->nohz_flags = 0;
6888#endif
6889#ifdef CONFIG_NO_HZ_FULL
6890		rq->last_sched_tick = 0;
6891#endif
6892#endif
6893		init_rq_hrtick(rq);
6894		atomic_set(&rq->nr_iowait, 0);
6895	}
6896
6897	set_load_weight(&init_task);
6898
6899#ifdef CONFIG_PREEMPT_NOTIFIERS
6900	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6901#endif
6902
6903	/*
6904	 * The boot idle thread does lazy MMU switching as well:
6905	 */
6906	atomic_inc(&init_mm.mm_count);
6907	enter_lazy_tlb(&init_mm, current);
6908
6909	/*
6910	 * Make us the idle thread. Technically, schedule() should not be
6911	 * called from this thread, however somewhere below it might be,
6912	 * but because we are the idle thread, we just pick up running again
6913	 * when this runqueue becomes "idle".
6914	 */
6915	init_idle(current, smp_processor_id());
6916
6917	calc_load_update = jiffies + LOAD_FREQ;
6918
6919	/*
6920	 * During early bootup we pretend to be a normal task:
6921	 */
6922	current->sched_class = &fair_sched_class;
6923
6924#ifdef CONFIG_SMP
6925	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6926	/* May be allocated at isolcpus cmdline parse time */
6927	if (cpu_isolated_map == NULL)
6928		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6929	idle_thread_set_boot_cpu();
6930#endif
6931	init_sched_fair_class();
6932
6933	scheduler_running = 1;
6934}
6935
6936#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6937static inline int preempt_count_equals(int preempt_offset)
6938{
6939	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6940
6941	return (nested == preempt_offset);
6942}
6943
6944void __might_sleep(const char *file, int line, int preempt_offset)
6945{
6946	static unsigned long prev_jiffy;	/* ratelimiting */
6947
6948	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6949	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6950	     !is_idle_task(current)) ||
6951	    system_state != SYSTEM_RUNNING || oops_in_progress)
6952		return;
6953	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6954		return;
6955	prev_jiffy = jiffies;
6956
6957	printk(KERN_ERR
6958		"BUG: sleeping function called from invalid context at %s:%d\n",
6959			file, line);
6960	printk(KERN_ERR
6961		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6962			in_atomic(), irqs_disabled(),
6963			current->pid, current->comm);
6964
6965	debug_show_held_locks(current);
6966	if (irqs_disabled())
6967		print_irqtrace_events(current);
6968#ifdef CONFIG_DEBUG_PREEMPT
6969	if (!preempt_count_equals(preempt_offset)) {
6970		pr_err("Preemption disabled at:");
6971		print_ip_sym(current->preempt_disable_ip);
6972		pr_cont("\n");
6973	}
6974#endif
6975	dump_stack();
6976}
6977EXPORT_SYMBOL(__might_sleep);
6978#endif
6979
6980#ifdef CONFIG_MAGIC_SYSRQ
6981static void normalize_task(struct rq *rq, struct task_struct *p)
6982{
6983	const struct sched_class *prev_class = p->sched_class;
6984	struct sched_attr attr = {
6985		.sched_policy = SCHED_NORMAL,
6986	};
6987	int old_prio = p->prio;
6988	int on_rq;
6989
6990	on_rq = p->on_rq;
6991	if (on_rq)
6992		dequeue_task(rq, p, 0);
6993	__setscheduler(rq, p, &attr);
6994	if (on_rq) {
6995		enqueue_task(rq, p, 0);
6996		resched_task(rq->curr);
6997	}
6998
6999	check_class_changed(rq, p, prev_class, old_prio);
7000}
7001
7002void normalize_rt_tasks(void)
7003{
7004	struct task_struct *g, *p;
7005	unsigned long flags;
7006	struct rq *rq;
7007
7008	read_lock_irqsave(&tasklist_lock, flags);
7009	do_each_thread(g, p) {
7010		/*
7011		 * Only normalize user tasks:
7012		 */
7013		if (!p->mm)
7014			continue;
7015
7016		p->se.exec_start		= 0;
7017#ifdef CONFIG_SCHEDSTATS
7018		p->se.statistics.wait_start	= 0;
7019		p->se.statistics.sleep_start	= 0;
7020		p->se.statistics.block_start	= 0;
7021#endif
7022
7023		if (!dl_task(p) && !rt_task(p)) {
7024			/*
7025			 * Renice negative nice level userspace
7026			 * tasks back to 0:
7027			 */
7028			if (task_nice(p) < 0 && p->mm)
7029				set_user_nice(p, 0);
7030			continue;
7031		}
7032
7033		raw_spin_lock(&p->pi_lock);
7034		rq = __task_rq_lock(p);
7035
7036		normalize_task(rq, p);
7037
7038		__task_rq_unlock(rq);
7039		raw_spin_unlock(&p->pi_lock);
7040	} while_each_thread(g, p);
7041
7042	read_unlock_irqrestore(&tasklist_lock, flags);
7043}
7044
7045#endif /* CONFIG_MAGIC_SYSRQ */
7046
7047#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7048/*
7049 * These functions are only useful for the IA64 MCA handling, or kdb.
7050 *
7051 * They can only be called when the whole system has been
7052 * stopped - every CPU needs to be quiescent, and no scheduling
7053 * activity can take place. Using them for anything else would
7054 * be a serious bug, and as a result, they aren't even visible
7055 * under any other configuration.
7056 */
7057
7058/**
7059 * curr_task - return the current task for a given cpu.
7060 * @cpu: the processor in question.
7061 *
7062 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7063 *
7064 * Return: The current task for @cpu.
7065 */
7066struct task_struct *curr_task(int cpu)
7067{
7068	return cpu_curr(cpu);
7069}
7070
7071#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7072
7073#ifdef CONFIG_IA64
7074/**
7075 * set_curr_task - set the current task for a given cpu.
7076 * @cpu: the processor in question.
7077 * @p: the task pointer to set.
7078 *
7079 * Description: This function must only be used when non-maskable interrupts
7080 * are serviced on a separate stack. It allows the architecture to switch the
7081 * notion of the current task on a cpu in a non-blocking manner. This function
7082 * must be called with all CPU's synchronized, and interrupts disabled, the
7083 * and caller must save the original value of the current task (see
7084 * curr_task() above) and restore that value before reenabling interrupts and
7085 * re-starting the system.
7086 *
7087 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7088 */
7089void set_curr_task(int cpu, struct task_struct *p)
7090{
7091	cpu_curr(cpu) = p;
7092}
7093
7094#endif
7095
7096#ifdef CONFIG_CGROUP_SCHED
7097/* task_group_lock serializes the addition/removal of task groups */
7098static DEFINE_SPINLOCK(task_group_lock);
7099
7100static void free_sched_group(struct task_group *tg)
7101{
7102	free_fair_sched_group(tg);
7103	free_rt_sched_group(tg);
7104	autogroup_free(tg);
7105	kfree(tg);
7106}
7107
7108/* allocate runqueue etc for a new task group */
7109struct task_group *sched_create_group(struct task_group *parent)
7110{
7111	struct task_group *tg;
7112
7113	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7114	if (!tg)
7115		return ERR_PTR(-ENOMEM);
7116
7117	if (!alloc_fair_sched_group(tg, parent))
7118		goto err;
7119
7120	if (!alloc_rt_sched_group(tg, parent))
7121		goto err;
7122
7123	return tg;
7124
7125err:
7126	free_sched_group(tg);
7127	return ERR_PTR(-ENOMEM);
7128}
7129
7130void sched_online_group(struct task_group *tg, struct task_group *parent)
7131{
7132	unsigned long flags;
7133
7134	spin_lock_irqsave(&task_group_lock, flags);
7135	list_add_rcu(&tg->list, &task_groups);
7136
7137	WARN_ON(!parent); /* root should already exist */
7138
7139	tg->parent = parent;
7140	INIT_LIST_HEAD(&tg->children);
7141	list_add_rcu(&tg->siblings, &parent->children);
7142	spin_unlock_irqrestore(&task_group_lock, flags);
7143}
7144
7145/* rcu callback to free various structures associated with a task group */
7146static void free_sched_group_rcu(struct rcu_head *rhp)
7147{
7148	/* now it should be safe to free those cfs_rqs */
7149	free_sched_group(container_of(rhp, struct task_group, rcu));
7150}
7151
7152/* Destroy runqueue etc associated with a task group */
7153void sched_destroy_group(struct task_group *tg)
7154{
7155	/* wait for possible concurrent references to cfs_rqs complete */
7156	call_rcu(&tg->rcu, free_sched_group_rcu);
7157}
7158
7159void sched_offline_group(struct task_group *tg)
7160{
7161	unsigned long flags;
7162	int i;
7163
7164	/* end participation in shares distribution */
7165	for_each_possible_cpu(i)
7166		unregister_fair_sched_group(tg, i);
7167
7168	spin_lock_irqsave(&task_group_lock, flags);
7169	list_del_rcu(&tg->list);
7170	list_del_rcu(&tg->siblings);
7171	spin_unlock_irqrestore(&task_group_lock, flags);
7172}
7173
7174/* change task's runqueue when it moves between groups.
7175 *	The caller of this function should have put the task in its new group
7176 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7177 *	reflect its new group.
7178 */
7179void sched_move_task(struct task_struct *tsk)
7180{
7181	struct task_group *tg;
7182	int on_rq, running;
7183	unsigned long flags;
7184	struct rq *rq;
7185
7186	rq = task_rq_lock(tsk, &flags);
7187
7188	running = task_current(rq, tsk);
7189	on_rq = tsk->on_rq;
7190
7191	if (on_rq)
7192		dequeue_task(rq, tsk, 0);
7193	if (unlikely(running))
7194		tsk->sched_class->put_prev_task(rq, tsk);
7195
7196	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7197				lockdep_is_held(&tsk->sighand->siglock)),
7198			  struct task_group, css);
7199	tg = autogroup_task_group(tsk, tg);
7200	tsk->sched_task_group = tg;
7201
7202#ifdef CONFIG_FAIR_GROUP_SCHED
7203	if (tsk->sched_class->task_move_group)
7204		tsk->sched_class->task_move_group(tsk, on_rq);
7205	else
7206#endif
7207		set_task_rq(tsk, task_cpu(tsk));
7208
7209	if (unlikely(running))
7210		tsk->sched_class->set_curr_task(rq);
7211	if (on_rq)
7212		enqueue_task(rq, tsk, 0);
7213
7214	task_rq_unlock(rq, tsk, &flags);
7215}
7216#endif /* CONFIG_CGROUP_SCHED */
7217
7218#ifdef CONFIG_RT_GROUP_SCHED
7219/*
7220 * Ensure that the real time constraints are schedulable.
7221 */
7222static DEFINE_MUTEX(rt_constraints_mutex);
7223
7224/* Must be called with tasklist_lock held */
7225static inline int tg_has_rt_tasks(struct task_group *tg)
7226{
7227	struct task_struct *g, *p;
7228
7229	do_each_thread(g, p) {
7230		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7231			return 1;
7232	} while_each_thread(g, p);
7233
7234	return 0;
7235}
7236
7237struct rt_schedulable_data {
7238	struct task_group *tg;
7239	u64 rt_period;
7240	u64 rt_runtime;
7241};
7242
7243static int tg_rt_schedulable(struct task_group *tg, void *data)
7244{
7245	struct rt_schedulable_data *d = data;
7246	struct task_group *child;
7247	unsigned long total, sum = 0;
7248	u64 period, runtime;
7249
7250	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7251	runtime = tg->rt_bandwidth.rt_runtime;
7252
7253	if (tg == d->tg) {
7254		period = d->rt_period;
7255		runtime = d->rt_runtime;
7256	}
7257
7258	/*
7259	 * Cannot have more runtime than the period.
7260	 */
7261	if (runtime > period && runtime != RUNTIME_INF)
7262		return -EINVAL;
7263
7264	/*
7265	 * Ensure we don't starve existing RT tasks.
7266	 */
7267	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7268		return -EBUSY;
7269
7270	total = to_ratio(period, runtime);
7271
7272	/*
7273	 * Nobody can have more than the global setting allows.
7274	 */
7275	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7276		return -EINVAL;
7277
7278	/*
7279	 * The sum of our children's runtime should not exceed our own.
7280	 */
7281	list_for_each_entry_rcu(child, &tg->children, siblings) {
7282		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7283		runtime = child->rt_bandwidth.rt_runtime;
7284
7285		if (child == d->tg) {
7286			period = d->rt_period;
7287			runtime = d->rt_runtime;
7288		}
7289
7290		sum += to_ratio(period, runtime);
7291	}
7292
7293	if (sum > total)
7294		return -EINVAL;
7295
7296	return 0;
7297}
7298
7299static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7300{
7301	int ret;
7302
7303	struct rt_schedulable_data data = {
7304		.tg = tg,
7305		.rt_period = period,
7306		.rt_runtime = runtime,
7307	};
7308
7309	rcu_read_lock();
7310	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7311	rcu_read_unlock();
7312
7313	return ret;
7314}
7315
7316static int tg_set_rt_bandwidth(struct task_group *tg,
7317		u64 rt_period, u64 rt_runtime)
7318{
7319	int i, err = 0;
7320
7321	mutex_lock(&rt_constraints_mutex);
7322	read_lock(&tasklist_lock);
7323	err = __rt_schedulable(tg, rt_period, rt_runtime);
7324	if (err)
7325		goto unlock;
7326
7327	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7328	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7329	tg->rt_bandwidth.rt_runtime = rt_runtime;
7330
7331	for_each_possible_cpu(i) {
7332		struct rt_rq *rt_rq = tg->rt_rq[i];
7333
7334		raw_spin_lock(&rt_rq->rt_runtime_lock);
7335		rt_rq->rt_runtime = rt_runtime;
7336		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7337	}
7338	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7339unlock:
7340	read_unlock(&tasklist_lock);
7341	mutex_unlock(&rt_constraints_mutex);
7342
7343	return err;
7344}
7345
7346static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7347{
7348	u64 rt_runtime, rt_period;
7349
7350	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7351	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7352	if (rt_runtime_us < 0)
7353		rt_runtime = RUNTIME_INF;
7354
7355	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7356}
7357
7358static long sched_group_rt_runtime(struct task_group *tg)
7359{
7360	u64 rt_runtime_us;
7361
7362	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7363		return -1;
7364
7365	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7366	do_div(rt_runtime_us, NSEC_PER_USEC);
7367	return rt_runtime_us;
7368}
7369
7370static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7371{
7372	u64 rt_runtime, rt_period;
7373
7374	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7375	rt_runtime = tg->rt_bandwidth.rt_runtime;
7376
7377	if (rt_period == 0)
7378		return -EINVAL;
7379
7380	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7381}
7382
7383static long sched_group_rt_period(struct task_group *tg)
7384{
7385	u64 rt_period_us;
7386
7387	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388	do_div(rt_period_us, NSEC_PER_USEC);
7389	return rt_period_us;
7390}
7391#endif /* CONFIG_RT_GROUP_SCHED */
7392
7393#ifdef CONFIG_RT_GROUP_SCHED
7394static int sched_rt_global_constraints(void)
7395{
7396	int ret = 0;
7397
7398	mutex_lock(&rt_constraints_mutex);
7399	read_lock(&tasklist_lock);
7400	ret = __rt_schedulable(NULL, 0, 0);
7401	read_unlock(&tasklist_lock);
7402	mutex_unlock(&rt_constraints_mutex);
7403
7404	return ret;
7405}
7406
7407static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7408{
7409	/* Don't accept realtime tasks when there is no way for them to run */
7410	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7411		return 0;
7412
7413	return 1;
7414}
7415
7416#else /* !CONFIG_RT_GROUP_SCHED */
7417static int sched_rt_global_constraints(void)
7418{
7419	unsigned long flags;
7420	int i, ret = 0;
7421
7422	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7423	for_each_possible_cpu(i) {
7424		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7425
7426		raw_spin_lock(&rt_rq->rt_runtime_lock);
7427		rt_rq->rt_runtime = global_rt_runtime();
7428		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7429	}
7430	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7431
7432	return ret;
7433}
7434#endif /* CONFIG_RT_GROUP_SCHED */
7435
7436static int sched_dl_global_constraints(void)
7437{
7438	u64 runtime = global_rt_runtime();
7439	u64 period = global_rt_period();
7440	u64 new_bw = to_ratio(period, runtime);
7441	int cpu, ret = 0;
7442
7443	/*
7444	 * Here we want to check the bandwidth not being set to some
7445	 * value smaller than the currently allocated bandwidth in
7446	 * any of the root_domains.
7447	 *
7448	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7449	 * cycling on root_domains... Discussion on different/better
7450	 * solutions is welcome!
7451	 */
7452	for_each_possible_cpu(cpu) {
7453		struct dl_bw *dl_b = dl_bw_of(cpu);
7454
7455		raw_spin_lock(&dl_b->lock);
7456		if (new_bw < dl_b->total_bw)
7457			ret = -EBUSY;
7458		raw_spin_unlock(&dl_b->lock);
7459
7460		if (ret)
7461			break;
7462	}
7463
7464	return ret;
7465}
7466
7467static void sched_dl_do_global(void)
7468{
7469	u64 new_bw = -1;
7470	int cpu;
7471
7472	def_dl_bandwidth.dl_period = global_rt_period();
7473	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7474
7475	if (global_rt_runtime() != RUNTIME_INF)
7476		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7477
7478	/*
7479	 * FIXME: As above...
7480	 */
7481	for_each_possible_cpu(cpu) {
7482		struct dl_bw *dl_b = dl_bw_of(cpu);
7483
7484		raw_spin_lock(&dl_b->lock);
7485		dl_b->bw = new_bw;
7486		raw_spin_unlock(&dl_b->lock);
7487	}
7488}
7489
7490static int sched_rt_global_validate(void)
7491{
7492	if (sysctl_sched_rt_period <= 0)
7493		return -EINVAL;
7494
7495	if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7496		return -EINVAL;
7497
7498	return 0;
7499}
7500
7501static void sched_rt_do_global(void)
7502{
7503	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7504	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7505}
7506
7507int sched_rt_handler(struct ctl_table *table, int write,
7508		void __user *buffer, size_t *lenp,
7509		loff_t *ppos)
7510{
7511	int old_period, old_runtime;
7512	static DEFINE_MUTEX(mutex);
7513	int ret;
7514
7515	mutex_lock(&mutex);
7516	old_period = sysctl_sched_rt_period;
7517	old_runtime = sysctl_sched_rt_runtime;
7518
7519	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7520
7521	if (!ret && write) {
7522		ret = sched_rt_global_validate();
7523		if (ret)
7524			goto undo;
7525
7526		ret = sched_rt_global_constraints();
7527		if (ret)
7528			goto undo;
7529
7530		ret = sched_dl_global_constraints();
7531		if (ret)
7532			goto undo;
7533
7534		sched_rt_do_global();
7535		sched_dl_do_global();
7536	}
7537	if (0) {
7538undo:
7539		sysctl_sched_rt_period = old_period;
7540		sysctl_sched_rt_runtime = old_runtime;
7541	}
7542	mutex_unlock(&mutex);
7543
7544	return ret;
7545}
7546
7547int sched_rr_handler(struct ctl_table *table, int write,
7548		void __user *buffer, size_t *lenp,
7549		loff_t *ppos)
7550{
7551	int ret;
7552	static DEFINE_MUTEX(mutex);
7553
7554	mutex_lock(&mutex);
7555	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7556	/* make sure that internally we keep jiffies */
7557	/* also, writing zero resets timeslice to default */
7558	if (!ret && write) {
7559		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7560			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7561	}
7562	mutex_unlock(&mutex);
7563	return ret;
7564}
7565
7566#ifdef CONFIG_CGROUP_SCHED
7567
7568static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7569{
7570	return css ? container_of(css, struct task_group, css) : NULL;
7571}
7572
7573static struct cgroup_subsys_state *
7574cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7575{
7576	struct task_group *parent = css_tg(parent_css);
7577	struct task_group *tg;
7578
7579	if (!parent) {
7580		/* This is early initialization for the top cgroup */
7581		return &root_task_group.css;
7582	}
7583
7584	tg = sched_create_group(parent);
7585	if (IS_ERR(tg))
7586		return ERR_PTR(-ENOMEM);
7587
7588	return &tg->css;
7589}
7590
7591static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7592{
7593	struct task_group *tg = css_tg(css);
7594	struct task_group *parent = css_tg(css_parent(css));
7595
7596	if (parent)
7597		sched_online_group(tg, parent);
7598	return 0;
7599}
7600
7601static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7602{
7603	struct task_group *tg = css_tg(css);
7604
7605	sched_destroy_group(tg);
7606}
7607
7608static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7609{
7610	struct task_group *tg = css_tg(css);
7611
7612	sched_offline_group(tg);
7613}
7614
7615static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7616				 struct cgroup_taskset *tset)
7617{
7618	struct task_struct *task;
7619
7620	cgroup_taskset_for_each(task, css, tset) {
7621#ifdef CONFIG_RT_GROUP_SCHED
7622		if (!sched_rt_can_attach(css_tg(css), task))
7623			return -EINVAL;
7624#else
7625		/* We don't support RT-tasks being in separate groups */
7626		if (task->sched_class != &fair_sched_class)
7627			return -EINVAL;
7628#endif
7629	}
7630	return 0;
7631}
7632
7633static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7634			      struct cgroup_taskset *tset)
7635{
7636	struct task_struct *task;
7637
7638	cgroup_taskset_for_each(task, css, tset)
7639		sched_move_task(task);
7640}
7641
7642static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7643			    struct cgroup_subsys_state *old_css,
7644			    struct task_struct *task)
7645{
7646	/*
7647	 * cgroup_exit() is called in the copy_process() failure path.
7648	 * Ignore this case since the task hasn't ran yet, this avoids
7649	 * trying to poke a half freed task state from generic code.
7650	 */
7651	if (!(task->flags & PF_EXITING))
7652		return;
7653
7654	sched_move_task(task);
7655}
7656
7657#ifdef CONFIG_FAIR_GROUP_SCHED
7658static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7659				struct cftype *cftype, u64 shareval)
7660{
7661	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7662}
7663
7664static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7665			       struct cftype *cft)
7666{
7667	struct task_group *tg = css_tg(css);
7668
7669	return (u64) scale_load_down(tg->shares);
7670}
7671
7672#ifdef CONFIG_CFS_BANDWIDTH
7673static DEFINE_MUTEX(cfs_constraints_mutex);
7674
7675const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7676const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7677
7678static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7679
7680static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7681{
7682	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7683	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7684
7685	if (tg == &root_task_group)
7686		return -EINVAL;
7687
7688	/*
7689	 * Ensure we have at some amount of bandwidth every period.  This is
7690	 * to prevent reaching a state of large arrears when throttled via
7691	 * entity_tick() resulting in prolonged exit starvation.
7692	 */
7693	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7694		return -EINVAL;
7695
7696	/*
7697	 * Likewise, bound things on the otherside by preventing insane quota
7698	 * periods.  This also allows us to normalize in computing quota
7699	 * feasibility.
7700	 */
7701	if (period > max_cfs_quota_period)
7702		return -EINVAL;
7703
7704	mutex_lock(&cfs_constraints_mutex);
7705	ret = __cfs_schedulable(tg, period, quota);
7706	if (ret)
7707		goto out_unlock;
7708
7709	runtime_enabled = quota != RUNTIME_INF;
7710	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7711	/*
7712	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7713	 * before making related changes, and on->off must occur afterwards
7714	 */
7715	if (runtime_enabled && !runtime_was_enabled)
7716		cfs_bandwidth_usage_inc();
7717	raw_spin_lock_irq(&cfs_b->lock);
7718	cfs_b->period = ns_to_ktime(period);
7719	cfs_b->quota = quota;
7720
7721	__refill_cfs_bandwidth_runtime(cfs_b);
7722	/* restart the period timer (if active) to handle new period expiry */
7723	if (runtime_enabled && cfs_b->timer_active) {
7724		/* force a reprogram */
7725		cfs_b->timer_active = 0;
7726		__start_cfs_bandwidth(cfs_b);
7727	}
7728	raw_spin_unlock_irq(&cfs_b->lock);
7729
7730	for_each_possible_cpu(i) {
7731		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7732		struct rq *rq = cfs_rq->rq;
7733
7734		raw_spin_lock_irq(&rq->lock);
7735		cfs_rq->runtime_enabled = runtime_enabled;
7736		cfs_rq->runtime_remaining = 0;
7737
7738		if (cfs_rq->throttled)
7739			unthrottle_cfs_rq(cfs_rq);
7740		raw_spin_unlock_irq(&rq->lock);
7741	}
7742	if (runtime_was_enabled && !runtime_enabled)
7743		cfs_bandwidth_usage_dec();
7744out_unlock:
7745	mutex_unlock(&cfs_constraints_mutex);
7746
7747	return ret;
7748}
7749
7750int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7751{
7752	u64 quota, period;
7753
7754	period = ktime_to_ns(tg->cfs_bandwidth.period);
7755	if (cfs_quota_us < 0)
7756		quota = RUNTIME_INF;
7757	else
7758		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7759
7760	return tg_set_cfs_bandwidth(tg, period, quota);
7761}
7762
7763long tg_get_cfs_quota(struct task_group *tg)
7764{
7765	u64 quota_us;
7766
7767	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7768		return -1;
7769
7770	quota_us = tg->cfs_bandwidth.quota;
7771	do_div(quota_us, NSEC_PER_USEC);
7772
7773	return quota_us;
7774}
7775
7776int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7777{
7778	u64 quota, period;
7779
7780	period = (u64)cfs_period_us * NSEC_PER_USEC;
7781	quota = tg->cfs_bandwidth.quota;
7782
7783	return tg_set_cfs_bandwidth(tg, period, quota);
7784}
7785
7786long tg_get_cfs_period(struct task_group *tg)
7787{
7788	u64 cfs_period_us;
7789
7790	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7791	do_div(cfs_period_us, NSEC_PER_USEC);
7792
7793	return cfs_period_us;
7794}
7795
7796static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7797				  struct cftype *cft)
7798{
7799	return tg_get_cfs_quota(css_tg(css));
7800}
7801
7802static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7803				   struct cftype *cftype, s64 cfs_quota_us)
7804{
7805	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7806}
7807
7808static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7809				   struct cftype *cft)
7810{
7811	return tg_get_cfs_period(css_tg(css));
7812}
7813
7814static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7815				    struct cftype *cftype, u64 cfs_period_us)
7816{
7817	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7818}
7819
7820struct cfs_schedulable_data {
7821	struct task_group *tg;
7822	u64 period, quota;
7823};
7824
7825/*
7826 * normalize group quota/period to be quota/max_period
7827 * note: units are usecs
7828 */
7829static u64 normalize_cfs_quota(struct task_group *tg,
7830			       struct cfs_schedulable_data *d)
7831{
7832	u64 quota, period;
7833
7834	if (tg == d->tg) {
7835		period = d->period;
7836		quota = d->quota;
7837	} else {
7838		period = tg_get_cfs_period(tg);
7839		quota = tg_get_cfs_quota(tg);
7840	}
7841
7842	/* note: these should typically be equivalent */
7843	if (quota == RUNTIME_INF || quota == -1)
7844		return RUNTIME_INF;
7845
7846	return to_ratio(period, quota);
7847}
7848
7849static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7850{
7851	struct cfs_schedulable_data *d = data;
7852	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7853	s64 quota = 0, parent_quota = -1;
7854
7855	if (!tg->parent) {
7856		quota = RUNTIME_INF;
7857	} else {
7858		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7859
7860		quota = normalize_cfs_quota(tg, d);
7861		parent_quota = parent_b->hierarchal_quota;
7862
7863		/*
7864		 * ensure max(child_quota) <= parent_quota, inherit when no
7865		 * limit is set
7866		 */
7867		if (quota == RUNTIME_INF)
7868			quota = parent_quota;
7869		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7870			return -EINVAL;
7871	}
7872	cfs_b->hierarchal_quota = quota;
7873
7874	return 0;
7875}
7876
7877static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7878{
7879	int ret;
7880	struct cfs_schedulable_data data = {
7881		.tg = tg,
7882		.period = period,
7883		.quota = quota,
7884	};
7885
7886	if (quota != RUNTIME_INF) {
7887		do_div(data.period, NSEC_PER_USEC);
7888		do_div(data.quota, NSEC_PER_USEC);
7889	}
7890
7891	rcu_read_lock();
7892	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7893	rcu_read_unlock();
7894
7895	return ret;
7896}
7897
7898static int cpu_stats_show(struct seq_file *sf, void *v)
7899{
7900	struct task_group *tg = css_tg(seq_css(sf));
7901	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7902
7903	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7904	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7905	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7906
7907	return 0;
7908}
7909#endif /* CONFIG_CFS_BANDWIDTH */
7910#endif /* CONFIG_FAIR_GROUP_SCHED */
7911
7912#ifdef CONFIG_RT_GROUP_SCHED
7913static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7914				struct cftype *cft, s64 val)
7915{
7916	return sched_group_set_rt_runtime(css_tg(css), val);
7917}
7918
7919static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7920			       struct cftype *cft)
7921{
7922	return sched_group_rt_runtime(css_tg(css));
7923}
7924
7925static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7926				    struct cftype *cftype, u64 rt_period_us)
7927{
7928	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7929}
7930
7931static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7932				   struct cftype *cft)
7933{
7934	return sched_group_rt_period(css_tg(css));
7935}
7936#endif /* CONFIG_RT_GROUP_SCHED */
7937
7938static struct cftype cpu_files[] = {
7939#ifdef CONFIG_FAIR_GROUP_SCHED
7940	{
7941		.name = "shares",
7942		.read_u64 = cpu_shares_read_u64,
7943		.write_u64 = cpu_shares_write_u64,
7944	},
7945#endif
7946#ifdef CONFIG_CFS_BANDWIDTH
7947	{
7948		.name = "cfs_quota_us",
7949		.read_s64 = cpu_cfs_quota_read_s64,
7950		.write_s64 = cpu_cfs_quota_write_s64,
7951	},
7952	{
7953		.name = "cfs_period_us",
7954		.read_u64 = cpu_cfs_period_read_u64,
7955		.write_u64 = cpu_cfs_period_write_u64,
7956	},
7957	{
7958		.name = "stat",
7959		.seq_show = cpu_stats_show,
7960	},
7961#endif
7962#ifdef CONFIG_RT_GROUP_SCHED
7963	{
7964		.name = "rt_runtime_us",
7965		.read_s64 = cpu_rt_runtime_read,
7966		.write_s64 = cpu_rt_runtime_write,
7967	},
7968	{
7969		.name = "rt_period_us",
7970		.read_u64 = cpu_rt_period_read_uint,
7971		.write_u64 = cpu_rt_period_write_uint,
7972	},
7973#endif
7974	{ }	/* terminate */
7975};
7976
7977struct cgroup_subsys cpu_cgroup_subsys = {
7978	.name		= "cpu",
7979	.css_alloc	= cpu_cgroup_css_alloc,
7980	.css_free	= cpu_cgroup_css_free,
7981	.css_online	= cpu_cgroup_css_online,
7982	.css_offline	= cpu_cgroup_css_offline,
7983	.can_attach	= cpu_cgroup_can_attach,
7984	.attach		= cpu_cgroup_attach,
7985	.exit		= cpu_cgroup_exit,
7986	.subsys_id	= cpu_cgroup_subsys_id,
7987	.base_cftypes	= cpu_files,
7988	.early_init	= 1,
7989};
7990
7991#endif	/* CONFIG_CGROUP_SCHED */
7992
7993void dump_cpu_task(int cpu)
7994{
7995	pr_info("Task dump for CPU %d:\n", cpu);
7996	sched_show_task(cpu_curr(cpu));
7997}
7998