core.c revision 8c8a743c5087bac9caac8155b8f3b367e75cdd0b
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018	if (p->on_rq) {
1019		struct rq *src_rq, *dst_rq;
1020
1021		src_rq = task_rq(p);
1022		dst_rq = cpu_rq(cpu);
1023
1024		deactivate_task(src_rq, p, 0);
1025		set_task_cpu(p, cpu);
1026		activate_task(dst_rq, p, 0);
1027		check_preempt_curr(dst_rq, p, 0);
1028	} else {
1029		/*
1030		 * Task isn't running anymore; make it appear like we migrated
1031		 * it before it went to sleep. This means on wakeup we make the
1032		 * previous cpu our targer instead of where it really is.
1033		 */
1034		p->wake_cpu = cpu;
1035	}
1036}
1037
1038struct migration_swap_arg {
1039	struct task_struct *src_task, *dst_task;
1040	int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045	struct migration_swap_arg *arg = data;
1046	struct rq *src_rq, *dst_rq;
1047	int ret = -EAGAIN;
1048
1049	src_rq = cpu_rq(arg->src_cpu);
1050	dst_rq = cpu_rq(arg->dst_cpu);
1051
1052	double_rq_lock(src_rq, dst_rq);
1053	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054		goto unlock;
1055
1056	if (task_cpu(arg->src_task) != arg->src_cpu)
1057		goto unlock;
1058
1059	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060		goto unlock;
1061
1062	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063		goto unlock;
1064
1065	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1066	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068	ret = 0;
1069
1070unlock:
1071	double_rq_unlock(src_rq, dst_rq);
1072
1073	return ret;
1074}
1075
1076/*
1077 * Cross migrate two tasks
1078 */
1079int migrate_swap(struct task_struct *cur, struct task_struct *p)
1080{
1081	struct migration_swap_arg arg;
1082	int ret = -EINVAL;
1083
1084	get_online_cpus();
1085
1086	arg = (struct migration_swap_arg){
1087		.src_task = cur,
1088		.src_cpu = task_cpu(cur),
1089		.dst_task = p,
1090		.dst_cpu = task_cpu(p),
1091	};
1092
1093	if (arg.src_cpu == arg.dst_cpu)
1094		goto out;
1095
1096	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1097		goto out;
1098
1099	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1100		goto out;
1101
1102	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1103		goto out;
1104
1105	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1106
1107out:
1108	put_online_cpus();
1109	return ret;
1110}
1111
1112struct migration_arg {
1113	struct task_struct *task;
1114	int dest_cpu;
1115};
1116
1117static int migration_cpu_stop(void *data);
1118
1119/*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
1122 * If @match_state is nonzero, it's the @p->state value just checked and
1123 * not expected to change.  If it changes, i.e. @p might have woken up,
1124 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1125 * we return a positive number (its total switch count).  If a second call
1126 * a short while later returns the same number, the caller can be sure that
1127 * @p has remained unscheduled the whole time.
1128 *
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
1135unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1136{
1137	unsigned long flags;
1138	int running, on_rq;
1139	unsigned long ncsw;
1140	struct rq *rq;
1141
1142	for (;;) {
1143		/*
1144		 * We do the initial early heuristics without holding
1145		 * any task-queue locks at all. We'll only try to get
1146		 * the runqueue lock when things look like they will
1147		 * work out!
1148		 */
1149		rq = task_rq(p);
1150
1151		/*
1152		 * If the task is actively running on another CPU
1153		 * still, just relax and busy-wait without holding
1154		 * any locks.
1155		 *
1156		 * NOTE! Since we don't hold any locks, it's not
1157		 * even sure that "rq" stays as the right runqueue!
1158		 * But we don't care, since "task_running()" will
1159		 * return false if the runqueue has changed and p
1160		 * is actually now running somewhere else!
1161		 */
1162		while (task_running(rq, p)) {
1163			if (match_state && unlikely(p->state != match_state))
1164				return 0;
1165			cpu_relax();
1166		}
1167
1168		/*
1169		 * Ok, time to look more closely! We need the rq
1170		 * lock now, to be *sure*. If we're wrong, we'll
1171		 * just go back and repeat.
1172		 */
1173		rq = task_rq_lock(p, &flags);
1174		trace_sched_wait_task(p);
1175		running = task_running(rq, p);
1176		on_rq = p->on_rq;
1177		ncsw = 0;
1178		if (!match_state || p->state == match_state)
1179			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1180		task_rq_unlock(rq, p, &flags);
1181
1182		/*
1183		 * If it changed from the expected state, bail out now.
1184		 */
1185		if (unlikely(!ncsw))
1186			break;
1187
1188		/*
1189		 * Was it really running after all now that we
1190		 * checked with the proper locks actually held?
1191		 *
1192		 * Oops. Go back and try again..
1193		 */
1194		if (unlikely(running)) {
1195			cpu_relax();
1196			continue;
1197		}
1198
1199		/*
1200		 * It's not enough that it's not actively running,
1201		 * it must be off the runqueue _entirely_, and not
1202		 * preempted!
1203		 *
1204		 * So if it was still runnable (but just not actively
1205		 * running right now), it's preempted, and we should
1206		 * yield - it could be a while.
1207		 */
1208		if (unlikely(on_rq)) {
1209			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1210
1211			set_current_state(TASK_UNINTERRUPTIBLE);
1212			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1213			continue;
1214		}
1215
1216		/*
1217		 * Ahh, all good. It wasn't running, and it wasn't
1218		 * runnable, which means that it will never become
1219		 * running in the future either. We're all done!
1220		 */
1221		break;
1222	}
1223
1224	return ncsw;
1225}
1226
1227/***
1228 * kick_process - kick a running thread to enter/exit the kernel
1229 * @p: the to-be-kicked thread
1230 *
1231 * Cause a process which is running on another CPU to enter
1232 * kernel-mode, without any delay. (to get signals handled.)
1233 *
1234 * NOTE: this function doesn't have to take the runqueue lock,
1235 * because all it wants to ensure is that the remote task enters
1236 * the kernel. If the IPI races and the task has been migrated
1237 * to another CPU then no harm is done and the purpose has been
1238 * achieved as well.
1239 */
1240void kick_process(struct task_struct *p)
1241{
1242	int cpu;
1243
1244	preempt_disable();
1245	cpu = task_cpu(p);
1246	if ((cpu != smp_processor_id()) && task_curr(p))
1247		smp_send_reschedule(cpu);
1248	preempt_enable();
1249}
1250EXPORT_SYMBOL_GPL(kick_process);
1251#endif /* CONFIG_SMP */
1252
1253#ifdef CONFIG_SMP
1254/*
1255 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1256 */
1257static int select_fallback_rq(int cpu, struct task_struct *p)
1258{
1259	int nid = cpu_to_node(cpu);
1260	const struct cpumask *nodemask = NULL;
1261	enum { cpuset, possible, fail } state = cpuset;
1262	int dest_cpu;
1263
1264	/*
1265	 * If the node that the cpu is on has been offlined, cpu_to_node()
1266	 * will return -1. There is no cpu on the node, and we should
1267	 * select the cpu on the other node.
1268	 */
1269	if (nid != -1) {
1270		nodemask = cpumask_of_node(nid);
1271
1272		/* Look for allowed, online CPU in same node. */
1273		for_each_cpu(dest_cpu, nodemask) {
1274			if (!cpu_online(dest_cpu))
1275				continue;
1276			if (!cpu_active(dest_cpu))
1277				continue;
1278			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279				return dest_cpu;
1280		}
1281	}
1282
1283	for (;;) {
1284		/* Any allowed, online CPU? */
1285		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1286			if (!cpu_online(dest_cpu))
1287				continue;
1288			if (!cpu_active(dest_cpu))
1289				continue;
1290			goto out;
1291		}
1292
1293		switch (state) {
1294		case cpuset:
1295			/* No more Mr. Nice Guy. */
1296			cpuset_cpus_allowed_fallback(p);
1297			state = possible;
1298			break;
1299
1300		case possible:
1301			do_set_cpus_allowed(p, cpu_possible_mask);
1302			state = fail;
1303			break;
1304
1305		case fail:
1306			BUG();
1307			break;
1308		}
1309	}
1310
1311out:
1312	if (state != cpuset) {
1313		/*
1314		 * Don't tell them about moving exiting tasks or
1315		 * kernel threads (both mm NULL), since they never
1316		 * leave kernel.
1317		 */
1318		if (p->mm && printk_ratelimit()) {
1319			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1320					task_pid_nr(p), p->comm, cpu);
1321		}
1322	}
1323
1324	return dest_cpu;
1325}
1326
1327/*
1328 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1329 */
1330static inline
1331int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1332{
1333	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1334
1335	/*
1336	 * In order not to call set_task_cpu() on a blocking task we need
1337	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1338	 * cpu.
1339	 *
1340	 * Since this is common to all placement strategies, this lives here.
1341	 *
1342	 * [ this allows ->select_task() to simply return task_cpu(p) and
1343	 *   not worry about this generic constraint ]
1344	 */
1345	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1346		     !cpu_online(cpu)))
1347		cpu = select_fallback_rq(task_cpu(p), p);
1348
1349	return cpu;
1350}
1351
1352static void update_avg(u64 *avg, u64 sample)
1353{
1354	s64 diff = sample - *avg;
1355	*avg += diff >> 3;
1356}
1357#endif
1358
1359static void
1360ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1361{
1362#ifdef CONFIG_SCHEDSTATS
1363	struct rq *rq = this_rq();
1364
1365#ifdef CONFIG_SMP
1366	int this_cpu = smp_processor_id();
1367
1368	if (cpu == this_cpu) {
1369		schedstat_inc(rq, ttwu_local);
1370		schedstat_inc(p, se.statistics.nr_wakeups_local);
1371	} else {
1372		struct sched_domain *sd;
1373
1374		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1375		rcu_read_lock();
1376		for_each_domain(this_cpu, sd) {
1377			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1378				schedstat_inc(sd, ttwu_wake_remote);
1379				break;
1380			}
1381		}
1382		rcu_read_unlock();
1383	}
1384
1385	if (wake_flags & WF_MIGRATED)
1386		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1387
1388#endif /* CONFIG_SMP */
1389
1390	schedstat_inc(rq, ttwu_count);
1391	schedstat_inc(p, se.statistics.nr_wakeups);
1392
1393	if (wake_flags & WF_SYNC)
1394		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1395
1396#endif /* CONFIG_SCHEDSTATS */
1397}
1398
1399static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1400{
1401	activate_task(rq, p, en_flags);
1402	p->on_rq = 1;
1403
1404	/* if a worker is waking up, notify workqueue */
1405	if (p->flags & PF_WQ_WORKER)
1406		wq_worker_waking_up(p, cpu_of(rq));
1407}
1408
1409/*
1410 * Mark the task runnable and perform wakeup-preemption.
1411 */
1412static void
1413ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1414{
1415	check_preempt_curr(rq, p, wake_flags);
1416	trace_sched_wakeup(p, true);
1417
1418	p->state = TASK_RUNNING;
1419#ifdef CONFIG_SMP
1420	if (p->sched_class->task_woken)
1421		p->sched_class->task_woken(rq, p);
1422
1423	if (rq->idle_stamp) {
1424		u64 delta = rq_clock(rq) - rq->idle_stamp;
1425		u64 max = 2*rq->max_idle_balance_cost;
1426
1427		update_avg(&rq->avg_idle, delta);
1428
1429		if (rq->avg_idle > max)
1430			rq->avg_idle = max;
1431
1432		rq->idle_stamp = 0;
1433	}
1434#endif
1435}
1436
1437static void
1438ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1439{
1440#ifdef CONFIG_SMP
1441	if (p->sched_contributes_to_load)
1442		rq->nr_uninterruptible--;
1443#endif
1444
1445	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1446	ttwu_do_wakeup(rq, p, wake_flags);
1447}
1448
1449/*
1450 * Called in case the task @p isn't fully descheduled from its runqueue,
1451 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1452 * since all we need to do is flip p->state to TASK_RUNNING, since
1453 * the task is still ->on_rq.
1454 */
1455static int ttwu_remote(struct task_struct *p, int wake_flags)
1456{
1457	struct rq *rq;
1458	int ret = 0;
1459
1460	rq = __task_rq_lock(p);
1461	if (p->on_rq) {
1462		/* check_preempt_curr() may use rq clock */
1463		update_rq_clock(rq);
1464		ttwu_do_wakeup(rq, p, wake_flags);
1465		ret = 1;
1466	}
1467	__task_rq_unlock(rq);
1468
1469	return ret;
1470}
1471
1472#ifdef CONFIG_SMP
1473static void sched_ttwu_pending(void)
1474{
1475	struct rq *rq = this_rq();
1476	struct llist_node *llist = llist_del_all(&rq->wake_list);
1477	struct task_struct *p;
1478
1479	raw_spin_lock(&rq->lock);
1480
1481	while (llist) {
1482		p = llist_entry(llist, struct task_struct, wake_entry);
1483		llist = llist_next(llist);
1484		ttwu_do_activate(rq, p, 0);
1485	}
1486
1487	raw_spin_unlock(&rq->lock);
1488}
1489
1490void scheduler_ipi(void)
1491{
1492	/*
1493	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1494	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1495	 * this IPI.
1496	 */
1497	if (tif_need_resched())
1498		set_preempt_need_resched();
1499
1500	if (llist_empty(&this_rq()->wake_list)
1501			&& !tick_nohz_full_cpu(smp_processor_id())
1502			&& !got_nohz_idle_kick())
1503		return;
1504
1505	/*
1506	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1507	 * traditionally all their work was done from the interrupt return
1508	 * path. Now that we actually do some work, we need to make sure
1509	 * we do call them.
1510	 *
1511	 * Some archs already do call them, luckily irq_enter/exit nest
1512	 * properly.
1513	 *
1514	 * Arguably we should visit all archs and update all handlers,
1515	 * however a fair share of IPIs are still resched only so this would
1516	 * somewhat pessimize the simple resched case.
1517	 */
1518	irq_enter();
1519	tick_nohz_full_check();
1520	sched_ttwu_pending();
1521
1522	/*
1523	 * Check if someone kicked us for doing the nohz idle load balance.
1524	 */
1525	if (unlikely(got_nohz_idle_kick())) {
1526		this_rq()->idle_balance = 1;
1527		raise_softirq_irqoff(SCHED_SOFTIRQ);
1528	}
1529	irq_exit();
1530}
1531
1532static void ttwu_queue_remote(struct task_struct *p, int cpu)
1533{
1534	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1535		smp_send_reschedule(cpu);
1536}
1537
1538bool cpus_share_cache(int this_cpu, int that_cpu)
1539{
1540	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1541}
1542#endif /* CONFIG_SMP */
1543
1544static void ttwu_queue(struct task_struct *p, int cpu)
1545{
1546	struct rq *rq = cpu_rq(cpu);
1547
1548#if defined(CONFIG_SMP)
1549	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1550		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1551		ttwu_queue_remote(p, cpu);
1552		return;
1553	}
1554#endif
1555
1556	raw_spin_lock(&rq->lock);
1557	ttwu_do_activate(rq, p, 0);
1558	raw_spin_unlock(&rq->lock);
1559}
1560
1561/**
1562 * try_to_wake_up - wake up a thread
1563 * @p: the thread to be awakened
1564 * @state: the mask of task states that can be woken
1565 * @wake_flags: wake modifier flags (WF_*)
1566 *
1567 * Put it on the run-queue if it's not already there. The "current"
1568 * thread is always on the run-queue (except when the actual
1569 * re-schedule is in progress), and as such you're allowed to do
1570 * the simpler "current->state = TASK_RUNNING" to mark yourself
1571 * runnable without the overhead of this.
1572 *
1573 * Return: %true if @p was woken up, %false if it was already running.
1574 * or @state didn't match @p's state.
1575 */
1576static int
1577try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1578{
1579	unsigned long flags;
1580	int cpu, success = 0;
1581
1582	/*
1583	 * If we are going to wake up a thread waiting for CONDITION we
1584	 * need to ensure that CONDITION=1 done by the caller can not be
1585	 * reordered with p->state check below. This pairs with mb() in
1586	 * set_current_state() the waiting thread does.
1587	 */
1588	smp_mb__before_spinlock();
1589	raw_spin_lock_irqsave(&p->pi_lock, flags);
1590	if (!(p->state & state))
1591		goto out;
1592
1593	success = 1; /* we're going to change ->state */
1594	cpu = task_cpu(p);
1595
1596	if (p->on_rq && ttwu_remote(p, wake_flags))
1597		goto stat;
1598
1599#ifdef CONFIG_SMP
1600	/*
1601	 * If the owning (remote) cpu is still in the middle of schedule() with
1602	 * this task as prev, wait until its done referencing the task.
1603	 */
1604	while (p->on_cpu)
1605		cpu_relax();
1606	/*
1607	 * Pairs with the smp_wmb() in finish_lock_switch().
1608	 */
1609	smp_rmb();
1610
1611	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1612	p->state = TASK_WAKING;
1613
1614	if (p->sched_class->task_waking)
1615		p->sched_class->task_waking(p);
1616
1617	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1618	if (task_cpu(p) != cpu) {
1619		wake_flags |= WF_MIGRATED;
1620		set_task_cpu(p, cpu);
1621	}
1622#endif /* CONFIG_SMP */
1623
1624	ttwu_queue(p, cpu);
1625stat:
1626	ttwu_stat(p, cpu, wake_flags);
1627out:
1628	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1629
1630	return success;
1631}
1632
1633/**
1634 * try_to_wake_up_local - try to wake up a local task with rq lock held
1635 * @p: the thread to be awakened
1636 *
1637 * Put @p on the run-queue if it's not already there. The caller must
1638 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1639 * the current task.
1640 */
1641static void try_to_wake_up_local(struct task_struct *p)
1642{
1643	struct rq *rq = task_rq(p);
1644
1645	if (WARN_ON_ONCE(rq != this_rq()) ||
1646	    WARN_ON_ONCE(p == current))
1647		return;
1648
1649	lockdep_assert_held(&rq->lock);
1650
1651	if (!raw_spin_trylock(&p->pi_lock)) {
1652		raw_spin_unlock(&rq->lock);
1653		raw_spin_lock(&p->pi_lock);
1654		raw_spin_lock(&rq->lock);
1655	}
1656
1657	if (!(p->state & TASK_NORMAL))
1658		goto out;
1659
1660	if (!p->on_rq)
1661		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1662
1663	ttwu_do_wakeup(rq, p, 0);
1664	ttwu_stat(p, smp_processor_id(), 0);
1665out:
1666	raw_spin_unlock(&p->pi_lock);
1667}
1668
1669/**
1670 * wake_up_process - Wake up a specific process
1671 * @p: The process to be woken up.
1672 *
1673 * Attempt to wake up the nominated process and move it to the set of runnable
1674 * processes.
1675 *
1676 * Return: 1 if the process was woken up, 0 if it was already running.
1677 *
1678 * It may be assumed that this function implies a write memory barrier before
1679 * changing the task state if and only if any tasks are woken up.
1680 */
1681int wake_up_process(struct task_struct *p)
1682{
1683	WARN_ON(task_is_stopped_or_traced(p));
1684	return try_to_wake_up(p, TASK_NORMAL, 0);
1685}
1686EXPORT_SYMBOL(wake_up_process);
1687
1688int wake_up_state(struct task_struct *p, unsigned int state)
1689{
1690	return try_to_wake_up(p, state, 0);
1691}
1692
1693/*
1694 * Perform scheduler related setup for a newly forked process p.
1695 * p is forked by current.
1696 *
1697 * __sched_fork() is basic setup used by init_idle() too:
1698 */
1699static void __sched_fork(struct task_struct *p)
1700{
1701	p->on_rq			= 0;
1702
1703	p->se.on_rq			= 0;
1704	p->se.exec_start		= 0;
1705	p->se.sum_exec_runtime		= 0;
1706	p->se.prev_sum_exec_runtime	= 0;
1707	p->se.nr_migrations		= 0;
1708	p->se.vruntime			= 0;
1709	INIT_LIST_HEAD(&p->se.group_node);
1710
1711#ifdef CONFIG_SCHEDSTATS
1712	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1713#endif
1714
1715	INIT_LIST_HEAD(&p->rt.run_list);
1716
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718	INIT_HLIST_HEAD(&p->preempt_notifiers);
1719#endif
1720
1721#ifdef CONFIG_NUMA_BALANCING
1722	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1723		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1724		p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1725		p->mm->numa_scan_seq = 0;
1726	}
1727
1728	p->node_stamp = 0ULL;
1729	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1730	p->numa_migrate_seq = 1;
1731	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1732	p->numa_preferred_nid = -1;
1733	p->numa_work.next = &p->numa_work;
1734	p->numa_faults = NULL;
1735	p->numa_faults_buffer = NULL;
1736
1737	INIT_LIST_HEAD(&p->numa_entry);
1738	p->numa_group = NULL;
1739#endif /* CONFIG_NUMA_BALANCING */
1740}
1741
1742#ifdef CONFIG_NUMA_BALANCING
1743#ifdef CONFIG_SCHED_DEBUG
1744void set_numabalancing_state(bool enabled)
1745{
1746	if (enabled)
1747		sched_feat_set("NUMA");
1748	else
1749		sched_feat_set("NO_NUMA");
1750}
1751#else
1752__read_mostly bool numabalancing_enabled;
1753
1754void set_numabalancing_state(bool enabled)
1755{
1756	numabalancing_enabled = enabled;
1757}
1758#endif /* CONFIG_SCHED_DEBUG */
1759#endif /* CONFIG_NUMA_BALANCING */
1760
1761/*
1762 * fork()/clone()-time setup:
1763 */
1764void sched_fork(struct task_struct *p)
1765{
1766	unsigned long flags;
1767	int cpu = get_cpu();
1768
1769	__sched_fork(p);
1770	/*
1771	 * We mark the process as running here. This guarantees that
1772	 * nobody will actually run it, and a signal or other external
1773	 * event cannot wake it up and insert it on the runqueue either.
1774	 */
1775	p->state = TASK_RUNNING;
1776
1777	/*
1778	 * Make sure we do not leak PI boosting priority to the child.
1779	 */
1780	p->prio = current->normal_prio;
1781
1782	/*
1783	 * Revert to default priority/policy on fork if requested.
1784	 */
1785	if (unlikely(p->sched_reset_on_fork)) {
1786		if (task_has_rt_policy(p)) {
1787			p->policy = SCHED_NORMAL;
1788			p->static_prio = NICE_TO_PRIO(0);
1789			p->rt_priority = 0;
1790		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1791			p->static_prio = NICE_TO_PRIO(0);
1792
1793		p->prio = p->normal_prio = __normal_prio(p);
1794		set_load_weight(p);
1795
1796		/*
1797		 * We don't need the reset flag anymore after the fork. It has
1798		 * fulfilled its duty:
1799		 */
1800		p->sched_reset_on_fork = 0;
1801	}
1802
1803	if (!rt_prio(p->prio))
1804		p->sched_class = &fair_sched_class;
1805
1806	if (p->sched_class->task_fork)
1807		p->sched_class->task_fork(p);
1808
1809	/*
1810	 * The child is not yet in the pid-hash so no cgroup attach races,
1811	 * and the cgroup is pinned to this child due to cgroup_fork()
1812	 * is ran before sched_fork().
1813	 *
1814	 * Silence PROVE_RCU.
1815	 */
1816	raw_spin_lock_irqsave(&p->pi_lock, flags);
1817	set_task_cpu(p, cpu);
1818	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1819
1820#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1821	if (likely(sched_info_on()))
1822		memset(&p->sched_info, 0, sizeof(p->sched_info));
1823#endif
1824#if defined(CONFIG_SMP)
1825	p->on_cpu = 0;
1826#endif
1827	init_task_preempt_count(p);
1828#ifdef CONFIG_SMP
1829	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1830#endif
1831
1832	put_cpu();
1833}
1834
1835/*
1836 * wake_up_new_task - wake up a newly created task for the first time.
1837 *
1838 * This function will do some initial scheduler statistics housekeeping
1839 * that must be done for every newly created context, then puts the task
1840 * on the runqueue and wakes it.
1841 */
1842void wake_up_new_task(struct task_struct *p)
1843{
1844	unsigned long flags;
1845	struct rq *rq;
1846
1847	raw_spin_lock_irqsave(&p->pi_lock, flags);
1848#ifdef CONFIG_SMP
1849	/*
1850	 * Fork balancing, do it here and not earlier because:
1851	 *  - cpus_allowed can change in the fork path
1852	 *  - any previously selected cpu might disappear through hotplug
1853	 */
1854	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1855#endif
1856
1857	/* Initialize new task's runnable average */
1858	init_task_runnable_average(p);
1859	rq = __task_rq_lock(p);
1860	activate_task(rq, p, 0);
1861	p->on_rq = 1;
1862	trace_sched_wakeup_new(p, true);
1863	check_preempt_curr(rq, p, WF_FORK);
1864#ifdef CONFIG_SMP
1865	if (p->sched_class->task_woken)
1866		p->sched_class->task_woken(rq, p);
1867#endif
1868	task_rq_unlock(rq, p, &flags);
1869}
1870
1871#ifdef CONFIG_PREEMPT_NOTIFIERS
1872
1873/**
1874 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1875 * @notifier: notifier struct to register
1876 */
1877void preempt_notifier_register(struct preempt_notifier *notifier)
1878{
1879	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1880}
1881EXPORT_SYMBOL_GPL(preempt_notifier_register);
1882
1883/**
1884 * preempt_notifier_unregister - no longer interested in preemption notifications
1885 * @notifier: notifier struct to unregister
1886 *
1887 * This is safe to call from within a preemption notifier.
1888 */
1889void preempt_notifier_unregister(struct preempt_notifier *notifier)
1890{
1891	hlist_del(&notifier->link);
1892}
1893EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1894
1895static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1896{
1897	struct preempt_notifier *notifier;
1898
1899	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1900		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1901}
1902
1903static void
1904fire_sched_out_preempt_notifiers(struct task_struct *curr,
1905				 struct task_struct *next)
1906{
1907	struct preempt_notifier *notifier;
1908
1909	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1910		notifier->ops->sched_out(notifier, next);
1911}
1912
1913#else /* !CONFIG_PREEMPT_NOTIFIERS */
1914
1915static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1916{
1917}
1918
1919static void
1920fire_sched_out_preempt_notifiers(struct task_struct *curr,
1921				 struct task_struct *next)
1922{
1923}
1924
1925#endif /* CONFIG_PREEMPT_NOTIFIERS */
1926
1927/**
1928 * prepare_task_switch - prepare to switch tasks
1929 * @rq: the runqueue preparing to switch
1930 * @prev: the current task that is being switched out
1931 * @next: the task we are going to switch to.
1932 *
1933 * This is called with the rq lock held and interrupts off. It must
1934 * be paired with a subsequent finish_task_switch after the context
1935 * switch.
1936 *
1937 * prepare_task_switch sets up locking and calls architecture specific
1938 * hooks.
1939 */
1940static inline void
1941prepare_task_switch(struct rq *rq, struct task_struct *prev,
1942		    struct task_struct *next)
1943{
1944	trace_sched_switch(prev, next);
1945	sched_info_switch(rq, prev, next);
1946	perf_event_task_sched_out(prev, next);
1947	fire_sched_out_preempt_notifiers(prev, next);
1948	prepare_lock_switch(rq, next);
1949	prepare_arch_switch(next);
1950}
1951
1952/**
1953 * finish_task_switch - clean up after a task-switch
1954 * @rq: runqueue associated with task-switch
1955 * @prev: the thread we just switched away from.
1956 *
1957 * finish_task_switch must be called after the context switch, paired
1958 * with a prepare_task_switch call before the context switch.
1959 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1960 * and do any other architecture-specific cleanup actions.
1961 *
1962 * Note that we may have delayed dropping an mm in context_switch(). If
1963 * so, we finish that here outside of the runqueue lock. (Doing it
1964 * with the lock held can cause deadlocks; see schedule() for
1965 * details.)
1966 */
1967static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1968	__releases(rq->lock)
1969{
1970	struct mm_struct *mm = rq->prev_mm;
1971	long prev_state;
1972
1973	rq->prev_mm = NULL;
1974
1975	/*
1976	 * A task struct has one reference for the use as "current".
1977	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1978	 * schedule one last time. The schedule call will never return, and
1979	 * the scheduled task must drop that reference.
1980	 * The test for TASK_DEAD must occur while the runqueue locks are
1981	 * still held, otherwise prev could be scheduled on another cpu, die
1982	 * there before we look at prev->state, and then the reference would
1983	 * be dropped twice.
1984	 *		Manfred Spraul <manfred@colorfullife.com>
1985	 */
1986	prev_state = prev->state;
1987	vtime_task_switch(prev);
1988	finish_arch_switch(prev);
1989	perf_event_task_sched_in(prev, current);
1990	finish_lock_switch(rq, prev);
1991	finish_arch_post_lock_switch();
1992
1993	fire_sched_in_preempt_notifiers(current);
1994	if (mm)
1995		mmdrop(mm);
1996	if (unlikely(prev_state == TASK_DEAD)) {
1997		task_numa_free(prev);
1998
1999		/*
2000		 * Remove function-return probe instances associated with this
2001		 * task and put them back on the free list.
2002		 */
2003		kprobe_flush_task(prev);
2004		put_task_struct(prev);
2005	}
2006
2007	tick_nohz_task_switch(current);
2008}
2009
2010#ifdef CONFIG_SMP
2011
2012/* assumes rq->lock is held */
2013static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2014{
2015	if (prev->sched_class->pre_schedule)
2016		prev->sched_class->pre_schedule(rq, prev);
2017}
2018
2019/* rq->lock is NOT held, but preemption is disabled */
2020static inline void post_schedule(struct rq *rq)
2021{
2022	if (rq->post_schedule) {
2023		unsigned long flags;
2024
2025		raw_spin_lock_irqsave(&rq->lock, flags);
2026		if (rq->curr->sched_class->post_schedule)
2027			rq->curr->sched_class->post_schedule(rq);
2028		raw_spin_unlock_irqrestore(&rq->lock, flags);
2029
2030		rq->post_schedule = 0;
2031	}
2032}
2033
2034#else
2035
2036static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2037{
2038}
2039
2040static inline void post_schedule(struct rq *rq)
2041{
2042}
2043
2044#endif
2045
2046/**
2047 * schedule_tail - first thing a freshly forked thread must call.
2048 * @prev: the thread we just switched away from.
2049 */
2050asmlinkage void schedule_tail(struct task_struct *prev)
2051	__releases(rq->lock)
2052{
2053	struct rq *rq = this_rq();
2054
2055	finish_task_switch(rq, prev);
2056
2057	/*
2058	 * FIXME: do we need to worry about rq being invalidated by the
2059	 * task_switch?
2060	 */
2061	post_schedule(rq);
2062
2063#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2064	/* In this case, finish_task_switch does not reenable preemption */
2065	preempt_enable();
2066#endif
2067	if (current->set_child_tid)
2068		put_user(task_pid_vnr(current), current->set_child_tid);
2069}
2070
2071/*
2072 * context_switch - switch to the new MM and the new
2073 * thread's register state.
2074 */
2075static inline void
2076context_switch(struct rq *rq, struct task_struct *prev,
2077	       struct task_struct *next)
2078{
2079	struct mm_struct *mm, *oldmm;
2080
2081	prepare_task_switch(rq, prev, next);
2082
2083	mm = next->mm;
2084	oldmm = prev->active_mm;
2085	/*
2086	 * For paravirt, this is coupled with an exit in switch_to to
2087	 * combine the page table reload and the switch backend into
2088	 * one hypercall.
2089	 */
2090	arch_start_context_switch(prev);
2091
2092	if (!mm) {
2093		next->active_mm = oldmm;
2094		atomic_inc(&oldmm->mm_count);
2095		enter_lazy_tlb(oldmm, next);
2096	} else
2097		switch_mm(oldmm, mm, next);
2098
2099	if (!prev->mm) {
2100		prev->active_mm = NULL;
2101		rq->prev_mm = oldmm;
2102	}
2103	/*
2104	 * Since the runqueue lock will be released by the next
2105	 * task (which is an invalid locking op but in the case
2106	 * of the scheduler it's an obvious special-case), so we
2107	 * do an early lockdep release here:
2108	 */
2109#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2110	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2111#endif
2112
2113	context_tracking_task_switch(prev, next);
2114	/* Here we just switch the register state and the stack. */
2115	switch_to(prev, next, prev);
2116
2117	barrier();
2118	/*
2119	 * this_rq must be evaluated again because prev may have moved
2120	 * CPUs since it called schedule(), thus the 'rq' on its stack
2121	 * frame will be invalid.
2122	 */
2123	finish_task_switch(this_rq(), prev);
2124}
2125
2126/*
2127 * nr_running and nr_context_switches:
2128 *
2129 * externally visible scheduler statistics: current number of runnable
2130 * threads, total number of context switches performed since bootup.
2131 */
2132unsigned long nr_running(void)
2133{
2134	unsigned long i, sum = 0;
2135
2136	for_each_online_cpu(i)
2137		sum += cpu_rq(i)->nr_running;
2138
2139	return sum;
2140}
2141
2142unsigned long long nr_context_switches(void)
2143{
2144	int i;
2145	unsigned long long sum = 0;
2146
2147	for_each_possible_cpu(i)
2148		sum += cpu_rq(i)->nr_switches;
2149
2150	return sum;
2151}
2152
2153unsigned long nr_iowait(void)
2154{
2155	unsigned long i, sum = 0;
2156
2157	for_each_possible_cpu(i)
2158		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2159
2160	return sum;
2161}
2162
2163unsigned long nr_iowait_cpu(int cpu)
2164{
2165	struct rq *this = cpu_rq(cpu);
2166	return atomic_read(&this->nr_iowait);
2167}
2168
2169#ifdef CONFIG_SMP
2170
2171/*
2172 * sched_exec - execve() is a valuable balancing opportunity, because at
2173 * this point the task has the smallest effective memory and cache footprint.
2174 */
2175void sched_exec(void)
2176{
2177	struct task_struct *p = current;
2178	unsigned long flags;
2179	int dest_cpu;
2180
2181	raw_spin_lock_irqsave(&p->pi_lock, flags);
2182	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2183	if (dest_cpu == smp_processor_id())
2184		goto unlock;
2185
2186	if (likely(cpu_active(dest_cpu))) {
2187		struct migration_arg arg = { p, dest_cpu };
2188
2189		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2190		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2191		return;
2192	}
2193unlock:
2194	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2195}
2196
2197#endif
2198
2199DEFINE_PER_CPU(struct kernel_stat, kstat);
2200DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2201
2202EXPORT_PER_CPU_SYMBOL(kstat);
2203EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2204
2205/*
2206 * Return any ns on the sched_clock that have not yet been accounted in
2207 * @p in case that task is currently running.
2208 *
2209 * Called with task_rq_lock() held on @rq.
2210 */
2211static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2212{
2213	u64 ns = 0;
2214
2215	if (task_current(rq, p)) {
2216		update_rq_clock(rq);
2217		ns = rq_clock_task(rq) - p->se.exec_start;
2218		if ((s64)ns < 0)
2219			ns = 0;
2220	}
2221
2222	return ns;
2223}
2224
2225unsigned long long task_delta_exec(struct task_struct *p)
2226{
2227	unsigned long flags;
2228	struct rq *rq;
2229	u64 ns = 0;
2230
2231	rq = task_rq_lock(p, &flags);
2232	ns = do_task_delta_exec(p, rq);
2233	task_rq_unlock(rq, p, &flags);
2234
2235	return ns;
2236}
2237
2238/*
2239 * Return accounted runtime for the task.
2240 * In case the task is currently running, return the runtime plus current's
2241 * pending runtime that have not been accounted yet.
2242 */
2243unsigned long long task_sched_runtime(struct task_struct *p)
2244{
2245	unsigned long flags;
2246	struct rq *rq;
2247	u64 ns = 0;
2248
2249	rq = task_rq_lock(p, &flags);
2250	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2251	task_rq_unlock(rq, p, &flags);
2252
2253	return ns;
2254}
2255
2256/*
2257 * This function gets called by the timer code, with HZ frequency.
2258 * We call it with interrupts disabled.
2259 */
2260void scheduler_tick(void)
2261{
2262	int cpu = smp_processor_id();
2263	struct rq *rq = cpu_rq(cpu);
2264	struct task_struct *curr = rq->curr;
2265
2266	sched_clock_tick();
2267
2268	raw_spin_lock(&rq->lock);
2269	update_rq_clock(rq);
2270	curr->sched_class->task_tick(rq, curr, 0);
2271	update_cpu_load_active(rq);
2272	raw_spin_unlock(&rq->lock);
2273
2274	perf_event_task_tick();
2275
2276#ifdef CONFIG_SMP
2277	rq->idle_balance = idle_cpu(cpu);
2278	trigger_load_balance(rq, cpu);
2279#endif
2280	rq_last_tick_reset(rq);
2281}
2282
2283#ifdef CONFIG_NO_HZ_FULL
2284/**
2285 * scheduler_tick_max_deferment
2286 *
2287 * Keep at least one tick per second when a single
2288 * active task is running because the scheduler doesn't
2289 * yet completely support full dynticks environment.
2290 *
2291 * This makes sure that uptime, CFS vruntime, load
2292 * balancing, etc... continue to move forward, even
2293 * with a very low granularity.
2294 *
2295 * Return: Maximum deferment in nanoseconds.
2296 */
2297u64 scheduler_tick_max_deferment(void)
2298{
2299	struct rq *rq = this_rq();
2300	unsigned long next, now = ACCESS_ONCE(jiffies);
2301
2302	next = rq->last_sched_tick + HZ;
2303
2304	if (time_before_eq(next, now))
2305		return 0;
2306
2307	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2308}
2309#endif
2310
2311notrace unsigned long get_parent_ip(unsigned long addr)
2312{
2313	if (in_lock_functions(addr)) {
2314		addr = CALLER_ADDR2;
2315		if (in_lock_functions(addr))
2316			addr = CALLER_ADDR3;
2317	}
2318	return addr;
2319}
2320
2321#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2322				defined(CONFIG_PREEMPT_TRACER))
2323
2324void __kprobes preempt_count_add(int val)
2325{
2326#ifdef CONFIG_DEBUG_PREEMPT
2327	/*
2328	 * Underflow?
2329	 */
2330	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2331		return;
2332#endif
2333	__preempt_count_add(val);
2334#ifdef CONFIG_DEBUG_PREEMPT
2335	/*
2336	 * Spinlock count overflowing soon?
2337	 */
2338	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2339				PREEMPT_MASK - 10);
2340#endif
2341	if (preempt_count() == val)
2342		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2343}
2344EXPORT_SYMBOL(preempt_count_add);
2345
2346void __kprobes preempt_count_sub(int val)
2347{
2348#ifdef CONFIG_DEBUG_PREEMPT
2349	/*
2350	 * Underflow?
2351	 */
2352	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2353		return;
2354	/*
2355	 * Is the spinlock portion underflowing?
2356	 */
2357	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2358			!(preempt_count() & PREEMPT_MASK)))
2359		return;
2360#endif
2361
2362	if (preempt_count() == val)
2363		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2364	__preempt_count_sub(val);
2365}
2366EXPORT_SYMBOL(preempt_count_sub);
2367
2368#endif
2369
2370/*
2371 * Print scheduling while atomic bug:
2372 */
2373static noinline void __schedule_bug(struct task_struct *prev)
2374{
2375	if (oops_in_progress)
2376		return;
2377
2378	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2379		prev->comm, prev->pid, preempt_count());
2380
2381	debug_show_held_locks(prev);
2382	print_modules();
2383	if (irqs_disabled())
2384		print_irqtrace_events(prev);
2385	dump_stack();
2386	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2387}
2388
2389/*
2390 * Various schedule()-time debugging checks and statistics:
2391 */
2392static inline void schedule_debug(struct task_struct *prev)
2393{
2394	/*
2395	 * Test if we are atomic. Since do_exit() needs to call into
2396	 * schedule() atomically, we ignore that path for now.
2397	 * Otherwise, whine if we are scheduling when we should not be.
2398	 */
2399	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2400		__schedule_bug(prev);
2401	rcu_sleep_check();
2402
2403	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2404
2405	schedstat_inc(this_rq(), sched_count);
2406}
2407
2408static void put_prev_task(struct rq *rq, struct task_struct *prev)
2409{
2410	if (prev->on_rq || rq->skip_clock_update < 0)
2411		update_rq_clock(rq);
2412	prev->sched_class->put_prev_task(rq, prev);
2413}
2414
2415/*
2416 * Pick up the highest-prio task:
2417 */
2418static inline struct task_struct *
2419pick_next_task(struct rq *rq)
2420{
2421	const struct sched_class *class;
2422	struct task_struct *p;
2423
2424	/*
2425	 * Optimization: we know that if all tasks are in
2426	 * the fair class we can call that function directly:
2427	 */
2428	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2429		p = fair_sched_class.pick_next_task(rq);
2430		if (likely(p))
2431			return p;
2432	}
2433
2434	for_each_class(class) {
2435		p = class->pick_next_task(rq);
2436		if (p)
2437			return p;
2438	}
2439
2440	BUG(); /* the idle class will always have a runnable task */
2441}
2442
2443/*
2444 * __schedule() is the main scheduler function.
2445 *
2446 * The main means of driving the scheduler and thus entering this function are:
2447 *
2448 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2449 *
2450 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2451 *      paths. For example, see arch/x86/entry_64.S.
2452 *
2453 *      To drive preemption between tasks, the scheduler sets the flag in timer
2454 *      interrupt handler scheduler_tick().
2455 *
2456 *   3. Wakeups don't really cause entry into schedule(). They add a
2457 *      task to the run-queue and that's it.
2458 *
2459 *      Now, if the new task added to the run-queue preempts the current
2460 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2461 *      called on the nearest possible occasion:
2462 *
2463 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2464 *
2465 *         - in syscall or exception context, at the next outmost
2466 *           preempt_enable(). (this might be as soon as the wake_up()'s
2467 *           spin_unlock()!)
2468 *
2469 *         - in IRQ context, return from interrupt-handler to
2470 *           preemptible context
2471 *
2472 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2473 *         then at the next:
2474 *
2475 *          - cond_resched() call
2476 *          - explicit schedule() call
2477 *          - return from syscall or exception to user-space
2478 *          - return from interrupt-handler to user-space
2479 */
2480static void __sched __schedule(void)
2481{
2482	struct task_struct *prev, *next;
2483	unsigned long *switch_count;
2484	struct rq *rq;
2485	int cpu;
2486
2487need_resched:
2488	preempt_disable();
2489	cpu = smp_processor_id();
2490	rq = cpu_rq(cpu);
2491	rcu_note_context_switch(cpu);
2492	prev = rq->curr;
2493
2494	schedule_debug(prev);
2495
2496	if (sched_feat(HRTICK))
2497		hrtick_clear(rq);
2498
2499	/*
2500	 * Make sure that signal_pending_state()->signal_pending() below
2501	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2502	 * done by the caller to avoid the race with signal_wake_up().
2503	 */
2504	smp_mb__before_spinlock();
2505	raw_spin_lock_irq(&rq->lock);
2506
2507	switch_count = &prev->nivcsw;
2508	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2509		if (unlikely(signal_pending_state(prev->state, prev))) {
2510			prev->state = TASK_RUNNING;
2511		} else {
2512			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2513			prev->on_rq = 0;
2514
2515			/*
2516			 * If a worker went to sleep, notify and ask workqueue
2517			 * whether it wants to wake up a task to maintain
2518			 * concurrency.
2519			 */
2520			if (prev->flags & PF_WQ_WORKER) {
2521				struct task_struct *to_wakeup;
2522
2523				to_wakeup = wq_worker_sleeping(prev, cpu);
2524				if (to_wakeup)
2525					try_to_wake_up_local(to_wakeup);
2526			}
2527		}
2528		switch_count = &prev->nvcsw;
2529	}
2530
2531	pre_schedule(rq, prev);
2532
2533	if (unlikely(!rq->nr_running))
2534		idle_balance(cpu, rq);
2535
2536	put_prev_task(rq, prev);
2537	next = pick_next_task(rq);
2538	clear_tsk_need_resched(prev);
2539	clear_preempt_need_resched();
2540	rq->skip_clock_update = 0;
2541
2542	if (likely(prev != next)) {
2543		rq->nr_switches++;
2544		rq->curr = next;
2545		++*switch_count;
2546
2547		context_switch(rq, prev, next); /* unlocks the rq */
2548		/*
2549		 * The context switch have flipped the stack from under us
2550		 * and restored the local variables which were saved when
2551		 * this task called schedule() in the past. prev == current
2552		 * is still correct, but it can be moved to another cpu/rq.
2553		 */
2554		cpu = smp_processor_id();
2555		rq = cpu_rq(cpu);
2556	} else
2557		raw_spin_unlock_irq(&rq->lock);
2558
2559	post_schedule(rq);
2560
2561	sched_preempt_enable_no_resched();
2562	if (need_resched())
2563		goto need_resched;
2564}
2565
2566static inline void sched_submit_work(struct task_struct *tsk)
2567{
2568	if (!tsk->state || tsk_is_pi_blocked(tsk))
2569		return;
2570	/*
2571	 * If we are going to sleep and we have plugged IO queued,
2572	 * make sure to submit it to avoid deadlocks.
2573	 */
2574	if (blk_needs_flush_plug(tsk))
2575		blk_schedule_flush_plug(tsk);
2576}
2577
2578asmlinkage void __sched schedule(void)
2579{
2580	struct task_struct *tsk = current;
2581
2582	sched_submit_work(tsk);
2583	__schedule();
2584}
2585EXPORT_SYMBOL(schedule);
2586
2587#ifdef CONFIG_CONTEXT_TRACKING
2588asmlinkage void __sched schedule_user(void)
2589{
2590	/*
2591	 * If we come here after a random call to set_need_resched(),
2592	 * or we have been woken up remotely but the IPI has not yet arrived,
2593	 * we haven't yet exited the RCU idle mode. Do it here manually until
2594	 * we find a better solution.
2595	 */
2596	user_exit();
2597	schedule();
2598	user_enter();
2599}
2600#endif
2601
2602/**
2603 * schedule_preempt_disabled - called with preemption disabled
2604 *
2605 * Returns with preemption disabled. Note: preempt_count must be 1
2606 */
2607void __sched schedule_preempt_disabled(void)
2608{
2609	sched_preempt_enable_no_resched();
2610	schedule();
2611	preempt_disable();
2612}
2613
2614#ifdef CONFIG_PREEMPT
2615/*
2616 * this is the entry point to schedule() from in-kernel preemption
2617 * off of preempt_enable. Kernel preemptions off return from interrupt
2618 * occur there and call schedule directly.
2619 */
2620asmlinkage void __sched notrace preempt_schedule(void)
2621{
2622	/*
2623	 * If there is a non-zero preempt_count or interrupts are disabled,
2624	 * we do not want to preempt the current task. Just return..
2625	 */
2626	if (likely(!preemptible()))
2627		return;
2628
2629	do {
2630		__preempt_count_add(PREEMPT_ACTIVE);
2631		__schedule();
2632		__preempt_count_sub(PREEMPT_ACTIVE);
2633
2634		/*
2635		 * Check again in case we missed a preemption opportunity
2636		 * between schedule and now.
2637		 */
2638		barrier();
2639	} while (need_resched());
2640}
2641EXPORT_SYMBOL(preempt_schedule);
2642
2643/*
2644 * this is the entry point to schedule() from kernel preemption
2645 * off of irq context.
2646 * Note, that this is called and return with irqs disabled. This will
2647 * protect us against recursive calling from irq.
2648 */
2649asmlinkage void __sched preempt_schedule_irq(void)
2650{
2651	enum ctx_state prev_state;
2652
2653	/* Catch callers which need to be fixed */
2654	BUG_ON(preempt_count() || !irqs_disabled());
2655
2656	prev_state = exception_enter();
2657
2658	do {
2659		__preempt_count_add(PREEMPT_ACTIVE);
2660		local_irq_enable();
2661		__schedule();
2662		local_irq_disable();
2663		__preempt_count_sub(PREEMPT_ACTIVE);
2664
2665		/*
2666		 * Check again in case we missed a preemption opportunity
2667		 * between schedule and now.
2668		 */
2669		barrier();
2670	} while (need_resched());
2671
2672	exception_exit(prev_state);
2673}
2674
2675#endif /* CONFIG_PREEMPT */
2676
2677int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2678			  void *key)
2679{
2680	return try_to_wake_up(curr->private, mode, wake_flags);
2681}
2682EXPORT_SYMBOL(default_wake_function);
2683
2684/*
2685 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2686 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2687 * number) then we wake all the non-exclusive tasks and one exclusive task.
2688 *
2689 * There are circumstances in which we can try to wake a task which has already
2690 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2691 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2692 */
2693static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2694			int nr_exclusive, int wake_flags, void *key)
2695{
2696	wait_queue_t *curr, *next;
2697
2698	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2699		unsigned flags = curr->flags;
2700
2701		if (curr->func(curr, mode, wake_flags, key) &&
2702				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2703			break;
2704	}
2705}
2706
2707/**
2708 * __wake_up - wake up threads blocked on a waitqueue.
2709 * @q: the waitqueue
2710 * @mode: which threads
2711 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2712 * @key: is directly passed to the wakeup function
2713 *
2714 * It may be assumed that this function implies a write memory barrier before
2715 * changing the task state if and only if any tasks are woken up.
2716 */
2717void __wake_up(wait_queue_head_t *q, unsigned int mode,
2718			int nr_exclusive, void *key)
2719{
2720	unsigned long flags;
2721
2722	spin_lock_irqsave(&q->lock, flags);
2723	__wake_up_common(q, mode, nr_exclusive, 0, key);
2724	spin_unlock_irqrestore(&q->lock, flags);
2725}
2726EXPORT_SYMBOL(__wake_up);
2727
2728/*
2729 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2730 */
2731void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2732{
2733	__wake_up_common(q, mode, nr, 0, NULL);
2734}
2735EXPORT_SYMBOL_GPL(__wake_up_locked);
2736
2737void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2738{
2739	__wake_up_common(q, mode, 1, 0, key);
2740}
2741EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2742
2743/**
2744 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2745 * @q: the waitqueue
2746 * @mode: which threads
2747 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2748 * @key: opaque value to be passed to wakeup targets
2749 *
2750 * The sync wakeup differs that the waker knows that it will schedule
2751 * away soon, so while the target thread will be woken up, it will not
2752 * be migrated to another CPU - ie. the two threads are 'synchronized'
2753 * with each other. This can prevent needless bouncing between CPUs.
2754 *
2755 * On UP it can prevent extra preemption.
2756 *
2757 * It may be assumed that this function implies a write memory barrier before
2758 * changing the task state if and only if any tasks are woken up.
2759 */
2760void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2761			int nr_exclusive, void *key)
2762{
2763	unsigned long flags;
2764	int wake_flags = WF_SYNC;
2765
2766	if (unlikely(!q))
2767		return;
2768
2769	if (unlikely(nr_exclusive != 1))
2770		wake_flags = 0;
2771
2772	spin_lock_irqsave(&q->lock, flags);
2773	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2774	spin_unlock_irqrestore(&q->lock, flags);
2775}
2776EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2777
2778/*
2779 * __wake_up_sync - see __wake_up_sync_key()
2780 */
2781void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2782{
2783	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2784}
2785EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2786
2787/**
2788 * complete: - signals a single thread waiting on this completion
2789 * @x:  holds the state of this particular completion
2790 *
2791 * This will wake up a single thread waiting on this completion. Threads will be
2792 * awakened in the same order in which they were queued.
2793 *
2794 * See also complete_all(), wait_for_completion() and related routines.
2795 *
2796 * It may be assumed that this function implies a write memory barrier before
2797 * changing the task state if and only if any tasks are woken up.
2798 */
2799void complete(struct completion *x)
2800{
2801	unsigned long flags;
2802
2803	spin_lock_irqsave(&x->wait.lock, flags);
2804	x->done++;
2805	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2806	spin_unlock_irqrestore(&x->wait.lock, flags);
2807}
2808EXPORT_SYMBOL(complete);
2809
2810/**
2811 * complete_all: - signals all threads waiting on this completion
2812 * @x:  holds the state of this particular completion
2813 *
2814 * This will wake up all threads waiting on this particular completion event.
2815 *
2816 * It may be assumed that this function implies a write memory barrier before
2817 * changing the task state if and only if any tasks are woken up.
2818 */
2819void complete_all(struct completion *x)
2820{
2821	unsigned long flags;
2822
2823	spin_lock_irqsave(&x->wait.lock, flags);
2824	x->done += UINT_MAX/2;
2825	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2826	spin_unlock_irqrestore(&x->wait.lock, flags);
2827}
2828EXPORT_SYMBOL(complete_all);
2829
2830static inline long __sched
2831do_wait_for_common(struct completion *x,
2832		   long (*action)(long), long timeout, int state)
2833{
2834	if (!x->done) {
2835		DECLARE_WAITQUEUE(wait, current);
2836
2837		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2838		do {
2839			if (signal_pending_state(state, current)) {
2840				timeout = -ERESTARTSYS;
2841				break;
2842			}
2843			__set_current_state(state);
2844			spin_unlock_irq(&x->wait.lock);
2845			timeout = action(timeout);
2846			spin_lock_irq(&x->wait.lock);
2847		} while (!x->done && timeout);
2848		__remove_wait_queue(&x->wait, &wait);
2849		if (!x->done)
2850			return timeout;
2851	}
2852	x->done--;
2853	return timeout ?: 1;
2854}
2855
2856static inline long __sched
2857__wait_for_common(struct completion *x,
2858		  long (*action)(long), long timeout, int state)
2859{
2860	might_sleep();
2861
2862	spin_lock_irq(&x->wait.lock);
2863	timeout = do_wait_for_common(x, action, timeout, state);
2864	spin_unlock_irq(&x->wait.lock);
2865	return timeout;
2866}
2867
2868static long __sched
2869wait_for_common(struct completion *x, long timeout, int state)
2870{
2871	return __wait_for_common(x, schedule_timeout, timeout, state);
2872}
2873
2874static long __sched
2875wait_for_common_io(struct completion *x, long timeout, int state)
2876{
2877	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2878}
2879
2880/**
2881 * wait_for_completion: - waits for completion of a task
2882 * @x:  holds the state of this particular completion
2883 *
2884 * This waits to be signaled for completion of a specific task. It is NOT
2885 * interruptible and there is no timeout.
2886 *
2887 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2888 * and interrupt capability. Also see complete().
2889 */
2890void __sched wait_for_completion(struct completion *x)
2891{
2892	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2893}
2894EXPORT_SYMBOL(wait_for_completion);
2895
2896/**
2897 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2898 * @x:  holds the state of this particular completion
2899 * @timeout:  timeout value in jiffies
2900 *
2901 * This waits for either a completion of a specific task to be signaled or for a
2902 * specified timeout to expire. The timeout is in jiffies. It is not
2903 * interruptible.
2904 *
2905 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2906 * till timeout) if completed.
2907 */
2908unsigned long __sched
2909wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2910{
2911	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2912}
2913EXPORT_SYMBOL(wait_for_completion_timeout);
2914
2915/**
2916 * wait_for_completion_io: - waits for completion of a task
2917 * @x:  holds the state of this particular completion
2918 *
2919 * This waits to be signaled for completion of a specific task. It is NOT
2920 * interruptible and there is no timeout. The caller is accounted as waiting
2921 * for IO.
2922 */
2923void __sched wait_for_completion_io(struct completion *x)
2924{
2925	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2926}
2927EXPORT_SYMBOL(wait_for_completion_io);
2928
2929/**
2930 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2931 * @x:  holds the state of this particular completion
2932 * @timeout:  timeout value in jiffies
2933 *
2934 * This waits for either a completion of a specific task to be signaled or for a
2935 * specified timeout to expire. The timeout is in jiffies. It is not
2936 * interruptible. The caller is accounted as waiting for IO.
2937 *
2938 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2939 * till timeout) if completed.
2940 */
2941unsigned long __sched
2942wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2943{
2944	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2945}
2946EXPORT_SYMBOL(wait_for_completion_io_timeout);
2947
2948/**
2949 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2950 * @x:  holds the state of this particular completion
2951 *
2952 * This waits for completion of a specific task to be signaled. It is
2953 * interruptible.
2954 *
2955 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2956 */
2957int __sched wait_for_completion_interruptible(struct completion *x)
2958{
2959	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2960	if (t == -ERESTARTSYS)
2961		return t;
2962	return 0;
2963}
2964EXPORT_SYMBOL(wait_for_completion_interruptible);
2965
2966/**
2967 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2968 * @x:  holds the state of this particular completion
2969 * @timeout:  timeout value in jiffies
2970 *
2971 * This waits for either a completion of a specific task to be signaled or for a
2972 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2973 *
2974 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2975 * or number of jiffies left till timeout) if completed.
2976 */
2977long __sched
2978wait_for_completion_interruptible_timeout(struct completion *x,
2979					  unsigned long timeout)
2980{
2981	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2982}
2983EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2984
2985/**
2986 * wait_for_completion_killable: - waits for completion of a task (killable)
2987 * @x:  holds the state of this particular completion
2988 *
2989 * This waits to be signaled for completion of a specific task. It can be
2990 * interrupted by a kill signal.
2991 *
2992 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2993 */
2994int __sched wait_for_completion_killable(struct completion *x)
2995{
2996	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2997	if (t == -ERESTARTSYS)
2998		return t;
2999	return 0;
3000}
3001EXPORT_SYMBOL(wait_for_completion_killable);
3002
3003/**
3004 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3005 * @x:  holds the state of this particular completion
3006 * @timeout:  timeout value in jiffies
3007 *
3008 * This waits for either a completion of a specific task to be
3009 * signaled or for a specified timeout to expire. It can be
3010 * interrupted by a kill signal. The timeout is in jiffies.
3011 *
3012 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3013 * or number of jiffies left till timeout) if completed.
3014 */
3015long __sched
3016wait_for_completion_killable_timeout(struct completion *x,
3017				     unsigned long timeout)
3018{
3019	return wait_for_common(x, timeout, TASK_KILLABLE);
3020}
3021EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3022
3023/**
3024 *	try_wait_for_completion - try to decrement a completion without blocking
3025 *	@x:	completion structure
3026 *
3027 *	Return: 0 if a decrement cannot be done without blocking
3028 *		 1 if a decrement succeeded.
3029 *
3030 *	If a completion is being used as a counting completion,
3031 *	attempt to decrement the counter without blocking. This
3032 *	enables us to avoid waiting if the resource the completion
3033 *	is protecting is not available.
3034 */
3035bool try_wait_for_completion(struct completion *x)
3036{
3037	unsigned long flags;
3038	int ret = 1;
3039
3040	spin_lock_irqsave(&x->wait.lock, flags);
3041	if (!x->done)
3042		ret = 0;
3043	else
3044		x->done--;
3045	spin_unlock_irqrestore(&x->wait.lock, flags);
3046	return ret;
3047}
3048EXPORT_SYMBOL(try_wait_for_completion);
3049
3050/**
3051 *	completion_done - Test to see if a completion has any waiters
3052 *	@x:	completion structure
3053 *
3054 *	Return: 0 if there are waiters (wait_for_completion() in progress)
3055 *		 1 if there are no waiters.
3056 *
3057 */
3058bool completion_done(struct completion *x)
3059{
3060	unsigned long flags;
3061	int ret = 1;
3062
3063	spin_lock_irqsave(&x->wait.lock, flags);
3064	if (!x->done)
3065		ret = 0;
3066	spin_unlock_irqrestore(&x->wait.lock, flags);
3067	return ret;
3068}
3069EXPORT_SYMBOL(completion_done);
3070
3071static long __sched
3072sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3073{
3074	unsigned long flags;
3075	wait_queue_t wait;
3076
3077	init_waitqueue_entry(&wait, current);
3078
3079	__set_current_state(state);
3080
3081	spin_lock_irqsave(&q->lock, flags);
3082	__add_wait_queue(q, &wait);
3083	spin_unlock(&q->lock);
3084	timeout = schedule_timeout(timeout);
3085	spin_lock_irq(&q->lock);
3086	__remove_wait_queue(q, &wait);
3087	spin_unlock_irqrestore(&q->lock, flags);
3088
3089	return timeout;
3090}
3091
3092void __sched interruptible_sleep_on(wait_queue_head_t *q)
3093{
3094	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3095}
3096EXPORT_SYMBOL(interruptible_sleep_on);
3097
3098long __sched
3099interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3100{
3101	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3102}
3103EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3104
3105void __sched sleep_on(wait_queue_head_t *q)
3106{
3107	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3108}
3109EXPORT_SYMBOL(sleep_on);
3110
3111long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3112{
3113	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3114}
3115EXPORT_SYMBOL(sleep_on_timeout);
3116
3117#ifdef CONFIG_RT_MUTEXES
3118
3119/*
3120 * rt_mutex_setprio - set the current priority of a task
3121 * @p: task
3122 * @prio: prio value (kernel-internal form)
3123 *
3124 * This function changes the 'effective' priority of a task. It does
3125 * not touch ->normal_prio like __setscheduler().
3126 *
3127 * Used by the rt_mutex code to implement priority inheritance logic.
3128 */
3129void rt_mutex_setprio(struct task_struct *p, int prio)
3130{
3131	int oldprio, on_rq, running;
3132	struct rq *rq;
3133	const struct sched_class *prev_class;
3134
3135	BUG_ON(prio < 0 || prio > MAX_PRIO);
3136
3137	rq = __task_rq_lock(p);
3138
3139	/*
3140	 * Idle task boosting is a nono in general. There is one
3141	 * exception, when PREEMPT_RT and NOHZ is active:
3142	 *
3143	 * The idle task calls get_next_timer_interrupt() and holds
3144	 * the timer wheel base->lock on the CPU and another CPU wants
3145	 * to access the timer (probably to cancel it). We can safely
3146	 * ignore the boosting request, as the idle CPU runs this code
3147	 * with interrupts disabled and will complete the lock
3148	 * protected section without being interrupted. So there is no
3149	 * real need to boost.
3150	 */
3151	if (unlikely(p == rq->idle)) {
3152		WARN_ON(p != rq->curr);
3153		WARN_ON(p->pi_blocked_on);
3154		goto out_unlock;
3155	}
3156
3157	trace_sched_pi_setprio(p, prio);
3158	oldprio = p->prio;
3159	prev_class = p->sched_class;
3160	on_rq = p->on_rq;
3161	running = task_current(rq, p);
3162	if (on_rq)
3163		dequeue_task(rq, p, 0);
3164	if (running)
3165		p->sched_class->put_prev_task(rq, p);
3166
3167	if (rt_prio(prio))
3168		p->sched_class = &rt_sched_class;
3169	else
3170		p->sched_class = &fair_sched_class;
3171
3172	p->prio = prio;
3173
3174	if (running)
3175		p->sched_class->set_curr_task(rq);
3176	if (on_rq)
3177		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3178
3179	check_class_changed(rq, p, prev_class, oldprio);
3180out_unlock:
3181	__task_rq_unlock(rq);
3182}
3183#endif
3184void set_user_nice(struct task_struct *p, long nice)
3185{
3186	int old_prio, delta, on_rq;
3187	unsigned long flags;
3188	struct rq *rq;
3189
3190	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3191		return;
3192	/*
3193	 * We have to be careful, if called from sys_setpriority(),
3194	 * the task might be in the middle of scheduling on another CPU.
3195	 */
3196	rq = task_rq_lock(p, &flags);
3197	/*
3198	 * The RT priorities are set via sched_setscheduler(), but we still
3199	 * allow the 'normal' nice value to be set - but as expected
3200	 * it wont have any effect on scheduling until the task is
3201	 * SCHED_FIFO/SCHED_RR:
3202	 */
3203	if (task_has_rt_policy(p)) {
3204		p->static_prio = NICE_TO_PRIO(nice);
3205		goto out_unlock;
3206	}
3207	on_rq = p->on_rq;
3208	if (on_rq)
3209		dequeue_task(rq, p, 0);
3210
3211	p->static_prio = NICE_TO_PRIO(nice);
3212	set_load_weight(p);
3213	old_prio = p->prio;
3214	p->prio = effective_prio(p);
3215	delta = p->prio - old_prio;
3216
3217	if (on_rq) {
3218		enqueue_task(rq, p, 0);
3219		/*
3220		 * If the task increased its priority or is running and
3221		 * lowered its priority, then reschedule its CPU:
3222		 */
3223		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3224			resched_task(rq->curr);
3225	}
3226out_unlock:
3227	task_rq_unlock(rq, p, &flags);
3228}
3229EXPORT_SYMBOL(set_user_nice);
3230
3231/*
3232 * can_nice - check if a task can reduce its nice value
3233 * @p: task
3234 * @nice: nice value
3235 */
3236int can_nice(const struct task_struct *p, const int nice)
3237{
3238	/* convert nice value [19,-20] to rlimit style value [1,40] */
3239	int nice_rlim = 20 - nice;
3240
3241	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3242		capable(CAP_SYS_NICE));
3243}
3244
3245#ifdef __ARCH_WANT_SYS_NICE
3246
3247/*
3248 * sys_nice - change the priority of the current process.
3249 * @increment: priority increment
3250 *
3251 * sys_setpriority is a more generic, but much slower function that
3252 * does similar things.
3253 */
3254SYSCALL_DEFINE1(nice, int, increment)
3255{
3256	long nice, retval;
3257
3258	/*
3259	 * Setpriority might change our priority at the same moment.
3260	 * We don't have to worry. Conceptually one call occurs first
3261	 * and we have a single winner.
3262	 */
3263	if (increment < -40)
3264		increment = -40;
3265	if (increment > 40)
3266		increment = 40;
3267
3268	nice = TASK_NICE(current) + increment;
3269	if (nice < -20)
3270		nice = -20;
3271	if (nice > 19)
3272		nice = 19;
3273
3274	if (increment < 0 && !can_nice(current, nice))
3275		return -EPERM;
3276
3277	retval = security_task_setnice(current, nice);
3278	if (retval)
3279		return retval;
3280
3281	set_user_nice(current, nice);
3282	return 0;
3283}
3284
3285#endif
3286
3287/**
3288 * task_prio - return the priority value of a given task.
3289 * @p: the task in question.
3290 *
3291 * Return: The priority value as seen by users in /proc.
3292 * RT tasks are offset by -200. Normal tasks are centered
3293 * around 0, value goes from -16 to +15.
3294 */
3295int task_prio(const struct task_struct *p)
3296{
3297	return p->prio - MAX_RT_PRIO;
3298}
3299
3300/**
3301 * task_nice - return the nice value of a given task.
3302 * @p: the task in question.
3303 *
3304 * Return: The nice value [ -20 ... 0 ... 19 ].
3305 */
3306int task_nice(const struct task_struct *p)
3307{
3308	return TASK_NICE(p);
3309}
3310EXPORT_SYMBOL(task_nice);
3311
3312/**
3313 * idle_cpu - is a given cpu idle currently?
3314 * @cpu: the processor in question.
3315 *
3316 * Return: 1 if the CPU is currently idle. 0 otherwise.
3317 */
3318int idle_cpu(int cpu)
3319{
3320	struct rq *rq = cpu_rq(cpu);
3321
3322	if (rq->curr != rq->idle)
3323		return 0;
3324
3325	if (rq->nr_running)
3326		return 0;
3327
3328#ifdef CONFIG_SMP
3329	if (!llist_empty(&rq->wake_list))
3330		return 0;
3331#endif
3332
3333	return 1;
3334}
3335
3336/**
3337 * idle_task - return the idle task for a given cpu.
3338 * @cpu: the processor in question.
3339 *
3340 * Return: The idle task for the cpu @cpu.
3341 */
3342struct task_struct *idle_task(int cpu)
3343{
3344	return cpu_rq(cpu)->idle;
3345}
3346
3347/**
3348 * find_process_by_pid - find a process with a matching PID value.
3349 * @pid: the pid in question.
3350 *
3351 * The task of @pid, if found. %NULL otherwise.
3352 */
3353static struct task_struct *find_process_by_pid(pid_t pid)
3354{
3355	return pid ? find_task_by_vpid(pid) : current;
3356}
3357
3358/* Actually do priority change: must hold rq lock. */
3359static void
3360__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3361{
3362	p->policy = policy;
3363	p->rt_priority = prio;
3364	p->normal_prio = normal_prio(p);
3365	/* we are holding p->pi_lock already */
3366	p->prio = rt_mutex_getprio(p);
3367	if (rt_prio(p->prio))
3368		p->sched_class = &rt_sched_class;
3369	else
3370		p->sched_class = &fair_sched_class;
3371	set_load_weight(p);
3372}
3373
3374/*
3375 * check the target process has a UID that matches the current process's
3376 */
3377static bool check_same_owner(struct task_struct *p)
3378{
3379	const struct cred *cred = current_cred(), *pcred;
3380	bool match;
3381
3382	rcu_read_lock();
3383	pcred = __task_cred(p);
3384	match = (uid_eq(cred->euid, pcred->euid) ||
3385		 uid_eq(cred->euid, pcred->uid));
3386	rcu_read_unlock();
3387	return match;
3388}
3389
3390static int __sched_setscheduler(struct task_struct *p, int policy,
3391				const struct sched_param *param, bool user)
3392{
3393	int retval, oldprio, oldpolicy = -1, on_rq, running;
3394	unsigned long flags;
3395	const struct sched_class *prev_class;
3396	struct rq *rq;
3397	int reset_on_fork;
3398
3399	/* may grab non-irq protected spin_locks */
3400	BUG_ON(in_interrupt());
3401recheck:
3402	/* double check policy once rq lock held */
3403	if (policy < 0) {
3404		reset_on_fork = p->sched_reset_on_fork;
3405		policy = oldpolicy = p->policy;
3406	} else {
3407		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3408		policy &= ~SCHED_RESET_ON_FORK;
3409
3410		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3411				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3412				policy != SCHED_IDLE)
3413			return -EINVAL;
3414	}
3415
3416	/*
3417	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3418	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3419	 * SCHED_BATCH and SCHED_IDLE is 0.
3420	 */
3421	if (param->sched_priority < 0 ||
3422	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3423	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3424		return -EINVAL;
3425	if (rt_policy(policy) != (param->sched_priority != 0))
3426		return -EINVAL;
3427
3428	/*
3429	 * Allow unprivileged RT tasks to decrease priority:
3430	 */
3431	if (user && !capable(CAP_SYS_NICE)) {
3432		if (rt_policy(policy)) {
3433			unsigned long rlim_rtprio =
3434					task_rlimit(p, RLIMIT_RTPRIO);
3435
3436			/* can't set/change the rt policy */
3437			if (policy != p->policy && !rlim_rtprio)
3438				return -EPERM;
3439
3440			/* can't increase priority */
3441			if (param->sched_priority > p->rt_priority &&
3442			    param->sched_priority > rlim_rtprio)
3443				return -EPERM;
3444		}
3445
3446		/*
3447		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3448		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3449		 */
3450		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3451			if (!can_nice(p, TASK_NICE(p)))
3452				return -EPERM;
3453		}
3454
3455		/* can't change other user's priorities */
3456		if (!check_same_owner(p))
3457			return -EPERM;
3458
3459		/* Normal users shall not reset the sched_reset_on_fork flag */
3460		if (p->sched_reset_on_fork && !reset_on_fork)
3461			return -EPERM;
3462	}
3463
3464	if (user) {
3465		retval = security_task_setscheduler(p);
3466		if (retval)
3467			return retval;
3468	}
3469
3470	/*
3471	 * make sure no PI-waiters arrive (or leave) while we are
3472	 * changing the priority of the task:
3473	 *
3474	 * To be able to change p->policy safely, the appropriate
3475	 * runqueue lock must be held.
3476	 */
3477	rq = task_rq_lock(p, &flags);
3478
3479	/*
3480	 * Changing the policy of the stop threads its a very bad idea
3481	 */
3482	if (p == rq->stop) {
3483		task_rq_unlock(rq, p, &flags);
3484		return -EINVAL;
3485	}
3486
3487	/*
3488	 * If not changing anything there's no need to proceed further:
3489	 */
3490	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3491			param->sched_priority == p->rt_priority))) {
3492		task_rq_unlock(rq, p, &flags);
3493		return 0;
3494	}
3495
3496#ifdef CONFIG_RT_GROUP_SCHED
3497	if (user) {
3498		/*
3499		 * Do not allow realtime tasks into groups that have no runtime
3500		 * assigned.
3501		 */
3502		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3503				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3504				!task_group_is_autogroup(task_group(p))) {
3505			task_rq_unlock(rq, p, &flags);
3506			return -EPERM;
3507		}
3508	}
3509#endif
3510
3511	/* recheck policy now with rq lock held */
3512	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3513		policy = oldpolicy = -1;
3514		task_rq_unlock(rq, p, &flags);
3515		goto recheck;
3516	}
3517	on_rq = p->on_rq;
3518	running = task_current(rq, p);
3519	if (on_rq)
3520		dequeue_task(rq, p, 0);
3521	if (running)
3522		p->sched_class->put_prev_task(rq, p);
3523
3524	p->sched_reset_on_fork = reset_on_fork;
3525
3526	oldprio = p->prio;
3527	prev_class = p->sched_class;
3528	__setscheduler(rq, p, policy, param->sched_priority);
3529
3530	if (running)
3531		p->sched_class->set_curr_task(rq);
3532	if (on_rq)
3533		enqueue_task(rq, p, 0);
3534
3535	check_class_changed(rq, p, prev_class, oldprio);
3536	task_rq_unlock(rq, p, &flags);
3537
3538	rt_mutex_adjust_pi(p);
3539
3540	return 0;
3541}
3542
3543/**
3544 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3545 * @p: the task in question.
3546 * @policy: new policy.
3547 * @param: structure containing the new RT priority.
3548 *
3549 * Return: 0 on success. An error code otherwise.
3550 *
3551 * NOTE that the task may be already dead.
3552 */
3553int sched_setscheduler(struct task_struct *p, int policy,
3554		       const struct sched_param *param)
3555{
3556	return __sched_setscheduler(p, policy, param, true);
3557}
3558EXPORT_SYMBOL_GPL(sched_setscheduler);
3559
3560/**
3561 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3562 * @p: the task in question.
3563 * @policy: new policy.
3564 * @param: structure containing the new RT priority.
3565 *
3566 * Just like sched_setscheduler, only don't bother checking if the
3567 * current context has permission.  For example, this is needed in
3568 * stop_machine(): we create temporary high priority worker threads,
3569 * but our caller might not have that capability.
3570 *
3571 * Return: 0 on success. An error code otherwise.
3572 */
3573int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3574			       const struct sched_param *param)
3575{
3576	return __sched_setscheduler(p, policy, param, false);
3577}
3578
3579static int
3580do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3581{
3582	struct sched_param lparam;
3583	struct task_struct *p;
3584	int retval;
3585
3586	if (!param || pid < 0)
3587		return -EINVAL;
3588	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3589		return -EFAULT;
3590
3591	rcu_read_lock();
3592	retval = -ESRCH;
3593	p = find_process_by_pid(pid);
3594	if (p != NULL)
3595		retval = sched_setscheduler(p, policy, &lparam);
3596	rcu_read_unlock();
3597
3598	return retval;
3599}
3600
3601/**
3602 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3603 * @pid: the pid in question.
3604 * @policy: new policy.
3605 * @param: structure containing the new RT priority.
3606 *
3607 * Return: 0 on success. An error code otherwise.
3608 */
3609SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3610		struct sched_param __user *, param)
3611{
3612	/* negative values for policy are not valid */
3613	if (policy < 0)
3614		return -EINVAL;
3615
3616	return do_sched_setscheduler(pid, policy, param);
3617}
3618
3619/**
3620 * sys_sched_setparam - set/change the RT priority of a thread
3621 * @pid: the pid in question.
3622 * @param: structure containing the new RT priority.
3623 *
3624 * Return: 0 on success. An error code otherwise.
3625 */
3626SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3627{
3628	return do_sched_setscheduler(pid, -1, param);
3629}
3630
3631/**
3632 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3633 * @pid: the pid in question.
3634 *
3635 * Return: On success, the policy of the thread. Otherwise, a negative error
3636 * code.
3637 */
3638SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3639{
3640	struct task_struct *p;
3641	int retval;
3642
3643	if (pid < 0)
3644		return -EINVAL;
3645
3646	retval = -ESRCH;
3647	rcu_read_lock();
3648	p = find_process_by_pid(pid);
3649	if (p) {
3650		retval = security_task_getscheduler(p);
3651		if (!retval)
3652			retval = p->policy
3653				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3654	}
3655	rcu_read_unlock();
3656	return retval;
3657}
3658
3659/**
3660 * sys_sched_getparam - get the RT priority of a thread
3661 * @pid: the pid in question.
3662 * @param: structure containing the RT priority.
3663 *
3664 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3665 * code.
3666 */
3667SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3668{
3669	struct sched_param lp;
3670	struct task_struct *p;
3671	int retval;
3672
3673	if (!param || pid < 0)
3674		return -EINVAL;
3675
3676	rcu_read_lock();
3677	p = find_process_by_pid(pid);
3678	retval = -ESRCH;
3679	if (!p)
3680		goto out_unlock;
3681
3682	retval = security_task_getscheduler(p);
3683	if (retval)
3684		goto out_unlock;
3685
3686	lp.sched_priority = p->rt_priority;
3687	rcu_read_unlock();
3688
3689	/*
3690	 * This one might sleep, we cannot do it with a spinlock held ...
3691	 */
3692	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3693
3694	return retval;
3695
3696out_unlock:
3697	rcu_read_unlock();
3698	return retval;
3699}
3700
3701long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3702{
3703	cpumask_var_t cpus_allowed, new_mask;
3704	struct task_struct *p;
3705	int retval;
3706
3707	get_online_cpus();
3708	rcu_read_lock();
3709
3710	p = find_process_by_pid(pid);
3711	if (!p) {
3712		rcu_read_unlock();
3713		put_online_cpus();
3714		return -ESRCH;
3715	}
3716
3717	/* Prevent p going away */
3718	get_task_struct(p);
3719	rcu_read_unlock();
3720
3721	if (p->flags & PF_NO_SETAFFINITY) {
3722		retval = -EINVAL;
3723		goto out_put_task;
3724	}
3725	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3726		retval = -ENOMEM;
3727		goto out_put_task;
3728	}
3729	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3730		retval = -ENOMEM;
3731		goto out_free_cpus_allowed;
3732	}
3733	retval = -EPERM;
3734	if (!check_same_owner(p)) {
3735		rcu_read_lock();
3736		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3737			rcu_read_unlock();
3738			goto out_unlock;
3739		}
3740		rcu_read_unlock();
3741	}
3742
3743	retval = security_task_setscheduler(p);
3744	if (retval)
3745		goto out_unlock;
3746
3747	cpuset_cpus_allowed(p, cpus_allowed);
3748	cpumask_and(new_mask, in_mask, cpus_allowed);
3749again:
3750	retval = set_cpus_allowed_ptr(p, new_mask);
3751
3752	if (!retval) {
3753		cpuset_cpus_allowed(p, cpus_allowed);
3754		if (!cpumask_subset(new_mask, cpus_allowed)) {
3755			/*
3756			 * We must have raced with a concurrent cpuset
3757			 * update. Just reset the cpus_allowed to the
3758			 * cpuset's cpus_allowed
3759			 */
3760			cpumask_copy(new_mask, cpus_allowed);
3761			goto again;
3762		}
3763	}
3764out_unlock:
3765	free_cpumask_var(new_mask);
3766out_free_cpus_allowed:
3767	free_cpumask_var(cpus_allowed);
3768out_put_task:
3769	put_task_struct(p);
3770	put_online_cpus();
3771	return retval;
3772}
3773
3774static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3775			     struct cpumask *new_mask)
3776{
3777	if (len < cpumask_size())
3778		cpumask_clear(new_mask);
3779	else if (len > cpumask_size())
3780		len = cpumask_size();
3781
3782	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3783}
3784
3785/**
3786 * sys_sched_setaffinity - set the cpu affinity of a process
3787 * @pid: pid of the process
3788 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3789 * @user_mask_ptr: user-space pointer to the new cpu mask
3790 *
3791 * Return: 0 on success. An error code otherwise.
3792 */
3793SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3794		unsigned long __user *, user_mask_ptr)
3795{
3796	cpumask_var_t new_mask;
3797	int retval;
3798
3799	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3800		return -ENOMEM;
3801
3802	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3803	if (retval == 0)
3804		retval = sched_setaffinity(pid, new_mask);
3805	free_cpumask_var(new_mask);
3806	return retval;
3807}
3808
3809long sched_getaffinity(pid_t pid, struct cpumask *mask)
3810{
3811	struct task_struct *p;
3812	unsigned long flags;
3813	int retval;
3814
3815	get_online_cpus();
3816	rcu_read_lock();
3817
3818	retval = -ESRCH;
3819	p = find_process_by_pid(pid);
3820	if (!p)
3821		goto out_unlock;
3822
3823	retval = security_task_getscheduler(p);
3824	if (retval)
3825		goto out_unlock;
3826
3827	raw_spin_lock_irqsave(&p->pi_lock, flags);
3828	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3829	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3830
3831out_unlock:
3832	rcu_read_unlock();
3833	put_online_cpus();
3834
3835	return retval;
3836}
3837
3838/**
3839 * sys_sched_getaffinity - get the cpu affinity of a process
3840 * @pid: pid of the process
3841 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3842 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3843 *
3844 * Return: 0 on success. An error code otherwise.
3845 */
3846SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3847		unsigned long __user *, user_mask_ptr)
3848{
3849	int ret;
3850	cpumask_var_t mask;
3851
3852	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3853		return -EINVAL;
3854	if (len & (sizeof(unsigned long)-1))
3855		return -EINVAL;
3856
3857	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3858		return -ENOMEM;
3859
3860	ret = sched_getaffinity(pid, mask);
3861	if (ret == 0) {
3862		size_t retlen = min_t(size_t, len, cpumask_size());
3863
3864		if (copy_to_user(user_mask_ptr, mask, retlen))
3865			ret = -EFAULT;
3866		else
3867			ret = retlen;
3868	}
3869	free_cpumask_var(mask);
3870
3871	return ret;
3872}
3873
3874/**
3875 * sys_sched_yield - yield the current processor to other threads.
3876 *
3877 * This function yields the current CPU to other tasks. If there are no
3878 * other threads running on this CPU then this function will return.
3879 *
3880 * Return: 0.
3881 */
3882SYSCALL_DEFINE0(sched_yield)
3883{
3884	struct rq *rq = this_rq_lock();
3885
3886	schedstat_inc(rq, yld_count);
3887	current->sched_class->yield_task(rq);
3888
3889	/*
3890	 * Since we are going to call schedule() anyway, there's
3891	 * no need to preempt or enable interrupts:
3892	 */
3893	__release(rq->lock);
3894	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3895	do_raw_spin_unlock(&rq->lock);
3896	sched_preempt_enable_no_resched();
3897
3898	schedule();
3899
3900	return 0;
3901}
3902
3903static void __cond_resched(void)
3904{
3905	__preempt_count_add(PREEMPT_ACTIVE);
3906	__schedule();
3907	__preempt_count_sub(PREEMPT_ACTIVE);
3908}
3909
3910int __sched _cond_resched(void)
3911{
3912	if (should_resched()) {
3913		__cond_resched();
3914		return 1;
3915	}
3916	return 0;
3917}
3918EXPORT_SYMBOL(_cond_resched);
3919
3920/*
3921 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3922 * call schedule, and on return reacquire the lock.
3923 *
3924 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3925 * operations here to prevent schedule() from being called twice (once via
3926 * spin_unlock(), once by hand).
3927 */
3928int __cond_resched_lock(spinlock_t *lock)
3929{
3930	int resched = should_resched();
3931	int ret = 0;
3932
3933	lockdep_assert_held(lock);
3934
3935	if (spin_needbreak(lock) || resched) {
3936		spin_unlock(lock);
3937		if (resched)
3938			__cond_resched();
3939		else
3940			cpu_relax();
3941		ret = 1;
3942		spin_lock(lock);
3943	}
3944	return ret;
3945}
3946EXPORT_SYMBOL(__cond_resched_lock);
3947
3948int __sched __cond_resched_softirq(void)
3949{
3950	BUG_ON(!in_softirq());
3951
3952	if (should_resched()) {
3953		local_bh_enable();
3954		__cond_resched();
3955		local_bh_disable();
3956		return 1;
3957	}
3958	return 0;
3959}
3960EXPORT_SYMBOL(__cond_resched_softirq);
3961
3962/**
3963 * yield - yield the current processor to other threads.
3964 *
3965 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3966 *
3967 * The scheduler is at all times free to pick the calling task as the most
3968 * eligible task to run, if removing the yield() call from your code breaks
3969 * it, its already broken.
3970 *
3971 * Typical broken usage is:
3972 *
3973 * while (!event)
3974 * 	yield();
3975 *
3976 * where one assumes that yield() will let 'the other' process run that will
3977 * make event true. If the current task is a SCHED_FIFO task that will never
3978 * happen. Never use yield() as a progress guarantee!!
3979 *
3980 * If you want to use yield() to wait for something, use wait_event().
3981 * If you want to use yield() to be 'nice' for others, use cond_resched().
3982 * If you still want to use yield(), do not!
3983 */
3984void __sched yield(void)
3985{
3986	set_current_state(TASK_RUNNING);
3987	sys_sched_yield();
3988}
3989EXPORT_SYMBOL(yield);
3990
3991/**
3992 * yield_to - yield the current processor to another thread in
3993 * your thread group, or accelerate that thread toward the
3994 * processor it's on.
3995 * @p: target task
3996 * @preempt: whether task preemption is allowed or not
3997 *
3998 * It's the caller's job to ensure that the target task struct
3999 * can't go away on us before we can do any checks.
4000 *
4001 * Return:
4002 *	true (>0) if we indeed boosted the target task.
4003 *	false (0) if we failed to boost the target.
4004 *	-ESRCH if there's no task to yield to.
4005 */
4006bool __sched yield_to(struct task_struct *p, bool preempt)
4007{
4008	struct task_struct *curr = current;
4009	struct rq *rq, *p_rq;
4010	unsigned long flags;
4011	int yielded = 0;
4012
4013	local_irq_save(flags);
4014	rq = this_rq();
4015
4016again:
4017	p_rq = task_rq(p);
4018	/*
4019	 * If we're the only runnable task on the rq and target rq also
4020	 * has only one task, there's absolutely no point in yielding.
4021	 */
4022	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4023		yielded = -ESRCH;
4024		goto out_irq;
4025	}
4026
4027	double_rq_lock(rq, p_rq);
4028	while (task_rq(p) != p_rq) {
4029		double_rq_unlock(rq, p_rq);
4030		goto again;
4031	}
4032
4033	if (!curr->sched_class->yield_to_task)
4034		goto out_unlock;
4035
4036	if (curr->sched_class != p->sched_class)
4037		goto out_unlock;
4038
4039	if (task_running(p_rq, p) || p->state)
4040		goto out_unlock;
4041
4042	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4043	if (yielded) {
4044		schedstat_inc(rq, yld_count);
4045		/*
4046		 * Make p's CPU reschedule; pick_next_entity takes care of
4047		 * fairness.
4048		 */
4049		if (preempt && rq != p_rq)
4050			resched_task(p_rq->curr);
4051	}
4052
4053out_unlock:
4054	double_rq_unlock(rq, p_rq);
4055out_irq:
4056	local_irq_restore(flags);
4057
4058	if (yielded > 0)
4059		schedule();
4060
4061	return yielded;
4062}
4063EXPORT_SYMBOL_GPL(yield_to);
4064
4065/*
4066 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4067 * that process accounting knows that this is a task in IO wait state.
4068 */
4069void __sched io_schedule(void)
4070{
4071	struct rq *rq = raw_rq();
4072
4073	delayacct_blkio_start();
4074	atomic_inc(&rq->nr_iowait);
4075	blk_flush_plug(current);
4076	current->in_iowait = 1;
4077	schedule();
4078	current->in_iowait = 0;
4079	atomic_dec(&rq->nr_iowait);
4080	delayacct_blkio_end();
4081}
4082EXPORT_SYMBOL(io_schedule);
4083
4084long __sched io_schedule_timeout(long timeout)
4085{
4086	struct rq *rq = raw_rq();
4087	long ret;
4088
4089	delayacct_blkio_start();
4090	atomic_inc(&rq->nr_iowait);
4091	blk_flush_plug(current);
4092	current->in_iowait = 1;
4093	ret = schedule_timeout(timeout);
4094	current->in_iowait = 0;
4095	atomic_dec(&rq->nr_iowait);
4096	delayacct_blkio_end();
4097	return ret;
4098}
4099
4100/**
4101 * sys_sched_get_priority_max - return maximum RT priority.
4102 * @policy: scheduling class.
4103 *
4104 * Return: On success, this syscall returns the maximum
4105 * rt_priority that can be used by a given scheduling class.
4106 * On failure, a negative error code is returned.
4107 */
4108SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4109{
4110	int ret = -EINVAL;
4111
4112	switch (policy) {
4113	case SCHED_FIFO:
4114	case SCHED_RR:
4115		ret = MAX_USER_RT_PRIO-1;
4116		break;
4117	case SCHED_NORMAL:
4118	case SCHED_BATCH:
4119	case SCHED_IDLE:
4120		ret = 0;
4121		break;
4122	}
4123	return ret;
4124}
4125
4126/**
4127 * sys_sched_get_priority_min - return minimum RT priority.
4128 * @policy: scheduling class.
4129 *
4130 * Return: On success, this syscall returns the minimum
4131 * rt_priority that can be used by a given scheduling class.
4132 * On failure, a negative error code is returned.
4133 */
4134SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4135{
4136	int ret = -EINVAL;
4137
4138	switch (policy) {
4139	case SCHED_FIFO:
4140	case SCHED_RR:
4141		ret = 1;
4142		break;
4143	case SCHED_NORMAL:
4144	case SCHED_BATCH:
4145	case SCHED_IDLE:
4146		ret = 0;
4147	}
4148	return ret;
4149}
4150
4151/**
4152 * sys_sched_rr_get_interval - return the default timeslice of a process.
4153 * @pid: pid of the process.
4154 * @interval: userspace pointer to the timeslice value.
4155 *
4156 * this syscall writes the default timeslice value of a given process
4157 * into the user-space timespec buffer. A value of '0' means infinity.
4158 *
4159 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4160 * an error code.
4161 */
4162SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4163		struct timespec __user *, interval)
4164{
4165	struct task_struct *p;
4166	unsigned int time_slice;
4167	unsigned long flags;
4168	struct rq *rq;
4169	int retval;
4170	struct timespec t;
4171
4172	if (pid < 0)
4173		return -EINVAL;
4174
4175	retval = -ESRCH;
4176	rcu_read_lock();
4177	p = find_process_by_pid(pid);
4178	if (!p)
4179		goto out_unlock;
4180
4181	retval = security_task_getscheduler(p);
4182	if (retval)
4183		goto out_unlock;
4184
4185	rq = task_rq_lock(p, &flags);
4186	time_slice = p->sched_class->get_rr_interval(rq, p);
4187	task_rq_unlock(rq, p, &flags);
4188
4189	rcu_read_unlock();
4190	jiffies_to_timespec(time_slice, &t);
4191	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4192	return retval;
4193
4194out_unlock:
4195	rcu_read_unlock();
4196	return retval;
4197}
4198
4199static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4200
4201void sched_show_task(struct task_struct *p)
4202{
4203	unsigned long free = 0;
4204	int ppid;
4205	unsigned state;
4206
4207	state = p->state ? __ffs(p->state) + 1 : 0;
4208	printk(KERN_INFO "%-15.15s %c", p->comm,
4209		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4210#if BITS_PER_LONG == 32
4211	if (state == TASK_RUNNING)
4212		printk(KERN_CONT " running  ");
4213	else
4214		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4215#else
4216	if (state == TASK_RUNNING)
4217		printk(KERN_CONT "  running task    ");
4218	else
4219		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4220#endif
4221#ifdef CONFIG_DEBUG_STACK_USAGE
4222	free = stack_not_used(p);
4223#endif
4224	rcu_read_lock();
4225	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4226	rcu_read_unlock();
4227	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4228		task_pid_nr(p), ppid,
4229		(unsigned long)task_thread_info(p)->flags);
4230
4231	print_worker_info(KERN_INFO, p);
4232	show_stack(p, NULL);
4233}
4234
4235void show_state_filter(unsigned long state_filter)
4236{
4237	struct task_struct *g, *p;
4238
4239#if BITS_PER_LONG == 32
4240	printk(KERN_INFO
4241		"  task                PC stack   pid father\n");
4242#else
4243	printk(KERN_INFO
4244		"  task                        PC stack   pid father\n");
4245#endif
4246	rcu_read_lock();
4247	do_each_thread(g, p) {
4248		/*
4249		 * reset the NMI-timeout, listing all files on a slow
4250		 * console might take a lot of time:
4251		 */
4252		touch_nmi_watchdog();
4253		if (!state_filter || (p->state & state_filter))
4254			sched_show_task(p);
4255	} while_each_thread(g, p);
4256
4257	touch_all_softlockup_watchdogs();
4258
4259#ifdef CONFIG_SCHED_DEBUG
4260	sysrq_sched_debug_show();
4261#endif
4262	rcu_read_unlock();
4263	/*
4264	 * Only show locks if all tasks are dumped:
4265	 */
4266	if (!state_filter)
4267		debug_show_all_locks();
4268}
4269
4270void init_idle_bootup_task(struct task_struct *idle)
4271{
4272	idle->sched_class = &idle_sched_class;
4273}
4274
4275/**
4276 * init_idle - set up an idle thread for a given CPU
4277 * @idle: task in question
4278 * @cpu: cpu the idle task belongs to
4279 *
4280 * NOTE: this function does not set the idle thread's NEED_RESCHED
4281 * flag, to make booting more robust.
4282 */
4283void init_idle(struct task_struct *idle, int cpu)
4284{
4285	struct rq *rq = cpu_rq(cpu);
4286	unsigned long flags;
4287
4288	raw_spin_lock_irqsave(&rq->lock, flags);
4289
4290	__sched_fork(idle);
4291	idle->state = TASK_RUNNING;
4292	idle->se.exec_start = sched_clock();
4293
4294	do_set_cpus_allowed(idle, cpumask_of(cpu));
4295	/*
4296	 * We're having a chicken and egg problem, even though we are
4297	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4298	 * lockdep check in task_group() will fail.
4299	 *
4300	 * Similar case to sched_fork(). / Alternatively we could
4301	 * use task_rq_lock() here and obtain the other rq->lock.
4302	 *
4303	 * Silence PROVE_RCU
4304	 */
4305	rcu_read_lock();
4306	__set_task_cpu(idle, cpu);
4307	rcu_read_unlock();
4308
4309	rq->curr = rq->idle = idle;
4310#if defined(CONFIG_SMP)
4311	idle->on_cpu = 1;
4312#endif
4313	raw_spin_unlock_irqrestore(&rq->lock, flags);
4314
4315	/* Set the preempt count _outside_ the spinlocks! */
4316	init_idle_preempt_count(idle, cpu);
4317
4318	/*
4319	 * The idle tasks have their own, simple scheduling class:
4320	 */
4321	idle->sched_class = &idle_sched_class;
4322	ftrace_graph_init_idle_task(idle, cpu);
4323	vtime_init_idle(idle, cpu);
4324#if defined(CONFIG_SMP)
4325	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4326#endif
4327}
4328
4329#ifdef CONFIG_SMP
4330void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4331{
4332	if (p->sched_class && p->sched_class->set_cpus_allowed)
4333		p->sched_class->set_cpus_allowed(p, new_mask);
4334
4335	cpumask_copy(&p->cpus_allowed, new_mask);
4336	p->nr_cpus_allowed = cpumask_weight(new_mask);
4337}
4338
4339/*
4340 * This is how migration works:
4341 *
4342 * 1) we invoke migration_cpu_stop() on the target CPU using
4343 *    stop_one_cpu().
4344 * 2) stopper starts to run (implicitly forcing the migrated thread
4345 *    off the CPU)
4346 * 3) it checks whether the migrated task is still in the wrong runqueue.
4347 * 4) if it's in the wrong runqueue then the migration thread removes
4348 *    it and puts it into the right queue.
4349 * 5) stopper completes and stop_one_cpu() returns and the migration
4350 *    is done.
4351 */
4352
4353/*
4354 * Change a given task's CPU affinity. Migrate the thread to a
4355 * proper CPU and schedule it away if the CPU it's executing on
4356 * is removed from the allowed bitmask.
4357 *
4358 * NOTE: the caller must have a valid reference to the task, the
4359 * task must not exit() & deallocate itself prematurely. The
4360 * call is not atomic; no spinlocks may be held.
4361 */
4362int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4363{
4364	unsigned long flags;
4365	struct rq *rq;
4366	unsigned int dest_cpu;
4367	int ret = 0;
4368
4369	rq = task_rq_lock(p, &flags);
4370
4371	if (cpumask_equal(&p->cpus_allowed, new_mask))
4372		goto out;
4373
4374	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4375		ret = -EINVAL;
4376		goto out;
4377	}
4378
4379	do_set_cpus_allowed(p, new_mask);
4380
4381	/* Can the task run on the task's current CPU? If so, we're done */
4382	if (cpumask_test_cpu(task_cpu(p), new_mask))
4383		goto out;
4384
4385	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4386	if (p->on_rq) {
4387		struct migration_arg arg = { p, dest_cpu };
4388		/* Need help from migration thread: drop lock and wait. */
4389		task_rq_unlock(rq, p, &flags);
4390		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4391		tlb_migrate_finish(p->mm);
4392		return 0;
4393	}
4394out:
4395	task_rq_unlock(rq, p, &flags);
4396
4397	return ret;
4398}
4399EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4400
4401/*
4402 * Move (not current) task off this cpu, onto dest cpu. We're doing
4403 * this because either it can't run here any more (set_cpus_allowed()
4404 * away from this CPU, or CPU going down), or because we're
4405 * attempting to rebalance this task on exec (sched_exec).
4406 *
4407 * So we race with normal scheduler movements, but that's OK, as long
4408 * as the task is no longer on this CPU.
4409 *
4410 * Returns non-zero if task was successfully migrated.
4411 */
4412static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4413{
4414	struct rq *rq_dest, *rq_src;
4415	int ret = 0;
4416
4417	if (unlikely(!cpu_active(dest_cpu)))
4418		return ret;
4419
4420	rq_src = cpu_rq(src_cpu);
4421	rq_dest = cpu_rq(dest_cpu);
4422
4423	raw_spin_lock(&p->pi_lock);
4424	double_rq_lock(rq_src, rq_dest);
4425	/* Already moved. */
4426	if (task_cpu(p) != src_cpu)
4427		goto done;
4428	/* Affinity changed (again). */
4429	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4430		goto fail;
4431
4432	/*
4433	 * If we're not on a rq, the next wake-up will ensure we're
4434	 * placed properly.
4435	 */
4436	if (p->on_rq) {
4437		dequeue_task(rq_src, p, 0);
4438		set_task_cpu(p, dest_cpu);
4439		enqueue_task(rq_dest, p, 0);
4440		check_preempt_curr(rq_dest, p, 0);
4441	}
4442done:
4443	ret = 1;
4444fail:
4445	double_rq_unlock(rq_src, rq_dest);
4446	raw_spin_unlock(&p->pi_lock);
4447	return ret;
4448}
4449
4450#ifdef CONFIG_NUMA_BALANCING
4451/* Migrate current task p to target_cpu */
4452int migrate_task_to(struct task_struct *p, int target_cpu)
4453{
4454	struct migration_arg arg = { p, target_cpu };
4455	int curr_cpu = task_cpu(p);
4456
4457	if (curr_cpu == target_cpu)
4458		return 0;
4459
4460	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4461		return -EINVAL;
4462
4463	/* TODO: This is not properly updating schedstats */
4464
4465	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4466}
4467#endif
4468
4469/*
4470 * migration_cpu_stop - this will be executed by a highprio stopper thread
4471 * and performs thread migration by bumping thread off CPU then
4472 * 'pushing' onto another runqueue.
4473 */
4474static int migration_cpu_stop(void *data)
4475{
4476	struct migration_arg *arg = data;
4477
4478	/*
4479	 * The original target cpu might have gone down and we might
4480	 * be on another cpu but it doesn't matter.
4481	 */
4482	local_irq_disable();
4483	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4484	local_irq_enable();
4485	return 0;
4486}
4487
4488#ifdef CONFIG_HOTPLUG_CPU
4489
4490/*
4491 * Ensures that the idle task is using init_mm right before its cpu goes
4492 * offline.
4493 */
4494void idle_task_exit(void)
4495{
4496	struct mm_struct *mm = current->active_mm;
4497
4498	BUG_ON(cpu_online(smp_processor_id()));
4499
4500	if (mm != &init_mm)
4501		switch_mm(mm, &init_mm, current);
4502	mmdrop(mm);
4503}
4504
4505/*
4506 * Since this CPU is going 'away' for a while, fold any nr_active delta
4507 * we might have. Assumes we're called after migrate_tasks() so that the
4508 * nr_active count is stable.
4509 *
4510 * Also see the comment "Global load-average calculations".
4511 */
4512static void calc_load_migrate(struct rq *rq)
4513{
4514	long delta = calc_load_fold_active(rq);
4515	if (delta)
4516		atomic_long_add(delta, &calc_load_tasks);
4517}
4518
4519/*
4520 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4521 * try_to_wake_up()->select_task_rq().
4522 *
4523 * Called with rq->lock held even though we'er in stop_machine() and
4524 * there's no concurrency possible, we hold the required locks anyway
4525 * because of lock validation efforts.
4526 */
4527static void migrate_tasks(unsigned int dead_cpu)
4528{
4529	struct rq *rq = cpu_rq(dead_cpu);
4530	struct task_struct *next, *stop = rq->stop;
4531	int dest_cpu;
4532
4533	/*
4534	 * Fudge the rq selection such that the below task selection loop
4535	 * doesn't get stuck on the currently eligible stop task.
4536	 *
4537	 * We're currently inside stop_machine() and the rq is either stuck
4538	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4539	 * either way we should never end up calling schedule() until we're
4540	 * done here.
4541	 */
4542	rq->stop = NULL;
4543
4544	/*
4545	 * put_prev_task() and pick_next_task() sched
4546	 * class method both need to have an up-to-date
4547	 * value of rq->clock[_task]
4548	 */
4549	update_rq_clock(rq);
4550
4551	for ( ; ; ) {
4552		/*
4553		 * There's this thread running, bail when that's the only
4554		 * remaining thread.
4555		 */
4556		if (rq->nr_running == 1)
4557			break;
4558
4559		next = pick_next_task(rq);
4560		BUG_ON(!next);
4561		next->sched_class->put_prev_task(rq, next);
4562
4563		/* Find suitable destination for @next, with force if needed. */
4564		dest_cpu = select_fallback_rq(dead_cpu, next);
4565		raw_spin_unlock(&rq->lock);
4566
4567		__migrate_task(next, dead_cpu, dest_cpu);
4568
4569		raw_spin_lock(&rq->lock);
4570	}
4571
4572	rq->stop = stop;
4573}
4574
4575#endif /* CONFIG_HOTPLUG_CPU */
4576
4577#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4578
4579static struct ctl_table sd_ctl_dir[] = {
4580	{
4581		.procname	= "sched_domain",
4582		.mode		= 0555,
4583	},
4584	{}
4585};
4586
4587static struct ctl_table sd_ctl_root[] = {
4588	{
4589		.procname	= "kernel",
4590		.mode		= 0555,
4591		.child		= sd_ctl_dir,
4592	},
4593	{}
4594};
4595
4596static struct ctl_table *sd_alloc_ctl_entry(int n)
4597{
4598	struct ctl_table *entry =
4599		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4600
4601	return entry;
4602}
4603
4604static void sd_free_ctl_entry(struct ctl_table **tablep)
4605{
4606	struct ctl_table *entry;
4607
4608	/*
4609	 * In the intermediate directories, both the child directory and
4610	 * procname are dynamically allocated and could fail but the mode
4611	 * will always be set. In the lowest directory the names are
4612	 * static strings and all have proc handlers.
4613	 */
4614	for (entry = *tablep; entry->mode; entry++) {
4615		if (entry->child)
4616			sd_free_ctl_entry(&entry->child);
4617		if (entry->proc_handler == NULL)
4618			kfree(entry->procname);
4619	}
4620
4621	kfree(*tablep);
4622	*tablep = NULL;
4623}
4624
4625static int min_load_idx = 0;
4626static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4627
4628static void
4629set_table_entry(struct ctl_table *entry,
4630		const char *procname, void *data, int maxlen,
4631		umode_t mode, proc_handler *proc_handler,
4632		bool load_idx)
4633{
4634	entry->procname = procname;
4635	entry->data = data;
4636	entry->maxlen = maxlen;
4637	entry->mode = mode;
4638	entry->proc_handler = proc_handler;
4639
4640	if (load_idx) {
4641		entry->extra1 = &min_load_idx;
4642		entry->extra2 = &max_load_idx;
4643	}
4644}
4645
4646static struct ctl_table *
4647sd_alloc_ctl_domain_table(struct sched_domain *sd)
4648{
4649	struct ctl_table *table = sd_alloc_ctl_entry(13);
4650
4651	if (table == NULL)
4652		return NULL;
4653
4654	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4655		sizeof(long), 0644, proc_doulongvec_minmax, false);
4656	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4657		sizeof(long), 0644, proc_doulongvec_minmax, false);
4658	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4659		sizeof(int), 0644, proc_dointvec_minmax, true);
4660	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4661		sizeof(int), 0644, proc_dointvec_minmax, true);
4662	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4663		sizeof(int), 0644, proc_dointvec_minmax, true);
4664	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4665		sizeof(int), 0644, proc_dointvec_minmax, true);
4666	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4667		sizeof(int), 0644, proc_dointvec_minmax, true);
4668	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4669		sizeof(int), 0644, proc_dointvec_minmax, false);
4670	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4671		sizeof(int), 0644, proc_dointvec_minmax, false);
4672	set_table_entry(&table[9], "cache_nice_tries",
4673		&sd->cache_nice_tries,
4674		sizeof(int), 0644, proc_dointvec_minmax, false);
4675	set_table_entry(&table[10], "flags", &sd->flags,
4676		sizeof(int), 0644, proc_dointvec_minmax, false);
4677	set_table_entry(&table[11], "name", sd->name,
4678		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4679	/* &table[12] is terminator */
4680
4681	return table;
4682}
4683
4684static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4685{
4686	struct ctl_table *entry, *table;
4687	struct sched_domain *sd;
4688	int domain_num = 0, i;
4689	char buf[32];
4690
4691	for_each_domain(cpu, sd)
4692		domain_num++;
4693	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4694	if (table == NULL)
4695		return NULL;
4696
4697	i = 0;
4698	for_each_domain(cpu, sd) {
4699		snprintf(buf, 32, "domain%d", i);
4700		entry->procname = kstrdup(buf, GFP_KERNEL);
4701		entry->mode = 0555;
4702		entry->child = sd_alloc_ctl_domain_table(sd);
4703		entry++;
4704		i++;
4705	}
4706	return table;
4707}
4708
4709static struct ctl_table_header *sd_sysctl_header;
4710static void register_sched_domain_sysctl(void)
4711{
4712	int i, cpu_num = num_possible_cpus();
4713	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4714	char buf[32];
4715
4716	WARN_ON(sd_ctl_dir[0].child);
4717	sd_ctl_dir[0].child = entry;
4718
4719	if (entry == NULL)
4720		return;
4721
4722	for_each_possible_cpu(i) {
4723		snprintf(buf, 32, "cpu%d", i);
4724		entry->procname = kstrdup(buf, GFP_KERNEL);
4725		entry->mode = 0555;
4726		entry->child = sd_alloc_ctl_cpu_table(i);
4727		entry++;
4728	}
4729
4730	WARN_ON(sd_sysctl_header);
4731	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4732}
4733
4734/* may be called multiple times per register */
4735static void unregister_sched_domain_sysctl(void)
4736{
4737	if (sd_sysctl_header)
4738		unregister_sysctl_table(sd_sysctl_header);
4739	sd_sysctl_header = NULL;
4740	if (sd_ctl_dir[0].child)
4741		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4742}
4743#else
4744static void register_sched_domain_sysctl(void)
4745{
4746}
4747static void unregister_sched_domain_sysctl(void)
4748{
4749}
4750#endif
4751
4752static void set_rq_online(struct rq *rq)
4753{
4754	if (!rq->online) {
4755		const struct sched_class *class;
4756
4757		cpumask_set_cpu(rq->cpu, rq->rd->online);
4758		rq->online = 1;
4759
4760		for_each_class(class) {
4761			if (class->rq_online)
4762				class->rq_online(rq);
4763		}
4764	}
4765}
4766
4767static void set_rq_offline(struct rq *rq)
4768{
4769	if (rq->online) {
4770		const struct sched_class *class;
4771
4772		for_each_class(class) {
4773			if (class->rq_offline)
4774				class->rq_offline(rq);
4775		}
4776
4777		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4778		rq->online = 0;
4779	}
4780}
4781
4782/*
4783 * migration_call - callback that gets triggered when a CPU is added.
4784 * Here we can start up the necessary migration thread for the new CPU.
4785 */
4786static int
4787migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4788{
4789	int cpu = (long)hcpu;
4790	unsigned long flags;
4791	struct rq *rq = cpu_rq(cpu);
4792
4793	switch (action & ~CPU_TASKS_FROZEN) {
4794
4795	case CPU_UP_PREPARE:
4796		rq->calc_load_update = calc_load_update;
4797		break;
4798
4799	case CPU_ONLINE:
4800		/* Update our root-domain */
4801		raw_spin_lock_irqsave(&rq->lock, flags);
4802		if (rq->rd) {
4803			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4804
4805			set_rq_online(rq);
4806		}
4807		raw_spin_unlock_irqrestore(&rq->lock, flags);
4808		break;
4809
4810#ifdef CONFIG_HOTPLUG_CPU
4811	case CPU_DYING:
4812		sched_ttwu_pending();
4813		/* Update our root-domain */
4814		raw_spin_lock_irqsave(&rq->lock, flags);
4815		if (rq->rd) {
4816			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4817			set_rq_offline(rq);
4818		}
4819		migrate_tasks(cpu);
4820		BUG_ON(rq->nr_running != 1); /* the migration thread */
4821		raw_spin_unlock_irqrestore(&rq->lock, flags);
4822		break;
4823
4824	case CPU_DEAD:
4825		calc_load_migrate(rq);
4826		break;
4827#endif
4828	}
4829
4830	update_max_interval();
4831
4832	return NOTIFY_OK;
4833}
4834
4835/*
4836 * Register at high priority so that task migration (migrate_all_tasks)
4837 * happens before everything else.  This has to be lower priority than
4838 * the notifier in the perf_event subsystem, though.
4839 */
4840static struct notifier_block migration_notifier = {
4841	.notifier_call = migration_call,
4842	.priority = CPU_PRI_MIGRATION,
4843};
4844
4845static int sched_cpu_active(struct notifier_block *nfb,
4846				      unsigned long action, void *hcpu)
4847{
4848	switch (action & ~CPU_TASKS_FROZEN) {
4849	case CPU_STARTING:
4850	case CPU_DOWN_FAILED:
4851		set_cpu_active((long)hcpu, true);
4852		return NOTIFY_OK;
4853	default:
4854		return NOTIFY_DONE;
4855	}
4856}
4857
4858static int sched_cpu_inactive(struct notifier_block *nfb,
4859					unsigned long action, void *hcpu)
4860{
4861	switch (action & ~CPU_TASKS_FROZEN) {
4862	case CPU_DOWN_PREPARE:
4863		set_cpu_active((long)hcpu, false);
4864		return NOTIFY_OK;
4865	default:
4866		return NOTIFY_DONE;
4867	}
4868}
4869
4870static int __init migration_init(void)
4871{
4872	void *cpu = (void *)(long)smp_processor_id();
4873	int err;
4874
4875	/* Initialize migration for the boot CPU */
4876	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4877	BUG_ON(err == NOTIFY_BAD);
4878	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4879	register_cpu_notifier(&migration_notifier);
4880
4881	/* Register cpu active notifiers */
4882	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4883	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4884
4885	return 0;
4886}
4887early_initcall(migration_init);
4888#endif
4889
4890#ifdef CONFIG_SMP
4891
4892static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4893
4894#ifdef CONFIG_SCHED_DEBUG
4895
4896static __read_mostly int sched_debug_enabled;
4897
4898static int __init sched_debug_setup(char *str)
4899{
4900	sched_debug_enabled = 1;
4901
4902	return 0;
4903}
4904early_param("sched_debug", sched_debug_setup);
4905
4906static inline bool sched_debug(void)
4907{
4908	return sched_debug_enabled;
4909}
4910
4911static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4912				  struct cpumask *groupmask)
4913{
4914	struct sched_group *group = sd->groups;
4915	char str[256];
4916
4917	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4918	cpumask_clear(groupmask);
4919
4920	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4921
4922	if (!(sd->flags & SD_LOAD_BALANCE)) {
4923		printk("does not load-balance\n");
4924		if (sd->parent)
4925			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4926					" has parent");
4927		return -1;
4928	}
4929
4930	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4931
4932	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4933		printk(KERN_ERR "ERROR: domain->span does not contain "
4934				"CPU%d\n", cpu);
4935	}
4936	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4937		printk(KERN_ERR "ERROR: domain->groups does not contain"
4938				" CPU%d\n", cpu);
4939	}
4940
4941	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4942	do {
4943		if (!group) {
4944			printk("\n");
4945			printk(KERN_ERR "ERROR: group is NULL\n");
4946			break;
4947		}
4948
4949		/*
4950		 * Even though we initialize ->power to something semi-sane,
4951		 * we leave power_orig unset. This allows us to detect if
4952		 * domain iteration is still funny without causing /0 traps.
4953		 */
4954		if (!group->sgp->power_orig) {
4955			printk(KERN_CONT "\n");
4956			printk(KERN_ERR "ERROR: domain->cpu_power not "
4957					"set\n");
4958			break;
4959		}
4960
4961		if (!cpumask_weight(sched_group_cpus(group))) {
4962			printk(KERN_CONT "\n");
4963			printk(KERN_ERR "ERROR: empty group\n");
4964			break;
4965		}
4966
4967		if (!(sd->flags & SD_OVERLAP) &&
4968		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4969			printk(KERN_CONT "\n");
4970			printk(KERN_ERR "ERROR: repeated CPUs\n");
4971			break;
4972		}
4973
4974		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4975
4976		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4977
4978		printk(KERN_CONT " %s", str);
4979		if (group->sgp->power != SCHED_POWER_SCALE) {
4980			printk(KERN_CONT " (cpu_power = %d)",
4981				group->sgp->power);
4982		}
4983
4984		group = group->next;
4985	} while (group != sd->groups);
4986	printk(KERN_CONT "\n");
4987
4988	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4989		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4990
4991	if (sd->parent &&
4992	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4993		printk(KERN_ERR "ERROR: parent span is not a superset "
4994			"of domain->span\n");
4995	return 0;
4996}
4997
4998static void sched_domain_debug(struct sched_domain *sd, int cpu)
4999{
5000	int level = 0;
5001
5002	if (!sched_debug_enabled)
5003		return;
5004
5005	if (!sd) {
5006		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5007		return;
5008	}
5009
5010	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5011
5012	for (;;) {
5013		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5014			break;
5015		level++;
5016		sd = sd->parent;
5017		if (!sd)
5018			break;
5019	}
5020}
5021#else /* !CONFIG_SCHED_DEBUG */
5022# define sched_domain_debug(sd, cpu) do { } while (0)
5023static inline bool sched_debug(void)
5024{
5025	return false;
5026}
5027#endif /* CONFIG_SCHED_DEBUG */
5028
5029static int sd_degenerate(struct sched_domain *sd)
5030{
5031	if (cpumask_weight(sched_domain_span(sd)) == 1)
5032		return 1;
5033
5034	/* Following flags need at least 2 groups */
5035	if (sd->flags & (SD_LOAD_BALANCE |
5036			 SD_BALANCE_NEWIDLE |
5037			 SD_BALANCE_FORK |
5038			 SD_BALANCE_EXEC |
5039			 SD_SHARE_CPUPOWER |
5040			 SD_SHARE_PKG_RESOURCES)) {
5041		if (sd->groups != sd->groups->next)
5042			return 0;
5043	}
5044
5045	/* Following flags don't use groups */
5046	if (sd->flags & (SD_WAKE_AFFINE))
5047		return 0;
5048
5049	return 1;
5050}
5051
5052static int
5053sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5054{
5055	unsigned long cflags = sd->flags, pflags = parent->flags;
5056
5057	if (sd_degenerate(parent))
5058		return 1;
5059
5060	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5061		return 0;
5062
5063	/* Flags needing groups don't count if only 1 group in parent */
5064	if (parent->groups == parent->groups->next) {
5065		pflags &= ~(SD_LOAD_BALANCE |
5066				SD_BALANCE_NEWIDLE |
5067				SD_BALANCE_FORK |
5068				SD_BALANCE_EXEC |
5069				SD_SHARE_CPUPOWER |
5070				SD_SHARE_PKG_RESOURCES |
5071				SD_PREFER_SIBLING);
5072		if (nr_node_ids == 1)
5073			pflags &= ~SD_SERIALIZE;
5074	}
5075	if (~cflags & pflags)
5076		return 0;
5077
5078	return 1;
5079}
5080
5081static void free_rootdomain(struct rcu_head *rcu)
5082{
5083	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5084
5085	cpupri_cleanup(&rd->cpupri);
5086	free_cpumask_var(rd->rto_mask);
5087	free_cpumask_var(rd->online);
5088	free_cpumask_var(rd->span);
5089	kfree(rd);
5090}
5091
5092static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5093{
5094	struct root_domain *old_rd = NULL;
5095	unsigned long flags;
5096
5097	raw_spin_lock_irqsave(&rq->lock, flags);
5098
5099	if (rq->rd) {
5100		old_rd = rq->rd;
5101
5102		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5103			set_rq_offline(rq);
5104
5105		cpumask_clear_cpu(rq->cpu, old_rd->span);
5106
5107		/*
5108		 * If we dont want to free the old_rt yet then
5109		 * set old_rd to NULL to skip the freeing later
5110		 * in this function:
5111		 */
5112		if (!atomic_dec_and_test(&old_rd->refcount))
5113			old_rd = NULL;
5114	}
5115
5116	atomic_inc(&rd->refcount);
5117	rq->rd = rd;
5118
5119	cpumask_set_cpu(rq->cpu, rd->span);
5120	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5121		set_rq_online(rq);
5122
5123	raw_spin_unlock_irqrestore(&rq->lock, flags);
5124
5125	if (old_rd)
5126		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5127}
5128
5129static int init_rootdomain(struct root_domain *rd)
5130{
5131	memset(rd, 0, sizeof(*rd));
5132
5133	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5134		goto out;
5135	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5136		goto free_span;
5137	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5138		goto free_online;
5139
5140	if (cpupri_init(&rd->cpupri) != 0)
5141		goto free_rto_mask;
5142	return 0;
5143
5144free_rto_mask:
5145	free_cpumask_var(rd->rto_mask);
5146free_online:
5147	free_cpumask_var(rd->online);
5148free_span:
5149	free_cpumask_var(rd->span);
5150out:
5151	return -ENOMEM;
5152}
5153
5154/*
5155 * By default the system creates a single root-domain with all cpus as
5156 * members (mimicking the global state we have today).
5157 */
5158struct root_domain def_root_domain;
5159
5160static void init_defrootdomain(void)
5161{
5162	init_rootdomain(&def_root_domain);
5163
5164	atomic_set(&def_root_domain.refcount, 1);
5165}
5166
5167static struct root_domain *alloc_rootdomain(void)
5168{
5169	struct root_domain *rd;
5170
5171	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5172	if (!rd)
5173		return NULL;
5174
5175	if (init_rootdomain(rd) != 0) {
5176		kfree(rd);
5177		return NULL;
5178	}
5179
5180	return rd;
5181}
5182
5183static void free_sched_groups(struct sched_group *sg, int free_sgp)
5184{
5185	struct sched_group *tmp, *first;
5186
5187	if (!sg)
5188		return;
5189
5190	first = sg;
5191	do {
5192		tmp = sg->next;
5193
5194		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5195			kfree(sg->sgp);
5196
5197		kfree(sg);
5198		sg = tmp;
5199	} while (sg != first);
5200}
5201
5202static void free_sched_domain(struct rcu_head *rcu)
5203{
5204	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5205
5206	/*
5207	 * If its an overlapping domain it has private groups, iterate and
5208	 * nuke them all.
5209	 */
5210	if (sd->flags & SD_OVERLAP) {
5211		free_sched_groups(sd->groups, 1);
5212	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5213		kfree(sd->groups->sgp);
5214		kfree(sd->groups);
5215	}
5216	kfree(sd);
5217}
5218
5219static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5220{
5221	call_rcu(&sd->rcu, free_sched_domain);
5222}
5223
5224static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5225{
5226	for (; sd; sd = sd->parent)
5227		destroy_sched_domain(sd, cpu);
5228}
5229
5230/*
5231 * Keep a special pointer to the highest sched_domain that has
5232 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5233 * allows us to avoid some pointer chasing select_idle_sibling().
5234 *
5235 * Also keep a unique ID per domain (we use the first cpu number in
5236 * the cpumask of the domain), this allows us to quickly tell if
5237 * two cpus are in the same cache domain, see cpus_share_cache().
5238 */
5239DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5240DEFINE_PER_CPU(int, sd_llc_size);
5241DEFINE_PER_CPU(int, sd_llc_id);
5242DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5243
5244static void update_top_cache_domain(int cpu)
5245{
5246	struct sched_domain *sd;
5247	int id = cpu;
5248	int size = 1;
5249
5250	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5251	if (sd) {
5252		id = cpumask_first(sched_domain_span(sd));
5253		size = cpumask_weight(sched_domain_span(sd));
5254	}
5255
5256	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5257	per_cpu(sd_llc_size, cpu) = size;
5258	per_cpu(sd_llc_id, cpu) = id;
5259
5260	sd = lowest_flag_domain(cpu, SD_NUMA);
5261	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5262}
5263
5264/*
5265 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5266 * hold the hotplug lock.
5267 */
5268static void
5269cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5270{
5271	struct rq *rq = cpu_rq(cpu);
5272	struct sched_domain *tmp;
5273
5274	/* Remove the sched domains which do not contribute to scheduling. */
5275	for (tmp = sd; tmp; ) {
5276		struct sched_domain *parent = tmp->parent;
5277		if (!parent)
5278			break;
5279
5280		if (sd_parent_degenerate(tmp, parent)) {
5281			tmp->parent = parent->parent;
5282			if (parent->parent)
5283				parent->parent->child = tmp;
5284			/*
5285			 * Transfer SD_PREFER_SIBLING down in case of a
5286			 * degenerate parent; the spans match for this
5287			 * so the property transfers.
5288			 */
5289			if (parent->flags & SD_PREFER_SIBLING)
5290				tmp->flags |= SD_PREFER_SIBLING;
5291			destroy_sched_domain(parent, cpu);
5292		} else
5293			tmp = tmp->parent;
5294	}
5295
5296	if (sd && sd_degenerate(sd)) {
5297		tmp = sd;
5298		sd = sd->parent;
5299		destroy_sched_domain(tmp, cpu);
5300		if (sd)
5301			sd->child = NULL;
5302	}
5303
5304	sched_domain_debug(sd, cpu);
5305
5306	rq_attach_root(rq, rd);
5307	tmp = rq->sd;
5308	rcu_assign_pointer(rq->sd, sd);
5309	destroy_sched_domains(tmp, cpu);
5310
5311	update_top_cache_domain(cpu);
5312}
5313
5314/* cpus with isolated domains */
5315static cpumask_var_t cpu_isolated_map;
5316
5317/* Setup the mask of cpus configured for isolated domains */
5318static int __init isolated_cpu_setup(char *str)
5319{
5320	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5321	cpulist_parse(str, cpu_isolated_map);
5322	return 1;
5323}
5324
5325__setup("isolcpus=", isolated_cpu_setup);
5326
5327static const struct cpumask *cpu_cpu_mask(int cpu)
5328{
5329	return cpumask_of_node(cpu_to_node(cpu));
5330}
5331
5332struct sd_data {
5333	struct sched_domain **__percpu sd;
5334	struct sched_group **__percpu sg;
5335	struct sched_group_power **__percpu sgp;
5336};
5337
5338struct s_data {
5339	struct sched_domain ** __percpu sd;
5340	struct root_domain	*rd;
5341};
5342
5343enum s_alloc {
5344	sa_rootdomain,
5345	sa_sd,
5346	sa_sd_storage,
5347	sa_none,
5348};
5349
5350struct sched_domain_topology_level;
5351
5352typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5353typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5354
5355#define SDTL_OVERLAP	0x01
5356
5357struct sched_domain_topology_level {
5358	sched_domain_init_f init;
5359	sched_domain_mask_f mask;
5360	int		    flags;
5361	int		    numa_level;
5362	struct sd_data      data;
5363};
5364
5365/*
5366 * Build an iteration mask that can exclude certain CPUs from the upwards
5367 * domain traversal.
5368 *
5369 * Asymmetric node setups can result in situations where the domain tree is of
5370 * unequal depth, make sure to skip domains that already cover the entire
5371 * range.
5372 *
5373 * In that case build_sched_domains() will have terminated the iteration early
5374 * and our sibling sd spans will be empty. Domains should always include the
5375 * cpu they're built on, so check that.
5376 *
5377 */
5378static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5379{
5380	const struct cpumask *span = sched_domain_span(sd);
5381	struct sd_data *sdd = sd->private;
5382	struct sched_domain *sibling;
5383	int i;
5384
5385	for_each_cpu(i, span) {
5386		sibling = *per_cpu_ptr(sdd->sd, i);
5387		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5388			continue;
5389
5390		cpumask_set_cpu(i, sched_group_mask(sg));
5391	}
5392}
5393
5394/*
5395 * Return the canonical balance cpu for this group, this is the first cpu
5396 * of this group that's also in the iteration mask.
5397 */
5398int group_balance_cpu(struct sched_group *sg)
5399{
5400	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5401}
5402
5403static int
5404build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5405{
5406	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5407	const struct cpumask *span = sched_domain_span(sd);
5408	struct cpumask *covered = sched_domains_tmpmask;
5409	struct sd_data *sdd = sd->private;
5410	struct sched_domain *child;
5411	int i;
5412
5413	cpumask_clear(covered);
5414
5415	for_each_cpu(i, span) {
5416		struct cpumask *sg_span;
5417
5418		if (cpumask_test_cpu(i, covered))
5419			continue;
5420
5421		child = *per_cpu_ptr(sdd->sd, i);
5422
5423		/* See the comment near build_group_mask(). */
5424		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5425			continue;
5426
5427		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5428				GFP_KERNEL, cpu_to_node(cpu));
5429
5430		if (!sg)
5431			goto fail;
5432
5433		sg_span = sched_group_cpus(sg);
5434		if (child->child) {
5435			child = child->child;
5436			cpumask_copy(sg_span, sched_domain_span(child));
5437		} else
5438			cpumask_set_cpu(i, sg_span);
5439
5440		cpumask_or(covered, covered, sg_span);
5441
5442		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5443		if (atomic_inc_return(&sg->sgp->ref) == 1)
5444			build_group_mask(sd, sg);
5445
5446		/*
5447		 * Initialize sgp->power such that even if we mess up the
5448		 * domains and no possible iteration will get us here, we won't
5449		 * die on a /0 trap.
5450		 */
5451		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5452
5453		/*
5454		 * Make sure the first group of this domain contains the
5455		 * canonical balance cpu. Otherwise the sched_domain iteration
5456		 * breaks. See update_sg_lb_stats().
5457		 */
5458		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5459		    group_balance_cpu(sg) == cpu)
5460			groups = sg;
5461
5462		if (!first)
5463			first = sg;
5464		if (last)
5465			last->next = sg;
5466		last = sg;
5467		last->next = first;
5468	}
5469	sd->groups = groups;
5470
5471	return 0;
5472
5473fail:
5474	free_sched_groups(first, 0);
5475
5476	return -ENOMEM;
5477}
5478
5479static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5480{
5481	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5482	struct sched_domain *child = sd->child;
5483
5484	if (child)
5485		cpu = cpumask_first(sched_domain_span(child));
5486
5487	if (sg) {
5488		*sg = *per_cpu_ptr(sdd->sg, cpu);
5489		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5490		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5491	}
5492
5493	return cpu;
5494}
5495
5496/*
5497 * build_sched_groups will build a circular linked list of the groups
5498 * covered by the given span, and will set each group's ->cpumask correctly,
5499 * and ->cpu_power to 0.
5500 *
5501 * Assumes the sched_domain tree is fully constructed
5502 */
5503static int
5504build_sched_groups(struct sched_domain *sd, int cpu)
5505{
5506	struct sched_group *first = NULL, *last = NULL;
5507	struct sd_data *sdd = sd->private;
5508	const struct cpumask *span = sched_domain_span(sd);
5509	struct cpumask *covered;
5510	int i;
5511
5512	get_group(cpu, sdd, &sd->groups);
5513	atomic_inc(&sd->groups->ref);
5514
5515	if (cpu != cpumask_first(span))
5516		return 0;
5517
5518	lockdep_assert_held(&sched_domains_mutex);
5519	covered = sched_domains_tmpmask;
5520
5521	cpumask_clear(covered);
5522
5523	for_each_cpu(i, span) {
5524		struct sched_group *sg;
5525		int group, j;
5526
5527		if (cpumask_test_cpu(i, covered))
5528			continue;
5529
5530		group = get_group(i, sdd, &sg);
5531		cpumask_clear(sched_group_cpus(sg));
5532		sg->sgp->power = 0;
5533		cpumask_setall(sched_group_mask(sg));
5534
5535		for_each_cpu(j, span) {
5536			if (get_group(j, sdd, NULL) != group)
5537				continue;
5538
5539			cpumask_set_cpu(j, covered);
5540			cpumask_set_cpu(j, sched_group_cpus(sg));
5541		}
5542
5543		if (!first)
5544			first = sg;
5545		if (last)
5546			last->next = sg;
5547		last = sg;
5548	}
5549	last->next = first;
5550
5551	return 0;
5552}
5553
5554/*
5555 * Initialize sched groups cpu_power.
5556 *
5557 * cpu_power indicates the capacity of sched group, which is used while
5558 * distributing the load between different sched groups in a sched domain.
5559 * Typically cpu_power for all the groups in a sched domain will be same unless
5560 * there are asymmetries in the topology. If there are asymmetries, group
5561 * having more cpu_power will pickup more load compared to the group having
5562 * less cpu_power.
5563 */
5564static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5565{
5566	struct sched_group *sg = sd->groups;
5567
5568	WARN_ON(!sg);
5569
5570	do {
5571		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5572		sg = sg->next;
5573	} while (sg != sd->groups);
5574
5575	if (cpu != group_balance_cpu(sg))
5576		return;
5577
5578	update_group_power(sd, cpu);
5579	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5580}
5581
5582int __weak arch_sd_sibling_asym_packing(void)
5583{
5584       return 0*SD_ASYM_PACKING;
5585}
5586
5587/*
5588 * Initializers for schedule domains
5589 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5590 */
5591
5592#ifdef CONFIG_SCHED_DEBUG
5593# define SD_INIT_NAME(sd, type)		sd->name = #type
5594#else
5595# define SD_INIT_NAME(sd, type)		do { } while (0)
5596#endif
5597
5598#define SD_INIT_FUNC(type)						\
5599static noinline struct sched_domain *					\
5600sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5601{									\
5602	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5603	*sd = SD_##type##_INIT;						\
5604	SD_INIT_NAME(sd, type);						\
5605	sd->private = &tl->data;					\
5606	return sd;							\
5607}
5608
5609SD_INIT_FUNC(CPU)
5610#ifdef CONFIG_SCHED_SMT
5611 SD_INIT_FUNC(SIBLING)
5612#endif
5613#ifdef CONFIG_SCHED_MC
5614 SD_INIT_FUNC(MC)
5615#endif
5616#ifdef CONFIG_SCHED_BOOK
5617 SD_INIT_FUNC(BOOK)
5618#endif
5619
5620static int default_relax_domain_level = -1;
5621int sched_domain_level_max;
5622
5623static int __init setup_relax_domain_level(char *str)
5624{
5625	if (kstrtoint(str, 0, &default_relax_domain_level))
5626		pr_warn("Unable to set relax_domain_level\n");
5627
5628	return 1;
5629}
5630__setup("relax_domain_level=", setup_relax_domain_level);
5631
5632static void set_domain_attribute(struct sched_domain *sd,
5633				 struct sched_domain_attr *attr)
5634{
5635	int request;
5636
5637	if (!attr || attr->relax_domain_level < 0) {
5638		if (default_relax_domain_level < 0)
5639			return;
5640		else
5641			request = default_relax_domain_level;
5642	} else
5643		request = attr->relax_domain_level;
5644	if (request < sd->level) {
5645		/* turn off idle balance on this domain */
5646		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5647	} else {
5648		/* turn on idle balance on this domain */
5649		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5650	}
5651}
5652
5653static void __sdt_free(const struct cpumask *cpu_map);
5654static int __sdt_alloc(const struct cpumask *cpu_map);
5655
5656static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5657				 const struct cpumask *cpu_map)
5658{
5659	switch (what) {
5660	case sa_rootdomain:
5661		if (!atomic_read(&d->rd->refcount))
5662			free_rootdomain(&d->rd->rcu); /* fall through */
5663	case sa_sd:
5664		free_percpu(d->sd); /* fall through */
5665	case sa_sd_storage:
5666		__sdt_free(cpu_map); /* fall through */
5667	case sa_none:
5668		break;
5669	}
5670}
5671
5672static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5673						   const struct cpumask *cpu_map)
5674{
5675	memset(d, 0, sizeof(*d));
5676
5677	if (__sdt_alloc(cpu_map))
5678		return sa_sd_storage;
5679	d->sd = alloc_percpu(struct sched_domain *);
5680	if (!d->sd)
5681		return sa_sd_storage;
5682	d->rd = alloc_rootdomain();
5683	if (!d->rd)
5684		return sa_sd;
5685	return sa_rootdomain;
5686}
5687
5688/*
5689 * NULL the sd_data elements we've used to build the sched_domain and
5690 * sched_group structure so that the subsequent __free_domain_allocs()
5691 * will not free the data we're using.
5692 */
5693static void claim_allocations(int cpu, struct sched_domain *sd)
5694{
5695	struct sd_data *sdd = sd->private;
5696
5697	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5698	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5699
5700	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5701		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5702
5703	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5704		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5705}
5706
5707#ifdef CONFIG_SCHED_SMT
5708static const struct cpumask *cpu_smt_mask(int cpu)
5709{
5710	return topology_thread_cpumask(cpu);
5711}
5712#endif
5713
5714/*
5715 * Topology list, bottom-up.
5716 */
5717static struct sched_domain_topology_level default_topology[] = {
5718#ifdef CONFIG_SCHED_SMT
5719	{ sd_init_SIBLING, cpu_smt_mask, },
5720#endif
5721#ifdef CONFIG_SCHED_MC
5722	{ sd_init_MC, cpu_coregroup_mask, },
5723#endif
5724#ifdef CONFIG_SCHED_BOOK
5725	{ sd_init_BOOK, cpu_book_mask, },
5726#endif
5727	{ sd_init_CPU, cpu_cpu_mask, },
5728	{ NULL, },
5729};
5730
5731static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5732
5733#define for_each_sd_topology(tl)			\
5734	for (tl = sched_domain_topology; tl->init; tl++)
5735
5736#ifdef CONFIG_NUMA
5737
5738static int sched_domains_numa_levels;
5739static int *sched_domains_numa_distance;
5740static struct cpumask ***sched_domains_numa_masks;
5741static int sched_domains_curr_level;
5742
5743static inline int sd_local_flags(int level)
5744{
5745	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5746		return 0;
5747
5748	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5749}
5750
5751static struct sched_domain *
5752sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5753{
5754	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5755	int level = tl->numa_level;
5756	int sd_weight = cpumask_weight(
5757			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5758
5759	*sd = (struct sched_domain){
5760		.min_interval		= sd_weight,
5761		.max_interval		= 2*sd_weight,
5762		.busy_factor		= 32,
5763		.imbalance_pct		= 125,
5764		.cache_nice_tries	= 2,
5765		.busy_idx		= 3,
5766		.idle_idx		= 2,
5767		.newidle_idx		= 0,
5768		.wake_idx		= 0,
5769		.forkexec_idx		= 0,
5770
5771		.flags			= 1*SD_LOAD_BALANCE
5772					| 1*SD_BALANCE_NEWIDLE
5773					| 0*SD_BALANCE_EXEC
5774					| 0*SD_BALANCE_FORK
5775					| 0*SD_BALANCE_WAKE
5776					| 0*SD_WAKE_AFFINE
5777					| 0*SD_SHARE_CPUPOWER
5778					| 0*SD_SHARE_PKG_RESOURCES
5779					| 1*SD_SERIALIZE
5780					| 0*SD_PREFER_SIBLING
5781					| 1*SD_NUMA
5782					| sd_local_flags(level)
5783					,
5784		.last_balance		= jiffies,
5785		.balance_interval	= sd_weight,
5786	};
5787	SD_INIT_NAME(sd, NUMA);
5788	sd->private = &tl->data;
5789
5790	/*
5791	 * Ugly hack to pass state to sd_numa_mask()...
5792	 */
5793	sched_domains_curr_level = tl->numa_level;
5794
5795	return sd;
5796}
5797
5798static const struct cpumask *sd_numa_mask(int cpu)
5799{
5800	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5801}
5802
5803static void sched_numa_warn(const char *str)
5804{
5805	static int done = false;
5806	int i,j;
5807
5808	if (done)
5809		return;
5810
5811	done = true;
5812
5813	printk(KERN_WARNING "ERROR: %s\n\n", str);
5814
5815	for (i = 0; i < nr_node_ids; i++) {
5816		printk(KERN_WARNING "  ");
5817		for (j = 0; j < nr_node_ids; j++)
5818			printk(KERN_CONT "%02d ", node_distance(i,j));
5819		printk(KERN_CONT "\n");
5820	}
5821	printk(KERN_WARNING "\n");
5822}
5823
5824static bool find_numa_distance(int distance)
5825{
5826	int i;
5827
5828	if (distance == node_distance(0, 0))
5829		return true;
5830
5831	for (i = 0; i < sched_domains_numa_levels; i++) {
5832		if (sched_domains_numa_distance[i] == distance)
5833			return true;
5834	}
5835
5836	return false;
5837}
5838
5839static void sched_init_numa(void)
5840{
5841	int next_distance, curr_distance = node_distance(0, 0);
5842	struct sched_domain_topology_level *tl;
5843	int level = 0;
5844	int i, j, k;
5845
5846	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5847	if (!sched_domains_numa_distance)
5848		return;
5849
5850	/*
5851	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5852	 * unique distances in the node_distance() table.
5853	 *
5854	 * Assumes node_distance(0,j) includes all distances in
5855	 * node_distance(i,j) in order to avoid cubic time.
5856	 */
5857	next_distance = curr_distance;
5858	for (i = 0; i < nr_node_ids; i++) {
5859		for (j = 0; j < nr_node_ids; j++) {
5860			for (k = 0; k < nr_node_ids; k++) {
5861				int distance = node_distance(i, k);
5862
5863				if (distance > curr_distance &&
5864				    (distance < next_distance ||
5865				     next_distance == curr_distance))
5866					next_distance = distance;
5867
5868				/*
5869				 * While not a strong assumption it would be nice to know
5870				 * about cases where if node A is connected to B, B is not
5871				 * equally connected to A.
5872				 */
5873				if (sched_debug() && node_distance(k, i) != distance)
5874					sched_numa_warn("Node-distance not symmetric");
5875
5876				if (sched_debug() && i && !find_numa_distance(distance))
5877					sched_numa_warn("Node-0 not representative");
5878			}
5879			if (next_distance != curr_distance) {
5880				sched_domains_numa_distance[level++] = next_distance;
5881				sched_domains_numa_levels = level;
5882				curr_distance = next_distance;
5883			} else break;
5884		}
5885
5886		/*
5887		 * In case of sched_debug() we verify the above assumption.
5888		 */
5889		if (!sched_debug())
5890			break;
5891	}
5892	/*
5893	 * 'level' contains the number of unique distances, excluding the
5894	 * identity distance node_distance(i,i).
5895	 *
5896	 * The sched_domains_numa_distance[] array includes the actual distance
5897	 * numbers.
5898	 */
5899
5900	/*
5901	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5902	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5903	 * the array will contain less then 'level' members. This could be
5904	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5905	 * in other functions.
5906	 *
5907	 * We reset it to 'level' at the end of this function.
5908	 */
5909	sched_domains_numa_levels = 0;
5910
5911	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5912	if (!sched_domains_numa_masks)
5913		return;
5914
5915	/*
5916	 * Now for each level, construct a mask per node which contains all
5917	 * cpus of nodes that are that many hops away from us.
5918	 */
5919	for (i = 0; i < level; i++) {
5920		sched_domains_numa_masks[i] =
5921			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5922		if (!sched_domains_numa_masks[i])
5923			return;
5924
5925		for (j = 0; j < nr_node_ids; j++) {
5926			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5927			if (!mask)
5928				return;
5929
5930			sched_domains_numa_masks[i][j] = mask;
5931
5932			for (k = 0; k < nr_node_ids; k++) {
5933				if (node_distance(j, k) > sched_domains_numa_distance[i])
5934					continue;
5935
5936				cpumask_or(mask, mask, cpumask_of_node(k));
5937			}
5938		}
5939	}
5940
5941	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5942			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5943	if (!tl)
5944		return;
5945
5946	/*
5947	 * Copy the default topology bits..
5948	 */
5949	for (i = 0; default_topology[i].init; i++)
5950		tl[i] = default_topology[i];
5951
5952	/*
5953	 * .. and append 'j' levels of NUMA goodness.
5954	 */
5955	for (j = 0; j < level; i++, j++) {
5956		tl[i] = (struct sched_domain_topology_level){
5957			.init = sd_numa_init,
5958			.mask = sd_numa_mask,
5959			.flags = SDTL_OVERLAP,
5960			.numa_level = j,
5961		};
5962	}
5963
5964	sched_domain_topology = tl;
5965
5966	sched_domains_numa_levels = level;
5967}
5968
5969static void sched_domains_numa_masks_set(int cpu)
5970{
5971	int i, j;
5972	int node = cpu_to_node(cpu);
5973
5974	for (i = 0; i < sched_domains_numa_levels; i++) {
5975		for (j = 0; j < nr_node_ids; j++) {
5976			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5977				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5978		}
5979	}
5980}
5981
5982static void sched_domains_numa_masks_clear(int cpu)
5983{
5984	int i, j;
5985	for (i = 0; i < sched_domains_numa_levels; i++) {
5986		for (j = 0; j < nr_node_ids; j++)
5987			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5988	}
5989}
5990
5991/*
5992 * Update sched_domains_numa_masks[level][node] array when new cpus
5993 * are onlined.
5994 */
5995static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5996					   unsigned long action,
5997					   void *hcpu)
5998{
5999	int cpu = (long)hcpu;
6000
6001	switch (action & ~CPU_TASKS_FROZEN) {
6002	case CPU_ONLINE:
6003		sched_domains_numa_masks_set(cpu);
6004		break;
6005
6006	case CPU_DEAD:
6007		sched_domains_numa_masks_clear(cpu);
6008		break;
6009
6010	default:
6011		return NOTIFY_DONE;
6012	}
6013
6014	return NOTIFY_OK;
6015}
6016#else
6017static inline void sched_init_numa(void)
6018{
6019}
6020
6021static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6022					   unsigned long action,
6023					   void *hcpu)
6024{
6025	return 0;
6026}
6027#endif /* CONFIG_NUMA */
6028
6029static int __sdt_alloc(const struct cpumask *cpu_map)
6030{
6031	struct sched_domain_topology_level *tl;
6032	int j;
6033
6034	for_each_sd_topology(tl) {
6035		struct sd_data *sdd = &tl->data;
6036
6037		sdd->sd = alloc_percpu(struct sched_domain *);
6038		if (!sdd->sd)
6039			return -ENOMEM;
6040
6041		sdd->sg = alloc_percpu(struct sched_group *);
6042		if (!sdd->sg)
6043			return -ENOMEM;
6044
6045		sdd->sgp = alloc_percpu(struct sched_group_power *);
6046		if (!sdd->sgp)
6047			return -ENOMEM;
6048
6049		for_each_cpu(j, cpu_map) {
6050			struct sched_domain *sd;
6051			struct sched_group *sg;
6052			struct sched_group_power *sgp;
6053
6054		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6055					GFP_KERNEL, cpu_to_node(j));
6056			if (!sd)
6057				return -ENOMEM;
6058
6059			*per_cpu_ptr(sdd->sd, j) = sd;
6060
6061			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6062					GFP_KERNEL, cpu_to_node(j));
6063			if (!sg)
6064				return -ENOMEM;
6065
6066			sg->next = sg;
6067
6068			*per_cpu_ptr(sdd->sg, j) = sg;
6069
6070			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6071					GFP_KERNEL, cpu_to_node(j));
6072			if (!sgp)
6073				return -ENOMEM;
6074
6075			*per_cpu_ptr(sdd->sgp, j) = sgp;
6076		}
6077	}
6078
6079	return 0;
6080}
6081
6082static void __sdt_free(const struct cpumask *cpu_map)
6083{
6084	struct sched_domain_topology_level *tl;
6085	int j;
6086
6087	for_each_sd_topology(tl) {
6088		struct sd_data *sdd = &tl->data;
6089
6090		for_each_cpu(j, cpu_map) {
6091			struct sched_domain *sd;
6092
6093			if (sdd->sd) {
6094				sd = *per_cpu_ptr(sdd->sd, j);
6095				if (sd && (sd->flags & SD_OVERLAP))
6096					free_sched_groups(sd->groups, 0);
6097				kfree(*per_cpu_ptr(sdd->sd, j));
6098			}
6099
6100			if (sdd->sg)
6101				kfree(*per_cpu_ptr(sdd->sg, j));
6102			if (sdd->sgp)
6103				kfree(*per_cpu_ptr(sdd->sgp, j));
6104		}
6105		free_percpu(sdd->sd);
6106		sdd->sd = NULL;
6107		free_percpu(sdd->sg);
6108		sdd->sg = NULL;
6109		free_percpu(sdd->sgp);
6110		sdd->sgp = NULL;
6111	}
6112}
6113
6114struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6115		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6116		struct sched_domain *child, int cpu)
6117{
6118	struct sched_domain *sd = tl->init(tl, cpu);
6119	if (!sd)
6120		return child;
6121
6122	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6123	if (child) {
6124		sd->level = child->level + 1;
6125		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6126		child->parent = sd;
6127		sd->child = child;
6128	}
6129	set_domain_attribute(sd, attr);
6130
6131	return sd;
6132}
6133
6134/*
6135 * Build sched domains for a given set of cpus and attach the sched domains
6136 * to the individual cpus
6137 */
6138static int build_sched_domains(const struct cpumask *cpu_map,
6139			       struct sched_domain_attr *attr)
6140{
6141	enum s_alloc alloc_state;
6142	struct sched_domain *sd;
6143	struct s_data d;
6144	int i, ret = -ENOMEM;
6145
6146	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6147	if (alloc_state != sa_rootdomain)
6148		goto error;
6149
6150	/* Set up domains for cpus specified by the cpu_map. */
6151	for_each_cpu(i, cpu_map) {
6152		struct sched_domain_topology_level *tl;
6153
6154		sd = NULL;
6155		for_each_sd_topology(tl) {
6156			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6157			if (tl == sched_domain_topology)
6158				*per_cpu_ptr(d.sd, i) = sd;
6159			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6160				sd->flags |= SD_OVERLAP;
6161			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6162				break;
6163		}
6164	}
6165
6166	/* Build the groups for the domains */
6167	for_each_cpu(i, cpu_map) {
6168		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6169			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6170			if (sd->flags & SD_OVERLAP) {
6171				if (build_overlap_sched_groups(sd, i))
6172					goto error;
6173			} else {
6174				if (build_sched_groups(sd, i))
6175					goto error;
6176			}
6177		}
6178	}
6179
6180	/* Calculate CPU power for physical packages and nodes */
6181	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6182		if (!cpumask_test_cpu(i, cpu_map))
6183			continue;
6184
6185		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6186			claim_allocations(i, sd);
6187			init_sched_groups_power(i, sd);
6188		}
6189	}
6190
6191	/* Attach the domains */
6192	rcu_read_lock();
6193	for_each_cpu(i, cpu_map) {
6194		sd = *per_cpu_ptr(d.sd, i);
6195		cpu_attach_domain(sd, d.rd, i);
6196	}
6197	rcu_read_unlock();
6198
6199	ret = 0;
6200error:
6201	__free_domain_allocs(&d, alloc_state, cpu_map);
6202	return ret;
6203}
6204
6205static cpumask_var_t *doms_cur;	/* current sched domains */
6206static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6207static struct sched_domain_attr *dattr_cur;
6208				/* attribues of custom domains in 'doms_cur' */
6209
6210/*
6211 * Special case: If a kmalloc of a doms_cur partition (array of
6212 * cpumask) fails, then fallback to a single sched domain,
6213 * as determined by the single cpumask fallback_doms.
6214 */
6215static cpumask_var_t fallback_doms;
6216
6217/*
6218 * arch_update_cpu_topology lets virtualized architectures update the
6219 * cpu core maps. It is supposed to return 1 if the topology changed
6220 * or 0 if it stayed the same.
6221 */
6222int __attribute__((weak)) arch_update_cpu_topology(void)
6223{
6224	return 0;
6225}
6226
6227cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6228{
6229	int i;
6230	cpumask_var_t *doms;
6231
6232	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6233	if (!doms)
6234		return NULL;
6235	for (i = 0; i < ndoms; i++) {
6236		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6237			free_sched_domains(doms, i);
6238			return NULL;
6239		}
6240	}
6241	return doms;
6242}
6243
6244void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6245{
6246	unsigned int i;
6247	for (i = 0; i < ndoms; i++)
6248		free_cpumask_var(doms[i]);
6249	kfree(doms);
6250}
6251
6252/*
6253 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6254 * For now this just excludes isolated cpus, but could be used to
6255 * exclude other special cases in the future.
6256 */
6257static int init_sched_domains(const struct cpumask *cpu_map)
6258{
6259	int err;
6260
6261	arch_update_cpu_topology();
6262	ndoms_cur = 1;
6263	doms_cur = alloc_sched_domains(ndoms_cur);
6264	if (!doms_cur)
6265		doms_cur = &fallback_doms;
6266	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6267	err = build_sched_domains(doms_cur[0], NULL);
6268	register_sched_domain_sysctl();
6269
6270	return err;
6271}
6272
6273/*
6274 * Detach sched domains from a group of cpus specified in cpu_map
6275 * These cpus will now be attached to the NULL domain
6276 */
6277static void detach_destroy_domains(const struct cpumask *cpu_map)
6278{
6279	int i;
6280
6281	rcu_read_lock();
6282	for_each_cpu(i, cpu_map)
6283		cpu_attach_domain(NULL, &def_root_domain, i);
6284	rcu_read_unlock();
6285}
6286
6287/* handle null as "default" */
6288static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6289			struct sched_domain_attr *new, int idx_new)
6290{
6291	struct sched_domain_attr tmp;
6292
6293	/* fast path */
6294	if (!new && !cur)
6295		return 1;
6296
6297	tmp = SD_ATTR_INIT;
6298	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6299			new ? (new + idx_new) : &tmp,
6300			sizeof(struct sched_domain_attr));
6301}
6302
6303/*
6304 * Partition sched domains as specified by the 'ndoms_new'
6305 * cpumasks in the array doms_new[] of cpumasks. This compares
6306 * doms_new[] to the current sched domain partitioning, doms_cur[].
6307 * It destroys each deleted domain and builds each new domain.
6308 *
6309 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6310 * The masks don't intersect (don't overlap.) We should setup one
6311 * sched domain for each mask. CPUs not in any of the cpumasks will
6312 * not be load balanced. If the same cpumask appears both in the
6313 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6314 * it as it is.
6315 *
6316 * The passed in 'doms_new' should be allocated using
6317 * alloc_sched_domains.  This routine takes ownership of it and will
6318 * free_sched_domains it when done with it. If the caller failed the
6319 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6320 * and partition_sched_domains() will fallback to the single partition
6321 * 'fallback_doms', it also forces the domains to be rebuilt.
6322 *
6323 * If doms_new == NULL it will be replaced with cpu_online_mask.
6324 * ndoms_new == 0 is a special case for destroying existing domains,
6325 * and it will not create the default domain.
6326 *
6327 * Call with hotplug lock held
6328 */
6329void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6330			     struct sched_domain_attr *dattr_new)
6331{
6332	int i, j, n;
6333	int new_topology;
6334
6335	mutex_lock(&sched_domains_mutex);
6336
6337	/* always unregister in case we don't destroy any domains */
6338	unregister_sched_domain_sysctl();
6339
6340	/* Let architecture update cpu core mappings. */
6341	new_topology = arch_update_cpu_topology();
6342
6343	n = doms_new ? ndoms_new : 0;
6344
6345	/* Destroy deleted domains */
6346	for (i = 0; i < ndoms_cur; i++) {
6347		for (j = 0; j < n && !new_topology; j++) {
6348			if (cpumask_equal(doms_cur[i], doms_new[j])
6349			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6350				goto match1;
6351		}
6352		/* no match - a current sched domain not in new doms_new[] */
6353		detach_destroy_domains(doms_cur[i]);
6354match1:
6355		;
6356	}
6357
6358	n = ndoms_cur;
6359	if (doms_new == NULL) {
6360		n = 0;
6361		doms_new = &fallback_doms;
6362		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6363		WARN_ON_ONCE(dattr_new);
6364	}
6365
6366	/* Build new domains */
6367	for (i = 0; i < ndoms_new; i++) {
6368		for (j = 0; j < n && !new_topology; j++) {
6369			if (cpumask_equal(doms_new[i], doms_cur[j])
6370			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6371				goto match2;
6372		}
6373		/* no match - add a new doms_new */
6374		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6375match2:
6376		;
6377	}
6378
6379	/* Remember the new sched domains */
6380	if (doms_cur != &fallback_doms)
6381		free_sched_domains(doms_cur, ndoms_cur);
6382	kfree(dattr_cur);	/* kfree(NULL) is safe */
6383	doms_cur = doms_new;
6384	dattr_cur = dattr_new;
6385	ndoms_cur = ndoms_new;
6386
6387	register_sched_domain_sysctl();
6388
6389	mutex_unlock(&sched_domains_mutex);
6390}
6391
6392static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6393
6394/*
6395 * Update cpusets according to cpu_active mask.  If cpusets are
6396 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6397 * around partition_sched_domains().
6398 *
6399 * If we come here as part of a suspend/resume, don't touch cpusets because we
6400 * want to restore it back to its original state upon resume anyway.
6401 */
6402static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6403			     void *hcpu)
6404{
6405	switch (action) {
6406	case CPU_ONLINE_FROZEN:
6407	case CPU_DOWN_FAILED_FROZEN:
6408
6409		/*
6410		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6411		 * resume sequence. As long as this is not the last online
6412		 * operation in the resume sequence, just build a single sched
6413		 * domain, ignoring cpusets.
6414		 */
6415		num_cpus_frozen--;
6416		if (likely(num_cpus_frozen)) {
6417			partition_sched_domains(1, NULL, NULL);
6418			break;
6419		}
6420
6421		/*
6422		 * This is the last CPU online operation. So fall through and
6423		 * restore the original sched domains by considering the
6424		 * cpuset configurations.
6425		 */
6426
6427	case CPU_ONLINE:
6428	case CPU_DOWN_FAILED:
6429		cpuset_update_active_cpus(true);
6430		break;
6431	default:
6432		return NOTIFY_DONE;
6433	}
6434	return NOTIFY_OK;
6435}
6436
6437static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6438			       void *hcpu)
6439{
6440	switch (action) {
6441	case CPU_DOWN_PREPARE:
6442		cpuset_update_active_cpus(false);
6443		break;
6444	case CPU_DOWN_PREPARE_FROZEN:
6445		num_cpus_frozen++;
6446		partition_sched_domains(1, NULL, NULL);
6447		break;
6448	default:
6449		return NOTIFY_DONE;
6450	}
6451	return NOTIFY_OK;
6452}
6453
6454void __init sched_init_smp(void)
6455{
6456	cpumask_var_t non_isolated_cpus;
6457
6458	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6459	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6460
6461	sched_init_numa();
6462
6463	get_online_cpus();
6464	mutex_lock(&sched_domains_mutex);
6465	init_sched_domains(cpu_active_mask);
6466	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6467	if (cpumask_empty(non_isolated_cpus))
6468		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6469	mutex_unlock(&sched_domains_mutex);
6470	put_online_cpus();
6471
6472	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6473	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6474	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6475
6476	init_hrtick();
6477
6478	/* Move init over to a non-isolated CPU */
6479	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6480		BUG();
6481	sched_init_granularity();
6482	free_cpumask_var(non_isolated_cpus);
6483
6484	init_sched_rt_class();
6485}
6486#else
6487void __init sched_init_smp(void)
6488{
6489	sched_init_granularity();
6490}
6491#endif /* CONFIG_SMP */
6492
6493const_debug unsigned int sysctl_timer_migration = 1;
6494
6495int in_sched_functions(unsigned long addr)
6496{
6497	return in_lock_functions(addr) ||
6498		(addr >= (unsigned long)__sched_text_start
6499		&& addr < (unsigned long)__sched_text_end);
6500}
6501
6502#ifdef CONFIG_CGROUP_SCHED
6503/*
6504 * Default task group.
6505 * Every task in system belongs to this group at bootup.
6506 */
6507struct task_group root_task_group;
6508LIST_HEAD(task_groups);
6509#endif
6510
6511DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6512
6513void __init sched_init(void)
6514{
6515	int i, j;
6516	unsigned long alloc_size = 0, ptr;
6517
6518#ifdef CONFIG_FAIR_GROUP_SCHED
6519	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6520#endif
6521#ifdef CONFIG_RT_GROUP_SCHED
6522	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6523#endif
6524#ifdef CONFIG_CPUMASK_OFFSTACK
6525	alloc_size += num_possible_cpus() * cpumask_size();
6526#endif
6527	if (alloc_size) {
6528		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6529
6530#ifdef CONFIG_FAIR_GROUP_SCHED
6531		root_task_group.se = (struct sched_entity **)ptr;
6532		ptr += nr_cpu_ids * sizeof(void **);
6533
6534		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6535		ptr += nr_cpu_ids * sizeof(void **);
6536
6537#endif /* CONFIG_FAIR_GROUP_SCHED */
6538#ifdef CONFIG_RT_GROUP_SCHED
6539		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6540		ptr += nr_cpu_ids * sizeof(void **);
6541
6542		root_task_group.rt_rq = (struct rt_rq **)ptr;
6543		ptr += nr_cpu_ids * sizeof(void **);
6544
6545#endif /* CONFIG_RT_GROUP_SCHED */
6546#ifdef CONFIG_CPUMASK_OFFSTACK
6547		for_each_possible_cpu(i) {
6548			per_cpu(load_balance_mask, i) = (void *)ptr;
6549			ptr += cpumask_size();
6550		}
6551#endif /* CONFIG_CPUMASK_OFFSTACK */
6552	}
6553
6554#ifdef CONFIG_SMP
6555	init_defrootdomain();
6556#endif
6557
6558	init_rt_bandwidth(&def_rt_bandwidth,
6559			global_rt_period(), global_rt_runtime());
6560
6561#ifdef CONFIG_RT_GROUP_SCHED
6562	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6563			global_rt_period(), global_rt_runtime());
6564#endif /* CONFIG_RT_GROUP_SCHED */
6565
6566#ifdef CONFIG_CGROUP_SCHED
6567	list_add(&root_task_group.list, &task_groups);
6568	INIT_LIST_HEAD(&root_task_group.children);
6569	INIT_LIST_HEAD(&root_task_group.siblings);
6570	autogroup_init(&init_task);
6571
6572#endif /* CONFIG_CGROUP_SCHED */
6573
6574	for_each_possible_cpu(i) {
6575		struct rq *rq;
6576
6577		rq = cpu_rq(i);
6578		raw_spin_lock_init(&rq->lock);
6579		rq->nr_running = 0;
6580		rq->calc_load_active = 0;
6581		rq->calc_load_update = jiffies + LOAD_FREQ;
6582		init_cfs_rq(&rq->cfs);
6583		init_rt_rq(&rq->rt, rq);
6584#ifdef CONFIG_FAIR_GROUP_SCHED
6585		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6586		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6587		/*
6588		 * How much cpu bandwidth does root_task_group get?
6589		 *
6590		 * In case of task-groups formed thr' the cgroup filesystem, it
6591		 * gets 100% of the cpu resources in the system. This overall
6592		 * system cpu resource is divided among the tasks of
6593		 * root_task_group and its child task-groups in a fair manner,
6594		 * based on each entity's (task or task-group's) weight
6595		 * (se->load.weight).
6596		 *
6597		 * In other words, if root_task_group has 10 tasks of weight
6598		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6599		 * then A0's share of the cpu resource is:
6600		 *
6601		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6602		 *
6603		 * We achieve this by letting root_task_group's tasks sit
6604		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6605		 */
6606		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6607		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6608#endif /* CONFIG_FAIR_GROUP_SCHED */
6609
6610		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6611#ifdef CONFIG_RT_GROUP_SCHED
6612		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6613		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6614#endif
6615
6616		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6617			rq->cpu_load[j] = 0;
6618
6619		rq->last_load_update_tick = jiffies;
6620
6621#ifdef CONFIG_SMP
6622		rq->sd = NULL;
6623		rq->rd = NULL;
6624		rq->cpu_power = SCHED_POWER_SCALE;
6625		rq->post_schedule = 0;
6626		rq->active_balance = 0;
6627		rq->next_balance = jiffies;
6628		rq->push_cpu = 0;
6629		rq->cpu = i;
6630		rq->online = 0;
6631		rq->idle_stamp = 0;
6632		rq->avg_idle = 2*sysctl_sched_migration_cost;
6633		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6634
6635		INIT_LIST_HEAD(&rq->cfs_tasks);
6636
6637		rq_attach_root(rq, &def_root_domain);
6638#ifdef CONFIG_NO_HZ_COMMON
6639		rq->nohz_flags = 0;
6640#endif
6641#ifdef CONFIG_NO_HZ_FULL
6642		rq->last_sched_tick = 0;
6643#endif
6644#endif
6645		init_rq_hrtick(rq);
6646		atomic_set(&rq->nr_iowait, 0);
6647	}
6648
6649	set_load_weight(&init_task);
6650
6651#ifdef CONFIG_PREEMPT_NOTIFIERS
6652	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6653#endif
6654
6655#ifdef CONFIG_RT_MUTEXES
6656	plist_head_init(&init_task.pi_waiters);
6657#endif
6658
6659	/*
6660	 * The boot idle thread does lazy MMU switching as well:
6661	 */
6662	atomic_inc(&init_mm.mm_count);
6663	enter_lazy_tlb(&init_mm, current);
6664
6665	/*
6666	 * Make us the idle thread. Technically, schedule() should not be
6667	 * called from this thread, however somewhere below it might be,
6668	 * but because we are the idle thread, we just pick up running again
6669	 * when this runqueue becomes "idle".
6670	 */
6671	init_idle(current, smp_processor_id());
6672
6673	calc_load_update = jiffies + LOAD_FREQ;
6674
6675	/*
6676	 * During early bootup we pretend to be a normal task:
6677	 */
6678	current->sched_class = &fair_sched_class;
6679
6680#ifdef CONFIG_SMP
6681	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6682	/* May be allocated at isolcpus cmdline parse time */
6683	if (cpu_isolated_map == NULL)
6684		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6685	idle_thread_set_boot_cpu();
6686#endif
6687	init_sched_fair_class();
6688
6689	scheduler_running = 1;
6690}
6691
6692#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6693static inline int preempt_count_equals(int preempt_offset)
6694{
6695	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6696
6697	return (nested == preempt_offset);
6698}
6699
6700void __might_sleep(const char *file, int line, int preempt_offset)
6701{
6702	static unsigned long prev_jiffy;	/* ratelimiting */
6703
6704	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6705	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6706	    system_state != SYSTEM_RUNNING || oops_in_progress)
6707		return;
6708	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6709		return;
6710	prev_jiffy = jiffies;
6711
6712	printk(KERN_ERR
6713		"BUG: sleeping function called from invalid context at %s:%d\n",
6714			file, line);
6715	printk(KERN_ERR
6716		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6717			in_atomic(), irqs_disabled(),
6718			current->pid, current->comm);
6719
6720	debug_show_held_locks(current);
6721	if (irqs_disabled())
6722		print_irqtrace_events(current);
6723	dump_stack();
6724}
6725EXPORT_SYMBOL(__might_sleep);
6726#endif
6727
6728#ifdef CONFIG_MAGIC_SYSRQ
6729static void normalize_task(struct rq *rq, struct task_struct *p)
6730{
6731	const struct sched_class *prev_class = p->sched_class;
6732	int old_prio = p->prio;
6733	int on_rq;
6734
6735	on_rq = p->on_rq;
6736	if (on_rq)
6737		dequeue_task(rq, p, 0);
6738	__setscheduler(rq, p, SCHED_NORMAL, 0);
6739	if (on_rq) {
6740		enqueue_task(rq, p, 0);
6741		resched_task(rq->curr);
6742	}
6743
6744	check_class_changed(rq, p, prev_class, old_prio);
6745}
6746
6747void normalize_rt_tasks(void)
6748{
6749	struct task_struct *g, *p;
6750	unsigned long flags;
6751	struct rq *rq;
6752
6753	read_lock_irqsave(&tasklist_lock, flags);
6754	do_each_thread(g, p) {
6755		/*
6756		 * Only normalize user tasks:
6757		 */
6758		if (!p->mm)
6759			continue;
6760
6761		p->se.exec_start		= 0;
6762#ifdef CONFIG_SCHEDSTATS
6763		p->se.statistics.wait_start	= 0;
6764		p->se.statistics.sleep_start	= 0;
6765		p->se.statistics.block_start	= 0;
6766#endif
6767
6768		if (!rt_task(p)) {
6769			/*
6770			 * Renice negative nice level userspace
6771			 * tasks back to 0:
6772			 */
6773			if (TASK_NICE(p) < 0 && p->mm)
6774				set_user_nice(p, 0);
6775			continue;
6776		}
6777
6778		raw_spin_lock(&p->pi_lock);
6779		rq = __task_rq_lock(p);
6780
6781		normalize_task(rq, p);
6782
6783		__task_rq_unlock(rq);
6784		raw_spin_unlock(&p->pi_lock);
6785	} while_each_thread(g, p);
6786
6787	read_unlock_irqrestore(&tasklist_lock, flags);
6788}
6789
6790#endif /* CONFIG_MAGIC_SYSRQ */
6791
6792#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6793/*
6794 * These functions are only useful for the IA64 MCA handling, or kdb.
6795 *
6796 * They can only be called when the whole system has been
6797 * stopped - every CPU needs to be quiescent, and no scheduling
6798 * activity can take place. Using them for anything else would
6799 * be a serious bug, and as a result, they aren't even visible
6800 * under any other configuration.
6801 */
6802
6803/**
6804 * curr_task - return the current task for a given cpu.
6805 * @cpu: the processor in question.
6806 *
6807 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6808 *
6809 * Return: The current task for @cpu.
6810 */
6811struct task_struct *curr_task(int cpu)
6812{
6813	return cpu_curr(cpu);
6814}
6815
6816#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6817
6818#ifdef CONFIG_IA64
6819/**
6820 * set_curr_task - set the current task for a given cpu.
6821 * @cpu: the processor in question.
6822 * @p: the task pointer to set.
6823 *
6824 * Description: This function must only be used when non-maskable interrupts
6825 * are serviced on a separate stack. It allows the architecture to switch the
6826 * notion of the current task on a cpu in a non-blocking manner. This function
6827 * must be called with all CPU's synchronized, and interrupts disabled, the
6828 * and caller must save the original value of the current task (see
6829 * curr_task() above) and restore that value before reenabling interrupts and
6830 * re-starting the system.
6831 *
6832 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6833 */
6834void set_curr_task(int cpu, struct task_struct *p)
6835{
6836	cpu_curr(cpu) = p;
6837}
6838
6839#endif
6840
6841#ifdef CONFIG_CGROUP_SCHED
6842/* task_group_lock serializes the addition/removal of task groups */
6843static DEFINE_SPINLOCK(task_group_lock);
6844
6845static void free_sched_group(struct task_group *tg)
6846{
6847	free_fair_sched_group(tg);
6848	free_rt_sched_group(tg);
6849	autogroup_free(tg);
6850	kfree(tg);
6851}
6852
6853/* allocate runqueue etc for a new task group */
6854struct task_group *sched_create_group(struct task_group *parent)
6855{
6856	struct task_group *tg;
6857
6858	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6859	if (!tg)
6860		return ERR_PTR(-ENOMEM);
6861
6862	if (!alloc_fair_sched_group(tg, parent))
6863		goto err;
6864
6865	if (!alloc_rt_sched_group(tg, parent))
6866		goto err;
6867
6868	return tg;
6869
6870err:
6871	free_sched_group(tg);
6872	return ERR_PTR(-ENOMEM);
6873}
6874
6875void sched_online_group(struct task_group *tg, struct task_group *parent)
6876{
6877	unsigned long flags;
6878
6879	spin_lock_irqsave(&task_group_lock, flags);
6880	list_add_rcu(&tg->list, &task_groups);
6881
6882	WARN_ON(!parent); /* root should already exist */
6883
6884	tg->parent = parent;
6885	INIT_LIST_HEAD(&tg->children);
6886	list_add_rcu(&tg->siblings, &parent->children);
6887	spin_unlock_irqrestore(&task_group_lock, flags);
6888}
6889
6890/* rcu callback to free various structures associated with a task group */
6891static void free_sched_group_rcu(struct rcu_head *rhp)
6892{
6893	/* now it should be safe to free those cfs_rqs */
6894	free_sched_group(container_of(rhp, struct task_group, rcu));
6895}
6896
6897/* Destroy runqueue etc associated with a task group */
6898void sched_destroy_group(struct task_group *tg)
6899{
6900	/* wait for possible concurrent references to cfs_rqs complete */
6901	call_rcu(&tg->rcu, free_sched_group_rcu);
6902}
6903
6904void sched_offline_group(struct task_group *tg)
6905{
6906	unsigned long flags;
6907	int i;
6908
6909	/* end participation in shares distribution */
6910	for_each_possible_cpu(i)
6911		unregister_fair_sched_group(tg, i);
6912
6913	spin_lock_irqsave(&task_group_lock, flags);
6914	list_del_rcu(&tg->list);
6915	list_del_rcu(&tg->siblings);
6916	spin_unlock_irqrestore(&task_group_lock, flags);
6917}
6918
6919/* change task's runqueue when it moves between groups.
6920 *	The caller of this function should have put the task in its new group
6921 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6922 *	reflect its new group.
6923 */
6924void sched_move_task(struct task_struct *tsk)
6925{
6926	struct task_group *tg;
6927	int on_rq, running;
6928	unsigned long flags;
6929	struct rq *rq;
6930
6931	rq = task_rq_lock(tsk, &flags);
6932
6933	running = task_current(rq, tsk);
6934	on_rq = tsk->on_rq;
6935
6936	if (on_rq)
6937		dequeue_task(rq, tsk, 0);
6938	if (unlikely(running))
6939		tsk->sched_class->put_prev_task(rq, tsk);
6940
6941	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6942				lockdep_is_held(&tsk->sighand->siglock)),
6943			  struct task_group, css);
6944	tg = autogroup_task_group(tsk, tg);
6945	tsk->sched_task_group = tg;
6946
6947#ifdef CONFIG_FAIR_GROUP_SCHED
6948	if (tsk->sched_class->task_move_group)
6949		tsk->sched_class->task_move_group(tsk, on_rq);
6950	else
6951#endif
6952		set_task_rq(tsk, task_cpu(tsk));
6953
6954	if (unlikely(running))
6955		tsk->sched_class->set_curr_task(rq);
6956	if (on_rq)
6957		enqueue_task(rq, tsk, 0);
6958
6959	task_rq_unlock(rq, tsk, &flags);
6960}
6961#endif /* CONFIG_CGROUP_SCHED */
6962
6963#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6964static unsigned long to_ratio(u64 period, u64 runtime)
6965{
6966	if (runtime == RUNTIME_INF)
6967		return 1ULL << 20;
6968
6969	return div64_u64(runtime << 20, period);
6970}
6971#endif
6972
6973#ifdef CONFIG_RT_GROUP_SCHED
6974/*
6975 * Ensure that the real time constraints are schedulable.
6976 */
6977static DEFINE_MUTEX(rt_constraints_mutex);
6978
6979/* Must be called with tasklist_lock held */
6980static inline int tg_has_rt_tasks(struct task_group *tg)
6981{
6982	struct task_struct *g, *p;
6983
6984	do_each_thread(g, p) {
6985		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6986			return 1;
6987	} while_each_thread(g, p);
6988
6989	return 0;
6990}
6991
6992struct rt_schedulable_data {
6993	struct task_group *tg;
6994	u64 rt_period;
6995	u64 rt_runtime;
6996};
6997
6998static int tg_rt_schedulable(struct task_group *tg, void *data)
6999{
7000	struct rt_schedulable_data *d = data;
7001	struct task_group *child;
7002	unsigned long total, sum = 0;
7003	u64 period, runtime;
7004
7005	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7006	runtime = tg->rt_bandwidth.rt_runtime;
7007
7008	if (tg == d->tg) {
7009		period = d->rt_period;
7010		runtime = d->rt_runtime;
7011	}
7012
7013	/*
7014	 * Cannot have more runtime than the period.
7015	 */
7016	if (runtime > period && runtime != RUNTIME_INF)
7017		return -EINVAL;
7018
7019	/*
7020	 * Ensure we don't starve existing RT tasks.
7021	 */
7022	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7023		return -EBUSY;
7024
7025	total = to_ratio(period, runtime);
7026
7027	/*
7028	 * Nobody can have more than the global setting allows.
7029	 */
7030	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7031		return -EINVAL;
7032
7033	/*
7034	 * The sum of our children's runtime should not exceed our own.
7035	 */
7036	list_for_each_entry_rcu(child, &tg->children, siblings) {
7037		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7038		runtime = child->rt_bandwidth.rt_runtime;
7039
7040		if (child == d->tg) {
7041			period = d->rt_period;
7042			runtime = d->rt_runtime;
7043		}
7044
7045		sum += to_ratio(period, runtime);
7046	}
7047
7048	if (sum > total)
7049		return -EINVAL;
7050
7051	return 0;
7052}
7053
7054static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7055{
7056	int ret;
7057
7058	struct rt_schedulable_data data = {
7059		.tg = tg,
7060		.rt_period = period,
7061		.rt_runtime = runtime,
7062	};
7063
7064	rcu_read_lock();
7065	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7066	rcu_read_unlock();
7067
7068	return ret;
7069}
7070
7071static int tg_set_rt_bandwidth(struct task_group *tg,
7072		u64 rt_period, u64 rt_runtime)
7073{
7074	int i, err = 0;
7075
7076	mutex_lock(&rt_constraints_mutex);
7077	read_lock(&tasklist_lock);
7078	err = __rt_schedulable(tg, rt_period, rt_runtime);
7079	if (err)
7080		goto unlock;
7081
7082	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7083	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7084	tg->rt_bandwidth.rt_runtime = rt_runtime;
7085
7086	for_each_possible_cpu(i) {
7087		struct rt_rq *rt_rq = tg->rt_rq[i];
7088
7089		raw_spin_lock(&rt_rq->rt_runtime_lock);
7090		rt_rq->rt_runtime = rt_runtime;
7091		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7092	}
7093	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7094unlock:
7095	read_unlock(&tasklist_lock);
7096	mutex_unlock(&rt_constraints_mutex);
7097
7098	return err;
7099}
7100
7101static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7102{
7103	u64 rt_runtime, rt_period;
7104
7105	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7106	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7107	if (rt_runtime_us < 0)
7108		rt_runtime = RUNTIME_INF;
7109
7110	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7111}
7112
7113static long sched_group_rt_runtime(struct task_group *tg)
7114{
7115	u64 rt_runtime_us;
7116
7117	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7118		return -1;
7119
7120	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7121	do_div(rt_runtime_us, NSEC_PER_USEC);
7122	return rt_runtime_us;
7123}
7124
7125static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7126{
7127	u64 rt_runtime, rt_period;
7128
7129	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7130	rt_runtime = tg->rt_bandwidth.rt_runtime;
7131
7132	if (rt_period == 0)
7133		return -EINVAL;
7134
7135	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7136}
7137
7138static long sched_group_rt_period(struct task_group *tg)
7139{
7140	u64 rt_period_us;
7141
7142	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7143	do_div(rt_period_us, NSEC_PER_USEC);
7144	return rt_period_us;
7145}
7146
7147static int sched_rt_global_constraints(void)
7148{
7149	u64 runtime, period;
7150	int ret = 0;
7151
7152	if (sysctl_sched_rt_period <= 0)
7153		return -EINVAL;
7154
7155	runtime = global_rt_runtime();
7156	period = global_rt_period();
7157
7158	/*
7159	 * Sanity check on the sysctl variables.
7160	 */
7161	if (runtime > period && runtime != RUNTIME_INF)
7162		return -EINVAL;
7163
7164	mutex_lock(&rt_constraints_mutex);
7165	read_lock(&tasklist_lock);
7166	ret = __rt_schedulable(NULL, 0, 0);
7167	read_unlock(&tasklist_lock);
7168	mutex_unlock(&rt_constraints_mutex);
7169
7170	return ret;
7171}
7172
7173static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7174{
7175	/* Don't accept realtime tasks when there is no way for them to run */
7176	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7177		return 0;
7178
7179	return 1;
7180}
7181
7182#else /* !CONFIG_RT_GROUP_SCHED */
7183static int sched_rt_global_constraints(void)
7184{
7185	unsigned long flags;
7186	int i;
7187
7188	if (sysctl_sched_rt_period <= 0)
7189		return -EINVAL;
7190
7191	/*
7192	 * There's always some RT tasks in the root group
7193	 * -- migration, kstopmachine etc..
7194	 */
7195	if (sysctl_sched_rt_runtime == 0)
7196		return -EBUSY;
7197
7198	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7199	for_each_possible_cpu(i) {
7200		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7201
7202		raw_spin_lock(&rt_rq->rt_runtime_lock);
7203		rt_rq->rt_runtime = global_rt_runtime();
7204		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7205	}
7206	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7207
7208	return 0;
7209}
7210#endif /* CONFIG_RT_GROUP_SCHED */
7211
7212int sched_rr_handler(struct ctl_table *table, int write,
7213		void __user *buffer, size_t *lenp,
7214		loff_t *ppos)
7215{
7216	int ret;
7217	static DEFINE_MUTEX(mutex);
7218
7219	mutex_lock(&mutex);
7220	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7221	/* make sure that internally we keep jiffies */
7222	/* also, writing zero resets timeslice to default */
7223	if (!ret && write) {
7224		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7225			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7226	}
7227	mutex_unlock(&mutex);
7228	return ret;
7229}
7230
7231int sched_rt_handler(struct ctl_table *table, int write,
7232		void __user *buffer, size_t *lenp,
7233		loff_t *ppos)
7234{
7235	int ret;
7236	int old_period, old_runtime;
7237	static DEFINE_MUTEX(mutex);
7238
7239	mutex_lock(&mutex);
7240	old_period = sysctl_sched_rt_period;
7241	old_runtime = sysctl_sched_rt_runtime;
7242
7243	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7244
7245	if (!ret && write) {
7246		ret = sched_rt_global_constraints();
7247		if (ret) {
7248			sysctl_sched_rt_period = old_period;
7249			sysctl_sched_rt_runtime = old_runtime;
7250		} else {
7251			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7252			def_rt_bandwidth.rt_period =
7253				ns_to_ktime(global_rt_period());
7254		}
7255	}
7256	mutex_unlock(&mutex);
7257
7258	return ret;
7259}
7260
7261#ifdef CONFIG_CGROUP_SCHED
7262
7263static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7264{
7265	return css ? container_of(css, struct task_group, css) : NULL;
7266}
7267
7268static struct cgroup_subsys_state *
7269cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7270{
7271	struct task_group *parent = css_tg(parent_css);
7272	struct task_group *tg;
7273
7274	if (!parent) {
7275		/* This is early initialization for the top cgroup */
7276		return &root_task_group.css;
7277	}
7278
7279	tg = sched_create_group(parent);
7280	if (IS_ERR(tg))
7281		return ERR_PTR(-ENOMEM);
7282
7283	return &tg->css;
7284}
7285
7286static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7287{
7288	struct task_group *tg = css_tg(css);
7289	struct task_group *parent = css_tg(css_parent(css));
7290
7291	if (parent)
7292		sched_online_group(tg, parent);
7293	return 0;
7294}
7295
7296static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7297{
7298	struct task_group *tg = css_tg(css);
7299
7300	sched_destroy_group(tg);
7301}
7302
7303static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7304{
7305	struct task_group *tg = css_tg(css);
7306
7307	sched_offline_group(tg);
7308}
7309
7310static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7311				 struct cgroup_taskset *tset)
7312{
7313	struct task_struct *task;
7314
7315	cgroup_taskset_for_each(task, css, tset) {
7316#ifdef CONFIG_RT_GROUP_SCHED
7317		if (!sched_rt_can_attach(css_tg(css), task))
7318			return -EINVAL;
7319#else
7320		/* We don't support RT-tasks being in separate groups */
7321		if (task->sched_class != &fair_sched_class)
7322			return -EINVAL;
7323#endif
7324	}
7325	return 0;
7326}
7327
7328static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7329			      struct cgroup_taskset *tset)
7330{
7331	struct task_struct *task;
7332
7333	cgroup_taskset_for_each(task, css, tset)
7334		sched_move_task(task);
7335}
7336
7337static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7338			    struct cgroup_subsys_state *old_css,
7339			    struct task_struct *task)
7340{
7341	/*
7342	 * cgroup_exit() is called in the copy_process() failure path.
7343	 * Ignore this case since the task hasn't ran yet, this avoids
7344	 * trying to poke a half freed task state from generic code.
7345	 */
7346	if (!(task->flags & PF_EXITING))
7347		return;
7348
7349	sched_move_task(task);
7350}
7351
7352#ifdef CONFIG_FAIR_GROUP_SCHED
7353static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7354				struct cftype *cftype, u64 shareval)
7355{
7356	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7357}
7358
7359static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7360			       struct cftype *cft)
7361{
7362	struct task_group *tg = css_tg(css);
7363
7364	return (u64) scale_load_down(tg->shares);
7365}
7366
7367#ifdef CONFIG_CFS_BANDWIDTH
7368static DEFINE_MUTEX(cfs_constraints_mutex);
7369
7370const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7371const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7372
7373static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7374
7375static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7376{
7377	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7378	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7379
7380	if (tg == &root_task_group)
7381		return -EINVAL;
7382
7383	/*
7384	 * Ensure we have at some amount of bandwidth every period.  This is
7385	 * to prevent reaching a state of large arrears when throttled via
7386	 * entity_tick() resulting in prolonged exit starvation.
7387	 */
7388	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7389		return -EINVAL;
7390
7391	/*
7392	 * Likewise, bound things on the otherside by preventing insane quota
7393	 * periods.  This also allows us to normalize in computing quota
7394	 * feasibility.
7395	 */
7396	if (period > max_cfs_quota_period)
7397		return -EINVAL;
7398
7399	mutex_lock(&cfs_constraints_mutex);
7400	ret = __cfs_schedulable(tg, period, quota);
7401	if (ret)
7402		goto out_unlock;
7403
7404	runtime_enabled = quota != RUNTIME_INF;
7405	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7406	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7407	raw_spin_lock_irq(&cfs_b->lock);
7408	cfs_b->period = ns_to_ktime(period);
7409	cfs_b->quota = quota;
7410
7411	__refill_cfs_bandwidth_runtime(cfs_b);
7412	/* restart the period timer (if active) to handle new period expiry */
7413	if (runtime_enabled && cfs_b->timer_active) {
7414		/* force a reprogram */
7415		cfs_b->timer_active = 0;
7416		__start_cfs_bandwidth(cfs_b);
7417	}
7418	raw_spin_unlock_irq(&cfs_b->lock);
7419
7420	for_each_possible_cpu(i) {
7421		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7422		struct rq *rq = cfs_rq->rq;
7423
7424		raw_spin_lock_irq(&rq->lock);
7425		cfs_rq->runtime_enabled = runtime_enabled;
7426		cfs_rq->runtime_remaining = 0;
7427
7428		if (cfs_rq->throttled)
7429			unthrottle_cfs_rq(cfs_rq);
7430		raw_spin_unlock_irq(&rq->lock);
7431	}
7432out_unlock:
7433	mutex_unlock(&cfs_constraints_mutex);
7434
7435	return ret;
7436}
7437
7438int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7439{
7440	u64 quota, period;
7441
7442	period = ktime_to_ns(tg->cfs_bandwidth.period);
7443	if (cfs_quota_us < 0)
7444		quota = RUNTIME_INF;
7445	else
7446		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7447
7448	return tg_set_cfs_bandwidth(tg, period, quota);
7449}
7450
7451long tg_get_cfs_quota(struct task_group *tg)
7452{
7453	u64 quota_us;
7454
7455	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7456		return -1;
7457
7458	quota_us = tg->cfs_bandwidth.quota;
7459	do_div(quota_us, NSEC_PER_USEC);
7460
7461	return quota_us;
7462}
7463
7464int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7465{
7466	u64 quota, period;
7467
7468	period = (u64)cfs_period_us * NSEC_PER_USEC;
7469	quota = tg->cfs_bandwidth.quota;
7470
7471	return tg_set_cfs_bandwidth(tg, period, quota);
7472}
7473
7474long tg_get_cfs_period(struct task_group *tg)
7475{
7476	u64 cfs_period_us;
7477
7478	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7479	do_div(cfs_period_us, NSEC_PER_USEC);
7480
7481	return cfs_period_us;
7482}
7483
7484static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7485				  struct cftype *cft)
7486{
7487	return tg_get_cfs_quota(css_tg(css));
7488}
7489
7490static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7491				   struct cftype *cftype, s64 cfs_quota_us)
7492{
7493	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7494}
7495
7496static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7497				   struct cftype *cft)
7498{
7499	return tg_get_cfs_period(css_tg(css));
7500}
7501
7502static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7503				    struct cftype *cftype, u64 cfs_period_us)
7504{
7505	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7506}
7507
7508struct cfs_schedulable_data {
7509	struct task_group *tg;
7510	u64 period, quota;
7511};
7512
7513/*
7514 * normalize group quota/period to be quota/max_period
7515 * note: units are usecs
7516 */
7517static u64 normalize_cfs_quota(struct task_group *tg,
7518			       struct cfs_schedulable_data *d)
7519{
7520	u64 quota, period;
7521
7522	if (tg == d->tg) {
7523		period = d->period;
7524		quota = d->quota;
7525	} else {
7526		period = tg_get_cfs_period(tg);
7527		quota = tg_get_cfs_quota(tg);
7528	}
7529
7530	/* note: these should typically be equivalent */
7531	if (quota == RUNTIME_INF || quota == -1)
7532		return RUNTIME_INF;
7533
7534	return to_ratio(period, quota);
7535}
7536
7537static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7538{
7539	struct cfs_schedulable_data *d = data;
7540	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7541	s64 quota = 0, parent_quota = -1;
7542
7543	if (!tg->parent) {
7544		quota = RUNTIME_INF;
7545	} else {
7546		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7547
7548		quota = normalize_cfs_quota(tg, d);
7549		parent_quota = parent_b->hierarchal_quota;
7550
7551		/*
7552		 * ensure max(child_quota) <= parent_quota, inherit when no
7553		 * limit is set
7554		 */
7555		if (quota == RUNTIME_INF)
7556			quota = parent_quota;
7557		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7558			return -EINVAL;
7559	}
7560	cfs_b->hierarchal_quota = quota;
7561
7562	return 0;
7563}
7564
7565static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7566{
7567	int ret;
7568	struct cfs_schedulable_data data = {
7569		.tg = tg,
7570		.period = period,
7571		.quota = quota,
7572	};
7573
7574	if (quota != RUNTIME_INF) {
7575		do_div(data.period, NSEC_PER_USEC);
7576		do_div(data.quota, NSEC_PER_USEC);
7577	}
7578
7579	rcu_read_lock();
7580	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7581	rcu_read_unlock();
7582
7583	return ret;
7584}
7585
7586static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7587		struct cgroup_map_cb *cb)
7588{
7589	struct task_group *tg = css_tg(css);
7590	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7591
7592	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7593	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7594	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7595
7596	return 0;
7597}
7598#endif /* CONFIG_CFS_BANDWIDTH */
7599#endif /* CONFIG_FAIR_GROUP_SCHED */
7600
7601#ifdef CONFIG_RT_GROUP_SCHED
7602static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7603				struct cftype *cft, s64 val)
7604{
7605	return sched_group_set_rt_runtime(css_tg(css), val);
7606}
7607
7608static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7609			       struct cftype *cft)
7610{
7611	return sched_group_rt_runtime(css_tg(css));
7612}
7613
7614static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7615				    struct cftype *cftype, u64 rt_period_us)
7616{
7617	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7618}
7619
7620static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7621				   struct cftype *cft)
7622{
7623	return sched_group_rt_period(css_tg(css));
7624}
7625#endif /* CONFIG_RT_GROUP_SCHED */
7626
7627static struct cftype cpu_files[] = {
7628#ifdef CONFIG_FAIR_GROUP_SCHED
7629	{
7630		.name = "shares",
7631		.read_u64 = cpu_shares_read_u64,
7632		.write_u64 = cpu_shares_write_u64,
7633	},
7634#endif
7635#ifdef CONFIG_CFS_BANDWIDTH
7636	{
7637		.name = "cfs_quota_us",
7638		.read_s64 = cpu_cfs_quota_read_s64,
7639		.write_s64 = cpu_cfs_quota_write_s64,
7640	},
7641	{
7642		.name = "cfs_period_us",
7643		.read_u64 = cpu_cfs_period_read_u64,
7644		.write_u64 = cpu_cfs_period_write_u64,
7645	},
7646	{
7647		.name = "stat",
7648		.read_map = cpu_stats_show,
7649	},
7650#endif
7651#ifdef CONFIG_RT_GROUP_SCHED
7652	{
7653		.name = "rt_runtime_us",
7654		.read_s64 = cpu_rt_runtime_read,
7655		.write_s64 = cpu_rt_runtime_write,
7656	},
7657	{
7658		.name = "rt_period_us",
7659		.read_u64 = cpu_rt_period_read_uint,
7660		.write_u64 = cpu_rt_period_write_uint,
7661	},
7662#endif
7663	{ }	/* terminate */
7664};
7665
7666struct cgroup_subsys cpu_cgroup_subsys = {
7667	.name		= "cpu",
7668	.css_alloc	= cpu_cgroup_css_alloc,
7669	.css_free	= cpu_cgroup_css_free,
7670	.css_online	= cpu_cgroup_css_online,
7671	.css_offline	= cpu_cgroup_css_offline,
7672	.can_attach	= cpu_cgroup_can_attach,
7673	.attach		= cpu_cgroup_attach,
7674	.exit		= cpu_cgroup_exit,
7675	.subsys_id	= cpu_cgroup_subsys_id,
7676	.base_cftypes	= cpu_files,
7677	.early_init	= 1,
7678};
7679
7680#endif	/* CONFIG_CGROUP_SCHED */
7681
7682void dump_cpu_task(int cpu)
7683{
7684	pr_info("Task dump for CPU %d:\n", cpu);
7685	sched_show_task(cpu_curr(cpu));
7686}
7687