core.c revision 96f951edb1f1bdbbc99b0cd458f9808bb83d58ae
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86
87#define CREATE_TRACE_POINTS
88#include <trace/events/sched.h>
89
90void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91{
92	unsigned long delta;
93	ktime_t soft, hard, now;
94
95	for (;;) {
96		if (hrtimer_active(period_timer))
97			break;
98
99		now = hrtimer_cb_get_time(period_timer);
100		hrtimer_forward(period_timer, now, period);
101
102		soft = hrtimer_get_softexpires(period_timer);
103		hard = hrtimer_get_expires(period_timer);
104		delta = ktime_to_ns(ktime_sub(hard, soft));
105		__hrtimer_start_range_ns(period_timer, soft, delta,
106					 HRTIMER_MODE_ABS_PINNED, 0);
107	}
108}
109
110DEFINE_MUTEX(sched_domains_mutex);
111DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112
113static void update_rq_clock_task(struct rq *rq, s64 delta);
114
115void update_rq_clock(struct rq *rq)
116{
117	s64 delta;
118
119	if (rq->skip_clock_update > 0)
120		return;
121
122	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123	rq->clock += delta;
124	update_rq_clock_task(rq, delta);
125}
126
127/*
128 * Debugging: various feature bits
129 */
130
131#define SCHED_FEAT(name, enabled)	\
132	(1UL << __SCHED_FEAT_##name) * enabled |
133
134const_debug unsigned int sysctl_sched_features =
135#include "features.h"
136	0;
137
138#undef SCHED_FEAT
139
140#ifdef CONFIG_SCHED_DEBUG
141#define SCHED_FEAT(name, enabled)	\
142	#name ,
143
144static __read_mostly char *sched_feat_names[] = {
145#include "features.h"
146	NULL
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695void update_cpu_load(struct rq *this_rq);
696
697static void set_load_weight(struct task_struct *p)
698{
699	int prio = p->static_prio - MAX_RT_PRIO;
700	struct load_weight *load = &p->se.load;
701
702	/*
703	 * SCHED_IDLE tasks get minimal weight:
704	 */
705	if (p->policy == SCHED_IDLE) {
706		load->weight = scale_load(WEIGHT_IDLEPRIO);
707		load->inv_weight = WMULT_IDLEPRIO;
708		return;
709	}
710
711	load->weight = scale_load(prio_to_weight[prio]);
712	load->inv_weight = prio_to_wmult[prio];
713}
714
715static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716{
717	update_rq_clock(rq);
718	sched_info_queued(p);
719	p->sched_class->enqueue_task(rq, p, flags);
720}
721
722static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723{
724	update_rq_clock(rq);
725	sched_info_dequeued(p);
726	p->sched_class->dequeue_task(rq, p, flags);
727}
728
729void activate_task(struct rq *rq, struct task_struct *p, int flags)
730{
731	if (task_contributes_to_load(p))
732		rq->nr_uninterruptible--;
733
734	enqueue_task(rq, p, flags);
735}
736
737void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738{
739	if (task_contributes_to_load(p))
740		rq->nr_uninterruptible++;
741
742	dequeue_task(rq, p, flags);
743}
744
745#ifdef CONFIG_IRQ_TIME_ACCOUNTING
746
747/*
748 * There are no locks covering percpu hardirq/softirq time.
749 * They are only modified in account_system_vtime, on corresponding CPU
750 * with interrupts disabled. So, writes are safe.
751 * They are read and saved off onto struct rq in update_rq_clock().
752 * This may result in other CPU reading this CPU's irq time and can
753 * race with irq/account_system_vtime on this CPU. We would either get old
754 * or new value with a side effect of accounting a slice of irq time to wrong
755 * task when irq is in progress while we read rq->clock. That is a worthy
756 * compromise in place of having locks on each irq in account_system_time.
757 */
758static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759static DEFINE_PER_CPU(u64, cpu_softirq_time);
760
761static DEFINE_PER_CPU(u64, irq_start_time);
762static int sched_clock_irqtime;
763
764void enable_sched_clock_irqtime(void)
765{
766	sched_clock_irqtime = 1;
767}
768
769void disable_sched_clock_irqtime(void)
770{
771	sched_clock_irqtime = 0;
772}
773
774#ifndef CONFIG_64BIT
775static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776
777static inline void irq_time_write_begin(void)
778{
779	__this_cpu_inc(irq_time_seq.sequence);
780	smp_wmb();
781}
782
783static inline void irq_time_write_end(void)
784{
785	smp_wmb();
786	__this_cpu_inc(irq_time_seq.sequence);
787}
788
789static inline u64 irq_time_read(int cpu)
790{
791	u64 irq_time;
792	unsigned seq;
793
794	do {
795		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796		irq_time = per_cpu(cpu_softirq_time, cpu) +
797			   per_cpu(cpu_hardirq_time, cpu);
798	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799
800	return irq_time;
801}
802#else /* CONFIG_64BIT */
803static inline void irq_time_write_begin(void)
804{
805}
806
807static inline void irq_time_write_end(void)
808{
809}
810
811static inline u64 irq_time_read(int cpu)
812{
813	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814}
815#endif /* CONFIG_64BIT */
816
817/*
818 * Called before incrementing preempt_count on {soft,}irq_enter
819 * and before decrementing preempt_count on {soft,}irq_exit.
820 */
821void account_system_vtime(struct task_struct *curr)
822{
823	unsigned long flags;
824	s64 delta;
825	int cpu;
826
827	if (!sched_clock_irqtime)
828		return;
829
830	local_irq_save(flags);
831
832	cpu = smp_processor_id();
833	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834	__this_cpu_add(irq_start_time, delta);
835
836	irq_time_write_begin();
837	/*
838	 * We do not account for softirq time from ksoftirqd here.
839	 * We want to continue accounting softirq time to ksoftirqd thread
840	 * in that case, so as not to confuse scheduler with a special task
841	 * that do not consume any time, but still wants to run.
842	 */
843	if (hardirq_count())
844		__this_cpu_add(cpu_hardirq_time, delta);
845	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846		__this_cpu_add(cpu_softirq_time, delta);
847
848	irq_time_write_end();
849	local_irq_restore(flags);
850}
851EXPORT_SYMBOL_GPL(account_system_vtime);
852
853#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854
855#ifdef CONFIG_PARAVIRT
856static inline u64 steal_ticks(u64 steal)
857{
858	if (unlikely(steal > NSEC_PER_SEC))
859		return div_u64(steal, TICK_NSEC);
860
861	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862}
863#endif
864
865static void update_rq_clock_task(struct rq *rq, s64 delta)
866{
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872	s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
875	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876
877	/*
878	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879	 * this case when a previous update_rq_clock() happened inside a
880	 * {soft,}irq region.
881	 *
882	 * When this happens, we stop ->clock_task and only update the
883	 * prev_irq_time stamp to account for the part that fit, so that a next
884	 * update will consume the rest. This ensures ->clock_task is
885	 * monotonic.
886	 *
887	 * It does however cause some slight miss-attribution of {soft,}irq
888	 * time, a more accurate solution would be to update the irq_time using
889	 * the current rq->clock timestamp, except that would require using
890	 * atomic ops.
891	 */
892	if (irq_delta > delta)
893		irq_delta = delta;
894
895	rq->prev_irq_time += irq_delta;
896	delta -= irq_delta;
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899	if (static_key_false((&paravirt_steal_rq_enabled))) {
900		u64 st;
901
902		steal = paravirt_steal_clock(cpu_of(rq));
903		steal -= rq->prev_steal_time_rq;
904
905		if (unlikely(steal > delta))
906			steal = delta;
907
908		st = steal_ticks(steal);
909		steal = st * TICK_NSEC;
910
911		rq->prev_steal_time_rq += steal;
912
913		delta -= steal;
914	}
915#endif
916
917	rq->clock_task += delta;
918
919#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921		sched_rt_avg_update(rq, irq_delta + steal);
922#endif
923}
924
925#ifdef CONFIG_IRQ_TIME_ACCOUNTING
926static int irqtime_account_hi_update(void)
927{
928	u64 *cpustat = kcpustat_this_cpu->cpustat;
929	unsigned long flags;
930	u64 latest_ns;
931	int ret = 0;
932
933	local_irq_save(flags);
934	latest_ns = this_cpu_read(cpu_hardirq_time);
935	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936		ret = 1;
937	local_irq_restore(flags);
938	return ret;
939}
940
941static int irqtime_account_si_update(void)
942{
943	u64 *cpustat = kcpustat_this_cpu->cpustat;
944	unsigned long flags;
945	u64 latest_ns;
946	int ret = 0;
947
948	local_irq_save(flags);
949	latest_ns = this_cpu_read(cpu_softirq_time);
950	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951		ret = 1;
952	local_irq_restore(flags);
953	return ret;
954}
955
956#else /* CONFIG_IRQ_TIME_ACCOUNTING */
957
958#define sched_clock_irqtime	(0)
959
960#endif
961
962void sched_set_stop_task(int cpu, struct task_struct *stop)
963{
964	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965	struct task_struct *old_stop = cpu_rq(cpu)->stop;
966
967	if (stop) {
968		/*
969		 * Make it appear like a SCHED_FIFO task, its something
970		 * userspace knows about and won't get confused about.
971		 *
972		 * Also, it will make PI more or less work without too
973		 * much confusion -- but then, stop work should not
974		 * rely on PI working anyway.
975		 */
976		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977
978		stop->sched_class = &stop_sched_class;
979	}
980
981	cpu_rq(cpu)->stop = stop;
982
983	if (old_stop) {
984		/*
985		 * Reset it back to a normal scheduling class so that
986		 * it can die in pieces.
987		 */
988		old_stop->sched_class = &rt_sched_class;
989	}
990}
991
992/*
993 * __normal_prio - return the priority that is based on the static prio
994 */
995static inline int __normal_prio(struct task_struct *p)
996{
997	return p->static_prio;
998}
999
1000/*
1001 * Calculate the expected normal priority: i.e. priority
1002 * without taking RT-inheritance into account. Might be
1003 * boosted by interactivity modifiers. Changes upon fork,
1004 * setprio syscalls, and whenever the interactivity
1005 * estimator recalculates.
1006 */
1007static inline int normal_prio(struct task_struct *p)
1008{
1009	int prio;
1010
1011	if (task_has_rt_policy(p))
1012		prio = MAX_RT_PRIO-1 - p->rt_priority;
1013	else
1014		prio = __normal_prio(p);
1015	return prio;
1016}
1017
1018/*
1019 * Calculate the current priority, i.e. the priority
1020 * taken into account by the scheduler. This value might
1021 * be boosted by RT tasks, or might be boosted by
1022 * interactivity modifiers. Will be RT if the task got
1023 * RT-boosted. If not then it returns p->normal_prio.
1024 */
1025static int effective_prio(struct task_struct *p)
1026{
1027	p->normal_prio = normal_prio(p);
1028	/*
1029	 * If we are RT tasks or we were boosted to RT priority,
1030	 * keep the priority unchanged. Otherwise, update priority
1031	 * to the normal priority:
1032	 */
1033	if (!rt_prio(p->prio))
1034		return p->normal_prio;
1035	return p->prio;
1036}
1037
1038/**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
1042inline int task_curr(const struct task_struct *p)
1043{
1044	return cpu_curr(task_cpu(p)) == p;
1045}
1046
1047static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048				       const struct sched_class *prev_class,
1049				       int oldprio)
1050{
1051	if (prev_class != p->sched_class) {
1052		if (prev_class->switched_from)
1053			prev_class->switched_from(rq, p);
1054		p->sched_class->switched_to(rq, p);
1055	} else if (oldprio != p->prio)
1056		p->sched_class->prio_changed(rq, p, oldprio);
1057}
1058
1059void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060{
1061	const struct sched_class *class;
1062
1063	if (p->sched_class == rq->curr->sched_class) {
1064		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065	} else {
1066		for_each_class(class) {
1067			if (class == rq->curr->sched_class)
1068				break;
1069			if (class == p->sched_class) {
1070				resched_task(rq->curr);
1071				break;
1072			}
1073		}
1074	}
1075
1076	/*
1077	 * A queue event has occurred, and we're going to schedule.  In
1078	 * this case, we can save a useless back to back clock update.
1079	 */
1080	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081		rq->skip_clock_update = 1;
1082}
1083
1084#ifdef CONFIG_SMP
1085void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086{
1087#ifdef CONFIG_SCHED_DEBUG
1088	/*
1089	 * We should never call set_task_cpu() on a blocked task,
1090	 * ttwu() will sort out the placement.
1091	 */
1092	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094
1095#ifdef CONFIG_LOCKDEP
1096	/*
1097	 * The caller should hold either p->pi_lock or rq->lock, when changing
1098	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099	 *
1100	 * sched_move_task() holds both and thus holding either pins the cgroup,
1101	 * see set_task_rq().
1102	 *
1103	 * Furthermore, all task_rq users should acquire both locks, see
1104	 * task_rq_lock().
1105	 */
1106	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107				      lockdep_is_held(&task_rq(p)->lock)));
1108#endif
1109#endif
1110
1111	trace_sched_migrate_task(p, new_cpu);
1112
1113	if (task_cpu(p) != new_cpu) {
1114		p->se.nr_migrations++;
1115		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116	}
1117
1118	__set_task_cpu(p, new_cpu);
1119}
1120
1121struct migration_arg {
1122	struct task_struct *task;
1123	int dest_cpu;
1124};
1125
1126static int migration_cpu_stop(void *data);
1127
1128/*
1129 * wait_task_inactive - wait for a thread to unschedule.
1130 *
1131 * If @match_state is nonzero, it's the @p->state value just checked and
1132 * not expected to change.  If it changes, i.e. @p might have woken up,
1133 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1134 * we return a positive number (its total switch count).  If a second call
1135 * a short while later returns the same number, the caller can be sure that
1136 * @p has remained unscheduled the whole time.
1137 *
1138 * The caller must ensure that the task *will* unschedule sometime soon,
1139 * else this function might spin for a *long* time. This function can't
1140 * be called with interrupts off, or it may introduce deadlock with
1141 * smp_call_function() if an IPI is sent by the same process we are
1142 * waiting to become inactive.
1143 */
1144unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145{
1146	unsigned long flags;
1147	int running, on_rq;
1148	unsigned long ncsw;
1149	struct rq *rq;
1150
1151	for (;;) {
1152		/*
1153		 * We do the initial early heuristics without holding
1154		 * any task-queue locks at all. We'll only try to get
1155		 * the runqueue lock when things look like they will
1156		 * work out!
1157		 */
1158		rq = task_rq(p);
1159
1160		/*
1161		 * If the task is actively running on another CPU
1162		 * still, just relax and busy-wait without holding
1163		 * any locks.
1164		 *
1165		 * NOTE! Since we don't hold any locks, it's not
1166		 * even sure that "rq" stays as the right runqueue!
1167		 * But we don't care, since "task_running()" will
1168		 * return false if the runqueue has changed and p
1169		 * is actually now running somewhere else!
1170		 */
1171		while (task_running(rq, p)) {
1172			if (match_state && unlikely(p->state != match_state))
1173				return 0;
1174			cpu_relax();
1175		}
1176
1177		/*
1178		 * Ok, time to look more closely! We need the rq
1179		 * lock now, to be *sure*. If we're wrong, we'll
1180		 * just go back and repeat.
1181		 */
1182		rq = task_rq_lock(p, &flags);
1183		trace_sched_wait_task(p);
1184		running = task_running(rq, p);
1185		on_rq = p->on_rq;
1186		ncsw = 0;
1187		if (!match_state || p->state == match_state)
1188			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189		task_rq_unlock(rq, p, &flags);
1190
1191		/*
1192		 * If it changed from the expected state, bail out now.
1193		 */
1194		if (unlikely(!ncsw))
1195			break;
1196
1197		/*
1198		 * Was it really running after all now that we
1199		 * checked with the proper locks actually held?
1200		 *
1201		 * Oops. Go back and try again..
1202		 */
1203		if (unlikely(running)) {
1204			cpu_relax();
1205			continue;
1206		}
1207
1208		/*
1209		 * It's not enough that it's not actively running,
1210		 * it must be off the runqueue _entirely_, and not
1211		 * preempted!
1212		 *
1213		 * So if it was still runnable (but just not actively
1214		 * running right now), it's preempted, and we should
1215		 * yield - it could be a while.
1216		 */
1217		if (unlikely(on_rq)) {
1218			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219
1220			set_current_state(TASK_UNINTERRUPTIBLE);
1221			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222			continue;
1223		}
1224
1225		/*
1226		 * Ahh, all good. It wasn't running, and it wasn't
1227		 * runnable, which means that it will never become
1228		 * running in the future either. We're all done!
1229		 */
1230		break;
1231	}
1232
1233	return ncsw;
1234}
1235
1236/***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesn't have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
1249void kick_process(struct task_struct *p)
1250{
1251	int cpu;
1252
1253	preempt_disable();
1254	cpu = task_cpu(p);
1255	if ((cpu != smp_processor_id()) && task_curr(p))
1256		smp_send_reschedule(cpu);
1257	preempt_enable();
1258}
1259EXPORT_SYMBOL_GPL(kick_process);
1260#endif /* CONFIG_SMP */
1261
1262#ifdef CONFIG_SMP
1263/*
1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265 */
1266static int select_fallback_rq(int cpu, struct task_struct *p)
1267{
1268	int dest_cpu;
1269	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1270
1271	/* Look for allowed, online CPU in same node. */
1272	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1273		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1274			return dest_cpu;
1275
1276	/* Any allowed, online CPU? */
1277	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1278	if (dest_cpu < nr_cpu_ids)
1279		return dest_cpu;
1280
1281	/* No more Mr. Nice Guy. */
1282	dest_cpu = cpuset_cpus_allowed_fallback(p);
1283	/*
1284	 * Don't tell them about moving exiting tasks or
1285	 * kernel threads (both mm NULL), since they never
1286	 * leave kernel.
1287	 */
1288	if (p->mm && printk_ratelimit()) {
1289		printk_sched("process %d (%s) no longer affine to cpu%d\n",
1290				task_pid_nr(p), p->comm, cpu);
1291	}
1292
1293	return dest_cpu;
1294}
1295
1296/*
1297 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1298 */
1299static inline
1300int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1301{
1302	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1303
1304	/*
1305	 * In order not to call set_task_cpu() on a blocking task we need
1306	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1307	 * cpu.
1308	 *
1309	 * Since this is common to all placement strategies, this lives here.
1310	 *
1311	 * [ this allows ->select_task() to simply return task_cpu(p) and
1312	 *   not worry about this generic constraint ]
1313	 */
1314	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1315		     !cpu_online(cpu)))
1316		cpu = select_fallback_rq(task_cpu(p), p);
1317
1318	return cpu;
1319}
1320
1321static void update_avg(u64 *avg, u64 sample)
1322{
1323	s64 diff = sample - *avg;
1324	*avg += diff >> 3;
1325}
1326#endif
1327
1328static void
1329ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1330{
1331#ifdef CONFIG_SCHEDSTATS
1332	struct rq *rq = this_rq();
1333
1334#ifdef CONFIG_SMP
1335	int this_cpu = smp_processor_id();
1336
1337	if (cpu == this_cpu) {
1338		schedstat_inc(rq, ttwu_local);
1339		schedstat_inc(p, se.statistics.nr_wakeups_local);
1340	} else {
1341		struct sched_domain *sd;
1342
1343		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1344		rcu_read_lock();
1345		for_each_domain(this_cpu, sd) {
1346			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1347				schedstat_inc(sd, ttwu_wake_remote);
1348				break;
1349			}
1350		}
1351		rcu_read_unlock();
1352	}
1353
1354	if (wake_flags & WF_MIGRATED)
1355		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1356
1357#endif /* CONFIG_SMP */
1358
1359	schedstat_inc(rq, ttwu_count);
1360	schedstat_inc(p, se.statistics.nr_wakeups);
1361
1362	if (wake_flags & WF_SYNC)
1363		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1364
1365#endif /* CONFIG_SCHEDSTATS */
1366}
1367
1368static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1369{
1370	activate_task(rq, p, en_flags);
1371	p->on_rq = 1;
1372
1373	/* if a worker is waking up, notify workqueue */
1374	if (p->flags & PF_WQ_WORKER)
1375		wq_worker_waking_up(p, cpu_of(rq));
1376}
1377
1378/*
1379 * Mark the task runnable and perform wakeup-preemption.
1380 */
1381static void
1382ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1383{
1384	trace_sched_wakeup(p, true);
1385	check_preempt_curr(rq, p, wake_flags);
1386
1387	p->state = TASK_RUNNING;
1388#ifdef CONFIG_SMP
1389	if (p->sched_class->task_woken)
1390		p->sched_class->task_woken(rq, p);
1391
1392	if (rq->idle_stamp) {
1393		u64 delta = rq->clock - rq->idle_stamp;
1394		u64 max = 2*sysctl_sched_migration_cost;
1395
1396		if (delta > max)
1397			rq->avg_idle = max;
1398		else
1399			update_avg(&rq->avg_idle, delta);
1400		rq->idle_stamp = 0;
1401	}
1402#endif
1403}
1404
1405static void
1406ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1407{
1408#ifdef CONFIG_SMP
1409	if (p->sched_contributes_to_load)
1410		rq->nr_uninterruptible--;
1411#endif
1412
1413	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1414	ttwu_do_wakeup(rq, p, wake_flags);
1415}
1416
1417/*
1418 * Called in case the task @p isn't fully descheduled from its runqueue,
1419 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1420 * since all we need to do is flip p->state to TASK_RUNNING, since
1421 * the task is still ->on_rq.
1422 */
1423static int ttwu_remote(struct task_struct *p, int wake_flags)
1424{
1425	struct rq *rq;
1426	int ret = 0;
1427
1428	rq = __task_rq_lock(p);
1429	if (p->on_rq) {
1430		ttwu_do_wakeup(rq, p, wake_flags);
1431		ret = 1;
1432	}
1433	__task_rq_unlock(rq);
1434
1435	return ret;
1436}
1437
1438#ifdef CONFIG_SMP
1439static void sched_ttwu_pending(void)
1440{
1441	struct rq *rq = this_rq();
1442	struct llist_node *llist = llist_del_all(&rq->wake_list);
1443	struct task_struct *p;
1444
1445	raw_spin_lock(&rq->lock);
1446
1447	while (llist) {
1448		p = llist_entry(llist, struct task_struct, wake_entry);
1449		llist = llist_next(llist);
1450		ttwu_do_activate(rq, p, 0);
1451	}
1452
1453	raw_spin_unlock(&rq->lock);
1454}
1455
1456void scheduler_ipi(void)
1457{
1458	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1459		return;
1460
1461	/*
1462	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1463	 * traditionally all their work was done from the interrupt return
1464	 * path. Now that we actually do some work, we need to make sure
1465	 * we do call them.
1466	 *
1467	 * Some archs already do call them, luckily irq_enter/exit nest
1468	 * properly.
1469	 *
1470	 * Arguably we should visit all archs and update all handlers,
1471	 * however a fair share of IPIs are still resched only so this would
1472	 * somewhat pessimize the simple resched case.
1473	 */
1474	irq_enter();
1475	sched_ttwu_pending();
1476
1477	/*
1478	 * Check if someone kicked us for doing the nohz idle load balance.
1479	 */
1480	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1481		this_rq()->idle_balance = 1;
1482		raise_softirq_irqoff(SCHED_SOFTIRQ);
1483	}
1484	irq_exit();
1485}
1486
1487static void ttwu_queue_remote(struct task_struct *p, int cpu)
1488{
1489	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1490		smp_send_reschedule(cpu);
1491}
1492
1493#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1494static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1495{
1496	struct rq *rq;
1497	int ret = 0;
1498
1499	rq = __task_rq_lock(p);
1500	if (p->on_cpu) {
1501		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1502		ttwu_do_wakeup(rq, p, wake_flags);
1503		ret = 1;
1504	}
1505	__task_rq_unlock(rq);
1506
1507	return ret;
1508
1509}
1510#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1511
1512bool cpus_share_cache(int this_cpu, int that_cpu)
1513{
1514	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1515}
1516#endif /* CONFIG_SMP */
1517
1518static void ttwu_queue(struct task_struct *p, int cpu)
1519{
1520	struct rq *rq = cpu_rq(cpu);
1521
1522#if defined(CONFIG_SMP)
1523	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1524		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1525		ttwu_queue_remote(p, cpu);
1526		return;
1527	}
1528#endif
1529
1530	raw_spin_lock(&rq->lock);
1531	ttwu_do_activate(rq, p, 0);
1532	raw_spin_unlock(&rq->lock);
1533}
1534
1535/**
1536 * try_to_wake_up - wake up a thread
1537 * @p: the thread to be awakened
1538 * @state: the mask of task states that can be woken
1539 * @wake_flags: wake modifier flags (WF_*)
1540 *
1541 * Put it on the run-queue if it's not already there. The "current"
1542 * thread is always on the run-queue (except when the actual
1543 * re-schedule is in progress), and as such you're allowed to do
1544 * the simpler "current->state = TASK_RUNNING" to mark yourself
1545 * runnable without the overhead of this.
1546 *
1547 * Returns %true if @p was woken up, %false if it was already running
1548 * or @state didn't match @p's state.
1549 */
1550static int
1551try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1552{
1553	unsigned long flags;
1554	int cpu, success = 0;
1555
1556	smp_wmb();
1557	raw_spin_lock_irqsave(&p->pi_lock, flags);
1558	if (!(p->state & state))
1559		goto out;
1560
1561	success = 1; /* we're going to change ->state */
1562	cpu = task_cpu(p);
1563
1564	if (p->on_rq && ttwu_remote(p, wake_flags))
1565		goto stat;
1566
1567#ifdef CONFIG_SMP
1568	/*
1569	 * If the owning (remote) cpu is still in the middle of schedule() with
1570	 * this task as prev, wait until its done referencing the task.
1571	 */
1572	while (p->on_cpu) {
1573#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1574		/*
1575		 * In case the architecture enables interrupts in
1576		 * context_switch(), we cannot busy wait, since that
1577		 * would lead to deadlocks when an interrupt hits and
1578		 * tries to wake up @prev. So bail and do a complete
1579		 * remote wakeup.
1580		 */
1581		if (ttwu_activate_remote(p, wake_flags))
1582			goto stat;
1583#else
1584		cpu_relax();
1585#endif
1586	}
1587	/*
1588	 * Pairs with the smp_wmb() in finish_lock_switch().
1589	 */
1590	smp_rmb();
1591
1592	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1593	p->state = TASK_WAKING;
1594
1595	if (p->sched_class->task_waking)
1596		p->sched_class->task_waking(p);
1597
1598	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1599	if (task_cpu(p) != cpu) {
1600		wake_flags |= WF_MIGRATED;
1601		set_task_cpu(p, cpu);
1602	}
1603#endif /* CONFIG_SMP */
1604
1605	ttwu_queue(p, cpu);
1606stat:
1607	ttwu_stat(p, cpu, wake_flags);
1608out:
1609	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1610
1611	return success;
1612}
1613
1614/**
1615 * try_to_wake_up_local - try to wake up a local task with rq lock held
1616 * @p: the thread to be awakened
1617 *
1618 * Put @p on the run-queue if it's not already there. The caller must
1619 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1620 * the current task.
1621 */
1622static void try_to_wake_up_local(struct task_struct *p)
1623{
1624	struct rq *rq = task_rq(p);
1625
1626	BUG_ON(rq != this_rq());
1627	BUG_ON(p == current);
1628	lockdep_assert_held(&rq->lock);
1629
1630	if (!raw_spin_trylock(&p->pi_lock)) {
1631		raw_spin_unlock(&rq->lock);
1632		raw_spin_lock(&p->pi_lock);
1633		raw_spin_lock(&rq->lock);
1634	}
1635
1636	if (!(p->state & TASK_NORMAL))
1637		goto out;
1638
1639	if (!p->on_rq)
1640		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1641
1642	ttwu_do_wakeup(rq, p, 0);
1643	ttwu_stat(p, smp_processor_id(), 0);
1644out:
1645	raw_spin_unlock(&p->pi_lock);
1646}
1647
1648/**
1649 * wake_up_process - Wake up a specific process
1650 * @p: The process to be woken up.
1651 *
1652 * Attempt to wake up the nominated process and move it to the set of runnable
1653 * processes.  Returns 1 if the process was woken up, 0 if it was already
1654 * running.
1655 *
1656 * It may be assumed that this function implies a write memory barrier before
1657 * changing the task state if and only if any tasks are woken up.
1658 */
1659int wake_up_process(struct task_struct *p)
1660{
1661	return try_to_wake_up(p, TASK_ALL, 0);
1662}
1663EXPORT_SYMBOL(wake_up_process);
1664
1665int wake_up_state(struct task_struct *p, unsigned int state)
1666{
1667	return try_to_wake_up(p, state, 0);
1668}
1669
1670/*
1671 * Perform scheduler related setup for a newly forked process p.
1672 * p is forked by current.
1673 *
1674 * __sched_fork() is basic setup used by init_idle() too:
1675 */
1676static void __sched_fork(struct task_struct *p)
1677{
1678	p->on_rq			= 0;
1679
1680	p->se.on_rq			= 0;
1681	p->se.exec_start		= 0;
1682	p->se.sum_exec_runtime		= 0;
1683	p->se.prev_sum_exec_runtime	= 0;
1684	p->se.nr_migrations		= 0;
1685	p->se.vruntime			= 0;
1686	INIT_LIST_HEAD(&p->se.group_node);
1687
1688#ifdef CONFIG_SCHEDSTATS
1689	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1690#endif
1691
1692	INIT_LIST_HEAD(&p->rt.run_list);
1693
1694#ifdef CONFIG_PREEMPT_NOTIFIERS
1695	INIT_HLIST_HEAD(&p->preempt_notifiers);
1696#endif
1697}
1698
1699/*
1700 * fork()/clone()-time setup:
1701 */
1702void sched_fork(struct task_struct *p)
1703{
1704	unsigned long flags;
1705	int cpu = get_cpu();
1706
1707	__sched_fork(p);
1708	/*
1709	 * We mark the process as running here. This guarantees that
1710	 * nobody will actually run it, and a signal or other external
1711	 * event cannot wake it up and insert it on the runqueue either.
1712	 */
1713	p->state = TASK_RUNNING;
1714
1715	/*
1716	 * Make sure we do not leak PI boosting priority to the child.
1717	 */
1718	p->prio = current->normal_prio;
1719
1720	/*
1721	 * Revert to default priority/policy on fork if requested.
1722	 */
1723	if (unlikely(p->sched_reset_on_fork)) {
1724		if (task_has_rt_policy(p)) {
1725			p->policy = SCHED_NORMAL;
1726			p->static_prio = NICE_TO_PRIO(0);
1727			p->rt_priority = 0;
1728		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1729			p->static_prio = NICE_TO_PRIO(0);
1730
1731		p->prio = p->normal_prio = __normal_prio(p);
1732		set_load_weight(p);
1733
1734		/*
1735		 * We don't need the reset flag anymore after the fork. It has
1736		 * fulfilled its duty:
1737		 */
1738		p->sched_reset_on_fork = 0;
1739	}
1740
1741	if (!rt_prio(p->prio))
1742		p->sched_class = &fair_sched_class;
1743
1744	if (p->sched_class->task_fork)
1745		p->sched_class->task_fork(p);
1746
1747	/*
1748	 * The child is not yet in the pid-hash so no cgroup attach races,
1749	 * and the cgroup is pinned to this child due to cgroup_fork()
1750	 * is ran before sched_fork().
1751	 *
1752	 * Silence PROVE_RCU.
1753	 */
1754	raw_spin_lock_irqsave(&p->pi_lock, flags);
1755	set_task_cpu(p, cpu);
1756	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1757
1758#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1759	if (likely(sched_info_on()))
1760		memset(&p->sched_info, 0, sizeof(p->sched_info));
1761#endif
1762#if defined(CONFIG_SMP)
1763	p->on_cpu = 0;
1764#endif
1765#ifdef CONFIG_PREEMPT_COUNT
1766	/* Want to start with kernel preemption disabled. */
1767	task_thread_info(p)->preempt_count = 1;
1768#endif
1769#ifdef CONFIG_SMP
1770	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1771#endif
1772
1773	put_cpu();
1774}
1775
1776/*
1777 * wake_up_new_task - wake up a newly created task for the first time.
1778 *
1779 * This function will do some initial scheduler statistics housekeeping
1780 * that must be done for every newly created context, then puts the task
1781 * on the runqueue and wakes it.
1782 */
1783void wake_up_new_task(struct task_struct *p)
1784{
1785	unsigned long flags;
1786	struct rq *rq;
1787
1788	raw_spin_lock_irqsave(&p->pi_lock, flags);
1789#ifdef CONFIG_SMP
1790	/*
1791	 * Fork balancing, do it here and not earlier because:
1792	 *  - cpus_allowed can change in the fork path
1793	 *  - any previously selected cpu might disappear through hotplug
1794	 */
1795	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1796#endif
1797
1798	rq = __task_rq_lock(p);
1799	activate_task(rq, p, 0);
1800	p->on_rq = 1;
1801	trace_sched_wakeup_new(p, true);
1802	check_preempt_curr(rq, p, WF_FORK);
1803#ifdef CONFIG_SMP
1804	if (p->sched_class->task_woken)
1805		p->sched_class->task_woken(rq, p);
1806#endif
1807	task_rq_unlock(rq, p, &flags);
1808}
1809
1810#ifdef CONFIG_PREEMPT_NOTIFIERS
1811
1812/**
1813 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1814 * @notifier: notifier struct to register
1815 */
1816void preempt_notifier_register(struct preempt_notifier *notifier)
1817{
1818	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1819}
1820EXPORT_SYMBOL_GPL(preempt_notifier_register);
1821
1822/**
1823 * preempt_notifier_unregister - no longer interested in preemption notifications
1824 * @notifier: notifier struct to unregister
1825 *
1826 * This is safe to call from within a preemption notifier.
1827 */
1828void preempt_notifier_unregister(struct preempt_notifier *notifier)
1829{
1830	hlist_del(&notifier->link);
1831}
1832EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1833
1834static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1835{
1836	struct preempt_notifier *notifier;
1837	struct hlist_node *node;
1838
1839	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1840		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1841}
1842
1843static void
1844fire_sched_out_preempt_notifiers(struct task_struct *curr,
1845				 struct task_struct *next)
1846{
1847	struct preempt_notifier *notifier;
1848	struct hlist_node *node;
1849
1850	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1851		notifier->ops->sched_out(notifier, next);
1852}
1853
1854#else /* !CONFIG_PREEMPT_NOTIFIERS */
1855
1856static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1857{
1858}
1859
1860static void
1861fire_sched_out_preempt_notifiers(struct task_struct *curr,
1862				 struct task_struct *next)
1863{
1864}
1865
1866#endif /* CONFIG_PREEMPT_NOTIFIERS */
1867
1868/**
1869 * prepare_task_switch - prepare to switch tasks
1870 * @rq: the runqueue preparing to switch
1871 * @prev: the current task that is being switched out
1872 * @next: the task we are going to switch to.
1873 *
1874 * This is called with the rq lock held and interrupts off. It must
1875 * be paired with a subsequent finish_task_switch after the context
1876 * switch.
1877 *
1878 * prepare_task_switch sets up locking and calls architecture specific
1879 * hooks.
1880 */
1881static inline void
1882prepare_task_switch(struct rq *rq, struct task_struct *prev,
1883		    struct task_struct *next)
1884{
1885	sched_info_switch(prev, next);
1886	perf_event_task_sched_out(prev, next);
1887	fire_sched_out_preempt_notifiers(prev, next);
1888	prepare_lock_switch(rq, next);
1889	prepare_arch_switch(next);
1890	trace_sched_switch(prev, next);
1891}
1892
1893/**
1894 * finish_task_switch - clean up after a task-switch
1895 * @rq: runqueue associated with task-switch
1896 * @prev: the thread we just switched away from.
1897 *
1898 * finish_task_switch must be called after the context switch, paired
1899 * with a prepare_task_switch call before the context switch.
1900 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1901 * and do any other architecture-specific cleanup actions.
1902 *
1903 * Note that we may have delayed dropping an mm in context_switch(). If
1904 * so, we finish that here outside of the runqueue lock. (Doing it
1905 * with the lock held can cause deadlocks; see schedule() for
1906 * details.)
1907 */
1908static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1909	__releases(rq->lock)
1910{
1911	struct mm_struct *mm = rq->prev_mm;
1912	long prev_state;
1913
1914	rq->prev_mm = NULL;
1915
1916	/*
1917	 * A task struct has one reference for the use as "current".
1918	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1919	 * schedule one last time. The schedule call will never return, and
1920	 * the scheduled task must drop that reference.
1921	 * The test for TASK_DEAD must occur while the runqueue locks are
1922	 * still held, otherwise prev could be scheduled on another cpu, die
1923	 * there before we look at prev->state, and then the reference would
1924	 * be dropped twice.
1925	 *		Manfred Spraul <manfred@colorfullife.com>
1926	 */
1927	prev_state = prev->state;
1928	finish_arch_switch(prev);
1929#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1930	local_irq_disable();
1931#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1932	perf_event_task_sched_in(prev, current);
1933#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1934	local_irq_enable();
1935#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1936	finish_lock_switch(rq, prev);
1937
1938	fire_sched_in_preempt_notifiers(current);
1939	if (mm)
1940		mmdrop(mm);
1941	if (unlikely(prev_state == TASK_DEAD)) {
1942		/*
1943		 * Remove function-return probe instances associated with this
1944		 * task and put them back on the free list.
1945		 */
1946		kprobe_flush_task(prev);
1947		put_task_struct(prev);
1948	}
1949}
1950
1951#ifdef CONFIG_SMP
1952
1953/* assumes rq->lock is held */
1954static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1955{
1956	if (prev->sched_class->pre_schedule)
1957		prev->sched_class->pre_schedule(rq, prev);
1958}
1959
1960/* rq->lock is NOT held, but preemption is disabled */
1961static inline void post_schedule(struct rq *rq)
1962{
1963	if (rq->post_schedule) {
1964		unsigned long flags;
1965
1966		raw_spin_lock_irqsave(&rq->lock, flags);
1967		if (rq->curr->sched_class->post_schedule)
1968			rq->curr->sched_class->post_schedule(rq);
1969		raw_spin_unlock_irqrestore(&rq->lock, flags);
1970
1971		rq->post_schedule = 0;
1972	}
1973}
1974
1975#else
1976
1977static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1978{
1979}
1980
1981static inline void post_schedule(struct rq *rq)
1982{
1983}
1984
1985#endif
1986
1987/**
1988 * schedule_tail - first thing a freshly forked thread must call.
1989 * @prev: the thread we just switched away from.
1990 */
1991asmlinkage void schedule_tail(struct task_struct *prev)
1992	__releases(rq->lock)
1993{
1994	struct rq *rq = this_rq();
1995
1996	finish_task_switch(rq, prev);
1997
1998	/*
1999	 * FIXME: do we need to worry about rq being invalidated by the
2000	 * task_switch?
2001	 */
2002	post_schedule(rq);
2003
2004#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2005	/* In this case, finish_task_switch does not reenable preemption */
2006	preempt_enable();
2007#endif
2008	if (current->set_child_tid)
2009		put_user(task_pid_vnr(current), current->set_child_tid);
2010}
2011
2012/*
2013 * context_switch - switch to the new MM and the new
2014 * thread's register state.
2015 */
2016static inline void
2017context_switch(struct rq *rq, struct task_struct *prev,
2018	       struct task_struct *next)
2019{
2020	struct mm_struct *mm, *oldmm;
2021
2022	prepare_task_switch(rq, prev, next);
2023
2024	mm = next->mm;
2025	oldmm = prev->active_mm;
2026	/*
2027	 * For paravirt, this is coupled with an exit in switch_to to
2028	 * combine the page table reload and the switch backend into
2029	 * one hypercall.
2030	 */
2031	arch_start_context_switch(prev);
2032
2033	if (!mm) {
2034		next->active_mm = oldmm;
2035		atomic_inc(&oldmm->mm_count);
2036		enter_lazy_tlb(oldmm, next);
2037	} else
2038		switch_mm(oldmm, mm, next);
2039
2040	if (!prev->mm) {
2041		prev->active_mm = NULL;
2042		rq->prev_mm = oldmm;
2043	}
2044	/*
2045	 * Since the runqueue lock will be released by the next
2046	 * task (which is an invalid locking op but in the case
2047	 * of the scheduler it's an obvious special-case), so we
2048	 * do an early lockdep release here:
2049	 */
2050#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2051	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2052#endif
2053
2054	/* Here we just switch the register state and the stack. */
2055	switch_to(prev, next, prev);
2056
2057	barrier();
2058	/*
2059	 * this_rq must be evaluated again because prev may have moved
2060	 * CPUs since it called schedule(), thus the 'rq' on its stack
2061	 * frame will be invalid.
2062	 */
2063	finish_task_switch(this_rq(), prev);
2064}
2065
2066/*
2067 * nr_running, nr_uninterruptible and nr_context_switches:
2068 *
2069 * externally visible scheduler statistics: current number of runnable
2070 * threads, current number of uninterruptible-sleeping threads, total
2071 * number of context switches performed since bootup.
2072 */
2073unsigned long nr_running(void)
2074{
2075	unsigned long i, sum = 0;
2076
2077	for_each_online_cpu(i)
2078		sum += cpu_rq(i)->nr_running;
2079
2080	return sum;
2081}
2082
2083unsigned long nr_uninterruptible(void)
2084{
2085	unsigned long i, sum = 0;
2086
2087	for_each_possible_cpu(i)
2088		sum += cpu_rq(i)->nr_uninterruptible;
2089
2090	/*
2091	 * Since we read the counters lockless, it might be slightly
2092	 * inaccurate. Do not allow it to go below zero though:
2093	 */
2094	if (unlikely((long)sum < 0))
2095		sum = 0;
2096
2097	return sum;
2098}
2099
2100unsigned long long nr_context_switches(void)
2101{
2102	int i;
2103	unsigned long long sum = 0;
2104
2105	for_each_possible_cpu(i)
2106		sum += cpu_rq(i)->nr_switches;
2107
2108	return sum;
2109}
2110
2111unsigned long nr_iowait(void)
2112{
2113	unsigned long i, sum = 0;
2114
2115	for_each_possible_cpu(i)
2116		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2117
2118	return sum;
2119}
2120
2121unsigned long nr_iowait_cpu(int cpu)
2122{
2123	struct rq *this = cpu_rq(cpu);
2124	return atomic_read(&this->nr_iowait);
2125}
2126
2127unsigned long this_cpu_load(void)
2128{
2129	struct rq *this = this_rq();
2130	return this->cpu_load[0];
2131}
2132
2133
2134/* Variables and functions for calc_load */
2135static atomic_long_t calc_load_tasks;
2136static unsigned long calc_load_update;
2137unsigned long avenrun[3];
2138EXPORT_SYMBOL(avenrun);
2139
2140static long calc_load_fold_active(struct rq *this_rq)
2141{
2142	long nr_active, delta = 0;
2143
2144	nr_active = this_rq->nr_running;
2145	nr_active += (long) this_rq->nr_uninterruptible;
2146
2147	if (nr_active != this_rq->calc_load_active) {
2148		delta = nr_active - this_rq->calc_load_active;
2149		this_rq->calc_load_active = nr_active;
2150	}
2151
2152	return delta;
2153}
2154
2155static unsigned long
2156calc_load(unsigned long load, unsigned long exp, unsigned long active)
2157{
2158	load *= exp;
2159	load += active * (FIXED_1 - exp);
2160	load += 1UL << (FSHIFT - 1);
2161	return load >> FSHIFT;
2162}
2163
2164#ifdef CONFIG_NO_HZ
2165/*
2166 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2167 *
2168 * When making the ILB scale, we should try to pull this in as well.
2169 */
2170static atomic_long_t calc_load_tasks_idle;
2171
2172void calc_load_account_idle(struct rq *this_rq)
2173{
2174	long delta;
2175
2176	delta = calc_load_fold_active(this_rq);
2177	if (delta)
2178		atomic_long_add(delta, &calc_load_tasks_idle);
2179}
2180
2181static long calc_load_fold_idle(void)
2182{
2183	long delta = 0;
2184
2185	/*
2186	 * Its got a race, we don't care...
2187	 */
2188	if (atomic_long_read(&calc_load_tasks_idle))
2189		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2190
2191	return delta;
2192}
2193
2194/**
2195 * fixed_power_int - compute: x^n, in O(log n) time
2196 *
2197 * @x:         base of the power
2198 * @frac_bits: fractional bits of @x
2199 * @n:         power to raise @x to.
2200 *
2201 * By exploiting the relation between the definition of the natural power
2202 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2203 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2204 * (where: n_i \elem {0, 1}, the binary vector representing n),
2205 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2206 * of course trivially computable in O(log_2 n), the length of our binary
2207 * vector.
2208 */
2209static unsigned long
2210fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2211{
2212	unsigned long result = 1UL << frac_bits;
2213
2214	if (n) for (;;) {
2215		if (n & 1) {
2216			result *= x;
2217			result += 1UL << (frac_bits - 1);
2218			result >>= frac_bits;
2219		}
2220		n >>= 1;
2221		if (!n)
2222			break;
2223		x *= x;
2224		x += 1UL << (frac_bits - 1);
2225		x >>= frac_bits;
2226	}
2227
2228	return result;
2229}
2230
2231/*
2232 * a1 = a0 * e + a * (1 - e)
2233 *
2234 * a2 = a1 * e + a * (1 - e)
2235 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2236 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2237 *
2238 * a3 = a2 * e + a * (1 - e)
2239 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2240 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2241 *
2242 *  ...
2243 *
2244 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2245 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2246 *    = a0 * e^n + a * (1 - e^n)
2247 *
2248 * [1] application of the geometric series:
2249 *
2250 *              n         1 - x^(n+1)
2251 *     S_n := \Sum x^i = -------------
2252 *             i=0          1 - x
2253 */
2254static unsigned long
2255calc_load_n(unsigned long load, unsigned long exp,
2256	    unsigned long active, unsigned int n)
2257{
2258
2259	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2260}
2261
2262/*
2263 * NO_HZ can leave us missing all per-cpu ticks calling
2264 * calc_load_account_active(), but since an idle CPU folds its delta into
2265 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2266 * in the pending idle delta if our idle period crossed a load cycle boundary.
2267 *
2268 * Once we've updated the global active value, we need to apply the exponential
2269 * weights adjusted to the number of cycles missed.
2270 */
2271static void calc_global_nohz(void)
2272{
2273	long delta, active, n;
2274
2275	/*
2276	 * If we crossed a calc_load_update boundary, make sure to fold
2277	 * any pending idle changes, the respective CPUs might have
2278	 * missed the tick driven calc_load_account_active() update
2279	 * due to NO_HZ.
2280	 */
2281	delta = calc_load_fold_idle();
2282	if (delta)
2283		atomic_long_add(delta, &calc_load_tasks);
2284
2285	/*
2286	 * It could be the one fold was all it took, we done!
2287	 */
2288	if (time_before(jiffies, calc_load_update + 10))
2289		return;
2290
2291	/*
2292	 * Catch-up, fold however many we are behind still
2293	 */
2294	delta = jiffies - calc_load_update - 10;
2295	n = 1 + (delta / LOAD_FREQ);
2296
2297	active = atomic_long_read(&calc_load_tasks);
2298	active = active > 0 ? active * FIXED_1 : 0;
2299
2300	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2301	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2302	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2303
2304	calc_load_update += n * LOAD_FREQ;
2305}
2306#else
2307void calc_load_account_idle(struct rq *this_rq)
2308{
2309}
2310
2311static inline long calc_load_fold_idle(void)
2312{
2313	return 0;
2314}
2315
2316static void calc_global_nohz(void)
2317{
2318}
2319#endif
2320
2321/**
2322 * get_avenrun - get the load average array
2323 * @loads:	pointer to dest load array
2324 * @offset:	offset to add
2325 * @shift:	shift count to shift the result left
2326 *
2327 * These values are estimates at best, so no need for locking.
2328 */
2329void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2330{
2331	loads[0] = (avenrun[0] + offset) << shift;
2332	loads[1] = (avenrun[1] + offset) << shift;
2333	loads[2] = (avenrun[2] + offset) << shift;
2334}
2335
2336/*
2337 * calc_load - update the avenrun load estimates 10 ticks after the
2338 * CPUs have updated calc_load_tasks.
2339 */
2340void calc_global_load(unsigned long ticks)
2341{
2342	long active;
2343
2344	if (time_before(jiffies, calc_load_update + 10))
2345		return;
2346
2347	active = atomic_long_read(&calc_load_tasks);
2348	active = active > 0 ? active * FIXED_1 : 0;
2349
2350	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2351	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2352	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2353
2354	calc_load_update += LOAD_FREQ;
2355
2356	/*
2357	 * Account one period with whatever state we found before
2358	 * folding in the nohz state and ageing the entire idle period.
2359	 *
2360	 * This avoids loosing a sample when we go idle between
2361	 * calc_load_account_active() (10 ticks ago) and now and thus
2362	 * under-accounting.
2363	 */
2364	calc_global_nohz();
2365}
2366
2367/*
2368 * Called from update_cpu_load() to periodically update this CPU's
2369 * active count.
2370 */
2371static void calc_load_account_active(struct rq *this_rq)
2372{
2373	long delta;
2374
2375	if (time_before(jiffies, this_rq->calc_load_update))
2376		return;
2377
2378	delta  = calc_load_fold_active(this_rq);
2379	delta += calc_load_fold_idle();
2380	if (delta)
2381		atomic_long_add(delta, &calc_load_tasks);
2382
2383	this_rq->calc_load_update += LOAD_FREQ;
2384}
2385
2386/*
2387 * The exact cpuload at various idx values, calculated at every tick would be
2388 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2389 *
2390 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2391 * on nth tick when cpu may be busy, then we have:
2392 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2393 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2394 *
2395 * decay_load_missed() below does efficient calculation of
2396 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2397 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2398 *
2399 * The calculation is approximated on a 128 point scale.
2400 * degrade_zero_ticks is the number of ticks after which load at any
2401 * particular idx is approximated to be zero.
2402 * degrade_factor is a precomputed table, a row for each load idx.
2403 * Each column corresponds to degradation factor for a power of two ticks,
2404 * based on 128 point scale.
2405 * Example:
2406 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2407 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2408 *
2409 * With this power of 2 load factors, we can degrade the load n times
2410 * by looking at 1 bits in n and doing as many mult/shift instead of
2411 * n mult/shifts needed by the exact degradation.
2412 */
2413#define DEGRADE_SHIFT		7
2414static const unsigned char
2415		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2416static const unsigned char
2417		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2418					{0, 0, 0, 0, 0, 0, 0, 0},
2419					{64, 32, 8, 0, 0, 0, 0, 0},
2420					{96, 72, 40, 12, 1, 0, 0},
2421					{112, 98, 75, 43, 15, 1, 0},
2422					{120, 112, 98, 76, 45, 16, 2} };
2423
2424/*
2425 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2426 * would be when CPU is idle and so we just decay the old load without
2427 * adding any new load.
2428 */
2429static unsigned long
2430decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2431{
2432	int j = 0;
2433
2434	if (!missed_updates)
2435		return load;
2436
2437	if (missed_updates >= degrade_zero_ticks[idx])
2438		return 0;
2439
2440	if (idx == 1)
2441		return load >> missed_updates;
2442
2443	while (missed_updates) {
2444		if (missed_updates % 2)
2445			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2446
2447		missed_updates >>= 1;
2448		j++;
2449	}
2450	return load;
2451}
2452
2453/*
2454 * Update rq->cpu_load[] statistics. This function is usually called every
2455 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2456 * every tick. We fix it up based on jiffies.
2457 */
2458void update_cpu_load(struct rq *this_rq)
2459{
2460	unsigned long this_load = this_rq->load.weight;
2461	unsigned long curr_jiffies = jiffies;
2462	unsigned long pending_updates;
2463	int i, scale;
2464
2465	this_rq->nr_load_updates++;
2466
2467	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2468	if (curr_jiffies == this_rq->last_load_update_tick)
2469		return;
2470
2471	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2472	this_rq->last_load_update_tick = curr_jiffies;
2473
2474	/* Update our load: */
2475	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2476	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2477		unsigned long old_load, new_load;
2478
2479		/* scale is effectively 1 << i now, and >> i divides by scale */
2480
2481		old_load = this_rq->cpu_load[i];
2482		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2483		new_load = this_load;
2484		/*
2485		 * Round up the averaging division if load is increasing. This
2486		 * prevents us from getting stuck on 9 if the load is 10, for
2487		 * example.
2488		 */
2489		if (new_load > old_load)
2490			new_load += scale - 1;
2491
2492		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2493	}
2494
2495	sched_avg_update(this_rq);
2496}
2497
2498static void update_cpu_load_active(struct rq *this_rq)
2499{
2500	update_cpu_load(this_rq);
2501
2502	calc_load_account_active(this_rq);
2503}
2504
2505#ifdef CONFIG_SMP
2506
2507/*
2508 * sched_exec - execve() is a valuable balancing opportunity, because at
2509 * this point the task has the smallest effective memory and cache footprint.
2510 */
2511void sched_exec(void)
2512{
2513	struct task_struct *p = current;
2514	unsigned long flags;
2515	int dest_cpu;
2516
2517	raw_spin_lock_irqsave(&p->pi_lock, flags);
2518	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2519	if (dest_cpu == smp_processor_id())
2520		goto unlock;
2521
2522	if (likely(cpu_active(dest_cpu))) {
2523		struct migration_arg arg = { p, dest_cpu };
2524
2525		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2526		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2527		return;
2528	}
2529unlock:
2530	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2531}
2532
2533#endif
2534
2535DEFINE_PER_CPU(struct kernel_stat, kstat);
2536DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2537
2538EXPORT_PER_CPU_SYMBOL(kstat);
2539EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2540
2541/*
2542 * Return any ns on the sched_clock that have not yet been accounted in
2543 * @p in case that task is currently running.
2544 *
2545 * Called with task_rq_lock() held on @rq.
2546 */
2547static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2548{
2549	u64 ns = 0;
2550
2551	if (task_current(rq, p)) {
2552		update_rq_clock(rq);
2553		ns = rq->clock_task - p->se.exec_start;
2554		if ((s64)ns < 0)
2555			ns = 0;
2556	}
2557
2558	return ns;
2559}
2560
2561unsigned long long task_delta_exec(struct task_struct *p)
2562{
2563	unsigned long flags;
2564	struct rq *rq;
2565	u64 ns = 0;
2566
2567	rq = task_rq_lock(p, &flags);
2568	ns = do_task_delta_exec(p, rq);
2569	task_rq_unlock(rq, p, &flags);
2570
2571	return ns;
2572}
2573
2574/*
2575 * Return accounted runtime for the task.
2576 * In case the task is currently running, return the runtime plus current's
2577 * pending runtime that have not been accounted yet.
2578 */
2579unsigned long long task_sched_runtime(struct task_struct *p)
2580{
2581	unsigned long flags;
2582	struct rq *rq;
2583	u64 ns = 0;
2584
2585	rq = task_rq_lock(p, &flags);
2586	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2587	task_rq_unlock(rq, p, &flags);
2588
2589	return ns;
2590}
2591
2592#ifdef CONFIG_CGROUP_CPUACCT
2593struct cgroup_subsys cpuacct_subsys;
2594struct cpuacct root_cpuacct;
2595#endif
2596
2597static inline void task_group_account_field(struct task_struct *p, int index,
2598					    u64 tmp)
2599{
2600#ifdef CONFIG_CGROUP_CPUACCT
2601	struct kernel_cpustat *kcpustat;
2602	struct cpuacct *ca;
2603#endif
2604	/*
2605	 * Since all updates are sure to touch the root cgroup, we
2606	 * get ourselves ahead and touch it first. If the root cgroup
2607	 * is the only cgroup, then nothing else should be necessary.
2608	 *
2609	 */
2610	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2611
2612#ifdef CONFIG_CGROUP_CPUACCT
2613	if (unlikely(!cpuacct_subsys.active))
2614		return;
2615
2616	rcu_read_lock();
2617	ca = task_ca(p);
2618	while (ca && (ca != &root_cpuacct)) {
2619		kcpustat = this_cpu_ptr(ca->cpustat);
2620		kcpustat->cpustat[index] += tmp;
2621		ca = parent_ca(ca);
2622	}
2623	rcu_read_unlock();
2624#endif
2625}
2626
2627
2628/*
2629 * Account user cpu time to a process.
2630 * @p: the process that the cpu time gets accounted to
2631 * @cputime: the cpu time spent in user space since the last update
2632 * @cputime_scaled: cputime scaled by cpu frequency
2633 */
2634void account_user_time(struct task_struct *p, cputime_t cputime,
2635		       cputime_t cputime_scaled)
2636{
2637	int index;
2638
2639	/* Add user time to process. */
2640	p->utime += cputime;
2641	p->utimescaled += cputime_scaled;
2642	account_group_user_time(p, cputime);
2643
2644	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2645
2646	/* Add user time to cpustat. */
2647	task_group_account_field(p, index, (__force u64) cputime);
2648
2649	/* Account for user time used */
2650	acct_update_integrals(p);
2651}
2652
2653/*
2654 * Account guest cpu time to a process.
2655 * @p: the process that the cpu time gets accounted to
2656 * @cputime: the cpu time spent in virtual machine since the last update
2657 * @cputime_scaled: cputime scaled by cpu frequency
2658 */
2659static void account_guest_time(struct task_struct *p, cputime_t cputime,
2660			       cputime_t cputime_scaled)
2661{
2662	u64 *cpustat = kcpustat_this_cpu->cpustat;
2663
2664	/* Add guest time to process. */
2665	p->utime += cputime;
2666	p->utimescaled += cputime_scaled;
2667	account_group_user_time(p, cputime);
2668	p->gtime += cputime;
2669
2670	/* Add guest time to cpustat. */
2671	if (TASK_NICE(p) > 0) {
2672		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2673		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2674	} else {
2675		cpustat[CPUTIME_USER] += (__force u64) cputime;
2676		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2677	}
2678}
2679
2680/*
2681 * Account system cpu time to a process and desired cpustat field
2682 * @p: the process that the cpu time gets accounted to
2683 * @cputime: the cpu time spent in kernel space since the last update
2684 * @cputime_scaled: cputime scaled by cpu frequency
2685 * @target_cputime64: pointer to cpustat field that has to be updated
2686 */
2687static inline
2688void __account_system_time(struct task_struct *p, cputime_t cputime,
2689			cputime_t cputime_scaled, int index)
2690{
2691	/* Add system time to process. */
2692	p->stime += cputime;
2693	p->stimescaled += cputime_scaled;
2694	account_group_system_time(p, cputime);
2695
2696	/* Add system time to cpustat. */
2697	task_group_account_field(p, index, (__force u64) cputime);
2698
2699	/* Account for system time used */
2700	acct_update_integrals(p);
2701}
2702
2703/*
2704 * Account system cpu time to a process.
2705 * @p: the process that the cpu time gets accounted to
2706 * @hardirq_offset: the offset to subtract from hardirq_count()
2707 * @cputime: the cpu time spent in kernel space since the last update
2708 * @cputime_scaled: cputime scaled by cpu frequency
2709 */
2710void account_system_time(struct task_struct *p, int hardirq_offset,
2711			 cputime_t cputime, cputime_t cputime_scaled)
2712{
2713	int index;
2714
2715	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2716		account_guest_time(p, cputime, cputime_scaled);
2717		return;
2718	}
2719
2720	if (hardirq_count() - hardirq_offset)
2721		index = CPUTIME_IRQ;
2722	else if (in_serving_softirq())
2723		index = CPUTIME_SOFTIRQ;
2724	else
2725		index = CPUTIME_SYSTEM;
2726
2727	__account_system_time(p, cputime, cputime_scaled, index);
2728}
2729
2730/*
2731 * Account for involuntary wait time.
2732 * @cputime: the cpu time spent in involuntary wait
2733 */
2734void account_steal_time(cputime_t cputime)
2735{
2736	u64 *cpustat = kcpustat_this_cpu->cpustat;
2737
2738	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2739}
2740
2741/*
2742 * Account for idle time.
2743 * @cputime: the cpu time spent in idle wait
2744 */
2745void account_idle_time(cputime_t cputime)
2746{
2747	u64 *cpustat = kcpustat_this_cpu->cpustat;
2748	struct rq *rq = this_rq();
2749
2750	if (atomic_read(&rq->nr_iowait) > 0)
2751		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2752	else
2753		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2754}
2755
2756static __always_inline bool steal_account_process_tick(void)
2757{
2758#ifdef CONFIG_PARAVIRT
2759	if (static_key_false(&paravirt_steal_enabled)) {
2760		u64 steal, st = 0;
2761
2762		steal = paravirt_steal_clock(smp_processor_id());
2763		steal -= this_rq()->prev_steal_time;
2764
2765		st = steal_ticks(steal);
2766		this_rq()->prev_steal_time += st * TICK_NSEC;
2767
2768		account_steal_time(st);
2769		return st;
2770	}
2771#endif
2772	return false;
2773}
2774
2775#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2776
2777#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2778/*
2779 * Account a tick to a process and cpustat
2780 * @p: the process that the cpu time gets accounted to
2781 * @user_tick: is the tick from userspace
2782 * @rq: the pointer to rq
2783 *
2784 * Tick demultiplexing follows the order
2785 * - pending hardirq update
2786 * - pending softirq update
2787 * - user_time
2788 * - idle_time
2789 * - system time
2790 *   - check for guest_time
2791 *   - else account as system_time
2792 *
2793 * Check for hardirq is done both for system and user time as there is
2794 * no timer going off while we are on hardirq and hence we may never get an
2795 * opportunity to update it solely in system time.
2796 * p->stime and friends are only updated on system time and not on irq
2797 * softirq as those do not count in task exec_runtime any more.
2798 */
2799static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2800						struct rq *rq)
2801{
2802	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2803	u64 *cpustat = kcpustat_this_cpu->cpustat;
2804
2805	if (steal_account_process_tick())
2806		return;
2807
2808	if (irqtime_account_hi_update()) {
2809		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2810	} else if (irqtime_account_si_update()) {
2811		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2812	} else if (this_cpu_ksoftirqd() == p) {
2813		/*
2814		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2815		 * So, we have to handle it separately here.
2816		 * Also, p->stime needs to be updated for ksoftirqd.
2817		 */
2818		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2819					CPUTIME_SOFTIRQ);
2820	} else if (user_tick) {
2821		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2822	} else if (p == rq->idle) {
2823		account_idle_time(cputime_one_jiffy);
2824	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2825		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2826	} else {
2827		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2828					CPUTIME_SYSTEM);
2829	}
2830}
2831
2832static void irqtime_account_idle_ticks(int ticks)
2833{
2834	int i;
2835	struct rq *rq = this_rq();
2836
2837	for (i = 0; i < ticks; i++)
2838		irqtime_account_process_tick(current, 0, rq);
2839}
2840#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2841static void irqtime_account_idle_ticks(int ticks) {}
2842static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2843						struct rq *rq) {}
2844#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2845
2846/*
2847 * Account a single tick of cpu time.
2848 * @p: the process that the cpu time gets accounted to
2849 * @user_tick: indicates if the tick is a user or a system tick
2850 */
2851void account_process_tick(struct task_struct *p, int user_tick)
2852{
2853	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2854	struct rq *rq = this_rq();
2855
2856	if (sched_clock_irqtime) {
2857		irqtime_account_process_tick(p, user_tick, rq);
2858		return;
2859	}
2860
2861	if (steal_account_process_tick())
2862		return;
2863
2864	if (user_tick)
2865		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2866	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2867		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2868				    one_jiffy_scaled);
2869	else
2870		account_idle_time(cputime_one_jiffy);
2871}
2872
2873/*
2874 * Account multiple ticks of steal time.
2875 * @p: the process from which the cpu time has been stolen
2876 * @ticks: number of stolen ticks
2877 */
2878void account_steal_ticks(unsigned long ticks)
2879{
2880	account_steal_time(jiffies_to_cputime(ticks));
2881}
2882
2883/*
2884 * Account multiple ticks of idle time.
2885 * @ticks: number of stolen ticks
2886 */
2887void account_idle_ticks(unsigned long ticks)
2888{
2889
2890	if (sched_clock_irqtime) {
2891		irqtime_account_idle_ticks(ticks);
2892		return;
2893	}
2894
2895	account_idle_time(jiffies_to_cputime(ticks));
2896}
2897
2898#endif
2899
2900/*
2901 * Use precise platform statistics if available:
2902 */
2903#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2904void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2905{
2906	*ut = p->utime;
2907	*st = p->stime;
2908}
2909
2910void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2911{
2912	struct task_cputime cputime;
2913
2914	thread_group_cputime(p, &cputime);
2915
2916	*ut = cputime.utime;
2917	*st = cputime.stime;
2918}
2919#else
2920
2921#ifndef nsecs_to_cputime
2922# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2923#endif
2924
2925void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2926{
2927	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2928
2929	/*
2930	 * Use CFS's precise accounting:
2931	 */
2932	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2933
2934	if (total) {
2935		u64 temp = (__force u64) rtime;
2936
2937		temp *= (__force u64) utime;
2938		do_div(temp, (__force u32) total);
2939		utime = (__force cputime_t) temp;
2940	} else
2941		utime = rtime;
2942
2943	/*
2944	 * Compare with previous values, to keep monotonicity:
2945	 */
2946	p->prev_utime = max(p->prev_utime, utime);
2947	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2948
2949	*ut = p->prev_utime;
2950	*st = p->prev_stime;
2951}
2952
2953/*
2954 * Must be called with siglock held.
2955 */
2956void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2957{
2958	struct signal_struct *sig = p->signal;
2959	struct task_cputime cputime;
2960	cputime_t rtime, utime, total;
2961
2962	thread_group_cputime(p, &cputime);
2963
2964	total = cputime.utime + cputime.stime;
2965	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2966
2967	if (total) {
2968		u64 temp = (__force u64) rtime;
2969
2970		temp *= (__force u64) cputime.utime;
2971		do_div(temp, (__force u32) total);
2972		utime = (__force cputime_t) temp;
2973	} else
2974		utime = rtime;
2975
2976	sig->prev_utime = max(sig->prev_utime, utime);
2977	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2978
2979	*ut = sig->prev_utime;
2980	*st = sig->prev_stime;
2981}
2982#endif
2983
2984/*
2985 * This function gets called by the timer code, with HZ frequency.
2986 * We call it with interrupts disabled.
2987 */
2988void scheduler_tick(void)
2989{
2990	int cpu = smp_processor_id();
2991	struct rq *rq = cpu_rq(cpu);
2992	struct task_struct *curr = rq->curr;
2993
2994	sched_clock_tick();
2995
2996	raw_spin_lock(&rq->lock);
2997	update_rq_clock(rq);
2998	update_cpu_load_active(rq);
2999	curr->sched_class->task_tick(rq, curr, 0);
3000	raw_spin_unlock(&rq->lock);
3001
3002	perf_event_task_tick();
3003
3004#ifdef CONFIG_SMP
3005	rq->idle_balance = idle_cpu(cpu);
3006	trigger_load_balance(rq, cpu);
3007#endif
3008}
3009
3010notrace unsigned long get_parent_ip(unsigned long addr)
3011{
3012	if (in_lock_functions(addr)) {
3013		addr = CALLER_ADDR2;
3014		if (in_lock_functions(addr))
3015			addr = CALLER_ADDR3;
3016	}
3017	return addr;
3018}
3019
3020#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3021				defined(CONFIG_PREEMPT_TRACER))
3022
3023void __kprobes add_preempt_count(int val)
3024{
3025#ifdef CONFIG_DEBUG_PREEMPT
3026	/*
3027	 * Underflow?
3028	 */
3029	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3030		return;
3031#endif
3032	preempt_count() += val;
3033#ifdef CONFIG_DEBUG_PREEMPT
3034	/*
3035	 * Spinlock count overflowing soon?
3036	 */
3037	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3038				PREEMPT_MASK - 10);
3039#endif
3040	if (preempt_count() == val)
3041		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3042}
3043EXPORT_SYMBOL(add_preempt_count);
3044
3045void __kprobes sub_preempt_count(int val)
3046{
3047#ifdef CONFIG_DEBUG_PREEMPT
3048	/*
3049	 * Underflow?
3050	 */
3051	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3052		return;
3053	/*
3054	 * Is the spinlock portion underflowing?
3055	 */
3056	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3057			!(preempt_count() & PREEMPT_MASK)))
3058		return;
3059#endif
3060
3061	if (preempt_count() == val)
3062		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3063	preempt_count() -= val;
3064}
3065EXPORT_SYMBOL(sub_preempt_count);
3066
3067#endif
3068
3069/*
3070 * Print scheduling while atomic bug:
3071 */
3072static noinline void __schedule_bug(struct task_struct *prev)
3073{
3074	struct pt_regs *regs = get_irq_regs();
3075
3076	if (oops_in_progress)
3077		return;
3078
3079	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3080		prev->comm, prev->pid, preempt_count());
3081
3082	debug_show_held_locks(prev);
3083	print_modules();
3084	if (irqs_disabled())
3085		print_irqtrace_events(prev);
3086
3087	if (regs)
3088		show_regs(regs);
3089	else
3090		dump_stack();
3091}
3092
3093/*
3094 * Various schedule()-time debugging checks and statistics:
3095 */
3096static inline void schedule_debug(struct task_struct *prev)
3097{
3098	/*
3099	 * Test if we are atomic. Since do_exit() needs to call into
3100	 * schedule() atomically, we ignore that path for now.
3101	 * Otherwise, whine if we are scheduling when we should not be.
3102	 */
3103	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3104		__schedule_bug(prev);
3105	rcu_sleep_check();
3106
3107	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3108
3109	schedstat_inc(this_rq(), sched_count);
3110}
3111
3112static void put_prev_task(struct rq *rq, struct task_struct *prev)
3113{
3114	if (prev->on_rq || rq->skip_clock_update < 0)
3115		update_rq_clock(rq);
3116	prev->sched_class->put_prev_task(rq, prev);
3117}
3118
3119/*
3120 * Pick up the highest-prio task:
3121 */
3122static inline struct task_struct *
3123pick_next_task(struct rq *rq)
3124{
3125	const struct sched_class *class;
3126	struct task_struct *p;
3127
3128	/*
3129	 * Optimization: we know that if all tasks are in
3130	 * the fair class we can call that function directly:
3131	 */
3132	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3133		p = fair_sched_class.pick_next_task(rq);
3134		if (likely(p))
3135			return p;
3136	}
3137
3138	for_each_class(class) {
3139		p = class->pick_next_task(rq);
3140		if (p)
3141			return p;
3142	}
3143
3144	BUG(); /* the idle class will always have a runnable task */
3145}
3146
3147/*
3148 * __schedule() is the main scheduler function.
3149 */
3150static void __sched __schedule(void)
3151{
3152	struct task_struct *prev, *next;
3153	unsigned long *switch_count;
3154	struct rq *rq;
3155	int cpu;
3156
3157need_resched:
3158	preempt_disable();
3159	cpu = smp_processor_id();
3160	rq = cpu_rq(cpu);
3161	rcu_note_context_switch(cpu);
3162	prev = rq->curr;
3163
3164	schedule_debug(prev);
3165
3166	if (sched_feat(HRTICK))
3167		hrtick_clear(rq);
3168
3169	raw_spin_lock_irq(&rq->lock);
3170
3171	switch_count = &prev->nivcsw;
3172	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3173		if (unlikely(signal_pending_state(prev->state, prev))) {
3174			prev->state = TASK_RUNNING;
3175		} else {
3176			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3177			prev->on_rq = 0;
3178
3179			/*
3180			 * If a worker went to sleep, notify and ask workqueue
3181			 * whether it wants to wake up a task to maintain
3182			 * concurrency.
3183			 */
3184			if (prev->flags & PF_WQ_WORKER) {
3185				struct task_struct *to_wakeup;
3186
3187				to_wakeup = wq_worker_sleeping(prev, cpu);
3188				if (to_wakeup)
3189					try_to_wake_up_local(to_wakeup);
3190			}
3191		}
3192		switch_count = &prev->nvcsw;
3193	}
3194
3195	pre_schedule(rq, prev);
3196
3197	if (unlikely(!rq->nr_running))
3198		idle_balance(cpu, rq);
3199
3200	put_prev_task(rq, prev);
3201	next = pick_next_task(rq);
3202	clear_tsk_need_resched(prev);
3203	rq->skip_clock_update = 0;
3204
3205	if (likely(prev != next)) {
3206		rq->nr_switches++;
3207		rq->curr = next;
3208		++*switch_count;
3209
3210		context_switch(rq, prev, next); /* unlocks the rq */
3211		/*
3212		 * The context switch have flipped the stack from under us
3213		 * and restored the local variables which were saved when
3214		 * this task called schedule() in the past. prev == current
3215		 * is still correct, but it can be moved to another cpu/rq.
3216		 */
3217		cpu = smp_processor_id();
3218		rq = cpu_rq(cpu);
3219	} else
3220		raw_spin_unlock_irq(&rq->lock);
3221
3222	post_schedule(rq);
3223
3224	sched_preempt_enable_no_resched();
3225	if (need_resched())
3226		goto need_resched;
3227}
3228
3229static inline void sched_submit_work(struct task_struct *tsk)
3230{
3231	if (!tsk->state || tsk_is_pi_blocked(tsk))
3232		return;
3233	/*
3234	 * If we are going to sleep and we have plugged IO queued,
3235	 * make sure to submit it to avoid deadlocks.
3236	 */
3237	if (blk_needs_flush_plug(tsk))
3238		blk_schedule_flush_plug(tsk);
3239}
3240
3241asmlinkage void __sched schedule(void)
3242{
3243	struct task_struct *tsk = current;
3244
3245	sched_submit_work(tsk);
3246	__schedule();
3247}
3248EXPORT_SYMBOL(schedule);
3249
3250/**
3251 * schedule_preempt_disabled - called with preemption disabled
3252 *
3253 * Returns with preemption disabled. Note: preempt_count must be 1
3254 */
3255void __sched schedule_preempt_disabled(void)
3256{
3257	sched_preempt_enable_no_resched();
3258	schedule();
3259	preempt_disable();
3260}
3261
3262#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3263
3264static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3265{
3266	if (lock->owner != owner)
3267		return false;
3268
3269	/*
3270	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3271	 * lock->owner still matches owner, if that fails, owner might
3272	 * point to free()d memory, if it still matches, the rcu_read_lock()
3273	 * ensures the memory stays valid.
3274	 */
3275	barrier();
3276
3277	return owner->on_cpu;
3278}
3279
3280/*
3281 * Look out! "owner" is an entirely speculative pointer
3282 * access and not reliable.
3283 */
3284int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3285{
3286	if (!sched_feat(OWNER_SPIN))
3287		return 0;
3288
3289	rcu_read_lock();
3290	while (owner_running(lock, owner)) {
3291		if (need_resched())
3292			break;
3293
3294		arch_mutex_cpu_relax();
3295	}
3296	rcu_read_unlock();
3297
3298	/*
3299	 * We break out the loop above on need_resched() and when the
3300	 * owner changed, which is a sign for heavy contention. Return
3301	 * success only when lock->owner is NULL.
3302	 */
3303	return lock->owner == NULL;
3304}
3305#endif
3306
3307#ifdef CONFIG_PREEMPT
3308/*
3309 * this is the entry point to schedule() from in-kernel preemption
3310 * off of preempt_enable. Kernel preemptions off return from interrupt
3311 * occur there and call schedule directly.
3312 */
3313asmlinkage void __sched notrace preempt_schedule(void)
3314{
3315	struct thread_info *ti = current_thread_info();
3316
3317	/*
3318	 * If there is a non-zero preempt_count or interrupts are disabled,
3319	 * we do not want to preempt the current task. Just return..
3320	 */
3321	if (likely(ti->preempt_count || irqs_disabled()))
3322		return;
3323
3324	do {
3325		add_preempt_count_notrace(PREEMPT_ACTIVE);
3326		__schedule();
3327		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3328
3329		/*
3330		 * Check again in case we missed a preemption opportunity
3331		 * between schedule and now.
3332		 */
3333		barrier();
3334	} while (need_resched());
3335}
3336EXPORT_SYMBOL(preempt_schedule);
3337
3338/*
3339 * this is the entry point to schedule() from kernel preemption
3340 * off of irq context.
3341 * Note, that this is called and return with irqs disabled. This will
3342 * protect us against recursive calling from irq.
3343 */
3344asmlinkage void __sched preempt_schedule_irq(void)
3345{
3346	struct thread_info *ti = current_thread_info();
3347
3348	/* Catch callers which need to be fixed */
3349	BUG_ON(ti->preempt_count || !irqs_disabled());
3350
3351	do {
3352		add_preempt_count(PREEMPT_ACTIVE);
3353		local_irq_enable();
3354		__schedule();
3355		local_irq_disable();
3356		sub_preempt_count(PREEMPT_ACTIVE);
3357
3358		/*
3359		 * Check again in case we missed a preemption opportunity
3360		 * between schedule and now.
3361		 */
3362		barrier();
3363	} while (need_resched());
3364}
3365
3366#endif /* CONFIG_PREEMPT */
3367
3368int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3369			  void *key)
3370{
3371	return try_to_wake_up(curr->private, mode, wake_flags);
3372}
3373EXPORT_SYMBOL(default_wake_function);
3374
3375/*
3376 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3377 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3378 * number) then we wake all the non-exclusive tasks and one exclusive task.
3379 *
3380 * There are circumstances in which we can try to wake a task which has already
3381 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3382 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3383 */
3384static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3385			int nr_exclusive, int wake_flags, void *key)
3386{
3387	wait_queue_t *curr, *next;
3388
3389	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3390		unsigned flags = curr->flags;
3391
3392		if (curr->func(curr, mode, wake_flags, key) &&
3393				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3394			break;
3395	}
3396}
3397
3398/**
3399 * __wake_up - wake up threads blocked on a waitqueue.
3400 * @q: the waitqueue
3401 * @mode: which threads
3402 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3403 * @key: is directly passed to the wakeup function
3404 *
3405 * It may be assumed that this function implies a write memory barrier before
3406 * changing the task state if and only if any tasks are woken up.
3407 */
3408void __wake_up(wait_queue_head_t *q, unsigned int mode,
3409			int nr_exclusive, void *key)
3410{
3411	unsigned long flags;
3412
3413	spin_lock_irqsave(&q->lock, flags);
3414	__wake_up_common(q, mode, nr_exclusive, 0, key);
3415	spin_unlock_irqrestore(&q->lock, flags);
3416}
3417EXPORT_SYMBOL(__wake_up);
3418
3419/*
3420 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3421 */
3422void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3423{
3424	__wake_up_common(q, mode, nr, 0, NULL);
3425}
3426EXPORT_SYMBOL_GPL(__wake_up_locked);
3427
3428void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3429{
3430	__wake_up_common(q, mode, 1, 0, key);
3431}
3432EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3433
3434/**
3435 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3436 * @q: the waitqueue
3437 * @mode: which threads
3438 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3439 * @key: opaque value to be passed to wakeup targets
3440 *
3441 * The sync wakeup differs that the waker knows that it will schedule
3442 * away soon, so while the target thread will be woken up, it will not
3443 * be migrated to another CPU - ie. the two threads are 'synchronized'
3444 * with each other. This can prevent needless bouncing between CPUs.
3445 *
3446 * On UP it can prevent extra preemption.
3447 *
3448 * It may be assumed that this function implies a write memory barrier before
3449 * changing the task state if and only if any tasks are woken up.
3450 */
3451void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3452			int nr_exclusive, void *key)
3453{
3454	unsigned long flags;
3455	int wake_flags = WF_SYNC;
3456
3457	if (unlikely(!q))
3458		return;
3459
3460	if (unlikely(!nr_exclusive))
3461		wake_flags = 0;
3462
3463	spin_lock_irqsave(&q->lock, flags);
3464	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3465	spin_unlock_irqrestore(&q->lock, flags);
3466}
3467EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3468
3469/*
3470 * __wake_up_sync - see __wake_up_sync_key()
3471 */
3472void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3473{
3474	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3475}
3476EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3477
3478/**
3479 * complete: - signals a single thread waiting on this completion
3480 * @x:  holds the state of this particular completion
3481 *
3482 * This will wake up a single thread waiting on this completion. Threads will be
3483 * awakened in the same order in which they were queued.
3484 *
3485 * See also complete_all(), wait_for_completion() and related routines.
3486 *
3487 * It may be assumed that this function implies a write memory barrier before
3488 * changing the task state if and only if any tasks are woken up.
3489 */
3490void complete(struct completion *x)
3491{
3492	unsigned long flags;
3493
3494	spin_lock_irqsave(&x->wait.lock, flags);
3495	x->done++;
3496	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3497	spin_unlock_irqrestore(&x->wait.lock, flags);
3498}
3499EXPORT_SYMBOL(complete);
3500
3501/**
3502 * complete_all: - signals all threads waiting on this completion
3503 * @x:  holds the state of this particular completion
3504 *
3505 * This will wake up all threads waiting on this particular completion event.
3506 *
3507 * It may be assumed that this function implies a write memory barrier before
3508 * changing the task state if and only if any tasks are woken up.
3509 */
3510void complete_all(struct completion *x)
3511{
3512	unsigned long flags;
3513
3514	spin_lock_irqsave(&x->wait.lock, flags);
3515	x->done += UINT_MAX/2;
3516	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3517	spin_unlock_irqrestore(&x->wait.lock, flags);
3518}
3519EXPORT_SYMBOL(complete_all);
3520
3521static inline long __sched
3522do_wait_for_common(struct completion *x, long timeout, int state)
3523{
3524	if (!x->done) {
3525		DECLARE_WAITQUEUE(wait, current);
3526
3527		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3528		do {
3529			if (signal_pending_state(state, current)) {
3530				timeout = -ERESTARTSYS;
3531				break;
3532			}
3533			__set_current_state(state);
3534			spin_unlock_irq(&x->wait.lock);
3535			timeout = schedule_timeout(timeout);
3536			spin_lock_irq(&x->wait.lock);
3537		} while (!x->done && timeout);
3538		__remove_wait_queue(&x->wait, &wait);
3539		if (!x->done)
3540			return timeout;
3541	}
3542	x->done--;
3543	return timeout ?: 1;
3544}
3545
3546static long __sched
3547wait_for_common(struct completion *x, long timeout, int state)
3548{
3549	might_sleep();
3550
3551	spin_lock_irq(&x->wait.lock);
3552	timeout = do_wait_for_common(x, timeout, state);
3553	spin_unlock_irq(&x->wait.lock);
3554	return timeout;
3555}
3556
3557/**
3558 * wait_for_completion: - waits for completion of a task
3559 * @x:  holds the state of this particular completion
3560 *
3561 * This waits to be signaled for completion of a specific task. It is NOT
3562 * interruptible and there is no timeout.
3563 *
3564 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3565 * and interrupt capability. Also see complete().
3566 */
3567void __sched wait_for_completion(struct completion *x)
3568{
3569	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3570}
3571EXPORT_SYMBOL(wait_for_completion);
3572
3573/**
3574 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3575 * @x:  holds the state of this particular completion
3576 * @timeout:  timeout value in jiffies
3577 *
3578 * This waits for either a completion of a specific task to be signaled or for a
3579 * specified timeout to expire. The timeout is in jiffies. It is not
3580 * interruptible.
3581 *
3582 * The return value is 0 if timed out, and positive (at least 1, or number of
3583 * jiffies left till timeout) if completed.
3584 */
3585unsigned long __sched
3586wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3587{
3588	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3589}
3590EXPORT_SYMBOL(wait_for_completion_timeout);
3591
3592/**
3593 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3594 * @x:  holds the state of this particular completion
3595 *
3596 * This waits for completion of a specific task to be signaled. It is
3597 * interruptible.
3598 *
3599 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3600 */
3601int __sched wait_for_completion_interruptible(struct completion *x)
3602{
3603	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3604	if (t == -ERESTARTSYS)
3605		return t;
3606	return 0;
3607}
3608EXPORT_SYMBOL(wait_for_completion_interruptible);
3609
3610/**
3611 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3612 * @x:  holds the state of this particular completion
3613 * @timeout:  timeout value in jiffies
3614 *
3615 * This waits for either a completion of a specific task to be signaled or for a
3616 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3617 *
3618 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3619 * positive (at least 1, or number of jiffies left till timeout) if completed.
3620 */
3621long __sched
3622wait_for_completion_interruptible_timeout(struct completion *x,
3623					  unsigned long timeout)
3624{
3625	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3626}
3627EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3628
3629/**
3630 * wait_for_completion_killable: - waits for completion of a task (killable)
3631 * @x:  holds the state of this particular completion
3632 *
3633 * This waits to be signaled for completion of a specific task. It can be
3634 * interrupted by a kill signal.
3635 *
3636 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3637 */
3638int __sched wait_for_completion_killable(struct completion *x)
3639{
3640	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3641	if (t == -ERESTARTSYS)
3642		return t;
3643	return 0;
3644}
3645EXPORT_SYMBOL(wait_for_completion_killable);
3646
3647/**
3648 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3649 * @x:  holds the state of this particular completion
3650 * @timeout:  timeout value in jiffies
3651 *
3652 * This waits for either a completion of a specific task to be
3653 * signaled or for a specified timeout to expire. It can be
3654 * interrupted by a kill signal. The timeout is in jiffies.
3655 *
3656 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3657 * positive (at least 1, or number of jiffies left till timeout) if completed.
3658 */
3659long __sched
3660wait_for_completion_killable_timeout(struct completion *x,
3661				     unsigned long timeout)
3662{
3663	return wait_for_common(x, timeout, TASK_KILLABLE);
3664}
3665EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3666
3667/**
3668 *	try_wait_for_completion - try to decrement a completion without blocking
3669 *	@x:	completion structure
3670 *
3671 *	Returns: 0 if a decrement cannot be done without blocking
3672 *		 1 if a decrement succeeded.
3673 *
3674 *	If a completion is being used as a counting completion,
3675 *	attempt to decrement the counter without blocking. This
3676 *	enables us to avoid waiting if the resource the completion
3677 *	is protecting is not available.
3678 */
3679bool try_wait_for_completion(struct completion *x)
3680{
3681	unsigned long flags;
3682	int ret = 1;
3683
3684	spin_lock_irqsave(&x->wait.lock, flags);
3685	if (!x->done)
3686		ret = 0;
3687	else
3688		x->done--;
3689	spin_unlock_irqrestore(&x->wait.lock, flags);
3690	return ret;
3691}
3692EXPORT_SYMBOL(try_wait_for_completion);
3693
3694/**
3695 *	completion_done - Test to see if a completion has any waiters
3696 *	@x:	completion structure
3697 *
3698 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3699 *		 1 if there are no waiters.
3700 *
3701 */
3702bool completion_done(struct completion *x)
3703{
3704	unsigned long flags;
3705	int ret = 1;
3706
3707	spin_lock_irqsave(&x->wait.lock, flags);
3708	if (!x->done)
3709		ret = 0;
3710	spin_unlock_irqrestore(&x->wait.lock, flags);
3711	return ret;
3712}
3713EXPORT_SYMBOL(completion_done);
3714
3715static long __sched
3716sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3717{
3718	unsigned long flags;
3719	wait_queue_t wait;
3720
3721	init_waitqueue_entry(&wait, current);
3722
3723	__set_current_state(state);
3724
3725	spin_lock_irqsave(&q->lock, flags);
3726	__add_wait_queue(q, &wait);
3727	spin_unlock(&q->lock);
3728	timeout = schedule_timeout(timeout);
3729	spin_lock_irq(&q->lock);
3730	__remove_wait_queue(q, &wait);
3731	spin_unlock_irqrestore(&q->lock, flags);
3732
3733	return timeout;
3734}
3735
3736void __sched interruptible_sleep_on(wait_queue_head_t *q)
3737{
3738	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3739}
3740EXPORT_SYMBOL(interruptible_sleep_on);
3741
3742long __sched
3743interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3744{
3745	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3746}
3747EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3748
3749void __sched sleep_on(wait_queue_head_t *q)
3750{
3751	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3752}
3753EXPORT_SYMBOL(sleep_on);
3754
3755long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3756{
3757	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3758}
3759EXPORT_SYMBOL(sleep_on_timeout);
3760
3761#ifdef CONFIG_RT_MUTEXES
3762
3763/*
3764 * rt_mutex_setprio - set the current priority of a task
3765 * @p: task
3766 * @prio: prio value (kernel-internal form)
3767 *
3768 * This function changes the 'effective' priority of a task. It does
3769 * not touch ->normal_prio like __setscheduler().
3770 *
3771 * Used by the rt_mutex code to implement priority inheritance logic.
3772 */
3773void rt_mutex_setprio(struct task_struct *p, int prio)
3774{
3775	int oldprio, on_rq, running;
3776	struct rq *rq;
3777	const struct sched_class *prev_class;
3778
3779	BUG_ON(prio < 0 || prio > MAX_PRIO);
3780
3781	rq = __task_rq_lock(p);
3782
3783	/*
3784	 * Idle task boosting is a nono in general. There is one
3785	 * exception, when PREEMPT_RT and NOHZ is active:
3786	 *
3787	 * The idle task calls get_next_timer_interrupt() and holds
3788	 * the timer wheel base->lock on the CPU and another CPU wants
3789	 * to access the timer (probably to cancel it). We can safely
3790	 * ignore the boosting request, as the idle CPU runs this code
3791	 * with interrupts disabled and will complete the lock
3792	 * protected section without being interrupted. So there is no
3793	 * real need to boost.
3794	 */
3795	if (unlikely(p == rq->idle)) {
3796		WARN_ON(p != rq->curr);
3797		WARN_ON(p->pi_blocked_on);
3798		goto out_unlock;
3799	}
3800
3801	trace_sched_pi_setprio(p, prio);
3802	oldprio = p->prio;
3803	prev_class = p->sched_class;
3804	on_rq = p->on_rq;
3805	running = task_current(rq, p);
3806	if (on_rq)
3807		dequeue_task(rq, p, 0);
3808	if (running)
3809		p->sched_class->put_prev_task(rq, p);
3810
3811	if (rt_prio(prio))
3812		p->sched_class = &rt_sched_class;
3813	else
3814		p->sched_class = &fair_sched_class;
3815
3816	p->prio = prio;
3817
3818	if (running)
3819		p->sched_class->set_curr_task(rq);
3820	if (on_rq)
3821		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3822
3823	check_class_changed(rq, p, prev_class, oldprio);
3824out_unlock:
3825	__task_rq_unlock(rq);
3826}
3827#endif
3828void set_user_nice(struct task_struct *p, long nice)
3829{
3830	int old_prio, delta, on_rq;
3831	unsigned long flags;
3832	struct rq *rq;
3833
3834	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3835		return;
3836	/*
3837	 * We have to be careful, if called from sys_setpriority(),
3838	 * the task might be in the middle of scheduling on another CPU.
3839	 */
3840	rq = task_rq_lock(p, &flags);
3841	/*
3842	 * The RT priorities are set via sched_setscheduler(), but we still
3843	 * allow the 'normal' nice value to be set - but as expected
3844	 * it wont have any effect on scheduling until the task is
3845	 * SCHED_FIFO/SCHED_RR:
3846	 */
3847	if (task_has_rt_policy(p)) {
3848		p->static_prio = NICE_TO_PRIO(nice);
3849		goto out_unlock;
3850	}
3851	on_rq = p->on_rq;
3852	if (on_rq)
3853		dequeue_task(rq, p, 0);
3854
3855	p->static_prio = NICE_TO_PRIO(nice);
3856	set_load_weight(p);
3857	old_prio = p->prio;
3858	p->prio = effective_prio(p);
3859	delta = p->prio - old_prio;
3860
3861	if (on_rq) {
3862		enqueue_task(rq, p, 0);
3863		/*
3864		 * If the task increased its priority or is running and
3865		 * lowered its priority, then reschedule its CPU:
3866		 */
3867		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3868			resched_task(rq->curr);
3869	}
3870out_unlock:
3871	task_rq_unlock(rq, p, &flags);
3872}
3873EXPORT_SYMBOL(set_user_nice);
3874
3875/*
3876 * can_nice - check if a task can reduce its nice value
3877 * @p: task
3878 * @nice: nice value
3879 */
3880int can_nice(const struct task_struct *p, const int nice)
3881{
3882	/* convert nice value [19,-20] to rlimit style value [1,40] */
3883	int nice_rlim = 20 - nice;
3884
3885	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3886		capable(CAP_SYS_NICE));
3887}
3888
3889#ifdef __ARCH_WANT_SYS_NICE
3890
3891/*
3892 * sys_nice - change the priority of the current process.
3893 * @increment: priority increment
3894 *
3895 * sys_setpriority is a more generic, but much slower function that
3896 * does similar things.
3897 */
3898SYSCALL_DEFINE1(nice, int, increment)
3899{
3900	long nice, retval;
3901
3902	/*
3903	 * Setpriority might change our priority at the same moment.
3904	 * We don't have to worry. Conceptually one call occurs first
3905	 * and we have a single winner.
3906	 */
3907	if (increment < -40)
3908		increment = -40;
3909	if (increment > 40)
3910		increment = 40;
3911
3912	nice = TASK_NICE(current) + increment;
3913	if (nice < -20)
3914		nice = -20;
3915	if (nice > 19)
3916		nice = 19;
3917
3918	if (increment < 0 && !can_nice(current, nice))
3919		return -EPERM;
3920
3921	retval = security_task_setnice(current, nice);
3922	if (retval)
3923		return retval;
3924
3925	set_user_nice(current, nice);
3926	return 0;
3927}
3928
3929#endif
3930
3931/**
3932 * task_prio - return the priority value of a given task.
3933 * @p: the task in question.
3934 *
3935 * This is the priority value as seen by users in /proc.
3936 * RT tasks are offset by -200. Normal tasks are centered
3937 * around 0, value goes from -16 to +15.
3938 */
3939int task_prio(const struct task_struct *p)
3940{
3941	return p->prio - MAX_RT_PRIO;
3942}
3943
3944/**
3945 * task_nice - return the nice value of a given task.
3946 * @p: the task in question.
3947 */
3948int task_nice(const struct task_struct *p)
3949{
3950	return TASK_NICE(p);
3951}
3952EXPORT_SYMBOL(task_nice);
3953
3954/**
3955 * idle_cpu - is a given cpu idle currently?
3956 * @cpu: the processor in question.
3957 */
3958int idle_cpu(int cpu)
3959{
3960	struct rq *rq = cpu_rq(cpu);
3961
3962	if (rq->curr != rq->idle)
3963		return 0;
3964
3965	if (rq->nr_running)
3966		return 0;
3967
3968#ifdef CONFIG_SMP
3969	if (!llist_empty(&rq->wake_list))
3970		return 0;
3971#endif
3972
3973	return 1;
3974}
3975
3976/**
3977 * idle_task - return the idle task for a given cpu.
3978 * @cpu: the processor in question.
3979 */
3980struct task_struct *idle_task(int cpu)
3981{
3982	return cpu_rq(cpu)->idle;
3983}
3984
3985/**
3986 * find_process_by_pid - find a process with a matching PID value.
3987 * @pid: the pid in question.
3988 */
3989static struct task_struct *find_process_by_pid(pid_t pid)
3990{
3991	return pid ? find_task_by_vpid(pid) : current;
3992}
3993
3994/* Actually do priority change: must hold rq lock. */
3995static void
3996__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3997{
3998	p->policy = policy;
3999	p->rt_priority = prio;
4000	p->normal_prio = normal_prio(p);
4001	/* we are holding p->pi_lock already */
4002	p->prio = rt_mutex_getprio(p);
4003	if (rt_prio(p->prio))
4004		p->sched_class = &rt_sched_class;
4005	else
4006		p->sched_class = &fair_sched_class;
4007	set_load_weight(p);
4008}
4009
4010/*
4011 * check the target process has a UID that matches the current process's
4012 */
4013static bool check_same_owner(struct task_struct *p)
4014{
4015	const struct cred *cred = current_cred(), *pcred;
4016	bool match;
4017
4018	rcu_read_lock();
4019	pcred = __task_cred(p);
4020	if (cred->user->user_ns == pcred->user->user_ns)
4021		match = (cred->euid == pcred->euid ||
4022			 cred->euid == pcred->uid);
4023	else
4024		match = false;
4025	rcu_read_unlock();
4026	return match;
4027}
4028
4029static int __sched_setscheduler(struct task_struct *p, int policy,
4030				const struct sched_param *param, bool user)
4031{
4032	int retval, oldprio, oldpolicy = -1, on_rq, running;
4033	unsigned long flags;
4034	const struct sched_class *prev_class;
4035	struct rq *rq;
4036	int reset_on_fork;
4037
4038	/* may grab non-irq protected spin_locks */
4039	BUG_ON(in_interrupt());
4040recheck:
4041	/* double check policy once rq lock held */
4042	if (policy < 0) {
4043		reset_on_fork = p->sched_reset_on_fork;
4044		policy = oldpolicy = p->policy;
4045	} else {
4046		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4047		policy &= ~SCHED_RESET_ON_FORK;
4048
4049		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4050				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4051				policy != SCHED_IDLE)
4052			return -EINVAL;
4053	}
4054
4055	/*
4056	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4057	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4058	 * SCHED_BATCH and SCHED_IDLE is 0.
4059	 */
4060	if (param->sched_priority < 0 ||
4061	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4062	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4063		return -EINVAL;
4064	if (rt_policy(policy) != (param->sched_priority != 0))
4065		return -EINVAL;
4066
4067	/*
4068	 * Allow unprivileged RT tasks to decrease priority:
4069	 */
4070	if (user && !capable(CAP_SYS_NICE)) {
4071		if (rt_policy(policy)) {
4072			unsigned long rlim_rtprio =
4073					task_rlimit(p, RLIMIT_RTPRIO);
4074
4075			/* can't set/change the rt policy */
4076			if (policy != p->policy && !rlim_rtprio)
4077				return -EPERM;
4078
4079			/* can't increase priority */
4080			if (param->sched_priority > p->rt_priority &&
4081			    param->sched_priority > rlim_rtprio)
4082				return -EPERM;
4083		}
4084
4085		/*
4086		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4087		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4088		 */
4089		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4090			if (!can_nice(p, TASK_NICE(p)))
4091				return -EPERM;
4092		}
4093
4094		/* can't change other user's priorities */
4095		if (!check_same_owner(p))
4096			return -EPERM;
4097
4098		/* Normal users shall not reset the sched_reset_on_fork flag */
4099		if (p->sched_reset_on_fork && !reset_on_fork)
4100			return -EPERM;
4101	}
4102
4103	if (user) {
4104		retval = security_task_setscheduler(p);
4105		if (retval)
4106			return retval;
4107	}
4108
4109	/*
4110	 * make sure no PI-waiters arrive (or leave) while we are
4111	 * changing the priority of the task:
4112	 *
4113	 * To be able to change p->policy safely, the appropriate
4114	 * runqueue lock must be held.
4115	 */
4116	rq = task_rq_lock(p, &flags);
4117
4118	/*
4119	 * Changing the policy of the stop threads its a very bad idea
4120	 */
4121	if (p == rq->stop) {
4122		task_rq_unlock(rq, p, &flags);
4123		return -EINVAL;
4124	}
4125
4126	/*
4127	 * If not changing anything there's no need to proceed further:
4128	 */
4129	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4130			param->sched_priority == p->rt_priority))) {
4131
4132		__task_rq_unlock(rq);
4133		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4134		return 0;
4135	}
4136
4137#ifdef CONFIG_RT_GROUP_SCHED
4138	if (user) {
4139		/*
4140		 * Do not allow realtime tasks into groups that have no runtime
4141		 * assigned.
4142		 */
4143		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4144				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4145				!task_group_is_autogroup(task_group(p))) {
4146			task_rq_unlock(rq, p, &flags);
4147			return -EPERM;
4148		}
4149	}
4150#endif
4151
4152	/* recheck policy now with rq lock held */
4153	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4154		policy = oldpolicy = -1;
4155		task_rq_unlock(rq, p, &flags);
4156		goto recheck;
4157	}
4158	on_rq = p->on_rq;
4159	running = task_current(rq, p);
4160	if (on_rq)
4161		dequeue_task(rq, p, 0);
4162	if (running)
4163		p->sched_class->put_prev_task(rq, p);
4164
4165	p->sched_reset_on_fork = reset_on_fork;
4166
4167	oldprio = p->prio;
4168	prev_class = p->sched_class;
4169	__setscheduler(rq, p, policy, param->sched_priority);
4170
4171	if (running)
4172		p->sched_class->set_curr_task(rq);
4173	if (on_rq)
4174		enqueue_task(rq, p, 0);
4175
4176	check_class_changed(rq, p, prev_class, oldprio);
4177	task_rq_unlock(rq, p, &flags);
4178
4179	rt_mutex_adjust_pi(p);
4180
4181	return 0;
4182}
4183
4184/**
4185 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4186 * @p: the task in question.
4187 * @policy: new policy.
4188 * @param: structure containing the new RT priority.
4189 *
4190 * NOTE that the task may be already dead.
4191 */
4192int sched_setscheduler(struct task_struct *p, int policy,
4193		       const struct sched_param *param)
4194{
4195	return __sched_setscheduler(p, policy, param, true);
4196}
4197EXPORT_SYMBOL_GPL(sched_setscheduler);
4198
4199/**
4200 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4201 * @p: the task in question.
4202 * @policy: new policy.
4203 * @param: structure containing the new RT priority.
4204 *
4205 * Just like sched_setscheduler, only don't bother checking if the
4206 * current context has permission.  For example, this is needed in
4207 * stop_machine(): we create temporary high priority worker threads,
4208 * but our caller might not have that capability.
4209 */
4210int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4211			       const struct sched_param *param)
4212{
4213	return __sched_setscheduler(p, policy, param, false);
4214}
4215
4216static int
4217do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4218{
4219	struct sched_param lparam;
4220	struct task_struct *p;
4221	int retval;
4222
4223	if (!param || pid < 0)
4224		return -EINVAL;
4225	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4226		return -EFAULT;
4227
4228	rcu_read_lock();
4229	retval = -ESRCH;
4230	p = find_process_by_pid(pid);
4231	if (p != NULL)
4232		retval = sched_setscheduler(p, policy, &lparam);
4233	rcu_read_unlock();
4234
4235	return retval;
4236}
4237
4238/**
4239 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4240 * @pid: the pid in question.
4241 * @policy: new policy.
4242 * @param: structure containing the new RT priority.
4243 */
4244SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4245		struct sched_param __user *, param)
4246{
4247	/* negative values for policy are not valid */
4248	if (policy < 0)
4249		return -EINVAL;
4250
4251	return do_sched_setscheduler(pid, policy, param);
4252}
4253
4254/**
4255 * sys_sched_setparam - set/change the RT priority of a thread
4256 * @pid: the pid in question.
4257 * @param: structure containing the new RT priority.
4258 */
4259SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4260{
4261	return do_sched_setscheduler(pid, -1, param);
4262}
4263
4264/**
4265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4266 * @pid: the pid in question.
4267 */
4268SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4269{
4270	struct task_struct *p;
4271	int retval;
4272
4273	if (pid < 0)
4274		return -EINVAL;
4275
4276	retval = -ESRCH;
4277	rcu_read_lock();
4278	p = find_process_by_pid(pid);
4279	if (p) {
4280		retval = security_task_getscheduler(p);
4281		if (!retval)
4282			retval = p->policy
4283				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4284	}
4285	rcu_read_unlock();
4286	return retval;
4287}
4288
4289/**
4290 * sys_sched_getparam - get the RT priority of a thread
4291 * @pid: the pid in question.
4292 * @param: structure containing the RT priority.
4293 */
4294SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4295{
4296	struct sched_param lp;
4297	struct task_struct *p;
4298	int retval;
4299
4300	if (!param || pid < 0)
4301		return -EINVAL;
4302
4303	rcu_read_lock();
4304	p = find_process_by_pid(pid);
4305	retval = -ESRCH;
4306	if (!p)
4307		goto out_unlock;
4308
4309	retval = security_task_getscheduler(p);
4310	if (retval)
4311		goto out_unlock;
4312
4313	lp.sched_priority = p->rt_priority;
4314	rcu_read_unlock();
4315
4316	/*
4317	 * This one might sleep, we cannot do it with a spinlock held ...
4318	 */
4319	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4320
4321	return retval;
4322
4323out_unlock:
4324	rcu_read_unlock();
4325	return retval;
4326}
4327
4328long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4329{
4330	cpumask_var_t cpus_allowed, new_mask;
4331	struct task_struct *p;
4332	int retval;
4333
4334	get_online_cpus();
4335	rcu_read_lock();
4336
4337	p = find_process_by_pid(pid);
4338	if (!p) {
4339		rcu_read_unlock();
4340		put_online_cpus();
4341		return -ESRCH;
4342	}
4343
4344	/* Prevent p going away */
4345	get_task_struct(p);
4346	rcu_read_unlock();
4347
4348	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4349		retval = -ENOMEM;
4350		goto out_put_task;
4351	}
4352	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4353		retval = -ENOMEM;
4354		goto out_free_cpus_allowed;
4355	}
4356	retval = -EPERM;
4357	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4358		goto out_unlock;
4359
4360	retval = security_task_setscheduler(p);
4361	if (retval)
4362		goto out_unlock;
4363
4364	cpuset_cpus_allowed(p, cpus_allowed);
4365	cpumask_and(new_mask, in_mask, cpus_allowed);
4366again:
4367	retval = set_cpus_allowed_ptr(p, new_mask);
4368
4369	if (!retval) {
4370		cpuset_cpus_allowed(p, cpus_allowed);
4371		if (!cpumask_subset(new_mask, cpus_allowed)) {
4372			/*
4373			 * We must have raced with a concurrent cpuset
4374			 * update. Just reset the cpus_allowed to the
4375			 * cpuset's cpus_allowed
4376			 */
4377			cpumask_copy(new_mask, cpus_allowed);
4378			goto again;
4379		}
4380	}
4381out_unlock:
4382	free_cpumask_var(new_mask);
4383out_free_cpus_allowed:
4384	free_cpumask_var(cpus_allowed);
4385out_put_task:
4386	put_task_struct(p);
4387	put_online_cpus();
4388	return retval;
4389}
4390
4391static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4392			     struct cpumask *new_mask)
4393{
4394	if (len < cpumask_size())
4395		cpumask_clear(new_mask);
4396	else if (len > cpumask_size())
4397		len = cpumask_size();
4398
4399	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4400}
4401
4402/**
4403 * sys_sched_setaffinity - set the cpu affinity of a process
4404 * @pid: pid of the process
4405 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4406 * @user_mask_ptr: user-space pointer to the new cpu mask
4407 */
4408SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4409		unsigned long __user *, user_mask_ptr)
4410{
4411	cpumask_var_t new_mask;
4412	int retval;
4413
4414	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4415		return -ENOMEM;
4416
4417	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4418	if (retval == 0)
4419		retval = sched_setaffinity(pid, new_mask);
4420	free_cpumask_var(new_mask);
4421	return retval;
4422}
4423
4424long sched_getaffinity(pid_t pid, struct cpumask *mask)
4425{
4426	struct task_struct *p;
4427	unsigned long flags;
4428	int retval;
4429
4430	get_online_cpus();
4431	rcu_read_lock();
4432
4433	retval = -ESRCH;
4434	p = find_process_by_pid(pid);
4435	if (!p)
4436		goto out_unlock;
4437
4438	retval = security_task_getscheduler(p);
4439	if (retval)
4440		goto out_unlock;
4441
4442	raw_spin_lock_irqsave(&p->pi_lock, flags);
4443	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4444	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4445
4446out_unlock:
4447	rcu_read_unlock();
4448	put_online_cpus();
4449
4450	return retval;
4451}
4452
4453/**
4454 * sys_sched_getaffinity - get the cpu affinity of a process
4455 * @pid: pid of the process
4456 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4457 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4458 */
4459SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4460		unsigned long __user *, user_mask_ptr)
4461{
4462	int ret;
4463	cpumask_var_t mask;
4464
4465	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4466		return -EINVAL;
4467	if (len & (sizeof(unsigned long)-1))
4468		return -EINVAL;
4469
4470	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4471		return -ENOMEM;
4472
4473	ret = sched_getaffinity(pid, mask);
4474	if (ret == 0) {
4475		size_t retlen = min_t(size_t, len, cpumask_size());
4476
4477		if (copy_to_user(user_mask_ptr, mask, retlen))
4478			ret = -EFAULT;
4479		else
4480			ret = retlen;
4481	}
4482	free_cpumask_var(mask);
4483
4484	return ret;
4485}
4486
4487/**
4488 * sys_sched_yield - yield the current processor to other threads.
4489 *
4490 * This function yields the current CPU to other tasks. If there are no
4491 * other threads running on this CPU then this function will return.
4492 */
4493SYSCALL_DEFINE0(sched_yield)
4494{
4495	struct rq *rq = this_rq_lock();
4496
4497	schedstat_inc(rq, yld_count);
4498	current->sched_class->yield_task(rq);
4499
4500	/*
4501	 * Since we are going to call schedule() anyway, there's
4502	 * no need to preempt or enable interrupts:
4503	 */
4504	__release(rq->lock);
4505	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4506	do_raw_spin_unlock(&rq->lock);
4507	sched_preempt_enable_no_resched();
4508
4509	schedule();
4510
4511	return 0;
4512}
4513
4514static inline int should_resched(void)
4515{
4516	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4517}
4518
4519static void __cond_resched(void)
4520{
4521	add_preempt_count(PREEMPT_ACTIVE);
4522	__schedule();
4523	sub_preempt_count(PREEMPT_ACTIVE);
4524}
4525
4526int __sched _cond_resched(void)
4527{
4528	if (should_resched()) {
4529		__cond_resched();
4530		return 1;
4531	}
4532	return 0;
4533}
4534EXPORT_SYMBOL(_cond_resched);
4535
4536/*
4537 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4538 * call schedule, and on return reacquire the lock.
4539 *
4540 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4541 * operations here to prevent schedule() from being called twice (once via
4542 * spin_unlock(), once by hand).
4543 */
4544int __cond_resched_lock(spinlock_t *lock)
4545{
4546	int resched = should_resched();
4547	int ret = 0;
4548
4549	lockdep_assert_held(lock);
4550
4551	if (spin_needbreak(lock) || resched) {
4552		spin_unlock(lock);
4553		if (resched)
4554			__cond_resched();
4555		else
4556			cpu_relax();
4557		ret = 1;
4558		spin_lock(lock);
4559	}
4560	return ret;
4561}
4562EXPORT_SYMBOL(__cond_resched_lock);
4563
4564int __sched __cond_resched_softirq(void)
4565{
4566	BUG_ON(!in_softirq());
4567
4568	if (should_resched()) {
4569		local_bh_enable();
4570		__cond_resched();
4571		local_bh_disable();
4572		return 1;
4573	}
4574	return 0;
4575}
4576EXPORT_SYMBOL(__cond_resched_softirq);
4577
4578/**
4579 * yield - yield the current processor to other threads.
4580 *
4581 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4582 *
4583 * The scheduler is at all times free to pick the calling task as the most
4584 * eligible task to run, if removing the yield() call from your code breaks
4585 * it, its already broken.
4586 *
4587 * Typical broken usage is:
4588 *
4589 * while (!event)
4590 * 	yield();
4591 *
4592 * where one assumes that yield() will let 'the other' process run that will
4593 * make event true. If the current task is a SCHED_FIFO task that will never
4594 * happen. Never use yield() as a progress guarantee!!
4595 *
4596 * If you want to use yield() to wait for something, use wait_event().
4597 * If you want to use yield() to be 'nice' for others, use cond_resched().
4598 * If you still want to use yield(), do not!
4599 */
4600void __sched yield(void)
4601{
4602	set_current_state(TASK_RUNNING);
4603	sys_sched_yield();
4604}
4605EXPORT_SYMBOL(yield);
4606
4607/**
4608 * yield_to - yield the current processor to another thread in
4609 * your thread group, or accelerate that thread toward the
4610 * processor it's on.
4611 * @p: target task
4612 * @preempt: whether task preemption is allowed or not
4613 *
4614 * It's the caller's job to ensure that the target task struct
4615 * can't go away on us before we can do any checks.
4616 *
4617 * Returns true if we indeed boosted the target task.
4618 */
4619bool __sched yield_to(struct task_struct *p, bool preempt)
4620{
4621	struct task_struct *curr = current;
4622	struct rq *rq, *p_rq;
4623	unsigned long flags;
4624	bool yielded = 0;
4625
4626	local_irq_save(flags);
4627	rq = this_rq();
4628
4629again:
4630	p_rq = task_rq(p);
4631	double_rq_lock(rq, p_rq);
4632	while (task_rq(p) != p_rq) {
4633		double_rq_unlock(rq, p_rq);
4634		goto again;
4635	}
4636
4637	if (!curr->sched_class->yield_to_task)
4638		goto out;
4639
4640	if (curr->sched_class != p->sched_class)
4641		goto out;
4642
4643	if (task_running(p_rq, p) || p->state)
4644		goto out;
4645
4646	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4647	if (yielded) {
4648		schedstat_inc(rq, yld_count);
4649		/*
4650		 * Make p's CPU reschedule; pick_next_entity takes care of
4651		 * fairness.
4652		 */
4653		if (preempt && rq != p_rq)
4654			resched_task(p_rq->curr);
4655	} else {
4656		/*
4657		 * We might have set it in task_yield_fair(), but are
4658		 * not going to schedule(), so don't want to skip
4659		 * the next update.
4660		 */
4661		rq->skip_clock_update = 0;
4662	}
4663
4664out:
4665	double_rq_unlock(rq, p_rq);
4666	local_irq_restore(flags);
4667
4668	if (yielded)
4669		schedule();
4670
4671	return yielded;
4672}
4673EXPORT_SYMBOL_GPL(yield_to);
4674
4675/*
4676 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4677 * that process accounting knows that this is a task in IO wait state.
4678 */
4679void __sched io_schedule(void)
4680{
4681	struct rq *rq = raw_rq();
4682
4683	delayacct_blkio_start();
4684	atomic_inc(&rq->nr_iowait);
4685	blk_flush_plug(current);
4686	current->in_iowait = 1;
4687	schedule();
4688	current->in_iowait = 0;
4689	atomic_dec(&rq->nr_iowait);
4690	delayacct_blkio_end();
4691}
4692EXPORT_SYMBOL(io_schedule);
4693
4694long __sched io_schedule_timeout(long timeout)
4695{
4696	struct rq *rq = raw_rq();
4697	long ret;
4698
4699	delayacct_blkio_start();
4700	atomic_inc(&rq->nr_iowait);
4701	blk_flush_plug(current);
4702	current->in_iowait = 1;
4703	ret = schedule_timeout(timeout);
4704	current->in_iowait = 0;
4705	atomic_dec(&rq->nr_iowait);
4706	delayacct_blkio_end();
4707	return ret;
4708}
4709
4710/**
4711 * sys_sched_get_priority_max - return maximum RT priority.
4712 * @policy: scheduling class.
4713 *
4714 * this syscall returns the maximum rt_priority that can be used
4715 * by a given scheduling class.
4716 */
4717SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4718{
4719	int ret = -EINVAL;
4720
4721	switch (policy) {
4722	case SCHED_FIFO:
4723	case SCHED_RR:
4724		ret = MAX_USER_RT_PRIO-1;
4725		break;
4726	case SCHED_NORMAL:
4727	case SCHED_BATCH:
4728	case SCHED_IDLE:
4729		ret = 0;
4730		break;
4731	}
4732	return ret;
4733}
4734
4735/**
4736 * sys_sched_get_priority_min - return minimum RT priority.
4737 * @policy: scheduling class.
4738 *
4739 * this syscall returns the minimum rt_priority that can be used
4740 * by a given scheduling class.
4741 */
4742SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4743{
4744	int ret = -EINVAL;
4745
4746	switch (policy) {
4747	case SCHED_FIFO:
4748	case SCHED_RR:
4749		ret = 1;
4750		break;
4751	case SCHED_NORMAL:
4752	case SCHED_BATCH:
4753	case SCHED_IDLE:
4754		ret = 0;
4755	}
4756	return ret;
4757}
4758
4759/**
4760 * sys_sched_rr_get_interval - return the default timeslice of a process.
4761 * @pid: pid of the process.
4762 * @interval: userspace pointer to the timeslice value.
4763 *
4764 * this syscall writes the default timeslice value of a given process
4765 * into the user-space timespec buffer. A value of '0' means infinity.
4766 */
4767SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4768		struct timespec __user *, interval)
4769{
4770	struct task_struct *p;
4771	unsigned int time_slice;
4772	unsigned long flags;
4773	struct rq *rq;
4774	int retval;
4775	struct timespec t;
4776
4777	if (pid < 0)
4778		return -EINVAL;
4779
4780	retval = -ESRCH;
4781	rcu_read_lock();
4782	p = find_process_by_pid(pid);
4783	if (!p)
4784		goto out_unlock;
4785
4786	retval = security_task_getscheduler(p);
4787	if (retval)
4788		goto out_unlock;
4789
4790	rq = task_rq_lock(p, &flags);
4791	time_slice = p->sched_class->get_rr_interval(rq, p);
4792	task_rq_unlock(rq, p, &flags);
4793
4794	rcu_read_unlock();
4795	jiffies_to_timespec(time_slice, &t);
4796	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4797	return retval;
4798
4799out_unlock:
4800	rcu_read_unlock();
4801	return retval;
4802}
4803
4804static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4805
4806void sched_show_task(struct task_struct *p)
4807{
4808	unsigned long free = 0;
4809	unsigned state;
4810
4811	state = p->state ? __ffs(p->state) + 1 : 0;
4812	printk(KERN_INFO "%-15.15s %c", p->comm,
4813		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4814#if BITS_PER_LONG == 32
4815	if (state == TASK_RUNNING)
4816		printk(KERN_CONT " running  ");
4817	else
4818		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4819#else
4820	if (state == TASK_RUNNING)
4821		printk(KERN_CONT "  running task    ");
4822	else
4823		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4824#endif
4825#ifdef CONFIG_DEBUG_STACK_USAGE
4826	free = stack_not_used(p);
4827#endif
4828	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4829		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4830		(unsigned long)task_thread_info(p)->flags);
4831
4832	show_stack(p, NULL);
4833}
4834
4835void show_state_filter(unsigned long state_filter)
4836{
4837	struct task_struct *g, *p;
4838
4839#if BITS_PER_LONG == 32
4840	printk(KERN_INFO
4841		"  task                PC stack   pid father\n");
4842#else
4843	printk(KERN_INFO
4844		"  task                        PC stack   pid father\n");
4845#endif
4846	rcu_read_lock();
4847	do_each_thread(g, p) {
4848		/*
4849		 * reset the NMI-timeout, listing all files on a slow
4850		 * console might take a lot of time:
4851		 */
4852		touch_nmi_watchdog();
4853		if (!state_filter || (p->state & state_filter))
4854			sched_show_task(p);
4855	} while_each_thread(g, p);
4856
4857	touch_all_softlockup_watchdogs();
4858
4859#ifdef CONFIG_SCHED_DEBUG
4860	sysrq_sched_debug_show();
4861#endif
4862	rcu_read_unlock();
4863	/*
4864	 * Only show locks if all tasks are dumped:
4865	 */
4866	if (!state_filter)
4867		debug_show_all_locks();
4868}
4869
4870void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4871{
4872	idle->sched_class = &idle_sched_class;
4873}
4874
4875/**
4876 * init_idle - set up an idle thread for a given CPU
4877 * @idle: task in question
4878 * @cpu: cpu the idle task belongs to
4879 *
4880 * NOTE: this function does not set the idle thread's NEED_RESCHED
4881 * flag, to make booting more robust.
4882 */
4883void __cpuinit init_idle(struct task_struct *idle, int cpu)
4884{
4885	struct rq *rq = cpu_rq(cpu);
4886	unsigned long flags;
4887
4888	raw_spin_lock_irqsave(&rq->lock, flags);
4889
4890	__sched_fork(idle);
4891	idle->state = TASK_RUNNING;
4892	idle->se.exec_start = sched_clock();
4893
4894	do_set_cpus_allowed(idle, cpumask_of(cpu));
4895	/*
4896	 * We're having a chicken and egg problem, even though we are
4897	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4898	 * lockdep check in task_group() will fail.
4899	 *
4900	 * Similar case to sched_fork(). / Alternatively we could
4901	 * use task_rq_lock() here and obtain the other rq->lock.
4902	 *
4903	 * Silence PROVE_RCU
4904	 */
4905	rcu_read_lock();
4906	__set_task_cpu(idle, cpu);
4907	rcu_read_unlock();
4908
4909	rq->curr = rq->idle = idle;
4910#if defined(CONFIG_SMP)
4911	idle->on_cpu = 1;
4912#endif
4913	raw_spin_unlock_irqrestore(&rq->lock, flags);
4914
4915	/* Set the preempt count _outside_ the spinlocks! */
4916	task_thread_info(idle)->preempt_count = 0;
4917
4918	/*
4919	 * The idle tasks have their own, simple scheduling class:
4920	 */
4921	idle->sched_class = &idle_sched_class;
4922	ftrace_graph_init_idle_task(idle, cpu);
4923#if defined(CONFIG_SMP)
4924	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4925#endif
4926}
4927
4928#ifdef CONFIG_SMP
4929void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4930{
4931	if (p->sched_class && p->sched_class->set_cpus_allowed)
4932		p->sched_class->set_cpus_allowed(p, new_mask);
4933
4934	cpumask_copy(&p->cpus_allowed, new_mask);
4935	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4936}
4937
4938/*
4939 * This is how migration works:
4940 *
4941 * 1) we invoke migration_cpu_stop() on the target CPU using
4942 *    stop_one_cpu().
4943 * 2) stopper starts to run (implicitly forcing the migrated thread
4944 *    off the CPU)
4945 * 3) it checks whether the migrated task is still in the wrong runqueue.
4946 * 4) if it's in the wrong runqueue then the migration thread removes
4947 *    it and puts it into the right queue.
4948 * 5) stopper completes and stop_one_cpu() returns and the migration
4949 *    is done.
4950 */
4951
4952/*
4953 * Change a given task's CPU affinity. Migrate the thread to a
4954 * proper CPU and schedule it away if the CPU it's executing on
4955 * is removed from the allowed bitmask.
4956 *
4957 * NOTE: the caller must have a valid reference to the task, the
4958 * task must not exit() & deallocate itself prematurely. The
4959 * call is not atomic; no spinlocks may be held.
4960 */
4961int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4962{
4963	unsigned long flags;
4964	struct rq *rq;
4965	unsigned int dest_cpu;
4966	int ret = 0;
4967
4968	rq = task_rq_lock(p, &flags);
4969
4970	if (cpumask_equal(&p->cpus_allowed, new_mask))
4971		goto out;
4972
4973	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4974		ret = -EINVAL;
4975		goto out;
4976	}
4977
4978	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4979		ret = -EINVAL;
4980		goto out;
4981	}
4982
4983	do_set_cpus_allowed(p, new_mask);
4984
4985	/* Can the task run on the task's current CPU? If so, we're done */
4986	if (cpumask_test_cpu(task_cpu(p), new_mask))
4987		goto out;
4988
4989	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4990	if (p->on_rq) {
4991		struct migration_arg arg = { p, dest_cpu };
4992		/* Need help from migration thread: drop lock and wait. */
4993		task_rq_unlock(rq, p, &flags);
4994		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4995		tlb_migrate_finish(p->mm);
4996		return 0;
4997	}
4998out:
4999	task_rq_unlock(rq, p, &flags);
5000
5001	return ret;
5002}
5003EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5004
5005/*
5006 * Move (not current) task off this cpu, onto dest cpu. We're doing
5007 * this because either it can't run here any more (set_cpus_allowed()
5008 * away from this CPU, or CPU going down), or because we're
5009 * attempting to rebalance this task on exec (sched_exec).
5010 *
5011 * So we race with normal scheduler movements, but that's OK, as long
5012 * as the task is no longer on this CPU.
5013 *
5014 * Returns non-zero if task was successfully migrated.
5015 */
5016static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5017{
5018	struct rq *rq_dest, *rq_src;
5019	int ret = 0;
5020
5021	if (unlikely(!cpu_active(dest_cpu)))
5022		return ret;
5023
5024	rq_src = cpu_rq(src_cpu);
5025	rq_dest = cpu_rq(dest_cpu);
5026
5027	raw_spin_lock(&p->pi_lock);
5028	double_rq_lock(rq_src, rq_dest);
5029	/* Already moved. */
5030	if (task_cpu(p) != src_cpu)
5031		goto done;
5032	/* Affinity changed (again). */
5033	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5034		goto fail;
5035
5036	/*
5037	 * If we're not on a rq, the next wake-up will ensure we're
5038	 * placed properly.
5039	 */
5040	if (p->on_rq) {
5041		dequeue_task(rq_src, p, 0);
5042		set_task_cpu(p, dest_cpu);
5043		enqueue_task(rq_dest, p, 0);
5044		check_preempt_curr(rq_dest, p, 0);
5045	}
5046done:
5047	ret = 1;
5048fail:
5049	double_rq_unlock(rq_src, rq_dest);
5050	raw_spin_unlock(&p->pi_lock);
5051	return ret;
5052}
5053
5054/*
5055 * migration_cpu_stop - this will be executed by a highprio stopper thread
5056 * and performs thread migration by bumping thread off CPU then
5057 * 'pushing' onto another runqueue.
5058 */
5059static int migration_cpu_stop(void *data)
5060{
5061	struct migration_arg *arg = data;
5062
5063	/*
5064	 * The original target cpu might have gone down and we might
5065	 * be on another cpu but it doesn't matter.
5066	 */
5067	local_irq_disable();
5068	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5069	local_irq_enable();
5070	return 0;
5071}
5072
5073#ifdef CONFIG_HOTPLUG_CPU
5074
5075/*
5076 * Ensures that the idle task is using init_mm right before its cpu goes
5077 * offline.
5078 */
5079void idle_task_exit(void)
5080{
5081	struct mm_struct *mm = current->active_mm;
5082
5083	BUG_ON(cpu_online(smp_processor_id()));
5084
5085	if (mm != &init_mm)
5086		switch_mm(mm, &init_mm, current);
5087	mmdrop(mm);
5088}
5089
5090/*
5091 * While a dead CPU has no uninterruptible tasks queued at this point,
5092 * it might still have a nonzero ->nr_uninterruptible counter, because
5093 * for performance reasons the counter is not stricly tracking tasks to
5094 * their home CPUs. So we just add the counter to another CPU's counter,
5095 * to keep the global sum constant after CPU-down:
5096 */
5097static void migrate_nr_uninterruptible(struct rq *rq_src)
5098{
5099	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5100
5101	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5102	rq_src->nr_uninterruptible = 0;
5103}
5104
5105/*
5106 * remove the tasks which were accounted by rq from calc_load_tasks.
5107 */
5108static void calc_global_load_remove(struct rq *rq)
5109{
5110	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5111	rq->calc_load_active = 0;
5112}
5113
5114/*
5115 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5116 * try_to_wake_up()->select_task_rq().
5117 *
5118 * Called with rq->lock held even though we'er in stop_machine() and
5119 * there's no concurrency possible, we hold the required locks anyway
5120 * because of lock validation efforts.
5121 */
5122static void migrate_tasks(unsigned int dead_cpu)
5123{
5124	struct rq *rq = cpu_rq(dead_cpu);
5125	struct task_struct *next, *stop = rq->stop;
5126	int dest_cpu;
5127
5128	/*
5129	 * Fudge the rq selection such that the below task selection loop
5130	 * doesn't get stuck on the currently eligible stop task.
5131	 *
5132	 * We're currently inside stop_machine() and the rq is either stuck
5133	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5134	 * either way we should never end up calling schedule() until we're
5135	 * done here.
5136	 */
5137	rq->stop = NULL;
5138
5139	/* Ensure any throttled groups are reachable by pick_next_task */
5140	unthrottle_offline_cfs_rqs(rq);
5141
5142	for ( ; ; ) {
5143		/*
5144		 * There's this thread running, bail when that's the only
5145		 * remaining thread.
5146		 */
5147		if (rq->nr_running == 1)
5148			break;
5149
5150		next = pick_next_task(rq);
5151		BUG_ON(!next);
5152		next->sched_class->put_prev_task(rq, next);
5153
5154		/* Find suitable destination for @next, with force if needed. */
5155		dest_cpu = select_fallback_rq(dead_cpu, next);
5156		raw_spin_unlock(&rq->lock);
5157
5158		__migrate_task(next, dead_cpu, dest_cpu);
5159
5160		raw_spin_lock(&rq->lock);
5161	}
5162
5163	rq->stop = stop;
5164}
5165
5166#endif /* CONFIG_HOTPLUG_CPU */
5167
5168#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5169
5170static struct ctl_table sd_ctl_dir[] = {
5171	{
5172		.procname	= "sched_domain",
5173		.mode		= 0555,
5174	},
5175	{}
5176};
5177
5178static struct ctl_table sd_ctl_root[] = {
5179	{
5180		.procname	= "kernel",
5181		.mode		= 0555,
5182		.child		= sd_ctl_dir,
5183	},
5184	{}
5185};
5186
5187static struct ctl_table *sd_alloc_ctl_entry(int n)
5188{
5189	struct ctl_table *entry =
5190		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5191
5192	return entry;
5193}
5194
5195static void sd_free_ctl_entry(struct ctl_table **tablep)
5196{
5197	struct ctl_table *entry;
5198
5199	/*
5200	 * In the intermediate directories, both the child directory and
5201	 * procname are dynamically allocated and could fail but the mode
5202	 * will always be set. In the lowest directory the names are
5203	 * static strings and all have proc handlers.
5204	 */
5205	for (entry = *tablep; entry->mode; entry++) {
5206		if (entry->child)
5207			sd_free_ctl_entry(&entry->child);
5208		if (entry->proc_handler == NULL)
5209			kfree(entry->procname);
5210	}
5211
5212	kfree(*tablep);
5213	*tablep = NULL;
5214}
5215
5216static void
5217set_table_entry(struct ctl_table *entry,
5218		const char *procname, void *data, int maxlen,
5219		umode_t mode, proc_handler *proc_handler)
5220{
5221	entry->procname = procname;
5222	entry->data = data;
5223	entry->maxlen = maxlen;
5224	entry->mode = mode;
5225	entry->proc_handler = proc_handler;
5226}
5227
5228static struct ctl_table *
5229sd_alloc_ctl_domain_table(struct sched_domain *sd)
5230{
5231	struct ctl_table *table = sd_alloc_ctl_entry(13);
5232
5233	if (table == NULL)
5234		return NULL;
5235
5236	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5237		sizeof(long), 0644, proc_doulongvec_minmax);
5238	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5239		sizeof(long), 0644, proc_doulongvec_minmax);
5240	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5241		sizeof(int), 0644, proc_dointvec_minmax);
5242	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5243		sizeof(int), 0644, proc_dointvec_minmax);
5244	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5245		sizeof(int), 0644, proc_dointvec_minmax);
5246	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5247		sizeof(int), 0644, proc_dointvec_minmax);
5248	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5249		sizeof(int), 0644, proc_dointvec_minmax);
5250	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5251		sizeof(int), 0644, proc_dointvec_minmax);
5252	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5253		sizeof(int), 0644, proc_dointvec_minmax);
5254	set_table_entry(&table[9], "cache_nice_tries",
5255		&sd->cache_nice_tries,
5256		sizeof(int), 0644, proc_dointvec_minmax);
5257	set_table_entry(&table[10], "flags", &sd->flags,
5258		sizeof(int), 0644, proc_dointvec_minmax);
5259	set_table_entry(&table[11], "name", sd->name,
5260		CORENAME_MAX_SIZE, 0444, proc_dostring);
5261	/* &table[12] is terminator */
5262
5263	return table;
5264}
5265
5266static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5267{
5268	struct ctl_table *entry, *table;
5269	struct sched_domain *sd;
5270	int domain_num = 0, i;
5271	char buf[32];
5272
5273	for_each_domain(cpu, sd)
5274		domain_num++;
5275	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5276	if (table == NULL)
5277		return NULL;
5278
5279	i = 0;
5280	for_each_domain(cpu, sd) {
5281		snprintf(buf, 32, "domain%d", i);
5282		entry->procname = kstrdup(buf, GFP_KERNEL);
5283		entry->mode = 0555;
5284		entry->child = sd_alloc_ctl_domain_table(sd);
5285		entry++;
5286		i++;
5287	}
5288	return table;
5289}
5290
5291static struct ctl_table_header *sd_sysctl_header;
5292static void register_sched_domain_sysctl(void)
5293{
5294	int i, cpu_num = num_possible_cpus();
5295	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5296	char buf[32];
5297
5298	WARN_ON(sd_ctl_dir[0].child);
5299	sd_ctl_dir[0].child = entry;
5300
5301	if (entry == NULL)
5302		return;
5303
5304	for_each_possible_cpu(i) {
5305		snprintf(buf, 32, "cpu%d", i);
5306		entry->procname = kstrdup(buf, GFP_KERNEL);
5307		entry->mode = 0555;
5308		entry->child = sd_alloc_ctl_cpu_table(i);
5309		entry++;
5310	}
5311
5312	WARN_ON(sd_sysctl_header);
5313	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5314}
5315
5316/* may be called multiple times per register */
5317static void unregister_sched_domain_sysctl(void)
5318{
5319	if (sd_sysctl_header)
5320		unregister_sysctl_table(sd_sysctl_header);
5321	sd_sysctl_header = NULL;
5322	if (sd_ctl_dir[0].child)
5323		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5324}
5325#else
5326static void register_sched_domain_sysctl(void)
5327{
5328}
5329static void unregister_sched_domain_sysctl(void)
5330{
5331}
5332#endif
5333
5334static void set_rq_online(struct rq *rq)
5335{
5336	if (!rq->online) {
5337		const struct sched_class *class;
5338
5339		cpumask_set_cpu(rq->cpu, rq->rd->online);
5340		rq->online = 1;
5341
5342		for_each_class(class) {
5343			if (class->rq_online)
5344				class->rq_online(rq);
5345		}
5346	}
5347}
5348
5349static void set_rq_offline(struct rq *rq)
5350{
5351	if (rq->online) {
5352		const struct sched_class *class;
5353
5354		for_each_class(class) {
5355			if (class->rq_offline)
5356				class->rq_offline(rq);
5357		}
5358
5359		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5360		rq->online = 0;
5361	}
5362}
5363
5364/*
5365 * migration_call - callback that gets triggered when a CPU is added.
5366 * Here we can start up the necessary migration thread for the new CPU.
5367 */
5368static int __cpuinit
5369migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5370{
5371	int cpu = (long)hcpu;
5372	unsigned long flags;
5373	struct rq *rq = cpu_rq(cpu);
5374
5375	switch (action & ~CPU_TASKS_FROZEN) {
5376
5377	case CPU_UP_PREPARE:
5378		rq->calc_load_update = calc_load_update;
5379		break;
5380
5381	case CPU_ONLINE:
5382		/* Update our root-domain */
5383		raw_spin_lock_irqsave(&rq->lock, flags);
5384		if (rq->rd) {
5385			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5386
5387			set_rq_online(rq);
5388		}
5389		raw_spin_unlock_irqrestore(&rq->lock, flags);
5390		break;
5391
5392#ifdef CONFIG_HOTPLUG_CPU
5393	case CPU_DYING:
5394		sched_ttwu_pending();
5395		/* Update our root-domain */
5396		raw_spin_lock_irqsave(&rq->lock, flags);
5397		if (rq->rd) {
5398			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5399			set_rq_offline(rq);
5400		}
5401		migrate_tasks(cpu);
5402		BUG_ON(rq->nr_running != 1); /* the migration thread */
5403		raw_spin_unlock_irqrestore(&rq->lock, flags);
5404
5405		migrate_nr_uninterruptible(rq);
5406		calc_global_load_remove(rq);
5407		break;
5408#endif
5409	}
5410
5411	update_max_interval();
5412
5413	return NOTIFY_OK;
5414}
5415
5416/*
5417 * Register at high priority so that task migration (migrate_all_tasks)
5418 * happens before everything else.  This has to be lower priority than
5419 * the notifier in the perf_event subsystem, though.
5420 */
5421static struct notifier_block __cpuinitdata migration_notifier = {
5422	.notifier_call = migration_call,
5423	.priority = CPU_PRI_MIGRATION,
5424};
5425
5426static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5427				      unsigned long action, void *hcpu)
5428{
5429	switch (action & ~CPU_TASKS_FROZEN) {
5430	case CPU_STARTING:
5431	case CPU_DOWN_FAILED:
5432		set_cpu_active((long)hcpu, true);
5433		return NOTIFY_OK;
5434	default:
5435		return NOTIFY_DONE;
5436	}
5437}
5438
5439static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5440					unsigned long action, void *hcpu)
5441{
5442	switch (action & ~CPU_TASKS_FROZEN) {
5443	case CPU_DOWN_PREPARE:
5444		set_cpu_active((long)hcpu, false);
5445		return NOTIFY_OK;
5446	default:
5447		return NOTIFY_DONE;
5448	}
5449}
5450
5451static int __init migration_init(void)
5452{
5453	void *cpu = (void *)(long)smp_processor_id();
5454	int err;
5455
5456	/* Initialize migration for the boot CPU */
5457	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5458	BUG_ON(err == NOTIFY_BAD);
5459	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5460	register_cpu_notifier(&migration_notifier);
5461
5462	/* Register cpu active notifiers */
5463	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5464	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5465
5466	return 0;
5467}
5468early_initcall(migration_init);
5469#endif
5470
5471#ifdef CONFIG_SMP
5472
5473static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5474
5475#ifdef CONFIG_SCHED_DEBUG
5476
5477static __read_mostly int sched_domain_debug_enabled;
5478
5479static int __init sched_domain_debug_setup(char *str)
5480{
5481	sched_domain_debug_enabled = 1;
5482
5483	return 0;
5484}
5485early_param("sched_debug", sched_domain_debug_setup);
5486
5487static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5488				  struct cpumask *groupmask)
5489{
5490	struct sched_group *group = sd->groups;
5491	char str[256];
5492
5493	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5494	cpumask_clear(groupmask);
5495
5496	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5497
5498	if (!(sd->flags & SD_LOAD_BALANCE)) {
5499		printk("does not load-balance\n");
5500		if (sd->parent)
5501			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5502					" has parent");
5503		return -1;
5504	}
5505
5506	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5507
5508	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5509		printk(KERN_ERR "ERROR: domain->span does not contain "
5510				"CPU%d\n", cpu);
5511	}
5512	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5513		printk(KERN_ERR "ERROR: domain->groups does not contain"
5514				" CPU%d\n", cpu);
5515	}
5516
5517	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5518	do {
5519		if (!group) {
5520			printk("\n");
5521			printk(KERN_ERR "ERROR: group is NULL\n");
5522			break;
5523		}
5524
5525		if (!group->sgp->power) {
5526			printk(KERN_CONT "\n");
5527			printk(KERN_ERR "ERROR: domain->cpu_power not "
5528					"set\n");
5529			break;
5530		}
5531
5532		if (!cpumask_weight(sched_group_cpus(group))) {
5533			printk(KERN_CONT "\n");
5534			printk(KERN_ERR "ERROR: empty group\n");
5535			break;
5536		}
5537
5538		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5539			printk(KERN_CONT "\n");
5540			printk(KERN_ERR "ERROR: repeated CPUs\n");
5541			break;
5542		}
5543
5544		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5545
5546		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5547
5548		printk(KERN_CONT " %s", str);
5549		if (group->sgp->power != SCHED_POWER_SCALE) {
5550			printk(KERN_CONT " (cpu_power = %d)",
5551				group->sgp->power);
5552		}
5553
5554		group = group->next;
5555	} while (group != sd->groups);
5556	printk(KERN_CONT "\n");
5557
5558	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5559		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5560
5561	if (sd->parent &&
5562	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5563		printk(KERN_ERR "ERROR: parent span is not a superset "
5564			"of domain->span\n");
5565	return 0;
5566}
5567
5568static void sched_domain_debug(struct sched_domain *sd, int cpu)
5569{
5570	int level = 0;
5571
5572	if (!sched_domain_debug_enabled)
5573		return;
5574
5575	if (!sd) {
5576		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5577		return;
5578	}
5579
5580	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5581
5582	for (;;) {
5583		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5584			break;
5585		level++;
5586		sd = sd->parent;
5587		if (!sd)
5588			break;
5589	}
5590}
5591#else /* !CONFIG_SCHED_DEBUG */
5592# define sched_domain_debug(sd, cpu) do { } while (0)
5593#endif /* CONFIG_SCHED_DEBUG */
5594
5595static int sd_degenerate(struct sched_domain *sd)
5596{
5597	if (cpumask_weight(sched_domain_span(sd)) == 1)
5598		return 1;
5599
5600	/* Following flags need at least 2 groups */
5601	if (sd->flags & (SD_LOAD_BALANCE |
5602			 SD_BALANCE_NEWIDLE |
5603			 SD_BALANCE_FORK |
5604			 SD_BALANCE_EXEC |
5605			 SD_SHARE_CPUPOWER |
5606			 SD_SHARE_PKG_RESOURCES)) {
5607		if (sd->groups != sd->groups->next)
5608			return 0;
5609	}
5610
5611	/* Following flags don't use groups */
5612	if (sd->flags & (SD_WAKE_AFFINE))
5613		return 0;
5614
5615	return 1;
5616}
5617
5618static int
5619sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5620{
5621	unsigned long cflags = sd->flags, pflags = parent->flags;
5622
5623	if (sd_degenerate(parent))
5624		return 1;
5625
5626	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5627		return 0;
5628
5629	/* Flags needing groups don't count if only 1 group in parent */
5630	if (parent->groups == parent->groups->next) {
5631		pflags &= ~(SD_LOAD_BALANCE |
5632				SD_BALANCE_NEWIDLE |
5633				SD_BALANCE_FORK |
5634				SD_BALANCE_EXEC |
5635				SD_SHARE_CPUPOWER |
5636				SD_SHARE_PKG_RESOURCES);
5637		if (nr_node_ids == 1)
5638			pflags &= ~SD_SERIALIZE;
5639	}
5640	if (~cflags & pflags)
5641		return 0;
5642
5643	return 1;
5644}
5645
5646static void free_rootdomain(struct rcu_head *rcu)
5647{
5648	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5649
5650	cpupri_cleanup(&rd->cpupri);
5651	free_cpumask_var(rd->rto_mask);
5652	free_cpumask_var(rd->online);
5653	free_cpumask_var(rd->span);
5654	kfree(rd);
5655}
5656
5657static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5658{
5659	struct root_domain *old_rd = NULL;
5660	unsigned long flags;
5661
5662	raw_spin_lock_irqsave(&rq->lock, flags);
5663
5664	if (rq->rd) {
5665		old_rd = rq->rd;
5666
5667		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5668			set_rq_offline(rq);
5669
5670		cpumask_clear_cpu(rq->cpu, old_rd->span);
5671
5672		/*
5673		 * If we dont want to free the old_rt yet then
5674		 * set old_rd to NULL to skip the freeing later
5675		 * in this function:
5676		 */
5677		if (!atomic_dec_and_test(&old_rd->refcount))
5678			old_rd = NULL;
5679	}
5680
5681	atomic_inc(&rd->refcount);
5682	rq->rd = rd;
5683
5684	cpumask_set_cpu(rq->cpu, rd->span);
5685	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5686		set_rq_online(rq);
5687
5688	raw_spin_unlock_irqrestore(&rq->lock, flags);
5689
5690	if (old_rd)
5691		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5692}
5693
5694static int init_rootdomain(struct root_domain *rd)
5695{
5696	memset(rd, 0, sizeof(*rd));
5697
5698	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5699		goto out;
5700	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5701		goto free_span;
5702	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5703		goto free_online;
5704
5705	if (cpupri_init(&rd->cpupri) != 0)
5706		goto free_rto_mask;
5707	return 0;
5708
5709free_rto_mask:
5710	free_cpumask_var(rd->rto_mask);
5711free_online:
5712	free_cpumask_var(rd->online);
5713free_span:
5714	free_cpumask_var(rd->span);
5715out:
5716	return -ENOMEM;
5717}
5718
5719/*
5720 * By default the system creates a single root-domain with all cpus as
5721 * members (mimicking the global state we have today).
5722 */
5723struct root_domain def_root_domain;
5724
5725static void init_defrootdomain(void)
5726{
5727	init_rootdomain(&def_root_domain);
5728
5729	atomic_set(&def_root_domain.refcount, 1);
5730}
5731
5732static struct root_domain *alloc_rootdomain(void)
5733{
5734	struct root_domain *rd;
5735
5736	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5737	if (!rd)
5738		return NULL;
5739
5740	if (init_rootdomain(rd) != 0) {
5741		kfree(rd);
5742		return NULL;
5743	}
5744
5745	return rd;
5746}
5747
5748static void free_sched_groups(struct sched_group *sg, int free_sgp)
5749{
5750	struct sched_group *tmp, *first;
5751
5752	if (!sg)
5753		return;
5754
5755	first = sg;
5756	do {
5757		tmp = sg->next;
5758
5759		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5760			kfree(sg->sgp);
5761
5762		kfree(sg);
5763		sg = tmp;
5764	} while (sg != first);
5765}
5766
5767static void free_sched_domain(struct rcu_head *rcu)
5768{
5769	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5770
5771	/*
5772	 * If its an overlapping domain it has private groups, iterate and
5773	 * nuke them all.
5774	 */
5775	if (sd->flags & SD_OVERLAP) {
5776		free_sched_groups(sd->groups, 1);
5777	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5778		kfree(sd->groups->sgp);
5779		kfree(sd->groups);
5780	}
5781	kfree(sd);
5782}
5783
5784static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5785{
5786	call_rcu(&sd->rcu, free_sched_domain);
5787}
5788
5789static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5790{
5791	for (; sd; sd = sd->parent)
5792		destroy_sched_domain(sd, cpu);
5793}
5794
5795/*
5796 * Keep a special pointer to the highest sched_domain that has
5797 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5798 * allows us to avoid some pointer chasing select_idle_sibling().
5799 *
5800 * Also keep a unique ID per domain (we use the first cpu number in
5801 * the cpumask of the domain), this allows us to quickly tell if
5802 * two cpus are in the same cache domain, see cpus_share_cache().
5803 */
5804DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5805DEFINE_PER_CPU(int, sd_llc_id);
5806
5807static void update_top_cache_domain(int cpu)
5808{
5809	struct sched_domain *sd;
5810	int id = cpu;
5811
5812	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5813	if (sd)
5814		id = cpumask_first(sched_domain_span(sd));
5815
5816	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5817	per_cpu(sd_llc_id, cpu) = id;
5818}
5819
5820/*
5821 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5822 * hold the hotplug lock.
5823 */
5824static void
5825cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5826{
5827	struct rq *rq = cpu_rq(cpu);
5828	struct sched_domain *tmp;
5829
5830	/* Remove the sched domains which do not contribute to scheduling. */
5831	for (tmp = sd; tmp; ) {
5832		struct sched_domain *parent = tmp->parent;
5833		if (!parent)
5834			break;
5835
5836		if (sd_parent_degenerate(tmp, parent)) {
5837			tmp->parent = parent->parent;
5838			if (parent->parent)
5839				parent->parent->child = tmp;
5840			destroy_sched_domain(parent, cpu);
5841		} else
5842			tmp = tmp->parent;
5843	}
5844
5845	if (sd && sd_degenerate(sd)) {
5846		tmp = sd;
5847		sd = sd->parent;
5848		destroy_sched_domain(tmp, cpu);
5849		if (sd)
5850			sd->child = NULL;
5851	}
5852
5853	sched_domain_debug(sd, cpu);
5854
5855	rq_attach_root(rq, rd);
5856	tmp = rq->sd;
5857	rcu_assign_pointer(rq->sd, sd);
5858	destroy_sched_domains(tmp, cpu);
5859
5860	update_top_cache_domain(cpu);
5861}
5862
5863/* cpus with isolated domains */
5864static cpumask_var_t cpu_isolated_map;
5865
5866/* Setup the mask of cpus configured for isolated domains */
5867static int __init isolated_cpu_setup(char *str)
5868{
5869	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5870	cpulist_parse(str, cpu_isolated_map);
5871	return 1;
5872}
5873
5874__setup("isolcpus=", isolated_cpu_setup);
5875
5876#ifdef CONFIG_NUMA
5877
5878/**
5879 * find_next_best_node - find the next node to include in a sched_domain
5880 * @node: node whose sched_domain we're building
5881 * @used_nodes: nodes already in the sched_domain
5882 *
5883 * Find the next node to include in a given scheduling domain. Simply
5884 * finds the closest node not already in the @used_nodes map.
5885 *
5886 * Should use nodemask_t.
5887 */
5888static int find_next_best_node(int node, nodemask_t *used_nodes)
5889{
5890	int i, n, val, min_val, best_node = -1;
5891
5892	min_val = INT_MAX;
5893
5894	for (i = 0; i < nr_node_ids; i++) {
5895		/* Start at @node */
5896		n = (node + i) % nr_node_ids;
5897
5898		if (!nr_cpus_node(n))
5899			continue;
5900
5901		/* Skip already used nodes */
5902		if (node_isset(n, *used_nodes))
5903			continue;
5904
5905		/* Simple min distance search */
5906		val = node_distance(node, n);
5907
5908		if (val < min_val) {
5909			min_val = val;
5910			best_node = n;
5911		}
5912	}
5913
5914	if (best_node != -1)
5915		node_set(best_node, *used_nodes);
5916	return best_node;
5917}
5918
5919/**
5920 * sched_domain_node_span - get a cpumask for a node's sched_domain
5921 * @node: node whose cpumask we're constructing
5922 * @span: resulting cpumask
5923 *
5924 * Given a node, construct a good cpumask for its sched_domain to span. It
5925 * should be one that prevents unnecessary balancing, but also spreads tasks
5926 * out optimally.
5927 */
5928static void sched_domain_node_span(int node, struct cpumask *span)
5929{
5930	nodemask_t used_nodes;
5931	int i;
5932
5933	cpumask_clear(span);
5934	nodes_clear(used_nodes);
5935
5936	cpumask_or(span, span, cpumask_of_node(node));
5937	node_set(node, used_nodes);
5938
5939	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5940		int next_node = find_next_best_node(node, &used_nodes);
5941		if (next_node < 0)
5942			break;
5943		cpumask_or(span, span, cpumask_of_node(next_node));
5944	}
5945}
5946
5947static const struct cpumask *cpu_node_mask(int cpu)
5948{
5949	lockdep_assert_held(&sched_domains_mutex);
5950
5951	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5952
5953	return sched_domains_tmpmask;
5954}
5955
5956static const struct cpumask *cpu_allnodes_mask(int cpu)
5957{
5958	return cpu_possible_mask;
5959}
5960#endif /* CONFIG_NUMA */
5961
5962static const struct cpumask *cpu_cpu_mask(int cpu)
5963{
5964	return cpumask_of_node(cpu_to_node(cpu));
5965}
5966
5967int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5968
5969struct sd_data {
5970	struct sched_domain **__percpu sd;
5971	struct sched_group **__percpu sg;
5972	struct sched_group_power **__percpu sgp;
5973};
5974
5975struct s_data {
5976	struct sched_domain ** __percpu sd;
5977	struct root_domain	*rd;
5978};
5979
5980enum s_alloc {
5981	sa_rootdomain,
5982	sa_sd,
5983	sa_sd_storage,
5984	sa_none,
5985};
5986
5987struct sched_domain_topology_level;
5988
5989typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5990typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5991
5992#define SDTL_OVERLAP	0x01
5993
5994struct sched_domain_topology_level {
5995	sched_domain_init_f init;
5996	sched_domain_mask_f mask;
5997	int		    flags;
5998	struct sd_data      data;
5999};
6000
6001static int
6002build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6003{
6004	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6005	const struct cpumask *span = sched_domain_span(sd);
6006	struct cpumask *covered = sched_domains_tmpmask;
6007	struct sd_data *sdd = sd->private;
6008	struct sched_domain *child;
6009	int i;
6010
6011	cpumask_clear(covered);
6012
6013	for_each_cpu(i, span) {
6014		struct cpumask *sg_span;
6015
6016		if (cpumask_test_cpu(i, covered))
6017			continue;
6018
6019		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6020				GFP_KERNEL, cpu_to_node(cpu));
6021
6022		if (!sg)
6023			goto fail;
6024
6025		sg_span = sched_group_cpus(sg);
6026
6027		child = *per_cpu_ptr(sdd->sd, i);
6028		if (child->child) {
6029			child = child->child;
6030			cpumask_copy(sg_span, sched_domain_span(child));
6031		} else
6032			cpumask_set_cpu(i, sg_span);
6033
6034		cpumask_or(covered, covered, sg_span);
6035
6036		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6037		atomic_inc(&sg->sgp->ref);
6038
6039		if (cpumask_test_cpu(cpu, sg_span))
6040			groups = sg;
6041
6042		if (!first)
6043			first = sg;
6044		if (last)
6045			last->next = sg;
6046		last = sg;
6047		last->next = first;
6048	}
6049	sd->groups = groups;
6050
6051	return 0;
6052
6053fail:
6054	free_sched_groups(first, 0);
6055
6056	return -ENOMEM;
6057}
6058
6059static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6060{
6061	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6062	struct sched_domain *child = sd->child;
6063
6064	if (child)
6065		cpu = cpumask_first(sched_domain_span(child));
6066
6067	if (sg) {
6068		*sg = *per_cpu_ptr(sdd->sg, cpu);
6069		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6070		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6071	}
6072
6073	return cpu;
6074}
6075
6076/*
6077 * build_sched_groups will build a circular linked list of the groups
6078 * covered by the given span, and will set each group's ->cpumask correctly,
6079 * and ->cpu_power to 0.
6080 *
6081 * Assumes the sched_domain tree is fully constructed
6082 */
6083static int
6084build_sched_groups(struct sched_domain *sd, int cpu)
6085{
6086	struct sched_group *first = NULL, *last = NULL;
6087	struct sd_data *sdd = sd->private;
6088	const struct cpumask *span = sched_domain_span(sd);
6089	struct cpumask *covered;
6090	int i;
6091
6092	get_group(cpu, sdd, &sd->groups);
6093	atomic_inc(&sd->groups->ref);
6094
6095	if (cpu != cpumask_first(sched_domain_span(sd)))
6096		return 0;
6097
6098	lockdep_assert_held(&sched_domains_mutex);
6099	covered = sched_domains_tmpmask;
6100
6101	cpumask_clear(covered);
6102
6103	for_each_cpu(i, span) {
6104		struct sched_group *sg;
6105		int group = get_group(i, sdd, &sg);
6106		int j;
6107
6108		if (cpumask_test_cpu(i, covered))
6109			continue;
6110
6111		cpumask_clear(sched_group_cpus(sg));
6112		sg->sgp->power = 0;
6113
6114		for_each_cpu(j, span) {
6115			if (get_group(j, sdd, NULL) != group)
6116				continue;
6117
6118			cpumask_set_cpu(j, covered);
6119			cpumask_set_cpu(j, sched_group_cpus(sg));
6120		}
6121
6122		if (!first)
6123			first = sg;
6124		if (last)
6125			last->next = sg;
6126		last = sg;
6127	}
6128	last->next = first;
6129
6130	return 0;
6131}
6132
6133/*
6134 * Initialize sched groups cpu_power.
6135 *
6136 * cpu_power indicates the capacity of sched group, which is used while
6137 * distributing the load between different sched groups in a sched domain.
6138 * Typically cpu_power for all the groups in a sched domain will be same unless
6139 * there are asymmetries in the topology. If there are asymmetries, group
6140 * having more cpu_power will pickup more load compared to the group having
6141 * less cpu_power.
6142 */
6143static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6144{
6145	struct sched_group *sg = sd->groups;
6146
6147	WARN_ON(!sd || !sg);
6148
6149	do {
6150		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6151		sg = sg->next;
6152	} while (sg != sd->groups);
6153
6154	if (cpu != group_first_cpu(sg))
6155		return;
6156
6157	update_group_power(sd, cpu);
6158	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6159}
6160
6161int __weak arch_sd_sibling_asym_packing(void)
6162{
6163       return 0*SD_ASYM_PACKING;
6164}
6165
6166/*
6167 * Initializers for schedule domains
6168 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6169 */
6170
6171#ifdef CONFIG_SCHED_DEBUG
6172# define SD_INIT_NAME(sd, type)		sd->name = #type
6173#else
6174# define SD_INIT_NAME(sd, type)		do { } while (0)
6175#endif
6176
6177#define SD_INIT_FUNC(type)						\
6178static noinline struct sched_domain *					\
6179sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6180{									\
6181	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6182	*sd = SD_##type##_INIT;						\
6183	SD_INIT_NAME(sd, type);						\
6184	sd->private = &tl->data;					\
6185	return sd;							\
6186}
6187
6188SD_INIT_FUNC(CPU)
6189#ifdef CONFIG_NUMA
6190 SD_INIT_FUNC(ALLNODES)
6191 SD_INIT_FUNC(NODE)
6192#endif
6193#ifdef CONFIG_SCHED_SMT
6194 SD_INIT_FUNC(SIBLING)
6195#endif
6196#ifdef CONFIG_SCHED_MC
6197 SD_INIT_FUNC(MC)
6198#endif
6199#ifdef CONFIG_SCHED_BOOK
6200 SD_INIT_FUNC(BOOK)
6201#endif
6202
6203static int default_relax_domain_level = -1;
6204int sched_domain_level_max;
6205
6206static int __init setup_relax_domain_level(char *str)
6207{
6208	unsigned long val;
6209
6210	val = simple_strtoul(str, NULL, 0);
6211	if (val < sched_domain_level_max)
6212		default_relax_domain_level = val;
6213
6214	return 1;
6215}
6216__setup("relax_domain_level=", setup_relax_domain_level);
6217
6218static void set_domain_attribute(struct sched_domain *sd,
6219				 struct sched_domain_attr *attr)
6220{
6221	int request;
6222
6223	if (!attr || attr->relax_domain_level < 0) {
6224		if (default_relax_domain_level < 0)
6225			return;
6226		else
6227			request = default_relax_domain_level;
6228	} else
6229		request = attr->relax_domain_level;
6230	if (request < sd->level) {
6231		/* turn off idle balance on this domain */
6232		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6233	} else {
6234		/* turn on idle balance on this domain */
6235		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6236	}
6237}
6238
6239static void __sdt_free(const struct cpumask *cpu_map);
6240static int __sdt_alloc(const struct cpumask *cpu_map);
6241
6242static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6243				 const struct cpumask *cpu_map)
6244{
6245	switch (what) {
6246	case sa_rootdomain:
6247		if (!atomic_read(&d->rd->refcount))
6248			free_rootdomain(&d->rd->rcu); /* fall through */
6249	case sa_sd:
6250		free_percpu(d->sd); /* fall through */
6251	case sa_sd_storage:
6252		__sdt_free(cpu_map); /* fall through */
6253	case sa_none:
6254		break;
6255	}
6256}
6257
6258static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6259						   const struct cpumask *cpu_map)
6260{
6261	memset(d, 0, sizeof(*d));
6262
6263	if (__sdt_alloc(cpu_map))
6264		return sa_sd_storage;
6265	d->sd = alloc_percpu(struct sched_domain *);
6266	if (!d->sd)
6267		return sa_sd_storage;
6268	d->rd = alloc_rootdomain();
6269	if (!d->rd)
6270		return sa_sd;
6271	return sa_rootdomain;
6272}
6273
6274/*
6275 * NULL the sd_data elements we've used to build the sched_domain and
6276 * sched_group structure so that the subsequent __free_domain_allocs()
6277 * will not free the data we're using.
6278 */
6279static void claim_allocations(int cpu, struct sched_domain *sd)
6280{
6281	struct sd_data *sdd = sd->private;
6282
6283	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6284	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6285
6286	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6287		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6288
6289	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6290		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6291}
6292
6293#ifdef CONFIG_SCHED_SMT
6294static const struct cpumask *cpu_smt_mask(int cpu)
6295{
6296	return topology_thread_cpumask(cpu);
6297}
6298#endif
6299
6300/*
6301 * Topology list, bottom-up.
6302 */
6303static struct sched_domain_topology_level default_topology[] = {
6304#ifdef CONFIG_SCHED_SMT
6305	{ sd_init_SIBLING, cpu_smt_mask, },
6306#endif
6307#ifdef CONFIG_SCHED_MC
6308	{ sd_init_MC, cpu_coregroup_mask, },
6309#endif
6310#ifdef CONFIG_SCHED_BOOK
6311	{ sd_init_BOOK, cpu_book_mask, },
6312#endif
6313	{ sd_init_CPU, cpu_cpu_mask, },
6314#ifdef CONFIG_NUMA
6315	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6316	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6317#endif
6318	{ NULL, },
6319};
6320
6321static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6322
6323static int __sdt_alloc(const struct cpumask *cpu_map)
6324{
6325	struct sched_domain_topology_level *tl;
6326	int j;
6327
6328	for (tl = sched_domain_topology; tl->init; tl++) {
6329		struct sd_data *sdd = &tl->data;
6330
6331		sdd->sd = alloc_percpu(struct sched_domain *);
6332		if (!sdd->sd)
6333			return -ENOMEM;
6334
6335		sdd->sg = alloc_percpu(struct sched_group *);
6336		if (!sdd->sg)
6337			return -ENOMEM;
6338
6339		sdd->sgp = alloc_percpu(struct sched_group_power *);
6340		if (!sdd->sgp)
6341			return -ENOMEM;
6342
6343		for_each_cpu(j, cpu_map) {
6344			struct sched_domain *sd;
6345			struct sched_group *sg;
6346			struct sched_group_power *sgp;
6347
6348		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6349					GFP_KERNEL, cpu_to_node(j));
6350			if (!sd)
6351				return -ENOMEM;
6352
6353			*per_cpu_ptr(sdd->sd, j) = sd;
6354
6355			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6356					GFP_KERNEL, cpu_to_node(j));
6357			if (!sg)
6358				return -ENOMEM;
6359
6360			*per_cpu_ptr(sdd->sg, j) = sg;
6361
6362			sgp = kzalloc_node(sizeof(struct sched_group_power),
6363					GFP_KERNEL, cpu_to_node(j));
6364			if (!sgp)
6365				return -ENOMEM;
6366
6367			*per_cpu_ptr(sdd->sgp, j) = sgp;
6368		}
6369	}
6370
6371	return 0;
6372}
6373
6374static void __sdt_free(const struct cpumask *cpu_map)
6375{
6376	struct sched_domain_topology_level *tl;
6377	int j;
6378
6379	for (tl = sched_domain_topology; tl->init; tl++) {
6380		struct sd_data *sdd = &tl->data;
6381
6382		for_each_cpu(j, cpu_map) {
6383			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6384			if (sd && (sd->flags & SD_OVERLAP))
6385				free_sched_groups(sd->groups, 0);
6386			kfree(*per_cpu_ptr(sdd->sd, j));
6387			kfree(*per_cpu_ptr(sdd->sg, j));
6388			kfree(*per_cpu_ptr(sdd->sgp, j));
6389		}
6390		free_percpu(sdd->sd);
6391		free_percpu(sdd->sg);
6392		free_percpu(sdd->sgp);
6393	}
6394}
6395
6396struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6397		struct s_data *d, const struct cpumask *cpu_map,
6398		struct sched_domain_attr *attr, struct sched_domain *child,
6399		int cpu)
6400{
6401	struct sched_domain *sd = tl->init(tl, cpu);
6402	if (!sd)
6403		return child;
6404
6405	set_domain_attribute(sd, attr);
6406	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6407	if (child) {
6408		sd->level = child->level + 1;
6409		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6410		child->parent = sd;
6411	}
6412	sd->child = child;
6413
6414	return sd;
6415}
6416
6417/*
6418 * Build sched domains for a given set of cpus and attach the sched domains
6419 * to the individual cpus
6420 */
6421static int build_sched_domains(const struct cpumask *cpu_map,
6422			       struct sched_domain_attr *attr)
6423{
6424	enum s_alloc alloc_state = sa_none;
6425	struct sched_domain *sd;
6426	struct s_data d;
6427	int i, ret = -ENOMEM;
6428
6429	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6430	if (alloc_state != sa_rootdomain)
6431		goto error;
6432
6433	/* Set up domains for cpus specified by the cpu_map. */
6434	for_each_cpu(i, cpu_map) {
6435		struct sched_domain_topology_level *tl;
6436
6437		sd = NULL;
6438		for (tl = sched_domain_topology; tl->init; tl++) {
6439			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6440			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6441				sd->flags |= SD_OVERLAP;
6442			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6443				break;
6444		}
6445
6446		while (sd->child)
6447			sd = sd->child;
6448
6449		*per_cpu_ptr(d.sd, i) = sd;
6450	}
6451
6452	/* Build the groups for the domains */
6453	for_each_cpu(i, cpu_map) {
6454		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6455			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6456			if (sd->flags & SD_OVERLAP) {
6457				if (build_overlap_sched_groups(sd, i))
6458					goto error;
6459			} else {
6460				if (build_sched_groups(sd, i))
6461					goto error;
6462			}
6463		}
6464	}
6465
6466	/* Calculate CPU power for physical packages and nodes */
6467	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6468		if (!cpumask_test_cpu(i, cpu_map))
6469			continue;
6470
6471		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6472			claim_allocations(i, sd);
6473			init_sched_groups_power(i, sd);
6474		}
6475	}
6476
6477	/* Attach the domains */
6478	rcu_read_lock();
6479	for_each_cpu(i, cpu_map) {
6480		sd = *per_cpu_ptr(d.sd, i);
6481		cpu_attach_domain(sd, d.rd, i);
6482	}
6483	rcu_read_unlock();
6484
6485	ret = 0;
6486error:
6487	__free_domain_allocs(&d, alloc_state, cpu_map);
6488	return ret;
6489}
6490
6491static cpumask_var_t *doms_cur;	/* current sched domains */
6492static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6493static struct sched_domain_attr *dattr_cur;
6494				/* attribues of custom domains in 'doms_cur' */
6495
6496/*
6497 * Special case: If a kmalloc of a doms_cur partition (array of
6498 * cpumask) fails, then fallback to a single sched domain,
6499 * as determined by the single cpumask fallback_doms.
6500 */
6501static cpumask_var_t fallback_doms;
6502
6503/*
6504 * arch_update_cpu_topology lets virtualized architectures update the
6505 * cpu core maps. It is supposed to return 1 if the topology changed
6506 * or 0 if it stayed the same.
6507 */
6508int __attribute__((weak)) arch_update_cpu_topology(void)
6509{
6510	return 0;
6511}
6512
6513cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6514{
6515	int i;
6516	cpumask_var_t *doms;
6517
6518	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6519	if (!doms)
6520		return NULL;
6521	for (i = 0; i < ndoms; i++) {
6522		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6523			free_sched_domains(doms, i);
6524			return NULL;
6525		}
6526	}
6527	return doms;
6528}
6529
6530void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6531{
6532	unsigned int i;
6533	for (i = 0; i < ndoms; i++)
6534		free_cpumask_var(doms[i]);
6535	kfree(doms);
6536}
6537
6538/*
6539 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6540 * For now this just excludes isolated cpus, but could be used to
6541 * exclude other special cases in the future.
6542 */
6543static int init_sched_domains(const struct cpumask *cpu_map)
6544{
6545	int err;
6546
6547	arch_update_cpu_topology();
6548	ndoms_cur = 1;
6549	doms_cur = alloc_sched_domains(ndoms_cur);
6550	if (!doms_cur)
6551		doms_cur = &fallback_doms;
6552	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6553	dattr_cur = NULL;
6554	err = build_sched_domains(doms_cur[0], NULL);
6555	register_sched_domain_sysctl();
6556
6557	return err;
6558}
6559
6560/*
6561 * Detach sched domains from a group of cpus specified in cpu_map
6562 * These cpus will now be attached to the NULL domain
6563 */
6564static void detach_destroy_domains(const struct cpumask *cpu_map)
6565{
6566	int i;
6567
6568	rcu_read_lock();
6569	for_each_cpu(i, cpu_map)
6570		cpu_attach_domain(NULL, &def_root_domain, i);
6571	rcu_read_unlock();
6572}
6573
6574/* handle null as "default" */
6575static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6576			struct sched_domain_attr *new, int idx_new)
6577{
6578	struct sched_domain_attr tmp;
6579
6580	/* fast path */
6581	if (!new && !cur)
6582		return 1;
6583
6584	tmp = SD_ATTR_INIT;
6585	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6586			new ? (new + idx_new) : &tmp,
6587			sizeof(struct sched_domain_attr));
6588}
6589
6590/*
6591 * Partition sched domains as specified by the 'ndoms_new'
6592 * cpumasks in the array doms_new[] of cpumasks. This compares
6593 * doms_new[] to the current sched domain partitioning, doms_cur[].
6594 * It destroys each deleted domain and builds each new domain.
6595 *
6596 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6597 * The masks don't intersect (don't overlap.) We should setup one
6598 * sched domain for each mask. CPUs not in any of the cpumasks will
6599 * not be load balanced. If the same cpumask appears both in the
6600 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6601 * it as it is.
6602 *
6603 * The passed in 'doms_new' should be allocated using
6604 * alloc_sched_domains.  This routine takes ownership of it and will
6605 * free_sched_domains it when done with it. If the caller failed the
6606 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6607 * and partition_sched_domains() will fallback to the single partition
6608 * 'fallback_doms', it also forces the domains to be rebuilt.
6609 *
6610 * If doms_new == NULL it will be replaced with cpu_online_mask.
6611 * ndoms_new == 0 is a special case for destroying existing domains,
6612 * and it will not create the default domain.
6613 *
6614 * Call with hotplug lock held
6615 */
6616void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6617			     struct sched_domain_attr *dattr_new)
6618{
6619	int i, j, n;
6620	int new_topology;
6621
6622	mutex_lock(&sched_domains_mutex);
6623
6624	/* always unregister in case we don't destroy any domains */
6625	unregister_sched_domain_sysctl();
6626
6627	/* Let architecture update cpu core mappings. */
6628	new_topology = arch_update_cpu_topology();
6629
6630	n = doms_new ? ndoms_new : 0;
6631
6632	/* Destroy deleted domains */
6633	for (i = 0; i < ndoms_cur; i++) {
6634		for (j = 0; j < n && !new_topology; j++) {
6635			if (cpumask_equal(doms_cur[i], doms_new[j])
6636			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6637				goto match1;
6638		}
6639		/* no match - a current sched domain not in new doms_new[] */
6640		detach_destroy_domains(doms_cur[i]);
6641match1:
6642		;
6643	}
6644
6645	if (doms_new == NULL) {
6646		ndoms_cur = 0;
6647		doms_new = &fallback_doms;
6648		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6649		WARN_ON_ONCE(dattr_new);
6650	}
6651
6652	/* Build new domains */
6653	for (i = 0; i < ndoms_new; i++) {
6654		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6655			if (cpumask_equal(doms_new[i], doms_cur[j])
6656			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6657				goto match2;
6658		}
6659		/* no match - add a new doms_new */
6660		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6661match2:
6662		;
6663	}
6664
6665	/* Remember the new sched domains */
6666	if (doms_cur != &fallback_doms)
6667		free_sched_domains(doms_cur, ndoms_cur);
6668	kfree(dattr_cur);	/* kfree(NULL) is safe */
6669	doms_cur = doms_new;
6670	dattr_cur = dattr_new;
6671	ndoms_cur = ndoms_new;
6672
6673	register_sched_domain_sysctl();
6674
6675	mutex_unlock(&sched_domains_mutex);
6676}
6677
6678#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6679static void reinit_sched_domains(void)
6680{
6681	get_online_cpus();
6682
6683	/* Destroy domains first to force the rebuild */
6684	partition_sched_domains(0, NULL, NULL);
6685
6686	rebuild_sched_domains();
6687	put_online_cpus();
6688}
6689
6690static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6691{
6692	unsigned int level = 0;
6693
6694	if (sscanf(buf, "%u", &level) != 1)
6695		return -EINVAL;
6696
6697	/*
6698	 * level is always be positive so don't check for
6699	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6700	 * What happens on 0 or 1 byte write,
6701	 * need to check for count as well?
6702	 */
6703
6704	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6705		return -EINVAL;
6706
6707	if (smt)
6708		sched_smt_power_savings = level;
6709	else
6710		sched_mc_power_savings = level;
6711
6712	reinit_sched_domains();
6713
6714	return count;
6715}
6716
6717#ifdef CONFIG_SCHED_MC
6718static ssize_t sched_mc_power_savings_show(struct device *dev,
6719					   struct device_attribute *attr,
6720					   char *buf)
6721{
6722	return sprintf(buf, "%u\n", sched_mc_power_savings);
6723}
6724static ssize_t sched_mc_power_savings_store(struct device *dev,
6725					    struct device_attribute *attr,
6726					    const char *buf, size_t count)
6727{
6728	return sched_power_savings_store(buf, count, 0);
6729}
6730static DEVICE_ATTR(sched_mc_power_savings, 0644,
6731		   sched_mc_power_savings_show,
6732		   sched_mc_power_savings_store);
6733#endif
6734
6735#ifdef CONFIG_SCHED_SMT
6736static ssize_t sched_smt_power_savings_show(struct device *dev,
6737					    struct device_attribute *attr,
6738					    char *buf)
6739{
6740	return sprintf(buf, "%u\n", sched_smt_power_savings);
6741}
6742static ssize_t sched_smt_power_savings_store(struct device *dev,
6743					    struct device_attribute *attr,
6744					     const char *buf, size_t count)
6745{
6746	return sched_power_savings_store(buf, count, 1);
6747}
6748static DEVICE_ATTR(sched_smt_power_savings, 0644,
6749		   sched_smt_power_savings_show,
6750		   sched_smt_power_savings_store);
6751#endif
6752
6753int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6754{
6755	int err = 0;
6756
6757#ifdef CONFIG_SCHED_SMT
6758	if (smt_capable())
6759		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6760#endif
6761#ifdef CONFIG_SCHED_MC
6762	if (!err && mc_capable())
6763		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6764#endif
6765	return err;
6766}
6767#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6768
6769/*
6770 * Update cpusets according to cpu_active mask.  If cpusets are
6771 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6772 * around partition_sched_domains().
6773 */
6774static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6775			     void *hcpu)
6776{
6777	switch (action & ~CPU_TASKS_FROZEN) {
6778	case CPU_ONLINE:
6779	case CPU_DOWN_FAILED:
6780		cpuset_update_active_cpus();
6781		return NOTIFY_OK;
6782	default:
6783		return NOTIFY_DONE;
6784	}
6785}
6786
6787static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6788			       void *hcpu)
6789{
6790	switch (action & ~CPU_TASKS_FROZEN) {
6791	case CPU_DOWN_PREPARE:
6792		cpuset_update_active_cpus();
6793		return NOTIFY_OK;
6794	default:
6795		return NOTIFY_DONE;
6796	}
6797}
6798
6799void __init sched_init_smp(void)
6800{
6801	cpumask_var_t non_isolated_cpus;
6802
6803	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6804	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6805
6806	get_online_cpus();
6807	mutex_lock(&sched_domains_mutex);
6808	init_sched_domains(cpu_active_mask);
6809	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6810	if (cpumask_empty(non_isolated_cpus))
6811		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6812	mutex_unlock(&sched_domains_mutex);
6813	put_online_cpus();
6814
6815	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6816	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6817
6818	/* RT runtime code needs to handle some hotplug events */
6819	hotcpu_notifier(update_runtime, 0);
6820
6821	init_hrtick();
6822
6823	/* Move init over to a non-isolated CPU */
6824	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6825		BUG();
6826	sched_init_granularity();
6827	free_cpumask_var(non_isolated_cpus);
6828
6829	init_sched_rt_class();
6830}
6831#else
6832void __init sched_init_smp(void)
6833{
6834	sched_init_granularity();
6835}
6836#endif /* CONFIG_SMP */
6837
6838const_debug unsigned int sysctl_timer_migration = 1;
6839
6840int in_sched_functions(unsigned long addr)
6841{
6842	return in_lock_functions(addr) ||
6843		(addr >= (unsigned long)__sched_text_start
6844		&& addr < (unsigned long)__sched_text_end);
6845}
6846
6847#ifdef CONFIG_CGROUP_SCHED
6848struct task_group root_task_group;
6849#endif
6850
6851DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6852
6853void __init sched_init(void)
6854{
6855	int i, j;
6856	unsigned long alloc_size = 0, ptr;
6857
6858#ifdef CONFIG_FAIR_GROUP_SCHED
6859	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6860#endif
6861#ifdef CONFIG_RT_GROUP_SCHED
6862	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6863#endif
6864#ifdef CONFIG_CPUMASK_OFFSTACK
6865	alloc_size += num_possible_cpus() * cpumask_size();
6866#endif
6867	if (alloc_size) {
6868		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6869
6870#ifdef CONFIG_FAIR_GROUP_SCHED
6871		root_task_group.se = (struct sched_entity **)ptr;
6872		ptr += nr_cpu_ids * sizeof(void **);
6873
6874		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6875		ptr += nr_cpu_ids * sizeof(void **);
6876
6877#endif /* CONFIG_FAIR_GROUP_SCHED */
6878#ifdef CONFIG_RT_GROUP_SCHED
6879		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6880		ptr += nr_cpu_ids * sizeof(void **);
6881
6882		root_task_group.rt_rq = (struct rt_rq **)ptr;
6883		ptr += nr_cpu_ids * sizeof(void **);
6884
6885#endif /* CONFIG_RT_GROUP_SCHED */
6886#ifdef CONFIG_CPUMASK_OFFSTACK
6887		for_each_possible_cpu(i) {
6888			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6889			ptr += cpumask_size();
6890		}
6891#endif /* CONFIG_CPUMASK_OFFSTACK */
6892	}
6893
6894#ifdef CONFIG_SMP
6895	init_defrootdomain();
6896#endif
6897
6898	init_rt_bandwidth(&def_rt_bandwidth,
6899			global_rt_period(), global_rt_runtime());
6900
6901#ifdef CONFIG_RT_GROUP_SCHED
6902	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6903			global_rt_period(), global_rt_runtime());
6904#endif /* CONFIG_RT_GROUP_SCHED */
6905
6906#ifdef CONFIG_CGROUP_SCHED
6907	list_add(&root_task_group.list, &task_groups);
6908	INIT_LIST_HEAD(&root_task_group.children);
6909	INIT_LIST_HEAD(&root_task_group.siblings);
6910	autogroup_init(&init_task);
6911
6912#endif /* CONFIG_CGROUP_SCHED */
6913
6914#ifdef CONFIG_CGROUP_CPUACCT
6915	root_cpuacct.cpustat = &kernel_cpustat;
6916	root_cpuacct.cpuusage = alloc_percpu(u64);
6917	/* Too early, not expected to fail */
6918	BUG_ON(!root_cpuacct.cpuusage);
6919#endif
6920	for_each_possible_cpu(i) {
6921		struct rq *rq;
6922
6923		rq = cpu_rq(i);
6924		raw_spin_lock_init(&rq->lock);
6925		rq->nr_running = 0;
6926		rq->calc_load_active = 0;
6927		rq->calc_load_update = jiffies + LOAD_FREQ;
6928		init_cfs_rq(&rq->cfs);
6929		init_rt_rq(&rq->rt, rq);
6930#ifdef CONFIG_FAIR_GROUP_SCHED
6931		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6932		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6933		/*
6934		 * How much cpu bandwidth does root_task_group get?
6935		 *
6936		 * In case of task-groups formed thr' the cgroup filesystem, it
6937		 * gets 100% of the cpu resources in the system. This overall
6938		 * system cpu resource is divided among the tasks of
6939		 * root_task_group and its child task-groups in a fair manner,
6940		 * based on each entity's (task or task-group's) weight
6941		 * (se->load.weight).
6942		 *
6943		 * In other words, if root_task_group has 10 tasks of weight
6944		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6945		 * then A0's share of the cpu resource is:
6946		 *
6947		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6948		 *
6949		 * We achieve this by letting root_task_group's tasks sit
6950		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6951		 */
6952		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6953		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6954#endif /* CONFIG_FAIR_GROUP_SCHED */
6955
6956		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6957#ifdef CONFIG_RT_GROUP_SCHED
6958		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6959		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6960#endif
6961
6962		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6963			rq->cpu_load[j] = 0;
6964
6965		rq->last_load_update_tick = jiffies;
6966
6967#ifdef CONFIG_SMP
6968		rq->sd = NULL;
6969		rq->rd = NULL;
6970		rq->cpu_power = SCHED_POWER_SCALE;
6971		rq->post_schedule = 0;
6972		rq->active_balance = 0;
6973		rq->next_balance = jiffies;
6974		rq->push_cpu = 0;
6975		rq->cpu = i;
6976		rq->online = 0;
6977		rq->idle_stamp = 0;
6978		rq->avg_idle = 2*sysctl_sched_migration_cost;
6979
6980		INIT_LIST_HEAD(&rq->cfs_tasks);
6981
6982		rq_attach_root(rq, &def_root_domain);
6983#ifdef CONFIG_NO_HZ
6984		rq->nohz_flags = 0;
6985#endif
6986#endif
6987		init_rq_hrtick(rq);
6988		atomic_set(&rq->nr_iowait, 0);
6989	}
6990
6991	set_load_weight(&init_task);
6992
6993#ifdef CONFIG_PREEMPT_NOTIFIERS
6994	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6995#endif
6996
6997#ifdef CONFIG_RT_MUTEXES
6998	plist_head_init(&init_task.pi_waiters);
6999#endif
7000
7001	/*
7002	 * The boot idle thread does lazy MMU switching as well:
7003	 */
7004	atomic_inc(&init_mm.mm_count);
7005	enter_lazy_tlb(&init_mm, current);
7006
7007	/*
7008	 * Make us the idle thread. Technically, schedule() should not be
7009	 * called from this thread, however somewhere below it might be,
7010	 * but because we are the idle thread, we just pick up running again
7011	 * when this runqueue becomes "idle".
7012	 */
7013	init_idle(current, smp_processor_id());
7014
7015	calc_load_update = jiffies + LOAD_FREQ;
7016
7017	/*
7018	 * During early bootup we pretend to be a normal task:
7019	 */
7020	current->sched_class = &fair_sched_class;
7021
7022#ifdef CONFIG_SMP
7023	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7024	/* May be allocated at isolcpus cmdline parse time */
7025	if (cpu_isolated_map == NULL)
7026		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7027#endif
7028	init_sched_fair_class();
7029
7030	scheduler_running = 1;
7031}
7032
7033#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7034static inline int preempt_count_equals(int preempt_offset)
7035{
7036	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7037
7038	return (nested == preempt_offset);
7039}
7040
7041void __might_sleep(const char *file, int line, int preempt_offset)
7042{
7043	static unsigned long prev_jiffy;	/* ratelimiting */
7044
7045	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7046	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7047	    system_state != SYSTEM_RUNNING || oops_in_progress)
7048		return;
7049	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7050		return;
7051	prev_jiffy = jiffies;
7052
7053	printk(KERN_ERR
7054		"BUG: sleeping function called from invalid context at %s:%d\n",
7055			file, line);
7056	printk(KERN_ERR
7057		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7058			in_atomic(), irqs_disabled(),
7059			current->pid, current->comm);
7060
7061	debug_show_held_locks(current);
7062	if (irqs_disabled())
7063		print_irqtrace_events(current);
7064	dump_stack();
7065}
7066EXPORT_SYMBOL(__might_sleep);
7067#endif
7068
7069#ifdef CONFIG_MAGIC_SYSRQ
7070static void normalize_task(struct rq *rq, struct task_struct *p)
7071{
7072	const struct sched_class *prev_class = p->sched_class;
7073	int old_prio = p->prio;
7074	int on_rq;
7075
7076	on_rq = p->on_rq;
7077	if (on_rq)
7078		dequeue_task(rq, p, 0);
7079	__setscheduler(rq, p, SCHED_NORMAL, 0);
7080	if (on_rq) {
7081		enqueue_task(rq, p, 0);
7082		resched_task(rq->curr);
7083	}
7084
7085	check_class_changed(rq, p, prev_class, old_prio);
7086}
7087
7088void normalize_rt_tasks(void)
7089{
7090	struct task_struct *g, *p;
7091	unsigned long flags;
7092	struct rq *rq;
7093
7094	read_lock_irqsave(&tasklist_lock, flags);
7095	do_each_thread(g, p) {
7096		/*
7097		 * Only normalize user tasks:
7098		 */
7099		if (!p->mm)
7100			continue;
7101
7102		p->se.exec_start		= 0;
7103#ifdef CONFIG_SCHEDSTATS
7104		p->se.statistics.wait_start	= 0;
7105		p->se.statistics.sleep_start	= 0;
7106		p->se.statistics.block_start	= 0;
7107#endif
7108
7109		if (!rt_task(p)) {
7110			/*
7111			 * Renice negative nice level userspace
7112			 * tasks back to 0:
7113			 */
7114			if (TASK_NICE(p) < 0 && p->mm)
7115				set_user_nice(p, 0);
7116			continue;
7117		}
7118
7119		raw_spin_lock(&p->pi_lock);
7120		rq = __task_rq_lock(p);
7121
7122		normalize_task(rq, p);
7123
7124		__task_rq_unlock(rq);
7125		raw_spin_unlock(&p->pi_lock);
7126	} while_each_thread(g, p);
7127
7128	read_unlock_irqrestore(&tasklist_lock, flags);
7129}
7130
7131#endif /* CONFIG_MAGIC_SYSRQ */
7132
7133#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7134/*
7135 * These functions are only useful for the IA64 MCA handling, or kdb.
7136 *
7137 * They can only be called when the whole system has been
7138 * stopped - every CPU needs to be quiescent, and no scheduling
7139 * activity can take place. Using them for anything else would
7140 * be a serious bug, and as a result, they aren't even visible
7141 * under any other configuration.
7142 */
7143
7144/**
7145 * curr_task - return the current task for a given cpu.
7146 * @cpu: the processor in question.
7147 *
7148 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7149 */
7150struct task_struct *curr_task(int cpu)
7151{
7152	return cpu_curr(cpu);
7153}
7154
7155#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7156
7157#ifdef CONFIG_IA64
7158/**
7159 * set_curr_task - set the current task for a given cpu.
7160 * @cpu: the processor in question.
7161 * @p: the task pointer to set.
7162 *
7163 * Description: This function must only be used when non-maskable interrupts
7164 * are serviced on a separate stack. It allows the architecture to switch the
7165 * notion of the current task on a cpu in a non-blocking manner. This function
7166 * must be called with all CPU's synchronized, and interrupts disabled, the
7167 * and caller must save the original value of the current task (see
7168 * curr_task() above) and restore that value before reenabling interrupts and
7169 * re-starting the system.
7170 *
7171 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7172 */
7173void set_curr_task(int cpu, struct task_struct *p)
7174{
7175	cpu_curr(cpu) = p;
7176}
7177
7178#endif
7179
7180#ifdef CONFIG_CGROUP_SCHED
7181/* task_group_lock serializes the addition/removal of task groups */
7182static DEFINE_SPINLOCK(task_group_lock);
7183
7184static void free_sched_group(struct task_group *tg)
7185{
7186	free_fair_sched_group(tg);
7187	free_rt_sched_group(tg);
7188	autogroup_free(tg);
7189	kfree(tg);
7190}
7191
7192/* allocate runqueue etc for a new task group */
7193struct task_group *sched_create_group(struct task_group *parent)
7194{
7195	struct task_group *tg;
7196	unsigned long flags;
7197
7198	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7199	if (!tg)
7200		return ERR_PTR(-ENOMEM);
7201
7202	if (!alloc_fair_sched_group(tg, parent))
7203		goto err;
7204
7205	if (!alloc_rt_sched_group(tg, parent))
7206		goto err;
7207
7208	spin_lock_irqsave(&task_group_lock, flags);
7209	list_add_rcu(&tg->list, &task_groups);
7210
7211	WARN_ON(!parent); /* root should already exist */
7212
7213	tg->parent = parent;
7214	INIT_LIST_HEAD(&tg->children);
7215	list_add_rcu(&tg->siblings, &parent->children);
7216	spin_unlock_irqrestore(&task_group_lock, flags);
7217
7218	return tg;
7219
7220err:
7221	free_sched_group(tg);
7222	return ERR_PTR(-ENOMEM);
7223}
7224
7225/* rcu callback to free various structures associated with a task group */
7226static void free_sched_group_rcu(struct rcu_head *rhp)
7227{
7228	/* now it should be safe to free those cfs_rqs */
7229	free_sched_group(container_of(rhp, struct task_group, rcu));
7230}
7231
7232/* Destroy runqueue etc associated with a task group */
7233void sched_destroy_group(struct task_group *tg)
7234{
7235	unsigned long flags;
7236	int i;
7237
7238	/* end participation in shares distribution */
7239	for_each_possible_cpu(i)
7240		unregister_fair_sched_group(tg, i);
7241
7242	spin_lock_irqsave(&task_group_lock, flags);
7243	list_del_rcu(&tg->list);
7244	list_del_rcu(&tg->siblings);
7245	spin_unlock_irqrestore(&task_group_lock, flags);
7246
7247	/* wait for possible concurrent references to cfs_rqs complete */
7248	call_rcu(&tg->rcu, free_sched_group_rcu);
7249}
7250
7251/* change task's runqueue when it moves between groups.
7252 *	The caller of this function should have put the task in its new group
7253 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7254 *	reflect its new group.
7255 */
7256void sched_move_task(struct task_struct *tsk)
7257{
7258	int on_rq, running;
7259	unsigned long flags;
7260	struct rq *rq;
7261
7262	rq = task_rq_lock(tsk, &flags);
7263
7264	running = task_current(rq, tsk);
7265	on_rq = tsk->on_rq;
7266
7267	if (on_rq)
7268		dequeue_task(rq, tsk, 0);
7269	if (unlikely(running))
7270		tsk->sched_class->put_prev_task(rq, tsk);
7271
7272#ifdef CONFIG_FAIR_GROUP_SCHED
7273	if (tsk->sched_class->task_move_group)
7274		tsk->sched_class->task_move_group(tsk, on_rq);
7275	else
7276#endif
7277		set_task_rq(tsk, task_cpu(tsk));
7278
7279	if (unlikely(running))
7280		tsk->sched_class->set_curr_task(rq);
7281	if (on_rq)
7282		enqueue_task(rq, tsk, 0);
7283
7284	task_rq_unlock(rq, tsk, &flags);
7285}
7286#endif /* CONFIG_CGROUP_SCHED */
7287
7288#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7289static unsigned long to_ratio(u64 period, u64 runtime)
7290{
7291	if (runtime == RUNTIME_INF)
7292		return 1ULL << 20;
7293
7294	return div64_u64(runtime << 20, period);
7295}
7296#endif
7297
7298#ifdef CONFIG_RT_GROUP_SCHED
7299/*
7300 * Ensure that the real time constraints are schedulable.
7301 */
7302static DEFINE_MUTEX(rt_constraints_mutex);
7303
7304/* Must be called with tasklist_lock held */
7305static inline int tg_has_rt_tasks(struct task_group *tg)
7306{
7307	struct task_struct *g, *p;
7308
7309	do_each_thread(g, p) {
7310		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7311			return 1;
7312	} while_each_thread(g, p);
7313
7314	return 0;
7315}
7316
7317struct rt_schedulable_data {
7318	struct task_group *tg;
7319	u64 rt_period;
7320	u64 rt_runtime;
7321};
7322
7323static int tg_rt_schedulable(struct task_group *tg, void *data)
7324{
7325	struct rt_schedulable_data *d = data;
7326	struct task_group *child;
7327	unsigned long total, sum = 0;
7328	u64 period, runtime;
7329
7330	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7331	runtime = tg->rt_bandwidth.rt_runtime;
7332
7333	if (tg == d->tg) {
7334		period = d->rt_period;
7335		runtime = d->rt_runtime;
7336	}
7337
7338	/*
7339	 * Cannot have more runtime than the period.
7340	 */
7341	if (runtime > period && runtime != RUNTIME_INF)
7342		return -EINVAL;
7343
7344	/*
7345	 * Ensure we don't starve existing RT tasks.
7346	 */
7347	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7348		return -EBUSY;
7349
7350	total = to_ratio(period, runtime);
7351
7352	/*
7353	 * Nobody can have more than the global setting allows.
7354	 */
7355	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7356		return -EINVAL;
7357
7358	/*
7359	 * The sum of our children's runtime should not exceed our own.
7360	 */
7361	list_for_each_entry_rcu(child, &tg->children, siblings) {
7362		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7363		runtime = child->rt_bandwidth.rt_runtime;
7364
7365		if (child == d->tg) {
7366			period = d->rt_period;
7367			runtime = d->rt_runtime;
7368		}
7369
7370		sum += to_ratio(period, runtime);
7371	}
7372
7373	if (sum > total)
7374		return -EINVAL;
7375
7376	return 0;
7377}
7378
7379static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7380{
7381	int ret;
7382
7383	struct rt_schedulable_data data = {
7384		.tg = tg,
7385		.rt_period = period,
7386		.rt_runtime = runtime,
7387	};
7388
7389	rcu_read_lock();
7390	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7391	rcu_read_unlock();
7392
7393	return ret;
7394}
7395
7396static int tg_set_rt_bandwidth(struct task_group *tg,
7397		u64 rt_period, u64 rt_runtime)
7398{
7399	int i, err = 0;
7400
7401	mutex_lock(&rt_constraints_mutex);
7402	read_lock(&tasklist_lock);
7403	err = __rt_schedulable(tg, rt_period, rt_runtime);
7404	if (err)
7405		goto unlock;
7406
7407	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7408	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7409	tg->rt_bandwidth.rt_runtime = rt_runtime;
7410
7411	for_each_possible_cpu(i) {
7412		struct rt_rq *rt_rq = tg->rt_rq[i];
7413
7414		raw_spin_lock(&rt_rq->rt_runtime_lock);
7415		rt_rq->rt_runtime = rt_runtime;
7416		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7417	}
7418	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7419unlock:
7420	read_unlock(&tasklist_lock);
7421	mutex_unlock(&rt_constraints_mutex);
7422
7423	return err;
7424}
7425
7426int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7427{
7428	u64 rt_runtime, rt_period;
7429
7430	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7431	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7432	if (rt_runtime_us < 0)
7433		rt_runtime = RUNTIME_INF;
7434
7435	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7436}
7437
7438long sched_group_rt_runtime(struct task_group *tg)
7439{
7440	u64 rt_runtime_us;
7441
7442	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7443		return -1;
7444
7445	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7446	do_div(rt_runtime_us, NSEC_PER_USEC);
7447	return rt_runtime_us;
7448}
7449
7450int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7451{
7452	u64 rt_runtime, rt_period;
7453
7454	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7455	rt_runtime = tg->rt_bandwidth.rt_runtime;
7456
7457	if (rt_period == 0)
7458		return -EINVAL;
7459
7460	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7461}
7462
7463long sched_group_rt_period(struct task_group *tg)
7464{
7465	u64 rt_period_us;
7466
7467	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7468	do_div(rt_period_us, NSEC_PER_USEC);
7469	return rt_period_us;
7470}
7471
7472static int sched_rt_global_constraints(void)
7473{
7474	u64 runtime, period;
7475	int ret = 0;
7476
7477	if (sysctl_sched_rt_period <= 0)
7478		return -EINVAL;
7479
7480	runtime = global_rt_runtime();
7481	period = global_rt_period();
7482
7483	/*
7484	 * Sanity check on the sysctl variables.
7485	 */
7486	if (runtime > period && runtime != RUNTIME_INF)
7487		return -EINVAL;
7488
7489	mutex_lock(&rt_constraints_mutex);
7490	read_lock(&tasklist_lock);
7491	ret = __rt_schedulable(NULL, 0, 0);
7492	read_unlock(&tasklist_lock);
7493	mutex_unlock(&rt_constraints_mutex);
7494
7495	return ret;
7496}
7497
7498int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7499{
7500	/* Don't accept realtime tasks when there is no way for them to run */
7501	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7502		return 0;
7503
7504	return 1;
7505}
7506
7507#else /* !CONFIG_RT_GROUP_SCHED */
7508static int sched_rt_global_constraints(void)
7509{
7510	unsigned long flags;
7511	int i;
7512
7513	if (sysctl_sched_rt_period <= 0)
7514		return -EINVAL;
7515
7516	/*
7517	 * There's always some RT tasks in the root group
7518	 * -- migration, kstopmachine etc..
7519	 */
7520	if (sysctl_sched_rt_runtime == 0)
7521		return -EBUSY;
7522
7523	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7524	for_each_possible_cpu(i) {
7525		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7526
7527		raw_spin_lock(&rt_rq->rt_runtime_lock);
7528		rt_rq->rt_runtime = global_rt_runtime();
7529		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7530	}
7531	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7532
7533	return 0;
7534}
7535#endif /* CONFIG_RT_GROUP_SCHED */
7536
7537int sched_rt_handler(struct ctl_table *table, int write,
7538		void __user *buffer, size_t *lenp,
7539		loff_t *ppos)
7540{
7541	int ret;
7542	int old_period, old_runtime;
7543	static DEFINE_MUTEX(mutex);
7544
7545	mutex_lock(&mutex);
7546	old_period = sysctl_sched_rt_period;
7547	old_runtime = sysctl_sched_rt_runtime;
7548
7549	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7550
7551	if (!ret && write) {
7552		ret = sched_rt_global_constraints();
7553		if (ret) {
7554			sysctl_sched_rt_period = old_period;
7555			sysctl_sched_rt_runtime = old_runtime;
7556		} else {
7557			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7558			def_rt_bandwidth.rt_period =
7559				ns_to_ktime(global_rt_period());
7560		}
7561	}
7562	mutex_unlock(&mutex);
7563
7564	return ret;
7565}
7566
7567#ifdef CONFIG_CGROUP_SCHED
7568
7569/* return corresponding task_group object of a cgroup */
7570static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7571{
7572	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7573			    struct task_group, css);
7574}
7575
7576static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7577{
7578	struct task_group *tg, *parent;
7579
7580	if (!cgrp->parent) {
7581		/* This is early initialization for the top cgroup */
7582		return &root_task_group.css;
7583	}
7584
7585	parent = cgroup_tg(cgrp->parent);
7586	tg = sched_create_group(parent);
7587	if (IS_ERR(tg))
7588		return ERR_PTR(-ENOMEM);
7589
7590	return &tg->css;
7591}
7592
7593static void cpu_cgroup_destroy(struct cgroup *cgrp)
7594{
7595	struct task_group *tg = cgroup_tg(cgrp);
7596
7597	sched_destroy_group(tg);
7598}
7599
7600static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7601				 struct cgroup_taskset *tset)
7602{
7603	struct task_struct *task;
7604
7605	cgroup_taskset_for_each(task, cgrp, tset) {
7606#ifdef CONFIG_RT_GROUP_SCHED
7607		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7608			return -EINVAL;
7609#else
7610		/* We don't support RT-tasks being in separate groups */
7611		if (task->sched_class != &fair_sched_class)
7612			return -EINVAL;
7613#endif
7614	}
7615	return 0;
7616}
7617
7618static void cpu_cgroup_attach(struct cgroup *cgrp,
7619			      struct cgroup_taskset *tset)
7620{
7621	struct task_struct *task;
7622
7623	cgroup_taskset_for_each(task, cgrp, tset)
7624		sched_move_task(task);
7625}
7626
7627static void
7628cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7629		struct task_struct *task)
7630{
7631	/*
7632	 * cgroup_exit() is called in the copy_process() failure path.
7633	 * Ignore this case since the task hasn't ran yet, this avoids
7634	 * trying to poke a half freed task state from generic code.
7635	 */
7636	if (!(task->flags & PF_EXITING))
7637		return;
7638
7639	sched_move_task(task);
7640}
7641
7642#ifdef CONFIG_FAIR_GROUP_SCHED
7643static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7644				u64 shareval)
7645{
7646	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7647}
7648
7649static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7650{
7651	struct task_group *tg = cgroup_tg(cgrp);
7652
7653	return (u64) scale_load_down(tg->shares);
7654}
7655
7656#ifdef CONFIG_CFS_BANDWIDTH
7657static DEFINE_MUTEX(cfs_constraints_mutex);
7658
7659const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7660const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7661
7662static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7663
7664static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7665{
7666	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7667	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7668
7669	if (tg == &root_task_group)
7670		return -EINVAL;
7671
7672	/*
7673	 * Ensure we have at some amount of bandwidth every period.  This is
7674	 * to prevent reaching a state of large arrears when throttled via
7675	 * entity_tick() resulting in prolonged exit starvation.
7676	 */
7677	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7678		return -EINVAL;
7679
7680	/*
7681	 * Likewise, bound things on the otherside by preventing insane quota
7682	 * periods.  This also allows us to normalize in computing quota
7683	 * feasibility.
7684	 */
7685	if (period > max_cfs_quota_period)
7686		return -EINVAL;
7687
7688	mutex_lock(&cfs_constraints_mutex);
7689	ret = __cfs_schedulable(tg, period, quota);
7690	if (ret)
7691		goto out_unlock;
7692
7693	runtime_enabled = quota != RUNTIME_INF;
7694	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7695	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7696	raw_spin_lock_irq(&cfs_b->lock);
7697	cfs_b->period = ns_to_ktime(period);
7698	cfs_b->quota = quota;
7699
7700	__refill_cfs_bandwidth_runtime(cfs_b);
7701	/* restart the period timer (if active) to handle new period expiry */
7702	if (runtime_enabled && cfs_b->timer_active) {
7703		/* force a reprogram */
7704		cfs_b->timer_active = 0;
7705		__start_cfs_bandwidth(cfs_b);
7706	}
7707	raw_spin_unlock_irq(&cfs_b->lock);
7708
7709	for_each_possible_cpu(i) {
7710		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7711		struct rq *rq = cfs_rq->rq;
7712
7713		raw_spin_lock_irq(&rq->lock);
7714		cfs_rq->runtime_enabled = runtime_enabled;
7715		cfs_rq->runtime_remaining = 0;
7716
7717		if (cfs_rq->throttled)
7718			unthrottle_cfs_rq(cfs_rq);
7719		raw_spin_unlock_irq(&rq->lock);
7720	}
7721out_unlock:
7722	mutex_unlock(&cfs_constraints_mutex);
7723
7724	return ret;
7725}
7726
7727int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7728{
7729	u64 quota, period;
7730
7731	period = ktime_to_ns(tg->cfs_bandwidth.period);
7732	if (cfs_quota_us < 0)
7733		quota = RUNTIME_INF;
7734	else
7735		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7736
7737	return tg_set_cfs_bandwidth(tg, period, quota);
7738}
7739
7740long tg_get_cfs_quota(struct task_group *tg)
7741{
7742	u64 quota_us;
7743
7744	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7745		return -1;
7746
7747	quota_us = tg->cfs_bandwidth.quota;
7748	do_div(quota_us, NSEC_PER_USEC);
7749
7750	return quota_us;
7751}
7752
7753int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7754{
7755	u64 quota, period;
7756
7757	period = (u64)cfs_period_us * NSEC_PER_USEC;
7758	quota = tg->cfs_bandwidth.quota;
7759
7760	return tg_set_cfs_bandwidth(tg, period, quota);
7761}
7762
7763long tg_get_cfs_period(struct task_group *tg)
7764{
7765	u64 cfs_period_us;
7766
7767	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7768	do_div(cfs_period_us, NSEC_PER_USEC);
7769
7770	return cfs_period_us;
7771}
7772
7773static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7774{
7775	return tg_get_cfs_quota(cgroup_tg(cgrp));
7776}
7777
7778static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7779				s64 cfs_quota_us)
7780{
7781	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7782}
7783
7784static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7785{
7786	return tg_get_cfs_period(cgroup_tg(cgrp));
7787}
7788
7789static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7790				u64 cfs_period_us)
7791{
7792	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7793}
7794
7795struct cfs_schedulable_data {
7796	struct task_group *tg;
7797	u64 period, quota;
7798};
7799
7800/*
7801 * normalize group quota/period to be quota/max_period
7802 * note: units are usecs
7803 */
7804static u64 normalize_cfs_quota(struct task_group *tg,
7805			       struct cfs_schedulable_data *d)
7806{
7807	u64 quota, period;
7808
7809	if (tg == d->tg) {
7810		period = d->period;
7811		quota = d->quota;
7812	} else {
7813		period = tg_get_cfs_period(tg);
7814		quota = tg_get_cfs_quota(tg);
7815	}
7816
7817	/* note: these should typically be equivalent */
7818	if (quota == RUNTIME_INF || quota == -1)
7819		return RUNTIME_INF;
7820
7821	return to_ratio(period, quota);
7822}
7823
7824static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7825{
7826	struct cfs_schedulable_data *d = data;
7827	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7828	s64 quota = 0, parent_quota = -1;
7829
7830	if (!tg->parent) {
7831		quota = RUNTIME_INF;
7832	} else {
7833		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7834
7835		quota = normalize_cfs_quota(tg, d);
7836		parent_quota = parent_b->hierarchal_quota;
7837
7838		/*
7839		 * ensure max(child_quota) <= parent_quota, inherit when no
7840		 * limit is set
7841		 */
7842		if (quota == RUNTIME_INF)
7843			quota = parent_quota;
7844		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7845			return -EINVAL;
7846	}
7847	cfs_b->hierarchal_quota = quota;
7848
7849	return 0;
7850}
7851
7852static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7853{
7854	int ret;
7855	struct cfs_schedulable_data data = {
7856		.tg = tg,
7857		.period = period,
7858		.quota = quota,
7859	};
7860
7861	if (quota != RUNTIME_INF) {
7862		do_div(data.period, NSEC_PER_USEC);
7863		do_div(data.quota, NSEC_PER_USEC);
7864	}
7865
7866	rcu_read_lock();
7867	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7868	rcu_read_unlock();
7869
7870	return ret;
7871}
7872
7873static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7874		struct cgroup_map_cb *cb)
7875{
7876	struct task_group *tg = cgroup_tg(cgrp);
7877	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7878
7879	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7880	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7881	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7882
7883	return 0;
7884}
7885#endif /* CONFIG_CFS_BANDWIDTH */
7886#endif /* CONFIG_FAIR_GROUP_SCHED */
7887
7888#ifdef CONFIG_RT_GROUP_SCHED
7889static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7890				s64 val)
7891{
7892	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7893}
7894
7895static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7896{
7897	return sched_group_rt_runtime(cgroup_tg(cgrp));
7898}
7899
7900static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7901		u64 rt_period_us)
7902{
7903	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7904}
7905
7906static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7907{
7908	return sched_group_rt_period(cgroup_tg(cgrp));
7909}
7910#endif /* CONFIG_RT_GROUP_SCHED */
7911
7912static struct cftype cpu_files[] = {
7913#ifdef CONFIG_FAIR_GROUP_SCHED
7914	{
7915		.name = "shares",
7916		.read_u64 = cpu_shares_read_u64,
7917		.write_u64 = cpu_shares_write_u64,
7918	},
7919#endif
7920#ifdef CONFIG_CFS_BANDWIDTH
7921	{
7922		.name = "cfs_quota_us",
7923		.read_s64 = cpu_cfs_quota_read_s64,
7924		.write_s64 = cpu_cfs_quota_write_s64,
7925	},
7926	{
7927		.name = "cfs_period_us",
7928		.read_u64 = cpu_cfs_period_read_u64,
7929		.write_u64 = cpu_cfs_period_write_u64,
7930	},
7931	{
7932		.name = "stat",
7933		.read_map = cpu_stats_show,
7934	},
7935#endif
7936#ifdef CONFIG_RT_GROUP_SCHED
7937	{
7938		.name = "rt_runtime_us",
7939		.read_s64 = cpu_rt_runtime_read,
7940		.write_s64 = cpu_rt_runtime_write,
7941	},
7942	{
7943		.name = "rt_period_us",
7944		.read_u64 = cpu_rt_period_read_uint,
7945		.write_u64 = cpu_rt_period_write_uint,
7946	},
7947#endif
7948};
7949
7950static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7951{
7952	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7953}
7954
7955struct cgroup_subsys cpu_cgroup_subsys = {
7956	.name		= "cpu",
7957	.create		= cpu_cgroup_create,
7958	.destroy	= cpu_cgroup_destroy,
7959	.can_attach	= cpu_cgroup_can_attach,
7960	.attach		= cpu_cgroup_attach,
7961	.exit		= cpu_cgroup_exit,
7962	.populate	= cpu_cgroup_populate,
7963	.subsys_id	= cpu_cgroup_subsys_id,
7964	.early_init	= 1,
7965};
7966
7967#endif	/* CONFIG_CGROUP_SCHED */
7968
7969#ifdef CONFIG_CGROUP_CPUACCT
7970
7971/*
7972 * CPU accounting code for task groups.
7973 *
7974 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7975 * (balbir@in.ibm.com).
7976 */
7977
7978/* create a new cpu accounting group */
7979static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7980{
7981	struct cpuacct *ca;
7982
7983	if (!cgrp->parent)
7984		return &root_cpuacct.css;
7985
7986	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7987	if (!ca)
7988		goto out;
7989
7990	ca->cpuusage = alloc_percpu(u64);
7991	if (!ca->cpuusage)
7992		goto out_free_ca;
7993
7994	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7995	if (!ca->cpustat)
7996		goto out_free_cpuusage;
7997
7998	return &ca->css;
7999
8000out_free_cpuusage:
8001	free_percpu(ca->cpuusage);
8002out_free_ca:
8003	kfree(ca);
8004out:
8005	return ERR_PTR(-ENOMEM);
8006}
8007
8008/* destroy an existing cpu accounting group */
8009static void cpuacct_destroy(struct cgroup *cgrp)
8010{
8011	struct cpuacct *ca = cgroup_ca(cgrp);
8012
8013	free_percpu(ca->cpustat);
8014	free_percpu(ca->cpuusage);
8015	kfree(ca);
8016}
8017
8018static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8019{
8020	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8021	u64 data;
8022
8023#ifndef CONFIG_64BIT
8024	/*
8025	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8026	 */
8027	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8028	data = *cpuusage;
8029	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8030#else
8031	data = *cpuusage;
8032#endif
8033
8034	return data;
8035}
8036
8037static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8038{
8039	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8040
8041#ifndef CONFIG_64BIT
8042	/*
8043	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8044	 */
8045	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8046	*cpuusage = val;
8047	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8048#else
8049	*cpuusage = val;
8050#endif
8051}
8052
8053/* return total cpu usage (in nanoseconds) of a group */
8054static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8055{
8056	struct cpuacct *ca = cgroup_ca(cgrp);
8057	u64 totalcpuusage = 0;
8058	int i;
8059
8060	for_each_present_cpu(i)
8061		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8062
8063	return totalcpuusage;
8064}
8065
8066static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8067								u64 reset)
8068{
8069	struct cpuacct *ca = cgroup_ca(cgrp);
8070	int err = 0;
8071	int i;
8072
8073	if (reset) {
8074		err = -EINVAL;
8075		goto out;
8076	}
8077
8078	for_each_present_cpu(i)
8079		cpuacct_cpuusage_write(ca, i, 0);
8080
8081out:
8082	return err;
8083}
8084
8085static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8086				   struct seq_file *m)
8087{
8088	struct cpuacct *ca = cgroup_ca(cgroup);
8089	u64 percpu;
8090	int i;
8091
8092	for_each_present_cpu(i) {
8093		percpu = cpuacct_cpuusage_read(ca, i);
8094		seq_printf(m, "%llu ", (unsigned long long) percpu);
8095	}
8096	seq_printf(m, "\n");
8097	return 0;
8098}
8099
8100static const char *cpuacct_stat_desc[] = {
8101	[CPUACCT_STAT_USER] = "user",
8102	[CPUACCT_STAT_SYSTEM] = "system",
8103};
8104
8105static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8106			      struct cgroup_map_cb *cb)
8107{
8108	struct cpuacct *ca = cgroup_ca(cgrp);
8109	int cpu;
8110	s64 val = 0;
8111
8112	for_each_online_cpu(cpu) {
8113		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8114		val += kcpustat->cpustat[CPUTIME_USER];
8115		val += kcpustat->cpustat[CPUTIME_NICE];
8116	}
8117	val = cputime64_to_clock_t(val);
8118	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8119
8120	val = 0;
8121	for_each_online_cpu(cpu) {
8122		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8123		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8124		val += kcpustat->cpustat[CPUTIME_IRQ];
8125		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8126	}
8127
8128	val = cputime64_to_clock_t(val);
8129	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8130
8131	return 0;
8132}
8133
8134static struct cftype files[] = {
8135	{
8136		.name = "usage",
8137		.read_u64 = cpuusage_read,
8138		.write_u64 = cpuusage_write,
8139	},
8140	{
8141		.name = "usage_percpu",
8142		.read_seq_string = cpuacct_percpu_seq_read,
8143	},
8144	{
8145		.name = "stat",
8146		.read_map = cpuacct_stats_show,
8147	},
8148};
8149
8150static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8151{
8152	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8153}
8154
8155/*
8156 * charge this task's execution time to its accounting group.
8157 *
8158 * called with rq->lock held.
8159 */
8160void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8161{
8162	struct cpuacct *ca;
8163	int cpu;
8164
8165	if (unlikely(!cpuacct_subsys.active))
8166		return;
8167
8168	cpu = task_cpu(tsk);
8169
8170	rcu_read_lock();
8171
8172	ca = task_ca(tsk);
8173
8174	for (; ca; ca = parent_ca(ca)) {
8175		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8176		*cpuusage += cputime;
8177	}
8178
8179	rcu_read_unlock();
8180}
8181
8182struct cgroup_subsys cpuacct_subsys = {
8183	.name = "cpuacct",
8184	.create = cpuacct_create,
8185	.destroy = cpuacct_destroy,
8186	.populate = cpuacct_populate,
8187	.subsys_id = cpuacct_subsys_id,
8188};
8189#endif	/* CONFIG_CGROUP_CPUACCT */
8190