core.c revision 9ee474f55664ff63111c843099d365e7ecffb56f
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93	unsigned long delta;
94	ktime_t soft, hard, now;
95
96	for (;;) {
97		if (hrtimer_active(period_timer))
98			break;
99
100		now = hrtimer_cb_get_time(period_timer);
101		hrtimer_forward(period_timer, now, period);
102
103		soft = hrtimer_get_softexpires(period_timer);
104		hard = hrtimer_get_expires(period_timer);
105		delta = ktime_to_ns(ktime_sub(hard, soft));
106		__hrtimer_start_range_ns(period_timer, soft, delta,
107					 HRTIMER_MODE_ABS_PINNED, 0);
108	}
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118	s64 delta;
119
120	if (rq->skip_clock_update > 0)
121		return;
122
123	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124	rq->clock += delta;
125	update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled)	\
133	(1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137	0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled)	\
143	#name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153	int i;
154
155	for (i = 0; i < __SCHED_FEAT_NR; i++) {
156		if (!(sysctl_sched_features & (1UL << i)))
157			seq_puts(m, "NO_");
158		seq_printf(m, "%s ", sched_feat_names[i]);
159	}
160	seq_puts(m, "\n");
161
162	return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true  STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled)	\
171	jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181	if (static_key_enabled(&sched_feat_keys[i]))
182		static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187	if (!static_key_enabled(&sched_feat_keys[i]))
188		static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197		size_t cnt, loff_t *ppos)
198{
199	char buf[64];
200	char *cmp;
201	int neg = 0;
202	int i;
203
204	if (cnt > 63)
205		cnt = 63;
206
207	if (copy_from_user(&buf, ubuf, cnt))
208		return -EFAULT;
209
210	buf[cnt] = 0;
211	cmp = strstrip(buf);
212
213	if (strncmp(cmp, "NO_", 3) == 0) {
214		neg = 1;
215		cmp += 3;
216	}
217
218	for (i = 0; i < __SCHED_FEAT_NR; i++) {
219		if (strcmp(cmp, sched_feat_names[i]) == 0) {
220			if (neg) {
221				sysctl_sched_features &= ~(1UL << i);
222				sched_feat_disable(i);
223			} else {
224				sysctl_sched_features |= (1UL << i);
225				sched_feat_enable(i);
226			}
227			break;
228		}
229	}
230
231	if (i == __SCHED_FEAT_NR)
232		return -EINVAL;
233
234	*ppos += cnt;
235
236	return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241	return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245	.open		= sched_feat_open,
246	.write		= sched_feat_write,
247	.read		= seq_read,
248	.llseek		= seq_lseek,
249	.release	= single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254	debugfs_create_file("sched_features", 0644, NULL, NULL,
255			&sched_feat_fops);
256
257	return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296	__acquires(rq->lock)
297{
298	struct rq *rq;
299
300	lockdep_assert_held(&p->pi_lock);
301
302	for (;;) {
303		rq = task_rq(p);
304		raw_spin_lock(&rq->lock);
305		if (likely(rq == task_rq(p)))
306			return rq;
307		raw_spin_unlock(&rq->lock);
308	}
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315	__acquires(p->pi_lock)
316	__acquires(rq->lock)
317{
318	struct rq *rq;
319
320	for (;;) {
321		raw_spin_lock_irqsave(&p->pi_lock, *flags);
322		rq = task_rq(p);
323		raw_spin_lock(&rq->lock);
324		if (likely(rq == task_rq(p)))
325			return rq;
326		raw_spin_unlock(&rq->lock);
327		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328	}
329}
330
331static void __task_rq_unlock(struct rq *rq)
332	__releases(rq->lock)
333{
334	raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339	__releases(rq->lock)
340	__releases(p->pi_lock)
341{
342	raw_spin_unlock(&rq->lock);
343	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350	__acquires(rq->lock)
351{
352	struct rq *rq;
353
354	local_irq_disable();
355	rq = this_rq();
356	raw_spin_lock(&rq->lock);
357
358	return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403	struct rq *rq = arg;
404
405	raw_spin_lock(&rq->lock);
406	hrtimer_restart(&rq->hrtick_timer);
407	rq->hrtick_csd_pending = 0;
408	raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418	struct hrtimer *timer = &rq->hrtick_timer;
419	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421	hrtimer_set_expires(timer, time);
422
423	if (rq == this_rq()) {
424		hrtimer_restart(timer);
425	} else if (!rq->hrtick_csd_pending) {
426		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427		rq->hrtick_csd_pending = 1;
428	}
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434	int cpu = (int)(long)hcpu;
435
436	switch (action) {
437	case CPU_UP_CANCELED:
438	case CPU_UP_CANCELED_FROZEN:
439	case CPU_DOWN_PREPARE:
440	case CPU_DOWN_PREPARE_FROZEN:
441	case CPU_DEAD:
442	case CPU_DEAD_FROZEN:
443		hrtick_clear(cpu_rq(cpu));
444		return NOTIFY_OK;
445	}
446
447	return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452	hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463			HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474	rq->hrtick_csd_pending = 0;
475
476	rq->hrtick_csd.flags = 0;
477	rq->hrtick_csd.func = __hrtick_start;
478	rq->hrtick_csd.info = rq;
479#endif
480
481	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482	rq->hrtick_timer.function = hrtick;
483}
484#else	/* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif	/* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) 0
509#endif
510
511void resched_task(struct task_struct *p)
512{
513	int cpu;
514
515	assert_raw_spin_locked(&task_rq(p)->lock);
516
517	if (test_tsk_need_resched(p))
518		return;
519
520	set_tsk_need_resched(p);
521
522	cpu = task_cpu(p);
523	if (cpu == smp_processor_id())
524		return;
525
526	/* NEED_RESCHED must be visible before we test polling */
527	smp_mb();
528	if (!tsk_is_polling(p))
529		smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534	struct rq *rq = cpu_rq(cpu);
535	unsigned long flags;
536
537	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538		return;
539	resched_task(cpu_curr(cpu));
540	raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu.  This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554	int cpu = smp_processor_id();
555	int i;
556	struct sched_domain *sd;
557
558	rcu_read_lock();
559	for_each_domain(cpu, sd) {
560		for_each_cpu(i, sched_domain_span(sd)) {
561			if (!idle_cpu(i)) {
562				cpu = i;
563				goto unlock;
564			}
565		}
566	}
567unlock:
568	rcu_read_unlock();
569	return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583	struct rq *rq = cpu_rq(cpu);
584
585	if (cpu == smp_processor_id())
586		return;
587
588	/*
589	 * This is safe, as this function is called with the timer
590	 * wheel base lock of (cpu) held. When the CPU is on the way
591	 * to idle and has not yet set rq->curr to idle then it will
592	 * be serialized on the timer wheel base lock and take the new
593	 * timer into account automatically.
594	 */
595	if (rq->curr != rq->idle)
596		return;
597
598	/*
599	 * We can set TIF_RESCHED on the idle task of the other CPU
600	 * lockless. The worst case is that the other CPU runs the
601	 * idle task through an additional NOOP schedule()
602	 */
603	set_tsk_need_resched(rq->idle);
604
605	/* NEED_RESCHED must be visible before we test polling */
606	smp_mb();
607	if (!tsk_is_polling(rq->idle))
608		smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613	int cpu = smp_processor_id();
614	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621	return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628	s64 period = sched_avg_period();
629
630	while ((s64)(rq->clock - rq->age_stamp) > period) {
631		/*
632		 * Inline assembly required to prevent the compiler
633		 * optimising this loop into a divmod call.
634		 * See __iter_div_u64_rem() for another example of this.
635		 */
636		asm("" : "+rm" (rq->age_stamp));
637		rq->age_stamp += period;
638		rq->rt_avg /= 2;
639	}
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645	assert_raw_spin_locked(&task_rq(p)->lock);
646	set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659			     tg_visitor down, tg_visitor up, void *data)
660{
661	struct task_group *parent, *child;
662	int ret;
663
664	parent = from;
665
666down:
667	ret = (*down)(parent, data);
668	if (ret)
669		goto out;
670	list_for_each_entry_rcu(child, &parent->children, siblings) {
671		parent = child;
672		goto down;
673
674up:
675		continue;
676	}
677	ret = (*up)(parent, data);
678	if (ret || parent == from)
679		goto out;
680
681	child = parent;
682	parent = parent->parent;
683	if (parent)
684		goto up;
685out:
686	return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691	return 0;
692}
693#endif
694
695static void set_load_weight(struct task_struct *p)
696{
697	int prio = p->static_prio - MAX_RT_PRIO;
698	struct load_weight *load = &p->se.load;
699
700	/*
701	 * SCHED_IDLE tasks get minimal weight:
702	 */
703	if (p->policy == SCHED_IDLE) {
704		load->weight = scale_load(WEIGHT_IDLEPRIO);
705		load->inv_weight = WMULT_IDLEPRIO;
706		return;
707	}
708
709	load->weight = scale_load(prio_to_weight[prio]);
710	load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715	update_rq_clock(rq);
716	sched_info_queued(p);
717	p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722	update_rq_clock(rq);
723	sched_info_dequeued(p);
724	p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729	if (task_contributes_to_load(p))
730		rq->nr_uninterruptible--;
731
732	enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible++;
739
740	dequeue_task(rq, p, flags);
741}
742
743static void update_rq_clock_task(struct rq *rq, s64 delta)
744{
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750	s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754
755	/*
756	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757	 * this case when a previous update_rq_clock() happened inside a
758	 * {soft,}irq region.
759	 *
760	 * When this happens, we stop ->clock_task and only update the
761	 * prev_irq_time stamp to account for the part that fit, so that a next
762	 * update will consume the rest. This ensures ->clock_task is
763	 * monotonic.
764	 *
765	 * It does however cause some slight miss-attribution of {soft,}irq
766	 * time, a more accurate solution would be to update the irq_time using
767	 * the current rq->clock timestamp, except that would require using
768	 * atomic ops.
769	 */
770	if (irq_delta > delta)
771		irq_delta = delta;
772
773	rq->prev_irq_time += irq_delta;
774	delta -= irq_delta;
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777	if (static_key_false((&paravirt_steal_rq_enabled))) {
778		u64 st;
779
780		steal = paravirt_steal_clock(cpu_of(rq));
781		steal -= rq->prev_steal_time_rq;
782
783		if (unlikely(steal > delta))
784			steal = delta;
785
786		st = steal_ticks(steal);
787		steal = st * TICK_NSEC;
788
789		rq->prev_steal_time_rq += steal;
790
791		delta -= steal;
792	}
793#endif
794
795	rq->clock_task += delta;
796
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799		sched_rt_avg_update(rq, irq_delta + steal);
800#endif
801}
802
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806	struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808	if (stop) {
809		/*
810		 * Make it appear like a SCHED_FIFO task, its something
811		 * userspace knows about and won't get confused about.
812		 *
813		 * Also, it will make PI more or less work without too
814		 * much confusion -- but then, stop work should not
815		 * rely on PI working anyway.
816		 */
817		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819		stop->sched_class = &stop_sched_class;
820	}
821
822	cpu_rq(cpu)->stop = stop;
823
824	if (old_stop) {
825		/*
826		 * Reset it back to a normal scheduling class so that
827		 * it can die in pieces.
828		 */
829		old_stop->sched_class = &rt_sched_class;
830	}
831}
832
833/*
834 * __normal_prio - return the priority that is based on the static prio
835 */
836static inline int __normal_prio(struct task_struct *p)
837{
838	return p->static_prio;
839}
840
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
848static inline int normal_prio(struct task_struct *p)
849{
850	int prio;
851
852	if (task_has_rt_policy(p))
853		prio = MAX_RT_PRIO-1 - p->rt_priority;
854	else
855		prio = __normal_prio(p);
856	return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
866static int effective_prio(struct task_struct *p)
867{
868	p->normal_prio = normal_prio(p);
869	/*
870	 * If we are RT tasks or we were boosted to RT priority,
871	 * keep the priority unchanged. Otherwise, update priority
872	 * to the normal priority:
873	 */
874	if (!rt_prio(p->prio))
875		return p->normal_prio;
876	return p->prio;
877}
878
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
883inline int task_curr(const struct task_struct *p)
884{
885	return cpu_curr(task_cpu(p)) == p;
886}
887
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889				       const struct sched_class *prev_class,
890				       int oldprio)
891{
892	if (prev_class != p->sched_class) {
893		if (prev_class->switched_from)
894			prev_class->switched_from(rq, p);
895		p->sched_class->switched_to(rq, p);
896	} else if (oldprio != p->prio)
897		p->sched_class->prio_changed(rq, p, oldprio);
898}
899
900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901{
902	const struct sched_class *class;
903
904	if (p->sched_class == rq->curr->sched_class) {
905		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906	} else {
907		for_each_class(class) {
908			if (class == rq->curr->sched_class)
909				break;
910			if (class == p->sched_class) {
911				resched_task(rq->curr);
912				break;
913			}
914		}
915	}
916
917	/*
918	 * A queue event has occurred, and we're going to schedule.  In
919	 * this case, we can save a useless back to back clock update.
920	 */
921	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922		rq->skip_clock_update = 1;
923}
924
925#ifdef CONFIG_SMP
926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927{
928#ifdef CONFIG_SCHED_DEBUG
929	/*
930	 * We should never call set_task_cpu() on a blocked task,
931	 * ttwu() will sort out the placement.
932	 */
933	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935
936#ifdef CONFIG_LOCKDEP
937	/*
938	 * The caller should hold either p->pi_lock or rq->lock, when changing
939	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940	 *
941	 * sched_move_task() holds both and thus holding either pins the cgroup,
942	 * see task_group().
943	 *
944	 * Furthermore, all task_rq users should acquire both locks, see
945	 * task_rq_lock().
946	 */
947	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948				      lockdep_is_held(&task_rq(p)->lock)));
949#endif
950#endif
951
952	trace_sched_migrate_task(p, new_cpu);
953
954	if (task_cpu(p) != new_cpu) {
955		p->se.nr_migrations++;
956		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957	}
958
959	__set_task_cpu(p, new_cpu);
960}
961
962struct migration_arg {
963	struct task_struct *task;
964	int dest_cpu;
965};
966
967static int migration_cpu_stop(void *data);
968
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change.  If it changes, i.e. @p might have woken up,
974 * then return zero.  When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count).  If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986{
987	unsigned long flags;
988	int running, on_rq;
989	unsigned long ncsw;
990	struct rq *rq;
991
992	for (;;) {
993		/*
994		 * We do the initial early heuristics without holding
995		 * any task-queue locks at all. We'll only try to get
996		 * the runqueue lock when things look like they will
997		 * work out!
998		 */
999		rq = task_rq(p);
1000
1001		/*
1002		 * If the task is actively running on another CPU
1003		 * still, just relax and busy-wait without holding
1004		 * any locks.
1005		 *
1006		 * NOTE! Since we don't hold any locks, it's not
1007		 * even sure that "rq" stays as the right runqueue!
1008		 * But we don't care, since "task_running()" will
1009		 * return false if the runqueue has changed and p
1010		 * is actually now running somewhere else!
1011		 */
1012		while (task_running(rq, p)) {
1013			if (match_state && unlikely(p->state != match_state))
1014				return 0;
1015			cpu_relax();
1016		}
1017
1018		/*
1019		 * Ok, time to look more closely! We need the rq
1020		 * lock now, to be *sure*. If we're wrong, we'll
1021		 * just go back and repeat.
1022		 */
1023		rq = task_rq_lock(p, &flags);
1024		trace_sched_wait_task(p);
1025		running = task_running(rq, p);
1026		on_rq = p->on_rq;
1027		ncsw = 0;
1028		if (!match_state || p->state == match_state)
1029			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030		task_rq_unlock(rq, p, &flags);
1031
1032		/*
1033		 * If it changed from the expected state, bail out now.
1034		 */
1035		if (unlikely(!ncsw))
1036			break;
1037
1038		/*
1039		 * Was it really running after all now that we
1040		 * checked with the proper locks actually held?
1041		 *
1042		 * Oops. Go back and try again..
1043		 */
1044		if (unlikely(running)) {
1045			cpu_relax();
1046			continue;
1047		}
1048
1049		/*
1050		 * It's not enough that it's not actively running,
1051		 * it must be off the runqueue _entirely_, and not
1052		 * preempted!
1053		 *
1054		 * So if it was still runnable (but just not actively
1055		 * running right now), it's preempted, and we should
1056		 * yield - it could be a while.
1057		 */
1058		if (unlikely(on_rq)) {
1059			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061			set_current_state(TASK_UNINTERRUPTIBLE);
1062			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063			continue;
1064		}
1065
1066		/*
1067		 * Ahh, all good. It wasn't running, and it wasn't
1068		 * runnable, which means that it will never become
1069		 * running in the future either. We're all done!
1070		 */
1071		break;
1072	}
1073
1074	return ncsw;
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesn't have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
1090void kick_process(struct task_struct *p)
1091{
1092	int cpu;
1093
1094	preempt_disable();
1095	cpu = task_cpu(p);
1096	if ((cpu != smp_processor_id()) && task_curr(p))
1097		smp_send_reschedule(cpu);
1098	preempt_enable();
1099}
1100EXPORT_SYMBOL_GPL(kick_process);
1101#endif /* CONFIG_SMP */
1102
1103#ifdef CONFIG_SMP
1104/*
1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106 */
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
1109	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110	enum { cpuset, possible, fail } state = cpuset;
1111	int dest_cpu;
1112
1113	/* Look for allowed, online CPU in same node. */
1114	for_each_cpu(dest_cpu, nodemask) {
1115		if (!cpu_online(dest_cpu))
1116			continue;
1117		if (!cpu_active(dest_cpu))
1118			continue;
1119		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120			return dest_cpu;
1121	}
1122
1123	for (;;) {
1124		/* Any allowed, online CPU? */
1125		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126			if (!cpu_online(dest_cpu))
1127				continue;
1128			if (!cpu_active(dest_cpu))
1129				continue;
1130			goto out;
1131		}
1132
1133		switch (state) {
1134		case cpuset:
1135			/* No more Mr. Nice Guy. */
1136			cpuset_cpus_allowed_fallback(p);
1137			state = possible;
1138			break;
1139
1140		case possible:
1141			do_set_cpus_allowed(p, cpu_possible_mask);
1142			state = fail;
1143			break;
1144
1145		case fail:
1146			BUG();
1147			break;
1148		}
1149	}
1150
1151out:
1152	if (state != cpuset) {
1153		/*
1154		 * Don't tell them about moving exiting tasks or
1155		 * kernel threads (both mm NULL), since they never
1156		 * leave kernel.
1157		 */
1158		if (p->mm && printk_ratelimit()) {
1159			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160					task_pid_nr(p), p->comm, cpu);
1161		}
1162	}
1163
1164	return dest_cpu;
1165}
1166
1167/*
1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169 */
1170static inline
1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172{
1173	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174
1175	/*
1176	 * In order not to call set_task_cpu() on a blocking task we need
1177	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178	 * cpu.
1179	 *
1180	 * Since this is common to all placement strategies, this lives here.
1181	 *
1182	 * [ this allows ->select_task() to simply return task_cpu(p) and
1183	 *   not worry about this generic constraint ]
1184	 */
1185	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186		     !cpu_online(cpu)))
1187		cpu = select_fallback_rq(task_cpu(p), p);
1188
1189	return cpu;
1190}
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194	s64 diff = sample - *avg;
1195	*avg += diff >> 3;
1196}
1197#endif
1198
1199static void
1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201{
1202#ifdef CONFIG_SCHEDSTATS
1203	struct rq *rq = this_rq();
1204
1205#ifdef CONFIG_SMP
1206	int this_cpu = smp_processor_id();
1207
1208	if (cpu == this_cpu) {
1209		schedstat_inc(rq, ttwu_local);
1210		schedstat_inc(p, se.statistics.nr_wakeups_local);
1211	} else {
1212		struct sched_domain *sd;
1213
1214		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215		rcu_read_lock();
1216		for_each_domain(this_cpu, sd) {
1217			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218				schedstat_inc(sd, ttwu_wake_remote);
1219				break;
1220			}
1221		}
1222		rcu_read_unlock();
1223	}
1224
1225	if (wake_flags & WF_MIGRATED)
1226		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
1228#endif /* CONFIG_SMP */
1229
1230	schedstat_inc(rq, ttwu_count);
1231	schedstat_inc(p, se.statistics.nr_wakeups);
1232
1233	if (wake_flags & WF_SYNC)
1234		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
1241	activate_task(rq, p, en_flags);
1242	p->on_rq = 1;
1243
1244	/* if a worker is waking up, notify workqueue */
1245	if (p->flags & PF_WQ_WORKER)
1246		wq_worker_waking_up(p, cpu_of(rq));
1247}
1248
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
1252static void
1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254{
1255	trace_sched_wakeup(p, true);
1256	check_preempt_curr(rq, p, wake_flags);
1257
1258	p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260	if (p->sched_class->task_woken)
1261		p->sched_class->task_woken(rq, p);
1262
1263	if (rq->idle_stamp) {
1264		u64 delta = rq->clock - rq->idle_stamp;
1265		u64 max = 2*sysctl_sched_migration_cost;
1266
1267		if (delta > max)
1268			rq->avg_idle = max;
1269		else
1270			update_avg(&rq->avg_idle, delta);
1271		rq->idle_stamp = 0;
1272	}
1273#endif
1274}
1275
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280	if (p->sched_contributes_to_load)
1281		rq->nr_uninterruptible--;
1282#endif
1283
1284	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285	ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296	struct rq *rq;
1297	int ret = 0;
1298
1299	rq = __task_rq_lock(p);
1300	if (p->on_rq) {
1301		ttwu_do_wakeup(rq, p, wake_flags);
1302		ret = 1;
1303	}
1304	__task_rq_unlock(rq);
1305
1306	return ret;
1307}
1308
1309#ifdef CONFIG_SMP
1310static void sched_ttwu_pending(void)
1311{
1312	struct rq *rq = this_rq();
1313	struct llist_node *llist = llist_del_all(&rq->wake_list);
1314	struct task_struct *p;
1315
1316	raw_spin_lock(&rq->lock);
1317
1318	while (llist) {
1319		p = llist_entry(llist, struct task_struct, wake_entry);
1320		llist = llist_next(llist);
1321		ttwu_do_activate(rq, p, 0);
1322	}
1323
1324	raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
1329	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330		return;
1331
1332	/*
1333	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334	 * traditionally all their work was done from the interrupt return
1335	 * path. Now that we actually do some work, we need to make sure
1336	 * we do call them.
1337	 *
1338	 * Some archs already do call them, luckily irq_enter/exit nest
1339	 * properly.
1340	 *
1341	 * Arguably we should visit all archs and update all handlers,
1342	 * however a fair share of IPIs are still resched only so this would
1343	 * somewhat pessimize the simple resched case.
1344	 */
1345	irq_enter();
1346	sched_ttwu_pending();
1347
1348	/*
1349	 * Check if someone kicked us for doing the nohz idle load balance.
1350	 */
1351	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352		this_rq()->idle_balance = 1;
1353		raise_softirq_irqoff(SCHED_SOFTIRQ);
1354	}
1355	irq_exit();
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
1360	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361		smp_send_reschedule(cpu);
1362}
1363
1364bool cpus_share_cache(int this_cpu, int that_cpu)
1365{
1366	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367}
1368#endif /* CONFIG_SMP */
1369
1370static void ttwu_queue(struct task_struct *p, int cpu)
1371{
1372	struct rq *rq = cpu_rq(cpu);
1373
1374#if defined(CONFIG_SMP)
1375	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377		ttwu_queue_remote(p, cpu);
1378		return;
1379	}
1380#endif
1381
1382	raw_spin_lock(&rq->lock);
1383	ttwu_do_activate(rq, p, 0);
1384	raw_spin_unlock(&rq->lock);
1385}
1386
1387/**
1388 * try_to_wake_up - wake up a thread
1389 * @p: the thread to be awakened
1390 * @state: the mask of task states that can be woken
1391 * @wake_flags: wake modifier flags (WF_*)
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1401 */
1402static int
1403try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1404{
1405	unsigned long flags;
1406	int cpu, success = 0;
1407
1408	smp_wmb();
1409	raw_spin_lock_irqsave(&p->pi_lock, flags);
1410	if (!(p->state & state))
1411		goto out;
1412
1413	success = 1; /* we're going to change ->state */
1414	cpu = task_cpu(p);
1415
1416	if (p->on_rq && ttwu_remote(p, wake_flags))
1417		goto stat;
1418
1419#ifdef CONFIG_SMP
1420	/*
1421	 * If the owning (remote) cpu is still in the middle of schedule() with
1422	 * this task as prev, wait until its done referencing the task.
1423	 */
1424	while (p->on_cpu)
1425		cpu_relax();
1426	/*
1427	 * Pairs with the smp_wmb() in finish_lock_switch().
1428	 */
1429	smp_rmb();
1430
1431	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1432	p->state = TASK_WAKING;
1433
1434	if (p->sched_class->task_waking)
1435		p->sched_class->task_waking(p);
1436
1437	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438	if (task_cpu(p) != cpu) {
1439		wake_flags |= WF_MIGRATED;
1440		set_task_cpu(p, cpu);
1441	}
1442#endif /* CONFIG_SMP */
1443
1444	ttwu_queue(p, cpu);
1445stat:
1446	ttwu_stat(p, cpu, wake_flags);
1447out:
1448	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1449
1450	return success;
1451}
1452
1453/**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
1457 * Put @p on the run-queue if it's not already there. The caller must
1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459 * the current task.
1460 */
1461static void try_to_wake_up_local(struct task_struct *p)
1462{
1463	struct rq *rq = task_rq(p);
1464
1465	BUG_ON(rq != this_rq());
1466	BUG_ON(p == current);
1467	lockdep_assert_held(&rq->lock);
1468
1469	if (!raw_spin_trylock(&p->pi_lock)) {
1470		raw_spin_unlock(&rq->lock);
1471		raw_spin_lock(&p->pi_lock);
1472		raw_spin_lock(&rq->lock);
1473	}
1474
1475	if (!(p->state & TASK_NORMAL))
1476		goto out;
1477
1478	if (!p->on_rq)
1479		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
1481	ttwu_do_wakeup(rq, p, 0);
1482	ttwu_stat(p, smp_processor_id(), 0);
1483out:
1484	raw_spin_unlock(&p->pi_lock);
1485}
1486
1487/**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes.  Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
1498int wake_up_process(struct task_struct *p)
1499{
1500	return try_to_wake_up(p, TASK_ALL, 0);
1501}
1502EXPORT_SYMBOL(wake_up_process);
1503
1504int wake_up_state(struct task_struct *p, unsigned int state)
1505{
1506	return try_to_wake_up(p, state, 0);
1507}
1508
1509/*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515static void __sched_fork(struct task_struct *p)
1516{
1517	p->on_rq			= 0;
1518
1519	p->se.on_rq			= 0;
1520	p->se.exec_start		= 0;
1521	p->se.sum_exec_runtime		= 0;
1522	p->se.prev_sum_exec_runtime	= 0;
1523	p->se.nr_migrations		= 0;
1524	p->se.vruntime			= 0;
1525	INIT_LIST_HEAD(&p->se.group_node);
1526
1527#ifdef CONFIG_SMP
1528	p->se.avg.runnable_avg_period = 0;
1529	p->se.avg.runnable_avg_sum = 0;
1530#endif
1531#ifdef CONFIG_SCHEDSTATS
1532	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1533#endif
1534
1535	INIT_LIST_HEAD(&p->rt.run_list);
1536
1537#ifdef CONFIG_PREEMPT_NOTIFIERS
1538	INIT_HLIST_HEAD(&p->preempt_notifiers);
1539#endif
1540}
1541
1542/*
1543 * fork()/clone()-time setup:
1544 */
1545void sched_fork(struct task_struct *p)
1546{
1547	unsigned long flags;
1548	int cpu = get_cpu();
1549
1550	__sched_fork(p);
1551	/*
1552	 * We mark the process as running here. This guarantees that
1553	 * nobody will actually run it, and a signal or other external
1554	 * event cannot wake it up and insert it on the runqueue either.
1555	 */
1556	p->state = TASK_RUNNING;
1557
1558	/*
1559	 * Make sure we do not leak PI boosting priority to the child.
1560	 */
1561	p->prio = current->normal_prio;
1562
1563	/*
1564	 * Revert to default priority/policy on fork if requested.
1565	 */
1566	if (unlikely(p->sched_reset_on_fork)) {
1567		if (task_has_rt_policy(p)) {
1568			p->policy = SCHED_NORMAL;
1569			p->static_prio = NICE_TO_PRIO(0);
1570			p->rt_priority = 0;
1571		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1572			p->static_prio = NICE_TO_PRIO(0);
1573
1574		p->prio = p->normal_prio = __normal_prio(p);
1575		set_load_weight(p);
1576
1577		/*
1578		 * We don't need the reset flag anymore after the fork. It has
1579		 * fulfilled its duty:
1580		 */
1581		p->sched_reset_on_fork = 0;
1582	}
1583
1584	if (!rt_prio(p->prio))
1585		p->sched_class = &fair_sched_class;
1586
1587	if (p->sched_class->task_fork)
1588		p->sched_class->task_fork(p);
1589
1590	/*
1591	 * The child is not yet in the pid-hash so no cgroup attach races,
1592	 * and the cgroup is pinned to this child due to cgroup_fork()
1593	 * is ran before sched_fork().
1594	 *
1595	 * Silence PROVE_RCU.
1596	 */
1597	raw_spin_lock_irqsave(&p->pi_lock, flags);
1598	set_task_cpu(p, cpu);
1599	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1600
1601#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1602	if (likely(sched_info_on()))
1603		memset(&p->sched_info, 0, sizeof(p->sched_info));
1604#endif
1605#if defined(CONFIG_SMP)
1606	p->on_cpu = 0;
1607#endif
1608#ifdef CONFIG_PREEMPT_COUNT
1609	/* Want to start with kernel preemption disabled. */
1610	task_thread_info(p)->preempt_count = 1;
1611#endif
1612#ifdef CONFIG_SMP
1613	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1614#endif
1615
1616	put_cpu();
1617}
1618
1619/*
1620 * wake_up_new_task - wake up a newly created task for the first time.
1621 *
1622 * This function will do some initial scheduler statistics housekeeping
1623 * that must be done for every newly created context, then puts the task
1624 * on the runqueue and wakes it.
1625 */
1626void wake_up_new_task(struct task_struct *p)
1627{
1628	unsigned long flags;
1629	struct rq *rq;
1630
1631	raw_spin_lock_irqsave(&p->pi_lock, flags);
1632#ifdef CONFIG_SMP
1633	/*
1634	 * Fork balancing, do it here and not earlier because:
1635	 *  - cpus_allowed can change in the fork path
1636	 *  - any previously selected cpu might disappear through hotplug
1637	 */
1638	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1639#endif
1640
1641	rq = __task_rq_lock(p);
1642	activate_task(rq, p, 0);
1643	p->on_rq = 1;
1644	trace_sched_wakeup_new(p, true);
1645	check_preempt_curr(rq, p, WF_FORK);
1646#ifdef CONFIG_SMP
1647	if (p->sched_class->task_woken)
1648		p->sched_class->task_woken(rq, p);
1649#endif
1650	task_rq_unlock(rq, p, &flags);
1651}
1652
1653#ifdef CONFIG_PREEMPT_NOTIFIERS
1654
1655/**
1656 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1657 * @notifier: notifier struct to register
1658 */
1659void preempt_notifier_register(struct preempt_notifier *notifier)
1660{
1661	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1662}
1663EXPORT_SYMBOL_GPL(preempt_notifier_register);
1664
1665/**
1666 * preempt_notifier_unregister - no longer interested in preemption notifications
1667 * @notifier: notifier struct to unregister
1668 *
1669 * This is safe to call from within a preemption notifier.
1670 */
1671void preempt_notifier_unregister(struct preempt_notifier *notifier)
1672{
1673	hlist_del(&notifier->link);
1674}
1675EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1676
1677static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1678{
1679	struct preempt_notifier *notifier;
1680	struct hlist_node *node;
1681
1682	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1683		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1684}
1685
1686static void
1687fire_sched_out_preempt_notifiers(struct task_struct *curr,
1688				 struct task_struct *next)
1689{
1690	struct preempt_notifier *notifier;
1691	struct hlist_node *node;
1692
1693	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1694		notifier->ops->sched_out(notifier, next);
1695}
1696
1697#else /* !CONFIG_PREEMPT_NOTIFIERS */
1698
1699static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1700{
1701}
1702
1703static void
1704fire_sched_out_preempt_notifiers(struct task_struct *curr,
1705				 struct task_struct *next)
1706{
1707}
1708
1709#endif /* CONFIG_PREEMPT_NOTIFIERS */
1710
1711/**
1712 * prepare_task_switch - prepare to switch tasks
1713 * @rq: the runqueue preparing to switch
1714 * @prev: the current task that is being switched out
1715 * @next: the task we are going to switch to.
1716 *
1717 * This is called with the rq lock held and interrupts off. It must
1718 * be paired with a subsequent finish_task_switch after the context
1719 * switch.
1720 *
1721 * prepare_task_switch sets up locking and calls architecture specific
1722 * hooks.
1723 */
1724static inline void
1725prepare_task_switch(struct rq *rq, struct task_struct *prev,
1726		    struct task_struct *next)
1727{
1728	trace_sched_switch(prev, next);
1729	sched_info_switch(prev, next);
1730	perf_event_task_sched_out(prev, next);
1731	fire_sched_out_preempt_notifiers(prev, next);
1732	prepare_lock_switch(rq, next);
1733	prepare_arch_switch(next);
1734}
1735
1736/**
1737 * finish_task_switch - clean up after a task-switch
1738 * @rq: runqueue associated with task-switch
1739 * @prev: the thread we just switched away from.
1740 *
1741 * finish_task_switch must be called after the context switch, paired
1742 * with a prepare_task_switch call before the context switch.
1743 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1744 * and do any other architecture-specific cleanup actions.
1745 *
1746 * Note that we may have delayed dropping an mm in context_switch(). If
1747 * so, we finish that here outside of the runqueue lock. (Doing it
1748 * with the lock held can cause deadlocks; see schedule() for
1749 * details.)
1750 */
1751static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1752	__releases(rq->lock)
1753{
1754	struct mm_struct *mm = rq->prev_mm;
1755	long prev_state;
1756
1757	rq->prev_mm = NULL;
1758
1759	/*
1760	 * A task struct has one reference for the use as "current".
1761	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1762	 * schedule one last time. The schedule call will never return, and
1763	 * the scheduled task must drop that reference.
1764	 * The test for TASK_DEAD must occur while the runqueue locks are
1765	 * still held, otherwise prev could be scheduled on another cpu, die
1766	 * there before we look at prev->state, and then the reference would
1767	 * be dropped twice.
1768	 *		Manfred Spraul <manfred@colorfullife.com>
1769	 */
1770	prev_state = prev->state;
1771	vtime_task_switch(prev);
1772	finish_arch_switch(prev);
1773	perf_event_task_sched_in(prev, current);
1774	finish_lock_switch(rq, prev);
1775	finish_arch_post_lock_switch();
1776
1777	fire_sched_in_preempt_notifiers(current);
1778	if (mm)
1779		mmdrop(mm);
1780	if (unlikely(prev_state == TASK_DEAD)) {
1781		/*
1782		 * Remove function-return probe instances associated with this
1783		 * task and put them back on the free list.
1784		 */
1785		kprobe_flush_task(prev);
1786		put_task_struct(prev);
1787	}
1788}
1789
1790#ifdef CONFIG_SMP
1791
1792/* assumes rq->lock is held */
1793static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1794{
1795	if (prev->sched_class->pre_schedule)
1796		prev->sched_class->pre_schedule(rq, prev);
1797}
1798
1799/* rq->lock is NOT held, but preemption is disabled */
1800static inline void post_schedule(struct rq *rq)
1801{
1802	if (rq->post_schedule) {
1803		unsigned long flags;
1804
1805		raw_spin_lock_irqsave(&rq->lock, flags);
1806		if (rq->curr->sched_class->post_schedule)
1807			rq->curr->sched_class->post_schedule(rq);
1808		raw_spin_unlock_irqrestore(&rq->lock, flags);
1809
1810		rq->post_schedule = 0;
1811	}
1812}
1813
1814#else
1815
1816static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1817{
1818}
1819
1820static inline void post_schedule(struct rq *rq)
1821{
1822}
1823
1824#endif
1825
1826/**
1827 * schedule_tail - first thing a freshly forked thread must call.
1828 * @prev: the thread we just switched away from.
1829 */
1830asmlinkage void schedule_tail(struct task_struct *prev)
1831	__releases(rq->lock)
1832{
1833	struct rq *rq = this_rq();
1834
1835	finish_task_switch(rq, prev);
1836
1837	/*
1838	 * FIXME: do we need to worry about rq being invalidated by the
1839	 * task_switch?
1840	 */
1841	post_schedule(rq);
1842
1843#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1844	/* In this case, finish_task_switch does not reenable preemption */
1845	preempt_enable();
1846#endif
1847	if (current->set_child_tid)
1848		put_user(task_pid_vnr(current), current->set_child_tid);
1849}
1850
1851/*
1852 * context_switch - switch to the new MM and the new
1853 * thread's register state.
1854 */
1855static inline void
1856context_switch(struct rq *rq, struct task_struct *prev,
1857	       struct task_struct *next)
1858{
1859	struct mm_struct *mm, *oldmm;
1860
1861	prepare_task_switch(rq, prev, next);
1862
1863	mm = next->mm;
1864	oldmm = prev->active_mm;
1865	/*
1866	 * For paravirt, this is coupled with an exit in switch_to to
1867	 * combine the page table reload and the switch backend into
1868	 * one hypercall.
1869	 */
1870	arch_start_context_switch(prev);
1871
1872	if (!mm) {
1873		next->active_mm = oldmm;
1874		atomic_inc(&oldmm->mm_count);
1875		enter_lazy_tlb(oldmm, next);
1876	} else
1877		switch_mm(oldmm, mm, next);
1878
1879	if (!prev->mm) {
1880		prev->active_mm = NULL;
1881		rq->prev_mm = oldmm;
1882	}
1883	/*
1884	 * Since the runqueue lock will be released by the next
1885	 * task (which is an invalid locking op but in the case
1886	 * of the scheduler it's an obvious special-case), so we
1887	 * do an early lockdep release here:
1888	 */
1889#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1890	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1891#endif
1892
1893	/* Here we just switch the register state and the stack. */
1894	rcu_switch(prev, next);
1895	switch_to(prev, next, prev);
1896
1897	barrier();
1898	/*
1899	 * this_rq must be evaluated again because prev may have moved
1900	 * CPUs since it called schedule(), thus the 'rq' on its stack
1901	 * frame will be invalid.
1902	 */
1903	finish_task_switch(this_rq(), prev);
1904}
1905
1906/*
1907 * nr_running, nr_uninterruptible and nr_context_switches:
1908 *
1909 * externally visible scheduler statistics: current number of runnable
1910 * threads, current number of uninterruptible-sleeping threads, total
1911 * number of context switches performed since bootup.
1912 */
1913unsigned long nr_running(void)
1914{
1915	unsigned long i, sum = 0;
1916
1917	for_each_online_cpu(i)
1918		sum += cpu_rq(i)->nr_running;
1919
1920	return sum;
1921}
1922
1923unsigned long nr_uninterruptible(void)
1924{
1925	unsigned long i, sum = 0;
1926
1927	for_each_possible_cpu(i)
1928		sum += cpu_rq(i)->nr_uninterruptible;
1929
1930	/*
1931	 * Since we read the counters lockless, it might be slightly
1932	 * inaccurate. Do not allow it to go below zero though:
1933	 */
1934	if (unlikely((long)sum < 0))
1935		sum = 0;
1936
1937	return sum;
1938}
1939
1940unsigned long long nr_context_switches(void)
1941{
1942	int i;
1943	unsigned long long sum = 0;
1944
1945	for_each_possible_cpu(i)
1946		sum += cpu_rq(i)->nr_switches;
1947
1948	return sum;
1949}
1950
1951unsigned long nr_iowait(void)
1952{
1953	unsigned long i, sum = 0;
1954
1955	for_each_possible_cpu(i)
1956		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1957
1958	return sum;
1959}
1960
1961unsigned long nr_iowait_cpu(int cpu)
1962{
1963	struct rq *this = cpu_rq(cpu);
1964	return atomic_read(&this->nr_iowait);
1965}
1966
1967unsigned long this_cpu_load(void)
1968{
1969	struct rq *this = this_rq();
1970	return this->cpu_load[0];
1971}
1972
1973
1974/*
1975 * Global load-average calculations
1976 *
1977 * We take a distributed and async approach to calculating the global load-avg
1978 * in order to minimize overhead.
1979 *
1980 * The global load average is an exponentially decaying average of nr_running +
1981 * nr_uninterruptible.
1982 *
1983 * Once every LOAD_FREQ:
1984 *
1985 *   nr_active = 0;
1986 *   for_each_possible_cpu(cpu)
1987 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1988 *
1989 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1990 *
1991 * Due to a number of reasons the above turns in the mess below:
1992 *
1993 *  - for_each_possible_cpu() is prohibitively expensive on machines with
1994 *    serious number of cpus, therefore we need to take a distributed approach
1995 *    to calculating nr_active.
1996 *
1997 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
1998 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
1999 *
2000 *    So assuming nr_active := 0 when we start out -- true per definition, we
2001 *    can simply take per-cpu deltas and fold those into a global accumulate
2002 *    to obtain the same result. See calc_load_fold_active().
2003 *
2004 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
2005 *    across the machine, we assume 10 ticks is sufficient time for every
2006 *    cpu to have completed this task.
2007 *
2008 *    This places an upper-bound on the IRQ-off latency of the machine. Then
2009 *    again, being late doesn't loose the delta, just wrecks the sample.
2010 *
2011 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2012 *    this would add another cross-cpu cacheline miss and atomic operation
2013 *    to the wakeup path. Instead we increment on whatever cpu the task ran
2014 *    when it went into uninterruptible state and decrement on whatever cpu
2015 *    did the wakeup. This means that only the sum of nr_uninterruptible over
2016 *    all cpus yields the correct result.
2017 *
2018 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2019 */
2020
2021/* Variables and functions for calc_load */
2022static atomic_long_t calc_load_tasks;
2023static unsigned long calc_load_update;
2024unsigned long avenrun[3];
2025EXPORT_SYMBOL(avenrun); /* should be removed */
2026
2027/**
2028 * get_avenrun - get the load average array
2029 * @loads:	pointer to dest load array
2030 * @offset:	offset to add
2031 * @shift:	shift count to shift the result left
2032 *
2033 * These values are estimates at best, so no need for locking.
2034 */
2035void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2036{
2037	loads[0] = (avenrun[0] + offset) << shift;
2038	loads[1] = (avenrun[1] + offset) << shift;
2039	loads[2] = (avenrun[2] + offset) << shift;
2040}
2041
2042static long calc_load_fold_active(struct rq *this_rq)
2043{
2044	long nr_active, delta = 0;
2045
2046	nr_active = this_rq->nr_running;
2047	nr_active += (long) this_rq->nr_uninterruptible;
2048
2049	if (nr_active != this_rq->calc_load_active) {
2050		delta = nr_active - this_rq->calc_load_active;
2051		this_rq->calc_load_active = nr_active;
2052	}
2053
2054	return delta;
2055}
2056
2057/*
2058 * a1 = a0 * e + a * (1 - e)
2059 */
2060static unsigned long
2061calc_load(unsigned long load, unsigned long exp, unsigned long active)
2062{
2063	load *= exp;
2064	load += active * (FIXED_1 - exp);
2065	load += 1UL << (FSHIFT - 1);
2066	return load >> FSHIFT;
2067}
2068
2069#ifdef CONFIG_NO_HZ
2070/*
2071 * Handle NO_HZ for the global load-average.
2072 *
2073 * Since the above described distributed algorithm to compute the global
2074 * load-average relies on per-cpu sampling from the tick, it is affected by
2075 * NO_HZ.
2076 *
2077 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2078 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2079 * when we read the global state.
2080 *
2081 * Obviously reality has to ruin such a delightfully simple scheme:
2082 *
2083 *  - When we go NO_HZ idle during the window, we can negate our sample
2084 *    contribution, causing under-accounting.
2085 *
2086 *    We avoid this by keeping two idle-delta counters and flipping them
2087 *    when the window starts, thus separating old and new NO_HZ load.
2088 *
2089 *    The only trick is the slight shift in index flip for read vs write.
2090 *
2091 *        0s            5s            10s           15s
2092 *          +10           +10           +10           +10
2093 *        |-|-----------|-|-----------|-|-----------|-|
2094 *    r:0 0 1           1 0           0 1           1 0
2095 *    w:0 1 1           0 0           1 1           0 0
2096 *
2097 *    This ensures we'll fold the old idle contribution in this window while
2098 *    accumlating the new one.
2099 *
2100 *  - When we wake up from NO_HZ idle during the window, we push up our
2101 *    contribution, since we effectively move our sample point to a known
2102 *    busy state.
2103 *
2104 *    This is solved by pushing the window forward, and thus skipping the
2105 *    sample, for this cpu (effectively using the idle-delta for this cpu which
2106 *    was in effect at the time the window opened). This also solves the issue
2107 *    of having to deal with a cpu having been in NOHZ idle for multiple
2108 *    LOAD_FREQ intervals.
2109 *
2110 * When making the ILB scale, we should try to pull this in as well.
2111 */
2112static atomic_long_t calc_load_idle[2];
2113static int calc_load_idx;
2114
2115static inline int calc_load_write_idx(void)
2116{
2117	int idx = calc_load_idx;
2118
2119	/*
2120	 * See calc_global_nohz(), if we observe the new index, we also
2121	 * need to observe the new update time.
2122	 */
2123	smp_rmb();
2124
2125	/*
2126	 * If the folding window started, make sure we start writing in the
2127	 * next idle-delta.
2128	 */
2129	if (!time_before(jiffies, calc_load_update))
2130		idx++;
2131
2132	return idx & 1;
2133}
2134
2135static inline int calc_load_read_idx(void)
2136{
2137	return calc_load_idx & 1;
2138}
2139
2140void calc_load_enter_idle(void)
2141{
2142	struct rq *this_rq = this_rq();
2143	long delta;
2144
2145	/*
2146	 * We're going into NOHZ mode, if there's any pending delta, fold it
2147	 * into the pending idle delta.
2148	 */
2149	delta = calc_load_fold_active(this_rq);
2150	if (delta) {
2151		int idx = calc_load_write_idx();
2152		atomic_long_add(delta, &calc_load_idle[idx]);
2153	}
2154}
2155
2156void calc_load_exit_idle(void)
2157{
2158	struct rq *this_rq = this_rq();
2159
2160	/*
2161	 * If we're still before the sample window, we're done.
2162	 */
2163	if (time_before(jiffies, this_rq->calc_load_update))
2164		return;
2165
2166	/*
2167	 * We woke inside or after the sample window, this means we're already
2168	 * accounted through the nohz accounting, so skip the entire deal and
2169	 * sync up for the next window.
2170	 */
2171	this_rq->calc_load_update = calc_load_update;
2172	if (time_before(jiffies, this_rq->calc_load_update + 10))
2173		this_rq->calc_load_update += LOAD_FREQ;
2174}
2175
2176static long calc_load_fold_idle(void)
2177{
2178	int idx = calc_load_read_idx();
2179	long delta = 0;
2180
2181	if (atomic_long_read(&calc_load_idle[idx]))
2182		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2183
2184	return delta;
2185}
2186
2187/**
2188 * fixed_power_int - compute: x^n, in O(log n) time
2189 *
2190 * @x:         base of the power
2191 * @frac_bits: fractional bits of @x
2192 * @n:         power to raise @x to.
2193 *
2194 * By exploiting the relation between the definition of the natural power
2195 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2196 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2197 * (where: n_i \elem {0, 1}, the binary vector representing n),
2198 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2199 * of course trivially computable in O(log_2 n), the length of our binary
2200 * vector.
2201 */
2202static unsigned long
2203fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2204{
2205	unsigned long result = 1UL << frac_bits;
2206
2207	if (n) for (;;) {
2208		if (n & 1) {
2209			result *= x;
2210			result += 1UL << (frac_bits - 1);
2211			result >>= frac_bits;
2212		}
2213		n >>= 1;
2214		if (!n)
2215			break;
2216		x *= x;
2217		x += 1UL << (frac_bits - 1);
2218		x >>= frac_bits;
2219	}
2220
2221	return result;
2222}
2223
2224/*
2225 * a1 = a0 * e + a * (1 - e)
2226 *
2227 * a2 = a1 * e + a * (1 - e)
2228 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2229 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2230 *
2231 * a3 = a2 * e + a * (1 - e)
2232 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2233 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2234 *
2235 *  ...
2236 *
2237 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2238 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2239 *    = a0 * e^n + a * (1 - e^n)
2240 *
2241 * [1] application of the geometric series:
2242 *
2243 *              n         1 - x^(n+1)
2244 *     S_n := \Sum x^i = -------------
2245 *             i=0          1 - x
2246 */
2247static unsigned long
2248calc_load_n(unsigned long load, unsigned long exp,
2249	    unsigned long active, unsigned int n)
2250{
2251
2252	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2253}
2254
2255/*
2256 * NO_HZ can leave us missing all per-cpu ticks calling
2257 * calc_load_account_active(), but since an idle CPU folds its delta into
2258 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2259 * in the pending idle delta if our idle period crossed a load cycle boundary.
2260 *
2261 * Once we've updated the global active value, we need to apply the exponential
2262 * weights adjusted to the number of cycles missed.
2263 */
2264static void calc_global_nohz(void)
2265{
2266	long delta, active, n;
2267
2268	if (!time_before(jiffies, calc_load_update + 10)) {
2269		/*
2270		 * Catch-up, fold however many we are behind still
2271		 */
2272		delta = jiffies - calc_load_update - 10;
2273		n = 1 + (delta / LOAD_FREQ);
2274
2275		active = atomic_long_read(&calc_load_tasks);
2276		active = active > 0 ? active * FIXED_1 : 0;
2277
2278		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2279		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2280		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2281
2282		calc_load_update += n * LOAD_FREQ;
2283	}
2284
2285	/*
2286	 * Flip the idle index...
2287	 *
2288	 * Make sure we first write the new time then flip the index, so that
2289	 * calc_load_write_idx() will see the new time when it reads the new
2290	 * index, this avoids a double flip messing things up.
2291	 */
2292	smp_wmb();
2293	calc_load_idx++;
2294}
2295#else /* !CONFIG_NO_HZ */
2296
2297static inline long calc_load_fold_idle(void) { return 0; }
2298static inline void calc_global_nohz(void) { }
2299
2300#endif /* CONFIG_NO_HZ */
2301
2302/*
2303 * calc_load - update the avenrun load estimates 10 ticks after the
2304 * CPUs have updated calc_load_tasks.
2305 */
2306void calc_global_load(unsigned long ticks)
2307{
2308	long active, delta;
2309
2310	if (time_before(jiffies, calc_load_update + 10))
2311		return;
2312
2313	/*
2314	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2315	 */
2316	delta = calc_load_fold_idle();
2317	if (delta)
2318		atomic_long_add(delta, &calc_load_tasks);
2319
2320	active = atomic_long_read(&calc_load_tasks);
2321	active = active > 0 ? active * FIXED_1 : 0;
2322
2323	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2324	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2325	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2326
2327	calc_load_update += LOAD_FREQ;
2328
2329	/*
2330	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2331	 */
2332	calc_global_nohz();
2333}
2334
2335/*
2336 * Called from update_cpu_load() to periodically update this CPU's
2337 * active count.
2338 */
2339static void calc_load_account_active(struct rq *this_rq)
2340{
2341	long delta;
2342
2343	if (time_before(jiffies, this_rq->calc_load_update))
2344		return;
2345
2346	delta  = calc_load_fold_active(this_rq);
2347	if (delta)
2348		atomic_long_add(delta, &calc_load_tasks);
2349
2350	this_rq->calc_load_update += LOAD_FREQ;
2351}
2352
2353/*
2354 * End of global load-average stuff
2355 */
2356
2357/*
2358 * The exact cpuload at various idx values, calculated at every tick would be
2359 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2360 *
2361 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2362 * on nth tick when cpu may be busy, then we have:
2363 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2364 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2365 *
2366 * decay_load_missed() below does efficient calculation of
2367 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2368 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2369 *
2370 * The calculation is approximated on a 128 point scale.
2371 * degrade_zero_ticks is the number of ticks after which load at any
2372 * particular idx is approximated to be zero.
2373 * degrade_factor is a precomputed table, a row for each load idx.
2374 * Each column corresponds to degradation factor for a power of two ticks,
2375 * based on 128 point scale.
2376 * Example:
2377 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2378 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2379 *
2380 * With this power of 2 load factors, we can degrade the load n times
2381 * by looking at 1 bits in n and doing as many mult/shift instead of
2382 * n mult/shifts needed by the exact degradation.
2383 */
2384#define DEGRADE_SHIFT		7
2385static const unsigned char
2386		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2387static const unsigned char
2388		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2389					{0, 0, 0, 0, 0, 0, 0, 0},
2390					{64, 32, 8, 0, 0, 0, 0, 0},
2391					{96, 72, 40, 12, 1, 0, 0},
2392					{112, 98, 75, 43, 15, 1, 0},
2393					{120, 112, 98, 76, 45, 16, 2} };
2394
2395/*
2396 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2397 * would be when CPU is idle and so we just decay the old load without
2398 * adding any new load.
2399 */
2400static unsigned long
2401decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2402{
2403	int j = 0;
2404
2405	if (!missed_updates)
2406		return load;
2407
2408	if (missed_updates >= degrade_zero_ticks[idx])
2409		return 0;
2410
2411	if (idx == 1)
2412		return load >> missed_updates;
2413
2414	while (missed_updates) {
2415		if (missed_updates % 2)
2416			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2417
2418		missed_updates >>= 1;
2419		j++;
2420	}
2421	return load;
2422}
2423
2424/*
2425 * Update rq->cpu_load[] statistics. This function is usually called every
2426 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2427 * every tick. We fix it up based on jiffies.
2428 */
2429static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2430			      unsigned long pending_updates)
2431{
2432	int i, scale;
2433
2434	this_rq->nr_load_updates++;
2435
2436	/* Update our load: */
2437	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2438	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2439		unsigned long old_load, new_load;
2440
2441		/* scale is effectively 1 << i now, and >> i divides by scale */
2442
2443		old_load = this_rq->cpu_load[i];
2444		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2445		new_load = this_load;
2446		/*
2447		 * Round up the averaging division if load is increasing. This
2448		 * prevents us from getting stuck on 9 if the load is 10, for
2449		 * example.
2450		 */
2451		if (new_load > old_load)
2452			new_load += scale - 1;
2453
2454		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2455	}
2456
2457	sched_avg_update(this_rq);
2458}
2459
2460#ifdef CONFIG_NO_HZ
2461/*
2462 * There is no sane way to deal with nohz on smp when using jiffies because the
2463 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2464 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2465 *
2466 * Therefore we cannot use the delta approach from the regular tick since that
2467 * would seriously skew the load calculation. However we'll make do for those
2468 * updates happening while idle (nohz_idle_balance) or coming out of idle
2469 * (tick_nohz_idle_exit).
2470 *
2471 * This means we might still be one tick off for nohz periods.
2472 */
2473
2474/*
2475 * Called from nohz_idle_balance() to update the load ratings before doing the
2476 * idle balance.
2477 */
2478void update_idle_cpu_load(struct rq *this_rq)
2479{
2480	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2481	unsigned long load = this_rq->load.weight;
2482	unsigned long pending_updates;
2483
2484	/*
2485	 * bail if there's load or we're actually up-to-date.
2486	 */
2487	if (load || curr_jiffies == this_rq->last_load_update_tick)
2488		return;
2489
2490	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2491	this_rq->last_load_update_tick = curr_jiffies;
2492
2493	__update_cpu_load(this_rq, load, pending_updates);
2494}
2495
2496/*
2497 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2498 */
2499void update_cpu_load_nohz(void)
2500{
2501	struct rq *this_rq = this_rq();
2502	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2503	unsigned long pending_updates;
2504
2505	if (curr_jiffies == this_rq->last_load_update_tick)
2506		return;
2507
2508	raw_spin_lock(&this_rq->lock);
2509	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2510	if (pending_updates) {
2511		this_rq->last_load_update_tick = curr_jiffies;
2512		/*
2513		 * We were idle, this means load 0, the current load might be
2514		 * !0 due to remote wakeups and the sort.
2515		 */
2516		__update_cpu_load(this_rq, 0, pending_updates);
2517	}
2518	raw_spin_unlock(&this_rq->lock);
2519}
2520#endif /* CONFIG_NO_HZ */
2521
2522/*
2523 * Called from scheduler_tick()
2524 */
2525static void update_cpu_load_active(struct rq *this_rq)
2526{
2527	/*
2528	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2529	 */
2530	this_rq->last_load_update_tick = jiffies;
2531	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2532
2533	calc_load_account_active(this_rq);
2534}
2535
2536#ifdef CONFIG_SMP
2537
2538/*
2539 * sched_exec - execve() is a valuable balancing opportunity, because at
2540 * this point the task has the smallest effective memory and cache footprint.
2541 */
2542void sched_exec(void)
2543{
2544	struct task_struct *p = current;
2545	unsigned long flags;
2546	int dest_cpu;
2547
2548	raw_spin_lock_irqsave(&p->pi_lock, flags);
2549	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2550	if (dest_cpu == smp_processor_id())
2551		goto unlock;
2552
2553	if (likely(cpu_active(dest_cpu))) {
2554		struct migration_arg arg = { p, dest_cpu };
2555
2556		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2557		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2558		return;
2559	}
2560unlock:
2561	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2562}
2563
2564#endif
2565
2566DEFINE_PER_CPU(struct kernel_stat, kstat);
2567DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2568
2569EXPORT_PER_CPU_SYMBOL(kstat);
2570EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2571
2572/*
2573 * Return any ns on the sched_clock that have not yet been accounted in
2574 * @p in case that task is currently running.
2575 *
2576 * Called with task_rq_lock() held on @rq.
2577 */
2578static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2579{
2580	u64 ns = 0;
2581
2582	if (task_current(rq, p)) {
2583		update_rq_clock(rq);
2584		ns = rq->clock_task - p->se.exec_start;
2585		if ((s64)ns < 0)
2586			ns = 0;
2587	}
2588
2589	return ns;
2590}
2591
2592unsigned long long task_delta_exec(struct task_struct *p)
2593{
2594	unsigned long flags;
2595	struct rq *rq;
2596	u64 ns = 0;
2597
2598	rq = task_rq_lock(p, &flags);
2599	ns = do_task_delta_exec(p, rq);
2600	task_rq_unlock(rq, p, &flags);
2601
2602	return ns;
2603}
2604
2605/*
2606 * Return accounted runtime for the task.
2607 * In case the task is currently running, return the runtime plus current's
2608 * pending runtime that have not been accounted yet.
2609 */
2610unsigned long long task_sched_runtime(struct task_struct *p)
2611{
2612	unsigned long flags;
2613	struct rq *rq;
2614	u64 ns = 0;
2615
2616	rq = task_rq_lock(p, &flags);
2617	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2618	task_rq_unlock(rq, p, &flags);
2619
2620	return ns;
2621}
2622
2623/*
2624 * This function gets called by the timer code, with HZ frequency.
2625 * We call it with interrupts disabled.
2626 */
2627void scheduler_tick(void)
2628{
2629	int cpu = smp_processor_id();
2630	struct rq *rq = cpu_rq(cpu);
2631	struct task_struct *curr = rq->curr;
2632
2633	sched_clock_tick();
2634
2635	raw_spin_lock(&rq->lock);
2636	update_rq_clock(rq);
2637	update_cpu_load_active(rq);
2638	curr->sched_class->task_tick(rq, curr, 0);
2639	raw_spin_unlock(&rq->lock);
2640
2641	perf_event_task_tick();
2642
2643#ifdef CONFIG_SMP
2644	rq->idle_balance = idle_cpu(cpu);
2645	trigger_load_balance(rq, cpu);
2646#endif
2647}
2648
2649notrace unsigned long get_parent_ip(unsigned long addr)
2650{
2651	if (in_lock_functions(addr)) {
2652		addr = CALLER_ADDR2;
2653		if (in_lock_functions(addr))
2654			addr = CALLER_ADDR3;
2655	}
2656	return addr;
2657}
2658
2659#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2660				defined(CONFIG_PREEMPT_TRACER))
2661
2662void __kprobes add_preempt_count(int val)
2663{
2664#ifdef CONFIG_DEBUG_PREEMPT
2665	/*
2666	 * Underflow?
2667	 */
2668	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2669		return;
2670#endif
2671	preempt_count() += val;
2672#ifdef CONFIG_DEBUG_PREEMPT
2673	/*
2674	 * Spinlock count overflowing soon?
2675	 */
2676	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2677				PREEMPT_MASK - 10);
2678#endif
2679	if (preempt_count() == val)
2680		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2681}
2682EXPORT_SYMBOL(add_preempt_count);
2683
2684void __kprobes sub_preempt_count(int val)
2685{
2686#ifdef CONFIG_DEBUG_PREEMPT
2687	/*
2688	 * Underflow?
2689	 */
2690	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2691		return;
2692	/*
2693	 * Is the spinlock portion underflowing?
2694	 */
2695	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2696			!(preempt_count() & PREEMPT_MASK)))
2697		return;
2698#endif
2699
2700	if (preempt_count() == val)
2701		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2702	preempt_count() -= val;
2703}
2704EXPORT_SYMBOL(sub_preempt_count);
2705
2706#endif
2707
2708/*
2709 * Print scheduling while atomic bug:
2710 */
2711static noinline void __schedule_bug(struct task_struct *prev)
2712{
2713	if (oops_in_progress)
2714		return;
2715
2716	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2717		prev->comm, prev->pid, preempt_count());
2718
2719	debug_show_held_locks(prev);
2720	print_modules();
2721	if (irqs_disabled())
2722		print_irqtrace_events(prev);
2723	dump_stack();
2724	add_taint(TAINT_WARN);
2725}
2726
2727/*
2728 * Various schedule()-time debugging checks and statistics:
2729 */
2730static inline void schedule_debug(struct task_struct *prev)
2731{
2732	/*
2733	 * Test if we are atomic. Since do_exit() needs to call into
2734	 * schedule() atomically, we ignore that path for now.
2735	 * Otherwise, whine if we are scheduling when we should not be.
2736	 */
2737	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2738		__schedule_bug(prev);
2739	rcu_sleep_check();
2740
2741	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2742
2743	schedstat_inc(this_rq(), sched_count);
2744}
2745
2746static void put_prev_task(struct rq *rq, struct task_struct *prev)
2747{
2748	if (prev->on_rq || rq->skip_clock_update < 0)
2749		update_rq_clock(rq);
2750	prev->sched_class->put_prev_task(rq, prev);
2751}
2752
2753/*
2754 * Pick up the highest-prio task:
2755 */
2756static inline struct task_struct *
2757pick_next_task(struct rq *rq)
2758{
2759	const struct sched_class *class;
2760	struct task_struct *p;
2761
2762	/*
2763	 * Optimization: we know that if all tasks are in
2764	 * the fair class we can call that function directly:
2765	 */
2766	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2767		p = fair_sched_class.pick_next_task(rq);
2768		if (likely(p))
2769			return p;
2770	}
2771
2772	for_each_class(class) {
2773		p = class->pick_next_task(rq);
2774		if (p)
2775			return p;
2776	}
2777
2778	BUG(); /* the idle class will always have a runnable task */
2779}
2780
2781/*
2782 * __schedule() is the main scheduler function.
2783 *
2784 * The main means of driving the scheduler and thus entering this function are:
2785 *
2786 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2787 *
2788 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2789 *      paths. For example, see arch/x86/entry_64.S.
2790 *
2791 *      To drive preemption between tasks, the scheduler sets the flag in timer
2792 *      interrupt handler scheduler_tick().
2793 *
2794 *   3. Wakeups don't really cause entry into schedule(). They add a
2795 *      task to the run-queue and that's it.
2796 *
2797 *      Now, if the new task added to the run-queue preempts the current
2798 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2799 *      called on the nearest possible occasion:
2800 *
2801 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2802 *
2803 *         - in syscall or exception context, at the next outmost
2804 *           preempt_enable(). (this might be as soon as the wake_up()'s
2805 *           spin_unlock()!)
2806 *
2807 *         - in IRQ context, return from interrupt-handler to
2808 *           preemptible context
2809 *
2810 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2811 *         then at the next:
2812 *
2813 *          - cond_resched() call
2814 *          - explicit schedule() call
2815 *          - return from syscall or exception to user-space
2816 *          - return from interrupt-handler to user-space
2817 */
2818static void __sched __schedule(void)
2819{
2820	struct task_struct *prev, *next;
2821	unsigned long *switch_count;
2822	struct rq *rq;
2823	int cpu;
2824
2825need_resched:
2826	preempt_disable();
2827	cpu = smp_processor_id();
2828	rq = cpu_rq(cpu);
2829	rcu_note_context_switch(cpu);
2830	prev = rq->curr;
2831
2832	schedule_debug(prev);
2833
2834	if (sched_feat(HRTICK))
2835		hrtick_clear(rq);
2836
2837	raw_spin_lock_irq(&rq->lock);
2838
2839	switch_count = &prev->nivcsw;
2840	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2841		if (unlikely(signal_pending_state(prev->state, prev))) {
2842			prev->state = TASK_RUNNING;
2843		} else {
2844			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2845			prev->on_rq = 0;
2846
2847			/*
2848			 * If a worker went to sleep, notify and ask workqueue
2849			 * whether it wants to wake up a task to maintain
2850			 * concurrency.
2851			 */
2852			if (prev->flags & PF_WQ_WORKER) {
2853				struct task_struct *to_wakeup;
2854
2855				to_wakeup = wq_worker_sleeping(prev, cpu);
2856				if (to_wakeup)
2857					try_to_wake_up_local(to_wakeup);
2858			}
2859		}
2860		switch_count = &prev->nvcsw;
2861	}
2862
2863	pre_schedule(rq, prev);
2864
2865	if (unlikely(!rq->nr_running))
2866		idle_balance(cpu, rq);
2867
2868	put_prev_task(rq, prev);
2869	next = pick_next_task(rq);
2870	clear_tsk_need_resched(prev);
2871	rq->skip_clock_update = 0;
2872
2873	if (likely(prev != next)) {
2874		rq->nr_switches++;
2875		rq->curr = next;
2876		++*switch_count;
2877
2878		context_switch(rq, prev, next); /* unlocks the rq */
2879		/*
2880		 * The context switch have flipped the stack from under us
2881		 * and restored the local variables which were saved when
2882		 * this task called schedule() in the past. prev == current
2883		 * is still correct, but it can be moved to another cpu/rq.
2884		 */
2885		cpu = smp_processor_id();
2886		rq = cpu_rq(cpu);
2887	} else
2888		raw_spin_unlock_irq(&rq->lock);
2889
2890	post_schedule(rq);
2891
2892	sched_preempt_enable_no_resched();
2893	if (need_resched())
2894		goto need_resched;
2895}
2896
2897static inline void sched_submit_work(struct task_struct *tsk)
2898{
2899	if (!tsk->state || tsk_is_pi_blocked(tsk))
2900		return;
2901	/*
2902	 * If we are going to sleep and we have plugged IO queued,
2903	 * make sure to submit it to avoid deadlocks.
2904	 */
2905	if (blk_needs_flush_plug(tsk))
2906		blk_schedule_flush_plug(tsk);
2907}
2908
2909asmlinkage void __sched schedule(void)
2910{
2911	struct task_struct *tsk = current;
2912
2913	sched_submit_work(tsk);
2914	__schedule();
2915}
2916EXPORT_SYMBOL(schedule);
2917
2918#ifdef CONFIG_RCU_USER_QS
2919asmlinkage void __sched schedule_user(void)
2920{
2921	/*
2922	 * If we come here after a random call to set_need_resched(),
2923	 * or we have been woken up remotely but the IPI has not yet arrived,
2924	 * we haven't yet exited the RCU idle mode. Do it here manually until
2925	 * we find a better solution.
2926	 */
2927	rcu_user_exit();
2928	schedule();
2929	rcu_user_enter();
2930}
2931#endif
2932
2933/**
2934 * schedule_preempt_disabled - called with preemption disabled
2935 *
2936 * Returns with preemption disabled. Note: preempt_count must be 1
2937 */
2938void __sched schedule_preempt_disabled(void)
2939{
2940	sched_preempt_enable_no_resched();
2941	schedule();
2942	preempt_disable();
2943}
2944
2945#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2946
2947static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2948{
2949	if (lock->owner != owner)
2950		return false;
2951
2952	/*
2953	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2954	 * lock->owner still matches owner, if that fails, owner might
2955	 * point to free()d memory, if it still matches, the rcu_read_lock()
2956	 * ensures the memory stays valid.
2957	 */
2958	barrier();
2959
2960	return owner->on_cpu;
2961}
2962
2963/*
2964 * Look out! "owner" is an entirely speculative pointer
2965 * access and not reliable.
2966 */
2967int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2968{
2969	if (!sched_feat(OWNER_SPIN))
2970		return 0;
2971
2972	rcu_read_lock();
2973	while (owner_running(lock, owner)) {
2974		if (need_resched())
2975			break;
2976
2977		arch_mutex_cpu_relax();
2978	}
2979	rcu_read_unlock();
2980
2981	/*
2982	 * We break out the loop above on need_resched() and when the
2983	 * owner changed, which is a sign for heavy contention. Return
2984	 * success only when lock->owner is NULL.
2985	 */
2986	return lock->owner == NULL;
2987}
2988#endif
2989
2990#ifdef CONFIG_PREEMPT
2991/*
2992 * this is the entry point to schedule() from in-kernel preemption
2993 * off of preempt_enable. Kernel preemptions off return from interrupt
2994 * occur there and call schedule directly.
2995 */
2996asmlinkage void __sched notrace preempt_schedule(void)
2997{
2998	struct thread_info *ti = current_thread_info();
2999
3000	/*
3001	 * If there is a non-zero preempt_count or interrupts are disabled,
3002	 * we do not want to preempt the current task. Just return..
3003	 */
3004	if (likely(ti->preempt_count || irqs_disabled()))
3005		return;
3006
3007	do {
3008		add_preempt_count_notrace(PREEMPT_ACTIVE);
3009		__schedule();
3010		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3011
3012		/*
3013		 * Check again in case we missed a preemption opportunity
3014		 * between schedule and now.
3015		 */
3016		barrier();
3017	} while (need_resched());
3018}
3019EXPORT_SYMBOL(preempt_schedule);
3020
3021/*
3022 * this is the entry point to schedule() from kernel preemption
3023 * off of irq context.
3024 * Note, that this is called and return with irqs disabled. This will
3025 * protect us against recursive calling from irq.
3026 */
3027asmlinkage void __sched preempt_schedule_irq(void)
3028{
3029	struct thread_info *ti = current_thread_info();
3030
3031	/* Catch callers which need to be fixed */
3032	BUG_ON(ti->preempt_count || !irqs_disabled());
3033
3034	rcu_user_exit();
3035	do {
3036		add_preempt_count(PREEMPT_ACTIVE);
3037		local_irq_enable();
3038		__schedule();
3039		local_irq_disable();
3040		sub_preempt_count(PREEMPT_ACTIVE);
3041
3042		/*
3043		 * Check again in case we missed a preemption opportunity
3044		 * between schedule and now.
3045		 */
3046		barrier();
3047	} while (need_resched());
3048}
3049
3050#endif /* CONFIG_PREEMPT */
3051
3052int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3053			  void *key)
3054{
3055	return try_to_wake_up(curr->private, mode, wake_flags);
3056}
3057EXPORT_SYMBOL(default_wake_function);
3058
3059/*
3060 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3061 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3062 * number) then we wake all the non-exclusive tasks and one exclusive task.
3063 *
3064 * There are circumstances in which we can try to wake a task which has already
3065 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3066 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3067 */
3068static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3069			int nr_exclusive, int wake_flags, void *key)
3070{
3071	wait_queue_t *curr, *next;
3072
3073	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3074		unsigned flags = curr->flags;
3075
3076		if (curr->func(curr, mode, wake_flags, key) &&
3077				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3078			break;
3079	}
3080}
3081
3082/**
3083 * __wake_up - wake up threads blocked on a waitqueue.
3084 * @q: the waitqueue
3085 * @mode: which threads
3086 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3087 * @key: is directly passed to the wakeup function
3088 *
3089 * It may be assumed that this function implies a write memory barrier before
3090 * changing the task state if and only if any tasks are woken up.
3091 */
3092void __wake_up(wait_queue_head_t *q, unsigned int mode,
3093			int nr_exclusive, void *key)
3094{
3095	unsigned long flags;
3096
3097	spin_lock_irqsave(&q->lock, flags);
3098	__wake_up_common(q, mode, nr_exclusive, 0, key);
3099	spin_unlock_irqrestore(&q->lock, flags);
3100}
3101EXPORT_SYMBOL(__wake_up);
3102
3103/*
3104 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3105 */
3106void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3107{
3108	__wake_up_common(q, mode, nr, 0, NULL);
3109}
3110EXPORT_SYMBOL_GPL(__wake_up_locked);
3111
3112void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3113{
3114	__wake_up_common(q, mode, 1, 0, key);
3115}
3116EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3117
3118/**
3119 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3120 * @q: the waitqueue
3121 * @mode: which threads
3122 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3123 * @key: opaque value to be passed to wakeup targets
3124 *
3125 * The sync wakeup differs that the waker knows that it will schedule
3126 * away soon, so while the target thread will be woken up, it will not
3127 * be migrated to another CPU - ie. the two threads are 'synchronized'
3128 * with each other. This can prevent needless bouncing between CPUs.
3129 *
3130 * On UP it can prevent extra preemption.
3131 *
3132 * It may be assumed that this function implies a write memory barrier before
3133 * changing the task state if and only if any tasks are woken up.
3134 */
3135void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3136			int nr_exclusive, void *key)
3137{
3138	unsigned long flags;
3139	int wake_flags = WF_SYNC;
3140
3141	if (unlikely(!q))
3142		return;
3143
3144	if (unlikely(!nr_exclusive))
3145		wake_flags = 0;
3146
3147	spin_lock_irqsave(&q->lock, flags);
3148	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3149	spin_unlock_irqrestore(&q->lock, flags);
3150}
3151EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3152
3153/*
3154 * __wake_up_sync - see __wake_up_sync_key()
3155 */
3156void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3157{
3158	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3159}
3160EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3161
3162/**
3163 * complete: - signals a single thread waiting on this completion
3164 * @x:  holds the state of this particular completion
3165 *
3166 * This will wake up a single thread waiting on this completion. Threads will be
3167 * awakened in the same order in which they were queued.
3168 *
3169 * See also complete_all(), wait_for_completion() and related routines.
3170 *
3171 * It may be assumed that this function implies a write memory barrier before
3172 * changing the task state if and only if any tasks are woken up.
3173 */
3174void complete(struct completion *x)
3175{
3176	unsigned long flags;
3177
3178	spin_lock_irqsave(&x->wait.lock, flags);
3179	x->done++;
3180	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3181	spin_unlock_irqrestore(&x->wait.lock, flags);
3182}
3183EXPORT_SYMBOL(complete);
3184
3185/**
3186 * complete_all: - signals all threads waiting on this completion
3187 * @x:  holds the state of this particular completion
3188 *
3189 * This will wake up all threads waiting on this particular completion event.
3190 *
3191 * It may be assumed that this function implies a write memory barrier before
3192 * changing the task state if and only if any tasks are woken up.
3193 */
3194void complete_all(struct completion *x)
3195{
3196	unsigned long flags;
3197
3198	spin_lock_irqsave(&x->wait.lock, flags);
3199	x->done += UINT_MAX/2;
3200	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3201	spin_unlock_irqrestore(&x->wait.lock, flags);
3202}
3203EXPORT_SYMBOL(complete_all);
3204
3205static inline long __sched
3206do_wait_for_common(struct completion *x, long timeout, int state)
3207{
3208	if (!x->done) {
3209		DECLARE_WAITQUEUE(wait, current);
3210
3211		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3212		do {
3213			if (signal_pending_state(state, current)) {
3214				timeout = -ERESTARTSYS;
3215				break;
3216			}
3217			__set_current_state(state);
3218			spin_unlock_irq(&x->wait.lock);
3219			timeout = schedule_timeout(timeout);
3220			spin_lock_irq(&x->wait.lock);
3221		} while (!x->done && timeout);
3222		__remove_wait_queue(&x->wait, &wait);
3223		if (!x->done)
3224			return timeout;
3225	}
3226	x->done--;
3227	return timeout ?: 1;
3228}
3229
3230static long __sched
3231wait_for_common(struct completion *x, long timeout, int state)
3232{
3233	might_sleep();
3234
3235	spin_lock_irq(&x->wait.lock);
3236	timeout = do_wait_for_common(x, timeout, state);
3237	spin_unlock_irq(&x->wait.lock);
3238	return timeout;
3239}
3240
3241/**
3242 * wait_for_completion: - waits for completion of a task
3243 * @x:  holds the state of this particular completion
3244 *
3245 * This waits to be signaled for completion of a specific task. It is NOT
3246 * interruptible and there is no timeout.
3247 *
3248 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3249 * and interrupt capability. Also see complete().
3250 */
3251void __sched wait_for_completion(struct completion *x)
3252{
3253	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3254}
3255EXPORT_SYMBOL(wait_for_completion);
3256
3257/**
3258 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3259 * @x:  holds the state of this particular completion
3260 * @timeout:  timeout value in jiffies
3261 *
3262 * This waits for either a completion of a specific task to be signaled or for a
3263 * specified timeout to expire. The timeout is in jiffies. It is not
3264 * interruptible.
3265 *
3266 * The return value is 0 if timed out, and positive (at least 1, or number of
3267 * jiffies left till timeout) if completed.
3268 */
3269unsigned long __sched
3270wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3271{
3272	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3273}
3274EXPORT_SYMBOL(wait_for_completion_timeout);
3275
3276/**
3277 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3278 * @x:  holds the state of this particular completion
3279 *
3280 * This waits for completion of a specific task to be signaled. It is
3281 * interruptible.
3282 *
3283 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3284 */
3285int __sched wait_for_completion_interruptible(struct completion *x)
3286{
3287	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3288	if (t == -ERESTARTSYS)
3289		return t;
3290	return 0;
3291}
3292EXPORT_SYMBOL(wait_for_completion_interruptible);
3293
3294/**
3295 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3296 * @x:  holds the state of this particular completion
3297 * @timeout:  timeout value in jiffies
3298 *
3299 * This waits for either a completion of a specific task to be signaled or for a
3300 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3301 *
3302 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3303 * positive (at least 1, or number of jiffies left till timeout) if completed.
3304 */
3305long __sched
3306wait_for_completion_interruptible_timeout(struct completion *x,
3307					  unsigned long timeout)
3308{
3309	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3310}
3311EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3312
3313/**
3314 * wait_for_completion_killable: - waits for completion of a task (killable)
3315 * @x:  holds the state of this particular completion
3316 *
3317 * This waits to be signaled for completion of a specific task. It can be
3318 * interrupted by a kill signal.
3319 *
3320 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3321 */
3322int __sched wait_for_completion_killable(struct completion *x)
3323{
3324	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3325	if (t == -ERESTARTSYS)
3326		return t;
3327	return 0;
3328}
3329EXPORT_SYMBOL(wait_for_completion_killable);
3330
3331/**
3332 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3333 * @x:  holds the state of this particular completion
3334 * @timeout:  timeout value in jiffies
3335 *
3336 * This waits for either a completion of a specific task to be
3337 * signaled or for a specified timeout to expire. It can be
3338 * interrupted by a kill signal. The timeout is in jiffies.
3339 *
3340 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3341 * positive (at least 1, or number of jiffies left till timeout) if completed.
3342 */
3343long __sched
3344wait_for_completion_killable_timeout(struct completion *x,
3345				     unsigned long timeout)
3346{
3347	return wait_for_common(x, timeout, TASK_KILLABLE);
3348}
3349EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3350
3351/**
3352 *	try_wait_for_completion - try to decrement a completion without blocking
3353 *	@x:	completion structure
3354 *
3355 *	Returns: 0 if a decrement cannot be done without blocking
3356 *		 1 if a decrement succeeded.
3357 *
3358 *	If a completion is being used as a counting completion,
3359 *	attempt to decrement the counter without blocking. This
3360 *	enables us to avoid waiting if the resource the completion
3361 *	is protecting is not available.
3362 */
3363bool try_wait_for_completion(struct completion *x)
3364{
3365	unsigned long flags;
3366	int ret = 1;
3367
3368	spin_lock_irqsave(&x->wait.lock, flags);
3369	if (!x->done)
3370		ret = 0;
3371	else
3372		x->done--;
3373	spin_unlock_irqrestore(&x->wait.lock, flags);
3374	return ret;
3375}
3376EXPORT_SYMBOL(try_wait_for_completion);
3377
3378/**
3379 *	completion_done - Test to see if a completion has any waiters
3380 *	@x:	completion structure
3381 *
3382 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3383 *		 1 if there are no waiters.
3384 *
3385 */
3386bool completion_done(struct completion *x)
3387{
3388	unsigned long flags;
3389	int ret = 1;
3390
3391	spin_lock_irqsave(&x->wait.lock, flags);
3392	if (!x->done)
3393		ret = 0;
3394	spin_unlock_irqrestore(&x->wait.lock, flags);
3395	return ret;
3396}
3397EXPORT_SYMBOL(completion_done);
3398
3399static long __sched
3400sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3401{
3402	unsigned long flags;
3403	wait_queue_t wait;
3404
3405	init_waitqueue_entry(&wait, current);
3406
3407	__set_current_state(state);
3408
3409	spin_lock_irqsave(&q->lock, flags);
3410	__add_wait_queue(q, &wait);
3411	spin_unlock(&q->lock);
3412	timeout = schedule_timeout(timeout);
3413	spin_lock_irq(&q->lock);
3414	__remove_wait_queue(q, &wait);
3415	spin_unlock_irqrestore(&q->lock, flags);
3416
3417	return timeout;
3418}
3419
3420void __sched interruptible_sleep_on(wait_queue_head_t *q)
3421{
3422	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3423}
3424EXPORT_SYMBOL(interruptible_sleep_on);
3425
3426long __sched
3427interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3428{
3429	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3430}
3431EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3432
3433void __sched sleep_on(wait_queue_head_t *q)
3434{
3435	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3436}
3437EXPORT_SYMBOL(sleep_on);
3438
3439long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3440{
3441	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3442}
3443EXPORT_SYMBOL(sleep_on_timeout);
3444
3445#ifdef CONFIG_RT_MUTEXES
3446
3447/*
3448 * rt_mutex_setprio - set the current priority of a task
3449 * @p: task
3450 * @prio: prio value (kernel-internal form)
3451 *
3452 * This function changes the 'effective' priority of a task. It does
3453 * not touch ->normal_prio like __setscheduler().
3454 *
3455 * Used by the rt_mutex code to implement priority inheritance logic.
3456 */
3457void rt_mutex_setprio(struct task_struct *p, int prio)
3458{
3459	int oldprio, on_rq, running;
3460	struct rq *rq;
3461	const struct sched_class *prev_class;
3462
3463	BUG_ON(prio < 0 || prio > MAX_PRIO);
3464
3465	rq = __task_rq_lock(p);
3466
3467	/*
3468	 * Idle task boosting is a nono in general. There is one
3469	 * exception, when PREEMPT_RT and NOHZ is active:
3470	 *
3471	 * The idle task calls get_next_timer_interrupt() and holds
3472	 * the timer wheel base->lock on the CPU and another CPU wants
3473	 * to access the timer (probably to cancel it). We can safely
3474	 * ignore the boosting request, as the idle CPU runs this code
3475	 * with interrupts disabled and will complete the lock
3476	 * protected section without being interrupted. So there is no
3477	 * real need to boost.
3478	 */
3479	if (unlikely(p == rq->idle)) {
3480		WARN_ON(p != rq->curr);
3481		WARN_ON(p->pi_blocked_on);
3482		goto out_unlock;
3483	}
3484
3485	trace_sched_pi_setprio(p, prio);
3486	oldprio = p->prio;
3487	prev_class = p->sched_class;
3488	on_rq = p->on_rq;
3489	running = task_current(rq, p);
3490	if (on_rq)
3491		dequeue_task(rq, p, 0);
3492	if (running)
3493		p->sched_class->put_prev_task(rq, p);
3494
3495	if (rt_prio(prio))
3496		p->sched_class = &rt_sched_class;
3497	else
3498		p->sched_class = &fair_sched_class;
3499
3500	p->prio = prio;
3501
3502	if (running)
3503		p->sched_class->set_curr_task(rq);
3504	if (on_rq)
3505		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3506
3507	check_class_changed(rq, p, prev_class, oldprio);
3508out_unlock:
3509	__task_rq_unlock(rq);
3510}
3511#endif
3512void set_user_nice(struct task_struct *p, long nice)
3513{
3514	int old_prio, delta, on_rq;
3515	unsigned long flags;
3516	struct rq *rq;
3517
3518	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3519		return;
3520	/*
3521	 * We have to be careful, if called from sys_setpriority(),
3522	 * the task might be in the middle of scheduling on another CPU.
3523	 */
3524	rq = task_rq_lock(p, &flags);
3525	/*
3526	 * The RT priorities are set via sched_setscheduler(), but we still
3527	 * allow the 'normal' nice value to be set - but as expected
3528	 * it wont have any effect on scheduling until the task is
3529	 * SCHED_FIFO/SCHED_RR:
3530	 */
3531	if (task_has_rt_policy(p)) {
3532		p->static_prio = NICE_TO_PRIO(nice);
3533		goto out_unlock;
3534	}
3535	on_rq = p->on_rq;
3536	if (on_rq)
3537		dequeue_task(rq, p, 0);
3538
3539	p->static_prio = NICE_TO_PRIO(nice);
3540	set_load_weight(p);
3541	old_prio = p->prio;
3542	p->prio = effective_prio(p);
3543	delta = p->prio - old_prio;
3544
3545	if (on_rq) {
3546		enqueue_task(rq, p, 0);
3547		/*
3548		 * If the task increased its priority or is running and
3549		 * lowered its priority, then reschedule its CPU:
3550		 */
3551		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3552			resched_task(rq->curr);
3553	}
3554out_unlock:
3555	task_rq_unlock(rq, p, &flags);
3556}
3557EXPORT_SYMBOL(set_user_nice);
3558
3559/*
3560 * can_nice - check if a task can reduce its nice value
3561 * @p: task
3562 * @nice: nice value
3563 */
3564int can_nice(const struct task_struct *p, const int nice)
3565{
3566	/* convert nice value [19,-20] to rlimit style value [1,40] */
3567	int nice_rlim = 20 - nice;
3568
3569	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3570		capable(CAP_SYS_NICE));
3571}
3572
3573#ifdef __ARCH_WANT_SYS_NICE
3574
3575/*
3576 * sys_nice - change the priority of the current process.
3577 * @increment: priority increment
3578 *
3579 * sys_setpriority is a more generic, but much slower function that
3580 * does similar things.
3581 */
3582SYSCALL_DEFINE1(nice, int, increment)
3583{
3584	long nice, retval;
3585
3586	/*
3587	 * Setpriority might change our priority at the same moment.
3588	 * We don't have to worry. Conceptually one call occurs first
3589	 * and we have a single winner.
3590	 */
3591	if (increment < -40)
3592		increment = -40;
3593	if (increment > 40)
3594		increment = 40;
3595
3596	nice = TASK_NICE(current) + increment;
3597	if (nice < -20)
3598		nice = -20;
3599	if (nice > 19)
3600		nice = 19;
3601
3602	if (increment < 0 && !can_nice(current, nice))
3603		return -EPERM;
3604
3605	retval = security_task_setnice(current, nice);
3606	if (retval)
3607		return retval;
3608
3609	set_user_nice(current, nice);
3610	return 0;
3611}
3612
3613#endif
3614
3615/**
3616 * task_prio - return the priority value of a given task.
3617 * @p: the task in question.
3618 *
3619 * This is the priority value as seen by users in /proc.
3620 * RT tasks are offset by -200. Normal tasks are centered
3621 * around 0, value goes from -16 to +15.
3622 */
3623int task_prio(const struct task_struct *p)
3624{
3625	return p->prio - MAX_RT_PRIO;
3626}
3627
3628/**
3629 * task_nice - return the nice value of a given task.
3630 * @p: the task in question.
3631 */
3632int task_nice(const struct task_struct *p)
3633{
3634	return TASK_NICE(p);
3635}
3636EXPORT_SYMBOL(task_nice);
3637
3638/**
3639 * idle_cpu - is a given cpu idle currently?
3640 * @cpu: the processor in question.
3641 */
3642int idle_cpu(int cpu)
3643{
3644	struct rq *rq = cpu_rq(cpu);
3645
3646	if (rq->curr != rq->idle)
3647		return 0;
3648
3649	if (rq->nr_running)
3650		return 0;
3651
3652#ifdef CONFIG_SMP
3653	if (!llist_empty(&rq->wake_list))
3654		return 0;
3655#endif
3656
3657	return 1;
3658}
3659
3660/**
3661 * idle_task - return the idle task for a given cpu.
3662 * @cpu: the processor in question.
3663 */
3664struct task_struct *idle_task(int cpu)
3665{
3666	return cpu_rq(cpu)->idle;
3667}
3668
3669/**
3670 * find_process_by_pid - find a process with a matching PID value.
3671 * @pid: the pid in question.
3672 */
3673static struct task_struct *find_process_by_pid(pid_t pid)
3674{
3675	return pid ? find_task_by_vpid(pid) : current;
3676}
3677
3678/* Actually do priority change: must hold rq lock. */
3679static void
3680__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3681{
3682	p->policy = policy;
3683	p->rt_priority = prio;
3684	p->normal_prio = normal_prio(p);
3685	/* we are holding p->pi_lock already */
3686	p->prio = rt_mutex_getprio(p);
3687	if (rt_prio(p->prio))
3688		p->sched_class = &rt_sched_class;
3689	else
3690		p->sched_class = &fair_sched_class;
3691	set_load_weight(p);
3692}
3693
3694/*
3695 * check the target process has a UID that matches the current process's
3696 */
3697static bool check_same_owner(struct task_struct *p)
3698{
3699	const struct cred *cred = current_cred(), *pcred;
3700	bool match;
3701
3702	rcu_read_lock();
3703	pcred = __task_cred(p);
3704	match = (uid_eq(cred->euid, pcred->euid) ||
3705		 uid_eq(cred->euid, pcred->uid));
3706	rcu_read_unlock();
3707	return match;
3708}
3709
3710static int __sched_setscheduler(struct task_struct *p, int policy,
3711				const struct sched_param *param, bool user)
3712{
3713	int retval, oldprio, oldpolicy = -1, on_rq, running;
3714	unsigned long flags;
3715	const struct sched_class *prev_class;
3716	struct rq *rq;
3717	int reset_on_fork;
3718
3719	/* may grab non-irq protected spin_locks */
3720	BUG_ON(in_interrupt());
3721recheck:
3722	/* double check policy once rq lock held */
3723	if (policy < 0) {
3724		reset_on_fork = p->sched_reset_on_fork;
3725		policy = oldpolicy = p->policy;
3726	} else {
3727		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3728		policy &= ~SCHED_RESET_ON_FORK;
3729
3730		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3731				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3732				policy != SCHED_IDLE)
3733			return -EINVAL;
3734	}
3735
3736	/*
3737	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3738	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3739	 * SCHED_BATCH and SCHED_IDLE is 0.
3740	 */
3741	if (param->sched_priority < 0 ||
3742	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3743	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3744		return -EINVAL;
3745	if (rt_policy(policy) != (param->sched_priority != 0))
3746		return -EINVAL;
3747
3748	/*
3749	 * Allow unprivileged RT tasks to decrease priority:
3750	 */
3751	if (user && !capable(CAP_SYS_NICE)) {
3752		if (rt_policy(policy)) {
3753			unsigned long rlim_rtprio =
3754					task_rlimit(p, RLIMIT_RTPRIO);
3755
3756			/* can't set/change the rt policy */
3757			if (policy != p->policy && !rlim_rtprio)
3758				return -EPERM;
3759
3760			/* can't increase priority */
3761			if (param->sched_priority > p->rt_priority &&
3762			    param->sched_priority > rlim_rtprio)
3763				return -EPERM;
3764		}
3765
3766		/*
3767		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3768		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3769		 */
3770		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3771			if (!can_nice(p, TASK_NICE(p)))
3772				return -EPERM;
3773		}
3774
3775		/* can't change other user's priorities */
3776		if (!check_same_owner(p))
3777			return -EPERM;
3778
3779		/* Normal users shall not reset the sched_reset_on_fork flag */
3780		if (p->sched_reset_on_fork && !reset_on_fork)
3781			return -EPERM;
3782	}
3783
3784	if (user) {
3785		retval = security_task_setscheduler(p);
3786		if (retval)
3787			return retval;
3788	}
3789
3790	/*
3791	 * make sure no PI-waiters arrive (or leave) while we are
3792	 * changing the priority of the task:
3793	 *
3794	 * To be able to change p->policy safely, the appropriate
3795	 * runqueue lock must be held.
3796	 */
3797	rq = task_rq_lock(p, &flags);
3798
3799	/*
3800	 * Changing the policy of the stop threads its a very bad idea
3801	 */
3802	if (p == rq->stop) {
3803		task_rq_unlock(rq, p, &flags);
3804		return -EINVAL;
3805	}
3806
3807	/*
3808	 * If not changing anything there's no need to proceed further:
3809	 */
3810	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3811			param->sched_priority == p->rt_priority))) {
3812		task_rq_unlock(rq, p, &flags);
3813		return 0;
3814	}
3815
3816#ifdef CONFIG_RT_GROUP_SCHED
3817	if (user) {
3818		/*
3819		 * Do not allow realtime tasks into groups that have no runtime
3820		 * assigned.
3821		 */
3822		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3823				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3824				!task_group_is_autogroup(task_group(p))) {
3825			task_rq_unlock(rq, p, &flags);
3826			return -EPERM;
3827		}
3828	}
3829#endif
3830
3831	/* recheck policy now with rq lock held */
3832	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3833		policy = oldpolicy = -1;
3834		task_rq_unlock(rq, p, &flags);
3835		goto recheck;
3836	}
3837	on_rq = p->on_rq;
3838	running = task_current(rq, p);
3839	if (on_rq)
3840		dequeue_task(rq, p, 0);
3841	if (running)
3842		p->sched_class->put_prev_task(rq, p);
3843
3844	p->sched_reset_on_fork = reset_on_fork;
3845
3846	oldprio = p->prio;
3847	prev_class = p->sched_class;
3848	__setscheduler(rq, p, policy, param->sched_priority);
3849
3850	if (running)
3851		p->sched_class->set_curr_task(rq);
3852	if (on_rq)
3853		enqueue_task(rq, p, 0);
3854
3855	check_class_changed(rq, p, prev_class, oldprio);
3856	task_rq_unlock(rq, p, &flags);
3857
3858	rt_mutex_adjust_pi(p);
3859
3860	return 0;
3861}
3862
3863/**
3864 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3865 * @p: the task in question.
3866 * @policy: new policy.
3867 * @param: structure containing the new RT priority.
3868 *
3869 * NOTE that the task may be already dead.
3870 */
3871int sched_setscheduler(struct task_struct *p, int policy,
3872		       const struct sched_param *param)
3873{
3874	return __sched_setscheduler(p, policy, param, true);
3875}
3876EXPORT_SYMBOL_GPL(sched_setscheduler);
3877
3878/**
3879 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3880 * @p: the task in question.
3881 * @policy: new policy.
3882 * @param: structure containing the new RT priority.
3883 *
3884 * Just like sched_setscheduler, only don't bother checking if the
3885 * current context has permission.  For example, this is needed in
3886 * stop_machine(): we create temporary high priority worker threads,
3887 * but our caller might not have that capability.
3888 */
3889int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3890			       const struct sched_param *param)
3891{
3892	return __sched_setscheduler(p, policy, param, false);
3893}
3894
3895static int
3896do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3897{
3898	struct sched_param lparam;
3899	struct task_struct *p;
3900	int retval;
3901
3902	if (!param || pid < 0)
3903		return -EINVAL;
3904	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3905		return -EFAULT;
3906
3907	rcu_read_lock();
3908	retval = -ESRCH;
3909	p = find_process_by_pid(pid);
3910	if (p != NULL)
3911		retval = sched_setscheduler(p, policy, &lparam);
3912	rcu_read_unlock();
3913
3914	return retval;
3915}
3916
3917/**
3918 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3919 * @pid: the pid in question.
3920 * @policy: new policy.
3921 * @param: structure containing the new RT priority.
3922 */
3923SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3924		struct sched_param __user *, param)
3925{
3926	/* negative values for policy are not valid */
3927	if (policy < 0)
3928		return -EINVAL;
3929
3930	return do_sched_setscheduler(pid, policy, param);
3931}
3932
3933/**
3934 * sys_sched_setparam - set/change the RT priority of a thread
3935 * @pid: the pid in question.
3936 * @param: structure containing the new RT priority.
3937 */
3938SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3939{
3940	return do_sched_setscheduler(pid, -1, param);
3941}
3942
3943/**
3944 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3945 * @pid: the pid in question.
3946 */
3947SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3948{
3949	struct task_struct *p;
3950	int retval;
3951
3952	if (pid < 0)
3953		return -EINVAL;
3954
3955	retval = -ESRCH;
3956	rcu_read_lock();
3957	p = find_process_by_pid(pid);
3958	if (p) {
3959		retval = security_task_getscheduler(p);
3960		if (!retval)
3961			retval = p->policy
3962				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3963	}
3964	rcu_read_unlock();
3965	return retval;
3966}
3967
3968/**
3969 * sys_sched_getparam - get the RT priority of a thread
3970 * @pid: the pid in question.
3971 * @param: structure containing the RT priority.
3972 */
3973SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3974{
3975	struct sched_param lp;
3976	struct task_struct *p;
3977	int retval;
3978
3979	if (!param || pid < 0)
3980		return -EINVAL;
3981
3982	rcu_read_lock();
3983	p = find_process_by_pid(pid);
3984	retval = -ESRCH;
3985	if (!p)
3986		goto out_unlock;
3987
3988	retval = security_task_getscheduler(p);
3989	if (retval)
3990		goto out_unlock;
3991
3992	lp.sched_priority = p->rt_priority;
3993	rcu_read_unlock();
3994
3995	/*
3996	 * This one might sleep, we cannot do it with a spinlock held ...
3997	 */
3998	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3999
4000	return retval;
4001
4002out_unlock:
4003	rcu_read_unlock();
4004	return retval;
4005}
4006
4007long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4008{
4009	cpumask_var_t cpus_allowed, new_mask;
4010	struct task_struct *p;
4011	int retval;
4012
4013	get_online_cpus();
4014	rcu_read_lock();
4015
4016	p = find_process_by_pid(pid);
4017	if (!p) {
4018		rcu_read_unlock();
4019		put_online_cpus();
4020		return -ESRCH;
4021	}
4022
4023	/* Prevent p going away */
4024	get_task_struct(p);
4025	rcu_read_unlock();
4026
4027	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4028		retval = -ENOMEM;
4029		goto out_put_task;
4030	}
4031	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4032		retval = -ENOMEM;
4033		goto out_free_cpus_allowed;
4034	}
4035	retval = -EPERM;
4036	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4037		goto out_unlock;
4038
4039	retval = security_task_setscheduler(p);
4040	if (retval)
4041		goto out_unlock;
4042
4043	cpuset_cpus_allowed(p, cpus_allowed);
4044	cpumask_and(new_mask, in_mask, cpus_allowed);
4045again:
4046	retval = set_cpus_allowed_ptr(p, new_mask);
4047
4048	if (!retval) {
4049		cpuset_cpus_allowed(p, cpus_allowed);
4050		if (!cpumask_subset(new_mask, cpus_allowed)) {
4051			/*
4052			 * We must have raced with a concurrent cpuset
4053			 * update. Just reset the cpus_allowed to the
4054			 * cpuset's cpus_allowed
4055			 */
4056			cpumask_copy(new_mask, cpus_allowed);
4057			goto again;
4058		}
4059	}
4060out_unlock:
4061	free_cpumask_var(new_mask);
4062out_free_cpus_allowed:
4063	free_cpumask_var(cpus_allowed);
4064out_put_task:
4065	put_task_struct(p);
4066	put_online_cpus();
4067	return retval;
4068}
4069
4070static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4071			     struct cpumask *new_mask)
4072{
4073	if (len < cpumask_size())
4074		cpumask_clear(new_mask);
4075	else if (len > cpumask_size())
4076		len = cpumask_size();
4077
4078	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4079}
4080
4081/**
4082 * sys_sched_setaffinity - set the cpu affinity of a process
4083 * @pid: pid of the process
4084 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4085 * @user_mask_ptr: user-space pointer to the new cpu mask
4086 */
4087SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4088		unsigned long __user *, user_mask_ptr)
4089{
4090	cpumask_var_t new_mask;
4091	int retval;
4092
4093	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4094		return -ENOMEM;
4095
4096	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4097	if (retval == 0)
4098		retval = sched_setaffinity(pid, new_mask);
4099	free_cpumask_var(new_mask);
4100	return retval;
4101}
4102
4103long sched_getaffinity(pid_t pid, struct cpumask *mask)
4104{
4105	struct task_struct *p;
4106	unsigned long flags;
4107	int retval;
4108
4109	get_online_cpus();
4110	rcu_read_lock();
4111
4112	retval = -ESRCH;
4113	p = find_process_by_pid(pid);
4114	if (!p)
4115		goto out_unlock;
4116
4117	retval = security_task_getscheduler(p);
4118	if (retval)
4119		goto out_unlock;
4120
4121	raw_spin_lock_irqsave(&p->pi_lock, flags);
4122	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4123	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4124
4125out_unlock:
4126	rcu_read_unlock();
4127	put_online_cpus();
4128
4129	return retval;
4130}
4131
4132/**
4133 * sys_sched_getaffinity - get the cpu affinity of a process
4134 * @pid: pid of the process
4135 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4136 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4137 */
4138SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4139		unsigned long __user *, user_mask_ptr)
4140{
4141	int ret;
4142	cpumask_var_t mask;
4143
4144	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4145		return -EINVAL;
4146	if (len & (sizeof(unsigned long)-1))
4147		return -EINVAL;
4148
4149	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4150		return -ENOMEM;
4151
4152	ret = sched_getaffinity(pid, mask);
4153	if (ret == 0) {
4154		size_t retlen = min_t(size_t, len, cpumask_size());
4155
4156		if (copy_to_user(user_mask_ptr, mask, retlen))
4157			ret = -EFAULT;
4158		else
4159			ret = retlen;
4160	}
4161	free_cpumask_var(mask);
4162
4163	return ret;
4164}
4165
4166/**
4167 * sys_sched_yield - yield the current processor to other threads.
4168 *
4169 * This function yields the current CPU to other tasks. If there are no
4170 * other threads running on this CPU then this function will return.
4171 */
4172SYSCALL_DEFINE0(sched_yield)
4173{
4174	struct rq *rq = this_rq_lock();
4175
4176	schedstat_inc(rq, yld_count);
4177	current->sched_class->yield_task(rq);
4178
4179	/*
4180	 * Since we are going to call schedule() anyway, there's
4181	 * no need to preempt or enable interrupts:
4182	 */
4183	__release(rq->lock);
4184	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4185	do_raw_spin_unlock(&rq->lock);
4186	sched_preempt_enable_no_resched();
4187
4188	schedule();
4189
4190	return 0;
4191}
4192
4193static inline int should_resched(void)
4194{
4195	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4196}
4197
4198static void __cond_resched(void)
4199{
4200	add_preempt_count(PREEMPT_ACTIVE);
4201	__schedule();
4202	sub_preempt_count(PREEMPT_ACTIVE);
4203}
4204
4205int __sched _cond_resched(void)
4206{
4207	if (should_resched()) {
4208		__cond_resched();
4209		return 1;
4210	}
4211	return 0;
4212}
4213EXPORT_SYMBOL(_cond_resched);
4214
4215/*
4216 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4217 * call schedule, and on return reacquire the lock.
4218 *
4219 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4220 * operations here to prevent schedule() from being called twice (once via
4221 * spin_unlock(), once by hand).
4222 */
4223int __cond_resched_lock(spinlock_t *lock)
4224{
4225	int resched = should_resched();
4226	int ret = 0;
4227
4228	lockdep_assert_held(lock);
4229
4230	if (spin_needbreak(lock) || resched) {
4231		spin_unlock(lock);
4232		if (resched)
4233			__cond_resched();
4234		else
4235			cpu_relax();
4236		ret = 1;
4237		spin_lock(lock);
4238	}
4239	return ret;
4240}
4241EXPORT_SYMBOL(__cond_resched_lock);
4242
4243int __sched __cond_resched_softirq(void)
4244{
4245	BUG_ON(!in_softirq());
4246
4247	if (should_resched()) {
4248		local_bh_enable();
4249		__cond_resched();
4250		local_bh_disable();
4251		return 1;
4252	}
4253	return 0;
4254}
4255EXPORT_SYMBOL(__cond_resched_softirq);
4256
4257/**
4258 * yield - yield the current processor to other threads.
4259 *
4260 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4261 *
4262 * The scheduler is at all times free to pick the calling task as the most
4263 * eligible task to run, if removing the yield() call from your code breaks
4264 * it, its already broken.
4265 *
4266 * Typical broken usage is:
4267 *
4268 * while (!event)
4269 * 	yield();
4270 *
4271 * where one assumes that yield() will let 'the other' process run that will
4272 * make event true. If the current task is a SCHED_FIFO task that will never
4273 * happen. Never use yield() as a progress guarantee!!
4274 *
4275 * If you want to use yield() to wait for something, use wait_event().
4276 * If you want to use yield() to be 'nice' for others, use cond_resched().
4277 * If you still want to use yield(), do not!
4278 */
4279void __sched yield(void)
4280{
4281	set_current_state(TASK_RUNNING);
4282	sys_sched_yield();
4283}
4284EXPORT_SYMBOL(yield);
4285
4286/**
4287 * yield_to - yield the current processor to another thread in
4288 * your thread group, or accelerate that thread toward the
4289 * processor it's on.
4290 * @p: target task
4291 * @preempt: whether task preemption is allowed or not
4292 *
4293 * It's the caller's job to ensure that the target task struct
4294 * can't go away on us before we can do any checks.
4295 *
4296 * Returns true if we indeed boosted the target task.
4297 */
4298bool __sched yield_to(struct task_struct *p, bool preempt)
4299{
4300	struct task_struct *curr = current;
4301	struct rq *rq, *p_rq;
4302	unsigned long flags;
4303	bool yielded = 0;
4304
4305	local_irq_save(flags);
4306	rq = this_rq();
4307
4308again:
4309	p_rq = task_rq(p);
4310	double_rq_lock(rq, p_rq);
4311	while (task_rq(p) != p_rq) {
4312		double_rq_unlock(rq, p_rq);
4313		goto again;
4314	}
4315
4316	if (!curr->sched_class->yield_to_task)
4317		goto out;
4318
4319	if (curr->sched_class != p->sched_class)
4320		goto out;
4321
4322	if (task_running(p_rq, p) || p->state)
4323		goto out;
4324
4325	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4326	if (yielded) {
4327		schedstat_inc(rq, yld_count);
4328		/*
4329		 * Make p's CPU reschedule; pick_next_entity takes care of
4330		 * fairness.
4331		 */
4332		if (preempt && rq != p_rq)
4333			resched_task(p_rq->curr);
4334	}
4335
4336out:
4337	double_rq_unlock(rq, p_rq);
4338	local_irq_restore(flags);
4339
4340	if (yielded)
4341		schedule();
4342
4343	return yielded;
4344}
4345EXPORT_SYMBOL_GPL(yield_to);
4346
4347/*
4348 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4349 * that process accounting knows that this is a task in IO wait state.
4350 */
4351void __sched io_schedule(void)
4352{
4353	struct rq *rq = raw_rq();
4354
4355	delayacct_blkio_start();
4356	atomic_inc(&rq->nr_iowait);
4357	blk_flush_plug(current);
4358	current->in_iowait = 1;
4359	schedule();
4360	current->in_iowait = 0;
4361	atomic_dec(&rq->nr_iowait);
4362	delayacct_blkio_end();
4363}
4364EXPORT_SYMBOL(io_schedule);
4365
4366long __sched io_schedule_timeout(long timeout)
4367{
4368	struct rq *rq = raw_rq();
4369	long ret;
4370
4371	delayacct_blkio_start();
4372	atomic_inc(&rq->nr_iowait);
4373	blk_flush_plug(current);
4374	current->in_iowait = 1;
4375	ret = schedule_timeout(timeout);
4376	current->in_iowait = 0;
4377	atomic_dec(&rq->nr_iowait);
4378	delayacct_blkio_end();
4379	return ret;
4380}
4381
4382/**
4383 * sys_sched_get_priority_max - return maximum RT priority.
4384 * @policy: scheduling class.
4385 *
4386 * this syscall returns the maximum rt_priority that can be used
4387 * by a given scheduling class.
4388 */
4389SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4390{
4391	int ret = -EINVAL;
4392
4393	switch (policy) {
4394	case SCHED_FIFO:
4395	case SCHED_RR:
4396		ret = MAX_USER_RT_PRIO-1;
4397		break;
4398	case SCHED_NORMAL:
4399	case SCHED_BATCH:
4400	case SCHED_IDLE:
4401		ret = 0;
4402		break;
4403	}
4404	return ret;
4405}
4406
4407/**
4408 * sys_sched_get_priority_min - return minimum RT priority.
4409 * @policy: scheduling class.
4410 *
4411 * this syscall returns the minimum rt_priority that can be used
4412 * by a given scheduling class.
4413 */
4414SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4415{
4416	int ret = -EINVAL;
4417
4418	switch (policy) {
4419	case SCHED_FIFO:
4420	case SCHED_RR:
4421		ret = 1;
4422		break;
4423	case SCHED_NORMAL:
4424	case SCHED_BATCH:
4425	case SCHED_IDLE:
4426		ret = 0;
4427	}
4428	return ret;
4429}
4430
4431/**
4432 * sys_sched_rr_get_interval - return the default timeslice of a process.
4433 * @pid: pid of the process.
4434 * @interval: userspace pointer to the timeslice value.
4435 *
4436 * this syscall writes the default timeslice value of a given process
4437 * into the user-space timespec buffer. A value of '0' means infinity.
4438 */
4439SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4440		struct timespec __user *, interval)
4441{
4442	struct task_struct *p;
4443	unsigned int time_slice;
4444	unsigned long flags;
4445	struct rq *rq;
4446	int retval;
4447	struct timespec t;
4448
4449	if (pid < 0)
4450		return -EINVAL;
4451
4452	retval = -ESRCH;
4453	rcu_read_lock();
4454	p = find_process_by_pid(pid);
4455	if (!p)
4456		goto out_unlock;
4457
4458	retval = security_task_getscheduler(p);
4459	if (retval)
4460		goto out_unlock;
4461
4462	rq = task_rq_lock(p, &flags);
4463	time_slice = p->sched_class->get_rr_interval(rq, p);
4464	task_rq_unlock(rq, p, &flags);
4465
4466	rcu_read_unlock();
4467	jiffies_to_timespec(time_slice, &t);
4468	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4469	return retval;
4470
4471out_unlock:
4472	rcu_read_unlock();
4473	return retval;
4474}
4475
4476static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4477
4478void sched_show_task(struct task_struct *p)
4479{
4480	unsigned long free = 0;
4481	unsigned state;
4482
4483	state = p->state ? __ffs(p->state) + 1 : 0;
4484	printk(KERN_INFO "%-15.15s %c", p->comm,
4485		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4486#if BITS_PER_LONG == 32
4487	if (state == TASK_RUNNING)
4488		printk(KERN_CONT " running  ");
4489	else
4490		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4491#else
4492	if (state == TASK_RUNNING)
4493		printk(KERN_CONT "  running task    ");
4494	else
4495		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4496#endif
4497#ifdef CONFIG_DEBUG_STACK_USAGE
4498	free = stack_not_used(p);
4499#endif
4500	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4501		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4502		(unsigned long)task_thread_info(p)->flags);
4503
4504	show_stack(p, NULL);
4505}
4506
4507void show_state_filter(unsigned long state_filter)
4508{
4509	struct task_struct *g, *p;
4510
4511#if BITS_PER_LONG == 32
4512	printk(KERN_INFO
4513		"  task                PC stack   pid father\n");
4514#else
4515	printk(KERN_INFO
4516		"  task                        PC stack   pid father\n");
4517#endif
4518	rcu_read_lock();
4519	do_each_thread(g, p) {
4520		/*
4521		 * reset the NMI-timeout, listing all files on a slow
4522		 * console might take a lot of time:
4523		 */
4524		touch_nmi_watchdog();
4525		if (!state_filter || (p->state & state_filter))
4526			sched_show_task(p);
4527	} while_each_thread(g, p);
4528
4529	touch_all_softlockup_watchdogs();
4530
4531#ifdef CONFIG_SCHED_DEBUG
4532	sysrq_sched_debug_show();
4533#endif
4534	rcu_read_unlock();
4535	/*
4536	 * Only show locks if all tasks are dumped:
4537	 */
4538	if (!state_filter)
4539		debug_show_all_locks();
4540}
4541
4542void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4543{
4544	idle->sched_class = &idle_sched_class;
4545}
4546
4547/**
4548 * init_idle - set up an idle thread for a given CPU
4549 * @idle: task in question
4550 * @cpu: cpu the idle task belongs to
4551 *
4552 * NOTE: this function does not set the idle thread's NEED_RESCHED
4553 * flag, to make booting more robust.
4554 */
4555void __cpuinit init_idle(struct task_struct *idle, int cpu)
4556{
4557	struct rq *rq = cpu_rq(cpu);
4558	unsigned long flags;
4559
4560	raw_spin_lock_irqsave(&rq->lock, flags);
4561
4562	__sched_fork(idle);
4563	idle->state = TASK_RUNNING;
4564	idle->se.exec_start = sched_clock();
4565
4566	do_set_cpus_allowed(idle, cpumask_of(cpu));
4567	/*
4568	 * We're having a chicken and egg problem, even though we are
4569	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4570	 * lockdep check in task_group() will fail.
4571	 *
4572	 * Similar case to sched_fork(). / Alternatively we could
4573	 * use task_rq_lock() here and obtain the other rq->lock.
4574	 *
4575	 * Silence PROVE_RCU
4576	 */
4577	rcu_read_lock();
4578	__set_task_cpu(idle, cpu);
4579	rcu_read_unlock();
4580
4581	rq->curr = rq->idle = idle;
4582#if defined(CONFIG_SMP)
4583	idle->on_cpu = 1;
4584#endif
4585	raw_spin_unlock_irqrestore(&rq->lock, flags);
4586
4587	/* Set the preempt count _outside_ the spinlocks! */
4588	task_thread_info(idle)->preempt_count = 0;
4589
4590	/*
4591	 * The idle tasks have their own, simple scheduling class:
4592	 */
4593	idle->sched_class = &idle_sched_class;
4594	ftrace_graph_init_idle_task(idle, cpu);
4595#if defined(CONFIG_SMP)
4596	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4597#endif
4598}
4599
4600#ifdef CONFIG_SMP
4601void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4602{
4603	if (p->sched_class && p->sched_class->set_cpus_allowed)
4604		p->sched_class->set_cpus_allowed(p, new_mask);
4605
4606	cpumask_copy(&p->cpus_allowed, new_mask);
4607	p->nr_cpus_allowed = cpumask_weight(new_mask);
4608}
4609
4610/*
4611 * This is how migration works:
4612 *
4613 * 1) we invoke migration_cpu_stop() on the target CPU using
4614 *    stop_one_cpu().
4615 * 2) stopper starts to run (implicitly forcing the migrated thread
4616 *    off the CPU)
4617 * 3) it checks whether the migrated task is still in the wrong runqueue.
4618 * 4) if it's in the wrong runqueue then the migration thread removes
4619 *    it and puts it into the right queue.
4620 * 5) stopper completes and stop_one_cpu() returns and the migration
4621 *    is done.
4622 */
4623
4624/*
4625 * Change a given task's CPU affinity. Migrate the thread to a
4626 * proper CPU and schedule it away if the CPU it's executing on
4627 * is removed from the allowed bitmask.
4628 *
4629 * NOTE: the caller must have a valid reference to the task, the
4630 * task must not exit() & deallocate itself prematurely. The
4631 * call is not atomic; no spinlocks may be held.
4632 */
4633int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4634{
4635	unsigned long flags;
4636	struct rq *rq;
4637	unsigned int dest_cpu;
4638	int ret = 0;
4639
4640	rq = task_rq_lock(p, &flags);
4641
4642	if (cpumask_equal(&p->cpus_allowed, new_mask))
4643		goto out;
4644
4645	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4646		ret = -EINVAL;
4647		goto out;
4648	}
4649
4650	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4651		ret = -EINVAL;
4652		goto out;
4653	}
4654
4655	do_set_cpus_allowed(p, new_mask);
4656
4657	/* Can the task run on the task's current CPU? If so, we're done */
4658	if (cpumask_test_cpu(task_cpu(p), new_mask))
4659		goto out;
4660
4661	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4662	if (p->on_rq) {
4663		struct migration_arg arg = { p, dest_cpu };
4664		/* Need help from migration thread: drop lock and wait. */
4665		task_rq_unlock(rq, p, &flags);
4666		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4667		tlb_migrate_finish(p->mm);
4668		return 0;
4669	}
4670out:
4671	task_rq_unlock(rq, p, &flags);
4672
4673	return ret;
4674}
4675EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4676
4677/*
4678 * Move (not current) task off this cpu, onto dest cpu. We're doing
4679 * this because either it can't run here any more (set_cpus_allowed()
4680 * away from this CPU, or CPU going down), or because we're
4681 * attempting to rebalance this task on exec (sched_exec).
4682 *
4683 * So we race with normal scheduler movements, but that's OK, as long
4684 * as the task is no longer on this CPU.
4685 *
4686 * Returns non-zero if task was successfully migrated.
4687 */
4688static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4689{
4690	struct rq *rq_dest, *rq_src;
4691	int ret = 0;
4692
4693	if (unlikely(!cpu_active(dest_cpu)))
4694		return ret;
4695
4696	rq_src = cpu_rq(src_cpu);
4697	rq_dest = cpu_rq(dest_cpu);
4698
4699	raw_spin_lock(&p->pi_lock);
4700	double_rq_lock(rq_src, rq_dest);
4701	/* Already moved. */
4702	if (task_cpu(p) != src_cpu)
4703		goto done;
4704	/* Affinity changed (again). */
4705	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4706		goto fail;
4707
4708	/*
4709	 * If we're not on a rq, the next wake-up will ensure we're
4710	 * placed properly.
4711	 */
4712	if (p->on_rq) {
4713		dequeue_task(rq_src, p, 0);
4714		set_task_cpu(p, dest_cpu);
4715		enqueue_task(rq_dest, p, 0);
4716		check_preempt_curr(rq_dest, p, 0);
4717	}
4718done:
4719	ret = 1;
4720fail:
4721	double_rq_unlock(rq_src, rq_dest);
4722	raw_spin_unlock(&p->pi_lock);
4723	return ret;
4724}
4725
4726/*
4727 * migration_cpu_stop - this will be executed by a highprio stopper thread
4728 * and performs thread migration by bumping thread off CPU then
4729 * 'pushing' onto another runqueue.
4730 */
4731static int migration_cpu_stop(void *data)
4732{
4733	struct migration_arg *arg = data;
4734
4735	/*
4736	 * The original target cpu might have gone down and we might
4737	 * be on another cpu but it doesn't matter.
4738	 */
4739	local_irq_disable();
4740	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4741	local_irq_enable();
4742	return 0;
4743}
4744
4745#ifdef CONFIG_HOTPLUG_CPU
4746
4747/*
4748 * Ensures that the idle task is using init_mm right before its cpu goes
4749 * offline.
4750 */
4751void idle_task_exit(void)
4752{
4753	struct mm_struct *mm = current->active_mm;
4754
4755	BUG_ON(cpu_online(smp_processor_id()));
4756
4757	if (mm != &init_mm)
4758		switch_mm(mm, &init_mm, current);
4759	mmdrop(mm);
4760}
4761
4762/*
4763 * Since this CPU is going 'away' for a while, fold any nr_active delta
4764 * we might have. Assumes we're called after migrate_tasks() so that the
4765 * nr_active count is stable.
4766 *
4767 * Also see the comment "Global load-average calculations".
4768 */
4769static void calc_load_migrate(struct rq *rq)
4770{
4771	long delta = calc_load_fold_active(rq);
4772	if (delta)
4773		atomic_long_add(delta, &calc_load_tasks);
4774}
4775
4776/*
4777 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4778 * try_to_wake_up()->select_task_rq().
4779 *
4780 * Called with rq->lock held even though we'er in stop_machine() and
4781 * there's no concurrency possible, we hold the required locks anyway
4782 * because of lock validation efforts.
4783 */
4784static void migrate_tasks(unsigned int dead_cpu)
4785{
4786	struct rq *rq = cpu_rq(dead_cpu);
4787	struct task_struct *next, *stop = rq->stop;
4788	int dest_cpu;
4789
4790	/*
4791	 * Fudge the rq selection such that the below task selection loop
4792	 * doesn't get stuck on the currently eligible stop task.
4793	 *
4794	 * We're currently inside stop_machine() and the rq is either stuck
4795	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4796	 * either way we should never end up calling schedule() until we're
4797	 * done here.
4798	 */
4799	rq->stop = NULL;
4800
4801	for ( ; ; ) {
4802		/*
4803		 * There's this thread running, bail when that's the only
4804		 * remaining thread.
4805		 */
4806		if (rq->nr_running == 1)
4807			break;
4808
4809		next = pick_next_task(rq);
4810		BUG_ON(!next);
4811		next->sched_class->put_prev_task(rq, next);
4812
4813		/* Find suitable destination for @next, with force if needed. */
4814		dest_cpu = select_fallback_rq(dead_cpu, next);
4815		raw_spin_unlock(&rq->lock);
4816
4817		__migrate_task(next, dead_cpu, dest_cpu);
4818
4819		raw_spin_lock(&rq->lock);
4820	}
4821
4822	rq->stop = stop;
4823}
4824
4825#endif /* CONFIG_HOTPLUG_CPU */
4826
4827#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4828
4829static struct ctl_table sd_ctl_dir[] = {
4830	{
4831		.procname	= "sched_domain",
4832		.mode		= 0555,
4833	},
4834	{}
4835};
4836
4837static struct ctl_table sd_ctl_root[] = {
4838	{
4839		.procname	= "kernel",
4840		.mode		= 0555,
4841		.child		= sd_ctl_dir,
4842	},
4843	{}
4844};
4845
4846static struct ctl_table *sd_alloc_ctl_entry(int n)
4847{
4848	struct ctl_table *entry =
4849		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4850
4851	return entry;
4852}
4853
4854static void sd_free_ctl_entry(struct ctl_table **tablep)
4855{
4856	struct ctl_table *entry;
4857
4858	/*
4859	 * In the intermediate directories, both the child directory and
4860	 * procname are dynamically allocated and could fail but the mode
4861	 * will always be set. In the lowest directory the names are
4862	 * static strings and all have proc handlers.
4863	 */
4864	for (entry = *tablep; entry->mode; entry++) {
4865		if (entry->child)
4866			sd_free_ctl_entry(&entry->child);
4867		if (entry->proc_handler == NULL)
4868			kfree(entry->procname);
4869	}
4870
4871	kfree(*tablep);
4872	*tablep = NULL;
4873}
4874
4875static int min_load_idx = 0;
4876static int max_load_idx = CPU_LOAD_IDX_MAX;
4877
4878static void
4879set_table_entry(struct ctl_table *entry,
4880		const char *procname, void *data, int maxlen,
4881		umode_t mode, proc_handler *proc_handler,
4882		bool load_idx)
4883{
4884	entry->procname = procname;
4885	entry->data = data;
4886	entry->maxlen = maxlen;
4887	entry->mode = mode;
4888	entry->proc_handler = proc_handler;
4889
4890	if (load_idx) {
4891		entry->extra1 = &min_load_idx;
4892		entry->extra2 = &max_load_idx;
4893	}
4894}
4895
4896static struct ctl_table *
4897sd_alloc_ctl_domain_table(struct sched_domain *sd)
4898{
4899	struct ctl_table *table = sd_alloc_ctl_entry(13);
4900
4901	if (table == NULL)
4902		return NULL;
4903
4904	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4905		sizeof(long), 0644, proc_doulongvec_minmax, false);
4906	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4907		sizeof(long), 0644, proc_doulongvec_minmax, false);
4908	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4909		sizeof(int), 0644, proc_dointvec_minmax, true);
4910	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4911		sizeof(int), 0644, proc_dointvec_minmax, true);
4912	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4913		sizeof(int), 0644, proc_dointvec_minmax, true);
4914	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4915		sizeof(int), 0644, proc_dointvec_minmax, true);
4916	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4917		sizeof(int), 0644, proc_dointvec_minmax, true);
4918	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4919		sizeof(int), 0644, proc_dointvec_minmax, false);
4920	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4921		sizeof(int), 0644, proc_dointvec_minmax, false);
4922	set_table_entry(&table[9], "cache_nice_tries",
4923		&sd->cache_nice_tries,
4924		sizeof(int), 0644, proc_dointvec_minmax, false);
4925	set_table_entry(&table[10], "flags", &sd->flags,
4926		sizeof(int), 0644, proc_dointvec_minmax, false);
4927	set_table_entry(&table[11], "name", sd->name,
4928		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4929	/* &table[12] is terminator */
4930
4931	return table;
4932}
4933
4934static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4935{
4936	struct ctl_table *entry, *table;
4937	struct sched_domain *sd;
4938	int domain_num = 0, i;
4939	char buf[32];
4940
4941	for_each_domain(cpu, sd)
4942		domain_num++;
4943	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4944	if (table == NULL)
4945		return NULL;
4946
4947	i = 0;
4948	for_each_domain(cpu, sd) {
4949		snprintf(buf, 32, "domain%d", i);
4950		entry->procname = kstrdup(buf, GFP_KERNEL);
4951		entry->mode = 0555;
4952		entry->child = sd_alloc_ctl_domain_table(sd);
4953		entry++;
4954		i++;
4955	}
4956	return table;
4957}
4958
4959static struct ctl_table_header *sd_sysctl_header;
4960static void register_sched_domain_sysctl(void)
4961{
4962	int i, cpu_num = num_possible_cpus();
4963	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4964	char buf[32];
4965
4966	WARN_ON(sd_ctl_dir[0].child);
4967	sd_ctl_dir[0].child = entry;
4968
4969	if (entry == NULL)
4970		return;
4971
4972	for_each_possible_cpu(i) {
4973		snprintf(buf, 32, "cpu%d", i);
4974		entry->procname = kstrdup(buf, GFP_KERNEL);
4975		entry->mode = 0555;
4976		entry->child = sd_alloc_ctl_cpu_table(i);
4977		entry++;
4978	}
4979
4980	WARN_ON(sd_sysctl_header);
4981	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4982}
4983
4984/* may be called multiple times per register */
4985static void unregister_sched_domain_sysctl(void)
4986{
4987	if (sd_sysctl_header)
4988		unregister_sysctl_table(sd_sysctl_header);
4989	sd_sysctl_header = NULL;
4990	if (sd_ctl_dir[0].child)
4991		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4992}
4993#else
4994static void register_sched_domain_sysctl(void)
4995{
4996}
4997static void unregister_sched_domain_sysctl(void)
4998{
4999}
5000#endif
5001
5002static void set_rq_online(struct rq *rq)
5003{
5004	if (!rq->online) {
5005		const struct sched_class *class;
5006
5007		cpumask_set_cpu(rq->cpu, rq->rd->online);
5008		rq->online = 1;
5009
5010		for_each_class(class) {
5011			if (class->rq_online)
5012				class->rq_online(rq);
5013		}
5014	}
5015}
5016
5017static void set_rq_offline(struct rq *rq)
5018{
5019	if (rq->online) {
5020		const struct sched_class *class;
5021
5022		for_each_class(class) {
5023			if (class->rq_offline)
5024				class->rq_offline(rq);
5025		}
5026
5027		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5028		rq->online = 0;
5029	}
5030}
5031
5032/*
5033 * migration_call - callback that gets triggered when a CPU is added.
5034 * Here we can start up the necessary migration thread for the new CPU.
5035 */
5036static int __cpuinit
5037migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5038{
5039	int cpu = (long)hcpu;
5040	unsigned long flags;
5041	struct rq *rq = cpu_rq(cpu);
5042
5043	switch (action & ~CPU_TASKS_FROZEN) {
5044
5045	case CPU_UP_PREPARE:
5046		rq->calc_load_update = calc_load_update;
5047		break;
5048
5049	case CPU_ONLINE:
5050		/* Update our root-domain */
5051		raw_spin_lock_irqsave(&rq->lock, flags);
5052		if (rq->rd) {
5053			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5054
5055			set_rq_online(rq);
5056		}
5057		raw_spin_unlock_irqrestore(&rq->lock, flags);
5058		break;
5059
5060#ifdef CONFIG_HOTPLUG_CPU
5061	case CPU_DYING:
5062		sched_ttwu_pending();
5063		/* Update our root-domain */
5064		raw_spin_lock_irqsave(&rq->lock, flags);
5065		if (rq->rd) {
5066			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5067			set_rq_offline(rq);
5068		}
5069		migrate_tasks(cpu);
5070		BUG_ON(rq->nr_running != 1); /* the migration thread */
5071		raw_spin_unlock_irqrestore(&rq->lock, flags);
5072		break;
5073
5074	case CPU_DEAD:
5075		calc_load_migrate(rq);
5076		break;
5077#endif
5078	}
5079
5080	update_max_interval();
5081
5082	return NOTIFY_OK;
5083}
5084
5085/*
5086 * Register at high priority so that task migration (migrate_all_tasks)
5087 * happens before everything else.  This has to be lower priority than
5088 * the notifier in the perf_event subsystem, though.
5089 */
5090static struct notifier_block __cpuinitdata migration_notifier = {
5091	.notifier_call = migration_call,
5092	.priority = CPU_PRI_MIGRATION,
5093};
5094
5095static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5096				      unsigned long action, void *hcpu)
5097{
5098	switch (action & ~CPU_TASKS_FROZEN) {
5099	case CPU_STARTING:
5100	case CPU_DOWN_FAILED:
5101		set_cpu_active((long)hcpu, true);
5102		return NOTIFY_OK;
5103	default:
5104		return NOTIFY_DONE;
5105	}
5106}
5107
5108static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5109					unsigned long action, void *hcpu)
5110{
5111	switch (action & ~CPU_TASKS_FROZEN) {
5112	case CPU_DOWN_PREPARE:
5113		set_cpu_active((long)hcpu, false);
5114		return NOTIFY_OK;
5115	default:
5116		return NOTIFY_DONE;
5117	}
5118}
5119
5120static int __init migration_init(void)
5121{
5122	void *cpu = (void *)(long)smp_processor_id();
5123	int err;
5124
5125	/* Initialize migration for the boot CPU */
5126	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5127	BUG_ON(err == NOTIFY_BAD);
5128	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5129	register_cpu_notifier(&migration_notifier);
5130
5131	/* Register cpu active notifiers */
5132	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5133	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5134
5135	return 0;
5136}
5137early_initcall(migration_init);
5138#endif
5139
5140#ifdef CONFIG_SMP
5141
5142static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5143
5144#ifdef CONFIG_SCHED_DEBUG
5145
5146static __read_mostly int sched_debug_enabled;
5147
5148static int __init sched_debug_setup(char *str)
5149{
5150	sched_debug_enabled = 1;
5151
5152	return 0;
5153}
5154early_param("sched_debug", sched_debug_setup);
5155
5156static inline bool sched_debug(void)
5157{
5158	return sched_debug_enabled;
5159}
5160
5161static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5162				  struct cpumask *groupmask)
5163{
5164	struct sched_group *group = sd->groups;
5165	char str[256];
5166
5167	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5168	cpumask_clear(groupmask);
5169
5170	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5171
5172	if (!(sd->flags & SD_LOAD_BALANCE)) {
5173		printk("does not load-balance\n");
5174		if (sd->parent)
5175			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5176					" has parent");
5177		return -1;
5178	}
5179
5180	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5181
5182	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5183		printk(KERN_ERR "ERROR: domain->span does not contain "
5184				"CPU%d\n", cpu);
5185	}
5186	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5187		printk(KERN_ERR "ERROR: domain->groups does not contain"
5188				" CPU%d\n", cpu);
5189	}
5190
5191	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5192	do {
5193		if (!group) {
5194			printk("\n");
5195			printk(KERN_ERR "ERROR: group is NULL\n");
5196			break;
5197		}
5198
5199		/*
5200		 * Even though we initialize ->power to something semi-sane,
5201		 * we leave power_orig unset. This allows us to detect if
5202		 * domain iteration is still funny without causing /0 traps.
5203		 */
5204		if (!group->sgp->power_orig) {
5205			printk(KERN_CONT "\n");
5206			printk(KERN_ERR "ERROR: domain->cpu_power not "
5207					"set\n");
5208			break;
5209		}
5210
5211		if (!cpumask_weight(sched_group_cpus(group))) {
5212			printk(KERN_CONT "\n");
5213			printk(KERN_ERR "ERROR: empty group\n");
5214			break;
5215		}
5216
5217		if (!(sd->flags & SD_OVERLAP) &&
5218		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5219			printk(KERN_CONT "\n");
5220			printk(KERN_ERR "ERROR: repeated CPUs\n");
5221			break;
5222		}
5223
5224		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5225
5226		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5227
5228		printk(KERN_CONT " %s", str);
5229		if (group->sgp->power != SCHED_POWER_SCALE) {
5230			printk(KERN_CONT " (cpu_power = %d)",
5231				group->sgp->power);
5232		}
5233
5234		group = group->next;
5235	} while (group != sd->groups);
5236	printk(KERN_CONT "\n");
5237
5238	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5239		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5240
5241	if (sd->parent &&
5242	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5243		printk(KERN_ERR "ERROR: parent span is not a superset "
5244			"of domain->span\n");
5245	return 0;
5246}
5247
5248static void sched_domain_debug(struct sched_domain *sd, int cpu)
5249{
5250	int level = 0;
5251
5252	if (!sched_debug_enabled)
5253		return;
5254
5255	if (!sd) {
5256		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5257		return;
5258	}
5259
5260	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5261
5262	for (;;) {
5263		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5264			break;
5265		level++;
5266		sd = sd->parent;
5267		if (!sd)
5268			break;
5269	}
5270}
5271#else /* !CONFIG_SCHED_DEBUG */
5272# define sched_domain_debug(sd, cpu) do { } while (0)
5273static inline bool sched_debug(void)
5274{
5275	return false;
5276}
5277#endif /* CONFIG_SCHED_DEBUG */
5278
5279static int sd_degenerate(struct sched_domain *sd)
5280{
5281	if (cpumask_weight(sched_domain_span(sd)) == 1)
5282		return 1;
5283
5284	/* Following flags need at least 2 groups */
5285	if (sd->flags & (SD_LOAD_BALANCE |
5286			 SD_BALANCE_NEWIDLE |
5287			 SD_BALANCE_FORK |
5288			 SD_BALANCE_EXEC |
5289			 SD_SHARE_CPUPOWER |
5290			 SD_SHARE_PKG_RESOURCES)) {
5291		if (sd->groups != sd->groups->next)
5292			return 0;
5293	}
5294
5295	/* Following flags don't use groups */
5296	if (sd->flags & (SD_WAKE_AFFINE))
5297		return 0;
5298
5299	return 1;
5300}
5301
5302static int
5303sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5304{
5305	unsigned long cflags = sd->flags, pflags = parent->flags;
5306
5307	if (sd_degenerate(parent))
5308		return 1;
5309
5310	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5311		return 0;
5312
5313	/* Flags needing groups don't count if only 1 group in parent */
5314	if (parent->groups == parent->groups->next) {
5315		pflags &= ~(SD_LOAD_BALANCE |
5316				SD_BALANCE_NEWIDLE |
5317				SD_BALANCE_FORK |
5318				SD_BALANCE_EXEC |
5319				SD_SHARE_CPUPOWER |
5320				SD_SHARE_PKG_RESOURCES);
5321		if (nr_node_ids == 1)
5322			pflags &= ~SD_SERIALIZE;
5323	}
5324	if (~cflags & pflags)
5325		return 0;
5326
5327	return 1;
5328}
5329
5330static void free_rootdomain(struct rcu_head *rcu)
5331{
5332	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5333
5334	cpupri_cleanup(&rd->cpupri);
5335	free_cpumask_var(rd->rto_mask);
5336	free_cpumask_var(rd->online);
5337	free_cpumask_var(rd->span);
5338	kfree(rd);
5339}
5340
5341static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342{
5343	struct root_domain *old_rd = NULL;
5344	unsigned long flags;
5345
5346	raw_spin_lock_irqsave(&rq->lock, flags);
5347
5348	if (rq->rd) {
5349		old_rd = rq->rd;
5350
5351		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5352			set_rq_offline(rq);
5353
5354		cpumask_clear_cpu(rq->cpu, old_rd->span);
5355
5356		/*
5357		 * If we dont want to free the old_rt yet then
5358		 * set old_rd to NULL to skip the freeing later
5359		 * in this function:
5360		 */
5361		if (!atomic_dec_and_test(&old_rd->refcount))
5362			old_rd = NULL;
5363	}
5364
5365	atomic_inc(&rd->refcount);
5366	rq->rd = rd;
5367
5368	cpumask_set_cpu(rq->cpu, rd->span);
5369	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5370		set_rq_online(rq);
5371
5372	raw_spin_unlock_irqrestore(&rq->lock, flags);
5373
5374	if (old_rd)
5375		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5376}
5377
5378static int init_rootdomain(struct root_domain *rd)
5379{
5380	memset(rd, 0, sizeof(*rd));
5381
5382	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5383		goto out;
5384	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5385		goto free_span;
5386	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5387		goto free_online;
5388
5389	if (cpupri_init(&rd->cpupri) != 0)
5390		goto free_rto_mask;
5391	return 0;
5392
5393free_rto_mask:
5394	free_cpumask_var(rd->rto_mask);
5395free_online:
5396	free_cpumask_var(rd->online);
5397free_span:
5398	free_cpumask_var(rd->span);
5399out:
5400	return -ENOMEM;
5401}
5402
5403/*
5404 * By default the system creates a single root-domain with all cpus as
5405 * members (mimicking the global state we have today).
5406 */
5407struct root_domain def_root_domain;
5408
5409static void init_defrootdomain(void)
5410{
5411	init_rootdomain(&def_root_domain);
5412
5413	atomic_set(&def_root_domain.refcount, 1);
5414}
5415
5416static struct root_domain *alloc_rootdomain(void)
5417{
5418	struct root_domain *rd;
5419
5420	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5421	if (!rd)
5422		return NULL;
5423
5424	if (init_rootdomain(rd) != 0) {
5425		kfree(rd);
5426		return NULL;
5427	}
5428
5429	return rd;
5430}
5431
5432static void free_sched_groups(struct sched_group *sg, int free_sgp)
5433{
5434	struct sched_group *tmp, *first;
5435
5436	if (!sg)
5437		return;
5438
5439	first = sg;
5440	do {
5441		tmp = sg->next;
5442
5443		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5444			kfree(sg->sgp);
5445
5446		kfree(sg);
5447		sg = tmp;
5448	} while (sg != first);
5449}
5450
5451static void free_sched_domain(struct rcu_head *rcu)
5452{
5453	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5454
5455	/*
5456	 * If its an overlapping domain it has private groups, iterate and
5457	 * nuke them all.
5458	 */
5459	if (sd->flags & SD_OVERLAP) {
5460		free_sched_groups(sd->groups, 1);
5461	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5462		kfree(sd->groups->sgp);
5463		kfree(sd->groups);
5464	}
5465	kfree(sd);
5466}
5467
5468static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5469{
5470	call_rcu(&sd->rcu, free_sched_domain);
5471}
5472
5473static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5474{
5475	for (; sd; sd = sd->parent)
5476		destroy_sched_domain(sd, cpu);
5477}
5478
5479/*
5480 * Keep a special pointer to the highest sched_domain that has
5481 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5482 * allows us to avoid some pointer chasing select_idle_sibling().
5483 *
5484 * Also keep a unique ID per domain (we use the first cpu number in
5485 * the cpumask of the domain), this allows us to quickly tell if
5486 * two cpus are in the same cache domain, see cpus_share_cache().
5487 */
5488DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5489DEFINE_PER_CPU(int, sd_llc_id);
5490
5491static void update_top_cache_domain(int cpu)
5492{
5493	struct sched_domain *sd;
5494	int id = cpu;
5495
5496	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5497	if (sd)
5498		id = cpumask_first(sched_domain_span(sd));
5499
5500	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5501	per_cpu(sd_llc_id, cpu) = id;
5502}
5503
5504/*
5505 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5506 * hold the hotplug lock.
5507 */
5508static void
5509cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5510{
5511	struct rq *rq = cpu_rq(cpu);
5512	struct sched_domain *tmp;
5513
5514	/* Remove the sched domains which do not contribute to scheduling. */
5515	for (tmp = sd; tmp; ) {
5516		struct sched_domain *parent = tmp->parent;
5517		if (!parent)
5518			break;
5519
5520		if (sd_parent_degenerate(tmp, parent)) {
5521			tmp->parent = parent->parent;
5522			if (parent->parent)
5523				parent->parent->child = tmp;
5524			destroy_sched_domain(parent, cpu);
5525		} else
5526			tmp = tmp->parent;
5527	}
5528
5529	if (sd && sd_degenerate(sd)) {
5530		tmp = sd;
5531		sd = sd->parent;
5532		destroy_sched_domain(tmp, cpu);
5533		if (sd)
5534			sd->child = NULL;
5535	}
5536
5537	sched_domain_debug(sd, cpu);
5538
5539	rq_attach_root(rq, rd);
5540	tmp = rq->sd;
5541	rcu_assign_pointer(rq->sd, sd);
5542	destroy_sched_domains(tmp, cpu);
5543
5544	update_top_cache_domain(cpu);
5545}
5546
5547/* cpus with isolated domains */
5548static cpumask_var_t cpu_isolated_map;
5549
5550/* Setup the mask of cpus configured for isolated domains */
5551static int __init isolated_cpu_setup(char *str)
5552{
5553	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5554	cpulist_parse(str, cpu_isolated_map);
5555	return 1;
5556}
5557
5558__setup("isolcpus=", isolated_cpu_setup);
5559
5560static const struct cpumask *cpu_cpu_mask(int cpu)
5561{
5562	return cpumask_of_node(cpu_to_node(cpu));
5563}
5564
5565struct sd_data {
5566	struct sched_domain **__percpu sd;
5567	struct sched_group **__percpu sg;
5568	struct sched_group_power **__percpu sgp;
5569};
5570
5571struct s_data {
5572	struct sched_domain ** __percpu sd;
5573	struct root_domain	*rd;
5574};
5575
5576enum s_alloc {
5577	sa_rootdomain,
5578	sa_sd,
5579	sa_sd_storage,
5580	sa_none,
5581};
5582
5583struct sched_domain_topology_level;
5584
5585typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5586typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5587
5588#define SDTL_OVERLAP	0x01
5589
5590struct sched_domain_topology_level {
5591	sched_domain_init_f init;
5592	sched_domain_mask_f mask;
5593	int		    flags;
5594	int		    numa_level;
5595	struct sd_data      data;
5596};
5597
5598/*
5599 * Build an iteration mask that can exclude certain CPUs from the upwards
5600 * domain traversal.
5601 *
5602 * Asymmetric node setups can result in situations where the domain tree is of
5603 * unequal depth, make sure to skip domains that already cover the entire
5604 * range.
5605 *
5606 * In that case build_sched_domains() will have terminated the iteration early
5607 * and our sibling sd spans will be empty. Domains should always include the
5608 * cpu they're built on, so check that.
5609 *
5610 */
5611static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5612{
5613	const struct cpumask *span = sched_domain_span(sd);
5614	struct sd_data *sdd = sd->private;
5615	struct sched_domain *sibling;
5616	int i;
5617
5618	for_each_cpu(i, span) {
5619		sibling = *per_cpu_ptr(sdd->sd, i);
5620		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5621			continue;
5622
5623		cpumask_set_cpu(i, sched_group_mask(sg));
5624	}
5625}
5626
5627/*
5628 * Return the canonical balance cpu for this group, this is the first cpu
5629 * of this group that's also in the iteration mask.
5630 */
5631int group_balance_cpu(struct sched_group *sg)
5632{
5633	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5634}
5635
5636static int
5637build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5638{
5639	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5640	const struct cpumask *span = sched_domain_span(sd);
5641	struct cpumask *covered = sched_domains_tmpmask;
5642	struct sd_data *sdd = sd->private;
5643	struct sched_domain *child;
5644	int i;
5645
5646	cpumask_clear(covered);
5647
5648	for_each_cpu(i, span) {
5649		struct cpumask *sg_span;
5650
5651		if (cpumask_test_cpu(i, covered))
5652			continue;
5653
5654		child = *per_cpu_ptr(sdd->sd, i);
5655
5656		/* See the comment near build_group_mask(). */
5657		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5658			continue;
5659
5660		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5661				GFP_KERNEL, cpu_to_node(cpu));
5662
5663		if (!sg)
5664			goto fail;
5665
5666		sg_span = sched_group_cpus(sg);
5667		if (child->child) {
5668			child = child->child;
5669			cpumask_copy(sg_span, sched_domain_span(child));
5670		} else
5671			cpumask_set_cpu(i, sg_span);
5672
5673		cpumask_or(covered, covered, sg_span);
5674
5675		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5676		if (atomic_inc_return(&sg->sgp->ref) == 1)
5677			build_group_mask(sd, sg);
5678
5679		/*
5680		 * Initialize sgp->power such that even if we mess up the
5681		 * domains and no possible iteration will get us here, we won't
5682		 * die on a /0 trap.
5683		 */
5684		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5685
5686		/*
5687		 * Make sure the first group of this domain contains the
5688		 * canonical balance cpu. Otherwise the sched_domain iteration
5689		 * breaks. See update_sg_lb_stats().
5690		 */
5691		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5692		    group_balance_cpu(sg) == cpu)
5693			groups = sg;
5694
5695		if (!first)
5696			first = sg;
5697		if (last)
5698			last->next = sg;
5699		last = sg;
5700		last->next = first;
5701	}
5702	sd->groups = groups;
5703
5704	return 0;
5705
5706fail:
5707	free_sched_groups(first, 0);
5708
5709	return -ENOMEM;
5710}
5711
5712static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5713{
5714	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5715	struct sched_domain *child = sd->child;
5716
5717	if (child)
5718		cpu = cpumask_first(sched_domain_span(child));
5719
5720	if (sg) {
5721		*sg = *per_cpu_ptr(sdd->sg, cpu);
5722		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5723		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5724	}
5725
5726	return cpu;
5727}
5728
5729/*
5730 * build_sched_groups will build a circular linked list of the groups
5731 * covered by the given span, and will set each group's ->cpumask correctly,
5732 * and ->cpu_power to 0.
5733 *
5734 * Assumes the sched_domain tree is fully constructed
5735 */
5736static int
5737build_sched_groups(struct sched_domain *sd, int cpu)
5738{
5739	struct sched_group *first = NULL, *last = NULL;
5740	struct sd_data *sdd = sd->private;
5741	const struct cpumask *span = sched_domain_span(sd);
5742	struct cpumask *covered;
5743	int i;
5744
5745	get_group(cpu, sdd, &sd->groups);
5746	atomic_inc(&sd->groups->ref);
5747
5748	if (cpu != cpumask_first(sched_domain_span(sd)))
5749		return 0;
5750
5751	lockdep_assert_held(&sched_domains_mutex);
5752	covered = sched_domains_tmpmask;
5753
5754	cpumask_clear(covered);
5755
5756	for_each_cpu(i, span) {
5757		struct sched_group *sg;
5758		int group = get_group(i, sdd, &sg);
5759		int j;
5760
5761		if (cpumask_test_cpu(i, covered))
5762			continue;
5763
5764		cpumask_clear(sched_group_cpus(sg));
5765		sg->sgp->power = 0;
5766		cpumask_setall(sched_group_mask(sg));
5767
5768		for_each_cpu(j, span) {
5769			if (get_group(j, sdd, NULL) != group)
5770				continue;
5771
5772			cpumask_set_cpu(j, covered);
5773			cpumask_set_cpu(j, sched_group_cpus(sg));
5774		}
5775
5776		if (!first)
5777			first = sg;
5778		if (last)
5779			last->next = sg;
5780		last = sg;
5781	}
5782	last->next = first;
5783
5784	return 0;
5785}
5786
5787/*
5788 * Initialize sched groups cpu_power.
5789 *
5790 * cpu_power indicates the capacity of sched group, which is used while
5791 * distributing the load between different sched groups in a sched domain.
5792 * Typically cpu_power for all the groups in a sched domain will be same unless
5793 * there are asymmetries in the topology. If there are asymmetries, group
5794 * having more cpu_power will pickup more load compared to the group having
5795 * less cpu_power.
5796 */
5797static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5798{
5799	struct sched_group *sg = sd->groups;
5800
5801	WARN_ON(!sd || !sg);
5802
5803	do {
5804		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5805		sg = sg->next;
5806	} while (sg != sd->groups);
5807
5808	if (cpu != group_balance_cpu(sg))
5809		return;
5810
5811	update_group_power(sd, cpu);
5812	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5813}
5814
5815int __weak arch_sd_sibling_asym_packing(void)
5816{
5817       return 0*SD_ASYM_PACKING;
5818}
5819
5820/*
5821 * Initializers for schedule domains
5822 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5823 */
5824
5825#ifdef CONFIG_SCHED_DEBUG
5826# define SD_INIT_NAME(sd, type)		sd->name = #type
5827#else
5828# define SD_INIT_NAME(sd, type)		do { } while (0)
5829#endif
5830
5831#define SD_INIT_FUNC(type)						\
5832static noinline struct sched_domain *					\
5833sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5834{									\
5835	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5836	*sd = SD_##type##_INIT;						\
5837	SD_INIT_NAME(sd, type);						\
5838	sd->private = &tl->data;					\
5839	return sd;							\
5840}
5841
5842SD_INIT_FUNC(CPU)
5843#ifdef CONFIG_SCHED_SMT
5844 SD_INIT_FUNC(SIBLING)
5845#endif
5846#ifdef CONFIG_SCHED_MC
5847 SD_INIT_FUNC(MC)
5848#endif
5849#ifdef CONFIG_SCHED_BOOK
5850 SD_INIT_FUNC(BOOK)
5851#endif
5852
5853static int default_relax_domain_level = -1;
5854int sched_domain_level_max;
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
5858	if (kstrtoint(str, 0, &default_relax_domain_level))
5859		pr_warn("Unable to set relax_domain_level\n");
5860
5861	return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866				 struct sched_domain_attr *attr)
5867{
5868	int request;
5869
5870	if (!attr || attr->relax_domain_level < 0) {
5871		if (default_relax_domain_level < 0)
5872			return;
5873		else
5874			request = default_relax_domain_level;
5875	} else
5876		request = attr->relax_domain_level;
5877	if (request < sd->level) {
5878		/* turn off idle balance on this domain */
5879		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880	} else {
5881		/* turn on idle balance on this domain */
5882		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883	}
5884}
5885
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890				 const struct cpumask *cpu_map)
5891{
5892	switch (what) {
5893	case sa_rootdomain:
5894		if (!atomic_read(&d->rd->refcount))
5895			free_rootdomain(&d->rd->rcu); /* fall through */
5896	case sa_sd:
5897		free_percpu(d->sd); /* fall through */
5898	case sa_sd_storage:
5899		__sdt_free(cpu_map); /* fall through */
5900	case sa_none:
5901		break;
5902	}
5903}
5904
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906						   const struct cpumask *cpu_map)
5907{
5908	memset(d, 0, sizeof(*d));
5909
5910	if (__sdt_alloc(cpu_map))
5911		return sa_sd_storage;
5912	d->sd = alloc_percpu(struct sched_domain *);
5913	if (!d->sd)
5914		return sa_sd_storage;
5915	d->rd = alloc_rootdomain();
5916	if (!d->rd)
5917		return sa_sd;
5918	return sa_rootdomain;
5919}
5920
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928	struct sd_data *sdd = sd->private;
5929
5930	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
5933	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935
5936	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5937		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5938}
5939
5940#ifdef CONFIG_SCHED_SMT
5941static const struct cpumask *cpu_smt_mask(int cpu)
5942{
5943	return topology_thread_cpumask(cpu);
5944}
5945#endif
5946
5947/*
5948 * Topology list, bottom-up.
5949 */
5950static struct sched_domain_topology_level default_topology[] = {
5951#ifdef CONFIG_SCHED_SMT
5952	{ sd_init_SIBLING, cpu_smt_mask, },
5953#endif
5954#ifdef CONFIG_SCHED_MC
5955	{ sd_init_MC, cpu_coregroup_mask, },
5956#endif
5957#ifdef CONFIG_SCHED_BOOK
5958	{ sd_init_BOOK, cpu_book_mask, },
5959#endif
5960	{ sd_init_CPU, cpu_cpu_mask, },
5961	{ NULL, },
5962};
5963
5964static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5965
5966#ifdef CONFIG_NUMA
5967
5968static int sched_domains_numa_levels;
5969static int *sched_domains_numa_distance;
5970static struct cpumask ***sched_domains_numa_masks;
5971static int sched_domains_curr_level;
5972
5973static inline int sd_local_flags(int level)
5974{
5975	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5976		return 0;
5977
5978	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5979}
5980
5981static struct sched_domain *
5982sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5983{
5984	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5985	int level = tl->numa_level;
5986	int sd_weight = cpumask_weight(
5987			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5988
5989	*sd = (struct sched_domain){
5990		.min_interval		= sd_weight,
5991		.max_interval		= 2*sd_weight,
5992		.busy_factor		= 32,
5993		.imbalance_pct		= 125,
5994		.cache_nice_tries	= 2,
5995		.busy_idx		= 3,
5996		.idle_idx		= 2,
5997		.newidle_idx		= 0,
5998		.wake_idx		= 0,
5999		.forkexec_idx		= 0,
6000
6001		.flags			= 1*SD_LOAD_BALANCE
6002					| 1*SD_BALANCE_NEWIDLE
6003					| 0*SD_BALANCE_EXEC
6004					| 0*SD_BALANCE_FORK
6005					| 0*SD_BALANCE_WAKE
6006					| 0*SD_WAKE_AFFINE
6007					| 0*SD_SHARE_CPUPOWER
6008					| 0*SD_SHARE_PKG_RESOURCES
6009					| 1*SD_SERIALIZE
6010					| 0*SD_PREFER_SIBLING
6011					| sd_local_flags(level)
6012					,
6013		.last_balance		= jiffies,
6014		.balance_interval	= sd_weight,
6015	};
6016	SD_INIT_NAME(sd, NUMA);
6017	sd->private = &tl->data;
6018
6019	/*
6020	 * Ugly hack to pass state to sd_numa_mask()...
6021	 */
6022	sched_domains_curr_level = tl->numa_level;
6023
6024	return sd;
6025}
6026
6027static const struct cpumask *sd_numa_mask(int cpu)
6028{
6029	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6030}
6031
6032static void sched_numa_warn(const char *str)
6033{
6034	static int done = false;
6035	int i,j;
6036
6037	if (done)
6038		return;
6039
6040	done = true;
6041
6042	printk(KERN_WARNING "ERROR: %s\n\n", str);
6043
6044	for (i = 0; i < nr_node_ids; i++) {
6045		printk(KERN_WARNING "  ");
6046		for (j = 0; j < nr_node_ids; j++)
6047			printk(KERN_CONT "%02d ", node_distance(i,j));
6048		printk(KERN_CONT "\n");
6049	}
6050	printk(KERN_WARNING "\n");
6051}
6052
6053static bool find_numa_distance(int distance)
6054{
6055	int i;
6056
6057	if (distance == node_distance(0, 0))
6058		return true;
6059
6060	for (i = 0; i < sched_domains_numa_levels; i++) {
6061		if (sched_domains_numa_distance[i] == distance)
6062			return true;
6063	}
6064
6065	return false;
6066}
6067
6068static void sched_init_numa(void)
6069{
6070	int next_distance, curr_distance = node_distance(0, 0);
6071	struct sched_domain_topology_level *tl;
6072	int level = 0;
6073	int i, j, k;
6074
6075	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6076	if (!sched_domains_numa_distance)
6077		return;
6078
6079	/*
6080	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6081	 * unique distances in the node_distance() table.
6082	 *
6083	 * Assumes node_distance(0,j) includes all distances in
6084	 * node_distance(i,j) in order to avoid cubic time.
6085	 */
6086	next_distance = curr_distance;
6087	for (i = 0; i < nr_node_ids; i++) {
6088		for (j = 0; j < nr_node_ids; j++) {
6089			for (k = 0; k < nr_node_ids; k++) {
6090				int distance = node_distance(i, k);
6091
6092				if (distance > curr_distance &&
6093				    (distance < next_distance ||
6094				     next_distance == curr_distance))
6095					next_distance = distance;
6096
6097				/*
6098				 * While not a strong assumption it would be nice to know
6099				 * about cases where if node A is connected to B, B is not
6100				 * equally connected to A.
6101				 */
6102				if (sched_debug() && node_distance(k, i) != distance)
6103					sched_numa_warn("Node-distance not symmetric");
6104
6105				if (sched_debug() && i && !find_numa_distance(distance))
6106					sched_numa_warn("Node-0 not representative");
6107			}
6108			if (next_distance != curr_distance) {
6109				sched_domains_numa_distance[level++] = next_distance;
6110				sched_domains_numa_levels = level;
6111				curr_distance = next_distance;
6112			} else break;
6113		}
6114
6115		/*
6116		 * In case of sched_debug() we verify the above assumption.
6117		 */
6118		if (!sched_debug())
6119			break;
6120	}
6121	/*
6122	 * 'level' contains the number of unique distances, excluding the
6123	 * identity distance node_distance(i,i).
6124	 *
6125	 * The sched_domains_nume_distance[] array includes the actual distance
6126	 * numbers.
6127	 */
6128
6129	/*
6130	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6131	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6132	 * the array will contain less then 'level' members. This could be
6133	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6134	 * in other functions.
6135	 *
6136	 * We reset it to 'level' at the end of this function.
6137	 */
6138	sched_domains_numa_levels = 0;
6139
6140	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6141	if (!sched_domains_numa_masks)
6142		return;
6143
6144	/*
6145	 * Now for each level, construct a mask per node which contains all
6146	 * cpus of nodes that are that many hops away from us.
6147	 */
6148	for (i = 0; i < level; i++) {
6149		sched_domains_numa_masks[i] =
6150			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6151		if (!sched_domains_numa_masks[i])
6152			return;
6153
6154		for (j = 0; j < nr_node_ids; j++) {
6155			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6156			if (!mask)
6157				return;
6158
6159			sched_domains_numa_masks[i][j] = mask;
6160
6161			for (k = 0; k < nr_node_ids; k++) {
6162				if (node_distance(j, k) > sched_domains_numa_distance[i])
6163					continue;
6164
6165				cpumask_or(mask, mask, cpumask_of_node(k));
6166			}
6167		}
6168	}
6169
6170	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6171			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6172	if (!tl)
6173		return;
6174
6175	/*
6176	 * Copy the default topology bits..
6177	 */
6178	for (i = 0; default_topology[i].init; i++)
6179		tl[i] = default_topology[i];
6180
6181	/*
6182	 * .. and append 'j' levels of NUMA goodness.
6183	 */
6184	for (j = 0; j < level; i++, j++) {
6185		tl[i] = (struct sched_domain_topology_level){
6186			.init = sd_numa_init,
6187			.mask = sd_numa_mask,
6188			.flags = SDTL_OVERLAP,
6189			.numa_level = j,
6190		};
6191	}
6192
6193	sched_domain_topology = tl;
6194
6195	sched_domains_numa_levels = level;
6196}
6197
6198static void sched_domains_numa_masks_set(int cpu)
6199{
6200	int i, j;
6201	int node = cpu_to_node(cpu);
6202
6203	for (i = 0; i < sched_domains_numa_levels; i++) {
6204		for (j = 0; j < nr_node_ids; j++) {
6205			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6206				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6207		}
6208	}
6209}
6210
6211static void sched_domains_numa_masks_clear(int cpu)
6212{
6213	int i, j;
6214	for (i = 0; i < sched_domains_numa_levels; i++) {
6215		for (j = 0; j < nr_node_ids; j++)
6216			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6217	}
6218}
6219
6220/*
6221 * Update sched_domains_numa_masks[level][node] array when new cpus
6222 * are onlined.
6223 */
6224static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6225					   unsigned long action,
6226					   void *hcpu)
6227{
6228	int cpu = (long)hcpu;
6229
6230	switch (action & ~CPU_TASKS_FROZEN) {
6231	case CPU_ONLINE:
6232		sched_domains_numa_masks_set(cpu);
6233		break;
6234
6235	case CPU_DEAD:
6236		sched_domains_numa_masks_clear(cpu);
6237		break;
6238
6239	default:
6240		return NOTIFY_DONE;
6241	}
6242
6243	return NOTIFY_OK;
6244}
6245#else
6246static inline void sched_init_numa(void)
6247{
6248}
6249
6250static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6251					   unsigned long action,
6252					   void *hcpu)
6253{
6254	return 0;
6255}
6256#endif /* CONFIG_NUMA */
6257
6258static int __sdt_alloc(const struct cpumask *cpu_map)
6259{
6260	struct sched_domain_topology_level *tl;
6261	int j;
6262
6263	for (tl = sched_domain_topology; tl->init; tl++) {
6264		struct sd_data *sdd = &tl->data;
6265
6266		sdd->sd = alloc_percpu(struct sched_domain *);
6267		if (!sdd->sd)
6268			return -ENOMEM;
6269
6270		sdd->sg = alloc_percpu(struct sched_group *);
6271		if (!sdd->sg)
6272			return -ENOMEM;
6273
6274		sdd->sgp = alloc_percpu(struct sched_group_power *);
6275		if (!sdd->sgp)
6276			return -ENOMEM;
6277
6278		for_each_cpu(j, cpu_map) {
6279			struct sched_domain *sd;
6280			struct sched_group *sg;
6281			struct sched_group_power *sgp;
6282
6283		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6284					GFP_KERNEL, cpu_to_node(j));
6285			if (!sd)
6286				return -ENOMEM;
6287
6288			*per_cpu_ptr(sdd->sd, j) = sd;
6289
6290			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6291					GFP_KERNEL, cpu_to_node(j));
6292			if (!sg)
6293				return -ENOMEM;
6294
6295			sg->next = sg;
6296
6297			*per_cpu_ptr(sdd->sg, j) = sg;
6298
6299			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6300					GFP_KERNEL, cpu_to_node(j));
6301			if (!sgp)
6302				return -ENOMEM;
6303
6304			*per_cpu_ptr(sdd->sgp, j) = sgp;
6305		}
6306	}
6307
6308	return 0;
6309}
6310
6311static void __sdt_free(const struct cpumask *cpu_map)
6312{
6313	struct sched_domain_topology_level *tl;
6314	int j;
6315
6316	for (tl = sched_domain_topology; tl->init; tl++) {
6317		struct sd_data *sdd = &tl->data;
6318
6319		for_each_cpu(j, cpu_map) {
6320			struct sched_domain *sd;
6321
6322			if (sdd->sd) {
6323				sd = *per_cpu_ptr(sdd->sd, j);
6324				if (sd && (sd->flags & SD_OVERLAP))
6325					free_sched_groups(sd->groups, 0);
6326				kfree(*per_cpu_ptr(sdd->sd, j));
6327			}
6328
6329			if (sdd->sg)
6330				kfree(*per_cpu_ptr(sdd->sg, j));
6331			if (sdd->sgp)
6332				kfree(*per_cpu_ptr(sdd->sgp, j));
6333		}
6334		free_percpu(sdd->sd);
6335		sdd->sd = NULL;
6336		free_percpu(sdd->sg);
6337		sdd->sg = NULL;
6338		free_percpu(sdd->sgp);
6339		sdd->sgp = NULL;
6340	}
6341}
6342
6343struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6344		struct s_data *d, const struct cpumask *cpu_map,
6345		struct sched_domain_attr *attr, struct sched_domain *child,
6346		int cpu)
6347{
6348	struct sched_domain *sd = tl->init(tl, cpu);
6349	if (!sd)
6350		return child;
6351
6352	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6353	if (child) {
6354		sd->level = child->level + 1;
6355		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6356		child->parent = sd;
6357	}
6358	sd->child = child;
6359	set_domain_attribute(sd, attr);
6360
6361	return sd;
6362}
6363
6364/*
6365 * Build sched domains for a given set of cpus and attach the sched domains
6366 * to the individual cpus
6367 */
6368static int build_sched_domains(const struct cpumask *cpu_map,
6369			       struct sched_domain_attr *attr)
6370{
6371	enum s_alloc alloc_state = sa_none;
6372	struct sched_domain *sd;
6373	struct s_data d;
6374	int i, ret = -ENOMEM;
6375
6376	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6377	if (alloc_state != sa_rootdomain)
6378		goto error;
6379
6380	/* Set up domains for cpus specified by the cpu_map. */
6381	for_each_cpu(i, cpu_map) {
6382		struct sched_domain_topology_level *tl;
6383
6384		sd = NULL;
6385		for (tl = sched_domain_topology; tl->init; tl++) {
6386			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6387			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6388				sd->flags |= SD_OVERLAP;
6389			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6390				break;
6391		}
6392
6393		while (sd->child)
6394			sd = sd->child;
6395
6396		*per_cpu_ptr(d.sd, i) = sd;
6397	}
6398
6399	/* Build the groups for the domains */
6400	for_each_cpu(i, cpu_map) {
6401		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6402			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6403			if (sd->flags & SD_OVERLAP) {
6404				if (build_overlap_sched_groups(sd, i))
6405					goto error;
6406			} else {
6407				if (build_sched_groups(sd, i))
6408					goto error;
6409			}
6410		}
6411	}
6412
6413	/* Calculate CPU power for physical packages and nodes */
6414	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6415		if (!cpumask_test_cpu(i, cpu_map))
6416			continue;
6417
6418		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419			claim_allocations(i, sd);
6420			init_sched_groups_power(i, sd);
6421		}
6422	}
6423
6424	/* Attach the domains */
6425	rcu_read_lock();
6426	for_each_cpu(i, cpu_map) {
6427		sd = *per_cpu_ptr(d.sd, i);
6428		cpu_attach_domain(sd, d.rd, i);
6429	}
6430	rcu_read_unlock();
6431
6432	ret = 0;
6433error:
6434	__free_domain_allocs(&d, alloc_state, cpu_map);
6435	return ret;
6436}
6437
6438static cpumask_var_t *doms_cur;	/* current sched domains */
6439static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6440static struct sched_domain_attr *dattr_cur;
6441				/* attribues of custom domains in 'doms_cur' */
6442
6443/*
6444 * Special case: If a kmalloc of a doms_cur partition (array of
6445 * cpumask) fails, then fallback to a single sched domain,
6446 * as determined by the single cpumask fallback_doms.
6447 */
6448static cpumask_var_t fallback_doms;
6449
6450/*
6451 * arch_update_cpu_topology lets virtualized architectures update the
6452 * cpu core maps. It is supposed to return 1 if the topology changed
6453 * or 0 if it stayed the same.
6454 */
6455int __attribute__((weak)) arch_update_cpu_topology(void)
6456{
6457	return 0;
6458}
6459
6460cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6461{
6462	int i;
6463	cpumask_var_t *doms;
6464
6465	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6466	if (!doms)
6467		return NULL;
6468	for (i = 0; i < ndoms; i++) {
6469		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6470			free_sched_domains(doms, i);
6471			return NULL;
6472		}
6473	}
6474	return doms;
6475}
6476
6477void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6478{
6479	unsigned int i;
6480	for (i = 0; i < ndoms; i++)
6481		free_cpumask_var(doms[i]);
6482	kfree(doms);
6483}
6484
6485/*
6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
6489 */
6490static int init_sched_domains(const struct cpumask *cpu_map)
6491{
6492	int err;
6493
6494	arch_update_cpu_topology();
6495	ndoms_cur = 1;
6496	doms_cur = alloc_sched_domains(ndoms_cur);
6497	if (!doms_cur)
6498		doms_cur = &fallback_doms;
6499	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6500	err = build_sched_domains(doms_cur[0], NULL);
6501	register_sched_domain_sysctl();
6502
6503	return err;
6504}
6505
6506/*
6507 * Detach sched domains from a group of cpus specified in cpu_map
6508 * These cpus will now be attached to the NULL domain
6509 */
6510static void detach_destroy_domains(const struct cpumask *cpu_map)
6511{
6512	int i;
6513
6514	rcu_read_lock();
6515	for_each_cpu(i, cpu_map)
6516		cpu_attach_domain(NULL, &def_root_domain, i);
6517	rcu_read_unlock();
6518}
6519
6520/* handle null as "default" */
6521static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6522			struct sched_domain_attr *new, int idx_new)
6523{
6524	struct sched_domain_attr tmp;
6525
6526	/* fast path */
6527	if (!new && !cur)
6528		return 1;
6529
6530	tmp = SD_ATTR_INIT;
6531	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6532			new ? (new + idx_new) : &tmp,
6533			sizeof(struct sched_domain_attr));
6534}
6535
6536/*
6537 * Partition sched domains as specified by the 'ndoms_new'
6538 * cpumasks in the array doms_new[] of cpumasks. This compares
6539 * doms_new[] to the current sched domain partitioning, doms_cur[].
6540 * It destroys each deleted domain and builds each new domain.
6541 *
6542 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6543 * The masks don't intersect (don't overlap.) We should setup one
6544 * sched domain for each mask. CPUs not in any of the cpumasks will
6545 * not be load balanced. If the same cpumask appears both in the
6546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547 * it as it is.
6548 *
6549 * The passed in 'doms_new' should be allocated using
6550 * alloc_sched_domains.  This routine takes ownership of it and will
6551 * free_sched_domains it when done with it. If the caller failed the
6552 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6553 * and partition_sched_domains() will fallback to the single partition
6554 * 'fallback_doms', it also forces the domains to be rebuilt.
6555 *
6556 * If doms_new == NULL it will be replaced with cpu_online_mask.
6557 * ndoms_new == 0 is a special case for destroying existing domains,
6558 * and it will not create the default domain.
6559 *
6560 * Call with hotplug lock held
6561 */
6562void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6563			     struct sched_domain_attr *dattr_new)
6564{
6565	int i, j, n;
6566	int new_topology;
6567
6568	mutex_lock(&sched_domains_mutex);
6569
6570	/* always unregister in case we don't destroy any domains */
6571	unregister_sched_domain_sysctl();
6572
6573	/* Let architecture update cpu core mappings. */
6574	new_topology = arch_update_cpu_topology();
6575
6576	n = doms_new ? ndoms_new : 0;
6577
6578	/* Destroy deleted domains */
6579	for (i = 0; i < ndoms_cur; i++) {
6580		for (j = 0; j < n && !new_topology; j++) {
6581			if (cpumask_equal(doms_cur[i], doms_new[j])
6582			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6583				goto match1;
6584		}
6585		/* no match - a current sched domain not in new doms_new[] */
6586		detach_destroy_domains(doms_cur[i]);
6587match1:
6588		;
6589	}
6590
6591	if (doms_new == NULL) {
6592		ndoms_cur = 0;
6593		doms_new = &fallback_doms;
6594		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6595		WARN_ON_ONCE(dattr_new);
6596	}
6597
6598	/* Build new domains */
6599	for (i = 0; i < ndoms_new; i++) {
6600		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6601			if (cpumask_equal(doms_new[i], doms_cur[j])
6602			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6603				goto match2;
6604		}
6605		/* no match - add a new doms_new */
6606		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6607match2:
6608		;
6609	}
6610
6611	/* Remember the new sched domains */
6612	if (doms_cur != &fallback_doms)
6613		free_sched_domains(doms_cur, ndoms_cur);
6614	kfree(dattr_cur);	/* kfree(NULL) is safe */
6615	doms_cur = doms_new;
6616	dattr_cur = dattr_new;
6617	ndoms_cur = ndoms_new;
6618
6619	register_sched_domain_sysctl();
6620
6621	mutex_unlock(&sched_domains_mutex);
6622}
6623
6624static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6625
6626/*
6627 * Update cpusets according to cpu_active mask.  If cpusets are
6628 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6629 * around partition_sched_domains().
6630 *
6631 * If we come here as part of a suspend/resume, don't touch cpusets because we
6632 * want to restore it back to its original state upon resume anyway.
6633 */
6634static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6635			     void *hcpu)
6636{
6637	switch (action) {
6638	case CPU_ONLINE_FROZEN:
6639	case CPU_DOWN_FAILED_FROZEN:
6640
6641		/*
6642		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6643		 * resume sequence. As long as this is not the last online
6644		 * operation in the resume sequence, just build a single sched
6645		 * domain, ignoring cpusets.
6646		 */
6647		num_cpus_frozen--;
6648		if (likely(num_cpus_frozen)) {
6649			partition_sched_domains(1, NULL, NULL);
6650			break;
6651		}
6652
6653		/*
6654		 * This is the last CPU online operation. So fall through and
6655		 * restore the original sched domains by considering the
6656		 * cpuset configurations.
6657		 */
6658
6659	case CPU_ONLINE:
6660	case CPU_DOWN_FAILED:
6661		cpuset_update_active_cpus(true);
6662		break;
6663	default:
6664		return NOTIFY_DONE;
6665	}
6666	return NOTIFY_OK;
6667}
6668
6669static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6670			       void *hcpu)
6671{
6672	switch (action) {
6673	case CPU_DOWN_PREPARE:
6674		cpuset_update_active_cpus(false);
6675		break;
6676	case CPU_DOWN_PREPARE_FROZEN:
6677		num_cpus_frozen++;
6678		partition_sched_domains(1, NULL, NULL);
6679		break;
6680	default:
6681		return NOTIFY_DONE;
6682	}
6683	return NOTIFY_OK;
6684}
6685
6686void __init sched_init_smp(void)
6687{
6688	cpumask_var_t non_isolated_cpus;
6689
6690	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6691	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6692
6693	sched_init_numa();
6694
6695	get_online_cpus();
6696	mutex_lock(&sched_domains_mutex);
6697	init_sched_domains(cpu_active_mask);
6698	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6699	if (cpumask_empty(non_isolated_cpus))
6700		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6701	mutex_unlock(&sched_domains_mutex);
6702	put_online_cpus();
6703
6704	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6705	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6706	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6707
6708	/* RT runtime code needs to handle some hotplug events */
6709	hotcpu_notifier(update_runtime, 0);
6710
6711	init_hrtick();
6712
6713	/* Move init over to a non-isolated CPU */
6714	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6715		BUG();
6716	sched_init_granularity();
6717	free_cpumask_var(non_isolated_cpus);
6718
6719	init_sched_rt_class();
6720}
6721#else
6722void __init sched_init_smp(void)
6723{
6724	sched_init_granularity();
6725}
6726#endif /* CONFIG_SMP */
6727
6728const_debug unsigned int sysctl_timer_migration = 1;
6729
6730int in_sched_functions(unsigned long addr)
6731{
6732	return in_lock_functions(addr) ||
6733		(addr >= (unsigned long)__sched_text_start
6734		&& addr < (unsigned long)__sched_text_end);
6735}
6736
6737#ifdef CONFIG_CGROUP_SCHED
6738struct task_group root_task_group;
6739LIST_HEAD(task_groups);
6740#endif
6741
6742DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6743
6744void __init sched_init(void)
6745{
6746	int i, j;
6747	unsigned long alloc_size = 0, ptr;
6748
6749#ifdef CONFIG_FAIR_GROUP_SCHED
6750	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6751#endif
6752#ifdef CONFIG_RT_GROUP_SCHED
6753	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6754#endif
6755#ifdef CONFIG_CPUMASK_OFFSTACK
6756	alloc_size += num_possible_cpus() * cpumask_size();
6757#endif
6758	if (alloc_size) {
6759		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6760
6761#ifdef CONFIG_FAIR_GROUP_SCHED
6762		root_task_group.se = (struct sched_entity **)ptr;
6763		ptr += nr_cpu_ids * sizeof(void **);
6764
6765		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6766		ptr += nr_cpu_ids * sizeof(void **);
6767
6768#endif /* CONFIG_FAIR_GROUP_SCHED */
6769#ifdef CONFIG_RT_GROUP_SCHED
6770		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6771		ptr += nr_cpu_ids * sizeof(void **);
6772
6773		root_task_group.rt_rq = (struct rt_rq **)ptr;
6774		ptr += nr_cpu_ids * sizeof(void **);
6775
6776#endif /* CONFIG_RT_GROUP_SCHED */
6777#ifdef CONFIG_CPUMASK_OFFSTACK
6778		for_each_possible_cpu(i) {
6779			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6780			ptr += cpumask_size();
6781		}
6782#endif /* CONFIG_CPUMASK_OFFSTACK */
6783	}
6784
6785#ifdef CONFIG_SMP
6786	init_defrootdomain();
6787#endif
6788
6789	init_rt_bandwidth(&def_rt_bandwidth,
6790			global_rt_period(), global_rt_runtime());
6791
6792#ifdef CONFIG_RT_GROUP_SCHED
6793	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6794			global_rt_period(), global_rt_runtime());
6795#endif /* CONFIG_RT_GROUP_SCHED */
6796
6797#ifdef CONFIG_CGROUP_SCHED
6798	list_add(&root_task_group.list, &task_groups);
6799	INIT_LIST_HEAD(&root_task_group.children);
6800	INIT_LIST_HEAD(&root_task_group.siblings);
6801	autogroup_init(&init_task);
6802
6803#endif /* CONFIG_CGROUP_SCHED */
6804
6805#ifdef CONFIG_CGROUP_CPUACCT
6806	root_cpuacct.cpustat = &kernel_cpustat;
6807	root_cpuacct.cpuusage = alloc_percpu(u64);
6808	/* Too early, not expected to fail */
6809	BUG_ON(!root_cpuacct.cpuusage);
6810#endif
6811	for_each_possible_cpu(i) {
6812		struct rq *rq;
6813
6814		rq = cpu_rq(i);
6815		raw_spin_lock_init(&rq->lock);
6816		rq->nr_running = 0;
6817		rq->calc_load_active = 0;
6818		rq->calc_load_update = jiffies + LOAD_FREQ;
6819		init_cfs_rq(&rq->cfs);
6820		init_rt_rq(&rq->rt, rq);
6821#ifdef CONFIG_FAIR_GROUP_SCHED
6822		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6823		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6824		/*
6825		 * How much cpu bandwidth does root_task_group get?
6826		 *
6827		 * In case of task-groups formed thr' the cgroup filesystem, it
6828		 * gets 100% of the cpu resources in the system. This overall
6829		 * system cpu resource is divided among the tasks of
6830		 * root_task_group and its child task-groups in a fair manner,
6831		 * based on each entity's (task or task-group's) weight
6832		 * (se->load.weight).
6833		 *
6834		 * In other words, if root_task_group has 10 tasks of weight
6835		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6836		 * then A0's share of the cpu resource is:
6837		 *
6838		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6839		 *
6840		 * We achieve this by letting root_task_group's tasks sit
6841		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6842		 */
6843		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6844		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6845#endif /* CONFIG_FAIR_GROUP_SCHED */
6846
6847		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6848#ifdef CONFIG_RT_GROUP_SCHED
6849		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6850		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6851#endif
6852
6853		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6854			rq->cpu_load[j] = 0;
6855
6856		rq->last_load_update_tick = jiffies;
6857
6858#ifdef CONFIG_SMP
6859		rq->sd = NULL;
6860		rq->rd = NULL;
6861		rq->cpu_power = SCHED_POWER_SCALE;
6862		rq->post_schedule = 0;
6863		rq->active_balance = 0;
6864		rq->next_balance = jiffies;
6865		rq->push_cpu = 0;
6866		rq->cpu = i;
6867		rq->online = 0;
6868		rq->idle_stamp = 0;
6869		rq->avg_idle = 2*sysctl_sched_migration_cost;
6870
6871		INIT_LIST_HEAD(&rq->cfs_tasks);
6872
6873		rq_attach_root(rq, &def_root_domain);
6874#ifdef CONFIG_NO_HZ
6875		rq->nohz_flags = 0;
6876#endif
6877#endif
6878		init_rq_hrtick(rq);
6879		atomic_set(&rq->nr_iowait, 0);
6880	}
6881
6882	set_load_weight(&init_task);
6883
6884#ifdef CONFIG_PREEMPT_NOTIFIERS
6885	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6886#endif
6887
6888#ifdef CONFIG_RT_MUTEXES
6889	plist_head_init(&init_task.pi_waiters);
6890#endif
6891
6892	/*
6893	 * The boot idle thread does lazy MMU switching as well:
6894	 */
6895	atomic_inc(&init_mm.mm_count);
6896	enter_lazy_tlb(&init_mm, current);
6897
6898	/*
6899	 * Make us the idle thread. Technically, schedule() should not be
6900	 * called from this thread, however somewhere below it might be,
6901	 * but because we are the idle thread, we just pick up running again
6902	 * when this runqueue becomes "idle".
6903	 */
6904	init_idle(current, smp_processor_id());
6905
6906	calc_load_update = jiffies + LOAD_FREQ;
6907
6908	/*
6909	 * During early bootup we pretend to be a normal task:
6910	 */
6911	current->sched_class = &fair_sched_class;
6912
6913#ifdef CONFIG_SMP
6914	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6915	/* May be allocated at isolcpus cmdline parse time */
6916	if (cpu_isolated_map == NULL)
6917		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6918	idle_thread_set_boot_cpu();
6919#endif
6920	init_sched_fair_class();
6921
6922	scheduler_running = 1;
6923}
6924
6925#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6926static inline int preempt_count_equals(int preempt_offset)
6927{
6928	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6929
6930	return (nested == preempt_offset);
6931}
6932
6933void __might_sleep(const char *file, int line, int preempt_offset)
6934{
6935	static unsigned long prev_jiffy;	/* ratelimiting */
6936
6937	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6938	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6939	    system_state != SYSTEM_RUNNING || oops_in_progress)
6940		return;
6941	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6942		return;
6943	prev_jiffy = jiffies;
6944
6945	printk(KERN_ERR
6946		"BUG: sleeping function called from invalid context at %s:%d\n",
6947			file, line);
6948	printk(KERN_ERR
6949		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6950			in_atomic(), irqs_disabled(),
6951			current->pid, current->comm);
6952
6953	debug_show_held_locks(current);
6954	if (irqs_disabled())
6955		print_irqtrace_events(current);
6956	dump_stack();
6957}
6958EXPORT_SYMBOL(__might_sleep);
6959#endif
6960
6961#ifdef CONFIG_MAGIC_SYSRQ
6962static void normalize_task(struct rq *rq, struct task_struct *p)
6963{
6964	const struct sched_class *prev_class = p->sched_class;
6965	int old_prio = p->prio;
6966	int on_rq;
6967
6968	on_rq = p->on_rq;
6969	if (on_rq)
6970		dequeue_task(rq, p, 0);
6971	__setscheduler(rq, p, SCHED_NORMAL, 0);
6972	if (on_rq) {
6973		enqueue_task(rq, p, 0);
6974		resched_task(rq->curr);
6975	}
6976
6977	check_class_changed(rq, p, prev_class, old_prio);
6978}
6979
6980void normalize_rt_tasks(void)
6981{
6982	struct task_struct *g, *p;
6983	unsigned long flags;
6984	struct rq *rq;
6985
6986	read_lock_irqsave(&tasklist_lock, flags);
6987	do_each_thread(g, p) {
6988		/*
6989		 * Only normalize user tasks:
6990		 */
6991		if (!p->mm)
6992			continue;
6993
6994		p->se.exec_start		= 0;
6995#ifdef CONFIG_SCHEDSTATS
6996		p->se.statistics.wait_start	= 0;
6997		p->se.statistics.sleep_start	= 0;
6998		p->se.statistics.block_start	= 0;
6999#endif
7000
7001		if (!rt_task(p)) {
7002			/*
7003			 * Renice negative nice level userspace
7004			 * tasks back to 0:
7005			 */
7006			if (TASK_NICE(p) < 0 && p->mm)
7007				set_user_nice(p, 0);
7008			continue;
7009		}
7010
7011		raw_spin_lock(&p->pi_lock);
7012		rq = __task_rq_lock(p);
7013
7014		normalize_task(rq, p);
7015
7016		__task_rq_unlock(rq);
7017		raw_spin_unlock(&p->pi_lock);
7018	} while_each_thread(g, p);
7019
7020	read_unlock_irqrestore(&tasklist_lock, flags);
7021}
7022
7023#endif /* CONFIG_MAGIC_SYSRQ */
7024
7025#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7026/*
7027 * These functions are only useful for the IA64 MCA handling, or kdb.
7028 *
7029 * They can only be called when the whole system has been
7030 * stopped - every CPU needs to be quiescent, and no scheduling
7031 * activity can take place. Using them for anything else would
7032 * be a serious bug, and as a result, they aren't even visible
7033 * under any other configuration.
7034 */
7035
7036/**
7037 * curr_task - return the current task for a given cpu.
7038 * @cpu: the processor in question.
7039 *
7040 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7041 */
7042struct task_struct *curr_task(int cpu)
7043{
7044	return cpu_curr(cpu);
7045}
7046
7047#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7048
7049#ifdef CONFIG_IA64
7050/**
7051 * set_curr_task - set the current task for a given cpu.
7052 * @cpu: the processor in question.
7053 * @p: the task pointer to set.
7054 *
7055 * Description: This function must only be used when non-maskable interrupts
7056 * are serviced on a separate stack. It allows the architecture to switch the
7057 * notion of the current task on a cpu in a non-blocking manner. This function
7058 * must be called with all CPU's synchronized, and interrupts disabled, the
7059 * and caller must save the original value of the current task (see
7060 * curr_task() above) and restore that value before reenabling interrupts and
7061 * re-starting the system.
7062 *
7063 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7064 */
7065void set_curr_task(int cpu, struct task_struct *p)
7066{
7067	cpu_curr(cpu) = p;
7068}
7069
7070#endif
7071
7072#ifdef CONFIG_CGROUP_SCHED
7073/* task_group_lock serializes the addition/removal of task groups */
7074static DEFINE_SPINLOCK(task_group_lock);
7075
7076static void free_sched_group(struct task_group *tg)
7077{
7078	free_fair_sched_group(tg);
7079	free_rt_sched_group(tg);
7080	autogroup_free(tg);
7081	kfree(tg);
7082}
7083
7084/* allocate runqueue etc for a new task group */
7085struct task_group *sched_create_group(struct task_group *parent)
7086{
7087	struct task_group *tg;
7088	unsigned long flags;
7089
7090	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7091	if (!tg)
7092		return ERR_PTR(-ENOMEM);
7093
7094	if (!alloc_fair_sched_group(tg, parent))
7095		goto err;
7096
7097	if (!alloc_rt_sched_group(tg, parent))
7098		goto err;
7099
7100	spin_lock_irqsave(&task_group_lock, flags);
7101	list_add_rcu(&tg->list, &task_groups);
7102
7103	WARN_ON(!parent); /* root should already exist */
7104
7105	tg->parent = parent;
7106	INIT_LIST_HEAD(&tg->children);
7107	list_add_rcu(&tg->siblings, &parent->children);
7108	spin_unlock_irqrestore(&task_group_lock, flags);
7109
7110	return tg;
7111
7112err:
7113	free_sched_group(tg);
7114	return ERR_PTR(-ENOMEM);
7115}
7116
7117/* rcu callback to free various structures associated with a task group */
7118static void free_sched_group_rcu(struct rcu_head *rhp)
7119{
7120	/* now it should be safe to free those cfs_rqs */
7121	free_sched_group(container_of(rhp, struct task_group, rcu));
7122}
7123
7124/* Destroy runqueue etc associated with a task group */
7125void sched_destroy_group(struct task_group *tg)
7126{
7127	unsigned long flags;
7128	int i;
7129
7130	/* end participation in shares distribution */
7131	for_each_possible_cpu(i)
7132		unregister_fair_sched_group(tg, i);
7133
7134	spin_lock_irqsave(&task_group_lock, flags);
7135	list_del_rcu(&tg->list);
7136	list_del_rcu(&tg->siblings);
7137	spin_unlock_irqrestore(&task_group_lock, flags);
7138
7139	/* wait for possible concurrent references to cfs_rqs complete */
7140	call_rcu(&tg->rcu, free_sched_group_rcu);
7141}
7142
7143/* change task's runqueue when it moves between groups.
7144 *	The caller of this function should have put the task in its new group
7145 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7146 *	reflect its new group.
7147 */
7148void sched_move_task(struct task_struct *tsk)
7149{
7150	struct task_group *tg;
7151	int on_rq, running;
7152	unsigned long flags;
7153	struct rq *rq;
7154
7155	rq = task_rq_lock(tsk, &flags);
7156
7157	running = task_current(rq, tsk);
7158	on_rq = tsk->on_rq;
7159
7160	if (on_rq)
7161		dequeue_task(rq, tsk, 0);
7162	if (unlikely(running))
7163		tsk->sched_class->put_prev_task(rq, tsk);
7164
7165	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7166				lockdep_is_held(&tsk->sighand->siglock)),
7167			  struct task_group, css);
7168	tg = autogroup_task_group(tsk, tg);
7169	tsk->sched_task_group = tg;
7170
7171#ifdef CONFIG_FAIR_GROUP_SCHED
7172	if (tsk->sched_class->task_move_group)
7173		tsk->sched_class->task_move_group(tsk, on_rq);
7174	else
7175#endif
7176		set_task_rq(tsk, task_cpu(tsk));
7177
7178	if (unlikely(running))
7179		tsk->sched_class->set_curr_task(rq);
7180	if (on_rq)
7181		enqueue_task(rq, tsk, 0);
7182
7183	task_rq_unlock(rq, tsk, &flags);
7184}
7185#endif /* CONFIG_CGROUP_SCHED */
7186
7187#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7188static unsigned long to_ratio(u64 period, u64 runtime)
7189{
7190	if (runtime == RUNTIME_INF)
7191		return 1ULL << 20;
7192
7193	return div64_u64(runtime << 20, period);
7194}
7195#endif
7196
7197#ifdef CONFIG_RT_GROUP_SCHED
7198/*
7199 * Ensure that the real time constraints are schedulable.
7200 */
7201static DEFINE_MUTEX(rt_constraints_mutex);
7202
7203/* Must be called with tasklist_lock held */
7204static inline int tg_has_rt_tasks(struct task_group *tg)
7205{
7206	struct task_struct *g, *p;
7207
7208	do_each_thread(g, p) {
7209		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7210			return 1;
7211	} while_each_thread(g, p);
7212
7213	return 0;
7214}
7215
7216struct rt_schedulable_data {
7217	struct task_group *tg;
7218	u64 rt_period;
7219	u64 rt_runtime;
7220};
7221
7222static int tg_rt_schedulable(struct task_group *tg, void *data)
7223{
7224	struct rt_schedulable_data *d = data;
7225	struct task_group *child;
7226	unsigned long total, sum = 0;
7227	u64 period, runtime;
7228
7229	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7230	runtime = tg->rt_bandwidth.rt_runtime;
7231
7232	if (tg == d->tg) {
7233		period = d->rt_period;
7234		runtime = d->rt_runtime;
7235	}
7236
7237	/*
7238	 * Cannot have more runtime than the period.
7239	 */
7240	if (runtime > period && runtime != RUNTIME_INF)
7241		return -EINVAL;
7242
7243	/*
7244	 * Ensure we don't starve existing RT tasks.
7245	 */
7246	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7247		return -EBUSY;
7248
7249	total = to_ratio(period, runtime);
7250
7251	/*
7252	 * Nobody can have more than the global setting allows.
7253	 */
7254	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7255		return -EINVAL;
7256
7257	/*
7258	 * The sum of our children's runtime should not exceed our own.
7259	 */
7260	list_for_each_entry_rcu(child, &tg->children, siblings) {
7261		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7262		runtime = child->rt_bandwidth.rt_runtime;
7263
7264		if (child == d->tg) {
7265			period = d->rt_period;
7266			runtime = d->rt_runtime;
7267		}
7268
7269		sum += to_ratio(period, runtime);
7270	}
7271
7272	if (sum > total)
7273		return -EINVAL;
7274
7275	return 0;
7276}
7277
7278static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7279{
7280	int ret;
7281
7282	struct rt_schedulable_data data = {
7283		.tg = tg,
7284		.rt_period = period,
7285		.rt_runtime = runtime,
7286	};
7287
7288	rcu_read_lock();
7289	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7290	rcu_read_unlock();
7291
7292	return ret;
7293}
7294
7295static int tg_set_rt_bandwidth(struct task_group *tg,
7296		u64 rt_period, u64 rt_runtime)
7297{
7298	int i, err = 0;
7299
7300	mutex_lock(&rt_constraints_mutex);
7301	read_lock(&tasklist_lock);
7302	err = __rt_schedulable(tg, rt_period, rt_runtime);
7303	if (err)
7304		goto unlock;
7305
7306	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7307	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7308	tg->rt_bandwidth.rt_runtime = rt_runtime;
7309
7310	for_each_possible_cpu(i) {
7311		struct rt_rq *rt_rq = tg->rt_rq[i];
7312
7313		raw_spin_lock(&rt_rq->rt_runtime_lock);
7314		rt_rq->rt_runtime = rt_runtime;
7315		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7316	}
7317	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7318unlock:
7319	read_unlock(&tasklist_lock);
7320	mutex_unlock(&rt_constraints_mutex);
7321
7322	return err;
7323}
7324
7325int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7326{
7327	u64 rt_runtime, rt_period;
7328
7329	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7330	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7331	if (rt_runtime_us < 0)
7332		rt_runtime = RUNTIME_INF;
7333
7334	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7335}
7336
7337long sched_group_rt_runtime(struct task_group *tg)
7338{
7339	u64 rt_runtime_us;
7340
7341	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7342		return -1;
7343
7344	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7345	do_div(rt_runtime_us, NSEC_PER_USEC);
7346	return rt_runtime_us;
7347}
7348
7349int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7350{
7351	u64 rt_runtime, rt_period;
7352
7353	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7354	rt_runtime = tg->rt_bandwidth.rt_runtime;
7355
7356	if (rt_period == 0)
7357		return -EINVAL;
7358
7359	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7360}
7361
7362long sched_group_rt_period(struct task_group *tg)
7363{
7364	u64 rt_period_us;
7365
7366	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7367	do_div(rt_period_us, NSEC_PER_USEC);
7368	return rt_period_us;
7369}
7370
7371static int sched_rt_global_constraints(void)
7372{
7373	u64 runtime, period;
7374	int ret = 0;
7375
7376	if (sysctl_sched_rt_period <= 0)
7377		return -EINVAL;
7378
7379	runtime = global_rt_runtime();
7380	period = global_rt_period();
7381
7382	/*
7383	 * Sanity check on the sysctl variables.
7384	 */
7385	if (runtime > period && runtime != RUNTIME_INF)
7386		return -EINVAL;
7387
7388	mutex_lock(&rt_constraints_mutex);
7389	read_lock(&tasklist_lock);
7390	ret = __rt_schedulable(NULL, 0, 0);
7391	read_unlock(&tasklist_lock);
7392	mutex_unlock(&rt_constraints_mutex);
7393
7394	return ret;
7395}
7396
7397int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7398{
7399	/* Don't accept realtime tasks when there is no way for them to run */
7400	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7401		return 0;
7402
7403	return 1;
7404}
7405
7406#else /* !CONFIG_RT_GROUP_SCHED */
7407static int sched_rt_global_constraints(void)
7408{
7409	unsigned long flags;
7410	int i;
7411
7412	if (sysctl_sched_rt_period <= 0)
7413		return -EINVAL;
7414
7415	/*
7416	 * There's always some RT tasks in the root group
7417	 * -- migration, kstopmachine etc..
7418	 */
7419	if (sysctl_sched_rt_runtime == 0)
7420		return -EBUSY;
7421
7422	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7423	for_each_possible_cpu(i) {
7424		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7425
7426		raw_spin_lock(&rt_rq->rt_runtime_lock);
7427		rt_rq->rt_runtime = global_rt_runtime();
7428		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7429	}
7430	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7431
7432	return 0;
7433}
7434#endif /* CONFIG_RT_GROUP_SCHED */
7435
7436int sched_rt_handler(struct ctl_table *table, int write,
7437		void __user *buffer, size_t *lenp,
7438		loff_t *ppos)
7439{
7440	int ret;
7441	int old_period, old_runtime;
7442	static DEFINE_MUTEX(mutex);
7443
7444	mutex_lock(&mutex);
7445	old_period = sysctl_sched_rt_period;
7446	old_runtime = sysctl_sched_rt_runtime;
7447
7448	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7449
7450	if (!ret && write) {
7451		ret = sched_rt_global_constraints();
7452		if (ret) {
7453			sysctl_sched_rt_period = old_period;
7454			sysctl_sched_rt_runtime = old_runtime;
7455		} else {
7456			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7457			def_rt_bandwidth.rt_period =
7458				ns_to_ktime(global_rt_period());
7459		}
7460	}
7461	mutex_unlock(&mutex);
7462
7463	return ret;
7464}
7465
7466#ifdef CONFIG_CGROUP_SCHED
7467
7468/* return corresponding task_group object of a cgroup */
7469static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7470{
7471	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7472			    struct task_group, css);
7473}
7474
7475static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7476{
7477	struct task_group *tg, *parent;
7478
7479	if (!cgrp->parent) {
7480		/* This is early initialization for the top cgroup */
7481		return &root_task_group.css;
7482	}
7483
7484	parent = cgroup_tg(cgrp->parent);
7485	tg = sched_create_group(parent);
7486	if (IS_ERR(tg))
7487		return ERR_PTR(-ENOMEM);
7488
7489	return &tg->css;
7490}
7491
7492static void cpu_cgroup_destroy(struct cgroup *cgrp)
7493{
7494	struct task_group *tg = cgroup_tg(cgrp);
7495
7496	sched_destroy_group(tg);
7497}
7498
7499static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7500				 struct cgroup_taskset *tset)
7501{
7502	struct task_struct *task;
7503
7504	cgroup_taskset_for_each(task, cgrp, tset) {
7505#ifdef CONFIG_RT_GROUP_SCHED
7506		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7507			return -EINVAL;
7508#else
7509		/* We don't support RT-tasks being in separate groups */
7510		if (task->sched_class != &fair_sched_class)
7511			return -EINVAL;
7512#endif
7513	}
7514	return 0;
7515}
7516
7517static void cpu_cgroup_attach(struct cgroup *cgrp,
7518			      struct cgroup_taskset *tset)
7519{
7520	struct task_struct *task;
7521
7522	cgroup_taskset_for_each(task, cgrp, tset)
7523		sched_move_task(task);
7524}
7525
7526static void
7527cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7528		struct task_struct *task)
7529{
7530	/*
7531	 * cgroup_exit() is called in the copy_process() failure path.
7532	 * Ignore this case since the task hasn't ran yet, this avoids
7533	 * trying to poke a half freed task state from generic code.
7534	 */
7535	if (!(task->flags & PF_EXITING))
7536		return;
7537
7538	sched_move_task(task);
7539}
7540
7541#ifdef CONFIG_FAIR_GROUP_SCHED
7542static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7543				u64 shareval)
7544{
7545	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7546}
7547
7548static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7549{
7550	struct task_group *tg = cgroup_tg(cgrp);
7551
7552	return (u64) scale_load_down(tg->shares);
7553}
7554
7555#ifdef CONFIG_CFS_BANDWIDTH
7556static DEFINE_MUTEX(cfs_constraints_mutex);
7557
7558const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7559const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7560
7561static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7562
7563static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7564{
7565	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7566	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7567
7568	if (tg == &root_task_group)
7569		return -EINVAL;
7570
7571	/*
7572	 * Ensure we have at some amount of bandwidth every period.  This is
7573	 * to prevent reaching a state of large arrears when throttled via
7574	 * entity_tick() resulting in prolonged exit starvation.
7575	 */
7576	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7577		return -EINVAL;
7578
7579	/*
7580	 * Likewise, bound things on the otherside by preventing insane quota
7581	 * periods.  This also allows us to normalize in computing quota
7582	 * feasibility.
7583	 */
7584	if (period > max_cfs_quota_period)
7585		return -EINVAL;
7586
7587	mutex_lock(&cfs_constraints_mutex);
7588	ret = __cfs_schedulable(tg, period, quota);
7589	if (ret)
7590		goto out_unlock;
7591
7592	runtime_enabled = quota != RUNTIME_INF;
7593	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7594	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7595	raw_spin_lock_irq(&cfs_b->lock);
7596	cfs_b->period = ns_to_ktime(period);
7597	cfs_b->quota = quota;
7598
7599	__refill_cfs_bandwidth_runtime(cfs_b);
7600	/* restart the period timer (if active) to handle new period expiry */
7601	if (runtime_enabled && cfs_b->timer_active) {
7602		/* force a reprogram */
7603		cfs_b->timer_active = 0;
7604		__start_cfs_bandwidth(cfs_b);
7605	}
7606	raw_spin_unlock_irq(&cfs_b->lock);
7607
7608	for_each_possible_cpu(i) {
7609		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7610		struct rq *rq = cfs_rq->rq;
7611
7612		raw_spin_lock_irq(&rq->lock);
7613		cfs_rq->runtime_enabled = runtime_enabled;
7614		cfs_rq->runtime_remaining = 0;
7615
7616		if (cfs_rq->throttled)
7617			unthrottle_cfs_rq(cfs_rq);
7618		raw_spin_unlock_irq(&rq->lock);
7619	}
7620out_unlock:
7621	mutex_unlock(&cfs_constraints_mutex);
7622
7623	return ret;
7624}
7625
7626int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7627{
7628	u64 quota, period;
7629
7630	period = ktime_to_ns(tg->cfs_bandwidth.period);
7631	if (cfs_quota_us < 0)
7632		quota = RUNTIME_INF;
7633	else
7634		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7635
7636	return tg_set_cfs_bandwidth(tg, period, quota);
7637}
7638
7639long tg_get_cfs_quota(struct task_group *tg)
7640{
7641	u64 quota_us;
7642
7643	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7644		return -1;
7645
7646	quota_us = tg->cfs_bandwidth.quota;
7647	do_div(quota_us, NSEC_PER_USEC);
7648
7649	return quota_us;
7650}
7651
7652int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7653{
7654	u64 quota, period;
7655
7656	period = (u64)cfs_period_us * NSEC_PER_USEC;
7657	quota = tg->cfs_bandwidth.quota;
7658
7659	return tg_set_cfs_bandwidth(tg, period, quota);
7660}
7661
7662long tg_get_cfs_period(struct task_group *tg)
7663{
7664	u64 cfs_period_us;
7665
7666	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7667	do_div(cfs_period_us, NSEC_PER_USEC);
7668
7669	return cfs_period_us;
7670}
7671
7672static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7673{
7674	return tg_get_cfs_quota(cgroup_tg(cgrp));
7675}
7676
7677static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7678				s64 cfs_quota_us)
7679{
7680	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7681}
7682
7683static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7684{
7685	return tg_get_cfs_period(cgroup_tg(cgrp));
7686}
7687
7688static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7689				u64 cfs_period_us)
7690{
7691	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7692}
7693
7694struct cfs_schedulable_data {
7695	struct task_group *tg;
7696	u64 period, quota;
7697};
7698
7699/*
7700 * normalize group quota/period to be quota/max_period
7701 * note: units are usecs
7702 */
7703static u64 normalize_cfs_quota(struct task_group *tg,
7704			       struct cfs_schedulable_data *d)
7705{
7706	u64 quota, period;
7707
7708	if (tg == d->tg) {
7709		period = d->period;
7710		quota = d->quota;
7711	} else {
7712		period = tg_get_cfs_period(tg);
7713		quota = tg_get_cfs_quota(tg);
7714	}
7715
7716	/* note: these should typically be equivalent */
7717	if (quota == RUNTIME_INF || quota == -1)
7718		return RUNTIME_INF;
7719
7720	return to_ratio(period, quota);
7721}
7722
7723static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7724{
7725	struct cfs_schedulable_data *d = data;
7726	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7727	s64 quota = 0, parent_quota = -1;
7728
7729	if (!tg->parent) {
7730		quota = RUNTIME_INF;
7731	} else {
7732		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7733
7734		quota = normalize_cfs_quota(tg, d);
7735		parent_quota = parent_b->hierarchal_quota;
7736
7737		/*
7738		 * ensure max(child_quota) <= parent_quota, inherit when no
7739		 * limit is set
7740		 */
7741		if (quota == RUNTIME_INF)
7742			quota = parent_quota;
7743		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7744			return -EINVAL;
7745	}
7746	cfs_b->hierarchal_quota = quota;
7747
7748	return 0;
7749}
7750
7751static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7752{
7753	int ret;
7754	struct cfs_schedulable_data data = {
7755		.tg = tg,
7756		.period = period,
7757		.quota = quota,
7758	};
7759
7760	if (quota != RUNTIME_INF) {
7761		do_div(data.period, NSEC_PER_USEC);
7762		do_div(data.quota, NSEC_PER_USEC);
7763	}
7764
7765	rcu_read_lock();
7766	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7767	rcu_read_unlock();
7768
7769	return ret;
7770}
7771
7772static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7773		struct cgroup_map_cb *cb)
7774{
7775	struct task_group *tg = cgroup_tg(cgrp);
7776	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7777
7778	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7779	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7780	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7781
7782	return 0;
7783}
7784#endif /* CONFIG_CFS_BANDWIDTH */
7785#endif /* CONFIG_FAIR_GROUP_SCHED */
7786
7787#ifdef CONFIG_RT_GROUP_SCHED
7788static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7789				s64 val)
7790{
7791	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7792}
7793
7794static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7795{
7796	return sched_group_rt_runtime(cgroup_tg(cgrp));
7797}
7798
7799static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7800		u64 rt_period_us)
7801{
7802	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7803}
7804
7805static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7806{
7807	return sched_group_rt_period(cgroup_tg(cgrp));
7808}
7809#endif /* CONFIG_RT_GROUP_SCHED */
7810
7811static struct cftype cpu_files[] = {
7812#ifdef CONFIG_FAIR_GROUP_SCHED
7813	{
7814		.name = "shares",
7815		.read_u64 = cpu_shares_read_u64,
7816		.write_u64 = cpu_shares_write_u64,
7817	},
7818#endif
7819#ifdef CONFIG_CFS_BANDWIDTH
7820	{
7821		.name = "cfs_quota_us",
7822		.read_s64 = cpu_cfs_quota_read_s64,
7823		.write_s64 = cpu_cfs_quota_write_s64,
7824	},
7825	{
7826		.name = "cfs_period_us",
7827		.read_u64 = cpu_cfs_period_read_u64,
7828		.write_u64 = cpu_cfs_period_write_u64,
7829	},
7830	{
7831		.name = "stat",
7832		.read_map = cpu_stats_show,
7833	},
7834#endif
7835#ifdef CONFIG_RT_GROUP_SCHED
7836	{
7837		.name = "rt_runtime_us",
7838		.read_s64 = cpu_rt_runtime_read,
7839		.write_s64 = cpu_rt_runtime_write,
7840	},
7841	{
7842		.name = "rt_period_us",
7843		.read_u64 = cpu_rt_period_read_uint,
7844		.write_u64 = cpu_rt_period_write_uint,
7845	},
7846#endif
7847	{ }	/* terminate */
7848};
7849
7850struct cgroup_subsys cpu_cgroup_subsys = {
7851	.name		= "cpu",
7852	.create		= cpu_cgroup_create,
7853	.destroy	= cpu_cgroup_destroy,
7854	.can_attach	= cpu_cgroup_can_attach,
7855	.attach		= cpu_cgroup_attach,
7856	.exit		= cpu_cgroup_exit,
7857	.subsys_id	= cpu_cgroup_subsys_id,
7858	.base_cftypes	= cpu_files,
7859	.early_init	= 1,
7860};
7861
7862#endif	/* CONFIG_CGROUP_SCHED */
7863
7864#ifdef CONFIG_CGROUP_CPUACCT
7865
7866/*
7867 * CPU accounting code for task groups.
7868 *
7869 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7870 * (balbir@in.ibm.com).
7871 */
7872
7873struct cpuacct root_cpuacct;
7874
7875/* create a new cpu accounting group */
7876static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7877{
7878	struct cpuacct *ca;
7879
7880	if (!cgrp->parent)
7881		return &root_cpuacct.css;
7882
7883	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7884	if (!ca)
7885		goto out;
7886
7887	ca->cpuusage = alloc_percpu(u64);
7888	if (!ca->cpuusage)
7889		goto out_free_ca;
7890
7891	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7892	if (!ca->cpustat)
7893		goto out_free_cpuusage;
7894
7895	return &ca->css;
7896
7897out_free_cpuusage:
7898	free_percpu(ca->cpuusage);
7899out_free_ca:
7900	kfree(ca);
7901out:
7902	return ERR_PTR(-ENOMEM);
7903}
7904
7905/* destroy an existing cpu accounting group */
7906static void cpuacct_destroy(struct cgroup *cgrp)
7907{
7908	struct cpuacct *ca = cgroup_ca(cgrp);
7909
7910	free_percpu(ca->cpustat);
7911	free_percpu(ca->cpuusage);
7912	kfree(ca);
7913}
7914
7915static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7916{
7917	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7918	u64 data;
7919
7920#ifndef CONFIG_64BIT
7921	/*
7922	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7923	 */
7924	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7925	data = *cpuusage;
7926	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7927#else
7928	data = *cpuusage;
7929#endif
7930
7931	return data;
7932}
7933
7934static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7935{
7936	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7937
7938#ifndef CONFIG_64BIT
7939	/*
7940	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7941	 */
7942	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7943	*cpuusage = val;
7944	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7945#else
7946	*cpuusage = val;
7947#endif
7948}
7949
7950/* return total cpu usage (in nanoseconds) of a group */
7951static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7952{
7953	struct cpuacct *ca = cgroup_ca(cgrp);
7954	u64 totalcpuusage = 0;
7955	int i;
7956
7957	for_each_present_cpu(i)
7958		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7959
7960	return totalcpuusage;
7961}
7962
7963static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7964								u64 reset)
7965{
7966	struct cpuacct *ca = cgroup_ca(cgrp);
7967	int err = 0;
7968	int i;
7969
7970	if (reset) {
7971		err = -EINVAL;
7972		goto out;
7973	}
7974
7975	for_each_present_cpu(i)
7976		cpuacct_cpuusage_write(ca, i, 0);
7977
7978out:
7979	return err;
7980}
7981
7982static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7983				   struct seq_file *m)
7984{
7985	struct cpuacct *ca = cgroup_ca(cgroup);
7986	u64 percpu;
7987	int i;
7988
7989	for_each_present_cpu(i) {
7990		percpu = cpuacct_cpuusage_read(ca, i);
7991		seq_printf(m, "%llu ", (unsigned long long) percpu);
7992	}
7993	seq_printf(m, "\n");
7994	return 0;
7995}
7996
7997static const char *cpuacct_stat_desc[] = {
7998	[CPUACCT_STAT_USER] = "user",
7999	[CPUACCT_STAT_SYSTEM] = "system",
8000};
8001
8002static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8003			      struct cgroup_map_cb *cb)
8004{
8005	struct cpuacct *ca = cgroup_ca(cgrp);
8006	int cpu;
8007	s64 val = 0;
8008
8009	for_each_online_cpu(cpu) {
8010		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8011		val += kcpustat->cpustat[CPUTIME_USER];
8012		val += kcpustat->cpustat[CPUTIME_NICE];
8013	}
8014	val = cputime64_to_clock_t(val);
8015	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8016
8017	val = 0;
8018	for_each_online_cpu(cpu) {
8019		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8020		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8021		val += kcpustat->cpustat[CPUTIME_IRQ];
8022		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8023	}
8024
8025	val = cputime64_to_clock_t(val);
8026	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8027
8028	return 0;
8029}
8030
8031static struct cftype files[] = {
8032	{
8033		.name = "usage",
8034		.read_u64 = cpuusage_read,
8035		.write_u64 = cpuusage_write,
8036	},
8037	{
8038		.name = "usage_percpu",
8039		.read_seq_string = cpuacct_percpu_seq_read,
8040	},
8041	{
8042		.name = "stat",
8043		.read_map = cpuacct_stats_show,
8044	},
8045	{ }	/* terminate */
8046};
8047
8048/*
8049 * charge this task's execution time to its accounting group.
8050 *
8051 * called with rq->lock held.
8052 */
8053void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8054{
8055	struct cpuacct *ca;
8056	int cpu;
8057
8058	if (unlikely(!cpuacct_subsys.active))
8059		return;
8060
8061	cpu = task_cpu(tsk);
8062
8063	rcu_read_lock();
8064
8065	ca = task_ca(tsk);
8066
8067	for (; ca; ca = parent_ca(ca)) {
8068		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8069		*cpuusage += cputime;
8070	}
8071
8072	rcu_read_unlock();
8073}
8074
8075struct cgroup_subsys cpuacct_subsys = {
8076	.name = "cpuacct",
8077	.create = cpuacct_create,
8078	.destroy = cpuacct_destroy,
8079	.subsys_id = cpuacct_subsys_id,
8080	.base_cftypes = files,
8081};
8082#endif	/* CONFIG_CGROUP_CPUACCT */
8083