core.c revision b8780c363d808a726a34793caa900923d32b6b80
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299/*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302static inline struct rq *__task_rq_lock(struct task_struct *p)
303	__acquires(rq->lock)
304{
305	struct rq *rq;
306
307	lockdep_assert_held(&p->pi_lock);
308
309	for (;;) {
310		rq = task_rq(p);
311		raw_spin_lock(&rq->lock);
312		if (likely(rq == task_rq(p)))
313			return rq;
314		raw_spin_unlock(&rq->lock);
315	}
316}
317
318/*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322	__acquires(p->pi_lock)
323	__acquires(rq->lock)
324{
325	struct rq *rq;
326
327	for (;;) {
328		raw_spin_lock_irqsave(&p->pi_lock, *flags);
329		rq = task_rq(p);
330		raw_spin_lock(&rq->lock);
331		if (likely(rq == task_rq(p)))
332			return rq;
333		raw_spin_unlock(&rq->lock);
334		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335	}
336}
337
338static void __task_rq_unlock(struct rq *rq)
339	__releases(rq->lock)
340{
341	raw_spin_unlock(&rq->lock);
342}
343
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346	__releases(rq->lock)
347	__releases(p->pi_lock)
348{
349	raw_spin_unlock(&rq->lock);
350	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351}
352
353/*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356static struct rq *this_rq_lock(void)
357	__acquires(rq->lock)
358{
359	struct rq *rq;
360
361	local_irq_disable();
362	rq = this_rq();
363	raw_spin_lock(&rq->lock);
364
365	return rq;
366}
367
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375	if (hrtimer_active(&rq->hrtick_timer))
376		hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389	raw_spin_lock(&rq->lock);
390	update_rq_clock(rq);
391	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392	raw_spin_unlock(&rq->lock);
393
394	return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398
399static int __hrtick_restart(struct rq *rq)
400{
401	struct hrtimer *timer = &rq->hrtick_timer;
402	ktime_t time = hrtimer_get_softexpires(timer);
403
404	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
411{
412	struct rq *rq = arg;
413
414	raw_spin_lock(&rq->lock);
415	__hrtick_restart(rq);
416	rq->hrtick_csd_pending = 0;
417	raw_spin_unlock(&rq->lock);
418}
419
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425void hrtick_start(struct rq *rq, u64 delay)
426{
427	struct hrtimer *timer = &rq->hrtick_timer;
428	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430	hrtimer_set_expires(timer, time);
431
432	if (rq == this_rq()) {
433		__hrtick_restart(rq);
434	} else if (!rq->hrtick_csd_pending) {
435		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
436		rq->hrtick_csd_pending = 1;
437	}
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443	int cpu = (int)(long)hcpu;
444
445	switch (action) {
446	case CPU_UP_CANCELED:
447	case CPU_UP_CANCELED_FROZEN:
448	case CPU_DOWN_PREPARE:
449	case CPU_DOWN_PREPARE_FROZEN:
450	case CPU_DEAD:
451	case CPU_DEAD_FROZEN:
452		hrtick_clear(cpu_rq(cpu));
453		return NOTIFY_OK;
454	}
455
456	return NOTIFY_DONE;
457}
458
459static __init void init_hrtick(void)
460{
461	hotcpu_notifier(hotplug_hrtick, 0);
462}
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469void hrtick_start(struct rq *rq, u64 delay)
470{
471	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472			HRTIMER_MODE_REL_PINNED, 0);
473}
474
475static inline void init_hrtick(void)
476{
477}
478#endif /* CONFIG_SMP */
479
480static void init_rq_hrtick(struct rq *rq)
481{
482#ifdef CONFIG_SMP
483	rq->hrtick_csd_pending = 0;
484
485	rq->hrtick_csd.flags = 0;
486	rq->hrtick_csd.func = __hrtick_start;
487	rq->hrtick_csd.info = rq;
488#endif
489
490	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491	rq->hrtick_timer.function = hrtick;
492}
493#else	/* CONFIG_SCHED_HRTICK */
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
502static inline void init_hrtick(void)
503{
504}
505#endif	/* CONFIG_SCHED_HRTICK */
506
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514void resched_task(struct task_struct *p)
515{
516	int cpu;
517
518	lockdep_assert_held(&task_rq(p)->lock);
519
520	if (test_tsk_need_resched(p))
521		return;
522
523	set_tsk_need_resched(p);
524
525	cpu = task_cpu(p);
526	if (cpu == smp_processor_id()) {
527		set_preempt_need_resched();
528		return;
529	}
530
531	/* NEED_RESCHED must be visible before we test polling */
532	smp_mb();
533	if (!tsk_is_polling(p))
534		smp_send_reschedule(cpu);
535}
536
537void resched_cpu(int cpu)
538{
539	struct rq *rq = cpu_rq(cpu);
540	unsigned long flags;
541
542	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543		return;
544	resched_task(cpu_curr(cpu));
545	raw_spin_unlock_irqrestore(&rq->lock, flags);
546}
547
548#ifdef CONFIG_SMP
549#ifdef CONFIG_NO_HZ_COMMON
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu.  This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(int pinned)
559{
560	int cpu = smp_processor_id();
561	int i;
562	struct sched_domain *sd;
563
564	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
565		return cpu;
566
567	rcu_read_lock();
568	for_each_domain(cpu, sd) {
569		for_each_cpu(i, sched_domain_span(sd)) {
570			if (!idle_cpu(i)) {
571				cpu = i;
572				goto unlock;
573			}
574		}
575	}
576unlock:
577	rcu_read_unlock();
578	return cpu;
579}
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590static void wake_up_idle_cpu(int cpu)
591{
592	struct rq *rq = cpu_rq(cpu);
593
594	if (cpu == smp_processor_id())
595		return;
596
597	/*
598	 * This is safe, as this function is called with the timer
599	 * wheel base lock of (cpu) held. When the CPU is on the way
600	 * to idle and has not yet set rq->curr to idle then it will
601	 * be serialized on the timer wheel base lock and take the new
602	 * timer into account automatically.
603	 */
604	if (rq->curr != rq->idle)
605		return;
606
607	/*
608	 * We can set TIF_RESCHED on the idle task of the other CPU
609	 * lockless. The worst case is that the other CPU runs the
610	 * idle task through an additional NOOP schedule()
611	 */
612	set_tsk_need_resched(rq->idle);
613
614	/* NEED_RESCHED must be visible before we test polling */
615	smp_mb();
616	if (!tsk_is_polling(rq->idle))
617		smp_send_reschedule(cpu);
618}
619
620static bool wake_up_full_nohz_cpu(int cpu)
621{
622	if (tick_nohz_full_cpu(cpu)) {
623		if (cpu != smp_processor_id() ||
624		    tick_nohz_tick_stopped())
625			smp_send_reschedule(cpu);
626		return true;
627	}
628
629	return false;
630}
631
632void wake_up_nohz_cpu(int cpu)
633{
634	if (!wake_up_full_nohz_cpu(cpu))
635		wake_up_idle_cpu(cpu);
636}
637
638static inline bool got_nohz_idle_kick(void)
639{
640	int cpu = smp_processor_id();
641
642	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
643		return false;
644
645	if (idle_cpu(cpu) && !need_resched())
646		return true;
647
648	/*
649	 * We can't run Idle Load Balance on this CPU for this time so we
650	 * cancel it and clear NOHZ_BALANCE_KICK
651	 */
652	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
653	return false;
654}
655
656#else /* CONFIG_NO_HZ_COMMON */
657
658static inline bool got_nohz_idle_kick(void)
659{
660	return false;
661}
662
663#endif /* CONFIG_NO_HZ_COMMON */
664
665#ifdef CONFIG_NO_HZ_FULL
666bool sched_can_stop_tick(void)
667{
668       struct rq *rq;
669
670       rq = this_rq();
671
672       /* Make sure rq->nr_running update is visible after the IPI */
673       smp_rmb();
674
675       /* More than one running task need preemption */
676       if (rq->nr_running > 1)
677               return false;
678
679       return true;
680}
681#endif /* CONFIG_NO_HZ_FULL */
682
683void sched_avg_update(struct rq *rq)
684{
685	s64 period = sched_avg_period();
686
687	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
688		/*
689		 * Inline assembly required to prevent the compiler
690		 * optimising this loop into a divmod call.
691		 * See __iter_div_u64_rem() for another example of this.
692		 */
693		asm("" : "+rm" (rq->age_stamp));
694		rq->age_stamp += period;
695		rq->rt_avg /= 2;
696	}
697}
698
699#endif /* CONFIG_SMP */
700
701#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
702			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
703/*
704 * Iterate task_group tree rooted at *from, calling @down when first entering a
705 * node and @up when leaving it for the final time.
706 *
707 * Caller must hold rcu_lock or sufficient equivalent.
708 */
709int walk_tg_tree_from(struct task_group *from,
710			     tg_visitor down, tg_visitor up, void *data)
711{
712	struct task_group *parent, *child;
713	int ret;
714
715	parent = from;
716
717down:
718	ret = (*down)(parent, data);
719	if (ret)
720		goto out;
721	list_for_each_entry_rcu(child, &parent->children, siblings) {
722		parent = child;
723		goto down;
724
725up:
726		continue;
727	}
728	ret = (*up)(parent, data);
729	if (ret || parent == from)
730		goto out;
731
732	child = parent;
733	parent = parent->parent;
734	if (parent)
735		goto up;
736out:
737	return ret;
738}
739
740int tg_nop(struct task_group *tg, void *data)
741{
742	return 0;
743}
744#endif
745
746static void set_load_weight(struct task_struct *p)
747{
748	int prio = p->static_prio - MAX_RT_PRIO;
749	struct load_weight *load = &p->se.load;
750
751	/*
752	 * SCHED_IDLE tasks get minimal weight:
753	 */
754	if (p->policy == SCHED_IDLE) {
755		load->weight = scale_load(WEIGHT_IDLEPRIO);
756		load->inv_weight = WMULT_IDLEPRIO;
757		return;
758	}
759
760	load->weight = scale_load(prio_to_weight[prio]);
761	load->inv_weight = prio_to_wmult[prio];
762}
763
764static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765{
766	update_rq_clock(rq);
767	sched_info_queued(rq, p);
768	p->sched_class->enqueue_task(rq, p, flags);
769}
770
771static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
772{
773	update_rq_clock(rq);
774	sched_info_dequeued(rq, p);
775	p->sched_class->dequeue_task(rq, p, flags);
776}
777
778void activate_task(struct rq *rq, struct task_struct *p, int flags)
779{
780	if (task_contributes_to_load(p))
781		rq->nr_uninterruptible--;
782
783	enqueue_task(rq, p, flags);
784}
785
786void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
787{
788	if (task_contributes_to_load(p))
789		rq->nr_uninterruptible++;
790
791	dequeue_task(rq, p, flags);
792}
793
794static void update_rq_clock_task(struct rq *rq, s64 delta)
795{
796/*
797 * In theory, the compile should just see 0 here, and optimize out the call
798 * to sched_rt_avg_update. But I don't trust it...
799 */
800#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
801	s64 steal = 0, irq_delta = 0;
802#endif
803#ifdef CONFIG_IRQ_TIME_ACCOUNTING
804	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
805
806	/*
807	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
808	 * this case when a previous update_rq_clock() happened inside a
809	 * {soft,}irq region.
810	 *
811	 * When this happens, we stop ->clock_task and only update the
812	 * prev_irq_time stamp to account for the part that fit, so that a next
813	 * update will consume the rest. This ensures ->clock_task is
814	 * monotonic.
815	 *
816	 * It does however cause some slight miss-attribution of {soft,}irq
817	 * time, a more accurate solution would be to update the irq_time using
818	 * the current rq->clock timestamp, except that would require using
819	 * atomic ops.
820	 */
821	if (irq_delta > delta)
822		irq_delta = delta;
823
824	rq->prev_irq_time += irq_delta;
825	delta -= irq_delta;
826#endif
827#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
828	if (static_key_false((&paravirt_steal_rq_enabled))) {
829		steal = paravirt_steal_clock(cpu_of(rq));
830		steal -= rq->prev_steal_time_rq;
831
832		if (unlikely(steal > delta))
833			steal = delta;
834
835		rq->prev_steal_time_rq += steal;
836		delta -= steal;
837	}
838#endif
839
840	rq->clock_task += delta;
841
842#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
843	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
844		sched_rt_avg_update(rq, irq_delta + steal);
845#endif
846}
847
848void sched_set_stop_task(int cpu, struct task_struct *stop)
849{
850	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
851	struct task_struct *old_stop = cpu_rq(cpu)->stop;
852
853	if (stop) {
854		/*
855		 * Make it appear like a SCHED_FIFO task, its something
856		 * userspace knows about and won't get confused about.
857		 *
858		 * Also, it will make PI more or less work without too
859		 * much confusion -- but then, stop work should not
860		 * rely on PI working anyway.
861		 */
862		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
863
864		stop->sched_class = &stop_sched_class;
865	}
866
867	cpu_rq(cpu)->stop = stop;
868
869	if (old_stop) {
870		/*
871		 * Reset it back to a normal scheduling class so that
872		 * it can die in pieces.
873		 */
874		old_stop->sched_class = &rt_sched_class;
875	}
876}
877
878/*
879 * __normal_prio - return the priority that is based on the static prio
880 */
881static inline int __normal_prio(struct task_struct *p)
882{
883	return p->static_prio;
884}
885
886/*
887 * Calculate the expected normal priority: i.e. priority
888 * without taking RT-inheritance into account. Might be
889 * boosted by interactivity modifiers. Changes upon fork,
890 * setprio syscalls, and whenever the interactivity
891 * estimator recalculates.
892 */
893static inline int normal_prio(struct task_struct *p)
894{
895	int prio;
896
897	if (task_has_dl_policy(p))
898		prio = MAX_DL_PRIO-1;
899	else if (task_has_rt_policy(p))
900		prio = MAX_RT_PRIO-1 - p->rt_priority;
901	else
902		prio = __normal_prio(p);
903	return prio;
904}
905
906/*
907 * Calculate the current priority, i.e. the priority
908 * taken into account by the scheduler. This value might
909 * be boosted by RT tasks, or might be boosted by
910 * interactivity modifiers. Will be RT if the task got
911 * RT-boosted. If not then it returns p->normal_prio.
912 */
913static int effective_prio(struct task_struct *p)
914{
915	p->normal_prio = normal_prio(p);
916	/*
917	 * If we are RT tasks or we were boosted to RT priority,
918	 * keep the priority unchanged. Otherwise, update priority
919	 * to the normal priority:
920	 */
921	if (!rt_prio(p->prio))
922		return p->normal_prio;
923	return p->prio;
924}
925
926/**
927 * task_curr - is this task currently executing on a CPU?
928 * @p: the task in question.
929 *
930 * Return: 1 if the task is currently executing. 0 otherwise.
931 */
932inline int task_curr(const struct task_struct *p)
933{
934	return cpu_curr(task_cpu(p)) == p;
935}
936
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938				       const struct sched_class *prev_class,
939				       int oldprio)
940{
941	if (prev_class != p->sched_class) {
942		if (prev_class->switched_from)
943			prev_class->switched_from(rq, p);
944		p->sched_class->switched_to(rq, p);
945	} else if (oldprio != p->prio || dl_task(p))
946		p->sched_class->prio_changed(rq, p, oldprio);
947}
948
949void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
950{
951	const struct sched_class *class;
952
953	if (p->sched_class == rq->curr->sched_class) {
954		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
955	} else {
956		for_each_class(class) {
957			if (class == rq->curr->sched_class)
958				break;
959			if (class == p->sched_class) {
960				resched_task(rq->curr);
961				break;
962			}
963		}
964	}
965
966	/*
967	 * A queue event has occurred, and we're going to schedule.  In
968	 * this case, we can save a useless back to back clock update.
969	 */
970	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
971		rq->skip_clock_update = 1;
972}
973
974#ifdef CONFIG_SMP
975void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
976{
977#ifdef CONFIG_SCHED_DEBUG
978	/*
979	 * We should never call set_task_cpu() on a blocked task,
980	 * ttwu() will sort out the placement.
981	 */
982	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
983			!(task_preempt_count(p) & PREEMPT_ACTIVE));
984
985#ifdef CONFIG_LOCKDEP
986	/*
987	 * The caller should hold either p->pi_lock or rq->lock, when changing
988	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
989	 *
990	 * sched_move_task() holds both and thus holding either pins the cgroup,
991	 * see task_group().
992	 *
993	 * Furthermore, all task_rq users should acquire both locks, see
994	 * task_rq_lock().
995	 */
996	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
997				      lockdep_is_held(&task_rq(p)->lock)));
998#endif
999#endif
1000
1001	trace_sched_migrate_task(p, new_cpu);
1002
1003	if (task_cpu(p) != new_cpu) {
1004		if (p->sched_class->migrate_task_rq)
1005			p->sched_class->migrate_task_rq(p, new_cpu);
1006		p->se.nr_migrations++;
1007		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1008	}
1009
1010	__set_task_cpu(p, new_cpu);
1011}
1012
1013static void __migrate_swap_task(struct task_struct *p, int cpu)
1014{
1015	if (p->on_rq) {
1016		struct rq *src_rq, *dst_rq;
1017
1018		src_rq = task_rq(p);
1019		dst_rq = cpu_rq(cpu);
1020
1021		deactivate_task(src_rq, p, 0);
1022		set_task_cpu(p, cpu);
1023		activate_task(dst_rq, p, 0);
1024		check_preempt_curr(dst_rq, p, 0);
1025	} else {
1026		/*
1027		 * Task isn't running anymore; make it appear like we migrated
1028		 * it before it went to sleep. This means on wakeup we make the
1029		 * previous cpu our targer instead of where it really is.
1030		 */
1031		p->wake_cpu = cpu;
1032	}
1033}
1034
1035struct migration_swap_arg {
1036	struct task_struct *src_task, *dst_task;
1037	int src_cpu, dst_cpu;
1038};
1039
1040static int migrate_swap_stop(void *data)
1041{
1042	struct migration_swap_arg *arg = data;
1043	struct rq *src_rq, *dst_rq;
1044	int ret = -EAGAIN;
1045
1046	src_rq = cpu_rq(arg->src_cpu);
1047	dst_rq = cpu_rq(arg->dst_cpu);
1048
1049	double_raw_lock(&arg->src_task->pi_lock,
1050			&arg->dst_task->pi_lock);
1051	double_rq_lock(src_rq, dst_rq);
1052	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1053		goto unlock;
1054
1055	if (task_cpu(arg->src_task) != arg->src_cpu)
1056		goto unlock;
1057
1058	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1059		goto unlock;
1060
1061	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1062		goto unlock;
1063
1064	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1065	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1066
1067	ret = 0;
1068
1069unlock:
1070	double_rq_unlock(src_rq, dst_rq);
1071	raw_spin_unlock(&arg->dst_task->pi_lock);
1072	raw_spin_unlock(&arg->src_task->pi_lock);
1073
1074	return ret;
1075}
1076
1077/*
1078 * Cross migrate two tasks
1079 */
1080int migrate_swap(struct task_struct *cur, struct task_struct *p)
1081{
1082	struct migration_swap_arg arg;
1083	int ret = -EINVAL;
1084
1085	arg = (struct migration_swap_arg){
1086		.src_task = cur,
1087		.src_cpu = task_cpu(cur),
1088		.dst_task = p,
1089		.dst_cpu = task_cpu(p),
1090	};
1091
1092	if (arg.src_cpu == arg.dst_cpu)
1093		goto out;
1094
1095	/*
1096	 * These three tests are all lockless; this is OK since all of them
1097	 * will be re-checked with proper locks held further down the line.
1098	 */
1099	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1100		goto out;
1101
1102	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1103		goto out;
1104
1105	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1106		goto out;
1107
1108	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1109	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1110
1111out:
1112	return ret;
1113}
1114
1115struct migration_arg {
1116	struct task_struct *task;
1117	int dest_cpu;
1118};
1119
1120static int migration_cpu_stop(void *data);
1121
1122/*
1123 * wait_task_inactive - wait for a thread to unschedule.
1124 *
1125 * If @match_state is nonzero, it's the @p->state value just checked and
1126 * not expected to change.  If it changes, i.e. @p might have woken up,
1127 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1128 * we return a positive number (its total switch count).  If a second call
1129 * a short while later returns the same number, the caller can be sure that
1130 * @p has remained unscheduled the whole time.
1131 *
1132 * The caller must ensure that the task *will* unschedule sometime soon,
1133 * else this function might spin for a *long* time. This function can't
1134 * be called with interrupts off, or it may introduce deadlock with
1135 * smp_call_function() if an IPI is sent by the same process we are
1136 * waiting to become inactive.
1137 */
1138unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1139{
1140	unsigned long flags;
1141	int running, on_rq;
1142	unsigned long ncsw;
1143	struct rq *rq;
1144
1145	for (;;) {
1146		/*
1147		 * We do the initial early heuristics without holding
1148		 * any task-queue locks at all. We'll only try to get
1149		 * the runqueue lock when things look like they will
1150		 * work out!
1151		 */
1152		rq = task_rq(p);
1153
1154		/*
1155		 * If the task is actively running on another CPU
1156		 * still, just relax and busy-wait without holding
1157		 * any locks.
1158		 *
1159		 * NOTE! Since we don't hold any locks, it's not
1160		 * even sure that "rq" stays as the right runqueue!
1161		 * But we don't care, since "task_running()" will
1162		 * return false if the runqueue has changed and p
1163		 * is actually now running somewhere else!
1164		 */
1165		while (task_running(rq, p)) {
1166			if (match_state && unlikely(p->state != match_state))
1167				return 0;
1168			cpu_relax();
1169		}
1170
1171		/*
1172		 * Ok, time to look more closely! We need the rq
1173		 * lock now, to be *sure*. If we're wrong, we'll
1174		 * just go back and repeat.
1175		 */
1176		rq = task_rq_lock(p, &flags);
1177		trace_sched_wait_task(p);
1178		running = task_running(rq, p);
1179		on_rq = p->on_rq;
1180		ncsw = 0;
1181		if (!match_state || p->state == match_state)
1182			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1183		task_rq_unlock(rq, p, &flags);
1184
1185		/*
1186		 * If it changed from the expected state, bail out now.
1187		 */
1188		if (unlikely(!ncsw))
1189			break;
1190
1191		/*
1192		 * Was it really running after all now that we
1193		 * checked with the proper locks actually held?
1194		 *
1195		 * Oops. Go back and try again..
1196		 */
1197		if (unlikely(running)) {
1198			cpu_relax();
1199			continue;
1200		}
1201
1202		/*
1203		 * It's not enough that it's not actively running,
1204		 * it must be off the runqueue _entirely_, and not
1205		 * preempted!
1206		 *
1207		 * So if it was still runnable (but just not actively
1208		 * running right now), it's preempted, and we should
1209		 * yield - it could be a while.
1210		 */
1211		if (unlikely(on_rq)) {
1212			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1213
1214			set_current_state(TASK_UNINTERRUPTIBLE);
1215			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1216			continue;
1217		}
1218
1219		/*
1220		 * Ahh, all good. It wasn't running, and it wasn't
1221		 * runnable, which means that it will never become
1222		 * running in the future either. We're all done!
1223		 */
1224		break;
1225	}
1226
1227	return ncsw;
1228}
1229
1230/***
1231 * kick_process - kick a running thread to enter/exit the kernel
1232 * @p: the to-be-kicked thread
1233 *
1234 * Cause a process which is running on another CPU to enter
1235 * kernel-mode, without any delay. (to get signals handled.)
1236 *
1237 * NOTE: this function doesn't have to take the runqueue lock,
1238 * because all it wants to ensure is that the remote task enters
1239 * the kernel. If the IPI races and the task has been migrated
1240 * to another CPU then no harm is done and the purpose has been
1241 * achieved as well.
1242 */
1243void kick_process(struct task_struct *p)
1244{
1245	int cpu;
1246
1247	preempt_disable();
1248	cpu = task_cpu(p);
1249	if ((cpu != smp_processor_id()) && task_curr(p))
1250		smp_send_reschedule(cpu);
1251	preempt_enable();
1252}
1253EXPORT_SYMBOL_GPL(kick_process);
1254#endif /* CONFIG_SMP */
1255
1256#ifdef CONFIG_SMP
1257/*
1258 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1259 */
1260static int select_fallback_rq(int cpu, struct task_struct *p)
1261{
1262	int nid = cpu_to_node(cpu);
1263	const struct cpumask *nodemask = NULL;
1264	enum { cpuset, possible, fail } state = cpuset;
1265	int dest_cpu;
1266
1267	/*
1268	 * If the node that the cpu is on has been offlined, cpu_to_node()
1269	 * will return -1. There is no cpu on the node, and we should
1270	 * select the cpu on the other node.
1271	 */
1272	if (nid != -1) {
1273		nodemask = cpumask_of_node(nid);
1274
1275		/* Look for allowed, online CPU in same node. */
1276		for_each_cpu(dest_cpu, nodemask) {
1277			if (!cpu_online(dest_cpu))
1278				continue;
1279			if (!cpu_active(dest_cpu))
1280				continue;
1281			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1282				return dest_cpu;
1283		}
1284	}
1285
1286	for (;;) {
1287		/* Any allowed, online CPU? */
1288		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1289			if (!cpu_online(dest_cpu))
1290				continue;
1291			if (!cpu_active(dest_cpu))
1292				continue;
1293			goto out;
1294		}
1295
1296		switch (state) {
1297		case cpuset:
1298			/* No more Mr. Nice Guy. */
1299			cpuset_cpus_allowed_fallback(p);
1300			state = possible;
1301			break;
1302
1303		case possible:
1304			do_set_cpus_allowed(p, cpu_possible_mask);
1305			state = fail;
1306			break;
1307
1308		case fail:
1309			BUG();
1310			break;
1311		}
1312	}
1313
1314out:
1315	if (state != cpuset) {
1316		/*
1317		 * Don't tell them about moving exiting tasks or
1318		 * kernel threads (both mm NULL), since they never
1319		 * leave kernel.
1320		 */
1321		if (p->mm && printk_ratelimit()) {
1322			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1323					task_pid_nr(p), p->comm, cpu);
1324		}
1325	}
1326
1327	return dest_cpu;
1328}
1329
1330/*
1331 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1332 */
1333static inline
1334int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1335{
1336	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1337
1338	/*
1339	 * In order not to call set_task_cpu() on a blocking task we need
1340	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1341	 * cpu.
1342	 *
1343	 * Since this is common to all placement strategies, this lives here.
1344	 *
1345	 * [ this allows ->select_task() to simply return task_cpu(p) and
1346	 *   not worry about this generic constraint ]
1347	 */
1348	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1349		     !cpu_online(cpu)))
1350		cpu = select_fallback_rq(task_cpu(p), p);
1351
1352	return cpu;
1353}
1354
1355static void update_avg(u64 *avg, u64 sample)
1356{
1357	s64 diff = sample - *avg;
1358	*avg += diff >> 3;
1359}
1360#endif
1361
1362static void
1363ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1364{
1365#ifdef CONFIG_SCHEDSTATS
1366	struct rq *rq = this_rq();
1367
1368#ifdef CONFIG_SMP
1369	int this_cpu = smp_processor_id();
1370
1371	if (cpu == this_cpu) {
1372		schedstat_inc(rq, ttwu_local);
1373		schedstat_inc(p, se.statistics.nr_wakeups_local);
1374	} else {
1375		struct sched_domain *sd;
1376
1377		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1378		rcu_read_lock();
1379		for_each_domain(this_cpu, sd) {
1380			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1381				schedstat_inc(sd, ttwu_wake_remote);
1382				break;
1383			}
1384		}
1385		rcu_read_unlock();
1386	}
1387
1388	if (wake_flags & WF_MIGRATED)
1389		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1390
1391#endif /* CONFIG_SMP */
1392
1393	schedstat_inc(rq, ttwu_count);
1394	schedstat_inc(p, se.statistics.nr_wakeups);
1395
1396	if (wake_flags & WF_SYNC)
1397		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1398
1399#endif /* CONFIG_SCHEDSTATS */
1400}
1401
1402static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1403{
1404	activate_task(rq, p, en_flags);
1405	p->on_rq = 1;
1406
1407	/* if a worker is waking up, notify workqueue */
1408	if (p->flags & PF_WQ_WORKER)
1409		wq_worker_waking_up(p, cpu_of(rq));
1410}
1411
1412/*
1413 * Mark the task runnable and perform wakeup-preemption.
1414 */
1415static void
1416ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1417{
1418	check_preempt_curr(rq, p, wake_flags);
1419	trace_sched_wakeup(p, true);
1420
1421	p->state = TASK_RUNNING;
1422#ifdef CONFIG_SMP
1423	if (p->sched_class->task_woken)
1424		p->sched_class->task_woken(rq, p);
1425
1426	if (rq->idle_stamp) {
1427		u64 delta = rq_clock(rq) - rq->idle_stamp;
1428		u64 max = 2*rq->max_idle_balance_cost;
1429
1430		update_avg(&rq->avg_idle, delta);
1431
1432		if (rq->avg_idle > max)
1433			rq->avg_idle = max;
1434
1435		rq->idle_stamp = 0;
1436	}
1437#endif
1438}
1439
1440static void
1441ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1442{
1443#ifdef CONFIG_SMP
1444	if (p->sched_contributes_to_load)
1445		rq->nr_uninterruptible--;
1446#endif
1447
1448	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1449	ttwu_do_wakeup(rq, p, wake_flags);
1450}
1451
1452/*
1453 * Called in case the task @p isn't fully descheduled from its runqueue,
1454 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1455 * since all we need to do is flip p->state to TASK_RUNNING, since
1456 * the task is still ->on_rq.
1457 */
1458static int ttwu_remote(struct task_struct *p, int wake_flags)
1459{
1460	struct rq *rq;
1461	int ret = 0;
1462
1463	rq = __task_rq_lock(p);
1464	if (p->on_rq) {
1465		/* check_preempt_curr() may use rq clock */
1466		update_rq_clock(rq);
1467		ttwu_do_wakeup(rq, p, wake_flags);
1468		ret = 1;
1469	}
1470	__task_rq_unlock(rq);
1471
1472	return ret;
1473}
1474
1475#ifdef CONFIG_SMP
1476static void sched_ttwu_pending(void)
1477{
1478	struct rq *rq = this_rq();
1479	struct llist_node *llist = llist_del_all(&rq->wake_list);
1480	struct task_struct *p;
1481
1482	raw_spin_lock(&rq->lock);
1483
1484	while (llist) {
1485		p = llist_entry(llist, struct task_struct, wake_entry);
1486		llist = llist_next(llist);
1487		ttwu_do_activate(rq, p, 0);
1488	}
1489
1490	raw_spin_unlock(&rq->lock);
1491}
1492
1493void scheduler_ipi(void)
1494{
1495	/*
1496	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1497	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1498	 * this IPI.
1499	 */
1500	preempt_fold_need_resched();
1501
1502	if (llist_empty(&this_rq()->wake_list)
1503			&& !tick_nohz_full_cpu(smp_processor_id())
1504			&& !got_nohz_idle_kick())
1505		return;
1506
1507	/*
1508	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1509	 * traditionally all their work was done from the interrupt return
1510	 * path. Now that we actually do some work, we need to make sure
1511	 * we do call them.
1512	 *
1513	 * Some archs already do call them, luckily irq_enter/exit nest
1514	 * properly.
1515	 *
1516	 * Arguably we should visit all archs and update all handlers,
1517	 * however a fair share of IPIs are still resched only so this would
1518	 * somewhat pessimize the simple resched case.
1519	 */
1520	irq_enter();
1521	tick_nohz_full_check();
1522	sched_ttwu_pending();
1523
1524	/*
1525	 * Check if someone kicked us for doing the nohz idle load balance.
1526	 */
1527	if (unlikely(got_nohz_idle_kick())) {
1528		this_rq()->idle_balance = 1;
1529		raise_softirq_irqoff(SCHED_SOFTIRQ);
1530	}
1531	irq_exit();
1532}
1533
1534static void ttwu_queue_remote(struct task_struct *p, int cpu)
1535{
1536	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1537		smp_send_reschedule(cpu);
1538}
1539
1540bool cpus_share_cache(int this_cpu, int that_cpu)
1541{
1542	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
1544#endif /* CONFIG_SMP */
1545
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548	struct rq *rq = cpu_rq(cpu);
1549
1550#if defined(CONFIG_SMP)
1551	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1552		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1553		ttwu_queue_remote(p, cpu);
1554		return;
1555	}
1556#endif
1557
1558	raw_spin_lock(&rq->lock);
1559	ttwu_do_activate(rq, p, 0);
1560	raw_spin_unlock(&rq->lock);
1561}
1562
1563/**
1564 * try_to_wake_up - wake up a thread
1565 * @p: the thread to be awakened
1566 * @state: the mask of task states that can be woken
1567 * @wake_flags: wake modifier flags (WF_*)
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
1575 * Return: %true if @p was woken up, %false if it was already running.
1576 * or @state didn't match @p's state.
1577 */
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1580{
1581	unsigned long flags;
1582	int cpu, success = 0;
1583
1584	/*
1585	 * If we are going to wake up a thread waiting for CONDITION we
1586	 * need to ensure that CONDITION=1 done by the caller can not be
1587	 * reordered with p->state check below. This pairs with mb() in
1588	 * set_current_state() the waiting thread does.
1589	 */
1590	smp_mb__before_spinlock();
1591	raw_spin_lock_irqsave(&p->pi_lock, flags);
1592	if (!(p->state & state))
1593		goto out;
1594
1595	success = 1; /* we're going to change ->state */
1596	cpu = task_cpu(p);
1597
1598	if (p->on_rq && ttwu_remote(p, wake_flags))
1599		goto stat;
1600
1601#ifdef CONFIG_SMP
1602	/*
1603	 * If the owning (remote) cpu is still in the middle of schedule() with
1604	 * this task as prev, wait until its done referencing the task.
1605	 */
1606	while (p->on_cpu)
1607		cpu_relax();
1608	/*
1609	 * Pairs with the smp_wmb() in finish_lock_switch().
1610	 */
1611	smp_rmb();
1612
1613	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1614	p->state = TASK_WAKING;
1615
1616	if (p->sched_class->task_waking)
1617		p->sched_class->task_waking(p);
1618
1619	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1620	if (task_cpu(p) != cpu) {
1621		wake_flags |= WF_MIGRATED;
1622		set_task_cpu(p, cpu);
1623	}
1624#endif /* CONFIG_SMP */
1625
1626	ttwu_queue(p, cpu);
1627stat:
1628	ttwu_stat(p, cpu, wake_flags);
1629out:
1630	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1631
1632	return success;
1633}
1634
1635/**
1636 * try_to_wake_up_local - try to wake up a local task with rq lock held
1637 * @p: the thread to be awakened
1638 *
1639 * Put @p on the run-queue if it's not already there. The caller must
1640 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1641 * the current task.
1642 */
1643static void try_to_wake_up_local(struct task_struct *p)
1644{
1645	struct rq *rq = task_rq(p);
1646
1647	if (WARN_ON_ONCE(rq != this_rq()) ||
1648	    WARN_ON_ONCE(p == current))
1649		return;
1650
1651	lockdep_assert_held(&rq->lock);
1652
1653	if (!raw_spin_trylock(&p->pi_lock)) {
1654		raw_spin_unlock(&rq->lock);
1655		raw_spin_lock(&p->pi_lock);
1656		raw_spin_lock(&rq->lock);
1657	}
1658
1659	if (!(p->state & TASK_NORMAL))
1660		goto out;
1661
1662	if (!p->on_rq)
1663		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1664
1665	ttwu_do_wakeup(rq, p, 0);
1666	ttwu_stat(p, smp_processor_id(), 0);
1667out:
1668	raw_spin_unlock(&p->pi_lock);
1669}
1670
1671/**
1672 * wake_up_process - Wake up a specific process
1673 * @p: The process to be woken up.
1674 *
1675 * Attempt to wake up the nominated process and move it to the set of runnable
1676 * processes.
1677 *
1678 * Return: 1 if the process was woken up, 0 if it was already running.
1679 *
1680 * It may be assumed that this function implies a write memory barrier before
1681 * changing the task state if and only if any tasks are woken up.
1682 */
1683int wake_up_process(struct task_struct *p)
1684{
1685	WARN_ON(task_is_stopped_or_traced(p));
1686	return try_to_wake_up(p, TASK_NORMAL, 0);
1687}
1688EXPORT_SYMBOL(wake_up_process);
1689
1690int wake_up_state(struct task_struct *p, unsigned int state)
1691{
1692	return try_to_wake_up(p, state, 0);
1693}
1694
1695/*
1696 * Perform scheduler related setup for a newly forked process p.
1697 * p is forked by current.
1698 *
1699 * __sched_fork() is basic setup used by init_idle() too:
1700 */
1701static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1702{
1703	p->on_rq			= 0;
1704
1705	p->se.on_rq			= 0;
1706	p->se.exec_start		= 0;
1707	p->se.sum_exec_runtime		= 0;
1708	p->se.prev_sum_exec_runtime	= 0;
1709	p->se.nr_migrations		= 0;
1710	p->se.vruntime			= 0;
1711	INIT_LIST_HEAD(&p->se.group_node);
1712
1713#ifdef CONFIG_SCHEDSTATS
1714	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1715#endif
1716
1717	RB_CLEAR_NODE(&p->dl.rb_node);
1718	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1719	p->dl.dl_runtime = p->dl.runtime = 0;
1720	p->dl.dl_deadline = p->dl.deadline = 0;
1721	p->dl.dl_period = 0;
1722	p->dl.flags = 0;
1723
1724	INIT_LIST_HEAD(&p->rt.run_list);
1725
1726#ifdef CONFIG_PREEMPT_NOTIFIERS
1727	INIT_HLIST_HEAD(&p->preempt_notifiers);
1728#endif
1729
1730#ifdef CONFIG_NUMA_BALANCING
1731	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1732		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1733		p->mm->numa_scan_seq = 0;
1734	}
1735
1736	if (clone_flags & CLONE_VM)
1737		p->numa_preferred_nid = current->numa_preferred_nid;
1738	else
1739		p->numa_preferred_nid = -1;
1740
1741	p->node_stamp = 0ULL;
1742	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1743	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1744	p->numa_work.next = &p->numa_work;
1745	p->numa_faults_memory = NULL;
1746	p->numa_faults_buffer_memory = NULL;
1747	p->last_task_numa_placement = 0;
1748	p->last_sum_exec_runtime = 0;
1749
1750	INIT_LIST_HEAD(&p->numa_entry);
1751	p->numa_group = NULL;
1752#endif /* CONFIG_NUMA_BALANCING */
1753}
1754
1755#ifdef CONFIG_NUMA_BALANCING
1756#ifdef CONFIG_SCHED_DEBUG
1757void set_numabalancing_state(bool enabled)
1758{
1759	if (enabled)
1760		sched_feat_set("NUMA");
1761	else
1762		sched_feat_set("NO_NUMA");
1763}
1764#else
1765__read_mostly bool numabalancing_enabled;
1766
1767void set_numabalancing_state(bool enabled)
1768{
1769	numabalancing_enabled = enabled;
1770}
1771#endif /* CONFIG_SCHED_DEBUG */
1772
1773#ifdef CONFIG_PROC_SYSCTL
1774int sysctl_numa_balancing(struct ctl_table *table, int write,
1775			 void __user *buffer, size_t *lenp, loff_t *ppos)
1776{
1777	struct ctl_table t;
1778	int err;
1779	int state = numabalancing_enabled;
1780
1781	if (write && !capable(CAP_SYS_ADMIN))
1782		return -EPERM;
1783
1784	t = *table;
1785	t.data = &state;
1786	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1787	if (err < 0)
1788		return err;
1789	if (write)
1790		set_numabalancing_state(state);
1791	return err;
1792}
1793#endif
1794#endif
1795
1796/*
1797 * fork()/clone()-time setup:
1798 */
1799int sched_fork(unsigned long clone_flags, struct task_struct *p)
1800{
1801	unsigned long flags;
1802	int cpu = get_cpu();
1803
1804	__sched_fork(clone_flags, p);
1805	/*
1806	 * We mark the process as running here. This guarantees that
1807	 * nobody will actually run it, and a signal or other external
1808	 * event cannot wake it up and insert it on the runqueue either.
1809	 */
1810	p->state = TASK_RUNNING;
1811
1812	/*
1813	 * Make sure we do not leak PI boosting priority to the child.
1814	 */
1815	p->prio = current->normal_prio;
1816
1817	/*
1818	 * Revert to default priority/policy on fork if requested.
1819	 */
1820	if (unlikely(p->sched_reset_on_fork)) {
1821		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1822			p->policy = SCHED_NORMAL;
1823			p->static_prio = NICE_TO_PRIO(0);
1824			p->rt_priority = 0;
1825		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1826			p->static_prio = NICE_TO_PRIO(0);
1827
1828		p->prio = p->normal_prio = __normal_prio(p);
1829		set_load_weight(p);
1830
1831		/*
1832		 * We don't need the reset flag anymore after the fork. It has
1833		 * fulfilled its duty:
1834		 */
1835		p->sched_reset_on_fork = 0;
1836	}
1837
1838	if (dl_prio(p->prio)) {
1839		put_cpu();
1840		return -EAGAIN;
1841	} else if (rt_prio(p->prio)) {
1842		p->sched_class = &rt_sched_class;
1843	} else {
1844		p->sched_class = &fair_sched_class;
1845	}
1846
1847	if (p->sched_class->task_fork)
1848		p->sched_class->task_fork(p);
1849
1850	/*
1851	 * The child is not yet in the pid-hash so no cgroup attach races,
1852	 * and the cgroup is pinned to this child due to cgroup_fork()
1853	 * is ran before sched_fork().
1854	 *
1855	 * Silence PROVE_RCU.
1856	 */
1857	raw_spin_lock_irqsave(&p->pi_lock, flags);
1858	set_task_cpu(p, cpu);
1859	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1860
1861#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1862	if (likely(sched_info_on()))
1863		memset(&p->sched_info, 0, sizeof(p->sched_info));
1864#endif
1865#if defined(CONFIG_SMP)
1866	p->on_cpu = 0;
1867#endif
1868	init_task_preempt_count(p);
1869#ifdef CONFIG_SMP
1870	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1871	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1872#endif
1873
1874	put_cpu();
1875	return 0;
1876}
1877
1878unsigned long to_ratio(u64 period, u64 runtime)
1879{
1880	if (runtime == RUNTIME_INF)
1881		return 1ULL << 20;
1882
1883	/*
1884	 * Doing this here saves a lot of checks in all
1885	 * the calling paths, and returning zero seems
1886	 * safe for them anyway.
1887	 */
1888	if (period == 0)
1889		return 0;
1890
1891	return div64_u64(runtime << 20, period);
1892}
1893
1894#ifdef CONFIG_SMP
1895inline struct dl_bw *dl_bw_of(int i)
1896{
1897	return &cpu_rq(i)->rd->dl_bw;
1898}
1899
1900static inline int dl_bw_cpus(int i)
1901{
1902	struct root_domain *rd = cpu_rq(i)->rd;
1903	int cpus = 0;
1904
1905	for_each_cpu_and(i, rd->span, cpu_active_mask)
1906		cpus++;
1907
1908	return cpus;
1909}
1910#else
1911inline struct dl_bw *dl_bw_of(int i)
1912{
1913	return &cpu_rq(i)->dl.dl_bw;
1914}
1915
1916static inline int dl_bw_cpus(int i)
1917{
1918	return 1;
1919}
1920#endif
1921
1922static inline
1923void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1924{
1925	dl_b->total_bw -= tsk_bw;
1926}
1927
1928static inline
1929void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1930{
1931	dl_b->total_bw += tsk_bw;
1932}
1933
1934static inline
1935bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1936{
1937	return dl_b->bw != -1 &&
1938	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1939}
1940
1941/*
1942 * We must be sure that accepting a new task (or allowing changing the
1943 * parameters of an existing one) is consistent with the bandwidth
1944 * constraints. If yes, this function also accordingly updates the currently
1945 * allocated bandwidth to reflect the new situation.
1946 *
1947 * This function is called while holding p's rq->lock.
1948 */
1949static int dl_overflow(struct task_struct *p, int policy,
1950		       const struct sched_attr *attr)
1951{
1952
1953	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1954	u64 period = attr->sched_period ?: attr->sched_deadline;
1955	u64 runtime = attr->sched_runtime;
1956	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1957	int cpus, err = -1;
1958
1959	if (new_bw == p->dl.dl_bw)
1960		return 0;
1961
1962	/*
1963	 * Either if a task, enters, leave, or stays -deadline but changes
1964	 * its parameters, we may need to update accordingly the total
1965	 * allocated bandwidth of the container.
1966	 */
1967	raw_spin_lock(&dl_b->lock);
1968	cpus = dl_bw_cpus(task_cpu(p));
1969	if (dl_policy(policy) && !task_has_dl_policy(p) &&
1970	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1971		__dl_add(dl_b, new_bw);
1972		err = 0;
1973	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
1974		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1975		__dl_clear(dl_b, p->dl.dl_bw);
1976		__dl_add(dl_b, new_bw);
1977		err = 0;
1978	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1979		__dl_clear(dl_b, p->dl.dl_bw);
1980		err = 0;
1981	}
1982	raw_spin_unlock(&dl_b->lock);
1983
1984	return err;
1985}
1986
1987extern void init_dl_bw(struct dl_bw *dl_b);
1988
1989/*
1990 * wake_up_new_task - wake up a newly created task for the first time.
1991 *
1992 * This function will do some initial scheduler statistics housekeeping
1993 * that must be done for every newly created context, then puts the task
1994 * on the runqueue and wakes it.
1995 */
1996void wake_up_new_task(struct task_struct *p)
1997{
1998	unsigned long flags;
1999	struct rq *rq;
2000
2001	raw_spin_lock_irqsave(&p->pi_lock, flags);
2002#ifdef CONFIG_SMP
2003	/*
2004	 * Fork balancing, do it here and not earlier because:
2005	 *  - cpus_allowed can change in the fork path
2006	 *  - any previously selected cpu might disappear through hotplug
2007	 */
2008	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2009#endif
2010
2011	/* Initialize new task's runnable average */
2012	init_task_runnable_average(p);
2013	rq = __task_rq_lock(p);
2014	activate_task(rq, p, 0);
2015	p->on_rq = 1;
2016	trace_sched_wakeup_new(p, true);
2017	check_preempt_curr(rq, p, WF_FORK);
2018#ifdef CONFIG_SMP
2019	if (p->sched_class->task_woken)
2020		p->sched_class->task_woken(rq, p);
2021#endif
2022	task_rq_unlock(rq, p, &flags);
2023}
2024
2025#ifdef CONFIG_PREEMPT_NOTIFIERS
2026
2027/**
2028 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2029 * @notifier: notifier struct to register
2030 */
2031void preempt_notifier_register(struct preempt_notifier *notifier)
2032{
2033	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2034}
2035EXPORT_SYMBOL_GPL(preempt_notifier_register);
2036
2037/**
2038 * preempt_notifier_unregister - no longer interested in preemption notifications
2039 * @notifier: notifier struct to unregister
2040 *
2041 * This is safe to call from within a preemption notifier.
2042 */
2043void preempt_notifier_unregister(struct preempt_notifier *notifier)
2044{
2045	hlist_del(&notifier->link);
2046}
2047EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2048
2049static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2050{
2051	struct preempt_notifier *notifier;
2052
2053	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2054		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2055}
2056
2057static void
2058fire_sched_out_preempt_notifiers(struct task_struct *curr,
2059				 struct task_struct *next)
2060{
2061	struct preempt_notifier *notifier;
2062
2063	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2064		notifier->ops->sched_out(notifier, next);
2065}
2066
2067#else /* !CONFIG_PREEMPT_NOTIFIERS */
2068
2069static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2070{
2071}
2072
2073static void
2074fire_sched_out_preempt_notifiers(struct task_struct *curr,
2075				 struct task_struct *next)
2076{
2077}
2078
2079#endif /* CONFIG_PREEMPT_NOTIFIERS */
2080
2081/**
2082 * prepare_task_switch - prepare to switch tasks
2083 * @rq: the runqueue preparing to switch
2084 * @prev: the current task that is being switched out
2085 * @next: the task we are going to switch to.
2086 *
2087 * This is called with the rq lock held and interrupts off. It must
2088 * be paired with a subsequent finish_task_switch after the context
2089 * switch.
2090 *
2091 * prepare_task_switch sets up locking and calls architecture specific
2092 * hooks.
2093 */
2094static inline void
2095prepare_task_switch(struct rq *rq, struct task_struct *prev,
2096		    struct task_struct *next)
2097{
2098	trace_sched_switch(prev, next);
2099	sched_info_switch(rq, prev, next);
2100	perf_event_task_sched_out(prev, next);
2101	fire_sched_out_preempt_notifiers(prev, next);
2102	prepare_lock_switch(rq, next);
2103	prepare_arch_switch(next);
2104}
2105
2106/**
2107 * finish_task_switch - clean up after a task-switch
2108 * @rq: runqueue associated with task-switch
2109 * @prev: the thread we just switched away from.
2110 *
2111 * finish_task_switch must be called after the context switch, paired
2112 * with a prepare_task_switch call before the context switch.
2113 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2114 * and do any other architecture-specific cleanup actions.
2115 *
2116 * Note that we may have delayed dropping an mm in context_switch(). If
2117 * so, we finish that here outside of the runqueue lock. (Doing it
2118 * with the lock held can cause deadlocks; see schedule() for
2119 * details.)
2120 */
2121static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2122	__releases(rq->lock)
2123{
2124	struct mm_struct *mm = rq->prev_mm;
2125	long prev_state;
2126
2127	rq->prev_mm = NULL;
2128
2129	/*
2130	 * A task struct has one reference for the use as "current".
2131	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2132	 * schedule one last time. The schedule call will never return, and
2133	 * the scheduled task must drop that reference.
2134	 * The test for TASK_DEAD must occur while the runqueue locks are
2135	 * still held, otherwise prev could be scheduled on another cpu, die
2136	 * there before we look at prev->state, and then the reference would
2137	 * be dropped twice.
2138	 *		Manfred Spraul <manfred@colorfullife.com>
2139	 */
2140	prev_state = prev->state;
2141	vtime_task_switch(prev);
2142	finish_arch_switch(prev);
2143	perf_event_task_sched_in(prev, current);
2144	finish_lock_switch(rq, prev);
2145	finish_arch_post_lock_switch();
2146
2147	fire_sched_in_preempt_notifiers(current);
2148	if (mm)
2149		mmdrop(mm);
2150	if (unlikely(prev_state == TASK_DEAD)) {
2151		if (prev->sched_class->task_dead)
2152			prev->sched_class->task_dead(prev);
2153
2154		/*
2155		 * Remove function-return probe instances associated with this
2156		 * task and put them back on the free list.
2157		 */
2158		kprobe_flush_task(prev);
2159		put_task_struct(prev);
2160	}
2161
2162	tick_nohz_task_switch(current);
2163}
2164
2165#ifdef CONFIG_SMP
2166
2167/* rq->lock is NOT held, but preemption is disabled */
2168static inline void post_schedule(struct rq *rq)
2169{
2170	if (rq->post_schedule) {
2171		unsigned long flags;
2172
2173		raw_spin_lock_irqsave(&rq->lock, flags);
2174		if (rq->curr->sched_class->post_schedule)
2175			rq->curr->sched_class->post_schedule(rq);
2176		raw_spin_unlock_irqrestore(&rq->lock, flags);
2177
2178		rq->post_schedule = 0;
2179	}
2180}
2181
2182#else
2183
2184static inline void post_schedule(struct rq *rq)
2185{
2186}
2187
2188#endif
2189
2190/**
2191 * schedule_tail - first thing a freshly forked thread must call.
2192 * @prev: the thread we just switched away from.
2193 */
2194asmlinkage void schedule_tail(struct task_struct *prev)
2195	__releases(rq->lock)
2196{
2197	struct rq *rq = this_rq();
2198
2199	finish_task_switch(rq, prev);
2200
2201	/*
2202	 * FIXME: do we need to worry about rq being invalidated by the
2203	 * task_switch?
2204	 */
2205	post_schedule(rq);
2206
2207#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2208	/* In this case, finish_task_switch does not reenable preemption */
2209	preempt_enable();
2210#endif
2211	if (current->set_child_tid)
2212		put_user(task_pid_vnr(current), current->set_child_tid);
2213}
2214
2215/*
2216 * context_switch - switch to the new MM and the new
2217 * thread's register state.
2218 */
2219static inline void
2220context_switch(struct rq *rq, struct task_struct *prev,
2221	       struct task_struct *next)
2222{
2223	struct mm_struct *mm, *oldmm;
2224
2225	prepare_task_switch(rq, prev, next);
2226
2227	mm = next->mm;
2228	oldmm = prev->active_mm;
2229	/*
2230	 * For paravirt, this is coupled with an exit in switch_to to
2231	 * combine the page table reload and the switch backend into
2232	 * one hypercall.
2233	 */
2234	arch_start_context_switch(prev);
2235
2236	if (!mm) {
2237		next->active_mm = oldmm;
2238		atomic_inc(&oldmm->mm_count);
2239		enter_lazy_tlb(oldmm, next);
2240	} else
2241		switch_mm(oldmm, mm, next);
2242
2243	if (!prev->mm) {
2244		prev->active_mm = NULL;
2245		rq->prev_mm = oldmm;
2246	}
2247	/*
2248	 * Since the runqueue lock will be released by the next
2249	 * task (which is an invalid locking op but in the case
2250	 * of the scheduler it's an obvious special-case), so we
2251	 * do an early lockdep release here:
2252	 */
2253#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2254	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2255#endif
2256
2257	context_tracking_task_switch(prev, next);
2258	/* Here we just switch the register state and the stack. */
2259	switch_to(prev, next, prev);
2260
2261	barrier();
2262	/*
2263	 * this_rq must be evaluated again because prev may have moved
2264	 * CPUs since it called schedule(), thus the 'rq' on its stack
2265	 * frame will be invalid.
2266	 */
2267	finish_task_switch(this_rq(), prev);
2268}
2269
2270/*
2271 * nr_running and nr_context_switches:
2272 *
2273 * externally visible scheduler statistics: current number of runnable
2274 * threads, total number of context switches performed since bootup.
2275 */
2276unsigned long nr_running(void)
2277{
2278	unsigned long i, sum = 0;
2279
2280	for_each_online_cpu(i)
2281		sum += cpu_rq(i)->nr_running;
2282
2283	return sum;
2284}
2285
2286unsigned long long nr_context_switches(void)
2287{
2288	int i;
2289	unsigned long long sum = 0;
2290
2291	for_each_possible_cpu(i)
2292		sum += cpu_rq(i)->nr_switches;
2293
2294	return sum;
2295}
2296
2297unsigned long nr_iowait(void)
2298{
2299	unsigned long i, sum = 0;
2300
2301	for_each_possible_cpu(i)
2302		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2303
2304	return sum;
2305}
2306
2307unsigned long nr_iowait_cpu(int cpu)
2308{
2309	struct rq *this = cpu_rq(cpu);
2310	return atomic_read(&this->nr_iowait);
2311}
2312
2313#ifdef CONFIG_SMP
2314
2315/*
2316 * sched_exec - execve() is a valuable balancing opportunity, because at
2317 * this point the task has the smallest effective memory and cache footprint.
2318 */
2319void sched_exec(void)
2320{
2321	struct task_struct *p = current;
2322	unsigned long flags;
2323	int dest_cpu;
2324
2325	raw_spin_lock_irqsave(&p->pi_lock, flags);
2326	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2327	if (dest_cpu == smp_processor_id())
2328		goto unlock;
2329
2330	if (likely(cpu_active(dest_cpu))) {
2331		struct migration_arg arg = { p, dest_cpu };
2332
2333		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2334		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2335		return;
2336	}
2337unlock:
2338	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339}
2340
2341#endif
2342
2343DEFINE_PER_CPU(struct kernel_stat, kstat);
2344DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2345
2346EXPORT_PER_CPU_SYMBOL(kstat);
2347EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2348
2349/*
2350 * Return any ns on the sched_clock that have not yet been accounted in
2351 * @p in case that task is currently running.
2352 *
2353 * Called with task_rq_lock() held on @rq.
2354 */
2355static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2356{
2357	u64 ns = 0;
2358
2359	if (task_current(rq, p)) {
2360		update_rq_clock(rq);
2361		ns = rq_clock_task(rq) - p->se.exec_start;
2362		if ((s64)ns < 0)
2363			ns = 0;
2364	}
2365
2366	return ns;
2367}
2368
2369unsigned long long task_delta_exec(struct task_struct *p)
2370{
2371	unsigned long flags;
2372	struct rq *rq;
2373	u64 ns = 0;
2374
2375	rq = task_rq_lock(p, &flags);
2376	ns = do_task_delta_exec(p, rq);
2377	task_rq_unlock(rq, p, &flags);
2378
2379	return ns;
2380}
2381
2382/*
2383 * Return accounted runtime for the task.
2384 * In case the task is currently running, return the runtime plus current's
2385 * pending runtime that have not been accounted yet.
2386 */
2387unsigned long long task_sched_runtime(struct task_struct *p)
2388{
2389	unsigned long flags;
2390	struct rq *rq;
2391	u64 ns = 0;
2392
2393#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2394	/*
2395	 * 64-bit doesn't need locks to atomically read a 64bit value.
2396	 * So we have a optimization chance when the task's delta_exec is 0.
2397	 * Reading ->on_cpu is racy, but this is ok.
2398	 *
2399	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2400	 * If we race with it entering cpu, unaccounted time is 0. This is
2401	 * indistinguishable from the read occurring a few cycles earlier.
2402	 */
2403	if (!p->on_cpu)
2404		return p->se.sum_exec_runtime;
2405#endif
2406
2407	rq = task_rq_lock(p, &flags);
2408	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2409	task_rq_unlock(rq, p, &flags);
2410
2411	return ns;
2412}
2413
2414/*
2415 * This function gets called by the timer code, with HZ frequency.
2416 * We call it with interrupts disabled.
2417 */
2418void scheduler_tick(void)
2419{
2420	int cpu = smp_processor_id();
2421	struct rq *rq = cpu_rq(cpu);
2422	struct task_struct *curr = rq->curr;
2423
2424	sched_clock_tick();
2425
2426	raw_spin_lock(&rq->lock);
2427	update_rq_clock(rq);
2428	curr->sched_class->task_tick(rq, curr, 0);
2429	update_cpu_load_active(rq);
2430	raw_spin_unlock(&rq->lock);
2431
2432	perf_event_task_tick();
2433
2434#ifdef CONFIG_SMP
2435	rq->idle_balance = idle_cpu(cpu);
2436	trigger_load_balance(rq);
2437#endif
2438	rq_last_tick_reset(rq);
2439}
2440
2441#ifdef CONFIG_NO_HZ_FULL
2442/**
2443 * scheduler_tick_max_deferment
2444 *
2445 * Keep at least one tick per second when a single
2446 * active task is running because the scheduler doesn't
2447 * yet completely support full dynticks environment.
2448 *
2449 * This makes sure that uptime, CFS vruntime, load
2450 * balancing, etc... continue to move forward, even
2451 * with a very low granularity.
2452 *
2453 * Return: Maximum deferment in nanoseconds.
2454 */
2455u64 scheduler_tick_max_deferment(void)
2456{
2457	struct rq *rq = this_rq();
2458	unsigned long next, now = ACCESS_ONCE(jiffies);
2459
2460	next = rq->last_sched_tick + HZ;
2461
2462	if (time_before_eq(next, now))
2463		return 0;
2464
2465	return jiffies_to_nsecs(next - now);
2466}
2467#endif
2468
2469notrace unsigned long get_parent_ip(unsigned long addr)
2470{
2471	if (in_lock_functions(addr)) {
2472		addr = CALLER_ADDR2;
2473		if (in_lock_functions(addr))
2474			addr = CALLER_ADDR3;
2475	}
2476	return addr;
2477}
2478
2479#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2480				defined(CONFIG_PREEMPT_TRACER))
2481
2482void __kprobes preempt_count_add(int val)
2483{
2484#ifdef CONFIG_DEBUG_PREEMPT
2485	/*
2486	 * Underflow?
2487	 */
2488	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2489		return;
2490#endif
2491	__preempt_count_add(val);
2492#ifdef CONFIG_DEBUG_PREEMPT
2493	/*
2494	 * Spinlock count overflowing soon?
2495	 */
2496	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2497				PREEMPT_MASK - 10);
2498#endif
2499	if (preempt_count() == val) {
2500		unsigned long ip = get_parent_ip(CALLER_ADDR1);
2501#ifdef CONFIG_DEBUG_PREEMPT
2502		current->preempt_disable_ip = ip;
2503#endif
2504		trace_preempt_off(CALLER_ADDR0, ip);
2505	}
2506}
2507EXPORT_SYMBOL(preempt_count_add);
2508
2509void __kprobes preempt_count_sub(int val)
2510{
2511#ifdef CONFIG_DEBUG_PREEMPT
2512	/*
2513	 * Underflow?
2514	 */
2515	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2516		return;
2517	/*
2518	 * Is the spinlock portion underflowing?
2519	 */
2520	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2521			!(preempt_count() & PREEMPT_MASK)))
2522		return;
2523#endif
2524
2525	if (preempt_count() == val)
2526		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2527	__preempt_count_sub(val);
2528}
2529EXPORT_SYMBOL(preempt_count_sub);
2530
2531#endif
2532
2533/*
2534 * Print scheduling while atomic bug:
2535 */
2536static noinline void __schedule_bug(struct task_struct *prev)
2537{
2538	if (oops_in_progress)
2539		return;
2540
2541	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2542		prev->comm, prev->pid, preempt_count());
2543
2544	debug_show_held_locks(prev);
2545	print_modules();
2546	if (irqs_disabled())
2547		print_irqtrace_events(prev);
2548#ifdef CONFIG_DEBUG_PREEMPT
2549	if (in_atomic_preempt_off()) {
2550		pr_err("Preemption disabled at:");
2551		print_ip_sym(current->preempt_disable_ip);
2552		pr_cont("\n");
2553	}
2554#endif
2555	dump_stack();
2556	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2557}
2558
2559/*
2560 * Various schedule()-time debugging checks and statistics:
2561 */
2562static inline void schedule_debug(struct task_struct *prev)
2563{
2564	/*
2565	 * Test if we are atomic. Since do_exit() needs to call into
2566	 * schedule() atomically, we ignore that path. Otherwise whine
2567	 * if we are scheduling when we should not.
2568	 */
2569	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2570		__schedule_bug(prev);
2571	rcu_sleep_check();
2572
2573	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2574
2575	schedstat_inc(this_rq(), sched_count);
2576}
2577
2578/*
2579 * Pick up the highest-prio task:
2580 */
2581static inline struct task_struct *
2582pick_next_task(struct rq *rq, struct task_struct *prev)
2583{
2584	const struct sched_class *class = &fair_sched_class;
2585	struct task_struct *p;
2586
2587	/*
2588	 * Optimization: we know that if all tasks are in
2589	 * the fair class we can call that function directly:
2590	 */
2591	if (likely(prev->sched_class == class &&
2592		   rq->nr_running == rq->cfs.h_nr_running)) {
2593		p = fair_sched_class.pick_next_task(rq, prev);
2594		if (likely(p && p != RETRY_TASK))
2595			return p;
2596	}
2597
2598again:
2599	for_each_class(class) {
2600		p = class->pick_next_task(rq, prev);
2601		if (p) {
2602			if (unlikely(p == RETRY_TASK))
2603				goto again;
2604			return p;
2605		}
2606	}
2607
2608	BUG(); /* the idle class will always have a runnable task */
2609}
2610
2611/*
2612 * __schedule() is the main scheduler function.
2613 *
2614 * The main means of driving the scheduler and thus entering this function are:
2615 *
2616 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2617 *
2618 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2619 *      paths. For example, see arch/x86/entry_64.S.
2620 *
2621 *      To drive preemption between tasks, the scheduler sets the flag in timer
2622 *      interrupt handler scheduler_tick().
2623 *
2624 *   3. Wakeups don't really cause entry into schedule(). They add a
2625 *      task to the run-queue and that's it.
2626 *
2627 *      Now, if the new task added to the run-queue preempts the current
2628 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2629 *      called on the nearest possible occasion:
2630 *
2631 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2632 *
2633 *         - in syscall or exception context, at the next outmost
2634 *           preempt_enable(). (this might be as soon as the wake_up()'s
2635 *           spin_unlock()!)
2636 *
2637 *         - in IRQ context, return from interrupt-handler to
2638 *           preemptible context
2639 *
2640 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2641 *         then at the next:
2642 *
2643 *          - cond_resched() call
2644 *          - explicit schedule() call
2645 *          - return from syscall or exception to user-space
2646 *          - return from interrupt-handler to user-space
2647 */
2648static void __sched __schedule(void)
2649{
2650	struct task_struct *prev, *next;
2651	unsigned long *switch_count;
2652	struct rq *rq;
2653	int cpu;
2654
2655need_resched:
2656	preempt_disable();
2657	cpu = smp_processor_id();
2658	rq = cpu_rq(cpu);
2659	rcu_note_context_switch(cpu);
2660	prev = rq->curr;
2661
2662	schedule_debug(prev);
2663
2664	if (sched_feat(HRTICK))
2665		hrtick_clear(rq);
2666
2667	/*
2668	 * Make sure that signal_pending_state()->signal_pending() below
2669	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2670	 * done by the caller to avoid the race with signal_wake_up().
2671	 */
2672	smp_mb__before_spinlock();
2673	raw_spin_lock_irq(&rq->lock);
2674
2675	switch_count = &prev->nivcsw;
2676	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2677		if (unlikely(signal_pending_state(prev->state, prev))) {
2678			prev->state = TASK_RUNNING;
2679		} else {
2680			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2681			prev->on_rq = 0;
2682
2683			/*
2684			 * If a worker went to sleep, notify and ask workqueue
2685			 * whether it wants to wake up a task to maintain
2686			 * concurrency.
2687			 */
2688			if (prev->flags & PF_WQ_WORKER) {
2689				struct task_struct *to_wakeup;
2690
2691				to_wakeup = wq_worker_sleeping(prev, cpu);
2692				if (to_wakeup)
2693					try_to_wake_up_local(to_wakeup);
2694			}
2695		}
2696		switch_count = &prev->nvcsw;
2697	}
2698
2699	if (prev->on_rq || rq->skip_clock_update < 0)
2700		update_rq_clock(rq);
2701
2702	next = pick_next_task(rq, prev);
2703	clear_tsk_need_resched(prev);
2704	clear_preempt_need_resched();
2705	rq->skip_clock_update = 0;
2706
2707	if (likely(prev != next)) {
2708		rq->nr_switches++;
2709		rq->curr = next;
2710		++*switch_count;
2711
2712		context_switch(rq, prev, next); /* unlocks the rq */
2713		/*
2714		 * The context switch have flipped the stack from under us
2715		 * and restored the local variables which were saved when
2716		 * this task called schedule() in the past. prev == current
2717		 * is still correct, but it can be moved to another cpu/rq.
2718		 */
2719		cpu = smp_processor_id();
2720		rq = cpu_rq(cpu);
2721	} else
2722		raw_spin_unlock_irq(&rq->lock);
2723
2724	post_schedule(rq);
2725
2726	sched_preempt_enable_no_resched();
2727	if (need_resched())
2728		goto need_resched;
2729}
2730
2731static inline void sched_submit_work(struct task_struct *tsk)
2732{
2733	if (!tsk->state || tsk_is_pi_blocked(tsk))
2734		return;
2735	/*
2736	 * If we are going to sleep and we have plugged IO queued,
2737	 * make sure to submit it to avoid deadlocks.
2738	 */
2739	if (blk_needs_flush_plug(tsk))
2740		blk_schedule_flush_plug(tsk);
2741}
2742
2743asmlinkage void __sched schedule(void)
2744{
2745	struct task_struct *tsk = current;
2746
2747	sched_submit_work(tsk);
2748	__schedule();
2749}
2750EXPORT_SYMBOL(schedule);
2751
2752#ifdef CONFIG_CONTEXT_TRACKING
2753asmlinkage void __sched schedule_user(void)
2754{
2755	/*
2756	 * If we come here after a random call to set_need_resched(),
2757	 * or we have been woken up remotely but the IPI has not yet arrived,
2758	 * we haven't yet exited the RCU idle mode. Do it here manually until
2759	 * we find a better solution.
2760	 */
2761	user_exit();
2762	schedule();
2763	user_enter();
2764}
2765#endif
2766
2767/**
2768 * schedule_preempt_disabled - called with preemption disabled
2769 *
2770 * Returns with preemption disabled. Note: preempt_count must be 1
2771 */
2772void __sched schedule_preempt_disabled(void)
2773{
2774	sched_preempt_enable_no_resched();
2775	schedule();
2776	preempt_disable();
2777}
2778
2779#ifdef CONFIG_PREEMPT
2780/*
2781 * this is the entry point to schedule() from in-kernel preemption
2782 * off of preempt_enable. Kernel preemptions off return from interrupt
2783 * occur there and call schedule directly.
2784 */
2785asmlinkage void __sched notrace preempt_schedule(void)
2786{
2787	/*
2788	 * If there is a non-zero preempt_count or interrupts are disabled,
2789	 * we do not want to preempt the current task. Just return..
2790	 */
2791	if (likely(!preemptible()))
2792		return;
2793
2794	do {
2795		__preempt_count_add(PREEMPT_ACTIVE);
2796		__schedule();
2797		__preempt_count_sub(PREEMPT_ACTIVE);
2798
2799		/*
2800		 * Check again in case we missed a preemption opportunity
2801		 * between schedule and now.
2802		 */
2803		barrier();
2804	} while (need_resched());
2805}
2806EXPORT_SYMBOL(preempt_schedule);
2807#endif /* CONFIG_PREEMPT */
2808
2809/*
2810 * this is the entry point to schedule() from kernel preemption
2811 * off of irq context.
2812 * Note, that this is called and return with irqs disabled. This will
2813 * protect us against recursive calling from irq.
2814 */
2815asmlinkage void __sched preempt_schedule_irq(void)
2816{
2817	enum ctx_state prev_state;
2818
2819	/* Catch callers which need to be fixed */
2820	BUG_ON(preempt_count() || !irqs_disabled());
2821
2822	prev_state = exception_enter();
2823
2824	do {
2825		__preempt_count_add(PREEMPT_ACTIVE);
2826		local_irq_enable();
2827		__schedule();
2828		local_irq_disable();
2829		__preempt_count_sub(PREEMPT_ACTIVE);
2830
2831		/*
2832		 * Check again in case we missed a preemption opportunity
2833		 * between schedule and now.
2834		 */
2835		barrier();
2836	} while (need_resched());
2837
2838	exception_exit(prev_state);
2839}
2840
2841int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2842			  void *key)
2843{
2844	return try_to_wake_up(curr->private, mode, wake_flags);
2845}
2846EXPORT_SYMBOL(default_wake_function);
2847
2848#ifdef CONFIG_RT_MUTEXES
2849
2850/*
2851 * rt_mutex_setprio - set the current priority of a task
2852 * @p: task
2853 * @prio: prio value (kernel-internal form)
2854 *
2855 * This function changes the 'effective' priority of a task. It does
2856 * not touch ->normal_prio like __setscheduler().
2857 *
2858 * Used by the rt_mutex code to implement priority inheritance
2859 * logic. Call site only calls if the priority of the task changed.
2860 */
2861void rt_mutex_setprio(struct task_struct *p, int prio)
2862{
2863	int oldprio, on_rq, running, enqueue_flag = 0;
2864	struct rq *rq;
2865	const struct sched_class *prev_class;
2866
2867	BUG_ON(prio > MAX_PRIO);
2868
2869	rq = __task_rq_lock(p);
2870
2871	/*
2872	 * Idle task boosting is a nono in general. There is one
2873	 * exception, when PREEMPT_RT and NOHZ is active:
2874	 *
2875	 * The idle task calls get_next_timer_interrupt() and holds
2876	 * the timer wheel base->lock on the CPU and another CPU wants
2877	 * to access the timer (probably to cancel it). We can safely
2878	 * ignore the boosting request, as the idle CPU runs this code
2879	 * with interrupts disabled and will complete the lock
2880	 * protected section without being interrupted. So there is no
2881	 * real need to boost.
2882	 */
2883	if (unlikely(p == rq->idle)) {
2884		WARN_ON(p != rq->curr);
2885		WARN_ON(p->pi_blocked_on);
2886		goto out_unlock;
2887	}
2888
2889	trace_sched_pi_setprio(p, prio);
2890	p->pi_top_task = rt_mutex_get_top_task(p);
2891	oldprio = p->prio;
2892	prev_class = p->sched_class;
2893	on_rq = p->on_rq;
2894	running = task_current(rq, p);
2895	if (on_rq)
2896		dequeue_task(rq, p, 0);
2897	if (running)
2898		p->sched_class->put_prev_task(rq, p);
2899
2900	/*
2901	 * Boosting condition are:
2902	 * 1. -rt task is running and holds mutex A
2903	 *      --> -dl task blocks on mutex A
2904	 *
2905	 * 2. -dl task is running and holds mutex A
2906	 *      --> -dl task blocks on mutex A and could preempt the
2907	 *          running task
2908	 */
2909	if (dl_prio(prio)) {
2910		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2911			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2912			p->dl.dl_boosted = 1;
2913			p->dl.dl_throttled = 0;
2914			enqueue_flag = ENQUEUE_REPLENISH;
2915		} else
2916			p->dl.dl_boosted = 0;
2917		p->sched_class = &dl_sched_class;
2918	} else if (rt_prio(prio)) {
2919		if (dl_prio(oldprio))
2920			p->dl.dl_boosted = 0;
2921		if (oldprio < prio)
2922			enqueue_flag = ENQUEUE_HEAD;
2923		p->sched_class = &rt_sched_class;
2924	} else {
2925		if (dl_prio(oldprio))
2926			p->dl.dl_boosted = 0;
2927		p->sched_class = &fair_sched_class;
2928	}
2929
2930	p->prio = prio;
2931
2932	if (running)
2933		p->sched_class->set_curr_task(rq);
2934	if (on_rq)
2935		enqueue_task(rq, p, enqueue_flag);
2936
2937	check_class_changed(rq, p, prev_class, oldprio);
2938out_unlock:
2939	__task_rq_unlock(rq);
2940}
2941#endif
2942
2943void set_user_nice(struct task_struct *p, long nice)
2944{
2945	int old_prio, delta, on_rq;
2946	unsigned long flags;
2947	struct rq *rq;
2948
2949	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2950		return;
2951	/*
2952	 * We have to be careful, if called from sys_setpriority(),
2953	 * the task might be in the middle of scheduling on another CPU.
2954	 */
2955	rq = task_rq_lock(p, &flags);
2956	/*
2957	 * The RT priorities are set via sched_setscheduler(), but we still
2958	 * allow the 'normal' nice value to be set - but as expected
2959	 * it wont have any effect on scheduling until the task is
2960	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2961	 */
2962	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2963		p->static_prio = NICE_TO_PRIO(nice);
2964		goto out_unlock;
2965	}
2966	on_rq = p->on_rq;
2967	if (on_rq)
2968		dequeue_task(rq, p, 0);
2969
2970	p->static_prio = NICE_TO_PRIO(nice);
2971	set_load_weight(p);
2972	old_prio = p->prio;
2973	p->prio = effective_prio(p);
2974	delta = p->prio - old_prio;
2975
2976	if (on_rq) {
2977		enqueue_task(rq, p, 0);
2978		/*
2979		 * If the task increased its priority or is running and
2980		 * lowered its priority, then reschedule its CPU:
2981		 */
2982		if (delta < 0 || (delta > 0 && task_running(rq, p)))
2983			resched_task(rq->curr);
2984	}
2985out_unlock:
2986	task_rq_unlock(rq, p, &flags);
2987}
2988EXPORT_SYMBOL(set_user_nice);
2989
2990/*
2991 * can_nice - check if a task can reduce its nice value
2992 * @p: task
2993 * @nice: nice value
2994 */
2995int can_nice(const struct task_struct *p, const int nice)
2996{
2997	/* convert nice value [19,-20] to rlimit style value [1,40] */
2998	int nice_rlim = 20 - nice;
2999
3000	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3001		capable(CAP_SYS_NICE));
3002}
3003
3004#ifdef __ARCH_WANT_SYS_NICE
3005
3006/*
3007 * sys_nice - change the priority of the current process.
3008 * @increment: priority increment
3009 *
3010 * sys_setpriority is a more generic, but much slower function that
3011 * does similar things.
3012 */
3013SYSCALL_DEFINE1(nice, int, increment)
3014{
3015	long nice, retval;
3016
3017	/*
3018	 * Setpriority might change our priority at the same moment.
3019	 * We don't have to worry. Conceptually one call occurs first
3020	 * and we have a single winner.
3021	 */
3022	if (increment < -40)
3023		increment = -40;
3024	if (increment > 40)
3025		increment = 40;
3026
3027	nice = task_nice(current) + increment;
3028	if (nice < MIN_NICE)
3029		nice = MIN_NICE;
3030	if (nice > MAX_NICE)
3031		nice = MAX_NICE;
3032
3033	if (increment < 0 && !can_nice(current, nice))
3034		return -EPERM;
3035
3036	retval = security_task_setnice(current, nice);
3037	if (retval)
3038		return retval;
3039
3040	set_user_nice(current, nice);
3041	return 0;
3042}
3043
3044#endif
3045
3046/**
3047 * task_prio - return the priority value of a given task.
3048 * @p: the task in question.
3049 *
3050 * Return: The priority value as seen by users in /proc.
3051 * RT tasks are offset by -200. Normal tasks are centered
3052 * around 0, value goes from -16 to +15.
3053 */
3054int task_prio(const struct task_struct *p)
3055{
3056	return p->prio - MAX_RT_PRIO;
3057}
3058
3059/**
3060 * idle_cpu - is a given cpu idle currently?
3061 * @cpu: the processor in question.
3062 *
3063 * Return: 1 if the CPU is currently idle. 0 otherwise.
3064 */
3065int idle_cpu(int cpu)
3066{
3067	struct rq *rq = cpu_rq(cpu);
3068
3069	if (rq->curr != rq->idle)
3070		return 0;
3071
3072	if (rq->nr_running)
3073		return 0;
3074
3075#ifdef CONFIG_SMP
3076	if (!llist_empty(&rq->wake_list))
3077		return 0;
3078#endif
3079
3080	return 1;
3081}
3082
3083/**
3084 * idle_task - return the idle task for a given cpu.
3085 * @cpu: the processor in question.
3086 *
3087 * Return: The idle task for the cpu @cpu.
3088 */
3089struct task_struct *idle_task(int cpu)
3090{
3091	return cpu_rq(cpu)->idle;
3092}
3093
3094/**
3095 * find_process_by_pid - find a process with a matching PID value.
3096 * @pid: the pid in question.
3097 *
3098 * The task of @pid, if found. %NULL otherwise.
3099 */
3100static struct task_struct *find_process_by_pid(pid_t pid)
3101{
3102	return pid ? find_task_by_vpid(pid) : current;
3103}
3104
3105/*
3106 * This function initializes the sched_dl_entity of a newly becoming
3107 * SCHED_DEADLINE task.
3108 *
3109 * Only the static values are considered here, the actual runtime and the
3110 * absolute deadline will be properly calculated when the task is enqueued
3111 * for the first time with its new policy.
3112 */
3113static void
3114__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3115{
3116	struct sched_dl_entity *dl_se = &p->dl;
3117
3118	init_dl_task_timer(dl_se);
3119	dl_se->dl_runtime = attr->sched_runtime;
3120	dl_se->dl_deadline = attr->sched_deadline;
3121	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3122	dl_se->flags = attr->sched_flags;
3123	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3124	dl_se->dl_throttled = 0;
3125	dl_se->dl_new = 1;
3126}
3127
3128static void __setscheduler_params(struct task_struct *p,
3129		const struct sched_attr *attr)
3130{
3131	int policy = attr->sched_policy;
3132
3133	if (policy == -1) /* setparam */
3134		policy = p->policy;
3135
3136	p->policy = policy;
3137
3138	if (dl_policy(policy))
3139		__setparam_dl(p, attr);
3140	else if (fair_policy(policy))
3141		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3142
3143	/*
3144	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3145	 * !rt_policy. Always setting this ensures that things like
3146	 * getparam()/getattr() don't report silly values for !rt tasks.
3147	 */
3148	p->rt_priority = attr->sched_priority;
3149	p->normal_prio = normal_prio(p);
3150	set_load_weight(p);
3151}
3152
3153/* Actually do priority change: must hold pi & rq lock. */
3154static void __setscheduler(struct rq *rq, struct task_struct *p,
3155			   const struct sched_attr *attr)
3156{
3157	__setscheduler_params(p, attr);
3158
3159	/*
3160	 * If we get here, there was no pi waiters boosting the
3161	 * task. It is safe to use the normal prio.
3162	 */
3163	p->prio = normal_prio(p);
3164
3165	if (dl_prio(p->prio))
3166		p->sched_class = &dl_sched_class;
3167	else if (rt_prio(p->prio))
3168		p->sched_class = &rt_sched_class;
3169	else
3170		p->sched_class = &fair_sched_class;
3171}
3172
3173static void
3174__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3175{
3176	struct sched_dl_entity *dl_se = &p->dl;
3177
3178	attr->sched_priority = p->rt_priority;
3179	attr->sched_runtime = dl_se->dl_runtime;
3180	attr->sched_deadline = dl_se->dl_deadline;
3181	attr->sched_period = dl_se->dl_period;
3182	attr->sched_flags = dl_se->flags;
3183}
3184
3185/*
3186 * This function validates the new parameters of a -deadline task.
3187 * We ask for the deadline not being zero, and greater or equal
3188 * than the runtime, as well as the period of being zero or
3189 * greater than deadline. Furthermore, we have to be sure that
3190 * user parameters are above the internal resolution (1us); we
3191 * check sched_runtime only since it is always the smaller one.
3192 */
3193static bool
3194__checkparam_dl(const struct sched_attr *attr)
3195{
3196	return attr && attr->sched_deadline != 0 &&
3197		(attr->sched_period == 0 ||
3198		(s64)(attr->sched_period   - attr->sched_deadline) >= 0) &&
3199		(s64)(attr->sched_deadline - attr->sched_runtime ) >= 0  &&
3200		attr->sched_runtime >= (2 << (DL_SCALE - 1));
3201}
3202
3203/*
3204 * check the target process has a UID that matches the current process's
3205 */
3206static bool check_same_owner(struct task_struct *p)
3207{
3208	const struct cred *cred = current_cred(), *pcred;
3209	bool match;
3210
3211	rcu_read_lock();
3212	pcred = __task_cred(p);
3213	match = (uid_eq(cred->euid, pcred->euid) ||
3214		 uid_eq(cred->euid, pcred->uid));
3215	rcu_read_unlock();
3216	return match;
3217}
3218
3219static int __sched_setscheduler(struct task_struct *p,
3220				const struct sched_attr *attr,
3221				bool user)
3222{
3223	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3224		      MAX_RT_PRIO - 1 - attr->sched_priority;
3225	int retval, oldprio, oldpolicy = -1, on_rq, running;
3226	int policy = attr->sched_policy;
3227	unsigned long flags;
3228	const struct sched_class *prev_class;
3229	struct rq *rq;
3230	int reset_on_fork;
3231
3232	/* may grab non-irq protected spin_locks */
3233	BUG_ON(in_interrupt());
3234recheck:
3235	/* double check policy once rq lock held */
3236	if (policy < 0) {
3237		reset_on_fork = p->sched_reset_on_fork;
3238		policy = oldpolicy = p->policy;
3239	} else {
3240		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3241
3242		if (policy != SCHED_DEADLINE &&
3243				policy != SCHED_FIFO && policy != SCHED_RR &&
3244				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3245				policy != SCHED_IDLE)
3246			return -EINVAL;
3247	}
3248
3249	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3250		return -EINVAL;
3251
3252	/*
3253	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3254	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3255	 * SCHED_BATCH and SCHED_IDLE is 0.
3256	 */
3257	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3258	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3259		return -EINVAL;
3260	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3261	    (rt_policy(policy) != (attr->sched_priority != 0)))
3262		return -EINVAL;
3263
3264	/*
3265	 * Allow unprivileged RT tasks to decrease priority:
3266	 */
3267	if (user && !capable(CAP_SYS_NICE)) {
3268		if (fair_policy(policy)) {
3269			if (attr->sched_nice < task_nice(p) &&
3270			    !can_nice(p, attr->sched_nice))
3271				return -EPERM;
3272		}
3273
3274		if (rt_policy(policy)) {
3275			unsigned long rlim_rtprio =
3276					task_rlimit(p, RLIMIT_RTPRIO);
3277
3278			/* can't set/change the rt policy */
3279			if (policy != p->policy && !rlim_rtprio)
3280				return -EPERM;
3281
3282			/* can't increase priority */
3283			if (attr->sched_priority > p->rt_priority &&
3284			    attr->sched_priority > rlim_rtprio)
3285				return -EPERM;
3286		}
3287
3288		 /*
3289		  * Can't set/change SCHED_DEADLINE policy at all for now
3290		  * (safest behavior); in the future we would like to allow
3291		  * unprivileged DL tasks to increase their relative deadline
3292		  * or reduce their runtime (both ways reducing utilization)
3293		  */
3294		if (dl_policy(policy))
3295			return -EPERM;
3296
3297		/*
3298		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3299		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3300		 */
3301		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3302			if (!can_nice(p, task_nice(p)))
3303				return -EPERM;
3304		}
3305
3306		/* can't change other user's priorities */
3307		if (!check_same_owner(p))
3308			return -EPERM;
3309
3310		/* Normal users shall not reset the sched_reset_on_fork flag */
3311		if (p->sched_reset_on_fork && !reset_on_fork)
3312			return -EPERM;
3313	}
3314
3315	if (user) {
3316		retval = security_task_setscheduler(p);
3317		if (retval)
3318			return retval;
3319	}
3320
3321	/*
3322	 * make sure no PI-waiters arrive (or leave) while we are
3323	 * changing the priority of the task:
3324	 *
3325	 * To be able to change p->policy safely, the appropriate
3326	 * runqueue lock must be held.
3327	 */
3328	rq = task_rq_lock(p, &flags);
3329
3330	/*
3331	 * Changing the policy of the stop threads its a very bad idea
3332	 */
3333	if (p == rq->stop) {
3334		task_rq_unlock(rq, p, &flags);
3335		return -EINVAL;
3336	}
3337
3338	/*
3339	 * If not changing anything there's no need to proceed further,
3340	 * but store a possible modification of reset_on_fork.
3341	 */
3342	if (unlikely(policy == p->policy)) {
3343		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3344			goto change;
3345		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3346			goto change;
3347		if (dl_policy(policy))
3348			goto change;
3349
3350		p->sched_reset_on_fork = reset_on_fork;
3351		task_rq_unlock(rq, p, &flags);
3352		return 0;
3353	}
3354change:
3355
3356	if (user) {
3357#ifdef CONFIG_RT_GROUP_SCHED
3358		/*
3359		 * Do not allow realtime tasks into groups that have no runtime
3360		 * assigned.
3361		 */
3362		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3363				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3364				!task_group_is_autogroup(task_group(p))) {
3365			task_rq_unlock(rq, p, &flags);
3366			return -EPERM;
3367		}
3368#endif
3369#ifdef CONFIG_SMP
3370		if (dl_bandwidth_enabled() && dl_policy(policy)) {
3371			cpumask_t *span = rq->rd->span;
3372
3373			/*
3374			 * Don't allow tasks with an affinity mask smaller than
3375			 * the entire root_domain to become SCHED_DEADLINE. We
3376			 * will also fail if there's no bandwidth available.
3377			 */
3378			if (!cpumask_subset(span, &p->cpus_allowed) ||
3379			    rq->rd->dl_bw.bw == 0) {
3380				task_rq_unlock(rq, p, &flags);
3381				return -EPERM;
3382			}
3383		}
3384#endif
3385	}
3386
3387	/* recheck policy now with rq lock held */
3388	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3389		policy = oldpolicy = -1;
3390		task_rq_unlock(rq, p, &flags);
3391		goto recheck;
3392	}
3393
3394	/*
3395	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3396	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3397	 * is available.
3398	 */
3399	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3400		task_rq_unlock(rq, p, &flags);
3401		return -EBUSY;
3402	}
3403
3404	p->sched_reset_on_fork = reset_on_fork;
3405	oldprio = p->prio;
3406
3407	/*
3408	 * Special case for priority boosted tasks.
3409	 *
3410	 * If the new priority is lower or equal (user space view)
3411	 * than the current (boosted) priority, we just store the new
3412	 * normal parameters and do not touch the scheduler class and
3413	 * the runqueue. This will be done when the task deboost
3414	 * itself.
3415	 */
3416	if (rt_mutex_check_prio(p, newprio)) {
3417		__setscheduler_params(p, attr);
3418		task_rq_unlock(rq, p, &flags);
3419		return 0;
3420	}
3421
3422	on_rq = p->on_rq;
3423	running = task_current(rq, p);
3424	if (on_rq)
3425		dequeue_task(rq, p, 0);
3426	if (running)
3427		p->sched_class->put_prev_task(rq, p);
3428
3429	prev_class = p->sched_class;
3430	__setscheduler(rq, p, attr);
3431
3432	if (running)
3433		p->sched_class->set_curr_task(rq);
3434	if (on_rq) {
3435		/*
3436		 * We enqueue to tail when the priority of a task is
3437		 * increased (user space view).
3438		 */
3439		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3440	}
3441
3442	check_class_changed(rq, p, prev_class, oldprio);
3443	task_rq_unlock(rq, p, &flags);
3444
3445	rt_mutex_adjust_pi(p);
3446
3447	return 0;
3448}
3449
3450static int _sched_setscheduler(struct task_struct *p, int policy,
3451			       const struct sched_param *param, bool check)
3452{
3453	struct sched_attr attr = {
3454		.sched_policy   = policy,
3455		.sched_priority = param->sched_priority,
3456		.sched_nice	= PRIO_TO_NICE(p->static_prio),
3457	};
3458
3459	/*
3460	 * Fixup the legacy SCHED_RESET_ON_FORK hack
3461	 */
3462	if (policy & SCHED_RESET_ON_FORK) {
3463		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3464		policy &= ~SCHED_RESET_ON_FORK;
3465		attr.sched_policy = policy;
3466	}
3467
3468	return __sched_setscheduler(p, &attr, check);
3469}
3470/**
3471 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3472 * @p: the task in question.
3473 * @policy: new policy.
3474 * @param: structure containing the new RT priority.
3475 *
3476 * Return: 0 on success. An error code otherwise.
3477 *
3478 * NOTE that the task may be already dead.
3479 */
3480int sched_setscheduler(struct task_struct *p, int policy,
3481		       const struct sched_param *param)
3482{
3483	return _sched_setscheduler(p, policy, param, true);
3484}
3485EXPORT_SYMBOL_GPL(sched_setscheduler);
3486
3487int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3488{
3489	return __sched_setscheduler(p, attr, true);
3490}
3491EXPORT_SYMBOL_GPL(sched_setattr);
3492
3493/**
3494 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3495 * @p: the task in question.
3496 * @policy: new policy.
3497 * @param: structure containing the new RT priority.
3498 *
3499 * Just like sched_setscheduler, only don't bother checking if the
3500 * current context has permission.  For example, this is needed in
3501 * stop_machine(): we create temporary high priority worker threads,
3502 * but our caller might not have that capability.
3503 *
3504 * Return: 0 on success. An error code otherwise.
3505 */
3506int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3507			       const struct sched_param *param)
3508{
3509	return _sched_setscheduler(p, policy, param, false);
3510}
3511
3512static int
3513do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3514{
3515	struct sched_param lparam;
3516	struct task_struct *p;
3517	int retval;
3518
3519	if (!param || pid < 0)
3520		return -EINVAL;
3521	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3522		return -EFAULT;
3523
3524	rcu_read_lock();
3525	retval = -ESRCH;
3526	p = find_process_by_pid(pid);
3527	if (p != NULL)
3528		retval = sched_setscheduler(p, policy, &lparam);
3529	rcu_read_unlock();
3530
3531	return retval;
3532}
3533
3534/*
3535 * Mimics kernel/events/core.c perf_copy_attr().
3536 */
3537static int sched_copy_attr(struct sched_attr __user *uattr,
3538			   struct sched_attr *attr)
3539{
3540	u32 size;
3541	int ret;
3542
3543	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3544		return -EFAULT;
3545
3546	/*
3547	 * zero the full structure, so that a short copy will be nice.
3548	 */
3549	memset(attr, 0, sizeof(*attr));
3550
3551	ret = get_user(size, &uattr->size);
3552	if (ret)
3553		return ret;
3554
3555	if (size > PAGE_SIZE)	/* silly large */
3556		goto err_size;
3557
3558	if (!size)		/* abi compat */
3559		size = SCHED_ATTR_SIZE_VER0;
3560
3561	if (size < SCHED_ATTR_SIZE_VER0)
3562		goto err_size;
3563
3564	/*
3565	 * If we're handed a bigger struct than we know of,
3566	 * ensure all the unknown bits are 0 - i.e. new
3567	 * user-space does not rely on any kernel feature
3568	 * extensions we dont know about yet.
3569	 */
3570	if (size > sizeof(*attr)) {
3571		unsigned char __user *addr;
3572		unsigned char __user *end;
3573		unsigned char val;
3574
3575		addr = (void __user *)uattr + sizeof(*attr);
3576		end  = (void __user *)uattr + size;
3577
3578		for (; addr < end; addr++) {
3579			ret = get_user(val, addr);
3580			if (ret)
3581				return ret;
3582			if (val)
3583				goto err_size;
3584		}
3585		size = sizeof(*attr);
3586	}
3587
3588	ret = copy_from_user(attr, uattr, size);
3589	if (ret)
3590		return -EFAULT;
3591
3592	/*
3593	 * XXX: do we want to be lenient like existing syscalls; or do we want
3594	 * to be strict and return an error on out-of-bounds values?
3595	 */
3596	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3597
3598out:
3599	return ret;
3600
3601err_size:
3602	put_user(sizeof(*attr), &uattr->size);
3603	ret = -E2BIG;
3604	goto out;
3605}
3606
3607/**
3608 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3609 * @pid: the pid in question.
3610 * @policy: new policy.
3611 * @param: structure containing the new RT priority.
3612 *
3613 * Return: 0 on success. An error code otherwise.
3614 */
3615SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3616		struct sched_param __user *, param)
3617{
3618	/* negative values for policy are not valid */
3619	if (policy < 0)
3620		return -EINVAL;
3621
3622	return do_sched_setscheduler(pid, policy, param);
3623}
3624
3625/**
3626 * sys_sched_setparam - set/change the RT priority of a thread
3627 * @pid: the pid in question.
3628 * @param: structure containing the new RT priority.
3629 *
3630 * Return: 0 on success. An error code otherwise.
3631 */
3632SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3633{
3634	return do_sched_setscheduler(pid, -1, param);
3635}
3636
3637/**
3638 * sys_sched_setattr - same as above, but with extended sched_attr
3639 * @pid: the pid in question.
3640 * @uattr: structure containing the extended parameters.
3641 */
3642SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3643			       unsigned int, flags)
3644{
3645	struct sched_attr attr;
3646	struct task_struct *p;
3647	int retval;
3648
3649	if (!uattr || pid < 0 || flags)
3650		return -EINVAL;
3651
3652	if (sched_copy_attr(uattr, &attr))
3653		return -EFAULT;
3654
3655	rcu_read_lock();
3656	retval = -ESRCH;
3657	p = find_process_by_pid(pid);
3658	if (p != NULL)
3659		retval = sched_setattr(p, &attr);
3660	rcu_read_unlock();
3661
3662	return retval;
3663}
3664
3665/**
3666 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3667 * @pid: the pid in question.
3668 *
3669 * Return: On success, the policy of the thread. Otherwise, a negative error
3670 * code.
3671 */
3672SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3673{
3674	struct task_struct *p;
3675	int retval;
3676
3677	if (pid < 0)
3678		return -EINVAL;
3679
3680	retval = -ESRCH;
3681	rcu_read_lock();
3682	p = find_process_by_pid(pid);
3683	if (p) {
3684		retval = security_task_getscheduler(p);
3685		if (!retval)
3686			retval = p->policy
3687				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3688	}
3689	rcu_read_unlock();
3690	return retval;
3691}
3692
3693/**
3694 * sys_sched_getparam - get the RT priority of a thread
3695 * @pid: the pid in question.
3696 * @param: structure containing the RT priority.
3697 *
3698 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3699 * code.
3700 */
3701SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3702{
3703	struct sched_param lp;
3704	struct task_struct *p;
3705	int retval;
3706
3707	if (!param || pid < 0)
3708		return -EINVAL;
3709
3710	rcu_read_lock();
3711	p = find_process_by_pid(pid);
3712	retval = -ESRCH;
3713	if (!p)
3714		goto out_unlock;
3715
3716	retval = security_task_getscheduler(p);
3717	if (retval)
3718		goto out_unlock;
3719
3720	if (task_has_dl_policy(p)) {
3721		retval = -EINVAL;
3722		goto out_unlock;
3723	}
3724	lp.sched_priority = p->rt_priority;
3725	rcu_read_unlock();
3726
3727	/*
3728	 * This one might sleep, we cannot do it with a spinlock held ...
3729	 */
3730	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3731
3732	return retval;
3733
3734out_unlock:
3735	rcu_read_unlock();
3736	return retval;
3737}
3738
3739static int sched_read_attr(struct sched_attr __user *uattr,
3740			   struct sched_attr *attr,
3741			   unsigned int usize)
3742{
3743	int ret;
3744
3745	if (!access_ok(VERIFY_WRITE, uattr, usize))
3746		return -EFAULT;
3747
3748	/*
3749	 * If we're handed a smaller struct than we know of,
3750	 * ensure all the unknown bits are 0 - i.e. old
3751	 * user-space does not get uncomplete information.
3752	 */
3753	if (usize < sizeof(*attr)) {
3754		unsigned char *addr;
3755		unsigned char *end;
3756
3757		addr = (void *)attr + usize;
3758		end  = (void *)attr + sizeof(*attr);
3759
3760		for (; addr < end; addr++) {
3761			if (*addr)
3762				goto err_size;
3763		}
3764
3765		attr->size = usize;
3766	}
3767
3768	ret = copy_to_user(uattr, attr, attr->size);
3769	if (ret)
3770		return -EFAULT;
3771
3772out:
3773	return ret;
3774
3775err_size:
3776	ret = -E2BIG;
3777	goto out;
3778}
3779
3780/**
3781 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3782 * @pid: the pid in question.
3783 * @uattr: structure containing the extended parameters.
3784 * @size: sizeof(attr) for fwd/bwd comp.
3785 */
3786SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3787		unsigned int, size, unsigned int, flags)
3788{
3789	struct sched_attr attr = {
3790		.size = sizeof(struct sched_attr),
3791	};
3792	struct task_struct *p;
3793	int retval;
3794
3795	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3796	    size < SCHED_ATTR_SIZE_VER0 || flags)
3797		return -EINVAL;
3798
3799	rcu_read_lock();
3800	p = find_process_by_pid(pid);
3801	retval = -ESRCH;
3802	if (!p)
3803		goto out_unlock;
3804
3805	retval = security_task_getscheduler(p);
3806	if (retval)
3807		goto out_unlock;
3808
3809	attr.sched_policy = p->policy;
3810	if (p->sched_reset_on_fork)
3811		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3812	if (task_has_dl_policy(p))
3813		__getparam_dl(p, &attr);
3814	else if (task_has_rt_policy(p))
3815		attr.sched_priority = p->rt_priority;
3816	else
3817		attr.sched_nice = task_nice(p);
3818
3819	rcu_read_unlock();
3820
3821	retval = sched_read_attr(uattr, &attr, size);
3822	return retval;
3823
3824out_unlock:
3825	rcu_read_unlock();
3826	return retval;
3827}
3828
3829long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3830{
3831	cpumask_var_t cpus_allowed, new_mask;
3832	struct task_struct *p;
3833	int retval;
3834
3835	rcu_read_lock();
3836
3837	p = find_process_by_pid(pid);
3838	if (!p) {
3839		rcu_read_unlock();
3840		return -ESRCH;
3841	}
3842
3843	/* Prevent p going away */
3844	get_task_struct(p);
3845	rcu_read_unlock();
3846
3847	if (p->flags & PF_NO_SETAFFINITY) {
3848		retval = -EINVAL;
3849		goto out_put_task;
3850	}
3851	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3852		retval = -ENOMEM;
3853		goto out_put_task;
3854	}
3855	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3856		retval = -ENOMEM;
3857		goto out_free_cpus_allowed;
3858	}
3859	retval = -EPERM;
3860	if (!check_same_owner(p)) {
3861		rcu_read_lock();
3862		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3863			rcu_read_unlock();
3864			goto out_unlock;
3865		}
3866		rcu_read_unlock();
3867	}
3868
3869	retval = security_task_setscheduler(p);
3870	if (retval)
3871		goto out_unlock;
3872
3873
3874	cpuset_cpus_allowed(p, cpus_allowed);
3875	cpumask_and(new_mask, in_mask, cpus_allowed);
3876
3877	/*
3878	 * Since bandwidth control happens on root_domain basis,
3879	 * if admission test is enabled, we only admit -deadline
3880	 * tasks allowed to run on all the CPUs in the task's
3881	 * root_domain.
3882	 */
3883#ifdef CONFIG_SMP
3884	if (task_has_dl_policy(p)) {
3885		const struct cpumask *span = task_rq(p)->rd->span;
3886
3887		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3888			retval = -EBUSY;
3889			goto out_unlock;
3890		}
3891	}
3892#endif
3893again:
3894	retval = set_cpus_allowed_ptr(p, new_mask);
3895
3896	if (!retval) {
3897		cpuset_cpus_allowed(p, cpus_allowed);
3898		if (!cpumask_subset(new_mask, cpus_allowed)) {
3899			/*
3900			 * We must have raced with a concurrent cpuset
3901			 * update. Just reset the cpus_allowed to the
3902			 * cpuset's cpus_allowed
3903			 */
3904			cpumask_copy(new_mask, cpus_allowed);
3905			goto again;
3906		}
3907	}
3908out_unlock:
3909	free_cpumask_var(new_mask);
3910out_free_cpus_allowed:
3911	free_cpumask_var(cpus_allowed);
3912out_put_task:
3913	put_task_struct(p);
3914	return retval;
3915}
3916
3917static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3918			     struct cpumask *new_mask)
3919{
3920	if (len < cpumask_size())
3921		cpumask_clear(new_mask);
3922	else if (len > cpumask_size())
3923		len = cpumask_size();
3924
3925	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3926}
3927
3928/**
3929 * sys_sched_setaffinity - set the cpu affinity of a process
3930 * @pid: pid of the process
3931 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3932 * @user_mask_ptr: user-space pointer to the new cpu mask
3933 *
3934 * Return: 0 on success. An error code otherwise.
3935 */
3936SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3937		unsigned long __user *, user_mask_ptr)
3938{
3939	cpumask_var_t new_mask;
3940	int retval;
3941
3942	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3943		return -ENOMEM;
3944
3945	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3946	if (retval == 0)
3947		retval = sched_setaffinity(pid, new_mask);
3948	free_cpumask_var(new_mask);
3949	return retval;
3950}
3951
3952long sched_getaffinity(pid_t pid, struct cpumask *mask)
3953{
3954	struct task_struct *p;
3955	unsigned long flags;
3956	int retval;
3957
3958	rcu_read_lock();
3959
3960	retval = -ESRCH;
3961	p = find_process_by_pid(pid);
3962	if (!p)
3963		goto out_unlock;
3964
3965	retval = security_task_getscheduler(p);
3966	if (retval)
3967		goto out_unlock;
3968
3969	raw_spin_lock_irqsave(&p->pi_lock, flags);
3970	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3971	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3972
3973out_unlock:
3974	rcu_read_unlock();
3975
3976	return retval;
3977}
3978
3979/**
3980 * sys_sched_getaffinity - get the cpu affinity of a process
3981 * @pid: pid of the process
3982 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3983 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3984 *
3985 * Return: 0 on success. An error code otherwise.
3986 */
3987SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3988		unsigned long __user *, user_mask_ptr)
3989{
3990	int ret;
3991	cpumask_var_t mask;
3992
3993	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3994		return -EINVAL;
3995	if (len & (sizeof(unsigned long)-1))
3996		return -EINVAL;
3997
3998	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3999		return -ENOMEM;
4000
4001	ret = sched_getaffinity(pid, mask);
4002	if (ret == 0) {
4003		size_t retlen = min_t(size_t, len, cpumask_size());
4004
4005		if (copy_to_user(user_mask_ptr, mask, retlen))
4006			ret = -EFAULT;
4007		else
4008			ret = retlen;
4009	}
4010	free_cpumask_var(mask);
4011
4012	return ret;
4013}
4014
4015/**
4016 * sys_sched_yield - yield the current processor to other threads.
4017 *
4018 * This function yields the current CPU to other tasks. If there are no
4019 * other threads running on this CPU then this function will return.
4020 *
4021 * Return: 0.
4022 */
4023SYSCALL_DEFINE0(sched_yield)
4024{
4025	struct rq *rq = this_rq_lock();
4026
4027	schedstat_inc(rq, yld_count);
4028	current->sched_class->yield_task(rq);
4029
4030	/*
4031	 * Since we are going to call schedule() anyway, there's
4032	 * no need to preempt or enable interrupts:
4033	 */
4034	__release(rq->lock);
4035	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4036	do_raw_spin_unlock(&rq->lock);
4037	sched_preempt_enable_no_resched();
4038
4039	schedule();
4040
4041	return 0;
4042}
4043
4044static void __cond_resched(void)
4045{
4046	__preempt_count_add(PREEMPT_ACTIVE);
4047	__schedule();
4048	__preempt_count_sub(PREEMPT_ACTIVE);
4049}
4050
4051int __sched _cond_resched(void)
4052{
4053	if (should_resched()) {
4054		__cond_resched();
4055		return 1;
4056	}
4057	return 0;
4058}
4059EXPORT_SYMBOL(_cond_resched);
4060
4061/*
4062 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4063 * call schedule, and on return reacquire the lock.
4064 *
4065 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4066 * operations here to prevent schedule() from being called twice (once via
4067 * spin_unlock(), once by hand).
4068 */
4069int __cond_resched_lock(spinlock_t *lock)
4070{
4071	int resched = should_resched();
4072	int ret = 0;
4073
4074	lockdep_assert_held(lock);
4075
4076	if (spin_needbreak(lock) || resched) {
4077		spin_unlock(lock);
4078		if (resched)
4079			__cond_resched();
4080		else
4081			cpu_relax();
4082		ret = 1;
4083		spin_lock(lock);
4084	}
4085	return ret;
4086}
4087EXPORT_SYMBOL(__cond_resched_lock);
4088
4089int __sched __cond_resched_softirq(void)
4090{
4091	BUG_ON(!in_softirq());
4092
4093	if (should_resched()) {
4094		local_bh_enable();
4095		__cond_resched();
4096		local_bh_disable();
4097		return 1;
4098	}
4099	return 0;
4100}
4101EXPORT_SYMBOL(__cond_resched_softirq);
4102
4103/**
4104 * yield - yield the current processor to other threads.
4105 *
4106 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4107 *
4108 * The scheduler is at all times free to pick the calling task as the most
4109 * eligible task to run, if removing the yield() call from your code breaks
4110 * it, its already broken.
4111 *
4112 * Typical broken usage is:
4113 *
4114 * while (!event)
4115 * 	yield();
4116 *
4117 * where one assumes that yield() will let 'the other' process run that will
4118 * make event true. If the current task is a SCHED_FIFO task that will never
4119 * happen. Never use yield() as a progress guarantee!!
4120 *
4121 * If you want to use yield() to wait for something, use wait_event().
4122 * If you want to use yield() to be 'nice' for others, use cond_resched().
4123 * If you still want to use yield(), do not!
4124 */
4125void __sched yield(void)
4126{
4127	set_current_state(TASK_RUNNING);
4128	sys_sched_yield();
4129}
4130EXPORT_SYMBOL(yield);
4131
4132/**
4133 * yield_to - yield the current processor to another thread in
4134 * your thread group, or accelerate that thread toward the
4135 * processor it's on.
4136 * @p: target task
4137 * @preempt: whether task preemption is allowed or not
4138 *
4139 * It's the caller's job to ensure that the target task struct
4140 * can't go away on us before we can do any checks.
4141 *
4142 * Return:
4143 *	true (>0) if we indeed boosted the target task.
4144 *	false (0) if we failed to boost the target.
4145 *	-ESRCH if there's no task to yield to.
4146 */
4147bool __sched yield_to(struct task_struct *p, bool preempt)
4148{
4149	struct task_struct *curr = current;
4150	struct rq *rq, *p_rq;
4151	unsigned long flags;
4152	int yielded = 0;
4153
4154	local_irq_save(flags);
4155	rq = this_rq();
4156
4157again:
4158	p_rq = task_rq(p);
4159	/*
4160	 * If we're the only runnable task on the rq and target rq also
4161	 * has only one task, there's absolutely no point in yielding.
4162	 */
4163	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4164		yielded = -ESRCH;
4165		goto out_irq;
4166	}
4167
4168	double_rq_lock(rq, p_rq);
4169	if (task_rq(p) != p_rq) {
4170		double_rq_unlock(rq, p_rq);
4171		goto again;
4172	}
4173
4174	if (!curr->sched_class->yield_to_task)
4175		goto out_unlock;
4176
4177	if (curr->sched_class != p->sched_class)
4178		goto out_unlock;
4179
4180	if (task_running(p_rq, p) || p->state)
4181		goto out_unlock;
4182
4183	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4184	if (yielded) {
4185		schedstat_inc(rq, yld_count);
4186		/*
4187		 * Make p's CPU reschedule; pick_next_entity takes care of
4188		 * fairness.
4189		 */
4190		if (preempt && rq != p_rq)
4191			resched_task(p_rq->curr);
4192	}
4193
4194out_unlock:
4195	double_rq_unlock(rq, p_rq);
4196out_irq:
4197	local_irq_restore(flags);
4198
4199	if (yielded > 0)
4200		schedule();
4201
4202	return yielded;
4203}
4204EXPORT_SYMBOL_GPL(yield_to);
4205
4206/*
4207 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4208 * that process accounting knows that this is a task in IO wait state.
4209 */
4210void __sched io_schedule(void)
4211{
4212	struct rq *rq = raw_rq();
4213
4214	delayacct_blkio_start();
4215	atomic_inc(&rq->nr_iowait);
4216	blk_flush_plug(current);
4217	current->in_iowait = 1;
4218	schedule();
4219	current->in_iowait = 0;
4220	atomic_dec(&rq->nr_iowait);
4221	delayacct_blkio_end();
4222}
4223EXPORT_SYMBOL(io_schedule);
4224
4225long __sched io_schedule_timeout(long timeout)
4226{
4227	struct rq *rq = raw_rq();
4228	long ret;
4229
4230	delayacct_blkio_start();
4231	atomic_inc(&rq->nr_iowait);
4232	blk_flush_plug(current);
4233	current->in_iowait = 1;
4234	ret = schedule_timeout(timeout);
4235	current->in_iowait = 0;
4236	atomic_dec(&rq->nr_iowait);
4237	delayacct_blkio_end();
4238	return ret;
4239}
4240
4241/**
4242 * sys_sched_get_priority_max - return maximum RT priority.
4243 * @policy: scheduling class.
4244 *
4245 * Return: On success, this syscall returns the maximum
4246 * rt_priority that can be used by a given scheduling class.
4247 * On failure, a negative error code is returned.
4248 */
4249SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4250{
4251	int ret = -EINVAL;
4252
4253	switch (policy) {
4254	case SCHED_FIFO:
4255	case SCHED_RR:
4256		ret = MAX_USER_RT_PRIO-1;
4257		break;
4258	case SCHED_DEADLINE:
4259	case SCHED_NORMAL:
4260	case SCHED_BATCH:
4261	case SCHED_IDLE:
4262		ret = 0;
4263		break;
4264	}
4265	return ret;
4266}
4267
4268/**
4269 * sys_sched_get_priority_min - return minimum RT priority.
4270 * @policy: scheduling class.
4271 *
4272 * Return: On success, this syscall returns the minimum
4273 * rt_priority that can be used by a given scheduling class.
4274 * On failure, a negative error code is returned.
4275 */
4276SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4277{
4278	int ret = -EINVAL;
4279
4280	switch (policy) {
4281	case SCHED_FIFO:
4282	case SCHED_RR:
4283		ret = 1;
4284		break;
4285	case SCHED_DEADLINE:
4286	case SCHED_NORMAL:
4287	case SCHED_BATCH:
4288	case SCHED_IDLE:
4289		ret = 0;
4290	}
4291	return ret;
4292}
4293
4294/**
4295 * sys_sched_rr_get_interval - return the default timeslice of a process.
4296 * @pid: pid of the process.
4297 * @interval: userspace pointer to the timeslice value.
4298 *
4299 * this syscall writes the default timeslice value of a given process
4300 * into the user-space timespec buffer. A value of '0' means infinity.
4301 *
4302 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4303 * an error code.
4304 */
4305SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4306		struct timespec __user *, interval)
4307{
4308	struct task_struct *p;
4309	unsigned int time_slice;
4310	unsigned long flags;
4311	struct rq *rq;
4312	int retval;
4313	struct timespec t;
4314
4315	if (pid < 0)
4316		return -EINVAL;
4317
4318	retval = -ESRCH;
4319	rcu_read_lock();
4320	p = find_process_by_pid(pid);
4321	if (!p)
4322		goto out_unlock;
4323
4324	retval = security_task_getscheduler(p);
4325	if (retval)
4326		goto out_unlock;
4327
4328	rq = task_rq_lock(p, &flags);
4329	time_slice = 0;
4330	if (p->sched_class->get_rr_interval)
4331		time_slice = p->sched_class->get_rr_interval(rq, p);
4332	task_rq_unlock(rq, p, &flags);
4333
4334	rcu_read_unlock();
4335	jiffies_to_timespec(time_slice, &t);
4336	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4337	return retval;
4338
4339out_unlock:
4340	rcu_read_unlock();
4341	return retval;
4342}
4343
4344static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4345
4346void sched_show_task(struct task_struct *p)
4347{
4348	unsigned long free = 0;
4349	int ppid;
4350	unsigned state;
4351
4352	state = p->state ? __ffs(p->state) + 1 : 0;
4353	printk(KERN_INFO "%-15.15s %c", p->comm,
4354		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4355#if BITS_PER_LONG == 32
4356	if (state == TASK_RUNNING)
4357		printk(KERN_CONT " running  ");
4358	else
4359		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4360#else
4361	if (state == TASK_RUNNING)
4362		printk(KERN_CONT "  running task    ");
4363	else
4364		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4365#endif
4366#ifdef CONFIG_DEBUG_STACK_USAGE
4367	free = stack_not_used(p);
4368#endif
4369	rcu_read_lock();
4370	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4371	rcu_read_unlock();
4372	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4373		task_pid_nr(p), ppid,
4374		(unsigned long)task_thread_info(p)->flags);
4375
4376	print_worker_info(KERN_INFO, p);
4377	show_stack(p, NULL);
4378}
4379
4380void show_state_filter(unsigned long state_filter)
4381{
4382	struct task_struct *g, *p;
4383
4384#if BITS_PER_LONG == 32
4385	printk(KERN_INFO
4386		"  task                PC stack   pid father\n");
4387#else
4388	printk(KERN_INFO
4389		"  task                        PC stack   pid father\n");
4390#endif
4391	rcu_read_lock();
4392	do_each_thread(g, p) {
4393		/*
4394		 * reset the NMI-timeout, listing all files on a slow
4395		 * console might take a lot of time:
4396		 */
4397		touch_nmi_watchdog();
4398		if (!state_filter || (p->state & state_filter))
4399			sched_show_task(p);
4400	} while_each_thread(g, p);
4401
4402	touch_all_softlockup_watchdogs();
4403
4404#ifdef CONFIG_SCHED_DEBUG
4405	sysrq_sched_debug_show();
4406#endif
4407	rcu_read_unlock();
4408	/*
4409	 * Only show locks if all tasks are dumped:
4410	 */
4411	if (!state_filter)
4412		debug_show_all_locks();
4413}
4414
4415void init_idle_bootup_task(struct task_struct *idle)
4416{
4417	idle->sched_class = &idle_sched_class;
4418}
4419
4420/**
4421 * init_idle - set up an idle thread for a given CPU
4422 * @idle: task in question
4423 * @cpu: cpu the idle task belongs to
4424 *
4425 * NOTE: this function does not set the idle thread's NEED_RESCHED
4426 * flag, to make booting more robust.
4427 */
4428void init_idle(struct task_struct *idle, int cpu)
4429{
4430	struct rq *rq = cpu_rq(cpu);
4431	unsigned long flags;
4432
4433	raw_spin_lock_irqsave(&rq->lock, flags);
4434
4435	__sched_fork(0, idle);
4436	idle->state = TASK_RUNNING;
4437	idle->se.exec_start = sched_clock();
4438
4439	do_set_cpus_allowed(idle, cpumask_of(cpu));
4440	/*
4441	 * We're having a chicken and egg problem, even though we are
4442	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4443	 * lockdep check in task_group() will fail.
4444	 *
4445	 * Similar case to sched_fork(). / Alternatively we could
4446	 * use task_rq_lock() here and obtain the other rq->lock.
4447	 *
4448	 * Silence PROVE_RCU
4449	 */
4450	rcu_read_lock();
4451	__set_task_cpu(idle, cpu);
4452	rcu_read_unlock();
4453
4454	rq->curr = rq->idle = idle;
4455	idle->on_rq = 1;
4456#if defined(CONFIG_SMP)
4457	idle->on_cpu = 1;
4458#endif
4459	raw_spin_unlock_irqrestore(&rq->lock, flags);
4460
4461	/* Set the preempt count _outside_ the spinlocks! */
4462	init_idle_preempt_count(idle, cpu);
4463
4464	/*
4465	 * The idle tasks have their own, simple scheduling class:
4466	 */
4467	idle->sched_class = &idle_sched_class;
4468	ftrace_graph_init_idle_task(idle, cpu);
4469	vtime_init_idle(idle, cpu);
4470#if defined(CONFIG_SMP)
4471	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4472#endif
4473}
4474
4475#ifdef CONFIG_SMP
4476void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4477{
4478	if (p->sched_class && p->sched_class->set_cpus_allowed)
4479		p->sched_class->set_cpus_allowed(p, new_mask);
4480
4481	cpumask_copy(&p->cpus_allowed, new_mask);
4482	p->nr_cpus_allowed = cpumask_weight(new_mask);
4483}
4484
4485/*
4486 * This is how migration works:
4487 *
4488 * 1) we invoke migration_cpu_stop() on the target CPU using
4489 *    stop_one_cpu().
4490 * 2) stopper starts to run (implicitly forcing the migrated thread
4491 *    off the CPU)
4492 * 3) it checks whether the migrated task is still in the wrong runqueue.
4493 * 4) if it's in the wrong runqueue then the migration thread removes
4494 *    it and puts it into the right queue.
4495 * 5) stopper completes and stop_one_cpu() returns and the migration
4496 *    is done.
4497 */
4498
4499/*
4500 * Change a given task's CPU affinity. Migrate the thread to a
4501 * proper CPU and schedule it away if the CPU it's executing on
4502 * is removed from the allowed bitmask.
4503 *
4504 * NOTE: the caller must have a valid reference to the task, the
4505 * task must not exit() & deallocate itself prematurely. The
4506 * call is not atomic; no spinlocks may be held.
4507 */
4508int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4509{
4510	unsigned long flags;
4511	struct rq *rq;
4512	unsigned int dest_cpu;
4513	int ret = 0;
4514
4515	rq = task_rq_lock(p, &flags);
4516
4517	if (cpumask_equal(&p->cpus_allowed, new_mask))
4518		goto out;
4519
4520	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4521		ret = -EINVAL;
4522		goto out;
4523	}
4524
4525	do_set_cpus_allowed(p, new_mask);
4526
4527	/* Can the task run on the task's current CPU? If so, we're done */
4528	if (cpumask_test_cpu(task_cpu(p), new_mask))
4529		goto out;
4530
4531	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4532	if (p->on_rq) {
4533		struct migration_arg arg = { p, dest_cpu };
4534		/* Need help from migration thread: drop lock and wait. */
4535		task_rq_unlock(rq, p, &flags);
4536		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4537		tlb_migrate_finish(p->mm);
4538		return 0;
4539	}
4540out:
4541	task_rq_unlock(rq, p, &flags);
4542
4543	return ret;
4544}
4545EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4546
4547/*
4548 * Move (not current) task off this cpu, onto dest cpu. We're doing
4549 * this because either it can't run here any more (set_cpus_allowed()
4550 * away from this CPU, or CPU going down), or because we're
4551 * attempting to rebalance this task on exec (sched_exec).
4552 *
4553 * So we race with normal scheduler movements, but that's OK, as long
4554 * as the task is no longer on this CPU.
4555 *
4556 * Returns non-zero if task was successfully migrated.
4557 */
4558static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4559{
4560	struct rq *rq_dest, *rq_src;
4561	int ret = 0;
4562
4563	if (unlikely(!cpu_active(dest_cpu)))
4564		return ret;
4565
4566	rq_src = cpu_rq(src_cpu);
4567	rq_dest = cpu_rq(dest_cpu);
4568
4569	raw_spin_lock(&p->pi_lock);
4570	double_rq_lock(rq_src, rq_dest);
4571	/* Already moved. */
4572	if (task_cpu(p) != src_cpu)
4573		goto done;
4574	/* Affinity changed (again). */
4575	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4576		goto fail;
4577
4578	/*
4579	 * If we're not on a rq, the next wake-up will ensure we're
4580	 * placed properly.
4581	 */
4582	if (p->on_rq) {
4583		dequeue_task(rq_src, p, 0);
4584		set_task_cpu(p, dest_cpu);
4585		enqueue_task(rq_dest, p, 0);
4586		check_preempt_curr(rq_dest, p, 0);
4587	}
4588done:
4589	ret = 1;
4590fail:
4591	double_rq_unlock(rq_src, rq_dest);
4592	raw_spin_unlock(&p->pi_lock);
4593	return ret;
4594}
4595
4596#ifdef CONFIG_NUMA_BALANCING
4597/* Migrate current task p to target_cpu */
4598int migrate_task_to(struct task_struct *p, int target_cpu)
4599{
4600	struct migration_arg arg = { p, target_cpu };
4601	int curr_cpu = task_cpu(p);
4602
4603	if (curr_cpu == target_cpu)
4604		return 0;
4605
4606	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4607		return -EINVAL;
4608
4609	/* TODO: This is not properly updating schedstats */
4610
4611	trace_sched_move_numa(p, curr_cpu, target_cpu);
4612	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4613}
4614
4615/*
4616 * Requeue a task on a given node and accurately track the number of NUMA
4617 * tasks on the runqueues
4618 */
4619void sched_setnuma(struct task_struct *p, int nid)
4620{
4621	struct rq *rq;
4622	unsigned long flags;
4623	bool on_rq, running;
4624
4625	rq = task_rq_lock(p, &flags);
4626	on_rq = p->on_rq;
4627	running = task_current(rq, p);
4628
4629	if (on_rq)
4630		dequeue_task(rq, p, 0);
4631	if (running)
4632		p->sched_class->put_prev_task(rq, p);
4633
4634	p->numa_preferred_nid = nid;
4635
4636	if (running)
4637		p->sched_class->set_curr_task(rq);
4638	if (on_rq)
4639		enqueue_task(rq, p, 0);
4640	task_rq_unlock(rq, p, &flags);
4641}
4642#endif
4643
4644/*
4645 * migration_cpu_stop - this will be executed by a highprio stopper thread
4646 * and performs thread migration by bumping thread off CPU then
4647 * 'pushing' onto another runqueue.
4648 */
4649static int migration_cpu_stop(void *data)
4650{
4651	struct migration_arg *arg = data;
4652
4653	/*
4654	 * The original target cpu might have gone down and we might
4655	 * be on another cpu but it doesn't matter.
4656	 */
4657	local_irq_disable();
4658	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4659	local_irq_enable();
4660	return 0;
4661}
4662
4663#ifdef CONFIG_HOTPLUG_CPU
4664
4665/*
4666 * Ensures that the idle task is using init_mm right before its cpu goes
4667 * offline.
4668 */
4669void idle_task_exit(void)
4670{
4671	struct mm_struct *mm = current->active_mm;
4672
4673	BUG_ON(cpu_online(smp_processor_id()));
4674
4675	if (mm != &init_mm) {
4676		switch_mm(mm, &init_mm, current);
4677		finish_arch_post_lock_switch();
4678	}
4679	mmdrop(mm);
4680}
4681
4682/*
4683 * Since this CPU is going 'away' for a while, fold any nr_active delta
4684 * we might have. Assumes we're called after migrate_tasks() so that the
4685 * nr_active count is stable.
4686 *
4687 * Also see the comment "Global load-average calculations".
4688 */
4689static void calc_load_migrate(struct rq *rq)
4690{
4691	long delta = calc_load_fold_active(rq);
4692	if (delta)
4693		atomic_long_add(delta, &calc_load_tasks);
4694}
4695
4696static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4697{
4698}
4699
4700static const struct sched_class fake_sched_class = {
4701	.put_prev_task = put_prev_task_fake,
4702};
4703
4704static struct task_struct fake_task = {
4705	/*
4706	 * Avoid pull_{rt,dl}_task()
4707	 */
4708	.prio = MAX_PRIO + 1,
4709	.sched_class = &fake_sched_class,
4710};
4711
4712/*
4713 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4714 * try_to_wake_up()->select_task_rq().
4715 *
4716 * Called with rq->lock held even though we'er in stop_machine() and
4717 * there's no concurrency possible, we hold the required locks anyway
4718 * because of lock validation efforts.
4719 */
4720static void migrate_tasks(unsigned int dead_cpu)
4721{
4722	struct rq *rq = cpu_rq(dead_cpu);
4723	struct task_struct *next, *stop = rq->stop;
4724	int dest_cpu;
4725
4726	/*
4727	 * Fudge the rq selection such that the below task selection loop
4728	 * doesn't get stuck on the currently eligible stop task.
4729	 *
4730	 * We're currently inside stop_machine() and the rq is either stuck
4731	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4732	 * either way we should never end up calling schedule() until we're
4733	 * done here.
4734	 */
4735	rq->stop = NULL;
4736
4737	/*
4738	 * put_prev_task() and pick_next_task() sched
4739	 * class method both need to have an up-to-date
4740	 * value of rq->clock[_task]
4741	 */
4742	update_rq_clock(rq);
4743
4744	for ( ; ; ) {
4745		/*
4746		 * There's this thread running, bail when that's the only
4747		 * remaining thread.
4748		 */
4749		if (rq->nr_running == 1)
4750			break;
4751
4752		next = pick_next_task(rq, &fake_task);
4753		BUG_ON(!next);
4754		next->sched_class->put_prev_task(rq, next);
4755
4756		/* Find suitable destination for @next, with force if needed. */
4757		dest_cpu = select_fallback_rq(dead_cpu, next);
4758		raw_spin_unlock(&rq->lock);
4759
4760		__migrate_task(next, dead_cpu, dest_cpu);
4761
4762		raw_spin_lock(&rq->lock);
4763	}
4764
4765	rq->stop = stop;
4766}
4767
4768#endif /* CONFIG_HOTPLUG_CPU */
4769
4770#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4771
4772static struct ctl_table sd_ctl_dir[] = {
4773	{
4774		.procname	= "sched_domain",
4775		.mode		= 0555,
4776	},
4777	{}
4778};
4779
4780static struct ctl_table sd_ctl_root[] = {
4781	{
4782		.procname	= "kernel",
4783		.mode		= 0555,
4784		.child		= sd_ctl_dir,
4785	},
4786	{}
4787};
4788
4789static struct ctl_table *sd_alloc_ctl_entry(int n)
4790{
4791	struct ctl_table *entry =
4792		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4793
4794	return entry;
4795}
4796
4797static void sd_free_ctl_entry(struct ctl_table **tablep)
4798{
4799	struct ctl_table *entry;
4800
4801	/*
4802	 * In the intermediate directories, both the child directory and
4803	 * procname are dynamically allocated and could fail but the mode
4804	 * will always be set. In the lowest directory the names are
4805	 * static strings and all have proc handlers.
4806	 */
4807	for (entry = *tablep; entry->mode; entry++) {
4808		if (entry->child)
4809			sd_free_ctl_entry(&entry->child);
4810		if (entry->proc_handler == NULL)
4811			kfree(entry->procname);
4812	}
4813
4814	kfree(*tablep);
4815	*tablep = NULL;
4816}
4817
4818static int min_load_idx = 0;
4819static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4820
4821static void
4822set_table_entry(struct ctl_table *entry,
4823		const char *procname, void *data, int maxlen,
4824		umode_t mode, proc_handler *proc_handler,
4825		bool load_idx)
4826{
4827	entry->procname = procname;
4828	entry->data = data;
4829	entry->maxlen = maxlen;
4830	entry->mode = mode;
4831	entry->proc_handler = proc_handler;
4832
4833	if (load_idx) {
4834		entry->extra1 = &min_load_idx;
4835		entry->extra2 = &max_load_idx;
4836	}
4837}
4838
4839static struct ctl_table *
4840sd_alloc_ctl_domain_table(struct sched_domain *sd)
4841{
4842	struct ctl_table *table = sd_alloc_ctl_entry(14);
4843
4844	if (table == NULL)
4845		return NULL;
4846
4847	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4848		sizeof(long), 0644, proc_doulongvec_minmax, false);
4849	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4850		sizeof(long), 0644, proc_doulongvec_minmax, false);
4851	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4852		sizeof(int), 0644, proc_dointvec_minmax, true);
4853	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4854		sizeof(int), 0644, proc_dointvec_minmax, true);
4855	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4856		sizeof(int), 0644, proc_dointvec_minmax, true);
4857	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4858		sizeof(int), 0644, proc_dointvec_minmax, true);
4859	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4860		sizeof(int), 0644, proc_dointvec_minmax, true);
4861	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4862		sizeof(int), 0644, proc_dointvec_minmax, false);
4863	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4864		sizeof(int), 0644, proc_dointvec_minmax, false);
4865	set_table_entry(&table[9], "cache_nice_tries",
4866		&sd->cache_nice_tries,
4867		sizeof(int), 0644, proc_dointvec_minmax, false);
4868	set_table_entry(&table[10], "flags", &sd->flags,
4869		sizeof(int), 0644, proc_dointvec_minmax, false);
4870	set_table_entry(&table[11], "max_newidle_lb_cost",
4871		&sd->max_newidle_lb_cost,
4872		sizeof(long), 0644, proc_doulongvec_minmax, false);
4873	set_table_entry(&table[12], "name", sd->name,
4874		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4875	/* &table[13] is terminator */
4876
4877	return table;
4878}
4879
4880static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4881{
4882	struct ctl_table *entry, *table;
4883	struct sched_domain *sd;
4884	int domain_num = 0, i;
4885	char buf[32];
4886
4887	for_each_domain(cpu, sd)
4888		domain_num++;
4889	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4890	if (table == NULL)
4891		return NULL;
4892
4893	i = 0;
4894	for_each_domain(cpu, sd) {
4895		snprintf(buf, 32, "domain%d", i);
4896		entry->procname = kstrdup(buf, GFP_KERNEL);
4897		entry->mode = 0555;
4898		entry->child = sd_alloc_ctl_domain_table(sd);
4899		entry++;
4900		i++;
4901	}
4902	return table;
4903}
4904
4905static struct ctl_table_header *sd_sysctl_header;
4906static void register_sched_domain_sysctl(void)
4907{
4908	int i, cpu_num = num_possible_cpus();
4909	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4910	char buf[32];
4911
4912	WARN_ON(sd_ctl_dir[0].child);
4913	sd_ctl_dir[0].child = entry;
4914
4915	if (entry == NULL)
4916		return;
4917
4918	for_each_possible_cpu(i) {
4919		snprintf(buf, 32, "cpu%d", i);
4920		entry->procname = kstrdup(buf, GFP_KERNEL);
4921		entry->mode = 0555;
4922		entry->child = sd_alloc_ctl_cpu_table(i);
4923		entry++;
4924	}
4925
4926	WARN_ON(sd_sysctl_header);
4927	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4928}
4929
4930/* may be called multiple times per register */
4931static void unregister_sched_domain_sysctl(void)
4932{
4933	if (sd_sysctl_header)
4934		unregister_sysctl_table(sd_sysctl_header);
4935	sd_sysctl_header = NULL;
4936	if (sd_ctl_dir[0].child)
4937		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4938}
4939#else
4940static void register_sched_domain_sysctl(void)
4941{
4942}
4943static void unregister_sched_domain_sysctl(void)
4944{
4945}
4946#endif
4947
4948static void set_rq_online(struct rq *rq)
4949{
4950	if (!rq->online) {
4951		const struct sched_class *class;
4952
4953		cpumask_set_cpu(rq->cpu, rq->rd->online);
4954		rq->online = 1;
4955
4956		for_each_class(class) {
4957			if (class->rq_online)
4958				class->rq_online(rq);
4959		}
4960	}
4961}
4962
4963static void set_rq_offline(struct rq *rq)
4964{
4965	if (rq->online) {
4966		const struct sched_class *class;
4967
4968		for_each_class(class) {
4969			if (class->rq_offline)
4970				class->rq_offline(rq);
4971		}
4972
4973		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4974		rq->online = 0;
4975	}
4976}
4977
4978/*
4979 * migration_call - callback that gets triggered when a CPU is added.
4980 * Here we can start up the necessary migration thread for the new CPU.
4981 */
4982static int
4983migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4984{
4985	int cpu = (long)hcpu;
4986	unsigned long flags;
4987	struct rq *rq = cpu_rq(cpu);
4988
4989	switch (action & ~CPU_TASKS_FROZEN) {
4990
4991	case CPU_UP_PREPARE:
4992		rq->calc_load_update = calc_load_update;
4993		break;
4994
4995	case CPU_ONLINE:
4996		/* Update our root-domain */
4997		raw_spin_lock_irqsave(&rq->lock, flags);
4998		if (rq->rd) {
4999			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5000
5001			set_rq_online(rq);
5002		}
5003		raw_spin_unlock_irqrestore(&rq->lock, flags);
5004		break;
5005
5006#ifdef CONFIG_HOTPLUG_CPU
5007	case CPU_DYING:
5008		sched_ttwu_pending();
5009		/* Update our root-domain */
5010		raw_spin_lock_irqsave(&rq->lock, flags);
5011		if (rq->rd) {
5012			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5013			set_rq_offline(rq);
5014		}
5015		migrate_tasks(cpu);
5016		BUG_ON(rq->nr_running != 1); /* the migration thread */
5017		raw_spin_unlock_irqrestore(&rq->lock, flags);
5018		break;
5019
5020	case CPU_DEAD:
5021		calc_load_migrate(rq);
5022		break;
5023#endif
5024	}
5025
5026	update_max_interval();
5027
5028	return NOTIFY_OK;
5029}
5030
5031/*
5032 * Register at high priority so that task migration (migrate_all_tasks)
5033 * happens before everything else.  This has to be lower priority than
5034 * the notifier in the perf_event subsystem, though.
5035 */
5036static struct notifier_block migration_notifier = {
5037	.notifier_call = migration_call,
5038	.priority = CPU_PRI_MIGRATION,
5039};
5040
5041static int sched_cpu_active(struct notifier_block *nfb,
5042				      unsigned long action, void *hcpu)
5043{
5044	switch (action & ~CPU_TASKS_FROZEN) {
5045	case CPU_STARTING:
5046	case CPU_DOWN_FAILED:
5047		set_cpu_active((long)hcpu, true);
5048		return NOTIFY_OK;
5049	default:
5050		return NOTIFY_DONE;
5051	}
5052}
5053
5054static int sched_cpu_inactive(struct notifier_block *nfb,
5055					unsigned long action, void *hcpu)
5056{
5057	unsigned long flags;
5058	long cpu = (long)hcpu;
5059
5060	switch (action & ~CPU_TASKS_FROZEN) {
5061	case CPU_DOWN_PREPARE:
5062		set_cpu_active(cpu, false);
5063
5064		/* explicitly allow suspend */
5065		if (!(action & CPU_TASKS_FROZEN)) {
5066			struct dl_bw *dl_b = dl_bw_of(cpu);
5067			bool overflow;
5068			int cpus;
5069
5070			raw_spin_lock_irqsave(&dl_b->lock, flags);
5071			cpus = dl_bw_cpus(cpu);
5072			overflow = __dl_overflow(dl_b, cpus, 0, 0);
5073			raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5074
5075			if (overflow)
5076				return notifier_from_errno(-EBUSY);
5077		}
5078		return NOTIFY_OK;
5079	}
5080
5081	return NOTIFY_DONE;
5082}
5083
5084static int __init migration_init(void)
5085{
5086	void *cpu = (void *)(long)smp_processor_id();
5087	int err;
5088
5089	/* Initialize migration for the boot CPU */
5090	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5091	BUG_ON(err == NOTIFY_BAD);
5092	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5093	register_cpu_notifier(&migration_notifier);
5094
5095	/* Register cpu active notifiers */
5096	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5097	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5098
5099	return 0;
5100}
5101early_initcall(migration_init);
5102#endif
5103
5104#ifdef CONFIG_SMP
5105
5106static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5107
5108#ifdef CONFIG_SCHED_DEBUG
5109
5110static __read_mostly int sched_debug_enabled;
5111
5112static int __init sched_debug_setup(char *str)
5113{
5114	sched_debug_enabled = 1;
5115
5116	return 0;
5117}
5118early_param("sched_debug", sched_debug_setup);
5119
5120static inline bool sched_debug(void)
5121{
5122	return sched_debug_enabled;
5123}
5124
5125static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5126				  struct cpumask *groupmask)
5127{
5128	struct sched_group *group = sd->groups;
5129	char str[256];
5130
5131	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5132	cpumask_clear(groupmask);
5133
5134	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5135
5136	if (!(sd->flags & SD_LOAD_BALANCE)) {
5137		printk("does not load-balance\n");
5138		if (sd->parent)
5139			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5140					" has parent");
5141		return -1;
5142	}
5143
5144	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5145
5146	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5147		printk(KERN_ERR "ERROR: domain->span does not contain "
5148				"CPU%d\n", cpu);
5149	}
5150	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5151		printk(KERN_ERR "ERROR: domain->groups does not contain"
5152				" CPU%d\n", cpu);
5153	}
5154
5155	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5156	do {
5157		if (!group) {
5158			printk("\n");
5159			printk(KERN_ERR "ERROR: group is NULL\n");
5160			break;
5161		}
5162
5163		/*
5164		 * Even though we initialize ->power to something semi-sane,
5165		 * we leave power_orig unset. This allows us to detect if
5166		 * domain iteration is still funny without causing /0 traps.
5167		 */
5168		if (!group->sgp->power_orig) {
5169			printk(KERN_CONT "\n");
5170			printk(KERN_ERR "ERROR: domain->cpu_power not "
5171					"set\n");
5172			break;
5173		}
5174
5175		if (!cpumask_weight(sched_group_cpus(group))) {
5176			printk(KERN_CONT "\n");
5177			printk(KERN_ERR "ERROR: empty group\n");
5178			break;
5179		}
5180
5181		if (!(sd->flags & SD_OVERLAP) &&
5182		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5183			printk(KERN_CONT "\n");
5184			printk(KERN_ERR "ERROR: repeated CPUs\n");
5185			break;
5186		}
5187
5188		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5189
5190		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5191
5192		printk(KERN_CONT " %s", str);
5193		if (group->sgp->power != SCHED_POWER_SCALE) {
5194			printk(KERN_CONT " (cpu_power = %d)",
5195				group->sgp->power);
5196		}
5197
5198		group = group->next;
5199	} while (group != sd->groups);
5200	printk(KERN_CONT "\n");
5201
5202	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5203		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5204
5205	if (sd->parent &&
5206	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5207		printk(KERN_ERR "ERROR: parent span is not a superset "
5208			"of domain->span\n");
5209	return 0;
5210}
5211
5212static void sched_domain_debug(struct sched_domain *sd, int cpu)
5213{
5214	int level = 0;
5215
5216	if (!sched_debug_enabled)
5217		return;
5218
5219	if (!sd) {
5220		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5221		return;
5222	}
5223
5224	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5225
5226	for (;;) {
5227		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5228			break;
5229		level++;
5230		sd = sd->parent;
5231		if (!sd)
5232			break;
5233	}
5234}
5235#else /* !CONFIG_SCHED_DEBUG */
5236# define sched_domain_debug(sd, cpu) do { } while (0)
5237static inline bool sched_debug(void)
5238{
5239	return false;
5240}
5241#endif /* CONFIG_SCHED_DEBUG */
5242
5243static int sd_degenerate(struct sched_domain *sd)
5244{
5245	if (cpumask_weight(sched_domain_span(sd)) == 1)
5246		return 1;
5247
5248	/* Following flags need at least 2 groups */
5249	if (sd->flags & (SD_LOAD_BALANCE |
5250			 SD_BALANCE_NEWIDLE |
5251			 SD_BALANCE_FORK |
5252			 SD_BALANCE_EXEC |
5253			 SD_SHARE_CPUPOWER |
5254			 SD_SHARE_PKG_RESOURCES)) {
5255		if (sd->groups != sd->groups->next)
5256			return 0;
5257	}
5258
5259	/* Following flags don't use groups */
5260	if (sd->flags & (SD_WAKE_AFFINE))
5261		return 0;
5262
5263	return 1;
5264}
5265
5266static int
5267sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5268{
5269	unsigned long cflags = sd->flags, pflags = parent->flags;
5270
5271	if (sd_degenerate(parent))
5272		return 1;
5273
5274	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5275		return 0;
5276
5277	/* Flags needing groups don't count if only 1 group in parent */
5278	if (parent->groups == parent->groups->next) {
5279		pflags &= ~(SD_LOAD_BALANCE |
5280				SD_BALANCE_NEWIDLE |
5281				SD_BALANCE_FORK |
5282				SD_BALANCE_EXEC |
5283				SD_SHARE_CPUPOWER |
5284				SD_SHARE_PKG_RESOURCES |
5285				SD_PREFER_SIBLING);
5286		if (nr_node_ids == 1)
5287			pflags &= ~SD_SERIALIZE;
5288	}
5289	if (~cflags & pflags)
5290		return 0;
5291
5292	return 1;
5293}
5294
5295static void free_rootdomain(struct rcu_head *rcu)
5296{
5297	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5298
5299	cpupri_cleanup(&rd->cpupri);
5300	cpudl_cleanup(&rd->cpudl);
5301	free_cpumask_var(rd->dlo_mask);
5302	free_cpumask_var(rd->rto_mask);
5303	free_cpumask_var(rd->online);
5304	free_cpumask_var(rd->span);
5305	kfree(rd);
5306}
5307
5308static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5309{
5310	struct root_domain *old_rd = NULL;
5311	unsigned long flags;
5312
5313	raw_spin_lock_irqsave(&rq->lock, flags);
5314
5315	if (rq->rd) {
5316		old_rd = rq->rd;
5317
5318		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5319			set_rq_offline(rq);
5320
5321		cpumask_clear_cpu(rq->cpu, old_rd->span);
5322
5323		/*
5324		 * If we dont want to free the old_rd yet then
5325		 * set old_rd to NULL to skip the freeing later
5326		 * in this function:
5327		 */
5328		if (!atomic_dec_and_test(&old_rd->refcount))
5329			old_rd = NULL;
5330	}
5331
5332	atomic_inc(&rd->refcount);
5333	rq->rd = rd;
5334
5335	cpumask_set_cpu(rq->cpu, rd->span);
5336	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5337		set_rq_online(rq);
5338
5339	raw_spin_unlock_irqrestore(&rq->lock, flags);
5340
5341	if (old_rd)
5342		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5343}
5344
5345static int init_rootdomain(struct root_domain *rd)
5346{
5347	memset(rd, 0, sizeof(*rd));
5348
5349	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5350		goto out;
5351	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5352		goto free_span;
5353	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5354		goto free_online;
5355	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5356		goto free_dlo_mask;
5357
5358	init_dl_bw(&rd->dl_bw);
5359	if (cpudl_init(&rd->cpudl) != 0)
5360		goto free_dlo_mask;
5361
5362	if (cpupri_init(&rd->cpupri) != 0)
5363		goto free_rto_mask;
5364	return 0;
5365
5366free_rto_mask:
5367	free_cpumask_var(rd->rto_mask);
5368free_dlo_mask:
5369	free_cpumask_var(rd->dlo_mask);
5370free_online:
5371	free_cpumask_var(rd->online);
5372free_span:
5373	free_cpumask_var(rd->span);
5374out:
5375	return -ENOMEM;
5376}
5377
5378/*
5379 * By default the system creates a single root-domain with all cpus as
5380 * members (mimicking the global state we have today).
5381 */
5382struct root_domain def_root_domain;
5383
5384static void init_defrootdomain(void)
5385{
5386	init_rootdomain(&def_root_domain);
5387
5388	atomic_set(&def_root_domain.refcount, 1);
5389}
5390
5391static struct root_domain *alloc_rootdomain(void)
5392{
5393	struct root_domain *rd;
5394
5395	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5396	if (!rd)
5397		return NULL;
5398
5399	if (init_rootdomain(rd) != 0) {
5400		kfree(rd);
5401		return NULL;
5402	}
5403
5404	return rd;
5405}
5406
5407static void free_sched_groups(struct sched_group *sg, int free_sgp)
5408{
5409	struct sched_group *tmp, *first;
5410
5411	if (!sg)
5412		return;
5413
5414	first = sg;
5415	do {
5416		tmp = sg->next;
5417
5418		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5419			kfree(sg->sgp);
5420
5421		kfree(sg);
5422		sg = tmp;
5423	} while (sg != first);
5424}
5425
5426static void free_sched_domain(struct rcu_head *rcu)
5427{
5428	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5429
5430	/*
5431	 * If its an overlapping domain it has private groups, iterate and
5432	 * nuke them all.
5433	 */
5434	if (sd->flags & SD_OVERLAP) {
5435		free_sched_groups(sd->groups, 1);
5436	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5437		kfree(sd->groups->sgp);
5438		kfree(sd->groups);
5439	}
5440	kfree(sd);
5441}
5442
5443static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5444{
5445	call_rcu(&sd->rcu, free_sched_domain);
5446}
5447
5448static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5449{
5450	for (; sd; sd = sd->parent)
5451		destroy_sched_domain(sd, cpu);
5452}
5453
5454/*
5455 * Keep a special pointer to the highest sched_domain that has
5456 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5457 * allows us to avoid some pointer chasing select_idle_sibling().
5458 *
5459 * Also keep a unique ID per domain (we use the first cpu number in
5460 * the cpumask of the domain), this allows us to quickly tell if
5461 * two cpus are in the same cache domain, see cpus_share_cache().
5462 */
5463DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5464DEFINE_PER_CPU(int, sd_llc_size);
5465DEFINE_PER_CPU(int, sd_llc_id);
5466DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5467DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5468DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5469
5470static void update_top_cache_domain(int cpu)
5471{
5472	struct sched_domain *sd;
5473	struct sched_domain *busy_sd = NULL;
5474	int id = cpu;
5475	int size = 1;
5476
5477	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5478	if (sd) {
5479		id = cpumask_first(sched_domain_span(sd));
5480		size = cpumask_weight(sched_domain_span(sd));
5481		busy_sd = sd->parent; /* sd_busy */
5482	}
5483	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5484
5485	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5486	per_cpu(sd_llc_size, cpu) = size;
5487	per_cpu(sd_llc_id, cpu) = id;
5488
5489	sd = lowest_flag_domain(cpu, SD_NUMA);
5490	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5491
5492	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5493	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5494}
5495
5496/*
5497 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5498 * hold the hotplug lock.
5499 */
5500static void
5501cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5502{
5503	struct rq *rq = cpu_rq(cpu);
5504	struct sched_domain *tmp;
5505
5506	/* Remove the sched domains which do not contribute to scheduling. */
5507	for (tmp = sd; tmp; ) {
5508		struct sched_domain *parent = tmp->parent;
5509		if (!parent)
5510			break;
5511
5512		if (sd_parent_degenerate(tmp, parent)) {
5513			tmp->parent = parent->parent;
5514			if (parent->parent)
5515				parent->parent->child = tmp;
5516			/*
5517			 * Transfer SD_PREFER_SIBLING down in case of a
5518			 * degenerate parent; the spans match for this
5519			 * so the property transfers.
5520			 */
5521			if (parent->flags & SD_PREFER_SIBLING)
5522				tmp->flags |= SD_PREFER_SIBLING;
5523			destroy_sched_domain(parent, cpu);
5524		} else
5525			tmp = tmp->parent;
5526	}
5527
5528	if (sd && sd_degenerate(sd)) {
5529		tmp = sd;
5530		sd = sd->parent;
5531		destroy_sched_domain(tmp, cpu);
5532		if (sd)
5533			sd->child = NULL;
5534	}
5535
5536	sched_domain_debug(sd, cpu);
5537
5538	rq_attach_root(rq, rd);
5539	tmp = rq->sd;
5540	rcu_assign_pointer(rq->sd, sd);
5541	destroy_sched_domains(tmp, cpu);
5542
5543	update_top_cache_domain(cpu);
5544}
5545
5546/* cpus with isolated domains */
5547static cpumask_var_t cpu_isolated_map;
5548
5549/* Setup the mask of cpus configured for isolated domains */
5550static int __init isolated_cpu_setup(char *str)
5551{
5552	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5553	cpulist_parse(str, cpu_isolated_map);
5554	return 1;
5555}
5556
5557__setup("isolcpus=", isolated_cpu_setup);
5558
5559static const struct cpumask *cpu_cpu_mask(int cpu)
5560{
5561	return cpumask_of_node(cpu_to_node(cpu));
5562}
5563
5564struct sd_data {
5565	struct sched_domain **__percpu sd;
5566	struct sched_group **__percpu sg;
5567	struct sched_group_power **__percpu sgp;
5568};
5569
5570struct s_data {
5571	struct sched_domain ** __percpu sd;
5572	struct root_domain	*rd;
5573};
5574
5575enum s_alloc {
5576	sa_rootdomain,
5577	sa_sd,
5578	sa_sd_storage,
5579	sa_none,
5580};
5581
5582struct sched_domain_topology_level;
5583
5584typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5585typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5586
5587#define SDTL_OVERLAP	0x01
5588
5589struct sched_domain_topology_level {
5590	sched_domain_init_f init;
5591	sched_domain_mask_f mask;
5592	int		    flags;
5593	int		    numa_level;
5594	struct sd_data      data;
5595};
5596
5597/*
5598 * Build an iteration mask that can exclude certain CPUs from the upwards
5599 * domain traversal.
5600 *
5601 * Asymmetric node setups can result in situations where the domain tree is of
5602 * unequal depth, make sure to skip domains that already cover the entire
5603 * range.
5604 *
5605 * In that case build_sched_domains() will have terminated the iteration early
5606 * and our sibling sd spans will be empty. Domains should always include the
5607 * cpu they're built on, so check that.
5608 *
5609 */
5610static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5611{
5612	const struct cpumask *span = sched_domain_span(sd);
5613	struct sd_data *sdd = sd->private;
5614	struct sched_domain *sibling;
5615	int i;
5616
5617	for_each_cpu(i, span) {
5618		sibling = *per_cpu_ptr(sdd->sd, i);
5619		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5620			continue;
5621
5622		cpumask_set_cpu(i, sched_group_mask(sg));
5623	}
5624}
5625
5626/*
5627 * Return the canonical balance cpu for this group, this is the first cpu
5628 * of this group that's also in the iteration mask.
5629 */
5630int group_balance_cpu(struct sched_group *sg)
5631{
5632	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5633}
5634
5635static int
5636build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5637{
5638	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5639	const struct cpumask *span = sched_domain_span(sd);
5640	struct cpumask *covered = sched_domains_tmpmask;
5641	struct sd_data *sdd = sd->private;
5642	struct sched_domain *child;
5643	int i;
5644
5645	cpumask_clear(covered);
5646
5647	for_each_cpu(i, span) {
5648		struct cpumask *sg_span;
5649
5650		if (cpumask_test_cpu(i, covered))
5651			continue;
5652
5653		child = *per_cpu_ptr(sdd->sd, i);
5654
5655		/* See the comment near build_group_mask(). */
5656		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5657			continue;
5658
5659		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5660				GFP_KERNEL, cpu_to_node(cpu));
5661
5662		if (!sg)
5663			goto fail;
5664
5665		sg_span = sched_group_cpus(sg);
5666		if (child->child) {
5667			child = child->child;
5668			cpumask_copy(sg_span, sched_domain_span(child));
5669		} else
5670			cpumask_set_cpu(i, sg_span);
5671
5672		cpumask_or(covered, covered, sg_span);
5673
5674		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5675		if (atomic_inc_return(&sg->sgp->ref) == 1)
5676			build_group_mask(sd, sg);
5677
5678		/*
5679		 * Initialize sgp->power such that even if we mess up the
5680		 * domains and no possible iteration will get us here, we won't
5681		 * die on a /0 trap.
5682		 */
5683		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5684		sg->sgp->power_orig = sg->sgp->power;
5685
5686		/*
5687		 * Make sure the first group of this domain contains the
5688		 * canonical balance cpu. Otherwise the sched_domain iteration
5689		 * breaks. See update_sg_lb_stats().
5690		 */
5691		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5692		    group_balance_cpu(sg) == cpu)
5693			groups = sg;
5694
5695		if (!first)
5696			first = sg;
5697		if (last)
5698			last->next = sg;
5699		last = sg;
5700		last->next = first;
5701	}
5702	sd->groups = groups;
5703
5704	return 0;
5705
5706fail:
5707	free_sched_groups(first, 0);
5708
5709	return -ENOMEM;
5710}
5711
5712static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5713{
5714	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5715	struct sched_domain *child = sd->child;
5716
5717	if (child)
5718		cpu = cpumask_first(sched_domain_span(child));
5719
5720	if (sg) {
5721		*sg = *per_cpu_ptr(sdd->sg, cpu);
5722		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5723		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5724	}
5725
5726	return cpu;
5727}
5728
5729/*
5730 * build_sched_groups will build a circular linked list of the groups
5731 * covered by the given span, and will set each group's ->cpumask correctly,
5732 * and ->cpu_power to 0.
5733 *
5734 * Assumes the sched_domain tree is fully constructed
5735 */
5736static int
5737build_sched_groups(struct sched_domain *sd, int cpu)
5738{
5739	struct sched_group *first = NULL, *last = NULL;
5740	struct sd_data *sdd = sd->private;
5741	const struct cpumask *span = sched_domain_span(sd);
5742	struct cpumask *covered;
5743	int i;
5744
5745	get_group(cpu, sdd, &sd->groups);
5746	atomic_inc(&sd->groups->ref);
5747
5748	if (cpu != cpumask_first(span))
5749		return 0;
5750
5751	lockdep_assert_held(&sched_domains_mutex);
5752	covered = sched_domains_tmpmask;
5753
5754	cpumask_clear(covered);
5755
5756	for_each_cpu(i, span) {
5757		struct sched_group *sg;
5758		int group, j;
5759
5760		if (cpumask_test_cpu(i, covered))
5761			continue;
5762
5763		group = get_group(i, sdd, &sg);
5764		cpumask_clear(sched_group_cpus(sg));
5765		sg->sgp->power = 0;
5766		cpumask_setall(sched_group_mask(sg));
5767
5768		for_each_cpu(j, span) {
5769			if (get_group(j, sdd, NULL) != group)
5770				continue;
5771
5772			cpumask_set_cpu(j, covered);
5773			cpumask_set_cpu(j, sched_group_cpus(sg));
5774		}
5775
5776		if (!first)
5777			first = sg;
5778		if (last)
5779			last->next = sg;
5780		last = sg;
5781	}
5782	last->next = first;
5783
5784	return 0;
5785}
5786
5787/*
5788 * Initialize sched groups cpu_power.
5789 *
5790 * cpu_power indicates the capacity of sched group, which is used while
5791 * distributing the load between different sched groups in a sched domain.
5792 * Typically cpu_power for all the groups in a sched domain will be same unless
5793 * there are asymmetries in the topology. If there are asymmetries, group
5794 * having more cpu_power will pickup more load compared to the group having
5795 * less cpu_power.
5796 */
5797static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5798{
5799	struct sched_group *sg = sd->groups;
5800
5801	WARN_ON(!sg);
5802
5803	do {
5804		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5805		sg = sg->next;
5806	} while (sg != sd->groups);
5807
5808	if (cpu != group_balance_cpu(sg))
5809		return;
5810
5811	update_group_power(sd, cpu);
5812	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5813}
5814
5815int __weak arch_sd_sibling_asym_packing(void)
5816{
5817       return 0*SD_ASYM_PACKING;
5818}
5819
5820/*
5821 * Initializers for schedule domains
5822 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5823 */
5824
5825#ifdef CONFIG_SCHED_DEBUG
5826# define SD_INIT_NAME(sd, type)		sd->name = #type
5827#else
5828# define SD_INIT_NAME(sd, type)		do { } while (0)
5829#endif
5830
5831#define SD_INIT_FUNC(type)						\
5832static noinline struct sched_domain *					\
5833sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5834{									\
5835	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5836	*sd = SD_##type##_INIT;						\
5837	SD_INIT_NAME(sd, type);						\
5838	sd->private = &tl->data;					\
5839	return sd;							\
5840}
5841
5842SD_INIT_FUNC(CPU)
5843#ifdef CONFIG_SCHED_SMT
5844 SD_INIT_FUNC(SIBLING)
5845#endif
5846#ifdef CONFIG_SCHED_MC
5847 SD_INIT_FUNC(MC)
5848#endif
5849#ifdef CONFIG_SCHED_BOOK
5850 SD_INIT_FUNC(BOOK)
5851#endif
5852
5853static int default_relax_domain_level = -1;
5854int sched_domain_level_max;
5855
5856static int __init setup_relax_domain_level(char *str)
5857{
5858	if (kstrtoint(str, 0, &default_relax_domain_level))
5859		pr_warn("Unable to set relax_domain_level\n");
5860
5861	return 1;
5862}
5863__setup("relax_domain_level=", setup_relax_domain_level);
5864
5865static void set_domain_attribute(struct sched_domain *sd,
5866				 struct sched_domain_attr *attr)
5867{
5868	int request;
5869
5870	if (!attr || attr->relax_domain_level < 0) {
5871		if (default_relax_domain_level < 0)
5872			return;
5873		else
5874			request = default_relax_domain_level;
5875	} else
5876		request = attr->relax_domain_level;
5877	if (request < sd->level) {
5878		/* turn off idle balance on this domain */
5879		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880	} else {
5881		/* turn on idle balance on this domain */
5882		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883	}
5884}
5885
5886static void __sdt_free(const struct cpumask *cpu_map);
5887static int __sdt_alloc(const struct cpumask *cpu_map);
5888
5889static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890				 const struct cpumask *cpu_map)
5891{
5892	switch (what) {
5893	case sa_rootdomain:
5894		if (!atomic_read(&d->rd->refcount))
5895			free_rootdomain(&d->rd->rcu); /* fall through */
5896	case sa_sd:
5897		free_percpu(d->sd); /* fall through */
5898	case sa_sd_storage:
5899		__sdt_free(cpu_map); /* fall through */
5900	case sa_none:
5901		break;
5902	}
5903}
5904
5905static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906						   const struct cpumask *cpu_map)
5907{
5908	memset(d, 0, sizeof(*d));
5909
5910	if (__sdt_alloc(cpu_map))
5911		return sa_sd_storage;
5912	d->sd = alloc_percpu(struct sched_domain *);
5913	if (!d->sd)
5914		return sa_sd_storage;
5915	d->rd = alloc_rootdomain();
5916	if (!d->rd)
5917		return sa_sd;
5918	return sa_rootdomain;
5919}
5920
5921/*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926static void claim_allocations(int cpu, struct sched_domain *sd)
5927{
5928	struct sd_data *sdd = sd->private;
5929
5930	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
5933	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5935
5936	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5937		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5938}
5939
5940#ifdef CONFIG_SCHED_SMT
5941static const struct cpumask *cpu_smt_mask(int cpu)
5942{
5943	return topology_thread_cpumask(cpu);
5944}
5945#endif
5946
5947/*
5948 * Topology list, bottom-up.
5949 */
5950static struct sched_domain_topology_level default_topology[] = {
5951#ifdef CONFIG_SCHED_SMT
5952	{ sd_init_SIBLING, cpu_smt_mask, },
5953#endif
5954#ifdef CONFIG_SCHED_MC
5955	{ sd_init_MC, cpu_coregroup_mask, },
5956#endif
5957#ifdef CONFIG_SCHED_BOOK
5958	{ sd_init_BOOK, cpu_book_mask, },
5959#endif
5960	{ sd_init_CPU, cpu_cpu_mask, },
5961	{ NULL, },
5962};
5963
5964static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5965
5966#define for_each_sd_topology(tl)			\
5967	for (tl = sched_domain_topology; tl->init; tl++)
5968
5969#ifdef CONFIG_NUMA
5970
5971static int sched_domains_numa_levels;
5972static int *sched_domains_numa_distance;
5973static struct cpumask ***sched_domains_numa_masks;
5974static int sched_domains_curr_level;
5975
5976static inline int sd_local_flags(int level)
5977{
5978	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5979		return 0;
5980
5981	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5982}
5983
5984static struct sched_domain *
5985sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5986{
5987	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5988	int level = tl->numa_level;
5989	int sd_weight = cpumask_weight(
5990			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5991
5992	*sd = (struct sched_domain){
5993		.min_interval		= sd_weight,
5994		.max_interval		= 2*sd_weight,
5995		.busy_factor		= 32,
5996		.imbalance_pct		= 125,
5997		.cache_nice_tries	= 2,
5998		.busy_idx		= 3,
5999		.idle_idx		= 2,
6000		.newidle_idx		= 0,
6001		.wake_idx		= 0,
6002		.forkexec_idx		= 0,
6003
6004		.flags			= 1*SD_LOAD_BALANCE
6005					| 1*SD_BALANCE_NEWIDLE
6006					| 0*SD_BALANCE_EXEC
6007					| 0*SD_BALANCE_FORK
6008					| 0*SD_BALANCE_WAKE
6009					| 0*SD_WAKE_AFFINE
6010					| 0*SD_SHARE_CPUPOWER
6011					| 0*SD_SHARE_PKG_RESOURCES
6012					| 1*SD_SERIALIZE
6013					| 0*SD_PREFER_SIBLING
6014					| 1*SD_NUMA
6015					| sd_local_flags(level)
6016					,
6017		.last_balance		= jiffies,
6018		.balance_interval	= sd_weight,
6019	};
6020	SD_INIT_NAME(sd, NUMA);
6021	sd->private = &tl->data;
6022
6023	/*
6024	 * Ugly hack to pass state to sd_numa_mask()...
6025	 */
6026	sched_domains_curr_level = tl->numa_level;
6027
6028	return sd;
6029}
6030
6031static const struct cpumask *sd_numa_mask(int cpu)
6032{
6033	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6034}
6035
6036static void sched_numa_warn(const char *str)
6037{
6038	static int done = false;
6039	int i,j;
6040
6041	if (done)
6042		return;
6043
6044	done = true;
6045
6046	printk(KERN_WARNING "ERROR: %s\n\n", str);
6047
6048	for (i = 0; i < nr_node_ids; i++) {
6049		printk(KERN_WARNING "  ");
6050		for (j = 0; j < nr_node_ids; j++)
6051			printk(KERN_CONT "%02d ", node_distance(i,j));
6052		printk(KERN_CONT "\n");
6053	}
6054	printk(KERN_WARNING "\n");
6055}
6056
6057static bool find_numa_distance(int distance)
6058{
6059	int i;
6060
6061	if (distance == node_distance(0, 0))
6062		return true;
6063
6064	for (i = 0; i < sched_domains_numa_levels; i++) {
6065		if (sched_domains_numa_distance[i] == distance)
6066			return true;
6067	}
6068
6069	return false;
6070}
6071
6072static void sched_init_numa(void)
6073{
6074	int next_distance, curr_distance = node_distance(0, 0);
6075	struct sched_domain_topology_level *tl;
6076	int level = 0;
6077	int i, j, k;
6078
6079	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6080	if (!sched_domains_numa_distance)
6081		return;
6082
6083	/*
6084	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6085	 * unique distances in the node_distance() table.
6086	 *
6087	 * Assumes node_distance(0,j) includes all distances in
6088	 * node_distance(i,j) in order to avoid cubic time.
6089	 */
6090	next_distance = curr_distance;
6091	for (i = 0; i < nr_node_ids; i++) {
6092		for (j = 0; j < nr_node_ids; j++) {
6093			for (k = 0; k < nr_node_ids; k++) {
6094				int distance = node_distance(i, k);
6095
6096				if (distance > curr_distance &&
6097				    (distance < next_distance ||
6098				     next_distance == curr_distance))
6099					next_distance = distance;
6100
6101				/*
6102				 * While not a strong assumption it would be nice to know
6103				 * about cases where if node A is connected to B, B is not
6104				 * equally connected to A.
6105				 */
6106				if (sched_debug() && node_distance(k, i) != distance)
6107					sched_numa_warn("Node-distance not symmetric");
6108
6109				if (sched_debug() && i && !find_numa_distance(distance))
6110					sched_numa_warn("Node-0 not representative");
6111			}
6112			if (next_distance != curr_distance) {
6113				sched_domains_numa_distance[level++] = next_distance;
6114				sched_domains_numa_levels = level;
6115				curr_distance = next_distance;
6116			} else break;
6117		}
6118
6119		/*
6120		 * In case of sched_debug() we verify the above assumption.
6121		 */
6122		if (!sched_debug())
6123			break;
6124	}
6125	/*
6126	 * 'level' contains the number of unique distances, excluding the
6127	 * identity distance node_distance(i,i).
6128	 *
6129	 * The sched_domains_numa_distance[] array includes the actual distance
6130	 * numbers.
6131	 */
6132
6133	/*
6134	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6135	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6136	 * the array will contain less then 'level' members. This could be
6137	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6138	 * in other functions.
6139	 *
6140	 * We reset it to 'level' at the end of this function.
6141	 */
6142	sched_domains_numa_levels = 0;
6143
6144	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6145	if (!sched_domains_numa_masks)
6146		return;
6147
6148	/*
6149	 * Now for each level, construct a mask per node which contains all
6150	 * cpus of nodes that are that many hops away from us.
6151	 */
6152	for (i = 0; i < level; i++) {
6153		sched_domains_numa_masks[i] =
6154			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6155		if (!sched_domains_numa_masks[i])
6156			return;
6157
6158		for (j = 0; j < nr_node_ids; j++) {
6159			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6160			if (!mask)
6161				return;
6162
6163			sched_domains_numa_masks[i][j] = mask;
6164
6165			for (k = 0; k < nr_node_ids; k++) {
6166				if (node_distance(j, k) > sched_domains_numa_distance[i])
6167					continue;
6168
6169				cpumask_or(mask, mask, cpumask_of_node(k));
6170			}
6171		}
6172	}
6173
6174	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6175			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6176	if (!tl)
6177		return;
6178
6179	/*
6180	 * Copy the default topology bits..
6181	 */
6182	for (i = 0; default_topology[i].init; i++)
6183		tl[i] = default_topology[i];
6184
6185	/*
6186	 * .. and append 'j' levels of NUMA goodness.
6187	 */
6188	for (j = 0; j < level; i++, j++) {
6189		tl[i] = (struct sched_domain_topology_level){
6190			.init = sd_numa_init,
6191			.mask = sd_numa_mask,
6192			.flags = SDTL_OVERLAP,
6193			.numa_level = j,
6194		};
6195	}
6196
6197	sched_domain_topology = tl;
6198
6199	sched_domains_numa_levels = level;
6200}
6201
6202static void sched_domains_numa_masks_set(int cpu)
6203{
6204	int i, j;
6205	int node = cpu_to_node(cpu);
6206
6207	for (i = 0; i < sched_domains_numa_levels; i++) {
6208		for (j = 0; j < nr_node_ids; j++) {
6209			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6210				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6211		}
6212	}
6213}
6214
6215static void sched_domains_numa_masks_clear(int cpu)
6216{
6217	int i, j;
6218	for (i = 0; i < sched_domains_numa_levels; i++) {
6219		for (j = 0; j < nr_node_ids; j++)
6220			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6221	}
6222}
6223
6224/*
6225 * Update sched_domains_numa_masks[level][node] array when new cpus
6226 * are onlined.
6227 */
6228static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6229					   unsigned long action,
6230					   void *hcpu)
6231{
6232	int cpu = (long)hcpu;
6233
6234	switch (action & ~CPU_TASKS_FROZEN) {
6235	case CPU_ONLINE:
6236		sched_domains_numa_masks_set(cpu);
6237		break;
6238
6239	case CPU_DEAD:
6240		sched_domains_numa_masks_clear(cpu);
6241		break;
6242
6243	default:
6244		return NOTIFY_DONE;
6245	}
6246
6247	return NOTIFY_OK;
6248}
6249#else
6250static inline void sched_init_numa(void)
6251{
6252}
6253
6254static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6255					   unsigned long action,
6256					   void *hcpu)
6257{
6258	return 0;
6259}
6260#endif /* CONFIG_NUMA */
6261
6262static int __sdt_alloc(const struct cpumask *cpu_map)
6263{
6264	struct sched_domain_topology_level *tl;
6265	int j;
6266
6267	for_each_sd_topology(tl) {
6268		struct sd_data *sdd = &tl->data;
6269
6270		sdd->sd = alloc_percpu(struct sched_domain *);
6271		if (!sdd->sd)
6272			return -ENOMEM;
6273
6274		sdd->sg = alloc_percpu(struct sched_group *);
6275		if (!sdd->sg)
6276			return -ENOMEM;
6277
6278		sdd->sgp = alloc_percpu(struct sched_group_power *);
6279		if (!sdd->sgp)
6280			return -ENOMEM;
6281
6282		for_each_cpu(j, cpu_map) {
6283			struct sched_domain *sd;
6284			struct sched_group *sg;
6285			struct sched_group_power *sgp;
6286
6287		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6288					GFP_KERNEL, cpu_to_node(j));
6289			if (!sd)
6290				return -ENOMEM;
6291
6292			*per_cpu_ptr(sdd->sd, j) = sd;
6293
6294			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6295					GFP_KERNEL, cpu_to_node(j));
6296			if (!sg)
6297				return -ENOMEM;
6298
6299			sg->next = sg;
6300
6301			*per_cpu_ptr(sdd->sg, j) = sg;
6302
6303			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6304					GFP_KERNEL, cpu_to_node(j));
6305			if (!sgp)
6306				return -ENOMEM;
6307
6308			*per_cpu_ptr(sdd->sgp, j) = sgp;
6309		}
6310	}
6311
6312	return 0;
6313}
6314
6315static void __sdt_free(const struct cpumask *cpu_map)
6316{
6317	struct sched_domain_topology_level *tl;
6318	int j;
6319
6320	for_each_sd_topology(tl) {
6321		struct sd_data *sdd = &tl->data;
6322
6323		for_each_cpu(j, cpu_map) {
6324			struct sched_domain *sd;
6325
6326			if (sdd->sd) {
6327				sd = *per_cpu_ptr(sdd->sd, j);
6328				if (sd && (sd->flags & SD_OVERLAP))
6329					free_sched_groups(sd->groups, 0);
6330				kfree(*per_cpu_ptr(sdd->sd, j));
6331			}
6332
6333			if (sdd->sg)
6334				kfree(*per_cpu_ptr(sdd->sg, j));
6335			if (sdd->sgp)
6336				kfree(*per_cpu_ptr(sdd->sgp, j));
6337		}
6338		free_percpu(sdd->sd);
6339		sdd->sd = NULL;
6340		free_percpu(sdd->sg);
6341		sdd->sg = NULL;
6342		free_percpu(sdd->sgp);
6343		sdd->sgp = NULL;
6344	}
6345}
6346
6347struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6348		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6349		struct sched_domain *child, int cpu)
6350{
6351	struct sched_domain *sd = tl->init(tl, cpu);
6352	if (!sd)
6353		return child;
6354
6355	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6356	if (child) {
6357		sd->level = child->level + 1;
6358		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6359		child->parent = sd;
6360		sd->child = child;
6361	}
6362	set_domain_attribute(sd, attr);
6363
6364	return sd;
6365}
6366
6367/*
6368 * Build sched domains for a given set of cpus and attach the sched domains
6369 * to the individual cpus
6370 */
6371static int build_sched_domains(const struct cpumask *cpu_map,
6372			       struct sched_domain_attr *attr)
6373{
6374	enum s_alloc alloc_state;
6375	struct sched_domain *sd;
6376	struct s_data d;
6377	int i, ret = -ENOMEM;
6378
6379	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6380	if (alloc_state != sa_rootdomain)
6381		goto error;
6382
6383	/* Set up domains for cpus specified by the cpu_map. */
6384	for_each_cpu(i, cpu_map) {
6385		struct sched_domain_topology_level *tl;
6386
6387		sd = NULL;
6388		for_each_sd_topology(tl) {
6389			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6390			if (tl == sched_domain_topology)
6391				*per_cpu_ptr(d.sd, i) = sd;
6392			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6393				sd->flags |= SD_OVERLAP;
6394			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6395				break;
6396		}
6397	}
6398
6399	/* Build the groups for the domains */
6400	for_each_cpu(i, cpu_map) {
6401		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6402			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6403			if (sd->flags & SD_OVERLAP) {
6404				if (build_overlap_sched_groups(sd, i))
6405					goto error;
6406			} else {
6407				if (build_sched_groups(sd, i))
6408					goto error;
6409			}
6410		}
6411	}
6412
6413	/* Calculate CPU power for physical packages and nodes */
6414	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6415		if (!cpumask_test_cpu(i, cpu_map))
6416			continue;
6417
6418		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6419			claim_allocations(i, sd);
6420			init_sched_groups_power(i, sd);
6421		}
6422	}
6423
6424	/* Attach the domains */
6425	rcu_read_lock();
6426	for_each_cpu(i, cpu_map) {
6427		sd = *per_cpu_ptr(d.sd, i);
6428		cpu_attach_domain(sd, d.rd, i);
6429	}
6430	rcu_read_unlock();
6431
6432	ret = 0;
6433error:
6434	__free_domain_allocs(&d, alloc_state, cpu_map);
6435	return ret;
6436}
6437
6438static cpumask_var_t *doms_cur;	/* current sched domains */
6439static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6440static struct sched_domain_attr *dattr_cur;
6441				/* attribues of custom domains in 'doms_cur' */
6442
6443/*
6444 * Special case: If a kmalloc of a doms_cur partition (array of
6445 * cpumask) fails, then fallback to a single sched domain,
6446 * as determined by the single cpumask fallback_doms.
6447 */
6448static cpumask_var_t fallback_doms;
6449
6450/*
6451 * arch_update_cpu_topology lets virtualized architectures update the
6452 * cpu core maps. It is supposed to return 1 if the topology changed
6453 * or 0 if it stayed the same.
6454 */
6455int __attribute__((weak)) arch_update_cpu_topology(void)
6456{
6457	return 0;
6458}
6459
6460cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6461{
6462	int i;
6463	cpumask_var_t *doms;
6464
6465	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6466	if (!doms)
6467		return NULL;
6468	for (i = 0; i < ndoms; i++) {
6469		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6470			free_sched_domains(doms, i);
6471			return NULL;
6472		}
6473	}
6474	return doms;
6475}
6476
6477void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6478{
6479	unsigned int i;
6480	for (i = 0; i < ndoms; i++)
6481		free_cpumask_var(doms[i]);
6482	kfree(doms);
6483}
6484
6485/*
6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
6489 */
6490static int init_sched_domains(const struct cpumask *cpu_map)
6491{
6492	int err;
6493
6494	arch_update_cpu_topology();
6495	ndoms_cur = 1;
6496	doms_cur = alloc_sched_domains(ndoms_cur);
6497	if (!doms_cur)
6498		doms_cur = &fallback_doms;
6499	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6500	err = build_sched_domains(doms_cur[0], NULL);
6501	register_sched_domain_sysctl();
6502
6503	return err;
6504}
6505
6506/*
6507 * Detach sched domains from a group of cpus specified in cpu_map
6508 * These cpus will now be attached to the NULL domain
6509 */
6510static void detach_destroy_domains(const struct cpumask *cpu_map)
6511{
6512	int i;
6513
6514	rcu_read_lock();
6515	for_each_cpu(i, cpu_map)
6516		cpu_attach_domain(NULL, &def_root_domain, i);
6517	rcu_read_unlock();
6518}
6519
6520/* handle null as "default" */
6521static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6522			struct sched_domain_attr *new, int idx_new)
6523{
6524	struct sched_domain_attr tmp;
6525
6526	/* fast path */
6527	if (!new && !cur)
6528		return 1;
6529
6530	tmp = SD_ATTR_INIT;
6531	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6532			new ? (new + idx_new) : &tmp,
6533			sizeof(struct sched_domain_attr));
6534}
6535
6536/*
6537 * Partition sched domains as specified by the 'ndoms_new'
6538 * cpumasks in the array doms_new[] of cpumasks. This compares
6539 * doms_new[] to the current sched domain partitioning, doms_cur[].
6540 * It destroys each deleted domain and builds each new domain.
6541 *
6542 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6543 * The masks don't intersect (don't overlap.) We should setup one
6544 * sched domain for each mask. CPUs not in any of the cpumasks will
6545 * not be load balanced. If the same cpumask appears both in the
6546 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6547 * it as it is.
6548 *
6549 * The passed in 'doms_new' should be allocated using
6550 * alloc_sched_domains.  This routine takes ownership of it and will
6551 * free_sched_domains it when done with it. If the caller failed the
6552 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6553 * and partition_sched_domains() will fallback to the single partition
6554 * 'fallback_doms', it also forces the domains to be rebuilt.
6555 *
6556 * If doms_new == NULL it will be replaced with cpu_online_mask.
6557 * ndoms_new == 0 is a special case for destroying existing domains,
6558 * and it will not create the default domain.
6559 *
6560 * Call with hotplug lock held
6561 */
6562void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6563			     struct sched_domain_attr *dattr_new)
6564{
6565	int i, j, n;
6566	int new_topology;
6567
6568	mutex_lock(&sched_domains_mutex);
6569
6570	/* always unregister in case we don't destroy any domains */
6571	unregister_sched_domain_sysctl();
6572
6573	/* Let architecture update cpu core mappings. */
6574	new_topology = arch_update_cpu_topology();
6575
6576	n = doms_new ? ndoms_new : 0;
6577
6578	/* Destroy deleted domains */
6579	for (i = 0; i < ndoms_cur; i++) {
6580		for (j = 0; j < n && !new_topology; j++) {
6581			if (cpumask_equal(doms_cur[i], doms_new[j])
6582			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6583				goto match1;
6584		}
6585		/* no match - a current sched domain not in new doms_new[] */
6586		detach_destroy_domains(doms_cur[i]);
6587match1:
6588		;
6589	}
6590
6591	n = ndoms_cur;
6592	if (doms_new == NULL) {
6593		n = 0;
6594		doms_new = &fallback_doms;
6595		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6596		WARN_ON_ONCE(dattr_new);
6597	}
6598
6599	/* Build new domains */
6600	for (i = 0; i < ndoms_new; i++) {
6601		for (j = 0; j < n && !new_topology; j++) {
6602			if (cpumask_equal(doms_new[i], doms_cur[j])
6603			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6604				goto match2;
6605		}
6606		/* no match - add a new doms_new */
6607		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6608match2:
6609		;
6610	}
6611
6612	/* Remember the new sched domains */
6613	if (doms_cur != &fallback_doms)
6614		free_sched_domains(doms_cur, ndoms_cur);
6615	kfree(dattr_cur);	/* kfree(NULL) is safe */
6616	doms_cur = doms_new;
6617	dattr_cur = dattr_new;
6618	ndoms_cur = ndoms_new;
6619
6620	register_sched_domain_sysctl();
6621
6622	mutex_unlock(&sched_domains_mutex);
6623}
6624
6625static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6626
6627/*
6628 * Update cpusets according to cpu_active mask.  If cpusets are
6629 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6630 * around partition_sched_domains().
6631 *
6632 * If we come here as part of a suspend/resume, don't touch cpusets because we
6633 * want to restore it back to its original state upon resume anyway.
6634 */
6635static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6636			     void *hcpu)
6637{
6638	switch (action) {
6639	case CPU_ONLINE_FROZEN:
6640	case CPU_DOWN_FAILED_FROZEN:
6641
6642		/*
6643		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6644		 * resume sequence. As long as this is not the last online
6645		 * operation in the resume sequence, just build a single sched
6646		 * domain, ignoring cpusets.
6647		 */
6648		num_cpus_frozen--;
6649		if (likely(num_cpus_frozen)) {
6650			partition_sched_domains(1, NULL, NULL);
6651			break;
6652		}
6653
6654		/*
6655		 * This is the last CPU online operation. So fall through and
6656		 * restore the original sched domains by considering the
6657		 * cpuset configurations.
6658		 */
6659
6660	case CPU_ONLINE:
6661	case CPU_DOWN_FAILED:
6662		cpuset_update_active_cpus(true);
6663		break;
6664	default:
6665		return NOTIFY_DONE;
6666	}
6667	return NOTIFY_OK;
6668}
6669
6670static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6671			       void *hcpu)
6672{
6673	switch (action) {
6674	case CPU_DOWN_PREPARE:
6675		cpuset_update_active_cpus(false);
6676		break;
6677	case CPU_DOWN_PREPARE_FROZEN:
6678		num_cpus_frozen++;
6679		partition_sched_domains(1, NULL, NULL);
6680		break;
6681	default:
6682		return NOTIFY_DONE;
6683	}
6684	return NOTIFY_OK;
6685}
6686
6687void __init sched_init_smp(void)
6688{
6689	cpumask_var_t non_isolated_cpus;
6690
6691	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6692	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6693
6694	sched_init_numa();
6695
6696	/*
6697	 * There's no userspace yet to cause hotplug operations; hence all the
6698	 * cpu masks are stable and all blatant races in the below code cannot
6699	 * happen.
6700	 */
6701	mutex_lock(&sched_domains_mutex);
6702	init_sched_domains(cpu_active_mask);
6703	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6704	if (cpumask_empty(non_isolated_cpus))
6705		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6706	mutex_unlock(&sched_domains_mutex);
6707
6708	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6709	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6710	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6711
6712	init_hrtick();
6713
6714	/* Move init over to a non-isolated CPU */
6715	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6716		BUG();
6717	sched_init_granularity();
6718	free_cpumask_var(non_isolated_cpus);
6719
6720	init_sched_rt_class();
6721	init_sched_dl_class();
6722}
6723#else
6724void __init sched_init_smp(void)
6725{
6726	sched_init_granularity();
6727}
6728#endif /* CONFIG_SMP */
6729
6730const_debug unsigned int sysctl_timer_migration = 1;
6731
6732int in_sched_functions(unsigned long addr)
6733{
6734	return in_lock_functions(addr) ||
6735		(addr >= (unsigned long)__sched_text_start
6736		&& addr < (unsigned long)__sched_text_end);
6737}
6738
6739#ifdef CONFIG_CGROUP_SCHED
6740/*
6741 * Default task group.
6742 * Every task in system belongs to this group at bootup.
6743 */
6744struct task_group root_task_group;
6745LIST_HEAD(task_groups);
6746#endif
6747
6748DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6749
6750void __init sched_init(void)
6751{
6752	int i, j;
6753	unsigned long alloc_size = 0, ptr;
6754
6755#ifdef CONFIG_FAIR_GROUP_SCHED
6756	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6757#endif
6758#ifdef CONFIG_RT_GROUP_SCHED
6759	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6760#endif
6761#ifdef CONFIG_CPUMASK_OFFSTACK
6762	alloc_size += num_possible_cpus() * cpumask_size();
6763#endif
6764	if (alloc_size) {
6765		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6766
6767#ifdef CONFIG_FAIR_GROUP_SCHED
6768		root_task_group.se = (struct sched_entity **)ptr;
6769		ptr += nr_cpu_ids * sizeof(void **);
6770
6771		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6772		ptr += nr_cpu_ids * sizeof(void **);
6773
6774#endif /* CONFIG_FAIR_GROUP_SCHED */
6775#ifdef CONFIG_RT_GROUP_SCHED
6776		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6777		ptr += nr_cpu_ids * sizeof(void **);
6778
6779		root_task_group.rt_rq = (struct rt_rq **)ptr;
6780		ptr += nr_cpu_ids * sizeof(void **);
6781
6782#endif /* CONFIG_RT_GROUP_SCHED */
6783#ifdef CONFIG_CPUMASK_OFFSTACK
6784		for_each_possible_cpu(i) {
6785			per_cpu(load_balance_mask, i) = (void *)ptr;
6786			ptr += cpumask_size();
6787		}
6788#endif /* CONFIG_CPUMASK_OFFSTACK */
6789	}
6790
6791	init_rt_bandwidth(&def_rt_bandwidth,
6792			global_rt_period(), global_rt_runtime());
6793	init_dl_bandwidth(&def_dl_bandwidth,
6794			global_rt_period(), global_rt_runtime());
6795
6796#ifdef CONFIG_SMP
6797	init_defrootdomain();
6798#endif
6799
6800#ifdef CONFIG_RT_GROUP_SCHED
6801	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6802			global_rt_period(), global_rt_runtime());
6803#endif /* CONFIG_RT_GROUP_SCHED */
6804
6805#ifdef CONFIG_CGROUP_SCHED
6806	list_add(&root_task_group.list, &task_groups);
6807	INIT_LIST_HEAD(&root_task_group.children);
6808	INIT_LIST_HEAD(&root_task_group.siblings);
6809	autogroup_init(&init_task);
6810
6811#endif /* CONFIG_CGROUP_SCHED */
6812
6813	for_each_possible_cpu(i) {
6814		struct rq *rq;
6815
6816		rq = cpu_rq(i);
6817		raw_spin_lock_init(&rq->lock);
6818		rq->nr_running = 0;
6819		rq->calc_load_active = 0;
6820		rq->calc_load_update = jiffies + LOAD_FREQ;
6821		init_cfs_rq(&rq->cfs);
6822		init_rt_rq(&rq->rt, rq);
6823		init_dl_rq(&rq->dl, rq);
6824#ifdef CONFIG_FAIR_GROUP_SCHED
6825		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6826		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6827		/*
6828		 * How much cpu bandwidth does root_task_group get?
6829		 *
6830		 * In case of task-groups formed thr' the cgroup filesystem, it
6831		 * gets 100% of the cpu resources in the system. This overall
6832		 * system cpu resource is divided among the tasks of
6833		 * root_task_group and its child task-groups in a fair manner,
6834		 * based on each entity's (task or task-group's) weight
6835		 * (se->load.weight).
6836		 *
6837		 * In other words, if root_task_group has 10 tasks of weight
6838		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6839		 * then A0's share of the cpu resource is:
6840		 *
6841		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6842		 *
6843		 * We achieve this by letting root_task_group's tasks sit
6844		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6845		 */
6846		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6847		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6848#endif /* CONFIG_FAIR_GROUP_SCHED */
6849
6850		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6851#ifdef CONFIG_RT_GROUP_SCHED
6852		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6853#endif
6854
6855		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6856			rq->cpu_load[j] = 0;
6857
6858		rq->last_load_update_tick = jiffies;
6859
6860#ifdef CONFIG_SMP
6861		rq->sd = NULL;
6862		rq->rd = NULL;
6863		rq->cpu_power = SCHED_POWER_SCALE;
6864		rq->post_schedule = 0;
6865		rq->active_balance = 0;
6866		rq->next_balance = jiffies;
6867		rq->push_cpu = 0;
6868		rq->cpu = i;
6869		rq->online = 0;
6870		rq->idle_stamp = 0;
6871		rq->avg_idle = 2*sysctl_sched_migration_cost;
6872		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6873
6874		INIT_LIST_HEAD(&rq->cfs_tasks);
6875
6876		rq_attach_root(rq, &def_root_domain);
6877#ifdef CONFIG_NO_HZ_COMMON
6878		rq->nohz_flags = 0;
6879#endif
6880#ifdef CONFIG_NO_HZ_FULL
6881		rq->last_sched_tick = 0;
6882#endif
6883#endif
6884		init_rq_hrtick(rq);
6885		atomic_set(&rq->nr_iowait, 0);
6886	}
6887
6888	set_load_weight(&init_task);
6889
6890#ifdef CONFIG_PREEMPT_NOTIFIERS
6891	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6892#endif
6893
6894	/*
6895	 * The boot idle thread does lazy MMU switching as well:
6896	 */
6897	atomic_inc(&init_mm.mm_count);
6898	enter_lazy_tlb(&init_mm, current);
6899
6900	/*
6901	 * Make us the idle thread. Technically, schedule() should not be
6902	 * called from this thread, however somewhere below it might be,
6903	 * but because we are the idle thread, we just pick up running again
6904	 * when this runqueue becomes "idle".
6905	 */
6906	init_idle(current, smp_processor_id());
6907
6908	calc_load_update = jiffies + LOAD_FREQ;
6909
6910	/*
6911	 * During early bootup we pretend to be a normal task:
6912	 */
6913	current->sched_class = &fair_sched_class;
6914
6915#ifdef CONFIG_SMP
6916	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6917	/* May be allocated at isolcpus cmdline parse time */
6918	if (cpu_isolated_map == NULL)
6919		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6920	idle_thread_set_boot_cpu();
6921#endif
6922	init_sched_fair_class();
6923
6924	scheduler_running = 1;
6925}
6926
6927#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6928static inline int preempt_count_equals(int preempt_offset)
6929{
6930	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6931
6932	return (nested == preempt_offset);
6933}
6934
6935void __might_sleep(const char *file, int line, int preempt_offset)
6936{
6937	static unsigned long prev_jiffy;	/* ratelimiting */
6938
6939	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6940	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6941	     !is_idle_task(current)) ||
6942	    system_state != SYSTEM_RUNNING || oops_in_progress)
6943		return;
6944	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6945		return;
6946	prev_jiffy = jiffies;
6947
6948	printk(KERN_ERR
6949		"BUG: sleeping function called from invalid context at %s:%d\n",
6950			file, line);
6951	printk(KERN_ERR
6952		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6953			in_atomic(), irqs_disabled(),
6954			current->pid, current->comm);
6955
6956	debug_show_held_locks(current);
6957	if (irqs_disabled())
6958		print_irqtrace_events(current);
6959#ifdef CONFIG_DEBUG_PREEMPT
6960	if (!preempt_count_equals(preempt_offset)) {
6961		pr_err("Preemption disabled at:");
6962		print_ip_sym(current->preempt_disable_ip);
6963		pr_cont("\n");
6964	}
6965#endif
6966	dump_stack();
6967}
6968EXPORT_SYMBOL(__might_sleep);
6969#endif
6970
6971#ifdef CONFIG_MAGIC_SYSRQ
6972static void normalize_task(struct rq *rq, struct task_struct *p)
6973{
6974	const struct sched_class *prev_class = p->sched_class;
6975	struct sched_attr attr = {
6976		.sched_policy = SCHED_NORMAL,
6977	};
6978	int old_prio = p->prio;
6979	int on_rq;
6980
6981	on_rq = p->on_rq;
6982	if (on_rq)
6983		dequeue_task(rq, p, 0);
6984	__setscheduler(rq, p, &attr);
6985	if (on_rq) {
6986		enqueue_task(rq, p, 0);
6987		resched_task(rq->curr);
6988	}
6989
6990	check_class_changed(rq, p, prev_class, old_prio);
6991}
6992
6993void normalize_rt_tasks(void)
6994{
6995	struct task_struct *g, *p;
6996	unsigned long flags;
6997	struct rq *rq;
6998
6999	read_lock_irqsave(&tasklist_lock, flags);
7000	do_each_thread(g, p) {
7001		/*
7002		 * Only normalize user tasks:
7003		 */
7004		if (!p->mm)
7005			continue;
7006
7007		p->se.exec_start		= 0;
7008#ifdef CONFIG_SCHEDSTATS
7009		p->se.statistics.wait_start	= 0;
7010		p->se.statistics.sleep_start	= 0;
7011		p->se.statistics.block_start	= 0;
7012#endif
7013
7014		if (!dl_task(p) && !rt_task(p)) {
7015			/*
7016			 * Renice negative nice level userspace
7017			 * tasks back to 0:
7018			 */
7019			if (task_nice(p) < 0 && p->mm)
7020				set_user_nice(p, 0);
7021			continue;
7022		}
7023
7024		raw_spin_lock(&p->pi_lock);
7025		rq = __task_rq_lock(p);
7026
7027		normalize_task(rq, p);
7028
7029		__task_rq_unlock(rq);
7030		raw_spin_unlock(&p->pi_lock);
7031	} while_each_thread(g, p);
7032
7033	read_unlock_irqrestore(&tasklist_lock, flags);
7034}
7035
7036#endif /* CONFIG_MAGIC_SYSRQ */
7037
7038#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7039/*
7040 * These functions are only useful for the IA64 MCA handling, or kdb.
7041 *
7042 * They can only be called when the whole system has been
7043 * stopped - every CPU needs to be quiescent, and no scheduling
7044 * activity can take place. Using them for anything else would
7045 * be a serious bug, and as a result, they aren't even visible
7046 * under any other configuration.
7047 */
7048
7049/**
7050 * curr_task - return the current task for a given cpu.
7051 * @cpu: the processor in question.
7052 *
7053 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7054 *
7055 * Return: The current task for @cpu.
7056 */
7057struct task_struct *curr_task(int cpu)
7058{
7059	return cpu_curr(cpu);
7060}
7061
7062#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7063
7064#ifdef CONFIG_IA64
7065/**
7066 * set_curr_task - set the current task for a given cpu.
7067 * @cpu: the processor in question.
7068 * @p: the task pointer to set.
7069 *
7070 * Description: This function must only be used when non-maskable interrupts
7071 * are serviced on a separate stack. It allows the architecture to switch the
7072 * notion of the current task on a cpu in a non-blocking manner. This function
7073 * must be called with all CPU's synchronized, and interrupts disabled, the
7074 * and caller must save the original value of the current task (see
7075 * curr_task() above) and restore that value before reenabling interrupts and
7076 * re-starting the system.
7077 *
7078 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7079 */
7080void set_curr_task(int cpu, struct task_struct *p)
7081{
7082	cpu_curr(cpu) = p;
7083}
7084
7085#endif
7086
7087#ifdef CONFIG_CGROUP_SCHED
7088/* task_group_lock serializes the addition/removal of task groups */
7089static DEFINE_SPINLOCK(task_group_lock);
7090
7091static void free_sched_group(struct task_group *tg)
7092{
7093	free_fair_sched_group(tg);
7094	free_rt_sched_group(tg);
7095	autogroup_free(tg);
7096	kfree(tg);
7097}
7098
7099/* allocate runqueue etc for a new task group */
7100struct task_group *sched_create_group(struct task_group *parent)
7101{
7102	struct task_group *tg;
7103
7104	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7105	if (!tg)
7106		return ERR_PTR(-ENOMEM);
7107
7108	if (!alloc_fair_sched_group(tg, parent))
7109		goto err;
7110
7111	if (!alloc_rt_sched_group(tg, parent))
7112		goto err;
7113
7114	return tg;
7115
7116err:
7117	free_sched_group(tg);
7118	return ERR_PTR(-ENOMEM);
7119}
7120
7121void sched_online_group(struct task_group *tg, struct task_group *parent)
7122{
7123	unsigned long flags;
7124
7125	spin_lock_irqsave(&task_group_lock, flags);
7126	list_add_rcu(&tg->list, &task_groups);
7127
7128	WARN_ON(!parent); /* root should already exist */
7129
7130	tg->parent = parent;
7131	INIT_LIST_HEAD(&tg->children);
7132	list_add_rcu(&tg->siblings, &parent->children);
7133	spin_unlock_irqrestore(&task_group_lock, flags);
7134}
7135
7136/* rcu callback to free various structures associated with a task group */
7137static void free_sched_group_rcu(struct rcu_head *rhp)
7138{
7139	/* now it should be safe to free those cfs_rqs */
7140	free_sched_group(container_of(rhp, struct task_group, rcu));
7141}
7142
7143/* Destroy runqueue etc associated with a task group */
7144void sched_destroy_group(struct task_group *tg)
7145{
7146	/* wait for possible concurrent references to cfs_rqs complete */
7147	call_rcu(&tg->rcu, free_sched_group_rcu);
7148}
7149
7150void sched_offline_group(struct task_group *tg)
7151{
7152	unsigned long flags;
7153	int i;
7154
7155	/* end participation in shares distribution */
7156	for_each_possible_cpu(i)
7157		unregister_fair_sched_group(tg, i);
7158
7159	spin_lock_irqsave(&task_group_lock, flags);
7160	list_del_rcu(&tg->list);
7161	list_del_rcu(&tg->siblings);
7162	spin_unlock_irqrestore(&task_group_lock, flags);
7163}
7164
7165/* change task's runqueue when it moves between groups.
7166 *	The caller of this function should have put the task in its new group
7167 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7168 *	reflect its new group.
7169 */
7170void sched_move_task(struct task_struct *tsk)
7171{
7172	struct task_group *tg;
7173	int on_rq, running;
7174	unsigned long flags;
7175	struct rq *rq;
7176
7177	rq = task_rq_lock(tsk, &flags);
7178
7179	running = task_current(rq, tsk);
7180	on_rq = tsk->on_rq;
7181
7182	if (on_rq)
7183		dequeue_task(rq, tsk, 0);
7184	if (unlikely(running))
7185		tsk->sched_class->put_prev_task(rq, tsk);
7186
7187	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7188				lockdep_is_held(&tsk->sighand->siglock)),
7189			  struct task_group, css);
7190	tg = autogroup_task_group(tsk, tg);
7191	tsk->sched_task_group = tg;
7192
7193#ifdef CONFIG_FAIR_GROUP_SCHED
7194	if (tsk->sched_class->task_move_group)
7195		tsk->sched_class->task_move_group(tsk, on_rq);
7196	else
7197#endif
7198		set_task_rq(tsk, task_cpu(tsk));
7199
7200	if (unlikely(running))
7201		tsk->sched_class->set_curr_task(rq);
7202	if (on_rq)
7203		enqueue_task(rq, tsk, 0);
7204
7205	task_rq_unlock(rq, tsk, &flags);
7206}
7207#endif /* CONFIG_CGROUP_SCHED */
7208
7209#ifdef CONFIG_RT_GROUP_SCHED
7210/*
7211 * Ensure that the real time constraints are schedulable.
7212 */
7213static DEFINE_MUTEX(rt_constraints_mutex);
7214
7215/* Must be called with tasklist_lock held */
7216static inline int tg_has_rt_tasks(struct task_group *tg)
7217{
7218	struct task_struct *g, *p;
7219
7220	do_each_thread(g, p) {
7221		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7222			return 1;
7223	} while_each_thread(g, p);
7224
7225	return 0;
7226}
7227
7228struct rt_schedulable_data {
7229	struct task_group *tg;
7230	u64 rt_period;
7231	u64 rt_runtime;
7232};
7233
7234static int tg_rt_schedulable(struct task_group *tg, void *data)
7235{
7236	struct rt_schedulable_data *d = data;
7237	struct task_group *child;
7238	unsigned long total, sum = 0;
7239	u64 period, runtime;
7240
7241	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7242	runtime = tg->rt_bandwidth.rt_runtime;
7243
7244	if (tg == d->tg) {
7245		period = d->rt_period;
7246		runtime = d->rt_runtime;
7247	}
7248
7249	/*
7250	 * Cannot have more runtime than the period.
7251	 */
7252	if (runtime > period && runtime != RUNTIME_INF)
7253		return -EINVAL;
7254
7255	/*
7256	 * Ensure we don't starve existing RT tasks.
7257	 */
7258	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7259		return -EBUSY;
7260
7261	total = to_ratio(period, runtime);
7262
7263	/*
7264	 * Nobody can have more than the global setting allows.
7265	 */
7266	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7267		return -EINVAL;
7268
7269	/*
7270	 * The sum of our children's runtime should not exceed our own.
7271	 */
7272	list_for_each_entry_rcu(child, &tg->children, siblings) {
7273		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7274		runtime = child->rt_bandwidth.rt_runtime;
7275
7276		if (child == d->tg) {
7277			period = d->rt_period;
7278			runtime = d->rt_runtime;
7279		}
7280
7281		sum += to_ratio(period, runtime);
7282	}
7283
7284	if (sum > total)
7285		return -EINVAL;
7286
7287	return 0;
7288}
7289
7290static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7291{
7292	int ret;
7293
7294	struct rt_schedulable_data data = {
7295		.tg = tg,
7296		.rt_period = period,
7297		.rt_runtime = runtime,
7298	};
7299
7300	rcu_read_lock();
7301	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7302	rcu_read_unlock();
7303
7304	return ret;
7305}
7306
7307static int tg_set_rt_bandwidth(struct task_group *tg,
7308		u64 rt_period, u64 rt_runtime)
7309{
7310	int i, err = 0;
7311
7312	mutex_lock(&rt_constraints_mutex);
7313	read_lock(&tasklist_lock);
7314	err = __rt_schedulable(tg, rt_period, rt_runtime);
7315	if (err)
7316		goto unlock;
7317
7318	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7319	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7320	tg->rt_bandwidth.rt_runtime = rt_runtime;
7321
7322	for_each_possible_cpu(i) {
7323		struct rt_rq *rt_rq = tg->rt_rq[i];
7324
7325		raw_spin_lock(&rt_rq->rt_runtime_lock);
7326		rt_rq->rt_runtime = rt_runtime;
7327		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7328	}
7329	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7330unlock:
7331	read_unlock(&tasklist_lock);
7332	mutex_unlock(&rt_constraints_mutex);
7333
7334	return err;
7335}
7336
7337static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7338{
7339	u64 rt_runtime, rt_period;
7340
7341	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7342	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7343	if (rt_runtime_us < 0)
7344		rt_runtime = RUNTIME_INF;
7345
7346	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7347}
7348
7349static long sched_group_rt_runtime(struct task_group *tg)
7350{
7351	u64 rt_runtime_us;
7352
7353	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7354		return -1;
7355
7356	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7357	do_div(rt_runtime_us, NSEC_PER_USEC);
7358	return rt_runtime_us;
7359}
7360
7361static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7362{
7363	u64 rt_runtime, rt_period;
7364
7365	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7366	rt_runtime = tg->rt_bandwidth.rt_runtime;
7367
7368	if (rt_period == 0)
7369		return -EINVAL;
7370
7371	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7372}
7373
7374static long sched_group_rt_period(struct task_group *tg)
7375{
7376	u64 rt_period_us;
7377
7378	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7379	do_div(rt_period_us, NSEC_PER_USEC);
7380	return rt_period_us;
7381}
7382#endif /* CONFIG_RT_GROUP_SCHED */
7383
7384#ifdef CONFIG_RT_GROUP_SCHED
7385static int sched_rt_global_constraints(void)
7386{
7387	int ret = 0;
7388
7389	mutex_lock(&rt_constraints_mutex);
7390	read_lock(&tasklist_lock);
7391	ret = __rt_schedulable(NULL, 0, 0);
7392	read_unlock(&tasklist_lock);
7393	mutex_unlock(&rt_constraints_mutex);
7394
7395	return ret;
7396}
7397
7398static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7399{
7400	/* Don't accept realtime tasks when there is no way for them to run */
7401	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7402		return 0;
7403
7404	return 1;
7405}
7406
7407#else /* !CONFIG_RT_GROUP_SCHED */
7408static int sched_rt_global_constraints(void)
7409{
7410	unsigned long flags;
7411	int i, ret = 0;
7412
7413	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7414	for_each_possible_cpu(i) {
7415		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7416
7417		raw_spin_lock(&rt_rq->rt_runtime_lock);
7418		rt_rq->rt_runtime = global_rt_runtime();
7419		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7420	}
7421	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7422
7423	return ret;
7424}
7425#endif /* CONFIG_RT_GROUP_SCHED */
7426
7427static int sched_dl_global_constraints(void)
7428{
7429	u64 runtime = global_rt_runtime();
7430	u64 period = global_rt_period();
7431	u64 new_bw = to_ratio(period, runtime);
7432	int cpu, ret = 0;
7433	unsigned long flags;
7434
7435	/*
7436	 * Here we want to check the bandwidth not being set to some
7437	 * value smaller than the currently allocated bandwidth in
7438	 * any of the root_domains.
7439	 *
7440	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7441	 * cycling on root_domains... Discussion on different/better
7442	 * solutions is welcome!
7443	 */
7444	for_each_possible_cpu(cpu) {
7445		struct dl_bw *dl_b = dl_bw_of(cpu);
7446
7447		raw_spin_lock_irqsave(&dl_b->lock, flags);
7448		if (new_bw < dl_b->total_bw)
7449			ret = -EBUSY;
7450		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7451
7452		if (ret)
7453			break;
7454	}
7455
7456	return ret;
7457}
7458
7459static void sched_dl_do_global(void)
7460{
7461	u64 new_bw = -1;
7462	int cpu;
7463	unsigned long flags;
7464
7465	def_dl_bandwidth.dl_period = global_rt_period();
7466	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7467
7468	if (global_rt_runtime() != RUNTIME_INF)
7469		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7470
7471	/*
7472	 * FIXME: As above...
7473	 */
7474	for_each_possible_cpu(cpu) {
7475		struct dl_bw *dl_b = dl_bw_of(cpu);
7476
7477		raw_spin_lock_irqsave(&dl_b->lock, flags);
7478		dl_b->bw = new_bw;
7479		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7480	}
7481}
7482
7483static int sched_rt_global_validate(void)
7484{
7485	if (sysctl_sched_rt_period <= 0)
7486		return -EINVAL;
7487
7488	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7489		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7490		return -EINVAL;
7491
7492	return 0;
7493}
7494
7495static void sched_rt_do_global(void)
7496{
7497	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7498	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7499}
7500
7501int sched_rt_handler(struct ctl_table *table, int write,
7502		void __user *buffer, size_t *lenp,
7503		loff_t *ppos)
7504{
7505	int old_period, old_runtime;
7506	static DEFINE_MUTEX(mutex);
7507	int ret;
7508
7509	mutex_lock(&mutex);
7510	old_period = sysctl_sched_rt_period;
7511	old_runtime = sysctl_sched_rt_runtime;
7512
7513	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7514
7515	if (!ret && write) {
7516		ret = sched_rt_global_validate();
7517		if (ret)
7518			goto undo;
7519
7520		ret = sched_rt_global_constraints();
7521		if (ret)
7522			goto undo;
7523
7524		ret = sched_dl_global_constraints();
7525		if (ret)
7526			goto undo;
7527
7528		sched_rt_do_global();
7529		sched_dl_do_global();
7530	}
7531	if (0) {
7532undo:
7533		sysctl_sched_rt_period = old_period;
7534		sysctl_sched_rt_runtime = old_runtime;
7535	}
7536	mutex_unlock(&mutex);
7537
7538	return ret;
7539}
7540
7541int sched_rr_handler(struct ctl_table *table, int write,
7542		void __user *buffer, size_t *lenp,
7543		loff_t *ppos)
7544{
7545	int ret;
7546	static DEFINE_MUTEX(mutex);
7547
7548	mutex_lock(&mutex);
7549	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7550	/* make sure that internally we keep jiffies */
7551	/* also, writing zero resets timeslice to default */
7552	if (!ret && write) {
7553		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7554			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7555	}
7556	mutex_unlock(&mutex);
7557	return ret;
7558}
7559
7560#ifdef CONFIG_CGROUP_SCHED
7561
7562static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7563{
7564	return css ? container_of(css, struct task_group, css) : NULL;
7565}
7566
7567static struct cgroup_subsys_state *
7568cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7569{
7570	struct task_group *parent = css_tg(parent_css);
7571	struct task_group *tg;
7572
7573	if (!parent) {
7574		/* This is early initialization for the top cgroup */
7575		return &root_task_group.css;
7576	}
7577
7578	tg = sched_create_group(parent);
7579	if (IS_ERR(tg))
7580		return ERR_PTR(-ENOMEM);
7581
7582	return &tg->css;
7583}
7584
7585static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7586{
7587	struct task_group *tg = css_tg(css);
7588	struct task_group *parent = css_tg(css_parent(css));
7589
7590	if (parent)
7591		sched_online_group(tg, parent);
7592	return 0;
7593}
7594
7595static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7596{
7597	struct task_group *tg = css_tg(css);
7598
7599	sched_destroy_group(tg);
7600}
7601
7602static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7603{
7604	struct task_group *tg = css_tg(css);
7605
7606	sched_offline_group(tg);
7607}
7608
7609static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7610				 struct cgroup_taskset *tset)
7611{
7612	struct task_struct *task;
7613
7614	cgroup_taskset_for_each(task, tset) {
7615#ifdef CONFIG_RT_GROUP_SCHED
7616		if (!sched_rt_can_attach(css_tg(css), task))
7617			return -EINVAL;
7618#else
7619		/* We don't support RT-tasks being in separate groups */
7620		if (task->sched_class != &fair_sched_class)
7621			return -EINVAL;
7622#endif
7623	}
7624	return 0;
7625}
7626
7627static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7628			      struct cgroup_taskset *tset)
7629{
7630	struct task_struct *task;
7631
7632	cgroup_taskset_for_each(task, tset)
7633		sched_move_task(task);
7634}
7635
7636static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7637			    struct cgroup_subsys_state *old_css,
7638			    struct task_struct *task)
7639{
7640	/*
7641	 * cgroup_exit() is called in the copy_process() failure path.
7642	 * Ignore this case since the task hasn't ran yet, this avoids
7643	 * trying to poke a half freed task state from generic code.
7644	 */
7645	if (!(task->flags & PF_EXITING))
7646		return;
7647
7648	sched_move_task(task);
7649}
7650
7651#ifdef CONFIG_FAIR_GROUP_SCHED
7652static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7653				struct cftype *cftype, u64 shareval)
7654{
7655	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7656}
7657
7658static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7659			       struct cftype *cft)
7660{
7661	struct task_group *tg = css_tg(css);
7662
7663	return (u64) scale_load_down(tg->shares);
7664}
7665
7666#ifdef CONFIG_CFS_BANDWIDTH
7667static DEFINE_MUTEX(cfs_constraints_mutex);
7668
7669const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7670const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7671
7672static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7673
7674static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7675{
7676	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7677	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7678
7679	if (tg == &root_task_group)
7680		return -EINVAL;
7681
7682	/*
7683	 * Ensure we have at some amount of bandwidth every period.  This is
7684	 * to prevent reaching a state of large arrears when throttled via
7685	 * entity_tick() resulting in prolonged exit starvation.
7686	 */
7687	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7688		return -EINVAL;
7689
7690	/*
7691	 * Likewise, bound things on the otherside by preventing insane quota
7692	 * periods.  This also allows us to normalize in computing quota
7693	 * feasibility.
7694	 */
7695	if (period > max_cfs_quota_period)
7696		return -EINVAL;
7697
7698	mutex_lock(&cfs_constraints_mutex);
7699	ret = __cfs_schedulable(tg, period, quota);
7700	if (ret)
7701		goto out_unlock;
7702
7703	runtime_enabled = quota != RUNTIME_INF;
7704	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7705	/*
7706	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7707	 * before making related changes, and on->off must occur afterwards
7708	 */
7709	if (runtime_enabled && !runtime_was_enabled)
7710		cfs_bandwidth_usage_inc();
7711	raw_spin_lock_irq(&cfs_b->lock);
7712	cfs_b->period = ns_to_ktime(period);
7713	cfs_b->quota = quota;
7714
7715	__refill_cfs_bandwidth_runtime(cfs_b);
7716	/* restart the period timer (if active) to handle new period expiry */
7717	if (runtime_enabled && cfs_b->timer_active) {
7718		/* force a reprogram */
7719		cfs_b->timer_active = 0;
7720		__start_cfs_bandwidth(cfs_b);
7721	}
7722	raw_spin_unlock_irq(&cfs_b->lock);
7723
7724	for_each_possible_cpu(i) {
7725		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7726		struct rq *rq = cfs_rq->rq;
7727
7728		raw_spin_lock_irq(&rq->lock);
7729		cfs_rq->runtime_enabled = runtime_enabled;
7730		cfs_rq->runtime_remaining = 0;
7731
7732		if (cfs_rq->throttled)
7733			unthrottle_cfs_rq(cfs_rq);
7734		raw_spin_unlock_irq(&rq->lock);
7735	}
7736	if (runtime_was_enabled && !runtime_enabled)
7737		cfs_bandwidth_usage_dec();
7738out_unlock:
7739	mutex_unlock(&cfs_constraints_mutex);
7740
7741	return ret;
7742}
7743
7744int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7745{
7746	u64 quota, period;
7747
7748	period = ktime_to_ns(tg->cfs_bandwidth.period);
7749	if (cfs_quota_us < 0)
7750		quota = RUNTIME_INF;
7751	else
7752		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7753
7754	return tg_set_cfs_bandwidth(tg, period, quota);
7755}
7756
7757long tg_get_cfs_quota(struct task_group *tg)
7758{
7759	u64 quota_us;
7760
7761	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7762		return -1;
7763
7764	quota_us = tg->cfs_bandwidth.quota;
7765	do_div(quota_us, NSEC_PER_USEC);
7766
7767	return quota_us;
7768}
7769
7770int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7771{
7772	u64 quota, period;
7773
7774	period = (u64)cfs_period_us * NSEC_PER_USEC;
7775	quota = tg->cfs_bandwidth.quota;
7776
7777	return tg_set_cfs_bandwidth(tg, period, quota);
7778}
7779
7780long tg_get_cfs_period(struct task_group *tg)
7781{
7782	u64 cfs_period_us;
7783
7784	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7785	do_div(cfs_period_us, NSEC_PER_USEC);
7786
7787	return cfs_period_us;
7788}
7789
7790static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7791				  struct cftype *cft)
7792{
7793	return tg_get_cfs_quota(css_tg(css));
7794}
7795
7796static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7797				   struct cftype *cftype, s64 cfs_quota_us)
7798{
7799	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7800}
7801
7802static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7803				   struct cftype *cft)
7804{
7805	return tg_get_cfs_period(css_tg(css));
7806}
7807
7808static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7809				    struct cftype *cftype, u64 cfs_period_us)
7810{
7811	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7812}
7813
7814struct cfs_schedulable_data {
7815	struct task_group *tg;
7816	u64 period, quota;
7817};
7818
7819/*
7820 * normalize group quota/period to be quota/max_period
7821 * note: units are usecs
7822 */
7823static u64 normalize_cfs_quota(struct task_group *tg,
7824			       struct cfs_schedulable_data *d)
7825{
7826	u64 quota, period;
7827
7828	if (tg == d->tg) {
7829		period = d->period;
7830		quota = d->quota;
7831	} else {
7832		period = tg_get_cfs_period(tg);
7833		quota = tg_get_cfs_quota(tg);
7834	}
7835
7836	/* note: these should typically be equivalent */
7837	if (quota == RUNTIME_INF || quota == -1)
7838		return RUNTIME_INF;
7839
7840	return to_ratio(period, quota);
7841}
7842
7843static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7844{
7845	struct cfs_schedulable_data *d = data;
7846	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7847	s64 quota = 0, parent_quota = -1;
7848
7849	if (!tg->parent) {
7850		quota = RUNTIME_INF;
7851	} else {
7852		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7853
7854		quota = normalize_cfs_quota(tg, d);
7855		parent_quota = parent_b->hierarchal_quota;
7856
7857		/*
7858		 * ensure max(child_quota) <= parent_quota, inherit when no
7859		 * limit is set
7860		 */
7861		if (quota == RUNTIME_INF)
7862			quota = parent_quota;
7863		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7864			return -EINVAL;
7865	}
7866	cfs_b->hierarchal_quota = quota;
7867
7868	return 0;
7869}
7870
7871static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7872{
7873	int ret;
7874	struct cfs_schedulable_data data = {
7875		.tg = tg,
7876		.period = period,
7877		.quota = quota,
7878	};
7879
7880	if (quota != RUNTIME_INF) {
7881		do_div(data.period, NSEC_PER_USEC);
7882		do_div(data.quota, NSEC_PER_USEC);
7883	}
7884
7885	rcu_read_lock();
7886	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7887	rcu_read_unlock();
7888
7889	return ret;
7890}
7891
7892static int cpu_stats_show(struct seq_file *sf, void *v)
7893{
7894	struct task_group *tg = css_tg(seq_css(sf));
7895	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7896
7897	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7898	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7899	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7900
7901	return 0;
7902}
7903#endif /* CONFIG_CFS_BANDWIDTH */
7904#endif /* CONFIG_FAIR_GROUP_SCHED */
7905
7906#ifdef CONFIG_RT_GROUP_SCHED
7907static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7908				struct cftype *cft, s64 val)
7909{
7910	return sched_group_set_rt_runtime(css_tg(css), val);
7911}
7912
7913static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7914			       struct cftype *cft)
7915{
7916	return sched_group_rt_runtime(css_tg(css));
7917}
7918
7919static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7920				    struct cftype *cftype, u64 rt_period_us)
7921{
7922	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7923}
7924
7925static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7926				   struct cftype *cft)
7927{
7928	return sched_group_rt_period(css_tg(css));
7929}
7930#endif /* CONFIG_RT_GROUP_SCHED */
7931
7932static struct cftype cpu_files[] = {
7933#ifdef CONFIG_FAIR_GROUP_SCHED
7934	{
7935		.name = "shares",
7936		.read_u64 = cpu_shares_read_u64,
7937		.write_u64 = cpu_shares_write_u64,
7938	},
7939#endif
7940#ifdef CONFIG_CFS_BANDWIDTH
7941	{
7942		.name = "cfs_quota_us",
7943		.read_s64 = cpu_cfs_quota_read_s64,
7944		.write_s64 = cpu_cfs_quota_write_s64,
7945	},
7946	{
7947		.name = "cfs_period_us",
7948		.read_u64 = cpu_cfs_period_read_u64,
7949		.write_u64 = cpu_cfs_period_write_u64,
7950	},
7951	{
7952		.name = "stat",
7953		.seq_show = cpu_stats_show,
7954	},
7955#endif
7956#ifdef CONFIG_RT_GROUP_SCHED
7957	{
7958		.name = "rt_runtime_us",
7959		.read_s64 = cpu_rt_runtime_read,
7960		.write_s64 = cpu_rt_runtime_write,
7961	},
7962	{
7963		.name = "rt_period_us",
7964		.read_u64 = cpu_rt_period_read_uint,
7965		.write_u64 = cpu_rt_period_write_uint,
7966	},
7967#endif
7968	{ }	/* terminate */
7969};
7970
7971struct cgroup_subsys cpu_cgrp_subsys = {
7972	.css_alloc	= cpu_cgroup_css_alloc,
7973	.css_free	= cpu_cgroup_css_free,
7974	.css_online	= cpu_cgroup_css_online,
7975	.css_offline	= cpu_cgroup_css_offline,
7976	.can_attach	= cpu_cgroup_can_attach,
7977	.attach		= cpu_cgroup_attach,
7978	.exit		= cpu_cgroup_exit,
7979	.base_cftypes	= cpu_files,
7980	.early_init	= 1,
7981};
7982
7983#endif	/* CONFIG_CGROUP_SCHED */
7984
7985void dump_cpu_task(int cpu)
7986{
7987	pr_info("Task dump for CPU %d:\n", cpu);
7988	sched_show_task(cpu_curr(cpu));
7989}
7990