core.c revision bdb43806589096ac4272fe1307e789846ac08d7c
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79#include <asm/irq_regs.h>
80#include <asm/mutex.h>
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
84
85#include "sched.h"
86#include "../workqueue_internal.h"
87#include "../smpboot.h"
88
89#define CREATE_TRACE_POINTS
90#include <trace/events/sched.h>
91
92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93{
94	unsigned long delta;
95	ktime_t soft, hard, now;
96
97	for (;;) {
98		if (hrtimer_active(period_timer))
99			break;
100
101		now = hrtimer_cb_get_time(period_timer);
102		hrtimer_forward(period_timer, now, period);
103
104		soft = hrtimer_get_softexpires(period_timer);
105		hard = hrtimer_get_expires(period_timer);
106		delta = ktime_to_ns(ktime_sub(hard, soft));
107		__hrtimer_start_range_ns(period_timer, soft, delta,
108					 HRTIMER_MODE_ABS_PINNED, 0);
109	}
110}
111
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117void update_rq_clock(struct rq *rq)
118{
119	s64 delta;
120
121	if (rq->skip_clock_update > 0)
122		return;
123
124	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125	rq->clock += delta;
126	update_rq_clock_task(rq, delta);
127}
128
129/*
130 * Debugging: various feature bits
131 */
132
133#define SCHED_FEAT(name, enabled)	\
134	(1UL << __SCHED_FEAT_##name) * enabled |
135
136const_debug unsigned int sysctl_sched_features =
137#include "features.h"
138	0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled)	\
144	#name ,
145
146static const char * const sched_feat_names[] = {
147#include "features.h"
148};
149
150#undef SCHED_FEAT
151
152static int sched_feat_show(struct seq_file *m, void *v)
153{
154	int i;
155
156	for (i = 0; i < __SCHED_FEAT_NR; i++) {
157		if (!(sysctl_sched_features & (1UL << i)))
158			seq_puts(m, "NO_");
159		seq_printf(m, "%s ", sched_feat_names[i]);
160	}
161	seq_puts(m, "\n");
162
163	return 0;
164}
165
166#ifdef HAVE_JUMP_LABEL
167
168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171#define SCHED_FEAT(name, enabled)	\
172	jump_label_key__##enabled ,
173
174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
182	if (static_key_enabled(&sched_feat_keys[i]))
183		static_key_slow_dec(&sched_feat_keys[i]);
184}
185
186static void sched_feat_enable(int i)
187{
188	if (!static_key_enabled(&sched_feat_keys[i]))
189		static_key_slow_inc(&sched_feat_keys[i]);
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
196static int sched_feat_set(char *cmp)
197{
198	int i;
199	int neg = 0;
200
201	if (strncmp(cmp, "NO_", 3) == 0) {
202		neg = 1;
203		cmp += 3;
204	}
205
206	for (i = 0; i < __SCHED_FEAT_NR; i++) {
207		if (strcmp(cmp, sched_feat_names[i]) == 0) {
208			if (neg) {
209				sysctl_sched_features &= ~(1UL << i);
210				sched_feat_disable(i);
211			} else {
212				sysctl_sched_features |= (1UL << i);
213				sched_feat_enable(i);
214			}
215			break;
216		}
217	}
218
219	return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224		size_t cnt, loff_t *ppos)
225{
226	char buf[64];
227	char *cmp;
228	int i;
229
230	if (cnt > 63)
231		cnt = 63;
232
233	if (copy_from_user(&buf, ubuf, cnt))
234		return -EFAULT;
235
236	buf[cnt] = 0;
237	cmp = strstrip(buf);
238
239	i = sched_feat_set(cmp);
240	if (i == __SCHED_FEAT_NR)
241		return -EINVAL;
242
243	*ppos += cnt;
244
245	return cnt;
246}
247
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250	return single_open(filp, sched_feat_show, NULL);
251}
252
253static const struct file_operations sched_feat_fops = {
254	.open		= sched_feat_open,
255	.write		= sched_feat_write,
256	.read		= seq_read,
257	.llseek		= seq_lseek,
258	.release	= single_release,
259};
260
261static __init int sched_init_debug(void)
262{
263	debugfs_create_file("sched_features", 0644, NULL, NULL,
264			&sched_feat_fops);
265
266	return 0;
267}
268late_initcall(sched_init_debug);
269#endif /* CONFIG_SCHED_DEBUG */
270
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285/*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289unsigned int sysctl_sched_rt_period = 1000000;
290
291__read_mostly int scheduler_running;
292
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
298
299
300
301/*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304static inline struct rq *__task_rq_lock(struct task_struct *p)
305	__acquires(rq->lock)
306{
307	struct rq *rq;
308
309	lockdep_assert_held(&p->pi_lock);
310
311	for (;;) {
312		rq = task_rq(p);
313		raw_spin_lock(&rq->lock);
314		if (likely(rq == task_rq(p)))
315			return rq;
316		raw_spin_unlock(&rq->lock);
317	}
318}
319
320/*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324	__acquires(p->pi_lock)
325	__acquires(rq->lock)
326{
327	struct rq *rq;
328
329	for (;;) {
330		raw_spin_lock_irqsave(&p->pi_lock, *flags);
331		rq = task_rq(p);
332		raw_spin_lock(&rq->lock);
333		if (likely(rq == task_rq(p)))
334			return rq;
335		raw_spin_unlock(&rq->lock);
336		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337	}
338}
339
340static void __task_rq_unlock(struct rq *rq)
341	__releases(rq->lock)
342{
343	raw_spin_unlock(&rq->lock);
344}
345
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348	__releases(rq->lock)
349	__releases(p->pi_lock)
350{
351	raw_spin_unlock(&rq->lock);
352	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353}
354
355/*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358static struct rq *this_rq_lock(void)
359	__acquires(rq->lock)
360{
361	struct rq *rq;
362
363	local_irq_disable();
364	rq = this_rq();
365	raw_spin_lock(&rq->lock);
366
367	return rq;
368}
369
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 */
374
375static void hrtick_clear(struct rq *rq)
376{
377	if (hrtimer_active(&rq->hrtick_timer))
378		hrtimer_cancel(&rq->hrtick_timer);
379}
380
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
391	raw_spin_lock(&rq->lock);
392	update_rq_clock(rq);
393	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
394	raw_spin_unlock(&rq->lock);
395
396	return HRTIMER_NORESTART;
397}
398
399#ifdef CONFIG_SMP
400
401static int __hrtick_restart(struct rq *rq)
402{
403	struct hrtimer *timer = &rq->hrtick_timer;
404	ktime_t time = hrtimer_get_softexpires(timer);
405
406	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
413{
414	struct rq *rq = arg;
415
416	raw_spin_lock(&rq->lock);
417	__hrtick_restart(rq);
418	rq->hrtick_csd_pending = 0;
419	raw_spin_unlock(&rq->lock);
420}
421
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
427void hrtick_start(struct rq *rq, u64 delay)
428{
429	struct hrtimer *timer = &rq->hrtick_timer;
430	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
431
432	hrtimer_set_expires(timer, time);
433
434	if (rq == this_rq()) {
435		__hrtick_restart(rq);
436	} else if (!rq->hrtick_csd_pending) {
437		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
438		rq->hrtick_csd_pending = 1;
439	}
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445	int cpu = (int)(long)hcpu;
446
447	switch (action) {
448	case CPU_UP_CANCELED:
449	case CPU_UP_CANCELED_FROZEN:
450	case CPU_DOWN_PREPARE:
451	case CPU_DOWN_PREPARE_FROZEN:
452	case CPU_DEAD:
453	case CPU_DEAD_FROZEN:
454		hrtick_clear(cpu_rq(cpu));
455		return NOTIFY_OK;
456	}
457
458	return NOTIFY_DONE;
459}
460
461static __init void init_hrtick(void)
462{
463	hotcpu_notifier(hotplug_hrtick, 0);
464}
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
471void hrtick_start(struct rq *rq, u64 delay)
472{
473	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
474			HRTIMER_MODE_REL_PINNED, 0);
475}
476
477static inline void init_hrtick(void)
478{
479}
480#endif /* CONFIG_SMP */
481
482static void init_rq_hrtick(struct rq *rq)
483{
484#ifdef CONFIG_SMP
485	rq->hrtick_csd_pending = 0;
486
487	rq->hrtick_csd.flags = 0;
488	rq->hrtick_csd.func = __hrtick_start;
489	rq->hrtick_csd.info = rq;
490#endif
491
492	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493	rq->hrtick_timer.function = hrtick;
494}
495#else	/* CONFIG_SCHED_HRTICK */
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
504static inline void init_hrtick(void)
505{
506}
507#endif	/* CONFIG_SCHED_HRTICK */
508
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
516void resched_task(struct task_struct *p)
517{
518	int cpu;
519
520	lockdep_assert_held(&task_rq(p)->lock);
521
522	if (test_tsk_need_resched(p))
523		return;
524
525	set_tsk_need_resched(p);
526
527	cpu = task_cpu(p);
528	if (cpu == smp_processor_id()) {
529		set_preempt_need_resched();
530		return;
531	}
532
533	/* NEED_RESCHED must be visible before we test polling */
534	smp_mb();
535	if (!tsk_is_polling(p))
536		smp_send_reschedule(cpu);
537}
538
539void resched_cpu(int cpu)
540{
541	struct rq *rq = cpu_rq(cpu);
542	unsigned long flags;
543
544	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
545		return;
546	resched_task(cpu_curr(cpu));
547	raw_spin_unlock_irqrestore(&rq->lock, flags);
548}
549
550#ifdef CONFIG_SMP
551#ifdef CONFIG_NO_HZ_COMMON
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu.  This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562	int cpu = smp_processor_id();
563	int i;
564	struct sched_domain *sd;
565
566	rcu_read_lock();
567	for_each_domain(cpu, sd) {
568		for_each_cpu(i, sched_domain_span(sd)) {
569			if (!idle_cpu(i)) {
570				cpu = i;
571				goto unlock;
572			}
573		}
574	}
575unlock:
576	rcu_read_unlock();
577	return cpu;
578}
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589static void wake_up_idle_cpu(int cpu)
590{
591	struct rq *rq = cpu_rq(cpu);
592
593	if (cpu == smp_processor_id())
594		return;
595
596	/*
597	 * This is safe, as this function is called with the timer
598	 * wheel base lock of (cpu) held. When the CPU is on the way
599	 * to idle and has not yet set rq->curr to idle then it will
600	 * be serialized on the timer wheel base lock and take the new
601	 * timer into account automatically.
602	 */
603	if (rq->curr != rq->idle)
604		return;
605
606	/*
607	 * We can set TIF_RESCHED on the idle task of the other CPU
608	 * lockless. The worst case is that the other CPU runs the
609	 * idle task through an additional NOOP schedule()
610	 */
611	set_tsk_need_resched(rq->idle);
612
613	/* NEED_RESCHED must be visible before we test polling */
614	smp_mb();
615	if (!tsk_is_polling(rq->idle))
616		smp_send_reschedule(cpu);
617}
618
619static bool wake_up_full_nohz_cpu(int cpu)
620{
621	if (tick_nohz_full_cpu(cpu)) {
622		if (cpu != smp_processor_id() ||
623		    tick_nohz_tick_stopped())
624			smp_send_reschedule(cpu);
625		return true;
626	}
627
628	return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
633	if (!wake_up_full_nohz_cpu(cpu))
634		wake_up_idle_cpu(cpu);
635}
636
637static inline bool got_nohz_idle_kick(void)
638{
639	int cpu = smp_processor_id();
640
641	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642		return false;
643
644	if (idle_cpu(cpu) && !need_resched())
645		return true;
646
647	/*
648	 * We can't run Idle Load Balance on this CPU for this time so we
649	 * cancel it and clear NOHZ_BALANCE_KICK
650	 */
651	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652	return false;
653}
654
655#else /* CONFIG_NO_HZ_COMMON */
656
657static inline bool got_nohz_idle_kick(void)
658{
659	return false;
660}
661
662#endif /* CONFIG_NO_HZ_COMMON */
663
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667       struct rq *rq;
668
669       rq = this_rq();
670
671       /* Make sure rq->nr_running update is visible after the IPI */
672       smp_rmb();
673
674       /* More than one running task need preemption */
675       if (rq->nr_running > 1)
676               return false;
677
678       return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
681
682void sched_avg_update(struct rq *rq)
683{
684	s64 period = sched_avg_period();
685
686	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
687		/*
688		 * Inline assembly required to prevent the compiler
689		 * optimising this loop into a divmod call.
690		 * See __iter_div_u64_rem() for another example of this.
691		 */
692		asm("" : "+rm" (rq->age_stamp));
693		rq->age_stamp += period;
694		rq->rt_avg /= 2;
695	}
696}
697
698#endif /* CONFIG_SMP */
699
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
702/*
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
707 */
708int walk_tg_tree_from(struct task_group *from,
709			     tg_visitor down, tg_visitor up, void *data)
710{
711	struct task_group *parent, *child;
712	int ret;
713
714	parent = from;
715
716down:
717	ret = (*down)(parent, data);
718	if (ret)
719		goto out;
720	list_for_each_entry_rcu(child, &parent->children, siblings) {
721		parent = child;
722		goto down;
723
724up:
725		continue;
726	}
727	ret = (*up)(parent, data);
728	if (ret || parent == from)
729		goto out;
730
731	child = parent;
732	parent = parent->parent;
733	if (parent)
734		goto up;
735out:
736	return ret;
737}
738
739int tg_nop(struct task_group *tg, void *data)
740{
741	return 0;
742}
743#endif
744
745static void set_load_weight(struct task_struct *p)
746{
747	int prio = p->static_prio - MAX_RT_PRIO;
748	struct load_weight *load = &p->se.load;
749
750	/*
751	 * SCHED_IDLE tasks get minimal weight:
752	 */
753	if (p->policy == SCHED_IDLE) {
754		load->weight = scale_load(WEIGHT_IDLEPRIO);
755		load->inv_weight = WMULT_IDLEPRIO;
756		return;
757	}
758
759	load->weight = scale_load(prio_to_weight[prio]);
760	load->inv_weight = prio_to_wmult[prio];
761}
762
763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764{
765	update_rq_clock(rq);
766	sched_info_queued(rq, p);
767	p->sched_class->enqueue_task(rq, p, flags);
768}
769
770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
771{
772	update_rq_clock(rq);
773	sched_info_dequeued(rq, p);
774	p->sched_class->dequeue_task(rq, p, flags);
775}
776
777void activate_task(struct rq *rq, struct task_struct *p, int flags)
778{
779	if (task_contributes_to_load(p))
780		rq->nr_uninterruptible--;
781
782	enqueue_task(rq, p, flags);
783}
784
785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
786{
787	if (task_contributes_to_load(p))
788		rq->nr_uninterruptible++;
789
790	dequeue_task(rq, p, flags);
791}
792
793static void update_rq_clock_task(struct rq *rq, s64 delta)
794{
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800	s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
803	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
804
805	/*
806	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807	 * this case when a previous update_rq_clock() happened inside a
808	 * {soft,}irq region.
809	 *
810	 * When this happens, we stop ->clock_task and only update the
811	 * prev_irq_time stamp to account for the part that fit, so that a next
812	 * update will consume the rest. This ensures ->clock_task is
813	 * monotonic.
814	 *
815	 * It does however cause some slight miss-attribution of {soft,}irq
816	 * time, a more accurate solution would be to update the irq_time using
817	 * the current rq->clock timestamp, except that would require using
818	 * atomic ops.
819	 */
820	if (irq_delta > delta)
821		irq_delta = delta;
822
823	rq->prev_irq_time += irq_delta;
824	delta -= irq_delta;
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
827	if (static_key_false((&paravirt_steal_rq_enabled))) {
828		u64 st;
829
830		steal = paravirt_steal_clock(cpu_of(rq));
831		steal -= rq->prev_steal_time_rq;
832
833		if (unlikely(steal > delta))
834			steal = delta;
835
836		st = steal_ticks(steal);
837		steal = st * TICK_NSEC;
838
839		rq->prev_steal_time_rq += steal;
840
841		delta -= steal;
842	}
843#endif
844
845	rq->clock_task += delta;
846
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849		sched_rt_avg_update(rq, irq_delta + steal);
850#endif
851}
852
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856	struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858	if (stop) {
859		/*
860		 * Make it appear like a SCHED_FIFO task, its something
861		 * userspace knows about and won't get confused about.
862		 *
863		 * Also, it will make PI more or less work without too
864		 * much confusion -- but then, stop work should not
865		 * rely on PI working anyway.
866		 */
867		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869		stop->sched_class = &stop_sched_class;
870	}
871
872	cpu_rq(cpu)->stop = stop;
873
874	if (old_stop) {
875		/*
876		 * Reset it back to a normal scheduling class so that
877		 * it can die in pieces.
878		 */
879		old_stop->sched_class = &rt_sched_class;
880	}
881}
882
883/*
884 * __normal_prio - return the priority that is based on the static prio
885 */
886static inline int __normal_prio(struct task_struct *p)
887{
888	return p->static_prio;
889}
890
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
898static inline int normal_prio(struct task_struct *p)
899{
900	int prio;
901
902	if (task_has_rt_policy(p))
903		prio = MAX_RT_PRIO-1 - p->rt_priority;
904	else
905		prio = __normal_prio(p);
906	return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916static int effective_prio(struct task_struct *p)
917{
918	p->normal_prio = normal_prio(p);
919	/*
920	 * If we are RT tasks or we were boosted to RT priority,
921	 * keep the priority unchanged. Otherwise, update priority
922	 * to the normal priority:
923	 */
924	if (!rt_prio(p->prio))
925		return p->normal_prio;
926	return p->prio;
927}
928
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935inline int task_curr(const struct task_struct *p)
936{
937	return cpu_curr(task_cpu(p)) == p;
938}
939
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941				       const struct sched_class *prev_class,
942				       int oldprio)
943{
944	if (prev_class != p->sched_class) {
945		if (prev_class->switched_from)
946			prev_class->switched_from(rq, p);
947		p->sched_class->switched_to(rq, p);
948	} else if (oldprio != p->prio)
949		p->sched_class->prio_changed(rq, p, oldprio);
950}
951
952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953{
954	const struct sched_class *class;
955
956	if (p->sched_class == rq->curr->sched_class) {
957		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958	} else {
959		for_each_class(class) {
960			if (class == rq->curr->sched_class)
961				break;
962			if (class == p->sched_class) {
963				resched_task(rq->curr);
964				break;
965			}
966		}
967	}
968
969	/*
970	 * A queue event has occurred, and we're going to schedule.  In
971	 * this case, we can save a useless back to back clock update.
972	 */
973	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974		rq->skip_clock_update = 1;
975}
976
977#ifdef CONFIG_SMP
978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979{
980#ifdef CONFIG_SCHED_DEBUG
981	/*
982	 * We should never call set_task_cpu() on a blocked task,
983	 * ttwu() will sort out the placement.
984	 */
985	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986			!(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988#ifdef CONFIG_LOCKDEP
989	/*
990	 * The caller should hold either p->pi_lock or rq->lock, when changing
991	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992	 *
993	 * sched_move_task() holds both and thus holding either pins the cgroup,
994	 * see task_group().
995	 *
996	 * Furthermore, all task_rq users should acquire both locks, see
997	 * task_rq_lock().
998	 */
999	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000				      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004	trace_sched_migrate_task(p, new_cpu);
1005
1006	if (task_cpu(p) != new_cpu) {
1007		if (p->sched_class->migrate_task_rq)
1008			p->sched_class->migrate_task_rq(p, new_cpu);
1009		p->se.nr_migrations++;
1010		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011	}
1012
1013	__set_task_cpu(p, new_cpu);
1014}
1015
1016struct migration_arg {
1017	struct task_struct *task;
1018	int dest_cpu;
1019};
1020
1021static int migration_cpu_stop(void *data);
1022
1023/*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change.  If it changes, i.e. @p might have woken up,
1028 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count).  If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
1039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1040{
1041	unsigned long flags;
1042	int running, on_rq;
1043	unsigned long ncsw;
1044	struct rq *rq;
1045
1046	for (;;) {
1047		/*
1048		 * We do the initial early heuristics without holding
1049		 * any task-queue locks at all. We'll only try to get
1050		 * the runqueue lock when things look like they will
1051		 * work out!
1052		 */
1053		rq = task_rq(p);
1054
1055		/*
1056		 * If the task is actively running on another CPU
1057		 * still, just relax and busy-wait without holding
1058		 * any locks.
1059		 *
1060		 * NOTE! Since we don't hold any locks, it's not
1061		 * even sure that "rq" stays as the right runqueue!
1062		 * But we don't care, since "task_running()" will
1063		 * return false if the runqueue has changed and p
1064		 * is actually now running somewhere else!
1065		 */
1066		while (task_running(rq, p)) {
1067			if (match_state && unlikely(p->state != match_state))
1068				return 0;
1069			cpu_relax();
1070		}
1071
1072		/*
1073		 * Ok, time to look more closely! We need the rq
1074		 * lock now, to be *sure*. If we're wrong, we'll
1075		 * just go back and repeat.
1076		 */
1077		rq = task_rq_lock(p, &flags);
1078		trace_sched_wait_task(p);
1079		running = task_running(rq, p);
1080		on_rq = p->on_rq;
1081		ncsw = 0;
1082		if (!match_state || p->state == match_state)
1083			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1084		task_rq_unlock(rq, p, &flags);
1085
1086		/*
1087		 * If it changed from the expected state, bail out now.
1088		 */
1089		if (unlikely(!ncsw))
1090			break;
1091
1092		/*
1093		 * Was it really running after all now that we
1094		 * checked with the proper locks actually held?
1095		 *
1096		 * Oops. Go back and try again..
1097		 */
1098		if (unlikely(running)) {
1099			cpu_relax();
1100			continue;
1101		}
1102
1103		/*
1104		 * It's not enough that it's not actively running,
1105		 * it must be off the runqueue _entirely_, and not
1106		 * preempted!
1107		 *
1108		 * So if it was still runnable (but just not actively
1109		 * running right now), it's preempted, and we should
1110		 * yield - it could be a while.
1111		 */
1112		if (unlikely(on_rq)) {
1113			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115			set_current_state(TASK_UNINTERRUPTIBLE);
1116			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1117			continue;
1118		}
1119
1120		/*
1121		 * Ahh, all good. It wasn't running, and it wasn't
1122		 * runnable, which means that it will never become
1123		 * running in the future either. We're all done!
1124		 */
1125		break;
1126	}
1127
1128	return ncsw;
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
1138 * NOTE: this function doesn't have to take the runqueue lock,
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
1144void kick_process(struct task_struct *p)
1145{
1146	int cpu;
1147
1148	preempt_disable();
1149	cpu = task_cpu(p);
1150	if ((cpu != smp_processor_id()) && task_curr(p))
1151		smp_send_reschedule(cpu);
1152	preempt_enable();
1153}
1154EXPORT_SYMBOL_GPL(kick_process);
1155#endif /* CONFIG_SMP */
1156
1157#ifdef CONFIG_SMP
1158/*
1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1160 */
1161static int select_fallback_rq(int cpu, struct task_struct *p)
1162{
1163	int nid = cpu_to_node(cpu);
1164	const struct cpumask *nodemask = NULL;
1165	enum { cpuset, possible, fail } state = cpuset;
1166	int dest_cpu;
1167
1168	/*
1169	 * If the node that the cpu is on has been offlined, cpu_to_node()
1170	 * will return -1. There is no cpu on the node, and we should
1171	 * select the cpu on the other node.
1172	 */
1173	if (nid != -1) {
1174		nodemask = cpumask_of_node(nid);
1175
1176		/* Look for allowed, online CPU in same node. */
1177		for_each_cpu(dest_cpu, nodemask) {
1178			if (!cpu_online(dest_cpu))
1179				continue;
1180			if (!cpu_active(dest_cpu))
1181				continue;
1182			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183				return dest_cpu;
1184		}
1185	}
1186
1187	for (;;) {
1188		/* Any allowed, online CPU? */
1189		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1190			if (!cpu_online(dest_cpu))
1191				continue;
1192			if (!cpu_active(dest_cpu))
1193				continue;
1194			goto out;
1195		}
1196
1197		switch (state) {
1198		case cpuset:
1199			/* No more Mr. Nice Guy. */
1200			cpuset_cpus_allowed_fallback(p);
1201			state = possible;
1202			break;
1203
1204		case possible:
1205			do_set_cpus_allowed(p, cpu_possible_mask);
1206			state = fail;
1207			break;
1208
1209		case fail:
1210			BUG();
1211			break;
1212		}
1213	}
1214
1215out:
1216	if (state != cpuset) {
1217		/*
1218		 * Don't tell them about moving exiting tasks or
1219		 * kernel threads (both mm NULL), since they never
1220		 * leave kernel.
1221		 */
1222		if (p->mm && printk_ratelimit()) {
1223			printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224					task_pid_nr(p), p->comm, cpu);
1225		}
1226	}
1227
1228	return dest_cpu;
1229}
1230
1231/*
1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1233 */
1234static inline
1235int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1236{
1237	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1238
1239	/*
1240	 * In order not to call set_task_cpu() on a blocking task we need
1241	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242	 * cpu.
1243	 *
1244	 * Since this is common to all placement strategies, this lives here.
1245	 *
1246	 * [ this allows ->select_task() to simply return task_cpu(p) and
1247	 *   not worry about this generic constraint ]
1248	 */
1249	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1250		     !cpu_online(cpu)))
1251		cpu = select_fallback_rq(task_cpu(p), p);
1252
1253	return cpu;
1254}
1255
1256static void update_avg(u64 *avg, u64 sample)
1257{
1258	s64 diff = sample - *avg;
1259	*avg += diff >> 3;
1260}
1261#endif
1262
1263static void
1264ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1265{
1266#ifdef CONFIG_SCHEDSTATS
1267	struct rq *rq = this_rq();
1268
1269#ifdef CONFIG_SMP
1270	int this_cpu = smp_processor_id();
1271
1272	if (cpu == this_cpu) {
1273		schedstat_inc(rq, ttwu_local);
1274		schedstat_inc(p, se.statistics.nr_wakeups_local);
1275	} else {
1276		struct sched_domain *sd;
1277
1278		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1279		rcu_read_lock();
1280		for_each_domain(this_cpu, sd) {
1281			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282				schedstat_inc(sd, ttwu_wake_remote);
1283				break;
1284			}
1285		}
1286		rcu_read_unlock();
1287	}
1288
1289	if (wake_flags & WF_MIGRATED)
1290		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
1292#endif /* CONFIG_SMP */
1293
1294	schedstat_inc(rq, ttwu_count);
1295	schedstat_inc(p, se.statistics.nr_wakeups);
1296
1297	if (wake_flags & WF_SYNC)
1298		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1299
1300#endif /* CONFIG_SCHEDSTATS */
1301}
1302
1303static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304{
1305	activate_task(rq, p, en_flags);
1306	p->on_rq = 1;
1307
1308	/* if a worker is waking up, notify workqueue */
1309	if (p->flags & PF_WQ_WORKER)
1310		wq_worker_waking_up(p, cpu_of(rq));
1311}
1312
1313/*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
1316static void
1317ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1318{
1319	check_preempt_curr(rq, p, wake_flags);
1320	trace_sched_wakeup(p, true);
1321
1322	p->state = TASK_RUNNING;
1323#ifdef CONFIG_SMP
1324	if (p->sched_class->task_woken)
1325		p->sched_class->task_woken(rq, p);
1326
1327	if (rq->idle_stamp) {
1328		u64 delta = rq_clock(rq) - rq->idle_stamp;
1329		u64 max = 2*rq->max_idle_balance_cost;
1330
1331		update_avg(&rq->avg_idle, delta);
1332
1333		if (rq->avg_idle > max)
1334			rq->avg_idle = max;
1335
1336		rq->idle_stamp = 0;
1337	}
1338#endif
1339}
1340
1341static void
1342ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343{
1344#ifdef CONFIG_SMP
1345	if (p->sched_contributes_to_load)
1346		rq->nr_uninterruptible--;
1347#endif
1348
1349	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350	ttwu_do_wakeup(rq, p, wake_flags);
1351}
1352
1353/*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359static int ttwu_remote(struct task_struct *p, int wake_flags)
1360{
1361	struct rq *rq;
1362	int ret = 0;
1363
1364	rq = __task_rq_lock(p);
1365	if (p->on_rq) {
1366		/* check_preempt_curr() may use rq clock */
1367		update_rq_clock(rq);
1368		ttwu_do_wakeup(rq, p, wake_flags);
1369		ret = 1;
1370	}
1371	__task_rq_unlock(rq);
1372
1373	return ret;
1374}
1375
1376#ifdef CONFIG_SMP
1377static void sched_ttwu_pending(void)
1378{
1379	struct rq *rq = this_rq();
1380	struct llist_node *llist = llist_del_all(&rq->wake_list);
1381	struct task_struct *p;
1382
1383	raw_spin_lock(&rq->lock);
1384
1385	while (llist) {
1386		p = llist_entry(llist, struct task_struct, wake_entry);
1387		llist = llist_next(llist);
1388		ttwu_do_activate(rq, p, 0);
1389	}
1390
1391	raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
1396	/*
1397	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399	 * this IPI.
1400	 */
1401	if (tif_need_resched())
1402		set_preempt_need_resched();
1403
1404	if (llist_empty(&this_rq()->wake_list)
1405			&& !tick_nohz_full_cpu(smp_processor_id())
1406			&& !got_nohz_idle_kick())
1407		return;
1408
1409	/*
1410	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411	 * traditionally all their work was done from the interrupt return
1412	 * path. Now that we actually do some work, we need to make sure
1413	 * we do call them.
1414	 *
1415	 * Some archs already do call them, luckily irq_enter/exit nest
1416	 * properly.
1417	 *
1418	 * Arguably we should visit all archs and update all handlers,
1419	 * however a fair share of IPIs are still resched only so this would
1420	 * somewhat pessimize the simple resched case.
1421	 */
1422	irq_enter();
1423	tick_nohz_full_check();
1424	sched_ttwu_pending();
1425
1426	/*
1427	 * Check if someone kicked us for doing the nohz idle load balance.
1428	 */
1429	if (unlikely(got_nohz_idle_kick())) {
1430		this_rq()->idle_balance = 1;
1431		raise_softirq_irqoff(SCHED_SOFTIRQ);
1432	}
1433	irq_exit();
1434}
1435
1436static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437{
1438	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1439		smp_send_reschedule(cpu);
1440}
1441
1442bool cpus_share_cache(int this_cpu, int that_cpu)
1443{
1444	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445}
1446#endif /* CONFIG_SMP */
1447
1448static void ttwu_queue(struct task_struct *p, int cpu)
1449{
1450	struct rq *rq = cpu_rq(cpu);
1451
1452#if defined(CONFIG_SMP)
1453	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1454		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1455		ttwu_queue_remote(p, cpu);
1456		return;
1457	}
1458#endif
1459
1460	raw_spin_lock(&rq->lock);
1461	ttwu_do_activate(rq, p, 0);
1462	raw_spin_unlock(&rq->lock);
1463}
1464
1465/**
1466 * try_to_wake_up - wake up a thread
1467 * @p: the thread to be awakened
1468 * @state: the mask of task states that can be woken
1469 * @wake_flags: wake modifier flags (WF_*)
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
1477 * Return: %true if @p was woken up, %false if it was already running.
1478 * or @state didn't match @p's state.
1479 */
1480static int
1481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1482{
1483	unsigned long flags;
1484	int cpu, success = 0;
1485
1486	/*
1487	 * If we are going to wake up a thread waiting for CONDITION we
1488	 * need to ensure that CONDITION=1 done by the caller can not be
1489	 * reordered with p->state check below. This pairs with mb() in
1490	 * set_current_state() the waiting thread does.
1491	 */
1492	smp_mb__before_spinlock();
1493	raw_spin_lock_irqsave(&p->pi_lock, flags);
1494	if (!(p->state & state))
1495		goto out;
1496
1497	success = 1; /* we're going to change ->state */
1498	cpu = task_cpu(p);
1499
1500	if (p->on_rq && ttwu_remote(p, wake_flags))
1501		goto stat;
1502
1503#ifdef CONFIG_SMP
1504	/*
1505	 * If the owning (remote) cpu is still in the middle of schedule() with
1506	 * this task as prev, wait until its done referencing the task.
1507	 */
1508	while (p->on_cpu)
1509		cpu_relax();
1510	/*
1511	 * Pairs with the smp_wmb() in finish_lock_switch().
1512	 */
1513	smp_rmb();
1514
1515	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1516	p->state = TASK_WAKING;
1517
1518	if (p->sched_class->task_waking)
1519		p->sched_class->task_waking(p);
1520
1521	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1522	if (task_cpu(p) != cpu) {
1523		wake_flags |= WF_MIGRATED;
1524		set_task_cpu(p, cpu);
1525	}
1526#endif /* CONFIG_SMP */
1527
1528	ttwu_queue(p, cpu);
1529stat:
1530	ttwu_stat(p, cpu, wake_flags);
1531out:
1532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1533
1534	return success;
1535}
1536
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
1541 * Put @p on the run-queue if it's not already there. The caller must
1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1543 * the current task.
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547	struct rq *rq = task_rq(p);
1548
1549	if (WARN_ON_ONCE(rq != this_rq()) ||
1550	    WARN_ON_ONCE(p == current))
1551		return;
1552
1553	lockdep_assert_held(&rq->lock);
1554
1555	if (!raw_spin_trylock(&p->pi_lock)) {
1556		raw_spin_unlock(&rq->lock);
1557		raw_spin_lock(&p->pi_lock);
1558		raw_spin_lock(&rq->lock);
1559	}
1560
1561	if (!(p->state & TASK_NORMAL))
1562		goto out;
1563
1564	if (!p->on_rq)
1565		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
1567	ttwu_do_wakeup(rq, p, 0);
1568	ttwu_stat(p, smp_processor_id(), 0);
1569out:
1570	raw_spin_unlock(&p->pi_lock);
1571}
1572
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
1585int wake_up_process(struct task_struct *p)
1586{
1587	WARN_ON(task_is_stopped_or_traced(p));
1588	return try_to_wake_up(p, TASK_NORMAL, 0);
1589}
1590EXPORT_SYMBOL(wake_up_process);
1591
1592int wake_up_state(struct task_struct *p, unsigned int state)
1593{
1594	return try_to_wake_up(p, state, 0);
1595}
1596
1597/*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603static void __sched_fork(struct task_struct *p)
1604{
1605	p->on_rq			= 0;
1606
1607	p->se.on_rq			= 0;
1608	p->se.exec_start		= 0;
1609	p->se.sum_exec_runtime		= 0;
1610	p->se.prev_sum_exec_runtime	= 0;
1611	p->se.nr_migrations		= 0;
1612	p->se.vruntime			= 0;
1613	INIT_LIST_HEAD(&p->se.group_node);
1614
1615#ifdef CONFIG_SCHEDSTATS
1616	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1617#endif
1618
1619	INIT_LIST_HEAD(&p->rt.run_list);
1620
1621#ifdef CONFIG_PREEMPT_NOTIFIERS
1622	INIT_HLIST_HEAD(&p->preempt_notifiers);
1623#endif
1624
1625#ifdef CONFIG_NUMA_BALANCING
1626	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1627		p->mm->numa_next_scan = jiffies;
1628		p->mm->numa_next_reset = jiffies;
1629		p->mm->numa_scan_seq = 0;
1630	}
1631
1632	p->node_stamp = 0ULL;
1633	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1634	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1635	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1636	p->numa_work.next = &p->numa_work;
1637#endif /* CONFIG_NUMA_BALANCING */
1638}
1639
1640#ifdef CONFIG_NUMA_BALANCING
1641#ifdef CONFIG_SCHED_DEBUG
1642void set_numabalancing_state(bool enabled)
1643{
1644	if (enabled)
1645		sched_feat_set("NUMA");
1646	else
1647		sched_feat_set("NO_NUMA");
1648}
1649#else
1650__read_mostly bool numabalancing_enabled;
1651
1652void set_numabalancing_state(bool enabled)
1653{
1654	numabalancing_enabled = enabled;
1655}
1656#endif /* CONFIG_SCHED_DEBUG */
1657#endif /* CONFIG_NUMA_BALANCING */
1658
1659/*
1660 * fork()/clone()-time setup:
1661 */
1662void sched_fork(struct task_struct *p)
1663{
1664	unsigned long flags;
1665	int cpu = get_cpu();
1666
1667	__sched_fork(p);
1668	/*
1669	 * We mark the process as running here. This guarantees that
1670	 * nobody will actually run it, and a signal or other external
1671	 * event cannot wake it up and insert it on the runqueue either.
1672	 */
1673	p->state = TASK_RUNNING;
1674
1675	/*
1676	 * Make sure we do not leak PI boosting priority to the child.
1677	 */
1678	p->prio = current->normal_prio;
1679
1680	/*
1681	 * Revert to default priority/policy on fork if requested.
1682	 */
1683	if (unlikely(p->sched_reset_on_fork)) {
1684		if (task_has_rt_policy(p)) {
1685			p->policy = SCHED_NORMAL;
1686			p->static_prio = NICE_TO_PRIO(0);
1687			p->rt_priority = 0;
1688		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1689			p->static_prio = NICE_TO_PRIO(0);
1690
1691		p->prio = p->normal_prio = __normal_prio(p);
1692		set_load_weight(p);
1693
1694		/*
1695		 * We don't need the reset flag anymore after the fork. It has
1696		 * fulfilled its duty:
1697		 */
1698		p->sched_reset_on_fork = 0;
1699	}
1700
1701	if (!rt_prio(p->prio))
1702		p->sched_class = &fair_sched_class;
1703
1704	if (p->sched_class->task_fork)
1705		p->sched_class->task_fork(p);
1706
1707	/*
1708	 * The child is not yet in the pid-hash so no cgroup attach races,
1709	 * and the cgroup is pinned to this child due to cgroup_fork()
1710	 * is ran before sched_fork().
1711	 *
1712	 * Silence PROVE_RCU.
1713	 */
1714	raw_spin_lock_irqsave(&p->pi_lock, flags);
1715	set_task_cpu(p, cpu);
1716	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1717
1718#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1719	if (likely(sched_info_on()))
1720		memset(&p->sched_info, 0, sizeof(p->sched_info));
1721#endif
1722#if defined(CONFIG_SMP)
1723	p->on_cpu = 0;
1724#endif
1725#ifdef CONFIG_PREEMPT_COUNT
1726	init_task_preempt_count(p);
1727#endif
1728#ifdef CONFIG_SMP
1729	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1730#endif
1731
1732	put_cpu();
1733}
1734
1735/*
1736 * wake_up_new_task - wake up a newly created task for the first time.
1737 *
1738 * This function will do some initial scheduler statistics housekeeping
1739 * that must be done for every newly created context, then puts the task
1740 * on the runqueue and wakes it.
1741 */
1742void wake_up_new_task(struct task_struct *p)
1743{
1744	unsigned long flags;
1745	struct rq *rq;
1746
1747	raw_spin_lock_irqsave(&p->pi_lock, flags);
1748#ifdef CONFIG_SMP
1749	/*
1750	 * Fork balancing, do it here and not earlier because:
1751	 *  - cpus_allowed can change in the fork path
1752	 *  - any previously selected cpu might disappear through hotplug
1753	 */
1754	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1755#endif
1756
1757	/* Initialize new task's runnable average */
1758	init_task_runnable_average(p);
1759	rq = __task_rq_lock(p);
1760	activate_task(rq, p, 0);
1761	p->on_rq = 1;
1762	trace_sched_wakeup_new(p, true);
1763	check_preempt_curr(rq, p, WF_FORK);
1764#ifdef CONFIG_SMP
1765	if (p->sched_class->task_woken)
1766		p->sched_class->task_woken(rq, p);
1767#endif
1768	task_rq_unlock(rq, p, &flags);
1769}
1770
1771#ifdef CONFIG_PREEMPT_NOTIFIERS
1772
1773/**
1774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1775 * @notifier: notifier struct to register
1776 */
1777void preempt_notifier_register(struct preempt_notifier *notifier)
1778{
1779	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780}
1781EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782
1783/**
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
1785 * @notifier: notifier struct to unregister
1786 *
1787 * This is safe to call from within a preemption notifier.
1788 */
1789void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790{
1791	hlist_del(&notifier->link);
1792}
1793EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794
1795static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796{
1797	struct preempt_notifier *notifier;
1798
1799	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1800		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1801}
1802
1803static void
1804fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805				 struct task_struct *next)
1806{
1807	struct preempt_notifier *notifier;
1808
1809	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1810		notifier->ops->sched_out(notifier, next);
1811}
1812
1813#else /* !CONFIG_PREEMPT_NOTIFIERS */
1814
1815static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816{
1817}
1818
1819static void
1820fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821				 struct task_struct *next)
1822{
1823}
1824
1825#endif /* CONFIG_PREEMPT_NOTIFIERS */
1826
1827/**
1828 * prepare_task_switch - prepare to switch tasks
1829 * @rq: the runqueue preparing to switch
1830 * @prev: the current task that is being switched out
1831 * @next: the task we are going to switch to.
1832 *
1833 * This is called with the rq lock held and interrupts off. It must
1834 * be paired with a subsequent finish_task_switch after the context
1835 * switch.
1836 *
1837 * prepare_task_switch sets up locking and calls architecture specific
1838 * hooks.
1839 */
1840static inline void
1841prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842		    struct task_struct *next)
1843{
1844	trace_sched_switch(prev, next);
1845	sched_info_switch(rq, prev, next);
1846	perf_event_task_sched_out(prev, next);
1847	fire_sched_out_preempt_notifiers(prev, next);
1848	prepare_lock_switch(rq, next);
1849	prepare_arch_switch(next);
1850}
1851
1852/**
1853 * finish_task_switch - clean up after a task-switch
1854 * @rq: runqueue associated with task-switch
1855 * @prev: the thread we just switched away from.
1856 *
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1861 *
1862 * Note that we may have delayed dropping an mm in context_switch(). If
1863 * so, we finish that here outside of the runqueue lock. (Doing it
1864 * with the lock held can cause deadlocks; see schedule() for
1865 * details.)
1866 */
1867static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1868	__releases(rq->lock)
1869{
1870	struct mm_struct *mm = rq->prev_mm;
1871	long prev_state;
1872
1873	rq->prev_mm = NULL;
1874
1875	/*
1876	 * A task struct has one reference for the use as "current".
1877	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1878	 * schedule one last time. The schedule call will never return, and
1879	 * the scheduled task must drop that reference.
1880	 * The test for TASK_DEAD must occur while the runqueue locks are
1881	 * still held, otherwise prev could be scheduled on another cpu, die
1882	 * there before we look at prev->state, and then the reference would
1883	 * be dropped twice.
1884	 *		Manfred Spraul <manfred@colorfullife.com>
1885	 */
1886	prev_state = prev->state;
1887	vtime_task_switch(prev);
1888	finish_arch_switch(prev);
1889	perf_event_task_sched_in(prev, current);
1890	finish_lock_switch(rq, prev);
1891	finish_arch_post_lock_switch();
1892
1893	fire_sched_in_preempt_notifiers(current);
1894	if (mm)
1895		mmdrop(mm);
1896	if (unlikely(prev_state == TASK_DEAD)) {
1897		/*
1898		 * Remove function-return probe instances associated with this
1899		 * task and put them back on the free list.
1900		 */
1901		kprobe_flush_task(prev);
1902		put_task_struct(prev);
1903	}
1904
1905	tick_nohz_task_switch(current);
1906}
1907
1908#ifdef CONFIG_SMP
1909
1910/* assumes rq->lock is held */
1911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1912{
1913	if (prev->sched_class->pre_schedule)
1914		prev->sched_class->pre_schedule(rq, prev);
1915}
1916
1917/* rq->lock is NOT held, but preemption is disabled */
1918static inline void post_schedule(struct rq *rq)
1919{
1920	if (rq->post_schedule) {
1921		unsigned long flags;
1922
1923		raw_spin_lock_irqsave(&rq->lock, flags);
1924		if (rq->curr->sched_class->post_schedule)
1925			rq->curr->sched_class->post_schedule(rq);
1926		raw_spin_unlock_irqrestore(&rq->lock, flags);
1927
1928		rq->post_schedule = 0;
1929	}
1930}
1931
1932#else
1933
1934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1935{
1936}
1937
1938static inline void post_schedule(struct rq *rq)
1939{
1940}
1941
1942#endif
1943
1944/**
1945 * schedule_tail - first thing a freshly forked thread must call.
1946 * @prev: the thread we just switched away from.
1947 */
1948asmlinkage void schedule_tail(struct task_struct *prev)
1949	__releases(rq->lock)
1950{
1951	struct rq *rq = this_rq();
1952
1953	finish_task_switch(rq, prev);
1954
1955	/*
1956	 * FIXME: do we need to worry about rq being invalidated by the
1957	 * task_switch?
1958	 */
1959	post_schedule(rq);
1960
1961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962	/* In this case, finish_task_switch does not reenable preemption */
1963	preempt_enable();
1964#endif
1965	if (current->set_child_tid)
1966		put_user(task_pid_vnr(current), current->set_child_tid);
1967}
1968
1969/*
1970 * context_switch - switch to the new MM and the new
1971 * thread's register state.
1972 */
1973static inline void
1974context_switch(struct rq *rq, struct task_struct *prev,
1975	       struct task_struct *next)
1976{
1977	struct mm_struct *mm, *oldmm;
1978
1979	prepare_task_switch(rq, prev, next);
1980
1981	mm = next->mm;
1982	oldmm = prev->active_mm;
1983	/*
1984	 * For paravirt, this is coupled with an exit in switch_to to
1985	 * combine the page table reload and the switch backend into
1986	 * one hypercall.
1987	 */
1988	arch_start_context_switch(prev);
1989
1990	if (!mm) {
1991		next->active_mm = oldmm;
1992		atomic_inc(&oldmm->mm_count);
1993		enter_lazy_tlb(oldmm, next);
1994	} else
1995		switch_mm(oldmm, mm, next);
1996
1997	if (!prev->mm) {
1998		prev->active_mm = NULL;
1999		rq->prev_mm = oldmm;
2000	}
2001	/*
2002	 * Since the runqueue lock will be released by the next
2003	 * task (which is an invalid locking op but in the case
2004	 * of the scheduler it's an obvious special-case), so we
2005	 * do an early lockdep release here:
2006	 */
2007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2008	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2009#endif
2010
2011	context_tracking_task_switch(prev, next);
2012	/* Here we just switch the register state and the stack. */
2013	switch_to(prev, next, prev);
2014
2015	barrier();
2016	/*
2017	 * this_rq must be evaluated again because prev may have moved
2018	 * CPUs since it called schedule(), thus the 'rq' on its stack
2019	 * frame will be invalid.
2020	 */
2021	finish_task_switch(this_rq(), prev);
2022}
2023
2024/*
2025 * nr_running and nr_context_switches:
2026 *
2027 * externally visible scheduler statistics: current number of runnable
2028 * threads, total number of context switches performed since bootup.
2029 */
2030unsigned long nr_running(void)
2031{
2032	unsigned long i, sum = 0;
2033
2034	for_each_online_cpu(i)
2035		sum += cpu_rq(i)->nr_running;
2036
2037	return sum;
2038}
2039
2040unsigned long long nr_context_switches(void)
2041{
2042	int i;
2043	unsigned long long sum = 0;
2044
2045	for_each_possible_cpu(i)
2046		sum += cpu_rq(i)->nr_switches;
2047
2048	return sum;
2049}
2050
2051unsigned long nr_iowait(void)
2052{
2053	unsigned long i, sum = 0;
2054
2055	for_each_possible_cpu(i)
2056		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2057
2058	return sum;
2059}
2060
2061unsigned long nr_iowait_cpu(int cpu)
2062{
2063	struct rq *this = cpu_rq(cpu);
2064	return atomic_read(&this->nr_iowait);
2065}
2066
2067#ifdef CONFIG_SMP
2068
2069/*
2070 * sched_exec - execve() is a valuable balancing opportunity, because at
2071 * this point the task has the smallest effective memory and cache footprint.
2072 */
2073void sched_exec(void)
2074{
2075	struct task_struct *p = current;
2076	unsigned long flags;
2077	int dest_cpu;
2078
2079	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2081	if (dest_cpu == smp_processor_id())
2082		goto unlock;
2083
2084	if (likely(cpu_active(dest_cpu))) {
2085		struct migration_arg arg = { p, dest_cpu };
2086
2087		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2089		return;
2090	}
2091unlock:
2092	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2093}
2094
2095#endif
2096
2097DEFINE_PER_CPU(struct kernel_stat, kstat);
2098DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2099
2100EXPORT_PER_CPU_SYMBOL(kstat);
2101EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2102
2103/*
2104 * Return any ns on the sched_clock that have not yet been accounted in
2105 * @p in case that task is currently running.
2106 *
2107 * Called with task_rq_lock() held on @rq.
2108 */
2109static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2110{
2111	u64 ns = 0;
2112
2113	if (task_current(rq, p)) {
2114		update_rq_clock(rq);
2115		ns = rq_clock_task(rq) - p->se.exec_start;
2116		if ((s64)ns < 0)
2117			ns = 0;
2118	}
2119
2120	return ns;
2121}
2122
2123unsigned long long task_delta_exec(struct task_struct *p)
2124{
2125	unsigned long flags;
2126	struct rq *rq;
2127	u64 ns = 0;
2128
2129	rq = task_rq_lock(p, &flags);
2130	ns = do_task_delta_exec(p, rq);
2131	task_rq_unlock(rq, p, &flags);
2132
2133	return ns;
2134}
2135
2136/*
2137 * Return accounted runtime for the task.
2138 * In case the task is currently running, return the runtime plus current's
2139 * pending runtime that have not been accounted yet.
2140 */
2141unsigned long long task_sched_runtime(struct task_struct *p)
2142{
2143	unsigned long flags;
2144	struct rq *rq;
2145	u64 ns = 0;
2146
2147	rq = task_rq_lock(p, &flags);
2148	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2149	task_rq_unlock(rq, p, &flags);
2150
2151	return ns;
2152}
2153
2154/*
2155 * This function gets called by the timer code, with HZ frequency.
2156 * We call it with interrupts disabled.
2157 */
2158void scheduler_tick(void)
2159{
2160	int cpu = smp_processor_id();
2161	struct rq *rq = cpu_rq(cpu);
2162	struct task_struct *curr = rq->curr;
2163
2164	sched_clock_tick();
2165
2166	raw_spin_lock(&rq->lock);
2167	update_rq_clock(rq);
2168	curr->sched_class->task_tick(rq, curr, 0);
2169	update_cpu_load_active(rq);
2170	raw_spin_unlock(&rq->lock);
2171
2172	perf_event_task_tick();
2173
2174#ifdef CONFIG_SMP
2175	rq->idle_balance = idle_cpu(cpu);
2176	trigger_load_balance(rq, cpu);
2177#endif
2178	rq_last_tick_reset(rq);
2179}
2180
2181#ifdef CONFIG_NO_HZ_FULL
2182/**
2183 * scheduler_tick_max_deferment
2184 *
2185 * Keep at least one tick per second when a single
2186 * active task is running because the scheduler doesn't
2187 * yet completely support full dynticks environment.
2188 *
2189 * This makes sure that uptime, CFS vruntime, load
2190 * balancing, etc... continue to move forward, even
2191 * with a very low granularity.
2192 *
2193 * Return: Maximum deferment in nanoseconds.
2194 */
2195u64 scheduler_tick_max_deferment(void)
2196{
2197	struct rq *rq = this_rq();
2198	unsigned long next, now = ACCESS_ONCE(jiffies);
2199
2200	next = rq->last_sched_tick + HZ;
2201
2202	if (time_before_eq(next, now))
2203		return 0;
2204
2205	return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2206}
2207#endif
2208
2209notrace unsigned long get_parent_ip(unsigned long addr)
2210{
2211	if (in_lock_functions(addr)) {
2212		addr = CALLER_ADDR2;
2213		if (in_lock_functions(addr))
2214			addr = CALLER_ADDR3;
2215	}
2216	return addr;
2217}
2218
2219#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2220				defined(CONFIG_PREEMPT_TRACER))
2221
2222void __kprobes preempt_count_add(int val)
2223{
2224#ifdef CONFIG_DEBUG_PREEMPT
2225	/*
2226	 * Underflow?
2227	 */
2228	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2229		return;
2230#endif
2231	__preempt_count_add(val);
2232#ifdef CONFIG_DEBUG_PREEMPT
2233	/*
2234	 * Spinlock count overflowing soon?
2235	 */
2236	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2237				PREEMPT_MASK - 10);
2238#endif
2239	if (preempt_count() == val)
2240		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2241}
2242EXPORT_SYMBOL(preempt_count_add);
2243
2244void __kprobes preempt_count_sub(int val)
2245{
2246#ifdef CONFIG_DEBUG_PREEMPT
2247	/*
2248	 * Underflow?
2249	 */
2250	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2251		return;
2252	/*
2253	 * Is the spinlock portion underflowing?
2254	 */
2255	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2256			!(preempt_count() & PREEMPT_MASK)))
2257		return;
2258#endif
2259
2260	if (preempt_count() == val)
2261		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2262	__preempt_count_sub(val);
2263}
2264EXPORT_SYMBOL(preempt_count_sub);
2265
2266#endif
2267
2268/*
2269 * Print scheduling while atomic bug:
2270 */
2271static noinline void __schedule_bug(struct task_struct *prev)
2272{
2273	if (oops_in_progress)
2274		return;
2275
2276	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2277		prev->comm, prev->pid, preempt_count());
2278
2279	debug_show_held_locks(prev);
2280	print_modules();
2281	if (irqs_disabled())
2282		print_irqtrace_events(prev);
2283	dump_stack();
2284	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2285}
2286
2287/*
2288 * Various schedule()-time debugging checks and statistics:
2289 */
2290static inline void schedule_debug(struct task_struct *prev)
2291{
2292	/*
2293	 * Test if we are atomic. Since do_exit() needs to call into
2294	 * schedule() atomically, we ignore that path for now.
2295	 * Otherwise, whine if we are scheduling when we should not be.
2296	 */
2297	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2298		__schedule_bug(prev);
2299	rcu_sleep_check();
2300
2301	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2302
2303	schedstat_inc(this_rq(), sched_count);
2304}
2305
2306static void put_prev_task(struct rq *rq, struct task_struct *prev)
2307{
2308	if (prev->on_rq || rq->skip_clock_update < 0)
2309		update_rq_clock(rq);
2310	prev->sched_class->put_prev_task(rq, prev);
2311}
2312
2313/*
2314 * Pick up the highest-prio task:
2315 */
2316static inline struct task_struct *
2317pick_next_task(struct rq *rq)
2318{
2319	const struct sched_class *class;
2320	struct task_struct *p;
2321
2322	/*
2323	 * Optimization: we know that if all tasks are in
2324	 * the fair class we can call that function directly:
2325	 */
2326	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2327		p = fair_sched_class.pick_next_task(rq);
2328		if (likely(p))
2329			return p;
2330	}
2331
2332	for_each_class(class) {
2333		p = class->pick_next_task(rq);
2334		if (p)
2335			return p;
2336	}
2337
2338	BUG(); /* the idle class will always have a runnable task */
2339}
2340
2341/*
2342 * __schedule() is the main scheduler function.
2343 *
2344 * The main means of driving the scheduler and thus entering this function are:
2345 *
2346 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2347 *
2348 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2349 *      paths. For example, see arch/x86/entry_64.S.
2350 *
2351 *      To drive preemption between tasks, the scheduler sets the flag in timer
2352 *      interrupt handler scheduler_tick().
2353 *
2354 *   3. Wakeups don't really cause entry into schedule(). They add a
2355 *      task to the run-queue and that's it.
2356 *
2357 *      Now, if the new task added to the run-queue preempts the current
2358 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2359 *      called on the nearest possible occasion:
2360 *
2361 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2362 *
2363 *         - in syscall or exception context, at the next outmost
2364 *           preempt_enable(). (this might be as soon as the wake_up()'s
2365 *           spin_unlock()!)
2366 *
2367 *         - in IRQ context, return from interrupt-handler to
2368 *           preemptible context
2369 *
2370 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2371 *         then at the next:
2372 *
2373 *          - cond_resched() call
2374 *          - explicit schedule() call
2375 *          - return from syscall or exception to user-space
2376 *          - return from interrupt-handler to user-space
2377 */
2378static void __sched __schedule(void)
2379{
2380	struct task_struct *prev, *next;
2381	unsigned long *switch_count;
2382	struct rq *rq;
2383	int cpu;
2384
2385need_resched:
2386	preempt_disable();
2387	cpu = smp_processor_id();
2388	rq = cpu_rq(cpu);
2389	rcu_note_context_switch(cpu);
2390	prev = rq->curr;
2391
2392	schedule_debug(prev);
2393
2394	if (sched_feat(HRTICK))
2395		hrtick_clear(rq);
2396
2397	/*
2398	 * Make sure that signal_pending_state()->signal_pending() below
2399	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2400	 * done by the caller to avoid the race with signal_wake_up().
2401	 */
2402	smp_mb__before_spinlock();
2403	raw_spin_lock_irq(&rq->lock);
2404
2405	switch_count = &prev->nivcsw;
2406	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2407		if (unlikely(signal_pending_state(prev->state, prev))) {
2408			prev->state = TASK_RUNNING;
2409		} else {
2410			deactivate_task(rq, prev, DEQUEUE_SLEEP);
2411			prev->on_rq = 0;
2412
2413			/*
2414			 * If a worker went to sleep, notify and ask workqueue
2415			 * whether it wants to wake up a task to maintain
2416			 * concurrency.
2417			 */
2418			if (prev->flags & PF_WQ_WORKER) {
2419				struct task_struct *to_wakeup;
2420
2421				to_wakeup = wq_worker_sleeping(prev, cpu);
2422				if (to_wakeup)
2423					try_to_wake_up_local(to_wakeup);
2424			}
2425		}
2426		switch_count = &prev->nvcsw;
2427	}
2428
2429	pre_schedule(rq, prev);
2430
2431	if (unlikely(!rq->nr_running))
2432		idle_balance(cpu, rq);
2433
2434	put_prev_task(rq, prev);
2435	next = pick_next_task(rq);
2436	clear_tsk_need_resched(prev);
2437	clear_preempt_need_resched();
2438	rq->skip_clock_update = 0;
2439
2440	if (likely(prev != next)) {
2441		rq->nr_switches++;
2442		rq->curr = next;
2443		++*switch_count;
2444
2445		context_switch(rq, prev, next); /* unlocks the rq */
2446		/*
2447		 * The context switch have flipped the stack from under us
2448		 * and restored the local variables which were saved when
2449		 * this task called schedule() in the past. prev == current
2450		 * is still correct, but it can be moved to another cpu/rq.
2451		 */
2452		cpu = smp_processor_id();
2453		rq = cpu_rq(cpu);
2454	} else
2455		raw_spin_unlock_irq(&rq->lock);
2456
2457	post_schedule(rq);
2458
2459	sched_preempt_enable_no_resched();
2460	if (need_resched())
2461		goto need_resched;
2462}
2463
2464static inline void sched_submit_work(struct task_struct *tsk)
2465{
2466	if (!tsk->state || tsk_is_pi_blocked(tsk))
2467		return;
2468	/*
2469	 * If we are going to sleep and we have plugged IO queued,
2470	 * make sure to submit it to avoid deadlocks.
2471	 */
2472	if (blk_needs_flush_plug(tsk))
2473		blk_schedule_flush_plug(tsk);
2474}
2475
2476asmlinkage void __sched schedule(void)
2477{
2478	struct task_struct *tsk = current;
2479
2480	sched_submit_work(tsk);
2481	__schedule();
2482}
2483EXPORT_SYMBOL(schedule);
2484
2485#ifdef CONFIG_CONTEXT_TRACKING
2486asmlinkage void __sched schedule_user(void)
2487{
2488	/*
2489	 * If we come here after a random call to set_need_resched(),
2490	 * or we have been woken up remotely but the IPI has not yet arrived,
2491	 * we haven't yet exited the RCU idle mode. Do it here manually until
2492	 * we find a better solution.
2493	 */
2494	user_exit();
2495	schedule();
2496	user_enter();
2497}
2498#endif
2499
2500/**
2501 * schedule_preempt_disabled - called with preemption disabled
2502 *
2503 * Returns with preemption disabled. Note: preempt_count must be 1
2504 */
2505void __sched schedule_preempt_disabled(void)
2506{
2507	sched_preempt_enable_no_resched();
2508	schedule();
2509	preempt_disable();
2510}
2511
2512#ifdef CONFIG_PREEMPT
2513/*
2514 * this is the entry point to schedule() from in-kernel preemption
2515 * off of preempt_enable. Kernel preemptions off return from interrupt
2516 * occur there and call schedule directly.
2517 */
2518asmlinkage void __sched notrace preempt_schedule(void)
2519{
2520	/*
2521	 * If there is a non-zero preempt_count or interrupts are disabled,
2522	 * we do not want to preempt the current task. Just return..
2523	 */
2524	if (likely(!preemptible()))
2525		return;
2526
2527	do {
2528		__preempt_count_add(PREEMPT_ACTIVE);
2529		__schedule();
2530		__preempt_count_sub(PREEMPT_ACTIVE);
2531
2532		/*
2533		 * Check again in case we missed a preemption opportunity
2534		 * between schedule and now.
2535		 */
2536		barrier();
2537	} while (need_resched());
2538}
2539EXPORT_SYMBOL(preempt_schedule);
2540
2541/*
2542 * this is the entry point to schedule() from kernel preemption
2543 * off of irq context.
2544 * Note, that this is called and return with irqs disabled. This will
2545 * protect us against recursive calling from irq.
2546 */
2547asmlinkage void __sched preempt_schedule_irq(void)
2548{
2549	enum ctx_state prev_state;
2550
2551	/* Catch callers which need to be fixed */
2552	BUG_ON(preempt_count() || !irqs_disabled());
2553
2554	prev_state = exception_enter();
2555
2556	do {
2557		__preempt_count_add(PREEMPT_ACTIVE);
2558		local_irq_enable();
2559		__schedule();
2560		local_irq_disable();
2561		__preempt_count_sub(PREEMPT_ACTIVE);
2562
2563		/*
2564		 * Check again in case we missed a preemption opportunity
2565		 * between schedule and now.
2566		 */
2567		barrier();
2568	} while (need_resched());
2569
2570	exception_exit(prev_state);
2571}
2572
2573#endif /* CONFIG_PREEMPT */
2574
2575int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2576			  void *key)
2577{
2578	return try_to_wake_up(curr->private, mode, wake_flags);
2579}
2580EXPORT_SYMBOL(default_wake_function);
2581
2582/*
2583 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2584 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2585 * number) then we wake all the non-exclusive tasks and one exclusive task.
2586 *
2587 * There are circumstances in which we can try to wake a task which has already
2588 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2589 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2590 */
2591static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2592			int nr_exclusive, int wake_flags, void *key)
2593{
2594	wait_queue_t *curr, *next;
2595
2596	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2597		unsigned flags = curr->flags;
2598
2599		if (curr->func(curr, mode, wake_flags, key) &&
2600				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2601			break;
2602	}
2603}
2604
2605/**
2606 * __wake_up - wake up threads blocked on a waitqueue.
2607 * @q: the waitqueue
2608 * @mode: which threads
2609 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2610 * @key: is directly passed to the wakeup function
2611 *
2612 * It may be assumed that this function implies a write memory barrier before
2613 * changing the task state if and only if any tasks are woken up.
2614 */
2615void __wake_up(wait_queue_head_t *q, unsigned int mode,
2616			int nr_exclusive, void *key)
2617{
2618	unsigned long flags;
2619
2620	spin_lock_irqsave(&q->lock, flags);
2621	__wake_up_common(q, mode, nr_exclusive, 0, key);
2622	spin_unlock_irqrestore(&q->lock, flags);
2623}
2624EXPORT_SYMBOL(__wake_up);
2625
2626/*
2627 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2628 */
2629void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2630{
2631	__wake_up_common(q, mode, nr, 0, NULL);
2632}
2633EXPORT_SYMBOL_GPL(__wake_up_locked);
2634
2635void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2636{
2637	__wake_up_common(q, mode, 1, 0, key);
2638}
2639EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2640
2641/**
2642 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2643 * @q: the waitqueue
2644 * @mode: which threads
2645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2646 * @key: opaque value to be passed to wakeup targets
2647 *
2648 * The sync wakeup differs that the waker knows that it will schedule
2649 * away soon, so while the target thread will be woken up, it will not
2650 * be migrated to another CPU - ie. the two threads are 'synchronized'
2651 * with each other. This can prevent needless bouncing between CPUs.
2652 *
2653 * On UP it can prevent extra preemption.
2654 *
2655 * It may be assumed that this function implies a write memory barrier before
2656 * changing the task state if and only if any tasks are woken up.
2657 */
2658void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2659			int nr_exclusive, void *key)
2660{
2661	unsigned long flags;
2662	int wake_flags = WF_SYNC;
2663
2664	if (unlikely(!q))
2665		return;
2666
2667	if (unlikely(nr_exclusive != 1))
2668		wake_flags = 0;
2669
2670	spin_lock_irqsave(&q->lock, flags);
2671	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2672	spin_unlock_irqrestore(&q->lock, flags);
2673}
2674EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2675
2676/*
2677 * __wake_up_sync - see __wake_up_sync_key()
2678 */
2679void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2680{
2681	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
2682}
2683EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
2684
2685/**
2686 * complete: - signals a single thread waiting on this completion
2687 * @x:  holds the state of this particular completion
2688 *
2689 * This will wake up a single thread waiting on this completion. Threads will be
2690 * awakened in the same order in which they were queued.
2691 *
2692 * See also complete_all(), wait_for_completion() and related routines.
2693 *
2694 * It may be assumed that this function implies a write memory barrier before
2695 * changing the task state if and only if any tasks are woken up.
2696 */
2697void complete(struct completion *x)
2698{
2699	unsigned long flags;
2700
2701	spin_lock_irqsave(&x->wait.lock, flags);
2702	x->done++;
2703	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2704	spin_unlock_irqrestore(&x->wait.lock, flags);
2705}
2706EXPORT_SYMBOL(complete);
2707
2708/**
2709 * complete_all: - signals all threads waiting on this completion
2710 * @x:  holds the state of this particular completion
2711 *
2712 * This will wake up all threads waiting on this particular completion event.
2713 *
2714 * It may be assumed that this function implies a write memory barrier before
2715 * changing the task state if and only if any tasks are woken up.
2716 */
2717void complete_all(struct completion *x)
2718{
2719	unsigned long flags;
2720
2721	spin_lock_irqsave(&x->wait.lock, flags);
2722	x->done += UINT_MAX/2;
2723	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2724	spin_unlock_irqrestore(&x->wait.lock, flags);
2725}
2726EXPORT_SYMBOL(complete_all);
2727
2728static inline long __sched
2729do_wait_for_common(struct completion *x,
2730		   long (*action)(long), long timeout, int state)
2731{
2732	if (!x->done) {
2733		DECLARE_WAITQUEUE(wait, current);
2734
2735		__add_wait_queue_tail_exclusive(&x->wait, &wait);
2736		do {
2737			if (signal_pending_state(state, current)) {
2738				timeout = -ERESTARTSYS;
2739				break;
2740			}
2741			__set_current_state(state);
2742			spin_unlock_irq(&x->wait.lock);
2743			timeout = action(timeout);
2744			spin_lock_irq(&x->wait.lock);
2745		} while (!x->done && timeout);
2746		__remove_wait_queue(&x->wait, &wait);
2747		if (!x->done)
2748			return timeout;
2749	}
2750	x->done--;
2751	return timeout ?: 1;
2752}
2753
2754static inline long __sched
2755__wait_for_common(struct completion *x,
2756		  long (*action)(long), long timeout, int state)
2757{
2758	might_sleep();
2759
2760	spin_lock_irq(&x->wait.lock);
2761	timeout = do_wait_for_common(x, action, timeout, state);
2762	spin_unlock_irq(&x->wait.lock);
2763	return timeout;
2764}
2765
2766static long __sched
2767wait_for_common(struct completion *x, long timeout, int state)
2768{
2769	return __wait_for_common(x, schedule_timeout, timeout, state);
2770}
2771
2772static long __sched
2773wait_for_common_io(struct completion *x, long timeout, int state)
2774{
2775	return __wait_for_common(x, io_schedule_timeout, timeout, state);
2776}
2777
2778/**
2779 * wait_for_completion: - waits for completion of a task
2780 * @x:  holds the state of this particular completion
2781 *
2782 * This waits to be signaled for completion of a specific task. It is NOT
2783 * interruptible and there is no timeout.
2784 *
2785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2786 * and interrupt capability. Also see complete().
2787 */
2788void __sched wait_for_completion(struct completion *x)
2789{
2790	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2791}
2792EXPORT_SYMBOL(wait_for_completion);
2793
2794/**
2795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2796 * @x:  holds the state of this particular completion
2797 * @timeout:  timeout value in jiffies
2798 *
2799 * This waits for either a completion of a specific task to be signaled or for a
2800 * specified timeout to expire. The timeout is in jiffies. It is not
2801 * interruptible.
2802 *
2803 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2804 * till timeout) if completed.
2805 */
2806unsigned long __sched
2807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2808{
2809	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2810}
2811EXPORT_SYMBOL(wait_for_completion_timeout);
2812
2813/**
2814 * wait_for_completion_io: - waits for completion of a task
2815 * @x:  holds the state of this particular completion
2816 *
2817 * This waits to be signaled for completion of a specific task. It is NOT
2818 * interruptible and there is no timeout. The caller is accounted as waiting
2819 * for IO.
2820 */
2821void __sched wait_for_completion_io(struct completion *x)
2822{
2823	wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2824}
2825EXPORT_SYMBOL(wait_for_completion_io);
2826
2827/**
2828 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2829 * @x:  holds the state of this particular completion
2830 * @timeout:  timeout value in jiffies
2831 *
2832 * This waits for either a completion of a specific task to be signaled or for a
2833 * specified timeout to expire. The timeout is in jiffies. It is not
2834 * interruptible. The caller is accounted as waiting for IO.
2835 *
2836 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2837 * till timeout) if completed.
2838 */
2839unsigned long __sched
2840wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2841{
2842	return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2843}
2844EXPORT_SYMBOL(wait_for_completion_io_timeout);
2845
2846/**
2847 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2848 * @x:  holds the state of this particular completion
2849 *
2850 * This waits for completion of a specific task to be signaled. It is
2851 * interruptible.
2852 *
2853 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2854 */
2855int __sched wait_for_completion_interruptible(struct completion *x)
2856{
2857	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2858	if (t == -ERESTARTSYS)
2859		return t;
2860	return 0;
2861}
2862EXPORT_SYMBOL(wait_for_completion_interruptible);
2863
2864/**
2865 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2866 * @x:  holds the state of this particular completion
2867 * @timeout:  timeout value in jiffies
2868 *
2869 * This waits for either a completion of a specific task to be signaled or for a
2870 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2871 *
2872 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2873 * or number of jiffies left till timeout) if completed.
2874 */
2875long __sched
2876wait_for_completion_interruptible_timeout(struct completion *x,
2877					  unsigned long timeout)
2878{
2879	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2880}
2881EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2882
2883/**
2884 * wait_for_completion_killable: - waits for completion of a task (killable)
2885 * @x:  holds the state of this particular completion
2886 *
2887 * This waits to be signaled for completion of a specific task. It can be
2888 * interrupted by a kill signal.
2889 *
2890 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2891 */
2892int __sched wait_for_completion_killable(struct completion *x)
2893{
2894	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2895	if (t == -ERESTARTSYS)
2896		return t;
2897	return 0;
2898}
2899EXPORT_SYMBOL(wait_for_completion_killable);
2900
2901/**
2902 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2903 * @x:  holds the state of this particular completion
2904 * @timeout:  timeout value in jiffies
2905 *
2906 * This waits for either a completion of a specific task to be
2907 * signaled or for a specified timeout to expire. It can be
2908 * interrupted by a kill signal. The timeout is in jiffies.
2909 *
2910 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2911 * or number of jiffies left till timeout) if completed.
2912 */
2913long __sched
2914wait_for_completion_killable_timeout(struct completion *x,
2915				     unsigned long timeout)
2916{
2917	return wait_for_common(x, timeout, TASK_KILLABLE);
2918}
2919EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2920
2921/**
2922 *	try_wait_for_completion - try to decrement a completion without blocking
2923 *	@x:	completion structure
2924 *
2925 *	Return: 0 if a decrement cannot be done without blocking
2926 *		 1 if a decrement succeeded.
2927 *
2928 *	If a completion is being used as a counting completion,
2929 *	attempt to decrement the counter without blocking. This
2930 *	enables us to avoid waiting if the resource the completion
2931 *	is protecting is not available.
2932 */
2933bool try_wait_for_completion(struct completion *x)
2934{
2935	unsigned long flags;
2936	int ret = 1;
2937
2938	spin_lock_irqsave(&x->wait.lock, flags);
2939	if (!x->done)
2940		ret = 0;
2941	else
2942		x->done--;
2943	spin_unlock_irqrestore(&x->wait.lock, flags);
2944	return ret;
2945}
2946EXPORT_SYMBOL(try_wait_for_completion);
2947
2948/**
2949 *	completion_done - Test to see if a completion has any waiters
2950 *	@x:	completion structure
2951 *
2952 *	Return: 0 if there are waiters (wait_for_completion() in progress)
2953 *		 1 if there are no waiters.
2954 *
2955 */
2956bool completion_done(struct completion *x)
2957{
2958	unsigned long flags;
2959	int ret = 1;
2960
2961	spin_lock_irqsave(&x->wait.lock, flags);
2962	if (!x->done)
2963		ret = 0;
2964	spin_unlock_irqrestore(&x->wait.lock, flags);
2965	return ret;
2966}
2967EXPORT_SYMBOL(completion_done);
2968
2969static long __sched
2970sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2971{
2972	unsigned long flags;
2973	wait_queue_t wait;
2974
2975	init_waitqueue_entry(&wait, current);
2976
2977	__set_current_state(state);
2978
2979	spin_lock_irqsave(&q->lock, flags);
2980	__add_wait_queue(q, &wait);
2981	spin_unlock(&q->lock);
2982	timeout = schedule_timeout(timeout);
2983	spin_lock_irq(&q->lock);
2984	__remove_wait_queue(q, &wait);
2985	spin_unlock_irqrestore(&q->lock, flags);
2986
2987	return timeout;
2988}
2989
2990void __sched interruptible_sleep_on(wait_queue_head_t *q)
2991{
2992	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2993}
2994EXPORT_SYMBOL(interruptible_sleep_on);
2995
2996long __sched
2997interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2998{
2999	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3000}
3001EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3002
3003void __sched sleep_on(wait_queue_head_t *q)
3004{
3005	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3006}
3007EXPORT_SYMBOL(sleep_on);
3008
3009long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3010{
3011	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3012}
3013EXPORT_SYMBOL(sleep_on_timeout);
3014
3015#ifdef CONFIG_RT_MUTEXES
3016
3017/*
3018 * rt_mutex_setprio - set the current priority of a task
3019 * @p: task
3020 * @prio: prio value (kernel-internal form)
3021 *
3022 * This function changes the 'effective' priority of a task. It does
3023 * not touch ->normal_prio like __setscheduler().
3024 *
3025 * Used by the rt_mutex code to implement priority inheritance logic.
3026 */
3027void rt_mutex_setprio(struct task_struct *p, int prio)
3028{
3029	int oldprio, on_rq, running;
3030	struct rq *rq;
3031	const struct sched_class *prev_class;
3032
3033	BUG_ON(prio < 0 || prio > MAX_PRIO);
3034
3035	rq = __task_rq_lock(p);
3036
3037	/*
3038	 * Idle task boosting is a nono in general. There is one
3039	 * exception, when PREEMPT_RT and NOHZ is active:
3040	 *
3041	 * The idle task calls get_next_timer_interrupt() and holds
3042	 * the timer wheel base->lock on the CPU and another CPU wants
3043	 * to access the timer (probably to cancel it). We can safely
3044	 * ignore the boosting request, as the idle CPU runs this code
3045	 * with interrupts disabled and will complete the lock
3046	 * protected section without being interrupted. So there is no
3047	 * real need to boost.
3048	 */
3049	if (unlikely(p == rq->idle)) {
3050		WARN_ON(p != rq->curr);
3051		WARN_ON(p->pi_blocked_on);
3052		goto out_unlock;
3053	}
3054
3055	trace_sched_pi_setprio(p, prio);
3056	oldprio = p->prio;
3057	prev_class = p->sched_class;
3058	on_rq = p->on_rq;
3059	running = task_current(rq, p);
3060	if (on_rq)
3061		dequeue_task(rq, p, 0);
3062	if (running)
3063		p->sched_class->put_prev_task(rq, p);
3064
3065	if (rt_prio(prio))
3066		p->sched_class = &rt_sched_class;
3067	else
3068		p->sched_class = &fair_sched_class;
3069
3070	p->prio = prio;
3071
3072	if (running)
3073		p->sched_class->set_curr_task(rq);
3074	if (on_rq)
3075		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3076
3077	check_class_changed(rq, p, prev_class, oldprio);
3078out_unlock:
3079	__task_rq_unlock(rq);
3080}
3081#endif
3082void set_user_nice(struct task_struct *p, long nice)
3083{
3084	int old_prio, delta, on_rq;
3085	unsigned long flags;
3086	struct rq *rq;
3087
3088	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3089		return;
3090	/*
3091	 * We have to be careful, if called from sys_setpriority(),
3092	 * the task might be in the middle of scheduling on another CPU.
3093	 */
3094	rq = task_rq_lock(p, &flags);
3095	/*
3096	 * The RT priorities are set via sched_setscheduler(), but we still
3097	 * allow the 'normal' nice value to be set - but as expected
3098	 * it wont have any effect on scheduling until the task is
3099	 * SCHED_FIFO/SCHED_RR:
3100	 */
3101	if (task_has_rt_policy(p)) {
3102		p->static_prio = NICE_TO_PRIO(nice);
3103		goto out_unlock;
3104	}
3105	on_rq = p->on_rq;
3106	if (on_rq)
3107		dequeue_task(rq, p, 0);
3108
3109	p->static_prio = NICE_TO_PRIO(nice);
3110	set_load_weight(p);
3111	old_prio = p->prio;
3112	p->prio = effective_prio(p);
3113	delta = p->prio - old_prio;
3114
3115	if (on_rq) {
3116		enqueue_task(rq, p, 0);
3117		/*
3118		 * If the task increased its priority or is running and
3119		 * lowered its priority, then reschedule its CPU:
3120		 */
3121		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3122			resched_task(rq->curr);
3123	}
3124out_unlock:
3125	task_rq_unlock(rq, p, &flags);
3126}
3127EXPORT_SYMBOL(set_user_nice);
3128
3129/*
3130 * can_nice - check if a task can reduce its nice value
3131 * @p: task
3132 * @nice: nice value
3133 */
3134int can_nice(const struct task_struct *p, const int nice)
3135{
3136	/* convert nice value [19,-20] to rlimit style value [1,40] */
3137	int nice_rlim = 20 - nice;
3138
3139	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3140		capable(CAP_SYS_NICE));
3141}
3142
3143#ifdef __ARCH_WANT_SYS_NICE
3144
3145/*
3146 * sys_nice - change the priority of the current process.
3147 * @increment: priority increment
3148 *
3149 * sys_setpriority is a more generic, but much slower function that
3150 * does similar things.
3151 */
3152SYSCALL_DEFINE1(nice, int, increment)
3153{
3154	long nice, retval;
3155
3156	/*
3157	 * Setpriority might change our priority at the same moment.
3158	 * We don't have to worry. Conceptually one call occurs first
3159	 * and we have a single winner.
3160	 */
3161	if (increment < -40)
3162		increment = -40;
3163	if (increment > 40)
3164		increment = 40;
3165
3166	nice = TASK_NICE(current) + increment;
3167	if (nice < -20)
3168		nice = -20;
3169	if (nice > 19)
3170		nice = 19;
3171
3172	if (increment < 0 && !can_nice(current, nice))
3173		return -EPERM;
3174
3175	retval = security_task_setnice(current, nice);
3176	if (retval)
3177		return retval;
3178
3179	set_user_nice(current, nice);
3180	return 0;
3181}
3182
3183#endif
3184
3185/**
3186 * task_prio - return the priority value of a given task.
3187 * @p: the task in question.
3188 *
3189 * Return: The priority value as seen by users in /proc.
3190 * RT tasks are offset by -200. Normal tasks are centered
3191 * around 0, value goes from -16 to +15.
3192 */
3193int task_prio(const struct task_struct *p)
3194{
3195	return p->prio - MAX_RT_PRIO;
3196}
3197
3198/**
3199 * task_nice - return the nice value of a given task.
3200 * @p: the task in question.
3201 *
3202 * Return: The nice value [ -20 ... 0 ... 19 ].
3203 */
3204int task_nice(const struct task_struct *p)
3205{
3206	return TASK_NICE(p);
3207}
3208EXPORT_SYMBOL(task_nice);
3209
3210/**
3211 * idle_cpu - is a given cpu idle currently?
3212 * @cpu: the processor in question.
3213 *
3214 * Return: 1 if the CPU is currently idle. 0 otherwise.
3215 */
3216int idle_cpu(int cpu)
3217{
3218	struct rq *rq = cpu_rq(cpu);
3219
3220	if (rq->curr != rq->idle)
3221		return 0;
3222
3223	if (rq->nr_running)
3224		return 0;
3225
3226#ifdef CONFIG_SMP
3227	if (!llist_empty(&rq->wake_list))
3228		return 0;
3229#endif
3230
3231	return 1;
3232}
3233
3234/**
3235 * idle_task - return the idle task for a given cpu.
3236 * @cpu: the processor in question.
3237 *
3238 * Return: The idle task for the cpu @cpu.
3239 */
3240struct task_struct *idle_task(int cpu)
3241{
3242	return cpu_rq(cpu)->idle;
3243}
3244
3245/**
3246 * find_process_by_pid - find a process with a matching PID value.
3247 * @pid: the pid in question.
3248 *
3249 * The task of @pid, if found. %NULL otherwise.
3250 */
3251static struct task_struct *find_process_by_pid(pid_t pid)
3252{
3253	return pid ? find_task_by_vpid(pid) : current;
3254}
3255
3256/* Actually do priority change: must hold rq lock. */
3257static void
3258__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3259{
3260	p->policy = policy;
3261	p->rt_priority = prio;
3262	p->normal_prio = normal_prio(p);
3263	/* we are holding p->pi_lock already */
3264	p->prio = rt_mutex_getprio(p);
3265	if (rt_prio(p->prio))
3266		p->sched_class = &rt_sched_class;
3267	else
3268		p->sched_class = &fair_sched_class;
3269	set_load_weight(p);
3270}
3271
3272/*
3273 * check the target process has a UID that matches the current process's
3274 */
3275static bool check_same_owner(struct task_struct *p)
3276{
3277	const struct cred *cred = current_cred(), *pcred;
3278	bool match;
3279
3280	rcu_read_lock();
3281	pcred = __task_cred(p);
3282	match = (uid_eq(cred->euid, pcred->euid) ||
3283		 uid_eq(cred->euid, pcred->uid));
3284	rcu_read_unlock();
3285	return match;
3286}
3287
3288static int __sched_setscheduler(struct task_struct *p, int policy,
3289				const struct sched_param *param, bool user)
3290{
3291	int retval, oldprio, oldpolicy = -1, on_rq, running;
3292	unsigned long flags;
3293	const struct sched_class *prev_class;
3294	struct rq *rq;
3295	int reset_on_fork;
3296
3297	/* may grab non-irq protected spin_locks */
3298	BUG_ON(in_interrupt());
3299recheck:
3300	/* double check policy once rq lock held */
3301	if (policy < 0) {
3302		reset_on_fork = p->sched_reset_on_fork;
3303		policy = oldpolicy = p->policy;
3304	} else {
3305		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3306		policy &= ~SCHED_RESET_ON_FORK;
3307
3308		if (policy != SCHED_FIFO && policy != SCHED_RR &&
3309				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3310				policy != SCHED_IDLE)
3311			return -EINVAL;
3312	}
3313
3314	/*
3315	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3316	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3317	 * SCHED_BATCH and SCHED_IDLE is 0.
3318	 */
3319	if (param->sched_priority < 0 ||
3320	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3321	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3322		return -EINVAL;
3323	if (rt_policy(policy) != (param->sched_priority != 0))
3324		return -EINVAL;
3325
3326	/*
3327	 * Allow unprivileged RT tasks to decrease priority:
3328	 */
3329	if (user && !capable(CAP_SYS_NICE)) {
3330		if (rt_policy(policy)) {
3331			unsigned long rlim_rtprio =
3332					task_rlimit(p, RLIMIT_RTPRIO);
3333
3334			/* can't set/change the rt policy */
3335			if (policy != p->policy && !rlim_rtprio)
3336				return -EPERM;
3337
3338			/* can't increase priority */
3339			if (param->sched_priority > p->rt_priority &&
3340			    param->sched_priority > rlim_rtprio)
3341				return -EPERM;
3342		}
3343
3344		/*
3345		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3346		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3347		 */
3348		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3349			if (!can_nice(p, TASK_NICE(p)))
3350				return -EPERM;
3351		}
3352
3353		/* can't change other user's priorities */
3354		if (!check_same_owner(p))
3355			return -EPERM;
3356
3357		/* Normal users shall not reset the sched_reset_on_fork flag */
3358		if (p->sched_reset_on_fork && !reset_on_fork)
3359			return -EPERM;
3360	}
3361
3362	if (user) {
3363		retval = security_task_setscheduler(p);
3364		if (retval)
3365			return retval;
3366	}
3367
3368	/*
3369	 * make sure no PI-waiters arrive (or leave) while we are
3370	 * changing the priority of the task:
3371	 *
3372	 * To be able to change p->policy safely, the appropriate
3373	 * runqueue lock must be held.
3374	 */
3375	rq = task_rq_lock(p, &flags);
3376
3377	/*
3378	 * Changing the policy of the stop threads its a very bad idea
3379	 */
3380	if (p == rq->stop) {
3381		task_rq_unlock(rq, p, &flags);
3382		return -EINVAL;
3383	}
3384
3385	/*
3386	 * If not changing anything there's no need to proceed further:
3387	 */
3388	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3389			param->sched_priority == p->rt_priority))) {
3390		task_rq_unlock(rq, p, &flags);
3391		return 0;
3392	}
3393
3394#ifdef CONFIG_RT_GROUP_SCHED
3395	if (user) {
3396		/*
3397		 * Do not allow realtime tasks into groups that have no runtime
3398		 * assigned.
3399		 */
3400		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3401				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3402				!task_group_is_autogroup(task_group(p))) {
3403			task_rq_unlock(rq, p, &flags);
3404			return -EPERM;
3405		}
3406	}
3407#endif
3408
3409	/* recheck policy now with rq lock held */
3410	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3411		policy = oldpolicy = -1;
3412		task_rq_unlock(rq, p, &flags);
3413		goto recheck;
3414	}
3415	on_rq = p->on_rq;
3416	running = task_current(rq, p);
3417	if (on_rq)
3418		dequeue_task(rq, p, 0);
3419	if (running)
3420		p->sched_class->put_prev_task(rq, p);
3421
3422	p->sched_reset_on_fork = reset_on_fork;
3423
3424	oldprio = p->prio;
3425	prev_class = p->sched_class;
3426	__setscheduler(rq, p, policy, param->sched_priority);
3427
3428	if (running)
3429		p->sched_class->set_curr_task(rq);
3430	if (on_rq)
3431		enqueue_task(rq, p, 0);
3432
3433	check_class_changed(rq, p, prev_class, oldprio);
3434	task_rq_unlock(rq, p, &flags);
3435
3436	rt_mutex_adjust_pi(p);
3437
3438	return 0;
3439}
3440
3441/**
3442 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3443 * @p: the task in question.
3444 * @policy: new policy.
3445 * @param: structure containing the new RT priority.
3446 *
3447 * Return: 0 on success. An error code otherwise.
3448 *
3449 * NOTE that the task may be already dead.
3450 */
3451int sched_setscheduler(struct task_struct *p, int policy,
3452		       const struct sched_param *param)
3453{
3454	return __sched_setscheduler(p, policy, param, true);
3455}
3456EXPORT_SYMBOL_GPL(sched_setscheduler);
3457
3458/**
3459 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3460 * @p: the task in question.
3461 * @policy: new policy.
3462 * @param: structure containing the new RT priority.
3463 *
3464 * Just like sched_setscheduler, only don't bother checking if the
3465 * current context has permission.  For example, this is needed in
3466 * stop_machine(): we create temporary high priority worker threads,
3467 * but our caller might not have that capability.
3468 *
3469 * Return: 0 on success. An error code otherwise.
3470 */
3471int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3472			       const struct sched_param *param)
3473{
3474	return __sched_setscheduler(p, policy, param, false);
3475}
3476
3477static int
3478do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3479{
3480	struct sched_param lparam;
3481	struct task_struct *p;
3482	int retval;
3483
3484	if (!param || pid < 0)
3485		return -EINVAL;
3486	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3487		return -EFAULT;
3488
3489	rcu_read_lock();
3490	retval = -ESRCH;
3491	p = find_process_by_pid(pid);
3492	if (p != NULL)
3493		retval = sched_setscheduler(p, policy, &lparam);
3494	rcu_read_unlock();
3495
3496	return retval;
3497}
3498
3499/**
3500 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3501 * @pid: the pid in question.
3502 * @policy: new policy.
3503 * @param: structure containing the new RT priority.
3504 *
3505 * Return: 0 on success. An error code otherwise.
3506 */
3507SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3508		struct sched_param __user *, param)
3509{
3510	/* negative values for policy are not valid */
3511	if (policy < 0)
3512		return -EINVAL;
3513
3514	return do_sched_setscheduler(pid, policy, param);
3515}
3516
3517/**
3518 * sys_sched_setparam - set/change the RT priority of a thread
3519 * @pid: the pid in question.
3520 * @param: structure containing the new RT priority.
3521 *
3522 * Return: 0 on success. An error code otherwise.
3523 */
3524SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3525{
3526	return do_sched_setscheduler(pid, -1, param);
3527}
3528
3529/**
3530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3531 * @pid: the pid in question.
3532 *
3533 * Return: On success, the policy of the thread. Otherwise, a negative error
3534 * code.
3535 */
3536SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3537{
3538	struct task_struct *p;
3539	int retval;
3540
3541	if (pid < 0)
3542		return -EINVAL;
3543
3544	retval = -ESRCH;
3545	rcu_read_lock();
3546	p = find_process_by_pid(pid);
3547	if (p) {
3548		retval = security_task_getscheduler(p);
3549		if (!retval)
3550			retval = p->policy
3551				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3552	}
3553	rcu_read_unlock();
3554	return retval;
3555}
3556
3557/**
3558 * sys_sched_getparam - get the RT priority of a thread
3559 * @pid: the pid in question.
3560 * @param: structure containing the RT priority.
3561 *
3562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3563 * code.
3564 */
3565SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3566{
3567	struct sched_param lp;
3568	struct task_struct *p;
3569	int retval;
3570
3571	if (!param || pid < 0)
3572		return -EINVAL;
3573
3574	rcu_read_lock();
3575	p = find_process_by_pid(pid);
3576	retval = -ESRCH;
3577	if (!p)
3578		goto out_unlock;
3579
3580	retval = security_task_getscheduler(p);
3581	if (retval)
3582		goto out_unlock;
3583
3584	lp.sched_priority = p->rt_priority;
3585	rcu_read_unlock();
3586
3587	/*
3588	 * This one might sleep, we cannot do it with a spinlock held ...
3589	 */
3590	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3591
3592	return retval;
3593
3594out_unlock:
3595	rcu_read_unlock();
3596	return retval;
3597}
3598
3599long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3600{
3601	cpumask_var_t cpus_allowed, new_mask;
3602	struct task_struct *p;
3603	int retval;
3604
3605	get_online_cpus();
3606	rcu_read_lock();
3607
3608	p = find_process_by_pid(pid);
3609	if (!p) {
3610		rcu_read_unlock();
3611		put_online_cpus();
3612		return -ESRCH;
3613	}
3614
3615	/* Prevent p going away */
3616	get_task_struct(p);
3617	rcu_read_unlock();
3618
3619	if (p->flags & PF_NO_SETAFFINITY) {
3620		retval = -EINVAL;
3621		goto out_put_task;
3622	}
3623	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3624		retval = -ENOMEM;
3625		goto out_put_task;
3626	}
3627	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3628		retval = -ENOMEM;
3629		goto out_free_cpus_allowed;
3630	}
3631	retval = -EPERM;
3632	if (!check_same_owner(p)) {
3633		rcu_read_lock();
3634		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3635			rcu_read_unlock();
3636			goto out_unlock;
3637		}
3638		rcu_read_unlock();
3639	}
3640
3641	retval = security_task_setscheduler(p);
3642	if (retval)
3643		goto out_unlock;
3644
3645	cpuset_cpus_allowed(p, cpus_allowed);
3646	cpumask_and(new_mask, in_mask, cpus_allowed);
3647again:
3648	retval = set_cpus_allowed_ptr(p, new_mask);
3649
3650	if (!retval) {
3651		cpuset_cpus_allowed(p, cpus_allowed);
3652		if (!cpumask_subset(new_mask, cpus_allowed)) {
3653			/*
3654			 * We must have raced with a concurrent cpuset
3655			 * update. Just reset the cpus_allowed to the
3656			 * cpuset's cpus_allowed
3657			 */
3658			cpumask_copy(new_mask, cpus_allowed);
3659			goto again;
3660		}
3661	}
3662out_unlock:
3663	free_cpumask_var(new_mask);
3664out_free_cpus_allowed:
3665	free_cpumask_var(cpus_allowed);
3666out_put_task:
3667	put_task_struct(p);
3668	put_online_cpus();
3669	return retval;
3670}
3671
3672static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3673			     struct cpumask *new_mask)
3674{
3675	if (len < cpumask_size())
3676		cpumask_clear(new_mask);
3677	else if (len > cpumask_size())
3678		len = cpumask_size();
3679
3680	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3681}
3682
3683/**
3684 * sys_sched_setaffinity - set the cpu affinity of a process
3685 * @pid: pid of the process
3686 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3687 * @user_mask_ptr: user-space pointer to the new cpu mask
3688 *
3689 * Return: 0 on success. An error code otherwise.
3690 */
3691SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3692		unsigned long __user *, user_mask_ptr)
3693{
3694	cpumask_var_t new_mask;
3695	int retval;
3696
3697	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3698		return -ENOMEM;
3699
3700	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3701	if (retval == 0)
3702		retval = sched_setaffinity(pid, new_mask);
3703	free_cpumask_var(new_mask);
3704	return retval;
3705}
3706
3707long sched_getaffinity(pid_t pid, struct cpumask *mask)
3708{
3709	struct task_struct *p;
3710	unsigned long flags;
3711	int retval;
3712
3713	get_online_cpus();
3714	rcu_read_lock();
3715
3716	retval = -ESRCH;
3717	p = find_process_by_pid(pid);
3718	if (!p)
3719		goto out_unlock;
3720
3721	retval = security_task_getscheduler(p);
3722	if (retval)
3723		goto out_unlock;
3724
3725	raw_spin_lock_irqsave(&p->pi_lock, flags);
3726	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3727	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3728
3729out_unlock:
3730	rcu_read_unlock();
3731	put_online_cpus();
3732
3733	return retval;
3734}
3735
3736/**
3737 * sys_sched_getaffinity - get the cpu affinity of a process
3738 * @pid: pid of the process
3739 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3740 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3741 *
3742 * Return: 0 on success. An error code otherwise.
3743 */
3744SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3745		unsigned long __user *, user_mask_ptr)
3746{
3747	int ret;
3748	cpumask_var_t mask;
3749
3750	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3751		return -EINVAL;
3752	if (len & (sizeof(unsigned long)-1))
3753		return -EINVAL;
3754
3755	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3756		return -ENOMEM;
3757
3758	ret = sched_getaffinity(pid, mask);
3759	if (ret == 0) {
3760		size_t retlen = min_t(size_t, len, cpumask_size());
3761
3762		if (copy_to_user(user_mask_ptr, mask, retlen))
3763			ret = -EFAULT;
3764		else
3765			ret = retlen;
3766	}
3767	free_cpumask_var(mask);
3768
3769	return ret;
3770}
3771
3772/**
3773 * sys_sched_yield - yield the current processor to other threads.
3774 *
3775 * This function yields the current CPU to other tasks. If there are no
3776 * other threads running on this CPU then this function will return.
3777 *
3778 * Return: 0.
3779 */
3780SYSCALL_DEFINE0(sched_yield)
3781{
3782	struct rq *rq = this_rq_lock();
3783
3784	schedstat_inc(rq, yld_count);
3785	current->sched_class->yield_task(rq);
3786
3787	/*
3788	 * Since we are going to call schedule() anyway, there's
3789	 * no need to preempt or enable interrupts:
3790	 */
3791	__release(rq->lock);
3792	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3793	do_raw_spin_unlock(&rq->lock);
3794	sched_preempt_enable_no_resched();
3795
3796	schedule();
3797
3798	return 0;
3799}
3800
3801static void __cond_resched(void)
3802{
3803	__preempt_count_add(PREEMPT_ACTIVE);
3804	__schedule();
3805	__preempt_count_sub(PREEMPT_ACTIVE);
3806}
3807
3808int __sched _cond_resched(void)
3809{
3810	if (should_resched()) {
3811		__cond_resched();
3812		return 1;
3813	}
3814	return 0;
3815}
3816EXPORT_SYMBOL(_cond_resched);
3817
3818/*
3819 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3820 * call schedule, and on return reacquire the lock.
3821 *
3822 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3823 * operations here to prevent schedule() from being called twice (once via
3824 * spin_unlock(), once by hand).
3825 */
3826int __cond_resched_lock(spinlock_t *lock)
3827{
3828	int resched = should_resched();
3829	int ret = 0;
3830
3831	lockdep_assert_held(lock);
3832
3833	if (spin_needbreak(lock) || resched) {
3834		spin_unlock(lock);
3835		if (resched)
3836			__cond_resched();
3837		else
3838			cpu_relax();
3839		ret = 1;
3840		spin_lock(lock);
3841	}
3842	return ret;
3843}
3844EXPORT_SYMBOL(__cond_resched_lock);
3845
3846int __sched __cond_resched_softirq(void)
3847{
3848	BUG_ON(!in_softirq());
3849
3850	if (should_resched()) {
3851		local_bh_enable();
3852		__cond_resched();
3853		local_bh_disable();
3854		return 1;
3855	}
3856	return 0;
3857}
3858EXPORT_SYMBOL(__cond_resched_softirq);
3859
3860/**
3861 * yield - yield the current processor to other threads.
3862 *
3863 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3864 *
3865 * The scheduler is at all times free to pick the calling task as the most
3866 * eligible task to run, if removing the yield() call from your code breaks
3867 * it, its already broken.
3868 *
3869 * Typical broken usage is:
3870 *
3871 * while (!event)
3872 * 	yield();
3873 *
3874 * where one assumes that yield() will let 'the other' process run that will
3875 * make event true. If the current task is a SCHED_FIFO task that will never
3876 * happen. Never use yield() as a progress guarantee!!
3877 *
3878 * If you want to use yield() to wait for something, use wait_event().
3879 * If you want to use yield() to be 'nice' for others, use cond_resched().
3880 * If you still want to use yield(), do not!
3881 */
3882void __sched yield(void)
3883{
3884	set_current_state(TASK_RUNNING);
3885	sys_sched_yield();
3886}
3887EXPORT_SYMBOL(yield);
3888
3889/**
3890 * yield_to - yield the current processor to another thread in
3891 * your thread group, or accelerate that thread toward the
3892 * processor it's on.
3893 * @p: target task
3894 * @preempt: whether task preemption is allowed or not
3895 *
3896 * It's the caller's job to ensure that the target task struct
3897 * can't go away on us before we can do any checks.
3898 *
3899 * Return:
3900 *	true (>0) if we indeed boosted the target task.
3901 *	false (0) if we failed to boost the target.
3902 *	-ESRCH if there's no task to yield to.
3903 */
3904bool __sched yield_to(struct task_struct *p, bool preempt)
3905{
3906	struct task_struct *curr = current;
3907	struct rq *rq, *p_rq;
3908	unsigned long flags;
3909	int yielded = 0;
3910
3911	local_irq_save(flags);
3912	rq = this_rq();
3913
3914again:
3915	p_rq = task_rq(p);
3916	/*
3917	 * If we're the only runnable task on the rq and target rq also
3918	 * has only one task, there's absolutely no point in yielding.
3919	 */
3920	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3921		yielded = -ESRCH;
3922		goto out_irq;
3923	}
3924
3925	double_rq_lock(rq, p_rq);
3926	while (task_rq(p) != p_rq) {
3927		double_rq_unlock(rq, p_rq);
3928		goto again;
3929	}
3930
3931	if (!curr->sched_class->yield_to_task)
3932		goto out_unlock;
3933
3934	if (curr->sched_class != p->sched_class)
3935		goto out_unlock;
3936
3937	if (task_running(p_rq, p) || p->state)
3938		goto out_unlock;
3939
3940	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3941	if (yielded) {
3942		schedstat_inc(rq, yld_count);
3943		/*
3944		 * Make p's CPU reschedule; pick_next_entity takes care of
3945		 * fairness.
3946		 */
3947		if (preempt && rq != p_rq)
3948			resched_task(p_rq->curr);
3949	}
3950
3951out_unlock:
3952	double_rq_unlock(rq, p_rq);
3953out_irq:
3954	local_irq_restore(flags);
3955
3956	if (yielded > 0)
3957		schedule();
3958
3959	return yielded;
3960}
3961EXPORT_SYMBOL_GPL(yield_to);
3962
3963/*
3964 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3965 * that process accounting knows that this is a task in IO wait state.
3966 */
3967void __sched io_schedule(void)
3968{
3969	struct rq *rq = raw_rq();
3970
3971	delayacct_blkio_start();
3972	atomic_inc(&rq->nr_iowait);
3973	blk_flush_plug(current);
3974	current->in_iowait = 1;
3975	schedule();
3976	current->in_iowait = 0;
3977	atomic_dec(&rq->nr_iowait);
3978	delayacct_blkio_end();
3979}
3980EXPORT_SYMBOL(io_schedule);
3981
3982long __sched io_schedule_timeout(long timeout)
3983{
3984	struct rq *rq = raw_rq();
3985	long ret;
3986
3987	delayacct_blkio_start();
3988	atomic_inc(&rq->nr_iowait);
3989	blk_flush_plug(current);
3990	current->in_iowait = 1;
3991	ret = schedule_timeout(timeout);
3992	current->in_iowait = 0;
3993	atomic_dec(&rq->nr_iowait);
3994	delayacct_blkio_end();
3995	return ret;
3996}
3997
3998/**
3999 * sys_sched_get_priority_max - return maximum RT priority.
4000 * @policy: scheduling class.
4001 *
4002 * Return: On success, this syscall returns the maximum
4003 * rt_priority that can be used by a given scheduling class.
4004 * On failure, a negative error code is returned.
4005 */
4006SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4007{
4008	int ret = -EINVAL;
4009
4010	switch (policy) {
4011	case SCHED_FIFO:
4012	case SCHED_RR:
4013		ret = MAX_USER_RT_PRIO-1;
4014		break;
4015	case SCHED_NORMAL:
4016	case SCHED_BATCH:
4017	case SCHED_IDLE:
4018		ret = 0;
4019		break;
4020	}
4021	return ret;
4022}
4023
4024/**
4025 * sys_sched_get_priority_min - return minimum RT priority.
4026 * @policy: scheduling class.
4027 *
4028 * Return: On success, this syscall returns the minimum
4029 * rt_priority that can be used by a given scheduling class.
4030 * On failure, a negative error code is returned.
4031 */
4032SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4033{
4034	int ret = -EINVAL;
4035
4036	switch (policy) {
4037	case SCHED_FIFO:
4038	case SCHED_RR:
4039		ret = 1;
4040		break;
4041	case SCHED_NORMAL:
4042	case SCHED_BATCH:
4043	case SCHED_IDLE:
4044		ret = 0;
4045	}
4046	return ret;
4047}
4048
4049/**
4050 * sys_sched_rr_get_interval - return the default timeslice of a process.
4051 * @pid: pid of the process.
4052 * @interval: userspace pointer to the timeslice value.
4053 *
4054 * this syscall writes the default timeslice value of a given process
4055 * into the user-space timespec buffer. A value of '0' means infinity.
4056 *
4057 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4058 * an error code.
4059 */
4060SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4061		struct timespec __user *, interval)
4062{
4063	struct task_struct *p;
4064	unsigned int time_slice;
4065	unsigned long flags;
4066	struct rq *rq;
4067	int retval;
4068	struct timespec t;
4069
4070	if (pid < 0)
4071		return -EINVAL;
4072
4073	retval = -ESRCH;
4074	rcu_read_lock();
4075	p = find_process_by_pid(pid);
4076	if (!p)
4077		goto out_unlock;
4078
4079	retval = security_task_getscheduler(p);
4080	if (retval)
4081		goto out_unlock;
4082
4083	rq = task_rq_lock(p, &flags);
4084	time_slice = p->sched_class->get_rr_interval(rq, p);
4085	task_rq_unlock(rq, p, &flags);
4086
4087	rcu_read_unlock();
4088	jiffies_to_timespec(time_slice, &t);
4089	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4090	return retval;
4091
4092out_unlock:
4093	rcu_read_unlock();
4094	return retval;
4095}
4096
4097static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4098
4099void sched_show_task(struct task_struct *p)
4100{
4101	unsigned long free = 0;
4102	int ppid;
4103	unsigned state;
4104
4105	state = p->state ? __ffs(p->state) + 1 : 0;
4106	printk(KERN_INFO "%-15.15s %c", p->comm,
4107		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4108#if BITS_PER_LONG == 32
4109	if (state == TASK_RUNNING)
4110		printk(KERN_CONT " running  ");
4111	else
4112		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4113#else
4114	if (state == TASK_RUNNING)
4115		printk(KERN_CONT "  running task    ");
4116	else
4117		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4118#endif
4119#ifdef CONFIG_DEBUG_STACK_USAGE
4120	free = stack_not_used(p);
4121#endif
4122	rcu_read_lock();
4123	ppid = task_pid_nr(rcu_dereference(p->real_parent));
4124	rcu_read_unlock();
4125	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4126		task_pid_nr(p), ppid,
4127		(unsigned long)task_thread_info(p)->flags);
4128
4129	print_worker_info(KERN_INFO, p);
4130	show_stack(p, NULL);
4131}
4132
4133void show_state_filter(unsigned long state_filter)
4134{
4135	struct task_struct *g, *p;
4136
4137#if BITS_PER_LONG == 32
4138	printk(KERN_INFO
4139		"  task                PC stack   pid father\n");
4140#else
4141	printk(KERN_INFO
4142		"  task                        PC stack   pid father\n");
4143#endif
4144	rcu_read_lock();
4145	do_each_thread(g, p) {
4146		/*
4147		 * reset the NMI-timeout, listing all files on a slow
4148		 * console might take a lot of time:
4149		 */
4150		touch_nmi_watchdog();
4151		if (!state_filter || (p->state & state_filter))
4152			sched_show_task(p);
4153	} while_each_thread(g, p);
4154
4155	touch_all_softlockup_watchdogs();
4156
4157#ifdef CONFIG_SCHED_DEBUG
4158	sysrq_sched_debug_show();
4159#endif
4160	rcu_read_unlock();
4161	/*
4162	 * Only show locks if all tasks are dumped:
4163	 */
4164	if (!state_filter)
4165		debug_show_all_locks();
4166}
4167
4168void init_idle_bootup_task(struct task_struct *idle)
4169{
4170	idle->sched_class = &idle_sched_class;
4171}
4172
4173/**
4174 * init_idle - set up an idle thread for a given CPU
4175 * @idle: task in question
4176 * @cpu: cpu the idle task belongs to
4177 *
4178 * NOTE: this function does not set the idle thread's NEED_RESCHED
4179 * flag, to make booting more robust.
4180 */
4181void init_idle(struct task_struct *idle, int cpu)
4182{
4183	struct rq *rq = cpu_rq(cpu);
4184	unsigned long flags;
4185
4186	raw_spin_lock_irqsave(&rq->lock, flags);
4187
4188	__sched_fork(idle);
4189	idle->state = TASK_RUNNING;
4190	idle->se.exec_start = sched_clock();
4191
4192	do_set_cpus_allowed(idle, cpumask_of(cpu));
4193	/*
4194	 * We're having a chicken and egg problem, even though we are
4195	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4196	 * lockdep check in task_group() will fail.
4197	 *
4198	 * Similar case to sched_fork(). / Alternatively we could
4199	 * use task_rq_lock() here and obtain the other rq->lock.
4200	 *
4201	 * Silence PROVE_RCU
4202	 */
4203	rcu_read_lock();
4204	__set_task_cpu(idle, cpu);
4205	rcu_read_unlock();
4206
4207	rq->curr = rq->idle = idle;
4208#if defined(CONFIG_SMP)
4209	idle->on_cpu = 1;
4210#endif
4211	raw_spin_unlock_irqrestore(&rq->lock, flags);
4212
4213	/* Set the preempt count _outside_ the spinlocks! */
4214	init_idle_preempt_count(idle, cpu);
4215
4216	/*
4217	 * The idle tasks have their own, simple scheduling class:
4218	 */
4219	idle->sched_class = &idle_sched_class;
4220	ftrace_graph_init_idle_task(idle, cpu);
4221	vtime_init_idle(idle, cpu);
4222#if defined(CONFIG_SMP)
4223	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4224#endif
4225}
4226
4227#ifdef CONFIG_SMP
4228void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4229{
4230	if (p->sched_class && p->sched_class->set_cpus_allowed)
4231		p->sched_class->set_cpus_allowed(p, new_mask);
4232
4233	cpumask_copy(&p->cpus_allowed, new_mask);
4234	p->nr_cpus_allowed = cpumask_weight(new_mask);
4235}
4236
4237/*
4238 * This is how migration works:
4239 *
4240 * 1) we invoke migration_cpu_stop() on the target CPU using
4241 *    stop_one_cpu().
4242 * 2) stopper starts to run (implicitly forcing the migrated thread
4243 *    off the CPU)
4244 * 3) it checks whether the migrated task is still in the wrong runqueue.
4245 * 4) if it's in the wrong runqueue then the migration thread removes
4246 *    it and puts it into the right queue.
4247 * 5) stopper completes and stop_one_cpu() returns and the migration
4248 *    is done.
4249 */
4250
4251/*
4252 * Change a given task's CPU affinity. Migrate the thread to a
4253 * proper CPU and schedule it away if the CPU it's executing on
4254 * is removed from the allowed bitmask.
4255 *
4256 * NOTE: the caller must have a valid reference to the task, the
4257 * task must not exit() & deallocate itself prematurely. The
4258 * call is not atomic; no spinlocks may be held.
4259 */
4260int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4261{
4262	unsigned long flags;
4263	struct rq *rq;
4264	unsigned int dest_cpu;
4265	int ret = 0;
4266
4267	rq = task_rq_lock(p, &flags);
4268
4269	if (cpumask_equal(&p->cpus_allowed, new_mask))
4270		goto out;
4271
4272	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4273		ret = -EINVAL;
4274		goto out;
4275	}
4276
4277	do_set_cpus_allowed(p, new_mask);
4278
4279	/* Can the task run on the task's current CPU? If so, we're done */
4280	if (cpumask_test_cpu(task_cpu(p), new_mask))
4281		goto out;
4282
4283	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4284	if (p->on_rq) {
4285		struct migration_arg arg = { p, dest_cpu };
4286		/* Need help from migration thread: drop lock and wait. */
4287		task_rq_unlock(rq, p, &flags);
4288		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4289		tlb_migrate_finish(p->mm);
4290		return 0;
4291	}
4292out:
4293	task_rq_unlock(rq, p, &flags);
4294
4295	return ret;
4296}
4297EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4298
4299/*
4300 * Move (not current) task off this cpu, onto dest cpu. We're doing
4301 * this because either it can't run here any more (set_cpus_allowed()
4302 * away from this CPU, or CPU going down), or because we're
4303 * attempting to rebalance this task on exec (sched_exec).
4304 *
4305 * So we race with normal scheduler movements, but that's OK, as long
4306 * as the task is no longer on this CPU.
4307 *
4308 * Returns non-zero if task was successfully migrated.
4309 */
4310static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4311{
4312	struct rq *rq_dest, *rq_src;
4313	int ret = 0;
4314
4315	if (unlikely(!cpu_active(dest_cpu)))
4316		return ret;
4317
4318	rq_src = cpu_rq(src_cpu);
4319	rq_dest = cpu_rq(dest_cpu);
4320
4321	raw_spin_lock(&p->pi_lock);
4322	double_rq_lock(rq_src, rq_dest);
4323	/* Already moved. */
4324	if (task_cpu(p) != src_cpu)
4325		goto done;
4326	/* Affinity changed (again). */
4327	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4328		goto fail;
4329
4330	/*
4331	 * If we're not on a rq, the next wake-up will ensure we're
4332	 * placed properly.
4333	 */
4334	if (p->on_rq) {
4335		dequeue_task(rq_src, p, 0);
4336		set_task_cpu(p, dest_cpu);
4337		enqueue_task(rq_dest, p, 0);
4338		check_preempt_curr(rq_dest, p, 0);
4339	}
4340done:
4341	ret = 1;
4342fail:
4343	double_rq_unlock(rq_src, rq_dest);
4344	raw_spin_unlock(&p->pi_lock);
4345	return ret;
4346}
4347
4348/*
4349 * migration_cpu_stop - this will be executed by a highprio stopper thread
4350 * and performs thread migration by bumping thread off CPU then
4351 * 'pushing' onto another runqueue.
4352 */
4353static int migration_cpu_stop(void *data)
4354{
4355	struct migration_arg *arg = data;
4356
4357	/*
4358	 * The original target cpu might have gone down and we might
4359	 * be on another cpu but it doesn't matter.
4360	 */
4361	local_irq_disable();
4362	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4363	local_irq_enable();
4364	return 0;
4365}
4366
4367#ifdef CONFIG_HOTPLUG_CPU
4368
4369/*
4370 * Ensures that the idle task is using init_mm right before its cpu goes
4371 * offline.
4372 */
4373void idle_task_exit(void)
4374{
4375	struct mm_struct *mm = current->active_mm;
4376
4377	BUG_ON(cpu_online(smp_processor_id()));
4378
4379	if (mm != &init_mm)
4380		switch_mm(mm, &init_mm, current);
4381	mmdrop(mm);
4382}
4383
4384/*
4385 * Since this CPU is going 'away' for a while, fold any nr_active delta
4386 * we might have. Assumes we're called after migrate_tasks() so that the
4387 * nr_active count is stable.
4388 *
4389 * Also see the comment "Global load-average calculations".
4390 */
4391static void calc_load_migrate(struct rq *rq)
4392{
4393	long delta = calc_load_fold_active(rq);
4394	if (delta)
4395		atomic_long_add(delta, &calc_load_tasks);
4396}
4397
4398/*
4399 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4400 * try_to_wake_up()->select_task_rq().
4401 *
4402 * Called with rq->lock held even though we'er in stop_machine() and
4403 * there's no concurrency possible, we hold the required locks anyway
4404 * because of lock validation efforts.
4405 */
4406static void migrate_tasks(unsigned int dead_cpu)
4407{
4408	struct rq *rq = cpu_rq(dead_cpu);
4409	struct task_struct *next, *stop = rq->stop;
4410	int dest_cpu;
4411
4412	/*
4413	 * Fudge the rq selection such that the below task selection loop
4414	 * doesn't get stuck on the currently eligible stop task.
4415	 *
4416	 * We're currently inside stop_machine() and the rq is either stuck
4417	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4418	 * either way we should never end up calling schedule() until we're
4419	 * done here.
4420	 */
4421	rq->stop = NULL;
4422
4423	/*
4424	 * put_prev_task() and pick_next_task() sched
4425	 * class method both need to have an up-to-date
4426	 * value of rq->clock[_task]
4427	 */
4428	update_rq_clock(rq);
4429
4430	for ( ; ; ) {
4431		/*
4432		 * There's this thread running, bail when that's the only
4433		 * remaining thread.
4434		 */
4435		if (rq->nr_running == 1)
4436			break;
4437
4438		next = pick_next_task(rq);
4439		BUG_ON(!next);
4440		next->sched_class->put_prev_task(rq, next);
4441
4442		/* Find suitable destination for @next, with force if needed. */
4443		dest_cpu = select_fallback_rq(dead_cpu, next);
4444		raw_spin_unlock(&rq->lock);
4445
4446		__migrate_task(next, dead_cpu, dest_cpu);
4447
4448		raw_spin_lock(&rq->lock);
4449	}
4450
4451	rq->stop = stop;
4452}
4453
4454#endif /* CONFIG_HOTPLUG_CPU */
4455
4456#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4457
4458static struct ctl_table sd_ctl_dir[] = {
4459	{
4460		.procname	= "sched_domain",
4461		.mode		= 0555,
4462	},
4463	{}
4464};
4465
4466static struct ctl_table sd_ctl_root[] = {
4467	{
4468		.procname	= "kernel",
4469		.mode		= 0555,
4470		.child		= sd_ctl_dir,
4471	},
4472	{}
4473};
4474
4475static struct ctl_table *sd_alloc_ctl_entry(int n)
4476{
4477	struct ctl_table *entry =
4478		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4479
4480	return entry;
4481}
4482
4483static void sd_free_ctl_entry(struct ctl_table **tablep)
4484{
4485	struct ctl_table *entry;
4486
4487	/*
4488	 * In the intermediate directories, both the child directory and
4489	 * procname are dynamically allocated and could fail but the mode
4490	 * will always be set. In the lowest directory the names are
4491	 * static strings and all have proc handlers.
4492	 */
4493	for (entry = *tablep; entry->mode; entry++) {
4494		if (entry->child)
4495			sd_free_ctl_entry(&entry->child);
4496		if (entry->proc_handler == NULL)
4497			kfree(entry->procname);
4498	}
4499
4500	kfree(*tablep);
4501	*tablep = NULL;
4502}
4503
4504static int min_load_idx = 0;
4505static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4506
4507static void
4508set_table_entry(struct ctl_table *entry,
4509		const char *procname, void *data, int maxlen,
4510		umode_t mode, proc_handler *proc_handler,
4511		bool load_idx)
4512{
4513	entry->procname = procname;
4514	entry->data = data;
4515	entry->maxlen = maxlen;
4516	entry->mode = mode;
4517	entry->proc_handler = proc_handler;
4518
4519	if (load_idx) {
4520		entry->extra1 = &min_load_idx;
4521		entry->extra2 = &max_load_idx;
4522	}
4523}
4524
4525static struct ctl_table *
4526sd_alloc_ctl_domain_table(struct sched_domain *sd)
4527{
4528	struct ctl_table *table = sd_alloc_ctl_entry(13);
4529
4530	if (table == NULL)
4531		return NULL;
4532
4533	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4534		sizeof(long), 0644, proc_doulongvec_minmax, false);
4535	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4536		sizeof(long), 0644, proc_doulongvec_minmax, false);
4537	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4538		sizeof(int), 0644, proc_dointvec_minmax, true);
4539	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4540		sizeof(int), 0644, proc_dointvec_minmax, true);
4541	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4542		sizeof(int), 0644, proc_dointvec_minmax, true);
4543	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4544		sizeof(int), 0644, proc_dointvec_minmax, true);
4545	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4546		sizeof(int), 0644, proc_dointvec_minmax, true);
4547	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4548		sizeof(int), 0644, proc_dointvec_minmax, false);
4549	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4550		sizeof(int), 0644, proc_dointvec_minmax, false);
4551	set_table_entry(&table[9], "cache_nice_tries",
4552		&sd->cache_nice_tries,
4553		sizeof(int), 0644, proc_dointvec_minmax, false);
4554	set_table_entry(&table[10], "flags", &sd->flags,
4555		sizeof(int), 0644, proc_dointvec_minmax, false);
4556	set_table_entry(&table[11], "name", sd->name,
4557		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4558	/* &table[12] is terminator */
4559
4560	return table;
4561}
4562
4563static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4564{
4565	struct ctl_table *entry, *table;
4566	struct sched_domain *sd;
4567	int domain_num = 0, i;
4568	char buf[32];
4569
4570	for_each_domain(cpu, sd)
4571		domain_num++;
4572	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4573	if (table == NULL)
4574		return NULL;
4575
4576	i = 0;
4577	for_each_domain(cpu, sd) {
4578		snprintf(buf, 32, "domain%d", i);
4579		entry->procname = kstrdup(buf, GFP_KERNEL);
4580		entry->mode = 0555;
4581		entry->child = sd_alloc_ctl_domain_table(sd);
4582		entry++;
4583		i++;
4584	}
4585	return table;
4586}
4587
4588static struct ctl_table_header *sd_sysctl_header;
4589static void register_sched_domain_sysctl(void)
4590{
4591	int i, cpu_num = num_possible_cpus();
4592	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4593	char buf[32];
4594
4595	WARN_ON(sd_ctl_dir[0].child);
4596	sd_ctl_dir[0].child = entry;
4597
4598	if (entry == NULL)
4599		return;
4600
4601	for_each_possible_cpu(i) {
4602		snprintf(buf, 32, "cpu%d", i);
4603		entry->procname = kstrdup(buf, GFP_KERNEL);
4604		entry->mode = 0555;
4605		entry->child = sd_alloc_ctl_cpu_table(i);
4606		entry++;
4607	}
4608
4609	WARN_ON(sd_sysctl_header);
4610	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4611}
4612
4613/* may be called multiple times per register */
4614static void unregister_sched_domain_sysctl(void)
4615{
4616	if (sd_sysctl_header)
4617		unregister_sysctl_table(sd_sysctl_header);
4618	sd_sysctl_header = NULL;
4619	if (sd_ctl_dir[0].child)
4620		sd_free_ctl_entry(&sd_ctl_dir[0].child);
4621}
4622#else
4623static void register_sched_domain_sysctl(void)
4624{
4625}
4626static void unregister_sched_domain_sysctl(void)
4627{
4628}
4629#endif
4630
4631static void set_rq_online(struct rq *rq)
4632{
4633	if (!rq->online) {
4634		const struct sched_class *class;
4635
4636		cpumask_set_cpu(rq->cpu, rq->rd->online);
4637		rq->online = 1;
4638
4639		for_each_class(class) {
4640			if (class->rq_online)
4641				class->rq_online(rq);
4642		}
4643	}
4644}
4645
4646static void set_rq_offline(struct rq *rq)
4647{
4648	if (rq->online) {
4649		const struct sched_class *class;
4650
4651		for_each_class(class) {
4652			if (class->rq_offline)
4653				class->rq_offline(rq);
4654		}
4655
4656		cpumask_clear_cpu(rq->cpu, rq->rd->online);
4657		rq->online = 0;
4658	}
4659}
4660
4661/*
4662 * migration_call - callback that gets triggered when a CPU is added.
4663 * Here we can start up the necessary migration thread for the new CPU.
4664 */
4665static int
4666migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4667{
4668	int cpu = (long)hcpu;
4669	unsigned long flags;
4670	struct rq *rq = cpu_rq(cpu);
4671
4672	switch (action & ~CPU_TASKS_FROZEN) {
4673
4674	case CPU_UP_PREPARE:
4675		rq->calc_load_update = calc_load_update;
4676		break;
4677
4678	case CPU_ONLINE:
4679		/* Update our root-domain */
4680		raw_spin_lock_irqsave(&rq->lock, flags);
4681		if (rq->rd) {
4682			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4683
4684			set_rq_online(rq);
4685		}
4686		raw_spin_unlock_irqrestore(&rq->lock, flags);
4687		break;
4688
4689#ifdef CONFIG_HOTPLUG_CPU
4690	case CPU_DYING:
4691		sched_ttwu_pending();
4692		/* Update our root-domain */
4693		raw_spin_lock_irqsave(&rq->lock, flags);
4694		if (rq->rd) {
4695			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4696			set_rq_offline(rq);
4697		}
4698		migrate_tasks(cpu);
4699		BUG_ON(rq->nr_running != 1); /* the migration thread */
4700		raw_spin_unlock_irqrestore(&rq->lock, flags);
4701		break;
4702
4703	case CPU_DEAD:
4704		calc_load_migrate(rq);
4705		break;
4706#endif
4707	}
4708
4709	update_max_interval();
4710
4711	return NOTIFY_OK;
4712}
4713
4714/*
4715 * Register at high priority so that task migration (migrate_all_tasks)
4716 * happens before everything else.  This has to be lower priority than
4717 * the notifier in the perf_event subsystem, though.
4718 */
4719static struct notifier_block migration_notifier = {
4720	.notifier_call = migration_call,
4721	.priority = CPU_PRI_MIGRATION,
4722};
4723
4724static int sched_cpu_active(struct notifier_block *nfb,
4725				      unsigned long action, void *hcpu)
4726{
4727	switch (action & ~CPU_TASKS_FROZEN) {
4728	case CPU_STARTING:
4729	case CPU_DOWN_FAILED:
4730		set_cpu_active((long)hcpu, true);
4731		return NOTIFY_OK;
4732	default:
4733		return NOTIFY_DONE;
4734	}
4735}
4736
4737static int sched_cpu_inactive(struct notifier_block *nfb,
4738					unsigned long action, void *hcpu)
4739{
4740	switch (action & ~CPU_TASKS_FROZEN) {
4741	case CPU_DOWN_PREPARE:
4742		set_cpu_active((long)hcpu, false);
4743		return NOTIFY_OK;
4744	default:
4745		return NOTIFY_DONE;
4746	}
4747}
4748
4749static int __init migration_init(void)
4750{
4751	void *cpu = (void *)(long)smp_processor_id();
4752	int err;
4753
4754	/* Initialize migration for the boot CPU */
4755	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4756	BUG_ON(err == NOTIFY_BAD);
4757	migration_call(&migration_notifier, CPU_ONLINE, cpu);
4758	register_cpu_notifier(&migration_notifier);
4759
4760	/* Register cpu active notifiers */
4761	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4762	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4763
4764	return 0;
4765}
4766early_initcall(migration_init);
4767#endif
4768
4769#ifdef CONFIG_SMP
4770
4771static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4772
4773#ifdef CONFIG_SCHED_DEBUG
4774
4775static __read_mostly int sched_debug_enabled;
4776
4777static int __init sched_debug_setup(char *str)
4778{
4779	sched_debug_enabled = 1;
4780
4781	return 0;
4782}
4783early_param("sched_debug", sched_debug_setup);
4784
4785static inline bool sched_debug(void)
4786{
4787	return sched_debug_enabled;
4788}
4789
4790static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4791				  struct cpumask *groupmask)
4792{
4793	struct sched_group *group = sd->groups;
4794	char str[256];
4795
4796	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4797	cpumask_clear(groupmask);
4798
4799	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4800
4801	if (!(sd->flags & SD_LOAD_BALANCE)) {
4802		printk("does not load-balance\n");
4803		if (sd->parent)
4804			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4805					" has parent");
4806		return -1;
4807	}
4808
4809	printk(KERN_CONT "span %s level %s\n", str, sd->name);
4810
4811	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4812		printk(KERN_ERR "ERROR: domain->span does not contain "
4813				"CPU%d\n", cpu);
4814	}
4815	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4816		printk(KERN_ERR "ERROR: domain->groups does not contain"
4817				" CPU%d\n", cpu);
4818	}
4819
4820	printk(KERN_DEBUG "%*s groups:", level + 1, "");
4821	do {
4822		if (!group) {
4823			printk("\n");
4824			printk(KERN_ERR "ERROR: group is NULL\n");
4825			break;
4826		}
4827
4828		/*
4829		 * Even though we initialize ->power to something semi-sane,
4830		 * we leave power_orig unset. This allows us to detect if
4831		 * domain iteration is still funny without causing /0 traps.
4832		 */
4833		if (!group->sgp->power_orig) {
4834			printk(KERN_CONT "\n");
4835			printk(KERN_ERR "ERROR: domain->cpu_power not "
4836					"set\n");
4837			break;
4838		}
4839
4840		if (!cpumask_weight(sched_group_cpus(group))) {
4841			printk(KERN_CONT "\n");
4842			printk(KERN_ERR "ERROR: empty group\n");
4843			break;
4844		}
4845
4846		if (!(sd->flags & SD_OVERLAP) &&
4847		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4848			printk(KERN_CONT "\n");
4849			printk(KERN_ERR "ERROR: repeated CPUs\n");
4850			break;
4851		}
4852
4853		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4854
4855		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4856
4857		printk(KERN_CONT " %s", str);
4858		if (group->sgp->power != SCHED_POWER_SCALE) {
4859			printk(KERN_CONT " (cpu_power = %d)",
4860				group->sgp->power);
4861		}
4862
4863		group = group->next;
4864	} while (group != sd->groups);
4865	printk(KERN_CONT "\n");
4866
4867	if (!cpumask_equal(sched_domain_span(sd), groupmask))
4868		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4869
4870	if (sd->parent &&
4871	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4872		printk(KERN_ERR "ERROR: parent span is not a superset "
4873			"of domain->span\n");
4874	return 0;
4875}
4876
4877static void sched_domain_debug(struct sched_domain *sd, int cpu)
4878{
4879	int level = 0;
4880
4881	if (!sched_debug_enabled)
4882		return;
4883
4884	if (!sd) {
4885		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4886		return;
4887	}
4888
4889	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4890
4891	for (;;) {
4892		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4893			break;
4894		level++;
4895		sd = sd->parent;
4896		if (!sd)
4897			break;
4898	}
4899}
4900#else /* !CONFIG_SCHED_DEBUG */
4901# define sched_domain_debug(sd, cpu) do { } while (0)
4902static inline bool sched_debug(void)
4903{
4904	return false;
4905}
4906#endif /* CONFIG_SCHED_DEBUG */
4907
4908static int sd_degenerate(struct sched_domain *sd)
4909{
4910	if (cpumask_weight(sched_domain_span(sd)) == 1)
4911		return 1;
4912
4913	/* Following flags need at least 2 groups */
4914	if (sd->flags & (SD_LOAD_BALANCE |
4915			 SD_BALANCE_NEWIDLE |
4916			 SD_BALANCE_FORK |
4917			 SD_BALANCE_EXEC |
4918			 SD_SHARE_CPUPOWER |
4919			 SD_SHARE_PKG_RESOURCES)) {
4920		if (sd->groups != sd->groups->next)
4921			return 0;
4922	}
4923
4924	/* Following flags don't use groups */
4925	if (sd->flags & (SD_WAKE_AFFINE))
4926		return 0;
4927
4928	return 1;
4929}
4930
4931static int
4932sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4933{
4934	unsigned long cflags = sd->flags, pflags = parent->flags;
4935
4936	if (sd_degenerate(parent))
4937		return 1;
4938
4939	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4940		return 0;
4941
4942	/* Flags needing groups don't count if only 1 group in parent */
4943	if (parent->groups == parent->groups->next) {
4944		pflags &= ~(SD_LOAD_BALANCE |
4945				SD_BALANCE_NEWIDLE |
4946				SD_BALANCE_FORK |
4947				SD_BALANCE_EXEC |
4948				SD_SHARE_CPUPOWER |
4949				SD_SHARE_PKG_RESOURCES |
4950				SD_PREFER_SIBLING);
4951		if (nr_node_ids == 1)
4952			pflags &= ~SD_SERIALIZE;
4953	}
4954	if (~cflags & pflags)
4955		return 0;
4956
4957	return 1;
4958}
4959
4960static void free_rootdomain(struct rcu_head *rcu)
4961{
4962	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4963
4964	cpupri_cleanup(&rd->cpupri);
4965	free_cpumask_var(rd->rto_mask);
4966	free_cpumask_var(rd->online);
4967	free_cpumask_var(rd->span);
4968	kfree(rd);
4969}
4970
4971static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4972{
4973	struct root_domain *old_rd = NULL;
4974	unsigned long flags;
4975
4976	raw_spin_lock_irqsave(&rq->lock, flags);
4977
4978	if (rq->rd) {
4979		old_rd = rq->rd;
4980
4981		if (cpumask_test_cpu(rq->cpu, old_rd->online))
4982			set_rq_offline(rq);
4983
4984		cpumask_clear_cpu(rq->cpu, old_rd->span);
4985
4986		/*
4987		 * If we dont want to free the old_rt yet then
4988		 * set old_rd to NULL to skip the freeing later
4989		 * in this function:
4990		 */
4991		if (!atomic_dec_and_test(&old_rd->refcount))
4992			old_rd = NULL;
4993	}
4994
4995	atomic_inc(&rd->refcount);
4996	rq->rd = rd;
4997
4998	cpumask_set_cpu(rq->cpu, rd->span);
4999	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5000		set_rq_online(rq);
5001
5002	raw_spin_unlock_irqrestore(&rq->lock, flags);
5003
5004	if (old_rd)
5005		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5006}
5007
5008static int init_rootdomain(struct root_domain *rd)
5009{
5010	memset(rd, 0, sizeof(*rd));
5011
5012	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5013		goto out;
5014	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5015		goto free_span;
5016	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5017		goto free_online;
5018
5019	if (cpupri_init(&rd->cpupri) != 0)
5020		goto free_rto_mask;
5021	return 0;
5022
5023free_rto_mask:
5024	free_cpumask_var(rd->rto_mask);
5025free_online:
5026	free_cpumask_var(rd->online);
5027free_span:
5028	free_cpumask_var(rd->span);
5029out:
5030	return -ENOMEM;
5031}
5032
5033/*
5034 * By default the system creates a single root-domain with all cpus as
5035 * members (mimicking the global state we have today).
5036 */
5037struct root_domain def_root_domain;
5038
5039static void init_defrootdomain(void)
5040{
5041	init_rootdomain(&def_root_domain);
5042
5043	atomic_set(&def_root_domain.refcount, 1);
5044}
5045
5046static struct root_domain *alloc_rootdomain(void)
5047{
5048	struct root_domain *rd;
5049
5050	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5051	if (!rd)
5052		return NULL;
5053
5054	if (init_rootdomain(rd) != 0) {
5055		kfree(rd);
5056		return NULL;
5057	}
5058
5059	return rd;
5060}
5061
5062static void free_sched_groups(struct sched_group *sg, int free_sgp)
5063{
5064	struct sched_group *tmp, *first;
5065
5066	if (!sg)
5067		return;
5068
5069	first = sg;
5070	do {
5071		tmp = sg->next;
5072
5073		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5074			kfree(sg->sgp);
5075
5076		kfree(sg);
5077		sg = tmp;
5078	} while (sg != first);
5079}
5080
5081static void free_sched_domain(struct rcu_head *rcu)
5082{
5083	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5084
5085	/*
5086	 * If its an overlapping domain it has private groups, iterate and
5087	 * nuke them all.
5088	 */
5089	if (sd->flags & SD_OVERLAP) {
5090		free_sched_groups(sd->groups, 1);
5091	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5092		kfree(sd->groups->sgp);
5093		kfree(sd->groups);
5094	}
5095	kfree(sd);
5096}
5097
5098static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5099{
5100	call_rcu(&sd->rcu, free_sched_domain);
5101}
5102
5103static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5104{
5105	for (; sd; sd = sd->parent)
5106		destroy_sched_domain(sd, cpu);
5107}
5108
5109/*
5110 * Keep a special pointer to the highest sched_domain that has
5111 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5112 * allows us to avoid some pointer chasing select_idle_sibling().
5113 *
5114 * Also keep a unique ID per domain (we use the first cpu number in
5115 * the cpumask of the domain), this allows us to quickly tell if
5116 * two cpus are in the same cache domain, see cpus_share_cache().
5117 */
5118DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5119DEFINE_PER_CPU(int, sd_llc_size);
5120DEFINE_PER_CPU(int, sd_llc_id);
5121
5122static void update_top_cache_domain(int cpu)
5123{
5124	struct sched_domain *sd;
5125	int id = cpu;
5126	int size = 1;
5127
5128	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5129	if (sd) {
5130		id = cpumask_first(sched_domain_span(sd));
5131		size = cpumask_weight(sched_domain_span(sd));
5132	}
5133
5134	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5135	per_cpu(sd_llc_size, cpu) = size;
5136	per_cpu(sd_llc_id, cpu) = id;
5137}
5138
5139/*
5140 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5141 * hold the hotplug lock.
5142 */
5143static void
5144cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5145{
5146	struct rq *rq = cpu_rq(cpu);
5147	struct sched_domain *tmp;
5148
5149	/* Remove the sched domains which do not contribute to scheduling. */
5150	for (tmp = sd; tmp; ) {
5151		struct sched_domain *parent = tmp->parent;
5152		if (!parent)
5153			break;
5154
5155		if (sd_parent_degenerate(tmp, parent)) {
5156			tmp->parent = parent->parent;
5157			if (parent->parent)
5158				parent->parent->child = tmp;
5159			/*
5160			 * Transfer SD_PREFER_SIBLING down in case of a
5161			 * degenerate parent; the spans match for this
5162			 * so the property transfers.
5163			 */
5164			if (parent->flags & SD_PREFER_SIBLING)
5165				tmp->flags |= SD_PREFER_SIBLING;
5166			destroy_sched_domain(parent, cpu);
5167		} else
5168			tmp = tmp->parent;
5169	}
5170
5171	if (sd && sd_degenerate(sd)) {
5172		tmp = sd;
5173		sd = sd->parent;
5174		destroy_sched_domain(tmp, cpu);
5175		if (sd)
5176			sd->child = NULL;
5177	}
5178
5179	sched_domain_debug(sd, cpu);
5180
5181	rq_attach_root(rq, rd);
5182	tmp = rq->sd;
5183	rcu_assign_pointer(rq->sd, sd);
5184	destroy_sched_domains(tmp, cpu);
5185
5186	update_top_cache_domain(cpu);
5187}
5188
5189/* cpus with isolated domains */
5190static cpumask_var_t cpu_isolated_map;
5191
5192/* Setup the mask of cpus configured for isolated domains */
5193static int __init isolated_cpu_setup(char *str)
5194{
5195	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5196	cpulist_parse(str, cpu_isolated_map);
5197	return 1;
5198}
5199
5200__setup("isolcpus=", isolated_cpu_setup);
5201
5202static const struct cpumask *cpu_cpu_mask(int cpu)
5203{
5204	return cpumask_of_node(cpu_to_node(cpu));
5205}
5206
5207struct sd_data {
5208	struct sched_domain **__percpu sd;
5209	struct sched_group **__percpu sg;
5210	struct sched_group_power **__percpu sgp;
5211};
5212
5213struct s_data {
5214	struct sched_domain ** __percpu sd;
5215	struct root_domain	*rd;
5216};
5217
5218enum s_alloc {
5219	sa_rootdomain,
5220	sa_sd,
5221	sa_sd_storage,
5222	sa_none,
5223};
5224
5225struct sched_domain_topology_level;
5226
5227typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5228typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5229
5230#define SDTL_OVERLAP	0x01
5231
5232struct sched_domain_topology_level {
5233	sched_domain_init_f init;
5234	sched_domain_mask_f mask;
5235	int		    flags;
5236	int		    numa_level;
5237	struct sd_data      data;
5238};
5239
5240/*
5241 * Build an iteration mask that can exclude certain CPUs from the upwards
5242 * domain traversal.
5243 *
5244 * Asymmetric node setups can result in situations where the domain tree is of
5245 * unequal depth, make sure to skip domains that already cover the entire
5246 * range.
5247 *
5248 * In that case build_sched_domains() will have terminated the iteration early
5249 * and our sibling sd spans will be empty. Domains should always include the
5250 * cpu they're built on, so check that.
5251 *
5252 */
5253static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5254{
5255	const struct cpumask *span = sched_domain_span(sd);
5256	struct sd_data *sdd = sd->private;
5257	struct sched_domain *sibling;
5258	int i;
5259
5260	for_each_cpu(i, span) {
5261		sibling = *per_cpu_ptr(sdd->sd, i);
5262		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5263			continue;
5264
5265		cpumask_set_cpu(i, sched_group_mask(sg));
5266	}
5267}
5268
5269/*
5270 * Return the canonical balance cpu for this group, this is the first cpu
5271 * of this group that's also in the iteration mask.
5272 */
5273int group_balance_cpu(struct sched_group *sg)
5274{
5275	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5276}
5277
5278static int
5279build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5280{
5281	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5282	const struct cpumask *span = sched_domain_span(sd);
5283	struct cpumask *covered = sched_domains_tmpmask;
5284	struct sd_data *sdd = sd->private;
5285	struct sched_domain *child;
5286	int i;
5287
5288	cpumask_clear(covered);
5289
5290	for_each_cpu(i, span) {
5291		struct cpumask *sg_span;
5292
5293		if (cpumask_test_cpu(i, covered))
5294			continue;
5295
5296		child = *per_cpu_ptr(sdd->sd, i);
5297
5298		/* See the comment near build_group_mask(). */
5299		if (!cpumask_test_cpu(i, sched_domain_span(child)))
5300			continue;
5301
5302		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5303				GFP_KERNEL, cpu_to_node(cpu));
5304
5305		if (!sg)
5306			goto fail;
5307
5308		sg_span = sched_group_cpus(sg);
5309		if (child->child) {
5310			child = child->child;
5311			cpumask_copy(sg_span, sched_domain_span(child));
5312		} else
5313			cpumask_set_cpu(i, sg_span);
5314
5315		cpumask_or(covered, covered, sg_span);
5316
5317		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5318		if (atomic_inc_return(&sg->sgp->ref) == 1)
5319			build_group_mask(sd, sg);
5320
5321		/*
5322		 * Initialize sgp->power such that even if we mess up the
5323		 * domains and no possible iteration will get us here, we won't
5324		 * die on a /0 trap.
5325		 */
5326		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5327
5328		/*
5329		 * Make sure the first group of this domain contains the
5330		 * canonical balance cpu. Otherwise the sched_domain iteration
5331		 * breaks. See update_sg_lb_stats().
5332		 */
5333		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5334		    group_balance_cpu(sg) == cpu)
5335			groups = sg;
5336
5337		if (!first)
5338			first = sg;
5339		if (last)
5340			last->next = sg;
5341		last = sg;
5342		last->next = first;
5343	}
5344	sd->groups = groups;
5345
5346	return 0;
5347
5348fail:
5349	free_sched_groups(first, 0);
5350
5351	return -ENOMEM;
5352}
5353
5354static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5355{
5356	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5357	struct sched_domain *child = sd->child;
5358
5359	if (child)
5360		cpu = cpumask_first(sched_domain_span(child));
5361
5362	if (sg) {
5363		*sg = *per_cpu_ptr(sdd->sg, cpu);
5364		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5365		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5366	}
5367
5368	return cpu;
5369}
5370
5371/*
5372 * build_sched_groups will build a circular linked list of the groups
5373 * covered by the given span, and will set each group's ->cpumask correctly,
5374 * and ->cpu_power to 0.
5375 *
5376 * Assumes the sched_domain tree is fully constructed
5377 */
5378static int
5379build_sched_groups(struct sched_domain *sd, int cpu)
5380{
5381	struct sched_group *first = NULL, *last = NULL;
5382	struct sd_data *sdd = sd->private;
5383	const struct cpumask *span = sched_domain_span(sd);
5384	struct cpumask *covered;
5385	int i;
5386
5387	get_group(cpu, sdd, &sd->groups);
5388	atomic_inc(&sd->groups->ref);
5389
5390	if (cpu != cpumask_first(span))
5391		return 0;
5392
5393	lockdep_assert_held(&sched_domains_mutex);
5394	covered = sched_domains_tmpmask;
5395
5396	cpumask_clear(covered);
5397
5398	for_each_cpu(i, span) {
5399		struct sched_group *sg;
5400		int group, j;
5401
5402		if (cpumask_test_cpu(i, covered))
5403			continue;
5404
5405		group = get_group(i, sdd, &sg);
5406		cpumask_clear(sched_group_cpus(sg));
5407		sg->sgp->power = 0;
5408		cpumask_setall(sched_group_mask(sg));
5409
5410		for_each_cpu(j, span) {
5411			if (get_group(j, sdd, NULL) != group)
5412				continue;
5413
5414			cpumask_set_cpu(j, covered);
5415			cpumask_set_cpu(j, sched_group_cpus(sg));
5416		}
5417
5418		if (!first)
5419			first = sg;
5420		if (last)
5421			last->next = sg;
5422		last = sg;
5423	}
5424	last->next = first;
5425
5426	return 0;
5427}
5428
5429/*
5430 * Initialize sched groups cpu_power.
5431 *
5432 * cpu_power indicates the capacity of sched group, which is used while
5433 * distributing the load between different sched groups in a sched domain.
5434 * Typically cpu_power for all the groups in a sched domain will be same unless
5435 * there are asymmetries in the topology. If there are asymmetries, group
5436 * having more cpu_power will pickup more load compared to the group having
5437 * less cpu_power.
5438 */
5439static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5440{
5441	struct sched_group *sg = sd->groups;
5442
5443	WARN_ON(!sg);
5444
5445	do {
5446		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5447		sg = sg->next;
5448	} while (sg != sd->groups);
5449
5450	if (cpu != group_balance_cpu(sg))
5451		return;
5452
5453	update_group_power(sd, cpu);
5454	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5455}
5456
5457int __weak arch_sd_sibling_asym_packing(void)
5458{
5459       return 0*SD_ASYM_PACKING;
5460}
5461
5462/*
5463 * Initializers for schedule domains
5464 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5465 */
5466
5467#ifdef CONFIG_SCHED_DEBUG
5468# define SD_INIT_NAME(sd, type)		sd->name = #type
5469#else
5470# define SD_INIT_NAME(sd, type)		do { } while (0)
5471#endif
5472
5473#define SD_INIT_FUNC(type)						\
5474static noinline struct sched_domain *					\
5475sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
5476{									\
5477	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
5478	*sd = SD_##type##_INIT;						\
5479	SD_INIT_NAME(sd, type);						\
5480	sd->private = &tl->data;					\
5481	return sd;							\
5482}
5483
5484SD_INIT_FUNC(CPU)
5485#ifdef CONFIG_SCHED_SMT
5486 SD_INIT_FUNC(SIBLING)
5487#endif
5488#ifdef CONFIG_SCHED_MC
5489 SD_INIT_FUNC(MC)
5490#endif
5491#ifdef CONFIG_SCHED_BOOK
5492 SD_INIT_FUNC(BOOK)
5493#endif
5494
5495static int default_relax_domain_level = -1;
5496int sched_domain_level_max;
5497
5498static int __init setup_relax_domain_level(char *str)
5499{
5500	if (kstrtoint(str, 0, &default_relax_domain_level))
5501		pr_warn("Unable to set relax_domain_level\n");
5502
5503	return 1;
5504}
5505__setup("relax_domain_level=", setup_relax_domain_level);
5506
5507static void set_domain_attribute(struct sched_domain *sd,
5508				 struct sched_domain_attr *attr)
5509{
5510	int request;
5511
5512	if (!attr || attr->relax_domain_level < 0) {
5513		if (default_relax_domain_level < 0)
5514			return;
5515		else
5516			request = default_relax_domain_level;
5517	} else
5518		request = attr->relax_domain_level;
5519	if (request < sd->level) {
5520		/* turn off idle balance on this domain */
5521		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5522	} else {
5523		/* turn on idle balance on this domain */
5524		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5525	}
5526}
5527
5528static void __sdt_free(const struct cpumask *cpu_map);
5529static int __sdt_alloc(const struct cpumask *cpu_map);
5530
5531static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5532				 const struct cpumask *cpu_map)
5533{
5534	switch (what) {
5535	case sa_rootdomain:
5536		if (!atomic_read(&d->rd->refcount))
5537			free_rootdomain(&d->rd->rcu); /* fall through */
5538	case sa_sd:
5539		free_percpu(d->sd); /* fall through */
5540	case sa_sd_storage:
5541		__sdt_free(cpu_map); /* fall through */
5542	case sa_none:
5543		break;
5544	}
5545}
5546
5547static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5548						   const struct cpumask *cpu_map)
5549{
5550	memset(d, 0, sizeof(*d));
5551
5552	if (__sdt_alloc(cpu_map))
5553		return sa_sd_storage;
5554	d->sd = alloc_percpu(struct sched_domain *);
5555	if (!d->sd)
5556		return sa_sd_storage;
5557	d->rd = alloc_rootdomain();
5558	if (!d->rd)
5559		return sa_sd;
5560	return sa_rootdomain;
5561}
5562
5563/*
5564 * NULL the sd_data elements we've used to build the sched_domain and
5565 * sched_group structure so that the subsequent __free_domain_allocs()
5566 * will not free the data we're using.
5567 */
5568static void claim_allocations(int cpu, struct sched_domain *sd)
5569{
5570	struct sd_data *sdd = sd->private;
5571
5572	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5573	*per_cpu_ptr(sdd->sd, cpu) = NULL;
5574
5575	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5576		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5577
5578	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5579		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5580}
5581
5582#ifdef CONFIG_SCHED_SMT
5583static const struct cpumask *cpu_smt_mask(int cpu)
5584{
5585	return topology_thread_cpumask(cpu);
5586}
5587#endif
5588
5589/*
5590 * Topology list, bottom-up.
5591 */
5592static struct sched_domain_topology_level default_topology[] = {
5593#ifdef CONFIG_SCHED_SMT
5594	{ sd_init_SIBLING, cpu_smt_mask, },
5595#endif
5596#ifdef CONFIG_SCHED_MC
5597	{ sd_init_MC, cpu_coregroup_mask, },
5598#endif
5599#ifdef CONFIG_SCHED_BOOK
5600	{ sd_init_BOOK, cpu_book_mask, },
5601#endif
5602	{ sd_init_CPU, cpu_cpu_mask, },
5603	{ NULL, },
5604};
5605
5606static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5607
5608#define for_each_sd_topology(tl)			\
5609	for (tl = sched_domain_topology; tl->init; tl++)
5610
5611#ifdef CONFIG_NUMA
5612
5613static int sched_domains_numa_levels;
5614static int *sched_domains_numa_distance;
5615static struct cpumask ***sched_domains_numa_masks;
5616static int sched_domains_curr_level;
5617
5618static inline int sd_local_flags(int level)
5619{
5620	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5621		return 0;
5622
5623	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5624}
5625
5626static struct sched_domain *
5627sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5628{
5629	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5630	int level = tl->numa_level;
5631	int sd_weight = cpumask_weight(
5632			sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5633
5634	*sd = (struct sched_domain){
5635		.min_interval		= sd_weight,
5636		.max_interval		= 2*sd_weight,
5637		.busy_factor		= 32,
5638		.imbalance_pct		= 125,
5639		.cache_nice_tries	= 2,
5640		.busy_idx		= 3,
5641		.idle_idx		= 2,
5642		.newidle_idx		= 0,
5643		.wake_idx		= 0,
5644		.forkexec_idx		= 0,
5645
5646		.flags			= 1*SD_LOAD_BALANCE
5647					| 1*SD_BALANCE_NEWIDLE
5648					| 0*SD_BALANCE_EXEC
5649					| 0*SD_BALANCE_FORK
5650					| 0*SD_BALANCE_WAKE
5651					| 0*SD_WAKE_AFFINE
5652					| 0*SD_SHARE_CPUPOWER
5653					| 0*SD_SHARE_PKG_RESOURCES
5654					| 1*SD_SERIALIZE
5655					| 0*SD_PREFER_SIBLING
5656					| sd_local_flags(level)
5657					,
5658		.last_balance		= jiffies,
5659		.balance_interval	= sd_weight,
5660	};
5661	SD_INIT_NAME(sd, NUMA);
5662	sd->private = &tl->data;
5663
5664	/*
5665	 * Ugly hack to pass state to sd_numa_mask()...
5666	 */
5667	sched_domains_curr_level = tl->numa_level;
5668
5669	return sd;
5670}
5671
5672static const struct cpumask *sd_numa_mask(int cpu)
5673{
5674	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5675}
5676
5677static void sched_numa_warn(const char *str)
5678{
5679	static int done = false;
5680	int i,j;
5681
5682	if (done)
5683		return;
5684
5685	done = true;
5686
5687	printk(KERN_WARNING "ERROR: %s\n\n", str);
5688
5689	for (i = 0; i < nr_node_ids; i++) {
5690		printk(KERN_WARNING "  ");
5691		for (j = 0; j < nr_node_ids; j++)
5692			printk(KERN_CONT "%02d ", node_distance(i,j));
5693		printk(KERN_CONT "\n");
5694	}
5695	printk(KERN_WARNING "\n");
5696}
5697
5698static bool find_numa_distance(int distance)
5699{
5700	int i;
5701
5702	if (distance == node_distance(0, 0))
5703		return true;
5704
5705	for (i = 0; i < sched_domains_numa_levels; i++) {
5706		if (sched_domains_numa_distance[i] == distance)
5707			return true;
5708	}
5709
5710	return false;
5711}
5712
5713static void sched_init_numa(void)
5714{
5715	int next_distance, curr_distance = node_distance(0, 0);
5716	struct sched_domain_topology_level *tl;
5717	int level = 0;
5718	int i, j, k;
5719
5720	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5721	if (!sched_domains_numa_distance)
5722		return;
5723
5724	/*
5725	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5726	 * unique distances in the node_distance() table.
5727	 *
5728	 * Assumes node_distance(0,j) includes all distances in
5729	 * node_distance(i,j) in order to avoid cubic time.
5730	 */
5731	next_distance = curr_distance;
5732	for (i = 0; i < nr_node_ids; i++) {
5733		for (j = 0; j < nr_node_ids; j++) {
5734			for (k = 0; k < nr_node_ids; k++) {
5735				int distance = node_distance(i, k);
5736
5737				if (distance > curr_distance &&
5738				    (distance < next_distance ||
5739				     next_distance == curr_distance))
5740					next_distance = distance;
5741
5742				/*
5743				 * While not a strong assumption it would be nice to know
5744				 * about cases where if node A is connected to B, B is not
5745				 * equally connected to A.
5746				 */
5747				if (sched_debug() && node_distance(k, i) != distance)
5748					sched_numa_warn("Node-distance not symmetric");
5749
5750				if (sched_debug() && i && !find_numa_distance(distance))
5751					sched_numa_warn("Node-0 not representative");
5752			}
5753			if (next_distance != curr_distance) {
5754				sched_domains_numa_distance[level++] = next_distance;
5755				sched_domains_numa_levels = level;
5756				curr_distance = next_distance;
5757			} else break;
5758		}
5759
5760		/*
5761		 * In case of sched_debug() we verify the above assumption.
5762		 */
5763		if (!sched_debug())
5764			break;
5765	}
5766	/*
5767	 * 'level' contains the number of unique distances, excluding the
5768	 * identity distance node_distance(i,i).
5769	 *
5770	 * The sched_domains_numa_distance[] array includes the actual distance
5771	 * numbers.
5772	 */
5773
5774	/*
5775	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5776	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5777	 * the array will contain less then 'level' members. This could be
5778	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5779	 * in other functions.
5780	 *
5781	 * We reset it to 'level' at the end of this function.
5782	 */
5783	sched_domains_numa_levels = 0;
5784
5785	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5786	if (!sched_domains_numa_masks)
5787		return;
5788
5789	/*
5790	 * Now for each level, construct a mask per node which contains all
5791	 * cpus of nodes that are that many hops away from us.
5792	 */
5793	for (i = 0; i < level; i++) {
5794		sched_domains_numa_masks[i] =
5795			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5796		if (!sched_domains_numa_masks[i])
5797			return;
5798
5799		for (j = 0; j < nr_node_ids; j++) {
5800			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5801			if (!mask)
5802				return;
5803
5804			sched_domains_numa_masks[i][j] = mask;
5805
5806			for (k = 0; k < nr_node_ids; k++) {
5807				if (node_distance(j, k) > sched_domains_numa_distance[i])
5808					continue;
5809
5810				cpumask_or(mask, mask, cpumask_of_node(k));
5811			}
5812		}
5813	}
5814
5815	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5816			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5817	if (!tl)
5818		return;
5819
5820	/*
5821	 * Copy the default topology bits..
5822	 */
5823	for (i = 0; default_topology[i].init; i++)
5824		tl[i] = default_topology[i];
5825
5826	/*
5827	 * .. and append 'j' levels of NUMA goodness.
5828	 */
5829	for (j = 0; j < level; i++, j++) {
5830		tl[i] = (struct sched_domain_topology_level){
5831			.init = sd_numa_init,
5832			.mask = sd_numa_mask,
5833			.flags = SDTL_OVERLAP,
5834			.numa_level = j,
5835		};
5836	}
5837
5838	sched_domain_topology = tl;
5839
5840	sched_domains_numa_levels = level;
5841}
5842
5843static void sched_domains_numa_masks_set(int cpu)
5844{
5845	int i, j;
5846	int node = cpu_to_node(cpu);
5847
5848	for (i = 0; i < sched_domains_numa_levels; i++) {
5849		for (j = 0; j < nr_node_ids; j++) {
5850			if (node_distance(j, node) <= sched_domains_numa_distance[i])
5851				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5852		}
5853	}
5854}
5855
5856static void sched_domains_numa_masks_clear(int cpu)
5857{
5858	int i, j;
5859	for (i = 0; i < sched_domains_numa_levels; i++) {
5860		for (j = 0; j < nr_node_ids; j++)
5861			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5862	}
5863}
5864
5865/*
5866 * Update sched_domains_numa_masks[level][node] array when new cpus
5867 * are onlined.
5868 */
5869static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5870					   unsigned long action,
5871					   void *hcpu)
5872{
5873	int cpu = (long)hcpu;
5874
5875	switch (action & ~CPU_TASKS_FROZEN) {
5876	case CPU_ONLINE:
5877		sched_domains_numa_masks_set(cpu);
5878		break;
5879
5880	case CPU_DEAD:
5881		sched_domains_numa_masks_clear(cpu);
5882		break;
5883
5884	default:
5885		return NOTIFY_DONE;
5886	}
5887
5888	return NOTIFY_OK;
5889}
5890#else
5891static inline void sched_init_numa(void)
5892{
5893}
5894
5895static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5896					   unsigned long action,
5897					   void *hcpu)
5898{
5899	return 0;
5900}
5901#endif /* CONFIG_NUMA */
5902
5903static int __sdt_alloc(const struct cpumask *cpu_map)
5904{
5905	struct sched_domain_topology_level *tl;
5906	int j;
5907
5908	for_each_sd_topology(tl) {
5909		struct sd_data *sdd = &tl->data;
5910
5911		sdd->sd = alloc_percpu(struct sched_domain *);
5912		if (!sdd->sd)
5913			return -ENOMEM;
5914
5915		sdd->sg = alloc_percpu(struct sched_group *);
5916		if (!sdd->sg)
5917			return -ENOMEM;
5918
5919		sdd->sgp = alloc_percpu(struct sched_group_power *);
5920		if (!sdd->sgp)
5921			return -ENOMEM;
5922
5923		for_each_cpu(j, cpu_map) {
5924			struct sched_domain *sd;
5925			struct sched_group *sg;
5926			struct sched_group_power *sgp;
5927
5928		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5929					GFP_KERNEL, cpu_to_node(j));
5930			if (!sd)
5931				return -ENOMEM;
5932
5933			*per_cpu_ptr(sdd->sd, j) = sd;
5934
5935			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5936					GFP_KERNEL, cpu_to_node(j));
5937			if (!sg)
5938				return -ENOMEM;
5939
5940			sg->next = sg;
5941
5942			*per_cpu_ptr(sdd->sg, j) = sg;
5943
5944			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5945					GFP_KERNEL, cpu_to_node(j));
5946			if (!sgp)
5947				return -ENOMEM;
5948
5949			*per_cpu_ptr(sdd->sgp, j) = sgp;
5950		}
5951	}
5952
5953	return 0;
5954}
5955
5956static void __sdt_free(const struct cpumask *cpu_map)
5957{
5958	struct sched_domain_topology_level *tl;
5959	int j;
5960
5961	for_each_sd_topology(tl) {
5962		struct sd_data *sdd = &tl->data;
5963
5964		for_each_cpu(j, cpu_map) {
5965			struct sched_domain *sd;
5966
5967			if (sdd->sd) {
5968				sd = *per_cpu_ptr(sdd->sd, j);
5969				if (sd && (sd->flags & SD_OVERLAP))
5970					free_sched_groups(sd->groups, 0);
5971				kfree(*per_cpu_ptr(sdd->sd, j));
5972			}
5973
5974			if (sdd->sg)
5975				kfree(*per_cpu_ptr(sdd->sg, j));
5976			if (sdd->sgp)
5977				kfree(*per_cpu_ptr(sdd->sgp, j));
5978		}
5979		free_percpu(sdd->sd);
5980		sdd->sd = NULL;
5981		free_percpu(sdd->sg);
5982		sdd->sg = NULL;
5983		free_percpu(sdd->sgp);
5984		sdd->sgp = NULL;
5985	}
5986}
5987
5988struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5989		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5990		struct sched_domain *child, int cpu)
5991{
5992	struct sched_domain *sd = tl->init(tl, cpu);
5993	if (!sd)
5994		return child;
5995
5996	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5997	if (child) {
5998		sd->level = child->level + 1;
5999		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6000		child->parent = sd;
6001		sd->child = child;
6002	}
6003	set_domain_attribute(sd, attr);
6004
6005	return sd;
6006}
6007
6008/*
6009 * Build sched domains for a given set of cpus and attach the sched domains
6010 * to the individual cpus
6011 */
6012static int build_sched_domains(const struct cpumask *cpu_map,
6013			       struct sched_domain_attr *attr)
6014{
6015	enum s_alloc alloc_state;
6016	struct sched_domain *sd;
6017	struct s_data d;
6018	int i, ret = -ENOMEM;
6019
6020	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6021	if (alloc_state != sa_rootdomain)
6022		goto error;
6023
6024	/* Set up domains for cpus specified by the cpu_map. */
6025	for_each_cpu(i, cpu_map) {
6026		struct sched_domain_topology_level *tl;
6027
6028		sd = NULL;
6029		for_each_sd_topology(tl) {
6030			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6031			if (tl == sched_domain_topology)
6032				*per_cpu_ptr(d.sd, i) = sd;
6033			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6034				sd->flags |= SD_OVERLAP;
6035			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6036				break;
6037		}
6038	}
6039
6040	/* Build the groups for the domains */
6041	for_each_cpu(i, cpu_map) {
6042		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6043			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6044			if (sd->flags & SD_OVERLAP) {
6045				if (build_overlap_sched_groups(sd, i))
6046					goto error;
6047			} else {
6048				if (build_sched_groups(sd, i))
6049					goto error;
6050			}
6051		}
6052	}
6053
6054	/* Calculate CPU power for physical packages and nodes */
6055	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6056		if (!cpumask_test_cpu(i, cpu_map))
6057			continue;
6058
6059		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6060			claim_allocations(i, sd);
6061			init_sched_groups_power(i, sd);
6062		}
6063	}
6064
6065	/* Attach the domains */
6066	rcu_read_lock();
6067	for_each_cpu(i, cpu_map) {
6068		sd = *per_cpu_ptr(d.sd, i);
6069		cpu_attach_domain(sd, d.rd, i);
6070	}
6071	rcu_read_unlock();
6072
6073	ret = 0;
6074error:
6075	__free_domain_allocs(&d, alloc_state, cpu_map);
6076	return ret;
6077}
6078
6079static cpumask_var_t *doms_cur;	/* current sched domains */
6080static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6081static struct sched_domain_attr *dattr_cur;
6082				/* attribues of custom domains in 'doms_cur' */
6083
6084/*
6085 * Special case: If a kmalloc of a doms_cur partition (array of
6086 * cpumask) fails, then fallback to a single sched domain,
6087 * as determined by the single cpumask fallback_doms.
6088 */
6089static cpumask_var_t fallback_doms;
6090
6091/*
6092 * arch_update_cpu_topology lets virtualized architectures update the
6093 * cpu core maps. It is supposed to return 1 if the topology changed
6094 * or 0 if it stayed the same.
6095 */
6096int __attribute__((weak)) arch_update_cpu_topology(void)
6097{
6098	return 0;
6099}
6100
6101cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6102{
6103	int i;
6104	cpumask_var_t *doms;
6105
6106	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6107	if (!doms)
6108		return NULL;
6109	for (i = 0; i < ndoms; i++) {
6110		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6111			free_sched_domains(doms, i);
6112			return NULL;
6113		}
6114	}
6115	return doms;
6116}
6117
6118void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6119{
6120	unsigned int i;
6121	for (i = 0; i < ndoms; i++)
6122		free_cpumask_var(doms[i]);
6123	kfree(doms);
6124}
6125
6126/*
6127 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6128 * For now this just excludes isolated cpus, but could be used to
6129 * exclude other special cases in the future.
6130 */
6131static int init_sched_domains(const struct cpumask *cpu_map)
6132{
6133	int err;
6134
6135	arch_update_cpu_topology();
6136	ndoms_cur = 1;
6137	doms_cur = alloc_sched_domains(ndoms_cur);
6138	if (!doms_cur)
6139		doms_cur = &fallback_doms;
6140	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6141	err = build_sched_domains(doms_cur[0], NULL);
6142	register_sched_domain_sysctl();
6143
6144	return err;
6145}
6146
6147/*
6148 * Detach sched domains from a group of cpus specified in cpu_map
6149 * These cpus will now be attached to the NULL domain
6150 */
6151static void detach_destroy_domains(const struct cpumask *cpu_map)
6152{
6153	int i;
6154
6155	rcu_read_lock();
6156	for_each_cpu(i, cpu_map)
6157		cpu_attach_domain(NULL, &def_root_domain, i);
6158	rcu_read_unlock();
6159}
6160
6161/* handle null as "default" */
6162static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6163			struct sched_domain_attr *new, int idx_new)
6164{
6165	struct sched_domain_attr tmp;
6166
6167	/* fast path */
6168	if (!new && !cur)
6169		return 1;
6170
6171	tmp = SD_ATTR_INIT;
6172	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6173			new ? (new + idx_new) : &tmp,
6174			sizeof(struct sched_domain_attr));
6175}
6176
6177/*
6178 * Partition sched domains as specified by the 'ndoms_new'
6179 * cpumasks in the array doms_new[] of cpumasks. This compares
6180 * doms_new[] to the current sched domain partitioning, doms_cur[].
6181 * It destroys each deleted domain and builds each new domain.
6182 *
6183 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6184 * The masks don't intersect (don't overlap.) We should setup one
6185 * sched domain for each mask. CPUs not in any of the cpumasks will
6186 * not be load balanced. If the same cpumask appears both in the
6187 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6188 * it as it is.
6189 *
6190 * The passed in 'doms_new' should be allocated using
6191 * alloc_sched_domains.  This routine takes ownership of it and will
6192 * free_sched_domains it when done with it. If the caller failed the
6193 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6194 * and partition_sched_domains() will fallback to the single partition
6195 * 'fallback_doms', it also forces the domains to be rebuilt.
6196 *
6197 * If doms_new == NULL it will be replaced with cpu_online_mask.
6198 * ndoms_new == 0 is a special case for destroying existing domains,
6199 * and it will not create the default domain.
6200 *
6201 * Call with hotplug lock held
6202 */
6203void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6204			     struct sched_domain_attr *dattr_new)
6205{
6206	int i, j, n;
6207	int new_topology;
6208
6209	mutex_lock(&sched_domains_mutex);
6210
6211	/* always unregister in case we don't destroy any domains */
6212	unregister_sched_domain_sysctl();
6213
6214	/* Let architecture update cpu core mappings. */
6215	new_topology = arch_update_cpu_topology();
6216
6217	n = doms_new ? ndoms_new : 0;
6218
6219	/* Destroy deleted domains */
6220	for (i = 0; i < ndoms_cur; i++) {
6221		for (j = 0; j < n && !new_topology; j++) {
6222			if (cpumask_equal(doms_cur[i], doms_new[j])
6223			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6224				goto match1;
6225		}
6226		/* no match - a current sched domain not in new doms_new[] */
6227		detach_destroy_domains(doms_cur[i]);
6228match1:
6229		;
6230	}
6231
6232	n = ndoms_cur;
6233	if (doms_new == NULL) {
6234		n = 0;
6235		doms_new = &fallback_doms;
6236		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6237		WARN_ON_ONCE(dattr_new);
6238	}
6239
6240	/* Build new domains */
6241	for (i = 0; i < ndoms_new; i++) {
6242		for (j = 0; j < n && !new_topology; j++) {
6243			if (cpumask_equal(doms_new[i], doms_cur[j])
6244			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6245				goto match2;
6246		}
6247		/* no match - add a new doms_new */
6248		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6249match2:
6250		;
6251	}
6252
6253	/* Remember the new sched domains */
6254	if (doms_cur != &fallback_doms)
6255		free_sched_domains(doms_cur, ndoms_cur);
6256	kfree(dattr_cur);	/* kfree(NULL) is safe */
6257	doms_cur = doms_new;
6258	dattr_cur = dattr_new;
6259	ndoms_cur = ndoms_new;
6260
6261	register_sched_domain_sysctl();
6262
6263	mutex_unlock(&sched_domains_mutex);
6264}
6265
6266static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
6267
6268/*
6269 * Update cpusets according to cpu_active mask.  If cpusets are
6270 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6271 * around partition_sched_domains().
6272 *
6273 * If we come here as part of a suspend/resume, don't touch cpusets because we
6274 * want to restore it back to its original state upon resume anyway.
6275 */
6276static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6277			     void *hcpu)
6278{
6279	switch (action) {
6280	case CPU_ONLINE_FROZEN:
6281	case CPU_DOWN_FAILED_FROZEN:
6282
6283		/*
6284		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6285		 * resume sequence. As long as this is not the last online
6286		 * operation in the resume sequence, just build a single sched
6287		 * domain, ignoring cpusets.
6288		 */
6289		num_cpus_frozen--;
6290		if (likely(num_cpus_frozen)) {
6291			partition_sched_domains(1, NULL, NULL);
6292			break;
6293		}
6294
6295		/*
6296		 * This is the last CPU online operation. So fall through and
6297		 * restore the original sched domains by considering the
6298		 * cpuset configurations.
6299		 */
6300
6301	case CPU_ONLINE:
6302	case CPU_DOWN_FAILED:
6303		cpuset_update_active_cpus(true);
6304		break;
6305	default:
6306		return NOTIFY_DONE;
6307	}
6308	return NOTIFY_OK;
6309}
6310
6311static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6312			       void *hcpu)
6313{
6314	switch (action) {
6315	case CPU_DOWN_PREPARE:
6316		cpuset_update_active_cpus(false);
6317		break;
6318	case CPU_DOWN_PREPARE_FROZEN:
6319		num_cpus_frozen++;
6320		partition_sched_domains(1, NULL, NULL);
6321		break;
6322	default:
6323		return NOTIFY_DONE;
6324	}
6325	return NOTIFY_OK;
6326}
6327
6328void __init sched_init_smp(void)
6329{
6330	cpumask_var_t non_isolated_cpus;
6331
6332	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6333	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6334
6335	sched_init_numa();
6336
6337	get_online_cpus();
6338	mutex_lock(&sched_domains_mutex);
6339	init_sched_domains(cpu_active_mask);
6340	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6341	if (cpumask_empty(non_isolated_cpus))
6342		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6343	mutex_unlock(&sched_domains_mutex);
6344	put_online_cpus();
6345
6346	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6347	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6348	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6349
6350	init_hrtick();
6351
6352	/* Move init over to a non-isolated CPU */
6353	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6354		BUG();
6355	sched_init_granularity();
6356	free_cpumask_var(non_isolated_cpus);
6357
6358	init_sched_rt_class();
6359}
6360#else
6361void __init sched_init_smp(void)
6362{
6363	sched_init_granularity();
6364}
6365#endif /* CONFIG_SMP */
6366
6367const_debug unsigned int sysctl_timer_migration = 1;
6368
6369int in_sched_functions(unsigned long addr)
6370{
6371	return in_lock_functions(addr) ||
6372		(addr >= (unsigned long)__sched_text_start
6373		&& addr < (unsigned long)__sched_text_end);
6374}
6375
6376#ifdef CONFIG_CGROUP_SCHED
6377/*
6378 * Default task group.
6379 * Every task in system belongs to this group at bootup.
6380 */
6381struct task_group root_task_group;
6382LIST_HEAD(task_groups);
6383#endif
6384
6385DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6386
6387void __init sched_init(void)
6388{
6389	int i, j;
6390	unsigned long alloc_size = 0, ptr;
6391
6392#ifdef CONFIG_FAIR_GROUP_SCHED
6393	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6394#endif
6395#ifdef CONFIG_RT_GROUP_SCHED
6396	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6397#endif
6398#ifdef CONFIG_CPUMASK_OFFSTACK
6399	alloc_size += num_possible_cpus() * cpumask_size();
6400#endif
6401	if (alloc_size) {
6402		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6403
6404#ifdef CONFIG_FAIR_GROUP_SCHED
6405		root_task_group.se = (struct sched_entity **)ptr;
6406		ptr += nr_cpu_ids * sizeof(void **);
6407
6408		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6409		ptr += nr_cpu_ids * sizeof(void **);
6410
6411#endif /* CONFIG_FAIR_GROUP_SCHED */
6412#ifdef CONFIG_RT_GROUP_SCHED
6413		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6414		ptr += nr_cpu_ids * sizeof(void **);
6415
6416		root_task_group.rt_rq = (struct rt_rq **)ptr;
6417		ptr += nr_cpu_ids * sizeof(void **);
6418
6419#endif /* CONFIG_RT_GROUP_SCHED */
6420#ifdef CONFIG_CPUMASK_OFFSTACK
6421		for_each_possible_cpu(i) {
6422			per_cpu(load_balance_mask, i) = (void *)ptr;
6423			ptr += cpumask_size();
6424		}
6425#endif /* CONFIG_CPUMASK_OFFSTACK */
6426	}
6427
6428#ifdef CONFIG_SMP
6429	init_defrootdomain();
6430#endif
6431
6432	init_rt_bandwidth(&def_rt_bandwidth,
6433			global_rt_period(), global_rt_runtime());
6434
6435#ifdef CONFIG_RT_GROUP_SCHED
6436	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6437			global_rt_period(), global_rt_runtime());
6438#endif /* CONFIG_RT_GROUP_SCHED */
6439
6440#ifdef CONFIG_CGROUP_SCHED
6441	list_add(&root_task_group.list, &task_groups);
6442	INIT_LIST_HEAD(&root_task_group.children);
6443	INIT_LIST_HEAD(&root_task_group.siblings);
6444	autogroup_init(&init_task);
6445
6446#endif /* CONFIG_CGROUP_SCHED */
6447
6448	for_each_possible_cpu(i) {
6449		struct rq *rq;
6450
6451		rq = cpu_rq(i);
6452		raw_spin_lock_init(&rq->lock);
6453		rq->nr_running = 0;
6454		rq->calc_load_active = 0;
6455		rq->calc_load_update = jiffies + LOAD_FREQ;
6456		init_cfs_rq(&rq->cfs);
6457		init_rt_rq(&rq->rt, rq);
6458#ifdef CONFIG_FAIR_GROUP_SCHED
6459		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6460		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6461		/*
6462		 * How much cpu bandwidth does root_task_group get?
6463		 *
6464		 * In case of task-groups formed thr' the cgroup filesystem, it
6465		 * gets 100% of the cpu resources in the system. This overall
6466		 * system cpu resource is divided among the tasks of
6467		 * root_task_group and its child task-groups in a fair manner,
6468		 * based on each entity's (task or task-group's) weight
6469		 * (se->load.weight).
6470		 *
6471		 * In other words, if root_task_group has 10 tasks of weight
6472		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6473		 * then A0's share of the cpu resource is:
6474		 *
6475		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6476		 *
6477		 * We achieve this by letting root_task_group's tasks sit
6478		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6479		 */
6480		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6481		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6482#endif /* CONFIG_FAIR_GROUP_SCHED */
6483
6484		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6485#ifdef CONFIG_RT_GROUP_SCHED
6486		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6487		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6488#endif
6489
6490		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6491			rq->cpu_load[j] = 0;
6492
6493		rq->last_load_update_tick = jiffies;
6494
6495#ifdef CONFIG_SMP
6496		rq->sd = NULL;
6497		rq->rd = NULL;
6498		rq->cpu_power = SCHED_POWER_SCALE;
6499		rq->post_schedule = 0;
6500		rq->active_balance = 0;
6501		rq->next_balance = jiffies;
6502		rq->push_cpu = 0;
6503		rq->cpu = i;
6504		rq->online = 0;
6505		rq->idle_stamp = 0;
6506		rq->avg_idle = 2*sysctl_sched_migration_cost;
6507		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6508
6509		INIT_LIST_HEAD(&rq->cfs_tasks);
6510
6511		rq_attach_root(rq, &def_root_domain);
6512#ifdef CONFIG_NO_HZ_COMMON
6513		rq->nohz_flags = 0;
6514#endif
6515#ifdef CONFIG_NO_HZ_FULL
6516		rq->last_sched_tick = 0;
6517#endif
6518#endif
6519		init_rq_hrtick(rq);
6520		atomic_set(&rq->nr_iowait, 0);
6521	}
6522
6523	set_load_weight(&init_task);
6524
6525#ifdef CONFIG_PREEMPT_NOTIFIERS
6526	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6527#endif
6528
6529#ifdef CONFIG_RT_MUTEXES
6530	plist_head_init(&init_task.pi_waiters);
6531#endif
6532
6533	/*
6534	 * The boot idle thread does lazy MMU switching as well:
6535	 */
6536	atomic_inc(&init_mm.mm_count);
6537	enter_lazy_tlb(&init_mm, current);
6538
6539	/*
6540	 * Make us the idle thread. Technically, schedule() should not be
6541	 * called from this thread, however somewhere below it might be,
6542	 * but because we are the idle thread, we just pick up running again
6543	 * when this runqueue becomes "idle".
6544	 */
6545	init_idle(current, smp_processor_id());
6546
6547	calc_load_update = jiffies + LOAD_FREQ;
6548
6549	/*
6550	 * During early bootup we pretend to be a normal task:
6551	 */
6552	current->sched_class = &fair_sched_class;
6553
6554#ifdef CONFIG_SMP
6555	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6556	/* May be allocated at isolcpus cmdline parse time */
6557	if (cpu_isolated_map == NULL)
6558		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6559	idle_thread_set_boot_cpu();
6560#endif
6561	init_sched_fair_class();
6562
6563	scheduler_running = 1;
6564}
6565
6566#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6567static inline int preempt_count_equals(int preempt_offset)
6568{
6569	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6570
6571	return (nested == preempt_offset);
6572}
6573
6574void __might_sleep(const char *file, int line, int preempt_offset)
6575{
6576	static unsigned long prev_jiffy;	/* ratelimiting */
6577
6578	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6579	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6580	    system_state != SYSTEM_RUNNING || oops_in_progress)
6581		return;
6582	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6583		return;
6584	prev_jiffy = jiffies;
6585
6586	printk(KERN_ERR
6587		"BUG: sleeping function called from invalid context at %s:%d\n",
6588			file, line);
6589	printk(KERN_ERR
6590		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6591			in_atomic(), irqs_disabled(),
6592			current->pid, current->comm);
6593
6594	debug_show_held_locks(current);
6595	if (irqs_disabled())
6596		print_irqtrace_events(current);
6597	dump_stack();
6598}
6599EXPORT_SYMBOL(__might_sleep);
6600#endif
6601
6602#ifdef CONFIG_MAGIC_SYSRQ
6603static void normalize_task(struct rq *rq, struct task_struct *p)
6604{
6605	const struct sched_class *prev_class = p->sched_class;
6606	int old_prio = p->prio;
6607	int on_rq;
6608
6609	on_rq = p->on_rq;
6610	if (on_rq)
6611		dequeue_task(rq, p, 0);
6612	__setscheduler(rq, p, SCHED_NORMAL, 0);
6613	if (on_rq) {
6614		enqueue_task(rq, p, 0);
6615		resched_task(rq->curr);
6616	}
6617
6618	check_class_changed(rq, p, prev_class, old_prio);
6619}
6620
6621void normalize_rt_tasks(void)
6622{
6623	struct task_struct *g, *p;
6624	unsigned long flags;
6625	struct rq *rq;
6626
6627	read_lock_irqsave(&tasklist_lock, flags);
6628	do_each_thread(g, p) {
6629		/*
6630		 * Only normalize user tasks:
6631		 */
6632		if (!p->mm)
6633			continue;
6634
6635		p->se.exec_start		= 0;
6636#ifdef CONFIG_SCHEDSTATS
6637		p->se.statistics.wait_start	= 0;
6638		p->se.statistics.sleep_start	= 0;
6639		p->se.statistics.block_start	= 0;
6640#endif
6641
6642		if (!rt_task(p)) {
6643			/*
6644			 * Renice negative nice level userspace
6645			 * tasks back to 0:
6646			 */
6647			if (TASK_NICE(p) < 0 && p->mm)
6648				set_user_nice(p, 0);
6649			continue;
6650		}
6651
6652		raw_spin_lock(&p->pi_lock);
6653		rq = __task_rq_lock(p);
6654
6655		normalize_task(rq, p);
6656
6657		__task_rq_unlock(rq);
6658		raw_spin_unlock(&p->pi_lock);
6659	} while_each_thread(g, p);
6660
6661	read_unlock_irqrestore(&tasklist_lock, flags);
6662}
6663
6664#endif /* CONFIG_MAGIC_SYSRQ */
6665
6666#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6667/*
6668 * These functions are only useful for the IA64 MCA handling, or kdb.
6669 *
6670 * They can only be called when the whole system has been
6671 * stopped - every CPU needs to be quiescent, and no scheduling
6672 * activity can take place. Using them for anything else would
6673 * be a serious bug, and as a result, they aren't even visible
6674 * under any other configuration.
6675 */
6676
6677/**
6678 * curr_task - return the current task for a given cpu.
6679 * @cpu: the processor in question.
6680 *
6681 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6682 *
6683 * Return: The current task for @cpu.
6684 */
6685struct task_struct *curr_task(int cpu)
6686{
6687	return cpu_curr(cpu);
6688}
6689
6690#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6691
6692#ifdef CONFIG_IA64
6693/**
6694 * set_curr_task - set the current task for a given cpu.
6695 * @cpu: the processor in question.
6696 * @p: the task pointer to set.
6697 *
6698 * Description: This function must only be used when non-maskable interrupts
6699 * are serviced on a separate stack. It allows the architecture to switch the
6700 * notion of the current task on a cpu in a non-blocking manner. This function
6701 * must be called with all CPU's synchronized, and interrupts disabled, the
6702 * and caller must save the original value of the current task (see
6703 * curr_task() above) and restore that value before reenabling interrupts and
6704 * re-starting the system.
6705 *
6706 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6707 */
6708void set_curr_task(int cpu, struct task_struct *p)
6709{
6710	cpu_curr(cpu) = p;
6711}
6712
6713#endif
6714
6715#ifdef CONFIG_CGROUP_SCHED
6716/* task_group_lock serializes the addition/removal of task groups */
6717static DEFINE_SPINLOCK(task_group_lock);
6718
6719static void free_sched_group(struct task_group *tg)
6720{
6721	free_fair_sched_group(tg);
6722	free_rt_sched_group(tg);
6723	autogroup_free(tg);
6724	kfree(tg);
6725}
6726
6727/* allocate runqueue etc for a new task group */
6728struct task_group *sched_create_group(struct task_group *parent)
6729{
6730	struct task_group *tg;
6731
6732	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6733	if (!tg)
6734		return ERR_PTR(-ENOMEM);
6735
6736	if (!alloc_fair_sched_group(tg, parent))
6737		goto err;
6738
6739	if (!alloc_rt_sched_group(tg, parent))
6740		goto err;
6741
6742	return tg;
6743
6744err:
6745	free_sched_group(tg);
6746	return ERR_PTR(-ENOMEM);
6747}
6748
6749void sched_online_group(struct task_group *tg, struct task_group *parent)
6750{
6751	unsigned long flags;
6752
6753	spin_lock_irqsave(&task_group_lock, flags);
6754	list_add_rcu(&tg->list, &task_groups);
6755
6756	WARN_ON(!parent); /* root should already exist */
6757
6758	tg->parent = parent;
6759	INIT_LIST_HEAD(&tg->children);
6760	list_add_rcu(&tg->siblings, &parent->children);
6761	spin_unlock_irqrestore(&task_group_lock, flags);
6762}
6763
6764/* rcu callback to free various structures associated with a task group */
6765static void free_sched_group_rcu(struct rcu_head *rhp)
6766{
6767	/* now it should be safe to free those cfs_rqs */
6768	free_sched_group(container_of(rhp, struct task_group, rcu));
6769}
6770
6771/* Destroy runqueue etc associated with a task group */
6772void sched_destroy_group(struct task_group *tg)
6773{
6774	/* wait for possible concurrent references to cfs_rqs complete */
6775	call_rcu(&tg->rcu, free_sched_group_rcu);
6776}
6777
6778void sched_offline_group(struct task_group *tg)
6779{
6780	unsigned long flags;
6781	int i;
6782
6783	/* end participation in shares distribution */
6784	for_each_possible_cpu(i)
6785		unregister_fair_sched_group(tg, i);
6786
6787	spin_lock_irqsave(&task_group_lock, flags);
6788	list_del_rcu(&tg->list);
6789	list_del_rcu(&tg->siblings);
6790	spin_unlock_irqrestore(&task_group_lock, flags);
6791}
6792
6793/* change task's runqueue when it moves between groups.
6794 *	The caller of this function should have put the task in its new group
6795 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6796 *	reflect its new group.
6797 */
6798void sched_move_task(struct task_struct *tsk)
6799{
6800	struct task_group *tg;
6801	int on_rq, running;
6802	unsigned long flags;
6803	struct rq *rq;
6804
6805	rq = task_rq_lock(tsk, &flags);
6806
6807	running = task_current(rq, tsk);
6808	on_rq = tsk->on_rq;
6809
6810	if (on_rq)
6811		dequeue_task(rq, tsk, 0);
6812	if (unlikely(running))
6813		tsk->sched_class->put_prev_task(rq, tsk);
6814
6815	tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6816				lockdep_is_held(&tsk->sighand->siglock)),
6817			  struct task_group, css);
6818	tg = autogroup_task_group(tsk, tg);
6819	tsk->sched_task_group = tg;
6820
6821#ifdef CONFIG_FAIR_GROUP_SCHED
6822	if (tsk->sched_class->task_move_group)
6823		tsk->sched_class->task_move_group(tsk, on_rq);
6824	else
6825#endif
6826		set_task_rq(tsk, task_cpu(tsk));
6827
6828	if (unlikely(running))
6829		tsk->sched_class->set_curr_task(rq);
6830	if (on_rq)
6831		enqueue_task(rq, tsk, 0);
6832
6833	task_rq_unlock(rq, tsk, &flags);
6834}
6835#endif /* CONFIG_CGROUP_SCHED */
6836
6837#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6838static unsigned long to_ratio(u64 period, u64 runtime)
6839{
6840	if (runtime == RUNTIME_INF)
6841		return 1ULL << 20;
6842
6843	return div64_u64(runtime << 20, period);
6844}
6845#endif
6846
6847#ifdef CONFIG_RT_GROUP_SCHED
6848/*
6849 * Ensure that the real time constraints are schedulable.
6850 */
6851static DEFINE_MUTEX(rt_constraints_mutex);
6852
6853/* Must be called with tasklist_lock held */
6854static inline int tg_has_rt_tasks(struct task_group *tg)
6855{
6856	struct task_struct *g, *p;
6857
6858	do_each_thread(g, p) {
6859		if (rt_task(p) && task_rq(p)->rt.tg == tg)
6860			return 1;
6861	} while_each_thread(g, p);
6862
6863	return 0;
6864}
6865
6866struct rt_schedulable_data {
6867	struct task_group *tg;
6868	u64 rt_period;
6869	u64 rt_runtime;
6870};
6871
6872static int tg_rt_schedulable(struct task_group *tg, void *data)
6873{
6874	struct rt_schedulable_data *d = data;
6875	struct task_group *child;
6876	unsigned long total, sum = 0;
6877	u64 period, runtime;
6878
6879	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6880	runtime = tg->rt_bandwidth.rt_runtime;
6881
6882	if (tg == d->tg) {
6883		period = d->rt_period;
6884		runtime = d->rt_runtime;
6885	}
6886
6887	/*
6888	 * Cannot have more runtime than the period.
6889	 */
6890	if (runtime > period && runtime != RUNTIME_INF)
6891		return -EINVAL;
6892
6893	/*
6894	 * Ensure we don't starve existing RT tasks.
6895	 */
6896	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6897		return -EBUSY;
6898
6899	total = to_ratio(period, runtime);
6900
6901	/*
6902	 * Nobody can have more than the global setting allows.
6903	 */
6904	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6905		return -EINVAL;
6906
6907	/*
6908	 * The sum of our children's runtime should not exceed our own.
6909	 */
6910	list_for_each_entry_rcu(child, &tg->children, siblings) {
6911		period = ktime_to_ns(child->rt_bandwidth.rt_period);
6912		runtime = child->rt_bandwidth.rt_runtime;
6913
6914		if (child == d->tg) {
6915			period = d->rt_period;
6916			runtime = d->rt_runtime;
6917		}
6918
6919		sum += to_ratio(period, runtime);
6920	}
6921
6922	if (sum > total)
6923		return -EINVAL;
6924
6925	return 0;
6926}
6927
6928static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6929{
6930	int ret;
6931
6932	struct rt_schedulable_data data = {
6933		.tg = tg,
6934		.rt_period = period,
6935		.rt_runtime = runtime,
6936	};
6937
6938	rcu_read_lock();
6939	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6940	rcu_read_unlock();
6941
6942	return ret;
6943}
6944
6945static int tg_set_rt_bandwidth(struct task_group *tg,
6946		u64 rt_period, u64 rt_runtime)
6947{
6948	int i, err = 0;
6949
6950	mutex_lock(&rt_constraints_mutex);
6951	read_lock(&tasklist_lock);
6952	err = __rt_schedulable(tg, rt_period, rt_runtime);
6953	if (err)
6954		goto unlock;
6955
6956	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6957	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6958	tg->rt_bandwidth.rt_runtime = rt_runtime;
6959
6960	for_each_possible_cpu(i) {
6961		struct rt_rq *rt_rq = tg->rt_rq[i];
6962
6963		raw_spin_lock(&rt_rq->rt_runtime_lock);
6964		rt_rq->rt_runtime = rt_runtime;
6965		raw_spin_unlock(&rt_rq->rt_runtime_lock);
6966	}
6967	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6968unlock:
6969	read_unlock(&tasklist_lock);
6970	mutex_unlock(&rt_constraints_mutex);
6971
6972	return err;
6973}
6974
6975static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6976{
6977	u64 rt_runtime, rt_period;
6978
6979	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6980	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6981	if (rt_runtime_us < 0)
6982		rt_runtime = RUNTIME_INF;
6983
6984	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6985}
6986
6987static long sched_group_rt_runtime(struct task_group *tg)
6988{
6989	u64 rt_runtime_us;
6990
6991	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6992		return -1;
6993
6994	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6995	do_div(rt_runtime_us, NSEC_PER_USEC);
6996	return rt_runtime_us;
6997}
6998
6999static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7000{
7001	u64 rt_runtime, rt_period;
7002
7003	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7004	rt_runtime = tg->rt_bandwidth.rt_runtime;
7005
7006	if (rt_period == 0)
7007		return -EINVAL;
7008
7009	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7010}
7011
7012static long sched_group_rt_period(struct task_group *tg)
7013{
7014	u64 rt_period_us;
7015
7016	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7017	do_div(rt_period_us, NSEC_PER_USEC);
7018	return rt_period_us;
7019}
7020
7021static int sched_rt_global_constraints(void)
7022{
7023	u64 runtime, period;
7024	int ret = 0;
7025
7026	if (sysctl_sched_rt_period <= 0)
7027		return -EINVAL;
7028
7029	runtime = global_rt_runtime();
7030	period = global_rt_period();
7031
7032	/*
7033	 * Sanity check on the sysctl variables.
7034	 */
7035	if (runtime > period && runtime != RUNTIME_INF)
7036		return -EINVAL;
7037
7038	mutex_lock(&rt_constraints_mutex);
7039	read_lock(&tasklist_lock);
7040	ret = __rt_schedulable(NULL, 0, 0);
7041	read_unlock(&tasklist_lock);
7042	mutex_unlock(&rt_constraints_mutex);
7043
7044	return ret;
7045}
7046
7047static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7048{
7049	/* Don't accept realtime tasks when there is no way for them to run */
7050	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7051		return 0;
7052
7053	return 1;
7054}
7055
7056#else /* !CONFIG_RT_GROUP_SCHED */
7057static int sched_rt_global_constraints(void)
7058{
7059	unsigned long flags;
7060	int i;
7061
7062	if (sysctl_sched_rt_period <= 0)
7063		return -EINVAL;
7064
7065	/*
7066	 * There's always some RT tasks in the root group
7067	 * -- migration, kstopmachine etc..
7068	 */
7069	if (sysctl_sched_rt_runtime == 0)
7070		return -EBUSY;
7071
7072	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7073	for_each_possible_cpu(i) {
7074		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7075
7076		raw_spin_lock(&rt_rq->rt_runtime_lock);
7077		rt_rq->rt_runtime = global_rt_runtime();
7078		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7079	}
7080	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7081
7082	return 0;
7083}
7084#endif /* CONFIG_RT_GROUP_SCHED */
7085
7086int sched_rr_handler(struct ctl_table *table, int write,
7087		void __user *buffer, size_t *lenp,
7088		loff_t *ppos)
7089{
7090	int ret;
7091	static DEFINE_MUTEX(mutex);
7092
7093	mutex_lock(&mutex);
7094	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7095	/* make sure that internally we keep jiffies */
7096	/* also, writing zero resets timeslice to default */
7097	if (!ret && write) {
7098		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7099			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7100	}
7101	mutex_unlock(&mutex);
7102	return ret;
7103}
7104
7105int sched_rt_handler(struct ctl_table *table, int write,
7106		void __user *buffer, size_t *lenp,
7107		loff_t *ppos)
7108{
7109	int ret;
7110	int old_period, old_runtime;
7111	static DEFINE_MUTEX(mutex);
7112
7113	mutex_lock(&mutex);
7114	old_period = sysctl_sched_rt_period;
7115	old_runtime = sysctl_sched_rt_runtime;
7116
7117	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7118
7119	if (!ret && write) {
7120		ret = sched_rt_global_constraints();
7121		if (ret) {
7122			sysctl_sched_rt_period = old_period;
7123			sysctl_sched_rt_runtime = old_runtime;
7124		} else {
7125			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7126			def_rt_bandwidth.rt_period =
7127				ns_to_ktime(global_rt_period());
7128		}
7129	}
7130	mutex_unlock(&mutex);
7131
7132	return ret;
7133}
7134
7135#ifdef CONFIG_CGROUP_SCHED
7136
7137static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7138{
7139	return css ? container_of(css, struct task_group, css) : NULL;
7140}
7141
7142static struct cgroup_subsys_state *
7143cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7144{
7145	struct task_group *parent = css_tg(parent_css);
7146	struct task_group *tg;
7147
7148	if (!parent) {
7149		/* This is early initialization for the top cgroup */
7150		return &root_task_group.css;
7151	}
7152
7153	tg = sched_create_group(parent);
7154	if (IS_ERR(tg))
7155		return ERR_PTR(-ENOMEM);
7156
7157	return &tg->css;
7158}
7159
7160static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7161{
7162	struct task_group *tg = css_tg(css);
7163	struct task_group *parent = css_tg(css_parent(css));
7164
7165	if (parent)
7166		sched_online_group(tg, parent);
7167	return 0;
7168}
7169
7170static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7171{
7172	struct task_group *tg = css_tg(css);
7173
7174	sched_destroy_group(tg);
7175}
7176
7177static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7178{
7179	struct task_group *tg = css_tg(css);
7180
7181	sched_offline_group(tg);
7182}
7183
7184static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7185				 struct cgroup_taskset *tset)
7186{
7187	struct task_struct *task;
7188
7189	cgroup_taskset_for_each(task, css, tset) {
7190#ifdef CONFIG_RT_GROUP_SCHED
7191		if (!sched_rt_can_attach(css_tg(css), task))
7192			return -EINVAL;
7193#else
7194		/* We don't support RT-tasks being in separate groups */
7195		if (task->sched_class != &fair_sched_class)
7196			return -EINVAL;
7197#endif
7198	}
7199	return 0;
7200}
7201
7202static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7203			      struct cgroup_taskset *tset)
7204{
7205	struct task_struct *task;
7206
7207	cgroup_taskset_for_each(task, css, tset)
7208		sched_move_task(task);
7209}
7210
7211static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7212			    struct cgroup_subsys_state *old_css,
7213			    struct task_struct *task)
7214{
7215	/*
7216	 * cgroup_exit() is called in the copy_process() failure path.
7217	 * Ignore this case since the task hasn't ran yet, this avoids
7218	 * trying to poke a half freed task state from generic code.
7219	 */
7220	if (!(task->flags & PF_EXITING))
7221		return;
7222
7223	sched_move_task(task);
7224}
7225
7226#ifdef CONFIG_FAIR_GROUP_SCHED
7227static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7228				struct cftype *cftype, u64 shareval)
7229{
7230	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7231}
7232
7233static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7234			       struct cftype *cft)
7235{
7236	struct task_group *tg = css_tg(css);
7237
7238	return (u64) scale_load_down(tg->shares);
7239}
7240
7241#ifdef CONFIG_CFS_BANDWIDTH
7242static DEFINE_MUTEX(cfs_constraints_mutex);
7243
7244const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7245const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7246
7247static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7248
7249static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7250{
7251	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7252	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7253
7254	if (tg == &root_task_group)
7255		return -EINVAL;
7256
7257	/*
7258	 * Ensure we have at some amount of bandwidth every period.  This is
7259	 * to prevent reaching a state of large arrears when throttled via
7260	 * entity_tick() resulting in prolonged exit starvation.
7261	 */
7262	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7263		return -EINVAL;
7264
7265	/*
7266	 * Likewise, bound things on the otherside by preventing insane quota
7267	 * periods.  This also allows us to normalize in computing quota
7268	 * feasibility.
7269	 */
7270	if (period > max_cfs_quota_period)
7271		return -EINVAL;
7272
7273	mutex_lock(&cfs_constraints_mutex);
7274	ret = __cfs_schedulable(tg, period, quota);
7275	if (ret)
7276		goto out_unlock;
7277
7278	runtime_enabled = quota != RUNTIME_INF;
7279	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7280	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7281	raw_spin_lock_irq(&cfs_b->lock);
7282	cfs_b->period = ns_to_ktime(period);
7283	cfs_b->quota = quota;
7284
7285	__refill_cfs_bandwidth_runtime(cfs_b);
7286	/* restart the period timer (if active) to handle new period expiry */
7287	if (runtime_enabled && cfs_b->timer_active) {
7288		/* force a reprogram */
7289		cfs_b->timer_active = 0;
7290		__start_cfs_bandwidth(cfs_b);
7291	}
7292	raw_spin_unlock_irq(&cfs_b->lock);
7293
7294	for_each_possible_cpu(i) {
7295		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7296		struct rq *rq = cfs_rq->rq;
7297
7298		raw_spin_lock_irq(&rq->lock);
7299		cfs_rq->runtime_enabled = runtime_enabled;
7300		cfs_rq->runtime_remaining = 0;
7301
7302		if (cfs_rq->throttled)
7303			unthrottle_cfs_rq(cfs_rq);
7304		raw_spin_unlock_irq(&rq->lock);
7305	}
7306out_unlock:
7307	mutex_unlock(&cfs_constraints_mutex);
7308
7309	return ret;
7310}
7311
7312int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7313{
7314	u64 quota, period;
7315
7316	period = ktime_to_ns(tg->cfs_bandwidth.period);
7317	if (cfs_quota_us < 0)
7318		quota = RUNTIME_INF;
7319	else
7320		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7321
7322	return tg_set_cfs_bandwidth(tg, period, quota);
7323}
7324
7325long tg_get_cfs_quota(struct task_group *tg)
7326{
7327	u64 quota_us;
7328
7329	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7330		return -1;
7331
7332	quota_us = tg->cfs_bandwidth.quota;
7333	do_div(quota_us, NSEC_PER_USEC);
7334
7335	return quota_us;
7336}
7337
7338int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7339{
7340	u64 quota, period;
7341
7342	period = (u64)cfs_period_us * NSEC_PER_USEC;
7343	quota = tg->cfs_bandwidth.quota;
7344
7345	return tg_set_cfs_bandwidth(tg, period, quota);
7346}
7347
7348long tg_get_cfs_period(struct task_group *tg)
7349{
7350	u64 cfs_period_us;
7351
7352	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7353	do_div(cfs_period_us, NSEC_PER_USEC);
7354
7355	return cfs_period_us;
7356}
7357
7358static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7359				  struct cftype *cft)
7360{
7361	return tg_get_cfs_quota(css_tg(css));
7362}
7363
7364static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7365				   struct cftype *cftype, s64 cfs_quota_us)
7366{
7367	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7368}
7369
7370static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7371				   struct cftype *cft)
7372{
7373	return tg_get_cfs_period(css_tg(css));
7374}
7375
7376static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7377				    struct cftype *cftype, u64 cfs_period_us)
7378{
7379	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7380}
7381
7382struct cfs_schedulable_data {
7383	struct task_group *tg;
7384	u64 period, quota;
7385};
7386
7387/*
7388 * normalize group quota/period to be quota/max_period
7389 * note: units are usecs
7390 */
7391static u64 normalize_cfs_quota(struct task_group *tg,
7392			       struct cfs_schedulable_data *d)
7393{
7394	u64 quota, period;
7395
7396	if (tg == d->tg) {
7397		period = d->period;
7398		quota = d->quota;
7399	} else {
7400		period = tg_get_cfs_period(tg);
7401		quota = tg_get_cfs_quota(tg);
7402	}
7403
7404	/* note: these should typically be equivalent */
7405	if (quota == RUNTIME_INF || quota == -1)
7406		return RUNTIME_INF;
7407
7408	return to_ratio(period, quota);
7409}
7410
7411static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7412{
7413	struct cfs_schedulable_data *d = data;
7414	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7415	s64 quota = 0, parent_quota = -1;
7416
7417	if (!tg->parent) {
7418		quota = RUNTIME_INF;
7419	} else {
7420		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7421
7422		quota = normalize_cfs_quota(tg, d);
7423		parent_quota = parent_b->hierarchal_quota;
7424
7425		/*
7426		 * ensure max(child_quota) <= parent_quota, inherit when no
7427		 * limit is set
7428		 */
7429		if (quota == RUNTIME_INF)
7430			quota = parent_quota;
7431		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7432			return -EINVAL;
7433	}
7434	cfs_b->hierarchal_quota = quota;
7435
7436	return 0;
7437}
7438
7439static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7440{
7441	int ret;
7442	struct cfs_schedulable_data data = {
7443		.tg = tg,
7444		.period = period,
7445		.quota = quota,
7446	};
7447
7448	if (quota != RUNTIME_INF) {
7449		do_div(data.period, NSEC_PER_USEC);
7450		do_div(data.quota, NSEC_PER_USEC);
7451	}
7452
7453	rcu_read_lock();
7454	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7455	rcu_read_unlock();
7456
7457	return ret;
7458}
7459
7460static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7461		struct cgroup_map_cb *cb)
7462{
7463	struct task_group *tg = css_tg(css);
7464	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7465
7466	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7467	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7468	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7469
7470	return 0;
7471}
7472#endif /* CONFIG_CFS_BANDWIDTH */
7473#endif /* CONFIG_FAIR_GROUP_SCHED */
7474
7475#ifdef CONFIG_RT_GROUP_SCHED
7476static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7477				struct cftype *cft, s64 val)
7478{
7479	return sched_group_set_rt_runtime(css_tg(css), val);
7480}
7481
7482static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7483			       struct cftype *cft)
7484{
7485	return sched_group_rt_runtime(css_tg(css));
7486}
7487
7488static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7489				    struct cftype *cftype, u64 rt_period_us)
7490{
7491	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7492}
7493
7494static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7495				   struct cftype *cft)
7496{
7497	return sched_group_rt_period(css_tg(css));
7498}
7499#endif /* CONFIG_RT_GROUP_SCHED */
7500
7501static struct cftype cpu_files[] = {
7502#ifdef CONFIG_FAIR_GROUP_SCHED
7503	{
7504		.name = "shares",
7505		.read_u64 = cpu_shares_read_u64,
7506		.write_u64 = cpu_shares_write_u64,
7507	},
7508#endif
7509#ifdef CONFIG_CFS_BANDWIDTH
7510	{
7511		.name = "cfs_quota_us",
7512		.read_s64 = cpu_cfs_quota_read_s64,
7513		.write_s64 = cpu_cfs_quota_write_s64,
7514	},
7515	{
7516		.name = "cfs_period_us",
7517		.read_u64 = cpu_cfs_period_read_u64,
7518		.write_u64 = cpu_cfs_period_write_u64,
7519	},
7520	{
7521		.name = "stat",
7522		.read_map = cpu_stats_show,
7523	},
7524#endif
7525#ifdef CONFIG_RT_GROUP_SCHED
7526	{
7527		.name = "rt_runtime_us",
7528		.read_s64 = cpu_rt_runtime_read,
7529		.write_s64 = cpu_rt_runtime_write,
7530	},
7531	{
7532		.name = "rt_period_us",
7533		.read_u64 = cpu_rt_period_read_uint,
7534		.write_u64 = cpu_rt_period_write_uint,
7535	},
7536#endif
7537	{ }	/* terminate */
7538};
7539
7540struct cgroup_subsys cpu_cgroup_subsys = {
7541	.name		= "cpu",
7542	.css_alloc	= cpu_cgroup_css_alloc,
7543	.css_free	= cpu_cgroup_css_free,
7544	.css_online	= cpu_cgroup_css_online,
7545	.css_offline	= cpu_cgroup_css_offline,
7546	.can_attach	= cpu_cgroup_can_attach,
7547	.attach		= cpu_cgroup_attach,
7548	.exit		= cpu_cgroup_exit,
7549	.subsys_id	= cpu_cgroup_subsys_id,
7550	.base_cftypes	= cpu_files,
7551	.early_init	= 1,
7552};
7553
7554#endif	/* CONFIG_CGROUP_SCHED */
7555
7556void dump_cpu_task(int cpu)
7557{
7558	pr_info("Task dump for CPU %d:\n", cpu);
7559	sched_show_task(cpu_curr(cpu));
7560}
7561