core.c revision c308b56b5398779cd3da0f62ab26b0453494c3d4
1/*
2 *  kernel/sched/core.c
3 *
4 *  Kernel scheduler and related syscalls
5 *
6 *  Copyright (C) 1991-2002  Linus Torvalds
7 *
8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9 *		make semaphores SMP safe
10 *  1998-11-19	Implemented schedule_timeout() and related stuff
11 *		by Andrea Arcangeli
12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13 *		hybrid priority-list and round-robin design with
14 *		an array-switch method of distributing timeslices
15 *		and per-CPU runqueues.  Cleanups and useful suggestions
16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17 *  2003-09-03	Interactivity tuning by Con Kolivas.
18 *  2004-04-02	Scheduler domains code by Nick Piggin
19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
20 *              fair scheduling design by Con Kolivas.
21 *  2007-05-05  Load balancing (smp-nice) and other improvements
22 *              by Peter Williams
23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 *              Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74
75#include <asm/tlb.h>
76#include <asm/irq_regs.h>
77#include <asm/mutex.h>
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
81
82#include "sched.h"
83#include "../workqueue_sched.h"
84
85#define CREATE_TRACE_POINTS
86#include <trace/events/sched.h>
87
88void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
89{
90	unsigned long delta;
91	ktime_t soft, hard, now;
92
93	for (;;) {
94		if (hrtimer_active(period_timer))
95			break;
96
97		now = hrtimer_cb_get_time(period_timer);
98		hrtimer_forward(period_timer, now, period);
99
100		soft = hrtimer_get_softexpires(period_timer);
101		hard = hrtimer_get_expires(period_timer);
102		delta = ktime_to_ns(ktime_sub(hard, soft));
103		__hrtimer_start_range_ns(period_timer, soft, delta,
104					 HRTIMER_MODE_ABS_PINNED, 0);
105	}
106}
107
108DEFINE_MUTEX(sched_domains_mutex);
109DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
110
111static void update_rq_clock_task(struct rq *rq, s64 delta);
112
113void update_rq_clock(struct rq *rq)
114{
115	s64 delta;
116
117	if (rq->skip_clock_update > 0)
118		return;
119
120	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
121	rq->clock += delta;
122	update_rq_clock_task(rq, delta);
123}
124
125/*
126 * Debugging: various feature bits
127 */
128
129#define SCHED_FEAT(name, enabled)	\
130	(1UL << __SCHED_FEAT_##name) * enabled |
131
132const_debug unsigned int sysctl_sched_features =
133#include "features.h"
134	0;
135
136#undef SCHED_FEAT
137
138#ifdef CONFIG_SCHED_DEBUG
139#define SCHED_FEAT(name, enabled)	\
140	#name ,
141
142static __read_mostly char *sched_feat_names[] = {
143#include "features.h"
144	NULL
145};
146
147#undef SCHED_FEAT
148
149static int sched_feat_show(struct seq_file *m, void *v)
150{
151	int i;
152
153	for (i = 0; i < __SCHED_FEAT_NR; i++) {
154		if (!(sysctl_sched_features & (1UL << i)))
155			seq_puts(m, "NO_");
156		seq_printf(m, "%s ", sched_feat_names[i]);
157	}
158	seq_puts(m, "\n");
159
160	return 0;
161}
162
163#ifdef HAVE_JUMP_LABEL
164
165#define jump_label_key__true  jump_label_key_enabled
166#define jump_label_key__false jump_label_key_disabled
167
168#define SCHED_FEAT(name, enabled)	\
169	jump_label_key__##enabled ,
170
171struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
172#include "features.h"
173};
174
175#undef SCHED_FEAT
176
177static void sched_feat_disable(int i)
178{
179	if (jump_label_enabled(&sched_feat_keys[i]))
180		jump_label_dec(&sched_feat_keys[i]);
181}
182
183static void sched_feat_enable(int i)
184{
185	if (!jump_label_enabled(&sched_feat_keys[i]))
186		jump_label_inc(&sched_feat_keys[i]);
187}
188#else
189static void sched_feat_disable(int i) { };
190static void sched_feat_enable(int i) { };
191#endif /* HAVE_JUMP_LABEL */
192
193static ssize_t
194sched_feat_write(struct file *filp, const char __user *ubuf,
195		size_t cnt, loff_t *ppos)
196{
197	char buf[64];
198	char *cmp;
199	int neg = 0;
200	int i;
201
202	if (cnt > 63)
203		cnt = 63;
204
205	if (copy_from_user(&buf, ubuf, cnt))
206		return -EFAULT;
207
208	buf[cnt] = 0;
209	cmp = strstrip(buf);
210
211	if (strncmp(cmp, "NO_", 3) == 0) {
212		neg = 1;
213		cmp += 3;
214	}
215
216	for (i = 0; i < __SCHED_FEAT_NR; i++) {
217		if (strcmp(cmp, sched_feat_names[i]) == 0) {
218			if (neg) {
219				sysctl_sched_features &= ~(1UL << i);
220				sched_feat_disable(i);
221			} else {
222				sysctl_sched_features |= (1UL << i);
223				sched_feat_enable(i);
224			}
225			break;
226		}
227	}
228
229	if (i == __SCHED_FEAT_NR)
230		return -EINVAL;
231
232	*ppos += cnt;
233
234	return cnt;
235}
236
237static int sched_feat_open(struct inode *inode, struct file *filp)
238{
239	return single_open(filp, sched_feat_show, NULL);
240}
241
242static const struct file_operations sched_feat_fops = {
243	.open		= sched_feat_open,
244	.write		= sched_feat_write,
245	.read		= seq_read,
246	.llseek		= seq_lseek,
247	.release	= single_release,
248};
249
250static __init int sched_init_debug(void)
251{
252	debugfs_create_file("sched_features", 0644, NULL, NULL,
253			&sched_feat_fops);
254
255	return 0;
256}
257late_initcall(sched_init_debug);
258#endif /* CONFIG_SCHED_DEBUG */
259
260/*
261 * Number of tasks to iterate in a single balance run.
262 * Limited because this is done with IRQs disabled.
263 */
264const_debug unsigned int sysctl_sched_nr_migrate = 32;
265
266/*
267 * period over which we average the RT time consumption, measured
268 * in ms.
269 *
270 * default: 1s
271 */
272const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
273
274/*
275 * period over which we measure -rt task cpu usage in us.
276 * default: 1s
277 */
278unsigned int sysctl_sched_rt_period = 1000000;
279
280__read_mostly int scheduler_running;
281
282/*
283 * part of the period that we allow rt tasks to run in us.
284 * default: 0.95s
285 */
286int sysctl_sched_rt_runtime = 950000;
287
288
289
290/*
291 * __task_rq_lock - lock the rq @p resides on.
292 */
293static inline struct rq *__task_rq_lock(struct task_struct *p)
294	__acquires(rq->lock)
295{
296	struct rq *rq;
297
298	lockdep_assert_held(&p->pi_lock);
299
300	for (;;) {
301		rq = task_rq(p);
302		raw_spin_lock(&rq->lock);
303		if (likely(rq == task_rq(p)))
304			return rq;
305		raw_spin_unlock(&rq->lock);
306	}
307}
308
309/*
310 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
311 */
312static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
313	__acquires(p->pi_lock)
314	__acquires(rq->lock)
315{
316	struct rq *rq;
317
318	for (;;) {
319		raw_spin_lock_irqsave(&p->pi_lock, *flags);
320		rq = task_rq(p);
321		raw_spin_lock(&rq->lock);
322		if (likely(rq == task_rq(p)))
323			return rq;
324		raw_spin_unlock(&rq->lock);
325		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
326	}
327}
328
329static void __task_rq_unlock(struct rq *rq)
330	__releases(rq->lock)
331{
332	raw_spin_unlock(&rq->lock);
333}
334
335static inline void
336task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
337	__releases(rq->lock)
338	__releases(p->pi_lock)
339{
340	raw_spin_unlock(&rq->lock);
341	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
342}
343
344/*
345 * this_rq_lock - lock this runqueue and disable interrupts.
346 */
347static struct rq *this_rq_lock(void)
348	__acquires(rq->lock)
349{
350	struct rq *rq;
351
352	local_irq_disable();
353	rq = this_rq();
354	raw_spin_lock(&rq->lock);
355
356	return rq;
357}
358
359#ifdef CONFIG_SCHED_HRTICK
360/*
361 * Use HR-timers to deliver accurate preemption points.
362 *
363 * Its all a bit involved since we cannot program an hrt while holding the
364 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
365 * reschedule event.
366 *
367 * When we get rescheduled we reprogram the hrtick_timer outside of the
368 * rq->lock.
369 */
370
371static void hrtick_clear(struct rq *rq)
372{
373	if (hrtimer_active(&rq->hrtick_timer))
374		hrtimer_cancel(&rq->hrtick_timer);
375}
376
377/*
378 * High-resolution timer tick.
379 * Runs from hardirq context with interrupts disabled.
380 */
381static enum hrtimer_restart hrtick(struct hrtimer *timer)
382{
383	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
384
385	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
386
387	raw_spin_lock(&rq->lock);
388	update_rq_clock(rq);
389	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
390	raw_spin_unlock(&rq->lock);
391
392	return HRTIMER_NORESTART;
393}
394
395#ifdef CONFIG_SMP
396/*
397 * called from hardirq (IPI) context
398 */
399static void __hrtick_start(void *arg)
400{
401	struct rq *rq = arg;
402
403	raw_spin_lock(&rq->lock);
404	hrtimer_restart(&rq->hrtick_timer);
405	rq->hrtick_csd_pending = 0;
406	raw_spin_unlock(&rq->lock);
407}
408
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
414void hrtick_start(struct rq *rq, u64 delay)
415{
416	struct hrtimer *timer = &rq->hrtick_timer;
417	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
418
419	hrtimer_set_expires(timer, time);
420
421	if (rq == this_rq()) {
422		hrtimer_restart(timer);
423	} else if (!rq->hrtick_csd_pending) {
424		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
425		rq->hrtick_csd_pending = 1;
426	}
427}
428
429static int
430hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
431{
432	int cpu = (int)(long)hcpu;
433
434	switch (action) {
435	case CPU_UP_CANCELED:
436	case CPU_UP_CANCELED_FROZEN:
437	case CPU_DOWN_PREPARE:
438	case CPU_DOWN_PREPARE_FROZEN:
439	case CPU_DEAD:
440	case CPU_DEAD_FROZEN:
441		hrtick_clear(cpu_rq(cpu));
442		return NOTIFY_OK;
443	}
444
445	return NOTIFY_DONE;
446}
447
448static __init void init_hrtick(void)
449{
450	hotcpu_notifier(hotplug_hrtick, 0);
451}
452#else
453/*
454 * Called to set the hrtick timer state.
455 *
456 * called with rq->lock held and irqs disabled
457 */
458void hrtick_start(struct rq *rq, u64 delay)
459{
460	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
461			HRTIMER_MODE_REL_PINNED, 0);
462}
463
464static inline void init_hrtick(void)
465{
466}
467#endif /* CONFIG_SMP */
468
469static void init_rq_hrtick(struct rq *rq)
470{
471#ifdef CONFIG_SMP
472	rq->hrtick_csd_pending = 0;
473
474	rq->hrtick_csd.flags = 0;
475	rq->hrtick_csd.func = __hrtick_start;
476	rq->hrtick_csd.info = rq;
477#endif
478
479	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
480	rq->hrtick_timer.function = hrtick;
481}
482#else	/* CONFIG_SCHED_HRTICK */
483static inline void hrtick_clear(struct rq *rq)
484{
485}
486
487static inline void init_rq_hrtick(struct rq *rq)
488{
489}
490
491static inline void init_hrtick(void)
492{
493}
494#endif	/* CONFIG_SCHED_HRTICK */
495
496/*
497 * resched_task - mark a task 'to be rescheduled now'.
498 *
499 * On UP this means the setting of the need_resched flag, on SMP it
500 * might also involve a cross-CPU call to trigger the scheduler on
501 * the target CPU.
502 */
503#ifdef CONFIG_SMP
504
505#ifndef tsk_is_polling
506#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
507#endif
508
509void resched_task(struct task_struct *p)
510{
511	int cpu;
512
513	assert_raw_spin_locked(&task_rq(p)->lock);
514
515	if (test_tsk_need_resched(p))
516		return;
517
518	set_tsk_need_resched(p);
519
520	cpu = task_cpu(p);
521	if (cpu == smp_processor_id())
522		return;
523
524	/* NEED_RESCHED must be visible before we test polling */
525	smp_mb();
526	if (!tsk_is_polling(p))
527		smp_send_reschedule(cpu);
528}
529
530void resched_cpu(int cpu)
531{
532	struct rq *rq = cpu_rq(cpu);
533	unsigned long flags;
534
535	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
536		return;
537	resched_task(cpu_curr(cpu));
538	raw_spin_unlock_irqrestore(&rq->lock, flags);
539}
540
541#ifdef CONFIG_NO_HZ
542/*
543 * In the semi idle case, use the nearest busy cpu for migrating timers
544 * from an idle cpu.  This is good for power-savings.
545 *
546 * We don't do similar optimization for completely idle system, as
547 * selecting an idle cpu will add more delays to the timers than intended
548 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
549 */
550int get_nohz_timer_target(void)
551{
552	int cpu = smp_processor_id();
553	int i;
554	struct sched_domain *sd;
555
556	rcu_read_lock();
557	for_each_domain(cpu, sd) {
558		for_each_cpu(i, sched_domain_span(sd)) {
559			if (!idle_cpu(i)) {
560				cpu = i;
561				goto unlock;
562			}
563		}
564	}
565unlock:
566	rcu_read_unlock();
567	return cpu;
568}
569/*
570 * When add_timer_on() enqueues a timer into the timer wheel of an
571 * idle CPU then this timer might expire before the next timer event
572 * which is scheduled to wake up that CPU. In case of a completely
573 * idle system the next event might even be infinite time into the
574 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
575 * leaves the inner idle loop so the newly added timer is taken into
576 * account when the CPU goes back to idle and evaluates the timer
577 * wheel for the next timer event.
578 */
579void wake_up_idle_cpu(int cpu)
580{
581	struct rq *rq = cpu_rq(cpu);
582
583	if (cpu == smp_processor_id())
584		return;
585
586	/*
587	 * This is safe, as this function is called with the timer
588	 * wheel base lock of (cpu) held. When the CPU is on the way
589	 * to idle and has not yet set rq->curr to idle then it will
590	 * be serialized on the timer wheel base lock and take the new
591	 * timer into account automatically.
592	 */
593	if (rq->curr != rq->idle)
594		return;
595
596	/*
597	 * We can set TIF_RESCHED on the idle task of the other CPU
598	 * lockless. The worst case is that the other CPU runs the
599	 * idle task through an additional NOOP schedule()
600	 */
601	set_tsk_need_resched(rq->idle);
602
603	/* NEED_RESCHED must be visible before we test polling */
604	smp_mb();
605	if (!tsk_is_polling(rq->idle))
606		smp_send_reschedule(cpu);
607}
608
609static inline bool got_nohz_idle_kick(void)
610{
611	int cpu = smp_processor_id();
612	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
613}
614
615#else /* CONFIG_NO_HZ */
616
617static inline bool got_nohz_idle_kick(void)
618{
619	return false;
620}
621
622#endif /* CONFIG_NO_HZ */
623
624void sched_avg_update(struct rq *rq)
625{
626	s64 period = sched_avg_period();
627
628	while ((s64)(rq->clock - rq->age_stamp) > period) {
629		/*
630		 * Inline assembly required to prevent the compiler
631		 * optimising this loop into a divmod call.
632		 * See __iter_div_u64_rem() for another example of this.
633		 */
634		asm("" : "+rm" (rq->age_stamp));
635		rq->age_stamp += period;
636		rq->rt_avg /= 2;
637	}
638}
639
640#else /* !CONFIG_SMP */
641void resched_task(struct task_struct *p)
642{
643	assert_raw_spin_locked(&task_rq(p)->lock);
644	set_tsk_need_resched(p);
645}
646#endif /* CONFIG_SMP */
647
648#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650/*
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
653 *
654 * Caller must hold rcu_lock or sufficient equivalent.
655 */
656int walk_tg_tree_from(struct task_group *from,
657			     tg_visitor down, tg_visitor up, void *data)
658{
659	struct task_group *parent, *child;
660	int ret;
661
662	parent = from;
663
664down:
665	ret = (*down)(parent, data);
666	if (ret)
667		goto out;
668	list_for_each_entry_rcu(child, &parent->children, siblings) {
669		parent = child;
670		goto down;
671
672up:
673		continue;
674	}
675	ret = (*up)(parent, data);
676	if (ret || parent == from)
677		goto out;
678
679	child = parent;
680	parent = parent->parent;
681	if (parent)
682		goto up;
683out:
684	return ret;
685}
686
687int tg_nop(struct task_group *tg, void *data)
688{
689	return 0;
690}
691#endif
692
693void update_cpu_load(struct rq *this_rq);
694
695static void set_load_weight(struct task_struct *p)
696{
697	int prio = p->static_prio - MAX_RT_PRIO;
698	struct load_weight *load = &p->se.load;
699
700	/*
701	 * SCHED_IDLE tasks get minimal weight:
702	 */
703	if (p->policy == SCHED_IDLE) {
704		load->weight = scale_load(WEIGHT_IDLEPRIO);
705		load->inv_weight = WMULT_IDLEPRIO;
706		return;
707	}
708
709	load->weight = scale_load(prio_to_weight[prio]);
710	load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715	update_rq_clock(rq);
716	sched_info_queued(p);
717	p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722	update_rq_clock(rq);
723	sched_info_dequeued(p);
724	p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729	if (task_contributes_to_load(p))
730		rq->nr_uninterruptible--;
731
732	enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737	if (task_contributes_to_load(p))
738		rq->nr_uninterruptible++;
739
740	dequeue_task(rq, p, flags);
741}
742
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
755 */
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764	sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769	sched_clock_irqtime = 0;
770}
771
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777	__this_cpu_inc(irq_time_seq.sequence);
778	smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783	smp_wmb();
784	__this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789	u64 irq_time;
790	unsigned seq;
791
792	do {
793		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794		irq_time = per_cpu(cpu_softirq_time, cpu) +
795			   per_cpu(cpu_hardirq_time, cpu);
796	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798	return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
810{
811	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
813#endif /* CONFIG_64BIT */
814
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
819void account_system_vtime(struct task_struct *curr)
820{
821	unsigned long flags;
822	s64 delta;
823	int cpu;
824
825	if (!sched_clock_irqtime)
826		return;
827
828	local_irq_save(flags);
829
830	cpu = smp_processor_id();
831	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832	__this_cpu_add(irq_start_time, delta);
833
834	irq_time_write_begin();
835	/*
836	 * We do not account for softirq time from ksoftirqd here.
837	 * We want to continue accounting softirq time to ksoftirqd thread
838	 * in that case, so as not to confuse scheduler with a special task
839	 * that do not consume any time, but still wants to run.
840	 */
841	if (hardirq_count())
842		__this_cpu_add(cpu_hardirq_time, delta);
843	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
844		__this_cpu_add(cpu_softirq_time, delta);
845
846	irq_time_write_end();
847	local_irq_restore(flags);
848}
849EXPORT_SYMBOL_GPL(account_system_vtime);
850
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
855{
856	if (unlikely(steal > NSEC_PER_SEC))
857		return div_u64(steal, TICK_NSEC);
858
859	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
863static void update_rq_clock_task(struct rq *rq, s64 delta)
864{
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870	s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
874
875	/*
876	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877	 * this case when a previous update_rq_clock() happened inside a
878	 * {soft,}irq region.
879	 *
880	 * When this happens, we stop ->clock_task and only update the
881	 * prev_irq_time stamp to account for the part that fit, so that a next
882	 * update will consume the rest. This ensures ->clock_task is
883	 * monotonic.
884	 *
885	 * It does however cause some slight miss-attribution of {soft,}irq
886	 * time, a more accurate solution would be to update the irq_time using
887	 * the current rq->clock timestamp, except that would require using
888	 * atomic ops.
889	 */
890	if (irq_delta > delta)
891		irq_delta = delta;
892
893	rq->prev_irq_time += irq_delta;
894	delta -= irq_delta;
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
897	if (static_branch((&paravirt_steal_rq_enabled))) {
898		u64 st;
899
900		steal = paravirt_steal_clock(cpu_of(rq));
901		steal -= rq->prev_steal_time_rq;
902
903		if (unlikely(steal > delta))
904			steal = delta;
905
906		st = steal_ticks(steal);
907		steal = st * TICK_NSEC;
908
909		rq->prev_steal_time_rq += steal;
910
911		delta -= steal;
912	}
913#endif
914
915	rq->clock_task += delta;
916
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919		sched_rt_avg_update(rq, irq_delta + steal);
920#endif
921}
922
923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
924static int irqtime_account_hi_update(void)
925{
926	u64 *cpustat = kcpustat_this_cpu->cpustat;
927	unsigned long flags;
928	u64 latest_ns;
929	int ret = 0;
930
931	local_irq_save(flags);
932	latest_ns = this_cpu_read(cpu_hardirq_time);
933	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
934		ret = 1;
935	local_irq_restore(flags);
936	return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
941	u64 *cpustat = kcpustat_this_cpu->cpustat;
942	unsigned long flags;
943	u64 latest_ns;
944	int ret = 0;
945
946	local_irq_save(flags);
947	latest_ns = this_cpu_read(cpu_softirq_time);
948	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
949		ret = 1;
950	local_irq_restore(flags);
951	return ret;
952}
953
954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
955
956#define sched_clock_irqtime	(0)
957
958#endif
959
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963	struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965	if (stop) {
966		/*
967		 * Make it appear like a SCHED_FIFO task, its something
968		 * userspace knows about and won't get confused about.
969		 *
970		 * Also, it will make PI more or less work without too
971		 * much confusion -- but then, stop work should not
972		 * rely on PI working anyway.
973		 */
974		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976		stop->sched_class = &stop_sched_class;
977	}
978
979	cpu_rq(cpu)->stop = stop;
980
981	if (old_stop) {
982		/*
983		 * Reset it back to a normal scheduling class so that
984		 * it can die in pieces.
985		 */
986		old_stop->sched_class = &rt_sched_class;
987	}
988}
989
990/*
991 * __normal_prio - return the priority that is based on the static prio
992 */
993static inline int __normal_prio(struct task_struct *p)
994{
995	return p->static_prio;
996}
997
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
1005static inline int normal_prio(struct task_struct *p)
1006{
1007	int prio;
1008
1009	if (task_has_rt_policy(p))
1010		prio = MAX_RT_PRIO-1 - p->rt_priority;
1011	else
1012		prio = __normal_prio(p);
1013	return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
1023static int effective_prio(struct task_struct *p)
1024{
1025	p->normal_prio = normal_prio(p);
1026	/*
1027	 * If we are RT tasks or we were boosted to RT priority,
1028	 * keep the priority unchanged. Otherwise, update priority
1029	 * to the normal priority:
1030	 */
1031	if (!rt_prio(p->prio))
1032		return p->normal_prio;
1033	return p->prio;
1034}
1035
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
1040inline int task_curr(const struct task_struct *p)
1041{
1042	return cpu_curr(task_cpu(p)) == p;
1043}
1044
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046				       const struct sched_class *prev_class,
1047				       int oldprio)
1048{
1049	if (prev_class != p->sched_class) {
1050		if (prev_class->switched_from)
1051			prev_class->switched_from(rq, p);
1052		p->sched_class->switched_to(rq, p);
1053	} else if (oldprio != p->prio)
1054		p->sched_class->prio_changed(rq, p, oldprio);
1055}
1056
1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1058{
1059	const struct sched_class *class;
1060
1061	if (p->sched_class == rq->curr->sched_class) {
1062		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063	} else {
1064		for_each_class(class) {
1065			if (class == rq->curr->sched_class)
1066				break;
1067			if (class == p->sched_class) {
1068				resched_task(rq->curr);
1069				break;
1070			}
1071		}
1072	}
1073
1074	/*
1075	 * A queue event has occurred, and we're going to schedule.  In
1076	 * this case, we can save a useless back to back clock update.
1077	 */
1078	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1079		rq->skip_clock_update = 1;
1080}
1081
1082#ifdef CONFIG_SMP
1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1084{
1085#ifdef CONFIG_SCHED_DEBUG
1086	/*
1087	 * We should never call set_task_cpu() on a blocked task,
1088	 * ttwu() will sort out the placement.
1089	 */
1090	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1092
1093#ifdef CONFIG_LOCKDEP
1094	/*
1095	 * The caller should hold either p->pi_lock or rq->lock, when changing
1096	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097	 *
1098	 * sched_move_task() holds both and thus holding either pins the cgroup,
1099	 * see set_task_rq().
1100	 *
1101	 * Furthermore, all task_rq users should acquire both locks, see
1102	 * task_rq_lock().
1103	 */
1104	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105				      lockdep_is_held(&task_rq(p)->lock)));
1106#endif
1107#endif
1108
1109	trace_sched_migrate_task(p, new_cpu);
1110
1111	if (task_cpu(p) != new_cpu) {
1112		p->se.nr_migrations++;
1113		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1114	}
1115
1116	__set_task_cpu(p, new_cpu);
1117}
1118
1119struct migration_arg {
1120	struct task_struct *task;
1121	int dest_cpu;
1122};
1123
1124static int migration_cpu_stop(void *data);
1125
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change.  If it changes, i.e. @p might have woken up,
1131 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count).  If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1143{
1144	unsigned long flags;
1145	int running, on_rq;
1146	unsigned long ncsw;
1147	struct rq *rq;
1148
1149	for (;;) {
1150		/*
1151		 * We do the initial early heuristics without holding
1152		 * any task-queue locks at all. We'll only try to get
1153		 * the runqueue lock when things look like they will
1154		 * work out!
1155		 */
1156		rq = task_rq(p);
1157
1158		/*
1159		 * If the task is actively running on another CPU
1160		 * still, just relax and busy-wait without holding
1161		 * any locks.
1162		 *
1163		 * NOTE! Since we don't hold any locks, it's not
1164		 * even sure that "rq" stays as the right runqueue!
1165		 * But we don't care, since "task_running()" will
1166		 * return false if the runqueue has changed and p
1167		 * is actually now running somewhere else!
1168		 */
1169		while (task_running(rq, p)) {
1170			if (match_state && unlikely(p->state != match_state))
1171				return 0;
1172			cpu_relax();
1173		}
1174
1175		/*
1176		 * Ok, time to look more closely! We need the rq
1177		 * lock now, to be *sure*. If we're wrong, we'll
1178		 * just go back and repeat.
1179		 */
1180		rq = task_rq_lock(p, &flags);
1181		trace_sched_wait_task(p);
1182		running = task_running(rq, p);
1183		on_rq = p->on_rq;
1184		ncsw = 0;
1185		if (!match_state || p->state == match_state)
1186			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1187		task_rq_unlock(rq, p, &flags);
1188
1189		/*
1190		 * If it changed from the expected state, bail out now.
1191		 */
1192		if (unlikely(!ncsw))
1193			break;
1194
1195		/*
1196		 * Was it really running after all now that we
1197		 * checked with the proper locks actually held?
1198		 *
1199		 * Oops. Go back and try again..
1200		 */
1201		if (unlikely(running)) {
1202			cpu_relax();
1203			continue;
1204		}
1205
1206		/*
1207		 * It's not enough that it's not actively running,
1208		 * it must be off the runqueue _entirely_, and not
1209		 * preempted!
1210		 *
1211		 * So if it was still runnable (but just not actively
1212		 * running right now), it's preempted, and we should
1213		 * yield - it could be a while.
1214		 */
1215		if (unlikely(on_rq)) {
1216			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218			set_current_state(TASK_UNINTERRUPTIBLE);
1219			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1220			continue;
1221		}
1222
1223		/*
1224		 * Ahh, all good. It wasn't running, and it wasn't
1225		 * runnable, which means that it will never become
1226		 * running in the future either. We're all done!
1227		 */
1228		break;
1229	}
1230
1231	return ncsw;
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
1241 * NOTE: this function doesn't have to take the runqueue lock,
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
1247void kick_process(struct task_struct *p)
1248{
1249	int cpu;
1250
1251	preempt_disable();
1252	cpu = task_cpu(p);
1253	if ((cpu != smp_processor_id()) && task_curr(p))
1254		smp_send_reschedule(cpu);
1255	preempt_enable();
1256}
1257EXPORT_SYMBOL_GPL(kick_process);
1258#endif /* CONFIG_SMP */
1259
1260#ifdef CONFIG_SMP
1261/*
1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1263 */
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
1266	int dest_cpu;
1267	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1268
1269	/* Look for allowed, online CPU in same node. */
1270	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1271		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1272			return dest_cpu;
1273
1274	/* Any allowed, online CPU? */
1275	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1276	if (dest_cpu < nr_cpu_ids)
1277		return dest_cpu;
1278
1279	/* No more Mr. Nice Guy. */
1280	dest_cpu = cpuset_cpus_allowed_fallback(p);
1281	/*
1282	 * Don't tell them about moving exiting tasks or
1283	 * kernel threads (both mm NULL), since they never
1284	 * leave kernel.
1285	 */
1286	if (p->mm && printk_ratelimit()) {
1287		printk_sched("process %d (%s) no longer affine to cpu%d\n",
1288				task_pid_nr(p), p->comm, cpu);
1289	}
1290
1291	return dest_cpu;
1292}
1293
1294/*
1295 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1296 */
1297static inline
1298int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1299{
1300	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1301
1302	/*
1303	 * In order not to call set_task_cpu() on a blocking task we need
1304	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1305	 * cpu.
1306	 *
1307	 * Since this is common to all placement strategies, this lives here.
1308	 *
1309	 * [ this allows ->select_task() to simply return task_cpu(p) and
1310	 *   not worry about this generic constraint ]
1311	 */
1312	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1313		     !cpu_online(cpu)))
1314		cpu = select_fallback_rq(task_cpu(p), p);
1315
1316	return cpu;
1317}
1318
1319static void update_avg(u64 *avg, u64 sample)
1320{
1321	s64 diff = sample - *avg;
1322	*avg += diff >> 3;
1323}
1324#endif
1325
1326static void
1327ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1328{
1329#ifdef CONFIG_SCHEDSTATS
1330	struct rq *rq = this_rq();
1331
1332#ifdef CONFIG_SMP
1333	int this_cpu = smp_processor_id();
1334
1335	if (cpu == this_cpu) {
1336		schedstat_inc(rq, ttwu_local);
1337		schedstat_inc(p, se.statistics.nr_wakeups_local);
1338	} else {
1339		struct sched_domain *sd;
1340
1341		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1342		rcu_read_lock();
1343		for_each_domain(this_cpu, sd) {
1344			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1345				schedstat_inc(sd, ttwu_wake_remote);
1346				break;
1347			}
1348		}
1349		rcu_read_unlock();
1350	}
1351
1352	if (wake_flags & WF_MIGRATED)
1353		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1354
1355#endif /* CONFIG_SMP */
1356
1357	schedstat_inc(rq, ttwu_count);
1358	schedstat_inc(p, se.statistics.nr_wakeups);
1359
1360	if (wake_flags & WF_SYNC)
1361		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1362
1363#endif /* CONFIG_SCHEDSTATS */
1364}
1365
1366static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1367{
1368	activate_task(rq, p, en_flags);
1369	p->on_rq = 1;
1370
1371	/* if a worker is waking up, notify workqueue */
1372	if (p->flags & PF_WQ_WORKER)
1373		wq_worker_waking_up(p, cpu_of(rq));
1374}
1375
1376/*
1377 * Mark the task runnable and perform wakeup-preemption.
1378 */
1379static void
1380ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1381{
1382	trace_sched_wakeup(p, true);
1383	check_preempt_curr(rq, p, wake_flags);
1384
1385	p->state = TASK_RUNNING;
1386#ifdef CONFIG_SMP
1387	if (p->sched_class->task_woken)
1388		p->sched_class->task_woken(rq, p);
1389
1390	if (rq->idle_stamp) {
1391		u64 delta = rq->clock - rq->idle_stamp;
1392		u64 max = 2*sysctl_sched_migration_cost;
1393
1394		if (delta > max)
1395			rq->avg_idle = max;
1396		else
1397			update_avg(&rq->avg_idle, delta);
1398		rq->idle_stamp = 0;
1399	}
1400#endif
1401}
1402
1403static void
1404ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1405{
1406#ifdef CONFIG_SMP
1407	if (p->sched_contributes_to_load)
1408		rq->nr_uninterruptible--;
1409#endif
1410
1411	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1412	ttwu_do_wakeup(rq, p, wake_flags);
1413}
1414
1415/*
1416 * Called in case the task @p isn't fully descheduled from its runqueue,
1417 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1418 * since all we need to do is flip p->state to TASK_RUNNING, since
1419 * the task is still ->on_rq.
1420 */
1421static int ttwu_remote(struct task_struct *p, int wake_flags)
1422{
1423	struct rq *rq;
1424	int ret = 0;
1425
1426	rq = __task_rq_lock(p);
1427	if (p->on_rq) {
1428		ttwu_do_wakeup(rq, p, wake_flags);
1429		ret = 1;
1430	}
1431	__task_rq_unlock(rq);
1432
1433	return ret;
1434}
1435
1436#ifdef CONFIG_SMP
1437static void sched_ttwu_pending(void)
1438{
1439	struct rq *rq = this_rq();
1440	struct llist_node *llist = llist_del_all(&rq->wake_list);
1441	struct task_struct *p;
1442
1443	raw_spin_lock(&rq->lock);
1444
1445	while (llist) {
1446		p = llist_entry(llist, struct task_struct, wake_entry);
1447		llist = llist_next(llist);
1448		ttwu_do_activate(rq, p, 0);
1449	}
1450
1451	raw_spin_unlock(&rq->lock);
1452}
1453
1454void scheduler_ipi(void)
1455{
1456	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1457		return;
1458
1459	/*
1460	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1461	 * traditionally all their work was done from the interrupt return
1462	 * path. Now that we actually do some work, we need to make sure
1463	 * we do call them.
1464	 *
1465	 * Some archs already do call them, luckily irq_enter/exit nest
1466	 * properly.
1467	 *
1468	 * Arguably we should visit all archs and update all handlers,
1469	 * however a fair share of IPIs are still resched only so this would
1470	 * somewhat pessimize the simple resched case.
1471	 */
1472	irq_enter();
1473	sched_ttwu_pending();
1474
1475	/*
1476	 * Check if someone kicked us for doing the nohz idle load balance.
1477	 */
1478	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1479		this_rq()->idle_balance = 1;
1480		raise_softirq_irqoff(SCHED_SOFTIRQ);
1481	}
1482	irq_exit();
1483}
1484
1485static void ttwu_queue_remote(struct task_struct *p, int cpu)
1486{
1487	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1488		smp_send_reschedule(cpu);
1489}
1490
1491#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1492static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1493{
1494	struct rq *rq;
1495	int ret = 0;
1496
1497	rq = __task_rq_lock(p);
1498	if (p->on_cpu) {
1499		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1500		ttwu_do_wakeup(rq, p, wake_flags);
1501		ret = 1;
1502	}
1503	__task_rq_unlock(rq);
1504
1505	return ret;
1506
1507}
1508#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1509
1510bool cpus_share_cache(int this_cpu, int that_cpu)
1511{
1512	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1513}
1514#endif /* CONFIG_SMP */
1515
1516static void ttwu_queue(struct task_struct *p, int cpu)
1517{
1518	struct rq *rq = cpu_rq(cpu);
1519
1520#if defined(CONFIG_SMP)
1521	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1522		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1523		ttwu_queue_remote(p, cpu);
1524		return;
1525	}
1526#endif
1527
1528	raw_spin_lock(&rq->lock);
1529	ttwu_do_activate(rq, p, 0);
1530	raw_spin_unlock(&rq->lock);
1531}
1532
1533/**
1534 * try_to_wake_up - wake up a thread
1535 * @p: the thread to be awakened
1536 * @state: the mask of task states that can be woken
1537 * @wake_flags: wake modifier flags (WF_*)
1538 *
1539 * Put it on the run-queue if it's not already there. The "current"
1540 * thread is always on the run-queue (except when the actual
1541 * re-schedule is in progress), and as such you're allowed to do
1542 * the simpler "current->state = TASK_RUNNING" to mark yourself
1543 * runnable without the overhead of this.
1544 *
1545 * Returns %true if @p was woken up, %false if it was already running
1546 * or @state didn't match @p's state.
1547 */
1548static int
1549try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1550{
1551	unsigned long flags;
1552	int cpu, success = 0;
1553
1554	smp_wmb();
1555	raw_spin_lock_irqsave(&p->pi_lock, flags);
1556	if (!(p->state & state))
1557		goto out;
1558
1559	success = 1; /* we're going to change ->state */
1560	cpu = task_cpu(p);
1561
1562	if (p->on_rq && ttwu_remote(p, wake_flags))
1563		goto stat;
1564
1565#ifdef CONFIG_SMP
1566	/*
1567	 * If the owning (remote) cpu is still in the middle of schedule() with
1568	 * this task as prev, wait until its done referencing the task.
1569	 */
1570	while (p->on_cpu) {
1571#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1572		/*
1573		 * In case the architecture enables interrupts in
1574		 * context_switch(), we cannot busy wait, since that
1575		 * would lead to deadlocks when an interrupt hits and
1576		 * tries to wake up @prev. So bail and do a complete
1577		 * remote wakeup.
1578		 */
1579		if (ttwu_activate_remote(p, wake_flags))
1580			goto stat;
1581#else
1582		cpu_relax();
1583#endif
1584	}
1585	/*
1586	 * Pairs with the smp_wmb() in finish_lock_switch().
1587	 */
1588	smp_rmb();
1589
1590	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1591	p->state = TASK_WAKING;
1592
1593	if (p->sched_class->task_waking)
1594		p->sched_class->task_waking(p);
1595
1596	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1597	if (task_cpu(p) != cpu) {
1598		wake_flags |= WF_MIGRATED;
1599		set_task_cpu(p, cpu);
1600	}
1601#endif /* CONFIG_SMP */
1602
1603	ttwu_queue(p, cpu);
1604stat:
1605	ttwu_stat(p, cpu, wake_flags);
1606out:
1607	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1608
1609	return success;
1610}
1611
1612/**
1613 * try_to_wake_up_local - try to wake up a local task with rq lock held
1614 * @p: the thread to be awakened
1615 *
1616 * Put @p on the run-queue if it's not already there. The caller must
1617 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1618 * the current task.
1619 */
1620static void try_to_wake_up_local(struct task_struct *p)
1621{
1622	struct rq *rq = task_rq(p);
1623
1624	BUG_ON(rq != this_rq());
1625	BUG_ON(p == current);
1626	lockdep_assert_held(&rq->lock);
1627
1628	if (!raw_spin_trylock(&p->pi_lock)) {
1629		raw_spin_unlock(&rq->lock);
1630		raw_spin_lock(&p->pi_lock);
1631		raw_spin_lock(&rq->lock);
1632	}
1633
1634	if (!(p->state & TASK_NORMAL))
1635		goto out;
1636
1637	if (!p->on_rq)
1638		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1639
1640	ttwu_do_wakeup(rq, p, 0);
1641	ttwu_stat(p, smp_processor_id(), 0);
1642out:
1643	raw_spin_unlock(&p->pi_lock);
1644}
1645
1646/**
1647 * wake_up_process - Wake up a specific process
1648 * @p: The process to be woken up.
1649 *
1650 * Attempt to wake up the nominated process and move it to the set of runnable
1651 * processes.  Returns 1 if the process was woken up, 0 if it was already
1652 * running.
1653 *
1654 * It may be assumed that this function implies a write memory barrier before
1655 * changing the task state if and only if any tasks are woken up.
1656 */
1657int wake_up_process(struct task_struct *p)
1658{
1659	return try_to_wake_up(p, TASK_ALL, 0);
1660}
1661EXPORT_SYMBOL(wake_up_process);
1662
1663int wake_up_state(struct task_struct *p, unsigned int state)
1664{
1665	return try_to_wake_up(p, state, 0);
1666}
1667
1668/*
1669 * Perform scheduler related setup for a newly forked process p.
1670 * p is forked by current.
1671 *
1672 * __sched_fork() is basic setup used by init_idle() too:
1673 */
1674static void __sched_fork(struct task_struct *p)
1675{
1676	p->on_rq			= 0;
1677
1678	p->se.on_rq			= 0;
1679	p->se.exec_start		= 0;
1680	p->se.sum_exec_runtime		= 0;
1681	p->se.prev_sum_exec_runtime	= 0;
1682	p->se.nr_migrations		= 0;
1683	p->se.vruntime			= 0;
1684	INIT_LIST_HEAD(&p->se.group_node);
1685
1686#ifdef CONFIG_SCHEDSTATS
1687	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1688#endif
1689
1690	INIT_LIST_HEAD(&p->rt.run_list);
1691
1692#ifdef CONFIG_PREEMPT_NOTIFIERS
1693	INIT_HLIST_HEAD(&p->preempt_notifiers);
1694#endif
1695}
1696
1697/*
1698 * fork()/clone()-time setup:
1699 */
1700void sched_fork(struct task_struct *p)
1701{
1702	unsigned long flags;
1703	int cpu = get_cpu();
1704
1705	__sched_fork(p);
1706	/*
1707	 * We mark the process as running here. This guarantees that
1708	 * nobody will actually run it, and a signal or other external
1709	 * event cannot wake it up and insert it on the runqueue either.
1710	 */
1711	p->state = TASK_RUNNING;
1712
1713	/*
1714	 * Make sure we do not leak PI boosting priority to the child.
1715	 */
1716	p->prio = current->normal_prio;
1717
1718	/*
1719	 * Revert to default priority/policy on fork if requested.
1720	 */
1721	if (unlikely(p->sched_reset_on_fork)) {
1722		if (task_has_rt_policy(p)) {
1723			p->policy = SCHED_NORMAL;
1724			p->static_prio = NICE_TO_PRIO(0);
1725			p->rt_priority = 0;
1726		} else if (PRIO_TO_NICE(p->static_prio) < 0)
1727			p->static_prio = NICE_TO_PRIO(0);
1728
1729		p->prio = p->normal_prio = __normal_prio(p);
1730		set_load_weight(p);
1731
1732		/*
1733		 * We don't need the reset flag anymore after the fork. It has
1734		 * fulfilled its duty:
1735		 */
1736		p->sched_reset_on_fork = 0;
1737	}
1738
1739	if (!rt_prio(p->prio))
1740		p->sched_class = &fair_sched_class;
1741
1742	if (p->sched_class->task_fork)
1743		p->sched_class->task_fork(p);
1744
1745	/*
1746	 * The child is not yet in the pid-hash so no cgroup attach races,
1747	 * and the cgroup is pinned to this child due to cgroup_fork()
1748	 * is ran before sched_fork().
1749	 *
1750	 * Silence PROVE_RCU.
1751	 */
1752	raw_spin_lock_irqsave(&p->pi_lock, flags);
1753	set_task_cpu(p, cpu);
1754	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1755
1756#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1757	if (likely(sched_info_on()))
1758		memset(&p->sched_info, 0, sizeof(p->sched_info));
1759#endif
1760#if defined(CONFIG_SMP)
1761	p->on_cpu = 0;
1762#endif
1763#ifdef CONFIG_PREEMPT_COUNT
1764	/* Want to start with kernel preemption disabled. */
1765	task_thread_info(p)->preempt_count = 1;
1766#endif
1767#ifdef CONFIG_SMP
1768	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1769#endif
1770
1771	put_cpu();
1772}
1773
1774/*
1775 * wake_up_new_task - wake up a newly created task for the first time.
1776 *
1777 * This function will do some initial scheduler statistics housekeeping
1778 * that must be done for every newly created context, then puts the task
1779 * on the runqueue and wakes it.
1780 */
1781void wake_up_new_task(struct task_struct *p)
1782{
1783	unsigned long flags;
1784	struct rq *rq;
1785
1786	raw_spin_lock_irqsave(&p->pi_lock, flags);
1787#ifdef CONFIG_SMP
1788	/*
1789	 * Fork balancing, do it here and not earlier because:
1790	 *  - cpus_allowed can change in the fork path
1791	 *  - any previously selected cpu might disappear through hotplug
1792	 */
1793	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1794#endif
1795
1796	rq = __task_rq_lock(p);
1797	activate_task(rq, p, 0);
1798	p->on_rq = 1;
1799	trace_sched_wakeup_new(p, true);
1800	check_preempt_curr(rq, p, WF_FORK);
1801#ifdef CONFIG_SMP
1802	if (p->sched_class->task_woken)
1803		p->sched_class->task_woken(rq, p);
1804#endif
1805	task_rq_unlock(rq, p, &flags);
1806}
1807
1808#ifdef CONFIG_PREEMPT_NOTIFIERS
1809
1810/**
1811 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1812 * @notifier: notifier struct to register
1813 */
1814void preempt_notifier_register(struct preempt_notifier *notifier)
1815{
1816	hlist_add_head(&notifier->link, &current->preempt_notifiers);
1817}
1818EXPORT_SYMBOL_GPL(preempt_notifier_register);
1819
1820/**
1821 * preempt_notifier_unregister - no longer interested in preemption notifications
1822 * @notifier: notifier struct to unregister
1823 *
1824 * This is safe to call from within a preemption notifier.
1825 */
1826void preempt_notifier_unregister(struct preempt_notifier *notifier)
1827{
1828	hlist_del(&notifier->link);
1829}
1830EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1831
1832static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1833{
1834	struct preempt_notifier *notifier;
1835	struct hlist_node *node;
1836
1837	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1838		notifier->ops->sched_in(notifier, raw_smp_processor_id());
1839}
1840
1841static void
1842fire_sched_out_preempt_notifiers(struct task_struct *curr,
1843				 struct task_struct *next)
1844{
1845	struct preempt_notifier *notifier;
1846	struct hlist_node *node;
1847
1848	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1849		notifier->ops->sched_out(notifier, next);
1850}
1851
1852#else /* !CONFIG_PREEMPT_NOTIFIERS */
1853
1854static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1855{
1856}
1857
1858static void
1859fire_sched_out_preempt_notifiers(struct task_struct *curr,
1860				 struct task_struct *next)
1861{
1862}
1863
1864#endif /* CONFIG_PREEMPT_NOTIFIERS */
1865
1866/**
1867 * prepare_task_switch - prepare to switch tasks
1868 * @rq: the runqueue preparing to switch
1869 * @prev: the current task that is being switched out
1870 * @next: the task we are going to switch to.
1871 *
1872 * This is called with the rq lock held and interrupts off. It must
1873 * be paired with a subsequent finish_task_switch after the context
1874 * switch.
1875 *
1876 * prepare_task_switch sets up locking and calls architecture specific
1877 * hooks.
1878 */
1879static inline void
1880prepare_task_switch(struct rq *rq, struct task_struct *prev,
1881		    struct task_struct *next)
1882{
1883	sched_info_switch(prev, next);
1884	perf_event_task_sched_out(prev, next);
1885	fire_sched_out_preempt_notifiers(prev, next);
1886	prepare_lock_switch(rq, next);
1887	prepare_arch_switch(next);
1888	trace_sched_switch(prev, next);
1889}
1890
1891/**
1892 * finish_task_switch - clean up after a task-switch
1893 * @rq: runqueue associated with task-switch
1894 * @prev: the thread we just switched away from.
1895 *
1896 * finish_task_switch must be called after the context switch, paired
1897 * with a prepare_task_switch call before the context switch.
1898 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1899 * and do any other architecture-specific cleanup actions.
1900 *
1901 * Note that we may have delayed dropping an mm in context_switch(). If
1902 * so, we finish that here outside of the runqueue lock. (Doing it
1903 * with the lock held can cause deadlocks; see schedule() for
1904 * details.)
1905 */
1906static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1907	__releases(rq->lock)
1908{
1909	struct mm_struct *mm = rq->prev_mm;
1910	long prev_state;
1911
1912	rq->prev_mm = NULL;
1913
1914	/*
1915	 * A task struct has one reference for the use as "current".
1916	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1917	 * schedule one last time. The schedule call will never return, and
1918	 * the scheduled task must drop that reference.
1919	 * The test for TASK_DEAD must occur while the runqueue locks are
1920	 * still held, otherwise prev could be scheduled on another cpu, die
1921	 * there before we look at prev->state, and then the reference would
1922	 * be dropped twice.
1923	 *		Manfred Spraul <manfred@colorfullife.com>
1924	 */
1925	prev_state = prev->state;
1926	finish_arch_switch(prev);
1927#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1928	local_irq_disable();
1929#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1930	perf_event_task_sched_in(prev, current);
1931#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1932	local_irq_enable();
1933#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1934	finish_lock_switch(rq, prev);
1935
1936	fire_sched_in_preempt_notifiers(current);
1937	if (mm)
1938		mmdrop(mm);
1939	if (unlikely(prev_state == TASK_DEAD)) {
1940		/*
1941		 * Remove function-return probe instances associated with this
1942		 * task and put them back on the free list.
1943		 */
1944		kprobe_flush_task(prev);
1945		put_task_struct(prev);
1946	}
1947}
1948
1949#ifdef CONFIG_SMP
1950
1951/* assumes rq->lock is held */
1952static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1953{
1954	if (prev->sched_class->pre_schedule)
1955		prev->sched_class->pre_schedule(rq, prev);
1956}
1957
1958/* rq->lock is NOT held, but preemption is disabled */
1959static inline void post_schedule(struct rq *rq)
1960{
1961	if (rq->post_schedule) {
1962		unsigned long flags;
1963
1964		raw_spin_lock_irqsave(&rq->lock, flags);
1965		if (rq->curr->sched_class->post_schedule)
1966			rq->curr->sched_class->post_schedule(rq);
1967		raw_spin_unlock_irqrestore(&rq->lock, flags);
1968
1969		rq->post_schedule = 0;
1970	}
1971}
1972
1973#else
1974
1975static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1976{
1977}
1978
1979static inline void post_schedule(struct rq *rq)
1980{
1981}
1982
1983#endif
1984
1985/**
1986 * schedule_tail - first thing a freshly forked thread must call.
1987 * @prev: the thread we just switched away from.
1988 */
1989asmlinkage void schedule_tail(struct task_struct *prev)
1990	__releases(rq->lock)
1991{
1992	struct rq *rq = this_rq();
1993
1994	finish_task_switch(rq, prev);
1995
1996	/*
1997	 * FIXME: do we need to worry about rq being invalidated by the
1998	 * task_switch?
1999	 */
2000	post_schedule(rq);
2001
2002#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2003	/* In this case, finish_task_switch does not reenable preemption */
2004	preempt_enable();
2005#endif
2006	if (current->set_child_tid)
2007		put_user(task_pid_vnr(current), current->set_child_tid);
2008}
2009
2010/*
2011 * context_switch - switch to the new MM and the new
2012 * thread's register state.
2013 */
2014static inline void
2015context_switch(struct rq *rq, struct task_struct *prev,
2016	       struct task_struct *next)
2017{
2018	struct mm_struct *mm, *oldmm;
2019
2020	prepare_task_switch(rq, prev, next);
2021
2022	mm = next->mm;
2023	oldmm = prev->active_mm;
2024	/*
2025	 * For paravirt, this is coupled with an exit in switch_to to
2026	 * combine the page table reload and the switch backend into
2027	 * one hypercall.
2028	 */
2029	arch_start_context_switch(prev);
2030
2031	if (!mm) {
2032		next->active_mm = oldmm;
2033		atomic_inc(&oldmm->mm_count);
2034		enter_lazy_tlb(oldmm, next);
2035	} else
2036		switch_mm(oldmm, mm, next);
2037
2038	if (!prev->mm) {
2039		prev->active_mm = NULL;
2040		rq->prev_mm = oldmm;
2041	}
2042	/*
2043	 * Since the runqueue lock will be released by the next
2044	 * task (which is an invalid locking op but in the case
2045	 * of the scheduler it's an obvious special-case), so we
2046	 * do an early lockdep release here:
2047	 */
2048#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2049	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2050#endif
2051
2052	/* Here we just switch the register state and the stack. */
2053	switch_to(prev, next, prev);
2054
2055	barrier();
2056	/*
2057	 * this_rq must be evaluated again because prev may have moved
2058	 * CPUs since it called schedule(), thus the 'rq' on its stack
2059	 * frame will be invalid.
2060	 */
2061	finish_task_switch(this_rq(), prev);
2062}
2063
2064/*
2065 * nr_running, nr_uninterruptible and nr_context_switches:
2066 *
2067 * externally visible scheduler statistics: current number of runnable
2068 * threads, current number of uninterruptible-sleeping threads, total
2069 * number of context switches performed since bootup.
2070 */
2071unsigned long nr_running(void)
2072{
2073	unsigned long i, sum = 0;
2074
2075	for_each_online_cpu(i)
2076		sum += cpu_rq(i)->nr_running;
2077
2078	return sum;
2079}
2080
2081unsigned long nr_uninterruptible(void)
2082{
2083	unsigned long i, sum = 0;
2084
2085	for_each_possible_cpu(i)
2086		sum += cpu_rq(i)->nr_uninterruptible;
2087
2088	/*
2089	 * Since we read the counters lockless, it might be slightly
2090	 * inaccurate. Do not allow it to go below zero though:
2091	 */
2092	if (unlikely((long)sum < 0))
2093		sum = 0;
2094
2095	return sum;
2096}
2097
2098unsigned long long nr_context_switches(void)
2099{
2100	int i;
2101	unsigned long long sum = 0;
2102
2103	for_each_possible_cpu(i)
2104		sum += cpu_rq(i)->nr_switches;
2105
2106	return sum;
2107}
2108
2109unsigned long nr_iowait(void)
2110{
2111	unsigned long i, sum = 0;
2112
2113	for_each_possible_cpu(i)
2114		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2115
2116	return sum;
2117}
2118
2119unsigned long nr_iowait_cpu(int cpu)
2120{
2121	struct rq *this = cpu_rq(cpu);
2122	return atomic_read(&this->nr_iowait);
2123}
2124
2125unsigned long this_cpu_load(void)
2126{
2127	struct rq *this = this_rq();
2128	return this->cpu_load[0];
2129}
2130
2131
2132/* Variables and functions for calc_load */
2133static atomic_long_t calc_load_tasks;
2134static unsigned long calc_load_update;
2135unsigned long avenrun[3];
2136EXPORT_SYMBOL(avenrun);
2137
2138static long calc_load_fold_active(struct rq *this_rq)
2139{
2140	long nr_active, delta = 0;
2141
2142	nr_active = this_rq->nr_running;
2143	nr_active += (long) this_rq->nr_uninterruptible;
2144
2145	if (nr_active != this_rq->calc_load_active) {
2146		delta = nr_active - this_rq->calc_load_active;
2147		this_rq->calc_load_active = nr_active;
2148	}
2149
2150	return delta;
2151}
2152
2153static unsigned long
2154calc_load(unsigned long load, unsigned long exp, unsigned long active)
2155{
2156	load *= exp;
2157	load += active * (FIXED_1 - exp);
2158	load += 1UL << (FSHIFT - 1);
2159	return load >> FSHIFT;
2160}
2161
2162#ifdef CONFIG_NO_HZ
2163/*
2164 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2165 *
2166 * When making the ILB scale, we should try to pull this in as well.
2167 */
2168static atomic_long_t calc_load_tasks_idle;
2169
2170void calc_load_account_idle(struct rq *this_rq)
2171{
2172	long delta;
2173
2174	delta = calc_load_fold_active(this_rq);
2175	if (delta)
2176		atomic_long_add(delta, &calc_load_tasks_idle);
2177}
2178
2179static long calc_load_fold_idle(void)
2180{
2181	long delta = 0;
2182
2183	/*
2184	 * Its got a race, we don't care...
2185	 */
2186	if (atomic_long_read(&calc_load_tasks_idle))
2187		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2188
2189	return delta;
2190}
2191
2192/**
2193 * fixed_power_int - compute: x^n, in O(log n) time
2194 *
2195 * @x:         base of the power
2196 * @frac_bits: fractional bits of @x
2197 * @n:         power to raise @x to.
2198 *
2199 * By exploiting the relation between the definition of the natural power
2200 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2201 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2202 * (where: n_i \elem {0, 1}, the binary vector representing n),
2203 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2204 * of course trivially computable in O(log_2 n), the length of our binary
2205 * vector.
2206 */
2207static unsigned long
2208fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2209{
2210	unsigned long result = 1UL << frac_bits;
2211
2212	if (n) for (;;) {
2213		if (n & 1) {
2214			result *= x;
2215			result += 1UL << (frac_bits - 1);
2216			result >>= frac_bits;
2217		}
2218		n >>= 1;
2219		if (!n)
2220			break;
2221		x *= x;
2222		x += 1UL << (frac_bits - 1);
2223		x >>= frac_bits;
2224	}
2225
2226	return result;
2227}
2228
2229/*
2230 * a1 = a0 * e + a * (1 - e)
2231 *
2232 * a2 = a1 * e + a * (1 - e)
2233 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2234 *    = a0 * e^2 + a * (1 - e) * (1 + e)
2235 *
2236 * a3 = a2 * e + a * (1 - e)
2237 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2238 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2239 *
2240 *  ...
2241 *
2242 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2243 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2244 *    = a0 * e^n + a * (1 - e^n)
2245 *
2246 * [1] application of the geometric series:
2247 *
2248 *              n         1 - x^(n+1)
2249 *     S_n := \Sum x^i = -------------
2250 *             i=0          1 - x
2251 */
2252static unsigned long
2253calc_load_n(unsigned long load, unsigned long exp,
2254	    unsigned long active, unsigned int n)
2255{
2256
2257	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2258}
2259
2260/*
2261 * NO_HZ can leave us missing all per-cpu ticks calling
2262 * calc_load_account_active(), but since an idle CPU folds its delta into
2263 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2264 * in the pending idle delta if our idle period crossed a load cycle boundary.
2265 *
2266 * Once we've updated the global active value, we need to apply the exponential
2267 * weights adjusted to the number of cycles missed.
2268 */
2269static void calc_global_nohz(void)
2270{
2271	long delta, active, n;
2272
2273	/*
2274	 * If we crossed a calc_load_update boundary, make sure to fold
2275	 * any pending idle changes, the respective CPUs might have
2276	 * missed the tick driven calc_load_account_active() update
2277	 * due to NO_HZ.
2278	 */
2279	delta = calc_load_fold_idle();
2280	if (delta)
2281		atomic_long_add(delta, &calc_load_tasks);
2282
2283	/*
2284	 * It could be the one fold was all it took, we done!
2285	 */
2286	if (time_before(jiffies, calc_load_update + 10))
2287		return;
2288
2289	/*
2290	 * Catch-up, fold however many we are behind still
2291	 */
2292	delta = jiffies - calc_load_update - 10;
2293	n = 1 + (delta / LOAD_FREQ);
2294
2295	active = atomic_long_read(&calc_load_tasks);
2296	active = active > 0 ? active * FIXED_1 : 0;
2297
2298	avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2299	avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2300	avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2301
2302	calc_load_update += n * LOAD_FREQ;
2303}
2304#else
2305void calc_load_account_idle(struct rq *this_rq)
2306{
2307}
2308
2309static inline long calc_load_fold_idle(void)
2310{
2311	return 0;
2312}
2313
2314static void calc_global_nohz(void)
2315{
2316}
2317#endif
2318
2319/**
2320 * get_avenrun - get the load average array
2321 * @loads:	pointer to dest load array
2322 * @offset:	offset to add
2323 * @shift:	shift count to shift the result left
2324 *
2325 * These values are estimates at best, so no need for locking.
2326 */
2327void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2328{
2329	loads[0] = (avenrun[0] + offset) << shift;
2330	loads[1] = (avenrun[1] + offset) << shift;
2331	loads[2] = (avenrun[2] + offset) << shift;
2332}
2333
2334/*
2335 * calc_load - update the avenrun load estimates 10 ticks after the
2336 * CPUs have updated calc_load_tasks.
2337 */
2338void calc_global_load(unsigned long ticks)
2339{
2340	long active;
2341
2342	if (time_before(jiffies, calc_load_update + 10))
2343		return;
2344
2345	active = atomic_long_read(&calc_load_tasks);
2346	active = active > 0 ? active * FIXED_1 : 0;
2347
2348	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2349	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2350	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2351
2352	calc_load_update += LOAD_FREQ;
2353
2354	/*
2355	 * Account one period with whatever state we found before
2356	 * folding in the nohz state and ageing the entire idle period.
2357	 *
2358	 * This avoids loosing a sample when we go idle between
2359	 * calc_load_account_active() (10 ticks ago) and now and thus
2360	 * under-accounting.
2361	 */
2362	calc_global_nohz();
2363}
2364
2365/*
2366 * Called from update_cpu_load() to periodically update this CPU's
2367 * active count.
2368 */
2369static void calc_load_account_active(struct rq *this_rq)
2370{
2371	long delta;
2372
2373	if (time_before(jiffies, this_rq->calc_load_update))
2374		return;
2375
2376	delta  = calc_load_fold_active(this_rq);
2377	delta += calc_load_fold_idle();
2378	if (delta)
2379		atomic_long_add(delta, &calc_load_tasks);
2380
2381	this_rq->calc_load_update += LOAD_FREQ;
2382}
2383
2384/*
2385 * The exact cpuload at various idx values, calculated at every tick would be
2386 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2387 *
2388 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2389 * on nth tick when cpu may be busy, then we have:
2390 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2391 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2392 *
2393 * decay_load_missed() below does efficient calculation of
2394 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2395 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2396 *
2397 * The calculation is approximated on a 128 point scale.
2398 * degrade_zero_ticks is the number of ticks after which load at any
2399 * particular idx is approximated to be zero.
2400 * degrade_factor is a precomputed table, a row for each load idx.
2401 * Each column corresponds to degradation factor for a power of two ticks,
2402 * based on 128 point scale.
2403 * Example:
2404 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2405 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2406 *
2407 * With this power of 2 load factors, we can degrade the load n times
2408 * by looking at 1 bits in n and doing as many mult/shift instead of
2409 * n mult/shifts needed by the exact degradation.
2410 */
2411#define DEGRADE_SHIFT		7
2412static const unsigned char
2413		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2414static const unsigned char
2415		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2416					{0, 0, 0, 0, 0, 0, 0, 0},
2417					{64, 32, 8, 0, 0, 0, 0, 0},
2418					{96, 72, 40, 12, 1, 0, 0},
2419					{112, 98, 75, 43, 15, 1, 0},
2420					{120, 112, 98, 76, 45, 16, 2} };
2421
2422/*
2423 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2424 * would be when CPU is idle and so we just decay the old load without
2425 * adding any new load.
2426 */
2427static unsigned long
2428decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2429{
2430	int j = 0;
2431
2432	if (!missed_updates)
2433		return load;
2434
2435	if (missed_updates >= degrade_zero_ticks[idx])
2436		return 0;
2437
2438	if (idx == 1)
2439		return load >> missed_updates;
2440
2441	while (missed_updates) {
2442		if (missed_updates % 2)
2443			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2444
2445		missed_updates >>= 1;
2446		j++;
2447	}
2448	return load;
2449}
2450
2451/*
2452 * Update rq->cpu_load[] statistics. This function is usually called every
2453 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2454 * every tick. We fix it up based on jiffies.
2455 */
2456void update_cpu_load(struct rq *this_rq)
2457{
2458	unsigned long this_load = this_rq->load.weight;
2459	unsigned long curr_jiffies = jiffies;
2460	unsigned long pending_updates;
2461	int i, scale;
2462
2463	this_rq->nr_load_updates++;
2464
2465	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
2466	if (curr_jiffies == this_rq->last_load_update_tick)
2467		return;
2468
2469	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2470	this_rq->last_load_update_tick = curr_jiffies;
2471
2472	/* Update our load: */
2473	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2474	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2475		unsigned long old_load, new_load;
2476
2477		/* scale is effectively 1 << i now, and >> i divides by scale */
2478
2479		old_load = this_rq->cpu_load[i];
2480		old_load = decay_load_missed(old_load, pending_updates - 1, i);
2481		new_load = this_load;
2482		/*
2483		 * Round up the averaging division if load is increasing. This
2484		 * prevents us from getting stuck on 9 if the load is 10, for
2485		 * example.
2486		 */
2487		if (new_load > old_load)
2488			new_load += scale - 1;
2489
2490		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2491	}
2492
2493	sched_avg_update(this_rq);
2494}
2495
2496static void update_cpu_load_active(struct rq *this_rq)
2497{
2498	update_cpu_load(this_rq);
2499
2500	calc_load_account_active(this_rq);
2501}
2502
2503#ifdef CONFIG_SMP
2504
2505/*
2506 * sched_exec - execve() is a valuable balancing opportunity, because at
2507 * this point the task has the smallest effective memory and cache footprint.
2508 */
2509void sched_exec(void)
2510{
2511	struct task_struct *p = current;
2512	unsigned long flags;
2513	int dest_cpu;
2514
2515	raw_spin_lock_irqsave(&p->pi_lock, flags);
2516	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2517	if (dest_cpu == smp_processor_id())
2518		goto unlock;
2519
2520	if (likely(cpu_active(dest_cpu))) {
2521		struct migration_arg arg = { p, dest_cpu };
2522
2523		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2524		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2525		return;
2526	}
2527unlock:
2528	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2529}
2530
2531#endif
2532
2533DEFINE_PER_CPU(struct kernel_stat, kstat);
2534DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2535
2536EXPORT_PER_CPU_SYMBOL(kstat);
2537EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2538
2539/*
2540 * Return any ns on the sched_clock that have not yet been accounted in
2541 * @p in case that task is currently running.
2542 *
2543 * Called with task_rq_lock() held on @rq.
2544 */
2545static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2546{
2547	u64 ns = 0;
2548
2549	if (task_current(rq, p)) {
2550		update_rq_clock(rq);
2551		ns = rq->clock_task - p->se.exec_start;
2552		if ((s64)ns < 0)
2553			ns = 0;
2554	}
2555
2556	return ns;
2557}
2558
2559unsigned long long task_delta_exec(struct task_struct *p)
2560{
2561	unsigned long flags;
2562	struct rq *rq;
2563	u64 ns = 0;
2564
2565	rq = task_rq_lock(p, &flags);
2566	ns = do_task_delta_exec(p, rq);
2567	task_rq_unlock(rq, p, &flags);
2568
2569	return ns;
2570}
2571
2572/*
2573 * Return accounted runtime for the task.
2574 * In case the task is currently running, return the runtime plus current's
2575 * pending runtime that have not been accounted yet.
2576 */
2577unsigned long long task_sched_runtime(struct task_struct *p)
2578{
2579	unsigned long flags;
2580	struct rq *rq;
2581	u64 ns = 0;
2582
2583	rq = task_rq_lock(p, &flags);
2584	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2585	task_rq_unlock(rq, p, &flags);
2586
2587	return ns;
2588}
2589
2590#ifdef CONFIG_CGROUP_CPUACCT
2591struct cgroup_subsys cpuacct_subsys;
2592struct cpuacct root_cpuacct;
2593#endif
2594
2595static inline void task_group_account_field(struct task_struct *p, int index,
2596					    u64 tmp)
2597{
2598#ifdef CONFIG_CGROUP_CPUACCT
2599	struct kernel_cpustat *kcpustat;
2600	struct cpuacct *ca;
2601#endif
2602	/*
2603	 * Since all updates are sure to touch the root cgroup, we
2604	 * get ourselves ahead and touch it first. If the root cgroup
2605	 * is the only cgroup, then nothing else should be necessary.
2606	 *
2607	 */
2608	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2609
2610#ifdef CONFIG_CGROUP_CPUACCT
2611	if (unlikely(!cpuacct_subsys.active))
2612		return;
2613
2614	rcu_read_lock();
2615	ca = task_ca(p);
2616	while (ca && (ca != &root_cpuacct)) {
2617		kcpustat = this_cpu_ptr(ca->cpustat);
2618		kcpustat->cpustat[index] += tmp;
2619		ca = parent_ca(ca);
2620	}
2621	rcu_read_unlock();
2622#endif
2623}
2624
2625
2626/*
2627 * Account user cpu time to a process.
2628 * @p: the process that the cpu time gets accounted to
2629 * @cputime: the cpu time spent in user space since the last update
2630 * @cputime_scaled: cputime scaled by cpu frequency
2631 */
2632void account_user_time(struct task_struct *p, cputime_t cputime,
2633		       cputime_t cputime_scaled)
2634{
2635	int index;
2636
2637	/* Add user time to process. */
2638	p->utime += cputime;
2639	p->utimescaled += cputime_scaled;
2640	account_group_user_time(p, cputime);
2641
2642	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2643
2644	/* Add user time to cpustat. */
2645	task_group_account_field(p, index, (__force u64) cputime);
2646
2647	/* Account for user time used */
2648	acct_update_integrals(p);
2649}
2650
2651/*
2652 * Account guest cpu time to a process.
2653 * @p: the process that the cpu time gets accounted to
2654 * @cputime: the cpu time spent in virtual machine since the last update
2655 * @cputime_scaled: cputime scaled by cpu frequency
2656 */
2657static void account_guest_time(struct task_struct *p, cputime_t cputime,
2658			       cputime_t cputime_scaled)
2659{
2660	u64 *cpustat = kcpustat_this_cpu->cpustat;
2661
2662	/* Add guest time to process. */
2663	p->utime += cputime;
2664	p->utimescaled += cputime_scaled;
2665	account_group_user_time(p, cputime);
2666	p->gtime += cputime;
2667
2668	/* Add guest time to cpustat. */
2669	if (TASK_NICE(p) > 0) {
2670		cpustat[CPUTIME_NICE] += (__force u64) cputime;
2671		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2672	} else {
2673		cpustat[CPUTIME_USER] += (__force u64) cputime;
2674		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2675	}
2676}
2677
2678/*
2679 * Account system cpu time to a process and desired cpustat field
2680 * @p: the process that the cpu time gets accounted to
2681 * @cputime: the cpu time spent in kernel space since the last update
2682 * @cputime_scaled: cputime scaled by cpu frequency
2683 * @target_cputime64: pointer to cpustat field that has to be updated
2684 */
2685static inline
2686void __account_system_time(struct task_struct *p, cputime_t cputime,
2687			cputime_t cputime_scaled, int index)
2688{
2689	/* Add system time to process. */
2690	p->stime += cputime;
2691	p->stimescaled += cputime_scaled;
2692	account_group_system_time(p, cputime);
2693
2694	/* Add system time to cpustat. */
2695	task_group_account_field(p, index, (__force u64) cputime);
2696
2697	/* Account for system time used */
2698	acct_update_integrals(p);
2699}
2700
2701/*
2702 * Account system cpu time to a process.
2703 * @p: the process that the cpu time gets accounted to
2704 * @hardirq_offset: the offset to subtract from hardirq_count()
2705 * @cputime: the cpu time spent in kernel space since the last update
2706 * @cputime_scaled: cputime scaled by cpu frequency
2707 */
2708void account_system_time(struct task_struct *p, int hardirq_offset,
2709			 cputime_t cputime, cputime_t cputime_scaled)
2710{
2711	int index;
2712
2713	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2714		account_guest_time(p, cputime, cputime_scaled);
2715		return;
2716	}
2717
2718	if (hardirq_count() - hardirq_offset)
2719		index = CPUTIME_IRQ;
2720	else if (in_serving_softirq())
2721		index = CPUTIME_SOFTIRQ;
2722	else
2723		index = CPUTIME_SYSTEM;
2724
2725	__account_system_time(p, cputime, cputime_scaled, index);
2726}
2727
2728/*
2729 * Account for involuntary wait time.
2730 * @cputime: the cpu time spent in involuntary wait
2731 */
2732void account_steal_time(cputime_t cputime)
2733{
2734	u64 *cpustat = kcpustat_this_cpu->cpustat;
2735
2736	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2737}
2738
2739/*
2740 * Account for idle time.
2741 * @cputime: the cpu time spent in idle wait
2742 */
2743void account_idle_time(cputime_t cputime)
2744{
2745	u64 *cpustat = kcpustat_this_cpu->cpustat;
2746	struct rq *rq = this_rq();
2747
2748	if (atomic_read(&rq->nr_iowait) > 0)
2749		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2750	else
2751		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2752}
2753
2754static __always_inline bool steal_account_process_tick(void)
2755{
2756#ifdef CONFIG_PARAVIRT
2757	if (static_branch(&paravirt_steal_enabled)) {
2758		u64 steal, st = 0;
2759
2760		steal = paravirt_steal_clock(smp_processor_id());
2761		steal -= this_rq()->prev_steal_time;
2762
2763		st = steal_ticks(steal);
2764		this_rq()->prev_steal_time += st * TICK_NSEC;
2765
2766		account_steal_time(st);
2767		return st;
2768	}
2769#endif
2770	return false;
2771}
2772
2773#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2774
2775#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2776/*
2777 * Account a tick to a process and cpustat
2778 * @p: the process that the cpu time gets accounted to
2779 * @user_tick: is the tick from userspace
2780 * @rq: the pointer to rq
2781 *
2782 * Tick demultiplexing follows the order
2783 * - pending hardirq update
2784 * - pending softirq update
2785 * - user_time
2786 * - idle_time
2787 * - system time
2788 *   - check for guest_time
2789 *   - else account as system_time
2790 *
2791 * Check for hardirq is done both for system and user time as there is
2792 * no timer going off while we are on hardirq and hence we may never get an
2793 * opportunity to update it solely in system time.
2794 * p->stime and friends are only updated on system time and not on irq
2795 * softirq as those do not count in task exec_runtime any more.
2796 */
2797static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2798						struct rq *rq)
2799{
2800	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2801	u64 *cpustat = kcpustat_this_cpu->cpustat;
2802
2803	if (steal_account_process_tick())
2804		return;
2805
2806	if (irqtime_account_hi_update()) {
2807		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2808	} else if (irqtime_account_si_update()) {
2809		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2810	} else if (this_cpu_ksoftirqd() == p) {
2811		/*
2812		 * ksoftirqd time do not get accounted in cpu_softirq_time.
2813		 * So, we have to handle it separately here.
2814		 * Also, p->stime needs to be updated for ksoftirqd.
2815		 */
2816		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2817					CPUTIME_SOFTIRQ);
2818	} else if (user_tick) {
2819		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2820	} else if (p == rq->idle) {
2821		account_idle_time(cputime_one_jiffy);
2822	} else if (p->flags & PF_VCPU) { /* System time or guest time */
2823		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2824	} else {
2825		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2826					CPUTIME_SYSTEM);
2827	}
2828}
2829
2830static void irqtime_account_idle_ticks(int ticks)
2831{
2832	int i;
2833	struct rq *rq = this_rq();
2834
2835	for (i = 0; i < ticks; i++)
2836		irqtime_account_process_tick(current, 0, rq);
2837}
2838#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2839static void irqtime_account_idle_ticks(int ticks) {}
2840static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2841						struct rq *rq) {}
2842#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2843
2844/*
2845 * Account a single tick of cpu time.
2846 * @p: the process that the cpu time gets accounted to
2847 * @user_tick: indicates if the tick is a user or a system tick
2848 */
2849void account_process_tick(struct task_struct *p, int user_tick)
2850{
2851	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2852	struct rq *rq = this_rq();
2853
2854	if (sched_clock_irqtime) {
2855		irqtime_account_process_tick(p, user_tick, rq);
2856		return;
2857	}
2858
2859	if (steal_account_process_tick())
2860		return;
2861
2862	if (user_tick)
2863		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2864	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2865		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2866				    one_jiffy_scaled);
2867	else
2868		account_idle_time(cputime_one_jiffy);
2869}
2870
2871/*
2872 * Account multiple ticks of steal time.
2873 * @p: the process from which the cpu time has been stolen
2874 * @ticks: number of stolen ticks
2875 */
2876void account_steal_ticks(unsigned long ticks)
2877{
2878	account_steal_time(jiffies_to_cputime(ticks));
2879}
2880
2881/*
2882 * Account multiple ticks of idle time.
2883 * @ticks: number of stolen ticks
2884 */
2885void account_idle_ticks(unsigned long ticks)
2886{
2887
2888	if (sched_clock_irqtime) {
2889		irqtime_account_idle_ticks(ticks);
2890		return;
2891	}
2892
2893	account_idle_time(jiffies_to_cputime(ticks));
2894}
2895
2896#endif
2897
2898/*
2899 * Use precise platform statistics if available:
2900 */
2901#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2902void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2903{
2904	*ut = p->utime;
2905	*st = p->stime;
2906}
2907
2908void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2909{
2910	struct task_cputime cputime;
2911
2912	thread_group_cputime(p, &cputime);
2913
2914	*ut = cputime.utime;
2915	*st = cputime.stime;
2916}
2917#else
2918
2919#ifndef nsecs_to_cputime
2920# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2921#endif
2922
2923void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2924{
2925	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2926
2927	/*
2928	 * Use CFS's precise accounting:
2929	 */
2930	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2931
2932	if (total) {
2933		u64 temp = (__force u64) rtime;
2934
2935		temp *= (__force u64) utime;
2936		do_div(temp, (__force u32) total);
2937		utime = (__force cputime_t) temp;
2938	} else
2939		utime = rtime;
2940
2941	/*
2942	 * Compare with previous values, to keep monotonicity:
2943	 */
2944	p->prev_utime = max(p->prev_utime, utime);
2945	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2946
2947	*ut = p->prev_utime;
2948	*st = p->prev_stime;
2949}
2950
2951/*
2952 * Must be called with siglock held.
2953 */
2954void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2955{
2956	struct signal_struct *sig = p->signal;
2957	struct task_cputime cputime;
2958	cputime_t rtime, utime, total;
2959
2960	thread_group_cputime(p, &cputime);
2961
2962	total = cputime.utime + cputime.stime;
2963	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2964
2965	if (total) {
2966		u64 temp = (__force u64) rtime;
2967
2968		temp *= (__force u64) cputime.utime;
2969		do_div(temp, (__force u32) total);
2970		utime = (__force cputime_t) temp;
2971	} else
2972		utime = rtime;
2973
2974	sig->prev_utime = max(sig->prev_utime, utime);
2975	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2976
2977	*ut = sig->prev_utime;
2978	*st = sig->prev_stime;
2979}
2980#endif
2981
2982/*
2983 * This function gets called by the timer code, with HZ frequency.
2984 * We call it with interrupts disabled.
2985 */
2986void scheduler_tick(void)
2987{
2988	int cpu = smp_processor_id();
2989	struct rq *rq = cpu_rq(cpu);
2990	struct task_struct *curr = rq->curr;
2991
2992	sched_clock_tick();
2993
2994	raw_spin_lock(&rq->lock);
2995	update_rq_clock(rq);
2996	update_cpu_load_active(rq);
2997	curr->sched_class->task_tick(rq, curr, 0);
2998	raw_spin_unlock(&rq->lock);
2999
3000	perf_event_task_tick();
3001
3002#ifdef CONFIG_SMP
3003	rq->idle_balance = idle_cpu(cpu);
3004	trigger_load_balance(rq, cpu);
3005#endif
3006}
3007
3008notrace unsigned long get_parent_ip(unsigned long addr)
3009{
3010	if (in_lock_functions(addr)) {
3011		addr = CALLER_ADDR2;
3012		if (in_lock_functions(addr))
3013			addr = CALLER_ADDR3;
3014	}
3015	return addr;
3016}
3017
3018#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3019				defined(CONFIG_PREEMPT_TRACER))
3020
3021void __kprobes add_preempt_count(int val)
3022{
3023#ifdef CONFIG_DEBUG_PREEMPT
3024	/*
3025	 * Underflow?
3026	 */
3027	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3028		return;
3029#endif
3030	preempt_count() += val;
3031#ifdef CONFIG_DEBUG_PREEMPT
3032	/*
3033	 * Spinlock count overflowing soon?
3034	 */
3035	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3036				PREEMPT_MASK - 10);
3037#endif
3038	if (preempt_count() == val)
3039		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3040}
3041EXPORT_SYMBOL(add_preempt_count);
3042
3043void __kprobes sub_preempt_count(int val)
3044{
3045#ifdef CONFIG_DEBUG_PREEMPT
3046	/*
3047	 * Underflow?
3048	 */
3049	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3050		return;
3051	/*
3052	 * Is the spinlock portion underflowing?
3053	 */
3054	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3055			!(preempt_count() & PREEMPT_MASK)))
3056		return;
3057#endif
3058
3059	if (preempt_count() == val)
3060		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3061	preempt_count() -= val;
3062}
3063EXPORT_SYMBOL(sub_preempt_count);
3064
3065#endif
3066
3067/*
3068 * Print scheduling while atomic bug:
3069 */
3070static noinline void __schedule_bug(struct task_struct *prev)
3071{
3072	struct pt_regs *regs = get_irq_regs();
3073
3074	if (oops_in_progress)
3075		return;
3076
3077	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3078		prev->comm, prev->pid, preempt_count());
3079
3080	debug_show_held_locks(prev);
3081	print_modules();
3082	if (irqs_disabled())
3083		print_irqtrace_events(prev);
3084
3085	if (regs)
3086		show_regs(regs);
3087	else
3088		dump_stack();
3089}
3090
3091/*
3092 * Various schedule()-time debugging checks and statistics:
3093 */
3094static inline void schedule_debug(struct task_struct *prev)
3095{
3096	/*
3097	 * Test if we are atomic. Since do_exit() needs to call into
3098	 * schedule() atomically, we ignore that path for now.
3099	 * Otherwise, whine if we are scheduling when we should not be.
3100	 */
3101	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3102		__schedule_bug(prev);
3103	rcu_sleep_check();
3104
3105	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3106
3107	schedstat_inc(this_rq(), sched_count);
3108}
3109
3110static void put_prev_task(struct rq *rq, struct task_struct *prev)
3111{
3112	if (prev->on_rq || rq->skip_clock_update < 0)
3113		update_rq_clock(rq);
3114	prev->sched_class->put_prev_task(rq, prev);
3115}
3116
3117/*
3118 * Pick up the highest-prio task:
3119 */
3120static inline struct task_struct *
3121pick_next_task(struct rq *rq)
3122{
3123	const struct sched_class *class;
3124	struct task_struct *p;
3125
3126	/*
3127	 * Optimization: we know that if all tasks are in
3128	 * the fair class we can call that function directly:
3129	 */
3130	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3131		p = fair_sched_class.pick_next_task(rq);
3132		if (likely(p))
3133			return p;
3134	}
3135
3136	for_each_class(class) {
3137		p = class->pick_next_task(rq);
3138		if (p)
3139			return p;
3140	}
3141
3142	BUG(); /* the idle class will always have a runnable task */
3143}
3144
3145/*
3146 * __schedule() is the main scheduler function.
3147 */
3148static void __sched __schedule(void)
3149{
3150	struct task_struct *prev, *next;
3151	unsigned long *switch_count;
3152	struct rq *rq;
3153	int cpu;
3154
3155need_resched:
3156	preempt_disable();
3157	cpu = smp_processor_id();
3158	rq = cpu_rq(cpu);
3159	rcu_note_context_switch(cpu);
3160	prev = rq->curr;
3161
3162	schedule_debug(prev);
3163
3164	if (sched_feat(HRTICK))
3165		hrtick_clear(rq);
3166
3167	raw_spin_lock_irq(&rq->lock);
3168
3169	switch_count = &prev->nivcsw;
3170	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3171		if (unlikely(signal_pending_state(prev->state, prev))) {
3172			prev->state = TASK_RUNNING;
3173		} else {
3174			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3175			prev->on_rq = 0;
3176
3177			/*
3178			 * If a worker went to sleep, notify and ask workqueue
3179			 * whether it wants to wake up a task to maintain
3180			 * concurrency.
3181			 */
3182			if (prev->flags & PF_WQ_WORKER) {
3183				struct task_struct *to_wakeup;
3184
3185				to_wakeup = wq_worker_sleeping(prev, cpu);
3186				if (to_wakeup)
3187					try_to_wake_up_local(to_wakeup);
3188			}
3189		}
3190		switch_count = &prev->nvcsw;
3191	}
3192
3193	pre_schedule(rq, prev);
3194
3195	if (unlikely(!rq->nr_running))
3196		idle_balance(cpu, rq);
3197
3198	put_prev_task(rq, prev);
3199	next = pick_next_task(rq);
3200	clear_tsk_need_resched(prev);
3201	rq->skip_clock_update = 0;
3202
3203	if (likely(prev != next)) {
3204		rq->nr_switches++;
3205		rq->curr = next;
3206		++*switch_count;
3207
3208		context_switch(rq, prev, next); /* unlocks the rq */
3209		/*
3210		 * The context switch have flipped the stack from under us
3211		 * and restored the local variables which were saved when
3212		 * this task called schedule() in the past. prev == current
3213		 * is still correct, but it can be moved to another cpu/rq.
3214		 */
3215		cpu = smp_processor_id();
3216		rq = cpu_rq(cpu);
3217	} else
3218		raw_spin_unlock_irq(&rq->lock);
3219
3220	post_schedule(rq);
3221
3222	sched_preempt_enable_no_resched();
3223	if (need_resched())
3224		goto need_resched;
3225}
3226
3227static inline void sched_submit_work(struct task_struct *tsk)
3228{
3229	if (!tsk->state || tsk_is_pi_blocked(tsk))
3230		return;
3231	/*
3232	 * If we are going to sleep and we have plugged IO queued,
3233	 * make sure to submit it to avoid deadlocks.
3234	 */
3235	if (blk_needs_flush_plug(tsk))
3236		blk_schedule_flush_plug(tsk);
3237}
3238
3239asmlinkage void __sched schedule(void)
3240{
3241	struct task_struct *tsk = current;
3242
3243	sched_submit_work(tsk);
3244	__schedule();
3245}
3246EXPORT_SYMBOL(schedule);
3247
3248/**
3249 * schedule_preempt_disabled - called with preemption disabled
3250 *
3251 * Returns with preemption disabled. Note: preempt_count must be 1
3252 */
3253void __sched schedule_preempt_disabled(void)
3254{
3255	sched_preempt_enable_no_resched();
3256	schedule();
3257	preempt_disable();
3258}
3259
3260#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3261
3262static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3263{
3264	if (lock->owner != owner)
3265		return false;
3266
3267	/*
3268	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3269	 * lock->owner still matches owner, if that fails, owner might
3270	 * point to free()d memory, if it still matches, the rcu_read_lock()
3271	 * ensures the memory stays valid.
3272	 */
3273	barrier();
3274
3275	return owner->on_cpu;
3276}
3277
3278/*
3279 * Look out! "owner" is an entirely speculative pointer
3280 * access and not reliable.
3281 */
3282int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3283{
3284	if (!sched_feat(OWNER_SPIN))
3285		return 0;
3286
3287	rcu_read_lock();
3288	while (owner_running(lock, owner)) {
3289		if (need_resched())
3290			break;
3291
3292		arch_mutex_cpu_relax();
3293	}
3294	rcu_read_unlock();
3295
3296	/*
3297	 * We break out the loop above on need_resched() and when the
3298	 * owner changed, which is a sign for heavy contention. Return
3299	 * success only when lock->owner is NULL.
3300	 */
3301	return lock->owner == NULL;
3302}
3303#endif
3304
3305#ifdef CONFIG_PREEMPT
3306/*
3307 * this is the entry point to schedule() from in-kernel preemption
3308 * off of preempt_enable. Kernel preemptions off return from interrupt
3309 * occur there and call schedule directly.
3310 */
3311asmlinkage void __sched notrace preempt_schedule(void)
3312{
3313	struct thread_info *ti = current_thread_info();
3314
3315	/*
3316	 * If there is a non-zero preempt_count or interrupts are disabled,
3317	 * we do not want to preempt the current task. Just return..
3318	 */
3319	if (likely(ti->preempt_count || irqs_disabled()))
3320		return;
3321
3322	do {
3323		add_preempt_count_notrace(PREEMPT_ACTIVE);
3324		__schedule();
3325		sub_preempt_count_notrace(PREEMPT_ACTIVE);
3326
3327		/*
3328		 * Check again in case we missed a preemption opportunity
3329		 * between schedule and now.
3330		 */
3331		barrier();
3332	} while (need_resched());
3333}
3334EXPORT_SYMBOL(preempt_schedule);
3335
3336/*
3337 * this is the entry point to schedule() from kernel preemption
3338 * off of irq context.
3339 * Note, that this is called and return with irqs disabled. This will
3340 * protect us against recursive calling from irq.
3341 */
3342asmlinkage void __sched preempt_schedule_irq(void)
3343{
3344	struct thread_info *ti = current_thread_info();
3345
3346	/* Catch callers which need to be fixed */
3347	BUG_ON(ti->preempt_count || !irqs_disabled());
3348
3349	do {
3350		add_preempt_count(PREEMPT_ACTIVE);
3351		local_irq_enable();
3352		__schedule();
3353		local_irq_disable();
3354		sub_preempt_count(PREEMPT_ACTIVE);
3355
3356		/*
3357		 * Check again in case we missed a preemption opportunity
3358		 * between schedule and now.
3359		 */
3360		barrier();
3361	} while (need_resched());
3362}
3363
3364#endif /* CONFIG_PREEMPT */
3365
3366int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3367			  void *key)
3368{
3369	return try_to_wake_up(curr->private, mode, wake_flags);
3370}
3371EXPORT_SYMBOL(default_wake_function);
3372
3373/*
3374 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3375 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3376 * number) then we wake all the non-exclusive tasks and one exclusive task.
3377 *
3378 * There are circumstances in which we can try to wake a task which has already
3379 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3380 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3381 */
3382static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3383			int nr_exclusive, int wake_flags, void *key)
3384{
3385	wait_queue_t *curr, *next;
3386
3387	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3388		unsigned flags = curr->flags;
3389
3390		if (curr->func(curr, mode, wake_flags, key) &&
3391				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3392			break;
3393	}
3394}
3395
3396/**
3397 * __wake_up - wake up threads blocked on a waitqueue.
3398 * @q: the waitqueue
3399 * @mode: which threads
3400 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3401 * @key: is directly passed to the wakeup function
3402 *
3403 * It may be assumed that this function implies a write memory barrier before
3404 * changing the task state if and only if any tasks are woken up.
3405 */
3406void __wake_up(wait_queue_head_t *q, unsigned int mode,
3407			int nr_exclusive, void *key)
3408{
3409	unsigned long flags;
3410
3411	spin_lock_irqsave(&q->lock, flags);
3412	__wake_up_common(q, mode, nr_exclusive, 0, key);
3413	spin_unlock_irqrestore(&q->lock, flags);
3414}
3415EXPORT_SYMBOL(__wake_up);
3416
3417/*
3418 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3419 */
3420void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3421{
3422	__wake_up_common(q, mode, nr, 0, NULL);
3423}
3424EXPORT_SYMBOL_GPL(__wake_up_locked);
3425
3426void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3427{
3428	__wake_up_common(q, mode, 1, 0, key);
3429}
3430EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3431
3432/**
3433 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3434 * @q: the waitqueue
3435 * @mode: which threads
3436 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3437 * @key: opaque value to be passed to wakeup targets
3438 *
3439 * The sync wakeup differs that the waker knows that it will schedule
3440 * away soon, so while the target thread will be woken up, it will not
3441 * be migrated to another CPU - ie. the two threads are 'synchronized'
3442 * with each other. This can prevent needless bouncing between CPUs.
3443 *
3444 * On UP it can prevent extra preemption.
3445 *
3446 * It may be assumed that this function implies a write memory barrier before
3447 * changing the task state if and only if any tasks are woken up.
3448 */
3449void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3450			int nr_exclusive, void *key)
3451{
3452	unsigned long flags;
3453	int wake_flags = WF_SYNC;
3454
3455	if (unlikely(!q))
3456		return;
3457
3458	if (unlikely(!nr_exclusive))
3459		wake_flags = 0;
3460
3461	spin_lock_irqsave(&q->lock, flags);
3462	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3463	spin_unlock_irqrestore(&q->lock, flags);
3464}
3465EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3466
3467/*
3468 * __wake_up_sync - see __wake_up_sync_key()
3469 */
3470void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3471{
3472	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
3473}
3474EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
3475
3476/**
3477 * complete: - signals a single thread waiting on this completion
3478 * @x:  holds the state of this particular completion
3479 *
3480 * This will wake up a single thread waiting on this completion. Threads will be
3481 * awakened in the same order in which they were queued.
3482 *
3483 * See also complete_all(), wait_for_completion() and related routines.
3484 *
3485 * It may be assumed that this function implies a write memory barrier before
3486 * changing the task state if and only if any tasks are woken up.
3487 */
3488void complete(struct completion *x)
3489{
3490	unsigned long flags;
3491
3492	spin_lock_irqsave(&x->wait.lock, flags);
3493	x->done++;
3494	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3495	spin_unlock_irqrestore(&x->wait.lock, flags);
3496}
3497EXPORT_SYMBOL(complete);
3498
3499/**
3500 * complete_all: - signals all threads waiting on this completion
3501 * @x:  holds the state of this particular completion
3502 *
3503 * This will wake up all threads waiting on this particular completion event.
3504 *
3505 * It may be assumed that this function implies a write memory barrier before
3506 * changing the task state if and only if any tasks are woken up.
3507 */
3508void complete_all(struct completion *x)
3509{
3510	unsigned long flags;
3511
3512	spin_lock_irqsave(&x->wait.lock, flags);
3513	x->done += UINT_MAX/2;
3514	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3515	spin_unlock_irqrestore(&x->wait.lock, flags);
3516}
3517EXPORT_SYMBOL(complete_all);
3518
3519static inline long __sched
3520do_wait_for_common(struct completion *x, long timeout, int state)
3521{
3522	if (!x->done) {
3523		DECLARE_WAITQUEUE(wait, current);
3524
3525		__add_wait_queue_tail_exclusive(&x->wait, &wait);
3526		do {
3527			if (signal_pending_state(state, current)) {
3528				timeout = -ERESTARTSYS;
3529				break;
3530			}
3531			__set_current_state(state);
3532			spin_unlock_irq(&x->wait.lock);
3533			timeout = schedule_timeout(timeout);
3534			spin_lock_irq(&x->wait.lock);
3535		} while (!x->done && timeout);
3536		__remove_wait_queue(&x->wait, &wait);
3537		if (!x->done)
3538			return timeout;
3539	}
3540	x->done--;
3541	return timeout ?: 1;
3542}
3543
3544static long __sched
3545wait_for_common(struct completion *x, long timeout, int state)
3546{
3547	might_sleep();
3548
3549	spin_lock_irq(&x->wait.lock);
3550	timeout = do_wait_for_common(x, timeout, state);
3551	spin_unlock_irq(&x->wait.lock);
3552	return timeout;
3553}
3554
3555/**
3556 * wait_for_completion: - waits for completion of a task
3557 * @x:  holds the state of this particular completion
3558 *
3559 * This waits to be signaled for completion of a specific task. It is NOT
3560 * interruptible and there is no timeout.
3561 *
3562 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3563 * and interrupt capability. Also see complete().
3564 */
3565void __sched wait_for_completion(struct completion *x)
3566{
3567	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3568}
3569EXPORT_SYMBOL(wait_for_completion);
3570
3571/**
3572 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3573 * @x:  holds the state of this particular completion
3574 * @timeout:  timeout value in jiffies
3575 *
3576 * This waits for either a completion of a specific task to be signaled or for a
3577 * specified timeout to expire. The timeout is in jiffies. It is not
3578 * interruptible.
3579 *
3580 * The return value is 0 if timed out, and positive (at least 1, or number of
3581 * jiffies left till timeout) if completed.
3582 */
3583unsigned long __sched
3584wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3585{
3586	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3587}
3588EXPORT_SYMBOL(wait_for_completion_timeout);
3589
3590/**
3591 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3592 * @x:  holds the state of this particular completion
3593 *
3594 * This waits for completion of a specific task to be signaled. It is
3595 * interruptible.
3596 *
3597 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3598 */
3599int __sched wait_for_completion_interruptible(struct completion *x)
3600{
3601	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3602	if (t == -ERESTARTSYS)
3603		return t;
3604	return 0;
3605}
3606EXPORT_SYMBOL(wait_for_completion_interruptible);
3607
3608/**
3609 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3610 * @x:  holds the state of this particular completion
3611 * @timeout:  timeout value in jiffies
3612 *
3613 * This waits for either a completion of a specific task to be signaled or for a
3614 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3615 *
3616 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3617 * positive (at least 1, or number of jiffies left till timeout) if completed.
3618 */
3619long __sched
3620wait_for_completion_interruptible_timeout(struct completion *x,
3621					  unsigned long timeout)
3622{
3623	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3624}
3625EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3626
3627/**
3628 * wait_for_completion_killable: - waits for completion of a task (killable)
3629 * @x:  holds the state of this particular completion
3630 *
3631 * This waits to be signaled for completion of a specific task. It can be
3632 * interrupted by a kill signal.
3633 *
3634 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3635 */
3636int __sched wait_for_completion_killable(struct completion *x)
3637{
3638	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3639	if (t == -ERESTARTSYS)
3640		return t;
3641	return 0;
3642}
3643EXPORT_SYMBOL(wait_for_completion_killable);
3644
3645/**
3646 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3647 * @x:  holds the state of this particular completion
3648 * @timeout:  timeout value in jiffies
3649 *
3650 * This waits for either a completion of a specific task to be
3651 * signaled or for a specified timeout to expire. It can be
3652 * interrupted by a kill signal. The timeout is in jiffies.
3653 *
3654 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3655 * positive (at least 1, or number of jiffies left till timeout) if completed.
3656 */
3657long __sched
3658wait_for_completion_killable_timeout(struct completion *x,
3659				     unsigned long timeout)
3660{
3661	return wait_for_common(x, timeout, TASK_KILLABLE);
3662}
3663EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3664
3665/**
3666 *	try_wait_for_completion - try to decrement a completion without blocking
3667 *	@x:	completion structure
3668 *
3669 *	Returns: 0 if a decrement cannot be done without blocking
3670 *		 1 if a decrement succeeded.
3671 *
3672 *	If a completion is being used as a counting completion,
3673 *	attempt to decrement the counter without blocking. This
3674 *	enables us to avoid waiting if the resource the completion
3675 *	is protecting is not available.
3676 */
3677bool try_wait_for_completion(struct completion *x)
3678{
3679	unsigned long flags;
3680	int ret = 1;
3681
3682	spin_lock_irqsave(&x->wait.lock, flags);
3683	if (!x->done)
3684		ret = 0;
3685	else
3686		x->done--;
3687	spin_unlock_irqrestore(&x->wait.lock, flags);
3688	return ret;
3689}
3690EXPORT_SYMBOL(try_wait_for_completion);
3691
3692/**
3693 *	completion_done - Test to see if a completion has any waiters
3694 *	@x:	completion structure
3695 *
3696 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
3697 *		 1 if there are no waiters.
3698 *
3699 */
3700bool completion_done(struct completion *x)
3701{
3702	unsigned long flags;
3703	int ret = 1;
3704
3705	spin_lock_irqsave(&x->wait.lock, flags);
3706	if (!x->done)
3707		ret = 0;
3708	spin_unlock_irqrestore(&x->wait.lock, flags);
3709	return ret;
3710}
3711EXPORT_SYMBOL(completion_done);
3712
3713static long __sched
3714sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3715{
3716	unsigned long flags;
3717	wait_queue_t wait;
3718
3719	init_waitqueue_entry(&wait, current);
3720
3721	__set_current_state(state);
3722
3723	spin_lock_irqsave(&q->lock, flags);
3724	__add_wait_queue(q, &wait);
3725	spin_unlock(&q->lock);
3726	timeout = schedule_timeout(timeout);
3727	spin_lock_irq(&q->lock);
3728	__remove_wait_queue(q, &wait);
3729	spin_unlock_irqrestore(&q->lock, flags);
3730
3731	return timeout;
3732}
3733
3734void __sched interruptible_sleep_on(wait_queue_head_t *q)
3735{
3736	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3737}
3738EXPORT_SYMBOL(interruptible_sleep_on);
3739
3740long __sched
3741interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3742{
3743	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3744}
3745EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3746
3747void __sched sleep_on(wait_queue_head_t *q)
3748{
3749	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3750}
3751EXPORT_SYMBOL(sleep_on);
3752
3753long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3754{
3755	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3756}
3757EXPORT_SYMBOL(sleep_on_timeout);
3758
3759#ifdef CONFIG_RT_MUTEXES
3760
3761/*
3762 * rt_mutex_setprio - set the current priority of a task
3763 * @p: task
3764 * @prio: prio value (kernel-internal form)
3765 *
3766 * This function changes the 'effective' priority of a task. It does
3767 * not touch ->normal_prio like __setscheduler().
3768 *
3769 * Used by the rt_mutex code to implement priority inheritance logic.
3770 */
3771void rt_mutex_setprio(struct task_struct *p, int prio)
3772{
3773	int oldprio, on_rq, running;
3774	struct rq *rq;
3775	const struct sched_class *prev_class;
3776
3777	BUG_ON(prio < 0 || prio > MAX_PRIO);
3778
3779	rq = __task_rq_lock(p);
3780
3781	/*
3782	 * Idle task boosting is a nono in general. There is one
3783	 * exception, when PREEMPT_RT and NOHZ is active:
3784	 *
3785	 * The idle task calls get_next_timer_interrupt() and holds
3786	 * the timer wheel base->lock on the CPU and another CPU wants
3787	 * to access the timer (probably to cancel it). We can safely
3788	 * ignore the boosting request, as the idle CPU runs this code
3789	 * with interrupts disabled and will complete the lock
3790	 * protected section without being interrupted. So there is no
3791	 * real need to boost.
3792	 */
3793	if (unlikely(p == rq->idle)) {
3794		WARN_ON(p != rq->curr);
3795		WARN_ON(p->pi_blocked_on);
3796		goto out_unlock;
3797	}
3798
3799	trace_sched_pi_setprio(p, prio);
3800	oldprio = p->prio;
3801	prev_class = p->sched_class;
3802	on_rq = p->on_rq;
3803	running = task_current(rq, p);
3804	if (on_rq)
3805		dequeue_task(rq, p, 0);
3806	if (running)
3807		p->sched_class->put_prev_task(rq, p);
3808
3809	if (rt_prio(prio))
3810		p->sched_class = &rt_sched_class;
3811	else
3812		p->sched_class = &fair_sched_class;
3813
3814	p->prio = prio;
3815
3816	if (running)
3817		p->sched_class->set_curr_task(rq);
3818	if (on_rq)
3819		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3820
3821	check_class_changed(rq, p, prev_class, oldprio);
3822out_unlock:
3823	__task_rq_unlock(rq);
3824}
3825#endif
3826void set_user_nice(struct task_struct *p, long nice)
3827{
3828	int old_prio, delta, on_rq;
3829	unsigned long flags;
3830	struct rq *rq;
3831
3832	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3833		return;
3834	/*
3835	 * We have to be careful, if called from sys_setpriority(),
3836	 * the task might be in the middle of scheduling on another CPU.
3837	 */
3838	rq = task_rq_lock(p, &flags);
3839	/*
3840	 * The RT priorities are set via sched_setscheduler(), but we still
3841	 * allow the 'normal' nice value to be set - but as expected
3842	 * it wont have any effect on scheduling until the task is
3843	 * SCHED_FIFO/SCHED_RR:
3844	 */
3845	if (task_has_rt_policy(p)) {
3846		p->static_prio = NICE_TO_PRIO(nice);
3847		goto out_unlock;
3848	}
3849	on_rq = p->on_rq;
3850	if (on_rq)
3851		dequeue_task(rq, p, 0);
3852
3853	p->static_prio = NICE_TO_PRIO(nice);
3854	set_load_weight(p);
3855	old_prio = p->prio;
3856	p->prio = effective_prio(p);
3857	delta = p->prio - old_prio;
3858
3859	if (on_rq) {
3860		enqueue_task(rq, p, 0);
3861		/*
3862		 * If the task increased its priority or is running and
3863		 * lowered its priority, then reschedule its CPU:
3864		 */
3865		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3866			resched_task(rq->curr);
3867	}
3868out_unlock:
3869	task_rq_unlock(rq, p, &flags);
3870}
3871EXPORT_SYMBOL(set_user_nice);
3872
3873/*
3874 * can_nice - check if a task can reduce its nice value
3875 * @p: task
3876 * @nice: nice value
3877 */
3878int can_nice(const struct task_struct *p, const int nice)
3879{
3880	/* convert nice value [19,-20] to rlimit style value [1,40] */
3881	int nice_rlim = 20 - nice;
3882
3883	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3884		capable(CAP_SYS_NICE));
3885}
3886
3887#ifdef __ARCH_WANT_SYS_NICE
3888
3889/*
3890 * sys_nice - change the priority of the current process.
3891 * @increment: priority increment
3892 *
3893 * sys_setpriority is a more generic, but much slower function that
3894 * does similar things.
3895 */
3896SYSCALL_DEFINE1(nice, int, increment)
3897{
3898	long nice, retval;
3899
3900	/*
3901	 * Setpriority might change our priority at the same moment.
3902	 * We don't have to worry. Conceptually one call occurs first
3903	 * and we have a single winner.
3904	 */
3905	if (increment < -40)
3906		increment = -40;
3907	if (increment > 40)
3908		increment = 40;
3909
3910	nice = TASK_NICE(current) + increment;
3911	if (nice < -20)
3912		nice = -20;
3913	if (nice > 19)
3914		nice = 19;
3915
3916	if (increment < 0 && !can_nice(current, nice))
3917		return -EPERM;
3918
3919	retval = security_task_setnice(current, nice);
3920	if (retval)
3921		return retval;
3922
3923	set_user_nice(current, nice);
3924	return 0;
3925}
3926
3927#endif
3928
3929/**
3930 * task_prio - return the priority value of a given task.
3931 * @p: the task in question.
3932 *
3933 * This is the priority value as seen by users in /proc.
3934 * RT tasks are offset by -200. Normal tasks are centered
3935 * around 0, value goes from -16 to +15.
3936 */
3937int task_prio(const struct task_struct *p)
3938{
3939	return p->prio - MAX_RT_PRIO;
3940}
3941
3942/**
3943 * task_nice - return the nice value of a given task.
3944 * @p: the task in question.
3945 */
3946int task_nice(const struct task_struct *p)
3947{
3948	return TASK_NICE(p);
3949}
3950EXPORT_SYMBOL(task_nice);
3951
3952/**
3953 * idle_cpu - is a given cpu idle currently?
3954 * @cpu: the processor in question.
3955 */
3956int idle_cpu(int cpu)
3957{
3958	struct rq *rq = cpu_rq(cpu);
3959
3960	if (rq->curr != rq->idle)
3961		return 0;
3962
3963	if (rq->nr_running)
3964		return 0;
3965
3966#ifdef CONFIG_SMP
3967	if (!llist_empty(&rq->wake_list))
3968		return 0;
3969#endif
3970
3971	return 1;
3972}
3973
3974/**
3975 * idle_task - return the idle task for a given cpu.
3976 * @cpu: the processor in question.
3977 */
3978struct task_struct *idle_task(int cpu)
3979{
3980	return cpu_rq(cpu)->idle;
3981}
3982
3983/**
3984 * find_process_by_pid - find a process with a matching PID value.
3985 * @pid: the pid in question.
3986 */
3987static struct task_struct *find_process_by_pid(pid_t pid)
3988{
3989	return pid ? find_task_by_vpid(pid) : current;
3990}
3991
3992/* Actually do priority change: must hold rq lock. */
3993static void
3994__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3995{
3996	p->policy = policy;
3997	p->rt_priority = prio;
3998	p->normal_prio = normal_prio(p);
3999	/* we are holding p->pi_lock already */
4000	p->prio = rt_mutex_getprio(p);
4001	if (rt_prio(p->prio))
4002		p->sched_class = &rt_sched_class;
4003	else
4004		p->sched_class = &fair_sched_class;
4005	set_load_weight(p);
4006}
4007
4008/*
4009 * check the target process has a UID that matches the current process's
4010 */
4011static bool check_same_owner(struct task_struct *p)
4012{
4013	const struct cred *cred = current_cred(), *pcred;
4014	bool match;
4015
4016	rcu_read_lock();
4017	pcred = __task_cred(p);
4018	if (cred->user->user_ns == pcred->user->user_ns)
4019		match = (cred->euid == pcred->euid ||
4020			 cred->euid == pcred->uid);
4021	else
4022		match = false;
4023	rcu_read_unlock();
4024	return match;
4025}
4026
4027static int __sched_setscheduler(struct task_struct *p, int policy,
4028				const struct sched_param *param, bool user)
4029{
4030	int retval, oldprio, oldpolicy = -1, on_rq, running;
4031	unsigned long flags;
4032	const struct sched_class *prev_class;
4033	struct rq *rq;
4034	int reset_on_fork;
4035
4036	/* may grab non-irq protected spin_locks */
4037	BUG_ON(in_interrupt());
4038recheck:
4039	/* double check policy once rq lock held */
4040	if (policy < 0) {
4041		reset_on_fork = p->sched_reset_on_fork;
4042		policy = oldpolicy = p->policy;
4043	} else {
4044		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4045		policy &= ~SCHED_RESET_ON_FORK;
4046
4047		if (policy != SCHED_FIFO && policy != SCHED_RR &&
4048				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4049				policy != SCHED_IDLE)
4050			return -EINVAL;
4051	}
4052
4053	/*
4054	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4055	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4056	 * SCHED_BATCH and SCHED_IDLE is 0.
4057	 */
4058	if (param->sched_priority < 0 ||
4059	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4060	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4061		return -EINVAL;
4062	if (rt_policy(policy) != (param->sched_priority != 0))
4063		return -EINVAL;
4064
4065	/*
4066	 * Allow unprivileged RT tasks to decrease priority:
4067	 */
4068	if (user && !capable(CAP_SYS_NICE)) {
4069		if (rt_policy(policy)) {
4070			unsigned long rlim_rtprio =
4071					task_rlimit(p, RLIMIT_RTPRIO);
4072
4073			/* can't set/change the rt policy */
4074			if (policy != p->policy && !rlim_rtprio)
4075				return -EPERM;
4076
4077			/* can't increase priority */
4078			if (param->sched_priority > p->rt_priority &&
4079			    param->sched_priority > rlim_rtprio)
4080				return -EPERM;
4081		}
4082
4083		/*
4084		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4085		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4086		 */
4087		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4088			if (!can_nice(p, TASK_NICE(p)))
4089				return -EPERM;
4090		}
4091
4092		/* can't change other user's priorities */
4093		if (!check_same_owner(p))
4094			return -EPERM;
4095
4096		/* Normal users shall not reset the sched_reset_on_fork flag */
4097		if (p->sched_reset_on_fork && !reset_on_fork)
4098			return -EPERM;
4099	}
4100
4101	if (user) {
4102		retval = security_task_setscheduler(p);
4103		if (retval)
4104			return retval;
4105	}
4106
4107	/*
4108	 * make sure no PI-waiters arrive (or leave) while we are
4109	 * changing the priority of the task:
4110	 *
4111	 * To be able to change p->policy safely, the appropriate
4112	 * runqueue lock must be held.
4113	 */
4114	rq = task_rq_lock(p, &flags);
4115
4116	/*
4117	 * Changing the policy of the stop threads its a very bad idea
4118	 */
4119	if (p == rq->stop) {
4120		task_rq_unlock(rq, p, &flags);
4121		return -EINVAL;
4122	}
4123
4124	/*
4125	 * If not changing anything there's no need to proceed further:
4126	 */
4127	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4128			param->sched_priority == p->rt_priority))) {
4129
4130		__task_rq_unlock(rq);
4131		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4132		return 0;
4133	}
4134
4135#ifdef CONFIG_RT_GROUP_SCHED
4136	if (user) {
4137		/*
4138		 * Do not allow realtime tasks into groups that have no runtime
4139		 * assigned.
4140		 */
4141		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4142				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4143				!task_group_is_autogroup(task_group(p))) {
4144			task_rq_unlock(rq, p, &flags);
4145			return -EPERM;
4146		}
4147	}
4148#endif
4149
4150	/* recheck policy now with rq lock held */
4151	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4152		policy = oldpolicy = -1;
4153		task_rq_unlock(rq, p, &flags);
4154		goto recheck;
4155	}
4156	on_rq = p->on_rq;
4157	running = task_current(rq, p);
4158	if (on_rq)
4159		dequeue_task(rq, p, 0);
4160	if (running)
4161		p->sched_class->put_prev_task(rq, p);
4162
4163	p->sched_reset_on_fork = reset_on_fork;
4164
4165	oldprio = p->prio;
4166	prev_class = p->sched_class;
4167	__setscheduler(rq, p, policy, param->sched_priority);
4168
4169	if (running)
4170		p->sched_class->set_curr_task(rq);
4171	if (on_rq)
4172		enqueue_task(rq, p, 0);
4173
4174	check_class_changed(rq, p, prev_class, oldprio);
4175	task_rq_unlock(rq, p, &flags);
4176
4177	rt_mutex_adjust_pi(p);
4178
4179	return 0;
4180}
4181
4182/**
4183 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4184 * @p: the task in question.
4185 * @policy: new policy.
4186 * @param: structure containing the new RT priority.
4187 *
4188 * NOTE that the task may be already dead.
4189 */
4190int sched_setscheduler(struct task_struct *p, int policy,
4191		       const struct sched_param *param)
4192{
4193	return __sched_setscheduler(p, policy, param, true);
4194}
4195EXPORT_SYMBOL_GPL(sched_setscheduler);
4196
4197/**
4198 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4199 * @p: the task in question.
4200 * @policy: new policy.
4201 * @param: structure containing the new RT priority.
4202 *
4203 * Just like sched_setscheduler, only don't bother checking if the
4204 * current context has permission.  For example, this is needed in
4205 * stop_machine(): we create temporary high priority worker threads,
4206 * but our caller might not have that capability.
4207 */
4208int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4209			       const struct sched_param *param)
4210{
4211	return __sched_setscheduler(p, policy, param, false);
4212}
4213
4214static int
4215do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4216{
4217	struct sched_param lparam;
4218	struct task_struct *p;
4219	int retval;
4220
4221	if (!param || pid < 0)
4222		return -EINVAL;
4223	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4224		return -EFAULT;
4225
4226	rcu_read_lock();
4227	retval = -ESRCH;
4228	p = find_process_by_pid(pid);
4229	if (p != NULL)
4230		retval = sched_setscheduler(p, policy, &lparam);
4231	rcu_read_unlock();
4232
4233	return retval;
4234}
4235
4236/**
4237 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4238 * @pid: the pid in question.
4239 * @policy: new policy.
4240 * @param: structure containing the new RT priority.
4241 */
4242SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4243		struct sched_param __user *, param)
4244{
4245	/* negative values for policy are not valid */
4246	if (policy < 0)
4247		return -EINVAL;
4248
4249	return do_sched_setscheduler(pid, policy, param);
4250}
4251
4252/**
4253 * sys_sched_setparam - set/change the RT priority of a thread
4254 * @pid: the pid in question.
4255 * @param: structure containing the new RT priority.
4256 */
4257SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4258{
4259	return do_sched_setscheduler(pid, -1, param);
4260}
4261
4262/**
4263 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4264 * @pid: the pid in question.
4265 */
4266SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4267{
4268	struct task_struct *p;
4269	int retval;
4270
4271	if (pid < 0)
4272		return -EINVAL;
4273
4274	retval = -ESRCH;
4275	rcu_read_lock();
4276	p = find_process_by_pid(pid);
4277	if (p) {
4278		retval = security_task_getscheduler(p);
4279		if (!retval)
4280			retval = p->policy
4281				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4282	}
4283	rcu_read_unlock();
4284	return retval;
4285}
4286
4287/**
4288 * sys_sched_getparam - get the RT priority of a thread
4289 * @pid: the pid in question.
4290 * @param: structure containing the RT priority.
4291 */
4292SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4293{
4294	struct sched_param lp;
4295	struct task_struct *p;
4296	int retval;
4297
4298	if (!param || pid < 0)
4299		return -EINVAL;
4300
4301	rcu_read_lock();
4302	p = find_process_by_pid(pid);
4303	retval = -ESRCH;
4304	if (!p)
4305		goto out_unlock;
4306
4307	retval = security_task_getscheduler(p);
4308	if (retval)
4309		goto out_unlock;
4310
4311	lp.sched_priority = p->rt_priority;
4312	rcu_read_unlock();
4313
4314	/*
4315	 * This one might sleep, we cannot do it with a spinlock held ...
4316	 */
4317	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4318
4319	return retval;
4320
4321out_unlock:
4322	rcu_read_unlock();
4323	return retval;
4324}
4325
4326long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4327{
4328	cpumask_var_t cpus_allowed, new_mask;
4329	struct task_struct *p;
4330	int retval;
4331
4332	get_online_cpus();
4333	rcu_read_lock();
4334
4335	p = find_process_by_pid(pid);
4336	if (!p) {
4337		rcu_read_unlock();
4338		put_online_cpus();
4339		return -ESRCH;
4340	}
4341
4342	/* Prevent p going away */
4343	get_task_struct(p);
4344	rcu_read_unlock();
4345
4346	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4347		retval = -ENOMEM;
4348		goto out_put_task;
4349	}
4350	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4351		retval = -ENOMEM;
4352		goto out_free_cpus_allowed;
4353	}
4354	retval = -EPERM;
4355	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4356		goto out_unlock;
4357
4358	retval = security_task_setscheduler(p);
4359	if (retval)
4360		goto out_unlock;
4361
4362	cpuset_cpus_allowed(p, cpus_allowed);
4363	cpumask_and(new_mask, in_mask, cpus_allowed);
4364again:
4365	retval = set_cpus_allowed_ptr(p, new_mask);
4366
4367	if (!retval) {
4368		cpuset_cpus_allowed(p, cpus_allowed);
4369		if (!cpumask_subset(new_mask, cpus_allowed)) {
4370			/*
4371			 * We must have raced with a concurrent cpuset
4372			 * update. Just reset the cpus_allowed to the
4373			 * cpuset's cpus_allowed
4374			 */
4375			cpumask_copy(new_mask, cpus_allowed);
4376			goto again;
4377		}
4378	}
4379out_unlock:
4380	free_cpumask_var(new_mask);
4381out_free_cpus_allowed:
4382	free_cpumask_var(cpus_allowed);
4383out_put_task:
4384	put_task_struct(p);
4385	put_online_cpus();
4386	return retval;
4387}
4388
4389static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4390			     struct cpumask *new_mask)
4391{
4392	if (len < cpumask_size())
4393		cpumask_clear(new_mask);
4394	else if (len > cpumask_size())
4395		len = cpumask_size();
4396
4397	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4398}
4399
4400/**
4401 * sys_sched_setaffinity - set the cpu affinity of a process
4402 * @pid: pid of the process
4403 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4404 * @user_mask_ptr: user-space pointer to the new cpu mask
4405 */
4406SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4407		unsigned long __user *, user_mask_ptr)
4408{
4409	cpumask_var_t new_mask;
4410	int retval;
4411
4412	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4413		return -ENOMEM;
4414
4415	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4416	if (retval == 0)
4417		retval = sched_setaffinity(pid, new_mask);
4418	free_cpumask_var(new_mask);
4419	return retval;
4420}
4421
4422long sched_getaffinity(pid_t pid, struct cpumask *mask)
4423{
4424	struct task_struct *p;
4425	unsigned long flags;
4426	int retval;
4427
4428	get_online_cpus();
4429	rcu_read_lock();
4430
4431	retval = -ESRCH;
4432	p = find_process_by_pid(pid);
4433	if (!p)
4434		goto out_unlock;
4435
4436	retval = security_task_getscheduler(p);
4437	if (retval)
4438		goto out_unlock;
4439
4440	raw_spin_lock_irqsave(&p->pi_lock, flags);
4441	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4442	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4443
4444out_unlock:
4445	rcu_read_unlock();
4446	put_online_cpus();
4447
4448	return retval;
4449}
4450
4451/**
4452 * sys_sched_getaffinity - get the cpu affinity of a process
4453 * @pid: pid of the process
4454 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4455 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4456 */
4457SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4458		unsigned long __user *, user_mask_ptr)
4459{
4460	int ret;
4461	cpumask_var_t mask;
4462
4463	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4464		return -EINVAL;
4465	if (len & (sizeof(unsigned long)-1))
4466		return -EINVAL;
4467
4468	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4469		return -ENOMEM;
4470
4471	ret = sched_getaffinity(pid, mask);
4472	if (ret == 0) {
4473		size_t retlen = min_t(size_t, len, cpumask_size());
4474
4475		if (copy_to_user(user_mask_ptr, mask, retlen))
4476			ret = -EFAULT;
4477		else
4478			ret = retlen;
4479	}
4480	free_cpumask_var(mask);
4481
4482	return ret;
4483}
4484
4485/**
4486 * sys_sched_yield - yield the current processor to other threads.
4487 *
4488 * This function yields the current CPU to other tasks. If there are no
4489 * other threads running on this CPU then this function will return.
4490 */
4491SYSCALL_DEFINE0(sched_yield)
4492{
4493	struct rq *rq = this_rq_lock();
4494
4495	schedstat_inc(rq, yld_count);
4496	current->sched_class->yield_task(rq);
4497
4498	/*
4499	 * Since we are going to call schedule() anyway, there's
4500	 * no need to preempt or enable interrupts:
4501	 */
4502	__release(rq->lock);
4503	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4504	do_raw_spin_unlock(&rq->lock);
4505	sched_preempt_enable_no_resched();
4506
4507	schedule();
4508
4509	return 0;
4510}
4511
4512static inline int should_resched(void)
4513{
4514	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4515}
4516
4517static void __cond_resched(void)
4518{
4519	add_preempt_count(PREEMPT_ACTIVE);
4520	__schedule();
4521	sub_preempt_count(PREEMPT_ACTIVE);
4522}
4523
4524int __sched _cond_resched(void)
4525{
4526	if (should_resched()) {
4527		__cond_resched();
4528		return 1;
4529	}
4530	return 0;
4531}
4532EXPORT_SYMBOL(_cond_resched);
4533
4534/*
4535 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4536 * call schedule, and on return reacquire the lock.
4537 *
4538 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4539 * operations here to prevent schedule() from being called twice (once via
4540 * spin_unlock(), once by hand).
4541 */
4542int __cond_resched_lock(spinlock_t *lock)
4543{
4544	int resched = should_resched();
4545	int ret = 0;
4546
4547	lockdep_assert_held(lock);
4548
4549	if (spin_needbreak(lock) || resched) {
4550		spin_unlock(lock);
4551		if (resched)
4552			__cond_resched();
4553		else
4554			cpu_relax();
4555		ret = 1;
4556		spin_lock(lock);
4557	}
4558	return ret;
4559}
4560EXPORT_SYMBOL(__cond_resched_lock);
4561
4562int __sched __cond_resched_softirq(void)
4563{
4564	BUG_ON(!in_softirq());
4565
4566	if (should_resched()) {
4567		local_bh_enable();
4568		__cond_resched();
4569		local_bh_disable();
4570		return 1;
4571	}
4572	return 0;
4573}
4574EXPORT_SYMBOL(__cond_resched_softirq);
4575
4576/**
4577 * yield - yield the current processor to other threads.
4578 *
4579 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4580 *
4581 * The scheduler is at all times free to pick the calling task as the most
4582 * eligible task to run, if removing the yield() call from your code breaks
4583 * it, its already broken.
4584 *
4585 * Typical broken usage is:
4586 *
4587 * while (!event)
4588 * 	yield();
4589 *
4590 * where one assumes that yield() will let 'the other' process run that will
4591 * make event true. If the current task is a SCHED_FIFO task that will never
4592 * happen. Never use yield() as a progress guarantee!!
4593 *
4594 * If you want to use yield() to wait for something, use wait_event().
4595 * If you want to use yield() to be 'nice' for others, use cond_resched().
4596 * If you still want to use yield(), do not!
4597 */
4598void __sched yield(void)
4599{
4600	set_current_state(TASK_RUNNING);
4601	sys_sched_yield();
4602}
4603EXPORT_SYMBOL(yield);
4604
4605/**
4606 * yield_to - yield the current processor to another thread in
4607 * your thread group, or accelerate that thread toward the
4608 * processor it's on.
4609 * @p: target task
4610 * @preempt: whether task preemption is allowed or not
4611 *
4612 * It's the caller's job to ensure that the target task struct
4613 * can't go away on us before we can do any checks.
4614 *
4615 * Returns true if we indeed boosted the target task.
4616 */
4617bool __sched yield_to(struct task_struct *p, bool preempt)
4618{
4619	struct task_struct *curr = current;
4620	struct rq *rq, *p_rq;
4621	unsigned long flags;
4622	bool yielded = 0;
4623
4624	local_irq_save(flags);
4625	rq = this_rq();
4626
4627again:
4628	p_rq = task_rq(p);
4629	double_rq_lock(rq, p_rq);
4630	while (task_rq(p) != p_rq) {
4631		double_rq_unlock(rq, p_rq);
4632		goto again;
4633	}
4634
4635	if (!curr->sched_class->yield_to_task)
4636		goto out;
4637
4638	if (curr->sched_class != p->sched_class)
4639		goto out;
4640
4641	if (task_running(p_rq, p) || p->state)
4642		goto out;
4643
4644	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4645	if (yielded) {
4646		schedstat_inc(rq, yld_count);
4647		/*
4648		 * Make p's CPU reschedule; pick_next_entity takes care of
4649		 * fairness.
4650		 */
4651		if (preempt && rq != p_rq)
4652			resched_task(p_rq->curr);
4653	} else {
4654		/*
4655		 * We might have set it in task_yield_fair(), but are
4656		 * not going to schedule(), so don't want to skip
4657		 * the next update.
4658		 */
4659		rq->skip_clock_update = 0;
4660	}
4661
4662out:
4663	double_rq_unlock(rq, p_rq);
4664	local_irq_restore(flags);
4665
4666	if (yielded)
4667		schedule();
4668
4669	return yielded;
4670}
4671EXPORT_SYMBOL_GPL(yield_to);
4672
4673/*
4674 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4675 * that process accounting knows that this is a task in IO wait state.
4676 */
4677void __sched io_schedule(void)
4678{
4679	struct rq *rq = raw_rq();
4680
4681	delayacct_blkio_start();
4682	atomic_inc(&rq->nr_iowait);
4683	blk_flush_plug(current);
4684	current->in_iowait = 1;
4685	schedule();
4686	current->in_iowait = 0;
4687	atomic_dec(&rq->nr_iowait);
4688	delayacct_blkio_end();
4689}
4690EXPORT_SYMBOL(io_schedule);
4691
4692long __sched io_schedule_timeout(long timeout)
4693{
4694	struct rq *rq = raw_rq();
4695	long ret;
4696
4697	delayacct_blkio_start();
4698	atomic_inc(&rq->nr_iowait);
4699	blk_flush_plug(current);
4700	current->in_iowait = 1;
4701	ret = schedule_timeout(timeout);
4702	current->in_iowait = 0;
4703	atomic_dec(&rq->nr_iowait);
4704	delayacct_blkio_end();
4705	return ret;
4706}
4707
4708/**
4709 * sys_sched_get_priority_max - return maximum RT priority.
4710 * @policy: scheduling class.
4711 *
4712 * this syscall returns the maximum rt_priority that can be used
4713 * by a given scheduling class.
4714 */
4715SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4716{
4717	int ret = -EINVAL;
4718
4719	switch (policy) {
4720	case SCHED_FIFO:
4721	case SCHED_RR:
4722		ret = MAX_USER_RT_PRIO-1;
4723		break;
4724	case SCHED_NORMAL:
4725	case SCHED_BATCH:
4726	case SCHED_IDLE:
4727		ret = 0;
4728		break;
4729	}
4730	return ret;
4731}
4732
4733/**
4734 * sys_sched_get_priority_min - return minimum RT priority.
4735 * @policy: scheduling class.
4736 *
4737 * this syscall returns the minimum rt_priority that can be used
4738 * by a given scheduling class.
4739 */
4740SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4741{
4742	int ret = -EINVAL;
4743
4744	switch (policy) {
4745	case SCHED_FIFO:
4746	case SCHED_RR:
4747		ret = 1;
4748		break;
4749	case SCHED_NORMAL:
4750	case SCHED_BATCH:
4751	case SCHED_IDLE:
4752		ret = 0;
4753	}
4754	return ret;
4755}
4756
4757/**
4758 * sys_sched_rr_get_interval - return the default timeslice of a process.
4759 * @pid: pid of the process.
4760 * @interval: userspace pointer to the timeslice value.
4761 *
4762 * this syscall writes the default timeslice value of a given process
4763 * into the user-space timespec buffer. A value of '0' means infinity.
4764 */
4765SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4766		struct timespec __user *, interval)
4767{
4768	struct task_struct *p;
4769	unsigned int time_slice;
4770	unsigned long flags;
4771	struct rq *rq;
4772	int retval;
4773	struct timespec t;
4774
4775	if (pid < 0)
4776		return -EINVAL;
4777
4778	retval = -ESRCH;
4779	rcu_read_lock();
4780	p = find_process_by_pid(pid);
4781	if (!p)
4782		goto out_unlock;
4783
4784	retval = security_task_getscheduler(p);
4785	if (retval)
4786		goto out_unlock;
4787
4788	rq = task_rq_lock(p, &flags);
4789	time_slice = p->sched_class->get_rr_interval(rq, p);
4790	task_rq_unlock(rq, p, &flags);
4791
4792	rcu_read_unlock();
4793	jiffies_to_timespec(time_slice, &t);
4794	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4795	return retval;
4796
4797out_unlock:
4798	rcu_read_unlock();
4799	return retval;
4800}
4801
4802static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4803
4804void sched_show_task(struct task_struct *p)
4805{
4806	unsigned long free = 0;
4807	unsigned state;
4808
4809	state = p->state ? __ffs(p->state) + 1 : 0;
4810	printk(KERN_INFO "%-15.15s %c", p->comm,
4811		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4812#if BITS_PER_LONG == 32
4813	if (state == TASK_RUNNING)
4814		printk(KERN_CONT " running  ");
4815	else
4816		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4817#else
4818	if (state == TASK_RUNNING)
4819		printk(KERN_CONT "  running task    ");
4820	else
4821		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4822#endif
4823#ifdef CONFIG_DEBUG_STACK_USAGE
4824	free = stack_not_used(p);
4825#endif
4826	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4827		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4828		(unsigned long)task_thread_info(p)->flags);
4829
4830	show_stack(p, NULL);
4831}
4832
4833void show_state_filter(unsigned long state_filter)
4834{
4835	struct task_struct *g, *p;
4836
4837#if BITS_PER_LONG == 32
4838	printk(KERN_INFO
4839		"  task                PC stack   pid father\n");
4840#else
4841	printk(KERN_INFO
4842		"  task                        PC stack   pid father\n");
4843#endif
4844	rcu_read_lock();
4845	do_each_thread(g, p) {
4846		/*
4847		 * reset the NMI-timeout, listing all files on a slow
4848		 * console might take a lot of time:
4849		 */
4850		touch_nmi_watchdog();
4851		if (!state_filter || (p->state & state_filter))
4852			sched_show_task(p);
4853	} while_each_thread(g, p);
4854
4855	touch_all_softlockup_watchdogs();
4856
4857#ifdef CONFIG_SCHED_DEBUG
4858	sysrq_sched_debug_show();
4859#endif
4860	rcu_read_unlock();
4861	/*
4862	 * Only show locks if all tasks are dumped:
4863	 */
4864	if (!state_filter)
4865		debug_show_all_locks();
4866}
4867
4868void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4869{
4870	idle->sched_class = &idle_sched_class;
4871}
4872
4873/**
4874 * init_idle - set up an idle thread for a given CPU
4875 * @idle: task in question
4876 * @cpu: cpu the idle task belongs to
4877 *
4878 * NOTE: this function does not set the idle thread's NEED_RESCHED
4879 * flag, to make booting more robust.
4880 */
4881void __cpuinit init_idle(struct task_struct *idle, int cpu)
4882{
4883	struct rq *rq = cpu_rq(cpu);
4884	unsigned long flags;
4885
4886	raw_spin_lock_irqsave(&rq->lock, flags);
4887
4888	__sched_fork(idle);
4889	idle->state = TASK_RUNNING;
4890	idle->se.exec_start = sched_clock();
4891
4892	do_set_cpus_allowed(idle, cpumask_of(cpu));
4893	/*
4894	 * We're having a chicken and egg problem, even though we are
4895	 * holding rq->lock, the cpu isn't yet set to this cpu so the
4896	 * lockdep check in task_group() will fail.
4897	 *
4898	 * Similar case to sched_fork(). / Alternatively we could
4899	 * use task_rq_lock() here and obtain the other rq->lock.
4900	 *
4901	 * Silence PROVE_RCU
4902	 */
4903	rcu_read_lock();
4904	__set_task_cpu(idle, cpu);
4905	rcu_read_unlock();
4906
4907	rq->curr = rq->idle = idle;
4908#if defined(CONFIG_SMP)
4909	idle->on_cpu = 1;
4910#endif
4911	raw_spin_unlock_irqrestore(&rq->lock, flags);
4912
4913	/* Set the preempt count _outside_ the spinlocks! */
4914	task_thread_info(idle)->preempt_count = 0;
4915
4916	/*
4917	 * The idle tasks have their own, simple scheduling class:
4918	 */
4919	idle->sched_class = &idle_sched_class;
4920	ftrace_graph_init_idle_task(idle, cpu);
4921#if defined(CONFIG_SMP)
4922	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4923#endif
4924}
4925
4926#ifdef CONFIG_SMP
4927void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4928{
4929	if (p->sched_class && p->sched_class->set_cpus_allowed)
4930		p->sched_class->set_cpus_allowed(p, new_mask);
4931
4932	cpumask_copy(&p->cpus_allowed, new_mask);
4933	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4934}
4935
4936/*
4937 * This is how migration works:
4938 *
4939 * 1) we invoke migration_cpu_stop() on the target CPU using
4940 *    stop_one_cpu().
4941 * 2) stopper starts to run (implicitly forcing the migrated thread
4942 *    off the CPU)
4943 * 3) it checks whether the migrated task is still in the wrong runqueue.
4944 * 4) if it's in the wrong runqueue then the migration thread removes
4945 *    it and puts it into the right queue.
4946 * 5) stopper completes and stop_one_cpu() returns and the migration
4947 *    is done.
4948 */
4949
4950/*
4951 * Change a given task's CPU affinity. Migrate the thread to a
4952 * proper CPU and schedule it away if the CPU it's executing on
4953 * is removed from the allowed bitmask.
4954 *
4955 * NOTE: the caller must have a valid reference to the task, the
4956 * task must not exit() & deallocate itself prematurely. The
4957 * call is not atomic; no spinlocks may be held.
4958 */
4959int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4960{
4961	unsigned long flags;
4962	struct rq *rq;
4963	unsigned int dest_cpu;
4964	int ret = 0;
4965
4966	rq = task_rq_lock(p, &flags);
4967
4968	if (cpumask_equal(&p->cpus_allowed, new_mask))
4969		goto out;
4970
4971	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4972		ret = -EINVAL;
4973		goto out;
4974	}
4975
4976	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4977		ret = -EINVAL;
4978		goto out;
4979	}
4980
4981	do_set_cpus_allowed(p, new_mask);
4982
4983	/* Can the task run on the task's current CPU? If so, we're done */
4984	if (cpumask_test_cpu(task_cpu(p), new_mask))
4985		goto out;
4986
4987	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4988	if (p->on_rq) {
4989		struct migration_arg arg = { p, dest_cpu };
4990		/* Need help from migration thread: drop lock and wait. */
4991		task_rq_unlock(rq, p, &flags);
4992		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4993		tlb_migrate_finish(p->mm);
4994		return 0;
4995	}
4996out:
4997	task_rq_unlock(rq, p, &flags);
4998
4999	return ret;
5000}
5001EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5002
5003/*
5004 * Move (not current) task off this cpu, onto dest cpu. We're doing
5005 * this because either it can't run here any more (set_cpus_allowed()
5006 * away from this CPU, or CPU going down), or because we're
5007 * attempting to rebalance this task on exec (sched_exec).
5008 *
5009 * So we race with normal scheduler movements, but that's OK, as long
5010 * as the task is no longer on this CPU.
5011 *
5012 * Returns non-zero if task was successfully migrated.
5013 */
5014static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5015{
5016	struct rq *rq_dest, *rq_src;
5017	int ret = 0;
5018
5019	if (unlikely(!cpu_active(dest_cpu)))
5020		return ret;
5021
5022	rq_src = cpu_rq(src_cpu);
5023	rq_dest = cpu_rq(dest_cpu);
5024
5025	raw_spin_lock(&p->pi_lock);
5026	double_rq_lock(rq_src, rq_dest);
5027	/* Already moved. */
5028	if (task_cpu(p) != src_cpu)
5029		goto done;
5030	/* Affinity changed (again). */
5031	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5032		goto fail;
5033
5034	/*
5035	 * If we're not on a rq, the next wake-up will ensure we're
5036	 * placed properly.
5037	 */
5038	if (p->on_rq) {
5039		dequeue_task(rq_src, p, 0);
5040		set_task_cpu(p, dest_cpu);
5041		enqueue_task(rq_dest, p, 0);
5042		check_preempt_curr(rq_dest, p, 0);
5043	}
5044done:
5045	ret = 1;
5046fail:
5047	double_rq_unlock(rq_src, rq_dest);
5048	raw_spin_unlock(&p->pi_lock);
5049	return ret;
5050}
5051
5052/*
5053 * migration_cpu_stop - this will be executed by a highprio stopper thread
5054 * and performs thread migration by bumping thread off CPU then
5055 * 'pushing' onto another runqueue.
5056 */
5057static int migration_cpu_stop(void *data)
5058{
5059	struct migration_arg *arg = data;
5060
5061	/*
5062	 * The original target cpu might have gone down and we might
5063	 * be on another cpu but it doesn't matter.
5064	 */
5065	local_irq_disable();
5066	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5067	local_irq_enable();
5068	return 0;
5069}
5070
5071#ifdef CONFIG_HOTPLUG_CPU
5072
5073/*
5074 * Ensures that the idle task is using init_mm right before its cpu goes
5075 * offline.
5076 */
5077void idle_task_exit(void)
5078{
5079	struct mm_struct *mm = current->active_mm;
5080
5081	BUG_ON(cpu_online(smp_processor_id()));
5082
5083	if (mm != &init_mm)
5084		switch_mm(mm, &init_mm, current);
5085	mmdrop(mm);
5086}
5087
5088/*
5089 * While a dead CPU has no uninterruptible tasks queued at this point,
5090 * it might still have a nonzero ->nr_uninterruptible counter, because
5091 * for performance reasons the counter is not stricly tracking tasks to
5092 * their home CPUs. So we just add the counter to another CPU's counter,
5093 * to keep the global sum constant after CPU-down:
5094 */
5095static void migrate_nr_uninterruptible(struct rq *rq_src)
5096{
5097	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5098
5099	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5100	rq_src->nr_uninterruptible = 0;
5101}
5102
5103/*
5104 * remove the tasks which were accounted by rq from calc_load_tasks.
5105 */
5106static void calc_global_load_remove(struct rq *rq)
5107{
5108	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5109	rq->calc_load_active = 0;
5110}
5111
5112/*
5113 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5114 * try_to_wake_up()->select_task_rq().
5115 *
5116 * Called with rq->lock held even though we'er in stop_machine() and
5117 * there's no concurrency possible, we hold the required locks anyway
5118 * because of lock validation efforts.
5119 */
5120static void migrate_tasks(unsigned int dead_cpu)
5121{
5122	struct rq *rq = cpu_rq(dead_cpu);
5123	struct task_struct *next, *stop = rq->stop;
5124	int dest_cpu;
5125
5126	/*
5127	 * Fudge the rq selection such that the below task selection loop
5128	 * doesn't get stuck on the currently eligible stop task.
5129	 *
5130	 * We're currently inside stop_machine() and the rq is either stuck
5131	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5132	 * either way we should never end up calling schedule() until we're
5133	 * done here.
5134	 */
5135	rq->stop = NULL;
5136
5137	/* Ensure any throttled groups are reachable by pick_next_task */
5138	unthrottle_offline_cfs_rqs(rq);
5139
5140	for ( ; ; ) {
5141		/*
5142		 * There's this thread running, bail when that's the only
5143		 * remaining thread.
5144		 */
5145		if (rq->nr_running == 1)
5146			break;
5147
5148		next = pick_next_task(rq);
5149		BUG_ON(!next);
5150		next->sched_class->put_prev_task(rq, next);
5151
5152		/* Find suitable destination for @next, with force if needed. */
5153		dest_cpu = select_fallback_rq(dead_cpu, next);
5154		raw_spin_unlock(&rq->lock);
5155
5156		__migrate_task(next, dead_cpu, dest_cpu);
5157
5158		raw_spin_lock(&rq->lock);
5159	}
5160
5161	rq->stop = stop;
5162}
5163
5164#endif /* CONFIG_HOTPLUG_CPU */
5165
5166#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5167
5168static struct ctl_table sd_ctl_dir[] = {
5169	{
5170		.procname	= "sched_domain",
5171		.mode		= 0555,
5172	},
5173	{}
5174};
5175
5176static struct ctl_table sd_ctl_root[] = {
5177	{
5178		.procname	= "kernel",
5179		.mode		= 0555,
5180		.child		= sd_ctl_dir,
5181	},
5182	{}
5183};
5184
5185static struct ctl_table *sd_alloc_ctl_entry(int n)
5186{
5187	struct ctl_table *entry =
5188		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5189
5190	return entry;
5191}
5192
5193static void sd_free_ctl_entry(struct ctl_table **tablep)
5194{
5195	struct ctl_table *entry;
5196
5197	/*
5198	 * In the intermediate directories, both the child directory and
5199	 * procname are dynamically allocated and could fail but the mode
5200	 * will always be set. In the lowest directory the names are
5201	 * static strings and all have proc handlers.
5202	 */
5203	for (entry = *tablep; entry->mode; entry++) {
5204		if (entry->child)
5205			sd_free_ctl_entry(&entry->child);
5206		if (entry->proc_handler == NULL)
5207			kfree(entry->procname);
5208	}
5209
5210	kfree(*tablep);
5211	*tablep = NULL;
5212}
5213
5214static void
5215set_table_entry(struct ctl_table *entry,
5216		const char *procname, void *data, int maxlen,
5217		umode_t mode, proc_handler *proc_handler)
5218{
5219	entry->procname = procname;
5220	entry->data = data;
5221	entry->maxlen = maxlen;
5222	entry->mode = mode;
5223	entry->proc_handler = proc_handler;
5224}
5225
5226static struct ctl_table *
5227sd_alloc_ctl_domain_table(struct sched_domain *sd)
5228{
5229	struct ctl_table *table = sd_alloc_ctl_entry(13);
5230
5231	if (table == NULL)
5232		return NULL;
5233
5234	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5235		sizeof(long), 0644, proc_doulongvec_minmax);
5236	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5237		sizeof(long), 0644, proc_doulongvec_minmax);
5238	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5239		sizeof(int), 0644, proc_dointvec_minmax);
5240	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5241		sizeof(int), 0644, proc_dointvec_minmax);
5242	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5243		sizeof(int), 0644, proc_dointvec_minmax);
5244	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5245		sizeof(int), 0644, proc_dointvec_minmax);
5246	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5247		sizeof(int), 0644, proc_dointvec_minmax);
5248	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5249		sizeof(int), 0644, proc_dointvec_minmax);
5250	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5251		sizeof(int), 0644, proc_dointvec_minmax);
5252	set_table_entry(&table[9], "cache_nice_tries",
5253		&sd->cache_nice_tries,
5254		sizeof(int), 0644, proc_dointvec_minmax);
5255	set_table_entry(&table[10], "flags", &sd->flags,
5256		sizeof(int), 0644, proc_dointvec_minmax);
5257	set_table_entry(&table[11], "name", sd->name,
5258		CORENAME_MAX_SIZE, 0444, proc_dostring);
5259	/* &table[12] is terminator */
5260
5261	return table;
5262}
5263
5264static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5265{
5266	struct ctl_table *entry, *table;
5267	struct sched_domain *sd;
5268	int domain_num = 0, i;
5269	char buf[32];
5270
5271	for_each_domain(cpu, sd)
5272		domain_num++;
5273	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5274	if (table == NULL)
5275		return NULL;
5276
5277	i = 0;
5278	for_each_domain(cpu, sd) {
5279		snprintf(buf, 32, "domain%d", i);
5280		entry->procname = kstrdup(buf, GFP_KERNEL);
5281		entry->mode = 0555;
5282		entry->child = sd_alloc_ctl_domain_table(sd);
5283		entry++;
5284		i++;
5285	}
5286	return table;
5287}
5288
5289static struct ctl_table_header *sd_sysctl_header;
5290static void register_sched_domain_sysctl(void)
5291{
5292	int i, cpu_num = num_possible_cpus();
5293	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5294	char buf[32];
5295
5296	WARN_ON(sd_ctl_dir[0].child);
5297	sd_ctl_dir[0].child = entry;
5298
5299	if (entry == NULL)
5300		return;
5301
5302	for_each_possible_cpu(i) {
5303		snprintf(buf, 32, "cpu%d", i);
5304		entry->procname = kstrdup(buf, GFP_KERNEL);
5305		entry->mode = 0555;
5306		entry->child = sd_alloc_ctl_cpu_table(i);
5307		entry++;
5308	}
5309
5310	WARN_ON(sd_sysctl_header);
5311	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5312}
5313
5314/* may be called multiple times per register */
5315static void unregister_sched_domain_sysctl(void)
5316{
5317	if (sd_sysctl_header)
5318		unregister_sysctl_table(sd_sysctl_header);
5319	sd_sysctl_header = NULL;
5320	if (sd_ctl_dir[0].child)
5321		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5322}
5323#else
5324static void register_sched_domain_sysctl(void)
5325{
5326}
5327static void unregister_sched_domain_sysctl(void)
5328{
5329}
5330#endif
5331
5332static void set_rq_online(struct rq *rq)
5333{
5334	if (!rq->online) {
5335		const struct sched_class *class;
5336
5337		cpumask_set_cpu(rq->cpu, rq->rd->online);
5338		rq->online = 1;
5339
5340		for_each_class(class) {
5341			if (class->rq_online)
5342				class->rq_online(rq);
5343		}
5344	}
5345}
5346
5347static void set_rq_offline(struct rq *rq)
5348{
5349	if (rq->online) {
5350		const struct sched_class *class;
5351
5352		for_each_class(class) {
5353			if (class->rq_offline)
5354				class->rq_offline(rq);
5355		}
5356
5357		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5358		rq->online = 0;
5359	}
5360}
5361
5362/*
5363 * migration_call - callback that gets triggered when a CPU is added.
5364 * Here we can start up the necessary migration thread for the new CPU.
5365 */
5366static int __cpuinit
5367migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5368{
5369	int cpu = (long)hcpu;
5370	unsigned long flags;
5371	struct rq *rq = cpu_rq(cpu);
5372
5373	switch (action & ~CPU_TASKS_FROZEN) {
5374
5375	case CPU_UP_PREPARE:
5376		rq->calc_load_update = calc_load_update;
5377		break;
5378
5379	case CPU_ONLINE:
5380		/* Update our root-domain */
5381		raw_spin_lock_irqsave(&rq->lock, flags);
5382		if (rq->rd) {
5383			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5384
5385			set_rq_online(rq);
5386		}
5387		raw_spin_unlock_irqrestore(&rq->lock, flags);
5388		break;
5389
5390#ifdef CONFIG_HOTPLUG_CPU
5391	case CPU_DYING:
5392		sched_ttwu_pending();
5393		/* Update our root-domain */
5394		raw_spin_lock_irqsave(&rq->lock, flags);
5395		if (rq->rd) {
5396			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5397			set_rq_offline(rq);
5398		}
5399		migrate_tasks(cpu);
5400		BUG_ON(rq->nr_running != 1); /* the migration thread */
5401		raw_spin_unlock_irqrestore(&rq->lock, flags);
5402
5403		migrate_nr_uninterruptible(rq);
5404		calc_global_load_remove(rq);
5405		break;
5406#endif
5407	}
5408
5409	update_max_interval();
5410
5411	return NOTIFY_OK;
5412}
5413
5414/*
5415 * Register at high priority so that task migration (migrate_all_tasks)
5416 * happens before everything else.  This has to be lower priority than
5417 * the notifier in the perf_event subsystem, though.
5418 */
5419static struct notifier_block __cpuinitdata migration_notifier = {
5420	.notifier_call = migration_call,
5421	.priority = CPU_PRI_MIGRATION,
5422};
5423
5424static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5425				      unsigned long action, void *hcpu)
5426{
5427	switch (action & ~CPU_TASKS_FROZEN) {
5428	case CPU_STARTING:
5429	case CPU_DOWN_FAILED:
5430		set_cpu_active((long)hcpu, true);
5431		return NOTIFY_OK;
5432	default:
5433		return NOTIFY_DONE;
5434	}
5435}
5436
5437static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5438					unsigned long action, void *hcpu)
5439{
5440	switch (action & ~CPU_TASKS_FROZEN) {
5441	case CPU_DOWN_PREPARE:
5442		set_cpu_active((long)hcpu, false);
5443		return NOTIFY_OK;
5444	default:
5445		return NOTIFY_DONE;
5446	}
5447}
5448
5449static int __init migration_init(void)
5450{
5451	void *cpu = (void *)(long)smp_processor_id();
5452	int err;
5453
5454	/* Initialize migration for the boot CPU */
5455	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5456	BUG_ON(err == NOTIFY_BAD);
5457	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5458	register_cpu_notifier(&migration_notifier);
5459
5460	/* Register cpu active notifiers */
5461	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5462	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5463
5464	return 0;
5465}
5466early_initcall(migration_init);
5467#endif
5468
5469#ifdef CONFIG_SMP
5470
5471static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5472
5473#ifdef CONFIG_SCHED_DEBUG
5474
5475static __read_mostly int sched_domain_debug_enabled;
5476
5477static int __init sched_domain_debug_setup(char *str)
5478{
5479	sched_domain_debug_enabled = 1;
5480
5481	return 0;
5482}
5483early_param("sched_debug", sched_domain_debug_setup);
5484
5485static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5486				  struct cpumask *groupmask)
5487{
5488	struct sched_group *group = sd->groups;
5489	char str[256];
5490
5491	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5492	cpumask_clear(groupmask);
5493
5494	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5495
5496	if (!(sd->flags & SD_LOAD_BALANCE)) {
5497		printk("does not load-balance\n");
5498		if (sd->parent)
5499			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5500					" has parent");
5501		return -1;
5502	}
5503
5504	printk(KERN_CONT "span %s level %s\n", str, sd->name);
5505
5506	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5507		printk(KERN_ERR "ERROR: domain->span does not contain "
5508				"CPU%d\n", cpu);
5509	}
5510	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5511		printk(KERN_ERR "ERROR: domain->groups does not contain"
5512				" CPU%d\n", cpu);
5513	}
5514
5515	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5516	do {
5517		if (!group) {
5518			printk("\n");
5519			printk(KERN_ERR "ERROR: group is NULL\n");
5520			break;
5521		}
5522
5523		if (!group->sgp->power) {
5524			printk(KERN_CONT "\n");
5525			printk(KERN_ERR "ERROR: domain->cpu_power not "
5526					"set\n");
5527			break;
5528		}
5529
5530		if (!cpumask_weight(sched_group_cpus(group))) {
5531			printk(KERN_CONT "\n");
5532			printk(KERN_ERR "ERROR: empty group\n");
5533			break;
5534		}
5535
5536		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5537			printk(KERN_CONT "\n");
5538			printk(KERN_ERR "ERROR: repeated CPUs\n");
5539			break;
5540		}
5541
5542		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5543
5544		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5545
5546		printk(KERN_CONT " %s", str);
5547		if (group->sgp->power != SCHED_POWER_SCALE) {
5548			printk(KERN_CONT " (cpu_power = %d)",
5549				group->sgp->power);
5550		}
5551
5552		group = group->next;
5553	} while (group != sd->groups);
5554	printk(KERN_CONT "\n");
5555
5556	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5557		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5558
5559	if (sd->parent &&
5560	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5561		printk(KERN_ERR "ERROR: parent span is not a superset "
5562			"of domain->span\n");
5563	return 0;
5564}
5565
5566static void sched_domain_debug(struct sched_domain *sd, int cpu)
5567{
5568	int level = 0;
5569
5570	if (!sched_domain_debug_enabled)
5571		return;
5572
5573	if (!sd) {
5574		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5575		return;
5576	}
5577
5578	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5579
5580	for (;;) {
5581		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5582			break;
5583		level++;
5584		sd = sd->parent;
5585		if (!sd)
5586			break;
5587	}
5588}
5589#else /* !CONFIG_SCHED_DEBUG */
5590# define sched_domain_debug(sd, cpu) do { } while (0)
5591#endif /* CONFIG_SCHED_DEBUG */
5592
5593static int sd_degenerate(struct sched_domain *sd)
5594{
5595	if (cpumask_weight(sched_domain_span(sd)) == 1)
5596		return 1;
5597
5598	/* Following flags need at least 2 groups */
5599	if (sd->flags & (SD_LOAD_BALANCE |
5600			 SD_BALANCE_NEWIDLE |
5601			 SD_BALANCE_FORK |
5602			 SD_BALANCE_EXEC |
5603			 SD_SHARE_CPUPOWER |
5604			 SD_SHARE_PKG_RESOURCES)) {
5605		if (sd->groups != sd->groups->next)
5606			return 0;
5607	}
5608
5609	/* Following flags don't use groups */
5610	if (sd->flags & (SD_WAKE_AFFINE))
5611		return 0;
5612
5613	return 1;
5614}
5615
5616static int
5617sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5618{
5619	unsigned long cflags = sd->flags, pflags = parent->flags;
5620
5621	if (sd_degenerate(parent))
5622		return 1;
5623
5624	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5625		return 0;
5626
5627	/* Flags needing groups don't count if only 1 group in parent */
5628	if (parent->groups == parent->groups->next) {
5629		pflags &= ~(SD_LOAD_BALANCE |
5630				SD_BALANCE_NEWIDLE |
5631				SD_BALANCE_FORK |
5632				SD_BALANCE_EXEC |
5633				SD_SHARE_CPUPOWER |
5634				SD_SHARE_PKG_RESOURCES);
5635		if (nr_node_ids == 1)
5636			pflags &= ~SD_SERIALIZE;
5637	}
5638	if (~cflags & pflags)
5639		return 0;
5640
5641	return 1;
5642}
5643
5644static void free_rootdomain(struct rcu_head *rcu)
5645{
5646	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5647
5648	cpupri_cleanup(&rd->cpupri);
5649	free_cpumask_var(rd->rto_mask);
5650	free_cpumask_var(rd->online);
5651	free_cpumask_var(rd->span);
5652	kfree(rd);
5653}
5654
5655static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5656{
5657	struct root_domain *old_rd = NULL;
5658	unsigned long flags;
5659
5660	raw_spin_lock_irqsave(&rq->lock, flags);
5661
5662	if (rq->rd) {
5663		old_rd = rq->rd;
5664
5665		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5666			set_rq_offline(rq);
5667
5668		cpumask_clear_cpu(rq->cpu, old_rd->span);
5669
5670		/*
5671		 * If we dont want to free the old_rt yet then
5672		 * set old_rd to NULL to skip the freeing later
5673		 * in this function:
5674		 */
5675		if (!atomic_dec_and_test(&old_rd->refcount))
5676			old_rd = NULL;
5677	}
5678
5679	atomic_inc(&rd->refcount);
5680	rq->rd = rd;
5681
5682	cpumask_set_cpu(rq->cpu, rd->span);
5683	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5684		set_rq_online(rq);
5685
5686	raw_spin_unlock_irqrestore(&rq->lock, flags);
5687
5688	if (old_rd)
5689		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5690}
5691
5692static int init_rootdomain(struct root_domain *rd)
5693{
5694	memset(rd, 0, sizeof(*rd));
5695
5696	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5697		goto out;
5698	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5699		goto free_span;
5700	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5701		goto free_online;
5702
5703	if (cpupri_init(&rd->cpupri) != 0)
5704		goto free_rto_mask;
5705	return 0;
5706
5707free_rto_mask:
5708	free_cpumask_var(rd->rto_mask);
5709free_online:
5710	free_cpumask_var(rd->online);
5711free_span:
5712	free_cpumask_var(rd->span);
5713out:
5714	return -ENOMEM;
5715}
5716
5717/*
5718 * By default the system creates a single root-domain with all cpus as
5719 * members (mimicking the global state we have today).
5720 */
5721struct root_domain def_root_domain;
5722
5723static void init_defrootdomain(void)
5724{
5725	init_rootdomain(&def_root_domain);
5726
5727	atomic_set(&def_root_domain.refcount, 1);
5728}
5729
5730static struct root_domain *alloc_rootdomain(void)
5731{
5732	struct root_domain *rd;
5733
5734	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5735	if (!rd)
5736		return NULL;
5737
5738	if (init_rootdomain(rd) != 0) {
5739		kfree(rd);
5740		return NULL;
5741	}
5742
5743	return rd;
5744}
5745
5746static void free_sched_groups(struct sched_group *sg, int free_sgp)
5747{
5748	struct sched_group *tmp, *first;
5749
5750	if (!sg)
5751		return;
5752
5753	first = sg;
5754	do {
5755		tmp = sg->next;
5756
5757		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5758			kfree(sg->sgp);
5759
5760		kfree(sg);
5761		sg = tmp;
5762	} while (sg != first);
5763}
5764
5765static void free_sched_domain(struct rcu_head *rcu)
5766{
5767	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5768
5769	/*
5770	 * If its an overlapping domain it has private groups, iterate and
5771	 * nuke them all.
5772	 */
5773	if (sd->flags & SD_OVERLAP) {
5774		free_sched_groups(sd->groups, 1);
5775	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5776		kfree(sd->groups->sgp);
5777		kfree(sd->groups);
5778	}
5779	kfree(sd);
5780}
5781
5782static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5783{
5784	call_rcu(&sd->rcu, free_sched_domain);
5785}
5786
5787static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5788{
5789	for (; sd; sd = sd->parent)
5790		destroy_sched_domain(sd, cpu);
5791}
5792
5793/*
5794 * Keep a special pointer to the highest sched_domain that has
5795 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5796 * allows us to avoid some pointer chasing select_idle_sibling().
5797 *
5798 * Also keep a unique ID per domain (we use the first cpu number in
5799 * the cpumask of the domain), this allows us to quickly tell if
5800 * two cpus are in the same cache domain, see cpus_share_cache().
5801 */
5802DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5803DEFINE_PER_CPU(int, sd_llc_id);
5804
5805static void update_top_cache_domain(int cpu)
5806{
5807	struct sched_domain *sd;
5808	int id = cpu;
5809
5810	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5811	if (sd)
5812		id = cpumask_first(sched_domain_span(sd));
5813
5814	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5815	per_cpu(sd_llc_id, cpu) = id;
5816}
5817
5818/*
5819 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5820 * hold the hotplug lock.
5821 */
5822static void
5823cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5824{
5825	struct rq *rq = cpu_rq(cpu);
5826	struct sched_domain *tmp;
5827
5828	/* Remove the sched domains which do not contribute to scheduling. */
5829	for (tmp = sd; tmp; ) {
5830		struct sched_domain *parent = tmp->parent;
5831		if (!parent)
5832			break;
5833
5834		if (sd_parent_degenerate(tmp, parent)) {
5835			tmp->parent = parent->parent;
5836			if (parent->parent)
5837				parent->parent->child = tmp;
5838			destroy_sched_domain(parent, cpu);
5839		} else
5840			tmp = tmp->parent;
5841	}
5842
5843	if (sd && sd_degenerate(sd)) {
5844		tmp = sd;
5845		sd = sd->parent;
5846		destroy_sched_domain(tmp, cpu);
5847		if (sd)
5848			sd->child = NULL;
5849	}
5850
5851	sched_domain_debug(sd, cpu);
5852
5853	rq_attach_root(rq, rd);
5854	tmp = rq->sd;
5855	rcu_assign_pointer(rq->sd, sd);
5856	destroy_sched_domains(tmp, cpu);
5857
5858	update_top_cache_domain(cpu);
5859}
5860
5861/* cpus with isolated domains */
5862static cpumask_var_t cpu_isolated_map;
5863
5864/* Setup the mask of cpus configured for isolated domains */
5865static int __init isolated_cpu_setup(char *str)
5866{
5867	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5868	cpulist_parse(str, cpu_isolated_map);
5869	return 1;
5870}
5871
5872__setup("isolcpus=", isolated_cpu_setup);
5873
5874#ifdef CONFIG_NUMA
5875
5876/**
5877 * find_next_best_node - find the next node to include in a sched_domain
5878 * @node: node whose sched_domain we're building
5879 * @used_nodes: nodes already in the sched_domain
5880 *
5881 * Find the next node to include in a given scheduling domain. Simply
5882 * finds the closest node not already in the @used_nodes map.
5883 *
5884 * Should use nodemask_t.
5885 */
5886static int find_next_best_node(int node, nodemask_t *used_nodes)
5887{
5888	int i, n, val, min_val, best_node = -1;
5889
5890	min_val = INT_MAX;
5891
5892	for (i = 0; i < nr_node_ids; i++) {
5893		/* Start at @node */
5894		n = (node + i) % nr_node_ids;
5895
5896		if (!nr_cpus_node(n))
5897			continue;
5898
5899		/* Skip already used nodes */
5900		if (node_isset(n, *used_nodes))
5901			continue;
5902
5903		/* Simple min distance search */
5904		val = node_distance(node, n);
5905
5906		if (val < min_val) {
5907			min_val = val;
5908			best_node = n;
5909		}
5910	}
5911
5912	if (best_node != -1)
5913		node_set(best_node, *used_nodes);
5914	return best_node;
5915}
5916
5917/**
5918 * sched_domain_node_span - get a cpumask for a node's sched_domain
5919 * @node: node whose cpumask we're constructing
5920 * @span: resulting cpumask
5921 *
5922 * Given a node, construct a good cpumask for its sched_domain to span. It
5923 * should be one that prevents unnecessary balancing, but also spreads tasks
5924 * out optimally.
5925 */
5926static void sched_domain_node_span(int node, struct cpumask *span)
5927{
5928	nodemask_t used_nodes;
5929	int i;
5930
5931	cpumask_clear(span);
5932	nodes_clear(used_nodes);
5933
5934	cpumask_or(span, span, cpumask_of_node(node));
5935	node_set(node, used_nodes);
5936
5937	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5938		int next_node = find_next_best_node(node, &used_nodes);
5939		if (next_node < 0)
5940			break;
5941		cpumask_or(span, span, cpumask_of_node(next_node));
5942	}
5943}
5944
5945static const struct cpumask *cpu_node_mask(int cpu)
5946{
5947	lockdep_assert_held(&sched_domains_mutex);
5948
5949	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5950
5951	return sched_domains_tmpmask;
5952}
5953
5954static const struct cpumask *cpu_allnodes_mask(int cpu)
5955{
5956	return cpu_possible_mask;
5957}
5958#endif /* CONFIG_NUMA */
5959
5960static const struct cpumask *cpu_cpu_mask(int cpu)
5961{
5962	return cpumask_of_node(cpu_to_node(cpu));
5963}
5964
5965int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5966
5967struct sd_data {
5968	struct sched_domain **__percpu sd;
5969	struct sched_group **__percpu sg;
5970	struct sched_group_power **__percpu sgp;
5971};
5972
5973struct s_data {
5974	struct sched_domain ** __percpu sd;
5975	struct root_domain	*rd;
5976};
5977
5978enum s_alloc {
5979	sa_rootdomain,
5980	sa_sd,
5981	sa_sd_storage,
5982	sa_none,
5983};
5984
5985struct sched_domain_topology_level;
5986
5987typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5988typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5989
5990#define SDTL_OVERLAP	0x01
5991
5992struct sched_domain_topology_level {
5993	sched_domain_init_f init;
5994	sched_domain_mask_f mask;
5995	int		    flags;
5996	struct sd_data      data;
5997};
5998
5999static int
6000build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6001{
6002	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6003	const struct cpumask *span = sched_domain_span(sd);
6004	struct cpumask *covered = sched_domains_tmpmask;
6005	struct sd_data *sdd = sd->private;
6006	struct sched_domain *child;
6007	int i;
6008
6009	cpumask_clear(covered);
6010
6011	for_each_cpu(i, span) {
6012		struct cpumask *sg_span;
6013
6014		if (cpumask_test_cpu(i, covered))
6015			continue;
6016
6017		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6018				GFP_KERNEL, cpu_to_node(cpu));
6019
6020		if (!sg)
6021			goto fail;
6022
6023		sg_span = sched_group_cpus(sg);
6024
6025		child = *per_cpu_ptr(sdd->sd, i);
6026		if (child->child) {
6027			child = child->child;
6028			cpumask_copy(sg_span, sched_domain_span(child));
6029		} else
6030			cpumask_set_cpu(i, sg_span);
6031
6032		cpumask_or(covered, covered, sg_span);
6033
6034		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6035		atomic_inc(&sg->sgp->ref);
6036
6037		if (cpumask_test_cpu(cpu, sg_span))
6038			groups = sg;
6039
6040		if (!first)
6041			first = sg;
6042		if (last)
6043			last->next = sg;
6044		last = sg;
6045		last->next = first;
6046	}
6047	sd->groups = groups;
6048
6049	return 0;
6050
6051fail:
6052	free_sched_groups(first, 0);
6053
6054	return -ENOMEM;
6055}
6056
6057static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6058{
6059	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6060	struct sched_domain *child = sd->child;
6061
6062	if (child)
6063		cpu = cpumask_first(sched_domain_span(child));
6064
6065	if (sg) {
6066		*sg = *per_cpu_ptr(sdd->sg, cpu);
6067		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6068		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6069	}
6070
6071	return cpu;
6072}
6073
6074/*
6075 * build_sched_groups will build a circular linked list of the groups
6076 * covered by the given span, and will set each group's ->cpumask correctly,
6077 * and ->cpu_power to 0.
6078 *
6079 * Assumes the sched_domain tree is fully constructed
6080 */
6081static int
6082build_sched_groups(struct sched_domain *sd, int cpu)
6083{
6084	struct sched_group *first = NULL, *last = NULL;
6085	struct sd_data *sdd = sd->private;
6086	const struct cpumask *span = sched_domain_span(sd);
6087	struct cpumask *covered;
6088	int i;
6089
6090	get_group(cpu, sdd, &sd->groups);
6091	atomic_inc(&sd->groups->ref);
6092
6093	if (cpu != cpumask_first(sched_domain_span(sd)))
6094		return 0;
6095
6096	lockdep_assert_held(&sched_domains_mutex);
6097	covered = sched_domains_tmpmask;
6098
6099	cpumask_clear(covered);
6100
6101	for_each_cpu(i, span) {
6102		struct sched_group *sg;
6103		int group = get_group(i, sdd, &sg);
6104		int j;
6105
6106		if (cpumask_test_cpu(i, covered))
6107			continue;
6108
6109		cpumask_clear(sched_group_cpus(sg));
6110		sg->sgp->power = 0;
6111
6112		for_each_cpu(j, span) {
6113			if (get_group(j, sdd, NULL) != group)
6114				continue;
6115
6116			cpumask_set_cpu(j, covered);
6117			cpumask_set_cpu(j, sched_group_cpus(sg));
6118		}
6119
6120		if (!first)
6121			first = sg;
6122		if (last)
6123			last->next = sg;
6124		last = sg;
6125	}
6126	last->next = first;
6127
6128	return 0;
6129}
6130
6131/*
6132 * Initialize sched groups cpu_power.
6133 *
6134 * cpu_power indicates the capacity of sched group, which is used while
6135 * distributing the load between different sched groups in a sched domain.
6136 * Typically cpu_power for all the groups in a sched domain will be same unless
6137 * there are asymmetries in the topology. If there are asymmetries, group
6138 * having more cpu_power will pickup more load compared to the group having
6139 * less cpu_power.
6140 */
6141static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6142{
6143	struct sched_group *sg = sd->groups;
6144
6145	WARN_ON(!sd || !sg);
6146
6147	do {
6148		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6149		sg = sg->next;
6150	} while (sg != sd->groups);
6151
6152	if (cpu != group_first_cpu(sg))
6153		return;
6154
6155	update_group_power(sd, cpu);
6156	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6157}
6158
6159int __weak arch_sd_sibling_asym_packing(void)
6160{
6161       return 0*SD_ASYM_PACKING;
6162}
6163
6164/*
6165 * Initializers for schedule domains
6166 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6167 */
6168
6169#ifdef CONFIG_SCHED_DEBUG
6170# define SD_INIT_NAME(sd, type)		sd->name = #type
6171#else
6172# define SD_INIT_NAME(sd, type)		do { } while (0)
6173#endif
6174
6175#define SD_INIT_FUNC(type)						\
6176static noinline struct sched_domain *					\
6177sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
6178{									\
6179	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
6180	*sd = SD_##type##_INIT;						\
6181	SD_INIT_NAME(sd, type);						\
6182	sd->private = &tl->data;					\
6183	return sd;							\
6184}
6185
6186SD_INIT_FUNC(CPU)
6187#ifdef CONFIG_NUMA
6188 SD_INIT_FUNC(ALLNODES)
6189 SD_INIT_FUNC(NODE)
6190#endif
6191#ifdef CONFIG_SCHED_SMT
6192 SD_INIT_FUNC(SIBLING)
6193#endif
6194#ifdef CONFIG_SCHED_MC
6195 SD_INIT_FUNC(MC)
6196#endif
6197#ifdef CONFIG_SCHED_BOOK
6198 SD_INIT_FUNC(BOOK)
6199#endif
6200
6201static int default_relax_domain_level = -1;
6202int sched_domain_level_max;
6203
6204static int __init setup_relax_domain_level(char *str)
6205{
6206	unsigned long val;
6207
6208	val = simple_strtoul(str, NULL, 0);
6209	if (val < sched_domain_level_max)
6210		default_relax_domain_level = val;
6211
6212	return 1;
6213}
6214__setup("relax_domain_level=", setup_relax_domain_level);
6215
6216static void set_domain_attribute(struct sched_domain *sd,
6217				 struct sched_domain_attr *attr)
6218{
6219	int request;
6220
6221	if (!attr || attr->relax_domain_level < 0) {
6222		if (default_relax_domain_level < 0)
6223			return;
6224		else
6225			request = default_relax_domain_level;
6226	} else
6227		request = attr->relax_domain_level;
6228	if (request < sd->level) {
6229		/* turn off idle balance on this domain */
6230		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6231	} else {
6232		/* turn on idle balance on this domain */
6233		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6234	}
6235}
6236
6237static void __sdt_free(const struct cpumask *cpu_map);
6238static int __sdt_alloc(const struct cpumask *cpu_map);
6239
6240static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6241				 const struct cpumask *cpu_map)
6242{
6243	switch (what) {
6244	case sa_rootdomain:
6245		if (!atomic_read(&d->rd->refcount))
6246			free_rootdomain(&d->rd->rcu); /* fall through */
6247	case sa_sd:
6248		free_percpu(d->sd); /* fall through */
6249	case sa_sd_storage:
6250		__sdt_free(cpu_map); /* fall through */
6251	case sa_none:
6252		break;
6253	}
6254}
6255
6256static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6257						   const struct cpumask *cpu_map)
6258{
6259	memset(d, 0, sizeof(*d));
6260
6261	if (__sdt_alloc(cpu_map))
6262		return sa_sd_storage;
6263	d->sd = alloc_percpu(struct sched_domain *);
6264	if (!d->sd)
6265		return sa_sd_storage;
6266	d->rd = alloc_rootdomain();
6267	if (!d->rd)
6268		return sa_sd;
6269	return sa_rootdomain;
6270}
6271
6272/*
6273 * NULL the sd_data elements we've used to build the sched_domain and
6274 * sched_group structure so that the subsequent __free_domain_allocs()
6275 * will not free the data we're using.
6276 */
6277static void claim_allocations(int cpu, struct sched_domain *sd)
6278{
6279	struct sd_data *sdd = sd->private;
6280
6281	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6282	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6283
6284	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6285		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6286
6287	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6288		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6289}
6290
6291#ifdef CONFIG_SCHED_SMT
6292static const struct cpumask *cpu_smt_mask(int cpu)
6293{
6294	return topology_thread_cpumask(cpu);
6295}
6296#endif
6297
6298/*
6299 * Topology list, bottom-up.
6300 */
6301static struct sched_domain_topology_level default_topology[] = {
6302#ifdef CONFIG_SCHED_SMT
6303	{ sd_init_SIBLING, cpu_smt_mask, },
6304#endif
6305#ifdef CONFIG_SCHED_MC
6306	{ sd_init_MC, cpu_coregroup_mask, },
6307#endif
6308#ifdef CONFIG_SCHED_BOOK
6309	{ sd_init_BOOK, cpu_book_mask, },
6310#endif
6311	{ sd_init_CPU, cpu_cpu_mask, },
6312#ifdef CONFIG_NUMA
6313	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6314	{ sd_init_ALLNODES, cpu_allnodes_mask, },
6315#endif
6316	{ NULL, },
6317};
6318
6319static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6320
6321static int __sdt_alloc(const struct cpumask *cpu_map)
6322{
6323	struct sched_domain_topology_level *tl;
6324	int j;
6325
6326	for (tl = sched_domain_topology; tl->init; tl++) {
6327		struct sd_data *sdd = &tl->data;
6328
6329		sdd->sd = alloc_percpu(struct sched_domain *);
6330		if (!sdd->sd)
6331			return -ENOMEM;
6332
6333		sdd->sg = alloc_percpu(struct sched_group *);
6334		if (!sdd->sg)
6335			return -ENOMEM;
6336
6337		sdd->sgp = alloc_percpu(struct sched_group_power *);
6338		if (!sdd->sgp)
6339			return -ENOMEM;
6340
6341		for_each_cpu(j, cpu_map) {
6342			struct sched_domain *sd;
6343			struct sched_group *sg;
6344			struct sched_group_power *sgp;
6345
6346		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6347					GFP_KERNEL, cpu_to_node(j));
6348			if (!sd)
6349				return -ENOMEM;
6350
6351			*per_cpu_ptr(sdd->sd, j) = sd;
6352
6353			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6354					GFP_KERNEL, cpu_to_node(j));
6355			if (!sg)
6356				return -ENOMEM;
6357
6358			*per_cpu_ptr(sdd->sg, j) = sg;
6359
6360			sgp = kzalloc_node(sizeof(struct sched_group_power),
6361					GFP_KERNEL, cpu_to_node(j));
6362			if (!sgp)
6363				return -ENOMEM;
6364
6365			*per_cpu_ptr(sdd->sgp, j) = sgp;
6366		}
6367	}
6368
6369	return 0;
6370}
6371
6372static void __sdt_free(const struct cpumask *cpu_map)
6373{
6374	struct sched_domain_topology_level *tl;
6375	int j;
6376
6377	for (tl = sched_domain_topology; tl->init; tl++) {
6378		struct sd_data *sdd = &tl->data;
6379
6380		for_each_cpu(j, cpu_map) {
6381			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6382			if (sd && (sd->flags & SD_OVERLAP))
6383				free_sched_groups(sd->groups, 0);
6384			kfree(*per_cpu_ptr(sdd->sd, j));
6385			kfree(*per_cpu_ptr(sdd->sg, j));
6386			kfree(*per_cpu_ptr(sdd->sgp, j));
6387		}
6388		free_percpu(sdd->sd);
6389		free_percpu(sdd->sg);
6390		free_percpu(sdd->sgp);
6391	}
6392}
6393
6394struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6395		struct s_data *d, const struct cpumask *cpu_map,
6396		struct sched_domain_attr *attr, struct sched_domain *child,
6397		int cpu)
6398{
6399	struct sched_domain *sd = tl->init(tl, cpu);
6400	if (!sd)
6401		return child;
6402
6403	set_domain_attribute(sd, attr);
6404	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6405	if (child) {
6406		sd->level = child->level + 1;
6407		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6408		child->parent = sd;
6409	}
6410	sd->child = child;
6411
6412	return sd;
6413}
6414
6415/*
6416 * Build sched domains for a given set of cpus and attach the sched domains
6417 * to the individual cpus
6418 */
6419static int build_sched_domains(const struct cpumask *cpu_map,
6420			       struct sched_domain_attr *attr)
6421{
6422	enum s_alloc alloc_state = sa_none;
6423	struct sched_domain *sd;
6424	struct s_data d;
6425	int i, ret = -ENOMEM;
6426
6427	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6428	if (alloc_state != sa_rootdomain)
6429		goto error;
6430
6431	/* Set up domains for cpus specified by the cpu_map. */
6432	for_each_cpu(i, cpu_map) {
6433		struct sched_domain_topology_level *tl;
6434
6435		sd = NULL;
6436		for (tl = sched_domain_topology; tl->init; tl++) {
6437			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6438			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6439				sd->flags |= SD_OVERLAP;
6440			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6441				break;
6442		}
6443
6444		while (sd->child)
6445			sd = sd->child;
6446
6447		*per_cpu_ptr(d.sd, i) = sd;
6448	}
6449
6450	/* Build the groups for the domains */
6451	for_each_cpu(i, cpu_map) {
6452		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6453			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6454			if (sd->flags & SD_OVERLAP) {
6455				if (build_overlap_sched_groups(sd, i))
6456					goto error;
6457			} else {
6458				if (build_sched_groups(sd, i))
6459					goto error;
6460			}
6461		}
6462	}
6463
6464	/* Calculate CPU power for physical packages and nodes */
6465	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6466		if (!cpumask_test_cpu(i, cpu_map))
6467			continue;
6468
6469		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6470			claim_allocations(i, sd);
6471			init_sched_groups_power(i, sd);
6472		}
6473	}
6474
6475	/* Attach the domains */
6476	rcu_read_lock();
6477	for_each_cpu(i, cpu_map) {
6478		sd = *per_cpu_ptr(d.sd, i);
6479		cpu_attach_domain(sd, d.rd, i);
6480	}
6481	rcu_read_unlock();
6482
6483	ret = 0;
6484error:
6485	__free_domain_allocs(&d, alloc_state, cpu_map);
6486	return ret;
6487}
6488
6489static cpumask_var_t *doms_cur;	/* current sched domains */
6490static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6491static struct sched_domain_attr *dattr_cur;
6492				/* attribues of custom domains in 'doms_cur' */
6493
6494/*
6495 * Special case: If a kmalloc of a doms_cur partition (array of
6496 * cpumask) fails, then fallback to a single sched domain,
6497 * as determined by the single cpumask fallback_doms.
6498 */
6499static cpumask_var_t fallback_doms;
6500
6501/*
6502 * arch_update_cpu_topology lets virtualized architectures update the
6503 * cpu core maps. It is supposed to return 1 if the topology changed
6504 * or 0 if it stayed the same.
6505 */
6506int __attribute__((weak)) arch_update_cpu_topology(void)
6507{
6508	return 0;
6509}
6510
6511cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6512{
6513	int i;
6514	cpumask_var_t *doms;
6515
6516	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6517	if (!doms)
6518		return NULL;
6519	for (i = 0; i < ndoms; i++) {
6520		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6521			free_sched_domains(doms, i);
6522			return NULL;
6523		}
6524	}
6525	return doms;
6526}
6527
6528void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6529{
6530	unsigned int i;
6531	for (i = 0; i < ndoms; i++)
6532		free_cpumask_var(doms[i]);
6533	kfree(doms);
6534}
6535
6536/*
6537 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6538 * For now this just excludes isolated cpus, but could be used to
6539 * exclude other special cases in the future.
6540 */
6541static int init_sched_domains(const struct cpumask *cpu_map)
6542{
6543	int err;
6544
6545	arch_update_cpu_topology();
6546	ndoms_cur = 1;
6547	doms_cur = alloc_sched_domains(ndoms_cur);
6548	if (!doms_cur)
6549		doms_cur = &fallback_doms;
6550	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6551	dattr_cur = NULL;
6552	err = build_sched_domains(doms_cur[0], NULL);
6553	register_sched_domain_sysctl();
6554
6555	return err;
6556}
6557
6558/*
6559 * Detach sched domains from a group of cpus specified in cpu_map
6560 * These cpus will now be attached to the NULL domain
6561 */
6562static void detach_destroy_domains(const struct cpumask *cpu_map)
6563{
6564	int i;
6565
6566	rcu_read_lock();
6567	for_each_cpu(i, cpu_map)
6568		cpu_attach_domain(NULL, &def_root_domain, i);
6569	rcu_read_unlock();
6570}
6571
6572/* handle null as "default" */
6573static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6574			struct sched_domain_attr *new, int idx_new)
6575{
6576	struct sched_domain_attr tmp;
6577
6578	/* fast path */
6579	if (!new && !cur)
6580		return 1;
6581
6582	tmp = SD_ATTR_INIT;
6583	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6584			new ? (new + idx_new) : &tmp,
6585			sizeof(struct sched_domain_attr));
6586}
6587
6588/*
6589 * Partition sched domains as specified by the 'ndoms_new'
6590 * cpumasks in the array doms_new[] of cpumasks. This compares
6591 * doms_new[] to the current sched domain partitioning, doms_cur[].
6592 * It destroys each deleted domain and builds each new domain.
6593 *
6594 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6595 * The masks don't intersect (don't overlap.) We should setup one
6596 * sched domain for each mask. CPUs not in any of the cpumasks will
6597 * not be load balanced. If the same cpumask appears both in the
6598 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6599 * it as it is.
6600 *
6601 * The passed in 'doms_new' should be allocated using
6602 * alloc_sched_domains.  This routine takes ownership of it and will
6603 * free_sched_domains it when done with it. If the caller failed the
6604 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6605 * and partition_sched_domains() will fallback to the single partition
6606 * 'fallback_doms', it also forces the domains to be rebuilt.
6607 *
6608 * If doms_new == NULL it will be replaced with cpu_online_mask.
6609 * ndoms_new == 0 is a special case for destroying existing domains,
6610 * and it will not create the default domain.
6611 *
6612 * Call with hotplug lock held
6613 */
6614void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6615			     struct sched_domain_attr *dattr_new)
6616{
6617	int i, j, n;
6618	int new_topology;
6619
6620	mutex_lock(&sched_domains_mutex);
6621
6622	/* always unregister in case we don't destroy any domains */
6623	unregister_sched_domain_sysctl();
6624
6625	/* Let architecture update cpu core mappings. */
6626	new_topology = arch_update_cpu_topology();
6627
6628	n = doms_new ? ndoms_new : 0;
6629
6630	/* Destroy deleted domains */
6631	for (i = 0; i < ndoms_cur; i++) {
6632		for (j = 0; j < n && !new_topology; j++) {
6633			if (cpumask_equal(doms_cur[i], doms_new[j])
6634			    && dattrs_equal(dattr_cur, i, dattr_new, j))
6635				goto match1;
6636		}
6637		/* no match - a current sched domain not in new doms_new[] */
6638		detach_destroy_domains(doms_cur[i]);
6639match1:
6640		;
6641	}
6642
6643	if (doms_new == NULL) {
6644		ndoms_cur = 0;
6645		doms_new = &fallback_doms;
6646		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6647		WARN_ON_ONCE(dattr_new);
6648	}
6649
6650	/* Build new domains */
6651	for (i = 0; i < ndoms_new; i++) {
6652		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6653			if (cpumask_equal(doms_new[i], doms_cur[j])
6654			    && dattrs_equal(dattr_new, i, dattr_cur, j))
6655				goto match2;
6656		}
6657		/* no match - add a new doms_new */
6658		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6659match2:
6660		;
6661	}
6662
6663	/* Remember the new sched domains */
6664	if (doms_cur != &fallback_doms)
6665		free_sched_domains(doms_cur, ndoms_cur);
6666	kfree(dattr_cur);	/* kfree(NULL) is safe */
6667	doms_cur = doms_new;
6668	dattr_cur = dattr_new;
6669	ndoms_cur = ndoms_new;
6670
6671	register_sched_domain_sysctl();
6672
6673	mutex_unlock(&sched_domains_mutex);
6674}
6675
6676#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6677static void reinit_sched_domains(void)
6678{
6679	get_online_cpus();
6680
6681	/* Destroy domains first to force the rebuild */
6682	partition_sched_domains(0, NULL, NULL);
6683
6684	rebuild_sched_domains();
6685	put_online_cpus();
6686}
6687
6688static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6689{
6690	unsigned int level = 0;
6691
6692	if (sscanf(buf, "%u", &level) != 1)
6693		return -EINVAL;
6694
6695	/*
6696	 * level is always be positive so don't check for
6697	 * level < POWERSAVINGS_BALANCE_NONE which is 0
6698	 * What happens on 0 or 1 byte write,
6699	 * need to check for count as well?
6700	 */
6701
6702	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6703		return -EINVAL;
6704
6705	if (smt)
6706		sched_smt_power_savings = level;
6707	else
6708		sched_mc_power_savings = level;
6709
6710	reinit_sched_domains();
6711
6712	return count;
6713}
6714
6715#ifdef CONFIG_SCHED_MC
6716static ssize_t sched_mc_power_savings_show(struct device *dev,
6717					   struct device_attribute *attr,
6718					   char *buf)
6719{
6720	return sprintf(buf, "%u\n", sched_mc_power_savings);
6721}
6722static ssize_t sched_mc_power_savings_store(struct device *dev,
6723					    struct device_attribute *attr,
6724					    const char *buf, size_t count)
6725{
6726	return sched_power_savings_store(buf, count, 0);
6727}
6728static DEVICE_ATTR(sched_mc_power_savings, 0644,
6729		   sched_mc_power_savings_show,
6730		   sched_mc_power_savings_store);
6731#endif
6732
6733#ifdef CONFIG_SCHED_SMT
6734static ssize_t sched_smt_power_savings_show(struct device *dev,
6735					    struct device_attribute *attr,
6736					    char *buf)
6737{
6738	return sprintf(buf, "%u\n", sched_smt_power_savings);
6739}
6740static ssize_t sched_smt_power_savings_store(struct device *dev,
6741					    struct device_attribute *attr,
6742					     const char *buf, size_t count)
6743{
6744	return sched_power_savings_store(buf, count, 1);
6745}
6746static DEVICE_ATTR(sched_smt_power_savings, 0644,
6747		   sched_smt_power_savings_show,
6748		   sched_smt_power_savings_store);
6749#endif
6750
6751int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6752{
6753	int err = 0;
6754
6755#ifdef CONFIG_SCHED_SMT
6756	if (smt_capable())
6757		err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6758#endif
6759#ifdef CONFIG_SCHED_MC
6760	if (!err && mc_capable())
6761		err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6762#endif
6763	return err;
6764}
6765#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6766
6767/*
6768 * Update cpusets according to cpu_active mask.  If cpusets are
6769 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6770 * around partition_sched_domains().
6771 */
6772static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6773			     void *hcpu)
6774{
6775	switch (action & ~CPU_TASKS_FROZEN) {
6776	case CPU_ONLINE:
6777	case CPU_DOWN_FAILED:
6778		cpuset_update_active_cpus();
6779		return NOTIFY_OK;
6780	default:
6781		return NOTIFY_DONE;
6782	}
6783}
6784
6785static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6786			       void *hcpu)
6787{
6788	switch (action & ~CPU_TASKS_FROZEN) {
6789	case CPU_DOWN_PREPARE:
6790		cpuset_update_active_cpus();
6791		return NOTIFY_OK;
6792	default:
6793		return NOTIFY_DONE;
6794	}
6795}
6796
6797void __init sched_init_smp(void)
6798{
6799	cpumask_var_t non_isolated_cpus;
6800
6801	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6802	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6803
6804	get_online_cpus();
6805	mutex_lock(&sched_domains_mutex);
6806	init_sched_domains(cpu_active_mask);
6807	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6808	if (cpumask_empty(non_isolated_cpus))
6809		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6810	mutex_unlock(&sched_domains_mutex);
6811	put_online_cpus();
6812
6813	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6814	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6815
6816	/* RT runtime code needs to handle some hotplug events */
6817	hotcpu_notifier(update_runtime, 0);
6818
6819	init_hrtick();
6820
6821	/* Move init over to a non-isolated CPU */
6822	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6823		BUG();
6824	sched_init_granularity();
6825	free_cpumask_var(non_isolated_cpus);
6826
6827	init_sched_rt_class();
6828}
6829#else
6830void __init sched_init_smp(void)
6831{
6832	sched_init_granularity();
6833}
6834#endif /* CONFIG_SMP */
6835
6836const_debug unsigned int sysctl_timer_migration = 1;
6837
6838int in_sched_functions(unsigned long addr)
6839{
6840	return in_lock_functions(addr) ||
6841		(addr >= (unsigned long)__sched_text_start
6842		&& addr < (unsigned long)__sched_text_end);
6843}
6844
6845#ifdef CONFIG_CGROUP_SCHED
6846struct task_group root_task_group;
6847#endif
6848
6849DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6850
6851void __init sched_init(void)
6852{
6853	int i, j;
6854	unsigned long alloc_size = 0, ptr;
6855
6856#ifdef CONFIG_FAIR_GROUP_SCHED
6857	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6858#endif
6859#ifdef CONFIG_RT_GROUP_SCHED
6860	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6861#endif
6862#ifdef CONFIG_CPUMASK_OFFSTACK
6863	alloc_size += num_possible_cpus() * cpumask_size();
6864#endif
6865	if (alloc_size) {
6866		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6867
6868#ifdef CONFIG_FAIR_GROUP_SCHED
6869		root_task_group.se = (struct sched_entity **)ptr;
6870		ptr += nr_cpu_ids * sizeof(void **);
6871
6872		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6873		ptr += nr_cpu_ids * sizeof(void **);
6874
6875#endif /* CONFIG_FAIR_GROUP_SCHED */
6876#ifdef CONFIG_RT_GROUP_SCHED
6877		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6878		ptr += nr_cpu_ids * sizeof(void **);
6879
6880		root_task_group.rt_rq = (struct rt_rq **)ptr;
6881		ptr += nr_cpu_ids * sizeof(void **);
6882
6883#endif /* CONFIG_RT_GROUP_SCHED */
6884#ifdef CONFIG_CPUMASK_OFFSTACK
6885		for_each_possible_cpu(i) {
6886			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6887			ptr += cpumask_size();
6888		}
6889#endif /* CONFIG_CPUMASK_OFFSTACK */
6890	}
6891
6892#ifdef CONFIG_SMP
6893	init_defrootdomain();
6894#endif
6895
6896	init_rt_bandwidth(&def_rt_bandwidth,
6897			global_rt_period(), global_rt_runtime());
6898
6899#ifdef CONFIG_RT_GROUP_SCHED
6900	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6901			global_rt_period(), global_rt_runtime());
6902#endif /* CONFIG_RT_GROUP_SCHED */
6903
6904#ifdef CONFIG_CGROUP_SCHED
6905	list_add(&root_task_group.list, &task_groups);
6906	INIT_LIST_HEAD(&root_task_group.children);
6907	INIT_LIST_HEAD(&root_task_group.siblings);
6908	autogroup_init(&init_task);
6909
6910#endif /* CONFIG_CGROUP_SCHED */
6911
6912#ifdef CONFIG_CGROUP_CPUACCT
6913	root_cpuacct.cpustat = &kernel_cpustat;
6914	root_cpuacct.cpuusage = alloc_percpu(u64);
6915	/* Too early, not expected to fail */
6916	BUG_ON(!root_cpuacct.cpuusage);
6917#endif
6918	for_each_possible_cpu(i) {
6919		struct rq *rq;
6920
6921		rq = cpu_rq(i);
6922		raw_spin_lock_init(&rq->lock);
6923		rq->nr_running = 0;
6924		rq->calc_load_active = 0;
6925		rq->calc_load_update = jiffies + LOAD_FREQ;
6926		init_cfs_rq(&rq->cfs);
6927		init_rt_rq(&rq->rt, rq);
6928#ifdef CONFIG_FAIR_GROUP_SCHED
6929		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6930		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6931		/*
6932		 * How much cpu bandwidth does root_task_group get?
6933		 *
6934		 * In case of task-groups formed thr' the cgroup filesystem, it
6935		 * gets 100% of the cpu resources in the system. This overall
6936		 * system cpu resource is divided among the tasks of
6937		 * root_task_group and its child task-groups in a fair manner,
6938		 * based on each entity's (task or task-group's) weight
6939		 * (se->load.weight).
6940		 *
6941		 * In other words, if root_task_group has 10 tasks of weight
6942		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6943		 * then A0's share of the cpu resource is:
6944		 *
6945		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6946		 *
6947		 * We achieve this by letting root_task_group's tasks sit
6948		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6949		 */
6950		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6951		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6952#endif /* CONFIG_FAIR_GROUP_SCHED */
6953
6954		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6955#ifdef CONFIG_RT_GROUP_SCHED
6956		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6957		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6958#endif
6959
6960		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6961			rq->cpu_load[j] = 0;
6962
6963		rq->last_load_update_tick = jiffies;
6964
6965#ifdef CONFIG_SMP
6966		rq->sd = NULL;
6967		rq->rd = NULL;
6968		rq->cpu_power = SCHED_POWER_SCALE;
6969		rq->post_schedule = 0;
6970		rq->active_balance = 0;
6971		rq->next_balance = jiffies;
6972		rq->push_cpu = 0;
6973		rq->cpu = i;
6974		rq->online = 0;
6975		rq->idle_stamp = 0;
6976		rq->avg_idle = 2*sysctl_sched_migration_cost;
6977
6978		INIT_LIST_HEAD(&rq->cfs_tasks);
6979
6980		rq_attach_root(rq, &def_root_domain);
6981#ifdef CONFIG_NO_HZ
6982		rq->nohz_flags = 0;
6983#endif
6984#endif
6985		init_rq_hrtick(rq);
6986		atomic_set(&rq->nr_iowait, 0);
6987	}
6988
6989	set_load_weight(&init_task);
6990
6991#ifdef CONFIG_PREEMPT_NOTIFIERS
6992	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6993#endif
6994
6995#ifdef CONFIG_RT_MUTEXES
6996	plist_head_init(&init_task.pi_waiters);
6997#endif
6998
6999	/*
7000	 * The boot idle thread does lazy MMU switching as well:
7001	 */
7002	atomic_inc(&init_mm.mm_count);
7003	enter_lazy_tlb(&init_mm, current);
7004
7005	/*
7006	 * Make us the idle thread. Technically, schedule() should not be
7007	 * called from this thread, however somewhere below it might be,
7008	 * but because we are the idle thread, we just pick up running again
7009	 * when this runqueue becomes "idle".
7010	 */
7011	init_idle(current, smp_processor_id());
7012
7013	calc_load_update = jiffies + LOAD_FREQ;
7014
7015	/*
7016	 * During early bootup we pretend to be a normal task:
7017	 */
7018	current->sched_class = &fair_sched_class;
7019
7020#ifdef CONFIG_SMP
7021	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7022	/* May be allocated at isolcpus cmdline parse time */
7023	if (cpu_isolated_map == NULL)
7024		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7025#endif
7026	init_sched_fair_class();
7027
7028	scheduler_running = 1;
7029}
7030
7031#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7032static inline int preempt_count_equals(int preempt_offset)
7033{
7034	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7035
7036	return (nested == preempt_offset);
7037}
7038
7039void __might_sleep(const char *file, int line, int preempt_offset)
7040{
7041	static unsigned long prev_jiffy;	/* ratelimiting */
7042
7043	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7044	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7045	    system_state != SYSTEM_RUNNING || oops_in_progress)
7046		return;
7047	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7048		return;
7049	prev_jiffy = jiffies;
7050
7051	printk(KERN_ERR
7052		"BUG: sleeping function called from invalid context at %s:%d\n",
7053			file, line);
7054	printk(KERN_ERR
7055		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7056			in_atomic(), irqs_disabled(),
7057			current->pid, current->comm);
7058
7059	debug_show_held_locks(current);
7060	if (irqs_disabled())
7061		print_irqtrace_events(current);
7062	dump_stack();
7063}
7064EXPORT_SYMBOL(__might_sleep);
7065#endif
7066
7067#ifdef CONFIG_MAGIC_SYSRQ
7068static void normalize_task(struct rq *rq, struct task_struct *p)
7069{
7070	const struct sched_class *prev_class = p->sched_class;
7071	int old_prio = p->prio;
7072	int on_rq;
7073
7074	on_rq = p->on_rq;
7075	if (on_rq)
7076		dequeue_task(rq, p, 0);
7077	__setscheduler(rq, p, SCHED_NORMAL, 0);
7078	if (on_rq) {
7079		enqueue_task(rq, p, 0);
7080		resched_task(rq->curr);
7081	}
7082
7083	check_class_changed(rq, p, prev_class, old_prio);
7084}
7085
7086void normalize_rt_tasks(void)
7087{
7088	struct task_struct *g, *p;
7089	unsigned long flags;
7090	struct rq *rq;
7091
7092	read_lock_irqsave(&tasklist_lock, flags);
7093	do_each_thread(g, p) {
7094		/*
7095		 * Only normalize user tasks:
7096		 */
7097		if (!p->mm)
7098			continue;
7099
7100		p->se.exec_start		= 0;
7101#ifdef CONFIG_SCHEDSTATS
7102		p->se.statistics.wait_start	= 0;
7103		p->se.statistics.sleep_start	= 0;
7104		p->se.statistics.block_start	= 0;
7105#endif
7106
7107		if (!rt_task(p)) {
7108			/*
7109			 * Renice negative nice level userspace
7110			 * tasks back to 0:
7111			 */
7112			if (TASK_NICE(p) < 0 && p->mm)
7113				set_user_nice(p, 0);
7114			continue;
7115		}
7116
7117		raw_spin_lock(&p->pi_lock);
7118		rq = __task_rq_lock(p);
7119
7120		normalize_task(rq, p);
7121
7122		__task_rq_unlock(rq);
7123		raw_spin_unlock(&p->pi_lock);
7124	} while_each_thread(g, p);
7125
7126	read_unlock_irqrestore(&tasklist_lock, flags);
7127}
7128
7129#endif /* CONFIG_MAGIC_SYSRQ */
7130
7131#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7132/*
7133 * These functions are only useful for the IA64 MCA handling, or kdb.
7134 *
7135 * They can only be called when the whole system has been
7136 * stopped - every CPU needs to be quiescent, and no scheduling
7137 * activity can take place. Using them for anything else would
7138 * be a serious bug, and as a result, they aren't even visible
7139 * under any other configuration.
7140 */
7141
7142/**
7143 * curr_task - return the current task for a given cpu.
7144 * @cpu: the processor in question.
7145 *
7146 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7147 */
7148struct task_struct *curr_task(int cpu)
7149{
7150	return cpu_curr(cpu);
7151}
7152
7153#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7154
7155#ifdef CONFIG_IA64
7156/**
7157 * set_curr_task - set the current task for a given cpu.
7158 * @cpu: the processor in question.
7159 * @p: the task pointer to set.
7160 *
7161 * Description: This function must only be used when non-maskable interrupts
7162 * are serviced on a separate stack. It allows the architecture to switch the
7163 * notion of the current task on a cpu in a non-blocking manner. This function
7164 * must be called with all CPU's synchronized, and interrupts disabled, the
7165 * and caller must save the original value of the current task (see
7166 * curr_task() above) and restore that value before reenabling interrupts and
7167 * re-starting the system.
7168 *
7169 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7170 */
7171void set_curr_task(int cpu, struct task_struct *p)
7172{
7173	cpu_curr(cpu) = p;
7174}
7175
7176#endif
7177
7178#ifdef CONFIG_CGROUP_SCHED
7179/* task_group_lock serializes the addition/removal of task groups */
7180static DEFINE_SPINLOCK(task_group_lock);
7181
7182static void free_sched_group(struct task_group *tg)
7183{
7184	free_fair_sched_group(tg);
7185	free_rt_sched_group(tg);
7186	autogroup_free(tg);
7187	kfree(tg);
7188}
7189
7190/* allocate runqueue etc for a new task group */
7191struct task_group *sched_create_group(struct task_group *parent)
7192{
7193	struct task_group *tg;
7194	unsigned long flags;
7195
7196	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7197	if (!tg)
7198		return ERR_PTR(-ENOMEM);
7199
7200	if (!alloc_fair_sched_group(tg, parent))
7201		goto err;
7202
7203	if (!alloc_rt_sched_group(tg, parent))
7204		goto err;
7205
7206	spin_lock_irqsave(&task_group_lock, flags);
7207	list_add_rcu(&tg->list, &task_groups);
7208
7209	WARN_ON(!parent); /* root should already exist */
7210
7211	tg->parent = parent;
7212	INIT_LIST_HEAD(&tg->children);
7213	list_add_rcu(&tg->siblings, &parent->children);
7214	spin_unlock_irqrestore(&task_group_lock, flags);
7215
7216	return tg;
7217
7218err:
7219	free_sched_group(tg);
7220	return ERR_PTR(-ENOMEM);
7221}
7222
7223/* rcu callback to free various structures associated with a task group */
7224static void free_sched_group_rcu(struct rcu_head *rhp)
7225{
7226	/* now it should be safe to free those cfs_rqs */
7227	free_sched_group(container_of(rhp, struct task_group, rcu));
7228}
7229
7230/* Destroy runqueue etc associated with a task group */
7231void sched_destroy_group(struct task_group *tg)
7232{
7233	unsigned long flags;
7234	int i;
7235
7236	/* end participation in shares distribution */
7237	for_each_possible_cpu(i)
7238		unregister_fair_sched_group(tg, i);
7239
7240	spin_lock_irqsave(&task_group_lock, flags);
7241	list_del_rcu(&tg->list);
7242	list_del_rcu(&tg->siblings);
7243	spin_unlock_irqrestore(&task_group_lock, flags);
7244
7245	/* wait for possible concurrent references to cfs_rqs complete */
7246	call_rcu(&tg->rcu, free_sched_group_rcu);
7247}
7248
7249/* change task's runqueue when it moves between groups.
7250 *	The caller of this function should have put the task in its new group
7251 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7252 *	reflect its new group.
7253 */
7254void sched_move_task(struct task_struct *tsk)
7255{
7256	int on_rq, running;
7257	unsigned long flags;
7258	struct rq *rq;
7259
7260	rq = task_rq_lock(tsk, &flags);
7261
7262	running = task_current(rq, tsk);
7263	on_rq = tsk->on_rq;
7264
7265	if (on_rq)
7266		dequeue_task(rq, tsk, 0);
7267	if (unlikely(running))
7268		tsk->sched_class->put_prev_task(rq, tsk);
7269
7270#ifdef CONFIG_FAIR_GROUP_SCHED
7271	if (tsk->sched_class->task_move_group)
7272		tsk->sched_class->task_move_group(tsk, on_rq);
7273	else
7274#endif
7275		set_task_rq(tsk, task_cpu(tsk));
7276
7277	if (unlikely(running))
7278		tsk->sched_class->set_curr_task(rq);
7279	if (on_rq)
7280		enqueue_task(rq, tsk, 0);
7281
7282	task_rq_unlock(rq, tsk, &flags);
7283}
7284#endif /* CONFIG_CGROUP_SCHED */
7285
7286#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7287static unsigned long to_ratio(u64 period, u64 runtime)
7288{
7289	if (runtime == RUNTIME_INF)
7290		return 1ULL << 20;
7291
7292	return div64_u64(runtime << 20, period);
7293}
7294#endif
7295
7296#ifdef CONFIG_RT_GROUP_SCHED
7297/*
7298 * Ensure that the real time constraints are schedulable.
7299 */
7300static DEFINE_MUTEX(rt_constraints_mutex);
7301
7302/* Must be called with tasklist_lock held */
7303static inline int tg_has_rt_tasks(struct task_group *tg)
7304{
7305	struct task_struct *g, *p;
7306
7307	do_each_thread(g, p) {
7308		if (rt_task(p) && task_rq(p)->rt.tg == tg)
7309			return 1;
7310	} while_each_thread(g, p);
7311
7312	return 0;
7313}
7314
7315struct rt_schedulable_data {
7316	struct task_group *tg;
7317	u64 rt_period;
7318	u64 rt_runtime;
7319};
7320
7321static int tg_rt_schedulable(struct task_group *tg, void *data)
7322{
7323	struct rt_schedulable_data *d = data;
7324	struct task_group *child;
7325	unsigned long total, sum = 0;
7326	u64 period, runtime;
7327
7328	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7329	runtime = tg->rt_bandwidth.rt_runtime;
7330
7331	if (tg == d->tg) {
7332		period = d->rt_period;
7333		runtime = d->rt_runtime;
7334	}
7335
7336	/*
7337	 * Cannot have more runtime than the period.
7338	 */
7339	if (runtime > period && runtime != RUNTIME_INF)
7340		return -EINVAL;
7341
7342	/*
7343	 * Ensure we don't starve existing RT tasks.
7344	 */
7345	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7346		return -EBUSY;
7347
7348	total = to_ratio(period, runtime);
7349
7350	/*
7351	 * Nobody can have more than the global setting allows.
7352	 */
7353	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7354		return -EINVAL;
7355
7356	/*
7357	 * The sum of our children's runtime should not exceed our own.
7358	 */
7359	list_for_each_entry_rcu(child, &tg->children, siblings) {
7360		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7361		runtime = child->rt_bandwidth.rt_runtime;
7362
7363		if (child == d->tg) {
7364			period = d->rt_period;
7365			runtime = d->rt_runtime;
7366		}
7367
7368		sum += to_ratio(period, runtime);
7369	}
7370
7371	if (sum > total)
7372		return -EINVAL;
7373
7374	return 0;
7375}
7376
7377static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7378{
7379	int ret;
7380
7381	struct rt_schedulable_data data = {
7382		.tg = tg,
7383		.rt_period = period,
7384		.rt_runtime = runtime,
7385	};
7386
7387	rcu_read_lock();
7388	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7389	rcu_read_unlock();
7390
7391	return ret;
7392}
7393
7394static int tg_set_rt_bandwidth(struct task_group *tg,
7395		u64 rt_period, u64 rt_runtime)
7396{
7397	int i, err = 0;
7398
7399	mutex_lock(&rt_constraints_mutex);
7400	read_lock(&tasklist_lock);
7401	err = __rt_schedulable(tg, rt_period, rt_runtime);
7402	if (err)
7403		goto unlock;
7404
7405	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7406	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7407	tg->rt_bandwidth.rt_runtime = rt_runtime;
7408
7409	for_each_possible_cpu(i) {
7410		struct rt_rq *rt_rq = tg->rt_rq[i];
7411
7412		raw_spin_lock(&rt_rq->rt_runtime_lock);
7413		rt_rq->rt_runtime = rt_runtime;
7414		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7415	}
7416	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7417unlock:
7418	read_unlock(&tasklist_lock);
7419	mutex_unlock(&rt_constraints_mutex);
7420
7421	return err;
7422}
7423
7424int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7425{
7426	u64 rt_runtime, rt_period;
7427
7428	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7429	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7430	if (rt_runtime_us < 0)
7431		rt_runtime = RUNTIME_INF;
7432
7433	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7434}
7435
7436long sched_group_rt_runtime(struct task_group *tg)
7437{
7438	u64 rt_runtime_us;
7439
7440	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7441		return -1;
7442
7443	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7444	do_div(rt_runtime_us, NSEC_PER_USEC);
7445	return rt_runtime_us;
7446}
7447
7448int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7449{
7450	u64 rt_runtime, rt_period;
7451
7452	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7453	rt_runtime = tg->rt_bandwidth.rt_runtime;
7454
7455	if (rt_period == 0)
7456		return -EINVAL;
7457
7458	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7459}
7460
7461long sched_group_rt_period(struct task_group *tg)
7462{
7463	u64 rt_period_us;
7464
7465	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7466	do_div(rt_period_us, NSEC_PER_USEC);
7467	return rt_period_us;
7468}
7469
7470static int sched_rt_global_constraints(void)
7471{
7472	u64 runtime, period;
7473	int ret = 0;
7474
7475	if (sysctl_sched_rt_period <= 0)
7476		return -EINVAL;
7477
7478	runtime = global_rt_runtime();
7479	period = global_rt_period();
7480
7481	/*
7482	 * Sanity check on the sysctl variables.
7483	 */
7484	if (runtime > period && runtime != RUNTIME_INF)
7485		return -EINVAL;
7486
7487	mutex_lock(&rt_constraints_mutex);
7488	read_lock(&tasklist_lock);
7489	ret = __rt_schedulable(NULL, 0, 0);
7490	read_unlock(&tasklist_lock);
7491	mutex_unlock(&rt_constraints_mutex);
7492
7493	return ret;
7494}
7495
7496int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7497{
7498	/* Don't accept realtime tasks when there is no way for them to run */
7499	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7500		return 0;
7501
7502	return 1;
7503}
7504
7505#else /* !CONFIG_RT_GROUP_SCHED */
7506static int sched_rt_global_constraints(void)
7507{
7508	unsigned long flags;
7509	int i;
7510
7511	if (sysctl_sched_rt_period <= 0)
7512		return -EINVAL;
7513
7514	/*
7515	 * There's always some RT tasks in the root group
7516	 * -- migration, kstopmachine etc..
7517	 */
7518	if (sysctl_sched_rt_runtime == 0)
7519		return -EBUSY;
7520
7521	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7522	for_each_possible_cpu(i) {
7523		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7524
7525		raw_spin_lock(&rt_rq->rt_runtime_lock);
7526		rt_rq->rt_runtime = global_rt_runtime();
7527		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7528	}
7529	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7530
7531	return 0;
7532}
7533#endif /* CONFIG_RT_GROUP_SCHED */
7534
7535int sched_rt_handler(struct ctl_table *table, int write,
7536		void __user *buffer, size_t *lenp,
7537		loff_t *ppos)
7538{
7539	int ret;
7540	int old_period, old_runtime;
7541	static DEFINE_MUTEX(mutex);
7542
7543	mutex_lock(&mutex);
7544	old_period = sysctl_sched_rt_period;
7545	old_runtime = sysctl_sched_rt_runtime;
7546
7547	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7548
7549	if (!ret && write) {
7550		ret = sched_rt_global_constraints();
7551		if (ret) {
7552			sysctl_sched_rt_period = old_period;
7553			sysctl_sched_rt_runtime = old_runtime;
7554		} else {
7555			def_rt_bandwidth.rt_runtime = global_rt_runtime();
7556			def_rt_bandwidth.rt_period =
7557				ns_to_ktime(global_rt_period());
7558		}
7559	}
7560	mutex_unlock(&mutex);
7561
7562	return ret;
7563}
7564
7565#ifdef CONFIG_CGROUP_SCHED
7566
7567/* return corresponding task_group object of a cgroup */
7568static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7569{
7570	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7571			    struct task_group, css);
7572}
7573
7574static struct cgroup_subsys_state *
7575cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7576{
7577	struct task_group *tg, *parent;
7578
7579	if (!cgrp->parent) {
7580		/* This is early initialization for the top cgroup */
7581		return &root_task_group.css;
7582	}
7583
7584	parent = cgroup_tg(cgrp->parent);
7585	tg = sched_create_group(parent);
7586	if (IS_ERR(tg))
7587		return ERR_PTR(-ENOMEM);
7588
7589	return &tg->css;
7590}
7591
7592static void
7593cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7594{
7595	struct task_group *tg = cgroup_tg(cgrp);
7596
7597	sched_destroy_group(tg);
7598}
7599
7600static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7601				 struct cgroup_taskset *tset)
7602{
7603	struct task_struct *task;
7604
7605	cgroup_taskset_for_each(task, cgrp, tset) {
7606#ifdef CONFIG_RT_GROUP_SCHED
7607		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7608			return -EINVAL;
7609#else
7610		/* We don't support RT-tasks being in separate groups */
7611		if (task->sched_class != &fair_sched_class)
7612			return -EINVAL;
7613#endif
7614	}
7615	return 0;
7616}
7617
7618static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7619			      struct cgroup_taskset *tset)
7620{
7621	struct task_struct *task;
7622
7623	cgroup_taskset_for_each(task, cgrp, tset)
7624		sched_move_task(task);
7625}
7626
7627static void
7628cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7629		struct cgroup *old_cgrp, struct task_struct *task)
7630{
7631	/*
7632	 * cgroup_exit() is called in the copy_process() failure path.
7633	 * Ignore this case since the task hasn't ran yet, this avoids
7634	 * trying to poke a half freed task state from generic code.
7635	 */
7636	if (!(task->flags & PF_EXITING))
7637		return;
7638
7639	sched_move_task(task);
7640}
7641
7642#ifdef CONFIG_FAIR_GROUP_SCHED
7643static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7644				u64 shareval)
7645{
7646	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7647}
7648
7649static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7650{
7651	struct task_group *tg = cgroup_tg(cgrp);
7652
7653	return (u64) scale_load_down(tg->shares);
7654}
7655
7656#ifdef CONFIG_CFS_BANDWIDTH
7657static DEFINE_MUTEX(cfs_constraints_mutex);
7658
7659const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7660const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7661
7662static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7663
7664static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7665{
7666	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7667	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7668
7669	if (tg == &root_task_group)
7670		return -EINVAL;
7671
7672	/*
7673	 * Ensure we have at some amount of bandwidth every period.  This is
7674	 * to prevent reaching a state of large arrears when throttled via
7675	 * entity_tick() resulting in prolonged exit starvation.
7676	 */
7677	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7678		return -EINVAL;
7679
7680	/*
7681	 * Likewise, bound things on the otherside by preventing insane quota
7682	 * periods.  This also allows us to normalize in computing quota
7683	 * feasibility.
7684	 */
7685	if (period > max_cfs_quota_period)
7686		return -EINVAL;
7687
7688	mutex_lock(&cfs_constraints_mutex);
7689	ret = __cfs_schedulable(tg, period, quota);
7690	if (ret)
7691		goto out_unlock;
7692
7693	runtime_enabled = quota != RUNTIME_INF;
7694	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7695	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7696	raw_spin_lock_irq(&cfs_b->lock);
7697	cfs_b->period = ns_to_ktime(period);
7698	cfs_b->quota = quota;
7699
7700	__refill_cfs_bandwidth_runtime(cfs_b);
7701	/* restart the period timer (if active) to handle new period expiry */
7702	if (runtime_enabled && cfs_b->timer_active) {
7703		/* force a reprogram */
7704		cfs_b->timer_active = 0;
7705		__start_cfs_bandwidth(cfs_b);
7706	}
7707	raw_spin_unlock_irq(&cfs_b->lock);
7708
7709	for_each_possible_cpu(i) {
7710		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7711		struct rq *rq = cfs_rq->rq;
7712
7713		raw_spin_lock_irq(&rq->lock);
7714		cfs_rq->runtime_enabled = runtime_enabled;
7715		cfs_rq->runtime_remaining = 0;
7716
7717		if (cfs_rq->throttled)
7718			unthrottle_cfs_rq(cfs_rq);
7719		raw_spin_unlock_irq(&rq->lock);
7720	}
7721out_unlock:
7722	mutex_unlock(&cfs_constraints_mutex);
7723
7724	return ret;
7725}
7726
7727int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7728{
7729	u64 quota, period;
7730
7731	period = ktime_to_ns(tg->cfs_bandwidth.period);
7732	if (cfs_quota_us < 0)
7733		quota = RUNTIME_INF;
7734	else
7735		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7736
7737	return tg_set_cfs_bandwidth(tg, period, quota);
7738}
7739
7740long tg_get_cfs_quota(struct task_group *tg)
7741{
7742	u64 quota_us;
7743
7744	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7745		return -1;
7746
7747	quota_us = tg->cfs_bandwidth.quota;
7748	do_div(quota_us, NSEC_PER_USEC);
7749
7750	return quota_us;
7751}
7752
7753int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7754{
7755	u64 quota, period;
7756
7757	period = (u64)cfs_period_us * NSEC_PER_USEC;
7758	quota = tg->cfs_bandwidth.quota;
7759
7760	return tg_set_cfs_bandwidth(tg, period, quota);
7761}
7762
7763long tg_get_cfs_period(struct task_group *tg)
7764{
7765	u64 cfs_period_us;
7766
7767	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7768	do_div(cfs_period_us, NSEC_PER_USEC);
7769
7770	return cfs_period_us;
7771}
7772
7773static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7774{
7775	return tg_get_cfs_quota(cgroup_tg(cgrp));
7776}
7777
7778static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7779				s64 cfs_quota_us)
7780{
7781	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7782}
7783
7784static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7785{
7786	return tg_get_cfs_period(cgroup_tg(cgrp));
7787}
7788
7789static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7790				u64 cfs_period_us)
7791{
7792	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7793}
7794
7795struct cfs_schedulable_data {
7796	struct task_group *tg;
7797	u64 period, quota;
7798};
7799
7800/*
7801 * normalize group quota/period to be quota/max_period
7802 * note: units are usecs
7803 */
7804static u64 normalize_cfs_quota(struct task_group *tg,
7805			       struct cfs_schedulable_data *d)
7806{
7807	u64 quota, period;
7808
7809	if (tg == d->tg) {
7810		period = d->period;
7811		quota = d->quota;
7812	} else {
7813		period = tg_get_cfs_period(tg);
7814		quota = tg_get_cfs_quota(tg);
7815	}
7816
7817	/* note: these should typically be equivalent */
7818	if (quota == RUNTIME_INF || quota == -1)
7819		return RUNTIME_INF;
7820
7821	return to_ratio(period, quota);
7822}
7823
7824static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7825{
7826	struct cfs_schedulable_data *d = data;
7827	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7828	s64 quota = 0, parent_quota = -1;
7829
7830	if (!tg->parent) {
7831		quota = RUNTIME_INF;
7832	} else {
7833		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7834
7835		quota = normalize_cfs_quota(tg, d);
7836		parent_quota = parent_b->hierarchal_quota;
7837
7838		/*
7839		 * ensure max(child_quota) <= parent_quota, inherit when no
7840		 * limit is set
7841		 */
7842		if (quota == RUNTIME_INF)
7843			quota = parent_quota;
7844		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7845			return -EINVAL;
7846	}
7847	cfs_b->hierarchal_quota = quota;
7848
7849	return 0;
7850}
7851
7852static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7853{
7854	int ret;
7855	struct cfs_schedulable_data data = {
7856		.tg = tg,
7857		.period = period,
7858		.quota = quota,
7859	};
7860
7861	if (quota != RUNTIME_INF) {
7862		do_div(data.period, NSEC_PER_USEC);
7863		do_div(data.quota, NSEC_PER_USEC);
7864	}
7865
7866	rcu_read_lock();
7867	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7868	rcu_read_unlock();
7869
7870	return ret;
7871}
7872
7873static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7874		struct cgroup_map_cb *cb)
7875{
7876	struct task_group *tg = cgroup_tg(cgrp);
7877	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7878
7879	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7880	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7881	cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7882
7883	return 0;
7884}
7885#endif /* CONFIG_CFS_BANDWIDTH */
7886#endif /* CONFIG_FAIR_GROUP_SCHED */
7887
7888#ifdef CONFIG_RT_GROUP_SCHED
7889static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7890				s64 val)
7891{
7892	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7893}
7894
7895static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7896{
7897	return sched_group_rt_runtime(cgroup_tg(cgrp));
7898}
7899
7900static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7901		u64 rt_period_us)
7902{
7903	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7904}
7905
7906static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7907{
7908	return sched_group_rt_period(cgroup_tg(cgrp));
7909}
7910#endif /* CONFIG_RT_GROUP_SCHED */
7911
7912static struct cftype cpu_files[] = {
7913#ifdef CONFIG_FAIR_GROUP_SCHED
7914	{
7915		.name = "shares",
7916		.read_u64 = cpu_shares_read_u64,
7917		.write_u64 = cpu_shares_write_u64,
7918	},
7919#endif
7920#ifdef CONFIG_CFS_BANDWIDTH
7921	{
7922		.name = "cfs_quota_us",
7923		.read_s64 = cpu_cfs_quota_read_s64,
7924		.write_s64 = cpu_cfs_quota_write_s64,
7925	},
7926	{
7927		.name = "cfs_period_us",
7928		.read_u64 = cpu_cfs_period_read_u64,
7929		.write_u64 = cpu_cfs_period_write_u64,
7930	},
7931	{
7932		.name = "stat",
7933		.read_map = cpu_stats_show,
7934	},
7935#endif
7936#ifdef CONFIG_RT_GROUP_SCHED
7937	{
7938		.name = "rt_runtime_us",
7939		.read_s64 = cpu_rt_runtime_read,
7940		.write_s64 = cpu_rt_runtime_write,
7941	},
7942	{
7943		.name = "rt_period_us",
7944		.read_u64 = cpu_rt_period_read_uint,
7945		.write_u64 = cpu_rt_period_write_uint,
7946	},
7947#endif
7948};
7949
7950static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7951{
7952	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7953}
7954
7955struct cgroup_subsys cpu_cgroup_subsys = {
7956	.name		= "cpu",
7957	.create		= cpu_cgroup_create,
7958	.destroy	= cpu_cgroup_destroy,
7959	.can_attach	= cpu_cgroup_can_attach,
7960	.attach		= cpu_cgroup_attach,
7961	.exit		= cpu_cgroup_exit,
7962	.populate	= cpu_cgroup_populate,
7963	.subsys_id	= cpu_cgroup_subsys_id,
7964	.early_init	= 1,
7965};
7966
7967#endif	/* CONFIG_CGROUP_SCHED */
7968
7969#ifdef CONFIG_CGROUP_CPUACCT
7970
7971/*
7972 * CPU accounting code for task groups.
7973 *
7974 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7975 * (balbir@in.ibm.com).
7976 */
7977
7978/* create a new cpu accounting group */
7979static struct cgroup_subsys_state *cpuacct_create(
7980	struct cgroup_subsys *ss, struct cgroup *cgrp)
7981{
7982	struct cpuacct *ca;
7983
7984	if (!cgrp->parent)
7985		return &root_cpuacct.css;
7986
7987	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7988	if (!ca)
7989		goto out;
7990
7991	ca->cpuusage = alloc_percpu(u64);
7992	if (!ca->cpuusage)
7993		goto out_free_ca;
7994
7995	ca->cpustat = alloc_percpu(struct kernel_cpustat);
7996	if (!ca->cpustat)
7997		goto out_free_cpuusage;
7998
7999	return &ca->css;
8000
8001out_free_cpuusage:
8002	free_percpu(ca->cpuusage);
8003out_free_ca:
8004	kfree(ca);
8005out:
8006	return ERR_PTR(-ENOMEM);
8007}
8008
8009/* destroy an existing cpu accounting group */
8010static void
8011cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8012{
8013	struct cpuacct *ca = cgroup_ca(cgrp);
8014
8015	free_percpu(ca->cpustat);
8016	free_percpu(ca->cpuusage);
8017	kfree(ca);
8018}
8019
8020static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8021{
8022	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8023	u64 data;
8024
8025#ifndef CONFIG_64BIT
8026	/*
8027	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8028	 */
8029	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8030	data = *cpuusage;
8031	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8032#else
8033	data = *cpuusage;
8034#endif
8035
8036	return data;
8037}
8038
8039static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8040{
8041	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8042
8043#ifndef CONFIG_64BIT
8044	/*
8045	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8046	 */
8047	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8048	*cpuusage = val;
8049	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8050#else
8051	*cpuusage = val;
8052#endif
8053}
8054
8055/* return total cpu usage (in nanoseconds) of a group */
8056static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8057{
8058	struct cpuacct *ca = cgroup_ca(cgrp);
8059	u64 totalcpuusage = 0;
8060	int i;
8061
8062	for_each_present_cpu(i)
8063		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8064
8065	return totalcpuusage;
8066}
8067
8068static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8069								u64 reset)
8070{
8071	struct cpuacct *ca = cgroup_ca(cgrp);
8072	int err = 0;
8073	int i;
8074
8075	if (reset) {
8076		err = -EINVAL;
8077		goto out;
8078	}
8079
8080	for_each_present_cpu(i)
8081		cpuacct_cpuusage_write(ca, i, 0);
8082
8083out:
8084	return err;
8085}
8086
8087static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8088				   struct seq_file *m)
8089{
8090	struct cpuacct *ca = cgroup_ca(cgroup);
8091	u64 percpu;
8092	int i;
8093
8094	for_each_present_cpu(i) {
8095		percpu = cpuacct_cpuusage_read(ca, i);
8096		seq_printf(m, "%llu ", (unsigned long long) percpu);
8097	}
8098	seq_printf(m, "\n");
8099	return 0;
8100}
8101
8102static const char *cpuacct_stat_desc[] = {
8103	[CPUACCT_STAT_USER] = "user",
8104	[CPUACCT_STAT_SYSTEM] = "system",
8105};
8106
8107static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8108			      struct cgroup_map_cb *cb)
8109{
8110	struct cpuacct *ca = cgroup_ca(cgrp);
8111	int cpu;
8112	s64 val = 0;
8113
8114	for_each_online_cpu(cpu) {
8115		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8116		val += kcpustat->cpustat[CPUTIME_USER];
8117		val += kcpustat->cpustat[CPUTIME_NICE];
8118	}
8119	val = cputime64_to_clock_t(val);
8120	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8121
8122	val = 0;
8123	for_each_online_cpu(cpu) {
8124		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8125		val += kcpustat->cpustat[CPUTIME_SYSTEM];
8126		val += kcpustat->cpustat[CPUTIME_IRQ];
8127		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8128	}
8129
8130	val = cputime64_to_clock_t(val);
8131	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8132
8133	return 0;
8134}
8135
8136static struct cftype files[] = {
8137	{
8138		.name = "usage",
8139		.read_u64 = cpuusage_read,
8140		.write_u64 = cpuusage_write,
8141	},
8142	{
8143		.name = "usage_percpu",
8144		.read_seq_string = cpuacct_percpu_seq_read,
8145	},
8146	{
8147		.name = "stat",
8148		.read_map = cpuacct_stats_show,
8149	},
8150};
8151
8152static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8153{
8154	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8155}
8156
8157/*
8158 * charge this task's execution time to its accounting group.
8159 *
8160 * called with rq->lock held.
8161 */
8162void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8163{
8164	struct cpuacct *ca;
8165	int cpu;
8166
8167	if (unlikely(!cpuacct_subsys.active))
8168		return;
8169
8170	cpu = task_cpu(tsk);
8171
8172	rcu_read_lock();
8173
8174	ca = task_ca(tsk);
8175
8176	for (; ca; ca = parent_ca(ca)) {
8177		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8178		*cpuusage += cputime;
8179	}
8180
8181	rcu_read_unlock();
8182}
8183
8184struct cgroup_subsys cpuacct_subsys = {
8185	.name = "cpuacct",
8186	.create = cpuacct_create,
8187	.destroy = cpuacct_destroy,
8188	.populate = cpuacct_populate,
8189	.subsys_id = cpuacct_subsys_id,
8190};
8191#endif	/* CONFIG_CGROUP_CPUACCT */
8192